
Introduction to Functional
Programming

John Harrison
jrh@cl.cam.ac.uk

3rd December 1997

i

Preface

These are the lecture notes accompanying the course Introduction to Functional
Programming, which I taught at Cambridge University in the academic year
1996/7.

This course has mainly been taught in previous years by Mike Gordon. I have
retained the basic structure of his course, with a blend of theory and practice,
and have borrowed heavily in what follows from his own lecture notes, available
in book form as Part II of (Gordon 1988). I have also been influenced by those
who have taught related courses here, such as Andy Gordon and Larry Paulson
and, in the chapter on types, by Andy Pitts’s course on the subject.

The large chapter on examples is not directly examinable, though studying it
should improve the reader’s grasp of the early parts and give a better idea about
how ML is actually used.

Most chapters include some exercises, either invented specially for this course
or taken from various sources. They are normally intended to require a little
thought, rather than just being routine drill. Those I consider fairly difficult are
marked with a (*).

These notes have not yet been tested extensively and no doubt contain various
errors and obscurities. I would be grateful for constructive criticism from any
readers.

John Harrison (jrh@cl.cam.ac.uk).

ii

Plan of the lectures

This chapter indicates roughly how the material is to be distributed over a course
of twelve lectures, each of slightly less than one hour.

1. Introduction and Overview Functional and imperative programming:
contrast, pros and cons. General structure of the course: how lambda cal-
culus turns out to be a general programming language. Lambda notation:
how it clarifies variable binding and provides a general analysis of mathe-
matical notation. Currying. Russell’s paradox.

2. Lambda calculus as a formal system Free and bound variables. Sub-
stitution. Conversion rules. Lambda equality. Extensionality. Reduction
and reduction strategies. The Church-Rosser theorem: statement and con-
sequences. Combinators.

3. Lambda calculus as a programming language Computability back-
ground; Turing completeness (no proof). Representing data and basic op-
erations: truth values, pairs and tuples, natural numbers. The predecessor
operation. Writing recursive functions: fixed point combinators. Let ex-
pressions. Lambda calculus as a declarative language.

4. Types Why types? Answers from programming and logic. Simply typed
lambda calculus. Church and Curry typing. Let polymorphism. Most
general types and Milner’s algorithm. Strong normalization (no proof),
and its negative consequences for Turing completeness. Adding a recursion
operator.

5. ML ML as typed lambda calculus with eager evaluation. Details of evalu-
ation strategy. The conditional. The ML family. Practicalities of interact-
ing with ML. Writing functions. Bindings and declarations. Recursive and
polymorphic functions. Comparison of functions.

6. Details of ML More about interaction with ML. Loading from files. Com-
ments. Basic data types: unit, booleans, numbers and strings. Built-in
operations. Concrete syntax and infixes. More examples. Recursive types
and pattern matching. Examples: lists and recursive functions on lists.

iii

iv

7. Proving programs correct The correctness problem. Testing and veri-
fication. The limits of verification. Functional programs as mathematical
objects. Examples of program proofs: exponential, GCD, append and re-
verse.

8. Effective ML Using standard combinators. List iteration and other useful
combinators; examples. Tail recursion and accumulators; why tail recursion
is more efficient. Forcing evaluation. Minimizing consing. More efficient
reversal. Use of ‘as’. Imperative features: exceptions, references, arrays
and sequencing. Imperative features and types; the value restriction.

9. ML examples I: symbolic differentiation Symbolic computation. Data
representation. Operator precedence. Association lists. Prettyprinting
expressions. Installing the printer. Differentiation. Simplification. The
problem of the ‘right’ simplification.

10. ML examples II: recursive descent parsing Grammars and the parsing
problem. Fixing ambiguity. Recursive descent. Parsers in ML. Parser
combinators; examples. Lexical analysis using the same techniques. A
parser for terms. Automating precedence parsing. Avoiding backtracking.
Comparison with other techniques.

11. ML examples III: exact real arithmetic Real numbers and finite repre-
sentations. Real numbers as programs or functions. Our representation of
reals. Arbitrary precision integers. Injecting integers into the reals. Nega-
tion and absolute value. Addition; the importance of rounding division.
Multiplication and division by integers. General multiplication. Inverse and
division. Ordering and equality. Testing. Avoiding reevaluation through
memo functions.

12. ML examples IV: Prolog and theorem proving Prolog terms. Case-
sensitive lexing. Parsing and printing, including list syntax. Unification.
Backtracking search. Prolog examples. Prolog-style theorem proving. Ma-
nipulating formulas; negation normal form. Basic prover; the use of con-
tinuations. Examples: Pelletier problems and whodunit.

Contents

1 Introduction 1
1.1 The merits of functional programming 3
1.2 Outline . 5

2 Lambda calculus 7
2.1 The benefits of lambda notation 8
2.2 Russell’s paradox . 11
2.3 Lambda calculus as a formal system 12

2.3.1 Lambda terms . 12
2.3.2 Free and bound variables 13
2.3.3 Substitution . 14
2.3.4 Conversions . 16
2.3.5 Lambda equality . 16
2.3.6 Extensionality . 17
2.3.7 Lambda reduction . 18
2.3.8 Reduction strategies . 19
2.3.9 The Church-Rosser theorem 19

2.4 Combinators . 21

3 Lambda calculus as a programming language 24
3.1 Representing data in lambda calculus 26

3.1.1 Truth values and the conditional 26
3.1.2 Pairs and tuples . 27
3.1.3 The natural numbers . 29

3.2 Recursive functions . 31
3.3 Let expressions . 33
3.4 Steps towards a real programming language 35
3.5 Further reading . 36

4 Types 38
4.1 Typed lambda calculus . 39

4.1.1 The stock of types . 40
4.1.2 Church and Curry typing 41

v

vi CONTENTS

4.1.3 Formal typability rules . 42
4.1.4 Type preservation . 43

4.2 Polymorphism . 44
4.2.1 Let polymorphism . 45
4.2.2 Most general types . 46

4.3 Strong normalization . 47

5 A taste of ML 50
5.1 Eager evaluation . 50
5.2 Consequences of eager evaluation 53
5.3 The ML family . 54
5.4 Starting up ML . 54
5.5 Interacting with ML . 55
5.6 Bindings and declarations . 56
5.7 Polymorphic functions . 58
5.8 Equality of functions . 60

6 Further ML 63
6.1 Basic datatypes and operations 64
6.2 Syntax of ML phrases . 66
6.3 Further examples . 68
6.4 Type definitions . 70

6.4.1 Pattern matching . 71
6.4.2 Recursive types . 73
6.4.3 Tree structures . 76
6.4.4 The subtlety of recursive types 78

7 Proving programs correct 81
7.1 Functional programs as mathematical objects 83
7.2 Exponentiation . 84
7.3 Greatest common divisor . 85
7.4 Appending . 86
7.5 Reversing . 87

8 Effective ML 94
8.1 Useful combinators . 94
8.2 Writing efficient code . 96

8.2.1 Tail recursion and accumulators 96
8.2.2 Minimizing consing . 98
8.2.3 Forcing evaluation . 101

8.3 Imperative features . 102
8.3.1 Exceptions . 102
8.3.2 References and arrays . 104

CONTENTS vii

8.3.3 Sequencing . 105
8.3.4 Interaction with the type system 106

9 Examples 109
9.1 Symbolic differentiation . 109

9.1.1 First order terms . 110
9.1.2 Printing . 110
9.1.3 Derivatives . 114
9.1.4 Simplification . 115

9.2 Parsing . 118
9.2.1 Recursive descent parsing 120
9.2.2 Parser combinators . 120
9.2.3 Lexical analysis . 122
9.2.4 Parsing terms . 123
9.2.5 Automatic precedence parsing 124
9.2.6 Defects of our approach 126

9.3 Exact real arithmetic . 128
9.3.1 Representation of real numbers 129
9.3.2 Arbitrary-precision integers 129
9.3.3 Basic operations . 131
9.3.4 General multiplication . 135
9.3.5 Multiplicative inverse . 136
9.3.6 Ordering relations . 138
9.3.7 Caching . 138

9.4 Prolog and theorem proving . 141
9.4.1 Prolog terms . 142
9.4.2 Lexical analysis . 142
9.4.3 Parsing . 143
9.4.4 Unification . 144
9.4.5 Backtracking . 146
9.4.6 Examples . 147
9.4.7 Theorem proving . 149

Chapter 1

Introduction

Programs in traditional languages, such as FORTRAN, Algol, C and Modula-3,
rely heavily on modifying the values of a collection of variables, called the state. If
we neglect the input-output operations and the possibility that a program might
run continuously (e.g. the controller for a manufacturing process), we can arrive
at the following abstraction. Before execution, the state has some initial value
σ, representing the inputs to the program, and when the program has finished,
the state has a new value σ′ including the result(s). Moreover, during execution,
each command changes the state, which has therefore proceeded through some
finite sequence of values:

σ = σ0 → σ1 → σ2 → · · · → σn = σ′

For example in a sorting program, the state initially includes an array of
values, and when the program has finished, the state has been modified in such a
way that these values are sorted, while the intermediate states represent progress
towards this goal.

The state is typically modified by assignment commands, often written in
the form v = E or v := E where v is a variable and E some expression. These
commands can be executed in a sequential manner by writing them one after the
other in the program, often separated by a semicolon. By using statements like
if and while, one can execute these commands conditionally, and repeatedly,
depending on other properties of the current state. The program amounts to a set
of instructions on how to perform these state changes, and therefore this style of
programming is often called imperative or procedural. Correspondingly, the tra-
ditional languages intended to support it are known as imperative or procedural
languages.

Functional programming represents a radical departure from this model. Es-
sentially, a functional program is simply an expression, and execution means
evaluation of the expression.1 We can see how this might be possible, in gen-

1Functional programming is often called ‘applicative programming’ since the basic mecha-

1

2 CHAPTER 1. INTRODUCTION

eral terms, as follows. Assuming that an imperative program (as a whole) is
deterministic, i.e. the output is completely determined by the input, we can say
that the final state, or whichever fragments of it are of interest, is some func-
tion of the initial state, say σ′ = f(σ).2 In functional programming this view
is emphasized: the program is actually an expression that corresponds to the
mathematical function f . Functional languages support the construction of such
expressions by allowing rather powerful functional constructs.

Functional programming can be contrasted with imperative programming ei-
ther in a negative or a positive sense. Negatively, functional programs do not
use variables — there is no state. Consequently, they cannot use assignments,
since there is nothing to assign to. Furthermore the idea of executing commands
in sequence is meaningless, since the first command can make no difference to
the second, there being no state to mediate between them. Positively however,
functional programs can use functions in much more sophisticated ways. Func-
tions can be treated in exactly the same way as simpler objects like integers: they
can be passed to other functions as arguments and returned as results, and in
general calculated with. Instead of sequencing and looping, functional languages
use recursive functions, i.e. functions that are defined in terms of themselves. By
contrast, most traditional languages provide poor facilities in these areas. C al-
lows some limited manipulation of functions via pointers, but does not allow one
to create new functions dynamically. FORTRAN does not even support recursion
at all.

To illustrate the distinction between imperative and functional programming,
the factorial function might be coded imperatively in C (without using C’s un-
usual assignment operations) as:

int fact(int n)

{ int x = 1;

while (n > 0)

{ x = x * n;

n = n - 1;

}

return x;

}

whereas it would be expressed in ML, the functional language we discuss later,
as a recursive function:

let rec fact n =

if n = 0 then 1

else n * fact(n - 1);;

nism is the application of functions to arguments.
2Compare Naur’s remarks (Raphael 1966) that he can write any program in a single state-

ment Output = Program(Input).

1.1. THE MERITS OF FUNCTIONAL PROGRAMMING 3

In fact, this sort of definition can be used in C too. However for more sophis-
ticated uses of functions, functional languages stand in a class by themselves.

1.1 The merits of functional programming

At first sight, a language without variables or sequencing might seem completely
impractical. This impression cannot be dispelled simply by a few words here.
But we hope that by studying the material that follows, readers will gain an
appreciation of how it is possible to do a lot of interesting programming in the
functional manner.

There is nothing sacred about the imperative style, familiar though it is.
Many features of imperative languages have arisen by a process of abstraction
from typical computer hardware, from machine code to assemblers, to macro as-
semblers, and then to FORTRAN and beyond. There is no reason to suppose
that such languages represent the most palatable way for humans to communi-
cate programs to a machine. After all, existing hardware designs are not sacred
either, and computers are supposed to do our bidding rather than conversely.
Perhaps the right approach is not to start from the hardware and work upwards,
but to start with programming languages as an abstract notation for specifying
algorithms, and then work down to the hardware (Dijkstra 1976). Actually, this
tendency can be detected in traditional languages too. Even FORTRAN allows
arithmetical expressions to be written in the usual way. The programmer is not
burdened with the task of linearizing the evaluation of subexpressions and finding
temporary storage for intermediate results.

This suggests that the idea of developing programming languages quite dif-
ferent from the traditional imperative ones is certainly defensible. However, to
emphasize that we are not merely proposing change for change’s sake, we should
say a few words about why we might prefer functional programs to imperative
ones.

Perhaps the main reason is that functional programs correspond more directly
to mathematical objects, and it is therefore easier to reason about them. In order
to get a firm grip on exactly what programs mean, we might wish to assign an
abstract mathematical meaning to a program or command — this is the aim
of denotational semantics (semantics = meaning). In imperative languages, this
has to be done in a rather indirect way, because of the implicit dependency
on the value of the state. In simple imperative languages, one can associate
a command with a function Σ → Σ, where Σ is the set of possible values for
the state. That is, a command takes some state and produces another state.
It may fail to terminate (e.g. while true do x := x), so this function may
in general be partial. Alternative semantics are sometimes preferred, e.g. in
terms of predicate transformers (Dijkstra 1976). But if we add features that can
pervert the execution sequence in more complex ways, e.g. goto, or C’s break

4 CHAPTER 1. INTRODUCTION

and continue, even these interpretations no longer work, since one command
can cause the later commands to be skipped. Instead, one typically uses a more
complicated semantics based on continuations.

By contrast functional programs, in the words of Henson (1987), ‘wear their
semantics on their sleeves’.3 We can illustrate this using ML. The basic datatypes
have a direct interpretation as mathematical objects. Using the standard notation
of [[X]] for ‘the semantics of X’, we can say for example that [[int]] = Z. Now the
ML function fact defined by:

let rec fact n =

if n = 0 then 1

else n * fact(n - 1);;

has one argument of type int, and returns a value of type int, so it can simply
be associated with an abstract partial function Z → Z:

[[fact]](n) =

{
n! if n ≥ 0
⊥ otherwise

(Here ⊥ denotes undefinedness, since for negative arguments, the program
fails to terminate.) This kind of simple interpretation, however, fails in non-
functional programs, since so-called ‘functions’ might not be functions at all in
the mathematical sense. For example, the standard C library features a function
rand(), which returns different, pseudo-random values on successive calls. This
sort of thing can be implemented by using a local static variable to remember
the previous result, e.g:

int rand(void)

{ static int n = 0;

return n = 2147001325 * n + 715136305;

}

Thus, one can see the abandonment of variables and assignments as the logical
next step after the abandonment of goto, since each step makes the semantics
simpler. A simpler semantics makes reasoning about programs more straightfor-
ward. This opens up more possibilities for correctness proofs, and for provably
correct transformations into more efficient programs.

Another potential advantage of functional languages is the following. Since the
evaluation of expressions has no side-effect on any state, separate subexpressions
can be evaluated in any order without affecting each other. This means that
functional programs may lend themselves well to parallel implementation, i.e.
the computer can automatically farm out different subexpressions to different

3More: denotational semantics can be seen as an attempt to turn imperative languages into
functional ones by making the state explicit.

1.2. OUTLINE 5

processors. By contrast, imperative programs often impose a fairly rigid order of
execution, and even the limited interleaving of instructions in modern pipelined
processors turns out to be complicated and full of technical problems.

Actually, ML is not a purely functional programming language; it does have
variables and assignments if required. Most of the time, we will work inside the
purely functional subset. But even if we do use assignments, and lose some of the
preceding benefits, there are advantages too in the more flexible use of functions
that languages like ML allow. Programs can often be expressed in a very concise
and elegant style using higher-order functions (functions that operate on other
functions).4 Code can be made more general, since it can be parametrized even
over other functions. For example, a program to add up a list of numbers and a
program to multiply a list of numbers can be seen as instances of the same pro-
gram, parametrized by the pairwise arithmetic operation and the corresponding
identity. In one case it is given + and 0 and in the other case, ∗ and 1.5 Finally,
functions can also be used to represent infinite data in a convenient way — for
example we will show later how to use functions to perform exact calculation
with real numbers, as distinct from floating point approximations.

At the same time, functional programs are not without their problems. Since
they correspond less directly the the eventual execution in hardware, it can be
difficult to reason about their exact usage of resources such as time and space.
Input-output is also difficult to incorporate neatly into a functional model, though
there are ingenious techniques based on infinite sequences.

It is up to readers to decide, after reading this book, on the merits of the
functional style. We do not wish to enforce any ideologies, merely to point out
that there are different ways of looking at programming, and that in the right
situations, functional programming may have considerable merits. Most of our
examples are chosen from areas that might loosely be described as ‘symbolic
computation’, for we believe that functional programs work well in such appli-
cations. However, as always one should select the most appropriate tool for the
job. It may be that imperative programming, object-oriented programming or
logic programming are more suited to certain tasks. Horses for courses.

1.2 Outline

For those used to imperative programming, the transition to functional program-
ming is inevitably difficult, whatever approach is taken. While some will be im-

4Elegance is subjective and conciseness is not an end in itself. Functional languages, and
other languages like APL, often create a temptation to produce very short tricky code which
is elegant to cognoscenti but obscure to outsiders.

5This parallels the notion of abstraction in pure mathematics, e.g. that the additive and
multiplicative structures over numbers are instances of the abstract notion of a monoid. This
similarly avoids duplication and increases elegance.

6 CHAPTER 1. INTRODUCTION

patient to get quickly to real programming, we have chosen to start with lambda
calculus, and show how it can be seen as the theoretical underpinning for func-
tional languages. This has the merit of corresponding quite well to the actual
historical line of development.

So first we introduce lambda calculus, and show how what was originally
intended as a formal logical system for mathematics turned out to be a completely
general programming language. We then discuss why we might want to add types
to lambda calculus, and show how it can be done. This leads us into ML, which is
essentially an extended and optimized implementation of typed lambda calculus
with a certain evaluation strategy. We cover the practicalities of basic functional
programming in ML, and discuss polymorphism and most general types. We
then move on to more advanced topics including exceptions and ML’s imperative
features. We conclude with some substantial examples, which we hope provide
evidence for the power of ML.

Further reading

Numerous textbooks on ‘functional programming’ include a general introduction
to the field and a contrast with imperative programming — browse through a
few and find one that you like. For example, Henson (1987) contains a good
introductory discussion, and features a similar mixture of theory and practice
to this text. A detailed and polemical advocacy of the functional style is given
by Backus (1978), the main inventor of FORTRAN. Gordon (1994) discusses the
problems of incorporating input-output into functional languages, and some solu-
tions. Readers interested in denotational semantics, for imperative and functional
languages, may look at Winskel (1993).

Chapter 2

Lambda calculus

Lambda calculus is based on the so-called ‘lambda notation’ for denoting func-
tions. In informal mathematics, when one wants to refer to a function, one usually
first gives the function an arbitrary name, and thereafter uses that name, e.g.

Suppose f : R → R is defined by:

f(x) =

{
0 if x = 0
x2sin(1/x2) if x 6= 0

Then f ′(x) is not Lebesgue integrable over the unit interval [0, 1].

Most programming languages, C for example, are similar in this respect: we
can define functions only by giving them names. For example, in order to use
the successor function (which adds 1 to its argument) in nontrivial ways (e.g.
consider a pointer to it), then even though it is very simple, we need to name it
via some function definition such as:

int suc(int n)

{ return n + 1;

}

In either mathematics or programming, this seems quite natural, and gener-
ally works well enough. However it can get clumsy when higher order functions
(functions that manipulate other functions) are involved. In any case, if we want
to treat functions on a par with other mathematical objects, the insistence on
naming is rather inconsistent. When discussing an arithmetical expression built
up from simpler ones, we just write the subexpressions down, without needing to
give them names. Imagine if we always had to deal with arithmetic expressions
in this way:

Define x and y by x = 2 and y = 4 respectively. Then xx = y.

7

8 CHAPTER 2. LAMBDA CALCULUS

Lambda notation allows one to denote functions in much the same way as any
other sort of mathematical object. There is a mainstream notation sometimes
used in mathematics for this purpose, though it’s normally still used as part of
the definition of a temporary name. We can write

x 7→ t[x]

to denote the function mapping any argument x to some arbitrary expression t[x],
which usually, but not necessarily, contains x (it is occasionally useful to “throw
away” an argument). However, we shall use a different notation developed by
Church (1941):

λx. t[x]

which should be read in the same way. For example, λx.x is the identity function
which simply returns its argument, while λx. x2 is the squaring function.

The symbol λ is completely arbitrary, and no significance should be read into
it. (Indeed one often sees, particularly in French texts, the alternative notation
[x] t[x].) Apparently it arose by a complicated process of evolution. Originally,
the famous Principia Mathematica (Whitehead and Russell 1910) used the ‘hat’
notation t[x̂] for the function of x yielding t[x]. Church modified this to x̂. t[x],
but since the typesetter could not place the hat on top of the x, this appeared as
∧x. t[x], which then mutated into λx. t[x] in the hands of another typesetter.

2.1 The benefits of lambda notation

Using lambda notation we can clear up some of the confusion engendered by
informal mathematical notation. For example, it’s common to talk sloppily about
‘f(x)’, leaving context to determine whether we mean f itself, or the result of
applying it to particular x. A further benefit is that lambda notation gives
an attractive analysis of practically the whole of mathematical notation. If we
start with variables and constants, and build up expressions using just lambda-
abstraction and application of functions to arguments, we can represent very
complicated mathematical expressions.

We will use the conventional notation f(x) for the application of a function f
to an argument x, except that, as is traditional in lambda notation, the brackets
may be omitted, allowing us to write just f x. For reasons that will become
clear in the next paragraph, we assume that function application associates to
the left, i.e. f x y means (f(x))(y). As a shorthand for λx. λy. t[x, y] we will use
λx y. t[x, y], and so on. We also assume that the scope of a lambda abstraction
extends as far to the right as possible. For example λx.x y means λx.(x y) rather
than (λx. x) y.

2.1. THE BENEFITS OF LAMBDA NOTATION 9

At first sight, we need some special notation for functions of several arguments.
However there is a way of breaking down such applications into ordinary lambda
notation, called currying, after the logician Curry (1930). (Actually the device
had previously been used by both Frege (1893) and Schönfinkel (1924), but it’s
easy to understand why the corresponding appellations haven’t caught the public
imagination.) The idea is to use expressions like λx y. x + y. This may be
regarded as a function R → (R → R), so it is said to be a ‘higher order function’
or ‘functional’ since when applied to one argument, it yields another function,
which then accepts the second argument. In a sense, it takes its arguments one
at a time rather than both together. So we have for example:

(λx y. x+ y) 1 2 = (λy. 1 + y) 2 = 1 + 2

Observe that function application is assumed to associate to the left in lambda
notation precisely because currying is used so much.

Lambda notation is particularly helpful in providing a unified treatment of
bound variables. Variables in mathematics normally express the dependency of
some expression on the value of that variable; for example, the value of x2 + 2
depends on the value of x. In such contexts, we will say that a variable is free.
However there are other situations where a variable is merely used as a place-
marker, and does not indicate such a dependency. Two common examples are
the variable m in

n∑
m=1

m =
n(n+ 1)

2

and the variable y in ∫ x

0
2y + a dy = x2 + ax

In logic, the quantifiers ∀x. P [x] (‘for all x, P [x]’) and ∃x. P [x] (‘there exists
an x such that P [x]’) provide further examples, and in set theory we have set
abstractions like {x | P [x]} as well as indexed unions and intersections. In such
cases, a variable is said to be bound. In a certain subexpression it is free, but in
the whole expression, it is bound by a variable-binding operation like summation.
The part ‘inside’ this variable-binding operation is called the scope of the bound
variable.

A similar situation occurs in most programming languages, at least from Algol
60 onwards. Variables have a definite scope, and the formal arguments of proce-
dures and functions are effectively bound variables, e.g. n in the C definition of
the successor function given above. One can actually regard variable declarations
as binding operations for the enclosed instances of the corresponding variable(s).
Note, by the way, that the scope of a variable should be distinguished sharply
from its lifetime. In the C function rand that we gave in the introduction, n had

10 CHAPTER 2. LAMBDA CALCULUS

a textually limited scope but it retained its value even outside the execution of
that part of the code.

We can freely change the name of a bound variable without changing the
meaning of the expression, e.g.∫ x

0
2z + a dz = x2 + ax

Similarly, in lambda notation, λx. E[x] and λy. E[y] are equivalent; this is
called alpha-equivalence and the process of transforming between such pairs is
called alpha-conversion. We should add the proviso that y is not a free variable
in E[x], or the meaning clearly may change, just as∫ x

0
2a+ a da 6= x2 + ax

It is possible to have identically-named free and bound variables in the same
expression; though this can be confusing, it is technically unambiguous, e.g.∫ x

0
2x+ a dx = x2 + ax

In fact the usual Leibniz notation for derivatives has just this property, e.g. in:

d

dx
x2 = 2x

x is used both as a bound variable to indicate that differentiation is to take
place with respect to x, and as a free variable to show where to evaluate the
resulting derivative. This can be confusing; e.g. f ′(g(x)) is usually taken to mean
something different from d

dx
f(g(x)). Careful writers, especially in multivariate

work, often make the separation explicit by writing:

| d
dx

x2|x = 2x

or

| d
dz

z2|x = 2x

Part of the appeal of lambda notation is that all variable-binding opera-
tions like summation, differentiation and integration can be regarded as func-
tions applied to lambda-expressions. Subsuming all variable-binding operations
by lambda abstraction allows us to concentrate on the technical problems of
bound variables in one particular situation. For example, we can view d

dx
x2 as

a syntactic sugaring of D (λx. x2) x where D : (R → R) → R → R is a dif-
ferentiation operator, yielding the derivative of its first (function) argument at
the point indicated by its second argument. Breaking down the everyday syntax
completely into lambda notation, we have D (λx. EXP x 2) x for some constant
EXP representing the exponential function.

2.2. RUSSELL’S PARADOX 11

In this way, lambda notation is an attractively general ‘abstract syntax’ for
mathematics; all we need is the appropriate stock of constants to start with.
Lambda abstraction seems, in retrospect, to be the appropriate primitive in terms
of which to analyze variable binding. This idea goes back to Church’s encoding
of higher order logic in lambda notation, and as we shall see in the next chapter,
Landin has pointed out how many constructs from programming languages have
a similar interpretation. In recent times, the idea of using lambda notation as
a universal abstract syntax has been put especially clearly by Martin-Löf, and
is often referred to in some circles as ‘Martin-Löf’s theory of expressions and
arities’.1

2.2 Russell’s paradox

As we have said, one of the appeals of lambda notation is that it permits an
analysis of more or less all of mathematical syntax. Originally, Church hoped to
go further and include set theory, which, as is well known, is powerful enough to
form a foundation for much of modern mathematics. Given any set S, we can
form its so-called characteristic predicate χS, such that:

χS(x) =

{
true if x ∈ S
false if x 6∈ S

Conversely, given any unary predicate (i.e. function of one argument) P ,
we can consider the set of all x satisfying P (x) — we will just write P (x) for
P (x) = true. Thus, we see that sets and predicates are just different ways of
talking about the same thing. Instead of regarding S as a set, and writing x ∈ S,
we can regard it as a predicate and write S(x).

This permits a natural analysis into lambda notation: we can allow arbitrary
lambda expressions as functions, and hence indirectly as sets. Unfortunately,
this turns out to be inconsistent. The simplest way to see this is to consider the
Russell paradox of the set of all sets that do not contain themselves:

R = {x | x 6∈ x}

We have R ∈ R ⇔ R 6∈ R, a stark contradiction. In terms of lambda defined
functions, we set R = λx.¬(x x), and find that R R = ¬(R R), obviously counter
to the intuitive meaning of the negation operator ¬.

To avoid such paradoxes, Church (1940) followed Russell in augmenting lambda
notation with a notion of type; we shall consider this in a later chapter. However
the paradox itself is suggestive of some interesting possibilities in the standard,
untyped, system, as we shall see later.

1This was presented at the Brouwer Symposium in 1981, but was not described in the printed
proceedings.

12 CHAPTER 2. LAMBDA CALCULUS

2.3 Lambda calculus as a formal system

We have taken for granted certain obvious facts, e.g. that (λy. 1 + y) 2 = 1 + 2,
since these reflect the intended meaning of abstraction and application, which are
in a sense converse operations. Lambda calculus arises if we enshrine certain such
principles, and only those, as a set of formal rules. The appeal of this is that the
rules can then be used mechanically, just as one might transform x − 3 = 5− x
into 2x = 5 + 3 without pausing each time to think about why these rules about
moving things from one side of the equation to the other are valid. As Whitehead
(1919) says, symbolism and formal rules of manipulation:

[. . .] have invariably been introduced to make things easy. [. . .] by
the aid of symbolism, we can make transitions in reasoning almost
mechanically by the eye, which otherwise would call into play the
higher faculties of the brain. [. . .] Civilisation advances by extending
the number of important operations which can be performed without
thinking about them.

2.3.1 Lambda terms

Lambda calculus is based on a formal notion of lambda term, and these terms
are built up from variables and some fixed set of constants using the operations
of function application and lambda abstraction. This means that every lambda
term falls into one of the following four categories:

1. Variables: these are indexed by arbitrary alphanumeric strings; typically
we will use single letters from towards the end of the alphabet, e.g. x, y
and z.

2. Constants: how many constants there are in a given syntax of lambda
terms depends on context. Sometimes there are none at all. We will also
denote them by alphanumeric strings, leaving context to determine when
they are meant to be constants.

3. Combinations, i.e. the application of a function s to an argument t; both
these components s and t may themselves be arbitrary λ-terms. We will
write combinations simply as s t. We often refer to s as the ‘rator’ and t
as the ‘rand’ (short for ‘operator’ and ‘operand’ respectively).

4. Abstractions of an arbitrary lambda-term s over a variable x (which may
or may not occur free in s), denoted by λx. s.

Formally, this defines the set of lambda terms inductively, i.e. lambda terms
arise only in these four ways. This justifies our:

2.3. LAMBDA CALCULUS AS A FORMAL SYSTEM 13

• Defining functions over lambda terms by primitive recursion.

• Proving properties of lambda terms by structural induction.

A formal discussion of inductive generation, and the notions of primitive re-
cursion and structural induction, may be found elsewhere. We hope most readers
who are unfamiliar with these terms will find that the examples below give them
a sufficient grasp of the basic ideas.

We can describe the syntax of lambda terms by a BNF (Backus-Naur form)
grammar, just as we do for programming languages.

Exp = V ar | Const | Exp Exp | λ V ar. Exp

and, following the usual computer science view, we will identify lambda terms
with abstract syntax trees, rather than with sequences of characters. This means
that conventions such as the left-association of function application, the reading
of λx y. s as λx. λy. s, and the ambiguity over constant and variable names are
purely a matter of parsing and printing for human convenience, and not part of
the formal system.

One feature worth mentioning is that we use single characters to stand for
variables and constants in the formal system of lambda terms and as so-called
‘metavariables’ standing for arbitrary terms. For example, λx. s might represent
the constant function with value s, or an arbitrary lambda abstraction using the
variable x. To make this less confusing, we will normally use letters such as s, t
and u for metavariables over terms. It would be more precise if we denoted the
variable x by Vx (the x’th variable) and likewise the constant k by Ck — then
all the variables in terms would have the same status. However this makes the
resulting terms a bit cluttered.

2.3.2 Free and bound variables

We now formalize the intuitive idea of free and bound variables in a term, which,
incidentally, gives a good illustration of defining a function by primitive recursion.
Intuitively, a variable in a term is free if it does not occur inside the scope of a
corresponding abstraction. We will denote the set of free variables in a term s
by FV (s), and define it by recursion as follows:

FV (x) = {x}
FV (c) = ∅

FV (s t) = FV (s) ∪ FV (t)

FV (λx. s) = FV (s)− {x}

Similarly we can define the set of bound variables in a term BV (s):

14 CHAPTER 2. LAMBDA CALCULUS

BV (x) = ∅
BV (c) = ∅

BV (s t) = BV (s) ∪BV (t)

BV (λx. s) = BV (s) ∪ {x}

For example, if s = (λx y. x) (λx. z x) we have FV (s) = {z} and BV (s) =
{x, y}. Note that in general a variable can be both free and bound in the same
term, as illustrated by some of the mathematical examples earlier. As an example
of using structural induction to establish properties of lambda terms, we will prove
the following theorem (a similar proof works for BV too):

Theorem 2.1 For any lambda term s, the set FV (s) is finite.
Proof: By structural induction. Certainly if s is a variable or a constant, then
by definition FV (s) is finite, since it is either a singleton or empty. If s is
a combination t u then by the inductive hypothesis, FV (t) and FV (u) are both
finite, and then FV (s) = FV (t)∪FV (u), which is therefore also finite (the union
of two finite sets is finite). Finally, if s is of the form λx. t then FV (t) is finite,
by the inductive hypothesis, and by definition FV (s) = FV (t)− {x} which must
be finite too, since it is no larger. Q.E.D.

2.3.3 Substitution

The rules we want to formalize include the stipulation that lambda abstraction
and function application are inverse operations. That is, if we take a term λx. s
and apply it as a function to an argument term t, the answer is the term s with
all free instances of x replaced by t. We often make this more transparent in
discussions by using the notation λx. s[x] and s[t] for the respective terms.

However this simple-looking notion of substituting one term for a variable in
another term is surprisingly difficult. Some notable logicians have made faulty
statements regarding substitution. In fact, this difficulty is rather unfortunate
since as we have said, the appeal of formal rules is that they can be applied
mechanically.

We will denote the operation of substituting a term s for a variable x in an-
other term t by t[s/x]. One sometimes sees various other notations, e.g. t[x:=s],
[s/x]t, or even t[x/s]. The notation we use is perhaps most easily remembered
by noting the vague analogy with multiplication of fractions: x[t/x] = t. At first
sight, one can define substitution formally by recursion as follows:

x[t/x] = t

y[t/x] = y if x 6= y

2.3. LAMBDA CALCULUS AS A FORMAL SYSTEM 15

c[t/x] = c

(s1 s2)[t/x] = s1[t/x] s2[t/x]

(λx. s)[t/x] = λx. s

(λy. s)[t/x] = λy. (s[t/x]) if x 6= y

However this isn’t quite right. For example (λy.x+y)[y/x] = λy.y+y, which
doesn’t correspond to the intuitive answer.2 The original lambda term was ‘the
function that adds x to its argument’, so after substitution, we might expect
to get ‘the function that adds y to its argument’. What we actually get is ‘the
function that doubles its argument’. The problem is that the variable y that we
have substituted is captured by the variable-binding operation λy. We should
first rename the bound variable:

(λy. x+ y) = (λw. x+ w)

and only now perform a naive substitution operation:

(λw. x+ w)[y/x] = λw. y + w

We can take two approaches to this problem. Either we can add a condition
on all instances of substitution to disallow it wherever variable capture would
occur, or we can modify the formal definition of substitution so that it performs
the appropriate renamings automatically. We will opt for this latter approach.
Here is the definition of substitution that we use:

x[t/x] = t

y[t/x] = y if x 6= y

c[t/x] = c

(s1 s2)[t/x] = s1[t/x] s2[t/x]

(λx. s)[t/x] = λx. s

(λy. s)[t/x] = λy. (s[t/x]) if x 6= y and either x 6∈ FV (s) or y 6∈ FV (t)

(λy. s)[t/x] = λz. (s[z/y][t/x]) otherwise, where z 6∈ FV (s) ∪ FV (t)

The only difference is in the last two lines. We substitute as before in the
two safe situations where either x isn’t free in s, so the substitution is trivial, or
where y isn’t free in t, so variable capture won’t occur (at this level). However
where these conditions fail, we first rename y to a new variable z, chosen not to
be free in either s or t, then proceed as before. For definiteness, the variable z
can be chosen in some canonical way, e.g. the lexicographically first name not
occurring as a free variable in either s or t.3

2We will continue to use infix syntax for standard operators; strictly we should write + x y
rather than x+ y.

3Cognoscenti may also be worried that this definition is not in fact, primitive recursive,

16 CHAPTER 2. LAMBDA CALCULUS

2.3.4 Conversions

Lambda calculus is based on three ‘conversions’, which transform one term into
another one intuitively equivalent to it. These are traditionally denoted by the
Greek letters α (alpha), β (beta) and η (eta).4 Here are the formal definitions of
the operations, using annotated arrows for the conversion relations.

• Alpha conversion: λx. s −→
α

λy. s[y/x] provided y 6∈ FV (s). For example,

λu.u v −→
α

λw.w v, but λu.u v 6−→
α

λv.v v. The restriction avoids another

instance of variable capture.

• Beta conversion: (λx. s) t −→
β

s[t/x].

• Eta conversion: λx.t x −→
η

t, provided x 6∈ FV (t). For example λu.v u −→
η

v but λu. u u 6−→
η

u.

Of the three, β-conversion is the most important one to us, since it represents
the evaluation of a function on an argument. α-conversion is a technical device to
change the names of bound variables, while η-conversion is a form of extensionality
and is therefore mainly of interest to those taking a logical, not a programming,
view of lambda calculus.

2.3.5 Lambda equality

Using these conversion rules, we can define formally when two lambda terms are
to be considered equal. Roughly, two terms are equal if it is possible to get from
one to the other by a finite sequence of conversions (α, β or η), either forward or
backward, at any depth inside the term. We can say that lambda equality is the
congruence closure of the three reduction operations together, i.e. the smallest
relation containing the three conversion operations and closed under reflexivity,
symmetry, transitivity and substitutivity. Formally we can define it inductively
as follows, where the horizontal lines should be read as ‘if what is above the line
holds, then so does what is below’.

s −→
α

t or s −→
β

t or s −→
η

t

s = t

t = t

because of the last clause. However it can easily be modified into a primitive recursive definition
of multiple, parallel, substitution. This procedure is analogous to strengthening an induction
hypothesis during a proof by induction. Note that by construction the pair of substitutions in
the last line can be done in parallel rather than sequentially without affecting the result.

4These names are due to Curry. Church originally referred to α-conversion and β-conversion
as ‘rule of procedure I’ and ‘rule of procedure II’ respectively.

2.3. LAMBDA CALCULUS AS A FORMAL SYSTEM 17

s = t

t = s

s = t and t = u

s = u

s = t

s u = t u

s = t

u s = u t

s = t

λx. s = λx. t

Note that the use of the ordinary equality symbol (=) here is misleading. We
are actually defining the relation of lambda equality, and it isn’t clear that it
corresponds to equality of the corresponding mathematical objects in the usual
sense.5 Certainly it must be distinguished sharply from equality at the syntactic
level. We will refer to this latter kind of equality as ‘identity’ and use the special
symbol ≡. For example λx. x 6≡ λy. y but λx. x = λy. y.

For many purposes, α-conversions are immaterial, and often ≡α is used in-
stead of strict identity. This is defined like lambda equality, except that only
α-conversions are allowed. For example, (λx. x)y ≡α (λy. y)y. Many writers use
this as identity on lambda terms, i.e. consider equivalence classes of terms under
≡α. There are alternative formalizations of syntax where bound variables are
unnamed (de Bruijn 1972), and here syntactic identity corresponds to our ≡α.

2.3.6 Extensionality

We have said that η-conversion embodies a principle of extensionality. In general
philosophical terms, two properties are said to be extensionally equivalent (or
coextensive) when they are satisfied by exactly the same objects. In mathematics,
we usually take an extensional view of sets, i.e. say that two sets are equal
precisely if they have the same elements. Similarly, we normally say that two
functions are equal precisely if they have the same domain and give the same
result on all arguments in that domain.

As a consequence of η-conversion, our notion of lambda equality is extensional.
Indeed, if f x and g x are equal for any x, then in particular f y = g y where
y is chosen not to be free in either f or g. Therefore by the last rule above,
λy. f y = λy. g y. Now by η-converting a couple of times at depth, we see that

5Indeed, we haven’t been very precise about what the corresponding mathematical objects
are. But there are models of the lambda calculus where our lambda equality is interpreted as
actual equality.

18 CHAPTER 2. LAMBDA CALCULUS

f = g. Conversely, extensionality implies that all instances of η-conversion do
indeed give a valid equation, since by β-reduction, (λx. t x) y = t y for any y
when x is not free in t. This is the import of η-conversion, and having discussed
that, we will largely ignore it in favour of the more computationally significant
β-conversion.

2.3.7 Lambda reduction

Lambda equality, unsurprisingly, is a symmetric relation. Though it captures
the notion of equivalence of lambda terms well, it is more interesting from a
computational point of view to consider an asymmetric version. We will define a
‘reduction’ relation −→ as follows:

s −→
α

t or s −→
β

t or s −→
η

t

s −→ t

t −→ t

s −→ t and t −→ u

s −→ u

s −→ t

s u −→ t u

s −→ t

u s −→ u t

s −→ t

λx. s −→ λx. t

Actually the name ‘reduction’ (and one also hears β-conversion called β-
reduction) is a slight misnomer, since it can cause the size of a term to grow,
e.g.

(λx. x x x) (λx. x x x) −→ (λx. x x x) (λx. x x x) (λx. x x x)

−→ (λx. x x x) (λx. x x x) (λx. x x x) (λx. x x x)

−→ . . .

However reduction does correspond to a systematic attempt to evaluate a term
by repeatedly evaluating combinations f(x) where f is a lambda abstraction.
When no more reductions except for α conversions are possible we say that the
term is in normal form.

2.3. LAMBDA CALCULUS AS A FORMAL SYSTEM 19

2.3.8 Reduction strategies

Let us recall, in the middle of these theoretical considerations, the relevance of
all this to functional programming. A functional program is an expression and
executing it means evaluating the expression. In terms of the concepts discussed
here, we are proposing to start with the relevant term and keep on applying re-
ductions until there is nothing more to be evaluated. But how are we to choose
which reduction to apply at each stage? The reduction relation is not determin-
istic, i.e. for some terms t there are several ti such that t −→ ti. Sometimes this
can make the difference between a finite and infinite reduction sequence, i.e. be-
tween a program terminating and failing to terminate. For example, by reducing
the innermost redex (reducible expression) in the following, we have an infinite
reduction sequence:

(λx. y) ((λx. x x x) (λx. x x x))

−→ (λx. y) ((λx. x x x) (λx. x x x) (λx. x x x))

−→ (λx. y) ((λx. x x x) (λx. x x x) (λx. x x x) (λx. x x x))

−→ · · ·

and so ad infinitum. However the alternative of reducing the outermost redex
first gives:

(λx. y) ((λx. x x x) (λx. x x x)) −→ y

immediately, and there are no more reductions to apply.
The situation is clarified by the following theorems, whose proofs are too long

to be given here. The first one says that the situation we have noted above is
true in a more general sense, i.e. that reducing the leftmost outermost redex is
the best strategy for ensuring termination.

Theorem 2.2 If s −→ t with t in normal form, then the reduction sequence that
arises from s by always reducing the leftmost outermost redex is guaranteed to
terminate in normal form.

Formally, we define the ‘leftmost outermost’ redex recursively: for a term
(λx. s) t it is the term itself; for any other term s t it is the leftmost outermost
redex of s, and for an abstraction λx. s it is the leftmost outermost redex of s.
In terms of concrete syntax, we always reduce the redex whose λ is the furthest
to the left.

2.3.9 The Church-Rosser theorem

The next assertion, the famous Church-Rosser theorem, states that if we start
from a term t and perform any two finite reduction sequences, there are always

20 CHAPTER 2. LAMBDA CALCULUS

two more reduction sequences that bring the two back to the same term (though
of course this might not be in normal form).

Theorem 2.3 If t −→ s1 and t −→ s2, then there is a term u such that s1 −→ u
and s2 −→ u.

This has at least the following important consequences:

Corollary 2.4 If t1 = t2 then there is a term u with t1 −→ u and t2 −→ u.
Proof: It is easy to see (by structural induction) that the equality relation = is
in fact the symmetric transitive closure of the reduction relation. Now we can
proceed by induction over the construction of the symmetric transitive closure.
However less formally minded readers will probably find the following diagram
more convincing:

t1 t2
@

@R
�

�	
@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	
u

We assume t1 = t2, so there is some sequence of reductions in both directions
(i.e. the zigzag at the top) that connects them. Now the Church-Rosser theorem
allows us to fill in the remainder of the sides in the above diagram, and hence
reach the result by composing these reductions. Q.E.D.

Corollary 2.5 If t = t1 and t = t2 with t1 and t2 in normal form, then t1 ≡α t2,
i.e. t1 and t2 are equal apart from α conversions.
Proof: By the first corollary, we have some u with t1 −→ u and t2 −→ u. But
since t1 and t2 are already in normal form, these reduction sequences to u can
only consist of alpha conversions. Q.E.D.

Hence normal forms, when they do exist, are unique up to alpha conversion.
This gives us the first proof we have available that the relation of lambda equality
isn’t completely trivial, i.e. that there are any unequal terms. For example, since
λx y. x and λx y. y are not interconvertible by alpha conversions alone, they
cannot be equal.

Let us sum up the computational significance of all these assertions. In some
sense, reducing the leftmost outermost redex is the best strategy, since it will
work if any strategy will. This is known as normal order reduction. On the other
hand any terminating reduction sequence will always give the same result, and
moreover it is never too late to abandon a given strategy and start using normal
order reduction. We will see later how this translates into practical terms.

2.4. COMBINATORS 21

2.4 Combinators

Combinators were actually developed as an independent theory by Schönfinkel
(1924) before lambda notation came along. Moreover Curry rediscovered the
theory soon afterwards, independently of Schönfinkel and of Church. (When he
found out about Schönfinkel’s work, Curry attempted to contact him, but by that
time, Schönfinkel had been committed to a lunatic asylum.) We will distort the
historical development by presenting the theory of combinators as an aspect of
lambda calculus.

We will define a combinator simply to be a lambda term with no free vari-
ables. Such a term is also said to be closed; it has a fixed meaning independent
of the values of any variables. Now we will later, in the course of functional
programming, come across many useful combinators. But the cornerstone of the
theory of combinators is that one can get away with just a few combinators, and
express in terms of those and variables any term at all: the operation of lambda
abstraction is unnecessary. In particular, a closed term can be expressed purely
in terms of these few combinators. We start by defining:

I = λx. x

K = λx y. x

S = λf g x. (f x)(g x)

We can motivate the names as follows.6 I is the identity function. K produces
constant functions:7 when applied to an argument a it gives the function λy. a.
Finally S is a ‘sharing’ combinator, which takes two functions and an argument
and shares out the argument among the functions. Now we prove the following:

Lemma 2.6 For any lambda term t not involving lambda abstraction, there is
a term u also not containing lambda abstractions, built up from S, K, I and
variables, with FV (u) = FV (t) − {x} and u = λx. t, i.e. u is lambda-equal to
λx. t.
Proof: By structural induction on the term t. By hypothesis, it cannot be an
abstraction, so there are just three cases to consider.

• If t is a variable, then there are two possibilities. If it is equal to x, then
λx. x = I, so we are finished. If not, say t = y, then λx. y = K y.

• If t is a constant c, then λx. c = K c.

• If t is a combination, say s u, then by the inductive hypothesis, there are
lambda-free terms s′ and u′ with s′ = λx. s and u′ = λx. u. Now we claim
S s′ u′ suffices. Indeed:

6We are not claiming these are the historical reasons for them.
7Konstant — Schönfinkel was German, though in fact he originally used C.

22 CHAPTER 2. LAMBDA CALCULUS

S s′ u′ x = S (λx. s) (λx. u) x

= ((λx. s) x)((λx. u) x)

= s u

= t

Therefore, by η-conversion, we have S s′ u′ = λx. S s′ u′ x = λx. t, since
by the inductive hypothesis x is not free in s′ or u′.

Q.E.D.

Theorem 2.7 For any lambda term t, there is a lambda-free term t′ built up
from S, K, I and variables, with FV (t′) = FV (t) and t′ = t.
Proof: By structural induction on t, using the lemma. For example, if t is λx. s,
we first find, by the inductive hypothesis, a lambda-free equivalent s′ of s. Now
the lemma can be applied to λx. s′. The other cases are straightforward. Q.E.D.

This remarkable fact can be strengthened, since I is definable in terms of S
and K. Note that for any A:

S K A x = (K x)(A x)

= (λy. x)(A x)

= x

So again by η-converting, we see that I = S K A for any A. It is customary,
for reasons that will become clear when we look at types, to use A = K. So
I = S K K, and we can avoid the use of I in our combinatory expression.

Note that the proofs above are constructive, in the sense that they guide
one in a definite procedure that, given a lambda term, produces a combinator
equivalent. One proceeds bottom-up, and at each lambda abstraction, which by
construction has a lambda-free body, applies the top-down transformations given
in the lemma.

Although we have presented combinators as certain lambda terms, they can
also be developed as a theory in their own right. That is, one starts with a
formal syntax excluding lambda abstractions but including combinators. Instead
of α, β and η conversions, one posits conversion rules for expressions involving
combinators, e.g. K x y −→ x. As an independent theory, this has many
analogies with lambda calculus, e.g. the Church-Rosser theorem holds for this
notion of reduction too. Moreover, the ugly difficulties connected with bound
variables are avoided completely. However the resulting system is, we feel, less
intuitive, since combinatory expressions can get rather obscure.

2.4. COMBINATORS 23

Apart from their purely logical interest, combinators have a certain practical
potential. As we have already hinted, and as will become much clearer in the later
chapters, lambda calculus can be seen as a simple functional language, forming
the core of real practical languages like ML. We might say that the theorem of
combinatory completeness shows that lambda calculus can be ‘compiled down’ to
a ‘machine code’ of combinators. This computing terminology is not as fanciful
as it appears. Combinators have been used as an implementation technique for
functional languages, and real hardware has been built to evaluate combinatory
expressions.

Further reading

An encyclopedic but clear book on lambda calculus is Barendregt (1984). Another
popular textbook is Hindley and Seldin (1986). Both these contain proofs of the
results that we have merely asserted. A more elementary treatment focused
towards computer science is Part II of Gordon (1988). Much of our presentation
here and later is based on this last book.

Exercises

1. Find a normal form for (λx x x. x) a b c.

2. Define twice = λf x. f(fx). What is the intuitive meaning of twice?
Find a normal form for twice twice twice f x. (Remember that function
application associates to the left.)

3. Find a term t such that t −→
β

t. Is it true to say that a term is in normal

form if and only if whenever t −→ t′ then t ≡α t′?

4. What are the circumstances under which s[t/x][u/y] ≡α s[u/y][t/x]?

5. Find an equivalent in terms of the S, K and I combinators alone for
λf x. f(x x).

6. Find a single combinator X such that all λ-terms are equal to a term built
from X and variables. You may find it helpful to consider A = λp.p K S K
and then think about A A A and A (A A).

7. Prove that any X is a fixed point combinator if and only if it is itself a fixed
point of G, where G = λy m. m(y m).

Chapter 3

Lambda calculus as a
programming language

One of the central questions studied by logicians in the 1930s was the Entschei-
dungsproblem or ‘decision problem’. This asked whether there was some system-
atic, mechanical procedure for deciding validity in first order logic. If it turned
out that there was, it would have fundamental philosophical, and perhaps practi-
cal, significance. It would mean that a huge variety of complicated mathematical
problems could in principle be solved purely by following some single fixed method
— we would now say algorithm — no additional creativity would be required.

As it stands the question is hard to answer, because we need to define in math-
ematical terms what it means for there to be a ‘systematic, mechanical’ procedure
for something. Perhaps Turing (1936) gave the best analysis, by arguing that the
mechanical procedures are those that could in principle be performed by a rea-
sonably intelligent clerk with no knowledge of the underlying subject matter. He
abstracted from the behaviour of such a clerk and arrived at the famous notion
of a ‘Turing machine’. Despite the fact that it arose by considering a human
‘computer’, and was purely a mathematical abstraction, we now see a Turing
machine as a very simple computer. Despite being simple, a Turing machine is
capable of performing any calculation that can be done by a physical computer.1

A model of computation of equal power to a Turing machine is said to be Turing
complete.

At about the same time, there were several other proposed definitions of
‘mechanical procedure’. Most of these turned out to be equivalent in power to
Turing machines. In particular, although it originally arose as a foundation for
mathematics, lambda calculus can also be seen as a programming language, to be
executed by performing β-conversions. In fact, Church proposed before Turing
that the set of operations that can be expressed in lambda calculus formalizes the

1Actually more, since it neglects the necessary finite limit to the computer’s store. Arguably
any existing computer is actually a finite state machine, but the assumption of unbounded
memory seems a more fruitful abstraction.

24

25

intuitive idea of a mechanical procedure, a postulate known as Church’s thesis.
Church (1936) showed that if this was accepted, the Entscheidungsproblem is
unsolvable. Turing later showed that the functions definable in lambda calculus
are precisely those computable by a Turing machine, which lent more credibility
to Church’s claims.

To a modern programmer, Turing machine programs are just about recog-
nizable as a very primitive kind of machine code. Indeed, it seems that Turing
machines, and in particular Turing’s construction of a ‘universal machine’,2 were
a key influence in the development of modern stored program computers, though
the extent and nature of this influence is still a matter for controversy (Robinson
1994). It is remarkable that several of the other proposals for a definition of
‘mechanical procedure’, often made before the advent of electronic computers,
correspond closely to real programming methods. For example, Markov algo-
rithms, the standard approach to computability in the (former) Soviet Union,
can be seen as underlying the programming language SNOBOL. In what follows,
we are concerned with the influence of lambda calculus on functional program-
ming languages.

LISP, the second oldest high level language (FORTRAN being the oldest)
took a few ideas from lambda calculus, in particular the notation ‘(LAMBDA · · ·)’
for anonymous functions. However it was not really based on lambda calculus
at all. In fact the early versions, and some current dialects, use a system of
dynamic binding that does not correspond to lambda calculus. (We will discuss
this later.) Moreover there was no real support for higher order functions, while
there was considerable use of imperative features. Nevertheless LISP deserves to
be considered as the first functional programming language, and pioneered many
of the associated techniques such as automatic storage allocation and garbage
collection.

The influence of lambda calculus really took off with the work of Landin and
Strachey in the 60s. In particular, Landin showed how many features of current
(imperative) languages could usefully be analyzed in terms of lambda calculus,
e.g. the notion of variable scoping in Algol 60. Landin (1966) went on to propose
the use of lambda calculus as a core for programming languages, and invented
a functional language ISWIM (‘If you See What I Mean’). This was widely
influential and spawned many real languages.

ML started life as the metalanguage (hence the name ML) of a theorem prov-
ing system called Edinburgh LCF (Gordon, Milner, and Wadsworth 1979). That
is, it was intended as a language in which to write algorithms for proving theo-
rems in a formal deductive calculus. It was strongly influenced by ISWIM but
added an innovative polymorphic type system including abstract types, as well as
a system of exceptions to deal with error conditions. These facilities were dictated

2A single Turing machine program capable of simulating any other — we would now regard
it as an interpreter. You will learn about this in the course on Computation Theory.

26CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

by the application at hand, and this policy resulted in a coherent and focused
design. This narrowness of focus is typical of successful languages (C is another
good example) and contrasts sharply with the failure of committee-designed lan-
guages like Algol 60 which have served more as a source of important ideas than
as popular practical tools. We will have more to say about ML later. Let us now
see how pure lambda calculus can be used as a programming language.

3.1 Representing data in lambda calculus

Programs need data to work on, so we start by fixing lambda expressions to
encode data. Furthermore, we define a few basic operations on this data. In many
cases, we show how a string of human-readable syntax s can be translated directly
into a lambda expression s′. This procedure is known as ‘syntactic sugaring’ —
it makes the bitter pill of pure lambda notation easier to digest. We write such
definitions as:

s
4
= s′

This notation means ‘s = s′ by definition’; one also commonly sees this written
as ‘s =def s′’. If preferred, we could always regard these as defining a single
constant denoting that operation, which is then applied to arguments in the usual
lambda calculus style, the surface notation being irrelevant. For example we can
imagine ‘if E then E1 else E2’ as ‘COND E E1 E2’ for some constant COND. In
such cases, any variables on the left of the definition need to be abstracted over,
e.g. instead of

fst p
4
= p true

(see below) we could write

fst
4
= λp. p true

3.1.1 Truth values and the conditional

We can use any unequal lambda expressions to stand for ‘true’ and ‘false’, but
the following work particularly smoothly:

true
4
= λx y. x

false
4
= λx y. y

Given those definitions, we can easily define a conditional expression just like
C’s ‘?:’ construct. Note that this is a conditional expression not a conditional

3.1. REPRESENTING DATA IN LAMBDA CALCULUS 27

command (this notion makes no sense in our context) and therefore the ‘else’ arm
is compulsory:

if E then E1 else E2
4
= E E1 E2

indeed we have:

if true then E1 else E2 = true E1 E2

= (λx y. x) E1 E2

= E1

and

if false then E1 else E2 = false E1 E2

= (λx y. y) E1 E2

= E2

Once we have the conditional, it is easy to define all the usual logical operations:

not p
4
= if p then false else true

p and q
4
= if p then q else false

p or q
4
= if p then true else q

3.1.2 Pairs and tuples

We can represent ordered pairs as follows:

(E1, E2)
4
= λf. f E1 E2

The parentheses are not obligatory, but we often use them for the sake of
familiarity or to enforce associations. In fact we simply regard the comma as an
infix operator like +. Given the above definition, the corresponding destructors
for pairs can be defined as:

fst p
4
= p true

snd p
4
= p false

It is easy to see that these work as required:

28CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

fst (p, q) = (p, q) true

= (λf. f p q) true

= true p q

= (λx y. x) p q

= p

and

snd (p, q) = (p, q) false

= (λf. f p q) false

= false p q

= (λx y. y) p q

= q

We can build up triples, quadruples, quintuples, indeed arbitrary n-tuples, by
iterating the pairing construct:

(E1, E2, . . . , En) = (E1, (E2, . . . En))

We need simply say that the infix comma operator is right-associative, and
can understand this without any other conventions. For example:

(p, q, r, s) = (p, (q, (r, s)))

= λf. f p (q, (r, s))

= λf. f p (λf. f q (r, s))

= λf. f p (λf. f q (λf. f r s))

= λf. f p (λg. g q (λh. h r s))

where in the last line we have performed an alpha-conversion for the sake of
clarity. Although tuples are built up in a flat manner, it is easy to create arbitrary
finitely-branching tree structures by using tupling repeatedly. Finally, if one
prefers conventional functions over Cartesian products to our ‘curried’ functions,
one can convert between the two using the following:

CURRY f
4
= λx y. f(x, y)

UNCURRY g
4
= λp. g (fst p) (snd p)

3.1. REPRESENTING DATA IN LAMBDA CALCULUS 29

These special operations for pairs can easily be generalized to arbitrary n-
tuples. For example, we can define a selector function to get the ith component
of a flat tuple p. We will write this operation as (p)i and define (p)1 = fst p
and the others by (p)i = fst (sndi−1 p). Likewise we can generalize CURRY and
UNCURRY:

CURRYn f
4
= λx1 · · · xn. f(x1, . . . , xn)

UNCURRYn g
4
= λp. g (p)1 · · · (p)n

We can now write λ(x1, . . . , xn). t as an abbreviation for:

UNCURRYn (λx1 · · · xn. t)

giving a natural notation for functions over Cartesian products.

3.1.3 The natural numbers

We will represent each natural number n as follows:3

n
4
= λf x. fn x

that is, 0 = λf x. x, 1 = λf x. f x, 2 = λf x. f (f x) etc. These representa-
tions are known as Church numerals, though the basic idea was used earlier by
Wittgenstein (1922).4 They are not a very efficient representation, amounting
essentially to counting in unary, 1, 11, 111, 1111, 11111, 111111, There are,
from an efficiency point of view, much better ways of representing numbers, e.g.
tuples of trues and falses as binary expansions. But at the moment we are only
interested in computability ‘in principle’ and Church numerals have various nice
formal properties. For example, it is easy to give lambda expressions for the
common arithmetic operators such as the successor operator which adds one to
its argument:

SUC
4
= λn f x. n f (f x)

Indeed

SUC n = (λn f x. n f (f x))(λf x. fn x)

= λf x. (λf x. fn x)f (f x)

= λf x. (λx. fn x)(f x)

3The n in fn x is just a meta-notation, and does not mean that there is anything circular
about our definition.

4‘6.021 A number is the exponent of an operation’.

30CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

= λf x. fn (f x)

= λf x. fn+1 x

= n+ 1

Similarly it is easy to test a numeral to see if it is zero:

ISZERO n
4
= n (λx. false) true

since:

ISZERO 0 = (λf x. x)(λx. false) true = true

and

ISZERO (n+ 1) = (λf x. fn+1x)(λx. false)true

= (λx. false)n+1 true

= (λx. false)((λx. false)n true)

= false

The following perform addition and multiplication on Church numerals:

m+ n
4
= λf x. m f (n f x)

m ∗ n 4
= λf x. m (n f) x

Indeed:

m+ n = λf x. m f (n f x)

= λf x. (λf x. fm x) f (n f x)

= λf x. (λx. fm x) (n f x)

= λf x. fm (n f x)

= λf x. fm ((λf x. fn x) f x)

= λf x. fm ((λx. fn x) x)

= λf x. fm (fn x)

= λf x. fm+nx

and:

m ∗ n = λf x. m (n f) x

= λf x. (λf x. fm x) (n f) x

3.2. RECURSIVE FUNCTIONS 31

= λf x. (λx. (n f)m x) x

= λf x. (n f)m x

= λf x. ((λf x. fn x) f)m x

= λf x. ((λx. fn x)m x

= λf x. (fn)m x

= λf x. fmnx

Although those operations on natural numbers were fairly easy, a ‘predecessor’
function is much harder. What is required is a a lambda expression PRE so that
PRE 0 = 0 and PRE (n + 1) = n. Finding such an expression was the first
piece of mathematical research by the logician Kleene (1935). His trick was, given
λf x.fn x, to ‘throw away’ one of the applications of f . The first step is to define
a function ‘PREFN’ that operates on pairs such that:

PREFN f (true, x) = (false, x)

and

PREFN f (false, x) = (false, f x)

Given this function, then (PREFN f)n+1(true, x) = (false, fn x), which is
enough to let us define a predecessor function without much difficulty. Here is a
suitable definition of ‘PREFN’:

PREFN
4
= λf p. (false, if fst p then snd p else f(snd p)

Now we define:

PRE n
4
= λf x. snd(n (PREFN f) (true, x))

It is left as an exercise to the reader to see that this works correctly.

3.2 Recursive functions

Being able to define functions by recursion is a central feature of functional pro-
gramming: it is the only general way of performing something comparable to
iteration. At first sight, it appears that we have no way of doing this in lambda
calculus. Indeed, it would seem that the naming of the function is a vital part of
making a recursive definition, since otherwise, how can we refer to it on the right
hand side of the definition without descending into infinite regress? Rather sur-
prisingly, it can be done, although as with the existence of a predecessor function,
this fact was only discovered after considerable effort.

The key is the existence of so-called fixed point combinators. A closed lambda
term Y is said to be a fixed point (or fixpoint) combinator when for all lambda

32CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

terms f , we have f(Y f) = Y f . That is, a fixed point combinator, given any
term f as an argument, returns a fixed point for f , i.e. a term x such that
f(x) = x. The first such combinator to be found (by Curry) is usually called Y .
It can be motivated by recalling the Russell paradox, and for this reason is often
called the ‘paradoxical combinator’. We defined:

R = λx. ¬(x x)

and found that:

R R = ¬(R R)

That is, R R is a fixed point of the negation operator. So in order to get a
general fixed point combinator, all we need to do is generalize ¬ into whatever
function is given it as argument. Therefore we set:

Y
4
= λf. (λx. f(x x))(λx. f(x x))

It is a simple matter to show that it works:

Y f = (λf. (λx. f(x x))(λx. f(x x))) f

= (λx. f(x x))(λx. f(x x))

= f((λx. f(x x))(λx. f(x x)))

= f(Y f)

Though valid from a mathematical point of view, this is not so attractive from
a programming point of view since the above was only valid for lambda equality,
not reduction (in the last line we performed a backwards beta conversion). For
this reason the following alternative, due to Turing, may be preferred:

T
4
= (λx y. y (x x y)) (λx y. y (x x y))

(The proof that T f −→ f(T f) is left as an exercise.) However it does
no harm if we simply allow Y f to be beta-reduced throughout the reduction
sequence for a recursively defined function. Now let us see how to use a fixed
point combinator (say Y) to implement recursive functions. We will take the
factorial function as an example. We want to define a function fact with:

fact(n) = if ISZERO n then 1 else n ∗ fact(PRE n)

The first step is to transform this into the following equivalent:

fact = λn. if ISZERO n then 1 else n ∗ fact(PRE n)

which in its turn is equivalent to:

3.3. LET EXPRESSIONS 33

fact = (λf n. if ISZERO n then 1 else n ∗ f(PRE n)) fact

This exhibits fact as the fixed point of a function F , namely:

F = λf n. if ISZERO n then 1 else n ∗ f(PRE n)

Consequently we merely need to set fact = Y F . Similar techniques work for
mutually recursive functions, i.e. a set of functions whose definitions are mutually
dependent. A definition such as:

f1 = F1 f1 · · · fn
f2 = F2 f1 · · · fn
. . . = . . .

fn = Fn f1 · · · fn

can be transformed, using tuples, into a single equation:

(f1, f2, . . . , fn) = (F1 f1 · · · fn, F2 f1 · · · fn, . . . , Fn f1 · · · fn)

If we now write t = (f1, f2, . . . , fn), then each of the functions on the right can
be recovered by applying the appropriate selector to t: we have fi = (t)i. After
abstracting out t, this gives an equation in the canonical form t = F t which can
be solved by t = Y F . Now the individual functions can be recovered from t by
the same method of selecting components of the tuple.

3.3 Let expressions

We’ve touted the ability to write anonymous functions as one of the merits of
lambda calculus, and shown that names are not necessary to define recursive
functions. Nevertheless it is often useful to be able to give names to expressions,
to avoid tedious repetition of large terms. A simple form of naming can be
supported as another syntactic sugar on top of pure lambda calculus:

let x = s in t
4
= (λx. t) s

For example, as we would expect:

(let z = 2 + 3 in z + z) = (λz. z + z) (2 + 3) = (2 + 3) + (2 + 3)

We can achieve the binding of multiple names to expressions either in a serial
or parallel fashion. For the first, we will simply iterate the above construct. For
the latter, we will write multiple bindings separated by ‘and’:

34CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

let x1 = s1 and · · · and xn = sn in t

and regard it as syntactic sugar for:

(λ(x1, . . . , xn). t) (s1, . . . , sn)

To illustrate the distinction between serial and parallel binding, consider:

let x = 1 in let x = 2 in let y = x in x+ y

which should yield 4, while:

let x = 1 in let x = 2 and y = x in x+ y

should yield 3. We will also allow arguments to names bound by ‘let’; again
this can be regarded as syntactic sugar, with f x1 · · · xn = t meaning f =
λx1 · · · xn. t. Instead of a prefix ‘let x = s in t’, we will allow a postfix version,
which is sometimes more readable:

t where x = s

For example, we might write ‘y < y2 where y = 1 + x’. Normally, the ‘let’
and ‘where’ constructs will be interpreted as above, in a non-recursive fashion.
For example:

let x = x− 1 in · · ·

binds x to one less than whatever value it is bound to outside, rather than trying
to bind x to the fixed point of x = x−1.5 However where a recursive interpretation
is required, we add the word ‘rec’, writing ‘let rec’ or ‘where rec’, e.g.

let rec fact(n) = if ISZERO n then 1 else n ∗ fact(PRE n)

This can be regarded as a shorthand for ‘let fact = Y F ’ where

F = λf n. if ISZERO n then 1 else n ∗ f(PRE n)

as explained above.

5There is such a fixed point, but the lambda term involved has no normal form, so is in a
sense ‘undefined’. The semantics of nonterminating terms is subtle, and we will not consider
it at length here. Actually, the salient question is not whether a term has a normal form
but whether it has a so-called head normal form — see Barendregt (1984) and also Abramsky
(1990).

3.4. STEPS TOWARDS A REAL PROGRAMMING LANGUAGE 35

3.4 Steps towards a real programming language

We have established a fairly extensive system of ‘syntactic sugar’ to support a
human-readable syntax on top of pure lambda calculus. It is remarkable that
this device is enough to bring us to the point where we can write the definition
of the factorial function almost in the way we can in ML. In what sense, though,
is the lambda calculus augmented with these notational conventions really a
programming language?

Ultimately, a program is just a single expression. However, given the use of
let to bind various important subexpressions to names, it is natural instead to
view the program as a set of definitions of auxiliary functions, followed finally by
the expression itself, e.g:

let rec fact(n) = if ISZERO n then 1 else n ∗ fact(PRE n) in
· · ·
fact(6)

We can read these definitions of auxiliary functions as equations in the mathe-
matical sense. Understood in this way, they do not give any explicit instructions
on how to evaluate expressions, or even in which direction the equations are
to be used. For this reason, functional programming is often referred to as a
declarative programming method, as also is logic programming (e.g. PROLOG).6

The program does not incorporate explicit instructions, merely declares certain
properties of the relevant notions, and leaves the rest to the machine.

At the same time, the program is useless, or at least ambiguous, unless the
machine somehow reacts sensibly to it. Therefore it must be understood that
the program, albeit from a superficial point of view purely declarative, is to be
executed in a certain way. In fact, the expression is evaluated by expanding
all instances of defined notions (i.e. reading the equations from left to right),
and then repeatedly performing β-conversions. That is, although there seems to
be no procedural information in the program, a particular execution strategy is
understood. In a sense then, the term ‘declarative’ is largely a matter of human
psychology.

Moreover, there must be a definite convention for the reduction strategy to
use, for we know that different choices of β-redex can lead to different behaviour
with respect to termination. Consequently, it is only when we specify this that
we really get a definite programming language. We will see in later chapters how
different functional languages make different choices here. But first we pause to
consider the incorporation of types.

6Apparently Landin preferred ‘denotative’ to ‘declarative’.

36CHAPTER 3. LAMBDA CALCULUS AS A PROGRAMMING LANGUAGE

3.5 Further reading

Many of the standard texts already cited include details about the matters dis-
cussed here. In particular Gordon (1988) gives a clear proof that lambda calculus
is Turing-complete, and that the lambda calculus analog of the ‘halting problem’
(whether a term has a normal form) is unsolvable. The influence of lambda cal-
culus on real programming languages and the evolution of functional languages
are discussed by Hudak (1989).

Exercises

1. Justify ‘generalized β-conversion’, i.e. prove that:

(λ(x1, . . . , xn). t[x1, . . . , xn])(t1, . . . , tn) = t[t1, . . . , tn]

2. Define f ◦ g 4
= λx. f(g x), and recall that I = λx. x. Prove that CURRY ◦

UNCURRY = I. Is it also true that UNCURRY ◦ CURRY = I?.

3. What arithmetical operation does λn f x. f(n f x) perform on Church
numerals? What about λm n. n m?

4. Prove that the following (due to Klop) is a fixed point combinator:

££££££££££££££££££££££££££

where:

£
4
= λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

5. Make a recursive definition of natural number subtraction.

6. Consider the following representation of lists, due to Mairson (1991):

nil = λc n. n

cons = λx l c n. c x (l c n)

head = λl. l(λx y. x) nil

tail = λl. snd (l(λx p. (cons x (fst p), fst p)) (nil, nil))

append = λl1 l2. l1 cons l2

append lists = λL. L append nil

3.5. FURTHER READING 37

map = λf l. l (λx. cons (f x)) nil

length = λl. l(λx. SUC)0

tack = λx l. l cons (cons x nil)

reverse = λl. l tack nil

filter = λl test. l (λx. (test x)(cons x)(λy. y)) nil

Why does Mairson call them ‘Church lists’? What do all these functions
do?

Chapter 4

Types

Types are a means of distinguishing different sorts of data, like booleans, natural
numbers and functions, and making sure that these distinctions are respected,
by, for example, ensuring that functions cannot be applied to arguments of the
wrong type. Why should we want to add types to lambda calculus, and to
programming languages derived from it? We can distinguish reasons from logic
and reasons from programming.

From the logical point of view, we have seen that the Russell paradox makes
it difficult to extend lambda calculus with set theory without contradiction. The
Russell paradox may well arise because of the peculiar self-referential nature of
the trick involved: we apply a function to itself. Even if it weren’t necessary to
avoid paradox, we might feel that intuitively we really have a poor grip of what’s
going on in a system where we can do such things. Certainly applying some
functions to themselves, e.g. the identity function λx. x or a constant function
λx. y, seems quite innocuous. But surely we would have a clearer picture of what
sort of functions lambda terms denote if we knew exactly what their domains and
codomains were, and only applied them to arguments in their domains. These
were the sorts of reasons why Russell originally introduced types in Principia
Mathematica.

Types also arose, perhaps at first largely independently of the above con-
siderations, in programming languages, and since we view lambda calculus as a
programming language, this motivates us too. Even FORTRAN distinguished
integers and floating point values. One reason was clearly efficiency: the machine
can generate more efficient code, and use storage more effectively, by knowing
more about a variable. For example the implementation of C’s pointer arith-
metic varies according to the size of the referenced objects. If p is a pointer to
objects occupying 4 bytes, then what C programmers write as p+1 becomes p+4
inside a byte-addressed machine. C’s ancestor BCPL is untyped, and is therefore
unable to distinguish pointers from integers; to support the same style of pointer
arithmetic it is necessary to apply a scaling at every indirection, a significant
penalty.

38

4.1. TYPED LAMBDA CALCULUS 39

Apart from efficiency, as time went by, types also began to be appreciated
more and more for their value in providing limited static checks on programs.
Many programming errors, either trivial typos or more substantial conceptual
errors, are suggested by type clashes, and these can be detected before running the
program, during the compilation process. Moreover, types often serve as useful
documentation for people reading code. Finally, types can be used to achieve
better modularization and data hiding by ‘artificially’ distinguishing some data
structure from its internal representation.

At the same time, some programmers dislike types, because they find the
restrictions placed on their programming style irksome. There are untyped pro-
gramming languages, imperative ones like BCPL and functional ones like ISWIM,
SASL and Erlang. Others, like PL/I, have only weak typing, with the compiler
allowing some mixtures of different types and casting them appropriately. There
are also languages like LISP that perform typechecking dynamically, during exe-
cution, rather than statically during compilation. This can (at least in principle)
degrade runtime performance, since it means that the computer is spending some
time on making sure types are respected during execution — compare checking of
array bounds during execution, another common runtime overhead. By contrast,
we have suggested that static typing, if anything, can improve performance.

Just how restrictive a type system is found depends a lot on the nature of the
programmer’s applications and programming style. Finding a type system that
allows useful static typechecking, while at the same time allowing programmers
plenty of flexibility, is still an active research area. The ML type system is an
important step along this road, since it features polymorphism, allowing the same
function to be used with various different types. This retains strong static type-
checking while giving some of the benefits of weak or dynamic typing.1 Moreover,
programmers never need to specify any types in ML — the computer can infer
a most general type for every expression, and reject expressions that are not ty-
pable. We will consider polymorphism in the setting of lambda calculus below.
Certainly, the ML type system provides a congenial environment for many kinds
of programming. Nevertheless, we do not want to give the impression that it is
necessarily the answer to all programming problems.

4.1 Typed lambda calculus

It is a fairly straightforward matter to modify lambda calculus with a notion of
type, but the resulting changes, as we shall see, are far-reaching. The basic idea
is that every lambda term has a type, and a term s can only be applied to a term
t in a combination s t when the types match up appropriately, i.e. s has the type
of a function σ → τ and t has type σ. The result, s t, then has type τ . This is,
in programming language parlance, strong typing. The term t must have exactly

1As well, perhaps, as some of the overheads.

40 CHAPTER 4. TYPES

the type σ; there is no notion of subtyping or coercion. This contrasts with some
programming languages like C where a function expecting an argument of type
float or double will accept one of type int and appropriately cast it. Similar
notions of subtyping and coercion can also be added to lambda calculus, but to
consider these here would lead us too far astray.

We will use ‘t : σ’ to mean ‘t has type σ’. This is already the standard notation
in mathematics where function spaces are concerned, because f : σ → τ means
that f is a function from the set σ to the set τ . We will think of types as sets in
which the corresponding objects live, and imagine t : σ to mean t ∈ σ. Though
the reader may like to do likewise, as a heuristic device, we will view typed lambda
calculus purely as a formal system and make the rules independent of any such
interpretation.

4.1.1 The stock of types

The first stage in our formalization is to specify exactly what the types are.
We suppose first of all that we have some set of primitive types, which might,
for example, contain bool and int. We can construct composite types from
these using the function space type constructor. Formally, we make the following
inductive definition of the set TyC of types based on a set of primitive types C:

σ ∈ C

σ ∈ TyC

σ ∈ TyC τ ∈ TyC
σ → τ ∈ TyC

For example, possible types might be int, bool → bool and (int → bool) →
int → bool. We assume that the function arrow associates to the right, i.e.
σ → τ → υ means σ → (τ → υ). This fits naturally with the other syntactic
conventions connected with currying.

Before long, we shall extend the type system in two ways. First, we will
allow so-called type variables as well as primitive type constants — these are the
vehicle for polymorphism. Secondly, we will allow the introduction of other type
constructors besides the function arrow. For example, we will later introduce a
constructor × for the product type. In that case a new clause:

σ ∈ TyC τ ∈ TyC
σ × τ ∈ TyC

needs to be added to the inductive definition. Once we move to the more concrete
case of ML, there is the possibility of new, user-defined types and type construc-
tors, so we will get used to arbitrary sets of constructors of any arity. We will
write (α1, . . . , αn)con for the application of an n-ary type constructor con to the
arguments αi. (Only in a few special cases like → and × do we use infix syntax,

4.1. TYPED LAMBDA CALCULUS 41

for the sake of familiarity.) For example (σ)list is the type of lists whose elements
all have type σ.

An important property of the types, provable because of free inductive gen-
eration, is that σ → τ 6= σ. (In fact, more generally, a type cannot be the same
as any proper syntactic subexpression of itself.) This rules out the possibility of
applying a term to itself, unless the two instances in question have distinct types.

4.1.2 Church and Curry typing

There are two major approaches to defining typed lambda calculus. One ap-
proach, due to Church, is explicit. A (single) type is attached to each term.
That is, in the construction of terms, the untyped terms that we have presented
are modified with an additional field for the type. In the case of constants, this
type is pre-assigned, but variables may be of any type. The rules for valid term
formation are then:

v : σ

Constant c has type σ

c : σ

s : σ → τ t : σ

s t : τ

v : σ t : τ

λv. t : σ → τ

For our purposes, however, we prefer Curry’s approach to typing, which is
purely implicit. The terms are exactly as in the untyped case, and a term may
or may not have a type, and if it does, may have many different types.2 For
example, the identity function λx. x may be given any type of the form σ → σ,
reasonably enough. There are two related reasons why we prefer this approach.
First, it provides a smoother treatment of ML’s polymorphism, and secondly, it
corresponds well to the actual use of ML, where it is never necessary to specify
types explicitly.

At the same time, some of the formal details of Curry-style type assignment
are a bit more complex. We do not merely define a relation of typability in
isolation, but with respect to a context, i.e. a finite set of typing assumptions
about variables. We write:

Γ ` t : σ

2Some purists would argue that this isn’t properly speaking ‘typed lambda calculus’ but
rather ‘untyped lambda calculus with a separate notion of type assignment’.

42 CHAPTER 4. TYPES

to mean ‘in context Γ, the term t can be given type σ’. (We will, however, write
` t : σ or just t : σ when the typing judgement holds in the empty context.) The
elements of Γ are of the form v : σ, i.e. they are themselves typing assumptions
about variables, typically those that are components of the term. We assume
that Γ never gives contradictory assignments to the same variable; if preferred
we can think of it as a partial function from the indexing set of the variables
into the set of types. The use of the symbol ` corresponds to its general use for
judgements in logic of the form Γ ` φ, read as ‘φ follows from assumptions Γ’.

4.1.3 Formal typability rules

The rules for typing expressions are fairly natural. Remember the interpretation
of t : σ as ‘t could be given type σ’.

v : σ ∈ Γ

Γ ` v : σ

Constant c has type σ

c : σ

Γ ` s : σ → τ Γ ` t : σ

Γ ` s t : τ

Γ ∪ {v : σ} ` t : τ

Γ ` λv. t : σ → τ

Once again, this is to be regarded as an inductive definition of the typability
relation, so a term only has a type if it can be derived by the above rules. For
example, let us see how to type the identity function. By the rule for variables
we have:

{x : σ} ` x : σ

and therefore by the last rule we get:

∅ ` λx. x : σ → σ

By our established convention for empty contexts, we write simply λx. x :
σ → σ. This example also illustrates the need for the context in Curry typing,
and why it can be avoided in the Church version. Without the context we could
deduce x : τ for any τ , and then by the last rule get λx. x : σ → τ , clearly at
variance with the intuitive interpretation of the identity function. This problem
doesn’t arise in Church typing, since in that case either both variables have type
σ, in which case the rules imply that λx.x : σ → σ, or else the two x’s are actually
different variables, since their types differ and the types are a component of the
term. Now, indeed, λx : σ. (x : τ) : σ → τ , but this is reasonable because the

4.1. TYPED LAMBDA CALCULUS 43

term is alpha-equivalent to λx : σ. (y : τ) : σ → τ . In the Curry version of typing,
the types are not attached to the terms, and so we need some way of connecting
instances of the same variable.

4.1.4 Type preservation

Since the underlying terms of our typed lambda calculus are the same as in the
untyped case, we can take over the calculus of conversions unchanged. However,
for this to make sense, we need to check that all the conversions preserve typa-
bility, a property called type preservation. This is not difficult; we will sketch
a formal proof for η-conversion and leave the other, similar cases to the reader.
First we prove a couple of lemmas that are fairly obvious but which need to
be established formally. First, adding new entries to the context cannot inhibit
typability:

Lemma 4.1 If Γ ` t : σ and Γ ⊆ ∆ then ∆ ` t : σ.
Proof: By induction on the structure of t. Formally we are fixing t and proving
the above for all Γ and ∆, since in the inductive step for abstractions, the sets
concerned change. If t is a variable we must have that t : σ ∈ Γ. Therefore
t : σ ∈ ∆ and the result follows. If t is a constant the result is immediate since
the stock of constants and their possible types is independent of the context. If
t is a combination s u then we have, for some type τ , that Γ ` s : τ → σ and
Γ ` u : τ . By the inductive hypothesis, ∆ ` s : τ → σ and ∆ ` u : τ and the
result follows. Finally, if t is an abstraction λx. s then we must have, by the last
rule, that σ is of the form τ → τ ′ and that Γ ∪ {x : τ} ` s : τ ′. Since Γ ⊆ ∆
we also have Γ ∪ {x : τ} ⊆ ∆ ∪ {x : τ}, and so by the inductive hypothesis
∆ ∪ {x : τ} ` s : τ ′. By applying the rule for abstractions, the result follows.
Q.E.D.

Secondly, entries in the context for variables not free in the relevant term may
be discarded.

Lemma 4.2 If Γ ` t : σ, then Γt ` t : σ where Γt contains only entries for
variables free in t, or more formally Γt = {x : α | x : α ∈ Γ and x ∈ FV (t)}.
Proof: Again, we prove the above for all Γ and the corresponding Γt by structural
induction over t. If t is a variable, then since Γ ` t : σ we must have an entry
x : σ in the context. But by the first rule we know {x : σ} ` x : σ as required.
In the case of a constant, then the typing is independent of the context, so the
result holds trivial ly. If t is a combination s u then we have for some τ that
Γ ` s : τ → σ and Γ ` u : τ . By the inductive hypothesis, we have Γs ` s : τ → σ
and Γu ` u : τ . By the monotonicity lemma, we therefore have Γsu ` s : τ → σ
and Γsu ` u : τ , since FV (s u) = FV (s) ∪ FV (u). Hence by the rule for
combinations we get Γsu ` t : σ. Finally, if t has the form λx. s, we must have

44 CHAPTER 4. TYPES

Γ ∪ {x : τ} ` s : τ ′ with σ of the form τ → τ ′. By the inductive hypothesis we
have (Γ ∪ {x : τ})s ` s : τ ′, and so (Γ ∪ {x : τ})s − {x : τ} ` (λx. s) : σ. Now we
need simply observe that (Γ ∪ {x : τ})s − {x : τ} ⊆ Γt and appeal once more to
monotonicity. Q.E.D.

Now we come to the main result.

Theorem 4.3 If Γ ` t : σ and t −→
η

t′, then also Γ ` t′ : σ

Proof: Since by hypothesis t is an η-redex, it must be of the form (λx.t x) with x 6∈
FV (t). Now, its type can only have arisen by the last typing rule, and therefore
σ must be of the form τ → τ ′, and we must have {x : τ} ` (t x) : τ ′. Now, this
typing can only have arisen by the rule for combinations. Since the context can
only give one typing to each variable, we must therefore have {x : τ} ` t : τ → τ ′.
But since by hypothesis, x 6∈ FV (t), the lemma yields ` t : τ → τ ′ as required.
Q.E.D.

Putting together all these results for other conversions, we see that if Γ ` t : σ
and t −→ t′, then we have Γ ` t′ : σ. This is reassuring, since if the evaluation
rules that are applied during execution could change the types of expressions, it
would cast doubt on the whole enterprise of static typing.

4.2 Polymorphism

The Curry typing system already gives us a form of polymorphism, in that a
given term may have different types. Let us start by distinguish between the
similar concepts of polymorphism and overloading. Both of them mean that an
expression may have multiple types. However in the case of polymorphism, all
the types bear a systematic relationship to each other, and all types following the
pattern are allowed. For example, the identity function may have type σ → σ,
or τ → τ , or (σ → τ) → (σ → τ), but all the instances have the same structure.
By contrast, in overloading, a given function may have different types that bear
no structural relation to each other, or only certain instances may be selected.
For example, a function + may be allowed to have type int → int → int or type
float → float → float, but not bool → bool → bool.3 Yet a third related notion
is subtyping, which is a more principled version of overloading, regarding certain
types as embedded in others. This, however, turns out to be a lot more complex
than it seems.4

3Strachey, who coined the term ‘polymorphism’, referred to what we call polymorphism and
overloading as parametric and ad hoc polymorphism respectively.

4For example, if α is a subtype of α′, should α → β be a subtype or a supertype of α′ → β?
One can defend either interpretation (‘covariant’ or ‘contravariant’) in certain situations.

4.2. POLYMORPHISM 45

4.2.1 Let polymorphism

Unfortunately the type system we have so far places some unpleasant restrictions
on polymorphism. For example, the following expression is perfectly acceptable:

if (λx. x) true then (λx. x) 1 else 0

Here is a proof according to the above rules. We assume that the constants
can be typed in the empty environment, and we fold together two successive
applications of the rule for combinations as a rule for if, remembering that
‘if b then t1 else t2’ is shorthand for ‘COND b t1 t2’.

{x : bool} ` x : bool

` (λx. x) : bool → bool ` true : bool

` (λx. x) true : bool

{x : int} ` x : int

` (λx. x) : int → int ` 1 : int

` (λx. x) 1 : int ` 0 : int

` if (λx. x) true then (λx. x) 1 else 0 : int

The two instances of the identity function get types bool → bool and int → int.
But consider the following:

let I = λx. x in if I true then I 1 else 0

According to our definitions, this is just syntactic sugar for:

(λI. if I true then I 1 else 0) (λx. x)

As the reader may readily confirm, this cannot be typed according to our
rules. There is just one instance of the identity function and it must be given a
single type. This feature is unbearable, since in practical functional programming
we rely heavily on using let. Unless we change the typing rules, many of the
benefits of polymorphism are lost. Our solution is to make let primitive, rather
than interpret it as syntactic sugar, and add the new typing rule:

Γ ` s : σ Γ ` t[s/x] : τ

Γ ` let x = s in t : τ

This rule, which sets up let polymorphism, expresses the fact that, with respect
to typing at least, we treat let bindings just as if separate instances of the named
expression were written out. The additional hypothesis Γ ` s : σ merely ensures
that s is typable, the exact type being irrelevant. This is to avoid admitting as
well-typed terms such as:

let x = λf. f f in 0

Now, for example, we can type the troublesome example:

46 CHAPTER 4. TYPES

{x : σ} ` x : σ

` λx. x : σ → σ

As given above

` if (λx. x) true then (λx. x) 1 else 0 : int

` let I = λx. x in if I true then I 1 else 0 : int

4.2.2 Most general types

As we have said, some expressions have no type, e.g. λf. f f or λf. (f true, f 1).
Typable expressions normally have many types, though some, e.g. true, have
exactly one. We have already commented that the form of polymorphism in ML
is parametric, i.e. all the different types an expression can have bear a structural
similarity to each other. In fact more is true: there exists for each typable
expression a most general type or principal type, and all possible types for the
expression are instances of this most general type. Before stating this precisely
we need to establish some terminology.

First, we extend our notion of types with type variables. That is, types can
be built up by applying type constructors either to type constants or variables.
Normally we use the letters α and β to represent type variables, and σ and τ
arbitrary types. Given this extension, we can define what it means to substitute
one type for a type variable in another type. This is precisely analogous to
substitution at the term level, and we even use the same notation. For example
(σ → bool)[(σ → τ)/σ] = (σ → τ) → bool. The formal definition is much simpler
than at the term level, because we do not have to worry about bindings. At the
same time, it is convenient to extend it to multiple parallel substitutions:

αi[τ1/α1, . . . , τn/αk] = τi if αi 6= β for 1 ≤ i ≤ k

β[τ1/α1, . . . , τn/αk] = β if αi 6= β for 1 ≤ i ≤ k

(σ1, . . . , σn)con[θ] = (σ1[θ], . . . , σn[θ])con

For simplicity we treat type constants as nullary constructors, e.g. consider
()int rather than int, but if preferred it is easy to include them as a special case.
Given this definition of substitution, we can define the notion of a type σ being
more general than a type σ′, written σ � σ′.5 This is defined to be true precisely
if there is a set of substitutions θ such that σ′ = σθ. For example we have:

α � σ

α → α � β → β

α → bool � (β → β) → bool

5This relation is reflexive, so we should really say ‘at least as general as’ rather than ‘more
general than’.

4.3. STRONG NORMALIZATION 47

β → α � α → β

α → α 6� (β → β) → β

Now we come to the main theorem:

Theorem 4.4 Every typable term has a principal type, i.e. if t : τ , then there is
some σ such that t : σ and for any σ′, if t : σ′ then σ � σ′.

It is easy to see that the relation � is a preorder relation, i.e. is reflexive
and transitive. The principal type is not unique, but it is unique up to renaming
of type variables. More precisely, if σ and τ are both principal types for an
expression, then σ ∼ τ , meaning that σ � τ and τ � σ.

We will not even sketch a proof of the principal type theorem; it is not partic-
ularly difficult, but is rather long. What is important to understand is that the
proof gives a concrete procedure for finding a principal type. This procedure is
known as Milner’s algorithm, or often the Hindley-Milner algorithm.6 All imple-
mentations of ML, and several other functional languages, incorporate a version
of this algorithm, so expressions can automatically be allocated a principal type,
or rejected as ill-typed.

4.3 Strong normalization

Recall our examples of terms with no normal form, such as:

((λx. x x x) (λx. x x x))

−→ ((λx. x x x) (λx. x x x) (λx. x x x))

−→ (· · ·)

In typed lambda calculus, this cannot happen by virtue of the following strong
normalization theorem, whose proof is too long for us to give here.

Theorem 4.5 Every typable term has a normal form, and every possible reduc-
tion sequence starting from a typable term terminates.7

At first sight this looks good — a functional program respecting our type
discipline can be evaluated in any order, and it will always terminate in the unique
normal form. (The uniqueness comes from the Church-Rosser theorem, which is

6The above principal type theorem in the form we have presented it is due to Milner (1978),
but the theorem and an associated algorithm had earlier been discovered by Hindley in a similar
system of combinatory logic.

7Weak normalization means the first part only, i.e. every term can be reduced to normal
form, but there may still be reduction sequences that fail to terminate.

48 CHAPTER 4. TYPES

still true in the typed system.) However, the ability to write nonterminating
functions is essential to Turing completeness,8 so we are no longer able to define
all computable functions, not even all total ones.

This might not matter if we could define all ‘practically interesting’ functions.
However this is not so; the class of functions definable as typed lambda terms
is fairly limited. Schwichtenberg (1976) has proved that if Church numerals are
used, then the definable functions are those that are polynomials or result from
polynomials using definition by cases. Note that this is strictly intensional: if
another numeral representation is used, a different class of functions is obtained.
In any case, it is not enough for a general programming language.

Since all definable functions are total, we are clearly unable to make arbitrary
recursive definitions. Indeed, the usual fixpoint combinators must be untypable;
Y = λf. (λx. f(x x))(λx. f(x x)) clearly isn’t well-typed because it applies x to
itself and x is bound by a lambda. In order to regain Turing-completeness we
simply add a way of defining arbitrary recursive functions that is well-typed. We
introduce a polymorphic recursion operator with all types of the form:

Rec : ((σ → τ) → (σ → τ)) → σ → τ

and the extra reduction rule that for any F : (σ → τ) → (σ → τ) we have:

Rec F −→ F (Rec F)

From now on, we will suppose that recursive definitions, signalled by ‘let rec’,
map down to the use of these recursion operators.

Further reading

Barendregt (1984) and Hindley and Seldin (1986) also consider typed lambda
calculus. The original paper by Milner (1978) is still a good source of information
about polymorphic typing and the algorithm for finding principal types. A nice
elementary treatment of typed lambda calculus, which gives a proof of Strong
Normalization and discusses some interesting connections with logic, is Girard,
Lafont, and Taylor (1989). This also discusses a more advanced version of typed
lambda calculus called ‘System F’ where even though strong normalization holds,
the majority of ‘interesting’ functions are definable.

Exercises

1. Is it true that if Γ ` t : σ then for any substitution θ we have Γ ` t : (σθ)?

8Given any recursive enumeration of total computable functions, we can always create one
not in the list by diagonalization. This will be illustrated in the Computability Theory course.

4.3. STRONG NORMALIZATION 49

2. Prove formally the type preservation theorems for α and β conversion.

3. Show that the converse to type preservation does not hold, i.e. it is possible
that t −→ t′ and Γ ` t′ : σ but not Γ ` t : σ.

4. (*) Prove that every term of typed lambda calculus with principal type
(α → α) → (α → α) reduces to a Church numeral.

5. (*) To what extent can the typechecking process be reversed, i.e. the term
inferred from the type? For instance, is it true that in pure typed lambda
calculus with type variables but no constants and no recursion operator,
that any t : α → β → α is in fact equal to K = λx y. x in the usual sense
of lambda equality? If so, how far can this be generalized?9

6. (*) We will say that an arbitrary reduction relation −→ is weakly Church-
Rosser if whenever t −→ t1 and t −→ t2, then there is a u with t1 −→∗ u
and t2 −→∗ u, where −→∗ is the reflexive transitive closure of −→. Prove
Newman’s Lemma, which states that if a relation is weakly Church-Rosser
and obeys strong normalization, then −→∗ is Church-Rosser. (Hint: use a
form of wellfounded induction.)10

9See Mairson (1991) for more on this question.
10If you get stuck, there is a nice proof in Huet (1980).

Chapter 5

A taste of ML

In the last few chapters, we have started with pure lambda calculus and system-
atically extended it with new primitive features. For example we added the ‘let’
construct as primitive for the sake of making the polymorphic typing more useful,
and a recursion operation in order to restore the computational power that was
lost when adding types. By travelling further along this path, we will eventually
arrive at ML, although it’s still valuable to retain the simple worldview of typed
lambda calculus.

The next stage is to abandon the encodings of datatypes like booleans and
natural numbers via lambda terms, and instead make them primitive. That is, we
have new primitive types like bool and int (actually positive and negative inte-
gers) and new type constructors like ×, a step we have in many ways anticipated
in the last chapter. Associated with these are new constants and new conversion
rules. For example, the expression 2 + 2 is evaluated using machine arithmetic,
rather than by translation into Church numerals and performing β-conversions.
These additional conversions, regarded as augmenting the usual lambda opera-
tions, are often referred to as ‘δ-conversions’. We will see in due course how the
ML language is extended in other ways in comparison with pure lambda calculus.
First, we must address the fundamental question of ML’s evaluation strategy.

5.1 Eager evaluation

We have said that from a theoretical point of view, normal order (top down
left-to-right) reduction of expressions is to be preferred, since if any strategy
terminates, this one will.1 However it has some practical defects. For example,
consider the following:

(λx. x+ x+ x) (10 + 5)

1This strategy is familiar from a few traditional languages like Algol 60 where it is referred
to as call by name.

50

5.1. EAGER EVALUATION 51

A normal order reduction results in (10 + 5) + (10 + 5) + (10 + 5), and the
following reduction steps need to evaluate three separate instances of the same
expression. This is unacceptable in practice. There are two main solutions to
this problem, and these solutions divide the world of functional programming
languages into two camps.

The first alternative is to stick with normal order reduction, but attempt
to optimize the implementation so multiple subexpressions arising in this way
are shared, and never evaluated more than once. Internally, expressions are
represented as directed acyclic graphs rather than as trees. This is known as lazy
or call-by-need evaluation, since expressions are only evaluated when absolutely
necessary.

The second approach is to turn the theoretical considerations about reduction
strategy on their head and evaluate arguments to functions before passing the
values to the function. This is known as applicative order or eager evaluation.
The latter name arises because function arguments are evaluated even when they
may be unnecessary, e.g. t in (λx. y) t. Of course, eager evaluation means that
some expressions may loop that would terminate in a lazy regime. But this is
considered acceptable, since these instances are generally easy to avoid in practice.
In any case, an eager evaluation strategy is the standard in many programming
languages like C, where it is referred to as call by value.

ML adopts eager evaluation, for two main reasons. Choreographing the re-
ductions and sharings that occur in lazy evaluation is quite tricky, and implemen-
tations tend to be relatively inefficient and complicated. Unless the programmer
is very careful, memory can fill up with pending unevaluated expressions, and
in general it is hard to understand the space behaviour of programs. In fact
many implementations of lazy evaluation try to optimize it to eager evaluation
in cases where there is no semantic difference.2 By contrast, in ML, we always
first evaluate the arguments to functions and only then perform the β-reduction
— this is simple and efficient, and is easy to implement using standard compiler
technology.

The second reason for preferring applicative order evaluation is that ML is
not a pure functional language, but includes imperative features (variables, as-
signments etc.). Therefore the order of evaluation of subexpressions can make a
semantic difference, rather than merely affecting efficiency. If lazy evaluation is
used, it seems to become practically impossible for the programmer to visualize,
in a nontrivial program, exactly when each subexpression gets evaluated. In the
eager ML system, one just needs to remember the simple evaluation rule.

It is important to realize, however, that the ML evaluation strategy is not
simply bottom-up, the exact opposite of normal order reduction. In fact, ML
never evaluates underneath a lambda. (In particular, it never reduces η-redexes,

2They try to perform strictness analysis, a form of static analysis that can often discover
that arguments are necessarily going to be evaluated (Mycroft 1981).

52 CHAPTER 5. A TASTE OF ML

only β-redexes.) In evaluating (λx. s[x]) t, t is evaluated first. However s[x] is
not touched since it is underneath a lambda, and any subexpressions of t that
happen to be in the scope of a lambda are also left alone. The precise evaluation
rules are as follows:

• Constants evaluate to themselves.

• Evaluation stops immediately at λ-abstractions and does not look inside
them. In particular, there is no η-conversion.

• When evaluating a combination s t, then first both s and t are evaluated.
Then, assuming that the evaluated form of s is a lambda abstraction, a
toplevel β-conversion is performed and the process is repeated.

The order of evaluation of s and t varies between versions of ML. In the
version we will use, t is always evaluated first. Strictly, we should also specify
a rule for let expressions, since as we have said they are by now accepted as a
primitive. However from the point of view of evaluation they can be understood
in the original way, as a lambda applied to an argument, with the understanding
that the rand will be evaluated first. To make this explicit, the rule for

let x = s in t

is that first of all s is evaluated, the resulting value is substituted for x in t, and
finally the new version of t is evaluated. Let us see some examples of evaluating
expressions:

(λx. (λy. y + y) x)(2 + 2) −→ (λx. (λy. y + y) x)4

−→ (λy. y + y)4

−→ 4 + 4

−→ 8

Note that the subterm (λy. y+ y) x is not reduced, since it is within the scope
of a lambda. However, terms that are reducible and not enclosed by a lambda in
both function and argument get reduced before the function application itself is
evaluated, e.g. the second step in the following:

((λf x. f x) (λy. y + y)) (2 + 2) −→ ((λf x. f x) (λy. y + y)) 4

−→ (λx. (λy. y + y) x) 4

−→ (λy. y + y) 4

−→ 4 + 4

5.2. CONSEQUENCES OF EAGER EVALUATION 53

The fact that ML does not evaluate under lambdas is of crucial importance
to advanced ML programmers. It gives precise control over the evaluation of
expressions, and can be used to mimic many of the helpful cases of lazy evaluation.
We shall see a very simple instance in the next section.

5.2 Consequences of eager evaluation

The use of eager evaluation forces us to make additional features primitive, with
their own special reduction procedures, rather than implementing them directly
in terms of lambda calculus. In particular, we can no longer regard the conditional
construct:

if b then e1 else e2

as the application of an ordinary ternary operator:

COND b e1 e2

The reason is that in any particular instance, because of eager evaluation,
we evaluate all the expressions b, e1 and e2 first, before evaluating the body of
the COND. Usually, this is disastrous. For example, recall our definition of the
factorial function:

let rec fact(n) = if ISZERO n then 1 else n ∗ fact(PRE n)

If the conditional evaluates all its arguments, then in order to evaluate fact(0),
the ‘else’ arm must be evaluated, in its turn causing fact(PRE 0) to be evalu-
ated. This in its turn causes the evaluation of fact(PRE (PRE 0)), and so on.
Consequently the computation will loop indefinitely.

Accordingly, we make the conditional a new primitive construct, and modify
the usual reduction strategy so that first the boolean expression is evaluated, and
only then is exactly one of the two arms evaluated, as appropriate.

What about the process of recursion itself? We have suggested understanding
recursive definitions in terms of a recursion operator Rec with its own reduction
rule:

Rec f −→ f(Rec f)

This would also loop using an eager evaluation strategy:

Rec f −→ f(Rec f) −→ f(f(Rec f)) −→ f(f(f(Rec f))) −→ · · ·

However we only need a very simple modification to the reduction rule to
make things work correctly:

54 CHAPTER 5. A TASTE OF ML

Rec f −→ f(λx. Rec f x)

Now the lambda on the right means that λx. Rec f x evaluates to itself, and
so only after the expression has been further reduced following substitution in
the body of f will evaluation continue.

5.3 The ML family

We have been talking about ‘ML’ as if it were a single language. In fact there
are many variants of ML, even including ‘Lazy ML’, an implementation from
Chalmers University in Sweden that is based on lazy evaluation. The most popu-
lar version of ML in education is ‘Standard ML’, but we will use another version,
called CAML (‘camel’) Light.3 We chose CAML Light for several reasons:

• The implementation is small and highly portable, so can be run effectively
on Unix machines, PCs, Macs etc.

• The system is simple, syntactically and semantically, making it relatively
easy to approach.

• The system is well suited to practical programming, e.g. it can easily be
interfaced to C and supports standard make-compatible separate compila-
tion.

However, we will be teaching quite general techniques, and any code we write
can be run with a few minor syntactic changes in any version of ML, and indeed
often in other functional languages.

5.4 Starting up ML

ML has already been installed on Thor. In order to use it, you need to put the
CAML binary directory on your PATH. This can be done (assuming you use the
‘bash’ shell or one of its family), as follows:

PATH="$PATH:/home/jrh13/caml/bin"
export PATH

To avoid doing this every time you log on, you can insert these lines near the
end of your .bash profile, or the equivalent for your favourite shell. Now to
use CAML in its normal interactive and interpretive mode, you simply need to
type camllight, and the system should fire up and present its prompt (‘#’):

3The name stands for ‘Categorical Abstract Machine’, the underlying implementation
method.

5.5. INTERACTING WITH ML 55

$ camllight
> Caml Light version 0.73

#

In order to exit the system, simply type ctrl/d or quit();; at the prompt.
If you are interested in installing CAML Light on your own machine, you should
consult the following Web page for detailed information:

http://pauillac.inria.fr/caml/

5.5 Interacting with ML

When ML presents you with its prompt, you can type in expressions, terminated
by two successive semicolons, and it will evaluate them and print the result. In
computing jargon, the ML system sits in a read-eval-print loop: it repeatedly
reads an expression, evaluates it, and prints the result. For example, ML can be
used as a simple calculator:

#10 + 5;;
- : int = 15

The system not only returns the answer, but also the type of the expression,
which it has inferred automatically. It can do this because it knows the type
of the built-in addition operator +. On the other hand, if an expression is not
typable, the system will reject it, and try to give some idea about how the types
fail to match up. In complicated cases, the error messages can be quite tricky to
understand.

#1 + true;;
Toplevel input:
>let it = 1 + true;;
> ^^^^
This expression has type bool,
but is used with type int.

Since ML is a functional language, expressions are allowed to have function
type. The ML syntax for a lambda abstraction λx. t[x] is fun x -> t[x]. For
example we can define the successor function:

#fun x -> x + 1;;
- : int -> int = <fun>

56 CHAPTER 5. A TASTE OF ML

Again, the type of the expression, this time int -> int, is inferred and dis-
played. However the function itself is not printed; the system merely writes
<fun>. This is because, in general, the internal representations of functions are
not very readable.4 Functions are applied to arguments just as in lambda calcu-
lus, by juxtaposition. For example:

#(fun x -> x + 1) 4;;
- : int = 5

Again as in lambda calculus, function application associates to the left, and
you can write curried functions using the same convention of eliding multiple λ’s
(i.e. fun’s). For example, the following are all equivalent:

#((fun x -> (fun y -> x + y)) 1) 2;;
- : int = 3
#(fun x -> fun y -> x + y) 1 2;;
- : int = 3
#(fun x y -> x + y) 1 2;;
- : int = 3

5.6 Bindings and declarations

It is not convenient, of course, to evaluate the whole expression in one go; rather,
we want to use let to bind useful subexpressions to names. This can be done as
follows:

#let successor = fun x -> x + 1 in
successor(successor(successor 0));;

- : int = 3

Function bindings may use the more elegant sugaring:

#let successor x = x + 1 in
successor(successor(successor 0));;
- : int = 3

and can be made recursive just by adding the rec keyword:

#let rec fact n = if n = 0 then 1
else n * fact(n - 1) in

fact 6;;
- : int = 720

By using and, we can make several binding simultaneously, and define mutu-
ally recursive functions. For example, here are two simple, though highly ineffi-
cient, functions to decide whether or not a natural number is odd or even:

4CAML does not store them simply as syntax trees, but compiles them into bytecode.

5.6. BINDINGS AND DECLARATIONS 57

#let rec even n = if n = 0 then true else odd (n - 1)
and odd n = if n = 0 then false else even (n - 1);;

even : int -> bool = <fun>
odd : int -> bool = <fun>
#even 12;;
- : bool = true
#odd 14;;
- : bool = false

In fact, any bindings can be performed separately from the final application.
ML remembers a set of variable bindings, and the user can add to that set inter-
actively. Simply omit the in and terminate the phrase with a double semicolon:

#let successor = fun x -> x + 1;;
successor : int -> int = <fun>

After this declaration, any later phrase may use the function successor, e.g:

#successor 11;;
- : int = 12

Note that we are not making assignments to variables. Each binding is only
done once when the system analyses the input; it cannot be repeated or modi-
fied. It can be overwritten by a new definition using the same name, but this is
not assignment in the usual sense, since the sequence of events is only connected
with the compilation process, not with the dynamics of program execution. In-
deed, apart from the more interactive feedback from the system, we could equally
replace all the double semicolons after the declarations by in and evaluate ev-
erything at once. On this view we can see that the overwriting of a declaration
really corresponds to the definition of a new local variable that hides the outer
one, according to the usual lambda calculus rules. For example:

#let x = 1;;
x : int = 1
#let y = 2;;
y : int = 2
#let x = 3;;
x : int = 3
#x + y;;
- : int = 5

is the same as:

#let x = 1 in
let y = 2 in
let x = 3 in
x + y;;

- : int = 5

58 CHAPTER 5. A TASTE OF ML

Note carefully that, also following lambda calculus, variable binding is static,
i.e. the first binding of x is still used until an inner binding occurs, and any uses
of it until that point are not affected by the inner binding. For example:

#let x = 1;;
x : int = 1
#let f w = w + x;;
f : int -> int = <fun>
#let x = 2;;
x : int = 2
#f 0;;
- : int = 1

The first version of LISP, however, used dynamic binding, where a rebinding
of a variable propagated to earlier uses of the variable, so that the analogous se-
quence to the above would return 2. This was in fact originally regarded as a bug,
but soon programmers started to appreciate its convenience. It meant that when
some low-level function was modified, the change propagated automatically to all
applications of it in higher level functions, without the need for recompilation.
The feature survived for a long time in many LISP dialects, but eventually the
view that static binding is better prevailed. In Common LISP, static binding is
the default, but dynamic binding is available if desired via the keyword special.

5.7 Polymorphic functions

We can define polymorphic functions, like the identity operator:

#let I = fun x -> x;;
I : ’a -> ’a = <fun>

ML prints type variables as ’a, ’b etc. These are supposed to be ASCII
representations of α, β and so on. We can now use the polymorphic function
several times with different types:

#I true;;
- : bool = true
#I 1;;
- : int = 1
#I I I I 12;;
- : int = 12

Each instance of I in the last expression has a different type, and intuitively
corresponds to a different function. In fact, let’s define all the combinators:

5.7. POLYMORPHIC FUNCTIONS 59

#let I x = x;;
I : ’a -> ’a = <fun>
#let K x y = x;;
K : ’a -> ’b -> ’a = <fun>
#let S f g x = (f x) (g x);;
S : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c = <fun>

Note that the system keeps track of the types for us, even though in the last
case they were quite complicated. Now, recall that I = S K K; let us try this
out in ML:5

#let I’ = S K K;;
I’ : ’_a -> ’_a = <fun>

It has the right type,6 and it may easily be checked in all concrete cases, e.g:

#I’ 3 = 3;;
- : bool = true

In the above examples of polymorphic functions, the system very quickly infers
a most general type for each expression, and the type it infers is simple. This
usually happens in practice, but there are pathological cases, e.g. the following
example due to Mairson (1990). The type of this expression takes about 10
seconds to calculate, and occupies over 4000 lines on an 80-column terminal.

let pair x y = fun z -> z x y in
let x1 = fun y -> pair y y in
let x2 = fun y -> x1(x1 y) in
let x3 = fun y -> x2(x2 y) in
let x4 = fun y -> x3(x3 y) in
let x5 = fun y -> x4(x4 y) in
x5(fun z -> z);;

We have said that the ML programmer need never enter a type. This is true
in the sense that ML will already allocate as general a type as possible to an
expression. However it may sometimes be convenient to restrict the generality of
a type. This cannot make code work that didn’t work before, but it may serve as
documentation regarding the intended purpose of the code; it is also possible to
use shorter synonyms for complicated types. Type restriction can be achieved in
ML by adding type annotations after some expression(s). These type annotations
consist of a colon followed by a type. It usually doesn’t matter exactly where
these annotations are added, provided they enforce the appropriate constraints.
For example, here are some alternative ways of constraining the identity function
to type int -> int:

5We remarked that from the untyped point of view, S K A = I for any A. However, the
reader may try, for example, S K S and see that the principal type is less general than expected.

6Ignore the underscores for now. This is connected with the typing of imperative features,
and we will discuss it later.

60 CHAPTER 5. A TASTE OF ML

#let I (x:int) = x;;
I : int -> int = <fun>
#let I x = (x:int);;
I : int -> int = <fun>
#let (I:int->int) = fun x -> x;;
I : int -> int = <fun>
#let I = fun (x:int) -> x;;
I : int -> int = <fun>
#let I = ((fun x -> x):int->int);;
I : int -> int = <fun>

5.8 Equality of functions

Instead of comparing the actions of I and I ′ on particular arguments like 3, it
would seem that we can settle the matter definitively by comparing the functions
themselves. However this doesn’t work:

#I’ = I;;
Uncaught exception: Invalid_argument "equal: functional value"

It is in general forbidden to compare functions for equality, though a few
special instances, where the functions are obviously the same, yield true:

#let f x = x + 1;;
f : int -> int = <fun>
#let g x = x + 1;;
g : int -> int = <fun>
#f = f;;
- : bool = true
#f = g;;
Uncaught exception: Invalid_argument "equal: functional value"
#let h = g;;
h : int -> int = <fun>
#h = f;;
Uncaught exception: Invalid_argument "equal: functional value"
#h = g;;
- : bool = true

Why these restrictions? Aren’t functions supposed to be first-class objects in
ML? Yes, but unfortunately, (extensional) function equality is not computable.
This follows from a number of classic theorems in recursion theory, such as the
unsolvability of the halting problem and Rice’s theorem.7 Let us give a concrete
illustration of why this might be so. It is still an open problem whether the

7You will see these results proved in the Computation Theory course. Rice’s theorem is an
extremely strong undecidability result which asserts that any nontrivial property of the function
corresponding to a program is uncomputable from its text. An excellent computation theory
textbook is Davis, Sigal, and Weyuker (1994).

5.8. EQUALITY OF FUNCTIONS 61

following function terminates for all arguments, the assertion that it does being
known as the Collatz conjecture:8

#let rec collatz n =
if n <= 1 then 0
else if even(n) then collatz(n / 2)
else collatz(3 * n + 1);;

collatz : int -> int = <fun>

What is clear, though, is that if it does halt it returns 0. Now consider the
following trivial function:

#let f (x:int) = 0;;
f : int -> int = <fun>

By deciding the equation collatz = f, the computer would settle the Collatz
conjecture. It is easy to concoct other examples for open mathematical problems.

It is possible to trap out applications of the equality operator to functions and
datatypes built up from them as part of typechecking, rather than at runtime.
Types that do not involve functions in these ways are known as equality types,
since it is always valid to test objects of such types for equality. On the negative
side, this makes the type system much more complicated. However one might
argue that static typechecking should be extended as far as feasibility allows.

Further reading

Many books on functional programming bear on the general issues we have dis-
cussed here, such as evaluation strategy. A good elementary introduction to
CAML Light and functional programming is Mauny (1995). Paulson (1991) is
another good textbook, though based on Standard ML.

Exercises

1. Suppose that a ‘conditional’ function defined by ite(b,x,y) = if b then

x else y is the only function available that operates on arguments of type
bool. Is there any way to write a factorial function?

2. Use the typing rules in the last chapter to write out a formal proof that the
S combinator has the type indicated by the ML system.

8A good survey of this problem, and attempts to solve it, is given by Lagarias (1985).
Strictly, we should use unlimited precision integers rather than machine arithmetic. We will
see later how to do this.

62 CHAPTER 5. A TASTE OF ML

3. Write a simple recursively defined function to perform exponentiation of
integers, i.e. calculate xn for n ≥ 0. Write down two ML functions, the
equality of which corresponds to the truth of Fermat’s last theorem: there
are no integers x, y, z and natural number n > 2 with xn + yn = zn except
for the trivial case where x = 0 or y = 0.

Chapter 6

Further ML

In this chapter, we consolidate the previous examples by specifying the basic
facilities of ML and the syntax of phrases more precisely, and then go on to treat
some additional features such as recursive types. We might start by saying more
about interaction with the system.

So far, we have just been typing phrases into ML’s toplevel read-eval-print
loop and observing the result. However this is not a good method for writing
nontrivial programs. Typically, you should write the expressions and declarations
in a file. To try things out as you go, they can be inserted in the ML window using
‘cut and paste’. This operation can be performed using X-windows and similar
systems, or in an editor like Emacs with multiple buffers. However, this becomes
laborious and time-consuming for large programs. Instead, you can use ML’s
include function to read in the file directly. For example, if the file myprog.ml

contains:

let pythag x y z =
x * x + y * y = z * z;;

pythag 3 4 5;;

pythag 5 12 13;;

pythag 1 2 3;;

then the toplevel phrase include "myprog.ml";; results in:

#include "myprog.ml";;
pythag : int -> int -> int -> bool = <fun>
- : bool = true
- : bool = true
- : bool = false
- : unit = ()

63

64 CHAPTER 6. FURTHER ML

That is, the ML system responds just as if the phrases had been entered at
the top level. The final line is the result of evaluating the include expression
itself.

In large programs, it is often helpful to include comments. In ML, these are
written between the symbols (* and *), e.g.

(* -- *)
(* This function tests if (x,y,z) is a Pythagorean triple *)
(* -- *)

let pythag x y z =
x * x + y * y = z * z;;

(*comments*) pythag (*can*) 3 (*go*) 4 (*almost*) 5 (*anywhere*)
(* and (* can (* be (* nested *) quite *) arbitrarily *) *);;

6.1 Basic datatypes and operations

ML features several built-in primitive types. From these, composite types may
be built using various type constructors. For the moment, we will only use the
function space constructor -> and the Cartesian product constructor *, but we
will see in due course which others are provided, and how to define new types
and type constructors. The primitive types that concern us now are:

• The type unit. This is a 1-element type, whose only element is written
(). Obviously, something of type unit conveys no information, so it is
commonly used as the return type of imperatively written ‘functions’ that
perform a side-effect, such as include above. It is also a convenient argu-
ment where the only use of a function type is to delay evaluation.

• The type bool. This is a 2-element type of booleans (truth-values) whose
elements are written true and false.

• The type int. This contains some finite subset of the positive and negative
integers. Typically the permitted range is from −230 (−1073741824) up to
230−1 (1073741823).1 The numerals are written in the usual way, optionally
with a negation sign, e.g. 0, 32, -25.

• The type string contains strings (i.e. finite sequences) of characters. They
are written and printed between double quotes, e.g. "hello". In order to
encode include special characters in strings, C-like escape sequences are
used. For example, \" is the double quote itself, and \n is the newline
character.

1This is even more limited than expected for machine arithmetic because a bit is stolen for
the garbage collector. We will see later how to use an alternative type of integers with unlimited
precision.

6.1. BASIC DATATYPES AND OPERATIONS 65

The above values like (), false, 7 and "caml" are all to be regarded as
constants in the lambda calculus sense. There are other constants corresponding
to operations on the basic types. Some of these may be written as infix operators,
for the sake of familiarity. These have a notion of precedence so that expressions
are grouped together as one would expect. For example, we write x + y rather
than + x y and x < 2 * y + z rather than < x (+ (* 2 y) z). The logical
operator not also has a special parsing status, in that the usual left-associativity
rule is reversed for it: not not p means not (not p). User-defined functions
may be granted infix status via the #infix directive. For example, here is a
definition of a function performing composition of functions:

#let successor x = x + 1;;
successor : int -> int = <fun>
#let o f g = fun x -> f(g x);;
o : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
#let add3 = o successor (o successor successor);;
add3 : int -> int = <fun>
#add3 0;;
- : int = 3
##infix "o";;
#let add3’ = successor o successor o successor;;
add3’ : int -> int = <fun>
#add3’ 0;;
- : int = 3

It is not possible to specify the precedence of user-defined infixes, nor to make
user-defined non-infix functions right-associative. Note that the implicit opera-
tion of ‘function application’ has a higher precedence than any binary operator,
so successor 1 * 2 parses as (successor 1) * 2. If it is desired to use a func-
tion with special status as an ordinary constant, simply precede it by prefix.
For example:

#o successor successor;;
Toplevel input:
>o successor successor;;
>^
Syntax error.
#prefix o successor successor;;
- : int -> int = <fun>
#(prefix o) successor successor;;
- : int -> int = <fun>

With these questions of concrete syntax out of the way, let us present a
systematic list of the operators on the basic types above. The unary operators
are:

Operator Type Meaning
- int -> int Numeric negation
not bool -> bool Logical negation

66 CHAPTER 6. FURTHER ML

and the binary operators, in approximately decreasing order of precedence, are:

Operator Type Meaning
mod int -> int -> int Modulus (remainder)
* int -> int -> int Multiplication
/ int -> int -> int Truncating division
+ int -> int -> int Addition
- int -> int -> int Subtraction
^ string -> string -> string String concatenation
= ’a -> ’a -> bool Equality
<> ’a -> ’a -> bool Inequality
< ’a -> ’a -> bool Less than
<= ’a -> ’a -> bool Less than or equal
> ’a -> ’a -> bool Greater than
>= ’a -> ’a -> bool Greater than or equal
& bool -> bool -> bool Boolean ‘and’
or bool -> bool -> bool Boolean ‘or’

For example, x > 0 & x < 1 is parsed as & (> x 0) (< x 1). Note that
all the comparisons, not just the equality relation, are polymorphic. They not
only order integers in the expected way, and strings alphabetically, but all other
primitive types and composite types in a fairly natural way. Once again, however,
they are not in general allowed to be used on functions.

The two boolean operations & and or have their own special evaluation strat-
egy, like the conditional expression. In fact, they can be regarded as synonyms
for conditional expressions:

p & q
4
= if p then q else false

p or q
4
= if p then true else q

Thus, the ‘and’ operation evaluates its first argument, and only if it is true,
evaluates its second. Conversely, the ‘or’ operation evaluates its first argument,
and only if it is false evaluates its second.

6.2 Syntax of ML phrases

Expressions in ML can be built up from constants and variables; any identifier
that is not currently bound is treated as a variable. Declarations bind names
to values of expressions, and declarations can occur locally inside expressions.
Thus, the syntax classes of expressions and declarations are mutually recursive.
We can represent this by the following BNF grammar.2

2We neglect many constructs that we won’t be concerned with. A few will be introduced
later. See the CAML manual for full details.

6.2. SYNTAX OF ML PHRASES 67

expression ::= variable

| constant

| expression expression

| expression infix expression

| not expression

| if expression then expression else expression

| fun pattern -> expression

| (expression)

| declaration in expression

declaration ::= let let bindings

| let rec let bindings

let bindings ::= let binding

| let binding and let bindings

let binding ::= pattern = expression

pattern ::= variables

variables ::= variable

| variable variables

The syntax class pattern will be expanded and explained more thoroughly
later on. For the moment, all the cases we are concerned with are either just
variable or variable variable · · · variable. In the first case we simply bind an ex-
pression to a name, while the second uses the special syntactic sugar for function
declarations, where the arguments are written after the function name to the left
of the equals sign. For example, the following is a valid declaration of a function
add4, which can be used to add 4 to its argument:

#let add4 x =
let y = successor x in
let z = let w = successor y in

successor w in
successor z;;

add4 : int -> int = <fun>
#add4 1;;
- : int = 5

It is instructive to unravel this declaration according to the above grammar.
A toplevel phrase, terminated by two successive semicolons, may be either an
expression or a declaration.

68 CHAPTER 6. FURTHER ML

6.3 Further examples

It is easy to define by recursion a function that takes a positive integer n and a
function f and returns fn, i.e. f ◦ · · · ◦ f (n times):

#let rec funpow n f x =
if n = 0 then x
else funpow (n - 1) f (f x);;

funpow : int -> (’a -> ’a) -> ’a -> ’a = <fun>

In fact, a little thought will show that the function funpow takes a machine
integer n and returns the Church numeral corresponding to n. Since functions
aren’t printed, we can’t actually look at the lambda expression representing a
Church numeral:

#funpow 6;;
- : (’_a -> ’_a) -> ’_a -> ’_a = <fun>

However it is straightforward to define an inverse function to funpow that
takes a Church numeral back to a machine integer:

#let defrock n = n (fun x -> x + 1) 0;;
defrock : ((int -> int) -> int -> ’a) -> ’a = <fun>
#defrock(funpow 32);;
- : int = 32

We can try out some of the arithmetic operations on Church numerals:

#let add m n f x = m f (n f x);;
add : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c = <fun>
#let mul m n f x = m (n f) x;;
mul : (’a -> ’b -> ’c) -> (’d -> ’a) -> ’d -> ’b -> ’c = <fun>
#let exp m n f x = n m f x;;
exp : ’a -> (’a -> ’b -> ’c -> ’d) -> ’b -> ’c -> ’d = <fun>
#let test bop x y = defrock (bop (funpow x) (funpow y));;
test :
(((’a -> ’a) -> ’a -> ’a) ->
((’b -> ’b) -> ’b -> ’b) -> (int -> int) -> int -> ’c) ->
int -> int -> ’c = <fun>

#test add 2 10;;
- : int = 12
#test mul 2 10;;
- : int = 20
#test exp 2 10;;
- : int = 1024

The above is not a very efficient way of performing arithmetic operations.
ML does not have a function for exponentiation, but it is easy to define one by
recursion:

6.3. FURTHER EXAMPLES 69

#let rec exp x n =
if n = 0 then 1
else x * exp x (n - 1);;

exp : int -> int -> int = <fun>

However this performs n multiplications to calculate xn. A more efficient way
is to exploit the facts that x2n = (xn)2 and x2n+1 = x(xn)2 as follows:

#let square x = x * x;;
square : int -> int = <fun>
#let rec exp x n =

if n = 0 then 1
else if n mod 2 = 0 then square(exp x (n / 2))
else x * square(exp x (n / 2));;

exp : int -> int -> int = <fun>
#infix "exp";;
#2 exp 10;;
- : int = 1024
#2 exp 20;;
- : int = 1048576

Another classic operation on natural numbers is to find their greatest common
divisor (highest common factor) using Euclid’s algorithm:

#let rec gcd x y =
if y = 0 then x else gcd y (x mod y);;

gcd : int -> int -> int = <fun>
#gcd 100 52;;
- : int = 4
#gcd 7 159;;
- : int = 1
#gcd 24 60;;
- : int = 12

We have used a notional recursion operator Rec to explain recursive defini-
tions. We can actually define such a thing, and use it:

#let rec Rec f = f(fun x -> Rec f x);;
Rec : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
#let fact = Rec (fun f n -> if n = 0 then 1 else n * f(n - 1));;
fact : int -> int = <fun>
#fact 3;;
it : int = 6

Note, however, that the lambda was essential, otherwise the expression Rec

f goes into an infinite recursion before it is even applied to its argument:

#let rec Rec f = f(Rec f);;
Rec : (’a -> ’a) -> ’a = <fun>
#let fact = Rec (fun f n -> if n = 0 then 1 else n * f(n - 1));;
Uncaught exception: Out_of_memory

70 CHAPTER 6. FURTHER ML

6.4 Type definitions

We have promised that ML has facilities for declaring new type constructors,
so that composite types can be built up out of existing ones. In fact, ML goes
further and allows a composite type to be built up not only out of preexisting
types but also from the composite type itself. Such types, naturally enough, are
said to be recursive. They are declared using the type keyword followed by an
equation indicating how the new type is built up from existing ones and itself.
We will illustrate this by a few examples. The first one is the definition of a sum
type, intended to correspond to the disjoint union of two existing types.

#type (’a,’b)sum = inl of ’a | inr of ’b;;
Type sum defined.

Roughly, an object of type (’a,’b)sum is either something of type ’a or
something of type ’b. More formally, however, all these things have different
types. The type declaration also declares the so-called constructors inl and inr.
These are functions that take objects of the component types and inject them
into the new type. Indeed, we can see their types in the ML system and apply
them to objects:

#inl;;
- : ’a -> (’a, ’b) sum = <fun>
#inr;;
- : ’a -> (’b, ’a) sum = <fun>
#inl 5;;
- : (int, ’a) sum = inl 5
#inr false;;
- : (’a, bool) sum = inr false

We can visualize the situation via the following diagram. Given two existing
types α and β, the type (α, β)sum is composed precisely of separate copies of α
and β, and the two constructors map onto the respective copies:

α

β

(α, β)sum

�������������:

inl

inr

XXXXXXXXXXXXXz

6.4. TYPE DEFINITIONS 71

This is similar to a union in C, but in ML the copies of the component types
are kept apart and one always knows which of these an element of the union
belongs to. By contrast, in C the component types are overlapped, and the
programmer is responsible for this book-keeping.

6.4.1 Pattern matching

The constructors in such a definition have three very important properties:

• They are exhaustive, i.e. every element of the new type is obtainable either
by inl x for some x or inr y for some y. That is, the new type contains
nothing besides copies of the component types.

• They are injective, i.e. an equality test inl x = inl y is true if and only
if x = y, and similarly for inr. That is, the new type contains a faithful
copy of each component type without identifying any elements.

• They are distinct, i.e. their ranges are disjoint. More concretely this means
in the above example that inl x = inr y is false whatever x and y might
be. That is, the copy of each component type is kept apart in the new type.

The second and third properties of constructors justify our using pattern
matching. This is done by using more general varstructs as the arguments in
a lambda, e.g.

#fun (inl n) -> n > 6
| (inr b) -> b;;

- : (int, bool) sum -> bool = <fun>

This function has the property, naturally enough, that when applied to inl n it
returns n > 6 and when applied to inr b it returns b. It is precisely because of
the second and third properties of the constructors that we know this does give
a welldefined function. Because the constructors are injective, we can uniquely
recover n from inl n and b from inr b. Because the constructors are distinct,
we know that the two clauses cannot be mutually inconsistent, since no value can
correspond to both patterns.

In addition, because the constructors are exhaustive, we know that each value
will fall under one pattern or the other, so the function is defined everywhere.
Actually, it is permissible to relax this last property by omitting certain patterns,
though the ML system then issues a warning:

#fun (inr b) -> b;;
Toplevel input:
>fun (inr b) -> b;;
>^^^^^^^^^^^^^^^^
Warning: this matching is not exhaustive.
- : (’a, ’b) sum -> ’b = <fun>

72 CHAPTER 6. FURTHER ML

If this function is applied to something of the form inl x, then it will not
work:

#let f = fun (inr b) -> b;;
Toplevel input:
>let f = fun (inr b) -> b;;
> ^^^^^^^^^^^^^^^^
Warning: this matching is not exhaustive.
f : (’a, ’b) sum -> ’b = <fun>
#f (inl 3);;
Uncaught exception: Match_failure ("", 452, 468)

Though booleans are built into ML, they are effectively defined by a rather
trivial instance of a recursive type, often called an enumerated type, where the
constructors take no arguments:

#type bool = false | true;;

Indeed, it is perfectly permissible to define things by matching over the truth
values. The following two phrases are completely equivalent:

#if 4 < 3 then 1 else 0;;
- : int = 0
#(fun true -> 1 | false -> 0) (4 < 3);;
- : int = 0

Pattern matching is, however, not limited to casewise definitions over elements
of recursive types, though it is particularly convenient there. For example, we
can define a function that tells us whether an integer is zero as follows:

#fun 0 -> true | n -> false;;
- : int -> bool = <fun>
#(fun 0 -> true | n -> false) 0;;
- : bool = true
#(fun 0 -> true | n -> false) 1;;
- : bool = false

In this case we no longer have mutual exclusivity of patterns, since 0 matches
either pattern. The patterns are examined in order, one by one, and the first
matching one is used. Note carefully that unless the matches are mutually ex-
clusive, there is no guarantee that each clause holds as a mathematical equation.
For example in the above, the function does not return false for any n, so the
second clause is not universally valid.

Note that only constructors may be used in the above special way as com-
ponents of patterns. Ordinary constants will be treated as new variables bound
inside the pattern. For example, consider the following:

6.4. TYPE DEFINITIONS 73

#let true_1 = true;;
true_1 : bool = true
#let false_1 = false;;
false_1 : bool = false
#(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;
Toplevel input:
>(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;
> ^^^^^^^
Warning: this matching case is unused.
- : int = 1

In general, the unit element (), the truth values, the integer numerals, the
string constants and the pairing operation (infix comma) have constructor status,
as well as other constructors from predefined recursive types. When they occur
in a pattern the target value must correspond. All other identifiers match any
expression and in the process become bound.

As well as the varstructs in lambda expressions, there are other ways of per-
forming pattern matching. Instead of creating a function via pattern matching
and applying it to an expression, one can perform pattern-matching over the
expression directly using the following construction:

match expression with pattern1->E1 | · · · | patternn->En

The simplest alternative of all is to use

let pattern = expression

but in this case only a single pattern is allowed.

6.4.2 Recursive types

The previous examples have all been recursive only vacuously, in that we have
not defined a type in terms of itself. For a more interesting example, we will
declare a type of lists (finite ordered sequences) of elements of type ’a.

#type (’a)list = Nil | Cons of ’a * (’a)list;;
Type list defined.

Let us examine the types of the constructors:

#Nil;;
- : ’a list = Nil
#Cons;;
- : ’a * ’a list -> ’a list = <fun>

74 CHAPTER 6. FURTHER ML

The constructor Nil, which takes no arguments, simply creates some object of
type (’a)list which is to be thought of as the empty list. The other constructor
Cons takes an element of type ’a and an element of the new type (’a)list and
gives another, which we think of as arising from the old list by adding one element
to the front of it. For example, we can consider the following:

#Nil;;
- : ’a list = Nil
#Cons(1,Nil);;
- : int list = Cons (1, Nil)
#Cons(1,Cons(2,Nil));;
- : int list = Cons (1, Cons (2, Nil))
#Cons(1,Cons(2,Cons(3,Nil)));;
- : int list = Cons (1, Cons (2, Cons (3, Nil)))

Because the constructors are distinct and injective, it is easy to see that
all these values, which we think of as lists [], [1], [1; 2] and [1; 2; 3], are distinct.
Indeed, purely from these properties of the constructors, it follows that arbitrarily
long lists of elements may be encoded in the new type. Actually, ML already has
a type list just like this one defined. The only difference is syntactic: the empty
list is written [] and the recursive constructor ::, has infix status. Thus, the
above lists are actually written:

#[];;
- : ’a list = []
#1::[];;
- : int list = [1]
#1::2::[];;
- : int list = [1; 2]
#1::2::3::[];;
- : int list = [1; 2; 3]

The lists are printed in an even more natural notation, and this is also allowed
for input. Nevertheless, when the exact expression in terms of constructors is
needed, it must be remembered that this is only a surface syntax. For example,
we can define functions to take the head and tail of a list, using pattern matching.

#let hd (h::t) = h;;
Toplevel input:
>let hd (h::t) = h;;
> ^^^^^^^^^^^^^
Warning: this matching is not exhaustive.
hd : ’a list -> ’a = <fun>
#let tl (h::t) = t;;
Toplevel input:
>let tl (h::t) = t;;
> ^^^^^^^^^^^^^
Warning: this matching is not exhaustive.
tl : ’a list -> ’a list = <fun>

6.4. TYPE DEFINITIONS 75

The compiler warns us that these both fail when applied to the empty list,
since there is no pattern to cover it (remember that the constructors are distinct).
Let us see them in action:

#hd [1;2;3];;
- : int = 1
#tl [1;2;3];;
- : int list = [2; 3]
#hd [];;
Uncaught exception: Match_failure

Note that the following is not a correct definition of hd. In fact, it constrains
the input list to have exactly two elements for matching to succeed, as can be
seen by thinking of the version in terms of the constructors:

#let hd [x;y] = x;;
Toplevel input:
>let hd [x;y] = x;;
> ^^^^^^^^^^^^
Warning: this matching is not exhaustive.
hd : ’a list -> ’a = <fun>
#hd [5;6];;
- : int = 5
#hd [5;6;7];;
Uncaught exception: Match_failure

Pattern matching can be combined with recursion. For example, here is a
function to return the length of a list:

#let rec length =
fun [] -> 0

| (h::t) -> 1 + length t;;
length : ’a list -> int = <fun>
#length [];;
- : int = 0
#length [5;3;1];;
- : int = 3

Alternatively, this can be written in terms of our earlier ‘destructor’ functions
hd and tl:

#let rec length l =
if l = [] then 0
else 1 + length(tl l);;

This latter style of function definition is more usual in many languages, no-
tably LISP, but the direct use of pattern matching is often more elegant.

76 CHAPTER 6. FURTHER ML

6.4.3 Tree structures

It is often helpful to visualize the elements of recursive types as tree structures,
with the recursive constructors at the branch nodes and the other datatypes at
the leaves. The recursiveness merely says that plugging subtrees together gives
another tree. In the case of lists the ‘trees’ are all rather spindly and one-sided,
with the list [1;2;3;4] being represented as:

�
�

�

@
@
@
@
@

@

�
�

�
@
@
@

�
�

�
@
@
@

�
�

�

1

2

3

4 []

It is not difficult to define recursive types which allow more balanced trees,
e.g.

#type (’a)btree = Leaf of ’a
| Branch of (’a)btree * (’a)btree;;

In general, there can be several different recursive constructors, each with a
different number of descendants. This gives a very natural way of representing
the syntax trees of programming (and other formal) languages. For example, here
is a type to represent arithmetical expressions built up from integers by addition
and multiplication:

#type expression = Integer of int
| Sum of expression * expression
| Product of expression * expression;;

and here is a recursive function to evaluate such expressions:

#let rec eval =
fun (Integer i) -> i

| (Sum(e1,e2)) -> eval e1 + eval e2
| (Product(e1,e2)) -> eval e1 * eval e2;;

eval : expression -> int = <fun>
#eval (Product(Sum(Integer 1,Integer 2),Integer 5));;
- : int = 15

6.4. TYPE DEFINITIONS 77

Such abstract syntax trees are a useful representation which allows all sorts of
manipulations. Often the first step programming language compilers and related
tools take is to translate the input text into an ‘abstract syntax tree’ according
to the parsing rules. Note that conventions such as precedences and bracketings
are not needed once we have reached the level of abstract syntax; the tree struc-
ture makes these explicit. We will use such techniques to write ML versions of
the formal rules of lambda calculus that we were considering earlier. First, the
following type is used to represent lambda terms:

#type term = Var of string
| Const of string
| Comb of term * term
| Abs of string * term;;

Type term defined.

Note that we make Abs take a variable name and a term rather than two
terms in order to prohibit the formation of terms that aren’t valid. For example,
we represent the term λx y. y (x x y) by:

Abs("x",Abs("y",Comb(Var "y",Comb(Comb(Var "x",Var "x"),Var "y"))))

Here is the recursive definition of a function free in to decide whether a
variable is free in a term:

#let rec free_in x =
fun (Var v) -> x = v

| (Const c) -> false
| (Comb(s,t)) -> free_in x s or free_in x t
| (Abs(v,t)) -> not x = v & free_in x t;;

free_in : string -> term -> bool = <fun>
#free_in "x" (Comb(Var "f",Var "x"));;
- : bool = true
#free_in "x" (Abs("x",Comb(Var "x",Var "y")));;
- : bool = false

Similarly, we can define substitution by recursion. First, though, we need
a function to rename variables to avoid name clashes. We want the ability to
convert an existing variable name to a new one that is not free in some given
expression. The renaming is done by adding prime characters.

#let rec variant x t =
if free_in x t then variant (x^"’") t
else x;;

variant : string -> term -> string = <fun>
#variant "x" (Comb(Var "f",Var "x"));;
- : string = "x’"
#variant "x" (Abs("x",Comb(Var "x",Var "y")));;
- : string = "x"
#variant "x" (Comb(Var "f",Comb(Var "x",Var "x’")));;
- : string = "x’’"

78 CHAPTER 6. FURTHER ML

Now we can define substitution just as we did in abstract terms:

#let rec subst u (t,x) =
match u with
Var y -> if x = y then t else Var y

| Const c -> Const c
| Comb(s1,s2) -> Comb(subst s1 (t,x),subst s2 (t,x))
| Abs(y,s) -> if x = y then Abs(y,s)

else if free_in x s & free_in y t then
let z = variant y (Comb(s,t)) in
Abs(z,subst (subst s (Var y,z)) (t,x))

else Abs(y,subst s (t,x));;
subst : term -> term * string -> term = <fun>

Note the very close parallels between the standard mathematical presentation
of lambda calculus, as we presented earlier, and the ML version here. All we really
need to make the analogy complete is a means of reading and writing the terms
in some more readable form, rather than by explicitly invoking the constructors.
We will return to this issue later, and see how to add these features.

6.4.4 The subtlety of recursive types

A recursive type may contain nested instances of other type constructors, includ-
ing the function space constructor. For example, consider the following:

#type (’a)embedding = K of (’a)embedding->’a;;
Type embedding defined.

If we stop to think about the underlying semantics, this looks disquieting.
Consider for example the special case when ’a is bool. We then have an injec-
tive function K:((bool)embedding->bool)->(bool)embedding. This directly
contradicts Cantor’s theorem that the set of all subsets of X cannot be injected
into X.3 Hence we need to be more careful with the semantics of types. In
fact α → β cannot be interpreted as the full function space, or recursive type
constructions like the above are inconsistent. However, since all functions we
can actually create are computable, it is reasonable to restrict ourselves to com-
putable functions only. With that restriction, a consistent semantics is possible,
although the details are complicated.

The above definition also has interesting consequences for the type system.
For example, we can now define the Y combinator, by using K as a kind of type
cast. Note that if the Ks are deleted, this is essentially the usual definition of

3Proof: consider C = {i(s) | s ∈ ℘(X) and i(s) 6∈ s}. If i : ℘(X) → X is injective, we have
i(C) ∈ C ⇔ i(C) 6∈ C, a contradiction. This is similar to the Russell paradox, and in fact
probably inspired it. The analogy is even closer if we consider the equivalent form that there
is no surjection j : X → ℘(X), and prove it by considering {s | s 6∈ j(s)}.

6.4. TYPE DEFINITIONS 79

the Y combinator in untyped lambda calculus. The use of let is only used for
the sake of efficiency, but we do need the η-redex involving z in order to prevent
looping under ML’s evaluation strategy.

#let Y h =
let g (K x) z = h (x (K x)) z in
g (K g);;

Y : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
#let fact = Y (fun f n -> if n = 0 then 1 else n * f(n - 1));;
fact : int -> int = <fun>
#fact 6;;
- : int = 720

Thus, recursive types are a powerful addition to the language, and allow us
to back off the change of making the recursion operator a primitive.

Exercises

1. What goes wrong in our definition of subst if we replace

Var y -> if x = y then t else Var y

by these separate patterns?

Var x -> t | Var y -> Var y

2. It would be possible, though inefficient, to define natural numbers using the
following recursive type:

#type num = Zero | Suc of num;;

Define functions to perform arithmetic on natural numbers in this form.

3. Use the type definition for the syntax of lambda terms that we gave above.
Write a function to convert an arbitrary lambda term into an equivalent
in terms of the S, K and I combinators, based on the technique we gave
earlier. Represent the combinators by Const "S" etc.

4. Extend the syntax of lambda terms to a incorporate Church-style typing.
Write functions that check the typing conditions before allowing terms to
be formed, but otherwise map down to the primitive constructors.

5. Consider a type of binary trees with strings at the nodes defined by:

#type stree = Leaf | Branch of stree * string * stree;;

80 CHAPTER 6. FURTHER ML

Write a function strings to return a list of the strings occurring in the tree
in left-to-right order, i.e. at each node it appends the list resulting from the
left branch, the singleton list at the current node, and the list occurring at
the right branch, in that order. Write a function that takes a tree where the
corresponding list is alphabetically sorted and a new string, and returns a
tree with the new string inserted in the appropriate place.

6. (*) Refine the above functions so that the tree remains almost balanced
at each stage, i.e. the maximum depths occurring at the left and right
branches differ by at most one.4

7. (*) Can you characterize the types of expressions that can be written down
in simply typed lambda calculus, without a recursion operator?5 What is
the type of the following recursive function?

let rec f i = (i o f) (i o i);;

Show how it can be used to write down ML expressions with completely
polymorphic type α. Can you write a terminating expression with this
property? What about an arbitrary function type α → β?

4See Adel’son-Vel’skii and Landis (1962) and various algorithm books for more details of
these ‘AVL trees’ and similar methods for balanced trees.

5The answer lies in the ‘Curry-Howard isomorphism’ — see Girard, Lafont, and Taylor
(1989) for example.

Chapter 7

Proving programs correct

As programmers know through bitter personal experience, it can be very difficult
to write a program that is correct, i.e. performs its intended function. Most large
programs have bugs. The consequences of these bugs can vary widely. Some
bugs are harmless, some merely irritating. Some are deadly. For example the
programs inside heart pacemakers, aircraft autopilots, car engine management
systems and antilock braking systems, radiation therapy machines and nuclear
reactor controllers are safety critical. An error in one of them can lead directly to
loss of life, possibly on a large scale. As computers become ever more pervasive
in society, the number of ways in which program bugs can kill people increases.1

How can we make sure a program is correct? One very useful method is simply
to test it in a variety of situations. One tries the program out on inputs designed
to exercise many different parts of it and reveal possible bugs. But usually there
are too many possible situations to try them all exhaustively, so there may still
be bugs lying undetected. As repeatedly emphasized by various writers, notably
Dijkstra, program testing can be very useful for demonstrating the presence of
bugs, but it is only in a few unusual cases where it can demonstrate their absence.

Instead of testing a program, one can try to verify it mathematically. A
program in a sufficiently precisely defined programming language has a definite
mathematical meaning. Similarly, the requirements on a program can be ex-
pressed using mathematics and logic as a precise specification. One can then try
to perform a mathematical proof that the program meets its specification.

One can contrast testing and verification of programs by considering the fol-
lowing simple mathematical assertion:

ΣN
n=0n =

N(N + 1)

2
It is claimed that this holds for any N . We can certainly test it for any

number of particular values of N . This may lead to our intuitive confidence
in the formula, such that we can hardly believe it could ever fail. However in

1Similar remarks apply to hardware, but we will focus on software.

81

82 CHAPTER 7. PROVING PROGRAMS CORRECT

general a preponderance of numerical evidence can be deceptive; there are well
known cases in number theory where things turned out to be false against the
weight of many particular cases.2 A more reliable procedure is to prove the above
formula mathematically. This can easily be done using induction on N . In the
same way, we hope to replace testing a program on a range of inputs by some
completely general proof that it always works correctly. It is important, however,
to appreciate two limitations of program proofs.

• One has no guarantee that the execution of the program on the computer
corresponds exactly to the abstract mathematical model. One must be
on the lookout for discrepancies, caused perhaps by bugs in compilers and
operating systems, or physical defects in the underlying technology. This is,
of course, a general problem in applications of mathematics to science. For
example, assuming that arithmetic operations correspond exactly to their
mathematical counterparts is a natural simplifying assumption, just as one
might neglect air resistance in the analysis of a simple dynamical system.
But both can be invalid in certain cases.

• The program is to be verified by proof against a mathematical specification.
It is possible that this specification does not capture accurately what is
actually wanted in the real world. In fact, it can be remarkably difficult to
arrive at a precise mathematical version of informal requirements. There is
evidence that many of the serious problems in computer systems are caused
not by coding errors in the usual sense, but by a mistaken impression of
what is actually wanted. Just formalizing the requirements is often valuable
in itself.

We can represent this situation by the following diagram:

Actual system

Mathematical model

Mathematical specification

Actual requirements

6

6

6

We are trying to establish a link between the bottom and top boxes, i.e. the
actual system and the actual requirements in real life. To do this, we proceed by

2For example, Littlewood proved in 1914 that π(n) − li(n) changes sign infinitely often,
where π(n) is the number of primes ≤ n and li(n) =

∫ n

0
du/ln(u). This came as a surprise

since not a single sign change had been found despite extensive testing up to 1010.

7.1. FUNCTIONAL PROGRAMS AS MATHEMATICAL OBJECTS 83

producing a mathematical version of each. It is only the central link, between
the mathematical model of the system and the mathematical version of the spec-
ification, that is mathematically precise. The other links remain informal. All
we can do is try to keep them small by using a realistic model of the system and
a high-level mathematical specification that is reasonably readable.

These reservations notwithstanding, program proving has considerable merit.
Compared with testing, it establishes correctness once and for all, possibly for a
whole class of programs at once (e.g. controlled by the setting of some parameter).
Moreover because it is a more principled analytical approach, the process of
proving a program (or failing to do so) can lead to a deeper appreciation of the
program and of the task in hand.

7.1 Functional programs as mathematical ob-

jects

In the introduction, we remarked that (pure) functional programs really corre-
spond directly to functions in the mathematical sense. For this reason, it is
often suggested that they are more amenable to formal proof than imperative
programs. Even if this is true, and many would dispute it, it is worth realizing
that the gap between this mathematical abstraction and the final execution in
hardware is greater than for typical imperative languages. In particular, there
can be substantial storage requirements hidden in the eventual realization on the
computer. So one may just be getting easier proofs because they prove less about
what really matters. We won’t settle this argument here, but we want to show
that reasoning about simple functional programs is often fairly straightforward.

The example at the end of the previous chapter showed that a naive associ-
ation of function spaces of ML and function spaces of mathematics is not quite
accurate. However, if we stay away from the higher reaches of recursive types and
are not concerned with the space of all functions, only with some particular ones,
we can safely identify the objects of ML with those of abstract mathematical
realms.3

We intend to model functional programs as mathematical functions. Given
the equations — typically recursive — that define an ML function, we want to
interpret them as ‘axioms’ about the corresponding mathematical objects. For
example, we would assume from the definition of the factorial function:

#let rec fact = fun 0 -> 1
| n -> n * fact(n - 1);;

that fact(0) = 1 and that for all n 6= 0 we have fact(n) = n ∗ fact(n− 1). This is
right, but we need to tread carefully because of the question of termination. For

3We will neglect arithmetic overflow whenever we use arithmetic. There is a facility in CAML
for arbitrary precision arithmetic, at the cost of, in principle, unlimited storage requirements.

84 CHAPTER 7. PROVING PROGRAMS CORRECT

negative n, the program fails to terminate, so the second equation is true only
in the vacuous sense that both sides are ‘undefined’. It is much easier to reason
about functions when we know they are total, so sometimes one uses a separate
argument to establish termination. In the examples that follow, this is done in
parallel with the correctness proof, i.e. we prove together that for each argument,
the function terminates and the result satisfies our specification.

As for the actual proof that the function obeys the specification, this can
be a mathematical proof in the most general sense. However it often happens
that when functions are defined by recursion, properties of them, dually, can
be proved by induction; this includes termination. Moreover, the exact form of
induction (arithmetical, structural, wellfounded) usually corresponds to the mode
of recursion used in the definition. This should become clearer when we have seen
a few examples.

7.2 Exponentiation

Recall our simple definition of exponentiation:

#let rec exp x n =
if n = 0 then 1
else x * exp x (n - 1);;

We will prove the following property of exp:

Theorem 7.1 For all n ≥ 0 and x, exp x n is defined and exp x n = xn.
Proof: The ML function exp was defined by primitive, step-by-step, recursion.
It is therefore no surprise that our proof proceeds by ordinary, step-by-step induc-
tion. We prove that it holds for n = 0 and then that if it holds for any n ≥ 0 it
also holds for n+ 1.

1. If n = 0, then by definition exp x n = 1. By definition, for any integer
x, we have x0 = 1, so the desired fact is established. Note that we assume
00 = 1, an example of how one must state the specification precisely — what
does xn mean in general? — and how it might surprise some people.

2. Suppose that for n ≥ 0 we have exp x n = xn. Since n ≥ 0, we have
n + 1 6= 0 and so by definition exp x (n + 1) = x ∗ exp x ((n + 1) − 1).
Therefore:

exp x (n+ 1) = x ∗ exp x ((n+ 1)− 1)

= x ∗ exp x n

= x ∗ xn

= xn+1

7.3. GREATEST COMMON DIVISOR 85

Q.E.D.

7.3 Greatest common divisor

Recall our function to calculate the greatest common divisor gcd(m,n) of two
natural numbers m and n:

#let rec gcd x y =
if y = 0 then x else gcd y (x mod y);;

In fact, we claim this works for any integers, not just positive ones. However,
one needs to understand the precise definition of gcd in that case. Let us define
the relation ‘u|v’, or ‘u divides v’ for any two integers u and v to mean ‘v is an
integral multiple of u’, i.e. there is some integer d with v = du. For example, 0|0,
1|11, −2|4 but 0 6 |1, 3 6 |5. We will say that d is a greatest common divisor of x
and y precisely if:

• d|x and d|y

• For any other integer d′, if d′|x and d′|y then d′|d.

Note that we say d′|d not d′ ≤ d. This belies the use of ‘greatest’, but it is in
fact the standard definition in algebra books. Observe that any pair of numbers
(except 0 and 0) has two gcds, since if d is a gcd of x and y, so is −d.

Our specification is now: for any integers x and y, d = gcd x y is a gcd of
x and y. This is another good example of how providing a precise specification,
even for such a simple function, is harder than it looks. This specification also
exemplifies the common property that it does not completely specify the answer,
merely places certain constraints on it. If we defined:

#let rec ngcd x y = -(gcd x y);;

then the function ngcd would satisfy the specification just as well as gcd. Of
course, we are free to tighten the specification if we wish, e.g. insist that if x and
y are positive, so is the gcd returned.

The gcd function is not defined simply by primitive recursion. In fact, gcd
x y is defined in terms of gcd y (x mod y) in the step case. Correspondingly,
we do not use step-by-step induction, but wellfounded induction. We want a
wellfounded relation that decreases over recursive calls; this will guarantee ter-
mination and act as a handle for proofs by wellfounded induction. In general,
complicated relations on the arguments are required. But often it is easy to
concoct a measure that maps the arguments to natural numbers such that the
measure decreases over recursive calls. Such is the case here: the measure is |y|.

86 CHAPTER 7. PROVING PROGRAMS CORRECT

Theorem 7.2 For any integers x and y, gcd x y terminates in a gcd of x and y.
Proof: Take some arbitrary n, and suppose that for all x and y with |y| < n we
have that gcd x y terminates with a gcd of x and y, and try to prove that the
same holds for all x and y with |y| = n. This suffices for the main result, since
any y will have some n with |y| = n. So, let us consider an x and y with |y| = n.
There are two cases to consider, according to the case split used in the definition.

• Suppose y = 0. Then gcd x y = x by definition. Now trivially x|x and
x|0, so it is a common divisor. Suppose d is another common divisor, i.e.
d|x and d|0. Then indeed we have d|x immediately, so x must be a greatest
common divisor.

• Suppose y 6= 0. We want to apply the inductive hypothesis to gcd y (x mod y).
We will write r = x mod y for short. The basic property of the mod function
is that, since y 6= 0, for some integer q we have x = qy + r and |r| < |y|.
Since |r| < |y| the inductive hypothesis tells us that d = gcd y (x mod y) is
a gcd of y and r. We just need to show that it is a gcd of x and y. It is
certainly a common divisor, since if d|y and d|r we have d|x, as x = qy+r.
Now suppose d′|x and d′|y. By the same equation, we find that d′|r. Thus
d′ is a common divisor of y and r, but then by the inductive hypothesis, d′|d
as required.

Q.E.D.

Note that the basic property of the modulus operation that we used needs
careful checking against the specification of mod in the CAML manual. There
are well known differences between languages, and between implementations of
the same language, when moduli involving negative numbers are concerned. If
ever one is in doubt over the validity of a necessary assumption, it can be made
explicit in the theorem: ‘if . . . then . . . ’.

7.4 Appending

We will now have an example of a function defined over lists. The function
append is intended, not surprisingly, to append, or join together, two lists. For
example, if we append [3; 2; 5] and [6; 3; 1] we get [3; 2; 5; 6; 3; 1].

#let rec append l1 l2 =
match l1 with

[] -> l2
| (h::t) -> h::(append t l2);;

This is defined by primitive recursion over the type of lists. It is defined
on the empty list, and then for h :: t in terms of the value for t. Consequently,

7.5. REVERSING 87

when proving theorems about it, it is natural to use the corresponding principle of
structural induction for lists: if a property holds for the empty list, and whenever
it holds for t it holds for any h :: t, then it holds for any list. However this is not
obligatory, and if preferred, we could proceed by mathematical induction on the
length of the list. We will aim at proving that the append operation is associative.

Theorem 7.3 For any three lists l1, l2 and l3 we have:

append l1 (append l2 l3) = append (append l1 l2) l3

Proof: By structural induction on l1, we prove this holds for any l2 and l3.

• If l1 = [] then:

append l1 (append l2 l3) = append [] (append l2 l3)

= append l2 l3

= append (append [] l2) l3

= append (append l1 l2) l3

• Now suppose l1 = h :: t. We may assume that for any l2 and l3 we have:

append t (append l2 l3) = append (append t l2) l3

Therefore:

append l1 (append l2 l3) = append (h :: t) (append l2 l3)

= h :: (append t (append l2 l3))

= h :: (append (append t l2) l3)

= append (h :: (append t l2)) l3)

= append (append (h :: t) l2) l3)

= append (append l1 l2) l3)

Q.E.D.

7.5 Reversing

It is not difficult to define a function to reverse a list:

88 CHAPTER 7. PROVING PROGRAMS CORRECT

#let rec rev =
fun [] -> []

| (h::t) -> append (rev t) [h];;
rev : ’a list -> ’a list = <fun>
#rev [1;2;3];;
- : int list = [3; 2; 1]

We will prove that rev is an involution, i.e. that

rev(rev l) = l

However, if we try to tackle this directly by list induction, we find that we
need a couple of additional lemmas. We will prove these first.

Lemma 7.4 For any list l we have append l [] = l.
Proof: Structural induction on l.

• If l = [] we have:

append l [] = append [] []

= []

= l

• Now suppose l = h :: t and we know that append t [] = t. We find:

append l [] = append (h :: t) []

= h :: (append t [])

= h :: t

= l

Q.E.D.

Lemma 7.5 For any lists l1 and l2 we have

rev(append l1 l2) = append (rev l2) (rev l1)

Proof: Structural induction on l1.

• If l1 = [] we have:

rev(append l1 l2) = rev(append [] l2)

= rev l2

= append (rev l2)[]

= append (rev l2) (rev [])

7.5. REVERSING 89

• Now suppose l1 = h :: t and we know that

rev(append t l2) = append (rev l2) (rev t)

then we find:

rev(append l1 l2) = rev(append (h :: t) l2)

= rev(h :: (append t l2))

= append (rev(append t l2)) [h]

= append (append (rev l2) (rev t)) [h]

= append (rev l2) (append (rev t) [h])

= append (rev l2) (rev (h :: t))

= append (rev l2) (rev l1)

Q.E.D.

Theorem 7.6 For any list l we have rev(rev l) = l.
Proof: Structural induction on l.

• If l = [] we have:

rev(rev l) = rev(rev [])

= rev []

= []

= l

• Now suppose l = h :: t and we know that

rev(rev t) = t

then we find:

rev(rev l) = rev(rev (h :: t))

= rev(append (rev t) [h])

= append (rev [h]) (rev(rev t))

= append (rev [h]) t

= append (rev (h :: [])) t

90 CHAPTER 7. PROVING PROGRAMS CORRECT

= append (append (rev []) [h]) t

= append (append [] [h]) t

= append [h] t

= append (h :: []) t

= h :: (append [] t)

= h :: t

= l

Q.E.D.

There are lots of theorems relating the list operations that can be proved in
a similar style. Generally, one proceeds by list induction. In subtler cases, one
has to split off lemmas which are themselves proved inductively, and sometimes
to generalize the theorem before proceeding by induction. There are plenty of
examples in the exercises for readers to try their hand at.

Further reading

Neumann (1995) catalogues the dangers arising from the use of computers in
society, including those arising from software bugs. A very readable discussion
of the issues, with extensive discussion of some interesting examples, is given by
Peterson (1996). The general issue of software verification was at one time con-
troversial, with DeMillo, Lipton, and Perlis (1979) among others arguing against
it. A cogent discussion is given by Barwise (1989). There is now a large liter-
ature in software verification, though much of it is concerned with imperative
programs. Many introductory functional programming books such as Paulson
(1991) and Reade (1989) give some basic examples like the ones here. It is also
worth looking at the work of Boyer and Moore (1979) on verifying properties of
pure LISP functions expressed inside their theorem prover. One of the largest
real proofs of the type we consider here is the verification by Aagaard and Leeser
(1994) of a boolean simplifier used in VLSI logic synthesis.

Exercises

1. Prove the correctness of the more efficient program we gave for performing
exponentiation:

7.5. REVERSING 91

#let square x = x * x;;
#let rec exp x n =
if n = 0 then 1
else if n mod 2 = 0 then square(exp x (n / 2))
else x * square(exp x (n / 2));;

2. Recall the definition of length:

#let rec length =
fun [] -> 0
| (h::t) -> 1 + length t;;

Prove that length(rev l) = length l and that length(append l1 l2) =
length l1 + length l2.

3. Define the map function, which applies a function to each element of a list,
as follows:

#let rec map f =
fun [] -> []
| (h::t) -> (f h)::(map f t);;

Prove that if l 6= [] then hd(map f l) = f(hd l), and that map f (rev l) =
rev (map f l). Recall the definition of function composition:

#let o f g = fun x -> f(g x);;
#infix "o";;

Prove that map f (map g l) = map (f ◦ g) l.

4. McCarthy’s ‘91 function’ can be defined by:

#let rec f x = if x > 100 then x - 10
else f(f(x + 11));;

Prove that for n ≤ 101, we have f(n) = 91. Pay careful attention to
establishing termination. (Hint: a possible measure is 101− x.)

92 CHAPTER 7. PROVING PROGRAMS CORRECT

5. The problem of the Dutch National Flag is to sort a list of ‘colours’ (red,
white and blue) so that the reds come first, then the whites and then the
blues. However, the only method permitted is to swap adjacent elements.
Here is an ML solution. The function dnf returns ‘true’ iff it has made a
change, and this function is then repeated until no change occurs.

type colour = Red | White | Blue;;

let rec dnf =
fun [] -> [],false

| (White::Red::rest) -> Red::White::rest,true
| (Blue::Red::rest) -> Red::Blue::rest,true
| (Blue::White::rest) -> White::Blue::rest,true
| (x::rest) -> let fl,ch = dnf rest in x::fl,ch;;

let rec flag l =
let l’,changed = dnf l in
if changed then flag l’ else l’;;

For example:

#flag [White; Red; Blue; Blue; Red; White; White; Blue; Red];;
- : colour list =

[Red; Red; Red; White; White; White; Blue; Blue; Blue]

Prove that the function flag always terminates with a correctly sorted list.

6. (*) Define the following functions:

7.5. REVERSING 93

#let rec sorted =
fun [] -> true
| [h] -> true
| (h1::h2::t) -> h1 <= h2 & sorted(h2::t);;

#let rec filter p =
fun [] -> []
| (h::t) -> let t’ = filter p t in

if p h then h::t’ else t’;;

#let sameprop p l1 l2 =
length(filter p l1) = length(filter p l2);;

#let rec permutes l1 l2 =
fun [] -> true
| (h::t) -> sameprop (fun x -> x = h) l1 l2 &

permutes l1 l2 t;;

#let permuted l1 l2 = permutes l1 l2 l1;;

What do they all do? Implement a sorting function sort and prove that
for all lists l one has sorted(sort l) = true and permuted l (sort l) = true.

Chapter 8

Effective ML

In this chapter, we discuss some of the techniques and tricks that ML program-
mers can use to make programs more elegant and more efficient. We then go on
to discuss some additional imperative features that can be used when the purely
functional style seems inappropriate.

8.1 Useful combinators

The flexibility of higher order functions often means that one can write some very
useful little functions that can be re-used for a variety of related tasks. These are
often called combinators, and not simply because they can be regarded as lambda
terms with no free variables. It often turns out that these functions are so flexible
that practically anything can be implemented by plugging them together, rather
than, say, explicitly making a recursive definition. In this way they correspond to
the original view of combinators as ubiquitous building blocks for mathematical
expressions.

For example, a very useful combinator for list operations, often called ‘itlist’
or ‘fold’, performs the following operation:

itlist f [x1; x2; . . . ; xn] b = f x1 (f x2 (f x3 (· · · (f xn b))))

A straightforward definition in ML is:

#let rec itlist f =
fun [] b -> b

| (h::t) b -> f h (itlist f t b);;
itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

Quite commonly, when defining a recursive function over lists, all one is doing
is repeatedly applying some operator in this manner. By using itlist with
the appropriate argument, one can implement such functions very easily without
explicit use of recursion. A typical use is a function to add all the elements of a
list of numbers:

94

8.1. USEFUL COMBINATORS 95

#let sum l = itlist (fun x sum -> x + sum) l 0;;
sum : int list -> int = <fun>
#sum [1;2;3;4;5];;
- : int = 15
#sum [];;
- : int = 0
#sum [1;1;1;1];;
- : int = 4

Those especially keen on brevity might prefer to code sum as:

#let sum l = itlist (prefix +) l 0;;

It is easy to modify this function to form a product rather than a sum:

#let prod l = itlist (prefix *) l 1;;

Many useful list operations can be implemented in this way. For example here
is a function to filter out only those elements of a list satisfying a predicate:

#let filter p l = itlist (fun x s -> if p x then x::s else s) l [];;
filter : (’a -> bool) -> ’a list -> ’a list = <fun>
#filter (fun x -> x mod 2 = 0) [1;6;4;9;5;7;3;2];;
- : int list = [6; 4; 2]

Here are functions to find whether either all or some of the elements of a list
satisfy a predicate:

#let forall p l = itlist (fun h a -> p(h) & a) l true;;
forall : (’a -> bool) -> ’a list -> bool = <fun>
#let exists p l = itlist (fun h a -> p(h) or a) l false;;
exists : (’a -> bool) -> ’a list -> bool = <fun>
#forall (fun x -> x < 3) [1;2];;
- : bool = true
#forall (fun x -> x < 3) [1;2;3];;
- : bool = false

and here are alternative versions of old favourites length, append and map:

#let length l = itlist (fun x s -> s + 1) l 0;;
length : ’a list -> int = <fun>
#let append l m = itlist (fun h t -> h::t) l m;;
append : ’a list -> ’a list -> ’a list = <fun>
#let map f l = itlist (fun x s -> (f x)::s) l [];;
map : (’a -> ’b) -> ’a list -> ’b list = <fun>

Some of these functions can themselves become useful combinators, and so on
upwards. For example, if we are interested in treating lists as sets, i.e. avoiding
duplicate elements, then many of the standard set operations can be expressed
very simply in terms of the combinators above:

96 CHAPTER 8. EFFECTIVE ML

#let mem x l = exists (fun y -> y = x) l;;
mem : ’a -> ’a list -> bool = <fun>
#let insert x l =

if mem x l then l else x::l;;
insert : ’a -> ’a list -> ’a list = <fun>
#let union l1 l2 = itlist insert l1 l2;;
union : ’a list -> ’a list -> ’a list = <fun>
#let setify l = union l [];;
setify : ’a list -> ’a list = <fun>
#let Union l = itlist union l [];;
Union : ’a list list -> ’a list = <fun>
#let intersect l1 l2 = filter (fun x -> mem x l2) l1;;
intersect : ’a list -> ’a list -> ’a list = <fun>
#let subtract l1 l2 = filter (fun x -> not mem x l2) l1;;
subtract : ’a list -> ’a list -> ’a list = <fun>
#let subset l1 l2 = forall (fun t -> mem t l2) l1;;
subset : ’a list -> ’a list -> bool = <fun>

The setify function is supposed to turn a list into a set by eliminating any
duplicate elements.

8.2 Writing efficient code

Here we accumulate some common tricks of the trade, which can often make ML
programs substantially more efficient. In order to justify some of them, we need
to sketch in general terms how certain constructs are executed in hardware.

8.2.1 Tail recursion and accumulators

The principal control mechanism in functional programs is recursion. If we are
interested in efficient programs, it behoves us to think a little about how recursion
is implemented on conventional hardware. In fact, there is not, in this respect
at least, much difference between the implementation of ML and many other
languages with dynamic variables, such as C.

If functions cannot be called recursively, then we are safe in storing their local
variables (which includes the values of arguments) at a fixed place in memory
— this is what FORTRAN does. However, this is not possible in general if the
function can be called recursively. A call to a function f with one set of arguments
may include within it a call to f with a different set of arguments. The old ones
would be overwritten, even if the outer version of f needs to refer to them again
after the inner call has finished. For example, consider the factorial function yet
again:

#let rec fact n = if n = 0 then 1
else n * fact(n - 1);;

8.2. WRITING EFFICIENT CODE 97

A call to fact 6 causes another call to fact 5 (and beyond), but when this
call is finished and the value of fact 5 is obtained, we still need the original value
of n, namely 6, in order to do the multiplication yielding the final result. What
normally happens in implementations is that each function call is allocated a new
frame on a stack. Every new function call moves the stack pointer further down1

the stack, creating space for new variables. When the function call is finished
the stack pointer moves up and so the unwanted inner variables are discarded
automatically. A diagram may make this clearer:

SP - n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

This is an imagined snapshot of the stack during execution of the innermost
recursive call, i.e. fact 0. All the local variables for the upper stages are stacked
up above, with each instance of the function having its own stack frame, and
when the calls are finished the stack pointer SP moves back up.

Therefore, our implementation of fact requires n stack frames when applied
to argument n. By contrast, consider the following implementation of the factorial
function:

#let rec tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1);;

tfact : int -> int -> int = <fun>
#let fact n = tfact 1 n;;
fact : int -> int = <fun>
#fact 6;;
- : int = 720

Although tfact is also recursive, the recursive call is the whole expression;
it does not occur as a proper subexpression of some other expression involving
values of variables. Such a call is said to be a tail call (because it is the very last
thing the calling function does), and a function where all recursive calls are tail
calls is said to be tail recursive.

1Despite the name, stacks conventionally grow downwards.

98 CHAPTER 8. EFFECTIVE ML

What is significant about tail calls? When making a recursive call to tfact,
there is no need to preserve the old values of the local variables. Exactly the same,
fixed, area of storage can be used. This of course depends on the compiler’s being
intelligent enough to recognize the fact, but most compilers, including CAML
Light, are. Consequently, re-coding a function so that the recursive core of it is
tail recursive can dramatically cut down the use of storage. For functions like the
factorial, it is hardly likely that they will be called with large enough values of
n to make the stack overflow. However the naive implementations of many list
functions can cause such an effect when the argument lists are long.

The additional argument x of the tfact function is called an accumulator,
because it accumulates the result as the recursive calls rack up, and is then
returned at the end. Working in this way, rather than modifying the return value
on the way back up, is a common way of making functions tail recursive.

We have remarked that a fixed area of storage can be used for the arguments
to a tail recursive function. On this view, one can look at a tail recursive function
as a thinly-veiled imperative implementation. There is an obvious parallel with
our C implementation of the factorial as an iterative function:

int fact(int n)

{ int x = 1;

while (n > 0)

{ x = x * n;

n = n - 1;

}

return x;

}

The initialization x = 1 corresponds to our setting of x to 1 by an outer
wrapper function fact. The central while loop corresponds to the recursive
calls, the only difference being that the arguments to the tail recursive function
make explicit that part of the state we are interested in assigning to. Rather
than assigning and looping, we make a recursive call with the variables updated.
Using similar tricks and making the state explicit, one can easily write essentially
imperative code in an ostensibly functional style, with the knowledge that under
standard compiler optimizations, the effect inside the machine will, in fact, be
much the same.

8.2.2 Minimizing consing

We have already considered the use of stack space. But various constructs in
functional programs use another kind of store, usually allocated from an area
called the heap. Whereas the stack grows and shrinks in a sequential manner
based on the flow of control between functions, other storage used by the ML

8.2. WRITING EFFICIENT CODE 99

system cannot be reclaimed in such a simple way. Instead, the runtime system
occasionally needs to check which bits of allocated memory aren’t being used
any more, and reclaim them for future applications, a process known as garbage
collection. A particularly important example is the space used by constructors for
recursive types, e.g. ::. For example, when the following fragment is executed:

let l = 1::[] in tl l;;

a new block of memory, called a ‘cons cell’, is allocated to store the instance of
the :: constructor. Typically this might be three words of storage, one being an
identifier for the constructor, and the other two being pointers to the head and
tail of the list. Now in general, it is difficult to decide when this memory can be
reclaimed. In the above example, we immediately select the tail of the list, so it is
clear that the cons cell can be recycled immediately. But in general this can’t be
decided by looking at the program, since l might be passed to various functions
that may or may not just look at the components of the list. Instead, one needs to
analyze the memory usage dynamically and perform garbage collection of what is
no longer needed. Otherwise one would eventually run out of storage even when
only a small amount is ever needed simultaneously.

Implementors of functional languages work hard on making garbage collection
efficient. Some claim that automatic memory allocation and garbage collection
often works out faster than typical uses of explicit memory allocation in languages
like C (malloc etc.) While we wouldn’t go that far, it is certainly very convenient
that memory allocation is always done automatically. It avoids a lot of tedious
and notoriously error-prone parts of programming.

Many constructs beloved of functional programmers use storage that needs to
be reclaimed by garbage collection. While worrying too much about this would
cripple the style of functional programs, there are some simple measures that can
be taken to avoid gratuitous consing (creation of cons cells). One very simple
rule of thumb is to avoid using append if possible. As can be seen by considering
the way the recursive calls unroll according to the definition

#let rec append l1 l2 =
match l1 with

[] -> l2
| (h::t) -> h::(append t l2);;

this typically generates n cons cells where n is the length of the first argument list.
There are often ways of avoiding appending, such as adding extra accumulator
arguments to functions that can be augmented by direct use of consing. A striking
example is the list reversal function, which we coded earlier as:

#let rec rev =
fun [] -> []

| (h::t) -> append (rev t) [h];;

100 CHAPTER 8. EFFECTIVE ML

This typically generates about n2/2 cons cells, where n is the length of the
list. The following alternative, using an accumulator, only generates n of them:

#let rev =
let rec reverse acc =

fun [] -> acc
| (h::t) -> reverse (h::acc) t in

reverse [];;

Moreover, the recursive core reverse is tail recursive, so we also save stack
space, and win twice over.

For another typical situation where we can avoid appending by judicious use
of accumulators, consider the problem of returning the fringe of a binary tree, i.e.
a list of the leaves in left-to-right order. If we define the type of binary trees as:

#type btree = Leaf of string
| Branch of btree * btree;;

then a simple coding is the following

#let rec fringe =
fun (Leaf s) -> [s]

| (Branch(l,r)) -> append (fringe l) (fringe r);;

However the following more refined version performs fewer conses:

#let fringe =
let rec fr t acc =

match t with
(Leaf s) -> s::acc

| (Branch(l,r)) -> fr l (fr r acc) in
fun t -> fr t [];;

Note that we have written the accumulator as the second argument, so that
the recursive call has a more natural left-to-right reading. Here is a simple ex-
ample of how either version of fringe may be used:

#fringe (Branch(Branch(Leaf "a",Leaf "b"),
Branch(Leaf "c",Leaf "d")));;

- : string list = ["a"; "b"; "c"; "d"]

The first version creates 6 cons cells, the second only 4. On larger trees the
effect can be more dramatic. Another situation where gratuitous consing can
crop up is in pattern matching. For example, consider the code fragment:

fun [] -> []
| (h::t) -> if h < 0 then t else h::t;;

8.2. WRITING EFFICIENT CODE 101

The ‘else’ arm creates a cons cell even though what it constructs was in fact
the argument to the function. That is, it is taking the argument apart and then
rebuilding it. One simple way of avoiding this is to recode the function as:

fun l ->
match l with
[] -> []

| (h::t) -> if h < 0 then t else l;;

However ML offers a more flexible alternative: using the as keyword, a name
may be identified with certain components of the pattern, so that it never needs
to be rebuilt. For example:

fun [] -> []
| (h::t as l) -> if h < 0 then t else l;;

8.2.3 Forcing evaluation

We have emphasized that, since ML does not evaluate underneath lambdas, one
can use lambdas to delay evaluation. We will see some interesting examples
later. Conversely, however, it can happen that one wants to force evaluation of
expressions that are hidden underneath lambdas. For example, recall the tail
recursive factorial above:

#let rec tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1);;

#let fact n = tfact 1 n;;

Since we never really want to use tfact directly, it seems a pity to bind it to
a name. Instead, we can make it local to the factorial function:

#let fact1 n =
let rec tfact x n =

if n = 0 then x
else tfact (x * n) (n - 1) in

tfact 1 n;;

This, however, has the defect that the local recursive definition is only eval-
uated after fact1 receives its argument, since before that it is hidden under a
lambda. Moreover, it is then reevaluated each time fact is called. We can change
this as follows

#let fact2 =
let rec tfact x n =

if n = 0 then x
else tfact (x * n) (n - 1) in

tfact 1;;

102 CHAPTER 8. EFFECTIVE ML

Now the local binding is only evaluated once, at the point of declaration of
fact2. According to our tests, the second version of fact is about 20% faster
when called on the argument 6. The additional evaluation doesn’t amount to
much in this case, more or less just unravelling a recursive definition, yet the
speedup is significant. In instances where there is a lot of computation involved
in evaluating the local binding, the difference can be spectacular. In fact, there
is a sophisticated research field of ‘partial evaluation’ devoted to performing op-
timizations like this, and much more sophisticated ones besides, automatically.
In a sense, it is a generalization of standard compiler optimizations for ordinary
languages such as ‘constant folding’. In production ML systems, however, it is
normally the responsibility of the user to force it, as here.

We might note, in passing, that if functions are implemented by plugging
together combinators, with fewer explicit lambdas, there is more chance that as
much of the expression as possible will be evaluated at declaration time. To take a
trivial example, f ◦g will perform any evaluation of f and g that may be possible,
whereas λx. f(g x) will perform none at all until it receives its argument. On the
other side of the coin, when we actually want to delay evaluation, we really need
lambdas, so a purely combinatory version is impossible.

8.3 Imperative features

ML has a fairly full complement of imperative features. We will not spend much
time on the imperative style of programming, since that is not the focus of this
course, and we assume readers already have sufficient experience. Therefore, we
treat these topics fairly quickly with few illustrative examples. However some
imperative features are used in later examples, and some knowledge of what is
available will stand the reader in good stead for writing practical ML code.

8.3.1 Exceptions

We have seen on occasion that certain evaluations fail, e.g. through a failure in
pattern matching. There are other reasons for failure, e.g. attempts to divide by
zero.

#1 / 0;;
Uncaught exception: Division_by_zero

In all these cases the compiler complains about an ‘uncaught exception’. An
exception is a kind of error indication, but they need not always be propagated
to the top level. There is a type exn of exceptions, which is effectively a recursive
type, though it is usually recursive only vacuously. Unlike with ordinary types,
one can add new constructors for the type exn at any point in the program via
an exception declaration, e.g.

8.3. IMPERATIVE FEATURES 103

#exception Died;;
Exception Died defined.
#exception Failed of string;;
Exception Failed defined.

While certain built-in operations generate (one usually says raise) exceptions,
this can also be done explicitly using the raise construct, e.g.

#raise (Failed "I don’t know why");;
Uncaught exception: Failed "I don’t know why"

For example, we might invent our own exception to cover the case of taking
the head of an empty list:

#exception Head_of_empty;;
Exception Head_of_empty defined.
#let hd = fun [] -> raise Head_of_empty

| (h::t) -> h;;
hd : ’a list -> ’a = <fun>
#hd [];;
Uncaught exception: Head_of_empty

Normally exceptions propagate out to the top, but they can be ‘caught’ inside
an outer expression by using try ...with followed by a series of patterns to
match exceptions, e.g.

#let headstring sl =
try hd sl
with Head_of_empty -> ""

| Failed s -> "Failure because "^s;;
headstring : string list -> string = <fun>
#headstring ["hi"; "there"];;
- : string = "hi"
#headstring [];;
- : string = ""

It is a matter of opinion whether exceptions are really an imperative feature.
On one view, functions just return elements of a disjoint sum consisting of their
visible return type and the type of exceptions, and all operations implicitly pass
back exceptions. Another view is that exceptions are a highly non-local control
flow perversion, analogous to goto.2 Whatever the semantic view one takes,
exceptions can often be quite useful.

2Perhaps more precisely, to C’s setjmp and longjmp.

104 CHAPTER 8. EFFECTIVE ML

8.3.2 References and arrays

ML does have real assignable variables, and expressions can, as a side-effect,
modify the values of these variables. They are explicitly accessed via references
(pointers in C parlance) and the references themselves behave more like ordinary
ML values. Actually this approach is quite common in C too. For example, if one
wants so-called ‘variable parameters’ in C, where changes to the local variables
propagate outside, the only way to do it is to pass a pointer, so that the function
can dereference it. Similar techniques are often used where the function is to pass
back composite data.

In ML, one sets up a new assignable memory cell with the initial contents x by
writing ref x. (Initialization is compulsory.) This expression yields a reference
(pointer) to the cell. Subsequent access to the contents of the cell requires an
explicit dereference using the ! operator, similar to unary * in C. The cell is
assigned to using a conventional-looking assignment statement. For example:

#let x = ref 1;;
x : int ref = ref 1
#!x;;
- : int = 1
#x := 2;;
- : unit = ()
#!x;;
- : int = 2
#x := !x + !x;;
- : unit = ()
#x;;
- : int ref = ref 4
#!x;;
- : int = 4

Note that in most respects ref behaves like a type constructor, so one can
pattern-match against it. Thus one could actually define an indirection operator
like !:

#let contents_of (ref x) = x;;
contents_of : ’a ref -> ’a = <fun>
#contents_of x;;
- : int = 4

As well as being mutable, references are sometimes useful for creating ex-
plicitly shared data structures. One can easily create graph structures where
numerous nodes contain a pointer to some single subgraph.

Apart from single cells, one can also use arrays in ML. In CAML these are
called vectors. An array of elements of type α has type α vect. A fresh vector
of size n, with each element initialized to x — once again the initialization is
compulsory — is created using the following call:

8.3. IMPERATIVE FEATURES 105

#make_vect n x;;

One can then read element m of a vector v using:

#vect_item v m;;

and write value y to element m of v using:

#vect_assign v m y;;

These operations correspond to the expressions v[m] and v[m] = y in C. The
elements of an array are numbered from zero. For example:

#let v = make_vect 5 0;;
v : int vect = [|0; 0; 0; 0; 0|]
#vect_item v 1;;
- : int = 0
#vect_assign v 1 10;;
- : unit = ()
#v;;
- : int vect = [|0; 10; 0; 0; 0|]
#vect_item v 1;;
- : int = 10

All reading and writing is constrained by bounds checking, e.g.

#vect_item v 5;;
Uncaught exception: Invalid_argument "vect_item"

8.3.3 Sequencing

There is no need for an explicit sequencing operation in ML, since the normal
rules of evaluation allow one to impose an order. For example one can do:

#let _ = x := !x + 1 in
let _ = x := !x + 1 in
let _ = x := !x + 1 in
let _ = x := !x + 1 in
();;

and the expressions are evaluated in the expected order. Here we use a special
pattern which throws away the value, but we could use a dummy variable name
instead. Nevertheless, it is more attractive to use the conventional notation for
sequencing, and this is possible in ML by using a single semicolon:

#x := !x + 1;
x := !x + 1;
x := !x + 1;
x := !x + 1;;

106 CHAPTER 8. EFFECTIVE ML

8.3.4 Interaction with the type system

While polymorphism works very well for the pure functional core of ML, it has
unfortunate interactions with some imperative features. For example, consider
the following:

#let l = ref [];;

Then l would seem to have polymorphic type α list ref . In accordance with
the usual rules of let-polymorphism we should be able to use it with two different
types, e.g. first

#l := [1];;

and then

#hd(!l) = true;;

But this isn’t reasonable, because we would actually be writing something as
an object of type int then reading it as an object of type bool. Consequently,
some restriction on the usual rule of let polymorphism is called for where ref-
erences are concerned. There have been many attempts to arrive at a sound
but convenient restriction of the ML type system, some of them very compli-
cated. Recently, different versions of ML seem to be converging on a relatively
simple method, called the value restriction, due to Wright (1996), and CAML
implements this restriction, with a twist regarding toplevel bindings. Indeed, the
above sequence fails. But the intermediate behaviour is interesting. If we look at
the first line we see:

#let l = ref [];;
l : ’_a list ref = ref []

The underscore on the type variable indicates that l is not polymorphic in
the usual sense; rather, it has a single fixed type, although that type is as yet
undetermined. The second line works fine:

#l := [1];;
- : unit = ()

but if we now look at the type of l, we see that:

#l;;
- : int list ref = ref [1]

The pseudo-polymorphic type has now been fixed. Granted this, it is clear
that the last line must fail:

8.3. IMPERATIVE FEATURES 107

#hd(!l) = true;;
Toplevel input:
>hd(!l) = true;;
> ^^^^
This expression has type bool,
but is used with type int.

So far, this seems quite reasonable, but we haven’t yet explained why the same
underscored type variables oocur in apparently quite innocent purely functional
expressions, and why, moreover, they often disappear on eta-expansion, e.g.

#let I x = x;;
I : ’a -> ’a = <fun>
#I o I;;
it : ’_a -> ’_a = <fun>
#let I2 = I o I in fun x -> I2 x;;
- : ’_a -> ’_a = <fun>
#fun x -> (I o I) x;;
it : ’a -> ’a = <fun>

Other techniques for polymorphic references often rely on encoding in the
types the fact that an expression may involve references. This seems natural,
but it can lead to the types of functions becoming cluttered with this special
information. It is unattractive that the particular implementation of the function,
e.g. imperative or functional, should be reflected in its type.

Wright’s solution, on the other hand, uses just the basic syntax of the ex-
pression being let-bound, insisting that it is a so-called value before generalizing
the type. What is really wanted is knowledge of whether the expression may
cause side-effects when evaluated. However since this is undecidable in general,
the simple syntactic criterion of its being or not being a value is used. Roughly
speaking, an expression is a value if it admits no further evaluation according
to the ML rules — this is why an expression can often be made into a value
by performing a reverse eta conversion. Unfortunately this works against the
techniques for forcing evaluation.

Exercises

1. Define the C combinator as:

#let C f x y = f y x;;

What does the following function do?

108 CHAPTER 8. EFFECTIVE ML

#fun f l1 l2 -> itlist (union o C map l2 o f) l1 [];;

2. What does this function do? Write a more efficient version.

#let rec upto n = if n < 1 then [] else append (upto (n-1)) [n];;

3. Define a function to calculate Fibonacci numbers as follows:

#let rec fib =
fun 0 -> 0
| 1 -> 1
| n -> fib(n - 2) + fib(n - 1);;

Why is this very inefficient? Write a similar but better version.

4. (*) Can you think of any uses for this exception or similar recursive ones?

#exception Recurse of exn;;

5. Implement a simple version of quicksort using arrays. The array is first
partitioned about some pivot, then two recursive calls sort the left and
right portions. Which recursive calls are tail calls? What is the worst-case
space usage? How can this be improved dramatically by a simple change?

6. Prove that the two versions of rev that we have quoted, inefficient and
efficient, always give the same answer.

Chapter 9

Examples

As we have said, ML was originally designed as a metalanguage for a computer
theorem prover. However it is suitable for plenty of other applications, mostly
from the same general field of ‘symbolic computation’. In this chapter we will give
some examples of characteristic uses of ML. It is not necessary that the reader
should understand every detail of the particular examples, e.g. the analyses of
real number approximations given below. However it is worth trying out these
programs and similar examples for yourself, and doing some of the exercises.
There is no better way of getting a feel for how ML is actually used.

9.1 Symbolic differentiation

The phrase ‘symbolic computation’ is a bit vague, but roughly speaking it covers
applications where manipulation of mathematical expressions, in general con-
taining variables, is emphasized at the expense of actual numerical calculation.
There are several successful ‘computer algebra systems’ such as Axiom, Maple
and Mathematica, which can do certain symbolic operations that are useful in
mathematics, e.g. factorizing polynomials and differentiating and integrating ex-
pressions. (They are also capable of purely numerical work.) We will illustrate
how this sort of application can be tackled using ML.

We use symbolic differentiation as our example, because there is an algorithm
to do it which is fairly simple and well known. The reader is probably familiar
with certain derivatives of basic operations, e.g d

dx
sin(x) = cos(x), as well as

results such as the Chain Rule and Product Rule for calculating the derivatives
of composite expressions in terms of the derivatives of the components. Just
as one can use these systematically in order to find derivatives, it is possible to
program a fairly straightforward algorithm to do it in ML.

109

110 CHAPTER 9. EXAMPLES

9.1.1 First order terms

We will allow mathematical expressions in a fairly general form. They may be
built up from variables and constants by the application of operators. These
operators may be unary, binary, ternary, or in general n-ary. We represent this
using the following recursive datatype:

#type term = Var of string
| Const of string
| Fn of string * (term list);;

Type term defined.

For example, the expression:

sin(x+ y)/cos(x− exp(y))− ln(1 + x)

is represented by:

Fn("-",[Fn("/",[Fn("sin",[Fn("+",[Var "x"; Var "y"])]);
Fn("cos",[Fn("-",[Var "x"; Fn("exp",[Var "y"])])])]);

Fn("ln",[Fn("+",[Const "1"; Var "x"])])]);;

9.1.2 Printing

Reading and writing expressions in their raw form is rather unpleasant. This is a
general problem in all symbolic computation systems, and typically the system’s
interface contains a parser and prettyprinter to allow respectively input and out-
put in a readable form. A detailed discussion of parsing is postponed, since it
is worth a section of its own, but we will now write a very simple printer for
expressions, so that at least we can see what’s going on. We want the printer to
support ordinary human conventions, i.e.

• Variables and constants are just written as their names.

• Ordinary n-ary functions applied to arguments are written by juxtaposing
the function and a bracketed list of arguments, e.g. f(x1, . . . , xn).

• Infix binary functions like + are written in between their arguments.

• Brackets are used where necessary for disambiguation.

• Infix operators have a notion of precedence to reduce the need for brackets.

First we declare a list of infixes, which is a list of pairs: each operator name
together with its precedence.

#let infixes = ["+",10; "-",10; "*",20; "/",20];;

9.1. SYMBOLIC DIFFERENTIATION 111

It is common to use lists in this way to represent finite partial functions, since
it allows more flexibility. They are commonly called association lists, and are
very common in functional programming.1 In order to convert the list into a
partial function we use assoc:

#let rec assoc a ((x,y)::rest) = if a = x then y else assoc a rest;;
Toplevel input:
>let rec assoc a ((x,y)::rest) = if a = x then y else assoc a rest;;
> ^^^
Warning: this matching is not exhaustive.
assoc : ’a -> (’a * ’b) list -> ’b = <fun>

The compiler warns us that if the appropriate data is not found in the list,
the function will fail. Now we can define a function to get the infix precedence
of a function:

#let get_precedence s = assoc s infixes;;
get_precedence : string -> int = <fun>
#get_precedence "+";;
- : int = 10
#get_precedence "/";;
- : int = 20
#get_precedence "%";;
Uncaught exception: Match_failure ("", 6544, 6601)

Note that if we ever change this list of infixes, then any functions such as
get precedence that use it need to be redeclared. This is the main reason why
many LISP programmers prefer dynamic binding. However we can make the set
of infixes arbitrarily extensible by making it into a reference and dereferencing it
on each application:

#let infixes = ref ["+",10; "-",10; "*",20; "/",20];;
infixes : (string * int) list ref =

ref ["+", 10; "-", 10; "*", 20; "/", 20]
#let get_precedence s = assoc s (!infixes);;
get_precedence : string -> int = <fun>
#get_precedence "^";;
Uncaught exception: Match_failure ("", 6544, 6601)
#infixes := ("^",30)::(!infixes);;
- : unit = ()
#get_precedence "^";;
- : int = 30

1For more heavyweight applications, some alternative such as hash tables is much better,
but for simple applications where the lists don’t get too long, this kind of linear list is simple
and adequate.

112 CHAPTER 9. EXAMPLES

Note that by the ML evaluation rules, the dereferencing is only applied after
the function get precedence receives its argument, and hence results in the
set of infixes at that time. We can also define a function to decide whether a
function has any data associated with it. One way is simply to try the function
get precedence and see if it works:

#let is_infix s =
try get_precedence s; true
with _ -> false;;

An alternative is to use a general function can that finds out whether another
function succeeds:

#let can f x = try f x; true with _ -> false;;
can : (’a -> ’b) -> ’a -> bool = <fun>
#let is_infix = can get_precedence;;
is_infix : string -> bool = <fun>

We will use the following functions that we have already considered:

#let hd(h::t) = h;;
#let tl(h::t) = t;;
#let rec length l = if l = [] then 0 else 1 + length(tl l);;

Without further ado, here is a function to convert a term into a string.

#let rec string_of_term prec =
fun (Var s) -> s

| (Const c) -> c
| (Fn(f,args)) ->

if length args = 2 & is_infix f then
let prec’ = get_precedence f in
let s1 = string_of_term prec’ (hd args)
and s2 = string_of_term prec’ (hd(tl args)) in
let ss = s1^" "^f^" "^s2 in
if prec’ <= prec then "("^ss^")" else ss

else
f^"("^(string_of_terms args)^")"

and string_of_terms t =
match t with

[] -> ""
| [t] -> string_of_term 0 t
| (h::t) -> (string_of_term 0 h)^","^(string_of_terms t);;

The first argument prec indicates the precedence level of the operator of which
the currently considered expression is an immediate subterm. Now if the current
expression has an infix binary operator at the top level, parentheses are needed

9.1. SYMBOLIC DIFFERENTIATION 113

if the precedence of this operator is lower, e.g. if we are considering the right
hand subexpression of x ∗ (y + z). Actually we use parentheses even when they
are equal, in order to make groupings clear. In the case of associative operators
like + this doesn’t matter, but we must distinguish x− (y − z) and (x− y)− z.
(A more sophisticated scheme would give each operator an associativity.) The
second, mutually recursive, function string of terms is used to print a comma-
separated list of terms, as they occur for non-infix function applications of the
form f(t1, . . . , tn). Let us see this in action:

#let t =
Fn("-",[Fn("/",[Fn("sin",[Fn("+",[Var "x"; Var "y"])]);

Fn("cos",[Fn("-",[Var "x";
Fn("exp",[Var "y"])])])]);

Fn("ln",[Fn("+",[Const "1"; Var "x"])])]);;
t : term =
Fn
("-",
[Fn

("/",
[Fn ("sin", [Fn ("+", [Var "x"; Var "y"])]);
Fn ("cos", [Fn ("-", [Var "x"; Fn ("exp", [Var "y"])])])]);

Fn ("ln", [Fn ("+", [Const "1"; Var "x"])])])
#string_of_term 0 t;;
- : string = "sin(x + y) / cos(x - exp(y)) - ln(1 + x)"

In fact, we don’t need to convert a term to a string ourselves. CAML Light
allows us to set up our own printer so that it is used to print anything of type
term in the standard read-eval-print loop. This needs a few special commands
to ensure that we interact properly with the toplevel loop:

##open "format";;
#let print_term s =

open_hvbox 0;
print_string("‘"^(string_of_term 0 s)^"‘");
close_box();;

print_term : term -> unit = <fun>
#install_printer "print_term";;
- : unit = ()

Now compare the effect:

#let t =
Fn("-",[Fn("/",[Fn("sin",[Fn("+",[Var "x"; Var "y"])]);

Fn("cos",[Fn("-",[Var "x";
Fn("exp",[Var "y"])])])]);

Fn("ln",[Fn("+",[Const "1"; Var "x"])])]);;
t : term = ‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘
#let x = t
x : term = ‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘

114 CHAPTER 9. EXAMPLES

Once the new printer is installed, it is used whenever CAML wants to print
something of type term, even if it is a composite datastructure such as a pair:

#(x,t);;
- : term * term =
‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘,
‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘

or a list:

#[x; t; x];;
- : term list =
[‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘;
‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘;
‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘]

This printer is rather crude in that it will not break up large expressions
intelligently across lines. The CAML library format, from which we used a few
functions above, provides for a better approach. Instead of converting the term
into a string then printing it in one piece, we can make separate printing calls for
different parts of it, and intersperse these with some special function calls that
help the printing mechanism to understand where to break the lines. Many of
the principles used in this and similar ‘prettyprinting engines’ are due to Oppen
(1980). We will not consider this in detail here — see the CAML manual for
details.2

9.1.3 Derivatives

Now it is a fairly simple matter to define the derivative function. First let us
recall the systematic method we are taught in school:

• If the expression is one of the standard functions applied to an argument
that is the variable of differentiation, e.g. sin(x), return the known deriva-
tive.

• If the expression is of the form f(x) + g(x) then apply the rule for sums,
returning f ′(x) + g′(x). Likewise for subtraction etc.

• If the expression is of the form f(x) ∗ g(x) then apply the product rule, i.e.
return f ′(x) ∗ g(x) + f(x) ∗ g′(x).

• If the expression is one of the standard functions applied to a composite
argument, say f(g(x)) then apply the Chain Rule and so give g′(x)∗f ′(g(x))

2There is also a tutorial, written by Pierre Weis, available online as part of the CAML page:
‘http://pauillac.inria.fr/caml/FAQ/format-eng.html’.

9.1. SYMBOLIC DIFFERENTIATION 115

This is nothing but a recursive algorithm, though that terminology is seldom
used in schools. We can program it in ML very directly:

#let rec differentiate x tm = match tm with
Var y -> if y = x then Const "1" else Const "0"

| Const c -> Const "0"
| Fn("-",[t]) -> Fn("-",[differentiate x t])
| Fn("+",[t1;t2]) -> Fn("+",[differentiate x t1;

differentiate x t2])
| Fn("-",[t1;t2]) -> Fn("-",[differentiate x t1;

differentiate x t2])
| Fn("*",[t1;t2]) ->

Fn("+",[Fn("*",[differentiate x t1; t2]);
Fn("*",[t1; differentiate x t2])])

| Fn("inv",[t]) -> chain x t
(Fn("-",[Fn("inv",[Fn("^",[t;Const "2"])])]))

| Fn("^",[t;n]) -> chain x t
(Fn("*",[n; Fn("^",[t; Fn("-",[n; Const "1"])])]))

| Fn("exp",[t]) -> chain x t tm
| Fn("ln",[t]) -> chain x t (Fn("inv",[t]))
| Fn("sin",[t]) -> chain x t (Fn("cos",[t]))
| Fn("cos",[t]) -> chain x t

(Fn("-",[Fn("sin",[t])]))
| Fn("/",[t1;t2]) -> differentiate x

(Fn("*",[t1; Fn("inv",[t2])]))
| Fn("tan",[t]) -> differentiate x

(Fn("/",[Fn("sin",[t]); Fn("cos",[t])]))
and chain x t u = Fn("*",[differentiate x t; u]);;

The chain function just avoids repeating the chain rule construction for many
operations. Apart from that, we just systematically apply rules for sums, prod-
ucts etc. and the known derivatives of standard functions. Of course, we could
add other functions such as the hyperbolic functions and inverse trigonometric
functions if desired. A couple of cases, namely division and tan, avoid a compli-
cated definition by applying the differentiator to an alternative formulation.

9.1.4 Simplification

If we try the differentiator out on our running example, then it works quite well:

116 CHAPTER 9. EXAMPLES

#t;;
- : term = ‘sin(x + y) / cos(x - exp(y)) - ln(1 + x)‘
#differentiate "x" t;;
- : term =
‘(((1 + 0) * cos(x + y)) * inv(cos(x - exp(y))) +
sin(x + y) * (((1 - 0 * exp(y)) * -(sin(x - exp(y)))) *
-(inv(cos(x - exp(y)) ^ 2)))) - (0 + 1) * inv(1 + x)‘

#differentiate "y" t;;
- : term =
‘(((0 + 1) * cos(x + y)) * inv(cos(x - exp(y))) +
sin(x + y) * (((0 - 1 * exp(y)) * -(sin(x - exp(y)))) *
-(inv(cos(x - exp(y)) ^ 2)))) - (0 + 0) * inv(1 + x)‘

#differentiate "z" t;;
- : term =
‘(((0 + 0) * cos(x + y)) * inv(cos(x - exp(y))) +
sin(x + y) * (((0 - 0 * exp(y)) * -(sin(x - exp(y)))) *
-(inv(cos(x - exp(y)) ^ 2)))) - (0 + 0) * inv(1 + x)‘

However, it fails to make various obvious simplifications such as 0 ∗ x = 0
and x + 0 = x. Some of these redundant expressions are created by the rather
unsubtle differentiation strategy which, for instance, applies the chain rule to f(t)
even where t is just the variable of differentiation. However, some would be hard
to avoid without making the differentiator much more complicated. Accordingly,
let us define a separate simplification function that gets rid of some of these
unnecessary expressions.

#let simp =
fun (Fn("+",[Const "0"; t])) -> t

| (Fn("+",[t; Const "0"])) -> t
| (Fn("-",[t; Const "0"])) -> t
| (Fn("-",[Const "0"; t])) -> Fn("-",[t])
| (Fn("+",[t1; Fn("-",[t2])])) -> Fn("-",[t1; t2])
| (Fn("*",[Const "0"; t])) -> Const "0"
| (Fn("*",[t; Const "0"])) -> Const "0"
| (Fn("*",[Const "1"; t])) -> t
| (Fn("*",[t; Const "1"])) -> t
| (Fn("*",[Fn("-",[t1]); Fn("-",[t2])])) -> Fn("*",[t1; t2])
| (Fn("*",[Fn("-",[t1]); t2])) -> Fn("-",[Fn("*",[t1; t2])])
| (Fn("*",[t1; Fn("-",[t2])])) -> Fn("-",[Fn("*",[t1; t2])])
| (Fn("-",[Fn("-",[t])])) -> t
| t -> t;;

This just applies the simplification at the top level of the term. We need to
execute it in a bottom-up sweep. This will also bring negations upwards through
products. In some cases it would be more efficient to simplify in a top-down
sweep, e.g. 0 ∗ t for a complicated expression t, but this would need repeating
for terms like (0 + 0) ∗ 2. The choice is rather like that between normal and
applicative order reduction in lambda calculus.

9.1. SYMBOLIC DIFFERENTIATION 117

#let rec dsimp =
fun (Fn(fn,args)) -> simp(Fn(fn,map dsimp args))

| t -> simp t;;

Now we get better results:

#dsimp(differentiate "x" t);;
- : term =
‘(cos(x + y) * inv(cos(x - exp(y))) +
sin(x + y) * (sin(x - exp(y)) *
inv(cos(x - exp(y)) ^ 2))) - inv(1 + x)‘

#dsimp(differentiate "y" t);;
- : term =
‘cos(x + y) * inv(cos(x - exp(y))) -
sin(x + y) * ((exp(y) * sin(x - exp(y))) *
inv(cos(x - exp(y)) ^ 2))‘

#dsimp(differentiate "z" t);;
- : term = ‘0‘

In general, one can always add more and more sophisticated simplification.
For example, consider:

#let t2 = Fn("tan",[Var "x"]);;
t2 : term = ‘tan(x)‘
#differentiate "x" t2;;
- : term =
‘(1 * cos(x)) * inv(cos(x)) +
sin(x) * ((1 * -(sin(x))) * -(inv(cos(x) ^ 2)))‘

#dsimp(differentiate "x" t2);;
- : term = ‘cos(x) * inv(cos(x)) +

sin(x) * (sin(x) * inv(cos(x) ^ 2))‘

We would like to simplify cos(x) * inv(cos(x)) simply to 1, ignoring, as
most commercial computer algebra systems do, the possibility that cos(x) might
be zero. We can certainly add new clauses to the simplifier for that. Similarly,
we might like to collect up terms in the second summand. However here we start
to see that human psychology plays a role. Which of the following is preferable?
It is hard for the machine to decide unaided.

sin(x) * (sin(x) * inv(cos(x) ^ 2))

sin(x) ^ 2 * inv(cos(x) ^ 2)

sin(x) ^ 2 / cos(x) ^ 2

(sin(x) / cos(x)) ^ 2

tan(x) ^ 2

118 CHAPTER 9. EXAMPLES

And having chosen the last one, should it then convert

1 + tan(x) ^ 2

into

sec(x) ^ 2

Certainly, it is shorter and more conventional. However it relies on the fact
that we know the definitions of these fairly obscure trig functions like sec. What-
ever the machine decides to do, it is likely that some user will find it upsetting.

9.2 Parsing

A defect of our previous example was that the input had to be written explicitly
in terms of type constructors. Here we will show how to write a parser for this
situation, and make our code sufficiently general that it can easily be applied
to similar formal languages. Generally speaking, the problem of parsing is as
follows. A formal language is defined by a grammar, which is a set of production
rules for each syntactic category. For a language of terms with two infix operators
+ and * and only alphanumeric variables and numeral (0, 1 etc.) constants, it
might look like this:

term −→ name(termlist)

| name

| (term)

| numeral

| -term

| term + term

| term * term

termlist −→ term,termlist

| term

We will assume for the moment that we know what names and numerals
are, but we could have similar rules defining them in terms of single characters.
Now this set of production rules gives us a way of generating the concrete, linear
representation for all terms. Note that name, numeral, term and termlist are
meant to be variables in the above, whereas elements like ‘+’ and ‘(’ written in
bold type are actual characters. For example we have:

9.2. PARSING 119

term −→ term * term

−→ term * (term)

−→ term * (term + term)

−→ term * (term + term * term)

−→ numeral * (name + name * name)

so, following similar rules for name and numeral, we can generate for example:

10 * (x + y * z)

The task of parsing is to reverse this process of applying production rules, i.e.
to take a string and discover how it could have been generated by the production
rules for a syntactic category. Typically, the output is a parse tree, i.e. a tree
structure that shows clearly the sequence of applications of the rules.

One problem with parsing is that the grammar may be ambiguous, i.e. a given
string can often be generated in several different ways. This is the case in our
example above, for the string could also have been generated by:

term −→ term * term

−→ term * (term)

−→ term * (term * term)

−→ term * (term + term * term)

−→ numeral * (name + name * name)

The obvious way to fix this is to specify rules of precedence and associativity
for infix operators. However, we can make the grammar unambiguous without
introducing additional mechanisms at the cost of adding new syntactic categories:

atom −→ name(termlist)

| name

| numeral

| (term)

| -atom

mulexp −→ atom * mulexp

| atom

term −→ mulexp + term

| mulexp

termlist −→ term,termlist

| term

120 CHAPTER 9. EXAMPLES

Note that this makes both infix operators right associative. For a more com-
plicated example of this technique in action, look at the formal definition of
expressions in the ANSI C Standard.

9.2.1 Recursive descent parsing

The production rules suggest a very simple way of going about parsing using a
series of mutually recursive functions. The idea is to have a function for each
syntactic category, and a recursive structure that reflects exactly the mutual re-
cursion found in the grammar itself. For example, the procedure for parsing
terms, say term will, on encountering a - symbol, make a recursive call to itself
to parse the subterm, and on encountering a name followed by an opening paren-
thesis, will make a recursive call to termlist. This in itself will make at least
one recursive call to term, and so on. Such a style of programming is particularly
natural in a language like ML where recursion is the principal control mechanism.

In our ML implementation, we suppose that we have some input list of objects
of arbitrary type α for the parser to consume. These might simply be characters,
but in fact there is usually a separate level of lexical analysis which collects
characters together into tokens such as ‘x12’, ‘:=’ and ‘96’, so by the time we
reach this level the input is a list of tokens. We avoid committing ourselves
to any particular type. Similarly, we will allow the parser to construct objects
of arbitrary type β from its input. These might for example be parse trees as
members of a recursive datatype, or might simply be numbers if the parser is to
take an expression and evaluate it. Now in general, a parser might not consume
all its input, so we also make it output the remaining tokens. Therefore, a parser
will have type

(α)list → β × (α)list

For example, when given the input characters (x + y) * z the function atom

should process the characters (x + y) and leave the remaining characters * z. It
might return a parse tree for the processed expression using our earlier recursive
type, and hence we would have:

atom "(x + y) * z" = Fn("+",[Var "x"; Var "y"]),"* z"

Since any call of the function atom must be from within the function mulexp,
this second function will use the result of atom and deal with the input that
remains, making a second call to atom to process the expression ‘z’.

9.2.2 Parser combinators

Another reason why this technique works particularly well in ML is that we can
define some useful combinators for plugging parsers together. In fact, by giving

9.2. PARSING 121

them infix status, we can make the ML parser program look quite similar in
structure to the original grammar defining the language.

First we declare an exception to be used where parsing fails. Then we define
an infix ++ that applies two parsers in sequence, pairing up their results, and and
infix || which tries first one parser, then the other. We then define a many-fold
version of ++ that repeats a parser as far as possible, putting the results into a
list. Finally, the infix >> is used to modify the results of a parser according to a
function.

The CAML rules for symbolic identifiers such as ++ make them infix automat-
ically, so we suppress this during the definition using the prefix keyword. Their
precedences are also automatic, following from the usual precedence of their first
characters as arithmetic operations etc. That is, ++ is the strongest, >> falls in
the middle, and || is the weakest; this is exactly what we want.

exception Noparse;;

let prefix || parser1 parser2 input =
try parser1 input
with Noparse -> parser2 input;;

let prefix ++ parser1 parser2 input =
let result1,rest1 = parser1 input in
let result2,rest2 = parser2 rest1 in
(result1,result2),rest2;;

let rec many parser input =
try let result,next = parser input in

let results,rest = many parser next in
(result::results),rest

with Noparse -> [],input;;

let prefix >> parser treatment input =
let result,rest = parser input in
treatment(result),rest;;

We will, in what follows, use the following other functions. Most of these have
been defined above, the main exception being explode which converts a string
into a list of 1-elements strings. It uses the inbuilt functions sub_string and
string_length; we do not describe them in detail but their function should be
easy to grasp from the example.

122 CHAPTER 9. EXAMPLES

let rec itlist f =
fun [] b -> b
| (h::t) b -> f h (itlist f t b);;

let uncurry f(x,y) = f x y;;

let K x y = x;;

let C f x y = f y x;;

let o f g x = f(g x);;
#infix "o";;

let explode s =
let rec exap n l =

if n < 0 then l else
exap (n - 1) ((sub_string s n 1)::l) in

exap (string_length s - 1) [];;

In order to get started, we define a few ‘atomic’ parsers. The function some

accepts any item satisfying a predicate and returns it. The function a is similar,
but demands a particular item, and finally finished just makes sure there are
no items left to be parsed.

let some p =
fun [] -> raise Noparse
| (h::t) -> if p h then (h,t) else raise Noparse;;

let a tok = some (fun item -> item = tok);;

let finished input =
if input = [] then 0,input else raise Noparse;;

9.2.3 Lexical analysis

Our parsing combinators can easily be used, in conjunction with a few simple
character discrimination functions, to construct a lexical analyzer for our lan-
guage of terms. We define a type of tokens (or lexemes), and the lexer translates
the input string into a list of tokens. The ‘other’ cases cover symbolic identifiers;
they are all straightforward as they consist of just a single character, rather than
composite ones like ‘:=’.

9.2. PARSING 123

type token = Name of string | Num of string | Other of string;;

let lex =
let several p = many (some p) in
let lowercase_letter s = "a" <= s & s <= "z" in
let uppercase_letter s = "A" <= s & s <= "Z" in
let letter s = lowercase_letter s or uppercase_letter s in
let alpha s = letter s or s = "_" or s = "’" in
let digit s = "0" <= s & s <= "9" in
let alphanum s = alpha s or digit s in
let space s = s = " " or s = "\n" or s = "\t" in
let collect(h,t) = h^(itlist (prefix ^) t "") in
let rawname =

some alpha ++ several alphanum >> (Name o collect) in
let rawnumeral =

some digit ++ several digit >> (Num o collect) in
let rawother = some (K true) >> Other in
let token =
(rawname || rawnumeral || rawother) ++ several space >> fst in

let tokens = (several space ++ many token) >> snd in
let alltokens = (tokens ++ finished) >> fst in
fst o alltokens o explode;;

For example:

#lex "sin(x + y) * cos(2 * x + y)";;
- : token list =
[Name "sin"; Other "("; Name "x"; Other "+"; Name "y"; Other ")";
Other "*"; Name "cos"; Other "("; Num "2"; Other "*"; Name "x";
Other "+"; Name "y"; Other ")"]

9.2.4 Parsing terms

Since we are now working at the level of tokens, we define trivial parsers to accept
tokens of (only) a certain kind:

let name =
fun (Name s::rest) -> s,rest
| _ -> raise Noparse;;

let numeral =
fun (Num s::rest) -> s,rest
| _ -> raise Noparse;;

let other =
fun (Other s::rest) -> s,rest
| _ -> raise Noparse;;

Now we can define a parser for terms, in a form very similar to the original
grammar. The main difference is that each production rule has associated with
it some sort of special action to take as a result of parsing.

124 CHAPTER 9. EXAMPLES

let rec atom input
= (name ++ a (Other "(") ++ termlist ++ a (Other ")")

>> (fun (((name,_),args),_) -> Fn(name,args))
|| name

>> (fun s -> Var s)
|| numeral

>> (fun s -> Const s)
|| a (Other "(") ++ term ++ a (Other ")")

>> (snd o fst)
|| a (Other "-") ++ atom

>> snd) input
and mulexp input

= (atom ++ a(Other "*") ++ mulexp
>> (fun ((a,_),m) -> Fn("*",[a;m]))

|| atom) input
and term input

= (mulexp ++ a(Other "+") ++ term
>> (fun ((a,_),m) -> Fn("+",[a;m]))

|| mulexp) input
and termlist input

= (term ++ a (Other ",") ++ termlist
>> (fun ((h,_),t) -> h::t)

|| term
>> (fun h -> [h])) input;;

Let us package everything up as a single parsing function:

let parser = fst o (term ++ finished >> fst) o lex;;

To see it in action, we try with and without the printer (see above) installed:

#parser "sin(x + y) * cos(2 * x + y)";;
- : term =
Fn
("*",
[Fn ("sin", [Fn ("+", [Var "x"; Var "y"])]);
Fn ("cos", [Fn ("+", [Fn ("*", [Const "2"; Var "x"]);

Var "y"])])])
#install_printer "print_term";;
- : unit = ()
#parser "sin(x + y) * cos(2 * x + y)";;
- : term = ‘sin(x + y) * cos(2 * x + y)‘

9.2.5 Automatic precedence parsing

In the above parser, we ‘hardwired’ a parser for the two infix operators. However
it would be nicer, and consistent with our approach to printing, if changes to the
set of infixes could propagate to the parser. Moreover, even with just two differ-
ent binary operators, our production rules and consequent parser were already

9.2. PARSING 125

starting to look artificial; imagine if we had a dozen or so. What we would like is
to automate the production of a layer of parsers, one for each operator, in order
of precedence. This can easily be done. First, we define a general function that
takes a parser for what, at this level, are regarded as atomic expressions, and
produces a new parser for such expressions separated by a given operator. Note
that this could also be defined using parsing combinators, but the function below
is simple and more efficient.

let rec binop op parser input =
let atom1,rest1 as result = parser input in
if not rest1 = [] & hd rest1 = Other op then
let atom2,rest2 = binop op parser (tl rest1) in
Fn(op,[atom1; atom2]),rest2

else result;;

Now we define functions that pick out the infix operator in our association
list with (equal) lowest precedence, and delete it from the list. If we maintained
the list already sorted in precedence order, we could simply take the head and
tail of the list.

let findmin l = itlist
(fun (_,pr1 as p1) (_,pr2 as p2) -> if pr1 <= pr2 then p1 else p2)
(tl l) (hd l);;

let rec delete x (h::t) = if h = x then t else h::(delete x t);;

Now we can define the generic precedence parser:

let rec precedence ilist parser input =
if ilist = [] then parser input else
let opp = findmin ilist in
let ilist’ = delete opp ilist in
binop (fst opp) (precedence ilist’ parser) input;;

and hence can modify the main parser to be both simpler and more general:

126 CHAPTER 9. EXAMPLES

let rec atom input
= (name ++ a (Other "(") ++ termlist ++ a (Other ")")

>> (fun (((name,_),args),_) -> Fn(name,args))
|| name

>> (fun s -> Var s)
|| numeral

>> (fun s -> Const s)
|| a (Other "(") ++ term ++ a (Other ")")

>> (snd o fst)
|| a (Other "-") ++ atom

>> snd) input
and term input = precedence (!infixes) atom input
and termlist input

= (term ++ a (Other ",") ++ termlist
>> (fun ((h,_),t) -> h::t)

|| term
>> (fun h -> [h])) input;;

let parser = fst o (term ++ finished >> fst) o lex;;

for example:

#parser "2 * sin(x)^2 + 2 * sin(y)^2 - 2";;
- : term =
Fn
("+",
[Fn ("*", [Const "2"; Fn ("^", [Fn ("sin", [Var "x"]);

Const "2"])]);
Fn
("-",
[Fn ("*", [Const "2"; Fn ("^", [Fn ("sin", [Var "y"]);

Const "2"])]);
Const "2"])])

#install_printer "print_term";;
- : unit = ()
#parser "2 * sin(x)^2 + 2 * sin(y)^2 - 2";;
- : term = ‘2 * sin(x) ^ 2 + (2 * sin(y) ^ 2 - 2)‘

9.2.6 Defects of our approach

Our approach to lexing and parsing is not particularly efficient. In fact, CAML
and some other ML implementations include a generator for LR parsers similar to
YACC (Yet Another Compiler Compiler) which is often used to generate parsers
in C under Unix. Not only are these more general in the grammars that they
can handle, but the resulting parsers are more efficient. However we believe
the present approach is rather clear, adequate for most purposes, and a good
introduction to programming with higher order functions.

The inefficiency of our approach can be reduced by avoiding a few particularly
wasteful features. Note that if two different productions for the same syntactic

9.2. PARSING 127

category have a common prefix, then we should avoid parsing it more than once,
unless it is guaranteed to be trivial. Our production rules for term have this
property:

term −→ name(termlist)

| name

| · · ·

We carefully put the longer production first in our actual implementation,
otherwise success in reading a name would cause the abandonment of attempts to
read a parenthesized list of arguments. Nevertheless, because of the redundancy
we have mentioned, this way of constructing the parser is wasteful. In this case
it doesn’t matter much, because the duplicated call only analyzes one token.
However the case for termlist is more significant:

let ...
and termlist input

= (term ++ a (Other ",") ++ termlist
>> (fun ((h,_),t) -> h::t)

|| term
>> (fun h -> [h])) input;;

Here we could reparse a whole term, which might be arbitrarily large. We can
avoid this in several ways. One is to move the || alternation to after the initial
term has been read. A convenient way to code it is to eschew explicit recursion
in favour of many:

let ...
and termlist input

= term ++ many (a (Other ",") ++ term >> snd)
>> (fun (h,t) -> h::t) input;;

Therefore the final version of the parser is:

let rec atom input
= (name ++ a (Other "(") ++ termlist ++ a (Other ")")

>> (fun (((name,_),args),_) -> Fn(name,args))
|| name

>> (fun s -> Var s)
|| numeral

>> (fun s -> Const s)
|| a (Other "(") ++ term ++ a (Other ")")

>> (snd o fst)
|| a (Other "-") ++ atom

>> snd) input
and term input = precedence (!infixes) atom input
and termlist input

= (term ++ many (a (Other ",") ++ term >> snd)
>> (fun (h,t) -> h::t)) input;;

128 CHAPTER 9. EXAMPLES

A general defect of our approach, and recursive descent parsing generally, is
that so-called left recursion in productions causes problems. This is where a given
category expands to a sequence including the category itself as the first item. For
example, if we had wanted to make the addition operator left-associative in our
earlier grammar, we could have used:

term −→ term + mulexp

| mulexp

The naive transcription into ML would loop indefinitely, calling term on the
same subterm over and over. There are various slightly ad hoc ways of dealing
with this problem. For example, one can convert this use of recursion, which in
some ways is rather gratuitous, into the explicit use of repetition. We can do this
using standard combinators like many to return a list of ‘mulexp’s and then run
over the list building the tree left-associated.

A final problem is that we do not handle errors very gracefully. We always
raise the exception Noparse, and this, when caught, initiates backtracking. How-
ever this is not always appropriate for typical grammars. At best, it can cause
expensive reparsing, and can lead to baffling error indications at the top level.
For example, on encountering 5 +, we expect a term following the +, and if we
don’t find one, we should generate a comprehensible exception for the user, rather
than raise Noparse and perhaps initiate several other pointless attempts to parse
the expression in a different way.

9.3 Exact real arithmetic

Real arithmetic on computers is normally done via floating point approximations.
In general, we can only manipulate a real number, either ourselves or inside a
computer, via some sort of finite representation. Some question how numbers can
be said to ‘exist’ if they have no finite representation. For example, Kronecker
accepted integers and rationals because they can be written down explicitly, and
even algebraic numbers3 because they can be represented using the polynomials
of which they are solutions. However he rejected transcendental numbers because
apparently they could not be represented finitely. Allegedly he he greeted the
famous proof by Lindemann (1882) that π is transcendental with the remark that
this was ‘interesting, except that π does not exist’.

However, given our modern perspective, we can say that after all many more
numbers than Kronecker would have accepted do have a finite representation,
namely the program, or in some more abstract sense the rule, used to calculate

3Algebraic numbers are those that are roots of polynomials with integer coefficients, e.g.√
2, and transcendental numbers are ones that aren’t.

9.3. EXACT REAL ARITHMETIC 129

them to greater and greater precision. For example, we can write a program
that will produce for any argument n the first n digits of π. Alternatively it can
produce a rational number r such that |π − r| < 2−n. Whatever approach is
taken to the successive approximation of a real number, the key point is that its
representation, the program itself, is finite.

This works particularly nicely in a language like ML where higher order func-
tions are available. What we have called a ‘program’ above will just be an ML
function. We can actually represent the arithmetic operations on numbers as
higher order functions that, given functions for approximating x and y, will pro-
duce new ones for approximating x + y, xy, sin(x) and so on, for a wide range
of functions. In an ordinary programming language, we would need to define
a concrete representation for programs, e.g. ‘Gödel numbering’, and write an
interpreter for this representation.4

9.3.1 Representation of real numbers

Our approach is to represent a real x by a function fx : N → Z that for each
n ∈ N returns an approximation of x to within 2−n, appropriately scaled. In fact,
we have:

|fx(n)− 2nx| < 1

This is of course equivalent to |fx(n)
2n

− x| < 1
2n
. We could return a rational

approximation directly, but it would still be convenient for the rationals to have
denominators that are all powers of some number, so that common denominators
arising during addition don’t get too big. Performing the scaling directly seems
simpler, requiring only integer arithmetic. Our choice of the base 2 is largely
arbitrary. A lower base is normally advantageous because it minimizes the gran-
ularity of the achievable accuracies. For example, if we used base 10, then even
if we only need to increase the accuracy of an approximation slightly, we have to
step up the requested accuracy by a factor of 10.

9.3.2 Arbitrary-precision integers

CAML’s standard integers (type int) have a severely limited range, so first of all
we need to set up a type of unlimited-precision integers. This is not so difficult
to program, but is slightly tedious. Fortunately, the CAML release includes a
library that gives a fast implementation of arbitrary precision integer (and in fact
rational) arithmetic. A version of CAML Light with this library pre-loaded is
installed on Thor. Assuming you have used the following path setting:

4Effectively, we are manipulating functions ‘in extension’ rather than ‘in intension’, i.e. not
concerning ourselves with their representation.

130 CHAPTER 9. EXAMPLES

PATH="$PATH:/home/jrh13/caml/bin"
export PATH

then the augmented version of CAML Light can be fired up using:

$ camllight my_little_caml

When the system returns its prompt, use the #open directive to make the
library functions available:

##open "num";;

This library sets up a new type num of arbitrary precision rational numbers;
we will just use the integer subset. CAML does not provide overloading, so it is
necessary to use different symbols for the usual arithmetic operations over num.

Note that small constants of type num must be written as Int k rather than
simply k. In fact Int is a type constructor for num used in the case when the
number is a machine-representable integer. Larger ones use Big int.

The unary negation on type num is written minus num. Another handy unary
operator is abs num, which finds absolute values, i.e. given x returns |x|.

The usual binary operations are also available. The (truncating) division
and modulus function, called quo num and mod num, do not have infix status.
However most of the other binary operators are infixes, and the names are derived
from the usual ones by adding a slash ‘/’. It is important to realize that in
general, one must use =/ to compare numbers for equality. This is because the
constructors of the type num are, as always, distinct by definition, yet in terms
of the underlying meaning they may overlap. For example we get different result
from using truncating division and true division on 230 and 2, even though they
are numerically the same. One uses type constructor Int and the other Ratio.

#(Int 2 **/ Int 30) // Int 2 = quo_num (Int 2 **/ Int 30) (Int 2);;
it : bool = false
#(Int 2 **/ Int 30) // Int 2 =/ quo_num (Int 2 **/ Int 30) (Int 2);;
it : bool = true

Here is a full list of the main infix binary operators:

Operator Type Meaning
**/ num -> num -> num Exponentiation
*/ num -> num -> num Multiplication
+/ num -> num -> num Addition
-/ num -> num -> num Subtraction
=/ num -> num -> bool Equality
<>/ num -> num -> bool Inequality
</ num -> num -> bool Less than
<=/ num -> num -> bool Less than or equal
>/ num -> num -> bool Greater than
>=/ num -> num -> bool Greater than or equal

9.3. EXACT REAL ARITHMETIC 131

Let us see some further examples:

#Int 5 */ Int 14;;
it : num = Int 70
#Int 2 **/ Int 30;;
it : num = Big_int <abstr>
#(Int 2 **/ Int 30) // Int 2;;
it : num = Ratio <abstr>
#quo_num (Int 2 **/ Int 30) (Int 2);;
it : num = Int 536870912

Note that large numbers are not printed. However we can always convert one
to a string using string of num:

#string_of_num(Int 2 ** Int 150);;
- : string = "1427247692705959881058285969449495136382746624"

This also has an inverse, called naturally enough num of string.

9.3.3 Basic operations

Recall that our real numbers are supposed to be (represented by) functions Z → Z.
In ML we will actually use int -> num, since the inbuilt type of integers is
more than adequate for indexing the level of accuracy. Now we can define some
operations on reals. The most basic operation, which gets us started, is to produce
the real number corresponding to an integer. This is easy:

#let real_of_int k n = (Int 2 **/ Int n) */ Int k;;
real_of_int : int -> int -> num = <fun>
#real_of_int 23;;
- : int -> num = <fun>

It is obvious that for any k this obeys the desired approximation criterion:

|fk(n)− 2nk| = |2nk − 2nk| = 0 < 1

Now we can define the first nontrivial operation, that of unary negation:

let real_neg f n = minus_num(f n);;

The compiler generalizes the type more than intended, but this will not trouble
us. It is almost as easy to see that the approximation criterion is preserved. If
we know that for each n:

|fx(n)− 2nx| < 1

then we have for any n:

132 CHAPTER 9. EXAMPLES

|f−x(n)− 2n(−x)| = | − fx(n)− 2n(−x)|
= | − (fx(n)− 2nx)|
= |fx(n)− 2nx|
< 1

Similarly, we can define an ‘absolute value’ function on real numbers, using
the corresponding function abs num on numbers:

let real_abs f n = abs_num (f n);;

The correctness of this is again straightforward, using the fact that ||x|−|y|| ≤
|x− y|. Now consider the problem of adding two real numbers. Suppose x and y
are represented by fx and fy respectively. We could define:

fx+y(n) = fx(n) + fy(n)

However this gives no guarantee that the approximation criterion is main-
tained; we would have:

|fx+y(n)− 2n(x+ y)| = |fx(n) + fy(n)− 2n(x+ y)|
≤ |fx(n)− 2nx|+ |fy(n)− 2ny|

We can guarantee that the sum on the right is less than 2, but not that it is
less than 1 as required. Therefore, we need in this case to evaluate x and y to
greater accuracy than required in the answer. Suppose we define:

fx+y(n) = (fx(n+ 1) + fy(n+ 1))/2

Now we have:

|fx+y(n)− 2n(x+ y)| = |(fx(n+ 1) + fy(n+ 1))/2− 2n(x+ y)|
≤ |fx(n+ 1)/2− 2nx|+ |fy(n+ 1)/2− 2ny|

=
1

2
|fx(n+ 1)− 2n+1x|+ 1

2
|fy(n+ 1)− 2n+1y|

<
1

2
1 +

1

2
1 = 1

Apparently this just gives the accuracy required. However we have implicitly
used real mathematical division above. Since the function is supposed to yield an
integer, we are obliged to round the quotient to an integer. If we just use quo num,
the error from rounding this might be almost 1, after which we could never

9.3. EXACT REAL ARITHMETIC 133

guarantee the bound we want, however accurately we evaluate the arguments.
However with a bit more care we can define a division function that always
returns the integer closest to the true result (or one of them in the case of two
equally close ones), so that the rounding error never exceeds 1

2
. This could be

done directly in integer arithmetic, but the most straightforward coding is to use
rational division followed by rounding to the nearest integer, as there are built-in
functions for both these operations:

#let ndiv x y = round_num(x // y);;
ndiv : num -> num -> num = <fun>
##infix "ndiv";;
#(Int 23) ndiv (Int 5);;
- : num = Int 5
#(Int 22) ndiv (Int 5);;
- : num = Int 4
#(Int(-11)) ndiv (Int 4);;
- : num = Int -3
#(Int(-9)) ndiv (Int 4);;
- : num = Int -2

Now if we define:

fx+y(n) = (fx(n+ 2) + fy(n+ 2)) ndiv 4

everything works:

|fx+y(n)− 2n(x+ y)| = |((fx(n+ 2) + fy(n+ 2)) ndiv 4)− 2n(x+ y)|

≤ 1

2
+ |(fx(n+ 2) + fy(n+ 2))/4− 2n(x+ y)|

=
1

2
+

1

4
|(fx(n+ 2) + fy(n+ 2))− 2n+2(x+ y)|

≤ 1

2
+

1

4
|fx(n+ 2)− 2n+2x|+ 1

4
|fy(n+ 2)− 2n+2y|

<
1

2
+

1

4
1 +

1

4
1

= 1

Accordingly we make our definition:

let real_add f g n =
(f(n + 2) +/ g(n + 2)) ndiv (Int 4);;

We can define subtraction similarly, but the simplest approach is to build it
out of the functions that we already have:

#let real_sub f g = real_add f (real_neg g);;
real_sub : (num -> num) -> (num -> num) -> num -> num = <fun>

134 CHAPTER 9. EXAMPLES

It is a bit trickier to define multiplication, inverses and division. However
the cases where we multiply or divide by an integer are much easier and quite
common. It is worthwhile implementing these separately as they can be made
more efficient. We define:

fmx(n) = (mfx(n+ p+ 1)) ndiv 2p+1

where p is chosen so that 2p ≥ |m|. For correctness, we have:

|fmx(n)− 2n(mx)| ≤ 1

2
+ |mfx(n+ p+ 1)

2p+1
− 2n(mx)|

=
1

2
+

|m|
2p+1

|fx(n+ p+ 1)− 2n+p+1x|

<
1

2
+

|m|
2p+1

≤ 1

2
+

1

2

|m|
2p

≤ 1

2
+

1

2
= 1

In order to implement this, we need a function to find the appropriate p. The
following is crude but adequate:

let log2 =
let rec log2 x y =
if x </ Int 1 then y
else log2 (quo_num x (Int 2)) (y + 1) in

fun x -> log2 (x -/ Int 1) 0;;

The implementation is simply:

let real_intmul m x n =
let p = log2 (abs_num m) in
let p1 = p + 1 in
(m */ x(n + p1)) ndiv (Int 2 **/ Int p1);;

For division by an integer, we define:

fx/m(n) = fx(n) ndiv m

For correctness, we can ignore the trivial cases when m = 0, which should
never be used, and when m = ±1, since then the result is exact. Otherwise, we
assume |fx(n)− 2nx| < 1, so |fx(n)/m− 2nx/m| < 1

|m| ≤
1
2
, which, together with

the fact that |fx(n) ndiv m− fx(n)/m| ≤ 1
2
, yields the result. So we have:

let real_intdiv m x n =
x(n) ndiv (Int m);;

9.3. EXACT REAL ARITHMETIC 135

9.3.4 General multiplication

General multiplication is harder because the error in approximation for one num-
ber is multiplied by the magnitude of the second number. Therefore, before
the final accuracies are calculated, a preliminary evaluation of the arguments is
required to determine their approximate magnitude. We proceed as follows. Sup-
pose that we want to evaluate x + y to precision n. First we choose r and s so
that |r − s| ≤ 1 and r + s = n+ 2. That is, both r and s are slightly more than
half the required precision. We now evaluate fx(r) and fy(s), and select natural
numbers p and q that are the corresponding ‘binary logarithms’, i.e. |fx(r)| ≤ 2p

and |fy(s)| ≤ 2q. If both p and q are zero, then it is easy to see that we may
return just 0. Otherwise, remember that either p > 0 or q > 0 as we will need
this later. Now set:

k = n+ q − s+ 3 = q + r + 1

l = n+ p− r + 3 = p+ s+ 1

m = (k + l)− n = p+ q + 4

We claim that fxy(n) = (fx(k)fy(l)) ndiv 2m has the right error behaviour,
i.e. |fxy(n)− 2n(xy)| < 1. If we write:

2kx = fx(k) + δ

2ly = fy(l) + ε

with |δ| < 1 and |ε| < 1, we have:

|fxy(n)− 2n(xy)| ≤ 1

2
+ |fx(k)fy(l)

2m
− 2n(xy)|

=
1

2
+ 2−m|fx(k)fy(l)− 2k+lxy|

=
1

2
+ 2−m|fx(k)fy(l)− (fx(k) + δ)(fy(l) + ε)|

=
1

2
+ 2−m|δfy(l) + εfx(k) + δε|

≤ 1

2
+ 2−m(|δfy(l)|+ |εfx(k)|+ |δε|)

≤ 1

2
+ 2−m(|fy(l)|+ |fx(k)|+ |δε|)

<
1

2
+ 2−m(|fy(l)|+ |fx(k)|+ 1)

Now we have |fx(r)| ≤ 2p, so |2rx| < 2p + 1. Thus |2kx| < 2q+1(2p + 1),
so |fx(k)| < 2q+1(2p + 1) + 1, i.e. |fx(k)| ≤ 2q+1(2p + 1). Similarly |fy(l)| ≤
2p+1(2q + 1). Consequently:

136 CHAPTER 9. EXAMPLES

|fy(l)|+ |fx(k)|+ 1 ≤ 2p+1(2q + 1) + 2q+1(2p + 1) + 1

= 2p+q+1 + 2p+1 + 2p+q+1 + 2q+1 + 1

= 2p+q+2 + 2p+1 + 2q+1 + 1

Now for our error bound we require |fy(l)| + |fx(k)| + 1 ≤ 2m−1, or dividing
by 2 and using the discreteness of the integers:

2p+q+1 + 2p + 2q < 2p+q+2

We can write this as (2p+q +2p)+ (2p+q +2q) < 2p+q+1+2p+q+1, which is true
because we have either p > 0 or q > 0. So at last we are justified in defining:

let real_mul x y n =
let n2 = n + 2 in
let r = n2 / 2 in
let s = n2 - r in
let xr = x(r)
and ys = y(s) in
let p = log2 xr
and q = log2 ys in
if p = 0 & q = 0 then Int 0 else
let k = q + r + 1
and l = p + s + 1
and m = p + q + 4 in
(x(k) */ y(l)) ndiv (Int 2 **/ Int m);;

9.3.5 Multiplicative inverse

Next we will define the multiplicative inverse function. In order to get any sort
of upper bound on this, let alone a good approximation, we need to get a lower
bound for the argument. In general, there is no better way than to keep evaluating
the argument with greater and greater accuracy until we can bound it away from
zero. We will use the following lemma to justify the correctness of our procedure:

Lemma 9.1 If 2e ≥ n + k + 1, |fx(k)| ≥ 2e and |fx(k)− 2kx| < 1, where fx(k)
is an integer and e, n and k are natural numbers, then if we define

fy(n) = 2n+k ndiv fx(k)

we have |fy(n)− 2nx−1| < 1, i.e. the required bound.
Proof: The proof is rather tedious and will not be given in full. We just sketch
the necessary case splits. If |fx(k)| > 2e then a straightforward analysis gives the
result; the rounding in ndiv gives an error of at most 1

2
, and the remaining error

is < 1
2
. If |fx(k)| = 2e but n+ k ≥ e, then although the second component of the

9.3. EXACT REAL ARITHMETIC 137

error may now be twice as much, i.e. < 1, there is no rounding error because
fx(k) = ±2e divides into 2n+k exactly. (We use here the fact that 2e − 1 ≤ 2e−1,
because since 2e ≥ n + k + 1, e cannot be zero.) Finally, if |fx(k)| = 2e and
n+ k < e, we have |fy(n)− 2n 1

x
| < 1 because both |fy(n)| ≤ 1 and 0 < |2n 1

x
| < 1,

and both these numbers have the same sign. Q.E.D.

Now suppose we wish to find the inverse of x to accuracy n. First we evaluate
fx(0). There are two cases to distinguish:

1. If |fx(0)| > 2r for some natural number r, then choose the least natural
number k (which may well be zero) such that 2r + k ≥ n + 1, and set
e = r + k. We now return 2n+k ndiv fx(k). It is easy to see that the
conditions of the lemma are satisfied. Since |fx(0)| ≥ 2r + 1 we have
|x| > 2r, and so |2kx| > 2r+k. This means |fx(k)| > 2r+k − 1, and as
fx(k) is an integer, |fx(k)| ≥ 2r+k = 2e as required. The condition that
2e ≥ n = k + 1 is easy to check. Note that if r ≥ n we can immediately
deduce that fy(n) = 0 is a valid approximation.

2. If |fx(0)| ≤ 1, then we call the function ‘msd’ that returns the least p such
that |fx(p)| > 1. Note that this may in general fail to terminate if x = 0.
Now we set e = n+ p+1 and k = e+ p, and return 2n+k ndiv fx(k). Once
again the conditions for the lemma are satisfied. Since |fx(p)| ≥ 2, we have
|2px| > 1, i.e. |x| > 1

2p
. Hence |2kx| > 2k−p = 2e, and so |fx(k)| > 2e − 1,

i.e. |fx(k)| ≥ 2e.

To implement this, we first define the msd function:

let msd =
let rec msd n x =
if abs_num(x(n)) >/ Int 1 then n else msd (n + 1) x in

msd 0;;

and then translate the above mathematics into a simple program:

let real_inv x n =
let x0 = x(0) in
let k =
if x0 >/ Int 1 then

let r = log2 x0 - 1 in
let k0 = n + 1 - 2 * r in
if k0 < 0 then 0 else k0

else
let p = msd x in
n + 2 * p + 1 in

(Int 2 **/ Int (n + k)) ndiv (x(k));;

Now, of course, it is straightforward to define division:

let real_div x y = real_mul x (real_inv y);;

138 CHAPTER 9. EXAMPLES

9.3.6 Ordering relations

The interesting things about all these functions is that they are in fact uncom-
putable in general. The essential point is that it is impossible to decide whether
a given number is zero. We can keep approximating it to greater and greater
accuracy, but if the approximations always return 0, we cannot tell whether it is
going to do so indefinitely or whether the next step will give a nonzero answer.5

If x is not zero, then the search will eventually terminate, but if x is zero, it will
run forever.

Accepting this, it is not difficult to define the relational operators. To decide
the ordering relation of x and y it suffices to find an n such that |xn − yn| ≥ 2.
For example, if xn ≥ yn + 2 we have

2nx > xn − 1 ≥ yn + 1 > 2ny

and so x > y. We first write a general procedure to perform this search, and then
define all the orderings in terms of it. Note that the only way to arrive at the
reflexive orderings is to justify the irreflexive version!

let separate =
let rec separate n x y =
let d = x(n) -/ y(n) in
if abs_num(d) >/ Int 1 then d
else separate (n + 1) x y in

separate 0;;

let real_gt x y = separate x y >/ Int 0;;
let real_ge x y = real_gt x y;;
let real_lt x y = separate x y </ Int 0;;
let real_le x y = real_lt x y;;

9.3.7 Caching

In order to try out all the above functions, we would like to be able to print
out a decimal representation of some approximation to a real. This is not hard,
using some more standard facilities in the CAML library. If d decimal places are
desired, then we make n such that 2n > 10d and hence the accuracy corresponds
at least to the number of digits printed.

let view x d =
let n = 4 * d in
let out = x(n) // (Int 2 **/ Int n) in
approx_num_fix d out;;

5For a proof that it is uncomputable, simply wrap up the halting problem, by defining
f(n) = 1 if a certain Turing machine has halted after no more than n iterations, and f(n) = 0
otherwise.

9.3. EXACT REAL ARITHMETIC 139

Now we can test out some simple examples, which seem to work:

#let x = real_of_int 3;;
x : int -> num = <fun>
#let xi = real_inv x;;
xi : int -> num = <fun>
#let wun = real_mul x xi;;
wun : int -> num = <fun>
#view x 20;;
it : string = "3.00000000000000000000"
#view xi 20;;
it : string = ".33333333333333333333"
#view wun 20;;
it : string = "1.00000000000000000000"

However there is a subtle and serious bug in our implementation, which shows
itself if we try larger expressions. The problem is that subexpressions can be
evaluated many times. Most obviously, this happens if they occur several times
in the input expression. But even if they don’t, the multiplication, and even more
so, the inverse, require trial evaluations at differing accuracies. As the evaluation
propagates down to the bottom level, there is often an exponential buildup of
reevaluations. For example, the following is slow — it takes several seconds.

#let x1 = real_of_int 1 in
let x2 = real_mul x1 x1 in
let x3 = real_mul x2 x2 in
let x4 = real_mul x3 x3 in
let x5 = real_mul x4 x4 in
let x6 = real_mul x5 x5 in
let x7 = real_mul x6 x6 in
view x7 10;;
- : string = "+1.0000000000"

We can fix this problem using the idea of caching or memo functions (Michie
1968). We give each function a reference cell to remember the most accurate
version already calculated. If there is a second request for the same accuracy, it
can be returned immediately without further evaluation. What’s more, we can
always construct a lower-level approximation, say n, from a higher one, say n+k
with k ≥ 1. If we know that |fx(n+ k)− 2n+kx| < 1 then we have:

|fx(n+ k) ndiv 2k − 2nx| ≤ 1

2
+ |fx(n+ k)

2k
− 2nx|

=
1

2
+

1

2k
|fx(n+ k)− 2n+kx|

<
1

2
+

1

2k

≤ 1

140 CHAPTER 9. EXAMPLES

Hence we are always safe in returning fx(n + k) ndiv 2k. We can implement
this memo technique via a generic function memo to be inserted in each of the
previous functions:

let real_of_int k = memo (fun n -> (Int 2 **/ Int n) */ Int k);;

let real_neg f = memo (fun n -> minus_num(f n));;

let real_abs f = memo (fun n -> abs_num (f n));;

let real_add f g = memo (fun n ->
(f(n + 2) +/ g(n + 2)) ndiv (Int 4));;

let real_sub f g = real_add f (real_neg g);;

let real_intmul m x = memo (fun n ->
let p = log2 (abs_num m) in
let p1 = p + 1 in
(m */ x(n + p1)) ndiv (Int 2 **/ Int p1));;

let real_intdiv m x = memo (fun n ->
x(n) ndiv (Int m));;

let real_mul x y = memo (fun n ->
let n2 = n + 2 in
let r = n2 / 2 in
let s = n2 - r in
let xr = x(r)
and ys = y(s) in
let p = log2 xr
and q = log2 ys in
if p = 0 & q = 0 then Int 0 else
let k = q + r + 1
and l = p + s + 1
and m = p + q + 4 in
(x(k) */ y(l)) ndiv (Int 2 **/ Int m));;

let real_inv x = memo (fun n ->
let x0 = x(0) in
let k =
if x0 >/ Int 1 then
let r = log2 x0 - 1 in
let k0 = n + 1 - 2 * r in
if k0 < 0 then 0 else k0

else
let p = msd x in
n + 2 * p + 1 in

(Int 2 **/ Int (n + k)) ndiv (x(k)));;

let real_div x y = real_mul x (real_inv y);;

where

9.4. PROLOG AND THEOREM PROVING 141

let memo f =
let mem = ref (-1,Int 0) in
fun n -> let (m,res) = !mem in

if n <= m then
if m = n then res
else res ndiv (Int 2 **/ Int(m - n))

else
let res = f n in
mem := (n,res); res;;

Now the above sequence of multiplications is instantaneous. Here are a few
more examples:

#let pi1 = real_div (real_of_int 22) (real_of_int 7);;
pi1 : int -> num = <fun>
#view pi1 10;;
it : string = "+3.1428571429"
#let pi2 = real_div (real_of_int 355) (real_of_int 113);;
pi2 : int -> num = <fun>
#view pi2 10;;
it : string = "+3.1415929204"
#let pidiff = real_sub pi1 pi2;;
pidiff : int -> num = <fun>
#view pidiff 20;;
it : string = "+0.00126422250316055626"
#let ipidiff = real_inv pidiff;;
ipidiff : int -> num = <fun>
#view ipidiff 20;;
it : string = "+791.00000000000000000000"

Of course, everything we have done to date could be done with rational arith-
metic. Actually, it may happen that our approach is more efficient in certain
situations since we avoid calculating numbers that might have immense numer-
ators and denominators when we just need an approximation. Nevertheless, the
present approach really comes into its own when we want to define transcendental
functions like exp, sin etc. We will not cover this in detail for lack of space, but
it makes an interesting exercise. One approach is to use truncated Taylor series.
Note that finite summations can be evaluated directly rather than by iterating
the addition function; this leads to much better error behaviour.

9.4 Prolog and theorem proving

The language Prolog is popular in Artificial Intelligence research, and is used in
various practical applications such as expert systems and intelligent databases.
Here we will show how the main mechanism of Prolog, namely depth-first search
through a database of rules using unification and backtracking, can be imple-
mented in ML. We do not pretend that this is a full-blown implementation of

142 CHAPTER 9. EXAMPLES

Prolog, but it gives an accurate picture of the general flavour of the language,
and we will be able to run some simple examples in our system.

9.4.1 Prolog terms

Prolog code and data is represented using a uniform system of first order terms.
We have already defined a type of terms for our mathematical expressions, and
associated parsers and printers. Here we will use something similar, but not quite
the same. First of all, it simplifies some of the code if we treat constants as nullary
functions, i.e. functions that take an empty list of arguments. Accordingly we
define:

type term = Var of string
| Fn of string * (term list);;

Where we would formerly have used Const s, we will now use Fn(s,[]). Note
that we will treat functions of different arities (different numbers of arguments)
as distinct, even if they have the same name. Thus there is no danger of our
confusing constants with true functions.

9.4.2 Lexical analysis

In order to follow Prolog conventions, which include case sensitivity, we also
modify lexical analysis. We will not attempt to conform exactly to the full details
of Prolog, but one feature is very important: alphanumeric identifiers that begin
with an upper case letter or an underscore are treated as variables, while other
alphanumeric identifiers, along with numerals, are treated as constants. For
example X and Answer are variables while x and john are constants. We will
lump all symbolic identifiers together as constants too, but we will distinguish
the punctuation symbols: left and right brackets, commas and semicolons. Non-
punctuation symbols are collected together into the longest strings possible, so
symbolic identifiers need not consist only of one character.

type token = Variable of string
| Constant of string
| Punct of string;;

The lexer therefore looks like this:

9.4. PROLOG AND THEOREM PROVING 143

let lex =
let several p = many (some p) in
let collect(h,t) = h^(itlist (prefix ^) t "") in
let upper_alpha s = "A" <= s & s <= "Z" or s = "_"
and lower_alpha s = "a" <= s & s <= "z" or "0" <= s & s <= "9"
and punct s = s = "(" or s = ")" or s = "[" or s = "]"

or s = "," or s = "."
and space s = s = " " or s = "\n" or s = "\t" in
let alphanumeric s = upper_alpha s or lower_alpha s in
let symbolic s = not space s & not alphanumeric s & not punct s in
let rawvariable =
some upper_alpha ++ several alphanumeric >> (Variable o collect)

and rawconstant =
(some lower_alpha ++ several alphanumeric ||
some symbolic ++ several symbolic) >> (Constant o collect)

and rawpunct = some punct >> Punct in
let token =
(rawvariable || rawconstant || rawpunct) ++
several space >> fst in

let tokens = (several space ++ many token) >> snd in
let alltokens = (tokens ++ finished) >> fst in
fst o alltokens o explode;;

For example:

#lex "add(X,Y,Z) :- X is Y+Z.";;
- : token list =
[Constant "add"; Punct "("; Variable "X"; Punct ",";
Variable "Y"; Punct ","; Variable "Z"; Punct ")";
Constant ":-"; Variable "X"; Constant "is"; Variable "Y";
Constant "+"; Variable "Z"; Punct "."]

9.4.3 Parsing

The basic parser is pretty much the same as before; the printer is exactly the
same. The main modification to the printer is that we allow Prolog lists to be
written in a more convenient notation. Prolog has ‘.’ and ‘nil’ corresponding to
ML’s ‘::’ and ‘[]’, and we set up the parser so that lists can be written much
as in ML, e.g. ‘[1,2,3]’. We also allow the Prolog notation ‘[H|T]’ instead of
‘cons(H,T)’, typically used for pattern-matching. After the basic functions:

let variable =
fun (Variable s::rest) -> s,rest
| _ -> raise Noparse;;

let constant =
fun (Constant s::rest) -> s,rest
| _ -> raise Noparse;;

144 CHAPTER 9. EXAMPLES

we have a parser for terms and also for Prolog rules, of these forms:

term.

term :- term, . . . , term.

The parsers are as follows:

let rec atom input
= (constant ++ a (Punct "(") ++ termlist ++ a (Punct ")")

>> (fun (((name,_),args),_) -> Fn(name,args))
|| constant

>> (fun s -> Fn(s,[]))
|| variable

>> (fun s -> Var s)
|| a (Punct "(") ++ term ++ a (Punct ")")

>> (snd o fst)
|| a (Punct "[") ++ list

>> snd) input
and term input = precedence (!infixes) atom input
and termlist input

= (term ++ a (Punct ",") ++ termlist
>> (fun ((h,_),t) -> h::t)

|| term
>> (fun h -> [h])) input

and list input
= (term ++ (a (Constant "|") ++ term ++ a (Punct "]")

>> (snd o fst)
|| a (Punct ",") ++ list

>> snd
|| a (Punct "]")

>> (K (Fn("[]",[]))))
>> (fun (h,t) -> Fn(".",[h; t]))

|| a (Punct "]")
>> (K (Fn("[]",[])))) input

and rule input
= (term ++ (a (Punct ".")

>> (K [])
|| a (Constant ":-") ++ term ++

many (a (Punct ",") ++ term >> snd) ++
a (Punct ".")

>> (fun (((_,h),t),_) -> h::t))) input;;

let parse_term = fst o (term ++ finished >> fst) o lex;;

let parse_rules = fst o (many rule ++ finished >> fst) o lex;;

9.4.4 Unification

Prolog uses a set of rules to solve a current goal by trying to match one of the rules
against the goal. A rule consisting of a single term can solve a goal immediately.

9.4. PROLOG AND THEOREM PROVING 145

In the case of a rule term :- term1, . . . , termn., if the goal matches term, then
Prolog needs to solve each termi as a subgoal in order to finish the original goal.

However, goals and rules do not have to be exactly the same. Instead, Prolog
assigns variables in both the goal and the rule to make them match up, a process
known as unification. This means that we can end up proving a special case of
the original goal, e.g. P (f(X)) instead of P (Y). For example:

• To unify f(g(X), Y) and f(g(a), X) we can set X = a and Y = a. Then
both terms are f(g(a), a).

• To unify f(a,X, Y) and f(X, a, Z) we can set X = a and Y = Z, and then
both terms are f(a, a, Z).

• It is impossible to unify f(X) and X.

In general, unifiers are not unique. For example, in the second example we
could choose to set Y = f(b) and Z = f(b). However one can always choose one
that is most general, i.e. any other unification can be reached from it by further
instantiation (compare most general types in ML). In order to find it, roughly
speaking, one need only descend the two terms recursively in parallel, and on
finding a variable on either side, assigns it to whatever the term on the other
side is. One also needs to check that the variable hasn’t already been assigned
to something else, and that it doesn’t occur in the term being assigned to it (as
in the last example above). A simple implementation of this idea follows. We
maintain an association list giving instantiations already made, and we look each
variable up to see if it is already assigned before proceeding. We use the existing
instantiations as an accumulator.

let rec unify tm1 tm2 insts =
match tm1 with
Var(x) ->

(try let tm1’ = assoc x insts in
unify tm1’ tm2 insts

with Not_found ->
augment (x,tm2) insts)

| Fn(f1,args1) ->
match tm2 with
Var(y) ->
(try let tm2’ = assoc y insts in

unify tm1 tm2’ insts
with Not_found ->

augment (y,tm1) insts)
| Fn(f2,args2) ->

if f1 = f2
then itlist2 unify args1 args2 insts
else raise (error "functions do not match");;

146 CHAPTER 9. EXAMPLES

where the instantiation lists need to be augmented with some care to avoid the
so-called ‘occurs check’ problem. We must disallow instantiation of X to a non-
trivial term involving X, as in the third example above. Most real Prologs ignore
this, either for (claimed) efficiency reasons or in order to allow weird cyclic datas-
tructures instead of simple first order terms.

let rec occurs_in x =
fun (Var y) -> x = y
| (Fn(_,args)) -> exists (occurs_in x) args;;

let rec subst insts = fun
(Var y) -> (try assoc y insts with Not_found -> tm)

| (Fn(f,args)) -> Fn(f,map (subst insts) args);;

let raw_augment =
let augment1 theta (x,s) =
let s’ = subst theta s in
if occurs_in x s & not(s = Var(x))
then raise (error "Occurs check")
else (x,s’) in

fun p insts -> p::(map (augment1 [p]) insts);;

let augment (v,t) insts =
let t’ = subst insts t in match t’ with
Var(w) -> if w <= v then

if w = v then insts
else raw_augment (v,t’) insts

else raw_augment (w,Var(v)) insts
| _ -> if occurs_in v t’

then raise (error "Occurs check")
else raw_augment (v,t’) insts;;

9.4.5 Backtracking

Prolog proceeds by depth-first search, but it may backtrack: even if a rule uni-
fies successfully, if all the remaining goals cannot be solved under the resulting
instantiations, then another initial rule is tried. Thus we consider the whole list
of goals rather than one at a time, to give the right control strategy.

9.4. PROLOG AND THEOREM PROVING 147

let rec first f =
fun [] -> raise (error "No rules applicable")
| (h::t) -> try f h with error _ -> first f t;;

let rec expand n rules insts goals =
first (fun rule ->
if goals = [] then insts else
let conc,asms =

rename_rule (string_of_int n) rule in
let insts’ = unify conc (hd goals) insts in
let local,global = partition

(fun (v,_) -> occurs_in v conc or
exists (occurs_in v) asms) insts’ in

let goals’ = (map (subst local) asms) @
(tl goals) in

expand (n + 1) rules global goals’) rules;;

Here we use a function ‘rename’ to generate fresh variables for the rules each
time:

let rec rename s =
fun (Var v) -> Var("~"^v^s)
| (Fn(f,args)) -> Fn(f,map (rename s) args);;

let rename_rule s (conc,asms) =
(rename s conc,map (rename s) asms);;

Finally, we can package everything together in a function prolog that tries
to solve a given goal using the given rules:

type outcome = No | Yes of (string * term) list;;

let prolog rules goal =
try let insts = expand 0 rules [] [goal] in

Yes(filter (fun (v,_) -> occurs_in v goal)
insts)

with error _ -> No;;

This says either that the goal cannot be solved, or that it can be solved with
the given instantiations. Note that we only return one answer in this latter case,
but this is easy to change if desired.

9.4.6 Examples

We can use the Prolog interpreter just written to try some simple examples from
Prolog textbooks. For example:

148 CHAPTER 9. EXAMPLES

#let rules = parse_rules
"male(albert).
male(edward).
female(alice).
female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).
sister_of(X,Y) :-

female(X),
parents(X,M,F),
parents(Y,M,F).";;

rules : (term * term list) list =
[‘male(albert)‘, []; ‘male(edward)‘, [];
‘female(alice)‘, []; ‘female(victoria)‘, [];
‘parents(edward,victoria,albert)‘, [];
‘parents(alice,victoria,albert)‘, [];
‘sister_of(X,Y)‘,
[‘female(X)‘; ‘parents(X,M,F)‘; ‘parents(Y,M,F)‘]]

#prolog rules ("sister_of(alice,edward)");;
- : outcome = Yes []
#prolog rules (parse_term "sister_of(alice,X)");;
- : outcome = Yes ["X", ‘edward‘]
#prolog rules (parse_term "sister_of(X,Y)");;
- : outcome = Yes ["Y", ‘edward‘; "X", ‘alice‘]

The following are similar to some elementary ML list operations. Since Prolog
is relational rather than functional, it is possible to use Prolog queries in a more
flexible way, e.g. ask what arguments would give a certain result, rather than
vice versa:

#let r = parse_rules
"append([],L,L).
append([H|T],L,[H|A]) :- append(T,L,A).";;

r : (term * term list) list =
[‘append([],L,L)‘, [];
‘append(H . T,L,H . A)‘, [‘append(T,L,A)‘]]

#prolog r (parse_term "append([1,2],[3],[1,2,3])");;
- : outcome = Yes []
#prolog r (parse_term "append([1,2],[3,4],X)");;
- : outcome = Yes ["X", ‘1 . (2 . (3 . (4 . [])))‘]
#prolog r (parse_term "append([3,4],X,X)");;
- : outcome = No
#prolog r (parse_term "append([1,2],X,Y)");;
- : outcome = Yes ["Y", ‘1 . (2 . X)‘]

In such cases, Prolog seems to be showing an impressive degree of intelligence.
However under the surface it is just using a simple search strategy, and this can
easily be thwarted. For example, the following loops indefinitely:

#prolog r (parse_term "append(X,[3,4],X)");;

9.4. PROLOG AND THEOREM PROVING 149

9.4.7 Theorem proving

Prolog is acting as a simple theorem prover, using a database of logical facts
(the rules) in order to prove a goal. However it is rather limited in the facts
it can prove, partly because its depth-first search strategy is incomplete, and
partly because it can only make logical deductions in certain patterns. It is
possible to make Prolog-like systems that are more powerful, e.g. see Stickel
(1988). In what follows, we will just show how to build a more capable theorem
prover using essentially similar technology, including the unification code and an
identical backtracking strategy.

In particular, unification is an effective way of deciding how to specialize
universally quantified variables. For example, given the facts that ∀X. p(X) ⇒
q(X) and p(f(a)), we can unify the two expressions involving p and thus discover
that we need to set X to f(a). By contrast, the very earliest theorem provers
tried all possible terms built up from the available constants and functions (the
‘Herbrand base’).

Usually, depth-first search would go into an infinite loop, so we need to modify
the Prolog strategy slightly. We will use depth first iterative deepening. This
means that the search depth has a hard limit, and attempts to exceed it cause
backtracking. However, if no proof is found at a given depth, the bound is
increased and another attempt is made. Thus, first one searches for proofs of
depth 1, and if that fails, searches for one of depth 2, then depth 3 and so on.
For ‘depth’ one can use various parameters, e.g. the height or overall size of the
search tree; we will use the number of unifiable variables introduced.

Manipulating formulas

We will simply use our standard first order terms to denote formulas, introducing
new constants for the logical operators. Many of these are written infix.

Operator Meaning
~(p) not p
p & q p and q
p | q p or q
p --> q p implies q
p <-> q p if and only if q
forall(X,p) for all X, p
exists(X,p) there exists an X such that p

An alternative would be to introduce a separate type of formulas, but this
would require separate parsing and printing support. We will avoid this, for the
sake of simplicity.

150 CHAPTER 9. EXAMPLES

Preprocessing formulas

It’s convenient if the main part of the prover need not cope with implications
and ‘if and only if’s. Therefore we first define a function that eliminates these in
favour of the other connectives.

let rec proc tm =
match tm with
Fn("~",[t]) -> Fn("~",[proc t])

| Fn("&",[t1; t2]) -> Fn("&",[proc t1; proc t2])
| Fn("|",[t1; t2]) -> Fn("|",[proc t1; proc t2])
| Fn("-->",[t1; t2]) ->

proc (Fn("|",[Fn("~",[t1]); t2]))
| Fn("<->",[t1; t2]) ->

proc (Fn("&",[Fn("-->",[t1; t2]);
Fn("-->",[t2; t1])]))

| Fn("forall",[x; t]) -> Fn("forall",[x; proc t])
| Fn("exists",[x; t]) -> Fn("exists",[x; proc t])
| t -> t;;

The next step is to push the negations down the formula, putting it into so-
called ‘negation normal form’ (NNF). We define two mutually recursive functions
that create NNF for a formula, and its negation.

let rec nnf_p tm =
match tm with
Fn("~",[t]) -> nnf_n t

| Fn("&",[t1; t2]) -> Fn("&",[nnf_p t1; nnf_p t2])
| Fn("|",[t1; t2]) -> Fn("|",[nnf_p t1; nnf_p t2])
| Fn("forall",[x; t]) -> Fn("forall",[x; nnf_p t])
| Fn("exists",[x; t]) -> Fn("exists",[x; nnf_p t])
| t -> t

and nnf_n tm =
match tm with
Fn("~",[t]) -> nnf_p t

| Fn("&",[t1; t2]) -> Fn("|",[nnf_n t1; nnf_n t2])
| Fn("|",[t1; t2]) -> Fn("&",[nnf_n t1; nnf_n t2])
| Fn("forall",[x; t]) -> Fn("exists",[x; nnf_n t])
| Fn("exists",[x; t]) -> Fn("forall",[x; nnf_n t])
| t -> Fn("~",[t]);;

We will convert the negation of the input formula into negation normal form,
and the main prover will then try to derive a contradiction from it. This will
suffice to prove the original formula.

The main prover

At each stage, the prover has a current formula, a list of formulas yet to be
considered, and a list of literals. It is trying to reach a contradiction. The
following strategy is employed:

9.4. PROLOG AND THEOREM PROVING 151

• If the current formula is ‘p & q’, then consider ‘p’ and ‘q’ separately, i.e.
make ‘p’ the current formula and add ‘q’ to the formulas to be considered.

• If the current formula is ‘p | q’, then try to get a contradiction from ‘p’
and then one from ‘q’.

• If the current formula is ‘forall(X,p)’, invent a new variable to replace ‘X’:
the right value can be discovered later by unification.

• If the current formula is ‘exists(X,p)’, invent a new constant to replace ‘X’.

• Otherwise, the formula must be a literal, so try to unify it with a contra-
dictory literal.

• If this fails, add it to the list of literals, and proceed with the next formula.

We desire a similar backtracking strategy to Prolog: only if the current in-
stantiation allow all remaining goals to be solved do we accept it. We could use
lists again, but instead we use continuations. A continuation is a function that
is passed to another function and can be called from within it to ‘perform the
rest of the computation’. In our case, it takes a list of instantiations and tries to
solve the remaining goals under these instantiations. Thus, rather than explicitly
trying to solve all remaining goals, we simply try calling the continuation.

let rec prove fm unexp pl nl n cont i =
if n < 0 then raise (error "No proof") else
match fm with
Fn("&",[p;q]) ->

prove p (q::unexp) pl nl n cont i
| Fn("|",[p;q]) ->

prove p unexp pl nl n
(prove q unexp pl nl n cont) i

| Fn("forall",[Var x; p]) ->
let v = mkvar() in
prove (subst [x,Var v] p) (unexp@[fm]) pl nl (n - 1) cont i

| Fn("exists",[Var x; p]) ->
let v = mkvar() in
prove (subst [x,Fn(v,[])] p) unexp pl nl (n - 1) cont i

| Fn("~",[t]) ->
(try first (fun t’ -> let i’ = unify t t’ i in

cont i’) pl
with error _ ->

prove (hd unexp) (tl unexp) pl (t::nl) n cont i)
| t ->

(try first (fun t’ -> let i’ = unify t t’ i in
cont i’) nl

with error _ ->
prove (hd unexp) (tl unexp) (t::pl) nl n cont i);;

152 CHAPTER 9. EXAMPLES

We set up the final prover as follows:

let prover =
let rec prove_iter n t =
try let insts = prove t [] [] [] n I [] in

let globinsts = filter
(fun (v,_) -> occurs_in v t) insts in

n,globinsts
with error _ -> prove_iter (n + 1) t in

fun t -> prove_iter 0 (nnf_n(proc(parse_term t)));;

This implements the iterative deepening strategy. It tries to find the proof
with the fewest universal instantiations; if it succeeds, it returns the number re-
quired and any toplevel instantiations, throwing away instantiations for internally
created variables.

Examples

Here are some simple examples from Pelletier (1986).

#let P1 = prover "p --> q <-> ~(q) --> ~(p)";;
P1 : int * (string * term) list = 0, []
#let P13 = prover "p | q & r <-> (p | q) & (p | r)";;
P13 : int * (string * term) list = 0, []
#let P16 = prover "(p --> q) | (q --> p)";;
P16 : int * (string * term) list = 0, []
#let P18 = prover "exists(Y,forall(X,p(Y)-->p(X)))";;
P18 : int * (string * term) list = 2, []
#let P19 = prover "exists(X,forall(Y,forall(Z,

(p(Y)-->q(Z))-->p(X)-->q(X))))";;
P19 : int * (string * term) list = 6, []

A bigger example is the following:

#let P55 = prover
"lives(agatha) & lives(butler) & lives(charles) &
(killed(agatha,agatha) | killed(butler,agatha) |
killed(charles,agatha)) &

(forall(X,forall(Y,
killed(X,Y) --> hates(X,Y) & ~(richer(X,Y))))) &

(forall(X,hates(agatha,X)
--> ~(hates(charles,X)))) &

(hates(agatha,agatha) & hates(agatha,charles)) &
(forall(X,lives(X) & ~(richer(X,agatha))

--> hates(butler,X))) &
(forall(X,hates(agatha,X) --> hates(butler,X))) &
(forall(X,~(hates(X,agatha)) | ~(hates(X,butler))

| ~(hates(X,charles))))
--> killed(agatha,agatha)";;

P55 : int * (string * term) list = 6, []

9.4. PROLOG AND THEOREM PROVING 153

In fact, the prover can work out ‘whodunit’:

#let P55’ = prover
"lives(agatha) & lives(butler) & lives(charles) &
(killed(agatha,agatha) | killed(butler,agatha) |
killed(charles,agatha)) &

(forall(X,forall(Y,
killed(X,Y) --> hates(X,Y) & ~(richer(X,Y))))) &

(forall(X,hates(agatha,X)
--> ~(hates(charles,X)))) &

(hates(agatha,agatha) & hates(agatha,charles)) &
(forall(X,lives(X) & ~(richer(X,agatha))

--> hates(butler,X))) &
(forall(X,hates(agatha,X) --> hates(butler,X))) &
(forall(X,~(hates(X,agatha)) | ~(hates(X,butler))

| ~(hates(X,charles))))
--> killed(X,agatha)";;

P55’ : int * (string * term) list = 6, ["X", ‘agatha‘]

Further reading

Symbolic differentiation is a classic application of functional languages. Other
symbolic operations are major research issues in their own right — Davenport,
Siret, and Tournier (1988) give a readable overview of what computer algebra
systems can do and how they work. Paulson (1983) discusses the kind of simpli-
fication strategy we use here in a much more general setting.

Parsing with higher order functions is another popular example. It seems to
have existed in the functional programming folklore for a long time; an early
treatment is given by Burge (1975). Our presentation has been influenced by the
treatments in Paulson (1991) and Reade (1989).

The first definition of ‘computable real number’ in our sense was in the orig-
inal paper of Turing (1936). His approach was based on decimal expansions,
but he needed to modify it (Turing 1937) for reasons explored in the exercises
below. The approach to real arithmetic given here follows the work of Boehm,
Cartwright, O’Donnel, and Riggle (1986). More recently a high-performance
implementation in CAML Light has been written by Ménissier-Morain (1994),
whose thesis (in French) contains detailed proofs of correctness for all the al-
gorithms for elementary transcendental functions. For an alternative approach
using ‘linear fractional transformations’, see Potts (1996).

Our approach to Prolog search and backtracking, either using lists or contin-
uations, is fairly standard. For more on implementing Prolog, see for example
Boizumault (1993), while for more on the actual use of the language, the classic
text by Clocksin and Mellish (1987) is recommended. A detailed discussion of
continuations in their many guises is given by Reynolds (1993). The unification
algorithm given here is simple and purely functional, but rather inefficient. For

154 CHAPTER 9. EXAMPLES

faster imperative algorithms, see Martelli and Montanari (1982). Our theorem

prover is based on leanTAP (Beckert and Posegga 1995). For another important
theorem proving method conveniently based on Prolog-style search, look at the
Prolog Technology Theorem Prover (Stickel 1988).

Exercises

1. Modify the printer so that each operator has an associativity, used when
printing iterated cases of the operator to avoid excessive parentheses.

2. The differentiation rules for inverses 1/g(x) and quotients f(x)/g(x) are
not valid when g(x) = 0. Several others for functions like ln are also true
only under certain conditions. Actually most commercial computer algebra
systems ignore this fact. However, try to do better, by writing a new version
of the differentiator that not only produces the derivative but also a list of
conditions that must be assumed for the derivative to be valid.

3. Try programming a simple procedure for indefinite integration. In general,
it will not be able to do every integral, but try to make it understand a few
basic principles.6

4. Read the documentation for the format library, and try to implement a
printer that behaves better when the output is longer than one line.

5. What happens if the parser functions like term, atom etc. are all eta-reduced
by deleting the word input? What happens if precedence is consistently
eta-reduced by deleting input?

6. How well do precedence parsers generated by precedence treat distinct
operators with the same precedence? How can the behaviour be improved?
Can you extend it to allow a mix of left and right associative operators?
For example, one really wants subtraction to associate to the left.

7. Rewrite the parser so that it gives helpful error messages when parsing fails.

8. Try representing a real number by the function that generates the first n
digits in a decimal expansion. Can you implement the addition function?

9. (*) How can you retain a positional representation while making the basic
operations computable?

6In fact there are algorithms that can integrate all algebraic expressions (not involving sin,
ln etc.) — see Davenport (1981).

9.4. PROLOG AND THEOREM PROVING 155

10. Implement multiprecision integer arithmetic operations yourself. Make your
multiplication algorithm O(nlog23) where n is the number of digits in the
arguments.

11. Using memo as we have defined it, is it the case that whatever series of
arguments a function is applied to, it will always give the same answer for
the same argument? That is, are the functions true mathematical functions
despite the internal use of references?

12. Write a parser-evaluator to read real-valued expressions and create the func-
tional representation for the answer.

13. (*) Extend the real arithmetic routines to some functions like exp and sin.

14. Our preprocessing and negation normal form process can take exponential
time in the length of the input in the case of many ‘if and only if’s. Modify
it so that it is linear in this number.

15. Extend the initial transformation into negation normal form so that it gives
Skolem normal form.7

16. (*) Implement a more efficient unification algorithm, e.g. following Martelli
and Montanari (1982).

17. (*) Implement a version of the Prolog Technology Theorem Prover (Stickel
1988)

7Skolem normal form is covered in most elementary logic books, e.g. Enderton (1972).

Bibliography

Aagaard, M. and Leeser, M. (1994) Verifying a logic synthesis tool in Nuprl: A
case study in software verification. In v. Bochmann, G. and Probst, D. K.
(eds.), Computer Aided Verification: Proceedings of the Fourth International
Workshop, CAV’92, Volume 663 of Lecture Notes in Computer Science, Mon-
treal, Canada, pp. 69–81. Springer Verlag.

Abramsky, S. (1990) The lazy lambda-calculus. In Turner, D. A. (ed.), Research
Topics in Functional Programming, Year of Programming series, pp. 65–116.
Addison-Wesley.

Adel’son-Vel’skii, G. M. and Landis, E. M. (1962) An algorithm for the organi-
zation of information. Soviet Mathematics Doklady , 3, 1259–1262.

Backus, J. (1978) Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the ACM ,
21, 613–641.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics, Vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland.

Barwise, J. (1989) Mathematical proofs of computer correctness. Notices of the
American Mathematical Society , 7, 844–851.

Beckert, B. and Posegga, J. (1995) leanTAP : Lean, tableau-based deduction. Jour-
nal of Automated Reasoning , 15, 339–358. Also available on the Web from
http://i12www.ira.uka.de/~posegga/LeanTaP.ps.Z.

Boehm, H. J., Cartwright, R., O’Donnel, M. J., and Riggle, M. (1986) Exact real
arithmetic: a case study in higher order programming. In Conference Record of
the 1986 ACM Symposium on LISP and Functional Programming, pp. 162–173.
Association for Computing Machinery.

Boizumault, P. (1993) The implementation of Prolog. Princeton series in
computer science. Princeton University Press. Translated from ‘Prolog:
l’implantation’ by A. M. Djamboulian and J. Fattouh.

156

BIBLIOGRAPHY 157

Boyer, R. S. and Moore, J. S. (1979) A Computational Logic. ACM Monograph
Series. Academic Press.

Burge, W. H. (1975) Recursive Programming Techniques. Addison-Wesley.

Church, A. (1936) An unsolvable problem of elementary number-theory. Ameri-
can Journal of Mathematics , 58, 345–363.

Church, A. (1940) A formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5, 56–68.

Church, A. (1941) The calculi of lambda-conversion, Volume 6 of Annals of Math-
ematics Studies. Princeton University Press.

Clocksin, W. F. and Mellish, C. S. (1987) Programming in Prolog (3rd ed.).
Springer-Verlag.

Curry, H. B. (1930) Grundlagen der Kombinatorischen Logik. American Journal
of Mathematics , 52, 509–536, 789–834.

Davenport, J. H. (1981) On the integration of algebraic functions, Volume 102 of
Lecture Notes in Computer Science. Springer-Verlag.

Davenport, J. H., Siret, Y., and Tournier, E. (1988) Computer algebra: systems
and algorithms for algebraic computation. Academic Press.

Davis, M. D., Sigal, R., and Weyuker, E. J. (1994) Computability, complexity, and
languages: fundamentals of theoretical computer science (2nd ed.). Academic
Press.

de Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34, 381–392.

DeMillo, R., Lipton, R., and Perlis, A. (1979) Social processes and proofs of
theorems and programs. Communications of the ACM , 22, 271–280.

Dijkstra, E. W. (1976) A Discipline of Programming. Prentice-Hall.

Enderton, H. B. (1972) A Mathematical Introduction to Logic. Academic Press.

Frege, G. (1893) Grundgesetze der Arithmetik begriffsschrift abgeleitet. Jena. Par-
tial English translation by Montgomery Furth in ‘The basic laws of arithmetic.
Exposition of the system’, University of California Press, 1964.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989) Proofs and Types, Volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press.

158 BIBLIOGRAPHY

Gordon, A. D. (1994) Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press.

Gordon, M. J. C. (1988) Programming Language Theory and its Implementa-
tion: applicative and imperative paradigms. Prentice-Hall International Series
in Computer Science. Prentice-Hall.

Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979) Edinburgh LCF: A
Mechanised Logic of Computation, Volume 78 of Lecture Notes in Computer
Science. Springer-Verlag.

Henson, M. C. (1987) Elements of functional languages. Blackwell Scientific.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinators and λ-
Calculus, Volume 1 of London Mathematical Society Student Texts. Cambridge
University Press.

Hudak, P. (1989) Conception, evolution, and application of functional program-
ming languages. ACM Computing Surveys , 21, 359–411.

Huet, G. (1980) Confluent reductions: abstract properties and applications to
term rewriting systems. Journal of the ACM , 27, 797–821.

Kleene, S. C. (1935) A theory of positive integers in formal logic. American
Journal of Mathematics , 57, 153–173, 219–244.

Lagarias, J. (1985) The 3x + 1 problem and its generalizations. The
American Mathematical Monthly , 92, 3–23. Available on the Web as
http://www.cecm.sfu.ca/organics/papers/lagarias/index.html.

Landin, P. J. (1966) The next 700 programming languages. Communications of
the ACM , 9, 157–166.

Lindemann, F. (1882) Über die Zahl π. Mathematische Annalen, 120, 213–225.

Mairson, H. G. (1990) Deciding ML typability is complete for deterministic expo-
nential time. In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages (POPL), San Francisco, pp. 382–401.
Association for Computing Machinery.

Mairson, H. G. (1991) Outline of a proof theory of parametricity. In Hughes, J.
(ed.), 1991 ACM Symposium on Functional Programming and Computer Archi-
tecture, Volume 523 of Lecture Notes in Computer Science, Harvard University,
pp. 313–327.

Martelli, A. and Montanari, U. (1982) An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems , 4, 258–282.

BIBLIOGRAPHY 159

Mauny, M. (1995) Functional programming using CAML Light. Available on the
Web from http://pauillac.inria.fr/caml/tutorial/index.html.

Ménissier-Morain, V. (1994) Arithmétique exacte, conception, algorithmique
et performances d’une implémentation informatique en précision arbitraire.
Thèse, Université Paris 7.

Michie, D. (1968) “Memo” functions and machine learning. Nature, 218, 19–22.

Milner, R. (1978) A theory of type polymorphism in programming. Journal of
Computer and Systems Sciences , 17, 348–375.

Mycroft, A. (1981) Abstract interpretation and optimising transformations of
applicative programs. Technical report CST-15-81, Computer Science Depart-
ment, Edinburgh University, King’s Buildings, Mayfield Road, Edinburgh EH9
3JZ, UK.

Neumann, P. G. (1995) Computer-related risks. Addison-Wesley.

Oppen, D. (1980) Prettyprinting. ACM Transactions on Programming Languages
and Systems , 2, 465–483.

Paulson, L. C. (1983) A higher-order implementation of rewriting. Science of
Computer Programming , 3, 119–149.

Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University
Press.

Pelletier, F. J. (1986) Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning , 2, 191–216. Errata, JAR 4 (1988),
235–236.

Peterson, I. (1996) Fatal Defect : Chasing Killer Computer Bugs. Arrow.

Potts, P. (1996) Computable real arithmetic using linear fractional trans-
formations. Unpublished draft for PhD thesis, available on the Web as
http://theory.doc.ic.ac.uk/~pjp/pub/phd/draft.ps.gz.

Raphael, B. (1966) The structure of programming languages. Communications
of the ACM , 9, 155–156.

Reade, C. (1989) Elements of Functional Programming. Addison-Wesley.

Reynolds, J. C. (1993) The discoveries of continuations. Lisp and Symbolic Com-
putation, 6, 233–247.

160 BIBLIOGRAPHY

Robinson, J. A. (1994) Logic, computers, Turing and von Neumann. In Furukawa,
K., Michie, D., and Muggleton, S. (eds.), Machine Intelligence 13, pp. 1–35.
Clarendon Press.

Schönfinkel, M. (1924) Über die Bausteine der mathematischen Logik. Mathe-
matische Annalen, 92, 305–316. English translation, ‘On the building blocks
of mathematical logic’ in van Heijenoort (1967), pp. 357–366.

Schwichtenberg, H. (1976) Definierbare Funktionen im λ-Kalkül mit Typen.
Arkhiv für mathematische Logik und Grundlagenforschung , 17, 113–114.

Stickel, M. E. (1988) A Prolog Technology Theorem Prover: Implementation by
an extended Prolog compiler. Journal of Automated Reasoning , 4, 353–380.

Turing, A. M. (1936) On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society (2),
42, 230–265.

Turing, A. M. (1937) Correction to Turing (1936). Proceedings of the London
Mathematical Society (2), 43, 544–546.

van Heijenoort, J. (ed.) (1967) From Frege to Gödel: A Source Book in Mathe-
matical Logic 1879–1931. Harvard University Press.

Whitehead, A. N. (1919) An Introduction to Mathematics. Williams and Norgate.

Whitehead, A. N. and Russell, B. (1910) Principia Mathematica (3 vols). Cam-
bridge University Press.

Winskel, G. (1993) The formal semantics of programming languages: an intro-
duction. Foundations of computing. MIT Press.

Wittgenstein, L. (1922) Tractatus Logico-Philosophicus. Routledge & Kegan
Paul.

Wright, A. (1996) Polymorphism for imperative languages without imperative
types. Technical Report TR93-200, Rice University.

