

This page intentionally left blank

The Standard ML Basis Manual

This book provides a description of the Standard ML (SML) Basis Library, the standard
library for the SML language. For programmers using SML, it provides a complete
description of the modules, types, and functions comprising the library, which is supported
by all conforming implementations of the language. The book serves as a programmer’s
reference, providing manual pages with concise descriptions. In addition, it presents
the principles and rationales used in designing the library and relates these to idioms and
examples for using the library. A particular emphasis of the library is to encourage the use
of SML in serious system programming. Major features of the library include I/O, a large
collection of primitive types, support for internationalization, and a portable operating
system interface.

This manual will be an indispensable reference for students, professional programmers,
and language designers.

Emden R. Gansner is a Principal Technical Staff Member at AT&T Laboratories. Having
taught at several prestigious universities, he is currently an adjunct Professor of Com-
puter Science at Stevens Institute of Technology. He has published articles in numerous
journals, such as the Journal of Combinatorial Theory, Discrete Mathematics, and SIAM
Journal of Algorithms and Discrete Methods. He also jointly received a patent on a
technique for drawing directed graphs.

John H. Reppy is an Associate Professor of Computer Science at the University of
Chicago. He recently served as Associate Editor of ACM TOPLAS and is the author
of Concurrent Programming in ML, also published by Cambridge University Press.

The Standard ML Basis Manual

Edited by

Emden R. Gansner
AT&T Laboratories

John H. Reppy
University of Chicago

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-79142-7

isbn-13 978-0-521-79478-7

isbn-13 978-0-511-19435-1

© AT&T Corporation and Lucent Technologies Inc. 2004

2004

Information on this title: www.cambridge.org/9780521791427

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-19435-8

isbn-10 0-521-79142-1

isbn-10 0-521-79478-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback

Contents

Foreword by Robin Milner page ix

Preface xi
Overview of the book xii
Contributors xiii
Acknowledgments xiii

1 Introduction 1
1.1 Design rules and conventions 2
1.2 Documentation conventions 7

2 Library modules 11
2.1 Required modules 11
2.2 Optional modules 12

3 Top-level environment 19
3.1 Modules in the top-level environment 19
3.2 Top-level type, exception, and value identifiers 19
3.3 Overloaded identifiers 22
3.4 Infix identifiers 23
3.5 The process environment 23

4 General usages 25
4.1 Linear ordering 26
4.2 Option 27
4.3 Exception handling 29
4.4 Miscellaneous functions 30

vi Contents

5 Text 33
5.1 Characters 33
5.2 Strings and substrings 34
5.3 Conversions to and from text 34
5.4 Taking strings apart 38

6 Numerics 43
6.1 Numerical conversions 43
6.2 Floating-point numbers 45
6.3 Packed data 47

7 Sequential data 51
7.1 Common patterns 51
7.2 Lists 56
7.3 Array modification 57
7.4 Subsequences and slices 57
7.5 Operating on pairs of lists 58
7.6 Two-dimensional arrays 59

8 Input/Output 61
8.1 The I/O model 61
8.2 Using the I/O subsystem 65

9 Systems programming 81
9.1 Portable systems programming 81
9.2 Operating-system specific programming 90

10 Network programming with sockets 99
10.1 Overview 99
10.2 Socket addresses 101
10.3 Internet-domain stream sockets 101
10.4 Internet-domain datagram sockets 104
10.5 Unix-domain sockets 105
10.6 Advanced topics 106

11 Manual pages 111
11.1 The Array structure 112
11.2 The Array2 structure 116
11.3 The ArraySlice structure 122
11.4 The BinIO structure 127
11.5 The BIT_FLAGS signature 129
11.6 The Bool structure 131
11.7 The Byte structure 133
11.8 The CHAR signature 135

Contents vii

11.9 The CommandLine structure 143
11.10 The Date structure 144
11.11 The General structure 149
11.12 The GenericSock structure 153
11.13 The IEEEReal structure 155
11.14 The IMPERATIVE_IO signature 158
11.15 The ImperativeIO functor 165
11.16 The INetSock structure 166
11.17 The INTEGER signature 169
11.18 The IntInf structure 174
11.19 The IO structure 177
11.20 The List structure 180
11.21 The ListPair structure 185
11.22 The MATH signature 189
11.23 The MONO_ARRAY signature 193
11.24 The MONO_ARRAY2 signature 199
11.25 The MONO_ARRAY_SLICE signature 205
11.26 The MONO_VECTOR signature 211
11.27 The MONO_VECTOR_SLICE signature 215
11.28 The NetHostDB structure 220
11.29 The NetProtDB structure 223
11.30 The NetServDB structure 225
11.31 The Option structure 227
11.32 The OS structure 229
11.33 The OS.FileSys structure 231
11.34 The OS.IO structure 237
11.35 The OS.Path structure 241
11.36 The OS.Process structure 250
11.37 The PACK_REAL signature 253
11.38 The PACK_WORD signature 255
11.39 The Posix structure 257
11.40 The Posix.Error structure 259
11.41 The Posix.FileSys structure 263
11.42 The Posix.IO structure 276
11.43 The Posix.ProcEnv structure 284
11.44 The Posix.Process structure 289
11.45 The Posix.Signal structure 294
11.46 The Posix.SysDB structure 296
11.47 The Posix.TTY structure 298
11.48 The PRIM_IO signature 308

viii Contents

11.49 The PrimIO functor 317
11.50 The REAL signature 318
11.51 The Socket structure 330
11.52 The STREAM_IO signature 346
11.53 The StreamIO functor 358
11.54 The STRING signature 360
11.55 The StringCvt structure 366
11.56 The SUBSTRING signature 372
11.57 The TEXT signature 380
11.58 The TEXT_IO signature 382
11.59 The TEXT_STREAM_IO signature 386
11.60 The Time structure 387
11.61 The Timer structure 391
11.62 The Unix structure 394
11.63 The UnixSock structure 398
11.64 The Vector structure 401
11.65 The VectorSlice structure 405
11.66 The Windows structure 409
11.67 The WORD signature 420

Bibliography 427

General index 429

SML identifier index 435

Raised exception index 465

Foreword

Of all modern programming languages, Standard ML has ascribed perhaps the highest
priority to rigorous semantic definition. It is therefore the preferred language for many
applications where rigor is important; this is notably true of tools for formal program anal-
ysis. It has also gained users who value its high degree of portability, a direct consequence
of the unambiguity of its definition.

Now Emden Gansner and John Reppy have equipped SML with another essential
ingredient: a library of signatures, structures, and functors which will greatly ease the
programmer’s task. The SML Basis Library has been long in gestation, but this has ensured
that it contains the right things. Only by close cooperation with users, over a considerable
period of time, can one be sure of consistency and balance in defining a library. We can
therefore be confident that the Basis Library will bring SML into still wider use, and
we owe warm thanks to its creators for undertaking an arduous task with skill, care, and
dedication.

Robin Milner
Cambridge, July 2003

Preface

One essential for the success of a general-purpose language is an accompanying standard
library that is rich enough and efficient enough to support the basic, day-to-day tasks
common to all programming. Libraries provide the vocabulary with which a language
can be used to say something about something. Without a broad common vocabulary, a
language community cannot prosper as it might.

This document presents a standard basis library for SML. It is a basis library in the
sense that it concerns itself with the fundamentals: primitive types such as integers and
floating-point numbers, operations requiring runtime system or compiler support, such
as I/O and arrays; and ubiquitous utility types such as booleans and lists. The SML
Basis Library purposefully does not cover higher-level types, such as collection types, or
application-oriented APIs, such as regular expression matching. The primary reason for
limiting the scope in this way is that the design space for these interfaces is large (e.g.
choosing between functors and polymorphism as a parameterization mechanism) and,
unlike the case with lists and arrays, we do not have many years of common practice to
guide the design. It is also the case that the SML Basis Library specification is a substantial
document and expanding its scope would make it unwieldy.

The primary purpose of this book is to serve as a reference manual for the Basis
Library, describing as clearly and completely as possible the types, values, and modules
making up the Library. This specification is designed to serve both implementors of the
SML Basis Library and users. While the specification is not formal, we have tried to
make it precise and complete enough to guarantee a high degree of portability between
implementations.

It is sometimes difficult to program from a reference manual; all the pieces are there
but it is not clear how they fit together. For the working programmer who wants to use
the Library, the book also discusses how the functions were meant to be used alone and
together. Although not a tutorial, the book should assist the programmer in understanding
and using the Library, clarifying when and how various structures should be used, and
making the apparent arcana accessible.

xiv PREFACE

There are certain roles the book does not attempt. As we’ve already noted, it is not a
textbook, for either the Library or SML. There are already many fine books and papers
teaching the joys of writing in SML, some of which address this Library as well. When
dealing with the Library’s interface to external software such as Unix or Windows, it
assumes the reader already knows how to use them or has access to sources providing
that information.

The Library is certainly not complete; there are some glaring omissions, such as a
module for handling regular expressions or guidelines for internalization. It is assumed
that, as needs are identified and consensus is reached on the design of a structure, new
modules will be added to the Library or be standardized as a separate library. The evolution
of the Library will be reflected in the online version of this document, the latest version
of which can be found at

http://standardml.org/Basis

Overview of the book

The book is organized in three main parts: an overview of the Library, its structure and
conventions; a tour of the main areas covered by the Library, providing programming
tips, idioms, and examples aimed at Library users; and a set of manual pages defining the
signatures and structures composing the Library.

The first three chapters form the first part. Chapter 1 presents the philosophy, princi-
ples, and rules concerning the design of the Library. It also notes the conventions used
in documenting the Library. The second chapter lists all of the signatures, structures,
and functions in the Library, noting their connections and whether they are optional.
Chapter 3 considers those parts of the Library that are available at the top level, outside
of any structure.

The following chapters describe some of the component areas, such as I/O and text
handling, in more depth. These chapters discuss the common themes connecting the
modules of a component, and note related assumptions and restrictions. The Library
includes some elegant solutions to certain programming tasks, but these are not necessarily
obvious from a bare presentation of the signatures. Thus, many of these chapters include
short tutorial sections that discuss how various types and functions were intended to be
used, including examples of idiomatic use.

Chapter 11 is the meat of the book, containing manual pages describing the signatures,
structures, and functors specified by the Library, and their semantics. The modules are
presented in alphabetical order. Generic modules, those with multiple possible implemen-
tations, are gathered under their defining signature. Thus, the Char structure is discussed
in the CHAR section. Each non-generic module, those with a unique implementation, such
as Timer, heads its own section shared with its signature. Significant substructures, for
example, Posix.IO also rate their own sections.

PREFACE xv

During the design of the Library, the authors of the SML language have revised its
definition [MTHM97], partly in response to the needs of the Library. The appendix
describes some of the changes that have taken place in the SML language, especially
in relation to the Library, and also notes where the Library differs from the initial basis
described in the original SML definition. The back matter also provides an index of the
exceptions defined in the Library.

Contributors

The main architects of the SML Basis Library are Andrew Appel, Dave Berry, Emden
Gansner, John Reppy, and Peter Sestoft. In addition, the following people contributed to
the design discussions and writing: Nick Barnes, Lal George, Lorenz Huelsbergen, David
MacQueen, Dave Matthews, Carsten Müller, Larry Paulson, Riccardo Pucella, and Jon
Thackray. This document is edited and maintained by Emden Gansner and John Reppy.

Acknowledgments

As usual in a work like this, many people have been involved in the process. We had helpful
comments on the Library or this document from Peter Michael Bertelsen, Matthias Blume,
Jeremy Dawson, Matthew Fluet, Elsa Gunter, Ken Larsen, Peter Lee, Neophytos Michael,
Kevin Mitchell, Brian Monahan, Stefan Monnier, Chris Okasaki, Andreas Rossberg, Jon
Thackray, Mads Tofte, Dan Wang, and Stephen Weeks. David Gay and Serban Jora helped
with insights and pointers concerning IEEE floating-point numbers and the Windows
operating system, respectively. We would especially like to thank our editor at Cambridge
University Press, Lauren Cowles, whose patience has been unbounded.

This document was written using the ML-Doc toolkit, which is an SGML-based system
for documenting SML interfaces. More information about ML-Doc can be found at

http://people.cs.uchicago.edu/˜jhr/tools/ml-doc.html

1
Introduction

This document describes the Standard ML Basis Library. The Library provides an ex-
tensive collection of basic types and functions for the Standard ML (SML) language,
as described by the Definition of Standard ML (Revised) [MTHM97]. The goals of the
Basis library are to:

• serve as the basic toolkit for the SML programmer, whether novice or profes-
sional;

• focus attention on the attractiveness of SML as a language for programming in a
wide variety of domains, e.g., systems programming;

• replace the many incompatible general-purpose libraries currently available.

The original definition of the Standard ML language [MTH90] was published in 1990,
for which reason we refer to it as SML’90. The Definition specified an initial basis, i.e.,
a set of primitive types such as int and string along with some related operations,
which was used to define various derived forms and special constants. Though adequate
for the purpose of language specification, it was too limited for programming applica-
tions. In response, most implementations of the language extended the basis with large
collections of generic libraries. With the libraries coming from different sources, they
tended to be incompatible, even when implementing the same abstract types and func-
tions. The result was that, despite the standardization of the language, any significant
SML program could be compiled on multiple implementations only if the programmer
were willing to provide portable libraries that relied only on the initial basis.
The SML Basis Library is a rich collection of general-purpose modules, which can

serve as the foundation for applications programming or for more domain-specific li-
braries. It provides most of the basic types and operations expected by a working
programmer and specifies that anyone using SML can expect to find them in any im-
plementation.

2 CHAPTER 1. INTRODUCTION

Some goals in designing the Library worked toward its expansion. One, suggested
above, was the desire for the Library to be “complete enough.” If using a type provided
by the Library, the programmer should be able to look in the defining structure and find
the right function or, at least, the functions needed to build the desired function easily.
In addition, the Library attempts to provide similar functions in similar contexts. Thus,
the traditional app function for lists, which applies a function to each member of a list,
has also been provided for arrays and vectors.
An opposite design force has been the desire to keep the Basis library small. In gen-

eral, a function has been included only if it has clear or proven utility, with additional
emphasis on those that are complicated to implement, require compiler or runtime sys-
tem support, or are more concise or efficient than an equivalent combination of other
functions. Some exceptions were made for historical reasons or for perceived user con-
venience.
The SML language has the rare property of being a practical, general-purpose pro-

gramming language possessing a well-defined, indeed formal, semantics. Following
in this spirit, some SML-based libraries, e.g., CML [Rep99], build on this precision by
supplying their own formal semantics. Although we viewed this goal as beyond what we
could provide for the Basis library, we still felt very strongly that the functions included
here should be defined as precisely and clearly as possible. In some cases, we have
defined the meaning of basis functions via reference implementations. We want SML
programs to be deterministic (aside from their interaction with the external world), and
so we specify the traversal order for higher-level functions such as List.map. The
description of a function provides the dynamic constraints on the arguments, such as
that an integer index into an array must be less than the length of the array, and relates
what happens when a function invocation violates these constraints, typically the raising
of a particular exception. We have tried to stipulate completely the format of return val-
ues, so that, when a type’s representation is visible, the programmer will know what to
expect concretely, not just abstractly. We have avoided unspecified or implementation-
dependent results whenever possible. Some functions were excluded from the Library
because we could not provide a clean specification for the function’s behavior.

1.1 Design rules and conventions

In designing the Library, we have tried to follow a set of stylistic rules to make library
usage consistent and predictable, and to preclude certain errors. These rules are not
meant to be prescriptive for the programmer using or extending the Library. On the
other hand, although the Library itself flouts the conventions on occasion, we feel the
rules are reasonable and helpful and would encourage their use.

1.1. DESIGN RULES AND CONVENTIONS 3

1.1.1 Orthographic conventions

We use the following set of spelling and capitalization conventions. Some of these con-
ventions, e.g., the capitalization of value constructors, seem to be widely accepted in the
user community. Other decisions were based less on a dominant style or a compelling
reason than on compromise and the need for consistency and some sense of good taste.
The conventions we use are

• Alphanumeric value identifiers are in mixed-case, with a leading lowercase letter;
e.g., map and openIn.

• Type identifiers are all lowercase, with words separated by underscores; e.g.,
word and file_desc.

• Signature identifiers are in all capitals, with words separated by underscores; e.g.,
PACK_WORD and OS_PATH. We refer to this convention as the signature conven-
tion.

• Structure and functor identifiers are in mixed-case, with initial letters of words
capitalized; e.g., General and WideChar. We refer to this convention as the
structure convention.

• Alphanumeric datatype constructors follow the signature convention; e.g., SOME,
A_READ, and FOLLOW_ALL. In certain cases, where external usage or aesthetics
dictates otherwise, the structure convention can be used. Within the Basis library,
the only use of the latter convention occurs with the months and weekdays in
Date, e.g., Jan and Mon. The only exceptions to these rules are the identifiers
nil, true, and false, where we bow to tradition.

• Exception identifiers follow the structure convention; e.g., Domain and SysErr.

These conventions concerning variable and constructor names, if followed consistently,
can be used by a compiler to aid in detecting the subtle error in which a constructor is
misspelled in a pattern-match and is thus treated as a variable binding. Some implemen-
tations may provide the option of enforcing these conventions by generating warning
messages.

1.1.2 Naming

Similar values should have similar names, with similar type shapes, following the con-
ventions outlined above. For example, the function Array.app has the type:

val app : (’a -> unit) -> ’a array -> unit

4 CHAPTER 1. INTRODUCTION

which has the same shape as List.app. Names should be meaningful but concise.
We have broken this rule, however, in certain instances where previous usage seemed
compelling. For example, we have kept the name app rather than adopt apply. More
dramatically, we have purposely kept most of the traditional Unix names in the optional
Posix modules, to capitalize on the familiarity of these names and the available docu-
mentation.

1.1.3 Comparisons

If a type ty , such as int or string, has a standard or obvious linear order, the
defining structure should define the expected relational operators >, >=, <, and <=, plus
a comparison function

val compare : ty * ty -> order

(where order is defined in the General structure and has the constructors LESS,
EQUAL, GREATER). In all cases, the expected relationships should hold between these
functions. For example, we have x > y = true if and only if compare(x, y)
= GREATER. If, in addition, ty is an equality type, we assume that the operators =
and <> satisfy the usual relationships with compare and the relational operators. For
example, if x = y, then compare(x,y) = EQUAL. Note that these assumptions
are not quite true for real values; see the REAL signature for more details.
For reasons of style and simplicity, we have in general attempted to avoid equality

types except where tradition or convenience dictated otherwise. Most of the equality
types are abstractions of integral values. We prefer to keep equality evaluation explicit,
usually by an associated compare function.
Certain abstract types, e.g., OS.FileSys.file_id, provide a compare function

even though elements of the type do not possess an inherent linear order. These functions
are useful in maintaining and searching sets of these elements in, for example, ordered
binary trees.

1.1.4 Conversions

Most structures defining a type provide conversion functions to and from other types.
When unambiguous, we use the naming convention toT and fromT, where T is some
version of the name of the other type. For example, in WORD, we have

val fromInt : Int.int -> word
val toInt : word -> Int.int

If this naming is ambiguous (e.g., a structure defines multiple types that have conver-
sions from integers), we use the convention TFromTT and TToTT. For example, in
POSIX_PROC_ENV, we have

1.1. DESIGN RULES AND CONVENTIONS 5

val uidToWord : uid -> SysWord.word
val gidToWord : gid -> SysWord.word

There should be conversions to and from strings for most types. Following the con-
vention above, these functions are typically called toString and fromString.
Usually, modules provide additional string conversion functions that allow more con-
trol over format and operate on an abstract character stream. These functions are called
fmt and scan. The input accepted by fromString and scan consists of printable
ASCII characters. The output generated by toString and fmt consists of printable
ASCII characters. Additional discussion of string scanning and formatting can be found
in Chapter 5.
We adopt the convention that conversions from strings should be forgiving, allowing

initial whitespace and multiple formats and ignoring additional terminating characters.
In addition, for basic types, scanning functions should accept legal SML literals. On the
other hand, we have tried to specify conversions to strings precisely. Formatting func-
tions should, whenever possible, produce strings that are compatible with SML literal
syntax, but without certain annotations. For example, String.toString produces
a valid SML string constant, but without the enclosing quotes, and Word.toString
produces a word constant without the "0wx" prefix.

1.1.5 Characters and strings

The revised SML definition [MTHM97] introduces a char type and syntax for charac-
ter literals. The SML Basis Library provides support for both string and char types,
where the string type is a vector of characters. In addition, we define the optional
types WideString.string and WideChar.char, in which the former is again a
vector of the latter, for handling character sets more extensive than Latin-1.
The SML’90 Basis Library did not provide a character type. To manipulate charac-

ters, programmers used integers corresponding to the character’s code. This situation
was unsatisfactory for several reasons: there were no symbolic names for single char-
acters in patterns, character to string conversions required unnecessary range checks,
and there was no provision for the extended character sets necessary for international
use. Alternatively, programmers could use strings of length one to represent characters,
which was less efficient and could not be enforced by the type system.

1.1.6 Operating system interfaces

The Library design probably has the least freedom concerning access to an implementa-
tion’s operating system (OS). To allow code written using the Library to be as portable
as possible, we have adopted standard interfaces, either de jure or de facto. We have
layered the structures dealing with the OS. The facilities encapsulated in the OS struc-
ture and the I/O modules represent models common to most current operating systems;

6 CHAPTER 1. INTRODUCTION

code restricted to these should be generally portable. Structures such as Unix are more
OS-specific but still general enough to be available on a variety of systems. Structures
such as the Posix structure provide an interface to a particular OS in detail; it would be
unlikely that an implementation would provide this structure unless the underlying OS
were a version of POSIX. Finally, an implementation may choose to provide additional
structures containing bindings for all of the types and functions supported by a given
OS.
When two structures both define a type that has the same meaning, e.g., both the

OS and Posix.Error structures define a syserror type, then these types should
be equivalent or there should be an effective way to map between the types. Imple-
mentations should preserve lower-level information. For example, on a POSIX sys-
tem, if a program calls OS.Process.exit(st), where Posix.Process.from-
Status(st) evaluates to Posix.Process.W_EXITSTATUS(v), then the pro-
gram should exit using the call Posix.Process.exit(v).
Most OS interfaces involve certain specified values, such as the platform IDs specified

in Windows.Config or the error values given in Posix.Error. Any static list
is bound to be incomplete, either due to changes over time or from variations among
implementations. To allow for differences and extensibility, the Library typically does
not use a datatype for these types; it allows implementations to generate values not
specified in the signature; and, when possible, it will allow the programmer access to
the primitive representation of such values. Conforming implementations of the SML
Basis Library can not extend the signatures given by the Library.

1.1.7 Miscellany

Functional arguments that are evaluated solely for their side effects should have a return
type of unit. For example, the list application function has the type:

val app : (’a -> unit) -> ’a list -> unit

It is also recommended that implementations generate a warning message when an
expression on the left-hand side of a semicolon in a sequence expression (i.e., e1 in
(e1; e2)) does not have unit type.
The use and need for exceptions should be limited. If possible, the type of an ar-

gument should prevent an exceptional condition from arising. Thus, rather than have
Posix.FileSys.openf return an int value, as its analogue does in C, the Library
uses the Posix.FileSys.file_desc type. In cases where multiple function ar-
guments have the same type, opening the possibility that the programmer may switch
them, the Library employs SML records, as with OS.FileSys.rename. The avoid-
ance of exceptions is particularly apparent in functions that parse character input to

1.2. DOCUMENTATION CONVENTIONS 7

create a value, which uniformly return a value of NONE to indicate incorrect input rather
than raising exceptions.
If a curried function can raise an exception, the exception should be raised as soon

as sufficient arguments are available to determine that the exception should be raised.
Thus, given a function

val gen : int -> string -> string

that raises an exception if the first argument is negative, the evaluation of gen ˜1
should trigger the exception.
SML is a value-oriented language which discourages the gratuitous use of state. Thus,

the Library tries to minimize the use of state. In particular, we note that, although the
Library allows imperative-style input, it provides stream-based input with unbounded
lookahead and many of the routines for converting characters to values work most nat-
urally in this style.
The language does allow functions to have side effects. To take this fact into account,

the Library requires that the implementations of higher-order functions over aggregates
invoke their function-valued arguments at most once per element.
Whenever possible, structures specified as signature instances are matched opaquely,

so that all types are abstract unless explicitly specified in the signature or any associated
where type clauses.

1.2 Documentation conventions

This section describes the conventions used in this document. These include the layout
of the manual pages, notational conventions, and liberties that we have taken with the
SML syntax and semantics to make the specification clearer.
When applicable in multiple contexts, some information is repeated. We felt it was

better to accept some redundancy rather than to force the reader to glean information
scattered all over the document.

1.2.1 Organization of the manual pages

The bulk of the SMLBasis Library specification consists ofmanual pages specifying the
signature and semantics of the Basis modules. These pages are organized in alphabetical
order. Each manual page typically describes a single signature and the structure or
structures that implement it.
A manual page, which is typically comprised of several physical pages, is organized

into at most five sections. The first of these is the “Synopsis,” which lists the signa-
ture, structure, and functor names covered by the manual page. With the exception of
manual pages that cover functors, which can have both argument and result signatures,

8 CHAPTER 1. INTRODUCTION

the synopsis consists of a signature name and the names of the structures matching the
signature. The second section is the “Interface,” which gives the SML specifications
that form the body of the signature. Functor specifications can have multiple interface
sections, since there are both argument and result signatures involved. Following the
interface part is the “Description,” which consists of detailed descriptions of each of the
SML specifications listed in the interface. Some manual pages follow the description
section with a “Discussion” section that covers broader aspects of the interface. Finally,
there is the “See also” section, which gives cross references to related manual pages.

1.2.2 Terminology and notation

For functions that convert from strings to primitive types, we often use a standard regular
expression syntax to describe the accepted input language.

Regular Expression Meaning
re? An optional instance of re.
re∗ A sequence of zero or more instances of re.
re+ A sequence of one or more instances of re.

re1re2 An instance of re1 followed by an instance of re2.
re1 | re2 An instance of either re1 or re2.

In a regular expression, a character in teletype font represents itself. As a shorthand,
we write [abc] for a | b | c. A choice of consecutive characters (in the ASCII ordering)
can be specified using a range notation, e.g., [a−c].
When specifying the meaning of certain operations, we will sometimes use various

standard mathematical notations in the SML Basis Library specification, implicitly map-
ping SML values to values in the domain of natural numbers, integers, or real numbers.
The intended meaning should be clear from the context. The greatest integer less than or
equal to a real-valued expression r (i.e., the floor of r) is written �r� and, likewise, the
least integer greater than or equal to a real-valued expression r (i.e., the ceiling of r) is
written �r�. For integers i and m, the notation i (mod m) is the remainder i − m� i

m�.
The notation [a,b] denotes the range of values x where a ≤ x ≤ b in some corre-
sponding domain. The sign function, sgn(x), returns -1, 1, or 0, depending on whether
x is negative, positive, or equal to zero, respectively.
For sequence types (i.e., lists, vectors, and arrays), we use the terminology left-to-

right to mean the order of increasing index and right-to-left to mean the order of de-
creasing index. Sequences are indexed from zero. If seq is a value of a sequence type,
then |seq| means the number of elements, or length, of seq and seq[i..j] is the sub-
sequence of seq consisting of the items whose indices are in the range [i,j], where
0 ≤ i ≤ j < |seq|.

1.2. DOCUMENTATION CONVENTIONS 9

For the numeric types, we define generic signatures that are implemented at multiple
precisions. For example, an implementation might provide Int32 for 32-bit integers
and Int64 for 64-bit integers. Rather than list a sample of possible structures, we
use the notation IntN to specify the family of structures that implement the INTEGER
signature, where N specifies the number of bits in the representation.

Syntactic and semantic liberties

We have taken a few liberties with the syntax and semantics of SML in the SML Basis
Library specification. In a couple of cases, we define interfaces that include a signature,
which overlaps with other specifications in the interface. For example, the TEXT_IO
signature has a StreamIO substructure and also includes the IMPERATIVE_IO sig-
nature, which itself specifies a StreamIO substructure. The intention is clear: the
two StreamIO substructures are intended to be identified while matching the more
detailed signature, in this case TEXT_STREAM_IO. While these violate the rules for
well-formed signatures in SML, they avoid useless redundancy in the documentation.
Another place where we depart from strict SML semantics is in where type spec-

ifications. These specifications imply a dependency from the module with the specifi-
cation to the module that defines the type. We want to allow implementations freedom
in how they organize the Basis library modules, so when there is not a clear ordering
of the modules we attach symmetric where type specifications to both modules. For
example, the String.string and CharVector.vector types are equal, so we
attach where type specifications to both the String and CharVector modules.
Implementations are free to define one of these types in terms of the other or to define
both in terms of some third type.
The “Description” section of the manual pages sometimes provides a prototypical use

of a function when describing the function. When part of the argument of a function is a
record type, the prototype does not use the correct record construction syntax, but rather
the pattern-matching syntax as might be used in the definition of the function. For ex-
ample, the description of the Posix.IO.dup2 function has the prototype usage dup2
{old,new} rather than the syntactically correct dup2 {old=old,new=new}.
Finally, for functions returning an option type, in the cases when it actually returns

a value as SOME(v), the description will usually just say that the function returns v ,
with the SOME wrapper being understood.

2
Library modules

The Basis Library is organized using the SML module system. Almost every type, ex-
ception constructor, and value belongs to some structure. Although some identifiers are
also bound in the initial top-level environment, we have attempted to keep the number
of top-level identifiers small. Infix declarations and overloading are specified for the
top-level environment.
We view the signature and structure names used below as being reserved. For an

implementation to be conforming, any module it provides that is named in the SML
Basis Library must exactly match the description specified in the Library. For exam-
ple, the Int structure provided by an implementation should not match a superset of
the INTEGER signature. Furthermore, an implementation may not introduce any new
non-module identifiers into the top-level environment. If an implementation provides
any types, values, or exceptions not described in the SML Basis Library, they must be
encapsulated in structures whose names are not used by the SML Basis Library.
Some structures have signatures that refer to types that will belong to another struc-

ture. Rather than include the other structure as a substructure, we have chosen to rebind
just the necessary types. It was felt that this policy makes the code easier to reorga-
nize in large systems. Explicit connections between structures are specified by sharing
constraints in the language, or by descriptions in the text.

2.1 Required modules

We have divided the modules into required and optional categories. Any conforming
implementation of SML Basis Library must provide implementations of all of the re-
quired modules.
Many of the structures are variations on some generic module (e.g., single and double-

precision floating-point numbers). Table 2.1 gives a list of the required generic signa-
tures. A system will typically provide multiple implementations of some of these signa-
tures; it is assumed that multiple implementations are allowed for all of them. Generic

12 CHAPTER 2. LIBRARY MODULES

Table 2.1: Required generic signatures

Signature Description
CHAR Generic character interface
INTEGER Generic integer interface
IMPERATIVE_IO Imperative I/O interface
MATH Generic math library interface
MONO_ARRAY Mutable monomorphic arrays
MONO_ARRAY_SLICE Mutable monomorphic subarrays
MONO_VECTOR Immutable monomorphic vectors
MONO_VECTOR_SLICE Immutable monomorphic subvectors
PRIM_IO System-call operations for I/O
REAL Generic floating-point number interface
STREAM_IO Stream I/O interface
STRING Generic string interface
SUBSTRING Generic substring interface
TEXT Package for related text structures
TEXT_IO Text I/O interface
TEXT_STREAM_IO Text stream I/O interface
WORD Generic word (i.e., unsigned integer) interface

signatures are meant to be instantiated by several structures; the required ones are all
matched by at least one required structure. We list these structures next (Table 2.2).
Although the signatures IMPERATIVE_IO, STREAM_IO and TEXT_STREAM_IO do
not appear explicitly in this table, we note that the first is matched by TextIO and the
last two are matched by TextIO.StreamIO.
Non-generic signatures typically define the interface of a unique structure. Table 2.3

lists the required non-generic signatures and their corresponding required structures.

2.2 Optional modules

The Library specifies a large collection of signatures and structures that are considered
optional in a conforming implementation. They provide features that, although useful,
are not considered fundamental to a workable SML implementation. These modules in-
clude additional representations of integers, words, characters, and reals; more efficient
array and vector representations; and a subsystem providing POSIX compatibility.
Although an implementation may or may not provide one of these modules, if it

provides one, the module must exactly match the specification given in this document.
The names specified here for optional signatures and structures must be used at top-level
only to denote implementations of the specified Library module. On the other hand, if

2.2. OPTIONAL MODULES 13

Table 2.2: Required structures implementing generic signatures

Structure Signature Description
BinPrimIO PRIM_IO Low-level binary I/O
Char CHAR Default character type and opera-

tions
CharArray MONO_ARRAY Mutable arrays of characters
CharArraySlice MONO_ARRAY_SLICE Mutable subarrays of characters
CharVector MONO_VECTOR Immutable arrays of characters
CharVectorSlice MONO_VECTOR_SLICE Immutable subarrays of characters
Int INTEGER Default integer type and operations
LargeInt INTEGER Largest integer representation
LargeReal REAL Largest floating-point representa-

tion
LargeWord WORD Largest word representation
Math MATH Default math structure
Position INTEGER File system positions
Real REAL Default floating-point type
String STRING Default strings
Substring SUBSTRING Substrings
Text TEXT Collects together default text struc-

tures.
TextIO TEXT_IO Text input/output types and opera-

tions
TextPrimIO PRIM_IO Low-level text I/O
Word WORD Default word type
Word8 WORD 8-bit words
Word8Array MONO_ARRAY Arrays of 8-bit words
Word8ArraySlice MONO_ARRAY_SLICE Subarrays of 8-bit words
Word8Vector MONO_VECTOR Immutable arrays of 8-bit words
Word8VectorSlice MONO_VECTOR_SLICE Immutable subarrays of 8-bit words

an implementation offers features related to an optional module, it should also provide
the optional module.
As with the required signatures, we have both generic and non-generic optional sig-

natures. The optional generic signatures are listed in Table 2.4.
The next four tables list the optional structures matching generic signatures as fol-

lows: Table 2.5 lists the various structures that implement the non-sequence generic sig-
natures, Table 2.6 lists optional monomorphic array and vector structures, Table 2.7 lists
optional monomorphic array-slice structures, and Table 2.8 lists optional monomorphic
vector-slice structures. Note that some of the structures match required signatures.
Table 2.9 lists the optional non-generic signatures and their corresponding optional

structures.

14 CHAPTER 2. LIBRARY MODULES

Table 2.3: Required non-generic signatures and structures

Structure Signature Description
Array ARRAY Mutable polymorphic arrays
ArraySlice ARRAY_SLICE Mutable polymorphic subarrays
BinIO BIN_IO Binary input/output types and operations
Bool BOOL Boolean type and values
Byte BYTE Conversions between Word8 and Char val-

ues
CommandLine COMMAND_LINE Program name and arguments
Date DATE Calendar operations
General GENERAL General-purpose types, exceptions, and val-

ues
IEEEReal IEEE_REAL Floating-point classes and hardware control
IO IO Basic I/O types and exceptions
List LIST Utility functions for computing with lists of

pairs and pairs of lists.
ListPair LIST_PAIR List of pairs utility functions
Option OPTION Optional values and partial functions
OS OS Basic operating system (OS) services
OS.FileSys OS_FILE_SYS File status and directory operations
OS.IO OS_IO Support for polling I/O devices
OS.Path OS_PATH File-system pathname operations
OS.Process OS_PROCESS Simple process operations
StringCvt STRING_CVT Support for conversions between strings and

various types
Time TIME Representation of time values
Timer TIMER Timing operations
Vector VECTOR Immutable polymorphic arrays
VectorSlice VECTOR_SLICE Subarrays of immutable polymorphic arrays

Finally, there are three optional functors for creating a new I/O layer from a more
primitive layer. These functors are listed in Table 2.10.

Table 2.4: Optional generic signatures

Signature Description
BIT_FLAGS Support for set operations on system flags
MONO_ARRAY2 Mutable monomorphic two-dimensional arrays
PACK_REAL Support for packing floats into vectors of 8-bit words
PACK_WORD Support for packing words into vectors of 8-bit words

Table 2.5: Optional structures implementing generic signatures

Structure Signature Description
FixedInt INTEGER Largest fixed precision integers
IntN INTEGER N-bit, fixed precision integers
PackRealBig PACK_REAL Big-endian packing for default floats
PackRealLittle PACK_REAL Little-endian packing for default floats
PackWordNBig PACK_WORD Big-endian packing for N-bit words
PackWordNLittle PACK_WORD Little-endian packing for N-bit words
RealN REAL N-bit floating-point numbers
SysWord WORD Words sufficient for OS operations
WideChar CHAR Wide characters
WideString STRING Wide strings
WideSubstring SUBSTRING Wide substrings
WideText TEXT Text package for wide characters
WideTextPrimIO PRIM_IO Low-level wide char I/O
WideTextIO TEXT_IO Text I/O on wide characters
WordN WORD N-bit words

Table 2.6: Optional monomorphic array and vector structures

Structure Signature Description
BoolArray MONO_ARRAY Mutable arrays of booleans
BoolArray2 MONO_ARRAY2 Two-dimensional arrays of booleans
BoolVector MONO_VECTOR Immutable arrays of booleans
CharArray2 MONO_ARRAY2 Two-dimensional arrays of characters
IntArray MONO_ARRAY Mutable arrays of default integers
IntArray2 MONO_ARRAY2 Two-dimensional arrays of default inte-

gers
IntNArray MONO_ARRAY Mutable arrays of N-bit integers
IntNArray2 MONO_ARRAY2 Two-dimensional arrays of N-bit inte-

gers
IntNVector MONO_VECTOR Immutable arrays of N-bit integers
IntVector MONO_VECTOR Immutable arrays of default integers
LargeIntArray MONO_ARRAY Mutable arrays of large integers
LargeIntArray2 MONO_ARRAY2 Two-dimensional arrays of large integers
LargeIntVector MONO_VECTOR Immutable arrays of large integers
LargeRealArray MONO_ARRAY Mutable arrays of large floats
LargeRealArray2 MONO_ARRAY2 Two-dimensional arrays of large floats
LargeRealVector MONO_VECTOR Immutable arrays of large floats
LargeWordArray MONO_ARRAY Mutable arrays of large words
LargeWordArray2 MONO_ARRAY2 Two-dimensional arrays of large words
LargeWordVector MONO_VECTOR Immutable arrays of large words
PackRealNBig PACK_REAL Big-endian packing for N-bit floats
PackRealNLittle PACK_REAL Little-endian packing for N-bit floats
RealArray MONO_ARRAY Mutable arrays for default floats
RealArray2 MONO_ARRAY2 Two-dimensional arrays of default floats
RealNArray MONO_ARRAY Mutable arrays of N-bit floats
RealNArray2 MONO_ARRAY2 Two-dimensional arrays of N-bit floats
RealNVector MONO_VECTOR Immutable arrays of N-bit floats
RealVector MONO_VECTOR Immutable arrays for default floats
WideCharArray MONO_ARRAY Mutable arrays of wide characters
WideCharArray2 MONO_ARRAY2 Two-dimensional arrays of wide charac-

ters
WideCharVector MONO_VECTOR Immutable arrays of wide characters
WordArray MONO_ARRAY Mutable arrays of default words
WordArray2 MONO_ARRAY2 Two-dimensional arrays of default words
WordVector MONO_VECTOR Immutable arrays of default words
Word8Array2 MONO_ARRAY2 Two-dimensional arrays of 8-bit words
WordNArray MONO_ARRAY Mutable arrays of N-bit words
WordNArray2 MONO_ARRAY2 Two-dimensional arrays of N-bit words
WordNVector MONO_VECTOR Immutable arrays of N-bit words

Table 2.7: Optional instances of MONO_ARRAY_SLICE

Structure Description
BoolArraySlice Mutable subarrays of booleans
IntArraySlice Mutable subarrays of default integers
IntNArraySlice Mutable subarrays of N-bit integers
LargeIntArraySlice Mutable subarrays of large integers
LargeRealArraySlice Mutable subarrays of large floats
LargeWordArraySlice Mutable subarrays of large words
RealArraySlice Mutable subarrays for default floats
RealNArraySlice Mutable subarrays of N-bit floats
WideCharArraySlice Mutable subarrays of wide characters
WordArraySlice Mutable subarrays of default words
WordNArraySlice Immutable subarrays of N-bit words

Table 2.8: Optional instances of MONO_VECTOR_SLICE

Structure Description
BoolVectorSlice Immutable subarrays of booleans
IntVectorSlice Immutable subarrays of default integers
IntNVectorSlice Immutable subarrays of N-bit integers
LargeIntVectorSlice Immutable subarrays of large integers
LargeRealVectorSlice Immutable subarrays of large floats
LargeWordVectorSlice Immutable subarrays of large words
RealVectorSlice Immutable subarrays for default floats
RealNVectorSlice Immutable subarrays of N-bit floats
WideCharVectorSlice Immutable subarrays of wide characters
WordVectorSlice Immutable subarrays of default words
WordNVectorSlice Vectors of N-bit words

Table 2.9: Optional non-generic signatures and structures

Structure Signature Description
Array2 ARRAY2 Mutable polymorphic two-dimensional

arrays
GenericSock GENERIC_SOCK Extended socket addresses and types
INetSock INET_SOCK Support for Internet-domain sockets
IntInf INT_INF Arbitrary-precision integers
NetHostDB NET_HOST_DB Access to the network host database
NetProtDB NET_PROT_DB Access to the network protocol database
NetServDB NET_SERV_DB Access to the network services database
Posix POSIX Root POSIX structure
Posix.Error POSIX_ERROR POSIX error values
Posix.FileSys POSIX_FILE_SYS POSIX file system operations
Posix.IO POSIX_IO POSIX I/O operations
Posix.ProcEnv POSIX_PROC_ENV POSIX process environment operations
Posix.Process POSIX_PROCESS POSIX process operations
Posix.Signal POSIX_SIGNAL POSIX signal types and values
Posix.SysDB POSIX_SYS_DB POSIX system database types and values
Posix.TTY POSIX_TTY Control of POSIX TTY drivers
Socket SOCKET General socket types and operations
Unix UNIX Unix-like process invocation
UnixSock UNIX_SOCK Support for sockets in the Unix address

family
Windows WINDOWS Various high-level, Microsoft Windows-

specific operations

Table 2.10: Optional I/O functors

Functor Result Signature Description
ImperativeIO IMPERATIVE_IO Functor to convert stream I/O into

imperative I/O
PrimIO PRIM_IO Functor to build a PRIM_IO struc-

ture
StreamIO STREAM_IO Functor to convert primitive I/O into

stream I/O

3
Top-level environment

This chapter describes the standard initial top-level environment, that is, those identifiers
available unqualified before the user introduces additional top-level bindings. As special
aspects of this environment, infix identifiers and overloading are also discussed.
There are two reasons for including (non-module) identifiers in the top-level environ-

ment. The first is convenience. Certain types and values are used so frequently that it
would be perverse to force the programmer to always open the containing structures or
to use the qualified names, especially for interactive usage, where notational simplicity
and fewer keystrokes are desirable. The second reason is to allow operator overloading.

3.1 Modules in the top-level environment

There are no default requirements on which modules will be initially available at top-
level for either interactive or batch-oriented sessions. Each implementation may provide
its own mechanism for making its various modules available to the user’s code. Even
the presence of a top-level identifier that is logically defined in a structure (e.g., the type
int is defined in the Int structure) is no guarantee that the structure name is in the
environment.

3.2 Top-level type, exception, and value identifiers

Various types, exceptions, and values are available in the top-level environment without
qualification. In particular, everything in the General structure is available.
We note that the special identifiers = and <>, corresponding to polymorphic equal-

ity and inequality, are available in the top-level environment but are not bound in any
module.
Table 3.1 presents the top-level types and their defining structures, if any.
Although the types bool and list are considered primitive and defined in the top-

20 CHAPTER 3. TOP-LEVEL ENVIRONMENT

Table 3.1: Top-level types

Type Defined in
eqtype unit General
eqtype int Int
eqtype word Word
type real Real
eqtype char Char
eqtype string String
type substring Substring
type exn General
eqtype ’a array Array
eqtype ’a vector Vector
eqtype ’a ref primitive
datatype bool = false | true primitive
datatype ’a option = NONE | SOME of ’a Option
datatype order = LESS | EQUAL | GREATER General
datatype ’a list = nil | :: of (’a * ’a list) primitive

level environment, for consistency they are also bound in the structures Bool and List,
respectively.
The next table presents the exception constructors available at top-level. All of these

are defined in the General structure, except for Option, which is defined in the
Option structure, and Empty, which is defined in the List structure.

exception Bind
exception Chr
exception Div
exception Domain
exception Empty
exception Fail of string
exception Match
exception Option
exception Overflow
exception Size
exception Span
exception Subscript

Table 3.2 presents the non-overloaded functions available at top-level, plus the struc-
ture value to which each is bound. Note that the use function is special. Although it
is not defined precisely, its intended purpose is to take the pathname of a file and treat
the contents of the file as SML source code typed in by the user. It can be used as
a simple build mechanism, especially for interactive sessions. Most implementations
will provide a more sophisticated build mechanism for larger collections of source files.
Implementations are not required to supply a use function.

3.2. TOP-LEVEL TYPE, EXCEPTION, AND VALUE IDENTIFIERS 21

Table 3.2: Top-level functions

val ! : ’a ref -> ’a General.!
val := : ’a ref * ’a -> unit General.:=
val @ : (’a list * ’a list) -> ’a list List.@
val ˆ : string * string -> string String.ˆ
val app : (’a -> unit) -> ’a list -> unit List.app
val before : ’a * unit -> ’a General.before
val ceil : real -> int Real.ceil
val chr : int -> char Char.chr
val concat : string list -> string String.concat
val exnMessage : exn -> string General.exnMessage
val exnName : exn -> string General.exnName
val explode : string -> char list String.explode
val floor : real -> int Real.floor
val foldl : (’a*’b->’b)-> ’b List.foldl

-> ’a list -> ’b
val foldr : (’a*’b->’b)-> ’b List.foldr

-> ’a list -> ’b
val getOpt : (’a option * ’a) -> ’a Option.getOpt
val hd : ’a list -> ’a List.hd
val ignore : ’a -> unit General.ignore
val implode : char list -> string String.implode
val isSome : ’a option -> bool Option.isSome
val length : ’a list -> int List.length
val map : (’a -> ’b) -> ’a list List.map

-> ’b list
val not : bool -> bool Bool.not
val null : ’a list -> bool List.null
val o : (’a->’b) * (’c->’a) -> ’c->’b General.o
val ord : char -> int Char.ord
val print : string -> unit TextIO.print
val real : int -> real Real.fromInt
val ref : ’a -> ’a ref primitive
val rev : ’a list -> ’a list List.rev
val round : real -> int Real.round
val size : string -> int String.size
val str : char -> string String.str
val substring : string * int * int String.substring

-> string
val tl : ’a list -> ’a list List.tl
val trunc : real -> int Real.trunc
val use : string -> unit implementation dependent
val valOf : ’a option -> ’a Option.valOf
val vector : ’a list -> ’a vector Vector.fromList

22 CHAPTER 3. TOP-LEVEL ENVIRONMENT

3.3 Overloaded identifiers

The SML Standard Basis includes a fixed set of overloaded identifiers; programmers
may not define new overloadings. These identifiers, with their type schemas and default
bindings are as follows:

val + : num * num -> num Int.+
val - : num * num -> num Int.-
val * : num * num -> num Int.*
val div : fixnum * fixnum -> fixnum Int.div
val mod : fixnum * fixnum -> fixnum Int.mod
val / : real * real -> real Real./
val ˜ : num -> num Int.˜
val abs : realint -> realint Int.abs
val < : numtext * numtext -> bool Int.<
val > : numtext * numtext -> bool Int.>
val <= : numtext * numtext -> bool Int.<=
val >= : numtext * numtext -> bool Int.>=

where

int = {I.int|where I is a basis module matching the
INTEGER signature}

word = {W.word|where W is a basis module matching the

WORD signature}
real = {R.real|where R is a basis module matching the

REAL signature}
text = {String.string,Char.char,

WideString.string,WideChar.char}
fixnum = word ∪ int

realint = real ∪ int

num = fixnum ∪ real

numtext = num ∪ text

The same type must be chosen throughout the entire type schema of an overloaded oper-
ator. For example, the function abs cannot have type int -> real, but only a type
like int -> int. In addition, we note that IntN.int, IntInf.int, WordN.-
word, RealN.real, WideString.string, and WideChar.char are optional
types.
The function identifiers have a default binding that is adopted in lieu of any type in-

formation supplied by the surrounding context. All overloaded value identifiers default

3.4. INFIX IDENTIFIERS 23

to the corresponding operation from the Int structure, except for the operator /, whose
default binding is Real./. Thus, the following code would typecheck:

fun f(x,y) = x <= y

val x = (1 : LargeInt.int)
val y = x + 1

fun g x = x + x before ignore (x + 0w0)

with f, y, and g having the following types:
val f : int * int -> bool
val y : LargeInt.int
val g : word -> word

3.4 Infix identifiers

The top-level environment has the following infix identifiers:
infix 7 * / div mod
infix 6 + - ˆ
infixr 5 :: @
infix 4 = <> > >= < <=
infix 3 := o
infix 0 before

The digit in each row gives the precedence (binding power) of each identifier, so that
+ and - bind equally tightly, and both bind more tightly than :: and @. All these
identifiers are left-associative (bind more tightly to the left) except :: and @, which are
right-associative.

3.5 The process environment

The Basis Library specifies very little about the process or operating system environment
in which SML programs are executed, which gives implementations the widest possible
freedom. Programs may be executed as part of an interactive session, as stand-alone
executables, or as server processes.
There are a few points, however, where the surrounding environment does impinge

on the Basis Library. We summarize these points here.
The CommandLine structure defines functions that return the name and arguments

with which a program was invoked. The method for setting these values is entirely up
to the implementation. We would expect that if a stand-alone executable is run from a
command line, then these values would be determined from the name and arguments
specified on that command line.
Implementations may provide a mechanism for taking a function and producing a

stand-alone executable. If such a mechanism is provided, the type of the function being
exported must be

24 CHAPTER 3. TOP-LEVEL ENVIRONMENT

(string * string list) -> OS.Process.status

When the stand-alone executable is invoked, the function should be called with a first ar-
gument equal to CommandLine.name () and a second argument equal to Command-
Line.arguments ().
The OS.Process.getEnv function assumes that the environment associates a set

of name-value pairs with the invocation of a program, where both name and value
are strings. This function returns the value associated with the given name. It is es-
sentially a mechanism for providing global variables, by which the user can provide
values that can be used deep within a program. The method for specifying this set is
OS-dependent. The set may be empty.
The OS.Process.exit and OS.Process.terminate functions return a sta-

tus value to the environment. The type of this value, and how the environment interprets
it, is OS-dependent.
The OS.Process.atExit function adds an argument function to the actions that

are executed when the program reaches a normal termination. A normal termination is
a call to OS.Process.exit, or as defined by the implementation. If a stand-alone
executable is created from a function as above, then normal termination occurs when that
function returns. We would expect other methods for creating stand-alone executables
to behave similarly.
Abnormal terminations include calls to OS.Process.terminate, or when a stand-

alone executable does not handle a raised exception. The functions registered by OS.-
Process.atExit are not evaluated in the event of an abnormal program termination.
Some actions are implicitly registered with OS.Process.atExit, so that they

always occur on a normal program termination. These must include the flushing and
closing of all open output streams created by the open functions in BinIO and Text-
IO and the flushing (but not closing) of TextIO.stdOut and TextIO.stdErr.
Although this exit protocol covers most usual cases, for maximum portability and ro-
bustness, code should flush streams explicitly.

4
General usages

In SML programming, there are certain library features that are used over and over,
in many different contexts, whether in text manipulation, numerical computations, or
systems programming. At times, they can seem like part of the core language, espe-
cially when specified as an infix operator. Most of these features are gathered into the
General module. This chapter will discuss some of these types and values, and give
examples of how they are typically used.
We start with a brief mention of the bool type and its two values true and false,

which are defined as part of the initial static basis for the language and redeclared in the
Bool structure. This type provides the values used by predicates and logical expres-
sions. The library module Bool defines boolean negation not, while the core language
defines boolean conjunction AND and disjunction OR as andalso and orelse, re-
spectively. These binary operators provide conditional evaluation, in that if the value
of the expression can be deduced from evaluating just one subexpression, the other is
left unevaluated. In practice, these operators are more useful than their strict logical
counterparts AND and OR. In addition to avoiding unnecessary calculation, they cap-
ture nicely the condition where the evaluation of one expression only makes sense in
certain conditions. A typical instance would be the function

fun skipLine (l : substring) = let
val l’ = Substring.dropl (Char.isSpace) l
in
Substring.isEmpty l’
orelse Substring.sub (l,0) = #"#"

end

which could be used to skip empty lines or those whose first non-space character is
#"#". The initial check for an empty substring is necessary to avoid an exception by
calling sub on an empty substring. In the rare cases where the strict semantics of AND
and OR are required, the programmer need only wrap the built-in operators in a function

26 CHAPTER 4. GENERAL USAGES

fun && (b1 : bool, b2 : bool) = b1 andalso b2
fun || (b1 : bool, b2 : bool) = b1 orelse b2
infix && ||

to guarantee the evaluation of both expressions.

4.1 Linear ordering

By extending the two-valued range of true and false, equal and not equal, to the three-
valued range of less than, equal to, and greater than, we obtain a basis for a wide as-
sortment of basic and efficient searching and sorting data structures such as red-black
trees and splay trees and algorithms such as quicksort. To provide a uniform encoding
of the three relations, the General structure defines the datatype order with its three
constructors LESS, EQUAL, and GREATER. Functors and structures implementing sort-
ing and searching will typically take a function returning order values as a parameter.
Sometimes an algorithm requires a more limited comparison function such as a greater
than operator. Given an order-valued function compare, the code

fun a > b = Int.compare (a,b) = GREATER

provides the necessary operator. On the other hand, if the various relational operators <,
<=, >, and >= are available, it is a simple matter to construct a compare function.
When defining a new abstract type ty, the programmer should consider whether it

makes sense to provide a comparison function

val compare : ty * ty -> order

on the type. The answer will depend on whether the type has a natural linear ordering
and on how useful having an ordering might be. As usual, answering the latter question
can be difficult, requiring an educated guess as to how the type will be used; but if
an abstract type does not have a compare function, it can prove nearly impossible to
implement sets of such objects efficiently. It is for this reason that the Library defines a
compare function for most primitive types.
Often there are straightforward techniques for deriving a linear ordering. If the con-

crete representation of the type has a field that is a key for values of the type, and the
type of that field has a linear ordering, the type can inherit the ordering of the key. More
generally, some types, such as string, can be viewed as a sequence of values of a base
type, such as char, with an ordering. In this case, an ordering can be defined as the
lexicographic ordering derived from the ordering of the base type. This approach can be
further extended to the case where some collection of fields, of possibly differing types,
each with an ordering, serves as a key. An ordering of the type can then be defined as a
lexicographic ordering of the key fields. When considering the order of the key fields,

4.2. OPTION 27

it is useful compare the fields that provide the most discrimination first. This technique
can speed up the computation in cases of inequality.
When defined, it is recommended that the usual relations hold amongst the relational

operators, the equality operators and the compare function. Thus, if compare(a,b)
= GREATER, the expression a > b should be true.
When calculating the ordering of integral values A and B, one should be careful if

the calculation relies on the sign of A - B. If the values are integers, the subtraction
might cause the Overflow exception to be raised; and if the values have word type,
the difference will always be non-negative.

4.2 Option

Values of option type can play many different roles in an SML program, all re-
lated to the occurrence of missing values. Formally, a function whose return type is
ty option can be viewed as a partial function, being undefined for those values in
its domain for which it returns NONE. A typical example of this view is provided by
the OS.Process.getEnv function, which returns the string value associated with a
name in the process environment. If a name is undefined, the function returns NONE.
Pragmatically, a NONE value can be considered as a type-safe version of the convention
in the C language in which a NULL pointer is used to indicate no value.
A common situation in which a function value is undefined is the case of errors. In

particular, the Library has adopted the convention that all functions used to create a
value from a string representation should have option type, with NONE denoting that
conversion was not possible. Thus, Int.fromString " B2" returns NONE. Such
occurrences were deemed not that exceptional but to be expected, to be handled directly,
not via an exception.
When dealing with strings and lists, the programmer has alternative ways to indicate a

missing value, using an empty string "" or an empty list []. In certain contexts, though,
these empty objects are valid and meaningful values. In these cases, the programmer
must rely on NONE to indicate the actual absence of a legal value.
Another use of the option type occurs when we wish to denote a default or un-

specified value. For example, we specify subsequences using a starting index and the
number of elements to be included. When the latter value is NONE, the subsequence
extends to the end of the base sequence. This convention is a convenient shorthand, as
the corresponding value involving the length of the sequence and the starting index is
cumbersome to express.
When the default is not determined by convention, the programmer can use getOpt

to supply the value. For example, the function

fun getInt (dflt : int) (s : string) =
getOpt (Int.fromString s, dflt)

28 CHAPTER 4. GENERAL USAGES

returns an integer scanned from s or, if this conversion fails, the default value dflt.
In addition to getOpt, the Option structure contains other functions for manip-

ulating option values. The most frequently used are valOf and its predicate form
isSome, both of which, along with getOpt, are available unqualified in the top-level
environment. The valOf function strips away the SOME from an option value, rais-
ing an exception if the value is NONE. It is often used when the code guarantees an
option value is not NONE, as illustrated in the following code:

fun checkLine ins = (case TextIO.inputLine ins
of "" => NONE
| s => (case valOf (Substring.getc (Substring.full s))

of (#"#", rest) => SOME(true, rest)
| (_, rest) => SOME(false, rest)

(* end case *))
(* end case *))

This function evaluates a line as to whether or not it begins with a #"#" character. As
the code has already checked that the line is non-empty, it is safe to apply valOf to the
result of Substring.getc.
Values of option type can be thought of as list of zero or one elements. The

Option structure includes analogues of some of the standard sequence functions (see
Chapter 7) such as app, map, mapPartial, and a variation of filter. The function

fun find (p : ’a -> bool) (x : ’a option) =
mapPartial (filter p) x

works as a find function. In general, these operations allow one to work functionally
with option values, without having to check the case or wrap and unwrap values ex-
plicitly. For example, the data structure for a parse tree might represent a case statement
as

CASE of {
arg : exp,
cases : (int * stmt) list,
default : stmt option

}

Code to apply a function to a case element might use Option.app f default
and rewriting the tree might employ Option.map f default. Recalling that get-
Env returns an option type, one might convert an optional, string-valued environment
variable "SSH_AGENT_PID" into an optional integer parameter by

fun getAgentPid () =
Option.mapPartial
Int.fromString
(OS.Process.getEnv "SSH_AGENT_PID")

For the interested reader, we note that it is possible to describe the option type
in a totally different framework. One technique for emulating impure features, such

4.3. EXCEPTION HANDLING 29

as mutable arrays, in pure functional languages, such as Haskell [Jon03], is to employ
monads, an algebraic construct from category theory. A monad is a type constructor M
together with three functions:

val unit : ’a -> ’a M
val map : (’a -> ’b) -> (’a M -> ’b M)
val join : ’a M M -> ’a M

satisfying a certain handful of axioms. Wadler [Wad90] has observed out that option
is a monad using the Option.map and Option.join functions and letting unit
= SOME.

4.3 Exception handling

As we noted in the introductory chapter, we feel the programmer should give special
attention to the use of exceptions and attempt to avoid them when possible. Although
crucial for handling errors at the right place, exceptions, by their nature, make code
harder to analyze and understand. Another difficulty with exceptions is deciding what
exception to use. At one extreme, a programmer could employ the standard exception
General.Fail everywhere, letting it carry a string describing the particular failure.
Usually, this approach is not fine enough for effective error handling, so exception han-
dlers need to do string matching on the string carried by Fail. For example, one
technique is to have a function sampleFn in a structure Sample raise the exception
Fail "Sample.sampleFn". If a function can raise multiple exceptions, the string
can be extended in an obvious fashion. These string-based approaches quickly become
cumbersome and error-prone, essentially replacing typed values with untyped strings.
At the other extreme, the code could provide a unique exception for every place and
type of error possible. Although this approach provides the finest detail, it can become
a cognitive nightmare, making it difficult for the programmer to understand and use
appropriate exceptions. There is the related problem in object-oriented programming,
where the temptation to define new types can lead to an overly complex type hierarchy.
The derived types available in an object-oriented language can be used to impose

some structure on the definition and use of exceptions. Although the SML programmer
does not have this option, she can employ the type system to obtain some classification
of exceptions. The IO.Io exception illustrates an example of this approach, where the
value carried by the exception contains an exception.
The General structure provides a collection of general-purpose exceptions that the

programmer can use to limit the generation of new exceptions. Thus, there are many
instances that might justify the use of the Domain or Size exceptions. For miscella-
neous cases, or in prototype code, the all-purpose Fail exception is available.
As for catching and handling exceptions, the General structure supplies the two

functions exnName and exnMessage, which are applicable to any exception. In the

30 CHAPTER 4. GENERAL USAGES

ideal case, a programmer is aware of all the possible exceptions that might arise at a
particular place and can therefore provide an exhaustive exception handler. This is not
always the case in practice, so it is usually a good bit of defensive programming to
provide some information concerning an unexpected error. The following code exhibits
an example of this technique applied to a function ready to be exported as a stand-alone
program.

fun main (name : string, arguments : string list) = let
fun errMsg msg = TextIO.output (TextIO.stdErr, msgˆ"\n")
fun error (Fail msg) = errMsg msg
| error e = errMsg (exnMessage e)

val ret = (action (name, arguments); OS.Process.success)
handle e => (error e; OS.Process.failure)

in
ret

end

4.4 Miscellaneous functions

One class of mistakes which can occur with a language like SML involves failing to use
the value of a function call. The availability of higher-order functions admits a particu-
larly subtle form of this bug in which a curried function is only partially evaluated. For
example, say the programmer has a function

val put : string -> string -> unit

which is then used in a sequence expression

...; put "abc"; ...

It looks correct to the eye, as the programmer knows the function is meant to return
unit and therefore the return value can be ignored. This type of mistake can be difficult
to find. For this reason, the Library insists that functions evaluated for side effects only
have a result type of unit and suggests that implementations warn the programmer
when a function value is not used.
There are times, though, when the programmer really wants to ignore the results of

a function that returns non-trivial values. In these cases, the programmer can use the
ignore function to discard the results. For example, assume the put function has
both a side effect and produces a result. Then, applying it to a list l can be done as
follows:

List.app (ignore o put) l

This example also involves another useful library function: the function composition
operator o. The composition operator and the before operator are simple to define,

4.4. MISCELLANEOUS FUNCTIONS 31

but are useful enough to be included in the Library. The before operator also touches
on the issue of side effects. It is typically used after computing a value to perform some
side-effecting operation, followed by returning the value. For example,

fun readAndClose (f : TextIO.instream) =
(TextIO.inputAll f) before (TextIO.closeIn f)

creates a string from the input of a file, closes the input stream, and returns the string.
When compared with the equivalent version:

fun readAndClose (f : TextIO.instream) = let
val s = TextIO.inputAll f
in
TextIO.closeIn f;
s

end

the advantages may seem minimal, but the operator provides a pleasing elegance.

5
Text

The SML Basis Library provides a number of features aimed at enabling easy manip-
ulation of textual data. There are three basic text types: characters (represented by the
type char), strings (represented by the type string), and substrings (represented by
the type substring). The default text types and modules are implemented using 8-bit
ASCII characters.
There is a “home” module for each of the basic text types: Char for characters,

String for strings, and Substring for substrings. Strings and substrings are special
instances of the more general vector and vector slice types, so the Basis Library equates
the type stringwith CharVector.vector and the type substringwith Char-
VectorSlice.slice. These equivalences can be useful as they allow additional
vector and vector slice operations to be used on strings and substrings. The String-
Cvt module provides common definitions for string conversions (e.g., the reader
type) and the Byte structure provides support for casting characters and strings to bytes
(Word8.word values) and sequences of bytes.
In addition to being available at top-level, the default text modules are also substruc-

tures of the Text module. An implementation may also provide text modules encap-
sulated in the optional WideText structure, where the WideChar.char type repre-
sents a larger (e.g., Unicode [Uni03]) character set. Since the operations and semantics
are essentially equivalent between 8-bit and wide text, we only consider the 8-bit repre-
sentation here.

5.1 Characters

Characters are the basic element from which all text is comprised. As noted above, the
Char.char type represents the traditional 8-bit character set and serves as the default
character type (char) for SML. The Char structure provides a collection of predicate
functions for classifying characters. For example, the function isUpper returns true
if its argument is an uppercase letter. It is also possible to create a custom character

34 CHAPTER 5. TEXT

classifier using the contains and notContains functions. These functions have
the type

val contains : string -> char -> bool
val notContains : string -> char -> bool

Their first argument is a string that represents a set of characters and their second ar-
gument is a character to be tested for membership in the set. The contains function
returns true if the character is in the set, while notContains returns true if the char-
acter is not in the set. For example, we can test for octal digits using the following
predicate:

val isOctDigit = Char.contains "01234567"

As will be seen below, character classification functions are useful as predicate argu-
ments to the higher-order operations on strings and substrings.

5.2 Strings and substrings

The SML Basis Library provides two types for the compact representation of character
sequences: string and substring. The string type is an immutable vector of
characters. Unlike in C, the size of a string is part of its representation, and a string may
contain any valid character, including the NULL character "\000". The substring
type represents a subsequence (or slice) of some underlying string value. Substrings
provide a way to work with parts of a string without copying. They are also useful for
scanning over a string.

5.3 Conversions to and from text

The SML Basis Library provides functions to convert between most primitive types
(e.g., int and real) and their string representations.

5.3.1 The StringCvt structure

A number of types and functions related to conversions to and from printable representa-
tions are collected in the StringCvt structure. These include datatypes for specifying
the format of integer, word, and real conversions (the radix and realfmt types).
There are also utility functions for scanning and formatting strings.
The padLeft and padRight functions provide a way to extend strings to a specific

width. For example, to convert a word value to an eight-digit hexadecimal representa-
tion, we can use the following function:

fun w2s w = StringCvt.padLeft #"0" 8 (Word.toString w)

5.3. CONVERSIONS TO AND FROM TEXT 35

while to left-justify a string in a field of width ten, we can use the following:

fun left s = StringCvt.padRight #" " 10 s

Note that if the size of s is greater than ten, then no padding will be added. If we wanted
to guarantee at least one space to the right of the string, we could use the following
implementation:

fun left s = StringCvt.padRight #" " (Int.max(9, size s)+1) s

The StringCvt structure is also home to the reader type constructor, which is
defined as follows:

type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

where the type variable ’item represents the type of items being scanned and the type
variable ’strm represents the input stream of items. Of particular interest are character
readers (i.e., readers where the item type is char). The StringCvt structure defines
a few utility functions on character readers. The skipWS function advances the reader
over any initial whitespace characters. The splitl function takes a character predicate
and scans the longest prefix from the reader that satisfies the predicate. For example, the
following function skips any initial whitespace and then scans a word (i.e., a non-empty
sequence of letters) from the given reader:

fun scanWord rdr strm = let
val strm = StringCvt.skipWS rdr strm
in
case StringCvt.splitl Char.isAlpha rdr strm
of ("", _) => NONE
| (w, strm) => SOME(w, strm)

(* end case *)
end

Notice that this function is a mapping from a character reader to a string reader, where
the strings will be words. Lastly, the scanString function can be used to convert
a general scan function into a toString function. More discussion of the use of
readers can be found below in Section 5.4.2.

5.3.2 Converting to text

For most primitive types, the SML Basis Library provides two functions for converting
a value of the type to a string representation. For a given type ty defined in a structure
M , the M.fmt function is a customizable conversion function with the specification

val fmt : info -> ty -> string

36 CHAPTER 5. TEXT

where info specifies properties of the string representation, such as radix and precision.
The M.toString function is a default conversion function, with the specification

val toString : ty -> string

which is suitable for most uses. In some cases, no fmt function is provided since there
is only one way to format the type.
The conversion functions are designed for presenting a readable format while allow-

ing maximum user flexibility in the final output. Thus they do not always produce a
valid SML literal of the given type. For example, the expression

Word.fmt StringCvt.HEX 0wx19

produces the string "19" instead of the SML literal "0wx19". To produce a valid
SML literal, we would write

"0wx" ˆ Word.fmt StringCvt.HEX 0wx19

while to produce a valid C literal we would write

"0x" ˆ Word.fmt StringCvt.HEX 0wx19

Two forms of toString functions are provided for converting character and string
values to printable format. The Char.toString and String.toString func-
tions use SML escape sequences to represent non-printable characters, while Char.-
toCString and the String.toCString functions use C escape sequences. Note
that these functions do not add the surrounding quotes to their results; to produce a valid
SML string literal one needs code like the following:

fun toLiteral s = String.concat["\"", String.toString s, "\""]

5.3.3 Converting from text

The SML Basis Library also provides two functions for parsing a string representation
of values for most primitive types. For a given type ty defined in a structure M , the
M.scan function is a general-purpose conversion function with the following specifi-
cation:

val scan : info
-> (char, ’a) StringCvt.reader

-> (ty, ’a) StringCvt.reader

where info specifies properties of the string representation, such as radix and precision.
The StringCvt.reader type is a higher-order representation of a stream and is
discussed in detail in Section 5.4.2. For some types (e.g., bool), there is no info
argument and the specification is simply

5.3. CONVERSIONS TO AND FROM TEXT 37

val scan : (char, ’a) StringCvt.reader
-> (ty, ’a) StringCvt.reader

The fromString function provides a simple mechanism for converting from strings
to a primitive type. It has the following specification:

val fromString : string -> ty option

Like the scan function, fromString ignores initial whitespace, but, unlike scan, it
does not return any residual text that was not consumed in the parse. The fromString
function is most useful when combined with another scanning or parsing mechanism.
For example, Int.fromString might be used to convert the text matched by the
regular expression [0−9]+ in a generated lexer.
As with converting characters and strings to printable representations, the SML Basis

Library provides both fromString and fromCString functions in the Char and
String structures. Note that since the space character is a valid character in a character
or string literal, these functions do not skip initial whitespace prior to scanning.

5.3.4 The Byte structure

In languages without strong type systems, such as C, it is possible to view strings as
byte sequences. The SML Basis Library uses distinct abstract types (string and
Word8Vector.vector) for these views, but it is sometimes useful to be able to
directly convert between the two. The operations provided by the Byte structure pro-
vide three levels of conversions between the character and the byte-oriented view of
text. Unlike the fromString and toString functions described above, these oper-
ations do not change the byte-level representation of the data (i.e., there are no escape
sequences).
The byteToChar and charToByte functions convert between the char and

Word8.word types. For example, Byte.charToByte(#"x") returns 0wx78,
which is the ASCII code for lowercase “x.”
Constant-time coercions between the string and Word8Vector.vector types

are supported by the bytesToString and stringToBytes functions. These func-
tions can be useful for text I/O on top of a binary stream. For example, the Portable
Pixmap (PPM) file format [Pos03] has an ASCII header and binary data. Listing 5.1 de-
fines a function for writing a 24-bit per pixel image as a PPM file. The header consists
of a special identifier (the "P6" string), the image width and height, and the maxi-
mum value per color component. Following the textual header comes the binary data
(note that the use of output1 for output is not the most efficient technique; see Sec-
tion 8.2.6 for more discussion). Another example can be found in Section 10.6.2, where
these operations from the Byte structure are used to build text I/O on a binary network
connection.

38 CHAPTER 5. TEXT

type rgb = {r : Word8.word, g : Word8.word, b : Word8.word}
type ppm = {wid : int, ht : int, data : rgb array}

fun writePPM (fname, ppm : ppm) = let
val outS = BinIO.openOut fname
fun pr s = BinIO.output(outS, Byte.stringToBytes s)
fun putByte b = BinIO.output1(outS, b)
fun putRGB {r, g, b} = (putByte r; putByte g; putByte b)
in
pr "P6\n";
pr (concat[

Int.toString(#wid ppm), " ",
Int.toString(#ht ppm), "\n"

]);
pr "255\n";
Array.app putRGB (#data ppm);
BinIO.closeOut outS

end

Listing 5.1: Writing a PPM file

Lastly, the Byte structure provides functions for working with byte array or vector
slices. The unpackString function extracts a slice of a byte array and returns it as
a string (the unpackStringVec is similar and works on byte vectors). The pack-
String function packs a substring into a byte array. These functions are useful for
data marshalling and unmarshalling of strings.

5.4 Taking strings apart

The SML Basis Library provides a collection of functions for parsing and decomposing
strings. When efficiency is not an issue, one can work directly with string values;
the substring type allows one to decompose strings in situ, while the reader type
supports incremental scanning of character sequences.

5.4.1 Tokenizing

One common operation on strings is scanning a string to decompose it into a sequence
of tokens. (This process is sometimes called tokenization.) In its most general form, one
uses a regular-expression library or scanner-generator tool for this problem, but in many
cases the input language is simple enough that a direct implementation is feasible. The
SML Basis Library provides several mechanisms to support tokenization.
In the simplest case, one is interested in a sequence of tokens separated by some

5.4. TAKING STRINGS APART 39

specific character or characters. For example, say we have an input string that contains
a list of numbers separated by commas or whitespace. The following function will
convert this input string into a list of integers:

fun numbers s = let
fun isSep #"," = true
| isSep c = Char.isSpace c

in
List.map (valOf o Int.fromString)
(String.tokens isSep s)

end

Note that the mechanism for tokenization does not do any syntax checking; it treats
any non-empty sequence of commas and whitespace characters as a separator and any
sequence of non-separator characters as a token.
If we are tokenizing large input strings, we may want to avoid creating the interme-

diate list of strings. Instead, we can tokenize to a list of substrings and then convert the
substrings to integers.

fun numbers s = let
fun isSep #"," = true
| isSep c = Char.isSpace c

fun atoi ss =
#1(valOf(Int.scan StringCvt.DEC Substring.getc ss))

in
List.map atoi
(Substring.tokens isSep (Substring.full s))

end

Of course, this approach still requires building the intermediate list of substrings.
A variation on the tokens function is the fields function, which treats each sep-

arator character as delimiting two fields. For example, the expression

String.tokens isSlash "/a//b/c"

where the isSlash function is

fun isSlash #"/" = true | isSlash _ = false

evaluates to the list ["a","b","c"], whereas

String.fields isSlash "/a//b/c"

evaluates to the list ["","a","","b","c"].
For large strings or for string data coming from other sources (e.g., text files), it is

usually more efficient to process the data incrementally as it is parsed. The next section
describes techniques for scanning text from arbitrary sources.
If we are only interested in extracting a particular field of a comma-separated record,

we can use the dropl and takel functions to skip and extract fields. For example,
the following function takes a string and a field index and returns the selected field:

40 CHAPTER 5. TEXT

fun nthField (s, i) = let
fun notComma #"," = false | notComma _ = true
fun nth (ss, 0) = Substring.takel notComma ss
| nth (ss, i) = let

val rest = Substring.triml 1 (Substring.dropl notComma ss)
in
nth (rest, i-1)

end
in
if (i < 0) then raise Subscript else ();
Substring.string (nth (Substring.full s, i))

end

We are using triml to remove the separating comma. Since the dropl, takel, and
triml functions act as the identity on the empty substring, the nthField function
will return an empty string if there are fewer fields than the one indexed.

5.4.2 Readers

The type constructor StringCvt.reader is used throughout the SML Basis Library
to specify the interface to functional streams.
The power of the reader type is that we can define combinators for constructing

higher-level scanning and parsing functions. For example, we can define a higher-order
function for scanning bracketed, comma-separated lists of items.

fun scanList scanItem getc strm = let
val scanItem = scanItem getc
fun scan (strm, items) = (case scanItem strm

of NONE => NONE
| SOME(item, strm) => (

case getc(StringCvt.skipWS strm)
of NONE => NONE
| SOME(#"]", strm) =>

SOME(rev(item::items), strm)
| SOME(#",", strm) =>

scan(strm, item::items)
(* end case *))

(* end case *))
in
case getc(StringCvt.skipWS strm)
of SOME(#"[", strm) => scan(strm, [])
| _ => NONE

(* end case *)
end

This function has the type

val scanList :
((char, ’strm) reader -> (’item, ’strm) reader)

(char, ’strm) reader -> (’item list, ’strm) reader

5.4. TAKING STRINGS APART 41

In other words, it takes a character reader and an item scanner and returns an item list
reader. We can get a scanner for lists of integers by

val scanIntList = scanList (Int.scan StringCvt.DEC)

We can, in turn, specialize this function to work on substrings by

val scanIntListFromSubstring = scanIntList Substring.getc

or on functional input streams by

val scanIntListFromStream = scanIntList TextIO.StreamIO.input1

The StringCvt module also provides the scanString function for producing a
“fromString” function from a scanner. For example,

val intListFromString = StringCvt.scanString scanIntList

has the type

val intListFromString : string -> int list option

6
Numerics

6.1 Numerical conversions

The SML Basis Library defines a framework for varying sizes (or precisions) of integer,
word, and floating-point types. Since the SML Basis Library does not specify which
sizes an implementation should provide, we need a flexible mechanism for numeric
conversions that is not tied to assumptions about which numeric types are available. This
section considers conversions involving integral types. Conversions involving floating-
point values will be discussed in Section 6.2.

6.1.1 Integer to integer conversions

Conversions between integers go through the LargeInt structure using the toLarge
and fromLarge functions. Thus, to convert from IntN.int to IntM.int, the
following function is used:

IntM.fromLarge o IntN.toLarge

IntN.toLarge converts the IntN.int type into a LargeInt.int type, and the
function IntM.fromLarge brings it down to an IntM.int value. The conversion
is guaranteed to succeed when N ≤ M . When M < N , however, an Overflow
exception will be raised if bits are lost during the conversion.

6.1.2 Word to word conversions

Conversions between words are similar, except that two different conversion operations
are possible between WordN.word and WordM.word via the LargeWord.word
type:

WordM.fromLarge o WordN.toLarge
WordM.fromLarge o WordN.toLargeX

44 CHAPTER 6. NUMERICS

Both WordN.toLarge and WordN.toLargeX copy the WordN.word value into
the lower-order position of LargeWord.word. The difference occurs in how the
higher-order bits are filled. With WordN.toLarge, the remaining higher-order bits
are filled with zeros; with WordN.toLargeX, the higher-order bits are a sign exten-
sion of the most significant bit. In other words, toLargeX assumes that the word value
is signed. The function WordM.fromLarge truncates the LargeWord.word value
to the size of WordM.word. Note that bits may be lost when M < N , and no exception
is raised.

6.1.3 Word to integer conversions

Conversion from words to integers are mediated through the LargeInt.int type.
Again, two forms are possible, depending on how the most significant bit in the word
type is to be treated:

IntM.fromLarge o WordNtoLargeInt
IntM.fromLarge o WordN.toLargeIntX

where WordN.toLargeIntX performs sign extension of the most significant bit of
the WordN.word value. The function WordN.toLargeInt treats the word as an
N -bit unsigned quantity in the range [0, 2N− 1], whereas, with WordN.toLargeInt-
X, the word is considered to be the presentation of an N -bit signed integer in the range
[−2N−1, 2N−1−1]. An Overflow is generated if the result cannot be represented using
IntM.int. For example:

SML expression Value
(Int32.fromLarge o Word8.toLargeInt) 0w1 1
(Int32.fromLarge o Word8.toLargeIntX) 0w1 1
(Int32.fromLarge o Word8.toLargeInt) 0wxff 255
(Int32.fromLarge o Word8.toLargeIntX) 0wxff ˜1
(Int8.fromLarge o Word8.toLargeInt) 0wxff Overflow exception
(Int8.fromLarge o Word8.toLargeIntX) 0wxff ˜1

6.1.4 Integer to word conversions

Conversions from integers to words are performed using:

WordM.fromLargeInt o IntN.toLarge

The toLarge function performs sign extension (if necessary), and the fromLarge-
Int takes the resulting lower-order M bits. One rarely treats the value in an IntN.int
type as unsigned, so there is no equivalent of toLargeX. This interpretation, however,
can be implemented using the operations already defined.

6.2. FLOATING-POINT NUMBERS 45

6.1.5 Default integer-type conversions

Due to the ubiquitous nature of the default integer type, there are functions in the
INTEGER and WORD signatures that support conversions directly to and from the de-
fault integer type: fromInt to convert from the default integer, and toInt to convert
to the default integer with the usual toIntX for word types. In all, we have:

IntN.toInt
IntN.fromInt
WordN.toInt
WordN.toIntX
WordN.fromInt

6.2 Floating-point numbers

The SML Basis Library provides a broad collection of floating-point functions via the
REAL signature and its Math substructure, which provide support for numerical com-
putation. The auxiliary structure IEEEReal specifies related types and functions that
are independent of the particular floating-point implementation.
The Basis library has adopted the IEEE standard for floating-point numbers with non-

trapping semantics. The latter means that when the result of a calculation goes outside
the range of normal real values, it is mapped to a set of special values. Thus, the value
of 3.0/0.0 is posInf while 0.0/0.0 is a NaN value (e.g., isNan(0.0/0.0) is
true), denoting an undefined value. Note that there is one negative infinity negInf and
one positive infinity posInf, while there are many NaN values.
This model differs from that of SML’90, in which expressions evaluating to values

outside the normal range caused an exception to be raised. The Basis allows implemen-
tations to provide a special operating mode in which NaNs and infinities are reported
when created. Even if an implementation does not provide such a mode, it is a simple
matter to provide exception-raising versions of the real-valued functions. For example,
one could use

exception SQRT

fun sqrt x = if x < 0.0 then raise SQRT
else Math.sqrt x

in place of Math.sqrt. In addition, the REAL signature provides the checkFloat
function, which can be used to trap non-finite values. It raises the exception Div if its
argument is a NaN and Overflow if its argument is an infinity; otherwise it acts as the
identity function. For example,

val asin = Real.checkFloat o Math.asin

defines an arc sine function that raises the Div exception if its argument is greater than
1.0.

46 CHAPTER 6. NUMERICS

Signed zeros are another feature of the IEEE model. Normally, this feature is trans-
parent, especially as the sign is ignored in all comparisons. For example, the expression
Real.==(˜0.0,0.0) evaluates to true. The difference, however, does exhibit itself
in certain calculations. The expression Real.==(atan2(0.0,˜1.0),pi) evalu-
ates to true, whereas false is returned by Real.==(atan2(˜0.0,˜1.0),pi).
The use of the Real.== function above brings up another aspect of SML floating-

point numbers: they are not equality types. The REAL signature provides the equality-
like operators defined in the IEEE standard. To mimic having equality, one can employ
SML’s infix declaration:

val == = Real.==
val != = Real.!=
infix 4 == !=

IEEE specifies four rounding modes: round to nearest, round to negative infinity,
round to positive infinity, and round to zero. In the Basis, these are defined in the
IEEEReal structure as the values TO_NEAREST, TO_NEGINF, TO_POSINF, and
TO_ZERO, respectively, of the datatype rounding_mode. All arithmetic functions
involve the rounding mode. The standard requires that calculations be performed to ar-
bitrary precision and then be rounded according to the rounding mode to fit the relevant
precision. The IEEEReal structure gives the programmer control over the hardware’s
rounding mode using the setRoundingMode and getRoundingMode functions.

6.2.1 Floating-point conversions

The functions fromInt and fromLargeInt convert integers to floating-point num-
bers. Note that neither function raises an exception. Loss of precision is handled by
the current rounding mode, and if the argument has a large enough absolute value, the
appropriate infinity is returned.
Transforming a floating-point value to an integer is done using the toInt and to-

LargeInt functions. These explicitly take a rounding mode as a parameter. Infinities
cause the Overflow to be raised, while NaNs generate the Domain exception. The
functions floor, ceil, trunc, and round are shorthand for toInt curried with
the corresponding rounding mode.
A difficulty can arise when converting a large word value into a real value. This

conversion must rely on the toLargeIntX function. Although the Basis guaran-
tees that LargeInt.int has sufficient precision to preserve the bits of any word,
if LargeInt.precision equals LargeWord.wordSize, the resulting integer
might be negative. This behavior is no problem if we know that IntInf exists, or even
if we just have LargeWord.wordSize < LargeInt.precision. Barring this
case, we need a function such as

6.3. PACKED DATA 47

fun w32ToReal (w : Word32.word) = let
val shift =

˜2.0 * Real.fromLargeInt(valOf LargeInt.minInt)
val i = Word32.toLargeIntX w
in
if (i < 0)
then shift + Real.fromLargeInt i
else Real.fromLargeInt i

end

to do the conversion correctly.
As with integral values, conversion between floating-point representations goes through

the LargeReal structure using the toLarge and fromLarge functions. To convert
from RealN.real to RealM.real, the following function is used:

(RealM.fromLarge mode) o RealN.toLarge

where mode is the desired rounding mode. Unlike in the integral case, loss of precision
does not cause an exception; rather, it is specified by the mode parameter.
There are times when it is useful to have a decimal representation of a floating-point

number. Because the hardware representation is typically binary, handling the conver-
sion accurately and concisely can be tricky. For this purpose, the Basis provides the
functions

val toDecimal : real -> decimal_approx
val fromDecimal : decimal_approx -> real option

converting between real values and values of type

type decimal_approx = {
class : float_class,
sign : bool,
digits : int list,
exp : int

}

Note that values of the latter type are concrete and are not required to have canonical
form. As with conversions from strings, the Library is forgiving about the argument
to fromDecimal. The function will produce an appropriate real value unless the
digits field contains a non-digit integer. decimal_approx values can be used with
the IEEEReal.toString and IEEEReal.scan functions to produce exact string
representations for the given precision. In addition, the composition IEEEReal.to-
String o Real.toDecimal is equivalent to Real.fmt IEEEReal.EXACT.

6.3 Packed data

Communication between processes, especially across networks, is usually handled as
blocks or streams of bytes. In the transmission of values of primitive types, strings

48 CHAPTER 6. NUMERICS

and characters naturally fit this model (see the Byte structure). With numeric values,
one can construct string representations and send them, but the conversion to and from
strings exacts a significant cost. When efficiency is of concern, one would prefer to
transmit numbers in binary form. The Basis library defines two generic signatures,
PACK_REAL and PACK_WORD, to deal with this situation. They specify functions for
converting floating-point and integral values into arrays and vectors of Word8.word
values and back again.
There are both big-endian and little-endian structures that match these signatures. In

big-endian structures, the first byte is the most significant, while the little-endian struc-
tures treat the first byte as the least significant. These structures have a boolean compo-
nent isBigEndian which can be tested to determine which policy a given structure
implements.
Note that this specification is independent of the natural hardware order of the run-

time machine. To set up communication, the sending and receiving machines need to
agree on the representation used. If both machines have the same endianness, they will
typically elect the packing structures that agree with their bias. If the machines do not
agree, they will decide on an endianness for communication, with one machine handling
the extra work of reversing the byte order.
These structures also have a bytesPerElem value, which indicates the number of

bytes used to store a number. The indices used in dealing with packed arrays or vectors
are not byte offsets, but element offsets, i.e., byte offsets scaled by bytesPerElem.
For example, the call PackRealBig.update(arr, 2, 1.23) stores the value
1.23 starting at byte 2*bytesPerElem in the array arr.
Because an implementation may provide packed-word structures for sizes without

providing the corresponding word size, the packed-word structures use the Large-
Word.word type to represent arguments. For example, the following functions read
and write 16-bit words in big-endian format, where the default word type is used to
represent the values being transmitted:

fun sendWord16 (outs : BinIO.outstream, w : word) = let
val arr =

Word8Array.array(PackWord16Big.bytesPerElem, 0w0)
in
PackWord16Big.update (arr, 0, Word.toLargeWord w);
BinIO.output (outs, Word8Array.vector arr)

end

fun getWord16 (ins : BinIO.instream) = let
val v = BinIO.inputN (ins, PackWord16Big.bytesPerElem)
in
Word.fromLargeWord (PackWord16Big.subVec (v, 0))

end

Likewise, the packing and unpacking of integers is handled through LargeInt.

6.3. PACKED DATA 49

fun sendInt16 (outs : BinIO.outstream, i : int) = let
val arr =

Word8Array.array (PackWord16Big.bytesPerElem, 0w0)
val w = LargeWord.fromLargeInt (Int.toLarge i)
in
PackWord16Big.update (arr, 0, w);
BinIO.output (outs, Word8Array.vector arr)

end

fun getInt16 (ins : BinIO.instream) = let
val v = BinIO.input (ins, PackWord16Big.bytesPerElem)
in
Int.fromLarge (
LargeWord.toLargeIntX (
PackWord16Big.subVecX (v, 0))

end

The use of the conversions PackWord16Big.subVecX and LargeWord.toLarge-
IntX preserve the sign bit, allowing the creation of negative integers from non-negative
words (the “X” signifies sign eXtension)..
By convention, the names of the structures implementing these packing operations re-

flect the endianness and number of bits involved. Big-endian structures will have "Big"
in their names; structures providing little-endian conversions will have "Little" in
their names. Thus, the structure for packing 32-bit words in little-endian order will be
named PackWord32Little.

7
Sequential data

A sequence is a linearly ordered, homogeneous (all elements of the same type) collection
of values. Manipulating finite sequences is an extremely common task in programming,
and particularly in functional programming. Our purpose here is to review the tech-
niques provided by the SML Basis Library for manipulating sequences, emphasizing
common patterns for building and manipulating sequences that apply to all sequence
types.
The SML Basis Library supports programming with sequences through three repre-

sentations: lists, vectors, and arrays. Lists are inherited from the Lisp tradition and
provide sequences which can be built incrementally and are typically processed sequen-
tially. The list type and its operations are packaged in the List structure. For “random
access” sequences, we have mutable arrays from the Algol tradition and their pure vari-
ant, vectors. They are packaged with their respective suites of polymorphic operations
in the Array and Vector structures.
These general sequence types are polymorphic, being able to contain values of any

type. For certain basic types, such as characters and integers, such arrays and vectors
may waste a good deal of space. To provide more compact representations for these
special cases, there are a number of monomorphic vector and array types packaged in
their respective structures, such as RealVector, RealArray, Word8Vector, and
Word8Array. These specialized structures conform to the generic MONO_VECTOR
and MONO_ARRAY signatures. Also, we remind the reader that the string type is
identical to CharVector.vector, which means that any of the sequence operations
applicable to vectors are applicable to strings as well.

7.1 Common patterns

We now turn to the common patterns for working with sequences, regardless of the
underlying representation. We imagine the elements of a sequence being written from
left to right, starting with the 0th element. Thus, we use the phrase “left to right” to

52 CHAPTER 7. SEQUENTIAL DATA

indicate a traversal of increasing index starting at 0. Conversely, “right to left” indicates
a traversal of decreasing index starting with the maximum index.
Note that not all three classes of sequences will have all operations. For example,

the map function is not necessary for arrays. In other cases, analogous functions may
have different names, depending on the type. Another distinction to keep in mind is that
arrays and vectors have constant-time access for a given element, whereas lists require
linear time. Thus, analogous functions may have very different performances.
Concerning efficiency, the programmer should consider using the array and vector

iterators supplied by the Library when possible. In addition to eliminating the messiness
of handling indices from the user’s code, the library iterators can avoid the overhead of
doing an array bounds check for every access.
As each sequence type models a finite linear sequence of values, starting at index 0,

each type provides a length function, which returns the number of elements in the
sequence, and each has a function providing random access of the nth element of the
sequence. For lists, this function is named nth, while for arrays and vectors it is called
sub, the difference arising from tradition.
The most commonly used sequence iterators are map, foldl, foldr, and app.

The first three, perhaps with different names, have historically been found in SML li-
braries. They reflect the language’s functional nature, using functions to produce func-
tions, which then produce new values from old. The app function, named for “apply,”
(not “append”), exposes SML’s acceptance of side effects; in a pure functional language,
it would be meaningless.
The map function is used to transform a sequence of one type into a sequence, with

the same length, of another type. The new sequence is derived from the old by applying
the function parameter to each element in turn. For example, we can map a vector of
strings into a vector of integers representing their lengths as follows:

Vector.map size (Vector.fromList ["george","alice","marsha"])

which produces a vector equal to

Vector.fromList [6,5,6]

Another example, is mapping a list of pairs of lists to a list of lists:

List.map (op @) [([1,2],[3,4]),([2,1,0],[0,5])]

which produces the result

[[1,2,3,4],[2,1,0,0,5]]

Note the need for op in front of @ in order to remove the latter’s infix nature.
The app function also applies its function parameter to each sequence element in

7.1. COMMON PATTERNS 53

turn, but no new sequence is created. Instead, app is used for the side effects of its
first argument. It is frequently used for performing I/O, updating arrays or initializing
references. For example, the function

fun pr (l : string list) = List.app TextIO.print l

writes a list of strings to TextIO.stdOut. The apply function requires that its argu-
ments have unit type. One can use a non-unit valued function with app by compos-
ing it with ignore.
Note that the result of using the expression

pr ["dog"," ","bites"," ","man"]

relies on the left-to-right nature of app. This property is obvious here, but it may be
less so in other contexts or when using a side-effecting function with map or one of the
fold functions. If the programmer is not careful, the result of map f l may be the
expected sequence, but some background calculations may have been done in the wrong
order. The Library explicitly specifies the order of evaluation for these functions, so that
possible side effects are predictable across implementations.
The most general and powerful of these iterator functions are the fold operations.

There are two variants: foldl, which accumulates from left to right, and foldr,
which accumulates from right to left. The fold operations take a binary function and an
initial value and successively combine the elements of the sequence using the function,
starting with the initial value. For example, with a list of three elements, we have:

foldl f b [x,y,z] = f(z, f(y, f(x, b)))
foldr f b [x,y,z] = f(x, f(y, f(z, b)))

More concretely,

foldl (op ::) [] [1,2,3] = [3,2,1]
foldr (op ::) [] [1,2,3] = [1,2,3]

Note that foldl starts by applying f to x, then y , then z, i.e., from left to right.
foldr applies f from right to left. This behavior is the rationale for the directional
suffixes “l” and “r”.
In both cases, the second argument of f is an accumulator argument whose initial

value is b. The value of b and the return value of f have to agree in type, but they can
have a different type from the sequence elements. Both foldl and foldr have the
type

(’a * ’b -> ’b) -> ’b -> ’a seq -> ’b

Typical applications of fold might be to accumulate the sum or product of a sequence
of numbers:

54 CHAPTER 7. SEQUENTIAL DATA

foldl Int.+ 0 [2,3,5] = 10
foldl Int.* 1 [2,3,5] = 30

They can also extract a list of elements stored in a sequence value ag:

foldr (op ::) [] ag
foldl (op ::) [] ag

The result of the first expression maintains the element order in ag; the second reverses
this order.
The power of the fold operations is illustrated by the fact that most other sequence

functions can be easily (though not necessarily efficiently) defined in terms of fold.
For instance, we have

fun length l = foldl (fn (_,y) => y+1) 0 l

fun app f l = foldl (fn (x,_) => f x) () l

fun map f l = foldl (fn (x,y) => y @ [f x]) nil l

fun find p l =
foldl (fn (x,NONE) => if p x then SOME x else NONE

| (x,y as SOME _) => y)
NONE l

for lists.
As illustrated by the find example, fold operators do not have a short-circuit ca-

pability — all elements of the subject sequence have to be processed, even if the final
result can be determined by looking at only part of the sequence. If necessary, trunca-
tion can be introduced in some cases by having an argument function raise an exception.
Note also that the following simpler, more efficient definition of map in terms of foldr
could be used, but only if f is pure (i.e., has no side effects), since mapr applies f to
the elements of l in reverse order.

fun mapr f l = foldr (fn (x,y) => f x :: y) nil l

There is an additional handful of functions shared by the sequence types. The exists
and all functions take a predicate and return true or false depending on whether any
elements (respectively, all elements) of the sequence satisfy the predicate. Frequently,
one needs to actually find an element in a sequence satisfying a predicate, rather than
just knowing one exists. In this case, the find function is available, which guarantees
it will return the leftmost such element.
Since all of the structure signatures are parameterized by the element type, the sig-

natures do not define a compare function and a linear ordering for sequences. All
sequence types, however, have a collate function. By applying this function to a
compare function for the element type, one obtains a lexicographic ordering on the
sequence.

7.1. COMMON PATTERNS 55

There are two value constructors shared by the sequence types: tabulate and
concat. When the values of a sequence can be specified as a function of the index, the
tabulate function provides a convenient way to construct the sequence. For example,
the expression

Array.tabulate (10,(fn i => i*i))

creates an array of the first 10 square integers. To supply the missing map function for
arrays, one could use

fun map f arr = Array.tabulate (Array.length arr,
fn i => f (Array.sub (arr,i)))

As usual, tabulate traverses the indices in increasing order. Although tabulate
is convenient and useful, the specified order means that the list cannot be created as
efficiently as it could using a decreasing order of evaluation.
The concat function takes a list of sequences and returns the sequence that is the

concatenation of all the sequences in the list. It thus generalizes the List.@ and
String.ˆ operators. When joining together more than two sequences, the concat
function is likely to be more efficient than a chain of the corresponding binary operator.
Note also that concat is not defined for arrays.

7.1.1 Indexed iterations

For vectors and arrays, any element-wise operation involves selecting elements by their
indices, and so it is natural to allow for operations to work not only on the elements
themselves but their indices as well. Thus, for these sequence types, the iterator func-
tions app, map (vectors only), fold, and find have variants that operate on index-
element pairs (i.e., pairs of the form (i,sub(s,i)) rather than elements. The index-
passing variants have an “i” appended to the function name, e.g., appi.
As an example, here appi is used to print out a table of the elements of a vector of

strings numbered by their indices:

fun prVector (v : string vector) = let
fun f (i, x) = (

TextIO.print(Int.toString i); TextIO.print " ";
TextIO.print x; TextIO.print "\n")

in
Vector.appi f v

end

The non-index-passing form of an iterator can be derived from the index-passing
version by providing functions that ignore the index parameter. For instance, map f s
is equivalent to mapi (f o #2) s. On the other hand, the index-passing versions
can be constructed using the basic foldl function. Thus, mapi can be written as

56 CHAPTER 7. SEQUENTIAL DATA

fun mapi f s = let
fun g (v,(i,l)) = (i+1,(f(i,v))::l)
in rev (#2 (foldl g (0,[]) s)) end

This type of construction has to be used with lists, since indexed iterations are not pro-
vided for them.

7.2 Lists

As one of the basic types in functional programming, lists have been extensively used
in a wide variety of applications and are the subject of many libraries. The Basis library
intentionally provides just a small set of what were deemed the most basic and useful
list functions. We have described many of these above, in the context of sequences. Of
those that are specific to lists, we here wish to mention just two. For further information
on lists, we refer the reader to any book on SML programming.
First is the getItem function, which is the list analogue of the getc and input1

functions for substrings and stream I/O. With it, the programmer can use a char list
as a character source, which can be fed to scanning functions to read in values. See
Chapter 5 for a complete discussion of this approach. As an example, the function

fun scanPair (l : char list) = let
val scan = Int.scan StringCvt.HEX List.getItem
val (i1, rest) = valOf (scan l)
val rest = StringCvt.skipWS List.getItem rest
val (i2, rest) = valOf (scan rest)
in
SOME (i1, i2)

end handle _ => NONE

takes a list of characters and scans in two hexadecimal integers separated by space.
The second function worth mentioning is revAppend. Consider a function that

takes a predicate and a list and removes the first item in the list satisfying the predicate.
We can implement the function as

fun remove pred l = let
fun f (l’, []) = rev l’
| f (l’, x::rest) = if pred x then (rev l’)@rest

else f (x::l’, rest)
in
f ([], l)

end

In the case where an item is found, the expression (rev l’)@rest involves a lot
of unnecessary work, in essence reversing l’ twice. The same semantics are supplied
more efficiently by replacing the expression with revAppend(l’,l), which recur-
sively moves the head of l’ to the head of l.
Another way to implement remove is

7.3. ARRAY MODIFICATION 57

fun remove pred l = let
fun f [] = []
| f (x::rest) = if pred x then rest

else x::(f rest)
in
f l

end

thereby avoiding the auxiliary list entirely. Unfortunately, because of overhead, the per-
formance here typically tends to be much worse than using the previous implementation
with revAppend. In general, this pattern of partially traversing a list and then rein-
serting the processed items in their original order is most effectively handled using an
auxiliary list and the revAppend function.
Another use for revAppend arises when one wishes to combine two lists but the

element order is unimportant. In this case, revAppend(l,l’) will be less expensive
than the normal l@l’.

7.3 Array modification

The distinguishing property of arrays, and the reason for their existence in SML, is
that they are mutable. To alter an entry, one simply updates the entry in place rather
than creating a whole new array, as must be done with vectors. Thus, there is no map
function for arrays. In its place, we have the modify operation and its corresponding
index-passing version modifyi. Each entry in the array is replaced by its image under
the function parameter.
At times, it is useful to copy an entire block of elements from one array into another.

For this purpose, the Library provides the two functions copy and copyVec, the latter
for the case when the source is a compatible vector. These operations are akin to the
BitBlt operation from raster graphics.

7.4 Subsequences and slices

Many common manipulations of sequences are based on operations on subsequences.
Hence, the Basis library provides various functions that create or work on subsequences.
The treatment of subsequences for lists is quite different from that for vectors and arrays,
but there is some overlap in function.
For lists, we have filter, partition, and mapPartial. The filter and

partition operations select elements of a list using a predicate, returning subse-
quence(s) consisting of selected elements of the original sequence. The former is a
specialization of the latter:

filter = #1 o partition

58 CHAPTER 7. SEQUENTIAL DATA

The mapPartial function combines the map iterator with filtering based on whether
the function returns NONE or SOME.
There are also take and drop operations that return initial and final segments of a

list. These can be combined to yield a list analogue of the vector/array slices discussed
below.

fun slice (l, start, NONE) =
List.drop (l, start)

| slice (l, start, SOME len) =
List.take (List.drop (l, start), n)

Note that this definition of slice for a list produces a new list from which one cannot
recover the original list, a difference from array and vector slices.
For vectors and arrays, the notion of subsequence is captured by a slice. Conceptually,

a slice denotes a triple

{seq: ’a array, start: int, len: int}

and represents the subsequence

seq[start..start+ len− 1]

where start must satisfy 0 ≤ start ≤ length(arr) and len must satisfy 0 ≤
len ≤ length(arr) − start. The slice types are abstract in order to guarantee
these constraints. The base function maps a slice back to its corresponding triple, so it
is possible to extract the underlying sequence.
All of the iterators defined for vector and array sequences (both plain and indexed)

have analogues defined for the corresponding slice types. Note that, for slices, the iter-
ators providing an index, such as appi, use the index of the element in the slice rather
than the index of the element in the base array. These functions are packaged in the
ArraySlice and VectorSlice structures. There are also monomorphic slice struc-
tures for each of the monomorphic array and vector structures (e.g., Word8Vector-
Slice for Word8Vector).
When a vector of characters is more naturally viewed as a string, structures matching

the signature SUBSTRING provide substring types. The substring and slice types
are identical, but the interfaces are different.

7.5 Operating on pairs of lists

It is not uncommon to want to process two lists simultaneously. To support these situa-
tions, there is a ListPair structure that provides versions of the iterators app, map,
foldl, foldr, all, and exists. It also provides the functions zip and unzip for
transforming a pair of lists into a list of pairs, and vice versa.
When simultaneously iterating over two lists, there is a choice of how to handle the

7.6. TWO-DIMENSIONAL ARRAYS 59

situation where the lists do not have the same length. One can either stop whenever the
shorter list has been exhausted, or one can fail (raise an exception) when the lists are
of different lengths. Since both policies are appropriate in the right circumstances, the
ListPair provides two versions of each iterator and the zip function. For instance,
there is an app function that accepts lists of different length, and a appEq function that
requires it’s arguments to have the same length.

7.6 Two-dimensional arrays

There are no analogues of ListPair for arrays and vectors, but there is support for
rectangular two-dimensional arrays in the Array2 structure and its monomorphic vari-
ants (MONO_ARRAY2).
The Array2 structure provides two-dimensional generalizations of the array con-

structors array, fromList, and tabulate. It also provides two-dimensional ver-
sions of the iterators app and fold and the updating function modify (in basic and
index-passing forms), as well as the updating function copy. The basic iterators tra-
verse the entire array. The index-passing forms, as well as copy, provide additional
flexibility by accepting a parameter of type region. This type is the two-dimensional
analogue of the slice type. In contrast to the slice types, a region is a concrete
record:

{ base : ’a array,
row : int, col : int,
nrows : int option, ncols : int option}

so there are no special functions for dealing with it. It represents the rectangular subarray
of base consisting of those elements with position (i,j) where row ≤ i < rmax
and col ≤ j < cmax. Here, rmax is nRows(base) if nrows is NONE and row +
nr if nrows is SOME(nr). An analogous definition holds for cmax.
All the iterators (and tabulate) are parameterized with a traversal argument,

which determines whether the traversal of the array region will be in row-major or
column-major order. Thus, with iterators, indices are always non-decreasing; the only
variation is whether the row index or the column index is in the inner loop.

8
Input/Output

8.1 The I/O model

The I/O subsystem provides standard functions for reading and writing files and devices.
In particular, the subsystem provides:

• buffered reading and writing;

• arbitrary lookahead, using an underlying “lazy streams” mechanism;

• dynamic redirection of input or output;

• uniform interface to text and binary data;

• layering of stream translations, through an underlying “reader/writer” interface;

• unbuffered input/output, through the reader/writer interface or even through the
buffered stream interface;

• primitives sufficient to construct facilities for random access on a file.

The subsystem allows for efficient implementation, minimizing system calls and memory-
memory copying. In addition, the interfaces provided are abstract over both the type of
items being handled and the source of the items. Although typically the items will be
characters or Word8.word values, associated with an operating system file, the speci-
fication equally allows reading a stream of integers generated by some algorithm.
The I/O system is a four-layer stack of interfaces. From top to bottom, they are

Imperative I/O Buffered, conventional (side-effecting) input and output with redirec-
tion facility.

Stream I/O Buffered “lazy functional stream” input; buffered conventional output.

62 CHAPTER 8. INPUT/OUTPUT

Primitive I/O A uniform interface for unbuffered reading and writing at the “system
call” level, though not necessarily via actual system calls.

System I/O Input and output operating directly on operating system file descriptors
or handles using Posix.IO or its equivalent for some other operating system.
These structures are optional; an implementation may choose not to make I/O at
this level directly available to the SML programmer.

Most programmers will want to operate at the stream I/O or imperative I/O layer; only
for special purposes should it be necessary to go to a lower layer of the I/O stack.
All conforming implementations must provide two instances of the I/O stacks: Text-

IO, where the individual elements are characters (Char.char), and BinIO, where the
elements are unsigned bytes (Word8.word). The former provides a few additional op-
erations specific to text-oriented I/O. Users can also create new instantiations of the hier-
archy using other element types. The Library defines optional functors, Imperative-
IO, StreamIO, and PrimIO, to facilitate building new I/O stacks.
Concerning the semantics of I/O, those functions at the lowest level are dependent

on a given operating system and, if available, are described in corresponding structures.
The model provided by the primitive I/O layer is fairly basic and is described in the
PRIM_IO manual pages below. Here we concentrate on some of the concepts con-
cerning the top two layers. Further details can be found in the IMPERATIVE_IO and
STREAM_IO manual pages.
The examples we give in this chapter use TextIO and characters, but the principles

are the same for BinIO or any element type. Using TextIO also allows us to note
some text-specific aspects of I/O.

8.1.1 Imperative I/O

We can quickly dispose of explanations about the imperative I/O level, as the semantics
of that level can be given by defining imperative streams as references to the underlying
stream I/O types and delegating I/O operations to that level. Input at the imperative I/O
level simply rebinds the reference to the new “lazy stream.” For example, Listing 8.1
shows what part of a structure matching IMPERATIVE_IO might look like. The prin-
cipal feature of the imperative level, beyond allowing an imperative programming style,
is the ability to redirect I/O, so that the source or target of I/O operations can be changed
dynamically. This feature is described in Section 8.2.2 and Section 8.2.4.

8.1.2 Stream I/O

An input stream coming from the stream I/O layer provides a way to read data in a
functional style. A program reading from an input stream receives the input, as would

8.1. THE I/O MODEL 63

structure ImperativeIO : IMPERATIVE_IO =
struct
structure StreamIO : STREAM_IO = ...
datatype instream = INS of StreamIO.instream ref
datatype outstream = OUTS of StreamIO.outstream ref
fun input (INS(i as ref ins)) = let

val (v, ins’) = StreamIO.input ins
in
i := ins’;
v

end
fun output (OUTS(ref outs), v) = StreamIO.output (outs, v)
...

end

Listing 8.1: Part of an implementation for ImperativeIO

occur with traditional imperative I/O, plus a new input stream, which represents the rest
of the stream. To get additional input, the program reads from the new stream; reading
from the original stream will only supply the same input that the program received
originally. Thus, the function

fun twoLines (ins : TextIO.StreamIO.instream) = let
val (line1, ins’) = valOf(TextIO.StreamIO.inputLine ins)
val (line2, _) = valOf(TextIO.StreamIO.inputLine ins’)
in
(line1, line2)

end

reads and returns two lines of text input (assuming that there are two lines available).
The use of ins’ rather than ins for reading the second line is crucial. Without the
prime, the input operation would simply reread the first line. Using a functional input
stream provides the programmer with a simple mechanism for unbounded lookahead.
Internally, each input stream s can be viewed as a sequence of “available” elements

(the buffer or sequence of buffers) and a mechanism (the reader) for obtaining more.
After an input operation, e.g., val (v, s’) = input(s), it is guaranteed that v
is a prefix of the available elements of s.
An output stream is simply an abstraction for writing bytes to some operating system

device, such as a disk, a network, or a terminal. It will typically implement a buffering
mechanism to store output, and actually write it, using the underlying writer, only
when necessary, in order to reduce the number of relatively expensive operating system
writes. Note that there is really no operational difference between imperative and non-
imperative output streams.

64 CHAPTER 8. INPUT/OUTPUT

When finished with a stream, the program can close the stream using closeIn or
closeOut. Closing the stream has the effect of closing the underlying reader or
writer, which in turn usually releases operating system resources such as open file
descriptors. In addition, when an outstream is closed, its buffer is first flushed before
its writer is closed. Note also that it is perfectly legal to continue to read from a closed
input stream, whereas writing to an output stream will cause an exception.
As a convenience, the Basis requires that any streams opened using TextIO or Bin-

IO will be closed automatically upon exit. In general, it is good programming practice
to close streams explicitly.
The STREAM_IO interface allows the user direct access to the underlying reader

or writer, but at a cost. The operations getReader or getWriter return the
corresponding component of the I/O stack and, as a side effect, make the stream inactive.
When applied to an instream, we refer to the stream as truncated. The stream appears
to still be active, in that reading from the stream will return input as usual, up to a point.
Once it has exhausted its buffers, a truncated stream has no mechanism for refilling
them. From that point on, input operations always return the empty vector. In the case
of an outstream, we refer to the stream as terminated. It is essentially closed, in that
any output operation will cause an exception to be raised.
In essence, the only difference between a closed stream and one that is truncated or

terminated is that, in the former case, the underlying reader or writer is closed.

8.1.3 End-of-stream

In Unix, and perhaps in other operating systems, the notion of end-of-stream refers to a
condition on the input rather than a value read from the input or a place in the input. By
convention, a read system call that returns zero bytes is interpreted to mean that the
current end-of-stream has been reached. The next read on that stream, however, could
return more bytes. This situation might arise if, for example,

• the user enters control-D (#"ˆD") on an interactive terminal stream and then
types more characters;

• input reaches the end of a disk file, but then some other process appends more
bytes to the file.

Consequently, the following function is not guaranteed to return true:

fun atEnd (f : TextIO.StreamIO.instream) = let
val z = TextIO.StreamIO.endOfStream f
val (a, f’) = TextIO.StreamIO.input f
val x = TextIO.StreamIO.endOfStream f’
in
x = z

end

8.2. USING THE I/O SUBSYSTEM 65

whereas the following function will always return true:

fun atEnd’ (f : TextIO.StreamIO.instream) = let
val z = TextIO.StreamIO.endOfStream f
val (a, f’) = TextIO.StreamIO.input f
val x = TextIO.StreamIO.endOfStream f
in
x = z

end

The difference is the use of f rather than f’ in the second call to endOfStream. For
untruncated input streams, when an input operation returns an empty vector (or end-
OfStream returns true), we are currently at the end of the stream. If further data
are appended to the underlying file or stream, the next input operation will deliver new
elements. Thus, a file may have more than one end-of-stream. If the end-of-stream
condition holds, an input will return the empty vector, but the end-of-stream condition
may become false as a result of this input operation. Note that, after all buffered input
is read from a truncated input stream, the input stream remains in a permanent end-of-
stream condition.

8.1.4 Translation

Text streams (TextIO) contain lines of text and control characters. A text line is termi-
nated with a newline (NL) character #"\n", also referred to as a linefeed (LF) character.
In some environments, the external representation of a text file is different from its in-

ternal representation. For example, in Microsoft Windows, text files on disk have lines
ending with a carriage return (CR) character #"\r" as well as the newline, while in
memory they contain only "\n" at the end of each line. Thus, on input, the "\r\n"
terminators are translated to a single #"\n" character. The inverse translation is done
on output. More substantial translation will be done on systems that support, for exam-
ple, escape-coded Unicode [Uni03] text files.
Binary streams (BinIO) match the external files byte for byte.

8.2 Using the I/O subsystem

We next consider how to do I/O using the Library and the facilities in the top three I/O
layers: IMPERATIVE_IO, STREAM_IO, and PRIM_IO, and how to move from one
layer to another.

8.2.1 Opening files

Given a filename, TextIO.openIn and TextIO.openOut open a file for input or
output, respectively:

66 CHAPTER 8. INPUT/OUTPUT

fun openInAndOut (inname,outname) = let
val f : TextIO.instream = TextIO.openIn inname
val g : TextIO.outstream = TextIO.openOut outname

in
(f,g)

end

Of course, something might go wrong: perhaps a file does not exist or (in the case
of openOut) cannot be created. Then the exception IO.Io will be raised, giving
information about what operation failed (e.g., "openIn"), upon what filename (e.g.,
"myfile"), and the cause of the failure (e.g., OS.SysErr("No such file or
directory",...)). As usual, a good way of telling the user what went wrong is
with exnMessage:

fun openIt (filename : string) : TextIO.instream option =
SOME(TextIO.openIn filename)
handle e => (print(exnMessage e ˆ "\n"); NONE)

which prints something like

Io: openIn failed on "myfile", No such file or directory

There are other ways to open streams. One can use TextIO.openString(s) to
open an input stream whose content is the string s. Opening a file for writing causes
output to go at the beginning of the file, erasing the previous content of the file if it
already existed. To avoid this truncation, the code can use TextIO.openAppend,
which preserves the current file content and causes any output to be written at the end
of the file.
Operating system interfaces will typically provide a mechanism for converting an

open file descriptor into a TYREF STRID=PrimIO/reader/, which can then easily be
converted into a functional or imperative stream. For example, the following function
uses a POSIX file descriptor to create a functional input stream:

fun openIn (fd : Posix.IO.file_desc, name : string) = let
val rdr = Posix.IO.mkTextReader {

fd = fd,
name = name,
initBlkMode = true

}
in
TextIO.StreamIO.mkInstream(rdr, "")

end

8.2.2 Imperative stream input (IMPERATIVE_IO)

The TextIO module provides side-effecting operations on input streams. It is a simple
task to open a file, read its contents into a string, and close the file:

8.2. USING THE I/O SUBSYSTEM 67

fun getContents (filename: string) = let
val f : TextIO.instream = TextIO.openIn filename
val s : string = TextIO.inputAll f
in
TextIO.closeIn f; s

end

Or we can read one character at a time, but the program will typically be much less
efficient:

fun getContents (filename: string) = let
val f = TextIO.openIn filename
fun loop (accum: char list) = (case TextIO.input1 f

of NONE => accum
| SOME c => loop (c::accum)

(* end case *))
val s = String.implode (rev (loop []))
in
TextIO.closeIn f; s

end

A good compromise between reading the whole file at once and reading one character
at a time is to read one “chunk” at a time, where chunks are defined at the convenience
of the SML system and the operating system. The TextIO.input function returns a
bunch of characters (typically a thousand or two) at once, usually quite efficiently:

fun getContents (filename: string) = let
val f = TextIO.openIn filename
fun loop(accum: string list) = (case TextIO.input f

of "" => accum
| s => loop(s::accum)

(* end case *))
val s = String.concat(rev(loop []))
in
TextIO.closeIn f; s

end

If the stream is interactive (e.g., receiving characters from a keyboard), the chunks
returned by input are typically individual lines of text; but this behavior is not guar-
anteed. To get one line at a time, use TextIO.inputLine.
To read exactly n characters from a stream f, use TextIO.inputN(f,n).
One advantage of imperative stream input is the ability to redirect the source. For

example, one might be aware of a function g that reads from TextIO.stdIn. To use
g to read from another source, we can do the following:
fun redirectIn (g, fname) = let

val f = TextIO.openIn fname
val saveStdIn = TextIO.getInstream TextIO.stdIn
in
TextIO.setInstream (TextIO.stdIn, TextIO.getInstream f);
g ();
TextIO.setInstream (TextIO.stdIn, saveStdIn)

end

68 CHAPTER 8. INPUT/OUTPUT

This function opens the file fname for reading and saves the stream I/O component un-
derlying stdIn, replacing it with the stream I/O component associated with the stream
open on fname. When g is called, its use of stdIn will feed it the contents of fname.
To finish, redirectIn reinstalls the original stdIn stream.

8.2.3 Functional stream input (STREAM_IO)

In keeping with the functional style of the SML programming language, we may not
wish to use the imperative I/O operations that say, “read characters from stream s re-
moving them from s in the process.”
The TextIO.StreamIO structure provides a functional (declarative) view of in-

put streams, that is, “read a character from stream s, yielding an element c and the
remainder of the stream s’, all without destroying the value of s.”
We can extract a functional input stream from a TextIO.instream by applying

TextIO.getInstream:

fun openStream filename : TextIO.StreamIO.instream =
TextIO.getInstream(TextIO.openIn filename)

For the remainder of this chapter we shall assume the following binding:

structure TS = TextIO.StreamIO

Here are the functional stream versions of the programs shown in the previous section
to read all the characters in a file.

(* Reading the whole stream at once *)
fun getContents (filename: string) = let

val f = TextIO.getInstream(TextIO.openIn filename)
val (s, _) = TS.inputAll f
in
TS.closeIn f; s

end

(* Reading one character at a time *)
fun getContents(filename: string) = let

val f = TextIO.getInstream(TextIO.openIn filename)
fun loop(accum, f) = (case TS.input1 f

of NONE => (TS.closeIn f; accum)
| SOME(c,f’) => loop(c::accum, f’)

(* end case *))
in
String.implode(rev(loop([], f)))

end

8.2. USING THE I/O SUBSYSTEM 69

(* Reading a chunk at a time *)
fun getContents(filename: string) = let

val f = TextIO.getInstream(TextIO.openIn filename)
fun loop (accum, f) =

case TS.input f of
("",f’) => (TS.closeIn f’; accum)

| (chunk,f’) => loop(chunk::accum, f’)
in
String.concat(rev(loop([], f)))

end

The stream I/O layer also has functions corresponding to the inputN and input-
Line functions found in TextIO.
The magical thing about functional input streams is that one can read from the same

stream value again and again. For example, we can write a function that eats the word
"thousand" if it appears at the current file location and otherwise leaves the stream
where it was:

fun eatThousand (f: TS.instream) : TS.instream = (
case TS.inputN(f, size "thousand")
of ("thousand",f’) => f’
| _ => f

(* end case *))

Similarly, we can skip past any whitespace that appears at the current point in a file:

fun skipWhiteSpace(f: TS.instream) : TS.instream = (
case TS.input1 f
of SOME(c, f’) =>

if Char.isSpace c then skipWhiteSpace f’
else f

| NONE => f
(* end case *))

Skipping over whitespace is sufficiently common that the Library provides the function
StringCvt.skipWS for this purpose.

Reading a pattern from a stream

Suppose one wants to read a string that matches a certain pattern. Instead of reading the
pieces one at a time and then concatenating them all together, one can read the pattern
and throw away the pieces, and then use inputN to pick up the string from the starting
point.
For example, an implementation of inputLine might work like this:

70 CHAPTER 8. INPUT/OUTPUT

fun inputLine (f : TS.instream) = let
fun count (n, g) = (case TS.input1 g

of SOME(#"\n", g’) => SOME(TS.inputN(f, n+1))
| SOME(_, g’) => count(n+1, g’)
| NONE => if (n = 0)

then NONE
else let val (s, g’) = TS.inputN(f, n)

in
SOME(sˆ"\n", g’)

end
(* end case *))

in
count (0, f)

end
The count function counts (and discards) each character until the newline is found and
then uses inputN on the original stream f to efficiently grab the whole line.

Library functions for scanning input streams

A powerful way to use functional input streams is with the StringCvt structure, and
with the scan functions provided in Int, Real, Date, and other structures. The
StringCvt.reader type is

type (’elem,’stream) reader = ’stream -> (’elem,’stream) option

This type is used to denote a function that takes a source of input and, if possible,
reads a value of type ’elem from the beginning of the input, returning the value read
and the remainder of the input. Note that TextIO.StreamIO.input1 is already a
(char,instream) reader, which means that any function that uses a reader
can operate directly on a functional input stream. The scan functions convert a reader
of one type of element into a reader of another type. Thus, to scan an integer in decimal
format one can use

val scanInt =
Int.scan StringCvt.DEC TextIO.StreamIO.input1

where Int.scan changes the character reader input1 into an integer reader. Here is
a larger example. We wish to read a sequence of ten real numbers from an input file:

fun read10 (infile : string) = let
val f = TextIO.getInstream(TextIO.openIn infile)
val cr = TS.input1 (* character reader *)
val rr = Real.scan cr (* real reader *)
fun getN (0, xs, f) = (rev xs,f)

| getN (n, xs, f) = let
val (x,f’) = valOf (rr f)
in
getN (n-1, x::xs, f’)

end
in
getN(10,[],f)

end

8.2. USING THE I/O SUBSYSTEM 71

Note that this code raises the Option exception if there are fewer than ten reals in the
input stream.

Relationship of imperative streams to functional streams

An imperative input stream (e.g., TextIO.stdIn) behaves as if it were a reference to
a functional stream. The functional stream can be extracted using getInstream, and
a new functional stream can be inserted using setInstream. Therefore, a function
such as TextIO.input could be implemented as follows:

fun input (ins : TextIO.instream) = let
val f = TextIO.getInstream ins
val (s,f’) = TextIO.StreamIO.input f
in
TextIO.setInstream(ins, f’);
s

end

The getInstream and setInstream operations make it possible to switch back
and forth between the imperative and functional views of the same input stream. In gen-
eral, given strm of type TextIO.instream, one can call getInstream(strm)
to obtain the stream I/O component, use it functionally to obtain a sequence of inputs
and new streams, and then reinstall the final result stream f’ back into strm using
setInstream(strm,f’).
To generate a new imperative TextIO.instream from a TextIO.StreamIO.-

instream, use TextIO.mkInstream.

Getting characters without blocking

When processing interactive input from keyboards or sockets, one sometimes wishes to
get all the characters that have been typed, without knowing howmany are available, and
without the risk of “blocking,” that is, waiting for more characters to be typed. This goal
can be accomplished using the canInput function: if canInput returns SOME(n),
then reading n characters is guaranteed not to block.
fun getAllAvailable (f : TS.instream) = let

fun count (n, f’: TS.instream) = (case TS.canInput(f’,1)
of SOME 0 => n
| NONE => n
| SOME _ => let val (s,f’’) = TS.input f’

in
count(n + size s, f’’)

end
(* end case *))

in
TS.inputN(f, count(0,f))

end

For more sophisticated use of non-blocking I/O, the PRIM_IO interface provides non-
blocking primitives.

72 CHAPTER 8. INPUT/OUTPUT

Random access input

There are two models of random access input. The stream I/O (TextIO.StreamIO)
layer supports lazy functional streams. Once one has a stream value, one can always
go back and read it again. This mechanism is an in-memory, seek-to-previous-position
kind of random access, and it is efficient and appropriate for many uses.
The other form of random access allows seeking forward and back, and keeps the file

in secondary storage (disk) instead of in memory. The stream I/O layer does not support
this technique directly. Instead, one must use StreamIO.getReader to extract the
underlying reader, perform a random access operation on the reader, and then build a
new stream using StreamIO.mkInstream; see Section 8.2.5 below.

8.2.4 Stream output

Stream output in SML also comes in two flavors, provided by TextIO.outstream
and TextIO.StreamIO.outstream, but they are both imperative! The difference
between these two layers is that a TextIO.outstream can be made to point to dif-
ferent output streams dynamically, as will be explained below.
Opening and using an output stream is straightforward. For example, the following

function writes to the file specified by its argument:

fun hello (myfile : string) = let
val f = TextIO.openOut myfile
in
TextIO.output(f, "Hello, ");
TextIO.output(f, "world!\n");
TextIO.closeOut f

end

Buffering

Individual calls to output and output1 are buffered within the Library, so that fewer
(expensive) calls are made to the operating system. When the buffer is full, or when the
stream is closed, or when the program explicitly requests it, the buffer is flushed or
written to the device. For interactive text output streams, writing a newline character
(#"\n") also causes the buffer to be flushed, which mostly achieves the expected inter-
active behavior. Sometimes, the Library may not know when an output stream is being
used interactively, or the output string may be intended as a prompt, and therefore not
end in a newline. To force the buffer to be written to the outside world, one can use the
TextIO.flushOut function.

Random access output

Random access for output streams is a bit different than for input streams. getPosOut
returns an out_pos value, representing the current position in the output. If, at some

8.2. USING THE I/O SUBSYSTEM 73

fun withOutstream (f, g) func = let
val f’ = TextIO.getOutstream f
val g’ = TextIO.getOutstream g
in
TextIO.setOutstream(f, g’);
func () before TextIO.setOutstream(f, f’)
handle e => (TextIO.setOutstream(f, f’); raise e)

end

fun sayHello () = TextIO.output(TextIO.stdOut, "Hello!\n")

fun redirect logfile = let
val s = TextIO.openOut logfile
in
withOutstream (TextIO.stdOut, s) sayHello;
TextIO.closeOut s

end

Listing 8.2: Generating an endless stream of blank characters

later time, the program wishes to return to that position, for example, to overwrite the
text there, it can call setPosOut with the out_pos value. This operation will reset
the output stream to that position.
Because the out_pos type is abstract, one cannot add or subtract integers to move

n characters forward or back. As with input streams, one can only return to a position
previously visited. Also as with input, to use more powerful forms of random access, it
is necessary to go down to the primitive I/O layer of the I/O system; see Section 8.2.5
below.

Dynamic binding of output streams

Each TextIO.outstream behaves like a reference to a TextIO.StreamIO.-
outstream. It is possible to extract the latter from the former using getOutstream
and then, using setOutstream, insert a different StreamIO.outstream.
It is not unusual for an I/O function to be written relying on the standard I/O streams.

A programmer may wish to use the function, but the source is not available and the
output, say, needs to go into a specified file. We present a solution to this problem in
Listing 8.2, by rebinding the standard output stream stdOut to a different underlying
stream. The function redirect runs the sayHello function with stdOut tem-
porarily redirected to the file logfile. Note that withOutstream first saves the
underlying functional stream as f’ and then restores it into f before returning.

74 CHAPTER 8. INPUT/OUTPUT

8.2.5 Readers and writers (PRIM_IO)

The primitive I/O layer of the I/O system provides unbuffered input and output inde-
pendent of the operating system. A reader is an object supporting primitive input
operations, and a writer supports primitive output operations. (Note that the primi-
tive I/O reader has no connection with StringCvt.reader.) Typically, each read
or write operation at this level corresponds to an operating system call.
A StreamIO.instream contains a reader, along with a buffer of characters

that have been read using the reader but which have not yet been returned from the
input stream. This (reader,buffer) pair can be extracted using StreamIO.get-
Reader:

fun getPrim filename = let
val f = TextIO.getInstream(TextIO.openIn filename)
val (reader,buffer) = TS.getReader f
in
(reader,buffer)

end

In this case, since the file has just been opened and no I/O operations have been
performed, the buffer should be empty and the second value returned by the function
will be the empty string "".
A reader is basically a record of various operations, in particular, various functions

for reading input, all wrapped in a RD data constructor. We could, for example, read
1024 characters and then rebuild an instream (using mkInstream, the inverse of
getReader):

fun read1024 filename = let
val (rdr,_) = getPrim filename
val TextPrimIO.RD{readVec=SOME(read),...} = rdr
val s = read 1024
in
(s, TS.mkInstream(rdr,""))

end

The first character in the returned input stream will be the 1025th character of the file.
Sometimes the programmer might need to create an open reader for a given file.

The Library does not provide a operating-system independent mechanism for creating
readers and writers directly, but the result can be obtained using the functions available:

fun openReader fname = let
val ins = TextIO.openIn fname
in
#1(TextIO.StreamIO.getReader(TextIO.getInstream ins))

end

8.2. USING THE I/O SUBSYSTEM 75

local
structure BIO = BinIO
structure PIO = BinPrimIO

in
fun read10 filename = let

val fIn = BIO.getInstream (BIO.openIn filename)
val (rd,buf) = BIO.StreamIO.getReader fIn
val PIO.RD{setPos=SOME setPosIn,readVec=SOME read,...}

= rd
in
setPosIn 1000;
read 10

end
end

Listing 8.3: Binary random access

Random access seeking, reading, and writing

Moving from the stream I/O layer to the primitive I/O layer and back gives one the
power to do sophisticated random access on files. Readers and writers have several
(optional) random access functions:

type pos
val reader = RD{ . . .
getPos : (unit->pos) option,
setPos : (pos->unit) option,
endPos : (unit->pos) option,
. . .

}

val writer = WR{ . . .
getPos : (unit->pos) option,
setPos : (pos->unit) option,
endPos : (unit->pos) option,
. . .

}

The TextPrimIO.pos type is an abstract type, but BinPrimIO.pos must be
Position.int. This requirement allows flexible random access on binary readers
and writers. Suppose we want to read ten bytes from a file at location 1000. Listing 8.3
shows how this goal might be achieved. First, it uses BinIO to open the file and extract
the reader. Then it employs PRIM_IO operations to accomplish the task.
It is even possible to use the primitive I/O layer to do the seeking and then revert

to the stream I/O layer to do the reading and writing, using mkInstream and mk-

76 CHAPTER 8. INPUT/OUTPUT

local
structure BIO = BinIO
structure BSIO = BIO.StreamIO
structure PIO = BinPrimIO

in
fun read10 filename = let

val fIn = BIO.getInstream (BIO.openIn filename)
val (rd,buf) = BIO.StreamIO.getReader fIn
val PIO.RD{setPos=SOME setPosIn, ...} = rd
val _ = setPosIn 1000
val f = BSIO.mkInstream(rd,Word8Vector.fromList[])
val (s,f’) = BSIO.inputN(f,10)
in
s

end
end

Listing 8.4: Binary random access followed by stream reading

Outstream. Listing 8.4 shows how to modify the previous example to use this tech-
nique.
To do random access input and output on the same file, it is necessary to obtain a

reader and a writer that operate on the same operating system open file descriptor, which
is possible to do by constructing a reader and writer that call the underlying operating
system’s I/O operations (e.g., the functions in the Posix.IO structure). Any buffering
layered on top needs to be implemented so as to coordinate reads and writes, to ensure
that both input and output have the same view of the data. Typically, this coordina-
tion requires some form of resynchronizing of the stream I/O streams with the under-
lying file whenever the code switches between seeking, reading, and writing. Existing
stream I/O streams need to be truncated or terminated, and StreamIO.mkInstream
or StreamIO.mkOutstream are used to create new buffered views of the file.

Random access with text I/O

Random access with integer positions in a text file is problematic because, on many
systems, text has different representations in external files than in SML strings. For
example, newlines are one character in memory but may be two characters in disk files,
or Unicode characters may have different external and in-memory representations.
In general, one can use the same approaches as described above for binary I/O, based

on a reader or writer from BinPrimIO. From the BinPrimIO object, one then
creates a reader or writer for TextPrimIO by integrating the components with
the desired byte-to-char translation algorithm. For files and systems where no translation

8.2. USING THE I/O SUBSYSTEM 77

fun infiniteBlanks () : TS.instream = let
val someBlanks = CharVector.tabulate(1024, fn _ => #" ")
fun read n = if n >= 1024 then someBlanks

else substring(someBlanks, 0, n)
val rd = TextPrimIO.RD {

name = "blanks", chunkSize = 1024,
readVec = SOME read,
readArr = NONE,
readVecNB = SOME(fn n => SOME(read n)),
readArrNB = NONE,
block = SOME(fn() => ()),
canInput = SOME(fn() => true),
avail = fn() => NONE,
getPos = NONE,
setPos = NONE,
endPos = NONE,
verifyPos = NONE,
close = fn() => (),
ioDesc = NONE

}
in

TS.mkInstream(rd, "")
end

Listing 8.5: Generating an endless stream of blank characters

is done, e.g., standard Unix I/O, one can use the facilities provided by the Byte structure
to provide the trivial conversions.

Algorithmic streams

In some cases one may want an instream that is not connected to any operating
system resource but which generates characters on demand. One can create such a
stream by constructing a reader and then using mkInstream. For example, Listing 8.5
exhibits a function that creates an input stream generating an infinite stream of blank
characters.
One occasionally useful type of algorithmic stream, especially for writing, is the null

stream. Anything written to a null stream disappears; a read on a null stream always
returns an end-of-stream. This behavior is the abstraction provided by the /dev/null
file in Unix. The PRIM_IO interface defines the functions nullRd and nullWr,
which can be used to generate a reader and writer with null semantics. To get a higher-
level stream, one uses the usual techniques, e.g.,

fun nullOut () =
TS.mkOutstream (TextPrimIO.nullWr(), IO.NO_BUF)

78 CHAPTER 8. INPUT/OUTPUT

returns a null output stream for writing text.

8.2.6 Comparison of I/O functions

This chapter has presented many ways of reading and writing, some more efficient than
others. Although the absolute and relative speeds of these operations will vary with
implementation and hardware, we can note a few general characteristics.

• Stream I/O input is modestly more efficient than imperative I/O input if an im-
plementation constructs the latter employing the reference semantics of a ref
cell. More sophisticated implementations, however, can be significantly faster
than stream I/O, avoiding the bookkeeping and memory management overhead
implicit in the functional approach.

• The time spent per element in input tends to increase as the size of the input
requested decreases.

• In principle, the most efficient mechanism is to obtain the entire input at once
using StreamIO.inputAll and then process the input using array, vector,
or string operations, especially the higher-level functions provided by the “slice”
structures MONO_ARRAY_SLICE, MONO_VECTOR_SLICE, and SUBSTRING.
This approach is not always feasible because of the need for interactive I/O or the
requirements of library functions.

• If inputAll is not appropriate, input is a good substitute. It typically returns
the result of a single operating system read. For disk files, the result usually will
be a sizable chunk. For interactive text I/O, the result will usually be the next
input line or character, depending on the mode of the operating system device.

• The input1 function, especially in its stream I/O form, is convenient for text
scanning, but it can also be more expensive than expected. This fact should be
kept in mind by C programmers who are used to the negligible cost of the analo-
gous C function getc.

• The above comments concern just the basic reading of input. The particular task at
hand can have a dramatic effect on the relative speeds. For example, if one simply
wishes to count the number of newlines in a file, a function using input1 may
well be the fastest.

• If efficiency is particularly important, the programmer can use the facilities pro-
vided by the reader at the primitive I/O level, or operating system functions,
if available and portability is not of concern. In particular, if the readArr or

8.2. USING THE I/O SUBSYSTEM 79

readArrNB is available in the reader, the code can avoid additional copying
of the input.

Similar remarks hold for the output functions.

9
Systems programming

The SML Basis Library provides significant support for accessing low-level operating
system features from SML. This support includes an extensive collection of abstract
systems modules that allow one to write portable, system-independent applications as
well as system-dependent support for accessing services on both Microsoft Windows
and Unix systems. These modules do not provide access to higher-level services, such
as graphical user interfaces, as such features are outside the scope of the SML Basis
Library.

9.1 Portable systems programming

The I/O subsystem described in the previous chapter provides support for input and
output using SML that is largely independent of the underlying implementation and op-
erating system. This section discusses the SML Basis Library support for other aspects
of systems programming, such as file systems, process management, I/O descriptors,
and time and date manipulations. The interfaces provided by the SML Basis Library for
these tasks are operating-system independent and can be used to develop “write once,
run everywhere” applications.

9.1.1 File system pathnames

The SML Basis Library provides support for working with the hierarchical file systems
supported by most operating systems. This support is split into two modules: OS.-
Path, which provides routines for the portable manipulation of hierarchical paths or
pathnames, and OS.FileSys, which provides routines for the portable manipulation
of a hierarchical file system.
Modern operating systems share the same logical organization of file systems into

hierarchical trees of directories and files but differ significantly in the syntax used to
name objects in the hierarchy (e.g., Unix uses the ‘/’ character as a path separator, while

82 CHAPTER 9. SYSTEMS PROGRAMMING

Microsoft Windows uses ‘\’). The OS.Path structure provides an abstract interface
to pathnames. Using this module, one can write pathname code that will port across
multiple systems. One important aspect of the OS.Path structure is that the functions
in it are independent of any underlying file system.
A pathname is a string that specifies an object in a hierarchical file system. A path-

name can be characterized by the following four aspects:

• A path is either absolute or relative to some directory (e.g., the current working
directory).

• The volume on which the object resides. Some systems (e.g., Unix) do not distin-
guish between volumes in pathnames, in which case this component is the empty
string.

• A list of directory names, called arcs, that specify the ancestors or parent directo-
ries of the object.

• The name of the object relative to its parent directory.

Many systems support the convention that a given pathname suffix or extension, usu-
ally beginning with a #"." character, indicates the format or type of the file. Thus, C
source files usually end with ".c" while SML files are terminated with ".sml". This
convention is common enough that it is part of the pathname abstraction.
To give the flavor of using the functions in OS.Path to manage pathnames inde-

pendent of the operating system, the following function takes the pathname of a C file
and returns the conventional name for the object file obtained by compilation; i.e., we
replace the ".c" suffix with ".o".

fun objectFileName file = (case OS.Path.splitBaseExt file
of {base, ext=SOME "c"} =>

OS.Path.joinBaseExt{base=base, ext=SOME "o"}
| _ => raise Fail "missing/unrecognized extension"

(* end case *))

Applications that manage collections of files often need to determine whether two
pathnames refer to the same filesystem location. One way to achieve this goal is to map
pathnames to canonical absolute paths, which we can do as follows:

fun cvtPath path = OS.Path.mkAbsolute {
path = path,
relativeTo = OS.FileSys.getDir()

}

Note that the effect of this function will change if the application’s working directory
changes.

9.1. PORTABLE SYSTEMS PROGRAMMING 83

9.1.2 File system operations

The OS.FileSys structure provides a collection of operations for manipulating a hi-
erarchical file system in an operating system. These operations include reading direc-
tories, getting and setting the current working directory, and testing and setting various
file properties.
Directories are the internal nodes of the file system hierarchy and, as such, contain

references to other files. The OS.FileSys structure supports a directory stream ab-
straction for getting the list of files in a directory. For example, the following function
takes a path to a directory and returns the list of files in it:

fun listDir dirName = let
val dir = OS.FileSys.openDir dirName
fun read files = (case OS.FileSys.readDir dir

of NONE => List.rev files
| SOME file => read (file::files)

(* end case *))
in
read [] before closeDir dir

end

One important property of the readDir function is that it does not return either the
current or parent directory arcs (some systems, such as Unix, include these in the di-
rectory list). This behavior means that it is trivial to write a recursive traversal of a file
system. For example, the following function applies its first argument to the pathname
of each non-directory file in the tree rooted at its second argument:

fun apply (f, root) = let
fun walk path = let

val files = listDir path
fun walkFile file = let

val longName = OS.Path.concat(path, file)
in
if OS.FileSys.isDir longName
then walk longName
else f longName

end
in
List.app walkFile files

end
in
if OS.FileSys.isDir root then walk root else f root

end

This code also illustrates the use of the isDir predicate, which tests its argument to
see if it is a directory.
Part of the state of a process on most operating systems is the current working direc-

tory, which is used to interpret relative pathnames. The function getDir returns the

84 CHAPTER 9. SYSTEMS PROGRAMMING

current working directory of the SML process and the function chDir can be used to
change it.
The OS.FileSys structure provides operations for manipulating symbolic links,

which are file system objects that specify a path to another file system object. The
isLink function tests a path to see if it names a symbolic link, and the readLink
function returns the value of the link (i.e., the path of the object referred to by the link).
Note that the path returned by readLink may be either absolute or relative to the
directory containing the path. These functions may be used safely on systems that do
not have a notion of symbolic link, since in that case they treat all file system objects as
not being links.
The manipulation of pathnames supported by the OS.Path structure is file-system

independent. The OS.FileSys structure provides two additional pathname operations
that work with respect to the underlying file system. The fullPath function returns
a canonical, absolute pathname that names the same file as its argument. This function
expands symbolic links and interprets relative paths with respect to the current working
directory. This canonical pathname can be used to test the equivalence of two paths,
although the file ID mechanism described below is usually more efficient. A related
function is realPath, which also expands symbolic links but preserves relative paths.
The OS.FileSys structure supports a number of other functions for examining file

system properties. In addition to the isLink and isDir functions described above,
one can determine the modification time of a file using the modTime function and
the size of a file using the fileSize function. One of the most useful functions is
access, which can be used to test the permissions of a file. For example, here is
a portable function for finding the location of an executable program given a list of
directory paths to search.

fun findExe (paths, prog) = let
fun test path =

OS.FileSys.access(path, [OS.FileSys.A_EXEC])
andalso not(OS.FileSys.isDir path)

fun find [] = NONE
| find (dir::r) = let

val dir’ = if dir = "" then OS.FileSys.getDir()
else dir

val path = OS.Path.joinDirFile{dir=dir’, file=prog}
in
if test path then SOME path else find r

end
in
find paths

end

This function uses the access function to test for the existence of an executable file,
and it uses the isDir predicate to filter out directories (which are executable on some

9.1. PORTABLE SYSTEMS PROGRAMMING 85

systems). It also uses the portable pathname function joinDirFile to construct can-
didate pathnames to be tested. The access function can also be used to test the exis-
tence of a file by passing it an empty access mode list.
Coining temporary filenames is supported by the OS.FileSys.tmpName function,

which returns a new filename that is not in use. To avoid race conditions, where two
applications pick the same temporary filename, this function creates an empty file with
a unique name. Temporary files are useful for generating an output file for processing
by another program. Here is an example of using tmpName:

fun withTmpFile (producer, consumer) = let
val file = OS.FileSys.tmpName()
val strm = TextIO.openOut file
in
(producer strm)
handle ex => (
TextIO.closeOut strm; OS.FileSys.remove file;
raise ex);

TextIO.closeOut strm;
consumer file;
OS.FileSys.remove file

end

The withTmpFile function creates a temporary filename, opens it for writing, and
passes the output stream to the producer function. Once the producer function
has finished, the output stream is closed and the name of the temporary file is passed
to the consumer function, which presumably runs a program on the output file (see
Section 9.1.3). Finally, the temporary file is removed.
The OS.FileSys.file_id equality type represents an abstract unique file ID

(i.e., similar to a Unix inode). Because of symbolic links and non-canonical paths, a
single file may be referred to by many different names, but it has a single unique file ID.
Thus, a file ID is an efficient way to test if two paths refer to the same file. Hashing and
comparison operations are supported on file IDs, so they can be used as keys in lookup
structures.

9.1.3 Processes

Operating systems vary wildly in what support they provide for processes; for exam-
ple, older PC operating systems do not provide any support for multitasking. For this
reason, the OS-independent support for programming with processes is limited to the
synchronous execution of a child process and the management of its exit status. For
more advanced process management, see Section 9.2.
Processes typically maintain a set of environment variables, which allow the user

to tailor certain aspects of programs. Unlike command line arguments, which can be

86 CHAPTER 9. SYSTEMS PROGRAMMING

expected to change from invocation to invocation, environment variables tend to re-
main fixed for a given user during a given session. For example, one might set the
"PRINTER" variable to "d22color", with the expectation that any print commands
will send the job to printer "d22color" by default.
How environment variables are set depends on the operating system. Getting the value

of an environment variable, however, is provided by the function OS.Process.get-
Env. Thus, using our example, the expression getEnv("PRINTER") would return
SOME("d22color"). The function returns a value of NONE if the variable is not
defined.

9.1.4 I/O descriptors

The OS.IO structure provides support for working with I/O descriptors, which are an
abstraction of system-specific I/O handles (e.g., open file descriptors on Unix systems).
One can extract the I/O descriptor for a stream by accessing the ioDesc field in the
underlying primitive I/O reader or writer. Getting the I/O descriptor from an input
stream is a bit tricky, since getting the reader has the side-effect of truncating the stream.
We get around this problem by replacing the original stream by a newly created one.

fun getIODesc inStrm = let
val inStrm’ = TextIO.getInstream inStrm
val (rd as TextPrimIO.RD{ioDesc, ...}, buf) =

TextIO.StreamIO.getReader inStrm’
in
TextIO.setInstream (inStrm,
TextIO.StreamIO.mkInstream(rd, buf));

ioDesc
end

I/O descriptors can also be created from file descriptors using the POSIX APIs. I/O
descriptors serve three purposes: they provide a way to uniquely identify open I/O han-
dles; they can be used to query the kind of underlying I/O object (e.g., file vs. directory
vs. socket); and they can be used to support polling.
Applications that manage communication with multiple input sources (e.g., ttys, pipes,

and sockets) need a mechanism to avoid getting stuck waiting for one source of input
while ignoring input available from the other sources. The SML Basis Library provides
a general polling mechanism on I/O descriptors as a way to avoid this problem. The
poll_desc type represents the combination of an I/O descriptor and a set of condi-
tions to check (e.g., input available). The poll operation takes a list of poll descriptors
and a timeout and waits until at least one of the specified conditions is met or the time-
out expires. The result of the poll operation is a list of poll_info values, one for
each poll descriptor that had a condition satisfied. To make it possible to map from the
resulting poll_info values back to the argument poll descriptors, the infoToPoll-
Desc function returns the poll descriptor that a given poll_info value corresponds

9.1. PORTABLE SYSTEMS PROGRAMMING 87

to. Furthermore, the list of poll_info values respects the original order of the poll
descriptors. For example, the following code implements a higher-level polling mech-
anism that takes a list of poll descriptor/value pairs and a timeout, and returns a list of
values that correspond to the enabled descriptors:

fun poll’ (pds : (OS.IO.poll_desc * ’a) list, timeOut) = let
val pis = OS.IO.poll(List.map #1 pds, timeOut)
fun select ([], [], l) = List.rev l
| select (pi::pis, (pd, x)::pds, l) =

if (OS.IO.infoToPollDesc pi = pd)
then select (pis, pds, x::l)
else select (pi::pis, pds, l)

in
select (pis, pds, [])

end

Notice that the select function uses the ordering property of the result list to effi-
ciently project out the selected items.
Poll descriptors are constructed from I/O descriptors using the pollDesc function.

Since not all devices support polling on all systems, the result of this function is an op-
tion, where NONE signifies that polling is not supported. Polling conditions are added
by functional update of the poll descriptor using the pollIn, pollOut, and pollPr
functions. The last function tests for high-priority events, such as exceptional condi-
tions. To illustrate, the following function builds on the previous getIODesc to map
an input stream to a pair of a poll descriptor that tests for input and the stream:

fun getPollDesc strm = (case getIODesc strm
of SOME iod => (case OS.IO.pollDesc iod

of SOME pd => (OS.IO.pollIn pd, strm)
| _ => raise Fail "no polling"

(* end case *))
| _ => raise Fail "no desc"

(* end case *))

This function raises an exception if either the stream does not have an I/O descriptor or
if it does not support polling.
Finally, we can put these pieces together in the following function, which takes a list

of streams and returns a function for reading from those streams that currently have
input available. Note that it uses the getPollDesc function from above, as well as
the specialized version of polling.

88 CHAPTER 9. SYSTEMS PROGRAMMING

fun inputMerge strms = let
val choices = List.map getPollDesc strms
fun input () = let

val availStrms = poll’ (choices, SOME Time.zeroTime)
in
List.map TextIO.input availStrms

end
in
input

end

9.1.5 Time and dates

Computing with time and date values and execution timing are all supported by the
SML Basis Library. The SML Basis Library defines an abstract type Time.time to
represent both durations and absolute times (which can be thought of as the duration
from some epoch). The Time structure provides arithmetic and comparison operations
on time values. For example, the following code prints the real (or wall clock) time that
it takes to run a function on its argument:

fun timeIt f x = let
val t0 = Time.now()
val result = f x
val t1 = Time.now()
in
print(concat[

"It took ", Time.toString(Time.-(t1, t0)),
" seconds\n"

]);
result

end

This function illustrates a couple of other features of the Time structure. The func-
tion Time.now returns the current time of day and the function Time.toString
converts a time value to a decimal string representation. In addition to the toString
function, the Time structure also provides the standard fromString, fmt, and scan
functions.
The Time structure also provides operations for converting between concrete num-

bers and abstract time values. For example, a time value representing 10 milliseconds
can be constructed using any of the following expressions:

Time.fromReal 0.01
Time.fromMilliseconds 10
Time.fromMicroseconds 10000

Going in the other direction, the Time.toReal function converts a time value to
a real-valued number of seconds. Likewise, there are functions, such as Time.to-
Milliseconds, that convert a time value to an integer number of units (milliseconds

9.1. PORTABLE SYSTEMS PROGRAMMING 89

in this case). If the result of these functions is too large to be represented as a Large-
Int.int, then the Overflow exception is raised.
As mentioned above, time values can represent absolute times (e.g., 10am GMT on

May 10th, 2004). The Date structure provides functions for converting time values to
and from dates. The abstract type Date.date represents a date with respect to some
time zone. A date value can be constructed from whole cloth using the Date.date
function. For example, the expression

Date.date {
year = 2004, month = Date.May, day = 10,
hour = 10, minute = 0, second = 0,
offset = SOME Time.zeroTime

}

constructs a representation of “10am GMT onMay 10th, 2004.” The offset argument
to this function specifies the time zone by the number of seconds west of Coordinated
Universal Time (UTC), formerly known as Greenwich Mean Time (GMT). If we had
given NONE as the offset field value, then the resulting date would be with respect to
the local time zone. The offset of the local time zone can be determined by calling the
Date.localOffset function.
We can also construct date values from time values using the functions Date.from-

TimeLocal and Date.fromTimeUniv. In both cases, the argument time value is
interpreted relative to UTC. For example, the expression

Date.fromTimeLocal (Time.now ())

returns the current date in the local time zone, while

Date.fromTimeUniv (Time.now ())

returns the current date in Greenwich, England. The Date.toTime function converts
a date value back to a time value in UTC. This function can be used to convert from
one time zone to another. For example, any date can be converted to the local time zone
using the following function:

fun toLocalTZ d = Date.fromTimeLocal (Date.toTime d)

One of the main uses of dates is to convert to and from string representations. The
Date.fmt operation provides fine control over the string representation of a date value
using a format string. For example, the expression

Date.fmt "%A %B %d, %Y" (Date.fromTimeLocal (Time.now ()))

produces a string representation of the current date with the form

"Monday May 10, 2004"

90 CHAPTER 9. SYSTEMS PROGRAMMING

while

Date.fmt "%Y-%m-%d" (Date.fromTimeLocal (Time.now ()))

produces a string representation of the current date with the form

"2004-05-10"

The format string follows the ISO/IEC 9899:1990 Standard for the C strftime func-
tion [ISO90] (see the Date manual page for details). The Date.toString function
produces a date value in fixed 24-character format with the form

"Mon May 10 10:00:00 2004"

The toString function is equivalent to

Date.fmt "%a %b %d %H:%M:%S %Y"

The Date.scan and Date.fromString functions convert strings in the toString
format to date values.
Time values are also used to represent durations, such as the amount of time it takes

to complete some computation. We have already seen an example of measuring the
real time taken by a computation, but the SML Basis Library also provides support for
measuring the processing time over an interval. The Timer structure provides support
for measuring the real, CPU, and garbage-collection time used by a computation. For
example, the following code measures the CPU and garbage-collection (GC) time that
it takes to run a function on its argument:

fun timeIt f x = let
val tmr = Timer.startCPUTimer ()
fun pr (msg, {usr, sys}) = print (concat [

msg, Time.toString usr, "u+",
Time.toString sys, "s\n"

]);
val result = f x
val {nongc, gc} = Timer.checkCPUTimes tmr
in
pr ("non-gc time = ", nongc);
pr ("gc time = ", gc);
result

end

9.2 Operating-system specific programming

While the generic, portable facilities described above are complete enough so that most
applications can perform their tasks using just them, there are times when a program

9.2. OPERATING-SYSTEM SPECIFIC PROGRAMMING 91

can be more easily written by making use of the richer facilities of a given operating
system. In this case, the programmer may know that the program will only be run on
that system, or decide to impose that limitation. Even here, good software practice is
to develop a system-independent interface for the desired functions and then provide
system-dependent implementations.
The remainder of this section will focus on the three system-specific interfaces de-

fined in the Basis.

9.2.1 The Unix structure

Despite its name, the Unix structure does not define the system calls expected in a
Unix, POSIX, or Linux environment. Those functions appear in the Posix structure
described below. Rather, this structure encapsulates a standard Unix idiom, that of cre-
ating a separate process, with streams for reading from and writing to the new process.
This idiom is similar to the OS.Process.system function, but it provides a richer
level of control. There are also related functions for signaling or terminating the child
process and reclaiming system resources.
Running a new program in Unix typically consists of using the dup() and pipe()

system calls to set up the file connections between the parent and child processes, call-
ing fork() to create a child process, releasing the unnecessary open file descriptors,
and finally having the child process run the new program with a call to execv().
The execute function provides a wrapper for these sequences of actions. In addi-
tion, it uses the operating system file descriptors to create Basis library instream and
outstream values.
The following example presents a trivial, but typical, use of the Unix structure.

fun countWords (text : string list) = let
val proc = Unix.execute ("/bin/wc", ["-w"])
val (ins, outs) = Unix.streamsOf proc
val _ = app (fn s => TextIO.output (outs, s)) text
val _ = TextIO.closeOut outs
val cnt = TextIO.inputAll ins
in
Unix.reap proc;
valOf (Int.fromString cnt)

end

The function counts the number of whitespace-separated words in the string concat
text. It is implemented by invoking the standard Unix program wc with the -w flag,
which reads its input and writes the number of words in the input stream onto its output
stream. Next, the function uses streamsOf to extract the input and output streams
connected to the child process. From the child’s point of view, these correspond to
its stdOut and stdIn streams, respectively. The function then writes the argument

92 CHAPTER 9. SYSTEMS PROGRAMMING

strings to the child, after which it closes the output stream. This implementation relies
on knowing how wc works. Given no file arguments, wc acts as a filter, reading and
processing input until it sees an end-of-stream. By closing the stream, the function
generates an end-of-stream state for the child. The function then asks for all output
produced by the child process, knowing that the child process, once it detects the end-
of-stream, will write its output and then exit, thereby closing the parent’s input stream.
The function binds this string to cnt.
Just before returning, the function calls the Unix.reap function, which is necessary

since, in Unix, if someone does not reap a terminated process, certain process resources
remain allocated. If execute is called frequently enough without performing a reap,
the parent process will run out of file descriptors and the operating system will generate
an exception.
The first argument to execute should be the absolute pathname of an executable

file, not a command name. To turn a command name such as "date" into a pathname
such as "/bin/date", the convention is to use OS.Process.getEnv to obtain the
value of the PATH variable, which will be a colon-separated list of directory pathnames,
to be searched in order from left to right, looking for the command. Here is a simple
implementation.

fun findPath cmd = (case OS.Process.getEnv "PATH"
of NONE => NONE
| SOME path =>

findExe (String.fields (fn c => c = #":") path, cmd)
(* end case *))

where findExe was defined in Section 9.1.1. Note that the function Windows.-
findExecutable provides this service for a Microsoft Windows environment.
A simpler mechanism to accomplish command searching is to let a shell or scripting

language handle it. As an example, the function

fun execute (cmd, args) = let
val newargs = foldr (fn (a,l) => " "::a::l) [] args
val newcmd = concat (cmd::newargs)
in
Unix.execute ("/bin/sh", ["-c",newcmd]

end

invokes the standard shell with two arguments, the first, "-c", indicating the shell
should execute the second argument as a command. The second argument is a string
composed of the command and its arguments, all separated by spaces.
One obvious advantage of using execute rather than OS.Process.system is

that the parent program can provide input to the child process, as well as read its output.
In simple cases such as the above example, one could use the file system to provide the
communication. If there are multiple exchanges between the parent and child, using
the file system becomes difficult, if not impossible. For example, the parent process

9.2. OPERATING-SYSTEM SPECIFIC PROGRAMMING 93

might not know when to read the child’s output file because it cannot ascertain when the
child process has completed its output. With a direct stream from the child when using
execute, the parent process can know what the child has written and what more to
expect.
In more serious applications, the code should provide appropriate checks and excep-

tion handlers for errors. Besides the usual variety of simple errors, execute makes it
possible for more subtle errors to arise. Consider a case where the parent process writes
constantly to the child, while the child reads some input and then writes to its output.
Since the parent is not reading the child’s output, at some point the child’s output buffer
becomes full, so the child process blocks trying to write. Since the parent process is
still writing, but the child is no longer reading, the parent’s output buffer becomes full,
at which point the parent process blocks while trying to write, and the system is dead-
locked.
Another aspect the programmer needs to consider is when to call reap, which closes

the pipes connecting the two processes. If the child process is still using them for reading
or writing, it may terminate prematurely due to receiving a broken pipe signal Posix.-
Signal.pipe. The programmer should also consider the effect of buffering in the
stream library, which may require explicit flushing of a buffer.
As these examples indicate, effective use of execute depends on the parent appli-

cation knowing what the child process expects for input and what it produces for output.
For simple uses, it is usually possible to rely on documentation concerning the child
process. For extended interaction between the two processes, it is helpful if there is a
well-defined protocol between the two processes. Otherwise, it is too easy for the child
to produce unexpected output, perhaps in response to an error, after which the parent
process may no longer know how to read the ensuing child output. Even in the sim-
ple cases, it can happen that the same command on two different versions of Unix will
produce output in two different formats.
In Section 9.1, we discussed the notion of environment variables as they exist in

the execution environment. The executeInEnv function is identical to execute,
except that it gives the parent process the ability to alter the child’s environment. For
example, if the child process is a Unix shell program invoked to run a script provided by
a user, it may be desirable, for security reasons, to reset the PATH variable to a restricted
set of paths such as "/bin:/usr/bin".
In the portable interface defined by the OS structure, a process can stop with suc-

cess or not. Unix-like operating systems provide a finer distinction as to how a process
stopped and, in case of an error, what the error was. The Unix structure makes this
extra information available. In the Unix operating system, when a process finishes, it
returns a small integer value to its parent, with a zero value representing success, by
convention. This form of termination is provided by the Unix.exit function. As for
what the parent process sees, it can convert the process status, provided by reap or

94 CHAPTER 9. SYSTEMS PROGRAMMING

OS.Process.system or some other function, into a Unix.exit_status value
using the fromStatus function. The W_EXITED value of exit_status corre-
sponds to OS.Process.success. If the status is (W_EXITSTATUS w), the child
process called (exit w), where w is non-zero.
The operating system will sometimes terminate a process because it was sent a sig-

nal by some other process. The kill function gives this ability to the parent process.
If a process terminates because of a signal, its exit status will be (W_SIGNALED s),
where s is the signal sent. Note that the Unix structure does not provide signal values
explicitly. These will usually come from a lower-level structure. Thus, if an implemen-
tation provides the Posix structure, the Unix.signal type must be identical to the
Posix.Signal.signal type. Finally, it is possible for a signal, such as Posix.-
Signal.tstp, to cause a process to be suspended rather than terminated. Notification
of this suspension to the parent process has the form (W_STOPPED s), where s is the
signal sent. That W_STOPPED has the exit_status type is something of a mis-
nomer, as the signaled process has not exited and can be restarted by being sent the
Posix.Signal.cont signal. Note also that a parent process using only the Unix
structure will never see this value, since the reap function only returns when the child
process has indeed terminated. The constructor is included here because of the type
equivalence between exit_status and Posix.Process.exit_status.

9.2.2 System flags

System calls sometimes have a parameter that represents a small set of non-exclusive
options. For example, the third argument to the function Posix.FileSys.openf
allows the user to specify that the operation should fail if someone else has already
opened the file, and, when the file is opened, it should be truncated to an empty file. In
C, the set is usually represented by the bits of an integer, with supported flags defined
by preprocessor variables and combinations of flags formed by bit-wise or.
To support these options in SML, the Library defines a BIT_FLAGS signature, which

provides an abstract representation for the setting and clearing of bits. We consider this
design a flexible and convenient compromise between an explicit use of words and a
list of abstract flag values. There is no structure matching the BIT_FLAGS signature.
Rather, structures have substructures that use an include BIT_FLAGS specification
in their signature. In addition, the substructure defines a basic set of flags. As the
underlying operating system may well accept additional flags than those specified in
the Library, the BIT_FLAGS interface provides the fromWord function to produce
arbitrary flag values.
The operations in BIT_FLAGS form a boolean algebra, with flags serving for

union (∪) and intersect serving for set intersection (∩). The empty set can be
expressed using flags []while all and intersect [] denote everything. Since

9.2. OPERATING-SYSTEM SPECIFIC PROGRAMMING 95

an implementation may define more flags than are specified by the Library, allmay be
a superset of the union of the defined flags. Set difference is provided by clear, and
one can test set inclusion using allSet.

9.2.3 POSIX Programming

The structure Posix and its substructures provide SML bindings for the types and
functions specified in the POSIX standard 1003.1,1996 [POS96]. This specification
defines operating system facilities based on a Unix operating system model. There are
many systems that provide conforming implementations of POSIX, such as Linux, Free
BSD, Solaris, Irix, and OS X, though POSIX is usually a subset of what the systems
actually provide. In these cases, an implementation of the Posix structure involves
little more than calling the underlying C functions.
The major substructures of Posix correspond closely to specific sections in the

POSIX document.

Posix.Process Section 3
Posix.ProcEnv Section 4
Posix.FileSys Section 5
Posix.IO Section 6
Posix.TTY Section 7
Posix.SysDB Section 9

To leverage the familiarity of Unix names and the available documentation, most of
the components of the Posix structures retain the traditional names, ignoring capital-
ization. When the traditional names rely on a prefix convention to get around the lack of
modules in C, we usually create a substructure whose name is the prefix. For example,
the struct stat in C describes information about the status of a file. A typical field
would be st_nlink. In the Basis module Posix.FileSys, we use a substructure
Posix.FileSys.ST with a value nlink. Thus, instead of using st_nlink in C,
one uses ST.nlink in SML. Since the Posix structure is a near literal translation of
POSIX from C to SML, we refer the reader to any reference on Unix or POSIX to learn
how to use the structure or to understand the detailed semantics of the operations.
One programming difference to keep in mind is that, to check for errors in C, the

code looks for a negative return value and then consults the value of the global variable
errno to determine the specific error. In SML, errors in using Posix are indicated by
the raised exception OS.SysErr. Because of the many different errors (see Posix.-
Error) and the many reasons for their occurrence, the Basis library does not specify
which exceptions are raised and when. Again, the reader is referred to POSIX docu-
mentation. Typically, if an error causes errno to be set to EABC in C, the Library will
raise the exception

96 CHAPTER 9. SYSTEMS PROGRAMMING

OS.SysErr (OS.errorMsg Posix.Error.abc, SOME Posix.Error.abc)

for the same error.

9.2.4 The Windows structure

The Windows structure provides rudimentary access to functions and types specific
to the Microsoft Windows operating system. In flavor, it is somewhere between the
Unix and Posix structures. The execute and reap functions are analogues of the
ones in Unix, while the remaining functions and substructures expose some lower-level
Windows features that have broad use. On the other hand, whereas the Posix structure
makes available almost all POSIX features, the Windows structure does not come close
to providing all of the operating system calls available in Microsoft Windows.
The various functions for obtaining system directories and configuration information

in the Config substructure are useful for writing system-sensitive code. For example,
the command interpreter is cmd.exe in the system directory in Windows NT, but it is
command.com in the Windows directory in Windows 95.
The structure provides several methods for creating child processes or subprocesses.

They differ in the way the subprocesses are created, in the degree of communication
between the parent process and the child process, and in whether they are synchronous
or asynchronous.
The simplest and most portable method is to use OS.Process.system. The code

fun generateAndCompile (txt : string) = let
val gcc = (case Windows.findExecutable "gcc.exe"

of SOME gcc => gcc
| NONE => raise Fail "Cannot find gcc"

(* end case *))
val cmd = concat ["echo ’", txt, "’ > foo.c"]
in
ignore (OS.Process.system cmd);
OS.Process.system (gcc ˆ " -c foo.c")

end

exhibits its use to create and compile a file. It interprets a string as if it were a shell com-
mand. It is fully synchronous; the parent process waits until the command is completed.
The child process returns its exit status to the caller. If the subprocess uses the standard
streams, and the parent process is a console process, then the two processes share their
standard streams. If the parent process is a Windows process, then the child process is
allocated a console of its own.
This method has the disadvantage that the Windows shell restricts the maximum

length that the command line may have — if this limit is exceeded, the command
crashes, and Microsoft Windows pops up a box explaining the error. On the other hand,
it is the only method that can run a batch script as a subprocess.

9.2. OPERATING-SYSTEM SPECIFIC PROGRAMMING 97

If the restriction on the maximum length of the command line causes problems, or if
the subprocess I/O is not relevant, one can use the simpleExecute function provided
by the Windows structure. This function calls the executable directly, avoiding the
limitation on the length of the command, and also connects the standard input and output
to the null device, so that any input or output is ignored.

fun mkArchive (archive, files) = let
val ar = (case Windows.findExecutable "ar.exe"

of SOME x => x
| NONE => raise Fail "Cannot find ar.exe")

val args = concatWith " " ("cr"::archive::files)
in
Windows.simpleExecute (ar, args)

end

The Windows structure also provides a completely asynchronous function for cre-
ating subprocesses, called launchApplication. Like simpleExecute, it takes
the name of an executable and an argument string. It runs the executable with the argu-
ment provided. If the subprocess is a console application, the standard streams are not
redirected. This command is completely asynchronous; once the subprocess is running,
there is no further communication between the two processes.

fun runNotepad file = launchApplication ("notepad", file)

Another simple method provided by the Windows structure for spawning a subpro-
cess is the openDocument command. This function takes a pathname of a file and
opens that file using the application registered in Microsoft Windows for files of that
type. For example, if called with an HTML file, it will open that file in one’s browser.

fun getHelp () = openDocument ("c:\\help\\index.htm");

Sometimes more communication is needed between the parent process and the child
process. The Windows structure provides two ways of supporting this communication.
The first is the execute function, which is for running a console subprocess. It creates
streams that are linked to the standard input and output streams of that subprocess (the
standard error stream of the subprocess is merged with that of the parent process). This
linkage allows the parent process to send input to the subprocess, and read the resulting
output. This method is asynchronous, but the calling process can call the reap func-
tion to wait for the subprocess to finish. Note that if the subprocess attempts to read
from standard input or write to standard input, then the parent process must provide or
consume this information. Otherwise, the subprocess will hang indefinitely. Also, the
handle of the subprocess remains open until the subprocess is reaped.

98 CHAPTER 9. SYSTEMS PROGRAMMING

fun runCmd (cmd : string, args : string) = let
val p = Windows.execute (cmd, args)
val ins = Windows.textInstreamOf p
val outs = Windows.textOutstreamOf p
in
TextIO.output (outs, "Test input\n");
print (TextIO.inputLine ins);
Windows.reap p

end

For more information about using Windows.execute, Windows.reap, and the
related stream functions, the reader should consult the description of their Unix ana-
logues in Section 9.2.1. Note that the Unix version of execute takes a string list as its
second argument.
Another way of communicating with subprocesses is to use dynamic data exchange

(DDE). The Windows structure provides a simple, high-level interface for basic DDE
programming. This interface allows the parent process to send commands to the child
process, which is typically a windowing process. The DDE interface does not itself
create the subprocess.

fun openFile file = let
val busyRetries = 20 (* max number of busy retries *)
val delay = Time.fromMilliseconds 200
val ddeInfo =

Windows.DDE.startDialog ("PFE32", "Editor")
val cmd = concat ["[FileOpen(\"", file, "\")]"]
in
Windows.DDE.executeString (
ddeInfo, cmd, busyRetries, delay);

Windows.DDE.stopDialog ddeInfo
end

The Windows.fromStatus and Windows.exit functions are identical to their
Unix counterparts, the only real difference being the Windows-specific exit values de-
fined in the Windows.Status substructure.

10
Network programming with sockets

10.1 Overview

Sockets are an abstraction for interprocess communication (IPC) that were introduced as
part of the Berkeley version of Unix in 1982. They have become a de facto standard for
network communication and are supported by most major operating systems (including
PC systems). The SML Basis Library provides an optional collection of modules for
programming with sockets. The interface provided by the Basis follows the C interface
for the most part; the major difference is that the SML interface is more strongly typed.
In particular, the type system distinguishes between passive and active sockets, between
sockets in different domains, and between sockets of different protocols.
The Berkeley Socket API supports two styles of communication: stream sockets pro-

vide virtual circuits between pairs of processes, and datagram sockets provide connec-
tionless packet-based communication. In stream-based interactions, the server allocates
a master socket that is used to accept connections from clients. The server then lis-
tens on the master socket for connection requests from clients; each request is allocated
a new socket that the server uses to communicate with that particular client. As the
name suggests, stream-based communication is done as a stream of bytes, not as dis-
crete packets. Connectionless communication is more symmetric: messages are sent to
a specific port at a specific address. While datagram sockets provide better performance,
messages may be lost or received out of order, which requires additional programming
by the client. For this reason, stream sockets are more commonly used than datagram
sockets.

10.1.1 Socket-related modules

The SML Basis Library organizes support for socket-based network programming into
three related groups of modules.

• The Socket structure provides the basic socket types and operations.

100 CHAPTER 10. NETWORK PROGRAMMING WITH SOCKETS

• The NetHostDB, NetProtDB, and NetServDB structures provide support for
determining the addresses of hosts, protocols, and services on the network.

• The GenericSock, INetSock, and UnixSock structures provide support for
socket creation.

10.1.2 Socket-related types

Because some operations apply only to stream sockets, others apply only to datagram
sockets, and some apply to either kind, it is convenient to use SML type polymorphism
for the socket type. Type (’af,’sock_type) Socket.socket is parameterized
by an address family and a (datagram or stream) socket type. The ’mode Socket.-
stream socket type itself is parameterized by a mode (active, for an ordinary commu-
nication stream, or passive, to accept connections). Thus we have:

Type Description
(inet, active stream) socket Internet-domain active stream socket.
(inet, passive stream) socket Internet-domain passive stream socket.
(inet, dgram) socket Internet-domain datagram socket.
(unix, active stream) socket Unix-domain active stream socket.
(unix, passive stream) socket Unix-domain passive stream socket.
(unix, dgram) socket Unix-domain datagram socket.

Note that in this table, structure qualifiers are omitted; for example, the Internet active
stream socket type is really

(INetSock.inet, Socket.active Socket.stream) Socket.socket

The types inet, active, etc. have been dubbed “phantom types” by Leijen and
Meijer [LM99]), since they do not have any values.

10.1.3 Socket I/O operations

The Socket structure provides a large collection of I/O operations on sockets (32 to
be exact). These operations are organized into stream-socket operations (send and
recv in various flavors) and datagram-socket operations (sendTo and recvFrom in
various flavors). For each basic I/O operation, there are eight distinct versions based on
the type of data (array vs. vector), synchronization (blocking vs. non-blocking), and
options (common case vs. general case). We use a uniform naming convention, with the
type denoted by “Vec” or “Arr”, non-blocking denoted by “NB”, and the general-case
form denoted by a prime. For example, sendArrToNB is the non-blocking sendTo
operation on datagram sockets that takes its message from an byte-array slice. Likewise,
the recvVec’ function is the blocking recv operation on stream sockets that returns
its result as a byte vector and accepts option flags (peek and oob).

10.2. SOCKET ADDRESSES 101

10.2 Socket addresses

To use a socket for communication requires creating an address for the other end of the
communication. For datagram sockets, this address is used to address each individual
message, while for stream sockets it is used to create the connection. A socket address
consists of a pair of a domain-specific host address and a port number.

For each address family or domain supported by an implementation, there is a cor-
responding module that supports the creation of addresses and sockets in the domain.
The SML Basis Library specifies the signature of the INetSock structure for creating
Internet-domain sockets and the UnixSock structure for creating Unix-domain sock-
ets. Each of these structures has two substructures, UDP and TCP, which contain the
socket creation functions for datagram and stream sockets, respectively. In addition, the
INetSock and UnixSock structures define mechanisms to create socket addresses
from a host address and port.

For the Internet domain, host addresses are supported by the NetHostDB structure,
which provides an interface to the network database. This interface allows one to lookup
address information by hostname (using getByName) or by address (using getBy-
Addr). The network-database records contain information about the address family of
the host (usually internet domain), the primary name and address of the host, and any
aliases and alternative addresses for the host. The NetHostDB structure also provides
functions for converting between strings and addresses.

10.3 Internet-domain stream sockets

The most common use of sockets is to implement connection-based protocols (e.g.,
HTTP, FTP, and TELNET) using TCP/IP (i.e., stream sockets). The two participants in
a connection-based protocol are called the client, who initiates the connection, and the
server. While many times these names reflect an asymmetry in the relationship between
the two participants (e.g., the client might be a web browser and the server an HTTP
server), it is possible for the relationship to be symmetric. One participant, however,
must serve as client and initiate the connection, while the other must be willing to accept
the connection. In this section, we describe how to program both the server and client
sides of an Internet-domain stream socket.

We start with the client side of the connection, since it is simpler. In order to establish
a connection to a server, the client must form a socket address from the server’s host and
port and then use the address to connect to the server. The following function creates an
Internet-domain address for the given port at the given host:

102 CHAPTER 10. NETWORK PROGRAMMING WITH SOCKETS

fun inetAddr {host, port} = let
val addr = (case NetHostDB.getByName host

of NONE => raise Fail "unknown host"
| SOME ent => NetHostDB.addr ent

(* end case *))
in
INetSock.toAddr(addr, port)

end

Using this function, we can create a TCP socket and connect it to the given address in
the following code:

fun connectToPort {host, port} = let
val addr = inetAddr {host=host, port=port}
val sock = INetSock.TCP.socket ()
in
Socket.connect (sock, addr);
sock

end

This function first looks up the target host in the network database by calling getBy-
Name. If the host is known, then the function gets the host’s address from the host’s
database entry (ent) and combines it with the port to compute the socket address. It
then creates a TCP socket and connects it to the server’s address. Finally, the new socket
is returned and can be used for communication.
Often one uses a symbolic name for a service, instead of an explicit port number. The

NetServDB structure provides an interface to the network service database that can be
used to look up port numbers based on service names. For example, the inetAddr
function from above can be generalized to take a service name instead of a port number
as follows:

fun inetServAddr {host, service} = let
val addr = (

case NetHostDB.getByName host
of NONE => raise Fail "unknown host"
| SOME ent => NetHostDB.addr ent

(* end case *))
val port = (

case NetServDB.getByName(service, SOME("tcp"))
of NONE => raise Fail "unknown service"
| SOME ent => NetServDB.port ent

(* end case *))
in
INetSock.toAddr(addr, port)

end

The SOME("tcp") argument specifies that we want the port associated with the stream
version of the service. For example, we can get the address of the HTTP service at
standardml.org using the following expression:

10.3. INTERNET-DOMAIN STREAM SOCKETS 103

inetServAddr {host="standardml.org", service="http"}

Once a connection is established, one can use the various functions provided by the
Socket structure for socket I/O. One issue to be aware of is that socket I/O operations
can result in only a part of the data being transmitted. To avoid this problem, one should
check the number of bytes transmitted. For example, the following function sends a
complete vector over the given socket:

fun sendAll (sock, v) = let
fun lp vs = if Word8VectorSlice.isEmpty vs

then ()
else let
val n = Socket.sendVec (sock, vs)
in
lp (Word8VectorSlice.subslice(vs, n, NONE))

end
in
lp (Word8VectorSlice.full v)

end

Setting up the server side of a connection is a two-stage process. First, the server
must create a passive socket, bind it to the port it is using, and enable it for accepting
connections. The second stage is to accept connections. The following function sets up
a passive socket on the given port and returns the socket:

fun initServerSocket (port : int) = let
val sock = INetSock.TCP.socket()
in
Socket.bind (sock, INetSock.any port);
Socket.listen (sock, 5);
sock

end

Note that we use the any function to create an address that matches any sender.

To establish a connection, the server must use the accept function, which returns
a new active socket for communicating with the client and the address of the client.
For example, the following function implements a simple echo server that can handle a
single client:

104 CHAPTER 10. NETWORK PROGRAMMING WITH SOCKETS

fun echoServer port = let
val passiveSock = initServerSocket port
val (sock, _) = Socket.accept passiveSock
fun echoLoop () = let

val data = Socket.recvVec(sock, 1024)
in
if (Word8Vector.length data = 0)

then ()
else (
sendAll (sock, data);
echoLoop ())

end
in
Socket.close passiveSock;
echoLoop ();
Socket.close sock

end

Note that when the client closes its end of the connection, the server’s call to recvVec
will return the empty vector and the server will terminate. To generalize this code to
support multiple clients requires monitoring both the passive socket for new clients and
the currently open active sockets for new data. We monitor both sockets simultaneously
by using the select function, which is described below in Section 10.6.1.

10.4 Internet-domain datagram sockets

Datagram communication is connectionless, so addresses are used on a per-message
basis. To illustrate this model of network communication, we use the example of an echo
server that sends any message it receives back to its source. For the client, we define a
function that measures and reports the round-trip time to send a 128-byte message and
receive its echo.
The client uses the inetAddr function from above to construct the server’s address

from a hostname and port number, but instead of using this address to establish a con-
nection to the server, the client uses it to address the message. Here is the client-side
function:

fun pingClient {host, port} = let
val sock = INetSock.UDP.socket ()
val toAddr = inetAddr {host=host, port=port}
val msg = Word8VectorSlice.full (

Word8Vector.tabulate(128, fn _ => 0w0))
val t0 = Time.now()
in
Socket.sendVecTo (sock, toAddr, msg);
ignore (Socket.recvVecFrom (sock, 1024));
print (Time.fmt 6 (Time.-(Time.now(), t0))
ˆ " seconds\n")

end

10.5. UNIX-DOMAIN SOCKETS 105

Note that we are ignoring the message and address values returned from recvVec-
From.
The server-side code is similar in structure to the echoServer function above. The

main difference is that we do not listen for connections, but instead just use recvVec-
From to wait for messages from clients. Here is the server-side code:

fun pingServer port = let
val sock = INetSock.UDP.socket ()
val addr = INetSock.any port
val _ = Socket.bind (sock, addr)
fun echoLp () = let

val (msg, fromAddr) = Socket.recvVecFrom (sock, 1024)
in
Socket.sendVecTo (sock, fromAddr,
Word8VectorSlice.full msg);

echoLp ()
end

in
echoLp ()

end

Because the server can never know if its clients are done (in fact, new clients may start
at any time), it is programmed as an infinite loop.

10.5 Unix-domain sockets

Unix-domain sockets provide an efficient mechanism for programs running on the same
local system to communicate using socket operations (essentially, they are a form of in-
terprocess communication built into the networking library). A Unix pathname is used
to specify the address of a Unix-domain socket; in fact, when a socket is bound to an
address, a special file is created with the given address. For example, the X Window
System uses the filename "/tmp/.X11-unix/X0" for its default Unix-domain con-
nection. Thus, the following function connects a socket to the default XWindow System
server:

fun connectToX11Server () = let
val addr = UnixSock.toAddr "/tmp/.X11-unix/X0"
val sock = UnixSock.Strm.socket ()
in
Socket.connect (sock, addr);
sock

end

The UnixSock.Strm and UnixSock.DGrm structures also provide functions to
create connected pairs of sockets. These functions can be used to create a communica-
tion channel for communicating with a forked subprocess.

106 CHAPTER 10. NETWORK PROGRAMMING WITH SOCKETS

fun initServerConnection (port : int, limit) = let
val sock = INetSock.TCP.socket()
in
Socket.bind (sock, INetSock.any port);
Socket.listen (sock, 5);
fn () => let
val sd = Socket.sockDesc sock
val {rds, ...} = Socket.select {

rds=[sd], wrs=[], exs=[],
timeout=SOME limit

}
in
if List.null rds
then NONE
else SOME(Socket.accept sock)

end
end

Listing 10.1: Building a socket connection with a time limit

10.6 Advanced topics

In the remainder of this chapter, we examine additional techniques for programming
with sockets using the SML Basis Library.

10.6.1 Polling sockets

A server that supports multiple client sockets must use some form of polling to check
for pending requests. The SML Basis Library provides two mechanisms for polling on
sockets. The Socket.select function is specific to sockets, while the IO.poll
function can be used to poll a mix of different kinds of I/O devices including sockets.
The poll function is discussed in Section 9.1.4, so we focus on the use of select
here.
The select function takes three lists of socket descriptors and a timeout value as

arguments.
Polling can also be used to check for pending connections without indefinite blocking.

For example, the function in Listing 10.1 offers a connection on the given port but limits
the time spent waiting for a connection. The function returns NONE when no connection
is available before the timeout.

10.6. ADVANCED TOPICS 107

10.6.2 More socket I/O

The socket operations allow reading and writing of bytes, but it is a simple matter to
support I/O of strings on stream sockets. For example, the following function reads a
string from a stream socket:

fun recvString sock = let
val n = Socket.Ctl.getRCVBUF sock
in
Byte.bytesToString(Socket.recvVec(sock, n))

end

Note that the recvString function uses the getRCVBUF function to determine the
maximum number of bytes that might be available. We can support sending a string on
a socket by modifying the sendAll function given above in Section 10.3:

fun sendString (sock, s) = let
fun lp vs = if Word8VectorSlice.isEmpty vs

then ()
else let
val n = Socket.sendVec (sock, vs)
in
lp (Word8VectorSlice.subslice(vs, n, NONE))

end
in
lp (Word8VectorSlice.full(Byte.stringToBytes s))

end

It is also possible to build full-fledged I/O streams on top of sockets using the tech-
niques described in Section 8.2.5. For example, the function mkStreams defined in
Listing 10.2 returns a pair of binary input and output streams built on top of the given
socket.

10.6.3 Supporting multiple domains in an application

Some applications need to be able to support connections to a server over multiple do-
mains; for example, the X Window System [SG97] supports both Internet-domain and
Unix-domain stream sockets. Although sockets from different domains have different
types (because of the phantom type discipline),it is possible to structure the code in such
a way that common code can be used to communicate over multiple domains. The key
is to parameterize the communication code over the socket. For example, the following
function applies its argument f to either a Unix-domain or Internet-domain socket:

108 CHAPTER 10. NETWORK PROGRAMMING WITH SOCKETS

fun mkStreams (sock : Socket.active INetSock.stream_sock) = let
val (haddr, port) =

INetSock.fromAddr(Socket.Ctl.getSockName sock)
val sockName = String.concat[

NetHostDB.toString haddr, ":", Int.toString port
]

val rd = BinPrimIO.RD{
name = sockName,
chunkSize = Socket.Ctl.getRCVBUF sock,
readVec =
SOME(fn sz => Socket.recvVec(sock, sz)),

readArr =
SOME(fn buffer => Socket.recvArr(sock, buffer)),

readVecNB = NONE, readArrNB = NONE,
block = NONE,
canInput = NONE,
avail = fn () => NONE,
getPos = NONE, setPos = NONE,
endPos = NONE, verifyPos = NONE,
close = fn () => Socket.close sock,
ioDesc = NONE

}
val wr = BinPrimIO.WR{

name = sockName,
chunkSize = Socket.Ctl.getSNDBUF sock,
writeVec =
SOME(fn buffer => Socket.sendVec(sock, buffer)),

writeArr =
SOME(fn buffer => Socket.sendArr(sock, buffer)),

writeVecNB = NONE, writeArrNB = NONE,
block = NONE,
canOutput = NONE,
getPos = NONE, setPos = NONE,
endPos = NONE, verifyPos = NONE,
close = fn () => Socket.close sock,
ioDesc = NONE

}
val inStrm = BinIO.mkInstream(

BinIO.StreamIO.mkInstream(rd,
Word8Vector.fromList[]))

val outStrm = BinIO.mkOutstream (
BinIO.StreamIO.mkOutstream(wr, IO.BLOCK_BUF))

in
(inStrm, outStrm)

end

Listing 10.2: Building binary I/O streams from a socket

10.6. ADVANCED TOPICS 109

datatype address = Unix of string | INet of string

fun withSocket (Unix path, port, f) = let
val addr = UnixSock.toAddr path
val sock = connectUnixSock {addr = addr, port = port}
in
f sock

end
| withSocket (INet host, port, f) =

f (connectINetSock {host = host, port = port})

10.6.4 Creating sockets in other domains

The SML Basis Library provides a generic mechanism for creating sockets of any sup-
ported domain, although without the same degree of static typing. For example, we
can create a “RAW” socket (assuming the application has sufficient permissions) in the
Internet domain using the following code:

fun rawSocket () = let
val SOME sockTy = Socket.SOCK.fromString "RAW"
in
GenericSock.socket (INetSock.inetAF, sockTy)

end

network communication and are supported

11
Manual pages

112 CHAPTER 11. MANUAL PAGES

11.1 The Array structure

The Array structure defines polymorphic arrays, which are mutable sequences with
constant-time access and update.
Arrays have a special equality property: two arrays are equal if they are the same

array, i.e., created by the same call to a primitive array constructor such as array,
fromList, etc.; otherwise they are not equal. This property also holds for arrays of
zero length. Thus, the type ty array admits equality even if ty does not.

Synopsis
signature ARRAY
structure Array :> ARRAY

Interface
eqtype ’a array = ’a array
type ’a vector = ’a Vector.vector

val maxLen : int
val array : int * ’a -> ’a array
val fromList : ’a list -> ’a array
val vector : ’a array -> ’a vector
val tabulate : int * (int -> ’a) -> ’a array

val length : ’a array -> int
val sub : ’a array * int -> ’a
val update : ’a array * int * ’a -> unit
val copy : {src : ’a array, dst : ’a array, di : int}

-> unit
val copyVec : {src : ’a vector, dst : ’a array, di : int}

-> unit

val appi : (int * ’a -> unit) -> ’a array -> unit
val app : (’a -> unit) -> ’a array -> unit
val modifyi : (int * ’a -> ’a) -> ’a array -> unit
val modify : (’a -> ’a) -> ’a array -> unit
val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val findi : (int * ’a -> bool)

-> ’a array -> (int * ’a) option
val find : (’a -> bool) -> ’a array -> ’a option
val exists : (’a -> bool) -> ’a array -> bool
val all : (’a -> bool) -> ’a array -> bool
val collate : (’a * ’a -> order)

-> ’a array * ’a array -> order

11.1. THE ARRAY STRUCTURE 113

Description

val maxLen : int

The maximum length of arrays supported by this implementation. Attempts to create larger
arrays will result in the Size exception being raised.

val array : int * ’a -> ’a array

array (n, init) creates a new array of length n; each element is initialized to the
value init. If n < 0 or maxLen < n, then the Size exception is raised.

val fromList : ’a list -> ’a array

fromList l creates a new array from l. The length of the array is length l and the
ith element of the array is the ith element of the the list. If the length of the list is greater
than maxLen, then the Size exception is raised.

val vector : ’a array -> ’a vector

vector arr generates a vector from arr. Specifically, the result is equivalent to
Vector.tabulate (length arr, fn i => sub (arr, i))

val tabulate : int * (int -> ’a) -> ’a array

tabulate (n, f) creates an array of n elements, where the elements are defined
in order of increasing index by applying f to the element’s index. This expression is
equivalent to:

fromList (List.tabulate (n, f))
If n < 0 or maxLen < n, then the Size exception is raised.

val length : ’a array -> int

length arr returns |arr|, the length of the array arr.

val sub : ’a array * int -> ’a

sub (arr, i) returns the ith element of the array arr. If i < 0 or |arr| ≤ i, then
the Subscript exception is raised.

val update : ’a array * int * ’a -> unit

update (arr, i, x) sets the ith element of the array arr to x. If i < 0 or
|arr| ≤ i, then the Subscript exception is raised.

114 CHAPTER 11. MANUAL PAGES

val copy : {src : ’a array, dst : ’a array, di : int}
-> unit

val copyVec : {src : ’a vector, dst : ’a array, di : int}
-> unit

copy {src, dst, di}
copyVec {src, dst, di}
These functions copy the entire array or vector src into the array dst, with the ith

element in src, for 0 ≤ i < |src|, being copied to position di + i in the destination
array. If di < 0 or if |dst| < di+ |src|, then the Subscript exception is raised.

Implementation note: In copy, if dst and src are equal, we must have di = 0 to
avoid an exception, and copy is then the identity.

val appi : (int * ’a -> unit) -> ’a array -> unit
val app : (’a -> unit) -> ’a array -> unit

appi f arr
app f arr
These functions apply the function f to the elements of the array arr in order of increasing
indices. The more general form appi supplies f with the array index of the corresponding
element.

val modifyi : (int * ’a -> ’a) -> ’a array -> unit
val modify : (’a -> ’a) -> ’a array -> unit

modifyi f arr
modify f arr
These functions apply the function f to the elements of the array arr in order of increasing
indices and replace each element with the result. The more general modifyi supplies f
with the array index of the corresponding element. The expression modify f arr is
equivalent to modifyi (f o #2) arr.

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b

foldli f init arr
foldri f init arr
foldl f init arr
foldr f init arr
These fold the function f over all the elements of the array arr, using the value init
as the initial value. The functions foldli and foldl apply the function f from left to
right (increasing indices), while the functions foldri and foldr work from right to left
(decreasing indices). The more general functions foldli and foldri supply f with the
array index of the corresponding element.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.

11.1. THE ARRAY STRUCTURE 115

The expression foldl f init arr is equivalent to:
foldli (fn (_, a, x) => f(a, x)) init arr

The analogous equivalences hold for foldri and foldr.

val findi : (int * ’a -> bool)
-> ’a array -> (int * ’a) option

val find : (’a -> bool) -> ’a array -> ’a option

findi pred arr
find pred arr
These functions apply pred to each element of the array arr, from left to right (i.e.,
increasing indices), until a true value is returned. These functions return the first such
element, if it exists; otherwise, they return NONE. The more general version findi also
supplies pred with the array index of the element and, upon finding an entry satisfying
the predicate, returns that index with the element.

val exists : (’a -> bool) -> ’a array -> bool

exists pred arr applies pred to each element x of the array arr, from left to
right (i.e., increasing indices), until pred x evaluates to true; it returns true if such
an x exists and false otherwise.

val all : (’a -> bool) -> ’a array -> bool

all pred arr applies pred to each element x of the array arr, from left to right
(i.e., increasing indices), until pred x evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) arr)).

val collate : (’a * ’a -> order)
-> ’a array * ’a array -> order

collate cmp (a1, a2) performs a lexicographic comparison of the two arrays us-
ing the ordering of elements defined by the function cmp.

See also
ArraySlice (§11.3; p. 122), MONO_ARRAY (§11.23; p. 193), Vector (§11.64; p. 401)

116 CHAPTER 11. MANUAL PAGES

11.2 The Array2 structure

The Array2 structure provides polymorphic mutable two-dimensional arrays. As with
one-dimensional arrays, these arrays have the equality property that two arrays are equal
if, and only if, they are the same array, i.e., created by the same call to a primitive array
constructor such as array, fromList, etc. This property also holds for arrays of zero
length. Thus, the type ty array admits equality even if ty does not.
The elements of two-dimensional arrays are indexed by pair of integers (i, j), where

i gives the row index and i gives the column index. As usual, indices start at 0, with
increasing indices going from left to right and, in the case of rows, from top to bottom.

Synopsis
signature ARRAY2
structure Array2 :> ARRAY2

Interface
eqtype ’a array
type ’a region = {

base : ’a array,
row : int,
col : int,
nrows : int option,
ncols : int option

}
datatype traversal = RowMajor | ColMajor

val array : int * int * ’a -> ’a array
val fromList : ’a list list -> ’a array
val tabulate : traversal

-> int * int * (int * int -> ’a)
-> ’a array

val sub : ’a array * int * int -> ’a
val update : ’a array * int * int * ’a -> unit

val dimensions : ’a array -> int * int
val nCols : ’a array -> int
val nRows : ’a array -> int
val row : ’a array * int -> ’a Vector.vector
val column : ’a array * int -> ’a Vector.vector

val copy : {
src : ’a region,
dst : ’a array,
dst_row : int,
dst_col : int

} -> unit

11.2. THE ARRAY2 STRUCTURE 117

val appi : traversal
-> (int * int * ’a -> unit)
-> ’a region -> unit

val app : traversal -> (’a -> unit) -> ’a array -> unit
val foldi : traversal

-> (int * int * ’a * ’b -> ’b)
-> ’b -> ’a region -> ’b

val fold : traversal
-> (’a * ’b -> ’b) -> ’b -> ’a array -> ’b

val modifyi : traversal
-> (int * int * ’a -> ’a)
-> ’a region -> unit

val modify : traversal -> (’a -> ’a) -> ’a array -> unit

Description

type ’a region = {
base : ’a array,
row : int,
col : int,
nrows : int option,
ncols : int option

}

This type specifies a rectangular subregion of a two-dimensional array. If ncols equals
SOME(w), with 0 ≤ w , the region includes only those elements in columns with indices in
the range from col to col+ (w − 1), inclusively. If ncols is NONE, the region includes
only those elements lying on or to the right of column col. A similar interpretation holds
for the row and nrows fields. Thus, the region corresponds to all those elements with
position (i, j) such that i lies in the specified range of rows and j lies in the specified range
of columns.
A region reg is said to be valid if it denotes a legal subarray of its base array. More

specifically, reg is valid if

0 ≤ #row reg ≤ nRows (#base reg)

when #nrows reg = NONE, or

0 ≤ #row reg ≤ (#row reg)+ nr ≤ nRows (#base reg)

when #nrows reg = SOME(nr), and the analogous conditions hold for columns.

datatype traversal = RowMajor | ColMajor

This type specifies a way of traversing a region. Specifically, RowMajor indicates that,
given a region, the rows are traversed from left to right (smallest column index to largest
column index), starting with the first row in the region, then the second, and so on until
the last row is traversed. ColMajor reverses the roles of row and column, traversing the
columns from the top down (smallest row index to largest row index), starting with the first
column, then the second, and so on until the last column is traversed.

118 CHAPTER 11. MANUAL PAGES

val array : int * int * ’a -> ’a array

array (r, c, init) creates a new array with r rows and c columns, with each
element initialized to the value init. If r < 0, c < 0 or the resulting array would be too
large, the Size exception is raised.

val fromList : ’a list list -> ’a array

fromList l creates a new array from a list of rows, each of which is a list of elements.
Thus, the elements are given in row major order, i.e., hd l gives the first row, hd (tl
l) gives the second row, etc. This function raises the Size exception if the resulting array
would be too large or if the lists in l do not all have the same length.

val tabulate : traversal
-> int * int * (int * int -> ’a)

-> ’a array

tabulate trv (r, c, f) creates a new array with r rows and c columns, with
the (i,j)th element initialized to f (i,j). The elements are initialized in the traversal
order specified by trv . If r < 0, c < 0 or the resulting array would be too large, the
Size exception is raised.

val sub : ’a array * int * int -> ’a

sub (arr, i, j) returns the (i,j)th element of the array arr. If i < 0, j < 0,
nRows arr ≤ i, or nCols arr ≤ j, then the Subscript exception is raised.

val update : ’a array * int * int * ’a -> unit

update (arr, i, j, a) sets the (i,j)th element of the array arr to a. If i < 0,
j < 0, nRows arr ≤ i, or nCols arr ≤ j, then the Subscript exception is raised.

val dimensions : ’a array -> int * int
val nCols : ’a array -> int
val nRows : ’a array -> int

These functions return size information concerning an array. nCols returns the number of
columns, nRows returns the number of rows, and dimension returns a pair containing
the number of rows and the number of columns of the array. The functions nRows and
nCols are respectively equivalent to #1 o dimensions and #2 o dimensions

val row : ’a array * int -> ’a Vector.vector

row (arr, i) returns row i of arr. If (nRows arr) ≤ i or i < 0, then this
function raises Subscript.

11.2. THE ARRAY2 STRUCTURE 119

val column : ’a array * int -> ’a Vector.vector

column (arr, j) returns column j of arr. This function raises Subscript if
j < 0 or nCols arr ≤ j.

val copy : {
src : ’a region,
dst : ’a array,
dst_row : int,
dst_col : int

} -> unit

copy {src, dst, dst_row, dst_col} copies the region src into the array
dst, with the element at position (#row src, #col src) copied into the destina-
tion array at position (dst_row,dst_col). If the source region is not valid, then the
Subscript exception is raised. Similarly, if the derived destination region (the source re-
gion src translated to (dst_row ,dst_col)) is not valid in dst, then the Subscript
exception is raised.

Implementation note: The copy function must correctly handle the case in which the
#base src and the dst arrays are equal and the source and destination regions overlap.

val appi : traversal
-> (int * int * ’a -> unit)
-> ’a region -> unit

val app : traversal -> (’a -> unit) -> ’a array -> unit

appi tr f reg
app tr f arr
These functions apply the function f to the elements of an array in the order specified by
tr. The more general appi function applies f to the elements of the region reg and
supplies both the element and the element’s coordinates in the base array to the function
f. If reg is not valid, then the exception Subscript is raised.
The function app applies f to the whole array and does not supply the element’s coor-

dinates to f. Thus, the expression app tr f arr is equivalent to:
let
val range = {base=arr,row=0,col=0,nrows=NONE,ncols=NONE}

in
appi tr (f o #3) range

end

120 CHAPTER 11. MANUAL PAGES

val foldi : traversal
-> (int * int * ’a * ’b -> ’b)

-> ’b -> ’a region -> ’b
val fold : traversal

-> (’a * ’b -> ’b) -> ’b -> ’a array -> ’b

foldi tr f init reg
fold tr f init arr
These functions fold the function f over the elements of an array arr, traversing the
elements in tr order, and using the value init as the initial value. The more general
foldi function applies f to the elements of the region reg and supplies both the element
and the element’s coordinates in the base array to the function f. If reg is not valid, then
the exception Subscript is raised.
The function fold applies f to the whole array and does not supply the element’s

coordinates to f. Thus, the expression fold tr f init arr is equivalent to:
foldi tr (fn (_,_,a,b) => f (a,b)) init

{base=arr, row=0, col=0, nrows=NONE, ncols=NONE}

val modifyi : traversal
-> (int * int * ’a -> ’a)
-> ’a region -> unit

val modify : traversal -> (’a -> ’a) -> ’a array -> unit

modifyi tr f reg
modify tr f arr
These functions apply the function f to the elements of an array in the order specified by
tr and replace each element with the result of f. The more general modifyi function
applies f to the elements of the region reg and supplies both the element and the element’s
coordinates in the base array to the function f. If reg is not valid, then the exception
Subscript is raised.
The function modify applies f to the whole array and does not supply the element’s

coordinates to f. Thus, the expression modify tr f arr is equivalent to:
let
val range = {base=arr,row=0,col=0,nrows=NONE,ncols=NONE}

in
modifyi tr (f o #3)

end

Discussion
Note that the indices passed to argument functions in appi, foldi, and modifyi are
with respect to the underlying matrix and not based on the region. This convention is
different from that of the analogous functions on one-dimensional slices.

Rationale: It was clear that two-dimensional arrays needed to be provided, but the in-
terface is fairly rudimentary, because of the lack of experience with their use in SML
programs. Thus, we kept regions concrete, as opposed to the abstract slice types, their
one-dimensional cousins. In addition, we felt it best, at this time, to avoid picking among
the vast number of possible matrix functions (e.g., matrix multiplication).

11.2. THE ARRAY2 STRUCTURE 121

Implementation note: Unlike one-dimensional types, the signature for two-dimensional
arrays does not specify any bounds on possible arrays. Implementations should support a
total number of elements that is at least as large as the total number of elements in the
corresponding one-dimensional array type.

See also
Array (§11.1; p. 112), MONO_ARRAY2 (§11.24; p. 199)

122 CHAPTER 11. MANUAL PAGES

11.3 The ArraySlice structure

The ArraySlice structure provides an abstraction of subarrays for polymorphic ar-
rays. A slice value can be viewed as a triple (a, i, n), where a is the underlying
array, i is the starting index, and n is the length of the subarray, with the constraint that
0 ≤ i ≤ i+n ≤ |a|. Slices provide a convenient notation for specifying and operating
on a contiguous subset of elements in an array.

Synopsis
signature ARRAY_SLICE
structure ArraySlice :> ARRAY_SLICE

Interface
type ’a slice

val length : ’a slice -> int
val sub : ’a slice * int -> ’a
val update : ’a slice * int * ’a -> unit
val full : ’a Array.array -> ’a slice
val slice : ’a Array.array * int * int option -> ’a slice
val subslice : ’a slice * int * int option -> ’a slice
val base : ’a slice -> ’a Array.array * int * int
val vector : ’a slice -> ’a Vector.vector
val copy : {

src : ’a slice,
dst : ’a Array.array,
di : int

} -> unit
val copyVec : {

src : ’a VectorSlice.slice,
dst : ’a Array.array,
di : int

} -> unit
val isEmpty : ’a slice -> bool
val getItem : ’a slice -> (’a * ’a slice) option

val appi : (int * ’a -> unit) -> ’a slice -> unit
val app : (’a -> unit) -> ’a slice -> unit
val modifyi : (int * ’a -> ’a) -> ’a slice -> unit
val modify : (’a -> ’a) -> ’a slice -> unit
val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val findi : (int * ’a -> bool)

-> ’a slice -> (int * ’a) option
val find : (’a -> bool) -> ’a slice -> ’a option
val exists : (’a -> bool) -> ’a slice -> bool
val all : (’a -> bool) -> ’a slice -> bool

11.3. THE ARRAYSLICE STRUCTURE 123

val collate : (’a * ’a -> order)
-> ’a slice * ’a slice -> order

Description

val length : ’a slice -> int

length sl returns |sl|, the length (i.e., number of elements) of the slice. This expres-
sion is equivalent to #3 (base sl).

val sub : ’a slice * int -> ’a

sub (sl, i) returns the ith element of the slice sl. If i < 0 or |sl| ≤ i, then the
Subscript exception is raised.

val update : ’a slice * int * ’a -> unit

update (sl, i, a) sets the ith element of the slice sl to a. If i < 0 or |sl| ≤ i,
then the Subscript exception is raised.

val full : ’a Array.array -> ’a slice

full arr creates a slice representing the entire array arr. It is equivalent to
slice(arr, 0, NONE)

val slice : ’a Array.array * int * int option -> ’a slice

slice (arr, i, sz) creates a slice based on the array arr starting at index i of
the array. If sz is NONE, the slice includes all of the elements to the end of the array, i.e.,
arr[i..|arr| − 1]. This function raises Subscript if i < 0 or |arr| < i. If sz is
SOME(j), the slice has length j, that is, it corresponds to arr[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |arr| < i + j. Note that, if defined, slice returns
an empty slice when i = |arr|.

val subslice : ’a slice * int * int option -> ’a slice

subslice (sl, i, sz) creates a slice based on the given slice sl starting at index
i of sl. If sz is NONE, the slice includes all of the elements to the end of the slice,
i.e., sl[i..|sl| − 1]. This function raises Subscript if i < 0 or |sl| < i. If sz
is SOME(j), the slice has length j, that is, it corresponds to sl[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |sl| < i+j. Note that, if defined, subslice returns
an empty slice when i = |sl|.

val base : ’a slice -> ’a Array.array * int * int

base sl returns a triple (arr, i, n) representing the concrete representation of the
slice. arr is the underlying array, i is the starting index, and n is the length of the slice.

124 CHAPTER 11. MANUAL PAGES

val vector : ’a slice -> ’a Vector.vector

vector sl generates a vector from the slice sl. Specifically, the result is equivalent to
Vector.tabulate (length sl, fn i => sub (sl, i))

val copy : {src : ’a slice, dst : ’a Array.array, di : int}
-> unit

val copyVec : {
src : ’a VectorSlice.slice,
dst : ’a Array.array,
di : int

} -> unit

copy {src, dst, di}
copyVec {src, dst, di}
These functions copy the given slice into the array dst, with the ith element of src, for
0 ≤ i < |src|, being copied to position di + i in the destination array. If di < 0 or if
|dst| < di+ |src|, then the Subscript exception is raised.

Implementation note: The copy function must correctly handle the case in which
dst and the base array of src are equal and the source and destination slices overlap.

val isEmpty : ’a slice -> bool

isEmpty sl returns true if sl has length 0.

val getItem : ’a slice -> (’a * ’a slice) option

getItem sl returns the first item in sl and the rest of the slice, or NONE if sl is
empty.

val appi : (int * ’a -> unit) -> ’a slice -> unit
val app : (’a -> unit) -> ’a slice -> unit

appi f sl
app f sl
These functions apply the function f to the elements of a slice in order of increasing
indices. The more general appi function supplies f with the index of the corresponding
element in the slice. The expression app f sl is equivalent to appi (f o #2) sl.

val modifyi : (int * ’a -> ’a) -> ’a slice -> unit
val modify : (’a -> ’a) -> ’a slice -> unit

modifyi f sl
modify f sl
These functions apply the function f to the elements of a slice in order of increasing
indices and replace each element with the result. The more general modifyi supplies f
with the index of the corresponding element in the slice. The expression modify f sl
is equivalent to modifyi (f o #2) sl.

11.3. THE ARRAYSLICE STRUCTURE 125

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

foldli f init sl
foldri f init sl
foldl f init sl
foldr f init sl
These functions fold the function f over the elements of a slice, using the value init
as the initial value. The functions foldli and foldl apply the function f from left to
right (increasing indices), while the functions foldri and foldr work from right to left
(decreasing indices). The more general functions foldli and foldri supply f with the
index of the corresponding element in the slice.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.
The expression foldl f init sl is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init sl
The analogous equivalence holds for foldri and foldr.

val findi : (int * ’a -> bool)
-> ’a slice -> (int * ’a) option

val find : (’a -> bool) -> ’a slice -> ’a option

findi pred sl
find pred sl
These functions apply pred to each element of the slice sl, in order of increasing indices,
until a true value is returned. These functions return the first such element, if it exists;
otherwise, they return NONE. The more general version findi also supplies f with the
index of the element in the slice and, upon finding an entry satisfying the predicate, returns
that index with the element.

val exists : (’a -> bool) -> ’a slice -> bool

exists pred sl applies pred to each element x of the slice sl, in order of increas-
ing indices, until pred x evaluates to true; it returns true if such an x exists and
false otherwise.

val all : (’a -> bool) -> ’a slice -> bool

all pred sl applies pred to each element x of the slice sl, from left to right (i.e.,
increasing indices), until pred x evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) l)).

val collate : (’a * ’a -> order)
-> ’a slice * ’a slice -> order

collate cmp (sl, sl2) performs lexicographic comparison of the two slices us-
ing the given ordering cmp on elements.

126 CHAPTER 11. MANUAL PAGES

See also
Array (§11.1; p. 112), MONO_ARRAY_SLICE (§11.25; p. 205),
Vector (§11.64; p. 401), VectorSlice (§11.65; p. 405)

11.4. THE BINIO STRUCTURE 127

11.4 The BinIO structure

The structure BinIO provides input/output of binary data (8-bit bytes). The semantics
of the various I/O operations can be found in the description of the IMPERATIVE_IO
signature. The openIn and openOut functions allow the creation of binary streams
to read and write file data. Certain implementations may provide other ways to open
files in structures specific to an operating system.

Synopsis
signature BIN_IO
structure BinIO :> BIN_IO

Interface
include IMPERATIVE_IO

where type StreamIO.vector = Word8Vector.vector
where type StreamIO.elem = Word8.word
where type StreamIO.reader = BinPrimIO.reader
where type StreamIO.writer = BinPrimIO.writer
where type StreamIO.pos = BinPrimIO.pos

val openIn : string -> instream
val openOut : string -> outstream
val openAppend : string -> outstream

Description

val openIn : string -> instream
val openOut : string -> outstream

openIn name
openOut name
These functions open the file named name for input and output, respectively. If name is a
relative pathname, the file opened depends on the current working directory. With open-
Out, the file is created if it does not already exist and truncated to length zero otherwise.
These raise Io if a stream cannot be opened on the given file or, in the case of openIn,
the file name does not exist.

val openAppend : string -> outstream

openAppend name opens the file named name for output in append mode, creating it
if it does not already exist. If the file already exists, it sets the current position at the end
of the file. It raises Io if a stream cannot be opened on the given file.
Beyond having the initial file position at the end of the file, any additional properties

are system and implementation dependent. On operating systems (e.g., Unix) that support
“atomic append mode,” each (flushed) output operation to the file will be appended to the
end, even if there are other processes writing to the file simultaneously. Due to buffering,
however, writing on an outstream need not be atomic, i.e., output from a different
process may interleave the output of a single write using the stream library. On certain

128 CHAPTER 11. MANUAL PAGES

other operating systems, having the file open for writing prevents any other process from
opening the file for writing.

Discussion
All streams created by mkInstream, mkOutstream, and the open functions in BinIO
will be closed (and the output streams among them flushed) when the SML program exits.

Note that the BinIO.StreamIO.pos type, equal to the BinPrimIO.pos type, is
concrete, being a synonym for Position.int.

See also
IMPERATIVE_IO (§11.14; p. 158), OS.Path (§11.35; p. 241),
Posix.FileSys (§11.41; p. 263), Posix.IO (§11.42; p. 276),
TextIO (§11.58; p. 382)

11.5. THE BIT_FLAGS SIGNATURE 129

11.5 The BIT_FLAGS signature

The BIT_FLAGS signature defines a generic set of operations on an abstract represen-
tation of system flags. It is typically included as part of the signature of substructures
that implement sets of options.

Synopsis
signature BIT_FLAGS

Interface
eqtype flags
val toWord : flags -> SysWord.word
val fromWord : SysWord.word -> flags
val all : flags
val flags : flags list -> flags
val intersect : flags list -> flags
val clear : flags * flags -> flags
val allSet : flags * flags -> bool
val anySet : flags * flags -> bool

Description

eqtype flags

This type is the abstract representation of a set of system flags.

val toWord : flags -> SysWord.word
val fromWord : SysWord.word -> flags

These functions convert between the abstract flags type and a bit-vector that is repre-
sented as a system word. The interpretation of the bits is system-dependent but follows
the C language binding for the host operating system. Note that there is no error checking
on the fromWord function’s argument.

val all : flags

all represents the union of all flags. Note that this set may well be a superset of the
flags value defined in a matching structure. For example, BIT_FLAGS is used to define
the flags specified by the POSIX standard; a POSIX-conforming operating system may
provide additional flags that will not be defined in the Posix structure but could be set in
the all value.

val flags : flags list -> flags

flags l returns a value that represents the union of the flags in the list l. The expres-
sion flags [] denotes the empty set.

130 CHAPTER 11. MANUAL PAGES

val intersect : flags list -> flags

intersect l returns a value that represents the intersection of the sets of flags in the
list l. The expression intersect [] denotes all.

val clear : flags * flags -> flags

clear (fl1, fl2) returns the set of those flags in fl2 that are not set in fl1, i.e.,
the set difference fl2 \ fl1. It is equivalent to the expression:

fromWord(
SysWord.andb(SysWord.notb (toWord fl1), toWord fl2))

val allSet : flags * flags -> bool

allSet (fl1, fl2) returns true if all of the flags in fl1 are also in fl2 (i.e., it
tests for inclusion of fl1 in fl2).

val anySet : flags * flags -> bool

anySet (fl1, fl2) returns true if any of the flags in fl1 are also in fl2 (i.e., it
tests for non-empty intersection).

Discussion
The number of distinct flags in an implementation of the BIT_FLAGS interface must be
less than or equal to the number of bits in the SysWord.word type. In addition, from-
Word o toWord must be the identity function, and toWord o fromWord must be
equivalent to

fn w => SysWord.andb(w, toWord all)

See also
Posix.FileSys (§11.41; p. 263), Posix.IO (§11.42; p. 276),
Posix.Process (§11.44; p. 289), Posix.TTY (§11.47; p. 298),
SysWord (§11.67; p. 420), Windows (§11.66; p. 409)

11.6. THE BOOL STRUCTURE 131

11.6 The Bool structure

The Bool structure provides some basic operations on boolean values.

Synopsis
signature BOOL
structure Bool :> BOOL

Interface
datatype bool = false | true
val not : bool -> bool
val toString : bool -> string
val scan : (char, ’a) StringCvt.reader

-> (bool, ’a) StringCvt.reader
val fromString : string -> bool option

Description

val not : bool -> bool

not b returns the logical negation of the boolean value b.

val toString : bool -> string

toString b returns the string representation of b, either "true" or "false".

val scan : (char, ’a) StringCvt.reader
-> (bool, ’a) StringCvt.reader

val fromString : string -> bool option

scan getc strm
fromString s
These scan a character source for a boolean value. The first takes a character stream reader
getc and a stream strm. Ignoring case and initial whitespace, the sequences "true"
and "false" are converted to the corresponding boolean values. On successful scanning
of a boolean value, scan returns SOME(b, rest), where b is the scanned value and
rest is the remaining character stream.
The second form scans a boolean from a string s. It returns SOME(b) for a scanned

value b; otherwise it returns NONE. The function fromString is equivalent to String-
Cvt.scanString scan.

Discussion
The bool type is considered primitive and is defined in the top-level environment. It is
rebound here for consistency.

In addition to the not function presented here, the language defines the special opera-
tors andalso and orelse, which provide short-circuit evaluation of the AND and OR
of two boolean expressions. The semantics of strict AND and OR operators, which would

132 CHAPTER 11. MANUAL PAGES

evaluate both expressions before applying the operator, are rarely needed and can easily be
obtained using the andalso and orelse operators.

See also
StringCvt (§11.55; p. 366)

11.7. THE BYTE STRUCTURE 133

11.7 The Byte structure

Bytes are 8-bit integers as provided by the Word8 structure but they serve the dual
role as the elements of the extended ASCII character set. The Byte structure provides
functions for converting values between these two roles.

Synopsis
signature BYTE
structure Byte :> BYTE

Interface
val byteToChar : Word8.word -> char
val charToByte : char -> Word8.word
val bytesToString : Word8Vector.vector -> string
val stringToBytes : string -> Word8Vector.vector
val unpackStringVec : Word8VectorSlice.slice -> string
val unpackString : Word8ArraySlice.slice -> string
val packString : Word8Array.array * int * substring -> unit

Description

val byteToChar : Word8.word -> char

byteToChar i returns the character whose code is i.

val charToByte : char -> Word8.word

charToByte c returns an 8-bit word holding the code for the character c.

val bytesToString : Word8Vector.vector -> string
val stringToBytes : string -> Word8Vector.vector

These functions convert between a vector of character codes and the corresponding string.
Note that these functions do not perform end-of-line or other character translations. The
semantics of these functions can be defined as follows, although one expects actual imple-
mentations will be more efficient:

fun bytesToString bv =
CharVector.tabulate(
Word8Vector.length bv,
fn i => byteToChar(Word8Vector.sub(bv, i)))

fun stringToBytes s =
Word8Vector.tabulate(
String.size s,
fn i => charToByte(String.sub(s, i)))

134 CHAPTER 11. MANUAL PAGES

Implementation note: For implementations where the underlying representation of
the Word8Vector.vector and string types are the same, these functions should be
constant-time operations.

val unpackStringVec : Word8VectorSlice.slice -> string

unpackStringVec slice returns the string consisting of characters whose codes
are held in the vector slice slice.

val unpackString : Word8ArraySlice.slice -> string

This function returns the string consisting of characters whose codes are held in the array
slice slice.

val packString : Word8Array.array * int * substring -> unit

packString (arr, i, s) puts the substring s into the array arr starting at offset
i. It raises Subscript if i < 0 or size s+ i > |arr|.

See also
Char (§11.8; p. 135), String (§11.54; p. 360), Substring (§11.56; p. 372),
WORD (§11.67; p. 420), Word8 (§11.67; p. 420), Word8Vector (§11.26; p. 211),
Word8VectorSlice (§11.27; p. 215), Word8Array (§11.23; p. 193),
Word8ArraySlice (§11.25; p. 205)

11.8. THE CHAR SIGNATURE 135

11.8 The CHAR signature

The CHAR signature defines a type char of characters and provides basic operations
and predicates on values of that type. There is a linear ordering defined on characters.
In addition, there is an encoding of characters into a contiguous range of non-negative
integers that preserves the linear ordering.
The SML Basis Library defines two structures matching the CHAR signature. The

required Char structure provides the extended ASCII 8-bit character set and locale-
independent operations on them. For this structure, Char.maxOrd = 255.
The optional WideChar structure defines wide characters, which are represented by

a fixed number of 8-bit words (bytes). If the WideChar structure is provided, it is
distinct from the Char structure.

Synopsis
signature CHAR
structure Char :> CHAR

where type char = char
where type string = String.string

structure WideChar :> CHAR
where type string = WideString.string

Interface
eqtype char
eqtype string

val minChar : char
val maxChar : char
val maxOrd : int

val ord : char -> int
val chr : int -> char
val succ : char -> char
val pred : char -> char

val compare : char * char -> order
val < : char * char -> bool
val <= : char * char -> bool
val > : char * char -> bool
val >= : char * char -> bool

val contains : string -> char -> bool
val notContains : string -> char -> bool

val isAscii : char -> bool
val toLower : char -> char
val toUpper : char -> char

136 CHAPTER 11. MANUAL PAGES

val isAlpha : char -> bool
val isAlphaNum : char -> bool
val isCntrl : char -> bool
val isDigit : char -> bool
val isGraph : char -> bool
val isHexDigit : char -> bool
val isLower : char -> bool
val isPrint : char -> bool
val isSpace : char -> bool
val isPunct : char -> bool
val isUpper : char -> bool

val toString : char -> String.string
val scan : (Char.char, ’a) StringCvt.reader

-> (char, ’a) StringCvt.reader
val fromString : String.string -> char option
val toCString : char -> String.string
val fromCString : String.string -> char option

Description

val minChar : char

The least character in the ordering. It always equals chr 0.

val maxChar : char

The greatest character in the ordering; it equals chr maxOrd.

val maxOrd : int

The greatest character code; it equals ord maxChar.

val ord : char -> int

ord c returns the (non-negative) integer code of the character c.

val chr : int -> char

chr i returns the character whose code is i; it raises Chr if i < 0 or i > maxOrd.

val succ : char -> char

succ c returns the character immediately following c in the ordering or raises Chr if
c = maxChar. When defined, succ c is equivalent to chr(ord c + 1).

11.8. THE CHAR SIGNATURE 137

val pred : char -> char

pred c returns the character immediately preceding c or raises Chr if c = minChar.
When defined, pred c is equivalent to chr(ord c - 1).

val compare : char * char -> order

compare (c, d) returns LESS, EQUAL, or GREATER, depending on whether c pre-
cedes, equals, or follows d in the character ordering.

val < : char * char -> bool
val <= : char * char -> bool
val > : char * char -> bool
val >= : char * char -> bool

These compare characters in the character ordering. Note that the functions ord and chr
preserve orderings. For example, if we have x < y for characters x and y , then it is also
true that ord x < ord y .

val contains : string -> char -> bool

contains s c returns true if character c occurs in the string s; otherwise it returns
false.

Implementation note: In some implementations, the partial evaluation of contains
to s may build a table, which is used by the resulting function to decide whether a given
character is in the string or not. Hence val p = contains s may be expensive to
compute, but p c might be fast for any given character c.

val notContains : string -> char -> bool

notContains s c returns true if character c does not occur in the string s; it re-
turns false otherwise. It is equivalent to not(contains s c).

Implementation note: As with contains, notContains may be implemented
via table lookup.

val isAscii : char -> bool

isAscii c returns true if c is a (7-bit) ASCII character, i.e., 0 ≤ ord c ≤ 127.
Note that this function is independent of locale.

138 CHAPTER 11. MANUAL PAGES

val toLower : char -> char
val toUpper : char -> char

toLower c
toUpper c
These functions return the lowercase (respectively, uppercase) letter corresponding to c if
c is a letter; otherwise it returns c.

val isAlpha : char -> bool

isAlpha c returns true if c is a (lowercase or uppercase).

val isAlphaNum : char -> bool

isAlphaNum c returns true if c is alphanumeric (a letter or a decimal digit).

val isCntrl : char -> bool

isCntrl c returns true if c is a control character.

val isDigit : char -> bool

isDigit c returns true if c is a decimal digit [0−9].

val isGraph : char -> bool

isGraph c returns true if c is a graphical character, that is, it is printable and not a
whitespace character.

val isHexDigit : char -> bool

isHexDigit c returns true if c is a hexadecimal digit [0−9a−fA−F].

val isLower : char -> bool

isLower c returns true if c is a lowercase letter.

val isPrint : char -> bool

isPrint c returns true if c is a printable character (space or visible), i.e., not a
control character.

val isSpace : char -> bool

isSpace c returns true if c is a whitespace character (space, newline, tab, carriage
return, vertical tab, formfeed).

11.8. THE CHAR SIGNATURE 139

val isPunct : char -> bool

isPunct c returns true if c is a punctuation character: graphical but not alphanu-
meric.

val isUpper : char -> bool

isUpper c returns true if c is an uppercase letter.

val toString : char -> String.string

toString c returns a printable string representation of the character, using, if neces-
sary, SML escape sequences. Printable characters, except for #"\\" and #"\"", are
left unchanged. Backslash #"\\" becomes "\\\\"; double quote #"\"" becomes
"\\\"". The common control characters are converted to two-character escape sequences:

Alert (ASCII 0x07) "\\a"
Backspace (ASCII 0x08) "\\b"
Horizontal tab (ASCII 0x09) "\\t"
Linefeed or newline (ASCII 0x0A) "\\n"
Vertical tab (ASCII 0x0B) "\\v"
Form feed (ASCII 0x0C) "\\f"
Carriage return (ASCII 0x0D) "\\r"

The remaining characters whose codes are less than 32 are represented by three-character
strings in “control character” notation, e.g., #"\000" maps to "\\ˆ@", #"\001" maps
to "\\ˆA", etc. For characters whose codes are greater than 999, the character is mapped
to a six-character string of the form "\\uxxxx", where xxxx are the four hexadecimal
digits corresponding to a character’s code. All other characters (i.e., those whose codes
are greater than 126 but less than 1000) are mapped to four-character strings of the form
"\\ddd", where ddd are the three decimal digits corresponding to a character’s code.
To convert a character to a length-one string containing the character, use the function

String.str.

val scan : (Char.char, ’a) StringCvt.reader
-> (char, ’a) StringCvt.reader

val fromString : String.string -> char option

scan getc strm
fromString s
These functions scan a character (including possibly a space) or an SML escape sequence
representing a character from the prefix of a character stream or a string of printable char-
acters, as allowed in an SML program. After a successful conversion, scan returns the
remainder of the stream along with the character, whereas fromString ignores any ad-
ditional characters in s and just returns the character. If the first character is non-printable
(i.e., not in the ASCII range [0x20,0x7E]) or starts an illegal escape sequence (e.g., "\q"),
no conversion is possible and NONE is returned. The function fromString is equivalent
to StringCvt.scanString scan.
The allowable escape sequences are given in the following table:

140 CHAPTER 11. MANUAL PAGES

\a Alert (ASCII 0x07)
\b Backspace (ASCII 0x08)
\t Horizontal tab (ASCII 0x09)
\n Linefeed or newline (ASCII 0x0A)
\v Vertical tab (ASCII 0x0B)
\f Form feed (ASCII 0x0C)
\r Carriage return (ASCII 0x0D)
\\ Backslash
\" Double quote
\ˆc A control character whose encoding is ord c - 64, with the

character c having ord c in the range [64,95]; for example,
\ˆH (control-H) is the same as \b (backspace)

\ddd The character whose encoding is the number ddd, three decimal
digits denoting an integer in the range [0,255]

\uxxxx The character whose encoding is the number xxxx, four hexadecimal
digits denoting an integer in the ordinal range of the alphabet

\f...f\ This sequence is ignored, where f...f stands for a sequence of one
or more formatting (space, newline, tab, etc.) characters

In the escape sequences involving decimal or hexadecimal digits, if the resulting value
cannot be represented in the character set, NONE is returned. As the table indicates, escaped
formatting sequences (\f...f\) are passed over during scanning. Such sequences are
successfully scanned, so that the remaining stream returned by scan will never have a
valid escaped formatting sequence as its prefix.
Here are some sample conversions:

Input string s fromString s
"\\q" NONE
"a\ˆD" SOME #"a"

"a\\ \\\q" SOME #"a"
"\\ \\" NONE

"" NONE
"\\ \\\ˆD" NONE
"\\ a" NONE

val toCString : char -> String.string

toCString c returns a printable string corresponding to c, with non-printable charac-
ters replaced by C escape sequences. Specifically, printable characters, except for #"\\",
#"\"", #"?", and #"’", are left unchanged. Backslash (#"\\") becomes "\\\\";
double quote (#"\"") becomes "\\\"", question mark (#"?") becomes "\\?", and
single quote (#"’") becomes "\\’". The common control characters are converted to
two-character escape sequences:

Alert (ASCII 0x07) "\\a"
Backspace (ASCII 0x08) "\\b"
Horizontal tab (ASCII 0x09) "\\t"
Linefeed or newline (ASCII 0x0A) "\\n"
Vertical tab (ASCII 0x0B) "\\v"
Form feed (ASCII 0x0C) "\\f"
Carriage return (ASCII 0x0D) "\\r"

11.8. THE CHAR SIGNATURE 141

All other characters are represented by three octal digits, corresponding to a character’s
code, preceded by a backslash.

val fromCString : String.string -> char option

fromCString s scans a character (including possibly a space) or a C escape sequence
representing a character from the prefix of a string. After a successful conversion, from-
CString ignores any additional characters in s. If no conversion is possible, e.g., if the
first character is non-printable (i.e., not in the ASCII range [0x20-0x7E] or starts an illegal
escape sequence, NONE is returned.
The allowable escape sequences are given below (cf. Section 6.1.3.4 of the ISO C stan-

dard ISO/IEC 9899:1990 [ISO90]).

\a Alert (ASCII 0x07)
\b Backspace (ASCII 0x08)
\t Horizontal tab (ASCII 0x09)
\n Linefeed or newline (ASCII 0x0A)
\v Vertical tab (ASCII 0x0B)
\f Form feed (ASCII 0x0C)
\r Carriage return (ASCII 0x0D)
\? Question mark
\\ Backslash
\" Double quote
\’ Single quote
\ˆc A control character whose encoding is ord c - 64, with the

character c having ord c in the range [64,95]. For example,
\ˆH (control-H) is the same as \b (backspace).

\ooo The character whose encoding is the number ooo, where
ooo consists of one to three octal digits

\xhh The character whose encoding is the number hh,
where hh is a sequence of hexadecimal digits.

Note that fromCString accepts an unescaped single quote character, but does not accept
an unescaped double quote character.
In the escape sequences involving octal or hexadecimal digits, the sequence of digits

is taken to be the longest sequence of such characters. If the resulting value cannot be
represented in the character set, NONE is returned.

Discussion
In WideChar, the functions toLower, toLower, isAlpha,..., isUpper and, in gen-
eral, the definition of a “letter” are locale-dependent. In Char, these functions are locale-
independent, with the following semantics:

142 CHAPTER 11. MANUAL PAGES

isUpper c #"A" <= c andalso c <= #"Z"
isLower c #"a" <= c andalso c <= #"z"
isDigit c #"0" <= c andalso c <= #"9"
isAlpha c isUpper c orelse isLower c
isAlphaNum c isAlpha c orelse isDigit c
isHexDigit c isDigit c

orelse (#"a" <= c andalso c <= #"f")
orelse (#"A" <= c andalso c <= #"F")

isGraph c #"!" <= c andalso c <= #"˜"
isPrint c isGraph c orelse c = #" "
isPunct c isGraph c andalso not (isAlphaNum c)
isCntrl c isAscii c andalso not (isPrint c)
isSpace c (#"\t" <= c andalso c <= #"\r")

orelse c = #" "
isAscii c 0 <= ord c andalso ord c <= 127
toLower c if isUpper c then chr (ord c + 32) else c
toUpper c if isLower c then chr (ord c - 32) else c

See also
STRING (§11.54; p. 360), TEXT (§11.57; p. 380)

11.9. THE COMMANDLINE STRUCTURE 143

11.9 The CommandLine structure

The CommandLine structure provides access to the name and arguments used to in-
voke the currently running program.

Synopsis
signature COMMAND_LINE
structure CommandLine :> COMMAND_LINE

Interface
val name : unit -> string
val arguments : unit -> string list

Description

val name : unit -> string

The name used to invoke the current program.

val arguments : unit -> string list

The argument list used to invoke the current program.

Implementation note: The arguments returned may be only a subset of the arguments
actually supplied by the user, since an implementation’s runtime system may consume
some of them.

Discussion
The precise semantics of the above operations are operating-system and implementation
specific. For example, name might return a full pathname or just the base name. See also
the comment under arguments.

144 CHAPTER 11. MANUAL PAGES

11.10 The Date structure

The Date structure provides functions for converting between times and dates, and
formatting and scanning dates.

Synopsis
signature DATE
structure Date :> DATE

Interface
datatype weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
datatype month

= Jan | Feb | Mar | Apr | May | Jun
| Jul | Aug | Sep | Oct | Nov | Dec

type date

exception Date

val date : {
year : int,
month : month,
day : int,
hour : int,
minute : int,
second : int,
offset : Time.time option

} -> date

val year : date -> int
val month : date -> month
val day : date -> int
val hour : date -> int
val minute : date -> int
val second : date -> int
val weekDay : date -> weekday
val yearDay : date -> int
val offset : date -> Time.time option
val isDst : date -> bool option

val localOffset : unit -> Time.time

val fromTimeLocal : Time.time -> date
val fromTimeUniv : Time.time -> date
val toTime : date -> Time.time

val compare : date * date -> order

val fmt : string -> date -> string
val toString : date -> string

11.10. THE DATE STRUCTURE 145

val scan : (char, ’a) StringCvt.reader
-> (date, ’a) StringCvt.reader

val fromString : string -> date option

Description

type date

An abstract type whose values represent an instant in a specific time zone.

exception Date

This exception is raised when converting a date value to a string or time value and
either the date is invalid or unrepresentable.

val date : {
year : int,
month : month,
day : int,
hour : int,
minute : int,
second : int,
offset : Time.time option

} -> date

This function creates a canonical date from the given date information. If the resulting date
is outside the range supported by the implementation, the Date exception is raised.
Seconds outside the range [0,59] are converted to the equivalent minutes and added to

the minutes argument. Similar conversions are performed for minutes to hours, hours to
days, days to months, and months to years. Negative values are similarly translated into
a canonical range, with the extra borrowed from the next larger unit. Thus, minute =
10, second = ˜140 becomes minute = 7, second = 40.
The offset argument provides time zone information. A value of NONE represents the

local time zone. A value of SOME(t) corresponds to time t west of UTC. In particular,
SOME(Time.zeroTime) is UTC. Negative offsets denote time zones to the east of
UTC, as is traditional. Offsets are taken modulo 24 hours. That is, we express t, in hours,
as sgn(t)(24 ∗ d + r), where d and r are non-negative, d is integral, and r < 24. The
offset then becomes sgn(t)∗r, and sgn(t)(24∗d) is added to the hours (before converting
hours to days).
Leap years follow the Gregorian calendar. Leap seconds may or may not be ignored. In

an implementation that takes account of leap seconds, the second function may return 60
or 61 in the rare cases that it is appropriate.

146 CHAPTER 11. MANUAL PAGES

val year : date -> int
val month : date -> month
val day : date -> int
val hour : date -> int
val minute : date -> int
val second : date -> int
val weekDay : date -> weekday
val yearDay : date -> int
val offset : date -> Time.time option
val isDst : date -> bool option

These functions extract the attributes of a date value. The year returned by year uses year
0 as its base. Thus, the date Robin Milner received the Turing award would have year 1991.
The function yearDay returns the day of the year, starting from 0, i.e., 1 January is day 0.
The value returned by offset reports time zone information as the amount of time west
of UTC. A value of NONE represents the local time zone. The function isDst returns
NONE if the system has no information concerning daylight savings time. Otherwise, it
returns SOME(dst), where dst is true if daylight savings time is in effect.

val localOffset : unit -> Time.time

The offset from UTC for the local time zone.

val fromTimeLocal : Time.time -> date
val fromTimeUniv : Time.time -> date

fromTimeLocal t
fromTimeUniv t
These convert the (UTC) time t into a corresponding date. fromTimeLocal represents
the date in the local time zone; it is the analogue of the ISO C function localtime. The
returned date will have offset=NONE. fromTimeUniv returns the date in the UTC
time zone; it is the analogue of the ISO C function gmtime. The returned date will have
offset=SOME(0).
If these functions are applied to the same time value, the resulting dates will differ by

the offset of the local time zone from UTC.

val toTime : date -> Time.time

toTime date returns the (UTC) time corresponding to the date date. It raises Date
if the date date cannot be represented as a Time.time value. It is the analogue of the
ISO C function mktime.

val compare : date * date -> order

compare (date1, date2) returns LESS, EQUAL, or GREATER, according as date1
precedes, equals, or follows date2 in time. It lexicographically compares the dates, us-
ing the year, month, day, hour, minute, and second information but ignoring the offset and
daylight savings time information. It does not detect invalid dates.

11.10. THE DATE STRUCTURE 147

In order to compare dates in two different time zones, the user would have to handle the
normalization.

val fmt : string -> date -> string
val toString : date -> string

fmt s date
toString date
These functions return a string representation of the date date. The result may be wrong
if the date is outside the representable Time.time range. They raise Date if the given
date is invalid.
The former formats the date according to the format string s, following the semantics

of the ISO C function strftime. In particular, fmt is locale-dependent. The allowed
formats are given by the following table:

%a locale’s abbreviated weekday name
%A locale’s full weekday name
%b locale’s abbreviated month name
%B locale’s full month name
%c locale’s date and time representation (e.g., "Dec 2

06:55:15 1979")
%d day of month [01-31]
%H hour [00-23]
%I hour [01-12]
%j day of year [001-366]
%m month number [01-12]
%M minutes [00-59]
%p locale’s equivalent of the AM/PM designation
%S seconds [00-61]
%U week number of year [00-53], with the first Sunday as the first

day of week 01
%w day of week [0-6], with 0 representing Sunday
%W week number of year [00-53], with the first Monday as the first

day of week 01
%x locale’s appropriate date representation
%X locale’s appropriate time representation
%y year of century [00-99]
%Y year including century (e.g., 1997)
%Z

time zone name or abbreviation, or the empty string if no time
zone information exists

%% the percent character
%c the character c, if c is not one of the format characters listed

above

For instance, fmt "%A" date returns the full name of the weekday specified by date
(e.g., "Monday"). For a full description of the format-string syntax, consult a description
of strftime. Note, however, that, unlike strftime, the behavior of fmt is defined
for the directive %c for any character c.
toString returns a 24-character string representing the date date in the following

format:

148 CHAPTER 11. MANUAL PAGES

"Wed Mar 08 19:06:45 1995"
The function is equivalent to Date.fmt "%a %b %d %H:%M:%S %Y".

val scan : (char, ’a) StringCvt.reader
-> (date, ’a) StringCvt.reader

val fromString : string -> date option

scan getc strm
fromString s
These scan a 24-character date from a character source after ignoring possible initial
whitespace. The format of the string must be precisely as produced by toString. In
particular, the functions do not parse time zone abbreviations. No check of the consistency
of the date (weekday, date in the month, ...) is performed. If the scanning fails, NONE is
returned.
The function scan takes a character stream reader getc and a stream strm. In case

of success, it returns SOME(date, rest), where date is the scanned date and rest
is the remainder of the stream.
The function fromString takes a string s as its source of characters. It is equivalent

to StringCvt.scanString scan.

Discussion
In the Date structure, the time type is used to represent intervals starting from a fixed
reference point. These times are always measured in Coordinated Universal Time (UTC),
also known as Greenwich Mean Time. The implementation of time values, however, is
system-dependent, so time values are not portable across implementations.

A conforming Date structure should support date values ranging from around 1900 to
2200, although they may be inaccurate with respect to daylight savings time outside the
range of dates supported by time values.

Implementation note: Implementations of this structure might use the ISO C mktime
function. Some implementations of this function, when given dates that are out of range,
wrap around instead of returning -1. Thus, implementations using mktime need to check
the validity of a date before invoking the function.

See also
StringCvt (§11.55; p. 366), Time (§11.60; p. 387)

11.11. THE GENERAL STRUCTURE 149

11.11 The General structure

The structure General defines exceptions, datatypes, and functions that are used through-
out the SML Basis Library, and are useful in a wide range of programs.
All of the types and values defined in General are available unqualified at the top

level.

Synopsis
signature GENERAL
structure General :> GENERAL

Interface
eqtype unit
type exn = exn

exception Bind
exception Match
exception Chr
exception Div
exception Domain
exception Fail of string
exception Overflow
exception Size
exception Span
exception Subscript

val exnName : exn -> string
val exnMessage : exn -> string

datatype order = LESS | EQUAL | GREATER
val ! : ’a ref -> ’a
val := : ’a ref * ’a -> unit
val o : (’b -> ’c) * (’a -> ’b) -> ’a -> ’c
val before : ’a * unit -> ’a
val ignore : ’a -> unit

Description

eqtype unit

The type containing a single value denoted (), which is typically used as a trivial argument
or as a return value for a side-effecting function.

type exn = exn

The type of values transmitted when an exception is raised and handled. This type is
special in that it behaves like a datatype with an extensible set of data constructors, where
new constructors are created by exception declarations.

150 CHAPTER 11. MANUAL PAGES

exception Bind

This exception is raised when there is a pattern-match failure in a val binding.

exception Match

This exception is raised when there is a pattern-match failure in a case expression or
function application.

exception Chr

The exception indicating an attempt to create a character with a code outside the range
supported by the underlying character type (see CHAR.chr).

exception Div

The exception indicating an attempt to divide by zero.

exception Domain

The exception indicating that the argument of a mathematical function is outside the do-
main of the function. It is raised by functions in structures matching the MATH or INT_INF
signatures.

exception Fail of string

A general-purpose exception used to signify the failure of an operation. It is not raised by
any function in the SML Basis Library but is provided for use by users and user-defined
libraries.

exception Overflow

The exception indicating that the result of an arithmetic function is not representable, in
particular, is too large.

exception Size

The exception indicating an attempt to create an aggregate data structure (such as an array,
string, or vector) whose size is too large or negative.

exception Span

The exception indicating an attempt to apply SUBSTRING.span to two incompatible
substrings.

11.11. THE GENERAL STRUCTURE 151

exception Subscript

The exception indicating that an index is out of range, typically arising when the program is
accessing an element in an aggregate data structure (such as a list, string, array, or vector).

val exnName : exn -> string

exnName ex returns a name for the exception ex. The name returned may be that of
any exception constructor aliasing with ex. For instance,

let exception E1; exception E2 = E1 in exnName E2 end
might evaluate to "E1" or "E2".

val exnMessage : exn -> string

exnMessage ex returns a message corresponding to exception ex. The precise format
of the message may vary between implementations and locales but will at least contain the
string exnName ex.

Example:
exnMessage Div = "Div"
exnMessage (OS.SysErr ("No such file", NONE)) =

"OS.SysErr \"No such file\""

datatype order = LESS | EQUAL | GREATER

Values of type order are used when comparing elements of a type that has a linear order-
ing.

val ! : ’a ref -> ’a

! re returns the value referred to by the reference re.

val := : ’a ref * ’a -> unit

re := a makes the reference re refer to the value a.

val o : (’b -> ’c) * (’a -> ’b) -> ’a -> ’c

f o g is the function composition of f and g. Thus, (f o g) a is equivalent to f(g
a).

val before : ’a * unit -> ’a

e1 before e2 returns the result of the expression e1 after evaluating e2. It provides
a notational shorthand for the expression

let val tmp = e1 in e2; tmp end
(assuming tmp is not free in e2). Also, it requires that the type of its right-hand-side
argument be unit.

152 CHAPTER 11. MANUAL PAGES

val ignore : ’a -> unit

ignore a returns (). The purpose of ignore is to discard the result of a computation,
returning () instead. This function is useful when a higher-order function, such as List.-
app, requires a function returning unit, but the function to be used returns values of some
other type.

11.12. THE GENERICSOCK STRUCTURE 153

11.12 The GenericSock structure

Implementations may provide the GenericSock structure as a way to provide access
to additional address families socket types (beyond those supported by INetSock and
UnixSock).

Synopsis
signature GENERIC_SOCK
structure GenericSock :> GENERIC_SOCK

Interface
val socket : Socket.AF.addr_family * Socket.SOCK.sock_type

-> (’af, ’sock_type) Socket.sock
val socketPair : Socket.AF.addr_family

* Socket.SOCK.sock_type
-> (’af, ’sock_type) Socket.sock
* (’af, ’sock_type) Socket.sock

val socket’ : Socket.AF.addr_family
* Socket.SOCK.sock_type
* int -> (’af, ’sock_type) Socket.sock

val socketPair’ : Socket.AF.addr_family
* Socket.SOCK.sock_type
* int
-> (’af, ’sock_type) Socket.sock
* (’af, ’sock_type) Socket.sock

Description

val socket : Socket.AF.addr_family * Socket.SOCK.sock_type
-> (’af, ’sock_type) Socket.sock

socket (af, sockTy) creates a socket in the address family specified by af and
the socket type specified by sockTy , with the default protocol. This function raises Sys-
Err when the any of the following happen: the address family af is not supported, the
protocol prot is not supported, or there are insufficient resources.

val socketPair : Socket.AF.addr_family
* Socket.SOCK.sock_type
-> (’af, ’sock_type) Socket.sock
* (’af, ’sock_type) Socket.sock

socketPair (af, sockTy) creates an unnamed pair of connected sockets in the
address family specified by af and the socket type specified by sockTy , with the default
protocol. This function raises SysErr when the any of the following happen: the address
family af is not supported, the protocol prot is not supported or does not support socket
pairs, socket pairs are not supported, or there are insufficient resources.

154 CHAPTER 11. MANUAL PAGES

val socket’ : Socket.AF.addr_family
* Socket.SOCK.sock_type
* int -> (’af, ’sock_type) Socket.sock

socket’ (af, sockTy, prot) creates a socket in the address family specified by
af and the socket type specified by sockTy , with protocol number prot. This func-
tion raises SysErr when the any of the following happen: the address family af is not
supported, the protocol prot is not supported, or there are insufficient resources.

val socketPair’ : Socket.AF.addr_family
* Socket.SOCK.sock_type
* int
-> (’af, ’sock_type) Socket.sock
* (’af, ’sock_type) Socket.sock

socketPair’ (af, sockTy, prot) creates an unnamed pair of connected sock-
ets in the address family specified by af and the socket type specified by sockTy , with
protocol number prot. This function raises SysErr when the any of the following hap-
pen: the address family af is not supported, the protocol prot is not supported or does
not support socket pairs, socket pairs are not supported, or there are insufficient resources.

Discussion
Note that one can use the Socket.AF.list and Socket.SOCK.list functions to
get lists of the address families and socket types that the implementation knows about,
although they are not guaranteed to be supported.

See also
INetSock (§11.16; p. 166), NetProtDB (§11.29; p. 223), Socket (§11.51; p. 330),
UnixSock (§11.63; p. 398)

11.13. THE IEEEREAL STRUCTURE 155

11.13 The IEEEReal structure

The IEEEReal structure defines types associated with an IEEE implementation of
floating-point numbers. In addition, it provides control for the floating-point hardware’s
rounding mode. Refer to the IEEE standard 754-1985 [IEE85] and the ANSI/IEEE
standard 854-1987 [IEE87] for additional information.

Synopsis
signature IEEE_REAL
structure IEEEReal :> IEEE_REAL

Interface
exception Unordered
datatype real_order = LESS | EQUAL | GREATER | UNORDERED
datatype float_class

= NAN
| INF
| ZERO
| NORMAL
| SUBNORMAL

datatype rounding_mode
= TO_NEAREST
| TO_NEGINF
| TO_POSINF
| TO_ZERO

val setRoundingMode : rounding_mode -> unit
val getRoundingMode : unit -> rounding_mode
type decimal_approx = {

class : float_class,
sign : bool,
digits : int list,
exp : int

}
val toString : decimal_approx -> string
val scan : (char, ’a) StringCvt.reader

-> (decimal_approx, ’a) StringCvt.reader
val fromString : string -> decimal_approx option

Description

exception Unordered

This exception is raises by the compare operations on real numbers when the numbers
are unordered.

156 CHAPTER 11. MANUAL PAGES

val setRoundingMode : rounding_mode -> unit
val getRoundingMode : unit -> rounding_mode

These set and get the rounding mode of the underlying hardware. The IEEE standard
requires TO_NEAREST as the default rounding mode.

Implementation note: Some platforms do not support all of the rounding modes. An
SML implementation built on these platforms will necessarily be non-conforming with,
presumably, setRoundingMode raising an exception for the unsupported modes.

type decimal_approx = {
class : float_class,
sign : bool,
digits : int list,
exp : int

}

This type provides a structured decimal representation of a real. The class field indicates
the real class. If sign is true, the number is negative. The integers in the digits list
must be digits, i.e., between 0 and 9.
When class is NORMAL or SUBNORMAL, a value of type decimal_approx with

digits = [d1, d2, ..., dn] corresponds to the real number s ∗ 0.d1d2...dn10exp, where s is
-1 if sign is true and 1 otherwise. When class is ZERO or INF, the value corresponds
to zero or infinity, respectively, with its sign determined by sign. When class is NAN,
the value corresponds to an unspecified NaN value.

val toString : decimal_approx -> string

toString d returns a string representation of d. Assuming digits = [d1, d2, ..., dn]
and ignoring the sign and exp fields, toString generates the following strings, de-
pending on the class field:

ZERO "0.0"
NORMAL ”0.d1d2...dn”
SUBNORMAL ”0.d1d2...dn”
INF "inf"
NAN "nan"

If the sign field is true, a #"˜" is prepended. If the exp field is non-zero and the
class is NORMAL or SUBNORMAL, the string "E"ˆ(Integer.toString exp) is
appended.
The composition toString o REAL.toDecimal is equivalent to REAL.fmt String-

Cvt.EXACT.

11.13. THE IEEEREAL STRUCTURE 157

val scan : (char, ’a) StringCvt.reader
-> (decimal_approx, ’a) StringCvt.reader

val fromString : string -> decimal_approx option

scan getc strm
fromString s
These functions scan a decimal approximation from a prefix of a character source. Initial
whitespace is ignored. The first reads from the character stream strm using the character
input function getc. It returns SOME(d, rest) if the decimal approximation d can be
parsed; rest is the remainder of the character stream. NONE is returned otherwise.
The second form uses the string s as input. It returns the decimal approximation on

success and NONE otherwise. The fromString function is equivalent to StringCvt.-
scanString scan.
The functions accept real numbers with the following format:

[+˜−]?([0−9]+(.[0−9]+)? | .[0−9]+)((e | E)[+˜−]?[0−9]+)?

The optional sign determines the value of the sign field, with a default of false. Initial
zeros are stripped from the integer part and trailing zeros are stripped from the fractional
part, yielding two lists, il and fl, respectively, of digits. If il is non-empty, then class
is set to NORMAL, digits is set to il@fl with any trailing zeros removed, and exp is
set to the length of il plus the value of the scanned exponent, if any. If il is empty and
so is fl, then class is set to ZERO, digits = [], and exp = 0. Finally, if il is
empty but fl is not, let m be the number of leading zeros in fl and let fl’ be fl after
the leading zeros are removed. Then, class is set to NORMAL, digits is set to fl’,
and exp is set to −m plus the value of the scanned exponent, if any.
These functions also accept the following string representations of non-finite values:

[+˜−]?(inf | infinity | nan)

where the alphabetic characters are case-insensitive. The optional sign determines the
value of the sign field, with a default of false. In the first and second cases, d will have
class set to INF. In the third case, class is set to NAN. In all these cases, d will have
digits = [] and exp = 0.
If the exponent is too large to fit into an Int.int value, then the representation is

rounded to either zero or infinity according to the following rules:
• If either the mantissa is zero or the exponent is negative, then the result will be

{class=ZERO, sign=s, digits=[], exp=0}
where s is true if the mantissa is negative zero.

• If the exponent is positive, then the result will be
{class=INF, sign=s digits=[], exp=0}

where s is true if the mantissa is negative.

Discussion
Note that values of type decimal_approx are independent of any floating-point repre-
sentation.

See also
REAL (§11.50; p. 318), MATH (§11.22; p. 189)

158 CHAPTER 11. MANUAL PAGES

11.14 The IMPERATIVE_IO signature

The IMPERATIVE_IO signature defines the interface of the imperative I/O layer in the
I/O stack. This layer provides buffered I/O using mutable, redirectable streams.

Synopsis
signature IMPERATIVE_IO

Interface
structure StreamIO : STREAM_IO

type vector = StreamIO.vector
type elem = StreamIO.elem

type instream
type outstream

val input : instream -> vector
val input1 : instream -> elem option
val inputN : instream * int -> vector
val inputAll : instream -> vector
val canInput : instream * int -> int option
val lookahead : instream -> elem option
val closeIn : instream -> unit
val endOfStream : instream -> bool

val output : outstream * vector -> unit
val output1 : outstream * elem -> unit
val flushOut : outstream -> unit
val closeOut : outstream -> unit

val mkInstream : StreamIO.instream -> instream
val getInstream : instream -> StreamIO.instream
val setInstream : instream * StreamIO.instream -> unit

val mkOutstream : StreamIO.outstream -> outstream
val getOutstream : outstream -> StreamIO.outstream
val setOutstream : outstream * StreamIO.outstream -> unit
val getPosOut : outstream -> StreamIO.out_pos
val setPosOut : outstream * StreamIO.out_pos -> unit

Description

structure StreamIO : STREAM_IO

This substructure provides lower-level stream I/O, as defined by the STREAM_IO in-
terface, which is compatible with the instream and outstream types, in the sense

11.14. THE IMPERATIVE_IO SIGNATURE 159

that the conversion functions mkInstream, getInstream, mkOutstream, and get-
Outstream allow the programmer to convert between low-level streams and redirectable
streams. Typically, the redirectable streams are implemented in terms of low-level streams.
Note that StreamIO.outstream is not a functional stream. The only difference be-
tween a StreamIO.outstream and an outstream is that the latter can be redirected.

type vector = StreamIO.vector
type elem = StreamIO.elem

These are the abstract types of stream elements and vectors of elements. For text streams,
these are Char.char and String.string, while for binary streams they correspond
to Word8.word and Word8Vector.vector.

type instream

The type of redirectable imperative input streams. Two imperative streams may share an
underlying functional stream or reader. Closing one of them effectively closes the under-
lying functional stream, which will affect subsequent operations on the other.

type outstream

The type of redirectable output streams. Two or more streams may share an underlying
stream or writer, in which case writing or positioning the file pointer on one of them, or
closing it, also affects the other.

val input : instream -> vector

input strm attempts to read from strm, starting from the current input file position.
When elements are available, it returns a vector of at least one element. When strm
is at the end-of-stream or is closed or truncated, it returns an empty vector. Otherwise,
input blocks until one of these conditions is met and returns accordingly. It may raise
the exception Io.

val input1 : instream -> elem option

input1 strm reads one element from strm. It returns SOME(e) if one element is
available; it returns NONE if at the end-of-stream. Otherwise, input1 blocks until one of
these conditions is met and returns accordingly. It may raise the exception Io.
After a call to input1 returning NONE to indicate an end-of-stream, the input stream

should be positioned after the end-of-stream.

val inputN : instream * int -> vector

inputN (strm, n) reads at most n elements from strm. It returns a vector con-
taining n elements if at least n elements are available before the end-of-stream; it returns
a shorter (and possibly empty) vector of all elements remaining before the end-of-stream
otherwise. Otherwise, inputN blocks until one of these conditions is met and returns
accordingly. It raises Size if n < 0 or if n is greater than the maxLen value for the
vector type. It may also raise the exception Io.

160 CHAPTER 11. MANUAL PAGES

val inputAll : instream -> vector

inputAll strm returns all elements of strm up to the end-of-stream. It raises Size
if the amount of data exceeds the maxLen of the vector type. It may also raise the
exception Io.

val canInput : instream * int -> int option

canInput (strm, n) returns NONE if any attempt at input would block. It returns
SOME(k), where 0 ≤ k ≤ n, if a call to input would return immediately with at least k
characters. Note that k = 0 corresponds to the stream being at the end-of-stream.
Some streams may not support this operation, in which case the Io exception will be

raised. This function also raises the Io exception if there is an error in the underlying
system calls. It raises the Size exception if n < 0.

Implementation note: It is suggested that implementations of canInput should at-
tempt to return as large a k as possible. For example, if the buffer contains 10 characters
and the user calls canInput (f, 15), canInput should call readVecNB(5) to
see if an additional 5 characters are available.

val lookahead : instream -> elem option

lookahead strm determines whether one element is available on strm before the
end-of-stream and returns SOME(e) in this case; it returns NONE if at the end-of-stream.
In the former case, the element e is not removed from strm but stays available for further
input operations. It may block waiting for an element and it may raise the exception Io.
The underlying STREAM_IO stream can be used to easily implement arbitrary looka-

head.

val closeIn : instream -> unit

closeIn strm closes the input stream strm, freeing resources of the underlying I/O
layers associated with it. Closing an already closed stream will be ignored. Other opera-
tions on a closed stream will behave as if the stream is at the end-of-stream. The function
should be implemented in terms of StreamIO.closeIn. It may also raise Io when
another error occurs.

val endOfStream : instream -> bool

endOfStream strm returns true if strm is at the end-of-stream and false if ele-
ments are still available. It may block until one of these conditions is determined and may
raise the exception Io.
When endOfStream returns true on an untruncated stream, this result denotes the

current situation. After a read from strm to consume the end-of-stream, it is possible that
the next call to endOfStream strm may return false, and input operations will deliver
new elements. For further information, consult the description of STREAM_IO.endOf-
Stream.

11.14. THE IMPERATIVE_IO SIGNATURE 161

val output : outstream * vector -> unit

output (strm, vec) attempts to write the contents of vec to strm, starting from
the current output file position. It may block until the underlying layers (and eventually the
operating system) can accept all of vec. It may raise the exception Io. In that case, it is
unspecified how much of vec was actually written.

val output1 : outstream * elem -> unit

output1 (strm, el) writes exactly one element el to strm. It may block and
may raise the exception Io if an error occurs. In that case, it is unspecified how much
of el was actually written, especially if its physical representation is larger than just one
byte. At this level, more than this cannot be guaranteed. Programs that need more control
over this possibility need to make use of more primitive or OS-specific I/O routines.

val flushOut : outstream -> unit

flushOut strm causes any buffers associated with strm to be written out. It is im-
plemented in terms of StreamIO.flushOut. The function may block and may raise
the exception Io when an error occurs.

val closeOut : outstream -> unit

closeOut strm flushes any buffers associated with strm and then closes strm, free-
ing resources of the underlying I/O layers associated with it. It is implemented in terms of
StreamIO.closeOut. A write attempt on a closed outstream will cause the excep-
tion Io{cause=ClosedStream,...} to be raised. It may also raise Io if another
error occurs (e.g., buffers cannot be flushed out).

val mkInstream : StreamIO.instream -> instream

mkInstream strm constructs a redirectable input stream from a functional one. The
current version of strm returned by input operations will be kept internally and used for
the next input. They can be obtained by getInstream.

val getInstream : instream -> StreamIO.instream

getInstream strm returns the current version of the underlying functional input
stream of strm. Using getInstream, it is possible to get input directly from the under-
lying functional stream. After having done so, it may be necessary to reassign the newly
obtained functional stream to strm using setInstream; otherwise, the previous input
will be read again when reading from strm the next time.

162 CHAPTER 11. MANUAL PAGES

val setInstream : instream * StreamIO.instream -> unit

setInstream (strm, strm’) assigns a new functional stream strm’ to strm.
Future input on strm will be read from strm’. This function is useful for redirecting
input or interleaving input from different streams, e.g., when handling nested include files
in a lexer.

val mkOutstream : StreamIO.outstream -> outstream

mkOutstream strm constructs a redirectable output stream from a low-level func-
tional one. Output to the imperative stream will be redirected to strm.

val getOutstream : outstream -> StreamIO.outstream

getOutstream strm flushes strm and returns the underlying StreamIO output
stream. Using getOutstream, it is possible to write output directly to the underlying
stream or to save it and restore it using setOutstream after strm has been redirected.

val setOutstream : outstream * StreamIO.outstream -> unit

setOutstream (strm, strm’) flushes the stream underlying strm and then as-
signs a new low-level stream strm’ to it. Future output on strm will be redirected to
strm’.

val getPosOut : outstream -> StreamIO.out_pos

getPosOut strm returns the current position in the stream strm. This function raises
the exception Io if the stream does not support the operation, among other reasons. See
StreamIO.getPosOut.

val setPosOut : outstream * StreamIO.out_pos -> unit

setPosOut (strm, pos) sets the current position of the stream strm to be pos.
This function raises the exception Io if the stream does not support the operation, among
other reasons. See StreamIO.setPosOut.

Discussion
A word is in order concerning I/O nomenclature. We refer to the I/O provided by the
IMPERATIVE_IO signature as imperative I/O, while the I/O provided by the STREAM_IO
signature is called stream I/O. On the other hand, the type of buffered I/O handled by both
of these layers is typically considered “stream I/O,” which explains why the I/O objects
defined in both levels are called instream and outstream. To avoid confusion, we
sometimes refer to the stream I/O layer as “functional I/O,” focusing on the functional
flavor of the input streams at that level. This term, however, glosses over the imperative
nature of output at the same level. The principal distinction between the two layers is that
I/O using IMPERATIVE_IO can be redirected, while I/O using STREAM_IO cannot.

11.14. THE IMPERATIVE_IO SIGNATURE 163

The semantics of imperative I/O operations are (almost) all defined in terms of the op-
erations provided by the underlying STREAM_IO substructure. Specifically, we have the
reference implementations:

fun input(f) = let
val (s,g) = StreamIO.input(getInstream f)
in setInstream(f,g); s
end

fun inputAll(f)= let
val (s,g) = StreamIO.inputAll(getInstream f)
in setInstream(f,g); s
end

fun endOfStream(f)= StreamIO.endOfStream(getInstream f)
fun output(f,s) = StreamIO.output(getOutStream f, s)
fun flushOut(f) = StreamIO.flushOut(getOutStream f)

with similar implementations for other imperative I/O operations.

Alternatively, we can consider imperative I/O streams as reference cells referring to
STREAM_IO streams:

type instream = StreamIO.instream ref
type outstream = StreamIO.outstream ref

fun input strm = let
val (v, strm’) = StreamIO.input(!strm)
in
strm := strm’; v

end
fun output (strm, v) = StreamIO.output(!strm, v)

etc.

The one exception to the above approaches is input1. If an implementation relies
solely on StreamIO.input1, input1 could never advance beyond an end-of-stream.
The following reference implementation of input1 illustrates one approach to avoiding
this problem:

fun input1 f = let
val (s,g) = StreamIO.inputN(getInstream f, 1)
in setInstream(f,g);

if length s = 0 then NONE
else SOME(sub(s,0))

end
Limited random access on input streams — that is, returning to a previously scanned

position — can be accomplished using getInstream and the underlying stream I/O
layer:

fun reread (f : instream, n : int) = let
val g = getInstream(f)
val s = inputN (f,n)
in
setInstream(f,g);
(s, inputN (f,n))

end

164 CHAPTER 11. MANUAL PAGES

The pair of vectors returned by reread will always be identical. Similarly, limited ran-
dom access on output streams can be done directly using getPosOut and setPosOut.
More general random access is only available at the primitive I/O level.

Implementation note: Input on a closed or truncated stream behaves as though the
stream is permanently at the end-of-stream. Thus, in addition to closing the underlying
functional stream, the closeIn function must also replace the functional stream with an
empty stream.

See also
BinIO (§11.4; p. 127), ImperativeIO (§11.15; p. 165),
STREAM_IO (§11.52; p. 346), TextIO (§11.58; p. 382)

11.15. THE IMPERATIVEIO FUNCTOR 165

11.15 The ImperativeIO functor

The optional ImperativeIO functor can be used to implement (derive) an imperative-
style stream I/O facility in terms of a lazy functional stream I/O facility. In the imper-
ative style, input and output operations do not return a new stream each time but cause
side effects on their arguments. Most functions can raise the Io exception for various
reasons, including illegal or inconsistent parameters, IO failures, and attempts to do I/O
on closed output streams.
The ImperativeIO functor is not often needed, as the required BinIO and Text-

IO structures supply imperative-style I/O for most situations. It plays a useful role when
the programmer needs to construct I/O facilities with element types other than char or
Word8.word, or ones based on user-specified I/O primitives.

Synopsis
signature IMPERATIVE_IO
functor ImperativeIO (...): IMPERATIVE_IO

where type StreamIO.elem = StreamIO.elem
where type StreamIO.vector = StreamIO.vector
where type StreamIO.instream = StreamIO.instream
where type StreamIO.outstream = StreamIO.outstream
where type StreamIO.out_pos = StreamIO.out_pos
where type StreamIO.reader = StreamIO.reader
where type StreamIO.writer = StreamIO.writer
where type StreamIO.pos = StreamIO.pos

Functor Argument Interface
structure StreamIO : STREAM_IO
structure Vector : MONO_VECTOR
structure Array : MONO_ARRAY
sharing type StreamIO.elem = Vector.elem = Array.elem
sharing type StreamIO.vector = Vector.vector = Array.vector

Description

structure StreamIO : STREAM_IO

The particular functional stream I/O facility from which this imperative I/O facility is de-
rived. Most functions just call functions in StreamIO and do a little extra bookkeeping.

See also
IMPERATIVE_IO (§11.14; p. 158), MONO_ARRAY (§11.23; p. 193),
MONO_VECTOR (§11.26; p. 211), PrimIO (§11.49; p. 317),
STREAM_IO (§11.52; p. 346), StreamIO (§11.53; p. 358)

166 CHAPTER 11. MANUAL PAGES

11.16 The INetSock structure

This structure provides operations for creating and manipulating Internet-domain ad-
dresses and sockets.

Synopsis
signature INET_SOCK
structure INetSock :> INET_SOCK

Interface
type inet
type ’sock_type sock = (inet, ’sock_type) Socket.sock
type ’mode stream_sock = ’mode Socket.stream sock
type dgram_sock = Socket.dgram sock
type sock_addr = inet Socket.sock_addr
val inetAF : Socket.AF.addr_family
val toAddr : NetHostDB.in_addr * int -> sock_addr
val fromAddr : sock_addr -> NetHostDB.in_addr * int
val any : int -> sock_addr
structure UDP : sig

val socket : unit -> dgram_sock
val socket’ : int -> dgram_sock

end
structure TCP : sig

val socket : unit -> ’mode stream_sock
val socket’ : int -> ’mode stream_sock
val getNODELAY : ’mode stream_sock -> bool
val setNODELAY : ’mode stream_sock * bool -> unit

end

Description

type inet

The witness type of the INet address family. There are no values of this type.

type ’mode stream_sock = ’mode Socket.stream sock

The type-scheme of Internet-domain stream sockets. The type parameter ’mode can be
instantiated to either Socket.active or Socket.passive.

type dgram_sock = Socket.dgram sock

The type of Internet-domain datagram sockets.

11.16. THE INETSOCK STRUCTURE 167

type sock_addr = inet Socket.sock_addr

The type of Internet-domain socket addresses.

val inetAF : Socket.AF.addr_family

The address family value that represents the Internet domain.

val toAddr : NetHostDB.in_addr * int -> sock_addr

toAddr (ia, i) converts an Internet address ia and a port number i into a socket
address (in the INet address family).

val fromAddr : sock_addr -> NetHostDB.in_addr * int

This function converts a socket address (in the INet address family) into a pair (ia,i) of
an Internet address ia and a port number i.

val any : int -> sock_addr

any port creates a socket address that fixes the port to port but leaves the Internet
address unspecified. This function corresponds to the INADDR_ANY constant in the C
Sockets API. The values created by this function are used to bind a socket to a specific
port.

structure UDP : sig ... end

This structure contains functions for creating datagram sockets in the Internet domain.

val socket : unit -> dgram_sock

This function creates a datagram socket in the INet address family with the default
protocol. It raises SysErr if there are too many sockets in use.

val socket’ : int -> dgram_sock

socket’ prot creates a datagram socket in the INet address family with the
protocol number prot. The interpretation of prot is system-dependent, but a value
of 0 is equivalent to socket(). It raises SysErr if there are too many sockets in
use.

structure TCP : sig ... end

This structure contains functions for creating stream sockets in the Internet domain.

val socket : unit -> ’mode stream_sock

This function creates a stream socket in the INet address family with the default
protocol. It raises SysErr if there are too many sockets in use.

168 CHAPTER 11. MANUAL PAGES

val socket’ : int -> ’mode stream_sock

socket’ prot creates a stream socket in the INet address family with the pro-
tocol number prot. The interpretation of prot is system dependent, but a value of
0 is equivalent to socket().

val getNODELAY : ’mode stream_sock -> bool
val setNODELAY : ’mode stream_sock * bool -> unit

These functions query and set the TCP_NODELAY flag on the socket. When set to
false (the default), there is only a single small packet allowed to be outstanding on
a given TCP connection at any time, thereby reducing small packet traffic on slower
WANs. When set to true, packets are sent as fast as possible, which reduces the
latency of the response (see [Ste98] for more information).

See also
GenericSock (§11.12; p. 153), NetHostDB (§11.28; p. 220),
Socket (§11.51; p. 330), UnixSock (§11.63; p. 398)

11.17. THE INTEGER SIGNATURE 169

11.17 The INTEGER signature

Instances of the INTEGER signature provide a type of signed integers of either a fixed
or arbitrary precision, and arithmetic and conversion operations. For fixed precision
implementations, most arithmetic operations raise the exception Overflow when their
result is not representable.

Synopsis
signature INTEGER
structure Int :> INTEGER

where type int = int
structure FixedInt :> INTEGER
structure LargeInt :> INTEGER
structure IntN :> INTEGER
structure Position :> INTEGER

Interface
eqtype int

val toLarge : int -> LargeInt.int
val fromLarge : LargeInt.int -> int
val toInt : int -> Int.int
val fromInt : Int.int -> int

val precision : Int.int option
val minInt : int option
val maxInt : int option

val + : int * int -> int
val - : int * int -> int
val * : int * int -> int
val div : int * int -> int
val mod : int * int -> int
val quot : int * int -> int
val rem : int * int -> int

val compare : int * int -> order
val < : int * int -> bool
val <= : int * int -> bool
val > : int * int -> bool
val >= : int * int -> bool

val ˜ : int -> int
val abs : int -> int
val min : int * int -> int
val max : int * int -> int
val sign : int -> Int.int
val sameSign : int * int -> bool

170 CHAPTER 11. MANUAL PAGES

val fmt : StringCvt.radix -> int -> string
val toString : int -> string
val scan : StringCvt.radix

-> (char, ’a) StringCvt.reader
-> (int, ’a) StringCvt.reader

val fromString : string -> int option

Description

val toLarge : int -> LargeInt.int
val fromLarge : LargeInt.int -> int

These convert between integer values of types int and LargeInt.int. The latter raises
Overflow if the value does not fit.
IntM.fromLarge o IntN.toLarge converts an integer from type IntN.int

to IntM.int.

val toInt : int -> Int.int
val fromInt : Int.int -> int

These convert between integer values of types int and the default integer type. They raise
Overflow if the value does not fit.

val precision : Int.int option

If SOME(n), this value denotes the number n of significant bits in type int, including the
sign bit. If it is NONE, int has arbitrary precision. The precision need not necessarily be
a power of 2.

val minInt : int option
val maxInt : int option

The minimum (most negative) and the maximum (most positive) integers, respectively,
representable by int. If a value is NONE, int can represent all negative (respectively,
positive) integers, within the limits of the heap size.
If precision is SOME(n), then we have minInt= −2n−1 and maxInt= 2n−1−1.

val + : int * int -> int
val - : int * int -> int
val * : int * int -> int

These functions return the sum, difference, and product, respectively, of the arguments.
They raise Overflow when the result is not representable.

11.17. THE INTEGER SIGNATURE 171

val div : int * int -> int

i div j returns the greatest integer less than or equal to the quotient of i by j, i.e.,
�(i/j)�. It raises Overflow when the result is not representable and Div when j = 0.
Note that rounding is toward negative infinity, not zero.

val mod : int * int -> int

i mod j returns the remainder of the division of i by j. It raises Div when j = 0.
When defined, (i mod j) has the same sign as j, and

(i div j) * j + (i mod j) = i

val quot : int * int -> int

quot (i, j) returns the truncated quotient of the division of i by j, i.e., it computes
(i/j) and then drops any fractional part of the quotient. It raises Overflow when the
result is not representable and Div when j = 0. Note that, unlike div, quot rounds
toward zero. In addition, unlike div and mod, neither quot nor rem are infix by default;
an appropriate infix declaration would be infix 7 quot rem.

Implementation note: Rounding toward zero is the semantics of most hardware di-
vide instructions, so quot may be faster than div.

val rem : int * int -> int

i rem j returns the remainder of the division of i by j. It raises Div when j = 0.
(i rem j) has the same sign as i, and it holds that

(i quot j) * j + (i rem j) = i
This behavior matches the semantics of most hardware divide instructions, so rem may be
faster than mod.

val compare : int * int -> order

compare (i, j) returns LESS, EQUAL, or GREATER when i is less than, equal to,
or greater than j, respectively.

val < : int * int -> bool
val <= : int * int -> bool
val > : int * int -> bool
val >= : int * int -> bool

These functions return true if the corresponding relation holds between the two integers.

val ˜ : int -> int

˜ i returns the negation of i, i.e., (0 − i). It raises Overflow when the result is not
representable. Overflow can occur, for example, when int is an n-bit 2’s-complement
integer type and ˜ is applied to −2n−1.

172 CHAPTER 11. MANUAL PAGES

val abs : int -> int

abs i returns the absolute value (magnitude) of i. It raises Overflow when the result
is not representable.

val min : int * int -> int
val max : int * int -> int

These functions return the smaller (respectively, larger) of the arguments.

val sign : int -> Int.int

sign i returns ˜1, 0, or 1 when i is less than, equal to, or greater than 0, respectively.

val sameSign : int * int -> bool

sameSign (i, j) returns true if i and j have the same sign. It is equivalent to
(sign i = sign j).

val fmt : StringCvt.radix -> int -> string
val toString : int -> string

fmt radix i
toString i
These functions return a string containing a representation of iwith #"˜" used as the sign
for negative numbers. The former formats the string according to radix. The hexadeci-
mal digits 10 through 15 are represented as #"A" through #"F", respectively. No prefix
"0x" is generated for the hexadecimal representation. The second form is equivalent to
fmt StringCvt.DEC i.

val scan : StringCvt.radix
-> (char, ’a) StringCvt.reader

-> (int, ’a) StringCvt.reader
val fromString : string -> int option

scan radix getc strm
fromString s
The first expression returns SOME(i,rest) if an integer in the format denoted by radix
can be parsed from a prefix of the character stream strm after skipping initial whitespace,
where i is the value of the integer parsed and rest is the rest of the character stream.
NONE is returned otherwise. This function raises Overflow when an integer can be
parsed but is too large to be represented by type int.
The format that scan accepts depends on the radix argument. Regular expressions

defining these formats are as follows:

11.17. THE INTEGER SIGNATURE 173

Radix Format
StringCvt.BIN [+˜−]?[0−1]+

StringCvt.OCT [+˜−]?[0−7]+

StringCvt.DEC [+˜−]?[0−9]+

StringCvt.HEX [+˜−]?(0x | 0X)?[0−9a−fA−F]+

Note that strings such as "0xg" and "0x 123" are scanned as SOME(0), even when
using a hexadecimal radix.

The second expression returns SOME(i) if an integer i in the format [+˜−]?[0−9]+

can be parsed from a prefix of the string s, ignoring initial whitespace; NONE is returned
otherwise. The function fromString raises Overflow when an integer can be parsed
but is too large to fit in type int. It is equivalent to the expression StringCvt.scan-
String (scan StringCvt.DEC).

Discussion
Fixed precision representations are required to be 2’s-complement. Implementations of
arbitrary precision should appear as 2’s-complement under conversion to and from words.

If an implementation provides the IntInf structure, then LargeInt must be the
same structure as IntInf (viewed through a thinning INTEGER signature). Otherwise, if
LargeInt is not the same as Int, then there must be a structure IntN equal to Large-
Int.

The type FixedInt.int is the largest fixed precision integer supported, while the
type LargeInt.int is the largest integer supported. A structure IntN implements
N-bit integers. The type Position.int is used to represent positions in files and I/O
streams.

Implementation note: It is recommended that compilers recognize the idiom of con-
verting between integers of differing precisions using an intermediate representation (e.g.,
Int31.fromLarge o Int8.toLarge) and optimize these compositions.

See also
IntInf (§11.18; p. 174), StringCvt (§11.55; p. 366)

174 CHAPTER 11. MANUAL PAGES

11.18 The IntInf structure

The optional IntInf structure is one of the possible implementations of the INTEGER
interface. In addition to the INTEGER operations, it provides some operations useful
for programming with arbitrarily large integers. Operations in IntInf that return a
value of type IntInf.int should never raise the Overflow exception. Note that,
as it extends the INTEGER interface, IntInf defines a type int. Any use of this type
below, unmodified by a structure, refers to the local type int defined in IntInf.

Synopsis
signature INT_INF
structure IntInf :> INT_INF

Interface
include INTEGER
val divMod : int * int -> int * int
val quotRem : int * int -> int * int
val pow : int * Int.int -> int
val log2 : int -> Int.int
val orb : int * int -> int
val xorb : int * int -> int
val andb : int * int -> int
val notb : int -> int
val << : int * Word.word -> int
val ˜>> : int * Word.word -> int

Description

val divMod : int * int -> int * int

divMod (i, j) returns the pair (i div j, i mod j) but is likely to be more
efficient than computing both components separately. It raises Div if j = 0.

val quotRem : int * int -> int * int

quotRem (i, j) returns the pair (quot(i, j), rem(i, j) but is likely to be
more efficient than computing both components separately. It raises Div if j = 0.

val pow : int * Int.int -> int

pow (i, j) returns the result of raising i to the jth power. This application is well
defined when j > 0. When j = 0, pow(i, j) is 1; in particular, pow(0, 0) is 1.
When j < 0, we define the following exceptional cases:

11.18. THE INTINF STRUCTURE 175

i pow(i,j)
0 Raise Div

|i| = 1 ij

|i| > 1 0

val log2 : int -> Int.int

log2 i returns the truncated base-2 logarithm of its argument, i.e., the largest integer k
for which pow(2,k) ≤ i. It raises Domain if i ≤ 0 and Overflow if the result is not
representable as an Int.int.

val orb : int * int -> int
val xorb : int * int -> int
val andb : int * int -> int

These functions return the bit-wise OR, bit-wise exclusive OR, and bit-wise AND, respec-
tively, of the arguments.

val notb : int -> int

notb i returns the bit-wise complement (NOT) of i. It is equivalent to ˜(i + 1).

val << : int * Word.word -> int

<< (i, n) shifts i to the left by n bit positions, filling in zeros from the right. When
i and n are interpreted as integers, with the latter non-negative, this expression evaluates
to (i∗2n).

val ˜>> : int * Word.word -> int

˜>> (i, n) shifts i to the right by n bit positions. When i and n are interpreted as
integers, with the latter non-negative, this expression evaluates to �(i/2n)�.

Discussion
If an implementation provides the IntInf structure, then the type LargeInt.intmust
be the same as the type IntInf.int.

The bit-wise operations (andb, orb, notb, <<, etc.) treat the integer arguments as
having 2’s-complement representation. In particular, if we let bit = 2n, we have, for all
sufficiently large values of n,

andb(i, bit) = 0 if i ≥ 0
andb(i, bit) = bit if i < 0

Rationale: It is useful to have a module providing bit-wise operations on an unbounded
domain. Such a module can serve as the basis for implementing sets or bit-vectors. These
operations seemed to naturally fit into the specification of the IntInfmodule, rather than
requiring an additional WordInf structure.

176 CHAPTER 11. MANUAL PAGES

Implementation note: Having this structure as part of the basis allows implementa-
tions to provide compiler or runtime support to optimize integer representation and opera-
tions.

See also
INTEGER (§11.17; p. 169), LargeInt (§11.17; p. 169)

11.19. THE IO STRUCTURE 177

11.19 The IO structure

The IO structure contains types and values common to all the input/output structures and
functors. In particular, it defines the Io exception, which is used to provide structured
information for any errors occurring during I/O.

Synopsis
signature IO
structure IO :> IO

Interface
exception Io of {

name : string,
function : string,
cause : exn

}
exception BlockingNotSupported
exception NonblockingNotSupported
exception RandomAccessNotSupported
exception ClosedStream
datatype buffer_mode = NO_BUF | LINE_BUF | BLOCK_BUF

Description

exception Io of {
name : string,
function : string,
cause : exn

}

This exception is the principal exception raised when an error occurs in the I/O subsystem.
The components of Io are as follows:

name The name component of the reader or writer.
function The name of the function raising the exception.
cause The underlying exception raised by the reader or writer, or detected at the stream

I/O level.

Some of the standard causes are

• OS.SysErr if an actual system call was done and failed.
• Subscript if ill-formed arguments are given.
• BlockingNotSupported.
• NonblockingNotSupported.
• ClosedStream.

The cause field of Io is not limited to these particular exceptions. Users who create their
own readers or writers may raise any exception they like, which will be reported as the
cause field of the resulting Io exception.

178 CHAPTER 11. MANUAL PAGES

exception BlockingNotSupported

The exception used in the output, outputSubstr, output1, and flushOut I/O
operations if the underlying writer does not support blocking writes, or in the input,
inputN, and input1 I/O operations if the underlying reader does not support blocking
reads. It should never be raised within the I/O system; it should only be used in the cause
field of an Io exception.

exception NonblockingNotSupported

The exception used by the canInput I/O operation if the underlying stream does not
support non-blocking input. It should never be raised within the I/O system; it should only
be used in the cause field of an Io exception.

exception RandomAccessNotSupported

The exception used by the STREAM_IO position operations to indicate that random access
operations are not supported by the underlying device. It should never be raised within the
I/O system; it should only be used in the cause field of an Io exception.

exception ClosedStream

This exception is used by the output I/O operations if the underlying object is closed or
terminated. It should never be raised within the I/O system; it should only be used in the
cause field of an Io exception.

datatype buffer_mode = NO_BUF | LINE_BUF | BLOCK_BUF

These values specify the type of buffering used on output streams. If an output stream has
mode BLOCK_BUF, the implementation should store output in a buffer, actually writing
the buffer’s content to the device only when the buffer is full. If an output stream has mode
NO_BUF, the implementation should write the argument bytes of any output function di-
rectly to the corresponding device. If an output stream has mode LINE_BUF, output bytes
should be buffered until a newline character (#"\n") is seen, at which point the buffer
should be flushed, including the newline character. For binary streams, the LINE_BUF
mode should be treated as a synonym for BLOCK_BUF.

Implementation note: Output buffering is provided for efficiency, to reduce the num-
ber of writes to the underlying device, which may be an expensive operation. The I/O
subsystem should select the initial buffer mode based on the output device. By default,
output should be buffered. The optimum buffer size is specified by the chunkSize field
in the underlying writer value. Output to TextIO.stdErr should be unbuffered.
Output to a terminal-like device should be line-buffered. A simple test for a terminal-like
device is the following expression:

OS.IO.kind iod = OS.IO.Kind.tty
where iod is the I/O descriptor associated with the open stream.

11.19. THE IO STRUCTURE 179

Discussion
The SML Basis Library I/O modules will never raise a bare BlockingNotSupported,
NonblockingNotSupported, RandomAccessNotSupported, or ClosedStream
exception; these exceptions are only used in the cause field of the Io exception. Any
module, however, may raise Subscript directly if given ill-formed arguments, or may
raise Io with Subscript as the cause.

It is possible that multiple error conditions hold when an I/O function is called. For
example, a random access call may be made on a closed stream corresponding to a device
that does not support random access. The cause reported in the generated Io exception
is implementation-dependent.

See also
BinIO (§11.4; p. 127), IMPERATIVE_IO (§11.14; p. 158), PRIM_IO (§11.48; p. 308),
STREAM_IO (§11.52; p. 346), TextIO (§11.58; p. 382)

180 CHAPTER 11. MANUAL PAGES

11.20 The List structure

The List structure provides a collection of utility functions for manipulating polymor-
phic lists, traditionally an important datatype in functional programming.
Following the concrete syntax provided by the list :: operator, the head of a list

appears leftmost. Thus, a traversal of a list from left to right starts with the head and
then recurses on the tail. In addition, as a sequence type, a list has an indexing of its
elements, with the head having index 0, the second element having index 1, etc.

Synopsis
signature LIST
structure List :> LIST

Interface
datatype ’a list = nil | :: of ’a * ’a list

exception Empty

val null : ’a list -> bool
val length : ’a list -> int
val @ : ’a list * ’a list -> ’a list
val concat : ’a list list -> ’a list
val revAppend : ’a list * ’a list -> ’a list
val tabulate : int * (int -> ’a) -> ’a list
val hd : ’a list -> ’a
val tl : ’a list -> ’a list
val last : ’a list -> ’a
val getItem : ’a list -> (’a * ’a list) option
val nth : ’a list * int -> ’a
val take : ’a list * int -> ’a list
val drop : ’a list * int -> ’a list
val rev : ’a list -> ’a list

val app : (’a -> unit) -> ’a list -> unit
val map : (’a -> ’b) -> ’a list -> ’b list
val mapPartial : (’a -> ’b option) -> ’a list -> ’b list
val find : (’a -> bool) -> ’a list -> ’a option
val filter : (’a -> bool) -> ’a list -> ’a list
val partition : (’a -> bool)

-> ’a list -> ’a list * ’a list
val foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

val exists : (’a -> bool) -> ’a list -> bool
val all : (’a -> bool) -> ’a list -> bool

val collate : (’a * ’a -> order)
-> ’a list * ’a list -> order

11.20. THE LIST STRUCTURE 181

Description

exception Empty

This exception indicates that an empty list was given as an argument to a function requiring
a non-empty list.

val null : ’a list -> bool

null l returns true if the list l is empty.

val length : ’a list -> int

length l returns the number of elements in the list l.

val @ : ’a list * ’a list -> ’a list

l1 @ l2 returns the list that is the concatenation of l1 and l2.

val concat : ’a list list -> ’a list

concat l returns the list that is the concatenation of all the lists in l in order.
concat[l1,l2,...ln] = l1 @ l2 @ ... @ ln

val revAppend : ’a list * ’a list -> ’a list

revAppend (l1, l2) returns (rev l1) @ l2.

val tabulate : int * (int -> ’a) -> ’a list

tabulate (n, f) returns a list of length n equal to [f(0), f(1), ..., f(n-1)],
created from left to right. It raises Size if n < 0.

val hd : ’a list -> ’a

hd l returns the first element of l. It raises Empty if l is nil.

val tl : ’a list -> ’a list

tl l returns all but the first element of l. It raises Empty if l is nil.

val last : ’a list -> ’a

last l returns the last element of l. It raises Empty if l is nil.

182 CHAPTER 11. MANUAL PAGES

val getItem : ’a list -> (’a * ’a list) option

getItem l returns NONE if the list is empty and SOME(hd l,tl l) otherwise. This
function is particularly useful for creating value readers from lists of characters. For ex-
ample, Int.scan StringCvt.DEC getItem has the type

(int,char list) StringCvt.reader
and can be used to scan decimal integers from lists of characters.

val nth : ’a list * int -> ’a

nth (l, i) returns the ith element of the list l, counting from 0. It raises Subscript
if i < 0 or i ≥ length l. We have nth(l,0) = hd l, ignoring exceptions.

val take : ’a list * int -> ’a list

take (l, i) returns the first i elements of the list l. It raises Subscript if i < 0
or i > length l. We have take(l, length l) = l.

val drop : ’a list * int -> ’a list

drop (l, i) returns what is left after dropping the first i elements of the list l.
It raises Subscript if i < 0 or i > length l. It holds that take(l, i) @
drop(l, i) = l when 0 ≤ i ≤ length l. We also have drop(l, length
l) = [].

val rev : ’a list -> ’a list

rev l returns a list consisting of l’s elements in reverse order.

val app : (’a -> unit) -> ’a list -> unit

app f l applies f to the elements of l, from left to right.

val map : (’a -> ’b) -> ’a list -> ’b list

map f l applies f to each element of l from left to right, returning the list of results.

val mapPartial : (’a -> ’b option) -> ’a list -> ’b list

mapPartial f l applies f to each element of l from left to right, returning a list of
results, with SOME stripped, where f was defined. f is not defined for an element of l if
f applied to the element returns NONE. The above expression is equivalent to:

((map valOf) o (filter isSome) o (map f)) l

11.20. THE LIST STRUCTURE 183

val find : (’a -> bool) -> ’a list -> ’a option

find pred l applies pred to each element x of the list l, from left to right, until
pred x evaluates to true. This function returns the first such element, if it exists;
otherwise, it returns NONE.

val filter : (’a -> bool) -> ’a list -> ’a list

filter pred l applies pred to each element x of l, from left to right, and returns
the list of those x for which pred x evaluated to true, in the same order as they oc-
curred in the argument list.

val partition : (’a -> bool)
-> ’a list -> ’a list * ’a list

partition pred l applies pred to each element x of l, from left to right, and
returns a pair (pos, neg), where pos is the list of those x for which pred x evalu-
ated to true, and neg is the list of those for which pred x evaluated to false. The
elements of pos and neg retain the same relative order they possessed in l.

val foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

foldl f init [x1, x2, ..., xn] returns
f(xn,...,f(x2, f(x1, init))...)

or init if the list is empty.

val foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

foldr f init [x1, x2, ..., xn] returns
f(x1, f(x2, ..., f(xn, init)...))

or init if the list is empty.

val exists : (’a -> bool) -> ’a list -> bool

exists pred l applies pred to each element x of the list l, from left to right, until
pred x evaluates to true; it returns true if such an x exists and false otherwise.

val all : (’a -> bool) -> ’a list -> bool

all pred l applies pred to each element x of the list l, from left to right, until
pred x evaluates to false; it returns false if such an x exists and true otherwise.
It is equivalent to not(exists (not o pred) l)).

val collate : (’a * ’a -> order)
-> ’a list * ’a list -> order

collate cmp (l1, l2) performs a lexicographic comparison of the two lists using
the given ordering cmp on the list elements.

184 CHAPTER 11. MANUAL PAGES

Discussion
The list type is considered primitive and is defined in the top-level environment. It is
rebound here for consistency.

Rationale: Lists are usually supported with a large collection of library functions. Here,
we provide a somewhat smaller collection of operations that reflect common usage. We
feel the collection is moderately complete, in that most programs will not need to define
additional list operations. We have tried to adopt names that reflect a consensus from
various existing libraries and texts. We have avoided functions relying on equality types.

See also
General (§11.11; p. 149), ListPair (§11.21; p. 185)

11.21. THE LISTPAIR STRUCTURE 185

11.21 The ListPair structure

The ListPair structure provides operations on pairs of lists. The operations fall into
two categories. Those in the first category, whose names do not end in "Eq", do not
require that the lists have the same length. When the lists are of uneven lengths, the
excess elements from the tail of the longer list are ignored. The operations in the second
category, whose names have the suffix "Eq", differ from their similarly named opera-
tions in the first category only when the list arguments have unequal lengths, in which
case they typically raise the UnequalLengths exception.

Synopsis
signature LIST_PAIR
structure ListPair :> LIST_PAIR

Interface
exception UnequalLengths

val zip : ’a list * ’b list -> (’a * ’b) list
val zipEq : ’a list * ’b list -> (’a * ’b) list
val unzip : (’a * ’b) list -> ’a list * ’b list

val app : (’a * ’b -> unit) -> ’a list * ’b list -> unit
val appEq : (’a * ’b -> unit) -> ’a list * ’b list -> unit
val map : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list
val mapEq : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list
val foldl : (’a * ’b * ’c -> ’c)

-> ’c -> ’a list * ’b list -> ’c
val foldr : (’a * ’b * ’c -> ’c)

-> ’c -> ’a list * ’b list -> ’c
val foldlEq : (’a * ’b * ’c -> ’c)

-> ’c -> ’a list * ’b list -> ’c
val foldrEq : (’a * ’b * ’c -> ’c)

-> ’c -> ’a list * ’b list -> ’c

val all : (’a * ’b -> bool) -> ’a list * ’b list -> bool
val exists : (’a * ’b -> bool) -> ’a list * ’b list -> bool
val allEq : (’a * ’b -> bool) -> ’a list * ’b list -> bool

Description

exception UnequalLengths

This exception is raised by those functions that require arguments of identical length.

186 CHAPTER 11. MANUAL PAGES

val zip : ’a list * ’b list -> (’a * ’b) list
val zipEq : ’a list * ’b list -> (’a * ’b) list

zip (l1, l2)
zipEq (l1, l2)
These functions combine the two lists l1 and l2 into a list of pairs, with the first element
of each list comprising the first element of the result, the second elements comprising the
second element of the result, and so on. If the lists are of unequal lengths, zip ignores
the excess elements from the tail of the longer one, while zipEq raises the exception
UnequalLengths.

val unzip : (’a * ’b) list -> ’a list * ’b list

unzip l returns a pair of lists formed by splitting the elements of l. This function is
the inverse of zip for equal length lists.

val app : (’a * ’b -> unit) -> ’a list * ’b list -> unit
val appEq : (’a * ’b -> unit) -> ’a list * ’b list -> unit

app f (l1, l2)
appEq f (l1, l2)
These apply the function f to the list of pairs of elements generated from left to right
from the lists l1 and l2. If the lists are of unequal lengths, the former ignores the excess
elements from the tail of the longer one and the latter raises UnequalLengths. The
above expressions are respectively equivalent to:

List.app f (zip (l1, l2))
List.app f (zipEq (l1, l2))

ignoring possible side effects of the function f.

val map : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list
val mapEq : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list

map f (l1, l2)
mapEq f (l1, l2)
These map the function f over the list of pairs of elements generated from left to right
from the lists l1 and l2, returning the list of results. If the lists are of unequal lengths,
the former ignores the excess elements from the tail of the longer one and the latter raises
UnequalLengths. The above expressions are respectively equivalent to:

List.map f (zip (l1, l2))
List.map f (zipEq (l1, l2))

ignoring possible side effects of the function f.

11.21. THE LISTPAIR STRUCTURE 187

val foldl : (’a * ’b * ’c -> ’c)
-> ’c -> ’a list * ’b list -> ’c

val foldr : (’a * ’b * ’c -> ’c)
-> ’c -> ’a list * ’b list -> ’c

val foldlEq : (’a * ’b * ’c -> ’c)
-> ’c -> ’a list * ’b list -> ’c

val foldrEq : (’a * ’b * ’c -> ’c)
-> ’c -> ’a list * ’b list -> ’c

foldl f init (l1, l2)
foldr f init (l1, l2)
foldlEq f init (l1, l2)
foldrEq f init (l1, l2)
These functions return the result of folding the function f in the specified direction over
the pair of lists l1 and l2 starting with the value init. They are respectively equivalent
to:

List.foldl f’ init (zip (l1, l2))
List.foldr f’ init (zip (l1, l2))
List.foldl f’ init (zipEq (l1, l2))
List.foldr f’ init (zipEq (l1, l2))

where f’ is fn ((a,b),c) => f(a,b,c) and the possible side-effects of the func-
tion f are ignored.

val all : (’a * ’b -> bool) -> ’a list * ’b list -> bool
val exists : (’a * ’b -> bool) -> ’a list * ’b list -> bool

all pred (l1, l2)
exists pred (l1, l2)
These functions provide short-circuit testing of a predicate over a pair of lists. They are
respectively equivalent to:

List.all pred (zip (l1, l2))
List.exists pred (zip (l1, l2))

val allEq : (’a * ’b -> bool) -> ’a list * ’b list -> bool

allEq pred (l1, l2) returns true if l1 and l2 have equal length and all pairs
of elements satisfy the predicate pred. That is, the expression is equivalent to:

(List.length l1 = List.length l2) andalso
(List.all pred (zip (l1, l2)))

This function does not appear to have any nice algebraic relation with the other functions,
but it is included because it provides a useful notion of equality, which is analogous to the
notion of equality of lists over equality types.

Implementation note: The implementation is simple:
fun allEq p ([], []) = true
| allEq p (x::xs, y::ys) = p(x,y) andalso allEq p (xs,ys)
| allEq _ _ = false

188 CHAPTER 11. MANUAL PAGES

Discussion
Note that a function that requires equal length arguments should check this condition lazily,
i.e., it should act as though the lists have equal length and invoke the user-supplied function
argument but raise the exception UnequalLengths if it arrives at the end of one list
before the end of the other.

See also
List (§11.20; p. 180)

11.22. THE MATH SIGNATURE 189

11.22 The MATH signature

The signature MATH specifies basic mathematical constants, the square root function,
and trigonometric, hyperbolic, exponential, and logarithmic functions based on a real
type. The functions defined here have roughly the same semantics as their counterparts
in ISO C’s math.h.
The top-level structure Math provides these functions for the default real type Real.-

real.
In the functions below, unless specified otherwise, if any argument is a NaN, the

return value is a NaN. In a list of rules specifying the behavior of a function in special
cases, the first matching rule defines the semantics.

Synopsis
signature MATH
structure Math :> MATH
where type real = Real.real

Interface
type real

val pi : real
val e : real

val sqrt : real -> real
val sin : real -> real
val cos : real -> real
val tan : real -> real
val asin : real -> real
val acos : real -> real
val atan : real -> real
val atan2 : real * real -> real
val exp : real -> real
val pow : real * real -> real
val ln : real -> real
val log10 : real -> real
val sinh : real -> real
val cosh : real -> real
val tanh : real -> real

Description

val pi : real

An approximation of the constant π(3.141592653...).

190 CHAPTER 11. MANUAL PAGES

val e : real

An approximation of the base e (2.718281828...) of the natural logarithm.

val sqrt : real -> real

sqrt x returns the square root of x. sqrt (˜0.0) = ˜0.0. If x < 0, it returns
NaN.

val sin : real -> real
val cos : real -> real
val tan : real -> real

sin x
cos x
tan x
These functions return the sine, cosine, and tangent, respectively, of x, measured in radi-
ans. If x is an infinity, these functions return NaN. Note that tan will produce infinities at
various finite values, roughly corresponding to the singularities of the tangent function.

val asin : real -> real
val acos : real -> real

asin x
acos x
These functions return the arc sine and arc cosine, respectively, of x. asin is the inverse
of sin. Its result is guaranteed to be in the closed interval [−π/2, π/2]. acos is the
inverse of cos. Its result is guaranteed to be in the closed interval [0, π]. If the magnitude
of x exceeds 1.0, they return NaN.

val atan : real -> real

atan x returns the arc tangent of x. atan is the inverse of tan. For finite arguments,
the result is guaranteed to be in the open interval (−π/2, π/2). If x is +∞, it returns π/2;
if x is −∞, it returns −π/2.

val atan2 : real * real -> real

atan2 (y, x) returns the arc tangent of (y/x) in the closed interval [−π, π], corre-
sponding to angles within±180 degrees. The quadrant of the resulting angle is determined
using the signs of both x and y and is the same as the quadrant of the point (x,y). When
x = 0 (i.e., an angle of 90 degrees), the result is (real (sign y)) * pi/2.0. It
holds that

sign(cos(atan2(y,x))) = sign(x)

and
sign(sin(atan2(y,x))) = sign(y)

11.22. THE MATH SIGNATURE 191

except for inaccuracies incurred by the finite precision of real and the approximation
algorithms used to compute the mathematical functions.
Rules for exceptional cases are specified in the following table.

y x atan2(y,x)
±0 0 < x ±0
±0 +0 ±0
±0 x < 0 ±π
±0 −0 ±π

y , 0 < y ±0 π/2
y , y < 0 ±0 −π/2

±y , finite y > 0 +∞ ±0
±y , finite y > 0 −∞ ±π

±∞ finite x ±π/2
±∞ +∞ ±π/4
±∞ −∞ ±3π/4

val exp : real -> real

exp x returns ex , i.e., e raised to the xth power. If x is+∞, it returns+∞; if x is−∞,
it returns 0.

val pow : real * real -> real

pow (x, y) returns xy , i.e., x raised to the yth power. For finite x and y , this function
is well defined when x > 0 or when x < 0 and y is integral. Rules for exceptional cases
are specified below.

x y pow(x,y)
x, including NaN 0 1

|x| > 1 +∞ +∞
|x| < 1 +∞ +0
|x| > 1 −∞ +0
|x| < 1 −∞ +∞
+∞ y > 0 +∞
+∞ y < 0 +0
−∞ y > 0, odd integer −∞
−∞ y > 0, not odd integer +∞
−∞ y < 0, odd integer −0
−∞ y < 0, not odd integer +0
x NaN NaN

NaN y �= 0 NaN
±1 ±∞ NaN

finite x < 0 finite non-integer y NaN
±0 y < 0, odd integer ±∞
±0 finite y < 0, not odd integer +∞
±0 y > 0, odd integer ±0
±0 y > 0, not odd integer +0

192 CHAPTER 11. MANUAL PAGES

val ln : real -> real
val log10 : real -> real

ln x
log10 r
These functions return the natural logarithm (base e) and decimal logarithm (base 10),
respectively, of x. If x < 0, they return NaN; if x = 0, they return −∞; if x is ∞, they
return∞.

val sinh : real -> real
val cosh : real -> real
val tanh : real -> real

sinh x
cosh x
tanh x
These functions return the hyperbolic sine, hyperbolic cosine, and hyperbolic tangent, re-
spectively, of x, that is, the values (ex−e−x)/2, (ex+e−x)/2, and (sinh x)/(cosh
x).
These functions have the following properties:

sinh± 0 = ±0
sinh±∞ = ±∞
cosh± 0 = 1
cosh±∞ = ±∞
tanh± 0 = ±0
tanh±∞ = ±1

See also
REAL (§11.50; p. 318)

11.23. THE MONO_ARRAY SIGNATURE 193

11.23 The MONO_ARRAY signature

The MONO_ARRAY signature is a generic interface to monomorphic arrays, which are
mutable sequences with constant-time access and update. Monomorphic arrays allow
more compact representations than the analogous polymorphic arrays over the same
element type.
Arrays have a special equality property: two arrays are equal if they are the same

array, i.e., created by the same call to a primitive array constructor such as array,
fromList, etc.; otherwise they are not equal. This property also holds for arrays of
zero length.

Synopsis
signature MONO_ARRAY
structure Word8Array :> MONO_ARRAY
where type vector = Word8Vector.vector
where type elem = Word8.word

structure CharArray :> MONO_ARRAY
where type vector = CharVector.vector
where type elem = char

structure WideCharArray :> MONO_ARRAY
where type vector = WideCharVector.vector
where type elem = WideChar.char

structure BoolArray :> MONO_ARRAY
where type vector = BoolVector.vector
where type elem = bool

structure IntArray :> MONO_ARRAY
where type vector = IntVector.vector
where type elem = int

structure WordArray :> MONO_ARRAY
where type vector = WordVector.vector
where type elem = word

structure RealArray :> MONO_ARRAY
where type vector = RealVector.vector
where type elem = real

structure LargeIntArray :> MONO_ARRAY
where type vector = LargeIntVector.vector
where type elem = LargeInt.int

structure LargeWordArray :> MONO_ARRAY
where type vector = LargeWordVector.vector
where type elem = LargeWord.word

structure LargeRealArray :> MONO_ARRAY
where type vector = LargeRealVector.vector
where type elem = LargeReal.real

structure IntNArray :> MONO_ARRAY
where type vector = Int{N}Vector.vector
where type elem = Int{N}.int

194 CHAPTER 11. MANUAL PAGES

structure WordNArray :> MONO_ARRAY
where type vector = Word{N}Vector.vector
where type elem = Word{N}.word

structure RealNArray :> MONO_ARRAY
where type vector = Real{N}Vector.vector
where type elem = Real{N}.real

Interface
eqtype array
type elem
type vector

val maxLen : int
val array : int * elem -> array
val fromList : elem list -> array
val vector : array -> vector
val tabulate : int * (int -> elem) -> array

val length : array -> int
val sub : array * int -> elem
val update : array * int * elem -> unit
val copy : {src : array, dst : array, di : int} -> unit
val copyVec : {src : vector, dst : array, di : int} -> unit

val appi : (int * elem -> unit) -> array -> unit
val app : (elem -> unit) -> array -> unit
val modifyi : (int * elem -> elem) -> array -> unit
val modify : (elem -> elem) -> array -> unit
val foldli : (int * elem * ’b -> ’b) -> ’b -> array -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> array -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> array -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> array -> ’b
val findi : (int * elem -> bool)

-> array -> (int * elem) option
val find : (elem -> bool) -> array -> elem option
val exists : (elem -> bool) -> array -> bool
val all : (elem -> bool) -> array -> bool
val collate : (elem * elem -> order)

-> array * array -> order

Description

type vector

The corresponding monomorphic vector type. We denote the length of a vector vec of
type vector by |vec|.

11.23. THE MONO_ARRAY SIGNATURE 195

val maxLen : int

The maximum length of arrays supported by this implementation. Attempts to create larger
arrays will result in the Size exception being raised.

val array : int * elem -> array

array (n, init) creates a new array of length n; each element is initialized to the
value init. If n < 0 or maxLen < n, then the Size exception is raised.

val fromList : elem list -> array

fromList l creates a new array from l, whose length is length l and with the ith

element of l used as the ith element of the array. If the length of the list is greater than
maxLen, then the Size exception is raised.

val vector : array -> vector

vector arr generates a vector from arr. Specifically, if vec is the resulting vector,
we have |vec| = |arr| and, for 0 ≤ i < |arr|, element i of vec is sub (arr, i).

val tabulate : int * (int -> elem) -> array

tabulate (n, f) creates an array of n elements, where the elements are defined
in order of increasing index by applying f to the element’s index. This expression is
equivalent to the following:

fromList (List.tabulate (n, f))
If n < 0 or maxLen < n, then the Size exception is raised.

val length : array -> int

length arr returns |arr|, the number of elements in the array arr.

val sub : array * int -> elem

sub (arr, i) returns the ith element of the array arr. If i < 0 or |arr| ≤ i, then
the Subscript exception is raised.

val update : array * int * elem -> unit

update (arr, i, x) sets the ith element of the array arr to x. If i < 0 or
|arr| ≤ i, then the Subscript exception is raised.

196 CHAPTER 11. MANUAL PAGES

val copy : {src : array, dst : array, di : int} -> unit
val copyVec : {src : vector, dst : array, di : int} -> unit

copy {src, dst, di}
copyVec {src, dst, di}
These functions copy the entire array or vector src into the array dst, with the ith

element in src, for 0 ≤ i < |src|, being copied to position di + i in the destination
array. If di < 0 or if |dst| < di+ |src|, then the Subscript exception is raised.

Implementation note: In copy, if dst and src are equal, we must have di = 0 to
avoid an exception, and copy is then the identity.

val appi : (int * elem -> unit) -> array -> unit
val app : (elem -> unit) -> array -> unit

appi f arr
app f arr
These functions apply the function f to the elements of an array in left-to-right order (i.e.,
increasing indices). The more general appi function supplies both the element and the
element’s index to the function f. The expression app f arr is equivalent to:

appi (f o #2) arr

val modifyi : (int * elem -> elem) -> array -> unit
val modify : (elem -> elem) -> array -> unit

modifyi f arr
modify f arr
These functions apply the function f to the elements of an array in left-to-right order
(i.e., increasing indices) and replace each element with the result of applying f. The
more general modifyi function supplies both the element and the element’s index to the
function f. The expression modify f arr is equivalent to:

modifyi (f o #2) arr

val foldli : (int * elem * ’b -> ’b) -> ’b -> array -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> array -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> array -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> array -> ’b

foldli f init arr
foldri f init arr
foldl f init arr
foldr f init arr
These fold the function f over all the elements of an array, using the value init as the
initial value. The functions foldli and foldl apply the function f from left to right
(increasing indices), while the functions foldri and foldr work from right to left (de-
creasing indices). The more general functions foldli and foldri supply f with the
array index of the corresponding element.
The indexed versions could be implemented as:

11.23. THE MONO_ARRAY SIGNATURE 197

fun foldli f init seq = let
val len = length seq
fun loop (i, b) =

if i = len then b
else loop(i+1,f(i,sub(seq,i),b))

in
loop(0,init)

end

fun foldri f init seq = let
val len = length seq
fun loop (i, b) =

if i = ˜1 then b
else loop(i-1,f(i,sub(seq,i),b))

in
loop(len-1,init)

end
The expression foldl f init arr is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init arr
The analogous equivalences hold for foldri and foldr.

val findi : (int * elem -> bool)
-> array -> (int * elem) option

val find : (elem -> bool) -> array -> elem option

findi pred arr
find pred arr
These functions apply pred to each element of the array arr, from left to right (i.e.,
increasing indices), until a true value is returned. These functions return the first such
element, if it exists; otherwise, they return NONE. The more general version findi also
supplies pred with the array index of the element and, upon finding an entry satisfying
the predicate, returns that index with the element.

val exists : (elem -> bool) -> array -> bool

exists pred arr applies pred to each element x of the array arr, from left to
right (i.e., increasing indices), until pred x evaluates to true; it returns true if such
an x exists and false otherwise.

val all : (elem -> bool) -> array -> bool

all pred arr applies pred to each element x of the array arr, from left to right
(i.e., increasing indices), until pred x evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) arr)).

val collate : (elem * elem -> order)
-> array * array -> order

collate cmp (a1, a2) performs a lexicographic comparison of the two arrays us-
ing the given ordering cmp on elements.

198 CHAPTER 11. MANUAL PAGES

Discussion
If an implementation provides a structure matching MONO_ARRAY for some element type
ty, it must provide the corresponding monomorphic structure matching MONO_VECTOR
with the vector types in the two structures identified.

See also
Array (§11.1; p. 112), MONO_ARRAY_SLICE (§11.25; p. 205),
MONO_VECTOR (§11.26; p. 211), MONO_VECTOR_SLICE (§11.27; p. 215)

11.24. THE MONO_ARRAY2 SIGNATURE 199

11.24 The MONO_ARRAY2 signature

The MONO_ARRAY2 signature is a generic interface to mutable two-dimensional arrays.
As usual, arrays have the equality property that two arrays are equal only if they are the
same array, i.e., created by the same call to a primitive array constructor such as array,
fromList, etc.; otherwise they are not equal. This property also holds for arrays of
zero length.
The elements of two-dimensional arrays are indexed by a pair of integers (i,j),

where i gives the row index and i gives the column index. As usual, indices start at
0, with increasing indices going from left to right and, in the case of rows, from top to
bottom.

Synopsis
signature MONO_ARRAY2
structure Word8Array2 :> MONO_ARRAY2
where type vector = Word8Vector.vector
where type elem = Word8.word

structure CharArray2 :> MONO_ARRAY2
where type vector = CharVector.vector
where type elem = char

structure WideCharArray2 :> MONO_ARRAY2
where type vector = WideCharVector.vector
where type elem = WideChar.char

structure BoolArray2 :> MONO_ARRAY2
where type vector = BoolVector.vector
where type elem = bool

structure IntArray2 :> MONO_ARRAY2
where type vector = IntVector.vector
where type elem = int

structure WordArray2 :> MONO_ARRAY2
where type vector = WordVector.vector
where type elem = word

structure RealArray2 :> MONO_ARRAY2
where type vector = RealVector.vector
where type elem = real

structure LargeIntArray2 :> MONO_ARRAY2
where type vector = LargeIntVector.vector
where type elem = LargeInt.int

structure LargeWordArray2 :> MONO_ARRAY2
where type vector = LargeWordVector.vector
where type elem = LargeWord.word

structure LargeRealArray2 :> MONO_ARRAY2
where type vector = LargeRealVector.vector
where type elem = LargeReal.real

structure IntNArray2 :> MONO_ARRAY2
where type vector = Int{N}Vector.vector
where type elem = Int{N}.int

200 CHAPTER 11. MANUAL PAGES

structure WordNArray2 :> MONO_ARRAY2
where type vector = Word{N}Vector.vector
where type elem = Word{N}.word

structure RealNArray2 :> MONO_ARRAY2
where type vector = Real{N}Vector.vector
where type elem = Real{N}.real

Interface
eqtype array
type elem
type vector
type region = {

base : array,
row : int,
col : int,
nrows : int option,
ncols : int option

}
datatype traversal = datatype Array2.traversal

val array : int * int * elem -> array
val fromList : elem list list -> array
val tabulate : traversal

-> int * int * (int * int -> elem)
-> array

val sub : array * int * int -> elem
val update : array * int * int * elem -> unit

val dimensions : array -> int * int
val nCols : array -> int
val nRows : array -> int

val row : array * int -> vector
val column : array * int -> vector

val copy : {
src : region,
dst : array,
dst_row : int,
dst_col : int

} -> unit

val appi : traversal
-> (int * int * elem -> unit)
-> region -> unit

val app : traversal -> (elem -> unit) -> array -> unit

11.24. THE MONO_ARRAY2 SIGNATURE 201

val foldi : traversal
-> (int * int * elem * ’b -> ’b)

-> ’b -> region -> ’b
val fold : traversal

-> (elem * ’b -> ’b) -> ’b -> array -> ’b
val modifyi : traversal

-> (int * int * elem -> elem)
-> region -> unit

val modify : traversal -> (elem -> elem) -> array -> unit

Description

type vector

The type of one-dimensional immutable vectors of the underlying element type.

type region = {
base : array,
row : int,
col : int,
nrows : int option,
ncols : int option

}

This type specifies a rectangular subregion of a two-dimensional array. If ncols equals
SOME(w), the region includes only those elements in columns with indices in the range
from w to col+ (w − 1), inclusively. If ncols = NONE, the region includes only those
elements lying on or to the right of column col. A similar interpretation holds for the row
and nrows fields. Thus, the region corresponds to all those elements with position (i, j)
such that i lies in the specified range of rows and j lies in the specified range of columns.
A region reg is said to be valid if it denotes a legal subarray of its base array. More

specifically, reg is valid if

0 ≤ #row reg ≤ nRows (#base reg)

when #nrows reg = NONE, or

0 ≤ #row reg ≤ (#row reg)+ nr ≤ nRows (#base reg)

when #nrows reg = SOME(nr), and the analogous conditions hold for columns.

datatype traversal = datatype Array2.traversal

This type specifies ways of traversing an array or region. For more complete information,
see the entry for Array2.traversal.

val array : int * int * elem -> array

array (r, c, init) creates a new array with r rows and c columns, with each
element initialized to the value init. If r < 0, c < 0, or the resulting array size is too
large, the Size exception is raised.

202 CHAPTER 11. MANUAL PAGES

val fromList : elem list list -> array

fromList l creates a new array from a list of rows, each of which is a list of elements.
Thus, the elements are given in row major order, i.e., hd l gives the first row, hd (tl
l) gives the second row, etc. This function raises the Size exception if the resulting array
would be too large or if the lists in l do not all have the same length.

val tabulate : traversal
-> int * int * (int * int -> elem)

-> array

tabulate tr (r, c, f) creates a new array with r rows and c columns, with the
(i,j)th element initialized to f (i,j). The elements are initialized in the traversal order
specified by tr. If r < 0, c < 0, or the resulting array size is too large, the Size
exception is raised.

val sub : array * int * int -> elem

sub (arr, i, j) returns the (i,j)th element of the array arr. If i < 0, j < 0,
nRows arr ≤ i, or nCols arr ≤ j, then the Subscript exception is raised.

val update : array * int * int * elem -> unit

update (arr, i, j, a) sets the (i,j)th element of the array arr to a. If i < 0,
j < 0, nRows arr ≤ i, or nCols arr ≤ j, then the Subscript exception is raised.

val dimensions : array -> int * int
val nCols : array -> int
val nRows : array -> int

dimensions arr
nCols arr
nRows arr
These functions return size information concerning the array arr. nCols returns the
number of columns, nRows returns the number of rows, and dimension returns a pair
containing the number of rows and columns of the array. The functions nRows and nCols
are respectively equivalent to #1 o dimensions and #2 o dimensions

val row : array * int -> vector

row (arr, i) returns row i of arr. It raises Subscript if i < 0 or nRows arr ≤
i.

val column : array * int -> vector

column (arr, j) returns column j of arr. It raises Subscript if j < 0 or
nCols arr ≤ j.

11.24. THE MONO_ARRAY2 SIGNATURE 203

val copy : {
src : region,
dst : array,
dst_row : int,
dst_col : int

} -> unit

copy {src, dst, dst_row, dst_col} copies the region src into the array
dst, with the (#row src,#col src)th element being copied into the destination array
at position (dst_row ,dst_col). If the source region is not valid, then the Subscript
exception is raised. Similarly, if the derived destination region (the source region src
translated to (dst_row ,dst_col)) is not valid in dst, then the Subscript exception
is raised.

Implementation note: The copy function must correctly handle the case in which
src and dst are equal and the source and destination regions overlap.

val appi : traversal
-> (int * int * elem -> unit)
-> region -> unit

val app : traversal -> (elem -> unit) -> array -> unit

appi tr f reg
app tr f arr
These apply the function f to the elements of an array in the order specified by tr. The
more general appi function applies f to the elements of the region reg and supplies both
the element and the element’s coordinates in the base array to the function f. If reg is not
valid, then the exception Subscript is raised.
The function app applies f to the whole array and does not supply the element’s coor-

dinates to f. Thus the expression app tr f arr is equivalent to:
appi tr (f o #3) (arr, {row=0,col=0,nrows=NONE,ncols=NONE})

val foldi : traversal
-> (int * int * elem * ’b -> ’b)

-> ’b -> region -> ’b
val fold : traversal

-> (elem * ’b -> ’b) -> ’b -> array -> ’b

foldi tr f init reg
fold tr f init arr
These fold the function f over the elements of an array arr, traversing the elements
in tr order and using the value init as the initial value. The more general foldi
function applies f to the elements of the region reg and supplies both the element and
the element’s coordinates in the base array to the function f. If reg is not valid, then the
exception Subscript is raised.
The function fold applies f to the whole array and does not supply the element’s

coordinates to f. Thus the expression fold tr f init arr is equivalent to:
foldi tr (fn (_,_,a,b) => f (a,b)) init

(arr, {row=0, col=0, nrows=NONE, ncols=NONE})

204 CHAPTER 11. MANUAL PAGES

val modifyi : traversal
-> (int * int * elem -> elem)
-> region -> unit

val modify : traversal -> (elem -> elem) -> array -> unit

modifyi tr f reg
modify tr f arr
These apply the function f to the elements of an array in the order specified by tr and
replace each element with the result of f. The more general modifyi function applies
f to the elements of the region reg and supplies both the element and the element’s
coordinates in the base array to the function f. If reg is not valid, then the exception
Subscript is raised.
The function modify applies f to the whole array and does not supply the element’s

coordinates to f. Thus the expression modify f arr is equivalent to:
modifyi (f o #3) (arr, {row=0,col=0,nrows=NONE,ncols=NONE})

Discussion
If an implementation provides any structure matching MONO_ARRAY2, it must also supply
the structure Array2 and its signature ARRAY2.

Note that the indices passed to argument functions in appi, foldi, and modifyi
are with respect to the underlying matrix and not based on the region. This convention is
different from that of the analogous functions on one-dimensional slices.

Implementation note: Unlike one-dimensional types, the signature for two-dimensional
arrays does not specify any bounds on possible arrays. Implementations should support a
total number of elements that is at least as large as the total number of elements in the
corresponding one-dimension array type.

See also
Array2 (§11.2; p. 116)

11.25. THE MONO_ARRAY_SLICE SIGNATURE 205

11.25 The MONO_ARRAY_SLICE signature

The MONO_ARRAY_SLICE signature provides an abstraction of subarrays for monomor-
phic arrays. A slice value can be viewed as a triple (a, i, n), where a is the
underlying array, i is the starting index, and n is the length of the subarray, with the
constraint that 0 ≤ i ≤ i + n ≤ |a|, where |a| is the length of the array a. Slices
provide a convenient notation for specifying and operating on a contiguous subset of
elements in an array.

Synopsis
signature MONO_ARRAY_SLICE
structure Word8ArraySlice :> MONO_ARRAY_SLICE

where type vector = Word8Vector.vector
where type vector_slice = Word8VectorSlice.slice
where type array = Word8Array.array
where type elem = Word8.word

structure CharArraySlice :> MONO_ARRAY_SLICE
where type vector = CharVector.vector
where type vector_slice = CharVectorSlice.slice
where type array = CharArray.array
where type elem = char

structure WideCharArraySlice :> MONO_ARRAY_SLICE
where type vector = WideCharVector.vector
where type vector_slice = WideCharVectorSlice.slice
where type array = WideCharArray.array
where type elem = WideChar.char

structure BoolArraySlice :> MONO_ARRAY_SLICE
where type vector = BoolVector.vector
where type vector_slice = BoolVectorSlice.slice
where type array = BoolArray.array
where type elem = bool

structure IntArraySlice :> MONO_ARRAY_SLICE
where type vector = IntVector.vector
where type vector_slice = IntVectorSlice.slice
where type array = IntArray.array
where type elem = int

structure WordArraySlice :> MONO_ARRAY_SLICE
where type vector = WordVector.vector
where type vector_slice = WordVectorSlice.slice
where type array = WordArray.array
where type elem = word

structure RealArraySlice :> MONO_ARRAY_SLICE
where type vector = RealVector.vector
where type vector_slice = RealVectorSlice.slice
where type array = RealArray.array
where type elem = real

206 CHAPTER 11. MANUAL PAGES

structure LargeIntArraySlice :> MONO_ARRAY_SLICE
where type vector = LargeIntVector.vector
where type vector_slice = LargeIntVectorSlice.slice
where type array = LargeIntArray.array
where type elem = LargeInt.int

structure LargeWordArraySlice :> MONO_ARRAY_SLICE
where type vector = LargeWordVector.vector
where type vector_slice = LargeWordVectorSlice.slice
where type array = LargeWordArray.array
where type elem = LargeWord.word

structure LargeRealArraySlice :> MONO_ARRAY_SLICE
where type vector = LargeRealVector.vector
where type vector_slice = LargeRealVectorSlice.slice
where type array = LargeRealArray.array
where type elem = LargeReal.real

structure IntNArraySlice :> MONO_ARRAY_SLICE
where type vector = Int{N}Vector.vector
where type vector_slice = Int{N}VectorSlice.slice
where type array = Int{N}Array.array
where type elem = Int{N}.int

structure WordNArraySlice :> MONO_ARRAY_SLICE
where type vector = Word{N}Vector.vector
where type vector_slice = Word{N}VectorSlice.slice
where type array = Word{N}Array.array
where type elem = Word{N}.word

structure RealNArraySlice :> MONO_ARRAY_SLICE
where type vector = Real{N}Vector.vector
where type vector_slice = Real{N}VectorSlice.slice
where type array = Real{N}Array.array
where type elem = Real{N}.real

Interface
type elem
type array
type slice
type vector
type vector_slice
val length : slice -> int
val sub : slice * int -> elem
val update : slice * int * elem -> unit
val full : array -> slice
val slice : array * int * int option -> slice
val subslice : slice * int * int option -> slice
val base : slice -> array * int * int
val vector : slice -> vector
val copy : {src : slice, dst : array, di : int} -> unit
val copyVec : {src : vector_slice, dst : array, di : int}

-> unit
val isEmpty : slice -> bool
val getItem : slice -> (elem * slice) option

11.25. THE MONO_ARRAY_SLICE SIGNATURE 207

val appi : (int * elem -> unit) -> slice -> unit
val app : (elem -> unit) -> slice -> unit
val modifyi : (int * elem -> elem) -> slice -> unit
val modify : (elem -> elem) -> slice -> unit
val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val findi : (int * elem -> bool)

-> slice -> (int * elem) option
val find : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool
val all : (elem -> bool) -> slice -> bool
val collate : (elem * elem -> order)

-> slice * slice -> order

Description

type array

The underlying monomorphic array type. We denote the length of an array arr of type
array by |arr|.

type vector

The underlying monomorphic vector type. We denote the length of a vector vec of type
vector by |vec|.

type vector_slice

Slices of the monomorphic vector type.

val length : slice -> int

length sl returns |sl|, the length (i.e., number of elements) of the slice.

val sub : slice * int -> elem

sub (sl, i) returns the ith element of the slice sl. If i < 0 or |sl| ≤ i, then the
Subscript exception is raised.

val update : slice * int * elem -> unit

update (sl, i, a) sets the ith element of the slice sl to a. If i < 0 or |sl| ≤ i,
then the Subscript exception is raised.

208 CHAPTER 11. MANUAL PAGES

val full : array -> slice

full arr creates a slice representing the entire array arr. It is equivalent to the ex-
pression slice(arr, 0, NONE).

val slice : array * int * int option -> slice

slice (arr, i, sz) creates a slice based on the array arr starting at index i of
the array arr. If sz is NONE, the slice includes all of the elements to the end of the array,
i.e., arr[i..|arr| − 1]. This function raises Subscript if i < 0 or |arr| < i. If sz
is SOME(j), the slice has length j, that is, it corresponds to arr[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |arr| < i + j. Note that, if defined, slice returns
an empty slice when i = |arr|.

val subslice : slice * int * int option -> slice

subslice (sl, i, sz) creates a slice based on the given slice sl starting at index
i of sl. If sz is NONE, the slice includes all of the elements to the end of the slice,
i.e., sl[i..|sl| − 1]. This function raises Subscript if i < 0 or |sl| < i. If sz
is SOME(j), the slice has length j, that is, it corresponds to sl[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |sl| < i+ j. Note that, if defined, slice returns an
empty slice when i = |sl|.

val base : slice -> array * int * int

base sl returns a triple (arr, i, n) representing the concrete representation of the
slice. arr is the underlying array, i is the starting index, and n is the length of the slice.

val vector : slice -> vector

vector sl generates a vector from the slice sl. Specifically, if vec is the resulting
vector, we have |vec| = length sl and, for 0 ≤ i < length sl, element i of vec
is sub (sl, i).

val copy : {src : slice, dst : array, di : int} -> unit
val copyVec : {src : vector_slice, dst : array, di : int}

-> unit

copy {src, dst, di}
copyVec {src, dst, di}
These functions copy the given slice into the array dst, with element sub (src,i), for
0 ≤ i < |src|, being copied to position di+ i in the destination array. If di < 0, or if
|dst| < di+ |src|, then the Subscript exception is raised.

Implementation note: The copy function must correctly handle the case in which
dst and the base array of src are equal and the source and destination slices overlap.

11.25. THE MONO_ARRAY_SLICE SIGNATURE 209

val isEmpty : slice -> bool

isEmpty sl returns true if sl has length 0.

val getItem : slice -> (elem * slice) option

getItem sl returns the first item in sl and the rest of the slice, or NONE if sl is
empty.

val appi : (int * elem -> unit) -> slice -> unit
val app : (elem -> unit) -> slice -> unit

appi f sl
app f sl
These functions apply the function f to the elements of a slice in left-to-right order (i.e.,
increasing indices). The more general appi function supplies f with the index of the
corresponding element in the slice. The expression app f sl is equivalent to appi (f
o #2) sl.

val modifyi : (int * elem -> elem) -> slice -> unit
val modify : (elem -> elem) -> slice -> unit

modifyi f sl
modify f sl
These functions apply the function f to the elements of an array slice in left-to-right or-
der (i.e., increasing indices) and replace each element with the result. The more general
modifyi supplies f with the index of the corresponding element in the slice. The expres-
sion modify f sl is equivalent to modifyi (f o #2) sl.

val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

foldli f init sl
foldr f init sl
foldl f init sl
foldri f init sl
These fold the function f over all the elements of an array slice, using the value init
as the initial value. The functions foldli and foldl apply the function f from left to
right (increasing indices), while the functions foldri and foldr work from right to left
(decreasing indices). The more general functions foldli and foldri supply f with the
index of the corresponding element in the slice.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.
The expression foldl f init sl is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init sl
The analogous equivalence holds for foldri and foldr.

210 CHAPTER 11. MANUAL PAGES

val findi : (int * elem -> bool)
-> slice -> (int * elem) option

val find : (elem -> bool) -> slice -> elem option

findi pred sl
find pred sl
These functions apply pred to each element of the slice sl, from left to right (i.e., increas-
ing indices), until a true value is returned. These functions return the first such element,
if it exists; otherwise, they return NONE. The more general version findi also supplies
pred with the index of the element in the slice and, upon finding an entry satisfying the
predicate, returns that index with the element.

val exists : (elem -> bool) -> slice -> bool

exists pred sl applies pred to each element x of the slice sl, from left to right
(i.e., increasing indices), until pred x evaluates to true; it returns true if such an x
exists and false otherwise.

val all : (elem -> bool) -> slice -> bool

all pred sl applies pred to each element x of the slice sl, from left to right (i.e.,
increasing indices), until pred x evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) l)).

val collate : (elem * elem -> order)
-> slice * slice -> order

collate cmp (sl, sl2) performs a lexicographic comparison of the two slices
using the given ordering cmp on elements.

Discussion
If an implementation provides a structure matching MONO_ARRAY_SLICE for some ele-
ment type ty, then it must also provide the corresponding monomorphic structures match-
ing the signatures MONO_VECTOR_SLICE, MONO_ARRAY, and MONO_VECTOR, with
the vector, array, and vector slice types all respectively identified.

See also
ArraySlice (§11.3; p. 122), MONO_ARRAY (§11.23; p. 193),
MONO_VECTOR (§11.26; p. 211), MONO_VECTOR_SLICE (§11.27; p. 215)

11.26. THE MONO_VECTOR SIGNATURE 211

11.26 The MONO_VECTOR signature

The MONO_VECTOR signature is a generic interface to monomorphic vectors, which
are immutable sequences with constant-time access. Monomorphic vectors allow more
compact representations than the analogous polymorphic vectors over the same element
type.

Synopsis
signature MONO_VECTOR
structure Word8Vector :> MONO_VECTOR
where type elem = Word8.word

structure CharVector :> MONO_VECTOR
where type vector = String.string
where type elem = char

structure WideCharVector :> MONO_VECTOR
where type vector = WideString.string
where type elem = WideChar.char

structure BoolVector :> MONO_VECTOR
where type elem = bool

structure IntVector :> MONO_VECTOR
where type elem = int

structure WordVector :> MONO_VECTOR
where type elem = word

structure RealVector :> MONO_VECTOR
where type elem = real

structure LargeIntVector :> MONO_VECTOR
where type elem = LargeInt.int

structure LargeWordVector :> MONO_VECTOR
where type elem = LargeWord.word

structure LargeRealVector :> MONO_VECTOR
where type elem = LargeReal.real

structure IntNVector :> MONO_VECTOR
where type elem = Int{N}.int

structure WordNVector :> MONO_VECTOR
where type elem = Word{N}.word

structure RealNVector :> MONO_VECTOR
where type elem = Real{N}.real

Interface
type vector
type elem

val maxLen : int
val fromList : elem list -> vector
val tabulate : int * (int -> elem) -> vector
val length : vector -> int
val sub : vector * int -> elem

212 CHAPTER 11. MANUAL PAGES

val update : vector * int * elem -> vector
val concat : vector list -> vector
val appi : (int * elem -> unit) -> vector -> unit
val app : (elem -> unit) -> vector -> unit
val mapi : (int * elem -> elem) -> vector -> vector
val map : (elem -> elem) -> vector -> vector
val foldli : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldri : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldl : (elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldr : (elem * ’a -> ’a) -> ’a -> vector -> ’a
val findi : (int * elem -> bool)

-> vector -> (int * elem) option
val find : (elem -> bool) -> vector -> elem option
val exists : (elem -> bool) -> vector -> bool
val all : (elem -> bool) -> vector -> bool
val collate : (elem * elem -> order)

-> vector * vector -> order

Description

val maxLen : int

The maximum length of vectors supported by this implementation. Attempts to create
larger vectors will result in the Size exception being raised.

val fromList : elem list -> vector

fromList l creates a new vector from l, whose length is length l and with the ith

element of l used as the ith element of the vector. If the length of the list is greater than
maxLen, then the Size exception is raised.

val tabulate : int * (int -> elem) -> vector

tabulate (n, f) creates a vector of n elements, where the elements are defined in
order of increasing index by applying f to the element’s index. This is expression to the
following:

fromList (List.tabulate (n, f))
If n < 0 or maxLen < n, then the Size exception is raised.

val length : vector -> int

length vec returns |vec|, the length (i.e., the number of elements) of the vector vec.

val sub : vector * int -> elem

sub (vec, i) returns the ith element of the vector vec. If i < 0 or |vec| ≤ i, then
the Subscript exception is raised.

11.26. THE MONO_VECTOR SIGNATURE 213

val update : vector * int * elem -> vector

update (vec, i, x) returns a new vector, identical to vec, except the ith element
of vec is set to x. If i < 0 or |vec| ≤ i, then the Subscript exception is raised.

val concat : vector list -> vector

concat l returns the vector that is the concatenation of the vectors in the list l. If the
total length of these vectors exceeds maxLen, then the Size exception is raised.

val appi : (int * elem -> unit) -> vector -> unit
val app : (elem -> unit) -> vector -> unit

appi f vec
app f vec
These functions apply the function f to the elements of a vector in left-to-right order (i.e.,
increasing indices). The more general appi function supplies both the element and the
element’s index to the function f. The expression app f vec is equivalent to:

appi (f o #2) vec

val mapi : (int * elem -> elem) -> vector -> vector
val map : (elem -> elem) -> vector -> vector

mapi f vec
map f vec
These functions produce new vectors by mapping the function f from left to right over
the argument vector. The more general mapi function supplies both the element and the
element’s index to the function f. The expression mapi f vec is equivalent to:

fromList (
List.map f (foldri (fn (i,a,l) => (i,a)::l) [] vec))

The expression map f vec is equivalent to:
mapi (f o #2) vec

val foldli : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldri : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldl : (elem * ’a -> ’a) -> ’a -> vector -> ’a
val foldr : (elem * ’a -> ’a) -> ’a -> vector -> ’a

foldli f init vec
foldri f init vec
foldl f init vec
foldr f init vec
These fold the function f over all the elements of a vector, using the value init as the
initial value. The functions foldli and foldl apply the function f from left to right
(increasing indices), while the functions foldri and foldr work from right to left (de-
creasing indices). The more general functions foldli and foldri supply both the
element and the element’s index to the function f.

214 CHAPTER 11. MANUAL PAGES

Refer to the MONO_ARRAY manual pages for reference implementations of the indexed
versions.
The expression foldl f is equivalent to:

foldli (fn (_, a, x) => f(a, x))
A similar relation holds between foldr and foldri.

val findi : (int * elem -> bool)
-> vector -> (int * elem) option

val find : (elem -> bool) -> vector -> elem option

findi pred vec
find pred vec
These functions apply pred to each element of the vector vec, from left to right (i.e.,
increasing indices), until a true value is returned. These functions return the first such
element, if it exists; otherwise, they return NONE. The more general version findi also
supplies pred with the vector index of the element and, upon finding an entry satisfying
the predicate, returns that index with the element.

val exists : (elem -> bool) -> vector -> bool

exists pred vec applies pred to each element x of the vector vec, from left to
right (i.e., increasing indices), until pred x evaluates to true; it returns true if such
an x exists and false otherwise.

val all : (elem -> bool) -> vector -> bool

all pred vec applies pred to each element x of the vector vec, from left to right
(i.e., increasing indices), until pred x evaluates to false; it returns false if such
an x exists and true otherwise. It is equivalent to not(exists (not o pred)
vec)).

val collate : (elem * elem -> order)
-> vector * vector -> order

collate cmp (v1, v2) performs a lexicographic comparison of the two vectors
using the given ordering cmp on elements.

Discussion
The type String.string is identical to CharVector.vector.

See also
MONO_ARRAY (§11.23; p. 193), MONO_ARRAY_SLICE (§11.25; p. 205),
MONO_VECTOR_SLICE (§11.27; p. 215), Vector (§11.64; p. 401)

11.27. THE MONO_VECTOR_SLICE SIGNATURE 215

11.27 The MONO_VECTOR_SLICE signature

The MONO_VECTOR_SLICE signature provides an abstraction of subarrays for monomor-
phic immutable arrays or vectors. A slice value can be viewed as a triple (v, i,
n), where v is the underlying vector, i is the starting index, and n is the length of the
subarray, with the constraint that 0 ≤ i ≤ i + n ≤ |v|, where |v| is the length of
the vector v . Slices provide a convenient notation for specifying and operating on a
contiguous subset of elements in a vector.

Synopsis
signature MONO_VECTOR_SLICE
structure Word8VectorSlice :> MONO_VECTOR_SLICE

where type vector = Word8Vector.vector
where type elem = Word8.word

structure CharVectorSlice :> MONO_VECTOR_SLICE
where type slice = Substring.substring
where type vector = String.string
where type elem = char

structure WideCharVectorSlice :> MONO_VECTOR_SLICE
where type slice = WideSubstring.substring
where type vector = WideString.string
where type elem = WideChar.char

structure BoolVectorSlice :> MONO_VECTOR_SLICE
where type vector = BoolVector.vector
where type elem = bool

structure IntVectorSlice :> MONO_VECTOR_SLICE
where type vector = IntVector.vector
where type elem = int

structure WordVectorSlice :> MONO_VECTOR_SLICE
where type vector = WordVector.vector
where type elem = word

structure RealVectorSlice :> MONO_VECTOR_SLICE
where type vector = RealVector.vector
where type elem = real

structure LargeIntVectorSlice :> MONO_VECTOR_SLICE
where type vector = LargeIntVector.vector
where type elem = LargeInt.int

structure LargeWordVectorSlice :> MONO_VECTOR_SLICE
where type vector = LargeWordVector.vector
where type elem = LargeWord.word

structure LargeRealVectorSlice :> MONO_VECTOR_SLICE
where type vector = LargeRealVector.vector
where type elem = LargeReal.real

structure IntNVectorSlice :> MONO_VECTOR_SLICE
where type elem = Int{N}.int
where type vector = Int{N}Vector.vector

structure WordNVectorSlice :> MONO_VECTOR_SLICE
where type elem = Word{N}.word
where type vector = Word{N}Vector.vector

216 CHAPTER 11. MANUAL PAGES

structure RealNVectorSlice :> MONO_VECTOR_SLICE
where type elem = Real{N}.real
where type vector = Real{N}Vector.vector

Interface
type elem
type vector
type slice

val length : slice -> int
val sub : slice * int -> elem
val full : vector -> slice
val slice : vector * int * int option -> slice
val subslice : slice * int * int option -> slice
val base : slice -> vector * int * int
val vector : slice -> vector
val concat : slice list -> vector
val isEmpty : slice -> bool
val getItem : slice -> (elem * slice) option
val appi : (int * elem -> unit) -> slice -> unit
val app : (elem -> unit) -> slice -> unit
val mapi : (int * elem -> elem) -> slice -> vector
val map : (elem -> elem) -> slice -> vector
val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val findi : (int * elem -> bool)

-> slice -> (int * elem) option
val find : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool
val all : (elem -> bool) -> slice -> bool
val collate : (elem * elem -> order)

-> slice * slice -> order

Description

type vector

The underlying monomorphic vector type. We denote the length of a vector vec of type
vector by |vec|.

val length : slice -> int

length sl returns |sl|, the length (i.e., number of elements) of the slice.

11.27. THE MONO_VECTOR_SLICE SIGNATURE 217

val sub : slice * int -> elem

sub (sl, i) returns the ith element of the slice sl. If i < 0 or |sl| ≤ i, then the
Subscript exception is raised.

val full : vector -> slice

full vec creates a slice representing the entire vector vec. It is equivalent to the
expression slice(vec, 0, NONE).

val slice : vector * int * int option -> slice

slice (vec, i, sz) creates a slice based on the vector vec starting at index i of
the vector vec. If sz is NONE, the slice includes all of the elements to the end of the
vector, i.e., vec[i..|vec|−1]. This function raises Subscript if i < 0 or |vec| < i.
If sz is SOME(j), the slice has length j, that is, it corresponds to vec[i..i+j-1]. It
raises Subscript if i < 0 or j < 0 or |vec| < i + j. Note that, if defined, slice
returns an empty slice when i = |vec|.

val subslice : slice * int * int option -> slice

subslice (sl, i, sz) creates a slice based on the given slice sl starting at index
i of sl. If sz is NONE, the slice includes all of the elements to the end of the slice,
i.e., sl[i..|sl| − 1]. This function raises Subscript if i < 0 or |sl| < i. If sz
is SOME(j), the slice has length j, that is, it corresponds to sl[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |sl| < i+ j. Note that, if defined, slice returns an
empty slice when i = |sl|.

val base : slice -> vector * int * int

base sl returns a triple (vec, i, n) representing the concrete representation of the
slice. vec is the underlying vector, i is the starting index, and n is the length of the slice.

val vector : slice -> vector

vector sl extracts a vector from the slice sl. Specifically, if vec is the resulting
vector, we have |vec| = |sl|, and element i of vec is sub (sl, i), for 0 ≤ i <
|sl|.

val concat : slice list -> vector

concat l is the concatenation of all the vectors in l. This function raises Size if
the sum of all the lengths is greater than the maximum length allowed by vectors of type
vector.

218 CHAPTER 11. MANUAL PAGES

val isEmpty : slice -> bool

isEmpty sl returns true if sl has length 0.

val getItem : slice -> (elem * slice) option

getItem sl returns the first item in sl and the rest of the slice, or NONE if sl is
empty.

val appi : (int * elem -> unit) -> slice -> unit
val app : (elem -> unit) -> slice -> unit

appi f sl
app f sl
These functions apply the function f to the elements of a slice in left-to-right order (i.e.,
increasing indices). The more general appi function supplies f with the index of the
corresponding element in the slice. The expression app f sl is equivalent to appi (f
o #2) sl.

val mapi : (int * elem -> elem) -> slice -> vector
val map : (elem -> elem) -> slice -> vector

mapi f sl
map f sl
These functions generate new vectors by mapping the function f from left to right over
the argument slice. The more general mapi function supplies both the element and the
element’s index in the slice to the function f. The latter expression is equivalent to:

mapi (f o #2) sl

val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b
val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

foldli f init sl
foldr f init sl
foldl f init sl
foldri f init sl
These fold the function f over all the elements of a vector slice, using the value init
as the initial value. The functions foldli and foldl apply the function f from left to
right (increasing indices), while the functions foldri and foldr work from right to left
(decreasing indices). The more general functions foldli and foldri supply f with the
index of the corresponding element in the slice.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.
The expression foldl f init sl is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init sl
The analogous equivalence holds for foldri and foldr.

11.27. THE MONO_VECTOR_SLICE SIGNATURE 219

val findi : (int * elem -> bool)
-> slice -> (int * elem) option

val find : (elem -> bool) -> slice -> elem option

findi pred sl
find pred sl
These functions apply pred to each element of the slice sl, from left to right (i.e., increas-
ing indices), until a true value is returned. These functions return the first such element,
if it exists; otherwise, they return NONE. The more general version findi also supplies
pred with the index of the element in the slice and, upon finding an entry satisfying the
predicate, returns that index with the element.

val exists : (elem -> bool) -> slice -> bool

exists pred sl applies pred to each element x of the slice sl, from left to right
(i.e., increasing indices), until pred x evaluates to true; it returns true if such an x
exists and false otherwise.

val all : (elem -> bool) -> slice -> bool

all pred sl applies pred to each element x of the slice sl, from left to right (i.e.,
increasing indices), until pred x evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) sl)).

val collate : (elem * elem -> order)
-> slice * slice -> order

collate cmp (sl, sl2) performs a lexicographic comparison of the two slices
using the given ordering cmp on elements.

Discussion
If an implementation provides a structure matching MONO_VECTOR_SLICE for some
element type ty, it must provide the corresponding monomorphic structure matching
MONO_VECTOR with the vector types in the two structures identified.

See also
MONO_ARRAY (§11.23; p. 193), MONO_ARRAY_SLICE (§11.25; p. 205),
MONO_VECTOR (§11.26; p. 211), VectorSlice (§11.65; p. 405)

220 CHAPTER 11. MANUAL PAGES

11.28 The NetHostDB structure

This structure accesses the information contained in the network host database. The data
might be retrieved from a file such as /etc/hosts on older Unix systems or dynami-
cally via some network communication. The structure can be used to convert host names
(e.g., "cs.uchicago.edu") to Internet addresses (e.g., "128.135.11.87").

Synopsis
signature NET_HOST_DB
structure NetHostDB :> NET_HOST_DB

Interface
eqtype in_addr
eqtype addr_family
type entry

val name : entry -> string
val aliases : entry -> string list
val addrType : entry -> addr_family
val addr : entry -> in_addr
val addrs : entry -> in_addr list
val getByName : string -> entry option
val getByAddr : in_addr -> entry option
val getHostName : unit -> string

val toString : in_addr -> string
val scan : (char, ’a) StringCvt.reader

-> (in_addr, ’a) StringCvt.reader
val fromString : string -> in_addr option

Description

eqtype in_addr

The type representing an Internet address.

eqtype addr_family

The type representing address families (also known as domains).

type entry

The type representing an entry from the host database.

val name : entry -> string

name en returns the official name of the host described by entry en.

11.28. THE NETHOSTDB STRUCTURE 221

val aliases : entry -> string list

aliases en returns the alias list of the host described by entry en.

val addrType : entry -> addr_family

addrType en returns the address family of the host described by entry en.

val addr : entry -> in_addr

addr en returns the main Internet address of the host described by entry en, which is
the first address of the list returned by addrs.

val addrs : entry -> in_addr list

addrs en returns the list of Internet addresses of the host described by entry en. The
list is guaranteed to be non-empty.

val getByName : string -> entry option

getByName s reads the network host database for a host with name s. If successful,
it returns SOME(en), where en is the corresponding database entry; otherwise, it returns
NONE.

val getByAddr : in_addr -> entry option

getByAddr ia reads the network host database for a host with Internet address ia.
If successful, it returns SOME(en), where en is the corresponding database entry; other-
wise, it returns NONE.

val getHostName : unit -> string

The standard hostname for the current processor.

val toString : in_addr -> string

toString ia returns a string representation of the Internet address ia in the form
"a.b.c.d".

222 CHAPTER 11. MANUAL PAGES

val scan : (char, ’a) StringCvt.reader
-> (in_addr, ’a) StringCvt.reader

val fromString : string -> in_addr option

scan getc strm
fromString s
These functions scan Internet addresses from a character source. The first returns the
result SOME(ia,rest) if an Internet address can be parsed from a prefix of the charac-
ter stream strm after skipping initial whitespace, where ia is the resulting address, and
rest is the remainder of the character stream. NONE is returned otherwise.
The second form returns SOME(ia) if an Internet address ia can be parsed from a

prefix of string s. NONE is returned otherwise. It is equivalent to StringCvt.scan-
String scan.
Addresses in this notation have one of the following forms:

a, where a is a 32-bit unsigned integer constant.
a.b, where a is an 8-bit unsigned integer constant, and b is a 24-bit integer constant.
a.b.c, where a and b are 8-bit unsigned integer constants, and c is a 16-bit integer

constant.
a.b.c.d, where a, b, c, and d are 8-bit integer constants.

The integer constants may be decimal, octal, or hexadecimal, as specified in the C lan-
guage.

See also
GenericSock (§11.12; p. 153), INetSock (§11.16; p. 166),
NetProtDB (§11.29; p. 223), Socket (§11.51; p. 330)

11.29. THE NETPROTDB STRUCTURE 223

11.29 The NetProtDB structure

This structure accesses the information contained in the network protocol database. The
data may be retrieved from a file, such as /etc/protocols on many Unix systems,
or via the NIS protocols map.

Synopsis
signature NET_PROT_DB
structure NetProtDB :> NET_PROT_DB

Interface
type entry
val name : entry -> string
val aliases : entry -> string list
val protocol : entry -> int
val getByName : string -> entry option
val getByNumber : int -> entry option

Description

type entry

The type of a network protocol database entry.

val name : entry -> string

name en returns the official name of the protocol described by entry en (e.g., "ip").

val aliases : entry -> string list

aliases en returns the alias list of the protocol described by entry en.

val protocol : entry -> int

protocol en returns the protocol number of the protocol described by entry en.

val getByName : string -> entry option

getByName s reads the network protocol database for a protocol with name s. If suc-
cessful, it returns SOME(en), where en is the corresponding database entry; otherwise, it
returns NONE.

val getByNumber : int -> entry option

getByNumber i reads the network protocol database for a protocol with protocol num-
ber i. If successful, it returns SOME(en), where en is the corresponding database entry;
otherwise, it returns NONE.

224 CHAPTER 11. MANUAL PAGES

See also
NetHostDB (§11.28; p. 220)

11.30. THE NETSERVDB STRUCTURE 225

11.30 The NetServDB structure

This structure accesses the information contained in the network services database. This
data may be retrieved from the file /etc/services on many Unix systems, or from
some other database.

Synopsis
signature NET_SERV_DB
structure NetServDB :> NET_SERV_DB

Interface
type entry
val name : entry -> string
val aliases : entry -> string list
val port : entry -> int
val protocol : entry -> string
val getByName : string * string option -> entry option
val getByPort : int * string option -> entry option

Description

type entry

The abstract type of a network service database entry.

val name : entry -> string

name ent returns the official name of the service described by entry ent (e.g., "ftp",
"telnet", etc.).

val aliases : entry -> string list

aliases ent returns the alias list of the service described by entry ent.

val port : entry -> int

port ent returns the port number of the service described by entry ent.

val protocol : entry -> string

protocol ent returns the name of the protocol to use for the service described by the
entry ent (e.g., "tcp" or "udp").

226 CHAPTER 11. MANUAL PAGES

val getByName : string * string option -> entry option

getByName (s, prot) reads the network service database for a service with name
s. If prot is SOME(protname), the protocol of the service must also match protname;
if prot is NONE, no protocol restriction is imposed. If successful, it returns SOME(en),
where en is the corresponding database entry; otherwise, it returns NONE.

val getByPort : int * string option -> entry option

getByPort (i, prot) reads the network service database for a service with port
number i. If prot is SOME(protname), the protocol of the service must also match
protname; if prot is NONE, no protocol restriction is imposed. If successful, it returns
SOME(en), where en the corresponding database entry; otherwise, it returns NONE.

See also
Socket (§11.51; p. 330), NetHostDB (§11.28; p. 220), NetProtDB (§11.29; p. 223)

11.31. THE OPTION STRUCTURE 227

11.31 The Option structure

The Option structure defines the option type, used for handling partial functions
and optional values, and provides a collection of common combinators.
The type, the Option exception, and the functions getOpt, valOf, and isSome

are available in the top-level environment.

Synopsis
signature OPTION
structure Option :> OPTION

Interface
datatype ’a option = NONE | SOME of ’a
exception Option
val getOpt : ’a option * ’a -> ’a
val isSome : ’a option -> bool
val valOf : ’a option -> ’a
val filter : (’a -> bool) -> ’a -> ’a option
val join : ’a option option -> ’a option
val app : (’a -> unit) -> ’a option -> unit
val map : (’a -> ’b) -> ’a option -> ’b option
val mapPartial : (’a -> ’b option)

-> ’a option -> ’b option
val compose : (’a -> ’b) * (’c -> ’a option)

-> ’c -> ’b option
val composePartial : (’a -> ’b option) * (’c -> ’a option)

-> ’c -> ’b option

Description

datatype ’a option = NONE | SOME of ’a

The type option provides a distinction between some value and no value and is often
used for representing the result of partially defined functions. It can be viewed as a typed
version of the C convention of returning a NULL pointer to indicate no value.

exception Option

This exception is raised by the valOf function when applied to NONE.

val getOpt : ’a option * ’a -> ’a

getOpt (opt, a) returns v if opt is SOME(v); otherwise, it returns a.

val isSome : ’a option -> bool

isSome opt returns true if opt is SOME(v); otherwise it returns false.

228 CHAPTER 11. MANUAL PAGES

val valOf : ’a option -> ’a

valOf opt returns v if opt is SOME(v); otherwise, it raises the Option exception.

val filter : (’a -> bool) -> ’a -> ’a option

filter f a returns SOME(a) if f(a) is true and NONE otherwise.

val join : ’a option option -> ’a option

The join function maps NONE to NONE and SOME(v) to v.

val app : (’a -> unit) -> ’a option -> unit

app f opt applies the function f to the value v if opt is SOME(v) and otherwise
does nothing.

val map : (’a -> ’b) -> ’a option -> ’b option

map f opt maps NONE to NONE and SOME(v) to SOME(f v).

val mapPartial : (’a -> ’b option)
-> ’a option -> ’b option

mapPartial f opt maps NONE to NONE and SOME(v) to f(v). The expression
mapPartial f is equivalent to join o (map f).

val compose : (’a -> ’b) * (’c -> ’a option)
-> ’c -> ’b option

compose (f, g) a returns NONE if g(a) is NONE; otherwise, if g(a) is SOME(v),
it returns SOME(f v). Thus, the compose function composes f with the partial function
g to produce another partial function. The expression compose (f, g) is equivalent
to (map f) o g.

val composePartial : (’a -> ’b option) * (’c -> ’a option)
-> ’c -> ’b option

composePartial (f, g) a returns NONE if g(a) is NONE; otherwise, if g(a)
is SOME(v), it returns f(v). Thus, the composePartial function composes the two
partial functions f and g to produce another partial function. The expression compose-
Partial (f, g) is equivalent to (mapPartial f) o g.

11.32. THE OS STRUCTURE 229

11.32 The OS structure

The OS structure is a container for a collection of structures for interacting with the oper-
ating system’s file system, directory paths, processes, and I/O subsystem. The types and
functions provided by the OS substructures are meant to present a model for handling
these resources that is largely independent of the operating system.
The structure also declares the SysErr exception used to report operating system

error conditions.

Synopsis
signature OS
structure OS :> OS

Interface
structure FileSys : OS_FILE_SYS
structure IO : OS_IO
structure Path : OS_PATH
structure Process : OS_PROCESS

eqtype syserror

exception SysErr of string * syserror option

val errorMsg : syserror -> string
val errorName : syserror -> string
val syserror : string -> syserror option

Description

structure FileSys : OS_FILE_SYS

File system: files and directories and their attributes.

structure IO : OS_IO

I/O polling.

structure Path : OS_PATH

Syntactic manipulation of pathnames.

structure Process : OS_PROCESS

Process control, exit status, and environment.

230 CHAPTER 11. MANUAL PAGES

eqtype syserror

The type representing errors that arise when making calls to the runtime or operating sys-
tem. These values are usually transmitted by the SysErr exception.

exception SysErr of string * syserror option

This exception is raised when a call to the runtime system or host operating system re-
sults in an error. The first argument is a descriptive string explaining the error, and the
second argument optionally specifies the system error condition. The form and content of
the description strings are operating system and implementation dependent, but if a Sys-
Err exception has the form SysErr(s,SOME e), then we have errorMsg e = s.
System errors that do not have a corresponding syserror value will result in SysErr
being raised with a second argument of NONE.

val errorMsg : syserror -> string

errorMsg err returns a string describing the system error identified by the error code
err. The form and content of the description strings are operating system and implemen-
tation dependent.

val errorName : syserror -> string
val syserror : string -> syserror option

errorName err
syserror s
These functions provide conversions between the abstract syserror type and their oper-
ating system dependent string names. The primary purpose of these functions is to provide
a mechanism for dealing with error codes that might not have symbolic names defined for
them in the operating-system specific modules. The former function returns a unique name
used for the syserror value, while the latter returns the syserror whose name is s,
if it exists. If e is a syserror, then it should be the case that

SOME e = syserror(errorName e)

See also
OS.FileSys (§11.33; p. 231), OS.IO (§11.34; p. 237), OS.Path (§11.35; p. 241),
OS.Process (§11.36; p. 250)

11.33. THE OS.FILESYS STRUCTURE 231

11.33 The OS.FileSys structure

The OS.FileSys structure provides facilities for accessing and operating on the file
system. These functions are designed to be portable across operating systems. They
raise OS.SysErr with an argument in case of errors.
Except for fullPath and realPath, functions taking a string argument will raise

the OS.SysErr exception if the argument string is empty.
It is expected that all functions taking a pathname as an argument (e.g., modTime

or OS.Process.system) will resolve any components corresponding to symbolic
links. The obvious exceptions to this rule are isLink and readLink, where only
symbolic links appearing as directory components of the pathname are resolved.

Synopsis
signature OS_FILE_SYS
structure OS.FileSys : OS_FILE_SYS

Interface
type dirstream

val openDir : string -> dirstream
val readDir : dirstream -> string option
val rewindDir : dirstream -> unit
val closeDir : dirstream -> unit

val chDir : string -> unit
val getDir : unit -> string
val mkDir : string -> unit
val rmDir : string -> unit
val isDir : string -> bool
val isLink : string -> bool
val readLink : string -> string
val fullPath : string -> string
val realPath : string -> string
val modTime : string -> Time.time
val fileSize : string -> Position.int
val setTime : string * Time.time option -> unit
val remove : string -> unit
val rename : {old : string, new : string} -> unit

datatype access_mode = A_READ | A_WRITE | A_EXEC

val access : string * access_mode list -> bool

val tmpName : unit -> string

eqtype file_id

232 CHAPTER 11. MANUAL PAGES

val fileId : string -> file_id
val hash : file_id -> word
val compare : file_id * file_id -> order

Description

val openDir : string -> dirstream

openDir path opens the directory specified by path and returns a directory stream
for use with readDir, rewindDir, and closeDir. The stream reads the directory
entries off the file system in some unspecified order. It raises SysErr if, for example, the
directory does not exist or is not accessible.

val readDir : dirstream -> string option

readDir dir returns and removes one filename from the directory stream dir. When
the directory stream is empty (that is, when all entries have been read from the stream),
NONE is returned. readDir filters out the names corresponding to the current and parent
arcs.

val rewindDir : dirstream -> unit

rewindDir dir resets the directory stream dir, as if it had just been opened. It
raises SysErr in case of an operating system error, though, since the directory stream has
already been opened, an error should not be likely.

val closeDir : dirstream -> unit

closeDir dir closes the directory stream dir, releasing any system resources asso-
ciated with it. Any subsequent read or rewind on the stream will raise exception SysErr.
Closing a closed directory stream, however, has no effect.

val chDir : string -> unit

chDir s changes the current working directory to s, which affects future calls to all
functions that access the file system. These include the input/output functions such as
TextIO.openIn and TextIO.openOut and functions defined in this structure. It
raises SysErr if, for example, the directory does not exist or is not readable.
The chDir function will also change the current volume (on systems with volumes)

if one is specified. This function does not allow the user to change the current working
directory of another volume than the current volume, even on systems where this concept
is otherwise supported.

val getDir : unit -> string

An absolute canonical pathname of the current working directory. This pathname includes
the current volume on those systems that support volumes.

11.33. THE OS.FILESYS STRUCTURE 233

val mkDir : string -> unit

mkDir s creates a directory s on the file system. If s has multiple arcs, each of the
ancestor directories must exist or else will need to be created first, if they do not already
exist. This function raises SysErr if, for example, the directory in which s is to be created
does not exist or is not writable.

val rmDir : string -> unit

rmDir s removes directory s from the file system. It raises SysErr if, for example, s
does not exist or if the directory in which s resides is not writable or if the directory is not
empty.

val isDir : string -> bool

isDir s tests whether s is a directory. It raises SysErr if, for example, s does not
exist or if the directory in which s resides is not accessible.

val isLink : string -> bool

isLink s returns true if s names a symbolic link. It raises SysErr if, for example,
s does not exist or there is an access violation. On operating systems without symbolic
links, it will always return false unless an exception is raised first.

val readLink : string -> string

readLink s returns the contents of the symbolic link s. It raises SysErr if, for
example, s does not exist or is not a symbolic link, or there is an access violation. On
operating systems without symbolic links, it raises SysErr unconditionally.
The precise form of the returned string, in particular, whether it corresponds to an abso-

lute or relative path, is system-dependent.

val fullPath : string -> string

fullPath path returns an absolute canonical path that names the same file system
object as path. The resulting path will have a volume prefix (on systems supporting
volumes); all occurrences of the current, parent, and empty arcs will have been expanded
or removed; and any symbolic links will have been fully expanded. An empty path is
treated as ".". It raises SysErr if, for example, a directory on the path, or the file or
directory named, does not exist or is not accessible or if there is a link loop.

val realPath : string -> string

realPath path returns a canonical path that names the same file system object as
path. If path is an absolute path, then realPath acts like fullPath. If path is
relative and on the same volume as the current working directory, then it returns a path
that is relative to the current working directory but in which the symbolic links have been
expanded. Otherwise, it raises OS.Path.Path.

234 CHAPTER 11. MANUAL PAGES

Implementation note: This function can be implemented as follows:
fun realPath p = if OS.Path.isAbsolute p

then fullPath p
else OS.Path.mkRelative{

path=fullPath p, relativeTo=fullPath(getDir())
}

val modTime : string -> Time.time

modTime path returns the modification time of file path. It raises SysErr if, for
example, path does not exist or if the directory in which path resides is not accessible.

val fileSize : string -> Position.int

fileSize path returns the size of file path in bytes. It raises SysErr if, for exam-
ple, path does not exist or if the directory in which path resides is not accessible.

val setTime : string * Time.time option -> unit

setTime (path, opt) sets the modification and access time of file path. If opt
is SOME(t), then the time t is used; otherwise, the current time (i.e., Time.now()) is
used. It raises SysErr if path does not exist, the directory in which path resides is not
accessible, or the user does not have the appropriate permission.

val remove : string -> unit

remove path deletes the file path from the file system. It raises SysErr if path
does not exist or is not writable, if the directory in which path resides is not writable, or
if file is a directory. Use the rmDir function to delete directories.
If one removes a file that has been opened for reading or writing, the behavior of subse-

quent reads and writes is undefined. For example, removing the file may close all existing
streams or generate an exception. The Unix idiom of opening a file and then removing it
is not portable.

val rename : {old : string, new : string} -> unit

rename {old, new} changes the name of file old to new . If new and old refer
to the same file, rename does nothing. If a file called new exists, it is removed. It raises
SysErr if, for example, old does not exist or if one of the directories in which old or
new reside is not writable. This function may also fail if old refers to an open file or if
old and new are on different file systems, i.e., if a copy is required.

val access : string * access_mode list -> bool

access (path, accs) tests the permissions of file path, expanding symbolic links
as necessary. If the list accs of required access modes is empty, it tests whether path
exists. If accs contains A_READ, A_WRITE, or A_EXEC, respectively, it tests whether
the user process has read, write, or execute permission for the file, testing their conjunction

11.33. THE OS.FILESYS STRUCTURE 235

if more than one is present. Note that access is also implicitly testing the user’s access
to the parent directories of the file. The function will only raise OS.SysErr for errors
unrelated to resolving the pathname and the related permissions, such as being interrupted
by a signal during the system call.

Implementation note: On systems that do not support a notion of execution permis-
sions, the access should accept but ignore the A_EXEC value.

val tmpName : unit -> string

This function creates a new empty file with a unique name and returns the full pathname
of the file. The named file will be readable and writable by the creating process but, if the
host operating systems supports it, not accessible by other users. This function can be used
to create a temporary file that will not collide with other applications.
This function raises SysErr if it cannot create the unique file or filename.

eqtype file_id

A unique identifier associated with a file system object. A value of this type is not persistent
across changes in the file system (e.g., mount/unmount), but it is better than pathnames for
uniquely identifying files. A file_id value should not be confused with the open file
identifier OS.IO.iodesc.

val fileId : string -> file_id

fileId path returns the unique file_id value associated with the file system object
designated by the pathname path. In particular, if fileId p = fileId p’, then the
paths p and p’ refer to the same file system object. Note that if p is a symbolic link, then
fileId p = fileId(readLink p) .

val hash : file_id -> word

hash fid returns a hash value associated with fid.

Implementation note: hash must have the property that values produced are well
distributed when taken modulo 2n for any n.

val compare : file_id * file_id -> order

compare (fid, fid’) returns LESS, EQUAL, or GREATER when fid is less than,
equal to, or greater than fid’, respectively, in some underlying total ordering of file_id
values.

Discussion
For functions dealing with file attributes, such as fileSize or rename, the arguments
can be directories as well as ordinary files.

236 CHAPTER 11. MANUAL PAGES

See also
BinIO (§11.4; p. 127), OS (§11.32; p. 229), OS.Path (§11.35; p. 241),
TextIO (§11.58; p. 382)

11.34. THE OS.IO STRUCTURE 237

11.34 The OS.IO structure

The OS.IO structure provides a general interface for polling I/O devices. This interface
has been modeled after the Unix SVR4 poll interface. A poll_desc created from an
I/O descriptor can be used to test for various polling conditions.

Synopsis
signature OS_IO
structure OS.IO : OS_IO

Interface
eqtype iodesc
val hash : iodesc -> word
val compare : iodesc * iodesc -> order
eqtype iodesc_kind
val kind : iodesc -> iodesc_kind
structure Kind : sig

val file : iodesc_kind
val dir : iodesc_kind
val symlink : iodesc_kind
val tty : iodesc_kind
val pipe : iodesc_kind
val socket : iodesc_kind
val device : iodesc_kind

end
eqtype poll_desc
type poll_info
val pollDesc : iodesc -> poll_desc option
val pollToIODesc : poll_desc -> iodesc
exception Poll
val pollIn : poll_desc -> poll_desc
val pollOut : poll_desc -> poll_desc
val pollPri : poll_desc -> poll_desc
val poll : poll_desc list * Time.time option

-> poll_info list
val isIn : poll_info -> bool
val isOut : poll_info -> bool
val isPri : poll_info -> bool
val infoToPollDesc : poll_info -> poll_desc

Description

eqtype iodesc

An iodesc is an abstraction for an opened OS object that supports I/O (e.g., a file, con-
sole, or socket). In Unix, an iodesc corresponds to a file descriptor, while in Microsoft
Windows it corresponds to a file handle.

238 CHAPTER 11. MANUAL PAGES

Since iodesc values correspond to low-level, OS-specific objects, they are not typi-
cally created explicitly by the user but are generated as a side-effect of the creation of a
high-level abstraction. For example, TextIO.openIn creates an instream value from
which the underlying PrimIO.reader can be accessed. This latter value may contain
the corresponding iodesc value.
If the underlying operating system is known, there will usually be mechanisms for con-

verting between iodesc values and the type of value used by the operating system. For
example, the functions Posix.FileSys.fdToIOD and Posix.FileSys.iodTo-
FD provide this service for POSIX implementations, translating between iodescs and
open file descriptors.

val hash : iodesc -> word

hash iod returns a hash value for the I/O descriptor iod.

Implementation note: hash must have the property that values produced are well
distributed when taken modulo 2n for any n.

val compare : iodesc * iodesc -> order

compare (iod, iod’) returns LESS, EQUAL, or GREATER when iod is less than,
equal to, or greater than iod’, respectively, in some underlying linear ordering on iodesc
values.

eqtype iodesc_kind

This abstract type is used to represent the kind of system object that an iodesc represents.
The possible values are defined in the Kind substructure.

val kind : iodesc -> iodesc_kind

kind iod returns the kind of system object that the I/O descriptor iod represents. This
function raises SysErr if, for example, iod refers to a closed file.

structure Kind : sig ... end

val file : iodesc_kind
val dir : iodesc_kind
val symlink : iodesc_kind
val tty : iodesc_kind
val pipe : iodesc_kind
val socket : iodesc_kind
val device : iodesc_kind

These values represent the various kinds of system objects that an I/O descriptor
might represent. The following list summarizes the intended meaning of these val-
ues:

11.34. THE OS.IO STRUCTURE 239

file A regular file in the file system. The I/O descriptor associated with a stream
produced by one of the BinIO or TextIO file opening operations will always
have this kind.

dir A directory in the file system. I/O descriptors associated with file system
objects for which OS.FileSys.isDir returns true will have this kind.

symlink A symbolic link or file system alias. I/O descriptors associated with file
system objects for which OS.FileSys.isLink returns true will have this
kind.

tty A terminal console.
pipe A pipe to another system process.
socket A network socket.
device A logical or physical hardware device.
Note that a given implementation may define other iodesc values not covered by
these definitions.

eqtype poll_desc

An abstract representation of a polling operation on an I/O descriptor.

type poll_info

An abstract representation of the per-descriptor information returned by the poll opera-
tion.

val pollDesc : iodesc -> poll_desc option

pollDesc iod create a polling operation on the given descriptor; NONE is returned
when no polling is supported by the I/O device.

val pollToIODesc : poll_desc -> iodesc

pollToIODesc pd returns the I/O descriptor that is being polled using pd.

exception Poll

This exception is raised when an attempt is made to add an inappropriate polling condition
to a poll descriptor.

val pollIn : poll_desc -> poll_desc
val pollOut : poll_desc -> poll_desc
val pollPri : poll_desc -> poll_desc

pollIn pd
pollOut pd
pollPri pd
These functions return a poll descriptor that has input (respectively, output, high-priority)
polling added to the poll descriptor pd. It raises Poll if input (respectively, output, high-
priority events) is not appropriate for the underlying I/O device.

240 CHAPTER 11. MANUAL PAGES

val poll : poll_desc list * Time.time option
-> poll_info list

poll (l, timeout) polls a collection of I/O devices for the conditions specified by
the list of poll descriptors l. The argument timeout specifies the timeout where:

• NONE means wait indefinitely.
• SOME(Time.zeroTime) means do not block.
• SOME(t) means timeout after time t.

This function returns a list of poll_info values corresponding to those descriptors in l
whose conditions are enabled. The returned list respects the order of the argument list, and
a value in the returned list will reflect a (non-empty) subset of the conditions specified in
the corresponding argument descriptor. The poll function will raise OS.SysErr if, for
example, one of the file descriptors refers to a closed file.

val isIn : poll_info -> bool
val isOut : poll_info -> bool
val isPri : poll_info -> bool

isIn info
isOut info
isPri info
These functions return true if input (respectively, output, priority information) is present
in info.

val infoToPollDesc : poll_info -> poll_desc

infoToPollDesc pi returns the underlying poll descriptor from poll information pi.

See also
PRIM_IO (§11.48; p. 308), OS (§11.32; p. 229)

11.35. THE OS.PATH STRUCTURE 241

11.35 The OS.Path structure

The OS.Path structure provides support for manipulating the syntax of file system
paths independent of the underlying file system. It is purposely designed not to rely on
any file system operations: none of the functions accesses the actual file system. There
are two reasons for this design: many systems support multiple file systems that may
have different semantics, and applications may need to manipulate paths that do not
exist in the underlying file system.
Before discussing the model of paths and the semantics of the individual operations,

we need to define some terms:

• An arc denotes a directory or file relative to the directory in which it is recorded.
In a path string, arcs are separated by the arc separator character. This character is
#"/" in Unix and in Microsoft Windows both #"\\" and #"/" are allowed. For
example, in Unix, the path "abc/def" contains two arcs: "abc" and "def".
There are two special arcs: parentArc and currentArc. Under both Unix
and Windows, the parentArc is ".." and currentArc is ".". An empty
arc corresponds to an empty string.

Although represented concretely as a string, an arc should be viewed as an ab-
straction in the context of the OS.Path structure, with a limited set of valid
representations. In particular, a non-empty string a is a valid arc only if from-
String a returns {isAbs=false, vol="", arcs=[a]}.

• A path corresponds to a list of arcs, with an optional root, that denotes the path of
directories leading to a file or directory in the file system hierarchy.

• An absolute path has a root. Unix examples include "/" and "/a/b"; Microsoft
Windows examples include "\", "\a\b", and "A:\a\b".

• A relative path is one without a root. Unix examples include ".." and "a/b";
Windows examples include "..", "a\b", and "A:a\b".

• A canonical path contains no occurrences of the empty arc, no occurrences of
the current arc unless the current arc is the only arc in the path, and contains
parent arcs only at the beginning and only if the path is relative. Some examples
of canonical paths, using Unix syntax, are as follows: "." "/.", "/", "a",
"a/b/c", "..", "../a", "../../a/b/c", and "/a/b/c".

In a Microsoft Windows implementation, canonical paths are entirely lowercase.

• A path has an associated volume. Under Unix, there is only one volume, whose
name is "". Under Microsoft Windows, example volume names are "", "A:",
and "C:".

242 CHAPTER 11. MANUAL PAGES

In addition to operations for canonicalizing paths and computing relative paths, the
Path structure supports path manipulations relative to three different views of a path:

1. A navigation oriented view, where a path is broken down into its root and a non-
empty list of arcs. A path is either absolute or relative. The root of a path specifies
the volume to which the path is taken to be relative. For Unix, there is only the
"" volume.

2. A directory/file view, where a path is broken down into a directory specifier and a
filename.

3. A base/extension view, where a path is broken down into a base filename and
an extension. We make the assumption that the extension separator character is
#".", which works for most operating systems.

Our main design principle is that the functions should behave in a natural fashion
when applied to canonical paths. All functions, except concat, preserve canonical
paths, i.e., if all arguments are canonical, then so is the result.
Note that, although the model of path manipulation provided by the Path struc-

ture is operating-system independent, the analysis of strings is not. In particular, any
given implementation of the Path structure has an implicit notion of what the arc sep-
arator character is. Thus, on a Microsoft Windows system, Path will treat the string
"\\d\\e" as representing an absolute path with two arcs, whereas on a Unix system
it will correspond to a relative path with one arc.

Synopsis
signature OS_PATH
structure OS.Path : OS_PATH

Interface
exception Path
exception InvalidArc

val parentArc : string
val currentArc : string

val fromString : string
-> {
isAbs : bool,
vol : string,
arcs : string list

}

11.35. THE OS.PATH STRUCTURE 243

val toString : {
isAbs : bool,
vol : string,
arcs : string list

} -> string

val validVolume : {isAbs : bool, vol : string} -> bool

val getVolume : string -> string
val getParent : string -> string

val splitDirFile : string -> {dir : string, file : string}
val joinDirFile : {dir : string, file : string} -> string
val dir : string -> string
val file : string -> string

val splitBaseExt : string
-> {base : string, ext : string option
}

val joinBaseExt : {base : string, ext : string option}
-> string

val base : string -> string
val ext : string -> string option

val mkCanonical : string -> string
val isCanonical : string -> bool
val mkAbsolute : {path : string, relativeTo : string}

-> string
val mkRelative : {path : string, relativeTo : string}

-> string
val isAbsolute : string -> bool
val isRelative : string -> bool
val isRoot : string -> bool

val concat : string * string -> string

val fromUnixPath : string -> string
val toUnixPath : string -> string

Description

exception Path
exception InvalidArc

These exceptions are raised to signify invalid paths and arcs, respectively.

val parentArc : string

The string denoting the parent directory (e.g., ".." on Microsoft Windows and Unix).

244 CHAPTER 11. MANUAL PAGES

val currentArc : string

The string denoting the current directory (e.g., "." on Microsoft Windows and Unix).

val fromString : string
-> {
isAbs : bool,
vol : string,
arcs : string list

}

fromString path returns the decomposition {isAbs, vol, arcs} of the path
specified by path. vol is the volume name and arcs is the list of (possibly empty)
arcs of the path. isAbs is true if the path is absolute. Under Unix, the volume name
is always the empty string; under Microsoft Windows it can have the forms "A:", "C:",
etc.
Here are some examples for Unix paths:

path fromString path
"" {isAbs=false, vol="", arcs=[]}
"/" {isAbs=true, vol="", arcs=[""]}
"//" {isAbs=true, vol="", arcs=["", ""]}
"a" {isAbs=false, vol="", arcs=["a"]}
"/a" {isAbs=true, vol="", arcs=["a"]}
"//a" {isAbs=true, vol="", arcs=["","a"]}
"a/" {isAbs=false, vol="", arcs=["a", ""]}
"a//" {isAbs=false, vol="", arcs=["a", "", ""]}
"a/b" {isAbs=false, vol="", arcs=["a", "b"]}

val toString : {
isAbs : bool,
vol : string,
arcs : string list

} -> string

toString {isAbs, vol, arcs} makes a string out of a path represented as a
list of arcs. isAbs specifies whether or not the path is absolute, and vol provides
a corresponding volume. It returns "" when applied to {isAbs=false, vol="",
arcs=[]}. The exception Path is raised if validVolume{isAbs, vol} is false
or if isAbs is false and arcs has an initial empty arc. The exception InvalidArc
is raised if any component in arcs is not a valid representation of an arc. The exception
Size is raised if the resulting string has size greater than String.maxSize.
toString o fromString is the identity. fromString o toString is also

the identity, provided no exception is raised and none of the strings in arcs contains an
embedded arc separator character. In addition, isRelative(toString {isAbs=false,
vol, arcs}) evaluates to true when defined.

11.35. THE OS.PATH STRUCTURE 245

val validVolume : {isAbs : bool, vol : string} -> bool

validVolume {isAbs, vol} returns true if vol is a valid volume name for an
absolute or relative path, respectively as isAbs is true or false. Under Unix, the
only valid volume name is "". Under Microsoft Windows, the valid volume names have
the forms "a:", "A:", "b:", "B:", etc., and, if isAbs = false, also "". Under
MacOS, isAbs can be true if and only if vol is "".

val getVolume : string -> string

getVolume path returns the volume portion of the path path.

val getParent : string -> string

getParent path returns a string denoting the parent directory of path. It holds that
getParent path = path if and only if path is a root. If the last arc is empty or
the parent arc, then getParent appends a parent arc. If the last arc is the current arc,
then it is replaced with the parent arc. Note that if path is canonical, then the result of
getParent will also be canonical.
Here are some examples for Unix paths:

path getParent path
"/" "/"
"a" "."
"a/" "a/.."

"a///" "a///.."
"a/b" "a"
"a/b/" "a/b/.."
".." "../.."
"." ".."
"" ".."

val splitDirFile : string -> {dir : string, file : string}

splitDirFile path splits the string path path into its directory and file parts,
where the file part is defined to be the last arc. The file will be "" if the last arc is "".
Here are some examples for Unix paths:

path splitDirFile path
"" {dir = "", file = ""}
"." {dir = "", file = "."}
"b" {dir = "", file = "b"}
"b/" {dir = "b", file = ""}
"a/b" {dir = "a", file = "b"}
"/a" {dir = "/", file = "a"}

246 CHAPTER 11. MANUAL PAGES

val joinDirFile : {dir : string, file : string} -> string

joinDirFile {dir, file} creates a whole path out of a directory and a file by
extending the path dir with the arc file. If the string file does not correspond to an
arc, it raises InvalidArc. The exception Size is raised if the resulting string has size
greater than String.maxSize.

val dir : string -> string
val file : string -> string

These functions return the directory and file parts of a path, respectively. They can be
defined as

val dir = #dir o splitDirFile
val file = #file o splitDirFile

Although they are likely to be more efficient.

val splitBaseExt : string
-> {base : string, ext : string option
}

splitBaseExt path splits the path path into its base and extension parts. The
extension is a non-empty sequence of characters following the right-most, non-initial, oc-
currence of "." in the last arc; NONE is returned if the extension is not defined. The base
part is everything to the left of the extension except the final ".". Note that if there is no
extension, a terminating "." is included with the base part.
Here are some examples for Unix paths:

path splitBaseExt path
"" {base = "", ext = NONE}

".login" {base = ".login", ext = NONE}
"/.login" {base = "/.login", ext = NONE}

"a" {base = "a", ext = NONE}
"a." {base = "a.", ext = NONE}
"a.b" {base = "a", ext = SOME "b"}
"a.b.c" {base = "a.b", ext = SOME "c"}

".news/comp" {base = ".news/comp", ext = NONE}

val joinBaseExt : {base : string, ext : string option}
-> string

joinBaseExt {base, ext} returns an arc composed of the base name and the ex-
tension (if different from NONE). It is a left inverse of splitBaseExt, i.e., joinBase-
Ext o splitBaseExt is the identity. The opposite does not hold, since the extension
may be empty or may contain extension separators. Note that, although splitBaseExt
will never return the extension SOME(""), joinBaseExt treats this value as equiva-
lent to NONE. The exception Size is raised if the resulting string has size greater than
String.maxSize.

11.35. THE OS.PATH STRUCTURE 247

val base : string -> string
val ext : string -> string option

These functions return the base and extension parts parts of a path, respectively. They can
be defined as

val base = #base o splitBaseExt
val ext = #ext o splitBaseExt

Although they are likely to be more efficient.

val mkCanonical : string -> string

mkCanonical path returns the canonical path equivalent to path. Redundant oc-
currences of the parent arc, the current arc, and the empty arc are removed. The canonical
path will never be the empty string; the empty path is converted to the current directory
path ("." under Unix and Microsoft Windows).
Note that the syntactic canonicalization provided by mkCanonical may not preserve

the file system meaning of a path in the presence of symbolic links (see concat).

val isCanonical : string -> bool

isCanonical path returns true if path is a canonical path. It is equivalent to
(path = mkCanonical path).

val mkAbsolute : {path : string, relativeTo : string}
-> string

mkAbsolute {path, relativeTo} returns an absolute path that is equivalent to
the path path relative to the absolute path relativeTo. If path is already abso-
lute, it is returned unchanged; otherwise, the function returns the canonical concatenation
of relativeTo with path, i.e., mkCanonical (concat (abs, p)). Thus, if
path and relativeTo are canonical, the result will be canonical. If relativeTo
is not absolute, or if the two paths refer to different volumes, then the Path exception is
raised. The exception Size is raised if the resulting string has size greater than String.-
maxSize.

val mkRelative : {path : string, relativeTo : string}
-> string

mkRelative {path, relativeTo} returns a relative path p that, when taken rel-
ative to the canonical form of the absolute path relativeTo, is equivalent to the path
path. If path is relative, it is returned unchanged. If path is absolute, the procedure for
computing the relative path is to first compute the canonical form abs of relativeTo.
If path and abs are equal, then the current arc is the result; otherwise, the common prefix
is stripped from path and abs, giving p’ and abs’. The resulting path is then formed
by appending p’ to a path consisting of one parent arc for each arc in abs’. Note that if
both paths are canonical, then the result will be canonical.
If relativeTo is not absolute, or if path and relativeTo are both absolute but

have different roots, the Path exception is raised. The exception Size is raised if the
resulting string has size greater than String.maxSize.

248 CHAPTER 11. MANUAL PAGES

Here are some examples for Unix paths:

path relativeTo mkRelative{path, relativeTo}
"a/b" "/c/d" "a/b"
"/" "/a/b/c" "../../.."

"/a/b/" "/a/c" "../b/"
"/a/b" "/a/c" "../b"
"/a/b/" "/a/c/" "../b/"
"/a/b" "/a/c/" "../b"
"/" "/" "."
"/" "/." "."
"/" "/.." "."

"/a/b/../c" "/a/d" "../b/../c"
"/a/b" "/c/d" "../../a/b"

"/c/a/b" "/c/d" "../a/b"
"/c/d/a/b" "/c/d" "a/b"

val isAbsolute : string -> bool
val isRelative : string -> bool

isAbsolute path
isRelative path
These functions return true if path is, respectively, absolute or relative.

val isRoot : string -> bool

isRoot path returns true if path is a canonical specification of a root directory.

val concat : string * string -> string

concat (path, t) returns the path consisting of path followed by t. It raises the
exception Path if t is not a relative path or if path and t refer to different volumes. The
exception Size is raised if the resulting string has size greater than String.maxSize.
One possible implementation of concat is
fun concat (p1, p2) = (case (fromString p1, fromString p2)

of (_, {isAbs=true, ...}) => raise Path
| ({isAbs, vol=v1, arcs=al1},

{vol=v2, arcs=al2, ...}
) => if ((v2 = "") orelse (v1 = v2))

then toString{
isAbs=isAbs, vol=v1,
arcs=concatArcs(al1, al2)

}
else raise Path

(* end case *))
where concatArcs is like List.@, except that a trailing empty arc in the first argument
is dropped. Note that concat should not be confused with the concatenation of two
strings.
concat does not preserve canonical paths. For example, concat("a/b", "../c")

11.35. THE OS.PATH STRUCTURE 249

returns "a/b/../c". The parent arc is not removed because "a/b/../c" and "a/c"
may not be equivalent in the presence of symbolic links.

val fromUnixPath : string -> string

fromUnixPath s converts the Unix-style path s to the path syntax of the host operat-
ing system. Slash characters are translated to the directory separators of the local system,
as are parent arcs and current arcs. This function raises the InvalidArc exception if
any arc in the Unix path is invalid in the host system’s path syntax (e.g., an arc that has a
backslash character in it when the host system is Microsoft Windows).
Note that the syntax of Unix pathnames necessarily limits this function. It is not possible

to specify paths that have a non-empty volume name or paths that have a slash in one of
their arcs using this function.

val toUnixPath : string -> string

toUnixPath s converts the path s, which is in the host operating system’s syntax, to
a Unix-style path. If the path s has a non-empty volume name, then the Path exception is
raised. Also, if any arc in the pathname contains the slash character, then the Invalid-
Arc exception is raised.

Discussion
Syntactically, two paths can be checked for equality by applying string equality to canon-
ical versions of the paths. Since volumes and individual arcs are just special classes of
paths, an identical test for equality can be applied to these classes.

See also
OS (§11.32; p. 229), OS.FileSys (§11.33; p. 231), OS.IO (§11.34; p. 237),
OS.Process (§11.36; p. 250), Posix.FileSys (§11.41; p. 263)

250 CHAPTER 11. MANUAL PAGES

11.36 The OS.Process structure

The OS.Process structure provides functions for manipulating processes in an operating-
system independent manner.

Synopsis
signature OS_PROCESS
structure OS.Process : OS_PROCESS

Interface
type status
val success : status
val failure : status
val isSuccess : status -> bool
val system : string -> status
val atExit : (unit -> unit) -> unit
val exit : status -> ’a
val terminate : status -> ’a
val getEnv : string -> string option
val sleep : Time.time -> unit

Description

type status

The status type represents various termination conditions for processes. On POSIX-
based systems, status will typically be an integral value.

val success : status

The unique status value that signifies the successful termination of a process.

val failure : status

A status value that signifies an error during the execution of a process. Note that, in
contrast to the success value, there may be other failure values.

val isSuccess : status -> bool

isSuccess sts returns true if the status denotes success.

Implementation note: On implementations supporting the Unix structure, this func-
tion returns true only when Unix.fromStatus sts is Unix.W_EXITED. The anal-
ogous condition also holds for implementations providing the Posix structure.

11.36. THE OS.PROCESS STRUCTURE 251

val system : string -> status

system cmd passes the command string cmd to the operating system’s default shell to
execute. It returns the termination status resulting from executing the command. It raises
SysErr if the command cannot be executed.
Note that, although this function is independent of the operating system, the interpreta-

tion of the string cmd depends very much on the underlying operating system and shell.
On Unix systems, the default shell is ”/bin/sh”; on Microsoft Windows systems, the default
shell is the Windows shell; on MacOS systems, the command is compiled and executed as
an Apple script.

val atExit : (unit -> unit) -> unit

atExit act registers an action act to be executed when the current SML program
calls exit. Actions will be executed in the reverse order of registration.
Uncaught exceptions raised by the execution of act are trapped and ignored. Calls

from act to atExit are ignored. Calls from act to exit do not return, but should
cause the remainder of the functions registered with atExit to be executed. Calls to
terminate (or similar functions such as Posix.Process.exit) will terminate the
process immediately.

val exit : status -> ’a

exit st executes all actions registered with atExit, flushes and closes all I/O streams
opened using the Library, and then terminates the SML process with termination status st.

Implementation note: If the argument to exit comes from system or some other
function (such as Unix.reap) returning a status value, then the implementation should
attempt to preserve the meaning of the exit code from the subprocess. For example, on
a POSIX system, if Posix.Process.fromStatus st yields Posix.Process.-
W_EXITSTATUS v , then v should be passed to Posix.Process.exit after all nec-
essary cleanup is done.
If st does not connote an exit value, exit should act as though called with failure.

For example, on a POSIX system, this situation would occur if Posix.Process.from-
Status st is Posix.Process.W_SIGNALED or Posix.Process.W_STOPPED.

val terminate : status -> ’a

terminate st terminates the SML process with termination status st, without exe-
cuting the actions registered with atExit or flushing open I/O streams.

val getEnv : string -> string option

getEnv s returns the value of the environment variable s, if defined; otherwise, it re-
turns NONE.
An environment is associated with each SML process, modeled as a list of pairs of

252 CHAPTER 11. MANUAL PAGES

strings, corresponding to name-value pairs. (The way the environment is established de-
pends on the host operating system.) The getEnv function scans the environment for a
pair whose first component equals s. If successful, it returns the second component.

val sleep : Time.time -> unit

sleep t suspends the calling process for the time specified by t. If t is zero or negative,
then the calling process does not sleep but returns immediately. No exception is raised.
Note that the granularity of sleeping is operating-system dependent.

See also
OS (§11.32; p. 229), OS.FileSys (§11.33; p. 231), OS.IO (§11.34; p. 237),
OS.Path (§11.35; p. 241), Posix.ProcEnv (§11.43; p. 284),
Posix.Process (§11.44; p. 289)

11.37. THE PACK_REAL SIGNATURE 253

11.37 The PACK_REAL signature

The PACK_REAL signature specifies the interface for packing and unpacking floating-
point numbers into Word8 vectors and arrays. This interface provides a mechanism for
transmitting floating-point values over a network.
For each optional RealN structure provided by an implementation, the implementa-

tion may also provide a pair of structures PackRealNBig and PackRealNLittle.
These structures share the real type defined in RealN . The PackRealNBig structures
perform big-endian packing and unpacking, and the PackRealNLittle structures
perform little-endian packing and unpacking.
In addition, an implementation may provide the structures PackRealBig and Pack-

RealLittle, which are aliases for the PACK_REAL structures related to the default
Real structure.

Synopsis
signature PACK_REAL
structure PackRealBig :> PACK_REAL
where type real = Real.real

structure PackRealLittle :> PACK_REAL
where type real = Real.real

structure PackRealNBig :> PACK_REAL
where type real = Real{N}.real

structure PackRealNLittle :> PACK_REAL
where type real = Real{N}.real

Interface
type real

val bytesPerElem : int
val isBigEndian : bool

val toBytes : real -> Word8Vector.vector
val fromBytes : Word8Vector.vector -> real
val subVec : Word8Vector.vector * int -> real
val subArr : Word8Array.array * int -> real
val update : Word8Array.array * int * real -> unit

Description

val bytesPerElem : int

The number of bytes per element, sufficient to store a value of type real.

val isBigEndian : bool

isBigEndian is true if the structure implements a big-endian view of the data.

254 CHAPTER 11. MANUAL PAGES

val toBytes : real -> Word8Vector.vector
val fromBytes : Word8Vector.vector -> real

These functions pack and unpack floating-point values into and out of Word8Vector.-
vector values. The function fromBytes raises the Subscript exception if the argu-
ment vector does not have length at least bytesPerElem; otherwise, the first bytes-
PerElem bytes are used.

val subVec : Word8Vector.vector * int -> real
val subArr : Word8Array.array * int -> real

subVec (vec, i)
subArr (vec, i)
These functions extract the subsequence

vec[bytesPerElem*i..bytesPerElem*(i+1)-1]
of the aggregate vec and convert it into a real value according to the endianness of the
structure. They raise the Subscript exception if i < 0 or if |vec| < bytesPerElem∗
(i+ 1).

val update : Word8Array.array * int * real -> unit

update (arr, i, r) stores r into the bytes bytesPerElem*i through bytes-
PerElem*(i+1)-1 of the array arr, according to the structure’s endianness. It raises
the Subscript exception if i < 0 or if |arr| < bytesPerElem ∗ (i+ 1).

See also
PACK_WORD (§11.38; p. 255), REAL (§11.50; p. 318)

11.38. THE PACK_WORD SIGNATURE 255

11.38 The PACK_WORD signature

The PackWordNBig and PackWordNLittle structures provide facilities for pack-
ing and unpacking N-bit word elements into Word8 vectors. This mechanism allows
word values to be transmitted in binary format over networks. The PackWordNBig
structures perform big-endian packing and unpacking, while the PackWordNLittle
structures perform little-endian packing and unpacking.

Synopsis
signature PACK_WORD
structure PackWordNBig :> PACK_WORD
structure PackWordNLittle :> PACK_WORD

Interface
val bytesPerElem : int
val isBigEndian : bool
val subVec : Word8Vector.vector * int -> LargeWord.word
val subVecX : Word8Vector.vector * int -> LargeWord.word
val subArr : Word8Array.array * int -> LargeWord.word
val subArrX : Word8Array.array * int -> LargeWord.word
val update : Word8Array.array * int * LargeWord.word

-> unit

Description

val bytesPerElem : int

The number of bytes per element. Most implementations will provide several structures
with values of bytesPerElem that are small powers of two (e.g., 1, 2, 4, and 8, corre-
sponding to N of 8, 16, 32, 64, respectively).

val isBigEndian : bool

True if the structure implements a big-endian view of the data (most-significant byte first).
Otherwise, the structure implements a little-endian view (least-significant byte first).

val subVec : Word8Vector.vector * int -> LargeWord.word
val subVecX : Word8Vector.vector * int -> LargeWord.word

subVec (vec, i)
subVecX (vec, i)
These extract the subvector

vec[bytesPerElem*i..bytesPerElem*(i+1)-1]
of the vector vec and convert it into a word according to the endianness of the struc-
ture. The subVecX version extends the sign bit (most significant bit) when converting
the subvector to a word. The functions raise the Subscript exception if i < 0 or if
|vec| < bytesPerElem ∗ (i+ 1).

256 CHAPTER 11. MANUAL PAGES

val subArr : Word8Array.array * int -> LargeWord.word
val subArrX : Word8Array.array * int -> LargeWord.word

subArr (arr, i)
subArrX (arr, i)
These extract the subarray

arr[bytesPerElem*i..bytesPerElem*(i+1)-1]
of the array arr and convert it into a word according to the endianness of the structure. The
subArrX version extends the sign bit (most significant bit) when converting the subarray
into a word. The functions raise the Subscript exception if i < 0 or if |arr| <
bytesPerElem ∗ (i+ 1).

val update : Word8Array.array * int * LargeWord.word
-> unit

update (arr, i, w) stores the bytesPerElem low-order bytes of the word w
into the bytes bytesPerElem*i through bytesPerElem*(i+1)-1 of the array
arr, according to the structure’s endianness. It raises the Subscript exception if i < 0
or if Word8Array.length arr < bytesPerElem ∗ (i+ 1).

See also
Byte (§11.7; p. 133), LargeWord (§11.67; p. 420), MONO_ARRAY (§11.23; p. 193),
MONO_VECTOR (§11.26; p. 211), PACK_REAL (§11.37; p. 253)

11.39. THE POSIX STRUCTURE 257

11.39 The Posix structure

This optional structure contains several substructures that are useful for interfacing to
POSIX operating systems. For more complete information on the semantics of the types
and functions provided in Posix, see the POSIX Standard (1003.1,1996) [POS96].

Synopsis
signature POSIX
structure Posix :> POSIX

Interface
structure Error : POSIX_ERROR
structure Signal : POSIX_SIGNAL
structure Process : POSIX_PROCESS
where type signal = Signal.signal

structure ProcEnv : POSIX_PROC_ENV
where type pid = Process.pid

structure FileSys : POSIX_FILE_SYS
where type file_desc = ProcEnv.file_desc
where type uid = ProcEnv.uid
where type gid = ProcEnv.gid

structure IO : POSIX_IO
where type pid = Process.pid
where type file_desc = ProcEnv.file_desc
where type open_mode = FileSys.open_mode

structure SysDB : POSIX_SYS_DB
where type uid = ProcEnv.uid
where type gid = ProcEnv.gid

structure TTY : POSIX_TTY
where type pid = Process.pid
where type file_desc = ProcEnv.file_desc

Description

structure Error : POSIX_ERROR

System error codes and their descriptions.

structure Signal : POSIX_SIGNAL

Signal values and their associated codes.

structure Process : POSIX_PROCESS
where type signal = Signal.signal

Process creation and management.

258 CHAPTER 11. MANUAL PAGES

structure ProcEnv : POSIX_PROC_ENV
where type pid = Process.pid

User and group IDs, process times, environment, etc.

structure FileSys : POSIX_FILE_SYS
where type file_desc = ProcEnv.file_desc
where type uid = ProcEnv.uid
where type gid = ProcEnv.gid

File system operations.

structure IO : POSIX_IO
where type pid = Process.pid
where type file_desc = ProcEnv.file_desc
where type open_mode = FileSys.open_mode

Input/output operations.

structure SysDB : POSIX_SYS_DB
where type uid = ProcEnv.uid
where type gid = ProcEnv.gid

System databases, such as the password and group databases.

structure TTY : POSIX_TTY
where type pid = Process.pid
where type file_desc = ProcEnv.file_desc

Terminal (tty) control: speed, attributes, drain, flush, etc.

Discussion
The Posix structure and signatures are optional as a group; i.e., they are either all present
or all absent. Furthermore, if they are present, then the SysWord structure must also be
provided by the implementation, but note that an implementation may provide the Sys-
Word structure without providing the Posix structure.

Most functions in the Posix structure can raise OS.SysErr for many reasons. The
description of an individual function will usually not describe all of the possible causes
for raising the exception or all of the system errors (see OS.syserror and Posix.-
Error.syserror) carried by the exception. The programmer will need to consult more
detailed POSIX documentation.

See also
Posix.Error (§11.40; p. 259), Posix.FileSys (§11.41; p. 263),
Posix.IO (§11.42; p. 276), Posix.ProcEnv (§11.43; p. 284),
Posix.Process (§11.44; p. 289), Posix.Signal (§11.45; p. 294),
Posix.SysDB (§11.46; p. 296), Posix.TTY (§11.47; p. 298)

11.40. THE POSIX.ERROR STRUCTURE 259

11.40 The Posix.Error structure

The structure Posix.Error provides symbolic names for errors that may be gener-
ated by the POSIX library and various related functions. These values are typically
carried as the second argument to the SysErr exception.

Synopsis
signature POSIX_ERROR
structure Posix.Error : POSIX_ERROR

Interface
eqtype syserror = OS.Process.syserror

val toWord : syserror -> SysWord.word
val fromWord : SysWord.word -> syserror

val errorMsg : syserror -> string
val errorName : syserror -> string
val syserror : string -> syserror option

val acces : syserror
val again : syserror
val badf : syserror
val badmsg : syserror
val busy : syserror
val canceled : syserror
val child : syserror
val deadlk : syserror
val dom : syserror
val exist : syserror
val fault : syserror
val fbig : syserror
val inprogress : syserror
val intr : syserror
val inval : syserror
val io : syserror
val isdir : syserror
val loop : syserror
val mfile : syserror
val mlink : syserror
val msgsize : syserror
val nametoolong : syserror
val nfile : syserror
val nodev : syserror
val noent : syserror
val noexec : syserror
val nolck : syserror
val nomem : syserror
val nospc : syserror
val nosys : syserror

260 CHAPTER 11. MANUAL PAGES

val notdir : syserror
val notempty : syserror
val notsup : syserror
val notty : syserror
val nxio : syserror
val perm : syserror
val pipe : syserror
val range : syserror
val rofs : syserror
val spipe : syserror
val srch : syserror
val toobig : syserror
val xdev : syserror

Description

eqtype syserror = OS.Process.syserror

POSIX error type. This type is identical to the type OS.syserror.

val toWord : syserror -> SysWord.word
val fromWord : SysWord.word -> syserror

These functions convert between syserror values and non-zero word representations.
Note that there is no validation that a syserror value generated using fromWord cor-
responds to an error value supported by the underlying system.

val errorMsg : syserror -> string

errorMsg sy returns a string that describes the system error sy .

val errorName : syserror -> string

errorName err returns a unique name used for the syserror value.

val syserror : string -> syserror option

syserror s returns the syserror whose name is s, if it exists. If e is a syserror,
we have SOME(e) = syserror(errorName e).

Discussion
The values defined in this structure represent the standard POSIX errors. The following
table provides a brief description of their meanings:

SML name Description
acces An attempt was made to access a file in a way that is for-

bidden by its file permissions.

11.40. THE POSIX.ERROR STRUCTURE 261

SML name Description
again A resource is temporarily unavailable, and later calls to the

same routine may complete normally.
badf A bad file descriptor was out of range or referred to no

open file, or a read (write) request was made to a file that
was only open for writing (reading).

badmsg The implementation has detected a corrupted message.
busy An attempt was made to use a system resource that was

being used in a conflicting manner by another process.
canceled The associated asynchronous operation was canceled be-

fore completion.
child A wait related function was executed by a process that

had no existing or unwaited-for child process.
deadlk An attempt was made to lock a system resource that would

have resulted in a deadlock situation.
dom An input argument was outside the defined domain of a

mathematical function.
exist An existing file was specified in an inappropriate context,

for instance, as the new link in a link function.
fault The system detected an invalid address in attempting to use

an argument of a system call.
fbig The size of a file would exceed an implementation-defined

maximum file size.
inprogress An asynchronous process has not yet completed.
intr An asynchronous signal (such as a quit or a term (ter-

minate) signal) was caught by the process during the exe-
cution of an interruptible function.

inval An invalid argument was supplied.
io Some physical input or output error occurred.
isdir An illegal operation was attempted on a directory, such as

opening a directory for writing.
loop A loop was encountered during pathname resolution due to

symbolic links.
mfile An attempt was made to open more than the maximum

number of file descriptors allowed in this process.
mlink An attempt was made to have the link count of a single file

exceed a system-dependent limit.
msgsize An inappropriate message buffer length was used.
nametoolong The size of a pathname string, or a pathname component,

was longer than the system-dependent limit.
nfile There were too many open files.
nodev An attempt was made to apply an inappropriate function

to a device, for example, trying to read from a write-only
device such as a printer.

noent A component of a specified pathname did not exist, or the
pathname was an empty string.

noexec A request was made to execute a file that, although it had
the appropriate permissions, was not in the format required
by the implementation for executable files.

262 CHAPTER 11. MANUAL PAGES

SML name Description
nolck A system-imposed limit on the number of simultaneous file

and record locks was reached.
nomem The process image required more memory than was al-

lowed by the hardware or by system-imposed memory
management constraints.

nospc During a write operation on a regular file, or when ex-
tending a directory, there was no free space left on the de-
vice.

nosys An attempt was made to use a function that is not available
in this implementation.

notdir A component of the specified pathname existed, but it was
not a directory, when a directory was expected.

notempty A directory with entries other than "." and ".."was sup-
plied when an empty directory was expected.

notsup The implementation does not support this feature of the
standard.

notty A control function was attempted for a file or a special file
for which the operation was inappropriate.

nxio Input or output on a special file referred to a device that did
not exist or made a request beyond the limits of the device.
This error may occur when, for example, a tape drive is not
online.

perm An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a
file or some other resource.

pipe A write was attempted on a pipe or FIFO for which there
was no process to read the data.

range The result of a function was too large to fit in the available
space.

rofs An attempt was made to modify a file or directory on a file
system that was read-only at that time.

spipe An invalid seek operation was issued on a pipe or FIFO.
srch No such process could be found corresponding to that spec-

ified by a given process ID.
toobig The sum of bytes used by the argument list and environ-

ment list was greater than the system-imposed limit.
xdev A link to a file on another file system was attempted.

The string representation of a syserror value, as returned by errorName, is the
name of the error. Thus, errorName badmsg = "badmsg".

The name of a corresponding POSIX error can be derived by capitalizing all letters and
adding the character “E” as a prefix. For example, the POSIX error associated with nodev
is ENODEV. The only exception to this rule is the error toobig, whose associated POSIX
error is E2BIG.

See also
OS (§11.32; p. 229), Posix (§11.39; p. 257)

11.41. THE POSIX.FILESYS STRUCTURE 263

11.41 The Posix.FileSys structure

The structure Posix.FileSys provides access to file system operations as described
in Section 5 of the POSIX standard (1003.1,1996) [POS96].

Synopsis
signature POSIX_FILE_SYS
structure Posix.FileSys : POSIX_FILE_SYS

Interface
eqtype uid
eqtype gid
eqtype file_desc

val fdToWord : file_desc -> SysWord.word
val wordToFD : SysWord.word -> file_desc
val fdToIOD : file_desc -> OS.IO.iodesc
val iodToFD : OS.IO.iodesc -> file_desc option

type dirstream

val opendir : string -> dirstream
val readdir : dirstream -> string option
val rewinddir : dirstream -> unit
val closedir : dirstream -> unit

val chdir : string -> unit
val getcwd : unit -> string

val stdin : file_desc
val stdout : file_desc
val stderr : file_desc

structure S : sig
eqtype mode
include BIT_FLAGS
where type flags = mode

val irwxu : mode
val irusr : mode
val iwusr : mode
val ixusr : mode
val irwxg : mode
val irgrp : mode
val iwgrp : mode
val ixgrp : mode
val irwxo : mode
val iroth : mode
val iwoth : mode
val ixoth : mode

264 CHAPTER 11. MANUAL PAGES

val isuid : mode
val isgid : mode

end

structure O : sig
include BIT_FLAGS

val append : flags
val excl : flags
val noctty : flags
val nonblock : flags
val sync : flags
val trunc : flags

end

datatype open_mode
= O_RDONLY
| O_WRONLY
| O_RDWR

val openf : string * open_mode * O.flags -> file_desc
val createf : string * open_mode * O.flags * S.mode

-> file_desc
val creat : string * S.mode -> file_desc

val umask : S.mode -> S.mode
val link : {old : string, new : string} -> unit
val mkdir : string * S.mode -> unit
val mkfifo : string * S.mode -> unit
val unlink : string -> unit
val rmdir : string -> unit
val rename : {old : string, new : string} -> unit
val symlink : {old : string, new : string} -> unit
val readlink : string -> string

eqtype dev

val wordToDev : SysWord.word -> dev
val devToWord : dev -> SysWord.word

eqtype ino

val wordToIno : SysWord.word -> ino
val inoToWord : ino -> SysWord.word

structure ST : sig
type stat

11.41. THE POSIX.FILESYS STRUCTURE 265

val isDir : stat -> bool
val isChr : stat -> bool
val isBlk : stat -> bool
val isReg : stat -> bool
val isFIFO : stat -> bool
val isLink : stat -> bool
val isSock : stat -> bool
val mode : stat -> S.mode
val ino : stat -> ino
val dev : stat -> dev
val nlink : stat -> int
val uid : stat -> uid
val gid : stat -> gid
val size : stat -> Position.int
val atime : stat -> Time.time
val mtime : stat -> Time.time
val ctime : stat -> Time.time

end

val stat : string -> ST.stat
val lstat : string -> ST.stat
val fstat : file_desc -> ST.stat

datatype access_mode = A_READ | A_WRITE | A_EXEC

val access : string * access_mode list -> bool

val chmod : string * S.mode -> unit
val fchmod : file_desc * S.mode -> unit
val chown : string * uid * gid -> unit
val fchown : file_desc * uid * gid -> unit
val utime : string

* {actime : Time.time, modtime : Time.time} option
-> unit

val ftruncate : file_desc * Position.int -> unit

val pathconf : string * string -> SysWord.word option
val fpathconf : file_desc * string -> SysWord.word option

Description

eqtype uid

User identifier; identical to Posix.ProcEnv.uid.

eqtype gid

Group identifier; identical to Posix.ProcEnv.gid.

266 CHAPTER 11. MANUAL PAGES

eqtype file_desc

Open file descriptor.

val fdToWord : file_desc -> SysWord.word
val wordToFD : SysWord.word -> file_desc

These functions convert between an abstract open file descriptor and the integer represen-
tation used by the operating system. These calls should be avoided where possible, for
the SML implementation may be able to garbage collect (i.e., automatically close) any
file_desc value that is not accessible, but it cannot reclaim any file_desc that has
ever been made concrete by fdToWord. Also, there is no validation that the file descriptor
created by wordToFD corresponds to an actually open file.

val fdToIOD : file_desc -> OS.IO.iodesc
val iodToFD : OS.IO.iodesc -> file_desc option

These convert between a POSIX open file descriptor and the handle used by the OS subsys-
tem. The function iodToFD returns an option type because, on certain systems, some
open I/O devices are not associated with an underlying open file descriptor.

type dirstream

A directory stream opened for reading. A directory stream is an ordered sequence of all
the directory entries in a particular directory. This type is identical to OS.FileSys.-
dirstream.

val opendir : string -> dirstream

opendir dirName opens the directory designated by the dirName parameter and
associates a directory stream with it. The directory stream is positioned at the first entry.

val readdir : dirstream -> string option

readdir dir returns and removes one filename from the directory stream dir. When
the directory stream is empty (that is, when all entries have been read from the stream),
NONE is returned. Entries for "." (current directory) and ".." (parent directory) are
never returned.

Rationale: The reason for filtering out the current and parent directory entries is that it
makes recursive walks of a directory tree easier.

val rewinddir : dirstream -> unit

rewinddir d repositions the directory stream d for reading at the beginning.

11.41. THE POSIX.FILESYS STRUCTURE 267

val closedir : dirstream -> unit

closedir d closes the directory stream d. Closing a previously closed dirstream
does not raise an exception.

val chdir : string -> unit

chdir s changes the current working directory to s.

val getcwd : unit -> string

The absolute pathname of the current working directory.

val stdin : file_desc
val stdout : file_desc
val stderr : file_desc

The standard input, output, and error file descriptors.

structure S : sig ... end

eqtype mode

A file mode is a set of (read, write, execute) permissions for the owner of the file,
members of the file’s group, and others.

val irwxu : mode

Read, write, and execute permission for “user” (the file’s owner).

val irusr : mode

Read permission for “user” (the file’s owner).

val iwusr : mode

Write permission for “user” (the file’s owner).

val ixusr : mode

Execute permission for “user” (the file’s owner).

val irwxg : mode

Read, write, and execute permission for members of the file’s group.

val irgrp : mode

Read permission for members of the file’s group.

268 CHAPTER 11. MANUAL PAGES

val iwgrp : mode

Write permission for members of the file’s group.

val ixgrp : mode

Execute permission for members of the file’s group.

val irwxo : mode

Read, write, and execute permission for “others” (all users).

val iroth : mode

Read permission for “others” (all users).

val iwoth : mode

Write permission for “others” (all users).

val ixoth : mode

Execute permission for “others” (all users).

val isuid : mode

Set-user-ID mode, indicating that the effective user ID of any user executing the file
should be made the same as that of the owner of the file.

val isgid : mode

Set-group-ID mode, indicating that the effective group ID of any user executing the
file should be made the same as the group of the file.

structure O : sig ... end

The structure Posix.FileSys.O contains file status flags used in calls to openf.

val append : flags

If set, the file pointer is set to the end of the file prior to each write.

val excl : flags

This flag causes the open to fail if the file already exists.

val noctty : flags

If the path parameter identifies a terminal device, this flag assures that the terminal
device does not become the controlling terminal for the process.

val nonblock : flags

Open, read, and write operations on the file will be non-blocking.

11.41. THE POSIX.FILESYS STRUCTURE 269

val sync : flags

If set, updates and writes to regular files and block devices are synchronous updates.
On return from a function that performs a synchronous update (writeVec, write-
Arr, ftruncate, openf with trunc), the calling process is assured that all data
for the file have been written to permanent storage, even if the file is also open for
deferred update.

val trunc : flags

This flag causes the file to be truncated (to zero length) upon opening.

datatype open_mode

Operations allowed on an open file.

= O_RDONLY

Open a file for reading only.

| O_WRONLY

Open a file for writing only.

| O_RDWR

Open a file for reading and writing.

val openf : string * open_mode * O.flags -> file_desc
val createf : string * open_mode * O.flags * S.mode

-> file_desc

openf (s, om, f)
createf (s, om, f, m)

These calls open a file named s for reading, writing, or both (depending on the open
mode om). The flags f specify the state of the open file. If the file does not exist, openf
raises the OS.SysErr exception whereas createf creates the file, setting its protection
mode to m (as modified by the umask).
Note that, in C, the roles of openf and createf are combined in the function open.

The first acts like open without the O_CREAT flag; the second acts like open with the
O_CREAT flag and the specified permission mode. Also, the createf function should
not be confused with the creat function below, which behaves like its C namesake.

val creat : string * S.mode -> file_desc

creat (s, m) opens a file s for writing. If the file exists, this call truncates the file to
zero length. If the file does not exist, it creates the file, setting its protection mode to m (as
modified by the umask). This expression is equivalent to the following:

createf(s,O_WRONLY,O.trunc,m)

270 CHAPTER 11. MANUAL PAGES

val umask : S.mode -> S.mode

umask cmask sets the file mode creation mask of the process to cmask and returns
the previous value of the mask.
Whenever a file is created (by openf, creat, mkdir, etc.), all file permissions set in

the file mode creation mask are removed from the mode of the created file. This clearing
allows users to restrict the default access to their files.
The mask is inherited by child processes.

val link : {old : string, new : string} -> unit

link {old, new} creates an additional hard link (directory entry) for an existing file.
Both the old and the new links share equal access rights to the underlying object.
Both old and new must reside on the same file system. A hard link to a directory

cannot be created.
Upon successful completion, link updates the file status change time of the old file

and updates the file status change and modification times of the directory containing the
new entry. (See Posix.FileSys.ST.)

val mkdir : string * S.mode -> unit

mkdir (s, m) creates a new directory named s with protection mode m (as modified
by the umask).

val mkfifo : string * S.mode -> unit

mkfifo (s, m) makes a FIFO special file (or named pipe) s, with protection mode m
(as modified by the umask).

val unlink : string -> unit

unlink path removes the directory entry specified by path and, if the entry is a hard
link, decrements the link count of the file referenced by the link.
When all links to a file are removed and no process has the file open or mapped, all

resources associated with the file are reclaimed, and the file is no longer accessible. If one
or more processes has the file open or mapped when the last link is removed, the link is
removed before unlink returns, but the removal of the file contents is postponed until all
open or map references to the file are removed. If the path parameter names a symbolic
link, the symbolic link itself is removed.

val rmdir : string -> unit

rmdir s removes a directory s, which must be empty.

val rename : {old : string, new : string} -> unit

rename {old, new} changes the name of a file system object from old to new .

11.41. THE POSIX.FILESYS STRUCTURE 271

val symlink : {old : string, new : string} -> unit

symlink {old, new} creates a symbolic link new . Any component of a pathname
resolving to new will be replaced by the text old. Note that old may be a relative or
absolute pathname and might not be the pathname of any existing file.

val readlink : string -> string

readlink s reads the value of a symbolic link s.

eqtype dev

Device identifier. The device identifier and the file serial number (inode or ino) uniquely
identify a file.

val wordToDev : SysWord.word -> dev
val devToWord : dev -> SysWord.word

These functions convert between dev values and words by which the operating system
identifies a device. There is no verification that a value created by wordToDev corre-
sponds to a valid device identifier.

eqtype ino

File serial number (inode).

val wordToIno : SysWord.word -> ino
val inoToWord : ino -> SysWord.word

These functions convert between ino values and words by which the operating system
identifies an inode. There is no verification that a value created by wordToIno corre-
sponds to a to a valid inode.

structure ST : sig ... end

type stat

This type models status information concerning a file.

272 CHAPTER 11. MANUAL PAGES

val isDir : stat -> bool
val isChr : stat -> bool
val isBlk : stat -> bool
val isReg : stat -> bool
val isFIFO : stat -> bool
val isLink : stat -> bool
val isSock : stat -> bool

These functions return true if the file described by the parameter is, respectively, a
directory, a character special device, a block special device, a regular file, a FIFO, a
symbolic link, or a socket.

val mode : stat -> S.mode

mode st returns the protection mode of the file described by st.

val ino : stat -> ino
val dev : stat -> dev

These functions return the file serial number (inode) and the device identifier, respec-
tively, of the corresponding file.

val nlink : stat -> int

nlink st returns the number of hard links to the file described by st.

val uid : stat -> uid
val gid : stat -> gid

These functions return the owner and group ID of the file.

val size : stat -> Position.int

size st returns the size (number of bytes) of the file described by st.

val atime : stat -> Time.time
val mtime : stat -> Time.time
val ctime : stat -> Time.time

These functions return, respectively, the last access time, the last modification time,
or the last status change time of the file.

val stat : string -> ST.stat
val lstat : string -> ST.stat
val fstat : file_desc -> ST.stat

These functions return information on a file system object. For stat and lstat, the
object is specified by its pathname. Note that an empty string causes an exception. For
fstat, an open file descriptor is supplied.
lstat differs from stat in that, if the pathname argument is a symbolic link, the

information concerns the link itself, not the file to which the link points.

11.41. THE POSIX.FILESYS STRUCTURE 273

datatype access_mode = A_READ | A_WRITE | A_EXEC

This type is identical to OS.FileSys.access_mode.

val access : string * access_mode list -> bool

access (s, l) checks the accessibility of file s. If l is the empty list, it checks for
the existence of the file; if l contains A_READ, it checks for the readability of s based on
the real user and group IDs of the process; and so on.
The value returned depends only on the appropriate privileges of the process and the per-

missions of the file. A directory may be indicated as writable by access, but an attempt
to open it for writing will fail (although files may be created there). A file’s permissions
may indicate that it is executable, but the exec can fail if the file is not in the proper for-
mat. Conversely, if the process has appropriate privileges, access will return true if
none of the appropriate file permissions are set.

val chmod : string * S.mode -> unit

chmod (s, mode) changes the permissions of s to mode.

val fchmod : file_desc * S.mode -> unit

fchmod (fd, mode) changes the permissions of the file opened as fd to mode.

val chown : string * uid * gid -> unit

chown (s, uid, gid) changes the owner and group of file s to uid and gid,
respectively.

val fchown : file_desc * uid * gid -> unit

fchown (fd, uid, gid) changes the owner and group of the file opened as fd to
uid and gid, respectively.

val utime : string
* {actime : Time.time, modtime : Time.time} option
-> unit

utime (f, SOME{actime,modtime}) sets the access and modification times of
the file f to actime and modtime, respectively.
utime (f, NONE) sets the access and modification times of a file to the current time.

val ftruncate : file_desc * Position.int -> unit

ftruncate (fd, n) changes the length of a file opened as fd to n bytes. If the
new length is less than the previous length, all data beyond n bytes are discarded. If the
new length is greater than the previous length, the file is extended to its new length by the
necessary number of zero bytes.

274 CHAPTER 11. MANUAL PAGES

val pathconf : string * string -> SysWord.word option
val fpathconf : file_desc * string -> SysWord.word option

pathconf (s, p)
fpathconf (fd, p)
These functions return the value of property p of the file system underlying the file speci-
fied by s or fd. For integer-valued properties, if the value is unbounded, NONE is returned.
If the value is bounded, SOME(v) is returned, where v is the value. For boolean-value
properties, if the value is true, SOME(1) is returned; otherwise, SOME(0) or NONE is
returned. The OS.SysErr exception is raised if something goes wrong, including when
p is not a valid property or when the implementation does not associate the property with
the file.
In the case of pathconf, read, write, or execute permission of the named file is not

required, but all directories in the path leading to the file must be searchable.
The properties required by POSIX are described below. A given implementation may

support additional properties.

"CHOWN_RESTRICTED" True if the use of chown on any files (other than directories)
in the specified directory is restricted to processes with appropriate privileges. This
property only applies to directories.

"LINK_MAX" The maximum value of a file’s link count as returned by the ST.nlink
function.

"MAX_CANON" The maximum number of bytes that can be stored in an input queue.
This property only applies to terminal devices.

"MAX_INPUT" The maximum number of bytes allowed in an input queue before being
read by a process. This property only applies to terminal devices.

"NAME_MAX" The maximum number of bytes in a filename. This value may be as small
as 13 but is never larger than 255. This property only applies to directories, and its
value applies to filenames within the directory.

"NO_TRUNC" True if supplying a filename longer than allowed by "NAME_MAX" causes
an error and false if long filenames are truncated. This property only applies to direc-
tories.

"PATH_MAX" The maximum number of bytes in a pathname. This value is never larger
than 65,535 and is the maximum length of a relative pathname when the specified
directory is the working directory. This property only applies to directories.

"PIPE_BUF" Maximum number of bytes guaranteed to be written atomically. This
value is applicable only to FIFOs. The value returned applies to the referenced object.
If the path or file descriptor parameter refers to a directory, the value returned applies
to any FIFO that exists or can be created within the directory.

"VDISABLE" If defined, the integer code ord(c) of the character c that can be used
to disable the terminal special characters specified in Posix.TTY.V. This property
only applies to terminal devices.

"ASYNC_IO" True if asynchronous input or output operations may be performed on the
file.

"SYNC_IO" True if synchronous input or output operations may be performed on the
file.

"PRIO_IO" True if prioritized input or output operations may be performed on the file.

11.41. THE POSIX.FILESYS STRUCTURE 275

Implementation note: An implementation can call the operating system’s pathconf
or fpathconf functions, which return an integer. If the returned value is -1 and errno
has been set, an exception is raised. Otherwise, a returned value of -1 should be mapped to
NONE, and other values should be wrapped in SOME and returned.

Rationale: The encoding of boolean values as int option, with false having two
representations, is an unpleasant choice. It would be preferable to split these two functions
into four, with one pair handling integer-valued properties, with the present return type,
and the other pair handling boolean-valued properties, returning values of type bool.
Unfortunately, the nature of the POSIX pathconf and fpathconf functions would
make this approach a nightmare for the implementor.
First, the specification of these functions provides a non-negative integer return value

for both booleans and numbers. POSIX header files provide no inherent information as
to the type of a property. Although the basic properties specified by POSIX have fixed
types, each system is allowed to add its own non-standard properties. Thus, for an SML
implementation to make the distinction, it would have to rely on somehow gleaning the
information from, e.g., system-specific manual pages.
In addition, the POSIX specification is unclear on how boolean values are encoded.

Some systems return 0 for false; others appear to return -1 without setting errno. Tech-
nically, the latter value may be interpreted as meaning that the property value is unknown
or unspecified, which means that, from the programmer’s point of view, the property is not
usable.

See also
BIT_FLAGS (§11.5; p. 129), OS.FileSys (§11.33; p. 231), Posix (§11.39; p. 257),
Posix.IO (§11.42; p. 276), Posix.ProcEnv (§11.43; p. 284),
Posix.Process (§11.44; p. 289)

276 CHAPTER 11. MANUAL PAGES

11.42 The Posix.IO structure

The structure Posix.IO specifies functions that provide the primitive POSIX input/output
operations, as described in Section 6 of the POSIX standard (1003.1,1996) [POS96].

Synopsis
signature POSIX_IO
structure Posix.IO : POSIX_IO

Interface
eqtype file_desc
eqtype pid

val pipe : unit -> {infd : file_desc, outfd : file_desc}
val dup : file_desc -> file_desc
val dup2 : {old : file_desc, new : file_desc} -> unit
val close : file_desc -> unit

val readVec : file_desc * int -> Word8Vector.vector
val readArr : file_desc * Word8ArraySlice.slice -> int
val writeVec : file_desc * Word8VectorSlice.slice -> int
val writeArr : file_desc * Word8ArraySlice.slice -> int

datatype whence
= SEEK_SET
| SEEK_CUR
| SEEK_END

structure FD : sig
include BIT_FLAGS
val cloexec : flags

end

structure O : sig
include BIT_FLAGS
val append : flags
val nonblock : flags
val sync : flags

end

datatype open_mode
= O_RDONLY
| O_WRONLY
| O_RDWR

val dupfd : {old : file_desc, base : file_desc}
-> file_desc

val getfd : file_desc -> FD.flags
val setfd : file_desc * FD.flags -> unit

11.42. THE POSIX.IO STRUCTURE 277

val getfl : file_desc -> O.flags * open_mode
val setfl : file_desc * O.flags -> unit

val lseek : file_desc * Position.int * whence
-> Position.int

val fsync : file_desc -> unit

datatype lock_type
= F_RDLCK
| F_WRLCK
| F_UNLCK

structure FLock : sig
type flock
val flock : {

ltype : lock_type,
whence : whence,
start : Position.int,
len : Position.int,
pid : pid option

} -> flock
val ltype : flock -> lock_type
val whence : flock -> whence
val start : flock -> Position.int
val len : flock -> Position.int
val pid : flock -> pid option

end

val getlk : file_desc * FLock.flock -> FLock.flock
val setlk : file_desc * FLock.flock -> FLock.flock
val setlkw : file_desc * FLock.flock -> FLock.flock

val mkBinReader : {
fd : file_desc,
name : string,
initBlkMode : bool

} -> BinPrimIO.reader
val mkTextReader : {

fd : file_desc,
name : string,
initBlkMode : bool

} -> TextPrimIO.reader

278 CHAPTER 11. MANUAL PAGES

val mkBinWriter : {
fd : file_desc,
name : string,
appendMode : bool,
initBlkMode : bool,
chunkSize : int

} -> BinPrimIO.writer
val mkTextWriter : {

fd : file_desc,
name : string,
appendMode : bool,
initBlkMode : bool,
chunkSize : int

} -> TextPrimIO.writer

Description

eqtype file_desc

Open file descriptor.

eqtype pid

A process ID, used as an identifier for an operating system process.

val pipe : unit -> {infd : file_desc, outfd : file_desc}

This function creates a pipe (channel) and returns two file descriptors that refer to the read
(infd) and write (outfd) ends of the pipe.

val dup : file_desc -> file_desc

dup fd returns a new file descriptor that refers to the same open file, with the same file
pointer and access mode, as fd. The underlying word (see Posix.FileSys.fdTo-
Word) of the returned file descriptor is the lowest one available. It is equivalent to dupfd
{old=fd, base=Posix.FileSys.wordToFD 0w0}.

val dup2 : {old : file_desc, new : file_desc} -> unit

dup2 {old, new} duplicates the open file descriptor old as the file descriptor new .

val close : file_desc -> unit

close fd closes the file descriptor fd.

11.42. THE POSIX.IO STRUCTURE 279

val readVec : file_desc * int -> Word8Vector.vector

readVec (fd, n) reads at most n bytes from the file referred to by fd. The size of
the resulting vector is the number of bytes that were successfully read, which may be less
than n. This function returns the empty vector if end-of-stream is detected (or if n is 0). It
raises the Size exception if n<0.

val readArr : file_desc * Word8ArraySlice.slice -> int

readArr (fd, slice) reads bytes from the file specified by fd into the array slice
slice and returns the number of bytes actually read. The end-of-file condition is marked
by returning 0, although 0 is also returned if the slice is empty. This function will raise
OS.SysErr if there is some problem with the underlying system call (e.g., the file is
closed).

val writeVec : file_desc * Word8VectorSlice.slice -> int
val writeArr : file_desc * Word8ArraySlice.slice -> int

writeVec (fd, slice)
writeArr (fd, slice)
These functions write the bytes of the vector or array slice slice to the open file fd.
Both functions return the number of bytes actually written and will raise OS.SysErr if
there is some problem with the underlying system call (e.g., the file is closed or there is
insufficient disk space).

structure FD : sig ... end

This substructure defines the file-status bit flags that are use by the getfd and setfd
operations.

val cloexec : flags

The file descriptor flag that, if set, will cause the file descriptor to be closed should
the opening process replace itself (through exec, etc.). If cloexec is not set, the
open file descriptor will be inherited by the new process.

structure O : sig ... end

This substructure defines the file-status bit flags that are use by the getfl and setfl
operations.

val append : flags

The file status flag that forces the file offset to be set to the end of the file prior to
each write.

val nonblock : flags

The file status flag used to enable non-blocking I/O.

280 CHAPTER 11. MANUAL PAGES

val sync : flags

The file status flag enabling writes using “synchronized I/O file integrity comple-
tion.”

datatype open_mode

Operations allowed on an open file.

= O_RDONLY

Open a file for reading only.

| O_WRONLY

Open a file for writing only.

| O_RDWR

Open a file for reading and writing.

val dupfd : {old : file_desc, base : file_desc}
-> file_desc

dupfd {old, base} returns a new file descriptor bound to old. The returned de-
scriptor is greater than or equal to the file descriptor base based on the underlying integer
mapping defined by Posix.FileSys.fdToWord and Posix.FileSys.wordTo-
FD. It corresponds to the POSIX fcntl function with the F_DUPFD command.

val getfd : file_desc -> FD.flags

getfd fd gets the file descriptor flags associated with fd. It corresponds to the POSIX
fcntl function with the F_GETFD command.

val setfd : file_desc * FD.flags -> unit

setfd (fd, fl) sets the flags of file descriptor fd to fl. It corresponds to the
POSIX fcntl function with the F_SETFD command.

val getfl : file_desc -> O.flags * open_mode

getfl fd gets the file status flags for the open file descriptor fd and the access mode
in which the file was opened. It corresponds to the POSIX fcntl function with the
F_GETFL command.

val setfl : file_desc * O.flags -> unit

setfl (fd, fl) sets the file status flags for the open file descriptor fd to fl. It
corresponds to the POSIX fcntl function with the F_SETFL command.

11.42. THE POSIX.IO STRUCTURE 281

val lseek : file_desc * Position.int * whence
-> Position.int

lseek (fd, off, wh) sets the file offset for the open file descriptor fd to off if
wh is SEEK_SET, to its current value plus off bytes if wh is SEEK_CUR, or to the size
of the file plus off bytes if wh is SEEK_END. Note that off may be negative.

val fsync : file_desc -> unit

fsync fd indicates that all data for the open file descriptor fd are to be transferred to
the device associated with the descriptor; it is similar to a “flush” operation.

datatype lock_type
= F_RDLCK
| F_WRLCK
| F_UNLCK

These constructors denote the kind of lock. F_RDLCK indicates a shared or read lock.
F_WRLCK indicates an exclusive or write lock. F_WRLCK indicates a lock is unlocked or
inactive.

structure FLock : sig ... end

This substructure defines the representation of advisory locks and provides operations on
them.

type flock

Type representing an advisory lock. It can be considered an abstraction of the record
used as the argument to the flock function below.

val flock : {
ltype : lock_type,
whence : whence,
start : Position.int,
len : Position.int,
pid : pid option

} -> flock
flock {ltype, whence, start, len, pid} creates a flock value de-
scribed by the parameters. The whence and start parameters give the beginning
file position as in lseek. The len value provides the number of bytes to be locked.
If the section starts at the beginning of the file and len = 0, then the entire file is
locked. Normally, pid will be NONE. This value is only used in a flock returned
by getlk.

282 CHAPTER 11. MANUAL PAGES

val ltype : flock -> lock_type
val whence : flock -> whence
val start : flock -> Position.int
val len : flock -> Position.int
val pid : flock -> pid option

These are projection functions for the fields composing a flock value.

val getlk : file_desc * FLock.flock -> FLock.flock

getlk (fd, fl) gets the first lock that blocks the lock description fl on the open file
descriptor fd. It corresponds to the POSIX fcntl function with the F_GETLK command.

val setlk : file_desc * FLock.flock -> FLock.flock

setlk (fd, fl) sets or clears a file segment lock according to the lock description
fl on the open file descriptor fd. An exception is raised immediately if a shared or exclu-
sive lock cannot be set. It corresponds to the POSIX fcntl function with the F_SETLK
command.

val setlkw : file_desc * FLock.flock -> FLock.flock

This function is similar to the setlk function above, except that setlkw waits on
blocked locks until they are released. It corresponds to the POSIX fcntl function with
the F_SETLKW command.

val mkBinReader : {
fd : file_desc,
name : string,
initBlkMode : bool

} -> BinPrimIO.reader
val mkTextReader : {

fd : file_desc,
name : string,
initBlkMode : bool

} -> TextPrimIO.reader

These functions convert an open POSIX file descriptor into a reader. From this reader, one
can then construct an input stream. The functions are comparable to the POSIX function
fdopen.
The argument fields have the following meanings:

fd A file descriptor for a file opened for reading.
name The name associated with the file, used in error messages shown to the user.
initBlkMode False if the file is currently in non-blocking mode, i.e., if the flag O.-

nonblock is set in #1(getfl fd).

11.42. THE POSIX.IO STRUCTURE 283

val mkBinWriter : {
fd : file_desc,
name : string,
appendMode : bool,
initBlkMode : bool,
chunkSize : int

} -> BinPrimIO.writer
val mkTextWriter : {

fd : file_desc,
name : string,
appendMode : bool,
initBlkMode : bool,
chunkSize : int

} -> TextPrimIO.writer

These functions convert an open POSIX file descriptor into a writer. From this writer, one
can then construct an output stream. The functions are comparable to the POSIX function
fdopen.
The argument fields have the following meanings:

fd A file descriptor for a file opened for writing.
name The name associated with the file, used in error messages shown to the user.
initBlkMode False if the file is currently in non-blocking mode, i.e., if the flag O.-

nonblock is set in #1(getfl fd).
appendMode True if the file is in append mode, i.e., if the flag O.append is set in

#1(getfl fd).
chunkSize The recommended size of write operations for efficient writing.

See also
BIT_FLAGS (§11.5; p. 129), OS.IO (§11.34; p. 237), Posix (§11.39; p. 257),
Posix.Error (§11.40; p. 259), Posix.FileSys (§11.41; p. 263),
Posix.IO (§11.42; p. 276)

284 CHAPTER 11. MANUAL PAGES

11.43 The Posix.ProcEnv structure

The structure Posix.ProcEnv specifies functions, as described in Section 4 of the
POSIX standard (1003.1,1996) [POS96], that provide primitive POSIX access to the
process environment.

Synopsis
signature POSIX_PROC_ENV
structure Posix.ProcEnv : POSIX_PROC_ENV

Interface
eqtype pid
eqtype uid
eqtype gid
eqtype file_desc

val uidToWord : uid -> SysWord.word
val wordToUid : SysWord.word -> uid
val gidToWord : gid -> SysWord.word
val wordToGid : SysWord.word -> gid

val getpid : unit -> pid
val getppid : unit -> pid
val getuid : unit -> uid
val geteuid : unit -> uid
val getgid : unit -> gid
val getegid : unit -> gid
val setuid : uid -> unit
val setgid : gid -> unit
val getgroups : unit -> gid list
val getlogin : unit -> string
val getpgrp : unit -> pid
val setsid : unit -> pid
val setpgid : {pid : pid option, pgid : pid option} -> unit

val uname : unit -> (string * string) list

val time : unit -> Time.time
val times : unit

-> {
elapsed : Time.time,
utime : Time.time,
stime : Time.time,
cutime : Time.time,
cstime : Time.time

}

val getenv : string -> string option
val environ : unit -> string list

11.43. THE POSIX.PROCENV STRUCTURE 285

val ctermid : unit -> string
val ttyname : file_desc -> string
val isatty : file_desc -> bool

val sysconf : string -> SysWord.word

Description

eqtype pid

A process ID, used as an identifier for an operating system process.

eqtype uid

User identifier.

eqtype gid

Group identifier.

eqtype file_desc

Open file descriptor.

val uidToWord : uid -> SysWord.word
val wordToUid : SysWord.word -> uid

These functions convert between an abstract user ID and an underlying unique unsigned
integer. Note that wordToUid does not ensure that it returns a valid uid.

val gidToWord : gid -> SysWord.word
val wordToGid : SysWord.word -> gid

These convert between an abstract group ID and an underlying unique unsigned integer.
Note that wordToGid does not ensure that it returns a valid gid.

val getpid : unit -> pid
val getppid : unit -> pid

The process ID and the parent process ID, respectively, of the calling process.

val getuid : unit -> uid
val geteuid : unit -> uid

The real and effective user IDs, respectively, of the calling process.

286 CHAPTER 11. MANUAL PAGES

val getgid : unit -> gid
val getegid : unit -> gid

The real and effective group IDs, respectively, of the calling process.

val setuid : uid -> unit

setuid u sets the real user ID and the effective user ID to u.

val setgid : gid -> unit

setgid g sets the real group ID and the effective group ID to g.

val getgroups : unit -> gid list

The list of supplementary group IDs of the calling process.

val getlogin : unit -> string

The user name associated with the calling process, i.e., the login name associated with the
calling process.

val getpgrp : unit -> pid

The process group ID of the calling process.

val setsid : unit -> pid

This function creates a new session if the calling process is not a process group leader and
returns the process group ID of the calling process.

val setpgid : {pid : pid option, pgid : pid option} -> unit

setpgid (SOME pid, SOME pgid) sets the process group ID of the process spec-
ified by pid to pgid.
setpgid (NONE, SOME pgid) sets the process group ID of the calling process to
pgid.
setpgid (SOME pid, NONE) makes the process specified by pid become a pro-
cess group leader.
setpgid (NONE, NONE) makes the calling process become a process group leader.

val uname : unit -> (string * string) list

A list of name-value pairs including, at least, the names: "sysname", "nodename",
"release", "version", and "machine". (A POSIX implementation may provide
additional values beyond this set.) The respective values are strings that describe the named
system component.

11.43. THE POSIX.PROCENV STRUCTURE 287

val time : unit -> Time.time

The elapsed wall clock time since the Epoch.

val times : unit
-> {
elapsed : Time.time,
utime : Time.time,
stime : Time.time,
cutime : Time.time,
cstime : Time.time

}

A record containing the wall clock time (elapsed), user time (utime), system time
(stime), user CPU time of terminated child processes (cutime), and system CPU time
of terminated child processes (cstime) for the calling process.

val getenv : string -> string option

getenv name searches the environment list for a string of the form name=value and
returns SOME(value) if name is present; it returns NONE if name is not present. This
function is equivalent to OS.Process.getEnv.

val environ : unit -> string list

The environment of the calling process as a list of strings.

val ctermid : unit -> string

A string that represents the pathname of the controlling terminal for the calling process.

val ttyname : file_desc -> string

ttyname fd produces a string that represents the pathname of the terminal associated
with file descriptor fd. It raises OS.SysErr if fd does not denote a valid terminal
device.

val isatty : file_desc -> bool

isatty fd returns true if fd is a valid file descriptor associated with a terminal.
Note that isatty will return false if fd is a bad file descriptor.

288 CHAPTER 11. MANUAL PAGES

val sysconf : string -> SysWord.word

sysconf s returns the integer value for the POSIX configurable system variable s. It
raises OS.SysErr if s does not denote a supported POSIX system variable.
The properties required by POSIX are described below. This list is a minimal set re-

quired for POSIX compliance, and an implementation may extend it with additional prop-
erties.

"ARG_MAX" Maximum length of arguments, in bytes, for the functions exec, exece,
and execp from the Posix.Process module, This limit also applies to environ-
ment data.

"CHILD_MAX" Maximum number of concurrent processes associated with a real user
ID.

"CLK_TCK" Number of clock ticks per second.
"NGROUPS_MAX" Maximum number of supplementary group IDs associated with a

process, in addition to the effective group ID.
"OPEN_MAX" Maximum number of files that one process can have open concurrently.
"STREAM_MAX" Maximum number of streams that one process can have open concur-

rently.
"TZNAME_MAX" Maximum number bytes allowed for a time zone name.
"JOB_CONTROL" Non-zero if the implementation supports job control.
"SAVED_IDS" Non-zero if each process has a saved set-user-ID and and saved set-

group-ID.
"VERSION" A version number.

Consult Section 4.8 of POSIX standard 1003.1,1996 [POS96] for additional information.
Note that a property in SML has the same name as the property in C, but without the prefix
"_SC_".

See also
Posix (§11.39; p. 257), Posix.FileSys (§11.41; p. 263),
Posix.ProcEnv (§11.43; p. 284), Time (§11.60; p. 387)

11.44. THE POSIX.PROCESS STRUCTURE 289

11.44 The Posix.Process structure

The structure Posix.Process describes the primitive POSIX operations dealing
with processes, as described in Section 3 of the POSIX standard 1003.1,1996[POS96].

Synopsis
signature POSIX_PROCESS
structure Posix.Process : POSIX_PROCESS

Interface
eqtype signal
eqtype pid

val wordToPid : SysWord.word -> pid
val pidToWord : pid -> SysWord.word

val fork : unit -> pid option
val exec : string * string list -> ’a
val exece : string * string list * string list -> ’a
val execp : string * string list -> ’a

datatype waitpid_arg
= W_ANY_CHILD
| W_CHILD of pid
| W_SAME_GROUP
| W_GROUP of pid

datatype exit_status
= W_EXITED
| W_EXITSTATUS of Word8.word
| W_SIGNALED of signal
| W_STOPPED of signal

val fromStatus : OS.Process.status -> exit_status

structure W : sig
include BIT_FLAGS
val untraced : flags

end

val wait : unit -> pid * exit_status
val waitpid : waitpid_arg * W.flags list

-> pid * exit_status
val waitpid_nh : waitpid_arg * W.flags list

-> (pid * exit_status) option

val exit : Word8.word -> ’a

290 CHAPTER 11. MANUAL PAGES

datatype killpid_arg
= K_PROC of pid
| K_SAME_GROUP
| K_GROUP of pid

val kill : killpid_arg * signal -> unit

val alarm : Time.time -> Time.time
val pause : unit -> unit
val sleep : Time.time -> Time.time

Description

eqtype signal

A POSIX signal; an asynchronous notification of an event.

eqtype pid

A process ID, used as an identifier for an operating system process.

val wordToPid : SysWord.word -> pid
val pidToWord : pid -> SysWord.word

These functions convert between a process ID and the integer representation used by the
operating system. Note that there is no validation that a pid value generated using word-
ToPid is legal on the given system or that it corresponds to a currently running process.

val fork : unit -> pid option

This function creates a new process. The new child process is a copy of the calling parent
process. After the execution of fork, both the parent and child process execute inde-
pendently but share various system resources. Upon successful completion, fork returns
NONE in the child process and the pid of the child in the parent process. It raises OS.-
SysErr on failure.

val exec : string * string list -> ’a
val exece : string * string list * string list -> ’a
val execp : string * string list -> ’a

exec (path, args)
exece (path, args, env)
execp (file, args)
These functions replace the current process image with a new process image. There is no
return from a successful call, as the calling process image is overlaid by the new process
image. In the first two forms, the path argument specifies the pathname of the executable
file. In the last form, if file contains a slash character, it is treated as the pathname for

11.44. THE POSIX.PROCESS STRUCTURE 291

the executable file; otherwise, an executable file with the name file is searched for in the
directories specified by the environment variable PATH.
Normally, the new image is given the same environment as the calling program. The

env argument in exece allows the program to specify a new environment.
The args argument is a list of string arguments to be passed to the new program. By

convention, the first item in args is some form of the filename of the new program, usually
the last arc in the path or filename.

datatype waitpid_arg

= W_ANY_CHILD

Any child process

| W_CHILD of pid

The child process with the given pid

| W_SAME_GROUP

Any child process in the same process group as the calling process

| W_GROUP of pid

Any child process whose process group ID is given by pid.

datatype exit_status
= W_EXITED
| W_EXITSTATUS of Word8.word
| W_SIGNALED of signal
| W_STOPPED of signal

These values represent the ways in which a process might stop. They correspond to,
respectively, terminate successfully, terminate with the given value, terminate upon re-
ceipt of the given signal, and stop upon receipt of the given signal. The value carried by
W_EXITSTATUS must never be zero.
If an implementation provides both the Posix and Unix structures, then the datatypes

Posix.Process.exit_status and Unix.exit_status must be the same.

val fromStatus : OS.Process.status -> exit_status

fromStatus sts returns a concrete view of the given status.

292 CHAPTER 11. MANUAL PAGES

structure W : sig ... end

val untraced : flags

This flag is used to request the status of those child processes that are stopped on
systems that support job control.

val wait : unit -> pid * exit_status

This function allows a calling process to obtain status information on any of its child pro-
cesses. The execution of wait suspends the calling process until status information on one
of its child processes is available. If status information is available prior to the execution
of wait, return is immediate. wait returns the process ID of the child and its exit status.

val waitpid : waitpid_arg * W.flags list
-> pid * exit_status

waitpid (procs, l) is identical to wait, except that the status is reported only for
child processes specified by procs. A set of flags l may be used to modify the behavior
of waitpid.

val waitpid_nh : waitpid_arg * W.flags list
-> (pid * exit_status) option

waitpid_nh (procs, l) is identical to waitpid, except that the call does not
suspend if status information for one of the children specified by procs is not immediately
available.

Rationale: In C, waitpid_nh is handled by waitpid, using an additional flag to
indicate no hanging. In SML the semantics of waitpid_nh requires a different return
type from that of waitpid, hence the split into two functions.

val exit : Word8.word -> ’a

exit i terminates the calling process. If the parent process is executing a wait related
call, the exit status i is made available to it. exit does not return to the caller.
Calling exit does not flush or close any open IO streams, nor does it call OS.-

Process.atExit. It does close any open POSIX files and performs the actions as-
sociated with the C version of exit.

datatype killpid_arg

= K_PROC of pid

The process with ID pid.

11.44. THE POSIX.PROCESS STRUCTURE 293

| K_SAME_GROUP

All processes in the same process group as the calling process.

| K_GROUP of pid

All processes in the process group specified by pid.

val kill : killpid_arg * signal -> unit

kill (procs, sig) sends the signal sig to the process or group of processes spec-
ified by procs.

val alarm : Time.time -> Time.time

alarm t causes the system to send an alarm signal (alrm) to the calling process after t
seconds have elapsed. If there is a previous alarm request with time remaining, the alarm
function returns a non-zero value corresponding to the number of seconds remaining on
the previous request. Zero time is returned if there are no outstanding calls.

val pause : unit -> unit

This function suspends the calling process until the delivery of a signal that is either caught
or that terminates the process.

val sleep : Time.time -> Time.time

sleep t causes the current process to be suspended from execution until either t sec-
onds have elapsed or until the receipt of a signal that is either caught or that terminates the
process.

See also
BIT_FLAGS (§11.5; p. 129), OS.Process (§11.36; p. 250), Posix (§11.39; p. 257),
Posix.Signal (§11.45; p. 294)

294 CHAPTER 11. MANUAL PAGES

11.45 The Posix.Signal structure

The structure Posix.Signal defines the symbolic names of all the signals defined
in Section 3.3 of the POSIX standard (1003.1,1996) [POS96] and provides conversion
functions between them and their underlying representations.

Synopsis
signature POSIX_SIGNAL
structure Posix.Signal : POSIX_SIGNAL

Interface
eqtype signal

val toWord : signal -> SysWord.word
val fromWord : SysWord.word -> signal

val abrt : signal
val alrm : signal
val bus : signal
val fpe : signal
val hup : signal
val ill : signal
val int : signal
val kill : signal
val pipe : signal
val quit : signal
val segv : signal
val term : signal
val usr1 : signal
val usr2 : signal
val chld : signal
val cont : signal
val stop : signal
val tstp : signal
val ttin : signal
val ttou : signal

Description

eqtype signal

A POSIX signal; an asynchronous notification of an event.

val toWord : signal -> SysWord.word
val fromWord : SysWord.word -> signal

These convert between a signal identifier and its underlying integer representation. Note
that fromWord does not check that the result corresponds to a valid POSIX signal.

11.45. THE POSIX.SIGNAL STRUCTURE 295

Discussion
The values defined in this structure represent the standard POSIX signals. The following
table provides a brief description of their meanings.

SML name Description
abrt End process (abort).
alrm Alarm clock.
bus Bus error.
fpe Floating-point exception.
hup Hangup.
ill Illegal instruction.
int Interrupt.
kill Kill. (It cannot be caught or ignored.)
pipe Write on a pipe when there is no process to read it.
quit Quit.
segv Segmentation violation.
term Software termination signal.
usr1 User-defined signal 1.
usr2 User-defined signal 2.
chld Sent to parent on child stop or exit.
cont Continue if stopped. (It cannot be caught or ignored.)
stop Stop. (It cannot be caught or ignored.)
tstp Interactive stop.
ttin Background read attempted from control terminal.
ttou Background write attempted from control terminal.

The name of the corresponding POSIX signal can be derived by capitalizing all letters and
adding the string “SIG” as a prefix. For example, the POSIX signal associated with usr2
is SIGUSR2.

See also
Posix (§11.39; p. 257), Posix.Process (§11.44; p. 289)

296 CHAPTER 11. MANUAL PAGES

11.46 The Posix.SysDB structure

The Posix.SysDB structure implements operations on the user database and the group
database (in POSIX parlance, the password file and the group file). These are the data
and operations described in Section 9 of the POSIX standard (1003.1,1996) [POS96].

Synopsis
signature POSIX_SYS_DB
structure Posix.SysDB : POSIX_SYS_DB

Interface
eqtype uid
eqtype gid

structure Passwd : sig
type passwd
val name : passwd -> string
val uid : passwd -> uid
val gid : passwd -> gid
val home : passwd -> string
val shell : passwd -> string

end

structure Group : sig
type group
val name : group -> string
val gid : group -> gid
val members : group -> string list

end

val getgrgid : gid -> Group.group
val getgrnam : string -> Group.group
val getpwuid : uid -> Passwd.passwd
val getpwnam : string -> Passwd.passwd

Description

eqtype uid

User identifier; identical to Posix.ProcEnv.uid.

eqtype gid

Group identifier; identical to Posix.ProcEnv.gid.

11.46. THE POSIX.SYSDB STRUCTURE 297

structure Passwd : sig ... end

This substructure defines the representation of password-database records and operations
for accessing their fields.

type passwd

Information related to a user.

val name : passwd -> string
val uid : passwd -> uid
val gid : passwd -> gid
val home : passwd -> string
val shell : passwd -> string

These functions extract the name, the user ID, the group ID, the path of the initial
working, or home, directory, and the initial command shell, respectively, of the user
corresponding to the passwd value. The names of the corresponding fields in C are
the same but prefixed with “pw_.” The one exception is that C uses “pw_dir” for
the home directory.

structure Group : sig ... end

This substructure defines the representation of group-database records and operations for
accessing their fields.

type group

Information related to a group.

val name : group -> string
val gid : group -> gid
val members : group -> string list

These extract the name, the group ID, and the names of users belonging to the group,
respectively, of the group corresponding to the group value. In C, these fields are
named gr_name, gr_gid, and gr_mem, respectively.

val getgrgid : gid -> Group.group
val getgrnam : string -> Group.group
val getpwuid : uid -> Passwd.passwd
val getpwnam : string -> Passwd.passwd

These functions return the group or user database entry associated with the given group ID
or name, or user ID or name. It raises OS.SysErr if there is no group or user with the
given ID or name.

See also
Posix (§11.39; p. 257)

298 CHAPTER 11. MANUAL PAGES

11.47 The Posix.TTY structure

The structure Posix.TTY specifies a model of a general terminal interface, as de-
scribed in Section 7 of the POSIX standard (1003.1,1996) [POS96].

Synopsis
signature POSIX_TTY
structure Posix.TTY : POSIX_TTY

Interface
eqtype pid
eqtype file_desc

structure V : sig
val eof : int
val eol : int
val erase : int
val intr : int
val kill : int
val min : int
val quit : int
val susp : int
val time : int
val start : int
val stop : int
val nccs : int
type cc
val cc : (int * char) list -> cc
val update : cc * (int * char) list -> cc
val sub : cc * int -> char

end

structure I : sig
include BIT_FLAGS
val brkint : flags
val icrnl : flags
val ignbrk : flags
val igncr : flags
val ignpar : flags
val inlcr : flags
val inpck : flags
val istrip : flags
val ixoff : flags
val ixon : flags
val parmrk : flags

end

11.47. THE POSIX.TTY STRUCTURE 299

structure O : sig
include BIT_FLAGS
val opost : flags

end

structure C : sig
include BIT_FLAGS
val clocal : flags
val cread : flags
val cs5 : flags
val cs6 : flags
val cs7 : flags
val cs8 : flags
val csize : flags
val cstopb : flags
val hupcl : flags
val parenb : flags
val parodd : flags

end

structure L : sig
include BIT_FLAGS
val echo : flags
val echoe : flags
val echok : flags
val echonl : flags
val icanon : flags
val iexten : flags
val isig : flags
val noflsh : flags
val tostop : flags

end

eqtype speed

val compareSpeed : speed * speed -> order
val speedToWord : speed -> SysWord.word
val wordToSpeed : SysWord.word -> speed

val b0 : speed
val b50 : speed
val b75 : speed
val b110 : speed
val b134 : speed
val b150 : speed
val b200 : speed
val b300 : speed
val b600 : speed
val b1200 : speed
val b1800 : speed

300 CHAPTER 11. MANUAL PAGES

val b2400 : speed
val b4800 : speed
val b9600 : speed
val b19200 : speed
val b38400 : speed

type termios

val termios : {
iflag : I.flags,
oflag : O.flags,
cflag : C.flags,
lflag : L.flags,
cc : V.cc,
ispeed : speed,
ospeed : speed

} -> termios
val fieldsOf : termios

-> {
iflag : I.flags,
oflag : O.flags,
cflag : C.flags,
lflag : L.flags,
cc : V.cc,
ispeed : speed,
ospeed : speed

}
val getiflag : termios -> I.flags
val getoflag : termios -> O.flags
val getcflag : termios -> C.flags
val getlflag : termios -> L.flags
val getcc : termios -> V.cc

structure CF : sig
val getospeed : termios -> speed
val getispeed : termios -> speed
val setospeed : termios * speed -> termios
val setispeed : termios * speed -> termios

end

structure TC : sig
eqtype set_action

val sanow : set_action
val sadrain : set_action
val saflush : set_action

eqtype flow_action

11.47. THE POSIX.TTY STRUCTURE 301

val ooff : flow_action
val oon : flow_action
val ioff : flow_action
val ion : flow_action

eqtype queue_sel

val iflush : queue_sel
val oflush : queue_sel
val ioflush : queue_sel

val getattr : file_desc -> termios
val setattr : file_desc * set_action * termios -> unit
val sendbreak : file_desc * int -> unit
val drain : file_desc -> unit
val flush : file_desc * queue_sel -> unit
val flow : file_desc * flow_action -> unit
val getpgrp : file_desc -> pid
val setpgrp : file_desc * pid -> unit

end

Description

eqtype pid

A process identifier.

eqtype file_desc

An open file descriptor.

structure V : sig ... end

The V substructure provides means for specifying the special control characters.

val eof : int
val eol : int
val erase : int
val intr : int
val kill : int
val min : int
val quit : int
val susp : int
val time : int
val start : int
val stop : int

302 CHAPTER 11. MANUAL PAGES

Indices for the special control characters EOF, EOL, ERASE, INTR, KILL, MIN,
QUIT, SUSP, TIME, START, and STOP, respectively. These values are the indices
used in the functions cc and sub.

val nccs : int

The total number of special characters. Thus, valid indices range from 0 to nccs−1.

type cc

A vector of special control characters used by the device driver.

val cc : (int * char) list -> cc

cc l creates a value of type cc, mapping an index to its paired character. Un-
specified indices are associated with #"\000". For example, to have the character
#"\ˆD" (control-D) serve as the EOF (end-of-file) character, one would use

cc [(V.eof, #"\ˆD")]
to use a cc value, embed it in a termios type, and invoke TC.setattr.

val update : cc * (int * char) list -> cc

update (cs, l) returns a copy of cs, but with the new mappings specified by
l overwriting the original mappings.

val sub : cc * int -> char

sub (cs, i) returns the special control character associated in cs with the in-
dex i. It raises Subscript if i is negative or i ≥ nccs.

structure I : sig ... end

The I substructure contains flags for specifying input control. The following table provides
a brief description of the flags.

Flag name Description
brkint Signal interrupt on break.
icrnl Map CR (#"\ˆM") to NL (#"\n") on input.
ignbrk Ignore a break condition.
igncr Ignore CR characters.
ignpar Ignore characters with parity errors.
inlcr Map NL to CR on input.
inpck Enable input parity check.
istrip Strip the eighth bit of a byte.
ixoff Enable start/stop input control.
ixon Enable start/stop output control.
parmrk Mark parity errors.

structure O : sig ... end

The O substructure contains flags for specifying output control.

11.47. THE POSIX.TTY STRUCTURE 303

val opost : flags

Perform output processing.

structure C : sig ... end

The C substructure contains flags for specifying basic terminal hardware control. The
following table provides a brief description of the flags.

Flag name Description
clocal Ignore modem status lines.
cread Enable the receiver.
csize Mask for the number of bits per byte used for both trans-

mission and reception. This value is the union of cs5,
cs6, cs7, and cs8.

cs5 5 bits per byte.
cs6 6 bits per byte.
cs7 7 bits per byte.
cs8 8 bits per byte.
cstopb Specifies sending two stop bits rather than one.
hupcl Hang up the modem connection when the last process with

the port open closes it.
parenb Enable parity generation and detection.
parodd Use odd parity rather than even if parenb is set.

structure L : sig ... end

The L substructure contains flags for specifying various local control modes. The following
table provides a brief description of the flags.

Flag name Description
echo Echo input characters back to the terminal.
echoe Echo the ERASE character on backspace in canonical

mode.
echok Echo the KILL character in canonical mode.
echonl In canonical mode, echo a NL character even if echo is not

set.
icanon Set canonical mode, enabling erase and kill processing, and

providing line-based input.
iexten Enable extended functions.
isig Enable input characters to be mapped to signals.
noflsh Disable the normal input and output flushing connected

with the INTR, QUIT, and SUSP characters. (See the
Posix.TTY.V substructure.)

tostop Send Posix.Signal.ttou for background output.

eqtype speed

Terminal input and output baud rates.

304 CHAPTER 11. MANUAL PAGES

val compareSpeed : speed * speed -> order

compareSpeed (sp, sp’) returns LESS, EQUAL, or GREATERwhen the baud rate
sp is less than, equal to, or greater than that of sp’, respectively.

val speedToWord : speed -> SysWord.word
val wordToSpeed : SysWord.word -> speed

These functions convert between a speed value and its underlying word representation.
No checking is performed by wordToSpeed to ensure the resulting value corresponds to
an allowed speed in the given system.

type termios

The attributes associated with a terminal. It acts as an abstract representation of the record
used as the argument to the termios function.

val termios : {
iflag : I.flags,
oflag : O.flags,
cflag : C.flags,
lflag : L.flags,
cc : V.cc,
ispeed : speed,
ospeed : speed

} -> termios

This function creates a termios value using the given flags, special characters, and
speeds.

val fieldsOf : termios
-> {
iflag : I.flags,
oflag : O.flags,
cflag : C.flags,
lflag : L.flags,
cc : V.cc,
ispeed : speed,
ospeed : speed

}

This function returns a concrete representation of a termios value.

11.47. THE POSIX.TTY STRUCTURE 305

val getiflag : termios -> I.flags
val getoflag : termios -> O.flags
val getcflag : termios -> C.flags
val getlflag : termios -> L.flags
val getcc : termios -> V.cc

These functions are the projection functions from a termios value to its constituent
fields.

structure CF : sig ... end

The CF substructure contains functions for getting and setting the input and output baud
rates in a termios value.

val getospeed : termios -> speed
val getispeed : termios -> speed

These functions return the output and input baud rates, respectively, of the argument.

val setospeed : termios * speed -> termios
val setispeed : termios * speed -> termios

setospeed (t, speed)
setispeed (t, speed)
These expressions return a copy of t, but with the output (input) speed set to speed.

structure TC : sig ... end

The TC substructure contains various types and functions used for handling terminal line
control.

eqtype set_action

Values of this type specify the behavior of the setattr function.

val sanow : set_action
val sadrain : set_action
val saflush : set_action

sanow Changes occur immediately.
sadrain Changes occur after all output is transmitted.
saflush Changes occur after all output is transmitted and after all received but
unread input is discarded.

eqtype flow_action

Values of this type specify the behavior of the flow function.

306 CHAPTER 11. MANUAL PAGES

val ooff : flow_action
val oon : flow_action
val ioff : flow_action
val ion : flow_action

ooff Causes the suspension of output.
oon Restarts the suspended output.
ioff Causes the transmission of a STOP character to the terminal device, to stop it
from transmitting data.

ion Causes the transmission of a START character to the terminal device, to restart
it transmitting data.

eqtype queue_sel

Values of this type specify the behavior of the flush function.

val iflush : queue_sel
val oflush : queue_sel
val ioflush : queue_sel

iflush Causes all data received but not read to be flushed.
oflush Causes all data written but not transmitted to be flushed.
ioflush Discards all data written but not transmitted, or received but not read.

val getattr : file_desc -> termios

getattr fd gets the attributes of the terminal associated with the file descriptor
fd.

val setattr : file_desc * set_action * termios -> unit

setattr (fd, action, termios) sets the attributes of the terminal asso-
ciated with the file descriptor fd as specified in termios. When the change occurs
is specified by action.

val sendbreak : file_desc * int -> unit

sendbreak (fd, t) causes the transmission of a sequence of zero-valued bits
to be sent, if the associated terminal is using asynchronous serial data transmission.
If t is zero, this function will send zero-valued bits for at least a quarter of a second
and no more than half a second. If t is not zero, zero-valued bits are transmitted for
an implementation-defined period of time.

val drain : file_desc -> unit

drain fd waits for all output written on fd to be transmitted.

val flush : file_desc * queue_sel -> unit

flush (fd, qs) discards any data written but not transmitted, or received but
not read, depending on the value of qs.

11.47. THE POSIX.TTY STRUCTURE 307

val flow : file_desc * flow_action -> unit

flow (fd, action) suspends and restarts the transmission or reception of
data, depending on the value of action.

val getpgrp : file_desc -> pid

getpgrp fd returns the process group ID of the foreground process group asso-
ciated with the terminal attached to fd.

val setpgrp : file_desc * pid -> unit

setpgrp (fd, pid) sets the foreground process group ID associated with fd
to pid.

Discussion
The values of type speed defined in this structure specify the standard baud rates with the
obvious correspondence, i.e., b1200 is 1200 baud, b9600 is 9600 baud, etc. The value
b0 indicates “hang up.”

See also
BIT_FLAGS (§11.5; p. 129), Posix (§11.39; p. 257), Posix.Error (§11.40; p. 259),
Posix.FileSys (§11.41; p. 263), Posix.IO (§11.42; p. 276),
Posix.Process (§11.44; p. 289)

308 CHAPTER 11. MANUAL PAGES

11.48 The PRIM_IO signature

The PRIM_IO signature is an abstraction of the low-level input-output system calls
commonly available on file descriptors (OS.IO.iodesc). Imperative and stream I/O
operations do not access the operating system directly but, instead, use the appropriate
primitive I/O reader and writer operations.
Several operations in the PRIM_IO interface will raise exceptions that have been left

intentionally unspecified. The actual exception raised is usually operating-system de-
pendent but may depend on the underlying implementation. For example, a reader
connected to a prime number generator might raise Overflow. More typically, the
close operation on a reader or writer may cause an exception to be raised if there is a
failure in the underlying file system, such as the disk being full or the file server being
unavailable. In addition, one would expect readVec and readVecNB to raise Size
if the resulting vector would exceed the maximum allowed vector size or if the input pa-
rameter is negative. Similarly, one would expect readArr, readArrNB, writeArr,
writeArrNB, writeVec, and writeVecNB to raise Subscript if array bounds
are violated. Readers and writers should not, in general, raise the IO.Io exception.
It is assumed that the higher levels will catch the exceptions raised at the primitive I/O
level and appropriately construct and raise the IO.Io exception.
A reader is required to raise IO.Io if any of its functions, except close or get-

Pos, is invoked after a call to close. A writer is required to raise IO.Io if any of
its functions, except close, is invoked after a call to close. In both cases, the cause
field of the exception should be IO.ClosedStream.

Synopsis
signature PRIM_IO
structure BinPrimIO :> PRIM_IO
where type array = Word8Array.array
where type vector = Word8Vector.vector
where type elem = Word8.word
where type pos = Position.int

structure TextPrimIO :> PRIM_IO
where type array = CharArray.array
where type vector = CharVector.vector
where type elem = Char.char

structure WideTextPrimIO :> PRIM_IO
where type array = WideCharArray.array
where type vector = WideCharVector.vector
where type elem = WideChar.char

11.48. THE PRIM_IO SIGNATURE 309

Interface
type elem
type vector
type vector_slice
type array
type array_slice

eqtype pos

val compare : pos * pos -> order

datatype reader
= RD of {
name : string,
chunkSize : int,
readVec : (int -> vector) option,
readArr : (array_slice -> int) option,
readVecNB : (int -> vector option) option,
readArrNB : (array_slice -> int option) option,
block : (unit -> unit) option,
canInput : (unit -> bool) option,
avail : unit -> int option,
getPos : (unit -> pos) option,
setPos : (pos -> unit) option,
endPos : (unit -> pos) option,
verifyPos : (unit -> pos) option,
close : unit -> unit,
ioDesc : OS.IO.iodesc option

}

datatype writer
= WR of {
name : string,
chunkSize : int,
writeVec : (vector_slice -> int) option,
writeArr : (array_slice -> int) option,
writeVecNB : (vector_slice -> int option) option,
writeArrNB : (array_slice -> int option) option,
block : (unit -> unit) option,
canOutput : (unit -> bool) option,
getPos : (unit -> pos) option,
setPos : (pos -> unit) option,
endPos : (unit -> pos) option,
verifyPos : (unit -> pos) option,
close : unit -> unit,
ioDesc : OS.IO.iodesc option

}

val openVector : vector -> reader

310 CHAPTER 11. MANUAL PAGES

val nullRd : unit -> reader
val nullWr : unit -> writer

val augmentReader : reader -> reader
val augmentWriter : writer -> writer

Description

type elem

The elem type is an abstraction that represents the “element” of a file (or device, etc.).
Typically, elements are either characters (char) or bytes (Word8.word).

type vector
type vector_slice
type array
type array_slice

One typically reads or writes a sequence of elements in one operation. The vector type
is an immutable vector of elements, the vector_slice type is a slice of a vector, the
array type is an mutable array of elements, and the array_slice type is a slice of an
array.

eqtype pos

This type is an abstraction of a position in a file, usually used for random access.

val compare : pos * pos -> order

compare (pos, pos’) returns LESS, EQUAL, or GREATER when pos is less than,
equal to, or greater than pos’, respectively, in some underlying linear ordering on pos
values.

11.48. THE PRIM_IO SIGNATURE 311

datatype reader
= RD of {
name : string,
chunkSize : int,
readVec : (int -> vector) option,
readArr : (array_slice -> int) option,
readVecNB : (int -> vector option) option,
readArrNB : (array_slice -> int option) option,
block : (unit -> unit) option,
canInput : (unit -> bool) option,
avail : unit -> int option,
getPos : (unit -> pos) option,
setPos : (pos -> unit) option,
endPos : (unit -> pos) option,
verifyPos : (unit -> pos) option,
close : unit -> unit,
ioDesc : OS.IO.iodesc option

}

A reader is an abstraction for a source of items of type elem. Usually, it will correspond
to a file or device opened for reading. It can also represent the output of some algorithm
or function, not necessarily connected to the outside world, that produces elements. The
resulting sequence of elements is potentially unbounded. In the description below, we
usually refer to the limit sequence as a “file,” as files are the most common instance.

name is the name associated with this reader, used in error messages shown to the
user.

chunkSize is the recommended (efficient) size of the read operations on this reader.
This value is typically set to the block size of the operating system’s buffers. chunkSize =
1 strongly recommends unbuffered reads, but since buffering is handled at a higher
level, it cannot guarantee it. chunkSize ≤ 0 is illegal.

readVec(n) when present, reads up to n elements, returning a vector of the elements
read. This function returns the empty vector if the end-of-stream is detected (or if n is
0). It blocks, if necessary, until the end-of-stream is detected or at least one element
is available.
It is recommended that implementations of this function raise the Size exception if
n<0.

readArr(slice) when present, reads up to k elements into the array slice slice,
where k is the size of the slice. This function returns the number of elements actually
read, which will be less than or equal to k. If no elements remain before the end-of-
stream, it returns 0 (this function also returns 0 when slice is empty). It blocks, if
necessary, until at least one element is available.

readVecNB(n) when present, reads i elements without blocking for 1 ≤ i ≤ n,
creating a vector v , and returning SOME(v). If the end-of-stream is detected, this
operation returns returns SOME(fromList[]). If the read would block, then it
returns NONE without blocking.

readArrNB(slice) when present, reads, without blocking, up to k elements into the
array slice slice, where k is the size of the slice. If this function would block (i.e.
no elements are available and the end-of-stream has no been detected), then it returns

312 CHAPTER 11. MANUAL PAGES

NONE; otherwise, it returns SOME(n), where n is the number of elements actually
read (0 on end-of-stream)

block() when present, blocks until at least one element is available for reading without
blocking, or until an end-of-stream condition is detected.

canInput() when present, returns true if and only if the next read can proceed
without blocking.

avail() returns the number of bytes available on the “device” or NONE if it cannot be
determined. For files or strings, this value is the file or string size minus the current
position; for most other input sources, this value is probably NONE. This value can be
used as a hint by inputAll. Note that this is a byte count, not an element count.

getPos() when present, returns the current position in the file. The getPos function
must be non-decreasing (in the absence of setPos operations or other interference
on the underlying object).

setPos(i) when present, moves to position i in the underlying file.
endPos() when present, returns the position corresponding to the end of the file with-

out actually changing the current position.
verifyPos() when present, returns the true current position in the file. It is similar

to getPos, except that the latter may maintain its own notion of file position for
efficiency whereas verifyPos will typically perform a system call to obtain the
underlying operating system’s value of the file position.

close marks the reader closed and, if necessary, performs any cleanup and releases
any operating system resources. Further operations on the reader (besides close
and getPos) raise IO.ClosedStream.

ioDesc when present, is the abstract operating system descriptor associated with this
stream.

One of readVec, readVecNB, readArr, or readArrNBmust be provided. Providing
more of the optional functions increases the usefulness and/or efficiency of clients.

• Absence of all of readVec, readArr, and blockmeans that blocking input is not
possible.

• Absence of all of readVecNB, readArrNB, and canInputmeans that non-blocking
input is not possible.

• Absence of readVecNB means that non-blocking input requires two system calls
(using canInput and readVec).

• Absence of readArr or readArrNB means that input into an array requires extra
copying. Note that the “lazy functional stream” model does not use arrays at all.

• Absence of setPos prevents random access.

Having avail return a value helps the client perform very large input more efficiently,
with one system call and no copying.
If the reader can provide more than the minimum set of operations in a way that

is more efficient than the obvious synthesis (see augmentReader), then by all means
it should do so. Providing more than the minimum by just doing the obvious synthesis
inside the primitive I/O layer is not recommended because then clients will not get the
“hint” about which are the efficient (“recommended”) operations. Clients concerned with
efficiency will make use of the operations provided natively and may need to choose algo-
rithms depending on which operations are provided; clients not concerned with efficiency
or requiring certain operations can use the reader constructed by augmentReader.

11.48. THE PRIM_IO SIGNATURE 313

datatype writer
= WR of {
name : string,
chunkSize : int,
writeVec : (vector_slice -> int) option,
writeArr : (array_slice -> int) option,
writeVecNB : (vector_slice -> int option) option,
writeArrNB : (array_slice -> int option) option,
block : (unit -> unit) option,
canOutput : (unit -> bool) option,
getPos : (unit -> pos) option,
setPos : (pos -> unit) option,
endPos : (unit -> pos) option,
verifyPos : (unit -> pos) option,
close : unit -> unit,
ioDesc : OS.IO.iodesc option

}

A writer is a file (device, etc.) opened for writing. A writer is an abstraction for
a store of items of type elem. Usually, it will correspond to a file or device opened
for writing. It can also represent input to some algorithm or function, not necessarily
connected to the outside world, that consumes the output to guide its computations. The
resulting store of elements is potentially unbounded. In the discussion below, we usually
refer to the store as a “file,” as files are the most common instance.

name is the name associated with this file or device, for use in error messages shown to
the user.

chunkSize is the recommended (efficient) size of write operations on this writer.
This value is typically set to the block size of the operating system’s buffers. chunkSize =
1 strongly recommends unbuffered writes, but since buffering is handled at a higher
level, it cannot guarantee it. chunkSize ≤ 0 is illegal.

writeVec(slice) when present, writes the elements from the vector slice slice to
the output device and returns the number of elements actually written. If necessary, it
blocks until the output device can accept at least one element.

writeArr(slice) when present, writes the elements from the array slice slice
and returns the number of elements actually written. If necessary, it blocks until the
underlying device can accept at least one element.

writeVecNB(slice) when present, attempts to write the elements from the vec-
tor slice slice to the output device without blocking. If successful, it returns
SOME(n), where n is the number of elements actually written. Otherwise, if it would
block, then it returns NONE without blocking.

writeVecNB(slice) when present, attempts to write the elements from the array
slice slice to the output device without blocking. If successful, it returns SOME(n),
where n is the number of elements actually written. Otherwise, if it would block, then
it returns NONE without blocking.

block() when present, blocks until the writer is guaranteed to be able to write with-
out blocking.

canOutput() when present, returns true if and only if the next write can proceed
without blocking.

getPos() when present, returns the current position within the file.

314 CHAPTER 11. MANUAL PAGES

endPos() when present, returns the position corresponding to the end of the file, with-
out actually changing the current position.

setPos(i) when present, moves to position i in the file, so future writes occur at this
position.

verifyPos() when present, returns the true current position in the file. This func-
tion is similar to getPos, except that the latter may maintain its own notion of file
position for efficiency, whereas verifyPos will typically perform a system call to
obtain the underlying operating system’s value of the file position.

close() marks the writer closed and, if necessary, performs any cleanup and re-
leases any operating system resources. Further operations (other than close) raise
IO.ClosedStream.

ioDesc when present, is the abstract operating system descriptor associated with this
stream.

The write operations return the number of full elements that have been written. If the
size of an element is greater than 1 byte, it is possible that an additional part of an element
might be written. For example, if one tries to write two elements, each of size 3 bytes, the
underlying system write operation may report that only 4 of the 6 bytes has been written.
Thus, one full element have been written, plus part of the second, so the write operation
would return 1.
One of writeVec, writeVecNB, writeArr, or writeArrNB must be provided.

Providing more of the optional functions increases the usefulness and/or efficiency of
clients.

• Absence of all of writeVec, writeArr, and block means that blocking output
is not possible.

• Absence of all of writeVecNB, writeArrNB, and canOutput means that non-
blocking output is not possible.

• Absence of writeArr or writeArrNB means that extra copying will be required
to write from an array.

• Absence of setPos prevents random access.

val openVector : vector -> reader

openVector v creates a reader whose content is v .

val nullRd : unit -> reader
val nullWr : unit -> writer

These functions create readers and writers for a null device abstraction. The null reader
produced by nullRd acts like a reader that is always at the end-of-stream. The null writer
produced by nullWr serves as a sink; any data written using it are thrown away. Null
readers and writers may be closed; if closed, they are expected to behave the same as any
other closed reader or writer.

val augmentReader : reader -> reader

augmentReader rd produces a reader in which as many as possible of readVec,

11.48. THE PRIM_IO SIGNATURE 315

readArr, readVecNB, and readArrNB are provided, by synthesizing these from the
operations of rd.
For example, augmentReader can synthesize readVec from readVecNB and block,

synthesize vector reads from array reads, and synthesize array reads from vector reads, as
needed. The following table indicates how each synthesis can be accomplished.

Synthesize: From:
readVec readVec or readArr or (block and (readVecNB or

readArrNB))
readArr readArr or readVec or (block and (readArrNB or

readVecNB))
readVecNB readVecNB or readArrNB or (canInput and (readVec

or readArr))
readArrNB readArrNB or readVecNB or (canInput and (readArr

or readVec))

In each case, the synthesized operation may not be as efficient as a more direct implemen-
tation — for example, it is faster to read data directly into an array than it is to read them
into a vector and then copy them into the array. But augmentReader should do no harm:
if a reader rd supplies some operation (such as readArr), then augmentReader(rd)
provides the same implementation of that operation, not a synthesized one.

val augmentWriter : writer -> writer

augmentWriter wr produces a writer in which as many as possible of writeVec,
writeArr, writeVecNB, and writeArrNB are provided, by synthesizing these from
the operations of wr.
The following table indicates how each synthesis can be accomplished.

Synthesize: From:
writeVec writeVec or writeArr or (block and (writeVecNB or

writeArrNB))
writeArr writeArr or writeVec or (block and (writeArrNB or

writeVecNB))
writeVecNB writeVecNB or writeArrNB or (canOutput and

(writeVec or writeArr))
writeArrNB writeArrNB or writeVecNB or (canOutput and

(writeArr or writeVec))

The synthesized operation may not be as efficient as a more direct implementation, but if
a writer supplies some operation, then the augmented writer provides the same implemen-
tation of that operation.

Discussion
It may not be possible to use augmentReader or augmentWriter to synthesize op-
erations in a way that is thread-safe in concurrent systems.

None of the function components in readers and writers should block, except for the
obvious ones: readVec, readArray, writeVec, writeArray, and block.

The end-of-stream condition at the stream I/O level is an artifact of a read operation at
the primitive I/O level returning zero elements. Although this event is maintained in the
stream, it is a transient condition at the primitive I/O level. If a call to readVec returns

316 CHAPTER 11. MANUAL PAGES

an empty vector one time, it is quite possible that another call to readVec at the same file
position will return elements. The value returned by an endPos function should indicate
the position after the last element in the file at the time the function is called.

Implementation note: The functions getPos, setPos, endPos, and verify-
Pos are used to support arbitrary random access on the underlying I/O file or device. On
most systems, these operations are well supported only on static objects such as strings or
regular files. Typical implementations will therefore set getPos and the rest to NONE in
both readers and writers for all other file types.

In an implementation where an input stream is represented as a chain of buffers, each
buffer may contain, along with its vector of data, a pos value indicating where the data
came from in the underlying file. As each buffer corresponds to a read operation, the client
is likely to call getPos on each read operation. Thus, the reader should, if possible,
maintain its own version of the file position, to be returned by getPos, to avoid extra
system calls.

Unlike readers, which can expect their getPos functions to be called frequently, writ-
ers need not implement getPos in a highly efficient manner: a system call for each get-
Pos is acceptable. Indeed, with a file opened for atomic append, the information cannot
be obtained reliably except by a system call using verifyPos.

See also
BinIO (§11.4; p. 127), IMPERATIVE_IO (§11.14; p. 158), OS.IO (§11.34; p. 237),
Posix.IO (§11.42; p. 276), PrimIO (§11.49; p. 317), STREAM_IO (§11.52; p. 346),
TextIO (§11.58; p. 382)

11.49. THE PRIMIO FUNCTOR 317

11.49 The PrimIO functor

The optional functor PrimIO builds an instance of the primitive I/O signature PRIM_IO.

Synopsis
signature PRIM_IO
functor PrimIO (...): PRIM_IO

where type elem = Vector.elem
where type vector = Vector.vector
where type vector_slice = VectorSlice.slice
where type array = Array.array
where type array_slice = ArraySlice.slice
where type pos = pos

Functor Argument Interface
structure Vector : MONO_VECTOR
structure VectorSlice : MONO_VECTOR_SLICE
structure Array : MONO_ARRAY
structure ArraySlice : MONO_ARRAY_SLICE
sharing type Vector.elem = VectorSlice.elem = Array.elem

= ArraySlice.elem
sharing type Vector.vector = VectorSlice.vector
= Array.vector = ArraySlice.vector

sharing type VectorSlice.slice = ArraySlice.vector_slice
sharing type Array.array = ArraySlice.array
val someElem : Vector.elem
eqtype pos
val compare : pos * pos -> order

Description

val someElem : Vector.elem

An element that may be read or written by a reader or writer. The value someElem
is typically used for the initialization of buffers.

val compare : pos * pos -> order

compare (pos, pos’) returns LESS, EQUAL, or GREATER when pos is less than,
equal to, or greater than pos’, respectively, in some underlying linear ordering on pos
values.

See also
General (§11.11; p. 149), MONO_ARRAY (§11.23; p. 193),
MONO_ARRAY_SLICE (§11.25; p. 205), MONO_VECTOR (§11.26; p. 211),
MONO_VECTOR_SLICE (§11.27; p. 215), PRIM_IO (§11.48; p. 308),
StreamIO (§11.53; p. 358)

318 CHAPTER 11. MANUAL PAGES

11.50 The REAL signature

The REAL signature specifies structures that implement floating-point numbers. The se-
mantics of floating-point numbers should follow the IEEE standard 754-1985 [IEE85]
and the ANSI/IEEE standard 854-1987 [IEE87]. In addition, implementations of the
REAL signature are required to use non-trapping semantics. Additional aspects of the
design of the REAL and MATH signatures were guided by the Floating-Point C Exten-
sions [FPC95] developed by the X3J11 ANSI committee and the lecture notes [Kah96]
by W. Kahan on the IEEE standard 754.
Although there can be many representations for NaN values, the Library models them

as a single value and currently provides no explicit way to distinguish among them,
ignoring the sign bit. Thus, in the descriptions below and in the Math structure, we just
refer to the NaN value.

Synopsis
signature REAL
structure Real :> REAL

where type real = real
structure LargeReal :> REAL
structure RealN :> REAL

Interface
type real

structure Math : MATH
where type real = real

val radix : int
val precision : int

val maxFinite : real
val minPos : real
val minNormalPos : real

val posInf : real
val negInf : real

val + : real * real -> real
val - : real * real -> real
val * : real * real -> real
val / : real * real -> real
val rem : real * real -> real
val *+ : real * real * real -> real
val *- : real * real * real -> real
val ˜ : real -> real
val abs : real -> real

11.50. THE REAL SIGNATURE 319

val min : real * real -> real
val max : real * real -> real

val sign : real -> int
val signBit : real -> bool
val sameSign : real * real -> bool
val copySign : real * real -> real

val compare : real * real -> order
val compareReal : real * real -> IEEEReal.real_order
val < : real * real -> bool
val <= : real * real -> bool
val > : real * real -> bool
val >= : real * real -> bool
val == : real * real -> bool
val != : real * real -> bool
val ?= : real * real -> bool
val unordered : real * real -> bool

val isFinite : real -> bool
val isNan : real -> bool
val isNormal : real -> bool
val class : real -> IEEEReal.float_class

val toManExp : real -> {man : real, exp : int}
val fromManExp : {man : real, exp : int} -> real
val split : real -> {whole : real, frac : real}
val realMod : real -> real

val nextAfter : real * real -> real
val checkFloat : real -> real

val realFloor : real -> real
val realCeil : real -> real
val realTrunc : real -> real
val realRound : real -> real
val floor : real -> int
val ceil : real -> int
val trunc : real -> int
val round : real -> int
val toInt : IEEEReal.rounding_mode -> real -> int
val toLargeInt : IEEEReal.rounding_mode

-> real -> LargeInt.int
val fromInt : int -> real
val fromLargeInt : LargeInt.int -> real
val toLarge : real -> LargeReal.real
val fromLarge : IEEEReal.rounding_mode

-> LargeReal.real -> real

320 CHAPTER 11. MANUAL PAGES

val fmt : StringCvt.realfmt -> real -> string
val toString : real -> string
val scan : (char, ’a) StringCvt.reader

-> (real, ’a) StringCvt.reader
val fromString : string -> real option

val toDecimal : real -> IEEEReal.decimal_approx
val fromDecimal : IEEEReal.decimal_approx -> real option

Description

type real

Note that, as discussed below, real is not an equality type.

structure Math : MATH
where type real = real

This substructure contains various constants and mathematical functions for the given
real type.

val radix : int

The base of the representation, e.g., 2 or 10 for IEEE floating point.

val precision : int

The number of digits, each between 0 and radix-1, in the mantissa. Note that the
precision includes the implicit (or hidden) bit used in the IEEE representation (e.g., the
value of Real64.precision is 53).

val maxFinite : real
val minPos : real
val minNormalPos : real

The maximum finite number, the minimum non-zero positive number, and the minimum
non-zero normalized number, respectively.

val posInf : real
val negInf : real

Positive and negative infinity values.

11.50. THE REAL SIGNATURE 321

val + : real * real -> real
val - : real * real -> real

r1 + r2
r1 - r2
These denote the sum and difference of r1 and r2. If one argument is finite and the other
infinite, the result is infinite with the correct sign, e.g., 5 − (−∞) = ∞. We also have
∞ + ∞ = ∞ and (−∞) + (−∞) = (−∞). Any other combination of two infinities
produces NaN.

val * : real * real -> real

r1 * r2 denotes the product of r1 and r2. The product of zero and an infinity produces
NaN. Otherwise, if one argument is infinite, the result is infinite with the correct sign, e.g.,
−5 ∗ (−∞) = ∞,∞∗ (−∞) = −∞.

val / : real * real -> real

r1 / r2 denotes the quotient of r1 and r2. We have 0/0 = NaN and ±∞/ ± ∞ =
NaN. Dividing a finite, non-zero number by a zero or an infinity by a finite number pro-
duces an infinity with the correct sign. (Note that zeros are signed.) A finite number
divided by an infinity is 0 with the correct sign.

val rem : real * real -> real

rem (x, y) returns the remainder x − n ∗ y , where n = trunc(x/y). The result
has the same sign as x and has absolute value less than the absolute value of y .
If x is an infinity or y is 0, rem returns NaN. If y is an infinity, rem returns x.

val *+ : real * real * real -> real
val *- : real * real * real -> real

*+ (a, b, c)
*- (a, b, c)
These functions return a*b + c and a*b - c, respectively. Their behaviors on infini-
ties follow from the behaviors derived from addition, subtraction, and multiplication.
The precise semantics of these operations depend on the language implementation and

the underlying hardware. Specifically, certain architectures provide these operations as
a single instruction, possibly using a single rounding operation. Thus, the use of these
operations may be faster than performing the individual arithmetic operations sequentially
but may also produce different results because of differences in rounding behavior

val ˜ : real -> real

˜ r produces the negation of r. ˜(±∞) = ∓∞.

322 CHAPTER 11. MANUAL PAGES

val abs : real -> real

abs r returns the absolute value |r| of r.
abs(±0.0) = +0.0abs(±∞) = +∞abs(±NaN) = +NaN

val min : real * real -> real
val max : real * real -> real

These functions return the smaller (respectively, larger) of the arguments. If exactly one
argument is NaN, they return the other argument. If both arguments are NaN, they return
NaN.

val sign : real -> int

sign r returns ˜1 if r is negative, 0 if r is zero, or 1 if r is positive. An infinity returns
its sign; a zero returns 0 regardless of its sign. It raises Domain on NaN.

val signBit : real -> bool

signBit r returns true if and only if the sign of r (infinities, zeros, and NaN, in-
cluded) is negative.

val sameSign : real * real -> bool

sameSign (r1, r2) returns true if and only if signBit r1 equals signBit
r2.

val copySign : real * real -> real

copySign (x, y) returns x with the sign of y , even if y is NaN.

val compare : real * real -> order
val compareReal : real * real -> IEEEReal.real_order

The function compare returns LESS, EQUAL, or GREATER according to whether its
first argument is less than, equal to, or greater than the second. It raises IEEEReal.-
Unordered on unordered arguments.
The function compareReal behaves similarly, except that the values it returns have

the extended type IEEEReal.real_order and it returns IEEEReal.UNORDERED
on unordered arguments (i.e., if one of the arguments is a NaN).

11.50. THE REAL SIGNATURE 323

val < : real * real -> bool
val <= : real * real -> bool
val > : real * real -> bool
val >= : real * real -> bool

These functions return true if the corresponding relation holds between the two reals.
Note that these operators return false on unordered arguments, i.e., if either argument

is NaN, so that the usual reversal of comparison under negation does not hold, e.g., a <
b is not the same as not (a >= b).

val == : real * real -> bool
val != : real * real -> bool

== (x, y)
!= (x, y)
The first returns true if and only if neither y nor x is NaN, and y and x are equal,
ignoring signs on zeros. This function is equivalent to the IEEE = operator.
The second function != is equivalent to not o op == and the IEEE ?<> operator.

val ?= : real * real -> bool

This function returns true if either argument is NaN or if the arguments are bitwise equal,
ignoring signs on zeros. It is equivalent to the IEEE ?= operator.

val unordered : real * real -> bool

unordered (x, y) returns true if x and y are unordered, i.e., at least one of x and
y is NaN.

val isFinite : real -> bool

isFinite x returns true if x is neither NaN nor an infinity.

val isNan : real -> bool

isNan x returns true if x is NaN.

val isNormal : real -> bool

isNormal x returns true if x is normal, i.e., neither zero, subnormal, infinite, nor
NaN.

val class : real -> IEEEReal.float_class

class x returns the IEEEReal.float_class to which x belongs.

324 CHAPTER 11. MANUAL PAGES

val toManExp : real -> {man : real, exp : int}

toManExp r returns {man, exp}, where man and exp are the mantissa and expo-
nent of r, respectively. Specifically, we have the relation

r = man ∗ radixexp
where 1.0 ≤ man ∗ radix < radix. This function is comparable to frexp in the C
library.
If r is ±0, man is ±0 and exp is +0. If r is ±∞, man is ±∞ and exp is unspecified.

If r is NaN, man is NaN and exp is unspecified.

val fromManExp : {man : real, exp : int} -> real

fromManExp {man, exp} returns man ∗radixexp. This function is comparable to
ldexp in the C library. Note that, even if man is a non-zero, finite real value, the result of
fromManExp can be zero or infinity because of underflows and overflows.
If man is ±0, the result is ±0. If man is ±∞, the result is ±∞. If man is NaN, the

result is NaN.

val split : real -> {whole : real, frac : real}
val realMod : real -> real

split r
realMod r
The former returns {whole, frac}, where frac and whole are the fractional and
integral parts of r, respectively. Specifically, whole is integral, |frac| < 1.0, whole
and frac have the same sign as r, and r = whole+frac. This function is comparable
to modf in the C library.
If r is ±∞, whole is ±∞ and frac is ±0. If r is NaN, both whole and frac are

NaN.
realMod is equivalent to #frac o split.

val nextAfter : real * real -> real

nextAfter (r, t) returns the next representable real after r in the direction of t.
Thus, if t is less than r, nextAfter returns the largest representable floating-point num-
ber less than r. If r = t it returns r, if either argument is NaN it returns NaN, and if r is
±∞ it returns ±∞.

val checkFloat : real -> real

checkFloat x raises Overflow if x is an infinity and raises Div if x is NaN. Oth-
erwise, it returns its argument.
This can be used to synthesize trapping arithmetic from the non-trapping operations

given here. Note, however, that infinities can be converted to NaNs by some operations, so
that if accurate exceptions are required, checks must be done after each operation.

11.50. THE REAL SIGNATURE 325

val realFloor : real -> real
val realCeil : real -> real
val realTrunc : real -> real
val realRound : real -> real

realFloor r
realCeil r
realTrunc r
realRound r
These functions convert real values to integer-valued reals: realFloor produces �r�,
the largest integer not larger than r, realCeil produces �r�, the smallest integer not less
than r, realTrunc rounds r toward zero, and realRound rounds to the integer-values
real value that is nearest to r. If r is NaN or an infinity, these functions return r.

val floor : real -> int
val ceil : real -> int
val trunc : real -> int
val round : real -> int

floor r
ceil r
trunc r
round r
These functions convert reals to integers. floor produces �r�, the largest int not larger
than r. ceil produces �r�, the smallest int not less than r. trunc rounds r toward
zero. round yields the integer nearest to r. In the case of a tie, it rounds to the nearest
even integer. They raise Overflow if the resulting value cannot be represented as an
int, for example, on infinity. They raise Domain on NaN arguments.
These are respectively equivalent to:

toInt IEEEReal.TO_NEGINF r
toInt IEEEReal.TO_POSINF r
toInt IEEEReal.TO_ZERO r
toInt IEEEReal.TO_NEAREST r

val toInt : IEEEReal.rounding_mode -> real -> int
val toLargeInt : IEEEReal.rounding_mode

-> real -> LargeInt.int

toInt mode x
toLargeInt mode x
These functions convert the argument x to an integral type using the specified rounding
mode. They raise Overflow if the result is not representable, in particular, if x is an
infinity. They raise Domain if the input real is NaN.

val fromInt : int -> real
val fromLargeInt : LargeInt.int -> real

fromInt i
fromLargeInt i
These functions convert the integer i to a real value. If the absolute value of i is larger

326 CHAPTER 11. MANUAL PAGES

than maxFinite, then the appropriate infinity is returned. If i cannot be exactly repre-
sented as a real value, then the current rounding mode is used to determine the resulting
value. The top-level function real is an alias for Real.fromInt.

val toLarge : real -> LargeReal.real
val fromLarge : IEEEReal.rounding_mode

-> LargeReal.real -> real

toLarge r
fromLarge r
These convert between values of type real and type LargeReal.real. If r is too
small or too large to be represented as a real, fromLarge will convert it to a zero or an
infinity.

val fmt : StringCvt.realfmt -> real -> string
val toString : real -> string

fmt spec r
toString r
These functions convert reals into strings. The conversion provided by the function fmt is
parameterized by spec, which has the following forms and interpretations.

SCI arg Scientific notation has the format:

[˜]?[0−9](.[0−9]+)?E[0−9]+

where there is always one digit before the decimal point, non-zero if the number is
nonzero. arg specifies the number of digits to appear after the decimal point, with six
the default if arg is NONE. If arg is SOME(0), no fractional digits and no decimal
point are printed.

FIX arg Fixed-point notation has the format:

[˜]?[0−9]+(.[0−9]+)?

arg specifies the number of digits to appear after the decimal point, with six the
default if arg is NONE. If arg is SOME(0), no fractional digits and no decimal
point are printed.

GEN arg Adaptive notation: the notation used is either scientific or fixed-point, depend-
ing on the value converted. arg specifies the maximum number of significant digits
used, with 12 the default if arg is NONE.

EXACT Exact decimal notation: refer to IEEEReal.toString for a complete descrip-
tion of this format.

In all cases, positive and negative infinities are converted to "inf" and "˜inf", respec-
tively, and NaN values are converted to the string "nan".
Refer to StringCvt.realfmt for more details concerning these formats, especially

the adaptive format GEN.
fmt raises Size if spec is an invalid precision, i.e., if spec is

• SCI (SOME i) with i < 0
• FIX (SOME i) with i < 0

11.50. THE REAL SIGNATURE 327

• GEN (SOME i) with i < 1
The exception should be raised when fmt spec is evaluated.
The fmt function allows the user precise control as to the form of the resulting string.

Note, therefore, that it is possible for fmt to produce a result that is not a valid SML string
representation of a real value.
The value returned by toString is equivalent to:

(fmt (StringCvt.GEN NONE) r)

val scan : (char, ’a) StringCvt.reader
-> (real, ’a) StringCvt.reader

val fromString : string -> real option

scan getc strm
fromString s
These functions scan a real value from a character source. The first version reads from
strm using reader getc, ignoring initial whitespace. It returns SOME(r,rest) if suc-
cessful, where r is the scanned real value and rest is the unused portion of the character
stream strm. Values of too large a magnitude are represented as infinities; values of too
small a magnitude are represented as zeros.
The second version returns SOME(r) if a real value can be scanned from a prefix of

s, ignoring any initial whitespace; otherwise, it returns NONE. This function is equivalent
to StringCvt.scanString scan.
The functions accept real numbers with the following format:

[+˜−]?([0−9]+(.[0−9]+)? | .[0−9]+)((e | E)[+˜−]?[0−9]+)?

They also accept the following string representations of non-finite values:

[+˜−]?(inf | infinity | nan)

where the alphabetic characters are case-insensitive.

val toDecimal : real -> IEEEReal.decimal_approx
val fromDecimal : IEEEReal.decimal_approx -> real option

toDecimal r
fromDecimal d
These convert between real values and decimal approximations. Decimal approxima-
tions are to be converted using the IEEEReal.TO_NEAREST rounding mode. to-
Decimal should produce only as many digits as are necessary for fromDecimal to
convert back to the same number. In particular, for any normal or subnormal real value r,
we have the bit-wise equality:

fromDecimal (toDecimal r) = r.
For toDecimal, when the r is not normal or subnormal, then the exp field is set to 0

and the digits field is the empty list. In all cases, the sign and class fields capture
the sign and class of r.
For fromDecimal, if class is ZERO or INF, the resulting real is the appropriate

signed zero or infinity. If class is NAN, a signed NaN is generated. If class is NORMAL

328 CHAPTER 11. MANUAL PAGES

or SUBNORMAL, the sign, digits, and exp fields are used to produce a real number
whose value is.

s ∗ 0.d1d2...dn10exp

where digits = [d1, d2, ..., dn] and where s is−1 if sign is true and 1 otherwise. Note
that the conversion itself should ignore the class field, so that the resulting value might
have class NORMAL, SUBNORMAL, ZERO, or INF. For example, if digits is empty or
a list of all zero’s, the result should be a signed zero. More generally, very large or small
magnitudes are converted to infinities or zeros.
If the argument to fromDecimal does not have a valid format, i.e., if the digits

field contains integers outside the range [0,9], it returns NONE.

Implementation note: Algorithms for accurately and efficiently converting between
binary and decimal real representations are readily available, e.g., see the technical report
by Gay [Gay90].

Discussion
If LargeReal is not the same as Real, then there must be a structure RealN equal to
LargeReal.

The sign of a zero is ignored in all comparisons.

Unless specified otherwise, any operation involving NaN will return NaN.

Note that, if x is real, ˜x is equivalent to ˜(x), that is, it is identical to x but with its
sign bit flipped. In particular, the literal ˜0.0 is just 0.0 with its sign bit set. On the other
hand, this value might not be the same as 0.0-0.0, in which rounding modes come into
play.

Except for the *+ and *- functions, arithmetic should be done in the exact precision
specified by the precision value. In particular, arithmetic must not be done in some
extended precision and then rounded.

The relation between the comparison predicates defined here and those defined by IEEE,
ISO C, and FORTRAN is specified in the following table.

SML IEEE C FORTRAN
== = == .EQ.
!= ?<> != .NE.
< < < .LT.
<= <= <= .LE.
> > > .GT.
>= >= >= .GE.
?= ?= !islessgreater .UE.
not o ?= <> islessgreater .LG.
unordered ? isunordered unordered
not o unordered <=> !isunordered .LEG.
not o op < ?>= ! < .UGE.
not o op <= ?> ! <= .UG.
not o op > ?<= ! > .ULE.
not o op >= ?< ! >= .UL.

11.50. THE REAL SIGNATURE 329

Implementation note: Implementations may choose to provide a debugging mode, in
which NaNs and infinities are detected when they are generated.

Rationale: The specification of the default signature and structure for non-integer arith-
metic, particularly concerning exceptional conditions, was the source of much debate,
given the desire of supporting efficient floating-point modules. If we permit implemen-
tations to differ on whether or not, for example, to raise Div on division by zero, the user
really would not have a standard to program against. Portable code would require adopt-
ing the more conservative position of explicitly handling exceptions. A second alternative
was to specify that functions in the Real structure must raise exceptions, but that imple-
mentations so desiring could provide additional structures matching REAL with explicit
floating-point semantics. This choice was rejected because it meant that the default real
type would not be the same as a defined floating-point real type, which would give a
second-class status to the latter while providing the default real with worse performance
and involving additional implementation complexity for little benefit.

Deciding if real should be an equality type, and, if so, what should equality mean, was
also problematic. IEEE specifies that the sign of zeros be ignored in comparisons and that
equality evaluate to false if either argument is NaN. These constraints are disturbing to the
SML programmer. The former implies that 0 = ˜0 is true while r/0 = r/˜0 is false.
The latter implies such anomalies as r = r is false, or that, for a ref cell rr, we could
have rr = rr but not have !rr = !rr. We accepted the unsigned comparison of zeros
but felt that the reflexive property of equality, structural equality, and the equivalence of
<> and not o = ought to be preserved. Additional complications led to the decision to
not have real be an equality type.

The type, signature, and structure identifiers real, REAL, and Real, although mis-
nomers in light of the floating-point-specific nature of the modules, were retained for his-
torical reasons.

See also
IEEEReal (§11.13; p. 155), MATH (§11.22; p. 189), StringCvt (§11.55; p. 366)

330 CHAPTER 11. MANUAL PAGES

11.51 The Socket structure

This structure provides the standard socket types, socket management, and I/O opera-
tions. The creation of sockets is relegated to domain-specific structures (such as INet-
Sock and UnixSock).

Synopsis
signature SOCKET
structure Socket :> SOCKET

Interface
type (’af,’sock_type) sock
type ’af sock_addr
type dgram
type ’mode stream
type passive
type active

structure AF : sig
type addr_family = NetHostDB.addr_family
val list : unit -> (string * addr_family) list
val toString : addr_family -> string
val fromString : string -> addr_family option

end

structure SOCK : sig
eqtype sock_type
val stream : sock_type
val dgram : sock_type
val list : unit -> (string * sock_type) list
val toString : sock_type -> string
val fromString : string -> sock_type option

end

structure Ctl : sig
val getDEBUG : (’af, ’sock_type) sock -> bool
val setDEBUG : (’af, ’sock_type) sock * bool -> unit
val getREUSEADDR : (’af, ’sock_type) sock -> bool
val setREUSEADDR : (’af, ’sock_type) sock * bool

-> unit
val getKEEPALIVE : (’af, ’sock_type) sock -> bool
val setKEEPALIVE : (’af, ’sock_type) sock * bool

-> unit
val getDONTROUTE : (’af, ’sock_type) sock -> bool
val setDONTROUTE : (’af, ’sock_type) sock * bool

-> unit
val getLINGER : (’af, ’sock_type) sock

-> Time.time option
val setLINGER : (’af, ’sock_type) sock

* Time.time option -> unit

11.51. THE SOCKET STRUCTURE 331

val getBROADCAST : (’af, ’sock_type) sock -> bool
val setBROADCAST : (’af, ’sock_type) sock * bool

-> unit
val getOOBINLINE : (’af, ’sock_type) sock -> bool
val setOOBINLINE : (’af, ’sock_type) sock * bool

-> unit
val getSNDBUF : (’af, ’sock_type) sock -> int
val setSNDBUF : (’af, ’sock_type) sock * int -> unit
val getRCVBUF : (’af, ’sock_type) sock -> int
val setRCVBUF : (’af, ’sock_type) sock * int -> unit
val getTYPE : (’af, ’sock_type) sock -> SOCK.sock_type
val getERROR : (’af, ’sock_type) sock -> bool
val getPeerName : (’af, ’sock_type) sock

-> ’af sock_addr
val getSockName : (’af, ’sock_type) sock

-> ’af sock_addr
val getNREAD : (’af, ’sock_type) sock -> int
val getATMARK : (’af, active stream) sock -> bool

end

val sameAddr : ’af sock_addr * ’af sock_addr -> bool
val familyOfAddr : ’af sock_addr -> AF.addr_family

val bind : (’af, ’sock_type) sock * ’af sock_addr -> unit
val listen : (’af, passive stream) sock * int -> unit
val accept : (’af, passive stream) sock

-> (’af, active stream) sock * ’af sock_addr
val acceptNB : (’af, passive stream) sock

-> ((’af, active stream) sock
* ’af sock_addr) option

val connect : (’af, ’sock_type) sock * ’af sock_addr
-> unit

val connectNB : (’af, ’sock_type) sock * ’af sock_addr
-> bool

val close : (’af, ’sock_type) sock -> unit
datatype shutdown_mode
= NO_RECVS
| NO_SENDS
| NO_RECVS_OR_SENDS

val shutdown : (’af, ’mode stream) sock * shutdown_mode
-> unit

type sock_desc
val sockDesc : (’af, ’sock_type) sock -> sock_desc
val sameDesc : sock_desc * sock_desc -> bool

332 CHAPTER 11. MANUAL PAGES

val select : {
rds : sock_desc list,
wrs : sock_desc list,
exs : sock_desc list,
timeout : Time.time option

}
-> {
rds : sock_desc list,
wrs : sock_desc list,
exs : sock_desc list

}
val ioDesc : (’af, ’sock_type) sock -> OS.IO.iodesc

type out_flags = {don’t_route : bool, oob : bool}
type in_flags = {peek : bool, oob : bool}

val sendVec : (’af, active stream) sock
* Word8VectorSlice.slice -> int

val sendArr : (’af, active stream) sock
* Word8ArraySlice.slice -> int

val sendVec’ : (’af, active stream) sock
* Word8VectorSlice.slice
* out_flags -> int

val sendArr’ : (’af, active stream) sock
* Word8ArraySlice.slice
* out_flags -> int

val sendVecNB : (’af, active stream) sock
* Word8VectorSlice.slice -> int option

val sendVecNB’ : (’af, active stream) sock
* Word8VectorSlice.slice
* out_flags -> int option

val sendArrNB : (’af, active stream) sock
* Word8ArraySlice.slice -> int option

val sendArrNB’ : (’af, active stream) sock
* Word8ArraySlice.slice
* out_flags -> int option

val recvVec : (’af, active stream) sock * int
-> Word8Vector.vector

val recvVec’ : (’af, active stream) sock * int * in_flags
-> Word8Vector.vector

val recvArr : (’af, active stream) sock
* Word8ArraySlice.slice -> int

val recvArr’ : (’af, active stream) sock
* Word8ArraySlice.slice
* in_flags -> int

11.51. THE SOCKET STRUCTURE 333

val recvVecNB : (’af, active stream) sock * int
-> Word8Vector.vector option

val recvVecNB’ : (’af, active stream) sock * int * in_flags
-> Word8Vector.vector option

val recvArrNB : (’af, active stream) sock
* Word8ArraySlice.slice -> int option

val recvArrNB’ : (’af, active stream) sock
* Word8ArraySlice.slice
* in_flags -> int option

val sendVecTo : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice -> unit

val sendArrTo : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice -> unit

val sendVecTo’ : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice
* out_flags -> unit

val sendArrTo’ : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice
* out_flags -> unit

val sendVecToNB : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice -> bool

val sendVecToNB’ : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice
* out_flags -> bool

val sendArrToNB : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice -> bool

val sendArrToNB’ : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice
* out_flags -> bool

val recvVecFrom : (’af, dgram) sock * int
-> Word8Vector.vector
* ’sock_type sock_addr

val recvVecFrom’ : (’af, dgram) sock * int * in_flags
-> Word8Vector.vector
* ’sock_type sock_addr

334 CHAPTER 11. MANUAL PAGES

val recvArrFrom : (’af, dgram) sock
* Word8ArraySlice.slice
-> int * ’af sock_addr

val recvArrFrom’ : (’af, dgram) sock
* Word8ArraySlice.slice
* in_flags -> int * ’af sock_addr

val recvVecFromNB : (’af, dgram) sock * int
-> (Word8Vector.vector
* ’sock_type sock_addr) option

val recvVecFromNB’ : (’af, dgram) sock * int * in_flags
-> (Word8Vector.vector
* ’sock_type sock_addr) option

val recvArrFromNB : (’af, dgram) sock
* Word8ArraySlice.slice
-> (int * ’af sock_addr) option

val recvArrFromNB’ : (’af, dgram) sock
* Word8ArraySlice.slice
* in_flags
-> (int * ’af sock_addr) option

Description

type (’af,’sock_type) sock

The type of a socket. Sockets are polymorphic over both the address family and the socket
type. The type parameter ’af is instantiated with the appropriate address family type
(INetSock.inet or UnixSock.unix). The type parameter ’sock_type is instan-
tiated with the appropriate socket type (dgram or stream).

type ’af sock_addr

The type of a socket address. The type parameter ’af describes the address family of the
address (INetSock.inet or UnixSock.unix).

type dgram

The witness type for datagram sockets.

type ’mode stream

The witness type for stream sockets. The type parameter ’mode describes the mode of the
stream socket: active or passive.

structure AF : sig ... end

The AF substructure defines an abstract type that represents the different network-address
families.

11.51. THE SOCKET STRUCTURE 335

val list : unit -> (string * addr_family) list

This function returns a list of all the available address families. Every element of the
list is a pair (name,af), where name is the name of the address family and af is
the actual address family value.
The names of the address families are taken from the symbolic constants used in

the C Socket API and stripping the leading “AF_.” For example, the Unix-domain
address family is named "UNIX", the Internet-domain address family is named
"INET", and the Apple Talk address family is named "APPLETALK".

val toString : addr_family -> string
val fromString : string -> addr_family option

These functions convert between address family values and their names. For exam-
ple, the expression toString (INetSock.inetAF) returns the string "INET".
fromString returns NONE if no family value corresponds to the given name.
If a pair (name,af) is in the list returned by list, then it is the case that name

is equal to toString(af).

structure SOCK : sig ... end

The SOCK substructure provides an abstract type and operations for the different types of
sockets. This type is used by the getTYPE function.

eqtype sock_type

The type of socket types.

val stream : sock_type

The stream socket type value.

val dgram : sock_type

The datagram socket type value.

val list : unit -> (string * sock_type) list

This function returns a list of the available socket types. Every element of the list is
of the form (name,sty), where name is the name of the socket type and sty is
the actual socket type value.
The list of possible socket type names includes "STREAM" for stream sockets,

"DGRAM" for datagram sockets, and "RAW" for raw sockets. These names are
formed by taking the symbolic constants from the C API and removing the lead-
ing “SOCK_.”

val toString : sock_type -> string
val fromString : string -> sock_type option

These functions convert between a socket type value and its name (e.g., ”STREAM”).
fromString returns NONE if no socket type value corresponds to the name.
If a pair (name,sty) is in the list returned by list, then it is the case that

name is equal to toString(sty).

336 CHAPTER 11. MANUAL PAGES

structure Ctl : sig ... end

The Ctl substructure provides support for manipulating the options associated with a
socket. These functions raise the SysErr exception when the argument socket has been
closed.

val getDEBUG : (’af, ’sock_type) sock -> bool
val setDEBUG : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_DEBUG flag for the socket. This flag enables
or disables low-level debugging within the kernel. Enabled, it allows the kernel to
maintain a history of the recent packets that have been received or sent.

val getREUSEADDR : (’af, ’sock_type) sock -> bool
val setREUSEADDR : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_REUSEADDR flag for the socket. When true,
this flag instructs the system to allow the reuse of local socket addresses in bind
calls.

val getKEEPALIVE : (’af, ’sock_type) sock -> bool
val setKEEPALIVE : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_KEEPALIVE flag for the socket. When true,
the system will generate periodic transmissions on a connected socket, when no other
data are being exchanged.

val getDONTROUTE : (’af, ’sock_type) sock -> bool
val setDONTROUTE : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_DONTROUTE flag for the socket. When this
flag is true, outgoing messages bypass the normal routing mechanisms of the un-
derlying protocol, and are instead directed to the appropriate network interface as
specified by the network portion of the destination address. Note that this option can
be specified on a per message basis by using one of the sendVec’, sendArr’,
sendVecTo’, or sendArrTo’ functions.

val getLINGER : (’af, ’sock_type) sock -> Time.time option
val setLINGER : (’af, ’sock_type) sock * Time.time option

-> unit
These functions query and set the SO_LINGER flag for the socket sock. This
flag controls the action taken when unsent messages are queued on a socket and a
close is performed. If the flag is set to NONE, then the system will close the socket
as quickly as possible, discarding data if necessary. If the flag is set to SOME(t)
and the socket promises reliable delivery, then the system will block the close
operation until the data are delivered or the timeout t expires. If t is negative or too
large, then the Time is raised.

val getBROADCAST : (’af, ’sock_type) sock -> bool
val setBROADCAST : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_BROADCAST flag for the socket sock, which

11.51. THE SOCKET STRUCTURE 337

enables or disables the ability of the process to send broadcast messages over the
socket.

val getOOBINLINE : (’af, ’sock_type) sock -> bool
val setOOBINLINE : (’af, ’sock_type) sock * bool -> unit

These functions query and set the SO_OOBINLINE flag for the socket. When set,
which indicates that out-of-band data should be placed in the normal input queue of
the socket. Note that this option can be specified on a per message basis by using
one of the sendVec’, sendArr’, sendVecTo’, or sendArrTo’ functions.

val getSNDBUF : (’af, ’sock_type) sock -> int
val setSNDBUF : (’af, ’sock_type) sock * int -> unit

These functions query and set the size of the send queue buffer for the socket.

val getRCVBUF : (’af, ’sock_type) sock -> int
val setRCVBUF : (’af, ’sock_type) sock * int -> unit

These query and set the size of receive queue buffer for the socket.

val getTYPE : (’af, ’sock_type) sock -> SOCK.sock_type

This function returns the socket type of the socket.

val getERROR : (’af, ’sock_type) sock -> bool

This function indicates whether or not an error has occurred.

val getPeerName : (’af, ’sock_type) sock -> ’af sock_addr

This function returns the socket address to which the socket is connected.

val getSockName : (’af, ’sock_type) sock -> ’af sock_addr

This function returns the socket address to which the socket is bound.

val getNREAD : (’af, ’sock_type) sock -> int

This function returns the number of bytes available for reading on the socket.

val getATMARK : (’af, active stream) sock -> bool

This function indicates whether or not the read pointer on the socket is currently at
the out-of-band mark.

val sameAddr : ’af sock_addr * ’af sock_addr -> bool

This function tests whether two socket addresses are the same.

val familyOfAddr : ’af sock_addr -> AF.addr_family

familyOfAddr addr returns the address family of the socket address addr.

338 CHAPTER 11. MANUAL PAGES

val bind : (’af, ’sock_type) sock * ’af sock_addr -> unit

bind (sock, sa) binds the address sa to the passive socket sock. This function
raises SysErr when the address sa is already in use, when sock is already bound to an
address, or when sock has been closed.

val listen : (’af, passive stream) sock * int -> unit

listen (sock, n) creates a queue (of size n) for pending questions associated to
the socket sock. The size of queue is limited by the underlying system, but requesting
a queue size larger than the limit does not cause an error (a typical limit is 128, but older
systems use a limit of 5).
This function raises the SysErr exception if sock has been closed.

val accept : (’af, passive stream) sock
-> (’af, active stream) sock * ’af sock_addr

accept sock extracts the first connection request from the queue of pending connec-
tions for the socket sock. The socket must have been bound to an address via bind
and enabled for listening via listen. If a connection is present, accept returns a pair
(s,sa) consisting of a new active socket s with the same properties as sock and the
address sa of the connecting entity. If no pending connections are present on the queue,
then accept blocks until a connection is requested. One can test for pending connection
requests by using the select function to test the socket for reading.
This function raises the SysErr exception if sock has not been properly bound and

enabled or if sock has been closed.

val acceptNB : (’af, passive stream) sock
-> ((’af, active stream) sock
* ’af sock_addr) option

This function is the non-blocking form of the accept operation. If the operation can
complete without blocking (i.e., there is a pending connection), then this function returns
SOME(s,sa), where s is a new active socket with the same properties as sock and sa
is the the address of the connecting entity. If there are no pending connections, then this
function returns NONE.
This function raises the SysErr exception if sock has not been properly bound and

enabled or if sock has been closed.

val connect : (’af, ’sock_type) sock * ’af sock_addr
-> unit

connect (sock, sa) attempts to connect the socket sock to the address sa. If
sock is a datagram socket, the address specifies the peer with which the socket is to be
associated; sa is the address to which datagrams are to be sent and the only address from
which datagrams are to be received. If sock is a stream socket, the address specifies
another socket to which to connect.

11.51. THE SOCKET STRUCTURE 339

This function raises the SysErr exception when the address specified by sa is un-
reachable, when the connection is refused or times out, when sock is already connected,
or when sock has been closed.

val connectNB : (’af, ’sock_type) sock * ’af sock_addr
-> bool

This function is the non-blocking form of connect. If the connection can be established
without blocking the caller (which is typically true for datagram sockets but not stream
sockets), then true is returned. Otherwise, false is returned and the connection attempt
is started; one can test for the completion of the connection by testing the socket for writing
using the select function. This function will raise SysErr if it is called on a socket for
which a previous connection attempt has not yet been completed.

val close : (’af, ’sock_type) sock -> unit

close sock closes the connection to the socket sock. This function raises the Sys-
Err exception if the socket has already been closed.

val shutdown : (’af, ’mode stream) sock * shutdown_mode
-> unit

shutdown (sock, mode) shuts down all or part of a full-duplex connection on
socket sock. If mode is NO_RECVS, further receives will be disallowed. If mode is
NO_SENDS, further sends will be disallowed. If mode is NO_RECVS_OR_SENDS, fur-
ther sends and receives will be disallowed. This function raises the SysErr exception if
the socket is not connected or has been closed.

type sock_desc

This type is an abstract name for a socket, which is used to support polling on collections
of sockets.

val sockDesc : (’af, ’sock_type) sock -> sock_desc

sockDesc sock returns a socket descriptor that names the socket sock.

val sameDesc : sock_desc * sock_desc -> bool

sameDesc (sd1, sd2) returns true if the two socket descriptors sd1 and sd2 de-
scribe the same underlying socket. Thus, the expression sameDesc(sockDesc sock,
sockDesc sock) will always return true for any socket sock.

340 CHAPTER 11. MANUAL PAGES

val select : {
rds : sock_desc list,
wrs : sock_desc list,
exs : sock_desc list,
timeout : Time.time option

}
-> {
rds : sock_desc list,
wrs : sock_desc list,
exs : sock_desc list

}

select {rds, wrs, exs, timeout} examines the sockets in rds, wrs, and
exs to see if they are ready for reading, writing, or have an exceptional condition pending,
respectively. The calling program is blocked until either one or more of the named sockets
is “ready” or the specified timeout expires (where a timeout of NONE never expires). The
result of select is a record of three lists of socket descriptors containing the ready sockets
from the corresponding argument lists. The order in which socket descriptors appear in the
argument lists is preserved in the result lists. A timeout is signified by a result of three
empty lists.
This function raises SysErr if any of the argument sockets have been closed or if the

timeout value is negative.
Note that one can test if a call to accept will block by using select to see if the

socket is ready to read. Similarly, one can use select to test if a call to connect will
block by seeing if the socket is ready to write.

val ioDesc : (’af, ’sock_type) sock -> OS.IO.iodesc

ioDesc sock returns the I/O descriptor corresponding to socket sock. This descriptor
can be used to poll the socket via pollDesc and poll in the OS.IO structure. Using
the polling mechanism from OS.IO has the advantage that different kinds of I/O objects
can be mixed, but not all systems support polling on sockets this way. If an application is
only polling sockets, then it is more portable to use the select function defined above.

type out_flags = {don’t_route : bool, oob : bool}

Flags used in the general form of socket output operations.

type in_flags = {peek : bool, oob : bool}

Flags used in the general form of socket input operations.

val sendVec : (’af, active stream) sock
* Word8VectorSlice.slice -> int

val sendArr : (’af, active stream) sock
* Word8ArraySlice.slice -> int

11.51. THE SOCKET STRUCTURE 341

sendVec (sock, slice)
sendArr (sock, slice)
These functions send the bytes in the slice slice on the active stream socket sock. They
return the number of bytes actually sent.
These functions raise SysErr if sock has been closed.

val sendVec’ : (’af, active stream) sock
* Word8VectorSlice.slice
* out_flags -> int

val sendArr’ : (’af, active stream) sock
* Word8ArraySlice.slice
* out_flags -> int

sendVec’ (sock, slice, {don’t_route, oob})
sendArr’ (sock, slice, {don’t_route, oob})
These functions send the bytes in the slice slice on the active stream socket sock. They
return the number of bytes actually sent. If the don’t_route flag is true, the data are
sent by bypassing the normal routing mechanism of the protocol. If oob is true, the data
are sent out-of-band, that is, before any other data that may have been buffered.
These functions raise SysErr if sock has been closed.

val sendVecNB : (’af, active stream) sock
* Word8VectorSlice.slice -> int option

val sendVecNB’ : (’af, active stream) sock
* Word8VectorSlice.slice
* out_flags -> int option

val sendArrNB : (’af, active stream) sock
* Word8ArraySlice.slice -> int option

val sendArrNB’ : (’af, active stream) sock
* Word8ArraySlice.slice
* out_flags -> int option

These functions are the non-blocking versions of sendVec, sendVec’, sendArr, and
sendArr’ (resp.). They have the same semantics as their blocking forms, with the ex-
ception that when the operation can complete without blocking, then the result is wrapped
in SOME and if the operation has to wait to send the data, then NONE is returned instead.

val recvVec : (’af, active stream) sock * int
-> Word8Vector.vector

val recvVec’ : (’af, active stream) sock * int * in_flags
-> Word8Vector.vector

recvVec (sock, n)
recvVec’(sock, n, {peek,oob})
These functions receive up to n bytes from the active stream socket sock. The size of the
resulting vector is the number of bytes that were successfully received, which may be less
than n. If the connection has been closed at the other end (or if n is 0), then the empty
vector will be returned.
In the second version, if peek is true, the data are received but not discarded from

342 CHAPTER 11. MANUAL PAGES

the connection. If oob is true, the data are received out-of-band, that is, before any other
incoming data that may have been buffered.
These functions raise SysErr if the socket sock has been closed and they raise Size

if n<0 or n>Word8Vector.maxLen.

val recvArr : (’af, active stream) sock
* Word8ArraySlice.slice -> int

val recvArr’ : (’af, active stream) sock
* Word8ArraySlice.slice
* in_flags -> int

recvArr (sock, slice)
recvArr’ (sock, slice, {peek, oob})
These functions read data from the socket sock into the array slice slice. They return
the number of bytes actually received. If the connection has been closed at the other end
or the slice is empty, then 0 is returned.
For recvArr’, if peek is true, the data are received but not discarded from the

connection. If oob is true, the data are received out-of-band, that is, before any other
incoming data that may have been buffered.
These functions raise SysErr if sock has been closed.

val recvVecNB : (’af, active stream) sock * int
-> Word8Vector.vector option

val recvVecNB’ : (’af, active stream) sock * int * in_flags
-> Word8Vector.vector option

val recvArrNB : (’af, active stream) sock
* Word8ArraySlice.slice -> int option

val recvArrNB’ : (’af, active stream) sock
* Word8ArraySlice.slice
* in_flags -> int option

These functions are the non-blocking versions of recvVec, recvVec’, recvArr, and
recvArr’ (resp.). They have the same semantics as their blocking forms, with the ex-
ception that when the operation can complete without blocking, then the result is wrapped
in SOME and if the operation has to wait for input, then NONE is returned instead.

val sendVecTo : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice -> unit

val sendArrTo : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice -> unit

sendVecTo (sock, sa, slice)
sendArrTo (sock, sa, slice)
These functions send the message specified by the slice slice on the datagram socket
sock to the address sa.
These functions raise SysErr if sock has been closed or if the socket has been con-

nected to a different address than sa.

11.51. THE SOCKET STRUCTURE 343

val sendVecTo’ : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice
* out_flags -> unit

val sendArrTo’ : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice
* out_flags -> unit

sendVecTo’ (sock, sa, slice, {don’t_route, oob})
sendArrTo’ (sock, sa, slice, {don’t_route, oob})
These functions send the message specified by the slice slice on the datagram socket
sock to the address
If the don’t_route flag is true, the data are sent by bypassing the normal routing

mechanism of the protocol. If oob is true, the data are sent out-of-band, that is, before
any other data that may have been buffered.
These functions raise SysErr if sock has been closed or if the socket has been con-

nected to a different address than sa.

val sendVecToNB : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice -> bool

val sendVecToNB’ : (’af, dgram) sock
* ’af sock_addr
* Word8VectorSlice.slice
* out_flags -> bool

val sendArrToNB : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice -> bool

val sendArrToNB’ : (’af, dgram) sock
* ’af sock_addr
* Word8ArraySlice.slice
* out_flags -> bool

These functions are the non-blocking versions of sendVecTo, sendVecTo’, send-
ArrTo, and sendArrTo’ (resp.). They have the same semantics as their blocking forms,
with the exception that if the operation can complete without blocking, then the operation
is performed and true is returned. Otherwise, false is returned and the message is not
sent.

344 CHAPTER 11. MANUAL PAGES

val recvVecFrom : (’af, dgram) sock * int
-> Word8Vector.vector
* ’sock_type sock_addr

val recvVecFrom’ : (’af, dgram) sock * int * in_flags
-> Word8Vector.vector
* ’sock_type sock_addr

recvVecFrom (sock, n)
recvVecFrom’ (sock, n, {peek, oob})
These functions receive up to n bytes on the datagram socket sock and return a pair
(vec,sa), where the vector vec is the received message and sa is the socket address
from the which the data originated. If the message is larger than n, then data may be lost.
In the second form, if peek is true, the data are received but not discarded from the

connection. If oob is true, the data are received out-of-band, that is, before any other
incoming data that may have been buffered.
These functions raise SysErr if sock has been closed; they raise Size if n<0 or

n>Word8Vector.maxLen.

val recvArrFrom : (’af, dgram) sock * Word8ArraySlice.slice
-> int * ’af sock_addr

val recvArrFrom’ : (’af, dgram) sock
* Word8ArraySlice.slice
* in_flags -> int * ’af sock_addr

recvArrFrom (sock, slice)
recvArrFrom’ (sock, slice)
These functions read a message from the datagram socket sock into the array slice slice.
If the message is larger than the size of the slice, then data may be lost. They return the
number of bytes actually received. If the connection has been closed at the other end or the
slice is empty, then 0 is returned.
For recvArrFrom’, if peek is true, the data is received but not discarded from

the connection. If oob is true, the data is received out-of-band, that is, before any other
incoming data that may have been buffered.
These functions raise SysErr if sock has been closed.

11.51. THE SOCKET STRUCTURE 345

val recvVecFromNB : (’af, dgram) sock * int
-> (Word8Vector.vector
* ’sock_type sock_addr) option

val recvVecFromNB’ : (’af, dgram) sock * int * in_flags
-> (Word8Vector.vector
* ’sock_type sock_addr) option

val recvArrFromNB : (’af, dgram) sock
* Word8ArraySlice.slice
-> (int * ’af sock_addr) option

val recvArrFromNB’ : (’af, dgram) sock
* Word8ArraySlice.slice
* in_flags
-> (int * ’af sock_addr) option

These functions are the non-blocking versions of recvVecFrom, recvVecFrom’, recv-
ArrFrom, and recvArrFrom’ (resp.). They have the same semantics as their blocking
forms, with the exception that when the operation can complete without blocking, then the
result is wrapped in SOME and if the operation has to wait for input, then NONE is returned
instead.

Discussion

Implementation note: On Unix systems, the non-blocking mode of socket operations
is controlled by changing the socket’s state using the setsockopt() system call. Thus,
implementing the non-blocking operations in the Socket structure may require tracking
the socket’s blocking/non-blocking state in the representation of the sock type.

See also
GenericSock (§11.12; p. 153), INetSock (§11.16; p. 166),
NetHostDB (§11.28; p. 220), NetServDB (§11.30; p. 225),
UnixSock (§11.63; p. 398)

346 CHAPTER 11. MANUAL PAGES

11.52 The STREAM_IO signature

The STREAM_IO signature defines the interface of the stream I/O layer in the I/O stack.
This layer provides buffering over the readers and writers of the primitive I/O layer.
Input streams are treated in the lazy functional style; that is, input from a stream f

yields a finite vector of elements, plus a new stream f’. Input from f again will yield
the same elements; to advance within the stream in the usual way, it is necessary to
do further input from f’. This interface allows arbitrary lookahead to be done very
cleanly, which should be useful both for ad hoc lexical analysis and for table-driven,
regular-expression-based lexing.
Output streams are handled more conventionally, since the lazy functional style does

not seem to make sense for output.
Stream I/O functions may raise the Size exception if a resulting vector of elements

exceeds the maximum vector size or the IO.Io exception. In general, when IO.Io
is raised as a result of a failure in a lower-level module, the underlying exception is
caught and propagated up as the cause component of the IO.Io exception value.
This exception will usually be a Subscript, IO.ClosedStream, OS.SysErr, or
Fail exception (the last possible because of user-supplied readers or writers), but the
stream I/O module will rarely (perhaps never) need to inspect it.

Synopsis
signature STREAM_IO

Interface
type elem
type vector

type instream
type outstream
type out_pos

type reader
type writer
type pos

val input : instream -> vector * instream
val input1 : instream -> (elem * instream) option
val inputN : instream * int -> vector * instream
val inputAll : instream -> vector * instream
val canInput : instream * int -> int option
val closeIn : instream -> unit
val endOfStream : instream -> bool

11.52. THE STREAM_IO SIGNATURE 347

val output : outstream * vector -> unit
val output1 : outstream * elem -> unit
val flushOut : outstream -> unit
val closeOut : outstream -> unit

val mkInstream : reader * vector -> instream
val getReader : instream -> reader * vector
val filePosIn : instream -> pos

val setBufferMode : outstream * IO.buffer_mode -> unit
val getBufferMode : outstream -> IO.buffer_mode

val mkOutstream : writer * IO.buffer_mode -> outstream
val getWriter : outstream -> writer * IO.buffer_mode
val getPosOut : outstream -> out_pos
val setPosOut : out_pos -> outstream
val filePosOut : out_pos -> pos

Description

type elem
type vector

The abstract types of stream elements and vectors of elements. For text streams these types
are Char.char and String.string, while for binary streams they are Word8.word
and Word8Vector.vector.

type instream

The type of buffered functional input streams.
Input streams are in one of three states: active, truncated, or closed. When initially

created, the stream is active. When disconnected from its underlying primitive reader (e.g.,
by getReader), the stream is truncated. When closeIn is applied to the stream, the
stream enters the closed state. A closed stream is also truncated. The only real difference
between a truncated stream and a closed one is that, in the latter case, the stream’s primitive
I/O reader is closed.
Reading from a truncated input stream will never block; after all buffered elements are

read, input operations always return empty vectors.

type outstream

The type of buffered output streams. Unlike input streams, these are imperative objects.
Output streams are in one of three states: active, terminated, or closed. When initially

created, the stream is active. When disconnected from its underlying primitive writer (e.g.,
by getWriter), the stream is terminated. When closeOut is applied to the stream,
the stream enters the closed state. A closed stream is also terminated. The only real
difference between a terminated stream and a closed one is that, in the latter case, the
stream’s primitive I/O writer is closed.

348 CHAPTER 11. MANUAL PAGES

In a terminated output stream, there is no mechanism for performing more output, so
any output operations will raise the IO.Io exception.

type out_pos

The type of positions in output streams. These values can be used to reconstruct an output
stream at the position recorded in the out_pos value. Thus, the canonical representation
for the type is (outstream * pos).

type reader
type writer

The readers and writers types that underlie the input and output streams.

type pos

The type of positions in the underlying readers and writers. In some instantiations of this
signature (e.g., TextIO.StreamIO), pos is abstract; in others, it may be concrete (e.g.,
Position.int in BinIO.StreamIO).

val input : instream -> vector * instream

input f returns a vector of one or more elements from f and the remainder of the
stream, if any elements are available. If an end-of-stream has been reached, then the empty
vector is returned. The function may block until one of these conditions is satisfied. This
function raises the Io exception if there is an error in the underlying reader.

val input1 : instream -> (elem * instream) option

input1 f returns the next element in the stream f and the remainder of the stream. If
the stream is at the end, then NONE is returned. It may block until one of these conditions is
satisfied. This function raises the Io exception if there is an error in the underlying reader.

val inputN : instream * int -> vector * instream

inputN (f, n) returns a vector of the next n elements from f and the rest of the
stream. If fewer than n elements are available before the next end-of-stream, it returns all
of the elements up to that end-of-stream. It may block until it can determine if additional
characters are available or an end-of-stream condition holds. This function raises the Io
exception if there is an error in the underlying reader. It raises Size if n < 0 or the
number of elements to be returned is greater than maxLen. Note that inputN(f,0)
returns immediately with an empty vector and f.
Using instreams, one can synthesize a non-blocking version of inputN from input-

N and canInput, as inputN is guaranteed not to block if a previous call to canInput
returned SOME(_).

11.52. THE STREAM_IO SIGNATURE 349

val inputAll : instream -> vector * instream

inputAll f returns the vector of the rest of the elements in the stream f (i.e., up to
an end-of-stream) and a new stream f’. Care should be taken when using this function,
since it can block indefinitely on interactive streams. This function raises the Io exception
if there is an error in the underlying reader. The stream f’ is immediately past the next
end-of-stream of f. For ordinary files in which only one end-of stream is expected, f’ can
be ignored. If a file has multiple end-of-stream conditions (which can happen under some
operating systems), inputAll returns all the elements up to the next end-of-stream. It
raises Size if the number of elements to be returned is greater than maxLen for the
relevant vector type.

val canInput : instream * int -> int option

canInput (f, n) returns NONE if any attempt at input would block. It returns
SOME(k), where 0 ≤ k ≤ n, if a call to input would return immediately with at
least k characters. Note that k = 0 corresponds to the stream being at the end-of-stream.
Some streams may not support this operation, in which case the Io exception will be

raised. This function also raises the Io exception if there is an error in the underlying
reader. It raises the Size exception if n < 0.

Implementation note: It is suggested that implementations of canInput should at-
tempt to return as large a k as possible. For example, if the buffer contains 10 characters
and the user calls canInput (f, 15), canInput should call readVecNB(5) to
see if an additional 5 characters are available.
Such a lookahead commits the stream to the characters read by readVecNB, but it

does not commit the stream to return those characters on the next call to input. Indeed, a
typical implementation will simply return the remainder of the current buffer, in this case
consisting of 10 characters, if input is called. On the other hand, an implementation
can decide to always respond to input with all the elements currently available, provided
an earlier call to input has not committed the stream to a particular response. The only
requirement is that any future call of input on the same input stream must return the
same vector of elements.

val closeIn : instream -> unit

closeIn f marks the stream closed and closes the underlying reader. Applying close-
In on a closed stream has no effect. This function raises the Io exception if there is an
error in the underlying reader.

val endOfStream : instream -> bool

endOfStream f tests if f satisfies the end-of-stream condition. If there is no further
input in the stream, then this call returns true; otherwise, it returns false. This function
raises the Io exception if there is an error in the underlying reader.
This function may block when checking for more input. It is equivalent to

(length(#1(input f)) = 0)

350 CHAPTER 11. MANUAL PAGES

where length is the vector length operation
Note that, even if endOfStream returns true, subsequent input operations may suc-

ceed if more data become available. A stream can have multiple end-of-streams inter-
spersed with normal elements. For example, on Unix if a user types control-D (#"\ˆD")
on a terminal device and then keeps typing characters; it may also occur on file descriptors
connected to sockets.
Multiple end-of-streams is a property of the underlying reader. Thus, readVec on a

reader may return an empty string, then another call to readVec on the same reader
may return a non-empty string, and then a third call may return an empty string. It is always
true, however, that

endOfStream f = endOfStream f
In addition, if endOfStream f returns true, then input f returns ("",f’) and
endOfStream f’ may or may not be true.

val output : outstream * vector -> unit

output (f, vec) writes the vector of elements vec to the stream f. This function
raises the exception Io if f is terminated. This function also raises the Io exception if
there is an error in the underlying writer.

val output1 : outstream * elem -> unit

output1 (f, el) writes the element el to the stream f. This function raises the
exception Io if f is terminated. This function also raises the Io exception if there is an
error in the underlying writer.

val flushOut : outstream -> unit

flushOut f flushes any output in f’s buffer to the underlying writer; it is a no-op
on terminated streams. This function raises the Io exception if there is an error in the
underlying writer.

val closeOut : outstream -> unit

closeOut f flushes f’s buffers, marks the stream closed, and closes the underlying
writer. This operation has no effect if f is already closed. Note that if f is terminated,
no flushing will occur. This function raises the Io exception if there is an error in the
underlying writer or if flushing fails. In the latter case, the stream is left open.

val mkInstream : reader * vector -> instream

mkInstream (rd, v) returns a new instream built on top of the reader rd with
the initial buffer contents v .
If the reader does not implement all of its fields (for example, if random access op-

erations are missing), then certain operations will raise exceptions when applied to the
resulting instream. The following table describes the minimal relationship between
instream operations and a reader:

11.52. THE STREAM_IO SIGNATURE 351

instream supports: if reader implements:
input, inputN, etc. readVec
canInput readVecNB
endOfStream readVec
filePosIn getPos and setPos

If the reader provides more operations, the resulting stream may use them.
mkInstream should construct the input stream using the reader provided. If the user

wishes to employ synthesized functions in the reader, the user may call mkInstream
with an augmented reader augmentReader(rd). See PRIM_IO for a description of
the functions generated by augmentReader.
Building more than one input stream on top of a single reader has unpredictable effects,

since readers are imperative objects. In general, there should be a one-to-one correspon-
dence between a reader and a sequence of input streams. Also note that creating an input
stream this way means that the stream could be unaware that the reader has been closed
until the stream actually attempts to read from it.

val getReader : instream -> reader * vector

getReader f marks the input stream f as truncated and returns the underlying reader
along with any unconsumed data from its buffer. The data returned will have the value
(closeIn f; inputAll f). The function raises the exception Io if f is closed or
truncated.

val filePosIn : instream -> pos

filePosIn f returns the primitive-level reader position that corresponds to the next
element to be read from the buffered stream f. This function raises the exception Io if the
stream does not support the operation or if f has been truncated.
It should be true that, if #1(inputAll f) returns vector v, then

(setPos (filePosIn f); readVec (length v))
should also return v, assuming all operations are defined and terminate.

Implementation note: If the pos type is a concrete integer corresponding to a byte
offset, and the translation function (between bytes and elements) is known, the value can
be computed directly. If not, the value is given by

fun pos (bufp, n, r as RD rdr) = let
val readVec = valOf (#readVec rdr)
val getPos = valOf (#getPos rdr)
val setPos = valOf (#setPos rdr)
val savep = getPos()
in
setPos bufp;
readVec n;
getPos () before setPos savep

end
where bufp is the file position corresponding to the beginning of the current buffer, n is the
number of elements already read from the current buffer, and r is the stream’s underlying
reader.

352 CHAPTER 11. MANUAL PAGES

val setBufferMode : outstream * IO.buffer_mode -> unit
val getBufferMode : outstream -> IO.buffer_mode

setBufferMode (f, mode)
getBufferMode f
These functions set and get the buffering mode of the output stream f. Setting the buffer
mode to IO.NO_BUF causes any buffered output to be flushed. If the flushing fails, the Io
exception is raised. Switching the mode between IO.LINE_BUF and IO.BLOCK_BUF
should not cause flushing. If, in going from IO.BLOCK_BUF to IO.LINE_BUF, the
user desires that the buffer contain no newline characters, the user should call flushOut
explicitly.

val mkOutstream : writer * IO.buffer_mode -> outstream

mkOutstream (wr, mode) returns a new output stream built on top of the writer
wr with the indicated buffer mode.
If the writer does not implement all of its fields (for example, if random access op-

erations are missing), then certain operations will raise exceptions when applied to the
resulting outstream. The following table describes the minimal relationship between
outstream operations and a writer:

outstream supports: if augmented writer implements:
output, output1, etc. writeArr
flushOut writeArr
setBufferMode writeArr
getPosOut writeArr and getPos
setPosOut writeArr and setPos

If the writer provides more operations, the resulting stream may use them.
mkOutstream should construct the output stream using the writer provided. If the user

wishes to employ synthesized functions in the writer, the user may call mkOutstream
with an augmented writer augmentWriter(wr). See PRIM_IO for a description of
the functions generated by augmentWriter.
Building more than one outstream on top of a single writer has unpredictable effects,

since buffering may change the order of output. In general, there should be a one-to-one
correspondence between a writer and an output stream. Also note that creating an output
stream this way means that the stream could be unaware that the writer has been closed
until the stream actually attempts to write to it.

val getWriter : outstream -> writer * IO.buffer_mode

getWriter f flushes the stream f, marks it as being terminated, and returns the un-
derlying writer and the stream’s buffer mode. This function raises the exception Io if f is
closed or if the flushing fails.

val getPosOut : outstream -> out_pos

getPosOut f returns the current position of the stream f. This function raises the
exception Io if the stream does not support the operation, if any implicit flushing fails, or
if f is terminated.

11.52. THE STREAM_IO SIGNATURE 353

Implementation note: A typical implementation of this function will require calcu-
lating a value of type pos, capturing where the next element written to f will be written in
the underlying file. If the pos type is a concrete integer corresponding to a byte offset, and
the translation function (between bytes and elements) is known, the value can be computed
directly using getPos. If not, the value is given by

fun pos (f, w as WR wtr) = let
val getPos = valOf (#getPos wtr)
in
flushOut f;
getPos ()

end
where f is the output stream and w is the stream’s underlying writer.

val setPosOut : out_pos -> outstream

setPosOut opos flushes the output buffer of the stream underlying opos, sets the
current position of the stream to the position recorded in opos, and returns the stream.
This function raises an Io exception if the flushing fails, if the stream does not support the
operation, or if the stream underlying opos is terminated.

val filePosOut : out_pos -> pos

filePosOut opos returns the primitive-level writer position that corresponds to the
abstract output stream position opos.
Suppose we are given an output stream f and a vector of elements v, and let opos equal

getPosOut(f). Then the code
(setPos opos; writeVec{buf=v,i=0,sz=NONE})

should have the same effect as the last line of the function
fun put (outs, x) = (flushOut outs;

output(outs,x); flushOut outs)
when called with (f,v), assuming all operations are defined and terminate and that the
call to writeVec returns length v.

Discussion
Note that the type of input1 makes it a (char,instream) StringCvt.reader
and thus a source of characters for the various scan functions.

Another point to notice about input1 is that it cannot be used to read beyond an
end-of-stream. When an end-of-stream is encountered. the programmer will need to use
one of the other input functions to obtain the stream after the end-of-stream. For exam-
ple, if input1(f) returns NONE, a call to inputN(f,1) will return immediately with
(fromList [], f’), and f’ can be used to continue input.

It is possible that a stream’s underlying reader/writer, or its operating system file de-
scriptor, could be closed while the stream is still active. When this condition is detected,
typically by an exception being raised by the lower level, the stream should raise the IO.-
Io exception with cause set to IO.ClosedStream. On a related point, one can close
a truncated or terminated string. This behavior is intended as a convenience, with the inac-
tive stream providing a handle to the underlying file, but it also provides an opportunity to
close a reader or writer being actively used by another stream.

354 CHAPTER 11. MANUAL PAGES

Output flushing can occur by calls to any output operation or by calls to flushOut,
closeOut, getWriter, setPosOut, getPosOut, or if setBufferMode is called
with mode IO.NO_BUF. If flushing finds that it can do only a partial write (i.e., write-
Vec or a similar function returns a number of elements written less than its sz argument),
then the stream function must adjust the stream’s buffer for the items written and then
try again. If the first or any successive write attempt raises an exception, then the stream
function must raise the IO.Io exception.

For the remainder of this chapter, we shall assume the following binding:

structure TS = TextIO.StreamIO

and that elem = char. Also, the predicates used to illustrate a point should all evaluate
to true, assuming they complete without exception.

Input is semi-deterministic: inputmay read any number of elements from f the “first”
time, but then it is committed to its choice and must return the same number of elements
on subsequent reads from the same point:

fun chkInput f= let
val (a, _) = TS.input f
val (b, _) = TS.input f
in a=b end

always returns true. In general, any expression involving input streams and functions de-
fined in the STREAM_IO signature should always evaluate to the same value, barring ex-
ceptions.

Closing or truncating a stream just causes the not-yet-determined part of the stream to
be empty:

fun chkClose f = let
val (a, f’) = TS.input f
val _ = TS.closeIn f
val (b, _) = TS.input f
in
a=b andalso TS.endOfStream f’

end
Closing a closed stream is legal and harmless:

fun closeTwice f = (TS.closeIn f; TS.closeIn f; true)

If a stream has already been at least partly determined, then input cannot possibly
block:

fun noBlock f = let
val (s, _) = TS.input f
in
case TS.canInput (f, 1)
of SOME 0 => (size s = 0)
| SOME _ => (size s > 0)
| NONE => false

end
Note that a successful canInput does not imply that more characters remain before the
end-of-stream, just that reading will not block.

A freshly opened stream is still undetermined (i.e., no “read” has yet been done on the
underlying reader):

11.52. THE STREAM_IO SIGNATURE 355

fun newStr rdr = let
val a = TS.mkInstream (rdr, "")
in
TS.closeIn a;
size(#1(TS.input a)) = 0

end
This property has the useful consequence that if one opens a stream and then extracts the
underlying reader, the reader has not yet been advanced in its file.

A generalization of this property says that the first time any stream value is produced, it
is up-to-date with respect to its reader:

fun nreads(f,0) = f
| nreads(f,n) = let

val (_,f’) = TS.input f
in
nreads(f’,n-1)

end
fun reads (rdr, n) = let (* for any n>=0 *)

val f = nreads(TS.mkInstream (rdr, ""),n)
in
TS.closeIn f;
size(#1(TS.input f)) = 0

end
The sequence of strings returned from a fresh stream by input is exactly the sequence

returned by the underlying reader including end-of-stream conditions, which the reader
indicates by returning a zero-element vector and input indicates in the same way.

The endOfStream test is equivalent to input returning an empty sequence:

fun isEOS f = let
val (a,_) = TS.input f
in
((size a)=0) = (TS.endOfStream f)

end
The semantics of inputAll can be defined in terms of input:

fun inputAll f =
case TS.input f of
("",f’) => ("",f’)

| (s,f’) => let
val (rest,f’’) = inputAll f’
in
(s ˆ rest, f’’)

end
An actual implementation, however, is likely to be much more efficient; for example, on
a large file, inputAll might read the whole file in a single system call or use memory
mapping. Note that if a stream f contains data "abc" followed by an end-of-stream fol-
lowed by "defg" and another end-of-stream, then inputAll f returns ("abc",f’),
and inputAll f’ returns ("defg",f’’).

The semantics of inputN can be related to inputAll by the following predicate:

356 CHAPTER 11. MANUAL PAGES

fun allAndN (f,n) = let
val (s,f1) = TS.inputN(f,n)
val (t,f2)= TS.inputAll f
in
size s < n andalso s=t andalso equiv(f1,f2)
orelse let
val (r,f3) = TS.inputAll f1
in
size s = n andalso t = s ˆ r andalso equiv(f2,f3)

end
end

where the equiv predicate represents that the two argument streams behave identically
under input:

fun equiv (f,g) = let
val (s,f’) = TS.input f
val (t,g’) = TS.input g
in
s=t andalso equiv(f’,g’)

end
ignoring termination conditions. If f contained exactly n characters before the end-of-
stream, then r in allAndN will be the empty string. Another way of stating this property
is that inputN returns fewer than n characters if and only if those elements are followed
by an end-of-stream.

The semantics of input1 can be defined in terms of inputN:
fun input1 f = (case TS.inputN (f,1)

of ("",_) => NONE
| (s,f’)=> SOME(String.sub(s,0),f’)

(* end case *))
If chunkSize = 1 in the underlying reader, then input operations should be un-

buffered. Thus, the following function always returns true:
fun isTrue (rdr : TextPrimIO.reader) = let

val f = TS.mkInstream(rdr, "")
val (_,f’) = TS.input f
val (TextPrimIO.RD{chunkSize,...},s) = TS.getReader f’
in
(chunkSize > 1) orelse (size s = 0)

end
where rdr denotes a reader created from a newly opened file. Although input may
perform a primitive I/O read operation on the reader for k ≥ 1 elements, it must immedi-
ately return all the elements it receives. This property does not hold, however, for partly
determined input streams. For example, the function
fun maybeTrue (rdr : TextPrimIO.reader) = let

val f = TS.mkInstream(rdr, "")
val _ = TS.input (#2 (TS.input f))
val (_,f’) = TS.input f
val (TextPrimIO.RD{chunkSize,...},s) = TS.getReader f’
in
(chunkSize > 1) orelse (size s = 0)

end

11.52. THE STREAM_IO SIGNATURE 357

might return false. In this case, the stream f has accumulated a history of more input,
which will not be emptied by a single call to input.

Similarly, if a writer sets chunkSize = 1, it suggests that output operations should
be unbuffered. An application can specify that a stream should be unbuffered using the
setBufferMode function.

Implementation note: A general rule for implementing stream input is “do not bother
the reader.” Whenever it is possible to do so, input must be done by using elements from
the buffer, without any operation on the underlying reader. This behavior is necessary so
that repeated calls to endOfStream will not make repeated system calls.

Implementations may require a device such as an extra boolean to mark multiple end-
of-streams, in order that input applied to the same stream always returns the same vector.

The manual page of the StreamIO functor lists a variety of implementation sugges-
tions, many of which are applicable to any implementation of the STREAM_IO signature.

In general, if an exception occurs during any stream I/O operation, then the stream
must leave itself in a consistent state, without losing or duplicating data. In some SML
systems, a user interrupt aborts execution and returns control to a top-level prompt without
raising any exception that the current execution can handle. It may be the case that some
information must be lost or duplicated. Data (input or output) must never be duplicated
but may be lost. This behavior can be implemented without stream I/O doing any explicit
masking of interrupts or locking. On output, the internal state (saying how much has been
written) should be updated before doing the write operation; on input, the read should be
done before updating the count of valid characters in the buffer.

See also
IMPERATIVE_IO (§11.14; p. 158), PRIM_IO (§11.48; p. 308),
StreamIO (§11.53; p. 358), TEXT_STREAM_IO (§11.59; p. 386)

358 CHAPTER 11. MANUAL PAGES

11.53 The StreamIO functor

The optional StreamIO functor provides a way to build a stream I/O layer on top of
an arbitrary primitive I/O implementation. For example, given an implementation of
readers and writers for pairs of integers, one can define streams of pairs of integers.

Synopsis
signature STREAM_IO
functor StreamIO (...): STREAM_IO

where type elem = PrimIO.elem
where type vector = PrimIO.vector
where type reader = PrimIO.reader
where type writer = PrimIO.writer
where type pos = PrimIO.pos

Functor Argument Interface
structure PrimIO : PRIM_IO
structure Vector : MONO_VECTOR
structure Array : MONO_ARRAY
sharing type PrimIO.elem = Vector.elem = Array.elem
sharing type PrimIO.vector = Vector.vector = Array.vector
sharing type PrimIO.array = Array.array

val someElem : PrimIO.elem

Description

structure PrimIO : PRIM_IO

The underlying primitive I/O structure.

val someElem : PrimIO.elem

Some arbitrary element used to initialize buffer arrays.

Discussion
The Vector and Array structures provide vector and array operations for manipulating
the vectors and arrays used in PrimIO and StreamIO. The element someElem is used
to initialize buffer arrays; any element will do.

The types instream and outstream in the result of the StreamIO functor must
be abstract.

Implementation note: Here are some suggestions for efficient performance:

• Operations on the underlying readers and writers (readVec, etc.) are expected to
be expensive (involving a system call, with context switch).

11.53. THE STREAMIO FUNCTOR 359

• Small input operations can be done from a buffer; the readVec or readVecNB
operation of the underlying reader can replenish the buffer when necessary.

• Each reader may provide only a subset of readVec, readVecNB, block, can-
Input, etc. An augmented reader that provides more operations can be constructed
using PrimIO.augmentReader, but it may be more efficient to use the functions
directly provided by the reader, instead of relying on the constructed ones. The same
applies to augmented writers.

• Keep the position of the beginning of the buffer on a multiple-of-chunkSize bound-
ary and do read or write operations with a multiple-of-chunkSize number of ele-
ments.

• For very large inputAll or inputN operations, it is (somewhat) inefficient to read
one chunkSize at a time and then concatenate all the results together. Instead, it
is good to try to do the read all in one large system call, that is, readVec(n). In a
typical implementation of readVec, this operation requires pre-allocating a vector
of size n. In inputAll, however, the size of the vector is not known a priori,
and if the argument to inputN is large, the allocation of a much-too-large buffer
is wasteful. Therefore, for large input operations, query the remaining size of the
reader using avail and try to read that much. But one should also keep things
rounded to the nearest chunkSize.

• The use of avail to try to do (large) read operations of just the right size will
be inaccurate on translated readers. But this inaccuracy can be tolerated: if the
translation is anything close to one-to-one, avail will still provide a very good hint
about the order-of-magnitude size of what remains to be read.

• Similar suggestions apply to very large output operations. Small outputs go through
a buffer; the buffer is written with writeArr. Very large outputs can be written
directly from the argument string using writeVec.

• A lazy functional input stream can (should) be implemented as a sequence of im-
mutable (vector) buffers, each with a mutable ref to the next “thing,” which is
either another buffer, the underlying reader, or an indication that the stream has been
truncated.

• The input function should return the largest sequence that is most convenient. Usu-
ally this requirement means “the remaining contents of the current buffer.”

• To support non-blocking input, use readVecNB if it exists; otherwise, do can-
Input followed (if appropriate) by readVec.

• To support blocking input, use readVec if it exists; otherwise, do readVecNB
followed (if it would block) by block. and then another readVecNB.

• To support lazy functional streams, readArr and readArrNB are not useful. If
necessary, readVec should be synthesized from readArr and readVecNB from
readArrNB.

• writeArr should, if necessary, be synthesized from writeVec, and vice versa.
Similarly for writeArrNB and writeVecNB.

See also
ImperativeIO (§11.15; p. 165), MONO_ARRAY (§11.23; p. 193),
MONO_VECTOR (§11.26; p. 211), PrimIO (§11.49; p. 317), PRIM_IO (§11.48; p. 308),
STREAM_IO (§11.52; p. 346)

360 CHAPTER 11. MANUAL PAGES

11.54 The STRING signature

The STRING signature specifies the basic operations on a string type, which is a vector
of the underlying character type char as defined in the structure.
The STRING signature is matched by two structures, the required String and the

optional WideString. The former implements strings based on the extended ASCII 8-
bit character set and is a companion structure to the Char structure. The latter provides
strings of characters of some size greater than or equal to 8 bits and is related to the
structure WideChar. In particular, the type String.char is identical to the type
Char.char, and, when WideString is defined, the type WideString.char is
identical to the type WideChar.char. These connections are made explicit in the
Text and WideText structures, which match the TEXT signature.

Synopsis
signature STRING
structure String :> STRING
where type string = string
where type string = CharVector.vector
where type char = Char.char

structure WideString :> STRING
where type string = WideCharVector.vector
where type char = WideChar.char

Interface
eqtype string
eqtype char

val maxSize : int
val size : string -> int

val sub : string * int -> char

val str : char -> string
val extract : string * int * int option -> string
val substring : string * int * int -> string

val ˆ : string * string -> string
val concat : string list -> string
val concatWith : string -> string list -> string

val implode : char list -> string
val explode : string -> char list
val map : (char -> char) -> string -> string
val translate : (char -> string) -> string -> string
val tokens : (char -> bool) -> string -> string list
val fields : (char -> bool) -> string -> string list

11.54. THE STRING SIGNATURE 361

val isPrefix : string -> string -> bool
val isSubstring : string -> string -> bool
val isSuffix : string -> string -> bool

val compare : string * string -> order
val collate : (char * char -> order)

-> string * string -> order
val < : string * string -> bool
val <= : string * string -> bool
val > : string * string -> bool
val >= : string * string -> bool

val toString : string -> String.string
val scan : (char, ’a) StringCvt.reader

-> (string, ’a) StringCvt.reader
val fromString : String.string -> string option
val toCString : string -> String.string
val fromCString : String.string -> string option

Description

val maxSize : int

The longest allowed size of a string.

val size : string -> int

size s returns |s|, the number of characters in string s.

val sub : string * int -> char

sub (s, i) returns the ith character of s, counting from zero. This function raises
Subscript if i < 0 or |s| ≤ i.

val str : char -> string

str c is the string of size one containing the character c.

val extract : string * int * int option -> string
val substring : string * int * int -> string

extract (s, i, NONE)
extract (s, i, SOME j)
substring (s, i, j)
These functions return substrings of s. The first returns the substring of s from the
ith character to the end of the string, i.e., the string s[i..|s| − 1]. This function raises

362 CHAPTER 11. MANUAL PAGES

Subscript if i < 0 or |s| < i. The second form returns the substring of size j start-
ing at index i, i.e., the string s[i..i+j-1]. It raises Subscript if i < 0 or j < 0 or
|s| < i+ j. Note that, if defined, extract returns the empty string when i = |s|.
The third form returns the substring s[i..i+j-1], i.e., the substring of size j starting

at index i. It equivalent to extract(s, i, SOME j).

Implementation note: Implementations of these functions must perform bounds check-
ing in such a way that the Overflow exception is not raised.

val ˆ : string * string -> string

s ˆ t is the concatenation of the strings s and t. This function raises Size if |s| +
|t| > maxSize.

val concat : string list -> string

concat l is the concatenation of all the strings in l. This function raises Size if the
sum of all the sizes is greater than maxSize.

val concatWith : string -> string list -> string

concatWith s l returns the concatenation of the strings in the list l using the string
s as a separator. This function raises Size if the size of the resulting string is greater than
maxSize.

val implode : char list -> string

implode l generates the string containing the characters in the list l. This expression is
equivalent to concat (List.map str l). This function raises Size if the resulting
string has size greater than maxSize.

val explode : string -> char list

explode s is the list of characters in the string s.

val map : (char -> char) -> string -> string

map f s applies f to each element of s from left to right, returning the resulting string.
It is equivalent to implode(List.map f (explode s)).

val translate : (char -> string) -> string -> string

translate f s returns the string generated from s by mapping each character in s
by f. It is equivalent to concat(List.map f (explode s)).

11.54. THE STRING SIGNATURE 363

val tokens : (char -> bool) -> string -> string list
val fields : (char -> bool) -> string -> string list

tokens f s
fields f s
These functions return a list of tokens or fields, respectively, derived from s from left to
right. A token is a non-empty maximal substring of s not containing any delimiter. A field
is a (possibly empty) maximal substring of s not containing any delimiter. In both cases, a
delimiter is a character satisfying the predicate f.
Two tokens may be separated by more than one delimiter, whereas two fields are sep-

arated by exactly one delimiter. For example, if the delimiter is the character #"|", then
the string "|abc||def" contains two tokens "abc" and "def", whereas it contains
four fields "", "abc", "" and "def".

val isPrefix : string -> string -> bool
val isSubstring : string -> string -> bool
val isSuffix : string -> string -> bool

isPrefix s1 s2
isSubstring s1 s2
isSuffix s1 s2
These functions return true if the string s1 is a prefix, substring, or suffix (respectively)
of the string s2. Note that the empty string is a prefix, substring, and suffix of any string,
and that a string is a prefix, substring, and suffix of itself.

val compare : string * string -> order

compare (s, t) does a lexicographic comparison of the two strings using the order-
ing Char.compare on the characters. It returns LESS, EQUAL, or GREATER if s is less
than, equal to, or greater than t, respectively.

val collate : (char * char -> order)
-> string * string -> order

collate cmp (s, t) performs a lexicographic comparison of the two strings using
the given ordering cmp on characters.

val < : string * string -> bool
val <= : string * string -> bool
val > : string * string -> bool
val >= : string * string -> bool

These functions compare two strings lexicographically, using the underlying ordering on
the char type.

364 CHAPTER 11. MANUAL PAGES

val toString : string -> String.string

toString s returns a string corresponding to s, with non-printable characters replaced
by SML escape sequences. This expression is equivalent to
translate Char.toString s

val scan : (char, ’a) StringCvt.reader
-> (string, ’a) StringCvt.reader

val fromString : String.string -> string option

scan getc strm
fromString s
These functions scan their character source as a sequence of printable characters, con-
verting SML escape sequences into the appropriate characters. They do not skip lead-
ing whitespace. They return as many characters as can successfully be scanned, stopping
when they reach the end of the source or a non-printing character (i.e., one not satisfy-
ing isPrint) or if they encounter an improper escape sequence. fromString ignores
the remaining characters, while scan returns the remaining characters as the rest of the
stream.
The function fromString is equivalent to the StringCvt.scanString scan.
If no conversion is possible, e.g., if the first character is non-printable or begins an

illegal escape sequence, NONE is returned. Note, however, that fromString "" returns
SOME("").
For more information on the allowed escape sequences, see the entry for CHAR.from-

String. SML source also allows escaped formatting sequences, which are ignored during
conversion. The rule is that if any prefix of the input is successfully scanned, including an
escaped formatting sequence, the functions returns some string. They only return NONE
in the case where the prefix of the input cannot be scanned at all. Here are some sample
conversions:

Input string s fromString s
"\\q" NONE
"a\ˆD" SOME "a"

"a\\ \\\\q" SOME "a"
"\\ \\" SOME ""

"" SOME ""
"\\ \\\ˆD" SOME ""
"\\ a" NONE

Implementation note: Because of the special cases, such as fromString "" =
SOME "", fromString "\\ \\\ˆD" = SOME "", and fromString "\ˆD" =
NONE, the functions cannot be implemented as a simple iterative application of CHAR.-
scan.

val toCString : string -> String.string

toCString s returns a string corresponding to s, with non-printable characters re-
placed by C escape sequences. This expression is equivalent to
translate Char.toCString s

11.54. THE STRING SIGNATURE 365

val fromCString : String.string -> string option

fromCString s scans the string s as a string in the C language, converting C escape
sequences into the appropriate characters. The semantics are identical to fromString
above, except that C escape sequences are used (see ISO Cstandard [ISO90]).
For more information on the allowed escape sequences, see the entry for CHAR.from-

CString. Note that fromCString accepts an unescaped single quote character but
does not accept an unescaped double quote character.

See also
CHAR (§11.8; p. 135), CharArray (§11.23; p. 193), CharVector (§11.26; p. 211),
StringCvt (§11.55; p. 366), SUBSTRING (§11.56; p. 372), TEXT (§11.57; p. 380),
WideCharArray (§11.23; p. 193), WideCharVector (§11.26; p. 211)

366 CHAPTER 11. MANUAL PAGES

11.55 The StringCvt structure

The StringCvt structure provides types and functions for handling the conversion
between strings and values of various basic types.

Synopsis
signature STRING_CVT
structure StringCvt :> STRING_CVT

Interface
datatype radix = BIN | OCT | DEC | HEX
datatype realfmt

= SCI of int option
| FIX of int option
| GEN of int option
| EXACT

type (’a,’b) reader = ’b -> (’a * ’b) option

val padLeft : char -> int -> string -> string
val padRight : char -> int -> string -> string

val splitl : (char -> bool)
-> (char, ’a) reader -> ’a -> string * ’a

val takel : (char -> bool)
-> (char, ’a) reader -> ’a -> string

val dropl : (char -> bool) -> (char, ’a) reader -> ’a -> ’a
val skipWS : (char, ’a) reader -> ’a -> ’a
type cs
val scanString : ((char, cs) reader -> (’a, cs) reader)

-> string -> ’a option

Description

datatype radix = BIN | OCT | DEC | HEX

The values of type radix are used to specify the radix of a representation of an integer,
corresponding to the bases 2, 8, 10, and 16, respectively.

datatype realfmt
= SCI of int option
| FIX of int option
| GEN of int option
| EXACT

Values of type realfmt are used to specify the format of a string representation for a real
or floating-point number.
The first corresponds to scientific representation:

11.55. THE STRINGCVT STRUCTURE 367

[˜]?[0−9](.[0−9]+)?E[0−9]+

where there is always one digit before the decimal point, which is non-zero if the number
is non-zero. The optional integer value specifies the number of decimal digits to appear
after the decimal point, with six being the default. In particular, if zero is specified, there
should be no fractional part. The exponent is zero if the value is zero.
The second corresponds to a fixed-point representation:

[˜]?[0−9]+(.[0−9]+)?

where there is always at least one digit before the decimal point. The optional integer value
specifies the number of decimal digits to appear after the decimal point, with six being the
default. In particular, if zero is specified, there should be no fractional part.
The third constructor, GEN, allows a formatting function to use either the scientific or

fixed-point notation, whichever is shorter, breaking ties in favor of fixed-point notation.
The optional integer value specifies the maximum number of significant digits used, with
12 the default. The string should display as many significant digits as possible, subject
to this maximum. There should not be any trailing zeros after the decimal point. There
should not be a decimal point unless a fractional part is included.
The fourth constructor, EXACT, specifies that the string should represent the real us-

ing an exact decimal representation. The string contains enough information in order to
reconstruct a semantically equivalent real value using REAL.fromDecimal o valOf
o IEEEReal.fromString. Refer to the description of IEEEReal.toString for
more precise information concerning this format.
In all cases, positive and negative infinities are converted to "inf" and "˜inf", re-

spectively, and NaN values are converted to the string "nan".

type (’a,’b) reader = ’b -> (’a * ’b) option

The type of a reader producing values of type ’a from a stream of type ’b. A return value
of SOME(a,b) corresponds to a value a scanned from the stream, plus the remainder b
of the stream. A return value of NONE indicates that no value of the correct type could be
scanned from the prefix of the stream.
The reader type is designed for use with a stream or functional view of I/O. Scanning

functions using the reader type, such as skipWS, splitl, and Int.scan, will often
use lookahead characters to determine when to stop scanning. If the character source
(’b in an (’a,’b) reader) is imperative, the lookahead characters will be lost to any
subsequent scanning of the source. One mechanism for combining imperative I/O with the
standard scanning functions is provided by the TextIO.scanStream function.

val padLeft : char -> int -> string -> string
val padRight : char -> int -> string -> string

padLeft c i s
padRight c i s
These functions return s padded, on the left or right, respectively, with i − |s| copies of
the character c. If |s| ≥ i, they just return the string s. In other words, these functions
right- and left-justify s in a field i characters wide, never trimming off any part of s. Note

368 CHAPTER 11. MANUAL PAGES

that if i ≤ 0, s is returned. These functions raise Size if the size of the resulting string is
greater than String.maxSize.

val splitl : (char -> bool)
-> (char, ’a) reader -> ’a -> string * ’a

splitl f rdr src returns (pref, src’), where pref is the longest prefix (left
substring) of src, as produced by the character reader rdr, all of whose characters satisfy
f, and src’ is the remainder of src. Thus, the first character retrievable from src’ is
the leftmost character not satisfying f.
This function can be used with scanning functions such as scanString by composing

it with SOME, e.g., scanString (fn rdr => SOME o (splitl f rdr)).

val takel : (char -> bool)
-> (char, ’a) reader -> ’a -> string

val dropl : (char -> bool) -> (char, ’a) reader -> ’a -> ’a

takel f rdr src
dropl f rdr src
These routines scan the source src for the first character not satisfying the predicate f.
The function dropl drops the maximal prefix consisting of characters satisfying the pred-
icate, returning the rest of the source, while takel returns the maximal prefix consisting
of characters satisfying the predicate. These can be defined in terms of splitl:

takel f rdr s = #1(splitl f rdr s)
dropl f rdr s = #2(splitl f rdr s)

val skipWS : (char, ’a) reader -> ’a -> ’a

skipWS rdr src strips whitespace characters from a stream src using the reader
rdr. It returns the remaining stream. A whitespace character is one that satisfies the
predicate Char.isSpace. It is equivalent to dropl Char.isSpace.

type cs

The abstract type of the character stream used by scanString. A value of this type
represents the state of a character stream. The concrete type is left unspecified to allow
implementations a choice of representations. Typically, cs will be an integer index into a
string.

val scanString : ((char, cs) reader -> (’a, cs) reader)
-> string -> ’a option

The function scanString provides a general framework for converting a string into
some value. The user supplies a scanning function and a string. scanString converts
the string into a character source (type cs) and applies the scanning function. A scanning
function converts a reader of characters into a reader of values of the desired type. Typical
scanning functions are Bool.scan and Date.scan.

11.55. THE STRINGCVT STRUCTURE 369

Discussion

Implementation note: The SML Basis Library emphasizes a functional view for scan-
ning values from text. This view provides a natural and elegant way to write simple scan-
ners and parsers, especially as these typically involve some form of reading ahead and
backtracking. The model involves two types of components: ways to produce character
readers and functions to convert character readers into value readers. For the latter, most
types ty have a corresponding scanning function of type

(char, ’a) reader -> (ty, ’a) reader

Character readers are provided for the common sources of characters, either explicitly,
such as the SUBSTRING.getc and STREAM_IO.input1 functions, or implicitly, such
as the TEXT_IO.scanStream. As an example, suppose we expect to read a decimal
integer followed by a date from TextIO.stdIn. This task could be handled by the
following code:

local
structure TIO = TextIO
structure SIO = TextIO.StreamIO
val scanInt = Int.scan StringCvt.DEC SIO.input1
val scanDate = Date.scan SIO.input1

in
fun scanID () = (case scanInt (TIO.getInstream TIO.stdIn)

of NONE => raise Fail "No integer"
| SOME(intVal, ins’) => (case scanDate ins’

of NONE => raise Fail "No date"
| SOME (dateVal, _) => (intVal, dateVal)

(* end case *))
(* end case *))

end
In this example, we used the underlying stream I/O component of TextIO.stdIn, which
is cleaner and more efficient. If, at some later point, we wish to return to the imperative
model and do input directly using TextIO.stdIn, we need to reset it with the current
stream I/O value using TextIO.setInstream. Alternatively, we could rewrite the
code using imperative I/O:

local
structure TIO = TextIO
val scanInt = TIO.scanStream (Int.scan StringCvt.DEC)
val scanDate = TIO.scanStream Date.scan

in
fun scanID () = (case scanInt TIO.stdIn

of NONE => raise Fail "No integer"
| SOME intVal => (case scanDate TIO.stdIn

of NONE => raise Fail "No date"
| SOME dateVal => (intVal,dateVal)

(* end case *))
(* end case *))

end

370 CHAPTER 11. MANUAL PAGES

The scanString function was designed specifically to be combined with the scan
function of some type T, producing a function

val fromString : string -> T option

for the type. For this reason, scanString only returns a scanned value, and not some
indication of where scanning stopped in the string. For the user who wants to receive a
scanned value and the unscanned portion of a string, the recommended technique is to
convert the string into a substring and combine scanning functions with Substring.-
getc, e.g., Bool.scan Substring.getc. Or, the user can create an input stream
with TextIO.openString using the string as the source.

When the input source is a list of characters, scanning values can be accomplished by
applying the appropriate scan function to the function List.getItem. Thus, Bool.-
scan List.getItem has the type

(bool, char list) reader

which will scan a boolean value and return that value and the remainder of the list.

Listing 11.1 provides a reference implementation for then StringCvt.GEN conver-
sion.

See also
String (§11.54; p. 360), Char (§11.8; p. 135)

11.55. THE STRINGCVT STRUCTURE 371

local
structure S = String
structure SS = Substring
structure SC = StringCvt

fun cvt (x,n) = let
val (prefix, x) =

if x < 0.0 then ("˜", ˜ x) else ("", x)
val ss = SS.full (Real.fmt (SC.SCI (SOME (n - 1))) x)
fun notE #"E" = false | notE _ = true
fun isZero #"0" = true | isZero _ = false
val expS = SS.string (SS.taker notE ss)
val exp = valOf (Int.fromString expS)
val manS =

SS.string (SS.dropr isZero (SS.takel notE ss))
fun transf #"." = ""
| transf c = str c

val man = S.translate transf manS
val manSize = S.size man
fun zeros i = CharVector.tabulate (i, fn _ => #"0")
fun dotAt i = [S.substring (man, 0, i),

".", S.extract (man, i, NONE)]
fun sci () = if manSize = 1

then [prefix, man, "E", expS]
else prefix :: (dotAt 1 @ ["E", expS])

in
if exp >= (if manSize = 1 then 3 else manSize + 3)

then sci ()
else if exp >= manSize - 1
then [prefix, man, zeros (exp - (manSize - 1))]

else if exp >= 0
then prefix :: dotAt (exp + 1)

else if exp >= (if manSize = 1 then ˜2 else ˜3)
then [prefix, "0.", zeros(˜exp - 1), man]

else sci ()
end

in
fun gcvt (x: real, n: int): string = (case Real.class x

of IEEEReal.INF => if x > 0.0 then "inf" else "˜inf"
| IEEEReal.NAN _ => "nan"
| _ => concat (cvt (x, n))

(* end case *))
end

Listing 11.1: Implementing StringCvt.GEN.

372 CHAPTER 11. MANUAL PAGES

11.56 The SUBSTRING signature

The SUBSTRING signature specifies manipulations on an abstract representation of a
sequence of contiguous characters embedded in a string. A substring value can be
modeled as a triple (s, i, n), where s is the underlying string, i is the starting
index, and n is the size of the substring, with the constraint that 0 ≤ i ≤ i+ n ≤ |s|.
The substring type and its attendant functions provide a convenient abstraction

for performing a variety of common analyses of strings, such as finding the leftmost oc-
currence, if any, of a character in a string. In addition, using the substring functions
avoids much of the copying and bounds checking that occur if similar operations are
implemented solely in terms of strings.
The SUBSTRING signature is matched by two structures, the required Substring

and the optional WideSubstring. The former is a companion structure to the Char
and String structures, which are based on the extended ASCII 8-bit character set.
The structure WideSubstring is related in the same way to the structures Wide-
Char and WideString, which are based on characters of some size greater than or
equal to 8 bits. In particular, the types Substring.string and Substring.char
are identical to those types in the structure String, and, when WideSubstring
is defined, the types WideSubstring.string and WideSubstring.char are
identical to those types in the structure WideString.
All of these connections are made explicit in the Text and WideText structures,

which match the TEXT signature. In the exposition below, references to a String
structure refer to the substructure of that name defined in either the Text or the Wide-
Text structure, whichever is appropriate.
The design of the SUBSTRING interface was influenced by the paper “Subsequence

References: First-Class Values for Substrings,” by Wilfred J. Hansen [Han92].

Synopsis
signature SUBSTRING
structure Substring :> SUBSTRING
where type substring = CharVectorSlice.slice
where type string = String.string
where type char = Char.char

structure WideSubstring :> SUBSTRING
where type substring = WideCharVectorSlice.slice
where type string = WideString.string
where type char = WideChar.char

Interface
type substring
eqtype char
eqtype string

val size : substring -> int

11.56. THE SUBSTRING SIGNATURE 373

val base : substring -> string * int * int
val isEmpty : substring -> bool

val sub : substring * int -> char
val getc : substring -> (char * substring) option
val first : substring -> char option

val extract : string * int * int option -> substring
val substring : string * int * int -> substring
val slice : substring * int * int option -> substring
val full : string -> substring
val string : substring -> string

val concat : substring list -> string
val concatWith : string -> substring list -> string

val explode : substring -> char list
val translate : (char -> string) -> substring -> string
val app : (char -> unit) -> substring -> unit
val foldl : (char * ’a -> ’a) -> ’a -> substring -> ’a
val foldr : (char * ’a -> ’a) -> ’a -> substring -> ’a
val tokens : (char -> bool) -> substring -> substring list
val fields : (char -> bool) -> substring -> substring list
val isPrefix : string -> substring -> bool
val isSubstring : string -> substring -> bool
val isSuffix : string -> substring -> bool

val compare : substring * substring -> order
val collate : (char * char -> order)

-> substring * substring -> order

val triml : int -> substring -> substring
val trimr : int -> substring -> substring
val splitl : (char -> bool)

-> substring -> substring * substring
val splitr : (char -> bool)

-> substring -> substring * substring
val splitAt : substring * int -> substring * substring
val dropl : (char -> bool) -> substring -> substring
val dropr : (char -> bool) -> substring -> substring
val takel : (char -> bool) -> substring -> substring
val taker : (char -> bool) -> substring -> substring
val position : string -> substring -> substring * substring

val span : substring * substring -> substring

374 CHAPTER 11. MANUAL PAGES

Description

val size : substring -> int

size s returns the size of s. This function is equivalent to both #3 o base and
String.size o string.

val base : substring -> string * int * int

base ss returns a triple (s, i, n) giving a concrete representation of the substring.
s is the underlying string, i is the starting index, and n is the size of the substring. It will
always be the case that 0 ≤ i ≤ i+ n ≤ |s|.

val isEmpty : substring -> bool

isEmpty s returns true if s has size 0.

val sub : substring * int -> char

sub (s, i) returns the ith character in the substring, counting from the beginning of
s. It is equivalent to String.sub(string s, i). The exception Subscript is
raised unless 0 ≤ i < |s|.

val getc : substring -> (char * substring) option

getc s returns the first character in s and the rest of the substring, or NONE if s is
empty.

val first : substring -> char option

first s returns the first character in s, or NONE if s is empty.

val extract : string * int * int option -> substring
val substring : string * int * int -> substring

extract (s, i, NONE)
extract (s, i, SOME j)
substring (s, i, j)
The first returns the substring of s from the ith character to the end of the string, i.e., the
string s[i..|s| − 1]. This function raises Subscript unless 0 ≤ i ≤ |s|. The second
form returns the substring of size j starting at index i, i.e., the string s[i..i+j-1]. It
raises Subscript if i < 0 or j < 0 or |s| < i + j. Note that, if defined, extract
returns the empty substring when i = |s|.
The third form returns the substring s[i..i+j-1], i.e., the substring of size j starting

at index i. This form is equivalent to extract(s, i, SOME j).
We require that base o substring be the identity function on valid arguments.

11.56. THE SUBSTRING SIGNATURE 375

Implementation note: Implementations of these functions must perform bounds check-
ing in such a way that the Overflow exception is not raised.

val slice : substring * int * int option -> substring

slice (s, i, SOME m)
slice (s, i, NONE)
These functions return a substring of s starting at the ith character. In the former case,
the size of the resulting substring is m. Otherwise, the size is |s| − i. To be valid, the
arguments in the first case must satisfy 0 ≤ i, 0 ≤ m, and i + m ≤ |s|. In the second
case, the arguments must satisfy 0 ≤ i ≤ |s|. If the arguments are not valid, the exception
Subscript is raised.

val full : string -> substring

full s creates a substring representing the entire string s. It is equivalent to the expres-
sion substring(s, 0, String.size s).

val string : substring -> string

string s creates a string value corresponding to the substring. It is equivalent to
String.substring o base for the corresponding String structure.

val concat : substring list -> string

concat l generates a string that is the concatenation of the substrings in l. This
function is equivalent to String.concat o (List.map string). This function
raises Size if the sum of all the sizes is greater than the corresponding maxSize for the
string type.

val concatWith : string -> substring list -> string

concatWith s l returns the concatenation of the substrings in the list l using the
string s as a separator. This function raises Size if the size of the resulting string is
greater than maxSize for the string type.

val explode : substring -> char list

explode s returns the list of characters composing the substring. This expression is
equivalent to String.explode (string s).

val translate : (char -> string) -> substring -> string

translate f s applies f to every character of s, from left to right, and returns the
concatenation of the results. This expression is equivalent to String.concat(List.-
map f (explode s)).

376 CHAPTER 11. MANUAL PAGES

val app : (char -> unit) -> substring -> unit

app f s applies f to each character of s from left to right. It is equivalent to List.-
app f (explode s).

val foldl : (char * ’a -> ’a) -> ’a -> substring -> ’a
val foldr : (char * ’a -> ’a) -> ’a -> substring -> ’a

foldl f a s
foldr f a s
These fold the function f over the substring s, starting with the value a, from left to
right and from right to left, respectively. They are the analogues of the identically named
functions in the List structure. In particular, they are respectively equivalent to:

List.foldl f a (explode s)
List.foldr f a (explode s)

val tokens : (char -> bool) -> substring -> substring list
val fields : (char -> bool) -> substring -> substring list

tokens f s
fields f s
These functions decompose a substring into a list of tokens or fields from left to right. A
token is a non-empty maximal substring not containing any delimiter. A field is a (possibly
empty) maximal substring of s not containing any delimiter. In both cases, a delimiter is a
character satisfying predicate f.
Two tokens may be separated by more than one delimiter, whereas two fields are sep-

arated by exactly one delimiter. For example, if the delimiter is the character #"|", then
the string "|abc||def" contains two tokens "abc" and "def", whereas it contains
four fields "", "abc", "" and "def".

val isPrefix : string -> substring -> bool
val isSubstring : string -> substring -> bool
val isSuffix : string -> substring -> bool

isPrefix s ss
isSubstring s ss
isSuffix s ss
These functions return true if the string s is a prefix, substring, or suffix (respectively)
of the substring ss. The functions are equivalent to their versions from STRING. For
example, isPrefix s ss is the same as String.isPrefix s (string ss).

val compare : substring * substring -> order

compare (s, t) compares the two substrings lexicographically using the default
character comparison function. This expression is equivalent to

String.compare (string s, string t)

11.56. THE SUBSTRING SIGNATURE 377

val collate : (char * char -> order)
-> substring * substring -> order

collate cmp (s, t) compares the two substrings lexicographically using the char-
acter comparison function cmp. This expression is equivalent to

String.collate f (string s, string t)

val triml : int -> substring -> substring
val trimr : int -> substring -> substring

triml k s
trimr k s
These functions remove k characters from the left (respectively, right) of the substring s.
If k is greater than the size of the substring, an empty substring is returned. Specifically,
for substring ss = substring(s, i, j) and k ≤ j, we have:

triml k ss = substring(s, i+k, j-k)
trimr k ss = substring(s, i, j-k)

The exception Subscript is raised if k < 0. This exception is raised when triml k
or trimr k is evaluated.

val splitl : (char -> bool)
-> substring -> substring * substring

val splitr : (char -> bool)
-> substring -> substring * substring

splitl f s
splitr f s
These functions scan s from left to right (respectively, right to left) looking for the first
character that does not satisfy the predicate f. They return the pair (ls, rs) giving
the split of the substring into the span up to that character and the rest. ls is the left side
of the split, and rs is the right side. For example, if the characters a and c satisfy the
predicate, but character X does not, then these functions work as follows on the substring
aaaXbbbbXccc:

splitl : aaa XbbbbXccc
splitr : aaaXbbbbX ccc

val splitAt : substring * int -> substring * substring

splitAt (s, i) returns the pair of substrings (ss, ss’), where ss contains the
first i characters of s and ss’ contains the rest, assuming 0 ≤ i ≤ size s. Otherwise,
it raises Subscript.

378 CHAPTER 11. MANUAL PAGES

val dropl : (char -> bool) -> substring -> substring
val dropr : (char -> bool) -> substring -> substring
val takel : (char -> bool) -> substring -> substring
val taker : (char -> bool) -> substring -> substring

dropl f s
dropr f s
takel f s
taker f s
These routines scan the substring s for the first character not satisfying the predicate p.
The functions dropl and takel scan left to right (i.e., increasing character indices),
while dropr and taker scan from the right. The drop functions drop the maximal sub-
string consisting of characters satisfying the predicate, while the take functions return the
maximal such substring. These can be defined in terms of the split operations:

takel p s = #1(splitl p s)
dropl p s = #2(splitl p s)
taker p s = #2(splitr p s)
dropr p s = #1(splitr p s)

val position : string -> substring -> substring * substring

position s ss splits the substring ss into a pair (pref, suff) of substrings,
where suff is the longest suffix of ss that has s as a prefix and pref is the pre-
fix of ss preceding suff. More precisely, let m be the size of s and let ss corre-
spond to the substring (s’, i, n). If there is a least index k ≥ i such that s =
s’[k..k+m-1], then suff corresponds to (s’, k, n+i-k) and pref corresponds
to (s’, i, k-i). If there is no such k, then suff is the empty substring correspond-
ing to (s’, i+n, 0) and pref corresponds to (s’, i, n), i.e., all of ss.

val span : substring * substring -> substring

span (ss, ss’) produces a substring composed of a prefix ss, a suffix ss’, plus
all intermediate characters in the underlying string. It raises Span if ss and ss’ are not
substrings of the same underlying string or if the start of ss is to the right of the end of
ss’. More precisely, if we have

val (s, i, n) = base ss
val (s’, i’, n’) = base ss’

then span returns substring(s, i, (i’+n’)-i) unless s <> s’ or i’+n’ <
i, in which case it raises Span. Note that this condition does not preclude ss’ from
beginning to the left of ss or ss from ending to the right of ss’.
This function allows one to scan for a substring using multiple pieces and then coalesc-

ing the pieces. For example, given a URL string such as
"http://www.standardml.org/Basis/overview.html"

to scan the protocol and host ("http://www.standardml.org"), one could write:

11.56. THE SUBSTRING SIGNATURE 379

local
open Substring

in
fun protoAndHost url = let

fun notc (c : char) = fn c’ => c <> c’
val (proto,rest) = splitl (notc #":") (full url)
val host = takel (notc #"/") (triml 3 rest)
in
span (proto, host)

end
end

Implementation note: When applied to substrings derived from the identical base
string, the string equality test should be constant-time, which can be achieved by first
doing a pointer test and, only if that fails, then checking the strings character by character.

Discussion

Implementation note: Functions that extract pieces of a substring, such as splitl or
tokens, must return substrings with the same base string. This requirement is particularly
important if span is to be used to put the pieces back together again.

See also
CHAR (§11.8; p. 135), List (§11.20; p. 180), STRING (§11.54; p. 360),
StringCvt (§11.55; p. 366), TEXT (§11.57; p. 380)

380 CHAPTER 11. MANUAL PAGES

11.57 The TEXT signature

The TEXT signature collects together various text-related structures based on the repre-
sentation of the shared character type.
The TEXT signature is matched by two structures, the required Text and the optional

WideText. The former implements strings based on the extended ASCII 8-bit charac-
ters and the latter provides strings of characters of some size greater than or equal to 8
bits.

Synopsis
signature TEXT
structure Text :> TEXT
where type Char.char = Char.char
where type String.string = String.string
where type Substring.substring = Substring.substring
where type CharVector.vector = CharVector.vector
where type CharArray.array = CharArray.array
where type CharVectorSlice.slice = CharVectorSlice.slice
where type CharArraySlice.slice = CharArraySlice.slice

structure WideText :> TEXT
where type Char.char = WideChar.char
where type String.string = WideString.string
where type Substring.substring = WideSubstring.substring
where type CharVector.vector = WideCharVector.vector
where type CharArray.array = WideCharArray.array
where type CharVectorSlice.slice = WideCharVectorSlice.slice
where type CharArraySlice.slice = WideCharArraySlice.slice

Interface
structure Char : CHAR
structure String : STRING
structure Substring : SUBSTRING
structure CharVector : MONO_VECTOR
structure CharArray : MONO_ARRAY
structure CharVectorSlice : MONO_VECTOR_SLICE
structure CharArraySlice : MONO_ARRAY_SLICE
sharing type Char.char = String.char = Substring.char

= CharVector.elem = CharArray.elem = CharVectorSlice.elem
= CharArraySlice.elem

sharing type Char.string = String.string = Substring.string
= CharVector.vector = CharArray.vector
= CharVectorSlice.vector = CharArraySlice.vector

sharing type CharArray.array = CharArraySlice.array
sharing type CharVectorSlice.slice

= CharArraySlice.vector_slice

11.57. THE TEXT SIGNATURE 381

See also
CHAR (§11.8; p. 135), MONO_ARRAY (§11.23; p. 193), MONO_VECTOR (§11.26; p. 211),
STRING (§11.54; p. 360), SUBSTRING (§11.56; p. 372)

382 CHAPTER 11. MANUAL PAGES

11.58 The TEXT_IO signature

The TEXT_IO interface provides input/output of characters and strings. Most of the
operations themselves are defined in the IMPERATIVE_IO signature.
The TEXT_IO signature is matched by two structures, the required TextIO and the

optional WideTextIO. The former implements strings based on the extended ASCII
8-bit characters and the latter provides strings of characters of some size greater than or
equal to 8 bits.
The signature given below for TEXT_IO is not valid SML, in that the substructure

StreamIO is respecified. (It is initially specified as a substructure having the sig-
nature STREAM_IO in the included signature IMPERATIVE_IO.) This abuse of no-
tation seems acceptable in that the intended meaning is clear (a structure matching
TEXT_IO also matches IMPERATIVE_IO and has a substructure StreamIO that
matches TEXT_STREAM_IO) while avoiding a textual inclusion of the whole signa-
ture of IMPERATIVE_IO except its StreamIO substructure.

Synopsis
signature TEXT_IO
structure TextIO :> TEXT_IO
structure WideTextIO :> TEXT_IO

Interface
include IMPERATIVE_IO

structure StreamIO : TEXT_STREAM_IO
where type reader = TextPrimIO.reader
where type writer = TextPrimIO.writer
where type pos = TextPrimIO.pos

val inputLine : instream -> string option

val outputSubstr : outstream * substring -> unit

val openIn : string -> instream
val openOut : string -> outstream
val openAppend : string -> outstream
val openString : string -> instream

val stdIn : instream
val stdOut : outstream
val stdErr : outstream

val print : string -> unit

11.58. THE TEXT_IO SIGNATURE 383

val scanStream : ((Char.char, StreamIO.instream)
StringCvt.reader

-> (’a, StreamIO.instream)
StringCvt.reader)

-> instream -> ’a option

Description

val inputLine : instream -> string option

inputLine strm returns SOME(ln), where ln is the next line of input in the stream
strm. Specifically, ln returns all characters from the current position up to and including
the next newline (#"\n") character. If it detects an end-of-stream before the next newline,
it returns the characters read appended with a newline. Thus, ln is guaranteed to always
be new-line terminated (and thus non-empty). If the current stream position is the end-of-
stream, then it returns NONE. It raises Size if the length of the line exceeds the length of
the longest string.

val outputSubstr : outstream * substring -> unit

outputSubstr (strm, ss) outputs the substring ss to the text stream strm. This
expression is equivalent to:

output (strm, Substring.string ss)

val openIn : string -> instream
val openOut : string -> outstream

openIn name
openOut name
These functions open the file named name for input and output, respectively. If name
is a relative pathname, the file opened depends on the current working directory. For the
function openOut, the file is created if it does not already exist and is truncated to length
zero otherwise. It raises Io if a stream cannot be opened on the given file or, in the case of
openIn, the file name does not exist.

val openAppend : string -> outstream

openAppend name opens the file named name for output in append mode, creating it
if it does not already exist. If the file already exists, the file pointer is positioned at the end
of the file. It raises Io if a stream cannot be opened on the given file.
Beyond having the initial file position be at the end of the file, any additional properties

are system and implementation dependent. On operating systems (e.g., Unix) that support
an “atomic append mode,” each (flushed) output operation to the file will be appended
to the end, even if there are other processes writing to the file simultaneously. Due to
buffering, however, these writes need not be atomic, i.e., output from a different process
may interleave the output of a single write using the stream library. On certain other
operating systems, having the file open for writing prevents any other process from opening
the file for writing.

384 CHAPTER 11. MANUAL PAGES

val openString : string -> instream

openString s creates an input stream whose content is s.

val stdIn : instream
val stdOut : outstream
val stdErr : outstream

These correspond to the standard input, output, and error streams, respectively.

val print : string -> unit

print s prints the string s to the standard output stream and flushes the stream. No
newline character is appended. It is equivalent to the expression:

(output (stdOut, s); flushOut stdOut)
This function is available in the top-level environment as print.

val scanStream : ((Char.char, StreamIO.instream)
StringCvt.reader

-> (’a, StreamIO.instream)
StringCvt.reader)

-> instream -> ’a option

scanStream scanFn converts a stream-based scan function into one that works on
imperative I/O streams. For example, to attempt to scan a decimal integer from stdIn,
one could use the expression

scanStream (Int.scan StringCvt.DEC) stdIn
The function can be implemented as:

fun scanStream scanFn strm = let
val instrm = getInstream strm
in
case (scanFn StreamIO.input1 instrm)
of NONE => NONE
| SOME(v, instrm’) => (

setInstream (strm, instrm’);
SOME v)

end
In addition to providing a convenient way to use stream I/O scanning functions with imper-
ative I/O, the scanStream assures that input is not inadvertently lost due to lookahead
during scanning.

Discussion
All streams created by mkInstream, mkOutstream, and the open functions in Text-
IO will be closed (and the output streams among them flushed) when the SML program
exits. The output streams TextIO.stdOut and TextIO.stdErr will be flushed, but
not closed, on program exit.

When opening a stream for writing, the stream will be block buffered by default, unless
the underlying file is associated with an interactive or terminal device (i.e., the kind of

11.58. THE TEXT_IO SIGNATURE 385

the underlying iodesc is OS.IO.Kind.tty), in which case the stream will be line
buffered. Similarly, stdOut will be line buffered in the interactive case but may be block
buffered otherwise. The stdErr stream is initially unbuffered.

The openIn, openOut, and openAppend functions allow the creation of text streams.
Certain implementations may provide other ways to open files in structures specific to an
operating system. In such cases, there should be related functions for converting the open
file into a value compatible with the Basis I/O subsystem. For example, the Posix.IO
defines the function mkTextWriter, which generates a TextPrimIO.writer value
from a POSIX file descriptor. The TextIO.StreamIO.mkOutstream function can
use that value to produce an output stream.

See also
IMPERATIVE_IO (§11.14; p. 158), OS.Path (§11.35; p. 241),
STREAM_IO (§11.52; p. 346), TEXT (§11.57; p. 380),
TEXT_STREAM_IO (§11.59; p. 386), TextPrimIO (§11.48; p. 308)

386 CHAPTER 11. MANUAL PAGES

11.59 The TEXT_STREAM_IO signature

The signature TEXT_STREAM_IO extends the STREAM_IO signature to accommodate
text I/O. In particular, it binds the I/O element to Char.char and provides several text-
based I/O operations.

Synopsis
signature TEXT_STREAM_IO

Interface
include STREAM_IO
where type vector = CharVector.vector
where type elem = Char.char

val inputLine : instream -> (string * instream) option

val outputSubstr : outstream * substring -> unit

Description

val inputLine : instream -> (string * instream) option

inputLine strm returns SOME(ln, strm’), where ln is the next line of input in
the stream strm and strm’ is the residual stream. Specifically, ln returns all characters
from the current position up to and including the next newline (#"\n") character. If it
detects an end-of-stream before the next newline, it returns the characters read appended
with a newline. Thus, ln is guaranteed to always be new-line terminated (and thus non-
empty). If the current stream position is the end-of-stream, then it returns NONE. It raises
Size if the length of the line exceeds the length of the longest string.

val outputSubstr : outstream * substring -> unit

outputSubstr (strm, ss) outputs the substring ss to the text stream strm. This
expression is equivalent to:

output (strm, Substring.string ss)

See also
BinIO (§11.4; p. 127), IMPERATIVE_IO (§11.14; p. 158), OS.Path (§11.35; p. 241)

11.60. THE TIME STRUCTURE 387

11.60 The Time structure

The structure Time provides an abstract type for representing times and time intervals
and functions for manipulating, converting, writing, and reading them.

Synopsis
signature TIME
structure Time :> TIME

Interface
eqtype time
exception Time
val zeroTime : time
val fromReal : LargeReal.real -> time
val toReal : time -> LargeReal.real
val toSeconds : time -> LargeInt.int
val toMilliseconds : time -> LargeInt.int
val toMicroseconds : time -> LargeInt.int
val toNanoseconds : time -> LargeInt.int
val fromSeconds : LargeInt.int -> time
val fromMilliseconds : LargeInt.int -> time
val fromMicroseconds : LargeInt.int -> time
val fromNanoseconds : LargeInt.int -> time

val + : time * time -> time
val - : time * time -> time

val compare : time * time -> order
val < : time * time -> bool
val <= : time * time -> bool
val > : time * time -> bool
val >= : time * time -> bool

val now : unit -> time

val fmt : int -> time -> string
val toString : time -> string
val scan : (char, ’a) StringCvt.reader

-> (time, ’a) StringCvt.reader
val fromString : string -> time option

Description

eqtype time

The type used to represent both absolute times and durations of time intervals, including
negative values moving to the past. Absolute times are represented in the same way as
time intervals and can be thought of as time intervals starting at some fixed reference

388 CHAPTER 11. MANUAL PAGES

point. Their discrimination is only conceptual. Consequently, operations can be applied to
all meaningful combinations (but also meaningless ones) of absolute times and intervals.

Implementation note: The precision and range of time values is implementation de-
pendent, but they are required to have fixed-point semantics. When converting a number
to a time value, rounding toward zero may occur because of precision limits. Furthermore,
if the number is outside the range of representable time values, then the Time exception is
raised.

exception Time

The exception raised when the result of conversions to time or of operations over time
is not representable or when an illegal operation has been attempted.

val zeroTime : time

This value denotes both the empty time interval and a common reference point for speci-
fying absolute time values. It is equivalent to fromReal(0.0).
Absolute points on the time scale can be thought of as being represented as intervals

starting at zeroTime. The function Date.fromTimeLocal can be used to see what
time zeroTime actually represents in the local time zone.

val fromReal : LargeReal.real -> time

fromReal r converts the real number r to the time value denoting r seconds. De-
pending on the resolution of time, fractions of a microsecond may be lost. It raises Time
when the result is not representable.

val toReal : time -> LargeReal.real

toReal t converts the time value t to a real number denoting the value of t in sec-
onds. When the type real has less precision than Time.time (for example, when it is
implemented as a single-precision float), information about microseconds or, for very large
values, even seconds, may be lost.

val toSeconds : time -> LargeInt.int
val toMilliseconds : time -> LargeInt.int
val toMicroseconds : time -> LargeInt.int
val toNanoseconds : time -> LargeInt.int

toSeconds t
toMilliseconds t
toMicroseconds t
toNanoseconds t
These functions return the number of full seconds (respectively, milliseconds, microsec-
onds, or nanoseconds) in t; fractions of the time unit are dropped, i.e., the values are
rounded towards zero. Thus, if t denotes 2.01 seconds, the functions return 2, 2010,
2010000, and 2010000000, respectively. When the result is not representable by Large-
Int.int, the exception Overflow is raised.

11.60. THE TIME STRUCTURE 389

val fromSeconds : LargeInt.int -> time
val fromMilliseconds : LargeInt.int -> time
val fromMicroseconds : LargeInt.int -> time
val fromNanoseconds : LargeInt.int -> time

fromSeconds n
fromMilliseconds n
fromMicroseconds n
fromNanoseconds n
These convert the number n to a time value denoting n seconds (respectively, milliseconds,
microseconds, or nanoseconds). If the result is not representable by the time type, then
the exception Time is raised.

val + : time * time -> time

t1 + t2 returns a time interval denoting the duration of t1 plus that of t2, when
both t1 and t2 are interpreted as intervals. Equivalently, when t1 is interpreted as an
absolute time and t2 as an interval, the absolute time that is t2 later than t1 is returned.
(Both views are equivalent as absolute times are represented as intervals from zeroTime).
When the result is not representable as a time value, the exception Time is raised. This
operation is commutative.

val - : time * time -> time

t1 - t2 returns a time interval denoting the duration of t1 minus that of t2, when
both t1 and t2 are interpreted as intervals. Equivalently, when t1 is interpreted as an
absolute time and t2 as an interval, the absolute time that is t2 earlier than t1 is returned;
when both t1 and t2 are interpreted as absolute times, the interval between t1 and t2
is returned. (All views are equivalent as absolute times are represented as intervals from
zeroTime). When the result is not representable as a time value, the exception Time is
raised.

val compare : time * time -> order

compare (t1, t2) returns LESS, EQUAL, or GREATER when the time interval t1
is shorter than, of the same length as, or longer than t2, respectively, or the absolute time
t1 is earlier than, coincides with, or is later than the absolute time t2.

val < : time * time -> bool
val <= : time * time -> bool
val > : time * time -> bool
val >= : time * time -> bool

These functions return true if the corresponding relation holds between the two times.

390 CHAPTER 11. MANUAL PAGES

val now : unit -> time

The current time, which is interpreted as an absolute time, the time at which the function
call was made. Although now does not normally raise an exception, some implementations
may raise Time if the time is not representable.

val fmt : int -> time -> string
val toString : time -> string

fmt n t
toString t
These functions return a string containing a decimal number representing t in seconds.
Using fmt, the fractional part is rounded to n decimal digits. If n = 0, there should be no
fractional part. Having n < 0 causes the Size exception to be raised. The toString
function rounds its argument to three decimal digits. It is equivalent to fmt 3.

Example:
fmt 3 (fromReal 1.8) = "1.800"
fmt 0 (fromReal 1.8) = "2"
fmt 0 zeroTime = "0"

val scan : (char, ’a) StringCvt.reader
-> (time, ’a) StringCvt.reader

val fromString : string -> time option

scan getc src
fromString s
These functions scan a time value from a character stream or a string. They recognize a
number of seconds specified as a string that matches the regular expression:

[+˜−]?([0−9]+(.[0−9]+)? | .[0−9]+)

Initial whitespace is ignored. Both functions raise Time when the value is syntactically
correct but not representable.
The function scan takes a character source src and a reader getc and tries to parse

a time value from src. It returns SOME(t,r), where t is the time value denoted by a
prefix of src and r is the rest of src; or it returns NONE when no prefix of src is a
representation of a time value.
The function fromString parses a time value from the string s, returning SOME(t),

where t is the time value denoted by a prefix of s or NONE when no prefix of s is a
representation of a time value. Note that this function is equivalent to StringCvt.-
scanString scan.

See also
Date (§11.10; p. 144), StringCvt (§11.55; p. 366), Timer (§11.61; p. 391)

11.61. THE TIMER STRUCTURE 391

11.61 The Timer structure

The Timer structure provides facilities for measuring the passing of real or wall clock
time. The module also tracks the CPU time used by a process, noting especially the
amount of time spent in garbage collection (GC time) and the time used for system calls
in the operating system kernel (system time).

Synopsis
signature TIMER
structure Timer :> TIMER

Interface
type real_timer
type cpu_timer

val startRealTimer : unit -> real_timer
val checkRealTimer : real_timer -> Time.time
val totalRealTimer : unit -> real_timer

val startCPUTimer : unit -> cpu_timer
val checkCPUTimes : cpu_timer

-> {
nongc : {
usr : Time.time,
sys : Time.time

},
gc : {
usr : Time.time,
sys : Time.time

}
}

val checkCPUTimer : cpu_timer
-> {usr : Time.time, sys : Time.time}

val checkGCTime : cpu_timer -> Time.time
val totalCPUTimer : unit -> cpu_timer

Description

type real_timer

This type is the representation of a timer that measures real or wall clock time.

type cpu_timer

This type is the representation of a timer that measures CPU time, in particular, keeping
track of system and GC time.

392 CHAPTER 11. MANUAL PAGES

val startRealTimer : unit -> real_timer

This function returns a timer that measures how much real or wall clock time has passed,
starting from the time of this call.

val checkRealTimer : real_timer -> Time.time

checkRealTimer rt returns the amount of (real) time that has passed since the timer
rt was started.

val totalRealTimer : unit -> real_timer

This function returns a timer that measures how much real or wall clock time has passed,
starting from some system-dependent initialization time.

val startCPUTimer : unit -> cpu_timer

This function returns a CPU timer that measures the time the process is computing (has
control of the CPU) starting at this call.

val checkCPUTimes : cpu_timer
-> {
nongc : {
usr : Time.time,
sys : Time.time

},
gc : {
usr : Time.time,
sys : Time.time

}
}

checkCPUTimes timer returns the CPU time used by the program since the timer
was started. The time is split into time spent in the program (nongc) and time spent in
the garbage collector (gc). For each of these categories, the time is further split into time
spent in the operating system kernel on behalf of the program (sys), and time spent by
code in user space (usr), i.e., not in the kernel. The total CPU time used by the program
will be the sum of these four values.

val checkCPUTimer : cpu_timer
-> {usr : Time.time, sys : Time.time}

checkCPUTimer timer returns the user time (usr) and system time (sys) that have
accumulated since the timer timer was started. This function is equivalent to

11.61. THE TIMER STRUCTURE 393

fun checkCPUTimer ct = let
val {nongc, gc} = checkCPUTimes ct
in {
usr = Time.+(#usr nongc, #usr gc),
sys = Time.+(#sys nongc, #sys gc)

} end

val checkGCTime : cpu_timer -> Time.time

checkGCTime timer returns the user time spent in garbage collection since the timer
timer was started. This function is equivalent to

fun checkGCTime ct = #usr(#gc(checkCPUTimes ct))

val totalCPUTimer : unit -> cpu_timer

This function returns a CPU timer that measures the time the process is computing (has
control of the CPU) starting at some system-dependent initialization time.

Discussion
The accuracy of the user, system, and GC times depends on the resolution of the system
timer and the function call overhead in the OS interface. In particular, very small intervals
might not be reported accurately.

On a Unix system, the user and system times reported by a CPU timer do not include
the time spent in child processes.

Implementation note: Some operating systems may lack the ability to measure CPU
time consumption, in which case the real time should be returned instead.

See also
Time (§11.60; p. 387)

394 CHAPTER 11. MANUAL PAGES

11.62 The Unix structure

The Unix structure provides several high-level functions for creating and communicat-
ing with separate processes, in analogy with the popen interface provided in the Unix
operating system. This module provides a more flexible interface than that provided
by the OS.Process.system function. Using this module, a program can invoke a
separate process and obtain input and output streams connected to the standard output
and input streams, respectively, of the other process.

Synopsis
signature UNIX
structure Unix :> UNIX

Interface
type (’a,’b) proc
type signal

datatype exit_status
= W_EXITED
| W_EXITSTATUS of Word8.word
| W_SIGNALED of signal
| W_STOPPED of signal

val fromStatus : OS.Process.status -> exit_status

val executeInEnv : string * string list * string list
-> (’a, ’b) proc

val execute : string * string list -> (’a, ’b) proc

val textInstreamOf : (TextIO.instream, ’a) proc
-> TextIO.instream

val binInstreamOf : (BinIO.instream, ’a) proc
-> BinIO.instream

val textOutstreamOf : (’a, TextIO.outstream) proc
-> TextIO.outstream

val binOutstreamOf : (’a, BinIO.outstream) proc
-> BinIO.outstream

val streamsOf : (TextIO.instream, TextIO.outstream) proc
-> TextIO.instream * TextIO.outstream

val reap : (’a, ’b) proc -> OS.Process.status
val kill : (’a, ’b) proc * signal -> unit

val exit : Word8.word -> ’a

11.62. THE UNIX STRUCTURE 395

Description

type (’a,’b) proc

A type representing a handle for an operating system process.

type signal

A Unix-like signal that can be sent to another process. Note that signal values must be
obtained from some other structure. For example, an implementation providing the Posix
module should equate the signal and Posix.Signal.signal types.

datatype exit_status
= W_EXITED
| W_EXITSTATUS of Word8.word
| W_SIGNALED of signal
| W_STOPPED of signal

These values represent the ways in which a Unix process might stop. They correspond
to, respectively, successful termination, termination with the given exit value, termination
upon receipt of the given signal, and stopping upon receipt of the given signal. The value
carried by W_EXITSTATUS will be non-zero.
If an implementation provides both the Posix and Unix structures, then Posix.-

Process.exit_status and exit_status must be the same type.

val fromStatus : OS.Process.status -> exit_status

fromStatus sts returns a concrete view of the given status.

val executeInEnv : string * string list * string list
-> (’a, ’b) proc

executeInEnv (cmd, args, env) asks the operating system to execute the pro-
gram named by the string cmd with the argument list args and the environment env . The
program is run as a child process of the calling program; the return value of this function
is an abstract proc value naming the child process. Strings in the env list typically have
the form "name=value" (see OS.Process.getEnv).
The executeInEnv function raises the OS.SysErr exception if it fails. Reasons

for failure include insufficient memory, too many processes, and the case where cmd does
not name an executable file. If the child process fails to execute the command (i.e., the
execve call fails), then it should exit with a status code of 126.

val execute : string * string list -> (’a, ’b) proc

execute (cmd, args) asks the operating system to execute the program named by
the string cmd with the argument list args. The program is run as a child process of the
calling program, and it inherits the calling process’s environment; the return value of this

396 CHAPTER 11. MANUAL PAGES

function is an abstract proc value naming the child process. The failure semantics of this
function are the same as for executeInEnv.
For implementations providing the Posix modules, this function is equivalent to
fun execute (cmd, args) =

executeInEnv (cmd, args, Posix.ProcEnv.environ ())

val textInstreamOf : (TextIO.instream, ’a) proc
-> TextIO.instream

val binInstreamOf : (BinIO.instream, ’a) proc
-> BinIO.instream

textInstreamOf pr
binInstreamOf pr
These functions return a text or binary instream connected to the standard output stream
of the process pr.
Note that multiple calls to these functions on the same proc value will result in mul-

tiple streams that all share the same underlying open file descriptor, which can lead to
unpredictable effects because of the state inherent in file descriptors.

val textOutstreamOf : (’a, TextIO.outstream) proc
-> TextIO.outstream

val binOutstreamOf : (’a, BinIO.outstream) proc
-> BinIO.outstream

textOutstreamOf pr
binOutstreamOf pr
These functions return a text or binary outstream connected to the standard input stream
of the process pr.
Note that multiple calls to these functions on the same proc value will result in mul-

tiple streams that all share the same underlying open file descriptor, which can lead to
unpredictable effects due to buffering.

val streamsOf : (TextIO.instream, TextIO.outstream) proc
-> TextIO.instream * TextIO.outstream

streamsOf pr returns a pair of input and output text streams associated with pr.
This function is equivalent to (textInstream pr, textOutstream pr) and is
provided for backward compatibility.

val reap : (’a, ’b) proc -> OS.Process.status

reap pr closes the input and output streams associated with pr and then suspends the
current process until the system process corresponding to pr terminates. It returns the
exit status given by the process pr when it terminated. If reap is applied again to pr, it
should immediately return the previous exit status.

11.62. THE UNIX STRUCTURE 397

Implementation note: Typically, one cannot rely on the underlying operating system
to provide the exit status of a terminated process after it has done so once. Thus, the
exit status probably needs to be cached. Also note that reap should not return until the
process being monitored has terminated. In particular, implementations should be careful
not to return if the process has only been suspended.

val kill : (’a, ’b) proc * signal -> unit

kill (pr,s) sends the signal s to the process pr.

val exit : Word8.word -> ’a

exit st executes all actions registered with OS.Process.atExit, flushes and closes
all I/O streams opened using the Library, and then terminates the SML process with the
termination status st.

Discussion
Note that the interpretation of the string cmd in the execute and executeInEnv func-
tions depends very much on the underlying operating system. Typically, the cmd argument
will be a full pathname.

The semantics of Unix necessitates that processes that have terminated must be reaped.
If not, information concerning the dead process continues to reside in system tables. Thus,
a program using execute or executeInEnv should invoke reap on any subprocess
it creates.

Implementation note: Although the flavor of this module is heavily influenced by
Unix, and the module is simple to implement given the Posix subsystem, the functions
are specified at a sufficiently high level that implementations, including non-Unix ones,
could provide this module without having to supply all of the Posix modules.

See also
BinIO (§11.4; p. 127), OS.Process (§11.36; p. 250), Posix (§11.39; p. 257),
Posix.ProcEnv (§11.43; p. 284), Posix.Process (§11.44; p. 289),
Posix.Signal (§11.45; p. 294), TextIO (§11.58; p. 382), Windows (§11.66; p. 409)

398 CHAPTER 11. MANUAL PAGES

11.63 The UnixSock structure

This structure is used to create sockets in the Unix address family. This structure is only
present when the underlying operating system supports Unix-domain sockets.
Binding a name to a Unix-domain socket with bind causes a socket file to be created

in the file system. This file is not removed when the socket is closed; OS.FileSys.-
remove can be used to remove the file. The usual file system permission mechanisms
are applied when referencing Unix-domain sockets; e.g., the file representing the desti-
nation of a connect or sendVec must be writable.

Synopsis
signature UNIX_SOCK
structure UnixSock :> UNIX_SOCK

Interface
type unix
type ’sock_type sock = (unix, ’sock_type) Socket.sock
type ’mode stream_sock = ’mode Socket.stream sock
type dgram_sock = Socket.dgram sock
type sock_addr = unix Socket.sock_addr
val unixAF : Socket.AF.addr_family
val toAddr : string -> sock_addr
val fromAddr : sock_addr -> string
structure Strm : sig

val socket : unit -> ’mode stream_sock
val socketPair : unit

-> ’mode stream_sock
* ’mode stream_sock

end
structure DGrm : sig

val socket : unit -> dgram_sock
val socketPair : unit -> dgram_sock * dgram_sock

end

Description

type unix

The witness type of the Unix address family.

type ’sock_type sock = (unix, ’sock_type) Socket.sock

The type-scheme for all Unix-domain sockets.

type ’mode stream_sock = ’mode Socket.stream sock

The type-scheme of Unix-domain (passive or active) stream sockets.

11.63. THE UNIXSOCK STRUCTURE 399

type dgram_sock = Socket.dgram sock

The type of Unix-domain datagram sockets.

type sock_addr = unix Socket.sock_addr

The type of a Unix-domain socket address.

val unixAF : Socket.AF.addr_family

The Unix address family value.

val toAddr : string -> sock_addr

toAddr s converts a pathname s into a socket address (in the Unix address family); it
does not check the validity of the path s.

val fromAddr : sock_addr -> string

fromAddr addr returns the Unix file system path corresponding to the Unix-domain
socket address addr.

structure Strm : sig ... end

val socket : unit -> ’mode stream_sock

This function creates a stream socket in the Unix address family. It raises SysErr
if there are too many sockets in use.

val socketPair : unit
-> ’mode stream_sock * ’mode stream_sock

This function creates an unnamed pair of connected stream sockets in the Unix ad-
dress family. It is similar to the Posix.IO.pipe function in that the returned
sockets are connected, but, unlike pipe, the sockets are bidirectional. It raises Sys-
Err if there are too many sockets in use.

structure DGrm : sig ... end

val socket : unit -> dgram_sock

This function creates a datagram socket in the Unix address family. It raises SysErr
if there are too many sockets in use.

400 CHAPTER 11. MANUAL PAGES

val socketPair : unit -> dgram_sock * dgram_sock

This function creates an unnamed pair of connected datagram sockets in the Unix
address family. It raises SysErr if there are too many sockets in use.

See also
GenericSock (§11.12; p. 153), INetSock (§11.16; p. 166), Socket (§11.51; p. 330)

11.64. THE VECTOR STRUCTURE 401

11.64 The Vector structure

The Vector structure defines polymorphic vectors, which are immutable sequences
with constant-time access.

Synopsis
signature VECTOR
structure Vector :> VECTOR

Interface
eqtype ’a vector = ’a vector

val maxLen : int
val fromList : ’a list -> ’a vector
val tabulate : int * (int -> ’a) -> ’a vector
val length : ’a vector -> int
val sub : ’a vector * int -> ’a
val update : ’a vector * int * ’a -> ’a vector
val concat : ’a vector list -> ’a vector
val appi : (int * ’a -> unit) -> ’a vector -> unit
val app : (’a -> unit) -> ’a vector -> unit
val mapi : (int * ’a -> ’b) -> ’a vector -> ’b vector
val map : (’a -> ’b) -> ’a vector -> ’b vector
val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val findi : (int * ’a -> bool)

-> ’a vector -> (int * ’a) option
val find : (’a -> bool) -> ’a vector -> ’a option
val exists : (’a -> bool) -> ’a vector -> bool
val all : (’a -> bool) -> ’a vector -> bool
val collate : (’a * ’a -> order)

-> ’a vector * ’a vector -> order

Description

val maxLen : int

The maximum length of vectors supported by this implementation. Attempts to create
larger vectors will result in the Size exception being raised.

val fromList : ’a list -> ’a vector

fromList l creates a new vector from the list l whose length is length l and with
the ith element of l used as the ith element of the vector. If the length of the list is greater
than maxLen, then the Size exception is raised.

402 CHAPTER 11. MANUAL PAGES

val tabulate : int * (int -> ’a) -> ’a vector

tabulate (n, f) creates a vector of n elements, where the elements are defined
in order of increasing index by applying f to the element’s index. This expression is
equivalent to the following:

fromList (List.tabulate (n, f))
If n < 0 or maxLen < n, then the Size exception is raised.

val length : ’a vector -> int

length vec returns |vec|, the length of the vector vec.

val sub : ’a vector * int -> ’a

sub (vec, i) returns the ith element of the vector vec. If i < 0 or |vec| ≤ i, then
the Subscript exception is raised.

val update : ’a vector * int * ’a -> ’a vector

update (vec, i, x) returns a new vector, identical to vec, except the ith element
of vec is set to x. If i < 0 or |vec| ≤ i, then the Subscript exception is raised.

val concat : ’a vector list -> ’a vector

concat l returns the vector that is the concatenation of the vectors in the list l. If the
total length of these vectors exceeds maxLen, then the Size exception is raised.

val appi : (int * ’a -> unit) -> ’a vector -> unit
val app : (’a -> unit) -> ’a vector -> unit

appi f vec
app f vec
These functions apply the function f to the elements of a vector in left-to-right order (i.e.,
in order of increasing indices). The more general appi function supplies both the element
and the element’s index to the function f. These functions are respectively equivalent to:

List.app f (foldri (fn (i,a,l) => (i,a)::l) [] vec)
List.app f (foldr (fn (a,l) => a::l) [] vec)

val mapi : (int * ’a -> ’b) -> ’a vector -> ’b vector
val map : (’a -> ’b) -> ’a vector -> ’b vector

mapi f vec
map f vec
These functions produce new vectors by mapping the function f from left to right over
the argument vector. The more general form mapi supplies f with the vector index of an
element along with the element. These functions are respectively equivalent to:

fromList (List.map f (foldri (fn (i,a,l) => (i,a)::l) [] vec))
fromList (List.map f (foldr (fn (a,l) => a::l) [] vec))

11.64. THE VECTOR STRUCTURE 403

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b

foldli f init vec
foldri f init vec
foldl f init vec
foldr f init vec
These fold the function f over all the elements of a vector, using the value init as the
initial value. The functions foldli and foldl apply the function f from left to right
(increasing indices), while the functions foldri and foldr work from right to left (de-
creasing indices). The more general functions foldli and foldri supply both the
element and the element’s index to the function f.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.
The last two expressions are respectively equivalent to:

foldli (fn (_, a, x) => f(a, x)) init vec
foldri (fn (_, a, x) => f(a, x)) init vec

val findi : (int * ’a -> bool)
-> ’a vector -> (int * ’a) option

val find : (’a -> bool) -> ’a vector -> ’a option

findi pred vec
find pred vec
These functions apply pred to each element of the vector vec, from left to right (i.e.,
increasing indices), until a true value is returned. These functions return the first such
element, if it exists; otherwise, they return NONE. The more general version findi also
supplies pred with the vector index of the element and, upon finding an entry satisfying
the predicate, returns that index with the element.

val exists : (’a -> bool) -> ’a vector -> bool

exists pred vec applies pred to each element x of the vector vec, from left to
right (i.e., increasing indices), until pred(x) evaluates to true; it returns true if such
an x exists and false otherwise.

val all : (’a -> bool) -> ’a vector -> bool

all pred vec applies pred to each element x of the vector vec, from left to right
(i.e., increasing indices), until pred(x) evaluates to false; it returns false if such
an x exists and true otherwise. It is equivalent to not(exists (not o pred)
vec)).

val collate : (’a * ’a -> order)
-> ’a vector * ’a vector -> order

collate cmp (v1, v2) performs a lexicographic comparison of the two vectors
using the given ordering cmp on elements.

404 CHAPTER 11. MANUAL PAGES

See also
Array (§11.1; p. 112), MONO_VECTOR (§11.26; p. 211),
VectorSlice (§11.65; p. 405)

11.65. THE VECTORSLICE STRUCTURE 405

11.65 The VectorSlice structure

The VectorSlice structure provides an abstraction of subvectors for polymorphic
vectors. A slice value can be viewed as a triple (v, i, n), where v is the un-
derlying vector, i is the starting index, and n is the length of the subvector, with the
constraint that 0 ≤ i ≤ i + n ≤ |v|, where |v| is the length of v . Slices provide a
convenient notation for specifying and operating on a contiguous subset of elements in
a vector.

Synopsis
signature VECTOR_SLICE
structure VectorSlice :> VECTOR_SLICE

Interface
type ’a slice

val length : ’a slice -> int
val sub : ’a slice * int -> ’a
val full : ’a Vector.vector -> ’a slice
val slice : ’a Vector.vector * int * int option -> ’a slice
val subslice : ’a slice * int * int option -> ’a slice
val base : ’a slice -> ’a Vector.vector * int * int
val vector : ’a slice -> ’a Vector.vector
val concat : ’a slice list -> ’a Vector.vector
val isEmpty : ’a slice -> bool
val getItem : ’a slice -> (’a * ’a slice) option
val appi : (int * ’a -> unit) -> ’a slice -> unit
val app : (’a -> unit) -> ’a slice -> unit
val mapi : (int * ’a -> ’b) -> ’a slice -> ’b Vector.vector
val map : (’a -> ’b) -> ’a slice -> ’b Vector.vector
val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val findi : (int * ’a -> bool)

-> ’a slice -> (int * ’a) option
val find : (’a -> bool) -> ’a slice -> ’a option
val exists : (’a -> bool) -> ’a slice -> bool
val all : (’a -> bool) -> ’a slice -> bool
val collate : (’a * ’a -> order)

-> ’a slice * ’a slice -> order

Description

val length : ’a slice -> int

length sl returns |sl|, the length (i.e., number of elements) of the slice.

406 CHAPTER 11. MANUAL PAGES

val sub : ’a slice * int -> ’a

sub (sl, i) returns the ith element of the slice sl. If i < 0 or |sl| ≤ i, then the
Subscript exception is raised.

val full : ’a Vector.vector -> ’a slice

full vec creates a slice representing the entire vector vec. It is equivalent to
slice(vec, 0, NONE)

val slice : ’a Vector.vector * int * int option -> ’a slice

slice (vec, i, sz) creates a slice based on the vector vec starting at index i of
the vector vec. If sz is NONE, the slice includes all of the elements to the end of the
vector, i.e., vec[i..|vec|−1]. This function raises Subscript if i < 0 or |vec| < i.
If sz is SOME(j), the slice has length j, that is, it corresponds to vec[i..i+j-1]. It
raises Subscript if i < 0 or j < 0 or |arr| < i + j. Note that, if defined, slice
returns an empty slice when i = |vec|.

val subslice : ’a slice * int * int option -> ’a slice

subslice (sl, i, sz) creates a slice based on the given slice sl starting at index
i of sl. If sz is NONE, the slice includes all of the elements to the end of the slice,
i.e., sl[i..|sl| − 1]. This function raises Subscript if i < 0 or |sl| < i. If sz
is SOME(j), the slice has length j, that is, it corresponds to sl[i..i+j-1]. It raises
Subscript if i < 0 or j < 0 or |sl| < i+ j. Note that, if defined, slice returns an
empty slice when i = |sl|.

val base : ’a slice -> ’a Vector.vector * int * int

base sl returns a triple (vec, i, n) representing the concrete representation of the
slice. vec is the underlying vector, i is the starting index, and n is the length of the slice.

val vector : ’a slice -> ’a Vector.vector

vector sl generates a vector from the slice sl. Specifically, the result is equivalent to
Vector.tabulate (length sl, fn i => sub (sl, i))

val concat : ’a slice list -> ’a Vector.vector

concat l is the concatenation of all the slices in l. This function raises Size if the
sum of all the lengths is greater than Vector.maxLen.

val isEmpty : ’a slice -> bool

isEmpty sl returns true if sl has length 0.

11.65. THE VECTORSLICE STRUCTURE 407

val getItem : ’a slice -> (’a * ’a slice) option

getItem sl returns the first item in sl and the rest of the slice or NONE if sl is empty.

val appi : (int * ’a -> unit) -> ’a slice -> unit
val app : (’a -> unit) -> ’a slice -> unit

appi f sl
app f sl
These functions apply the function f to the elements of a slice in left-to-right order (i.e.,
increasing indices). The more general appi function supplies f with the index of the
corresponding element in the slice. The expression app f sl is equivalent to appi (f
o #2) sl.

val mapi : (int * ’a -> ’b) -> ’a slice -> ’b Vector.vector
val map : (’a -> ’b) -> ’a slice -> ’b Vector.vector

mapi f sl
map f sl
These functions generate new vectors by mapping the function f from left to right over
the argument slice. The more general mapi function supplies both the element and the
element’s index in the slice to the function f. The first expression is equivalent to:

let
fun ff (i,a,l) = f(i,a)::l

in
Vector.fromList (rev (foldli ff [] sl))

end
The latter expression is equivalent to:

mapi (f o #2) sl

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b
val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

foldli f init sl
foldri f init sl
foldl f init sl
foldr f init sl
These fold the function f over all the elements of a vector slice, using the value init
as the initial value. The functions foldli and foldl apply the function f from left to
right (increasing indices), while the functions foldri and foldr work from right to left
(decreasing indices). The more general functions foldli and foldri supply f with the
index of the corresponding element in the slice.
Refer to the MONO_ARRAY manual pages for reference implementations of the indexed

versions.
The expression foldl f init sl is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init sl
The analogous equivalence holds for foldri and foldr.

408 CHAPTER 11. MANUAL PAGES

val findi : (int * ’a -> bool)
-> ’a slice -> (int * ’a) option

val find : (’a -> bool) -> ’a slice -> ’a option

findi pred sl
find pred sl
These functions apply pred to each element of the slice sl, from left to right (i.e., increas-
ing indices), until a true value is returned. These functions return the first such element,
if it exists; otherwise, they return NONE. The more general version findi also supplies
pred with the index of the element in the slice and, upon finding an entry satisfying the
predicate, returns that index with the element.

val exists : (’a -> bool) -> ’a slice -> bool

exists pred sl applies pred to each element x of the slice sl, from left to right
(i.e., increasing indices), until pred(x) evaluates to true; it returns true if such an x
exists and false otherwise.

val all : (’a -> bool) -> ’a slice -> bool

all pred sl applies pred to each element x of the slice sl, from left to right (i.e.,
increasing indices), until pred(x) evaluates to false; it returns false if such an x
exists and true otherwise. It is equivalent to not(exists (not o pred) sl)).

val collate : (’a * ’a -> order)
-> ’a slice * ’a slice -> order

collate cmp (sl, sl2) performs a lexicographic comparison of the two slices
using the given ordering cmp on elements.

See also
Array (§11.1; p. 112), ArraySlice (§11.3; p. 122), MONO_VECTOR (§11.26; p. 211)

11.66. THE WINDOWS STRUCTURE 409

11.66 The Windows structure

The Windows structure provides a high-level interface to various system features based
on the Microsoft Windows operating system model. These functions include the abil-
ity to create and communicate with separate processes, as well as to interact with the
registry and file subsystems. In particular, using this module, a program can invoke a
separate process and obtain input and output streams connected to the standard output
and input streams, respectively, of the other process. The functions provide a richer and
more detailed interface than the comparable functions provided by the substructures in
OS.

Synopsis
signature WINDOWS
structure Windows :> WINDOWS

Interface
structure Key : sig

include BIT_FLAGS

val allAccess : flags
val createLink : flags
val createSubKey : flags
val enumerateSubKeys : flags
val execute : flags
val notify : flags
val queryValue : flags
val read : flags
val setValue : flags
val write : flags

end

structure Reg : sig
eqtype hkey

val classesRoot : hkey
val currentUser : hkey
val localMachine : hkey
val users : hkey
val performanceData : hkey
val currentConfig : hkey
val dynData : hkey

datatype create_result
= CREATED_NEW_KEY of hkey
| OPENED_EXISTING_KEY of hkey

410 CHAPTER 11. MANUAL PAGES

val createKeyEx : hkey * string * Key.flags
-> create_result

val openKeyEx : hkey * string * Key.flags -> hkey
val closeKey : hkey -> unit
val deleteKey : hkey * string -> unit
val deleteValue : hkey * string -> unit
val enumKeyEx : hkey * int -> string option
val enumValueEx : hkey * int -> string option

datatype value
= SZ of string
| DWORD of SysWord.word
| BINARY of Word8Vector.vector
| MULTI_SZ of string list
| EXPAND_SZ of string

val queryValueEx : hkey * string -> value option
val setValueEx : hkey * string * value -> unit

end

structure Config : sig
val platformWin32s : SysWord.word
val platformWin32Windows : SysWord.word
val platformWin32NT : SysWord.word
val platformWin32CE : SysWord.word
val getVersionEx : unit

-> {
majorVersion : SysWord.word,
minorVersion : SysWord.word,
buildNumber : SysWord.word,
platformId : SysWord.word,
csdVersion : string

}
val getWindowsDirectory : unit -> string
val getSystemDirectory : unit -> string
val getComputerName : unit -> string
val getUserName : unit -> string

end

structure DDE : sig
type info
val startDialog : string * string -> info
val executeString : info * string * int * Time.time

-> unit
val stopDialog : info -> unit

end

11.66. THE WINDOWS STRUCTURE 411

val getVolumeInformation : string
-> {

volumeName : string,
systemName : string,
serialNumber : SysWord.word,
maximumComponentLength : int

}

val findExecutable : string -> string option
val launchApplication : string * string -> unit
val openDocument : string -> unit
val simpleExecute : string * string -> OS.Process.status

type (’a,’b) proc

val execute : string * string -> (’a, ’b) proc
val textInstreamOf : (TextIO.instream, ’a) proc

-> TextIO.instream
val binInstreamOf : (BinIO.instream, ’a) proc

-> BinIO.instream
val textOutstreamOf : (’a, TextIO.outstream) proc

-> TextIO.outstream
val binOutstreamOf : (’a, BinIO.outstream) proc

-> BinIO.outstream
val reap : (’a, ’b) proc -> OS.Process.status

structure Status : sig
type status = SysWord.word
val accessViolation : status
val arrayBoundsExceeded : status
val breakpoint : status
val controlCExit : status
val datatypeMisalignment : status
val floatDenormalOperand : status
val floatDivideByZero : status
val floatInexactResult : status
val floatInvalidOperation : status
val floatOverflow : status
val floatStackCheck : status
val floatUnderflow : status
val guardPageViolation : status
val integerDivideByZero : status
val integerOverflow : status
val illegalInstruction : status
val invalidDisposition : status
val invalidHandle : status

412 CHAPTER 11. MANUAL PAGES

val inPageError : status
val noncontinuableException : status
val pending : status
val privilegedInstruction : status
val singleStep : status
val stackOverflow : status
val timeout : status
val userAPC : status

end

val fromStatus : OS.Process.status -> Status.status

val exit : Status.status -> ’a

Description

structure Key : sig ... end

The Key substructure contains flags for specifying security settings when opening and
creating keys in the registry.

val allAccess : flags

The union of the queryValue, enumerateSubKeys, notify, createSub-
Key, createLink, and setValue flags.

val createLink : flags

Permission to create a symbolic link. This value is included for completeness, as the
rest of the structure does not support links.

val createSubKey : flags

Permission to create subkeys.

val enumerateSubKeys : flags

Permission to enumerate subkeys.

val execute : flags

Permission for read access.

val notify : flags

Permission for change notification. This value is included for completeness, as the
rest of the structure does not support notification.

val queryValue : flags

Permission to query subkey data.

11.66. THE WINDOWS STRUCTURE 413

val read : flags

The union of the queryValue, enumerateSubKeys, and notify flags.

val setValue : flags

Permission to set subkey data.

val write : flags

The union of the setValue and createSubKey flags.

structure Reg : sig ... end

This substructure provides Microsoft Windows registry functions.

eqtype hkey

Type of registry key values.

val classesRoot : hkey
val currentUser : hkey
val localMachine : hkey
val users : hkey
val performanceData : hkey
val currentConfig : hkey
val dynData : hkey

These are identifiers for top-level registry keys.

val createKeyEx : hkey * string * Key.flags
-> create_result

createKeyEx (hkey, skey, regsam) opens or creates a subkey of hkey ,
with the name skey and security access specified by regsam.

Implementation note: This function passes the REG_OPTION_NON_VOLATILE
option, NULL Class, and SECURITY_ATTRIBUTE arguments to the underlying
Windows call.

val openKeyEx : hkey * string * Key.flags -> hkey

openKeyEx (hkey, skey, regsam) opens a subkey of hkey with the name
skey and security access specified by regsam.

val closeKey : hkey -> unit

closeKey hkey closes the key hkey .

val deleteKey : hkey * string -> unit

deleteKey (hkey, skey) deletes the subkey skey of hkey .

414 CHAPTER 11. MANUAL PAGES

val deleteValue : hkey * string -> unit

deleteValue (hkey, valname) deletes the value valname of hkey .

val enumKeyEx : hkey * int -> string option

enumKeyEx (hkey, ind) returns the subkey of index ind of the key hkey ,
where indices start from zero. The function returns SOME of a string for each defined
subkey. To enumerate all the subkeys, start with the index at zero and increment it
until the function returns NONE. The function raises the Subscript exception if
ind is invalid.

val enumValueEx : hkey * int -> string option

enumValueEx (hkey, ind) returns the value of index ind of the key hkey ,
where indices start from zero. The function returns SOME of a string for each defined
value. To enumerate all the values, start with the index at zero and increment it until
the function returns NONE. The function raises the Subscript exception if ind is
invalid.

datatype value
= SZ of string
| DWORD of SysWord.word
| BINARY of Word8Vector.vector
| MULTI_SZ of string list
| EXPAND_SZ of string

This type describes the kinds of values that can be saved to the registry or extracted
from it. The constructor SZ corresponds to strings, DWORD to 32-bit numbers,
BINARY to arbitrary binary values, MULTI_SZ to lists of strings, and EXPAND_SZ
to strings containing environment variables.

val queryValueEx : hkey * string -> value option

queryValueEx (hkey, name) returns the data associated with name in the
open registry key hkey . A value whose type does not correspond to a more specific
instance of the value datatype is returned as a BINARY value. If the value does
not exist in the key, the function returns NONE. Any other error, such as having
insufficient access rights to the registry key, results in the OS.SysErr exception
being raised.
A common use of a registry value is to override the default behavior of a program.

The normal case is when the registry value is unset. Using an option type allows for
the result of queryValueEx to indicate the presence or absence of the key.

val setValueEx : hkey * string * value -> unit

setValueEx (hkey, name, v) associates the value v with name in the
open key hkey .

structure Config : sig ... end

This substructure contains functions to obtain information about the operating system.

11.66. THE WINDOWS STRUCTURE 415

val platformWin32s : SysWord.word
val platformWin32Windows : SysWord.word
val platformWin32NT : SysWord.word
val platformWin32CE : SysWord.word

These are values corresponding to the indicated Microsoft Windows platforms.

val getVersionEx : unit
-> {
majorVersion : SysWord.word,
minorVersion : SysWord.word,
buildNumber : SysWord.word,
platformId : SysWord.word,
csdVersion : string

}
This function returns the major and minor versions of the operating system, the build
number, platform identifier, and a supplementary version string. The platform identi-
fier platformId can be compared with values platformWin32s, platform-
Win32Windows, platformWin32NT, and platformWin32CE to determine
the type of platform. Note that additional values for other platforms may be returned.
The major and minor version numbers allow additional distinctions. In the case

where platformId is platformWin32Windows, we have:
minorVersion System

0 Windows 95
> 0 Windows 98

In the case where platformId is platformWin32NT, we have:
majorVersion minorVersion System

4 0 Windows NT
5 0 Windows 2000
5 > 0 Windows XP

val getWindowsDirectory : unit -> string

TheWindows directory, typically "C:\Windows" onWindows 95 or "C:\Winnt"
on Windows NT.

val getSystemDirectory : unit -> string

TheWindows system directory, typically "C:\Windows\System" or "C:\Winnt\System32".

val getComputerName : unit -> string

The name of the computer.

val getUserName : unit -> string

The name of the current user.

416 CHAPTER 11. MANUAL PAGES

structure DDE : sig ... end

This substructure provides a high-level, client-side interface for simple dynamic data ex-
change (DDE) interactions. All transactions are synchronous. Advise loops and poke
transactions are not supported by this interface.

val startDialog : string * string -> info

startDialog (service, topic) initiates DDE and connects to the given
service and topic. It returns the info value created by these operations.

val executeString : info * string * int * Time.time -> unit

executeString (info, cmd, retry, delay) attempts to execute the
command cmd on the service and topic specified by the info value. The retry
argument specifies the number of times to attempt the transaction if the server is
busy, pausing for delay between each attempt.

val stopDialog : info -> unit

stopDialog info disconnects the service and topic specified by the info ar-
gument and frees the associated resources.

val getVolumeInformation : string
-> {

volumeName : string,
systemName : string,
serialNumber : SysWord.word,
maximumComponentLength : int

}

getVolumeInformation root returns information about the file system and vol-
ume specified by the root pathname root. The volumeName field contains the name
of the volume; the systemName field contains its type (e.g., "FAT" or "NTFS"), the
serialNumber field contains the serial number, and the maximumComponentLength
field specifies the maximum length of any component of a pathname on this system.

val findExecutable : string -> string option

findExecutable name returns the full executable name associated with name or
NONE if no such file exists.

val launchApplication : string * string -> unit

launchApplication (file, arg) runs the specified executable file passing
it the argument arg. It raises OS.SysErr if file is not executable or if it cannot be
run.

Implementation note: This function should be implemented using ShellExecute,
passing SW_SHOWNORMAL to the underlying API call.

11.66. THE WINDOWS STRUCTURE 417

val openDocument : string -> unit

openDocument file opens file using its associated application.

Implementation note: This function should pass SW_SHOWNORMAL to the underly-
ing ShellExecute API call.

val simpleExecute : string * string -> OS.Process.status

simpleExecute (cmd, arg) creates the process specified by cmd with command-
line arguments represented by the string arg, redirecting standard input and standard out-
put to the null device. It then waits for the subprocess to terminate and returns its exit
status. This function is similar to the OS.Process.system, but it can be used in cases
where the latter does not work, and its return value provides more information about the
exit status of the child process.

Implementation note: This function corresponds to the use of CreateProcess.

type (’a,’b) proc

The type of a process created by execute. The type parameters are witness types for the
types of streams that can be returned.

val execute : string * string -> (’a, ’b) proc

execute (cmd, arg) creates a process specified by cmd with command-line argu-
ments represented by the string arg and returns a handle for the resulting process.

Implementation note: This also corresponds to the use of CreateProcess. Redi-
rection of the standard streams can be handled using the hStdInput and hStdOutput
fields in the STARTUPINFO parameter.

val textInstreamOf : (TextIO.instream, ’a) proc
-> TextIO.instream

val binInstreamOf : (BinIO.instream, ’a) proc
-> BinIO.instream

textInstreamOf pr
binInstreamOf pr
These functions return a text or binary instream connected to the standard output stream
of the process pr.
Note that multiple calls to these functions on the same proc value will result in mul-

tiple streams that all share the same underlying open file descriptor, which can lead to
unpredictable effects because of the state inherent in file descriptors.

418 CHAPTER 11. MANUAL PAGES

val textOutstreamOf : (’a, TextIO.outstream) proc
-> TextIO.outstream

val binOutstreamOf : (’a, BinIO.outstream) proc
-> BinIO.outstream

textOutstreamOf pr
binOutstreamOf pr
These functions return a text or binary outstream connected to the standard input stream
of the process pr.
Note that multiple calls to these functions on the same proc value will result in mul-

tiple streams that all share the same underlying open file descriptor, which can lead to
unpredictable effects due to buffering.

val reap : (’a, ’b) proc -> OS.Process.status

reap pr closes the standard streams associated with pr and then suspends the current
process until the system process corresponding to pr terminates. It returns the exit status
given by the process pr when it terminated. If reap is applied again to pr, it should
immediately return the previous exit status.

Implementation note: Typically, one cannot rely on the underlying operating system
to provide the exit status of a terminated process after it has done so once. Thus, the
exit status probably needs to be cached. Also note that reap should not return until the
process being monitored has terminated. In particular, implementations should be careful
not to return if the process has only been suspended.

structure Status : sig ... end

The Status substructure defines the possible system-specific interpretations of OS.-
Process.status values.

val fromStatus : OS.Process.status -> Status.status

fromStatus s decodes the abstract exit status s into system-specific information.

val exit : Status.status -> ’a

exit st executes all actions registered with OS.Process.atExit, flushes and closes
all I/O streams, and then terminates the SML process with termination status st.

Discussion
This structure provides a minimal view of the system calls available across the various
Microsoft Windows operating systems. It focuses on managing the registry and executing
programs. The function Windows.findExecutable and the facilities in the Config
substructure allow the programmer to determine if and where a program can be found on a
given machine.

Future extensions of the Basis Library might give access to more features, either by
including additional substructures or as a separate top-level module.

11.66. THE WINDOWS STRUCTURE 419

Rationale: As usual, platform identification and exit status values are not handled by
datatypes to allow for future extensions.

See also
BIT_FLAGS (§11.5; p. 129), OS.FileSys (§11.33; p. 231),
OS.Process (§11.36; p. 250), TextIO (§11.58; p. 382), Time (§11.60; p. 387),
Unix (§11.62; p. 394)

420 CHAPTER 11. MANUAL PAGES

11.67 The WORD signature

Instances of the signature WORD provide a type of unsigned integer with modular arith-
metic and logical operations and conversion operations. They are also meant to give
efficient access to the primitive machine word types of the underlying hardware and
support bit-level operations on integers.
In order to provide a more intuitive description of the shift operators below, we as-

sume a bit ordering in which the most significant bit is leftmost and the least significant
bit is rightmost.

Synopsis
signature WORD
structure Word :> WORD

where type word = word
structure Word8 :> WORD
structure LargeWord :> WORD
structure WordN :> WORD
structure SysWord :> WORD

Interface
eqtype word

val wordSize : int

val toLarge : word -> LargeWord.word
val toLargeX : word -> LargeWord.word
val toLargeWord : word -> LargeWord.word
val toLargeWordX : word -> LargeWord.word
val fromLarge : LargeWord.word -> word
val fromLargeWord : LargeWord.word -> word
val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int
val fromLargeInt : LargeInt.int -> word
val toInt : word -> int
val toIntX : word -> int
val fromInt : int -> word

val andb : word * word -> word
val orb : word * word -> word
val xorb : word * word -> word
val notb : word -> word
val << : word * Word.word -> word
val >> : word * Word.word -> word
val ˜>> : word * Word.word -> word

val + : word * word -> word
val - : word * word -> word

11.67. THE WORD SIGNATURE 421

val * : word * word -> word
val div : word * word -> word
val mod : word * word -> word

val compare : word * word -> order
val < : word * word -> bool
val <= : word * word -> bool
val > : word * word -> bool
val >= : word * word -> bool

val ˜ : word -> word
val min : word * word -> word
val max : word * word -> word

val fmt : StringCvt.radix -> word -> string
val toString : word -> string
val scan : StringCvt.radix

-> (char, ’a) StringCvt.reader
-> (word, ’a) StringCvt.reader

val fromString : string -> word option

Description

val wordSize : int

The number of bits in type word. wordSize need not be a power of 2. Note that word
has a fixed, finite precision.

val toLarge : word -> LargeWord.word
val toLargeX : word -> LargeWord.word
val toLargeWord : word -> LargeWord.word
val toLargeWordX : word -> LargeWord.word

toLarge w
toLargeX w
These convert w to a value of type LargeWord.word. In the first case, w is converted
to its equivalent LargeWord.word value in the range [0, 2wordSize − 1]. In the second
case, w is “sign-extended,” i.e., the wordSize low-order bits of w and toLargeX w are
the same, and the remaining bits of toLargeX w are all equal to the most significant bit
of w .
Note that toLargeWord and toLargeWordX are respective synonyms of the first

two and are deprecated.

422 CHAPTER 11. MANUAL PAGES

val fromLarge : LargeWord.word -> word
val fromLargeWord : LargeWord.word -> word

fromLarge w
fromLargeWord w
These functions convert w to the value w (mod 2wordSize) of type word. This operation
has the effect of taking the low-order wordSize bits of the 2’s complement representation
of w .
fromLargeWord is a deprecated synonym for fromLarge.

val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int

toLargeInt w
toLargeIntX w
These functions convert w to a value of type LargeInt.int. In the former case, w is
viewed as an integer value in the range [0, 2wordSize − 1]. In the latter case, w is treated
as a 2’s-complement signed integer with wordSize precision, thereby having a value in
the range [−2wordSize−1

, 2wordSize−1 −1]. toLargeInt raises Overflow if the target
integer value cannot be represented as a LargeInt.int. Since the precision of Large-
Int.int is always at least wordSize (see the discussion below), toLargeIntX will
never raise an exception.

val fromLargeInt : LargeInt.int -> word

fromLargeInt i converts i of type LargeInt.int to a value of type word. This
operation has the effect of taking the low-order wordSize bits of the 2’s complement
representation of i.

val toInt : word -> int
val toIntX : word -> int

toInt w
toIntX w
These functions convert w to a value of the default integer type. In the former case, w is
viewed as an integer value in the range [0, 2wordSize − 1]. In the latter case, w is treated as
a 2’s-complement signed integer with wordSize precision, thereby having a value in the
range [−2wordSize−1

, 2wordSize−1 − 1]. They raise Overflow if the target integer value
cannot be represented as an Int.int.

val fromInt : int -> word

fromInt i converts i of the default integer type to a value of type word. This opera-
tion has the effect of taking the low-order wordSize bits of the 2’s complement represen-
tation of i. If the precision of Int.int is less than wordSize, then i is sign-extended
to wordSize bits.

11.67. THE WORD SIGNATURE 423

val andb : word * word -> word
val orb : word * word -> word
val xorb : word * word -> word

These functions return the bit-wise AND, OR, and exclusive OR, respectively, of their
arguments.

val notb : word -> word

notb i returns the bit-wise complement (NOT) of i.

val << : word * Word.word -> word

<< (i, n) shifts i to the left by n bit positions, filling in zeros from the right. When i
and n are interpreted as unsigned binary numbers, this function returns (i∗2n) (mod 2wordSize).
In particular, shifting by greater than or equal to wordSize results in 0. This operation is
similar to the “(logical) shift left” instruction in many processors.

val >> : word * Word.word -> word

>> (i, n) shifts i to the right by n bit positions, filling in zeros from the left. When i
and n are interpreted as unsigned binary numbers, it returns �i/2n�. In particular, shifting
by greater than or equal to wordSize results in 0. This operation is similar to the “logical
shift right” instruction in many processors.

val ˜>> : word * Word.word -> word

˜>> (i, n) shifts i to the right by n bit positions. The value of the leftmost bit of i
remains the same; in a 2’s-complement interpretation, this operation corresponds to sign
extension. When i is interpreted as a wordSize-bit 2’s-complement integer and n is
interpreted as an unsigned binary number, it returns �i/2n�. In particular, shifting by
greater than or equal to wordSize results in either 0 or all 1’s. This operation is similar
to the “arithmetic shift right” instruction in many processors.

val + : word * word -> word

i + j returns (i+j) (mod 2wordSize)when i and j are interpreted as unsigned binary
numbers. It does not raise Overflow.

val - : word * word -> word

i - j returns the difference of i and j modulo (2wordSize):

(2wordSize + i− j) (mod 2wordSize)

when i and j are interpreted as unsigned binary numbers. It does not raise Overflow.

424 CHAPTER 11. MANUAL PAGES

val * : word * word -> word

i * j returns the product (i ∗ j) (mod 2wordSize) when i and j are interpreted as
unsigned binary numbers. It does not raise Overflow.

val div : word * word -> word

i div j returns the truncated quotient of i and j, �i/j�, when i and j are interpreted
as unsigned binary numbers. It raises Div when j = 0.

val mod : word * word -> word

i mod j returns the remainder of the division of i by j:

i− j ∗ �i/j�
when i and j are interpreted as unsigned binary numbers. It raises Div when j = 0.

val compare : word * word -> order

compare (i, j) returns LESS, EQUAL, or GREATER if and only if i is less than,
equal to, or greater than j, respectively, considered as unsigned binary numbers.

val < : word * word -> bool
val <= : word * word -> bool
val > : word * word -> bool
val >= : word * word -> bool

These functions return true if and only if the input arguments satisfy the given relation
when interpreted as unsigned binary numbers.

val ˜ : word -> word

˜ i returns the 2’s-complement of i.

val min : word * word -> word
val max : word * word -> word

These functions return the smaller (respectively, larger) of the arguments.

val fmt : StringCvt.radix -> word -> string
val toString : word -> string

fmt radix i
toString i
These functions return a string containing a numeric representation of i. No prefix (i.e.,
"Ow", "OwX", etc.) is generated. The version using fmt creates a representation specified

11.67. THE WORD SIGNATURE 425

by the given radix. The hexadecimal digits in the range [10,15] are represented by
the characters #"A" through #"F". The version using toString is equivalent to fmt
StringCvt.HEX i.

val scan : StringCvt.radix
-> (char, ’a) StringCvt.reader

-> (word, ’a) StringCvt.reader
val fromString : string -> word option

scan radix getc strm
fromString s
These functions scan a word from a character source. In the first version, if an un-
signed number in the format denoted by radix can be parsed from a prefix of the char-
acter strm strm using the character input function getc, the expression evaluates to
SOME(w,rest), where w is the value of the number parsed and rest is the remainder
of the character stream. Initial whitespace is ignored. NONE is returned otherwise. It raises
Overflow when a number can be parsed but is too large to fit in type word.
The format that scan accepts depends on the radix argument. Regular expressions

defining these formats are as follows:

Radix Format
StringCvt.BIN (0w)?[0−1]+

StringCvt.OCT (0w)?[0−7]+

StringCvt.DEC (0w)?[0−9]+

StringCvt.HEX (0wx | 0wX | 0x | 0X)?[0−9a−fA−F]+

The fromString version returns SOME(w) if an unsigned hexadecimal number in
the format (0wx | 0wX | 0x | 0X)?[0−9a−fA−F]+ can be parsed from a prefix of
string s, ignoring initial whitespace, where w is the value of the number parsed. NONE is
returned otherwise. This function raises Overflow when a hexadecimal numeral can be
parsed but is too large to be represented by type word. It is equivalent to

StringCvt.scanString (scan StringCvt.HEX)

Discussion
A structure WordN implements N-bit words. The type LargeWord.word represents the
largest word supported. We require that

LargeWord.wordSize ≤ LargeInt.precision

If LargeWord is not the same as Word, then there must be a structure WordN equal to
LargeWord.

The structure SysWord is used with the optional Posix and Windows modules. The
type SysWord.word is guaranteed to be large enough to hold any unsigned integral value
used by the underlying system.

For words and integers of the same precision/word size, the operations fromInt and
toIntX act as bit-wise identity functions. Even in this case, however, toInt will raise
Overflow if the high-order bit of the word is set.

Note that operations on words, and conversions of integral types into words, never cause
exceptions to arise due to lost precision.

426 CHAPTER 11. MANUAL PAGES

Conversion between words and integers of any size can be handled by intermediate
conversion into LargeWord.word and LargeInt.int. For example, the functions
fromInt, toInt and toIntX are respectively equivalent to:

fromLargeWord o LargeWord.fromLargeInt o Int.toLarge
Int.fromLarge o LargeWord.toLargeInt o toLargeWord
Int.fromLarge o LargeWord.toLargeIntX o toLargeWordX

Typically, implementations will provide very efficient word operations by expanding
them inline to a few machine instructions. It also is assumed that implementations will
catch the idiom of converting between words and integers of differing precisions using an
intermediate representation (e.g., Word32.fromLargeWord o Word8.toLargeWord)
and optimize these conversions.

See also
Byte (§11.7; p. 133), Int (§11.17; p. 169), LargeInt (§11.17; p. 169),
StringCvt (§11.55; p. 366)

Bibliography

[FPC95] Floating-point C extensions. Technical Report ANSI X3J11, March 1995.
[Gay90] Gay, D. M. Correctly rounded binary-decimal and decimal-binary conversions. Techni-

cal Report 90-10, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1990.
[Han92] Hansen, W. J. Subsequence references: First-class values for substrings. ACM Transac-

tions on Programming Languages and Systems, 14(4), October 1992, pp. 471–489.
[IEE85] IEEE standard for binary floating-point arithmetic. Technical Report IEEE Std 754-1985,

1985.
[IEE87] IEEE standard for radix-independent floating-point arithmetic. Technical Report

ANSI/IEEE Std 854-1987, 1987.
[ISO90] Programming Languages — C. Technical Report ISO/IEC 9899:1990(E), 1990.
[Jon03] Jones, S. P. (ed.). Haskell 98 Language and Libraries. Cambridge University Press,

2003.
[Kah96] Kahan, W. Lecture notes on the status of IEEE Standard 754 for binary floating-point

arithmetic. Technical report, University of California — Berkeley, May 1996.
[LM99] Leijen, D. and E. Meijer. Domain specific embedded compilers. In Proceedings of the

Second Conference on Domain-Specific Languages, October 1999, pp. 109–122.
[MTH90] Milner, R., M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,

Cambridge, MA, 1990.
[MTHM97] Milner, R., M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML

— Revised 1997. The MIT Press, Cambridge, MA, 1997.
[POS96] Portable operating system interface — Part 1: System application program interface

(API) [C Language]. Technical Report ISO/IEC 9945-1: 1996 (E) IEEE Std 1003.1, 1996.
[Pos03] Poskanzer, J. pbmplus— image file format conversion package. http://www.acme.

com/software/pbmplus/, 2003.
[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge University Press, 1999.
[SG97] Scheifler, R. W. and J. Gettys. X Window System. Digital Press, Newton, MA, 1997.
[Ste98] Stevens, W. R. UNIX Network Programming. Prentice Hall, 2nd edition, 1998.
[Uni03] Unicode Consortium. The Unicode Standard, Version 4.0. Addison-Wesley, Reading,

MA, 2003.
[Wad90] Wadler, P. L. Comprehending monads. In Proceedings of the 1990 ACM Conference on

LISP and Functional Programming, New York, NY, 1990. ACM, pp. 61–78.

General index

/dev/null, 77
/etc/hosts, 220
/etc/protocols, 223
/etc/services, 225
1003.1, see IEEE standard 1003.1
2’s-complement, 171, 173, 175, 422–424
754-1985, see IEEE standard 754-1985
854-1987, see IEEE standard 854-1987
9899:1990, see ISO/IEC standard 9899:1990
9945-1, see IEEE standard 1003.1

absolute path, see path, absolute
access permission, see permission
address
host, 100, 101
socket, 101, 167, 334, 337, 344, 399

address family, 100, 101, 153, 154, 166, 220, 334, 335,
337, 398–400

algebra, boolean, 94
Algol programming language, 51
algorithmic, 77
AND
bit-wise, 175, 423
logical, 25, 131

ANSI standard
854-1987, see IEEE standard
X3J11, 318

API, xi, 5–6, 99, 167, 335, 416, 417
operating system, 86

Apple, 251
approximation, decimal, 156, 327
arc, 241–249, 291
current, 232, 241, 244, 245, 247, 249
file system, 82
parent, 232, 241, 243, 245, 247, 249

arc cosine, 190
arc sine, 190
arc tangent, 190
arguments, command-line, see command-line arguments
array, 51–59
monomorphic, 193–198, 205–210, 215–219
two-dimensional, 199–204

polymorphic, 112–115, 122–125
two-dimensional, 116–121

two-dimensional, 59
ASCII, 33, 37, 133, 135, 360, 372, 380, 382

atomic append mode, 127

big-endian, 48, 49, 253, 255
binding, default, 22
bit, sign, see sign bit
BitBlt, 57
boolean values, 131–132
buffering, 72, 74, 76, 161, 162, 346, 347, 350–352,

354, 356, 357
block, 178, 352, 385
line, 178, 352, 385

buffering mode, 178, 352
byte order, hardware, 48

C programming language, 27, 34, 36, 37, 78, 82, 90,
94, 95, 99, 129, 140, 141, 146–148, 167, 222,
227, 269, 292, 297, 318, 324, 335, 364, 365

calendar, Gregorian, 145
canonical form, 47, 247
ceiling function, 8, 325
character, 5
alphabetic, 138
lowercase, 138
uppercase, 138, 139

control, 138–141, 302
numeric
decimal, 138–140
hexadecimal, 138–141
octal, 141

punctuation, 139
character translation, 65, 133
code, character, 133, 136, 150
command name, 92, 143, 395, 417
command-line arguments, 23, 85, 92, 96, 143, 395, 417
communication
connectionless, 104
interprocess, see interprocess communication
network, 99–109, 166–168, 220–223, 225–226, 330–

345
comparison, see order, linear
complement
bit-wise, 175, 423

conforming implementation, 6
conjunction, see AND
console, 96, 239
constraint, dynamic, 2

430 General index

convention
capitalization, 3
naming, 3–4
signature, 3
spelling, 3
structure, 3

conversion
byte, 37–38
floating-point, 46–47
integral, 43–45
text, 34–38
type, 4–5

Coordinated Universal Time (UTC), 89, 148
copy, block, 57, 114, 119, 124, 196, 203, 208
cosine, 190
hyperbolic, see hyperbolic cosine

CPU time, 391–393
CreateProcess, 417
current working directory, 83, 84, 127, 232, 233, 244,

267, 274, 383
currying, see function, curried

data
binary, 37–38, 127–128, 282, 283
packed, 47–49, 253–256
sequential, 51–59

database
network, 101
network host, 220–222
network protocol, 223
network service, 102, 225–226

datagram, see socket, datagram
date, 81, 88–90, 144–148
DDE, see dynamic data exchange
deadlock, 93, 261
declaration, infix, see infix declaration
Description section, see section
design rules, 2–7
device
block special, 272
character special, 272

device ID, 271, 272
difference, set, 130
digit, see character, numeric
decimal, 138–140
hexadecimal, 138–141
octal, 141

directory, 82, 231–234, 239, 241–243, 245, 246, 248,
261, 262, 266–267, 270, 272, 415

current working, see current working directory
directory stream, 83, 232, 266
Discussion section, see section
disjunction, see OR
domain, 101
Internet, 101–105, 107, 166–168, 335
Unix, 101, 105, 107, 398–400

dynamic data exchange, 98, 416

e (base of natural logarithm), 190
empty set, 94, 129
end-of-file, see end-of-stream

end-of-line, 67, 69, 133, 383, 386
end-of-stream, 64–65, 77, 92, 159, 160, 163, 164, 279,

311, 314, 315, 348–350, 353–357, 383, 386
endianness, 48, 49, 253–256
environment
process, 23, 27, 85, 251, 289–293, 395
top-level, 11, 12, 19–24, 28, 131, 184, 384

equality, 112, 116, 129, 135, 149, 169, 193, 199, 220,
230, 235, 237–239, 260, 265, 267, 271, 278, 285,
290, 294, 296, 301, 303, 305, 306, 308, 335, 360,
372, 387, 401, 413, 420

escape sequence, 36, 37, 139–141, 364, 365
event, 239, 240, 290, 294
high-priority, 87, 239, 240
time, see timeout

exception
handling, 29–30
raising, 6

executable, stand-alone, 23, 24
exit, see termination, program
exit status, 85, 94, 96, 250, 292, 396, 417–419
exponent, 157, 324, 367

FIFO, see pipe
file
closing a, 24, 64, 159–161, 164, 278, 347, 349, 350,

354
opening a, 65, 72, 269, 383
temporary, 85, 235

file descriptor, 66, 76, 81, 86, 91, 237, 261, 266, 267,
272, 274, 278–283, 285, 287, 301, 306, 308, 350,
353, 385, 396, 417, 418

file handle, 86, 237
file ID, 84, 85, 235
file serial number, see inode
file size, 84, 234, 235, 272
file system, 81, 231–235, 409
filename, temporary, see file, temporary
flag
bit, 129–130
system, 94–95

floating-point number, 45, 46, 155–157, 189–192, 318–
329

maximum, 320
minimum, 320

floor function, 8, 171, 175, 325, 423, 424
flushing output, 24, 64, 72, 93, 127, 161, 162, 178,

251, 281, 292, 303, 350, 352–354, 383, 384, 397,
418

fold operation, 53–54, 114, 120, 125, 183, 187, 196,
203, 209, 213, 218, 376, 403, 407

Free BSD operating system, 95
frexp, 324
FTP, 101
function
curried, 30
exponential, 189, 191
hyperbolic, 189
logarithmic, 189, 192
partial, 27, 227, 228
pure, 54

General index 431

scanning, 56
trigonometric, 189

function composition, 30, 151, 228
functor, optional, 13, 62, 165, 317, 358

Gay, D., 328
GC time, 391–393
getc, 78
gmtime, 146
Greenwich Mean Time (GMT), see Coordinated Uni-

versal Time
group ID, 268, 272, 273, 285, 286, 288, 291, 297

Haskell, 29
host, network, see network host
hostname, 101, 104, 221
HTML, 97
HTTP, 101
hyperbolic cosine, 192
hyperbolic sine, 192
hyperbolic tangent, 192

I/O, 14, 61–79, 177–179, 237–240
buffered, 61, 72, 158–164
efficiency of, 78–79
functional, see I/O, stream
imperative, 61, 62, 158–165, 382–386
interactive, 67, 72
non-blocking, 71, 178, 268, 279, 282, 283, 312, 314,

338, 339, 341–343, 345, 348, 359
primitive, 62, 74–78, 308–317
random access, see random access
redirection of, 61, 62, 67, 73, 97, 158, 159, 161, 162,

417
socket, see socket
stream, 61–64, 162, 346–359
system, 62
unbuffered, 61, 74, 279, 308–316

I/O descriptor, 81, 86–87, 178, 237–239, 340
identifier, 3
datatype, alphanumeric, 3
exception, 3
functor, 3
infix, 23
signature, 3
structure, 3
type, 3
value, alphanumeric, 3

IEEE standard, 45, 46, 318
1003.1, 95, 257, 263, 276, 284, 288, 289, 294, 296,

298
754-1985, xiii, 155, 156, 318, 320, 323, 328, 329
854-1987, 155, 318

infinity, 45, 46, 190
negative, 45, 155–157, 171, 320–328
positive, 45, 155–157, 320–328

infix declaration, 11, 23
inode, 85, 271, 272
input
functional, 68–72
imperative, 66–68, 71

interactive, 71
random access, see random access
scanning, 70
truncated stream, 64, 65, 76, 86, 159, 160, 164, 347,

351, 353, 359
integer
hexadecimal, 56
maximum, 170
minimum, 170

Interface section, see section
interprocess communication, 99–109, 278, 394–400,

417–418
intersection, 94, 130
IPC, see interprocess communication
Irix operating system, 95
ISO/IEC standard
9899:1990, 90, 141, 365
9945-1:1996 (E), see IEEE standard 1003.1

iterator, 52, 58, 59
indexed, 55–56, 114–115, 119–120, 124–125, 196–

197, 203–204, 209–210, 213–214, 218–219, 402–
403, 407–408

ldexp, 324
leap second, 145
leap year, 145
letter, see character, alphabetic
link, 261, 262, 270, 272, 274
symbolic, see symbolic link

Linux operating system, 91, 95
Lisp programming language, 51
list, 51–59, 180–188
character, 56

little-endian, 48, 49, 253, 255
locale, 135, 137, 141, 147, 151
lock
file, 262, 281–282
record, 262

logarithm
base-10, 192
base-2, 175
natural, 192

lookahead, 63, 160, 349, 367, 384

mantissa, 157, 320, 324
marshalling, 38
Milner, R., 146
mktime, 146, 148
mod function, 8, 422–424
modf, 324

name, see identifier
NaN, 45, 46, 156, 189–192, 318, 321–329, 367
negation, see NOT
network host, 220
network protocol, see protocol, socket
network service, see service, network
NIS protocols map, 223
NOT
bit-wise, 175, 423
logical, 131

432 General index

NULL character, 34
NULL pointer, 27, 227
null device, 77, 97

operating system, 5, 6
OR
bit-wise, 175, 423
bit-wise exclusive, 175, 423
logical, 25, 131

order
column-major, 59, 117
left-to-right, 8, 51, 53, 114, 116, 117, 125, 180–183,

186, 196, 197, 199, 209, 210, 213, 214, 218,
219, 362, 363, 376–378, 402, 403, 407, 408

lexicographic, 26, 54, 115, 125, 146, 183, 197, 210,
214, 219, 363, 376, 377, 403, 408

linear, 4, 26, 54, 135, 137, 146, 151, 171, 235, 238,
304, 310, 317, 322, 363, 376, 389, 424

right-to-left, 8, 52, 114, 125, 196, 209, 213, 218,
377, 403, 407

row-major, 59, 117
top-to-bottom, 116, 199

OS X operating system, 95
output, 72–73
random access, see random access
terminated stream, 64, 76, 178, 347, 350, 352, 353

packing, 47, 48, 253–256
partial evaluation, 30, 137
password, 258, 296, 297
PATH environment variable, 92, 93, 291
path, 20, 81–82, 231, 241–249
absolute, 82, 84, 232, 233, 241, 242, 244, 245, 247,

248, 267, 271
canonical, 82, 84, 232, 233, 241, 242, 245, 247–249
relative, 82–84, 127, 233, 241, 242, 245, 247, 248,

271, 274, 383
Unix, 105

pathname, see path
pattern matching, 150
permission, 84, 234, 260, 261, 267–270, 273, 274, 398
phantom type, 100, 107
π, 189
pipe, 93, 239, 262, 270, 272, 274, 278, 295, 399
poll descriptor, 86–87, 239–240
polling, 86–87, 237–240
of sockets, 106

port number, 101, 104
Portable Pixmap file format, 37
POSIX operating system, 6, 12, 66, 86, 91, 95–96, 129,

238, 250, 257–307
precision, 36, 320
arbitrary, 46, 169, 170, 173
fixed, 169, 170, 173, 421

process, 250–252
child, 85, 91–94, 261, 270, 287, 290–292, 393, 395,

417
console, 96, 97
operating system, 85
parent, 91–94, 96, 285, 290, 292

process group ID, 286, 307

process ID, 262, 278, 285, 290, 292, 301
process management, 81
programming
network, 99
object-oriented, 29

protocol
connection-based, 101
socket, 99, 153–154, 223

quicksort, 26

radix, 34, 36, 172, 173, 320, 324, 366, 425
random access, 51, 52, 61, 72, 75–77, 163, 178, 310,

312, 314, 316, 350, 352
range notation, 8
reader, 61, 63, 64, 66, 70, 72, 74–77, 159, 177, 178,

238, 282, 308, 311–312, 314–315, 317, 346–351,
353–359

real time, 391–392
region, 59
valid, 117, 201

registry, 409, 412–414
regular expression, 8, 38, 157, 173, 326, 327, 366, 367,

390, 425
relative path, see path, relative
representation, decimal, 47
rounding, 46, 47
to nearest, 46, 156, 325
to negative infinity, 46, 156, 325
to positive infinity, 46, 156, 325
to zero, 46, 156, 171, 325

rounding mode, 46, 47, 155, 325

searching, 26
section
Description, 8, 9
Discussion, 8
Interface, 8
See Also, 8
Synopsis, 7

See Also section, see section
semantics
deterministic, 2, 354
fixed-point, 388
non-trapping, 45, 318, 324

service, network, 225–226
sgn (sign) function, 8, 145
shell, 92, 93, 96, 251, 297, 416
ShellExecute, 416
shift
left, 175, 423
right, 175, 423

short-circuit evaluation, 54, 131, 187
side effect, 6, 7, 30, 31, 52–54, 64, 86, 165, 186
sign bit, 49, 423
sign extension, 44, 423
signal, 18, 91, 94, 235, 261, 290, 291, 293–295, 303,

395, 397
signature
generic, 9, 11, 13
non-generic, 12, 13

General index 433

optional, 12–13
required, 11–13

signature matching, opaque, 7
sine, 190
hyperbolic, see hyperbolic sine

slice, 34, 38, 58, 59, 78, 120, 134, 204, 279, 310, 341–
344

array, 122–125, 205–210, 215–219
vector, 405–408

socket, 99–109, 153–154, 272
active, 99, 100, 104, 398
creation of, 100
datagram, 99–101, 167, 334, 335, 338, 342–344
Internet-domain, 104–105, 166, 167
Unix-domain, 399–400

I/O, 100, 341–345
Internet-domain, 109, 166–168
passive, 99, 100, 103, 104, 398
stream, 99–101, 107, 334, 338, 341
Internet-domain, 101–104, 107, 166–168
Unix-domain, 107, 398–399

TCP, 102
type of, 100, 153–154, 334, 335, 337
Unix-domain, 101, 105, 398–400

socket descriptor, 106, 339
Solaris operating system, 95
sorting, 26
square root, 189, 190
state, avoidance of, 7
stream, 77
binary, 127
functional, 40, 159, 346–357
null, 77
redirectable, see I/O, redirection of

strftime, 147
string, 5, 360–370, 372–379
open as input stream, 384

structure
generic, 11
optional, 4, 12–13, 33, 62, 135, 174, 253, 257, 258,

360, 372, 380, 382, 425
required, 11–12, 135, 165, 360, 372, 380, 382

structure family, 9, 22, 43, 44, 47, 170, 173, 253, 255,
328, 425

stylistic rules, 2–7
subsequence, 8, 27, 34, 57, 58
array, see slice, array
vector, see slice, vector

substring, 34, 38, 41, 58, 134, 361, 363, 368, 370, 372–
379, 383, 386

symbolic link, 84, 85, 231, 233–235, 239, 247, 249,
261, 270–272, 412

Synopsis section, see section
system configuration, 274–275, 288, 414–415
system time, 391–393
systems programming
portable, 81–90, 229–235, 237–252
POSIX, 91–96, 257–307, 394–397
Windows, 96–98, 409–419

tangent, 190

hyperbolic, see hyperbolic tangent
TCP/IP, see socket
TELNET, 101
termination
program, 6, 24, 64, 93, 128, 251, 291, 292, 384, 395,

397, 418
time, 81, 88–90, 144–148, 234, 252, 287, 293, 387–

393, 416
current, 88
file access, 234, 272
file modification, 234, 272
file status change, 272
modification, 84, 234, 270, 273
status change, 270

time zone, 89, 145–148, 288, 388
timeout, 86, 87, 106, 240, 336, 340, 418
tokenization, 38–40, 363, 376, 379
translation, character, see character translation
traversal order, 2
tree
red-black, 26
splay, 26

tty, 239, 262, 268, 287, 298–307
type, 112, 116, 129, 135, 149, 169, 193, 199, 220, 230,

235, 237–239, 260, 265, 267, 271, 278, 285, 290,
294, 296, 301, 303, 305, 306, 308, 335, 360, 372,
387, 401, 413, 420

equality, 4, 46, 184, 187, 329
witness, 166, 398

type schema, 22

UDP/IP, see socket
Unicode, 33, 65, 76
union, 94, 129
Unix operating system, 64, 77, 81, 82, 85, 91–96, 99,

105, 127, 220, 223, 225, 234, 237, 241, 242, 244,
247, 249, 251, 345, 393–398

unmarshalling, 38
unpacking, 47, 48, 253–256
user ID, 268, 273, 285, 286, 288, 297
user time, 391–393
UTC, see Coordinated Universal Time

variable, environment, 85, 93
vector, 51–59
monomorphic, 211–214
polymorphic, 401–403, 405–408

virtual circuit, 99
volume
file system, 82, 232, 233, 241, 244, 245, 247–249,

416

Wadler, P., 29
wall clock time, see real time
whitespace, 5, 35, 37, 39, 69, 91, 131, 138, 148, 157,

172, 222, 327, 364, 368, 390, 425
Windows 95 operating system, 96
Windows NT operating system, 96
Windows operating system, 65, 81, 82, 92, 96–98, 237,

241, 242, 244, 247, 249, 251, 409–419
writer, 61, 63, 64, 74–77, 159, 177, 178, 283, 308,

313–315, 317, 346–348, 350, 352, 353, 357–359

434 General index

XWindow System, 107

zero
division by, 150, 171, 174
signed, 45, 327

SML identifier index

! value
General, 149, 151

!= value
REAL, 319, 323

* value
Int, 22
INTEGER, 169, 170
REAL, 318, 321
WORD, 421, 424

*+ value
REAL, 318, 321

*- value
REAL, 318, 321

+ value
Int, 22
INTEGER, 169, 170
REAL, 318, 321
Time, 387, 389
WORD, 420, 423

- value
Int, 22
INTEGER, 169, 170
REAL, 318, 321
Time, 387, 389
WORD, 420, 423

/ value
REAL, 318, 321
Real, 22, 23

:: constructor
List, 180

:= value
General, 149, 151

== value
REAL, 319, 323
Real, 46

?= value
REAL, 319, 323

@ value
List, 55, 57, 180, 181, 182, 248

<= value
CHAR, 135, 137
Int, 22
INTEGER, 169, 171
REAL, 319, 323
STRING, 361, 363
Time, 387, 389

WORD, 421, 424
< value
CHAR, 135, 137
Int, 22
INTEGER, 169, 171
REAL, 319, 323
STRING, 361, 363
Time, 387, 389
WORD, 421, 424

<< value
IntInf, 174, 175
WORD, 420, 423

>= value
CHAR, 135, 137
Int, 22
INTEGER, 169, 171
REAL, 319, 323
STRING, 361, 363
Time, 387, 389
WORD, 421, 424

> value
CHAR, 135, 137
Int, 22
INTEGER, 169, 171
REAL, 319, 323
STRING, 361, 363
Time, 387, 389
WORD, 421, 424

>> value
WORD, 420, 423

ˆ value
STRING, 360, 362
String, 55

˜ value
Int, 22
INTEGER, 169, 171
REAL, 318, 321
WORD, 421, 424

˜>> value
IntInf, 174, 175
WORD, 420, 423

A_EXEC constructor
OS.FileSys, 231, 234, 235
POSIX.FileSys, 265, 273

A_READ constructor

436 SML identifier index

OS.FileSys, 231, 234
POSIX.FileSys, 265, 273, 273

A_WRITE constructor
OS.FileSys, 231, 234
POSIX.FileSys, 265, 273

abrt value
POSIX.Signal, 294
Posix.Signal, 295

abs value
Int, 22
INTEGER, 169, 172
REAL, 318, 322

accept value
Socket, 103, 331, 338, 338, 340

acceptNB value
Socket, 331, 338

acces value
POSIX.Error, 259
Posix.Error, 260

access value
OS.FileSys, 84, 85, 231, 234, 235
POSIX.FileSys, 265, 273, 273

access_mode type
OS.FileSys, 231, 273
POSIX.FileSys, 265, 273

accessViolation value
WINDOWS.Status, 411

acos value
MATH, 189, 190, 190

active type
Socket, 166, 330

addr value
NetHostDB, 220, 221

addr_family type
NetHostDB, 220, 220, 330
SOCKET.AF, 330

addrs value
NetHostDB, 220, 221, 221

addrType value
NetHostDB, 220, 221

AF structure
Socket, 334
SOCKET.AF, 330

again value
POSIX.Error, 259
Posix.Error, 261

alarm value
POSIX.Process, 290, 293, 293

aliases value
NetHostDB, 220, 221
NetProtDB, 223, 223
NetServDB, 225, 225

all value
Array, 112, 115
ArraySlice, 122, 125
BIT_FLAGS, 94, 95, 129, 129, 130
general description, 54
List, 180, 183, 187
ListPair, 58, 185, 187
MONO_ARRAY, 194, 197
MONO_ARRAY_SLICE, 207, 210

MONO_VECTOR, 212, 214
MONO_VECTOR_SLICE, 216, 219
Vector, 401, 403
VectorSlice, 405, 408

allAccess value
Windows, 412
WINDOWS.Key, 409

allEq value
ListPair, 185, 187

allSet value
BIT_FLAGS, 95, 129, 130

alrm value
POSIX.Signal, 294
Posix.Signal, 293, 295

andb value
IntInf, 174, 175, 175
WORD, 420, 423

any value
INetSock, 103, 166, 167

anySet value
BIT_FLAGS, 129, 130

app value
Array, 112, 114
Array2, 117, 119
ArraySlice, 122, 124
general description, 52
List, 152, 180, 182, 186, 376
ListPair, 58, 59, 185, 186
MONO_ARRAY, 194, 196
MONO_ARRAY2, 200, 203
MONO_ARRAY_SLICE, 207, 209
MONO_VECTOR, 212, 213
MONO_VECTOR_SLICE, 216, 218
Option, 28, 227, 228
SUBSTRING, 373, 376
Vector, 401, 402
VectorSlice, 405, 407

append value
POSIX.FileSys, 268
POSIX.IO, 279
POSIX_FILE_SYS.O, 264
POSIX_IO.O, 276

appEq value
ListPair, 59, 185, 186

appi value
Array, 112, 114, 114
Array2, 117, 119, 119, 120, 204
ArraySlice, 122, 124, 124
MONO_ARRAY, 194, 196, 196
MONO_ARRAY2, 200, 203, 203
MONO_ARRAY_SLICE, 207, 209, 209, 218
MONO_VECTOR, 212, 213, 213
MONO_VECTOR_SLICE, 216, 218
Vector, 55, 401, 402, 402
VectorSlice, 405, 407, 407

Apr constructor
Date, 144

arguments value
CommandLine, 143, 143

ARRAY signature, 14
Array structure, 14, 20, 51, 112

SML identifier index 437

array type
Array, 112
Array2, 116
CharArray, 380
IntNArray, 206
MONO_ARRAY, 194
MONO_ARRAY2, 200
MONO_ARRAY_SLICE, 206, 207, 207
PRIM_IO, 309, 310, 310
RealNArray, 206
WideCharArray, 380
WordNArray, 206

array value
Array, 112, 113
Array2, 116, 118
MONO_ARRAY, 194, 195
MONO_ARRAY2, 200, 201

ARRAY2 signature, 18, 204
Array2 structure, 18, 59, 116, 204
ARRAY_SLICE signature, 14
array_slice type
PRIM_IO, 309, 310, 310

arrayBoundsExceeded value
WINDOWS.Status, 411

ArraySlice structure, 14, 58, 122
asin value
MATH, 189, 190, 190

atan value
MATH, 189, 190, 190

atan2 value
MATH, 189, 190
Math, 46

atExit value
OS.Process, 24, 250, 251, 251, 292, 397, 418

atime value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

Aug constructor
Date, 144

augmentReader value
PRIM_IO, 310, 312, 314, 315, 351

augmentWriter value
PRIM_IO, 310, 315, 315, 352

b0 value
POSIX.TTY, 299
Posix.TTY, 307

b110 value
POSIX.TTY, 299

b1200 value
POSIX.TTY, 299
Posix.TTY, 307

b134 value
POSIX.TTY, 299

b150 value
POSIX.TTY, 299

b1800 value
POSIX.TTY, 299

b19200 value
POSIX.TTY, 300

b200 value

POSIX.TTY, 299
b2400 value
POSIX.TTY, 300

b300 value
POSIX.TTY, 299

b38400 value
POSIX.TTY, 300

b4800 value
POSIX.TTY, 300

b50 value
POSIX.TTY, 299

b600 value
POSIX.TTY, 299

b75 value
POSIX.TTY, 299

b9600 value
POSIX.TTY, 300
Posix.TTY, 307

badf value
POSIX.Error, 259
Posix.Error, 261

badmsg value
POSIX.Error, 259
Posix.Error, 261, 262

base value
ArraySlice, 122, 123
MONO_ARRAY_SLICE, 206, 208
MONO_VECTOR_SLICE, 216, 217
OS.Path, 243, 247
SUBSTRING, 373, 374, 374, 375
VectorSlice, 405, 406

before value
General, 30, 31, 149, 151

BIN constructor
StringCvt, 173, 366, 366, 425

BIN_IO signature, 14
BINARY constructor
Windows, 414, 414
WINDOWS.Reg, 410
Windows.Reg, 414

Bind exception
General, 149, 150

bind value
Socket, 167, 331, 336, 338, 338, 398

binInstreamOf value
Unix, 394, 396
Windows, 411, 417

BinIO structure, 14, 24, 62, 64, 65, 75, 127, 128, 165,
239

binOutstreamOf value
Unix, 394, 396
Windows, 411, 418

BinPrimIO structure, 13, 76, 308
BIT_FLAGS signature, 15, 94, 129, 130, 263, 264,

276, 289, 298, 299, 409
BLOCK_BUF constructor
IO, 177, 178, 178, 352

BlockingNotSupported exception
IO, 177, 177, 178, 179

BOOL signature, 14
Bool structure, 14, 20, 25, 131

438 SML identifier index

bool type
Bool, 19, 25, 131, 131, 275

BoolArray structure, 16, 193
BoolArray2 structure, 16, 199
BoolArraySlice structure, 17, 205
BoolVector structure, 16, 211
BoolVectorSlice structure, 17, 215
breakpoint value
WINDOWS.Status, 411

brkint value
Posix.TTY.I, 302
POSIX_TTY.I, 298

buffer_mode type
IO, 177, 178

bus value
POSIX.Signal, 294
Posix.Signal, 295

busy value
POSIX.Error, 259
Posix.Error, 261

BYTE signature, 14
Byte structure, 14, 33, 37, 38, 48, 77, 133
bytesPerElem value
PACK_REAL, 48, 253, 253, 254
PACK_WORD, 255, 255, 255, 256

bytesToString value
Byte, 37, 133, 133

byteToChar value
Byte, 37, 133, 133

C structure
POSIX.TTY, 303
POSIX_TTY.C, 299

canceled value
POSIX.Error, 259
Posix.Error, 261

canInput value
ImperativeIO, 158, 160, 160
STREAM_IO, 178, 346, 348, 349, 349, 351, 354

cc type
POSIX.TTY, 302, 302
Posix.TTY.V, 302
POSIX_TTY.V, 298

cc value
POSIX.TTY, 302, 302
POSIX_TTY.V, 298

ceil value
REAL, 46, 319, 325, 325

CF structure
Posix.TTY, 305
POSIX_TTY.CF, 300

CHAR signature, xii, 12, 13, 15, 135, 380
Char structure, xii, 13, 14, 20, 33, 135, 135, 141, 360,

372
char type
CHAR, 33, 135, 135, 360, 363
Char, 22, 33, 62, 159, 165, 310, 347, 360, 372, 380,

386
STRING, 360
String, 360
SUBSTRING, 372

Substring, 372
WideChar, 22, 33, 211, 215, 360, 372, 380
WideString, 360
WideSubstring, 372

CharArray structure, 13, 193
CharArray2 structure, 16, 199
CharArraySlice structure, 13, 205
charToByte value
Byte, 37, 133, 133

CharVector structure, 9, 13, 211
CharVectorSlice structure, 13, 215
chDir value
OS.FileSys, 84, 231, 232, 232

chdir value
POSIX.FileSys, 263, 267

checkCPUTimer value
Timer, 391, 392

checkCPUTimes value
Timer, 391, 392

checkFloat value
REAL, 45, 319, 324

checkGCTime value
Timer, 391, 393

checkRealTimer value
Timer, 391, 392

child value
POSIX.Error, 259
Posix.Error, 261

chld value
POSIX.Signal, 294
Posix.Signal, 295

chmod value
POSIX.FileSys, 265, 273

chown value
POSIX.FileSys, 265, 273, 274

Chr exception
General, 149, 150

chr value
CHAR, 135, 136, 136, 137, 150

class value
REAL, 319, 323

classesRoot value
Windows, 413
WINDOWS.Reg, 409

clear value
BIT_FLAGS, 95, 129, 130

clocal value
Posix.TTY.C, 303
POSIX_TTY.C, 299

cloexec value
POSIX.IO, 279
Posix.IO.FD, 279
POSIX_IO.FD, 276

close value
POSIX.IO, 276, 278
Socket, 331, 336, 339

closeDir value
OS.FileSys, 231, 232, 232

closedir value
POSIX.FileSys, 263, 267

ClosedStream exception

SML identifier index 439

IO, 177, 177, 178, 179
closeIn value
IMPERATIVE_IO, 164
IMPERATIVE_IO.StreamIO, 160
ImperativeIO, 158, 160
STREAM_IO, 64, 346, 347, 349, 349

closeKey value
Windows, 413
WINDOWS.Reg, 410

closeOut value
IMPERATIVE_IO.StreamIO, 161
ImperativeIO, 158, 161
STREAM_IO, 64, 347, 347, 350, 354

collate value
Array, 112, 115
ArraySlice, 123, 125
general description, 54
List, 180, 183
MONO_ARRAY, 194, 197
MONO_ARRAY_SLICE, 207, 210
MONO_VECTOR, 212, 214
MONO_VECTOR_SLICE, 216, 219
STRING, 361, 363
SUBSTRING, 373, 377
TEXT.String, 377
Vector, 401, 403
VectorSlice, 405, 408

ColMajor constructor
Array2, 116, 117

column value
Array2, 116, 119
MONO_ARRAY2, 200, 202

COMMAND_LINE signature, 14
CommandLine structure, 14, 23, 143
compare value
CHAR, 135, 137
Date, 144, 146
general description, 4, 26, 27, 54
INTEGER, 169, 171
OS.FileSys, 232, 235
OS.IO, 237, 238
PRIM_IO, 309, 310
PrimIO, 317
REAL, 155, 319, 322, 322
STRING, 361, 363
SUBSTRING, 373, 376
TEXT.Char, 363
TEXT.String, 376
Time, 387, 389
WORD, 421, 424

compareReal value
REAL, 319, 322, 322

compareSpeed value
POSIX.TTY, 299, 304

compose value
Option, 227, 228

composePartial value
Option, 227, 228

concat value
general description, 54, 55
List, 180, 181

MONO_VECTOR, 212, 213
MONO_VECTOR_SLICE, 216, 217
OS.Path, 242, 243, 247, 248, 248
STRING, 360, 362, 362
String, 91
SUBSTRING, 373, 375
TEXT.String, 375
Vector, 401, 402
VectorSlice, 405, 406

concatWith value
STRING, 360, 362
SUBSTRING, 373, 375

Config structure
Windows, 6, 96, 418
WINDOWS.Config, 410

connect value
Socket, 331, 338, 339, 340, 398

connectNB value
Socket, 331, 339

cont value
POSIX.Signal, 294
Posix.Signal, 94, 295

contains value
CHAR, 135, 137, 137
Char, 34

controlCExit value
WINDOWS.Status, 411

copy value
Array, 112, 114
Array2, 116, 119, 119
ArraySlice, 122, 124
MONO_ARRAY, 194, 196
MONO_ARRAY2, 200, 203
MONO_ARRAY_SLICE, 206, 208

copySign value
REAL, 319, 322

copyVec value
Array, 112, 114
ArraySlice, 122, 124
MONO_ARRAY, 194, 196
MONO_ARRAY_SLICE, 206, 208

cos value
MATH, 189, 190, 190

cosh value
MATH, 189, 192, 192

cpu_timer type
Timer, 391, 391

cread value
Posix.TTY.C, 303
POSIX_TTY.C, 299

creat value
POSIX.FileSys, 264, 269, 269, 270

create_result type
WINDOWS.Reg, 409

CREATED_NEW_KEY constructor
WINDOWS.Reg, 409

createf value
POSIX.FileSys, 264, 269, 269

createKeyEx value
Windows, 413
WINDOWS.Reg, 410

440 SML identifier index

createLink value
Windows, 412, 412
WINDOWS.Key, 409

createSubKey value
Windows, 412, 412, 413
WINDOWS.Key, 409

cs type
StringCvt, 366, 368, 368

cs5 value
Posix.TTY.C, 303
POSIX_TTY.C, 299

cs6 value
Posix.TTY.C, 303
POSIX_TTY.C, 299

cs7 value
Posix.TTY.C, 303
POSIX_TTY.C, 299

cs8 value
Posix.TTY.C, 303
POSIX_TTY.C, 299

csize value
Posix.TTY.C, 303
POSIX_TTY.C, 299

cstopb value
Posix.TTY.C, 303
POSIX_TTY.C, 299

ctermid value
POSIX.ProcEnv, 285, 287

ctime value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

Ctl structure
Socket, 336
SOCKET.Ctl, 330

currentArc value
OS.Path, 241, 242, 244

currentConfig value
Windows, 413
WINDOWS.Reg, 409

currentUser value
Windows, 413
WINDOWS.Reg, 409

datatypeMisalignment value
WINDOWS.Status, 411

Date exception
Date, 144, 145

DATE signature, 14
Date structure, 3, 14, 70, 89, 90, 144
date type
Date, 89, 144, 145

date value
Date, 89, 144, 145

day value
Date, 144, 146

DDE structure
WINDOWS.DDE, 410

deadlk value
POSIX.Error, 259
Posix.Error, 261

DEC constructor

StringCvt, 172, 173, 366, 366, 425
Dec constructor
Date, 144

decimal_approx type
IEEEReal, 47, 155, 156, 157

deleteKey value
Windows, 413
WINDOWS.Reg, 410

deleteValue value
Windows, 414
WINDOWS.Reg, 410

dev type
POSIX.FileSys, 264, 271, 271

dev value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

device value
OS.IO, 238
OS_IO.Kind, 237

devToWord value
POSIX.FileSys, 264, 271

dgram type
Socket, 330, 334, 334

dgram value
Socket, 335
SOCKET.SOCK, 330

dgram_sock type
INetSock, 166, 166
UnixSock, 398, 399

DGrm structure
UNIX_SOCK.DGrm, 398
UnixSock, 105

dimensions value
Array2, 116, 118
MONO_ARRAY2, 200, 202

dir value
OS.IO, 238
OS.Path, 243, 246
OS_IO.Kind, 237

dirstream type
OS.FileSys, 231, 266
POSIX.FileSys, 263, 266, 267

Div exception
General, 45, 149, 150

div value
Int, 22
INTEGER, 169, 171, 171, 174
WORD, 421, 424

divMod value
IntInf, 174, 174

dom value
POSIX.Error, 259
Posix.Error, 261

Domain exception
General, 46, 149, 150

drain value
POSIX.TTY, 306
POSIX_TTY.TC, 301

drop value
List, 180, 182, 182

dropl value

SML identifier index 441

StringCvt, 366, 368, 368
SUBSTRING, 373, 378, 378
Substring, 39, 40

dropr value
SUBSTRING, 373, 378, 378

dup value
POSIX.IO, 276, 278

dup2 value
POSIX.IO, 276, 278
Posix.IO, 9

dupfd value
POSIX.IO, 276, 278, 280

DWORD constructor
Windows, 414
WINDOWS.Reg, 410
Windows.Reg, 414

dynData value
Windows, 413
WINDOWS.Reg, 409

e value
MATH, 189, 190

echo value
Posix.TTY.L, 303
POSIX_TTY.L, 299

echoe value
Posix.TTY.L, 303
POSIX_TTY.L, 299

echok value
Posix.TTY.L, 303
POSIX_TTY.L, 299

echonl value
Posix.TTY.L, 303
POSIX_TTY.L, 299

elem type
ImperativeIO, 158, 159
MONO_ARRAY, 194
MONO_ARRAY2, 200
MONO_ARRAY_SLICE, 206
MONO_VECTOR, 211
MONO_VECTOR_SLICE, 216
PRIM_IO, 309, 310, 310, 311, 313
STREAM_IO, 346, 347

Empty exception
List, 20, 180, 181

endOfStream value
IMPERATIVE_IO, 65
ImperativeIO, 158, 160
STREAM_IO, 160, 346, 349, 350, 351, 355, 357

entry type
NetHostDB, 220, 220
NetProtDB, 223, 223
NetServDB, 225, 225

enumerateSubKeys value
Windows, 412, 412
WINDOWS.Key, 409

enumKeyEx value
Windows, 414
WINDOWS.Reg, 410

enumValueEx value
Windows, 414

WINDOWS.Reg, 410
environ value
POSIX.ProcEnv, 284, 287
Posix.ProcEnv, 396

eof value
POSIX.TTY, 301
POSIX_TTY.V, 298

eol value
POSIX.TTY, 301
POSIX_TTY.V, 298

EQUAL constructor
General, 4, 20, 26, 149, 151, 424
IEEEReal, 155

erase value
POSIX.TTY, 301
POSIX_TTY.V, 298

Error structure
Posix, 6, 18, 95, 259

errorMsg value
OS, 229, 230, 230
POSIX.Error, 259, 260

errorName value
OS, 229, 230, 230
POSIX.Error, 259, 260, 260
Posix.Error, 262

EXACT constructor
StringCvt, 156, 366, 366, 367

excl value
POSIX.FileSys, 268
POSIX_FILE_SYS.O, 264

exec value
POSIX.Process, 289, 290
Posix.Process, 273, 288

exece value
POSIX.Process, 289, 290, 291
Posix.Process, 288

execp value
POSIX.Process, 289, 290
Posix.Process, 288

execute value
Unix, 91–93, 98, 394, 395, 397
Windows, 96–98, 411, 412, 417, 417
WINDOWS.Key, 409

executeInEnv value
Unix, 93, 394, 395, 395, 396, 397

executeString value
Windows, 416
WINDOWS.DDE, 410

exist value
POSIX.Error, 259
Posix.Error, 261

exists value
Array, 112, 115, 115
ArraySlice, 122, 125, 125
general description, 54
List, 180, 183, 183, 187
ListPair, 58, 185, 187
MONO_ARRAY, 194, 197, 197
MONO_ARRAY_SLICE, 207, 210, 210, 219
MONO_VECTOR, 212, 214
MONO_VECTOR_SLICE, 216, 219

442 SML identifier index

Vector, 214, 401, 403, 403
VectorSlice, 405, 408, 408

exit value
OS.Process, 6, 24, 250, 251, 251
POSIX.Process, 289, 292, 292
Posix.Process, 6, 251
Unix, 93, 94, 394, 397
Windows, 98, 412, 418

exit_status type
POSIX.Process, 289, 291
Posix.Process, 94, 291, 395
Unix, 94, 291, 394, 395, 395

exn type
General, 149, 149

exnMessage value
General, 29, 66, 149, 151

exnName value
General, 29, 149, 151, 151

exp value
MATH, 189, 191

EXPAND_SZ constructor
Windows, 414
WINDOWS.Reg, 410
Windows.Reg, 414

explode value
STRING, 360, 362, 362
SUBSTRING, 373, 375, 375, 376
TEXT.String, 375

ext value
OS.Path, 243, 247

extract value
STRING, 360, 361, 362, 374
SUBSTRING, 373, 374, 374

F_RDLCK constructor
POSIX.IO, 277, 281
Posix.IO, 281

F_UNLCK constructor
POSIX.IO, 277, 281

F_WRLCK constructor
POSIX.IO, 277, 281
Posix.IO, 281

Fail exception
General, 149, 150

failure value
OS.Process, 250, 250, 251

false constructor
Bool, 131

familyOfAddr value
Socket, 331, 337

fault value
POSIX.Error, 259
Posix.Error, 261

fbig value
POSIX.Error, 259
Posix.Error, 261

fchmod value
POSIX.FileSys, 265, 273

fchown value
POSIX.FileSys, 265, 273

FD structure

POSIX_IO.FD, 276
fdToIOD value
POSIX.FileSys, 263, 266
Posix.FileSys, 238

fdToWord value
POSIX.FileSys, 263, 266, 266
Posix.FileSys, 278, 280

Feb constructor
Date, 144

fields value
STRING, 39, 360, 363
SUBSTRING, 373, 376

fieldsOf value
POSIX.TTY, 300, 304

file value
OS.IO, 238
OS.Path, 243, 246
OS_IO.Kind, 237

file_desc type
POSIX.FileSys, 263, 266, 266
POSIX.IO, 276, 278
POSIX.ProcEnv, 284, 285
POSIX.TTY, 298, 301

file_id type
OS.FileSys, 4, 85, 231, 235, 235

fileId value
OS.FileSys, 232, 235, 235

filePosIn value
STREAM_IO, 347, 351, 351

filePosOut value
STREAM_IO, 347, 353

fileSize value
OS.FileSys, 84, 231, 234, 235

FileSys structure
OS, 14, 81, 83, 84, 231
OS.FileSys.OS, 84
Posix, 18, 95, 263

filter value
List, 180, 183
Option, 28, 227, 228

find value
Array, 112, 115
ArraySlice, 122, 125
List, 180, 183
MONO_ARRAY, 194, 197
MONO_ARRAY_SLICE, 207, 210
MONO_VECTOR, 212, 214
MONO_VECTOR_SLICE, 216, 219
Vector, 401, 403
VectorSlice, 405, 408

findExecutable value
Windows, 92, 411, 416, 418

findi value
Array, 112, 115, 115
ArraySlice, 122, 125, 125
MONO_ARRAY, 194, 197, 197
MONO_ARRAY_SLICE, 207, 210, 210
MONO_VECTOR, 212, 214, 214
MONO_VECTOR_SLICE, 216, 219, 219
Vector, 401, 403, 403
VectorSlice, 405, 408, 408

SML identifier index 443

first value
SUBSTRING, 373, 374

FIX constructor
StringCvt, 326, 366, 366

FixedInt structure, 15, 169
flags type
BIT_FLAGS, 129, 129, 129

flags value
BIT_FLAGS, 94, 129, 129

float_class type
IEEEReal, 155, 323

floatDenormalOperand value
WINDOWS.Status, 411

floatDivideByZero value
WINDOWS.Status, 411

floatInexactResult value
WINDOWS.Status, 411

floatInvalidOperation value
WINDOWS.Status, 411

floatOverflow value
WINDOWS.Status, 411

floatStackCheck value
WINDOWS.Status, 411

floatUnderflow value
WINDOWS.Status, 411

FLock structure
POSIX_IO.FLock, 277

flock type
POSIX.IO, 281
Posix.IO.FLock, 281, 282
POSIX_IO.FLock, 277

flock value
POSIX.IO, 281
Posix.IO.FLock, 281
POSIX_IO.FLock, 277

floor value
REAL, 46, 319, 325, 325

flow value
POSIX.TTY, 307
POSIX_TTY.TC, 301, 305

flow_action type
POSIX.TTY, 305
POSIX_TTY.TC, 300

flush value
POSIX.TTY, 306
POSIX_TTY.TC, 301, 306

flushOut value
IMPERATIVE_IO.StreamIO, 161
ImperativeIO, 158, 161
STREAM_IO, 178, 347, 350, 352, 354
TextIO, 72

fmt value
Date, 89, 144, 147, 147
general description, 35
INTEGER, 170, 172, 172
REAL, 156, 320, 326, 326, 327
Time, 88, 387, 390, 390
WORD, 421, 424, 424, 425

fold value
Array2, 117, 120
MONO_ARRAY2, 201, 203

foldi value
Array2, 117, 120, 120, 204
MONO_ARRAY2, 201, 203, 203

foldl value
Array, 112, 114, 114
ArraySlice, 122, 125, 125
general description, 52, 53
List, 180, 183, 187, 376
ListPair, 58, 185, 187
MONO_ARRAY, 194, 196, 196
MONO_ARRAY_SLICE, 207, 209, 209, 218
MONO_VECTOR, 212, 213, 213
MONO_VECTOR_SLICE, 216, 218
SUBSTRING, 373, 376
Vector, 401, 403, 403
VectorSlice, 405, 407, 407

foldlEq value
ListPair, 185, 187

foldli value
Array, 112, 114, 114
ArraySlice, 122, 125, 125
MONO_ARRAY, 194, 196, 196
MONO_ARRAY_SLICE, 207, 209, 209, 218
MONO_VECTOR, 212, 213, 213
MONO_VECTOR_SLICE, 216, 218
Vector, 401, 403, 403
VectorSlice, 405, 407, 407

foldr value
Array, 112, 114, 114, 115
ArraySlice, 122, 125, 125
general description, 52, 53
List, 54, 180, 183, 187, 376
ListPair, 58, 185, 187
MONO_ARRAY, 194, 196, 196, 197
MONO_ARRAY_SLICE, 207, 209, 209, 218
MONO_VECTOR, 212, 213, 213, 214
MONO_VECTOR_SLICE, 216, 218
SUBSTRING, 373, 376
Vector, 401, 403, 403
VectorSlice, 405, 407, 407

foldrEq value
ListPair, 185, 187

foldri value
Array, 112, 114, 114, 115
ArraySlice, 122, 125, 125
MONO_ARRAY, 194, 196, 196, 197
MONO_ARRAY_SLICE, 207, 209, 209, 218
MONO_VECTOR, 212, 213, 213, 214
MONO_VECTOR_SLICE, 216, 218
Vector, 401, 403, 403
VectorSlice, 405, 407, 407

fork value
POSIX.Process, 289, 290, 290

fpathconf value
POSIX.FileSys, 265, 274

fpe value
POSIX.Signal, 294
Posix.Signal, 295

Fri constructor
Date, 144

fromAddr value

444 SML identifier index

INetSock, 166, 167
UnixSock, 398, 399

fromBytes value
PACK_REAL, 253, 254, 254

fromCString value
CHAR, 136, 141, 141, 365
STRING, 361, 365, 365

fromCString value
general description, 37

fromDecimal value
REAL, 47, 320, 327

fromInt value
INTEGER, 169, 170
IntN , 45
REAL, 46, 319, 325
Real, 326
WORD, 420, 422, 425, 426
WordN , 45

fromLarge value
INTEGER, 43, 169, 170
IntM , 43, 44
REAL, 319, 326, 326
RealM , 47
WORD, 420, 422, 422
WordM , 43, 44

fromLargeInt value
REAL, 46, 319, 325
WORD, 44, 420, 422
WordM , 44

fromLargeWord value
WORD, 420, 422, 422

fromList value
Array, 112, 113
Array2, 116, 118
MONO_ARRAY, 194, 195
MONO_ARRAY2, 200, 202
MONO_VECTOR, 211, 212, 311
Vector, 401, 401

fromManExp value
REAL, 319, 324, 324

fromMicroseconds value
Time, 387, 389

fromMilliseconds value
Time, 387, 389

fromNanoseconds value
Time, 387, 389

fromReal value
Time, 387, 388, 388

fromSeconds value
Time, 387, 389

fromStatus value
POSIX.Process, 289, 291
Unix, 94, 250, 394, 395
Windows, 98, 412, 418

fromString value
Bool, 131, 131
CHAR, 136, 139, 139, 364
Date, 90, 145, 148
IEEEReal, 155, 157, 157
Int, 37
INTEGER, 170, 172, 173

NetHostDB, 220, 222
OS.Path, 241, 242, 244, 244
REAL, 320, 327
Socket, 335, 335
SOCKET.AF, 330
SOCKET.SOCK, 330
Socket.SOCK, 109
STRING, 361, 364, 364, 365
Time, 88, 387, 390, 390
WORD, 421, 425, 425

fromString value
general description, 37

fromTimeLocal value
Date, 89, 144, 146, 388

fromTimeUniv value
Date, 89, 144, 146

fromUnixPath value
OS.Path, 243, 249

fromWord value
BIT_FLAGS, 94, 129, 129, 129
POSIX.Error, 259, 260, 260
POSIX.Signal, 294, 294
Posix.Signal, 294

fstat value
POSIX.FileSys, 265, 272, 272

fsync value
POSIX.IO, 277, 281

ftruncate value
POSIX.FileSys, 265, 273
Posix.FileSys, 269

full value
ArraySlice, 122, 123
MONO_ARRAY_SLICE, 206, 208
MONO_VECTOR_SLICE, 216, 217
SUBSTRING, 373, 375
VectorSlice, 405, 406

fullPath value
OS.FileSys, 84, 231, 231, 233, 233

GEN constructor
StringCvt, 327, 366, 366, 367, 370, 371

GENERAL signature, 14
General structure, 4, 14, 19, 20, 25, 26, 29, 149
GENERIC_SOCK signature, 18
GenericSock structure, 18, 100, 153
getATMARK value
Socket, 337
SOCKET.Ctl, 331

getattr value
POSIX.TTY, 306
POSIX_TTY.TC, 301

getBROADCAST value
Socket, 336
SOCKET.Ctl, 331

getBufferMode value
STREAM_IO, 347, 352

getByAddr value
NetHostDB, 101, 220, 221

getByName value
NetHostDB, 101, 102, 220, 221
NetProtDB, 223, 223

SML identifier index 445

NetServDB, 225, 226
getByNumber value
NetProtDB, 223, 223

getByPort value
NetServDB, 225, 226

getc value
SUBSTRING, 369, 373, 374
Substring, 28, 56, 370

getcc value
POSIX.TTY, 300, 305

getcflag value
POSIX.TTY, 300, 305

getComputerName value
Windows, 415
WINDOWS.Config, 410

getcwd value
POSIX.FileSys, 263, 267

getDEBUG value
Socket, 336
SOCKET.Ctl, 330

getDir value
OS.FileSys, 83, 231, 232
OS.Path.OS.FileSys, 82

getDONTROUTE value
Socket, 336
SOCKET.Ctl, 330

getegid value
POSIX.ProcEnv, 284, 286

getEnv value
OS.Process, 24, 27, 28, 86, 92, 250, 251, 252,

287, 395
getenv value
POSIX.ProcEnv, 284, 287

getERROR value
Socket, 337
SOCKET.Ctl, 331

geteuid value
POSIX.ProcEnv, 284, 285

getfd value
POSIX.IO, 276, 279, 280

getfl value
POSIX.IO, 277, 279, 280

getgid value
POSIX.ProcEnv, 284, 286

getgrgid value
POSIX.SysDB, 296, 297

getgrnam value
POSIX.SysDB, 296, 297

getgroups value
POSIX.ProcEnv, 284, 286

getHostName value
NetHostDB, 220, 221

getiflag value
POSIX.TTY, 300, 305

getInstream value
IMPERATIVE_IO, 163
ImperativeIO, 158, 159, 161, 161
TextIO, 68, 71

getispeed value
POSIX.TTY, 305
POSIX_TTY.CF, 300

getItem value
ArraySlice, 122, 124
List, 56, 180, 182, 370
MONO_ARRAY_SLICE, 206, 209
MONO_VECTOR_SLICE, 216, 218
VectorSlice, 405, 407

getKEEPALIVE value
Socket, 336
SOCKET.Ctl, 330

getlflag value
POSIX.TTY, 300, 305

getLINGER value
Socket, 336
SOCKET.Ctl, 330

getlk value
POSIX.IO, 277, 282
Posix.IO, 281

getlogin value
POSIX.ProcEnv, 284, 286

getNODELAY value
INET_SOCK.TCP, 166
INetSock, 168

getNREAD value
Socket, 337
SOCKET.Ctl, 331

getoflag value
POSIX.TTY, 300, 305

getOOBINLINE value
Socket, 337
SOCKET.Ctl, 331

getOpt value
Option, 27, 28, 227, 227

getospeed value
POSIX.TTY, 305
POSIX_TTY.CF, 300

getOutstream value
ImperativeIO, 158, 159, 162, 162
TextIO, 73

getParent value
OS.Path, 243, 245, 245

getPeerName value
Socket, 337
SOCKET.Ctl, 331

getpgrp value
POSIX.ProcEnv, 284, 286
POSIX.TTY, 307
POSIX_TTY.TC, 301

getpid value
POSIX.ProcEnv, 284, 285

getPosOut value
IMPERATIVE_IO, 164
IMPERATIVE_IO.StreamIO, 162
ImperativeIO, 158, 162
STREAM_IO, 347, 352, 352, 354
TextIO, 72

getppid value
POSIX.ProcEnv, 284, 285

getpwnam value
POSIX.SysDB, 296, 297

getpwuid value
POSIX.SysDB, 296, 297

446 SML identifier index

getRCVBUF value
Socket, 337
SOCKET.Ctl, 331
Socket.Ctl, 107

getReader value
STREAM_IO, 64, 347, 347, 351
TextIO.StreamIO, 72, 74

getREUSEADDR value
Socket, 336
SOCKET.Ctl, 330

getRoundingMode value
IEEEReal, 46, 155, 156

getSNDBUF value
Socket, 337
SOCKET.Ctl, 331

getSockName value
Socket, 337
SOCKET.Ctl, 331

getSystemDirectory value
Windows, 415
WINDOWS.Config, 410

getTYPE value
Socket, 337
SOCKET.Ctl, 331
Socket.Ctl, 335

getuid value
POSIX.ProcEnv, 284, 285

getUserName value
Windows, 415
WINDOWS.Config, 410

getVersionEx value
Windows, 415
WINDOWS.Config, 410

getVolume value
OS.Path, 243, 245

getVolumeInformation value
Windows, 411, 416

getWindowsDirectory value
Windows, 415
WINDOWS.Config, 410

getWriter value
STREAM_IO, 64, 347, 347, 352, 354

gid type
POSIX.FileSys, 263, 265
POSIX.ProcEnv, 284, 285, 285
Posix.ProcEnv, 265, 296
POSIX.SysDB, 296, 296

gid value
POSIX.FileSys, 272
POSIX.SysDB, 297
POSIX_FILE_SYS.ST, 265
POSIX_SYS_DB.Group, 296
POSIX_SYS_DB.Passwd, 296

gidToWord value
POSIX.ProcEnv, 284, 285

GREATER constructor
General, 4, 20, 26, 149, 151, 424
IEEEReal, 155

Group structure
POSIX_SYS_DB.Group, 296

group type

POSIX.SysDB, 297, 297
POSIX_SYS_DB.Group, 296

guardPageViolation value
WINDOWS.Status, 411

hash value
OS.FileSys, 232, 235, 235
OS.IO, 237, 238, 238

hd value
List, 180, 181

HEX constructor
StringCvt, 173, 366, 366, 425

hkey type
Windows, 413
WINDOWS.Reg, 409

home value
POSIX.SysDB, 297
POSIX_SYS_DB.Passwd, 296

hour value
Date, 144, 146

hup value
POSIX.Signal, 294
Posix.Signal, 295

hupcl value
Posix.TTY.C, 303
POSIX_TTY.C, 299

I structure
POSIX.TTY, 302
POSIX_TTY.I, 298

icanon value
Posix.TTY.L, 303
POSIX_TTY.L, 299

icrnl value
Posix.TTY.I, 302
POSIX_TTY.I, 298

IEEE_REAL signature, 14
IEEEReal structure, 14, 45, 46, 155
iexten value
Posix.TTY.L, 303
POSIX_TTY.L, 299

iflush value
POSIX.TTY, 306
POSIX_TTY.TC, 301

ignbrk value
Posix.TTY.I, 302
POSIX_TTY.I, 298

igncr value
Posix.TTY.I, 302
POSIX_TTY.I, 298

ignore value
General, 30, 53, 149, 152, 152

ignpar value
Posix.TTY.I, 302
POSIX_TTY.I, 298

ill value
POSIX.Signal, 294
Posix.Signal, 295

illegalInstruction value
WINDOWS.Status, 411

IMPERATIVE_IO signature, 9, 12, 18, 62, 65, 127,
158, 162, 382

SML identifier index 447

ImperativeIO functor, 62, 165
ImperativeIO structure, 18
implode value
STRING, 360, 362, 362

in_addr type
NetHostDB, 220, 220

in_flags type
Socket, 332, 340

inet type
INetSock, 166, 166, 334

INET_SOCK signature, 18
inetAF value
INetSock, 109, 166, 167

INetSock structure, 18, 100, 101, 153, 330
INF constructor
IEEEReal, 155, 156, 157

info type
Windows, 416
WINDOWS.DDE, 410

infoToPollDesc value
OS.IO, 86, 237, 240

inlcr value
Posix.TTY.I, 302
POSIX_TTY.I, 298

ino type
POSIX.FileSys, 264, 271, 271

ino value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

inoToWord value
POSIX.FileSys, 264, 271

inPageError value
WINDOWS.Status, 412

inpck value
Posix.TTY.I, 302
POSIX_TTY.I, 298

inprogress value
POSIX.Error, 259
Posix.Error, 261

input value
ImperativeIO, 158, 159, 160
STREAM_IO, 178, 346, 348, 349–351, 354–357
TextIO, 67, 71

input1 value
IMPERATIVE_IO, 159, 163
IMPERATIVE_IO.StreamIO, 163
ImperativeIO, 158, 159
STREAM_IO, 56, 178, 346, 348, 353, 356, 369
TextIO, 70
TextIO.StreamIO, 70

inputAll value
IMPERATIVE_IO.StreamIO, 78
ImperativeIO, 158, 160
STREAM_IO, 312, 346, 349, 349, 355

inputLine value
TEXT_IO, 382, 383
TEXT_IO.StreamIO, 386, 386
TextIO, 67, 69

inputN value
ImperativeIO, 158, 159
STREAM_IO, 178, 346, 348, 348, 351, 355, 356

TextIO, 67, 69
TextIO.StreamIO, 69, 70

instream type
IMPERATIVE_IO, 91, 417
ImperativeIO, 158, 158, 159
STREAM_IO, 64, 346, 347, 348, 350
TextIO, 71, 238, 396
TextIO.StreamIO, 71, 74, 77

instream value
TextIO, 68

Int structure, 13, 19, 20, 23, 70, 169, 173
int type
FixedInt, 173
Int, 19, 175, 325, 422
INTEGER, 169, 170–173
IntInf, 22, 174, 175
IntM , 43, 44
IntN , 22, 43, 44, 193, 199, 206, 211, 215
LargeInt, 44, 46, 89, 170, 173, 175, 199, 388,

422, 426
Position, 75, 128, 173, 348

int value
LargeInt, 43
POSIX.Signal, 294
Posix.Signal, 295

INT_INF signature, 18, 150
IntArray structure, 16, 193
IntArray2 structure, 16, 199
IntArraySlice structure, 17, 205
INTEGER signature, 9, 11–13, 15, 22, 45, 169, 173,

174
integerDivideByZero value
WINDOWS.Status, 411

integerOverflow value
WINDOWS.Status, 411

intersect value
BIT_FLAGS, 94, 129, 130

IntInf structure, 18, 46, 173–175
IntN structure, 9, 15, 169, 173
IntNArray structure, 16, 193
IntNArray2 structure, 16, 199
IntNArraySlice structure, 17, 206
IntNVector structure, 16, 211
IntNVectorSlice structure, 17, 215
intr value
POSIX.Error, 259
Posix.Error, 261
POSIX.TTY, 301
POSIX_TTY.V, 298

IntVector structure, 16, 211
IntVectorSlice structure, 17, 215
inval value
POSIX.Error, 259
Posix.Error, 261

InvalidArc exception
OS.Path, 242, 243

invalidDisposition value
WINDOWS.Status, 411

invalidHandle value
WINDOWS.Status, 411

Io exception

448 SML identifier index

IO, 66, 177, 177, 177
IO signature, 14
IO structure, 14, 177, 292
OS, 14, 86, 237, 340
Posix, xiii, 18, 62, 76, 95, 276, 385

io value
POSIX.Error, 259
Posix.Error, 261

iodesc type
OS.IO, 235, 237, 237, 237, 238, 239, 263, 266, 308,

332, 340
ioDesc value
Socket, 332, 340

iodesc_kind type
OS.IO, 237, 238

iodToFD value
POSIX.FileSys, 263, 266, 266
Posix.FileSys, 238

ioff value
POSIX.TTY, 306
POSIX_TTY.TC, 301

ioflush value
POSIX.TTY, 306
POSIX_TTY.TC, 301

ion value
POSIX.TTY, 306
POSIX_TTY.TC, 301

irgrp value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

iroth value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

irusr value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

irwxg value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

irwxo value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

irwxu value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

isAbsolute value
OS.Path, 234, 243, 248

isAlpha value
CHAR, 136, 138, 141

isAlphaNum value
CHAR, 136, 138

isAscii value
CHAR, 135, 137

isatty value
POSIX.ProcEnv, 285, 287, 287

isBigEndian value, 48
isBigEndian value
PACK_REAL, 253, 253
PACK_WORD, 255, 255

isBlk value
POSIX.FileSys, 272

POSIX_FILE_SYS.ST, 265
isCanonical value
OS.Path, 243, 247

isChr value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isCntrl value
CHAR, 136, 138

isDigit value
CHAR, 136, 138

isDir value
OS.FileSys, 83, 84, 231, 233, 239
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isdir value
POSIX.Error, 259
Posix.Error, 261

isDst value
Date, 144, 146, 146

isEmpty value
ArraySlice, 122, 124
MONO_ARRAY_SLICE, 206, 209
MONO_VECTOR_SLICE, 216, 218
SUBSTRING, 373, 374
VectorSlice, 405, 406

isFIFO value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isFinite value
REAL, 319, 323

isgid value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 264

isGraph value
CHAR, 136, 138

isHexDigit value
CHAR, 136, 138

isig value
Posix.TTY.L, 303
POSIX_TTY.L, 299

isIn value
OS.IO, 237, 240

isLink value
OS.FileSys, 84, 231, 231, 233, 239
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isLower value
CHAR, 136, 138

isNan value
REAL, 45, 319, 323

isNormal value
REAL, 319, 323

isOut value
OS.IO, 237, 240

isPrefix value
STRING, 361, 363
SUBSTRING, 373, 376

isPri value
OS.IO, 237, 240

isPrint value
CHAR, 136, 138

SML identifier index 449

Char, 364
isPunct value
CHAR, 136, 139

isReg value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isRelative value
OS.Path, 243, 244, 248

isRoot value
OS.Path, 243, 248

isSock value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

isSome value
Option, 28, 227, 227

isSpace value
CHAR, 136, 138
Char, 368

isSubstring value
STRING, 361, 363
SUBSTRING, 373, 376

isSuccess value
OS.Process, 250, 250

isSuffix value
STRING, 361, 363
SUBSTRING, 373, 376

istrip value
Posix.TTY.I, 302
POSIX_TTY.I, 298

isuid value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 264

isUpper value
CHAR, 136, 139, 141
Char, 33

iwgrp value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

iwoth value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

iwusr value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

ixgrp value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

ixoff value
Posix.TTY.I, 302
POSIX_TTY.I, 298

ixon value
Posix.TTY.I, 302
POSIX_TTY.I, 298

ixoth value
POSIX.FileSys, 268
POSIX_FILE_SYS.S, 263

ixusr value
POSIX.FileSys, 267
POSIX_FILE_SYS.S, 263

Jan constructor

Date, 144
join value
Option, 29, 227, 228, 228

joinBaseExt value
OS.Path, 243, 246, 246

joinDirFile value
OS.Path, 85, 243, 246

Jul constructor
Date, 144

Jun constructor
Date, 144

K_GROUP constructor
POSIX.Process, 290, 293

K_PROC constructor
POSIX.Process, 290, 292

K_SAME_GROUP constructor
POSIX.Process, 290, 293

Key structure
Windows, 412
WINDOWS.Key, 409

kill value
POSIX.Process, 290, 293
POSIX.Signal, 294
Posix.Signal, 295
POSIX.TTY, 301
POSIX_TTY.V, 298
Unix, 94, 394, 397

killpid_arg type
POSIX.Process, 290, 292

Kind structure
OS.IO, 238
OS_IO.Kind, 237

kind value
OS.IO, 178, 237, 238

L structure
Posix.TTY, 303
POSIX_TTY.L, 299

LargeInt structure, 13, 43, 48, 169, 173
LargeIntArray structure, 16, 193
LargeIntArray2 structure, 16, 199
LargeIntArraySlice structure, 17, 206
LargeIntVector structure, 16, 211
LargeIntVectorSlice structure, 17, 215
LargeReal structure, 13, 47, 318, 328
LargeRealArray structure, 16, 193
LargeRealArray2 structure, 16, 199
LargeRealArraySlice structure, 17, 206
LargeRealVector structure, 16, 211
LargeRealVectorSlice structure, 17, 215
LargeWord structure, 13, 420, 425
LargeWordArray structure, 16, 193
LargeWordArray2 structure, 16, 199
LargeWordArraySlice structure, 17, 206
LargeWordVector structure, 16, 211
LargeWordVectorSlice structure, 17, 215
last value
List, 180, 181

launchApplication value
Windows, 97, 411, 416

450 SML identifier index

len value
POSIX.IO, 282
POSIX_IO.FLock, 277

length value
Array, 112, 113
ArraySlice, 122, 123
List, 113, 180, 181, 182, 187
MONO_ARRAY, 194, 195
MONO_ARRAY_SLICE, 206, 207
MONO_VECTOR, 211, 212, 349, 350
MONO_VECTOR_SLICE, 216, 216
Vector, 401, 402
VectorSlice, 405, 405

LESS constructor
General, 4, 20, 26, 149, 151, 424
IEEEReal, 155

LINE_BUF constructor
IO, 177, 178, 178, 352

link value
POSIX.FileSys, 264, 270, 270

LIST signature, 14
List structure, 14, 20, 51, 180, 376
list type
List, 19, 180, 184

list value
Socket, 335, 335
SOCKET.AF, 330
Socket.AF, 154
SOCKET.SOCK, 330
Socket.SOCK, 154

LIST_PAIR signature, 14
listen value
Socket, 331, 338, 338

ListPair structure, 14, 58, 59, 185
ln value
MATH, 189, 192

localMachine value
Windows, 413
WINDOWS.Reg, 409

localOffset value
Date, 89, 144, 146

lock_type type
POSIX.IO, 277, 281

log10 value
MATH, 189, 192

log2 value
IntInf, 174, 175

lookahead value
ImperativeIO, 158, 160

loop value
POSIX.Error, 259
Posix.Error, 261

lseek value
POSIX.IO, 277, 281
Posix.IO, 281

lstat value
POSIX.FileSys, 265, 272, 272

ltype value
POSIX.IO, 282
POSIX_IO.FLock, 277

map value
general description, 52
List, 2, 54, 180, 182, 186, 362, 375
ListPair, 58, 185, 186
MONO_VECTOR, 212, 213
MONO_VECTOR_SLICE, 216, 218
Option, 28, 29, 227, 228
STRING, 360, 362
Vector, 401, 402
VectorSlice, 405, 407

mapEq value
ListPair, 185, 186

mapi value
MONO_VECTOR, 212, 213
MONO_VECTOR_SLICE, 216, 218
Vector, 213, 401, 402, 402
VECTOR_SLICE, 218
VectorSlice, 405, 407, 407

mapPartial value
List, 180, 182
Option, 28, 227, 228

Mar constructor
Date, 144

Match exception
General, 149, 150

MATH signature, 12, 13, 150, 189, 318, 320
Math structure, 13, 189, 189, 318
REAL, 45

max value
INTEGER, 169, 172
REAL, 319, 322
WORD, 421, 424

maxChar value
CHAR, 135, 136, 136

maxFinite value
REAL, 318, 320, 326

maxInt value
INTEGER, 169, 170

maxLen value
Array, 112, 113, 113
MONO_ARRAY, 194, 195, 195
MONO_VECTOR, 159, 160, 211, 212, 212, 213, 348,

349
Vector, 401, 401, 401, 402, 406
Word8Vector, 342, 344

maxOrd value
CHAR, 135, 136, 136

maxSize value
STRING, 360, 361, 362, 375
String, 244, 246–248, 368

May constructor
Date, 144

members value
POSIX.SysDB, 297
POSIX_SYS_DB.Group, 296

mfile value
POSIX.Error, 259
Posix.Error, 261

min value
INTEGER, 169, 172
POSIX.TTY, 301

SML identifier index 451

POSIX_TTY.V, 298
REAL, 319, 322
WORD, 421, 424

minChar value
CHAR, 135, 136

minInt value
INTEGER, 169, 170

minNormalPos value
REAL, 318, 320

minPos value
REAL, 318, 320

minute value
Date, 144, 146

mkAbsolute value
OS.Path, 82, 243, 247

mkBinReader value
POSIX.IO, 277, 282

mkBinWriter value
POSIX.IO, 278, 283

mkCanonical value
OS.Path, 243, 247, 247

mkDir value
OS.FileSys, 231, 233

mkdir value
POSIX.FileSys, 264, 270, 270

mkfifo value
POSIX.FileSys, 264, 270

mkInstream value
BinIO, 128
BinIO.StreamIO, 75, 76
ImperativeIO, 158, 159, 161
STREAM_IO, 347, 350, 351
TextIO, 71, 384
TextIO.StreamIO, 72, 74, 77

mkOutstream value
BinIO, 128
BinIO.StreamIO, 75, 76
ImperativeIO, 158, 159, 162
STREAM_IO, 347, 352, 352
TextIO, 384
TextIO.StreamIO, 385

mkRelative value
OS.Path, 234, 243, 247

mkTextReader value
POSIX.IO, 277, 282

mkTextWriter value
POSIX.IO, 278, 283
Posix.IO, 385

mlink value
POSIX.Error, 259
Posix.Error, 261

mod value
Int, 22
INTEGER, 169, 171, 171, 174
WORD, 421, 424

mode type
POSIX.FileSys, 267, 267
POSIX_FILE_SYS.S, 263

mode value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

modify value
Array, 112, 114
Array2, 117, 120
ArraySlice, 122, 124
MONO_ARRAY, 194, 196
MONO_ARRAY2, 201, 204
MONO_ARRAY_SLICE, 207, 209

modifyi value
Array, 112, 114, 114
Array2, 117, 120, 120, 204
ArraySlice, 122, 124, 124
MONO_ARRAY, 194, 196, 196
MONO_ARRAY2, 201, 204, 204
MONO_ARRAY_SLICE, 207, 209, 209

modTime value
OS.FileSys, 84, 231, 231, 234

Mon constructor
Date, 144

MONO_ARRAY signature, 12, 13, 16, 51, 114, 125, 165,
193, 198, 209, 210, 214, 218, 317, 358, 380, 403,
407

MONO_ARRAY2 signature, 15, 16, 59, 199, 204
MONO_ARRAY_SLICE signature, 12, 13, 17, 78, 205,

210, 317, 380
MONO_VECTOR signature, 12, 13, 16, 51, 165, 198,

210, 211, 219, 317, 358, 380
MONO_VECTOR_SLICE signature, 12, 13, 17, 78, 210,

215, 219, 317, 380
month type
Date, 144

month value
Date, 144, 146

msgsize value
POSIX.Error, 259
Posix.Error, 261

mtime value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265

MULTI_SZ constructor
Windows, 414
WINDOWS.Reg, 410
Windows.Reg, 414

name value
CommandLine, 143, 143
NetHostDB, 220, 220
NetProtDB, 223, 223
NetServDB, 225, 225
POSIX.SysDB, 297
POSIX_SYS_DB.Group, 296
POSIX_SYS_DB.Passwd, 296

nametoolong value
POSIX.Error, 259
Posix.Error, 261

NAN constructor
IEEEReal, 155, 156, 157

nccs value
POSIX.TTY, 302
Posix.TTY.V, 302
POSIX_TTY.V, 298

nCols value

452 SML identifier index

Array2, 116, 118
MONO_ARRAY2, 200, 202

negInf value
REAL, 45, 318, 320

NET_HOST_DB signature, 18
NET_PROT_DB signature, 18
NET_SERV_DB signature, 18
NetHostDB structure, 18, 100, 101
NetProtDB structure, 18, 100
NetServDB structure, 18, 100, 102
nextAfter value
REAL, 319, 324, 324

nfile value
POSIX.Error, 259
Posix.Error, 261

nil constructor
List, 180

nlink value
POSIX.FileSys, 272
POSIX.FileSys.ST, 274
Posix.FileSys.ST, 95
POSIX_FILE_SYS.ST, 265

NO_BUF constructor
IO, 177, 178, 178, 352, 354

NO_RECVS constructor
Socket, 331, 339

NO_RECVS_OR_SENDS constructor
Socket, 331, 339

NO_SENDS constructor
Socket, 331, 339

noctty value
POSIX.FileSys, 268
POSIX_FILE_SYS.O, 264

nodev value
POSIX.Error, 259
Posix.Error, 261

noent value
POSIX.Error, 259
Posix.Error, 261

noexec value
POSIX.Error, 259
Posix.Error, 261

noflsh value
Posix.TTY.L, 303
POSIX_TTY.L, 299

nolck value
POSIX.Error, 259
Posix.Error, 262

nomem value
POSIX.Error, 259
Posix.Error, 262

nonblock value
POSIX.FileSys, 268
POSIX.IO, 279
POSIX_FILE_SYS.O, 264
POSIX_IO.O, 276

NonblockingNotSupported exception
IO, 177, 177, 178, 179

noncontinuableException value
WINDOWS.Status, 412

NONE constructor

Option, 20, 27, 28, 58, 227, 227
NORMAL constructor
IEEEReal, 155, 156, 157

nospc value
POSIX.Error, 259
Posix.Error, 262

nosys value
POSIX.Error, 259
Posix.Error, 262

not value
Bool, 25, 115, 125, 131, 131, 131, 137, 183, 197,

210, 214, 219, 403, 408
notb value
IntInf, 174, 175
WORD, 420, 423

notContains value
CHAR, 135, 137, 137
Char, 34

notdir value
POSIX.Error, 260
Posix.Error, 262

notempty value
POSIX.Error, 260
Posix.Error, 262

notify value
Windows, 412, 412
WINDOWS.Key, 409

notsup value
POSIX.Error, 260
Posix.Error, 262

notty value
POSIX.Error, 260
Posix.Error, 262

Nov constructor
Date, 144

now value
Time, 88, 234, 387, 390, 390

nRows value
Array2, 116, 118
MONO_ARRAY2, 200, 202

nth value
List, 180, 182

null value
List, 180, 181

nullRd value
PRIM_IO, 77, 310, 314

nullWr value
PRIM_IO, 77, 310, 314

nxio value
POSIX.Error, 260
Posix.Error, 262

O structure
Posix.FileSys, 268
POSIX.TTY, 302
POSIX_FILE_SYS.O, 264
POSIX_IO.O, 276
POSIX_TTY.O, 299

o value
General, 30, 149, 151

O_RDONLY constructor

SML identifier index 453

POSIX.FileSys, 264, 269
POSIX.IO, 276, 280

O_RDWR constructor
POSIX.FileSys, 264, 269
POSIX.IO, 276, 280

O_WRONLY constructor
POSIX.FileSys, 264, 269, 269
POSIX.IO, 276, 280

OCT constructor
StringCvt, 173, 366, 366, 425

Oct constructor
Date, 144

offset value
Date, 144, 146, 146

oflush value
POSIX.TTY, 306
POSIX_TTY.TC, 301

ooff value
POSIX.TTY, 306
POSIX_TTY.TC, 301

oon value
POSIX.TTY, 306
POSIX_TTY.TC, 301

open_mode type
POSIX.FileSys, 264, 269
POSIX.IO, 276, 280

openAppend value
BinIO, 127, 127
TEXT_IO, 382, 383, 385
TextIO, 66

openDir value
OS.FileSys, 231, 232

opendir value
POSIX.FileSys, 263, 266

openDocument value
Windows, 97, 411, 417

OPENED_EXISTING_KEY constructor
WINDOWS.Reg, 409

openf value
POSIX.FileSys, 264, 268, 269, 269, 270
Posix.FileSys, 94, 269

openIn value
BinIO, 127, 127, 127
TEXT_IO, 382, 383, 383, 385
TextIO, 65, 232, 238

openKeyEx value
Windows, 413
WINDOWS.Reg, 410

openOut value
BinIO, 127, 127, 127
TEXT_IO, 382, 383, 383, 385
TextIO, 65, 232

openString value
TEXT_IO, 382, 384
TextIO, 66, 370

openVector value
PRIM_IO, 309, 314

opost value
POSIX.TTY, 303
POSIX_TTY.O, 299

Option exception

Option, 20, 227, 227
OPTION signature, 14
Option structure, 14, 20, 28, 227
option type
Option, 20, 27–29, 227, 227, 227, 266

orb value
IntInf, 174, 175
WORD, 420, 423

ord value
CHAR, 135, 136, 136, 137

order type
GENERAL, 4
General, 20, 26, 149, 151, 151

OS signature, 14
OS structure, 5, 14, 93, 229, 409
OS_FILE_SYS signature, 14, 229
OS_IO signature, 14, 229
OS_PATH signature, 14, 229
OS_PROCESS signature, 14, 229
out_flags type
Socket, 332, 340

out_pos type
STREAM_IO, 346, 348, 348
TextIO.StreamIO, 72, 73

output value
ImperativeIO, 158, 161
STREAM_IO, 178, 347, 350, 352
TextIO, 72

output1 value
BinIO, 37
ImperativeIO, 158, 161
STREAM_IO, 178, 347, 350, 352
TextIO, 72

outputSubstr value
TEXT_IO, 382, 383
TEXT_IO.StreamIO, 386, 386
TEXT_STREAM_IO, 178

outstream type
BinIO, 127
IMPERATIVE_IO, 91, 159, 418
IMPERATIVE_IO.StreamIO, 159
ImperativeIO, 158, 158, 159, 161
STREAM_IO, 64, 346, 347, 348, 352
TextIO, 72, 73, 396
TextIO.StreamIO, 72, 73

Overflow exception
General, 27, 43–46, 149, 150, 169, 174

PACK_REAL signature, 15, 16, 48, 253
PACK_WORD signature, 15, 48
PackRealBig structure, 15, 253, 253
PackRealLittle structure, 15, 253, 253
PackRealNBig structure, 16, 253, 253
PackRealNLittle structure, 16, 253, 253
packString value
Byte, 38, 133, 134

PackWord32Little structure, 49
PackWordNBig structure, 15, 255, 255
PackWordNLittle structure, 15, 255, 255
padLeft value
StringCvt, 34, 366, 367

454 SML identifier index

padRight value
StringCvt, 34, 366, 367

parenb value
Posix.TTY.C, 303
POSIX_TTY.C, 299

parentArc value
OS.Path, 241, 242, 243

parmrk value
Posix.TTY.I, 302
POSIX_TTY.I, 298

parodd value
Posix.TTY.C, 303
POSIX_TTY.C, 299

partition value
List, 180, 183

passive type
Socket, 166, 330

Passwd structure
POSIX_SYS_DB.Passwd, 296

passwd type
POSIX.SysDB, 297, 297
POSIX_SYS_DB.Passwd, 296

Path exception
OS.Path, 242, 243

Path structure
OS, 14, 81, 82, 84, 241, 242

pathconf value
POSIX.FileSys, 265, 274, 274

pause value
POSIX.Process, 290, 293

pending value
WINDOWS.Status, 412

performanceData value
Windows, 413
WINDOWS.Reg, 409

perm value
POSIX.Error, 260
Posix.Error, 262

pi value
MATH, 189, 189
Math, 46

pid type
POSIX.IO, 276, 278
POSIX.ProcEnv, 284, 285
POSIX.Process, 289, 290, 290, 291–293
POSIX.TTY, 298, 301

pid value
POSIX.IO, 282
POSIX_IO.FLock, 277

pidToWord value
POSIX.Process, 289, 290

pipe value
OS.IO, 238
OS_IO.Kind, 237
POSIX.Error, 260
Posix.Error, 262
POSIX.IO, 276, 278
Posix.IO, 399
POSIX.Signal, 294
Posix.Signal, 93, 295

platformWin32CE value

Windows, 415, 415
WINDOWS.Config, 410

platformWin32NT value
Windows, 415, 415
WINDOWS.Config, 410
Windows.Config, 415

platformWin32s value
Windows, 415, 415
WINDOWS.Config, 410

platformWin32Windows value
Windows, 415, 415
WINDOWS.Config, 410
Windows.Config, 415

Poll exception
OS.IO, 237, 239

poll value
IO, 106
OS.IO, 86, 237, 240, 340

poll_desc type
OS.IO, 86, 237, 237, 239

poll_info type
OS.IO, 86, 87, 237, 239, 240

pollDesc value
OS.IO, 87, 237, 239, 340

pollIn value
OS.IO, 87, 237, 239

pollOut value
OS.IO, 87, 237, 239

pollPr value
OS.IO, 87

pollPri value
OS.IO, 237, 239

pollToIODesc value
OS.IO, 237, 239

port value
NetServDB, 225, 225

pos type
BinIO.StreamIO, 128
BinPrimIO, 128
PRIM_IO, 309, 310, 310, 316
PrimIO, 317, 317
STREAM_IO, 346, 348, 348, 351, 353
TextPrimIO, 75
TextPrimIO.BinPrimIO, 75

posInf value
REAL, 45, 318, 320

Position structure, 13, 169
position value
SUBSTRING, 373, 378

POSIX signature, 18
Posix structure, 4, 6, 18, 91, 94–96, 129, 250, 257,

258, 291, 395–397, 425
POSIX_ERROR signature, 18, 257
POSIX_FILE_SYS signature, 18, 257, 258
POSIX_IO signature, 18, 257, 258
POSIX_PROC_ENV signature, 4, 18, 257, 258
POSIX_PROCESS signature, 18, 257
POSIX_SIGNAL signature, 18, 257
POSIX_SYS_DB signature, 18, 257, 258
POSIX_TTY signature, 18, 257, 258
pow value

SML identifier index 455

IntInf, 174, 174, 174
MATH, 189, 191

precision value
INTEGER, 169, 170, 170
LargeInt, 46
REAL, 318, 320, 328

pred value
CHAR, 135, 137, 137

PRIM_IO signature, 12, 13, 15, 18, 62, 65, 71, 75, 77,
308, 317, 351, 352, 358

PrimIO functor, 62, 317
PrimIO structure, 18
print value
TEXT_IO, 382, 384

privilegedInstruction value
WINDOWS.Status, 412

proc type
Unix, 394, 395, 395, 396
Windows, 411, 417, 417, 418

ProcEnv structure
Posix, 18, 95, 284

Process structure
OS, 14, 250
Posix, 18, 95, 288, 289

protocol value
NetProtDB, 223, 223
NetServDB, 225, 225

queryValue value
Windows, 412, 412
WINDOWS.Key, 409

queryValueEx value
Windows, 414, 414
WINDOWS.Reg, 410

queue_sel type
POSIX.TTY, 306
POSIX_TTY.TC, 301

quit value
POSIX.Signal, 294
Posix.Signal, 261, 295
POSIX.TTY, 301
POSIX_TTY.V, 298

quot value
INTEGER, 169, 171, 171, 174

quotRem value
IntInf, 174, 174

radix type
StringCvt, 34, 366, 366, 366

radix value
REAL, 318, 320, 320

RandomAccessNotSupported exception
IO, 177, 178, 179

range value
POSIX.Error, 260
Posix.Error, 262

RD constructor
PRIM_IO, 309, 311
TextPrimIO, 74

read value
Windows, 413

WINDOWS.Key, 409
readArr value
POSIX.IO, 276, 279

readDir value
OS.FileSys, 83, 231, 232, 232

readdir value
POSIX.FileSys, 263, 266

reader type
BinPrimIO, 76
PRIM_IO, 63, 64, 74, 78, 79, 86, 308, 309, 311,

311, 312, 317, 356
STREAM_IO, 346, 348, 350
StringCvt, 33, 35–38, 40, 70, 74, 131, 353, 366,

367, 367
TextPrimIO, 74, 76

readLink value
OS.FileSys, 84, 231, 231, 233, 235

readlink value
POSIX.FileSys, 264, 271

readVec value
POSIX.IO, 276, 279

REAL signature, 4, 12, 13, 15, 22, 45, 46, 318, 329
Real structure, 13, 20, 70, 253, 318, 328, 329
real type
LargeReal, 199, 326
MATH, 189, 191
PACK_REAL, 253, 253, 254
REAL, 4, 45–47, 318, 320, 320, 325–327
Real, 189, 329, 388
RealM , 47
RealN , 22, 47, 194, 200, 206, 211, 216, 253

real value
top level, 326

real_order type
IEEEReal, 155, 322

real_timer type
Timer, 391, 391

RealArray structure, 16, 51, 193
RealArray2 structure, 16, 199
RealArraySlice structure, 17, 205
realCeil value
REAL, 319, 325, 325

realFloor value
REAL, 319, 325, 325

realfmt type
StringCvt, 34, 326, 366, 366, 366

realMod value
REAL, 319, 324

RealN structure, 15, 253, 318, 328
RealNArray structure, 16, 194
RealNArray2 structure, 16, 200
RealNArraySlice structure, 17, 206
RealNVector structure, 16, 211
RealNVectorSlice structure, 17, 216
realPath value
OS.FileSys, 84, 231, 231, 233, 233

realRound value
REAL, 319, 325, 325

realTrunc value
REAL, 319, 325, 325

RealVector structure, 16, 51, 211

456 SML identifier index

RealVectorSlice structure, 17, 215
reap value
Unix, 92–94, 251, 394, 396, 397
Windows, 96–98, 411, 418

recvArr value
Socket, 332, 342, 342

recvArr’ value
Socket, 332, 342, 342

recvArrFrom value
Socket, 334, 344, 345

recvArrFrom’ value
Socket, 334, 344, 344, 345

recvArrFromNB value
Socket, 334, 345

recvArrFromNB’ value
Socket, 334, 345

recvArrNB value
Socket, 333, 342

recvArrNB’ value
Socket, 333, 342

recvVec value
Socket, 104, 332, 341, 342

recvVec’ value
Socket, 332, 341, 342

recvVecFrom value
Socket, 105, 333, 344, 345

recvVecFrom’ value
Socket, 333, 344, 345

recvVecFromNB value
Socket, 334, 345

recvVecFromNB’ value
Socket, 334, 345

recvVecNB value
Socket, 333, 342

recvVecNB’ value
Socket, 333, 342

Reg structure
WINDOWS.Reg, 409

region type
Array2, 116, 117
MONO_ARRAY2, 200, 201

rem value
INTEGER, 169, 171, 171, 174
REAL, 318, 321, 321

remove value
OS.FileSys, 231, 234, 398

rename value
OS.FileSys, 231, 234, 234, 235
POSIX.FileSys, 264, 270

rev value
List, 180, 182

revAppend value
List, 56, 57, 180, 181

rewindDir value
OS.FileSys, 231, 232, 232

rewinddir value
POSIX.FileSys, 263, 266

rmDir value
OS.FileSys, 231, 233, 234

rmdir value
POSIX.FileSys, 264, 270

rofs value
POSIX.Error, 260
Posix.Error, 262

round value
REAL, 46, 319, 325, 325

rounding_mode type
IEEEReal, 46, 155

row value
Array2, 116, 118
MONO_ARRAY2, 200, 202

RowMajor constructor
Array2, 116, 117

S structure
POSIX_FILE_SYS.S, 263

sadrain value
POSIX.TTY, 305
POSIX_TTY.TC, 300

saflush value
POSIX.TTY, 305
POSIX_TTY.TC, 300

sameAddr value
Socket, 331, 337

sameDesc value
Socket, 331, 339

sameSign value
INTEGER, 169, 172
REAL, 319, 322

sanow value
POSIX.TTY, 305
POSIX_TTY.TC, 300

Sat constructor
Date, 144

scan value
Bool, 131, 131, 131, 368
CHAR, 136, 139, 139, 140, 364
Date, 90, 145, 148, 368
general description, 36
IEEEReal, 47, 155, 157
Int, 70, 367
INTEGER, 170, 172, 172
NetHostDB, 220, 222
REAL, 320, 327
STRING, 361, 364, 364
Time, 88, 387, 390, 390
WORD, 421, 425, 425

scanStream value
TEXT_IO, 369, 383, 384
TextIO, 367, 384

scanString value
StringCvt, 35, 41, 131, 139, 148, 173, 327, 364,

366, 368, 368, 370, 390, 425
SCI constructor
StringCvt, 326, 366, 366

second value
Date, 144, 146

SEEK_CUR constructor
POSIX.IO, 276, 281

SEEK_END constructor
POSIX.IO, 276, 281

SEEK_SET constructor

SML identifier index 457

POSIX.IO, 276, 281
segv value
POSIX.Signal, 294
Posix.Signal, 295

select value
Socket, 104, 106, 332, 338–340, 340

sendArr value
Socket, 332, 340, 341

sendArr’ value
Socket, 332, 336, 337, 341, 341

sendArrNB value
Socket, 332, 341

sendArrNB’ value
Socket, 332, 341

sendArrTo value
Socket, 333, 342, 343

sendArrTo’ value
Socket, 333, 336, 337, 343, 343

sendArrToNB value
Socket, 333, 343

sendArrToNB’ value
Socket, 333, 343

sendbreak value
POSIX.TTY, 306
POSIX_TTY.TC, 301

sendVec value
Socket, 332, 340, 341, 398

sendVec’ value
Socket, 332, 336, 337, 341, 341

sendVecNB value
Socket, 332, 341

sendVecNB’ value
Socket, 332, 341

sendVecTo value
Socket, 333, 342, 343

sendVecTo’ value
Socket, 333, 336, 337, 343, 343

sendVecToNB value
Socket, 333, 343

sendVecToNB’ value
Socket, 333, 343

Sep constructor
Date, 144

set_action type
POSIX.TTY, 305
POSIX_TTY.TC, 300

setattr value
POSIX.TTY, 306
POSIX_TTY.TC, 301, 302, 305

setBROADCAST value
Socket, 336
SOCKET.Ctl, 331

setBufferMode value
STREAM_IO, 347, 352, 352, 354, 357

setDEBUG value
Socket, 336
SOCKET.Ctl, 330

setDONTROUTE value
Socket, 336
SOCKET.Ctl, 330

setfd value

POSIX.IO, 276, 279, 280
setfl value
POSIX.IO, 277, 279, 280

setgid value
POSIX.ProcEnv, 284, 286

setInstream value
IMPERATIVE_IO, 161
ImperativeIO, 158, 162
TextIO, 71, 369

setispeed value
POSIX.TTY, 305
POSIX_TTY.CF, 300

setKEEPALIVE value
Socket, 336
SOCKET.Ctl, 330

setLINGER value
Socket, 336
SOCKET.Ctl, 330

setlk value
POSIX.IO, 277, 282, 282

setlkw value
POSIX.IO, 277, 282, 282

setNODELAY value
INET_SOCK.TCP, 166
INetSock, 168

setOOBINLINE value
Socket, 337
SOCKET.Ctl, 331

setospeed value
POSIX.TTY, 305
POSIX_TTY.CF, 300

setOutstream value
IMPERATIVE_IO, 162
ImperativeIO, 158, 162
TextIO, 73

setpgid value
POSIX.ProcEnv, 284, 286

setpgrp value
POSIX.TTY, 307
POSIX_TTY.TC, 301

setPosOut value
IMPERATIVE_IO, 164
IMPERATIVE_IO.StreamIO, 162
ImperativeIO, 158, 162
STREAM_IO, 347, 352, 353, 354
TextIO, 73

setRCVBUF value
Socket, 337
SOCKET.Ctl, 331

setREUSEADDR value
Socket, 336
SOCKET.Ctl, 330

setRoundingMode value
IEEEReal, 46, 155, 156, 156

setsid value
POSIX.ProcEnv, 284, 286

setSNDBUF value
Socket, 337
SOCKET.Ctl, 331

setTime value
OS.FileSys, 231, 234

458 SML identifier index

setuid value
POSIX.ProcEnv, 284, 286

setValue value
Windows, 412, 413, 413
WINDOWS.Key, 409

setValueEx value
Windows, 414
WINDOWS.Reg, 410

shell value
POSIX.SysDB, 297
POSIX_SYS_DB.Passwd, 296

shutdown value
Socket, 331, 339

shutdown_mode type
Socket, 331

sign value
INTEGER, 169, 172, 172
REAL, 319, 322

Signal structure
Posix, 18, 294

signal type
POSIX.Process, 289, 290
POSIX.Signal, 294, 294
Posix.Signal, 94, 395
Unix, 94, 394, 395, 395

signBit value
REAL, 319, 322, 322

simpleExecute value
Windows, 97, 411, 417

sin value
MATH, 189, 190, 190

singleStep value
WINDOWS.Status, 412

sinh value
MATH, 189, 192, 192

Size exception
General, 149, 150

size value
POSIX.FileSys, 272
POSIX_FILE_SYS.ST, 265
STRING, 360, 361
SUBSTRING, 372, 374
TEXT.String, 374, 375

skipWS value
StringCvt, 35, 69, 366, 367, 368

sleep value
OS.Process, 250, 252
POSIX.Process, 290, 293

slice type, 120
ArraySlice, 122, 122
CharArraySlice, 380
CharVectorSlice, 33, 372, 380
IntNVectorSlice, 206
MONO_ARRAY_SLICE, 205, 206
MONO_VECTOR_SLICE, 215, 216
RealNVectorSlice, 206
VectorSlice, 405, 405
WideCharArraySlice, 380
WideCharVectorSlice, 372, 380
WordNVectorSlice, 206

slice value

ArraySlice, 122, 123, 123
MONO_ARRAY_SLICE, 206, 208, 208, 217
MONO_VECTOR_SLICE, 216, 217
SUBSTRING, 373, 375
VectorSlice, 405, 406, 406

SOCK structure
Socket, 335
SOCKET.SOCK, 330

sock type
INetSock, 166
Socket, 330, 334, 345
UnixSock, 398, 398

sock_addr type
INetSock, 166, 167
Socket, 330, 334
UnixSock, 398, 399

sock_desc type
Socket, 331, 339

sock_type type
Socket, 335
SOCKET.SOCK, 330

sockDesc value
Socket, 331, 339

SOCKET signature, 18
Socket structure, 18, 99, 100, 103, 345
socket value
GenericSock, 109, 153, 153
INET_SOCK.TCP, 166
INET_SOCK.UDP, 166
INetSock, 167, 167, 168
OS.IO, 238
OS_IO.Kind, 237
UNIX_SOCK.DGrm, 398
UNIX_SOCK.Strm, 398
UnixSock, 399

socket’ value
GenericSock, 153, 154
INET_SOCK.TCP, 166
INET_SOCK.UDP, 166
INetSock, 167, 168

socketPair value
GenericSock, 153, 153
UNIX_SOCK.DGrm, 398
UNIX_SOCK.Strm, 398
UnixSock, 399, 400

socketPair’ value
GenericSock, 153, 154

SOME constructor
Option, 20, 28, 58, 227, 227

someElem value
PrimIO, 317, 317
StreamIO, 358

Span exception
General, 149, 150

span value
SUBSTRING, 150, 373, 378
Substring, 379

speed type
POSIX.TTY, 299, 303, 304
Posix.TTY, 307

speedToWord value

SML identifier index 459

POSIX.TTY, 299, 304
spipe value
POSIX.Error, 260
Posix.Error, 262

split value
REAL, 319, 324

splitAt value
SUBSTRING, 373, 377

splitBaseExt value
OS.Path, 243, 246, 246, 247

splitDirFile value
OS.Path, 243, 245, 246

splitl value
StringCvt, 35, 366, 367, 368, 368
SUBSTRING, 373, 377, 377, 378
Substring, 379

splitr value
SUBSTRING, 373, 377, 377, 378

sqrt value
MATH, 189, 190, 190
REAL.Math, 45

srch value
POSIX.Error, 260
Posix.Error, 262

ST structure
Posix.FileSys, 95, 270
POSIX_FILE_SYS.ST, 264

stackOverflow value
WINDOWS.Status, 412

start value
POSIX.IO, 282
POSIX.TTY, 301
POSIX_IO.FLock, 277
POSIX_TTY.V, 298

startCPUTimer value
Timer, 391, 392

startDialog value
Windows, 416
WINDOWS.DDE, 410

startRealTimer value
Timer, 391, 392

stat type
POSIX.FileSys, 271
POSIX_FILE_SYS.ST, 264

stat value
POSIX.FileSys, 265, 272, 272

Status structure
Windows, 98, 418
WINDOWS.Status, 411

status type
OS.Process, 250, 250, 250, 251, 418
WINDOWS.Status, 411

stdErr value
TEXT_IO, 382, 384
TextIO, 24, 178, 384, 385

stderr value
POSIX.FileSys, 263, 267

stdIn value
TEXT_IO, 382, 384
TextIO, 67, 68, 71, 369

stdin value

POSIX.FileSys, 263, 267
stdOut value
TEXT_IO, 382, 384, 385
TextIO, 24, 53, 73, 384

stdout value
POSIX.FileSys, 263, 267

stop value
POSIX.Signal, 294
Posix.Signal, 295
POSIX.TTY, 301
POSIX_TTY.V, 298

stopDialog value
Windows, 416
WINDOWS.DDE, 410

str value
STRING, 360, 361, 362
String, 139

stream type
Socket, 330, 334, 334

stream value
Socket, 335
SOCKET.SOCK, 330

STREAM_IO signature, 12, 18, 62, 64, 65, 158, 160,
162, 163, 165, 178, 346, 354, 357, 382, 386

stream_sock type
INetSock, 166, 166
UnixSock, 398, 398

StreamIO functor, 62, 357, 358
StreamIO structure, 18
BinIO, 348
IMPERATIVE_IO, 162
TextIO, 12, 68, 72, 348

streamsOf value
Unix, 91, 394, 396

STRING signature, 12, 13, 15, 360, 376, 380
String structure, 9, 13, 20, 33, 360, 360, 372
string type
CHAR, 135
STRING, 33, 360
String, 9, 22, 33, 34, 51, 134, 159, 211, 214, 215,

347, 372, 380
SUBSTRING, 372, 375
Substring, 372
WideString, 22, 211, 215, 372, 380
WideSubstring, 372

string value
SUBSTRING, 373, 374, 375, 375, 376, 377
Substring, 383, 386

STRING_CVT signature, 14
StringCvt structure, 14, 33–35, 41, 70, 366
stringToBytes value
Byte, 37, 133, 133

Strm structure
UNIX_SOCK.Strm, 398
UnixSock, 105

sub value
Array, 112, 113
Array2, 116, 118
ArraySlice, 122, 123
MONO_ARRAY, 194, 195
MONO_ARRAY2, 200, 202

460 SML identifier index

MONO_ARRAY_SLICE, 206, 207
MONO_VECTOR, 211, 212
MONO_VECTOR_SLICE, 216, 217
POSIX.TTY, 302, 302
POSIX_TTY.V, 298
STRING, 360, 361
SUBSTRING, 373, 374
TEXT.String, 374
Vector, 401, 402
VectorSlice, 405, 406

subArr value
PACK_REAL, 253, 254
PACK_WORD, 255, 256

subArrX value
PACK_WORD, 255, 256, 256

SUBNORMAL constructor
IEEEReal, 155, 156

Subscript exception
General, 149, 151, 177, 179

subslice value
ArraySlice, 122, 123, 123
MONO_ARRAY_SLICE, 206, 208
MONO_VECTOR_SLICE, 216, 217
VectorSlice, 405, 406

SUBSTRING signature, 12, 13, 15, 58, 78, 372, 380
Substring structure, 13, 20, 33, 372, 372
substring type
SUBSTRING, 33, 58, 372, 372
Substring, 33, 34, 38, 215, 380
WideSubstring, 215, 380

substring value
STRING, 360, 361
SUBSTRING, 373, 374, 374, 375, 377
TEXT.String, 375

subVec value
PACK_REAL, 253, 254
PACK_WORD, 255, 255

subVecX value
PACK_WORD, 255, 255, 255
PackWord16Big, 49

succ value
CHAR, 135, 136, 136

success value
OS.Process, 94, 250, 250

Sun constructor
Date, 144

susp value
POSIX.TTY, 301
POSIX_TTY.V, 298

symlink value
OS.IO, 238
OS_IO.Kind, 237
POSIX.FileSys, 264, 271

sync value
POSIX.FileSys, 269
POSIX.IO, 280
POSIX_FILE_SYS.O, 264
POSIX_IO.O, 276

sysconf value
POSIX.ProcEnv, 285, 288

SysDB structure

Posix, 18, 95, 296
SysErr exception
OS, 66, 95, 177, 229, 229, 230, 230, 234, 258, 288,

416
SysErr value
OS, 230

syserror type
OS, 229, 230, 230, 258, 260
POSIX.Error, 259, 260, 260
Posix.Error, 258, 262

syserror value
OS, 229, 230, 230
POSIX.Error, 259, 260, 260

system value
OS.Process, 91, 92, 94, 96, 231, 250, 251, 394,

417
SysWord structure, 15, 258, 420, 425
SZ constructor
Windows, 414
WINDOWS.Reg, 410
Windows.Reg, 414

tabulate value
Array, 112, 113
Array2, 116, 118
general description, 54, 55
List, 180, 181
MONO_ARRAY, 194, 195
MONO_ARRAY2, 200, 202
MONO_VECTOR, 211, 212
Vector, 401, 402

take value
List, 180, 182, 182

takel value
StringCvt, 366, 368, 368
SUBSTRING, 373, 378, 378
Substring, 39, 40

taker value
SUBSTRING, 373, 378, 378

tan value
MATH, 189, 190, 190

tanh value
MATH, 189, 192, 192

TC structure
Posix.TTY, 305
POSIX_TTY.TC, 300

TCP structure
INET_SOCK.TCP, 166

term value
POSIX.Signal, 294
Posix.Signal, 261, 295

terminate value
OS.Process, 24, 250, 251, 251

termios type
POSIX.TTY, 300, 304, 304, 305
POSIX_TTY, 302

termios value
POSIX.TTY, 300, 304, 304

TEXT signature, 12, 13, 15, 360, 372, 380
Text structure, 13, 33, 360, 372, 380, 380
TEXT_IO signature, 9, 12, 13, 15, 382

SML identifier index 461

TEXT_STREAM_IO signature, 9, 12, 382, 386
textInstreamOf value
Unix, 394, 396
Windows, 411, 417

TextIO structure, 12, 13, 24, 62, 64–66, 69, 165, 239,
382, 382, 384

textOutstreamOf value
Unix, 394, 396
Windows, 411, 418

TextPrimIO structure, 13, 76, 308
Thu constructor
Date, 144

Time exception
Time, 387, 388

TIME signature, 14
Time structure, 14, 88, 387
time type
Time, 88, 148, 284, 287, 387, 387, 388, 389, 391,

392
time value
POSIX.ProcEnv, 284, 287
POSIX.TTY, 301
POSIX_TTY.V, 298

timeout value
WINDOWS.Status, 412

TIMER signature, 14
Timer structure, xii, 14, 90, 391
times value
POSIX.ProcEnv, 284, 287

tl value
List, 180, 181

tmpName value
OS.FileSys, 85, 231, 235

TO_NEAREST constructor
IEEEReal, 46, 155, 156, 327

TO_NEGINF constructor
IEEEReal, 46, 155

TO_POSINF constructor
IEEEReal, 46, 155

TO_ZERO constructor
IEEEReal, 46, 155

toAddr value
INetSock, 166, 167
UnixSock, 109, 398, 399

toBytes value
PACK_REAL, 253, 254

toCString value
CHAR, 136, 140
Char, 36
STRING, 361, 364
String, 36
TEXT.Char, 364

toDecimal value
REAL, 47, 156, 320, 327

toInt value
INTEGER, 169, 170
IntN , 45
REAL, 46, 319, 325
WORD, 420, 422, 425, 426
WordN , 45

toIntX value

WORD, 420, 422, 425, 426
WordN , 45

tokens value
STRING, 39, 360, 363
SUBSTRING, 373, 376
Substring, 379

toLarge value
INTEGER, 43, 44, 169, 170
IntN , 43, 44
REAL, 319, 326
RealM.RealN , 47
WORD, 420, 421
WordN , 43, 44

toLargeInt value
REAL, 46, 319, 325
WORD, 420, 422, 422
WordN , 44

toLargeIntX value
LargeWord, 49
WORD, 46, 420, 422, 422
WordN , 44

toLargeWord value
WORD, 420, 421, 421

toLargeWordX value
WORD, 420, 421, 421

toLargeX value
WORD, 420, 421, 421
WordN , 43, 44

toLower value
CHAR, 135, 138, 141

toManExp value
REAL, 319, 324

toMicroseconds value
Time, 387, 388

toMilliseconds value
Time, 88, 387, 388

toNanoseconds value
Time, 387, 388

toobig value
POSIX.Error, 260
Posix.Error, 262

toReal value
Time, 88, 387, 388

toSeconds value
Time, 387, 388

tostop value
Posix.TTY.L, 303
POSIX_TTY.L, 299

toString value
Bool, 131, 131
CHAR, 136, 139
Char, 36
Date, 90, 144, 147, 148
IEEEReal, 47, 155, 156, 156, 326, 367
INTEGER, 170, 172
NetHostDB, 220, 221
OS.Path, 243, 244, 244
REAL, 320, 326, 327
Socket, 335
SOCKET.AF, 330
SOCKET.SOCK, 330

462 SML identifier index

STRING, 361, 364
String, 5, 36
TEXT.Char, 364
Time, 88, 147, 387, 390, 390
WORD, 421, 424, 425
Word, 5

toString value
general description, 36

totalCPUTimer value
Timer, 391, 393

totalRealTimer value
Timer, 391, 392

toTime value
Date, 89, 144, 146

toUnixPath value
OS.Path, 243, 249

toUpper value
CHAR, 135, 138

toWord value
BIT_FLAGS, 129, 129
POSIX.Error, 259, 260
POSIX.Signal, 294, 294

translate value
STRING, 360, 362, 364
SUBSTRING, 373, 375

traversal type
Array2, 116, 117, 200, 201
MONO_ARRAY2, 200, 201

triml value
SUBSTRING, 373, 377, 377
Substring, 40

trimr value
SUBSTRING, 373, 377, 377

true constructor
Bool, 131

trunc value
POSIX.FileSys, 269, 269
Posix.FileSys.O, 269
POSIX_FILE_SYS.O, 264
REAL, 46, 319, 325, 325

tstp value
POSIX.Signal, 294
Posix.Signal, 94, 295

ttin value
POSIX.Signal, 294
Posix.Signal, 295

ttou value
POSIX.Signal, 294
Posix.Signal, 295, 303

TTY structure
Posix, 18, 95, 298

tty value
OS.IO, 238
OS.IO.Kind, 178
OS_IO.Kind, 237

ttyname value
POSIX.ProcEnv, 285, 287

Tue constructor
Date, 144

UDP structure

INET_SOCK.UDP, 166
uid type
POSIX.FileSys, 263, 265
POSIX.ProcEnv, 284, 285, 285
Posix.ProcEnv, 265, 296
POSIX.SysDB, 296, 296

uid value
POSIX.FileSys, 272
POSIX.SysDB, 297
POSIX_FILE_SYS.ST, 265
POSIX_SYS_DB.Passwd, 296

uidToWord value
POSIX.ProcEnv, 284, 285

umask value
POSIX.FileSys, 264, 269, 270, 270

uname value
POSIX.ProcEnv, 284, 286

UnequalLengths exception
ListPair, 185, 185, 185, 188

unit type
General, 6, 53, 149, 149, 152

UNIX signature, 18
Unix structure, 6, 18, 91, 93, 94, 96, 98, 250, 291,

394, 395
unix type
UnixSock, 334, 398, 398

UNIX_SOCK signature, 18
unixAF value
UnixSock, 398, 399

UnixSock structure, 18, 100, 101, 153, 330
unlink value
POSIX.FileSys, 264, 270, 270

UNORDERED constructor
IEEEReal, 155, 322

Unordered exception
IEEEReal, 155, 155

unordered value
REAL, 319, 323

unpackString value
Byte, 38, 133, 134

unpackStringVec value
Byte, 38, 133, 134

untraced value
POSIX.Process, 292
POSIX_PROCESS.W, 289

unzip value
ListPair, 58, 185, 186

update value
Array, 112, 113
Array2, 116, 118
ArraySlice, 122, 123
MONO_ARRAY, 194, 195
MONO_ARRAY2, 200, 202
MONO_ARRAY_SLICE, 206, 207
MONO_VECTOR, 212, 213
PACK_REAL, 253, 254
PACK_WORD, 255, 256
PackRealBig, 48
POSIX.TTY, 302
POSIX_TTY.V, 298
Vector, 401, 402

SML identifier index 463

use value
top level, 20

userAPC value
WINDOWS.Status, 412

users value
Windows, 413
WINDOWS.Reg, 409

usr1 value
POSIX.Signal, 294
Posix.Signal, 295

usr2 value
POSIX.Signal, 294
Posix.Signal, 295

utime value
POSIX.FileSys, 265, 273

V structure
Posix.TTY, 274, 301, 303
POSIX_TTY.V, 298

validVolume value
OS.Path, 243, 244, 245

valOf value
Option, 28, 227, 228

value type
Windows, 414, 414
WINDOWS.Reg, 410

VECTOR signature, 14
Vector structure, 14, 20, 51, 401
vector type
Array, 112
CharVector, 9, 33, 51, 214, 360, 380
ImperativeIO, 158, 159, 160
IntNVector, 193, 199, 206, 215
LargeIntVector, 199
LargeRealVector, 199
LargeWordVector, 199
MONO_ARRAY, 194, 194, 194
MONO_ARRAY2, 200, 201
MONO_ARRAY_SLICE, 206, 207, 207
MONO_VECTOR, 159, 211
MONO_VECTOR_SLICE, 216, 216, 216, 217
PRIM_IO, 309, 310, 310
RealNVector, 194, 200, 206, 216
STREAM_IO, 346, 347, 349
Vector, 112, 401
WideCharVector, 360, 380
Word8Vector, 37, 134, 159, 254, 347
WordNVector, 194, 200, 206, 215

vector value
Array, 112, 113
ArraySlice, 122, 124
MONO_ARRAY, 194, 195
MONO_ARRAY_SLICE, 206, 208
MONO_VECTOR_SLICE, 216, 217
VectorSlice, 405, 406

VECTOR_SLICE signature, 14
vector_slice type
MONO_ARRAY_SLICE, 206, 207
PRIM_IO, 309, 310, 310

VectorSlice structure, 14, 58, 405

W structure

POSIX_PROCESS.W, 289
W_ANY_CHILD constructor
POSIX.Process, 289, 291

W_CHILD constructor
POSIX.Process, 289, 291

W_EXITED constructor
POSIX.Process, 289, 291
Unix, 94, 250, 394, 395

W_EXITSTATUS constructor
POSIX.Process, 289, 291
Unix, 94, 394, 395, 395

W_GROUP constructor
POSIX.Process, 289, 291

W_SAME_GROUP constructor
POSIX.Process, 289, 291

W_SIGNALED constructor
POSIX.Process, 289, 291
Unix, 94, 394, 395

W_STOPPED constructor
POSIX.Process, 289, 291
Unix, 94, 394, 395

wait value
POSIX.Process, 289, 292, 292

waitpid value
POSIX.Process, 289, 292, 292

waitpid_arg type
POSIX.Process, 289, 291

waitpid_nh value
POSIX.Process, 289, 292, 292

Wed constructor
Date, 144

weekday type
Date, 144

weekDay value
Date, 144, 146

whence type
POSIX.IO, 276

whence value
POSIX.IO, 282
POSIX_IO.FLock, 277

WideChar structure, 15, 135, 135, 141, 360, 372
WideCharArray structure, 16, 193
WideCharArray2 structure, 16, 199
WideCharArraySlice structure, 17, 205
WideCharVector structure, 16, 211
WideCharVectorSlice structure, 17, 215
WideString structure, 15, 360, 360, 372
WideSubstring structure, 15, 372, 372
WideText structure, 15, 33, 360, 372, 380, 380
WideTextIO structure, 15, 382, 382
WideTextPrimIO structure, 15, 308
WINDOWS signature, 18
Windows structure, 18, 96–98, 409, 425
WORD signature, 4, 12, 13, 15, 22, 45, 420
Word structure, 13, 20, 420, 425
word type
LargeWord, 43, 44, 48, 199, 421, 425, 426
SysWord, 129, 130, 425
WORD, 27, 46, 420, 421, 422, 425
Word8, 33, 48, 61, 62, 159, 165, 310, 347
WordM , 43, 44

464 SML identifier index

WordN , 22, 43, 44, 194, 200, 206, 211, 215
Word8 structure, 13, 14, 133, 253, 255, 420
Word8Array structure, 13, 51, 193
Word8Array2 structure, 16, 199
Word8ArraySlice structure, 13, 205
Word8Vector structure, 13, 51, 58, 211
Word8VectorSlice structure, 13, 58, 215
WordArray structure, 16, 193
WordArray2 structure, 16, 199
WordArraySlice structure, 17, 205
WordN structure, 15, 420, 425
WordNArray structure, 16, 194
WordNArray2 structure, 16, 200
WordNArraySlice structure, 17, 206
WordNtoLargeInt value
WordN , 44

WordNVector structure, 16, 211
WordNVectorSlice structure, 17, 215
wordSize value
LargeWord, 46
WORD, 420, 421, 421, 422, 423

wordToDev value
POSIX.FileSys, 264, 271

wordToFD value
POSIX.FileSys, 263, 266
Posix.FileSys, 278, 280

wordToGid value
POSIX.ProcEnv, 284, 285, 285

wordToIno value
POSIX.FileSys, 264, 271

wordToPid value
POSIX.Process, 289, 290, 290

wordToSpeed value
POSIX.TTY, 299, 304, 304

wordToUid value
POSIX.ProcEnv, 284, 285, 285

WordVector structure, 16, 211
WordVectorSlice structure, 17, 215
WR constructor
PRIM_IO, 309, 313

write value
Windows, 413
WINDOWS.Key, 409

writeArr value
POSIX.IO, 276, 279
Posix.IO, 269

writer type
BinPrimIO, 76
PRIM_IO, 63, 64, 86, 178, 308, 309, 313, 313, 314,

317
STREAM_IO, 346, 348
TextPrimIO, 74, 76, 385

writeVec value
POSIX.IO, 276, 279
Posix.IO, 269

xdev value
POSIX.Error, 260
Posix.Error, 262

xorb value
IntInf, 174, 175

WORD, 420, 423

year value
Date, 144, 146, 146

yearDay value
Date, 144, 146, 146

ZERO constructor
IEEEReal, 155, 156, 157

zeroTime value
Time, 145, 387, 388, 388, 389

zip value
ListPair, 58, 59, 185, 186, 186

zipEq value
ListPair, 185, 186, 186

Raised exception index

Bind exception
defined in General, 150

BlockingNotSupported exception
defined in IO, 178

Chr exception
defined in General, 150
raised by CHAR.chr, 136
raised by CHAR.pred, 137
raised by CHAR.succ, 136

ClosedStream exception
defined in IO, 178

Date exception
defined in Date, 145
raised by Date.fmt, 147
raised by Date.toString, 147
raised by Date.toTime, 146

Div exception
defined in General, 150
raised by INTEGER.div, 171
raised by INTEGER.mod, 171
raised by INTEGER.quot, 171
raised by INTEGER.rem, 171
raised by IntInf.divMod, 174
raised by IntInf.pow, 174
raised by IntInf.quotRem, 174
raised by REAL.checkFloat, 324
raised by WORD.div, 424
raised by WORD.mod, 424

Domain exception
defined in General, 150
raised by IntInf.log2, 175
raised by REAL.ceil, 325
raised by REAL.floor, 325
raised by REAL.round, 325
raised by REAL.sign, 322
raised by REAL.toInt, 325
raised by REAL.toLargeInt, 325
raised by REAL.trunc, 325

Empty exception
defined in List, 181
raised by List.hd, 181
raised by List.last, 181
raised by List.tl, 181

Fail exception
defined in General, 150

InvalidArc exception
defined in OS.Path, 243
raised by OS.Path.fromUnixPath, 249
raised by OS.Path.joinDirFile, 246
raised by OS.Path.toString, 244
raised by OS.Path.toUnixPath, 249

Io exception
defined in IO, 177
raised by BinIO.openAppend, 127
raised by BinIO.openIn, 127
raised by BinIO.openOut, 127
raised by ImperativeIO.canInput, 160
raised by ImperativeIO.closeIn, 160
raised by ImperativeIO.closeOut, 161
raised by ImperativeIO.endOfStream, 160
raised by ImperativeIO.flushOut, 161
raised by ImperativeIO.getPosOut, 162
raised by ImperativeIO.input, 159
raised by ImperativeIO.input1, 159
raised by ImperativeIO.inputAll, 160
raised by ImperativeIO.inputN, 159
raised by ImperativeIO.lookahead, 160
raised by ImperativeIO.output, 161
raised by ImperativeIO.output1, 161
raised by ImperativeIO.setPosOut, 162
raised by STREAM_IO.canInput, 349
raised by STREAM_IO.closeOut, 350
raised by STREAM_IO.endOfStream, 349
raised by STREAM_IO.filePosIn, 351
raised by STREAM_IO.filePosOut, 353
raised by STREAM_IO.flushOut, 350
raised by STREAM_IO.getPosOut, 352
raised by STREAM_IO.getWriter, 352
raised by STREAM_IO.input, 348
raised by STREAM_IO.input1, 348
raised by STREAM_IO.inputAll, 349
raised by STREAM_IO.inputN, 348
raised by STREAM_IO.mkOutstream, 352
raised by STREAM_IO.output, 350
raised by STREAM_IO.output1, 350
raised by STREAM_IO.setPosOut, 353
raised by TEXT_IO.inputLine, 383
raised by TEXT_IO.openAppend, 383

466 Raised exception index

raised by TEXT_IO.openIn, 383
raised by TEXT_IO.openOut, 383
raised by TEXT_IO.outputSubstr, 383
raised by TEXT_IO.print, 384
raised by TEXT_IO.StreamIO.inputLine, 386
raised by TEXT_IO.StreamIO.outputSubstr,

386

Match exception
defined in General, 150

NonblockingNotSupported exception
defined in IO, 178

Option exception
defined in Option, 227
raised by Option.valOf, 228

Overflow exception
defined in General, 150
raised by INTEGER.*, 170
raised by INTEGER.+, 170
raised by INTEGER.-, 170
raised by INTEGER.abs, 172
raised by INTEGER.div, 171
raised by INTEGER.fromInt, 170
raised by INTEGER.fromLarge, 170
raised by INTEGER.fromString, 172
raised by INTEGER.quot, 171
raised by INTEGER.scan, 172
raised by INTEGER.toInt, 170
raised by INTEGER.˜, 171
raised by REAL.ceil, 325
raised by REAL.checkFloat, 324
raised by REAL.floor, 325
raised by REAL.round, 325
raised by REAL.toInt, 325
raised by REAL.toLargeInt, 325
raised by REAL.trunc, 325
raised by Time.toMicroseconds, 388
raised by Time.toMilliseconds, 388
raised by Time.toNanoseconds, 388
raised by Time.toSeconds, 388
raised by WORD.fromString, 425
raised by WORD.scan, 425
raised by WORD.toInt, 422
raised by WORD.toIntX, 422
raised by WORD.toLargeInt, 422

Path exception
defined in OS.Path, 243
raised by OS.FileSys.realPath, 233
raised by OS.Path.concat, 248
raised by OS.Path.mkAbsolute, 247
raised by OS.Path.mkRelative, 247
raised by OS.Path.toString, 244
raised by OS.Path.toUnixPath, 249

Poll exception
defined in OS.IO, 239
raised by OS.IO.pollIn, 239
raised by OS.IO.pollOut, 239
raised by OS.IO.pollPri, 239

RandomAccessNotSupported exception
defined in IO, 178

Size exception
defined in General, 150
raised by Array.array, 113
raised by Array.fromList, 113
raised by Array.tabulate, 113
raised by Array2.array, 118
raised by Array2.fromList, 118
raised by Array2.tabulate, 118
raised by ImperativeIO.canInput, 160
raised by ImperativeIO.inputAll, 160
raised by ImperativeIO.inputN, 159
raised by List.tabulate, 181
raised by MONO_ARRAY.array, 195
raised by MONO_ARRAY.fromList, 195
raised by MONO_ARRAY.tabulate, 195
raised by MONO_ARRAY2.array, 201
raised by MONO_ARRAY2.fromList, 202
raised by MONO_ARRAY2.tabulate, 202
raised by MONO_VECTOR.concat, 213
raised by MONO_VECTOR.fromList, 212
raised by MONO_VECTOR.tabulate, 212
raised by MONO_VECTOR_SLICE.concat, 217
raised by OS.Path.concat, 248
raised by OS.Path.joinBaseExt, 246
raised by OS.Path.joinDirFile, 246
raised by OS.Path.mkAbsolute, 247
raised by OS.Path.mkRelative, 247
raised by OS.Path.toString, 244
raised by POSIX.IO.readVec, 279
raised by REAL.toString, 326
raised by Socket.recvVec’, 341
raised by Socket.recvVecFrom’, 344
raised by STREAM_IO.canInput, 349
raised by STREAM_IO.inputAll, 349
raised by STREAM_IO.inputN, 348
raised by STRING.ˆ, 362
raised by STRING.concat, 362
raised by STRING.concatWith, 362
raised by STRING.implode, 362
raised by STRING.toCString, 364
raised by STRING.toString, 364
raised by STRING.translate, 362
raised by StringCvt.padLeft, 367
raised by StringCvt.padRight, 367
raised by SUBSTRING.concat, 375
raised by SUBSTRING.concatWith, 375
raised by SUBSTRING.translate, 375
raised by TEXT_IO.inputLine, 383
raised by TEXT_IO.StreamIO.inputLine, 386
raised by Time.fmt, 390
raised by Vector.concat, 402
raised by Vector.fromList, 401
raised by Vector.tabulate, 402
raised by VectorSlice.concat, 406

Span exception
defined in General, 150
raised by SUBSTRING.span, 378

Subscript exception

Raised exception index 467

defined in General, 151
raised by Array.copy, 114
raised by Array.copyVec, 114
raised by Array.sub, 113
raised by Array.update, 113
raised by Array2.appi, 119
raised by Array2.column, 119
raised by Array2.copy, 119
raised by Array2.foldi, 120
raised by Array2.modifyi, 120
raised by Array2.row, 118
raised by Array2.sub, 118
raised by ArraySlice.copy, 124
raised by ArraySlice.copyVec, 124
raised by ArraySlice.slice, 123
raised by ArraySlice.sub, 123
raised by ArraySlice.subslice, 123
raised by ArraySlice.update, 123
raised by Byte.packString, 134
raised by List.drop, 182
raised by List.nth, 182
raised by List.take, 182
raised by MONO_ARRAY.copy, 196
raised by MONO_ARRAY.copyVec, 196
raised by MONO_ARRAY.sub, 195
raised by MONO_ARRAY.update, 195
raised by MONO_ARRAY2.appi, 203
raised by MONO_ARRAY2.column, 202
raised by MONO_ARRAY2.copy, 203
raised by MONO_ARRAY2.foldi, 203
raised by MONO_ARRAY2.modifyi, 204
raised by MONO_ARRAY2.row, 202
raised by MONO_ARRAY2.sub, 202
raised by MONO_ARRAY2.update, 202
raised by MONO_ARRAY_SLICE.copy, 208
raised by MONO_ARRAY_SLICE.copyVec, 208
raised by MONO_ARRAY_SLICE.slice, 208
raised by MONO_ARRAY_SLICE.sub, 207
raised by MONO_ARRAY_SLICE.subslice, 208
raised by MONO_ARRAY_SLICE.update, 207
raised by MONO_VECTOR.sub, 212
raised by MONO_VECTOR.update, 213
raised by MONO_VECTOR_SLICE.slice, 217
raised by MONO_VECTOR_SLICE.sub, 217
raised by MONO_VECTOR_SLICE.subslice, 217
raised by PACK_REAL.fromBytes, 254
raised by PACK_REAL.subArr, 254
raised by PACK_REAL.subVec, 254
raised by PACK_REAL.update, 254
raised by PACK_WORD.subArr, 256
raised by PACK_WORD.subArrX, 256
raised by PACK_WORD.subVec, 255
raised by PACK_WORD.subVecX, 255
raised by PACK_WORD.update, 256
raised by POSIX.TTY.sub, 302
raised by STRING.extract, 361
raised by STRING.sub, 361
raised by STRING.substring, 361
raised by SUBSTRING.extract, 374
raised by SUBSTRING.slice, 375
raised by SUBSTRING.splitAt, 377

raised by SUBSTRING.sub, 374
raised by SUBSTRING.substring, 374
raised by SUBSTRING.triml, 377
raised by SUBSTRING.trimr, 377
raised by Vector.sub, 402
raised by Vector.update, 402
raised by VectorSlice.slice, 406
raised by VectorSlice.sub, 406
raised by VectorSlice.subslice, 406
raised by Windows.enumKeyEx, 414
raised by Windows.enumValueEx, 414

SysErr exception
defined in OS, 230
raised by GenericSock.socket, 153
raised by GenericSock.socket’, 154
raised by GenericSock.socketPair, 153
raised by GenericSock.socketPair’, 154
raised by INetSock.socket, 167
raised by INetSock.socket’, 167, 168
raised by OS.FileSys.access, 234
raised by OS.FileSys.chDir, 232
raised by OS.FileSys.closeDir, 232
raised by OS.FileSys.fileSize, 234
raised by OS.FileSys.fullPath, 233
raised by OS.FileSys.getDir, 232
raised by OS.FileSys.isDir, 233
raised by OS.FileSys.isLink, 233
raised by OS.FileSys.mkDir, 233
raised by OS.FileSys.modTime, 234
raised by OS.FileSys.openDir, 232
raised by OS.FileSys.readDir, 232
raised by OS.FileSys.readLink, 233
raised by OS.FileSys.realPath, 233
raised by OS.FileSys.remove, 234
raised by OS.FileSys.rename, 234
raised by OS.FileSys.rewindDir, 232
raised by OS.FileSys.rmDir, 233
raised by OS.FileSys.setTime, 234
raised by OS.FileSys.tmpName, 235
raised by OS.IO.kind, 238
raised by OS.IO.poll, 240
raised by OS.Process.system, 251
raised by POSIX.FileSys.access, 273
raised by POSIX.FileSys.chdir, 267
raised by POSIX.FileSys.chmod, 273
raised by POSIX.FileSys.chown, 273
raised by POSIX.FileSys.closedir, 267
raised by POSIX.FileSys.creat, 269
raised by POSIX.FileSys.createf, 269
raised by POSIX.FileSys.fchmod, 273
raised by POSIX.FileSys.fchown, 273
raised by POSIX.FileSys.fpathconf, 274
raised by POSIX.FileSys.fstat, 272
raised by POSIX.FileSys.ftruncate, 273
raised by POSIX.FileSys.getcwd, 267
raised by POSIX.FileSys.link, 270
raised by POSIX.FileSys.lstat, 272
raised by POSIX.FileSys.mkdir, 270
raised by POSIX.FileSys.mkfifo, 270
raised by POSIX.FileSys.opendir, 266
raised by POSIX.FileSys.openf, 269

468 Raised exception index

raised by POSIX.FileSys.pathconf, 274
raised by POSIX.FileSys.readdir, 266
raised by POSIX.FileSys.readlink, 271
raised by POSIX.FileSys.rename, 270
raised by POSIX.FileSys.rewinddir, 266
raised by POSIX.FileSys.rmdir, 270
raised by POSIX.FileSys.stat, 272
raised by POSIX.FileSys.symlink, 271
raised by POSIX.FileSys.umask, 270
raised by POSIX.FileSys.unlink, 270
raised by POSIX.FileSys.utime, 273
raised by POSIX.IO.close, 278
raised by POSIX.IO.dup, 278
raised by POSIX.IO.dup2, 278
raised by POSIX.IO.dupfd, 280
raised by POSIX.IO.fsync, 281
raised by POSIX.IO.getfd, 280
raised by POSIX.IO.getfl, 280
raised by POSIX.IO.getlk, 282
raised by POSIX.IO.lseek, 281
raised by POSIX.IO.pipe, 278
raised by POSIX.IO.readArr, 279
raised by POSIX.IO.readVec, 279
raised by POSIX.IO.setfd, 280
raised by POSIX.IO.setfl, 280
raised by POSIX.IO.setlk, 282
raised by POSIX.IO.setlkw, 282
raised by POSIX.IO.writeArr, 279
raised by POSIX.ProcEnv.ctermid, 287
raised by POSIX.ProcEnv.getgroups, 286
raised by POSIX.ProcEnv.getlogin, 286
raised by POSIX.ProcEnv.setgid, 286
raised by POSIX.ProcEnv.setpgid, 286
raised by POSIX.ProcEnv.setsid, 286
raised by POSIX.ProcEnv.setuid, 286
raised by POSIX.ProcEnv.sysconf, 288
raised by POSIX.ProcEnv.time, 287
raised by POSIX.ProcEnv.times, 287
raised by POSIX.ProcEnv.ttyname, 287
raised by POSIX.ProcEnv.uname, 286
raised by POSIX.Process.exec, 290
raised by POSIX.Process.exece, 290
raised by POSIX.Process.execp, 290
raised by POSIX.Process.fork, 290
raised by POSIX.Process.kill, 293
raised by POSIX.SysDB.getpwnam, 297
raised by POSIX.TTY.drain, 306
raised by POSIX.TTY.flow, 307
raised by POSIX.TTY.flush, 306
raised by POSIX.TTY.getattr, 306
raised by POSIX.TTY.getpgrp, 307
raised by POSIX.TTY.sendbreak, 306
raised by POSIX.TTY.setattr, 306
raised by POSIX.TTY.setpgrp, 307
raised by Socket.accept, 338
raised by Socket.acceptNB, 338
raised by Socket.bind, 338
raised by Socket.close, 339
raised by Socket.connect, 338
raised by Socket.connectNB, 339
raised by Socket.getATMARK, 337

raised by Socket.getBROADCAST, 336
raised by Socket.getDEBUG, 336
raised by Socket.getDONTROUTE, 336
raised by Socket.getERROR, 337
raised by Socket.getKEEPALIVE, 336
raised by Socket.getLINGER, 336
raised by Socket.getNREAD, 337
raised by Socket.getOOBINLINE, 337
raised by Socket.getPeerName, 337
raised by Socket.getRCVBUF, 337
raised by Socket.getREUSEADDR, 336
raised by Socket.getSNDBUF, 337
raised by Socket.getSockName, 337
raised by Socket.getTYPE, 337
raised by Socket.listen, 338
raised by Socket.recvArr’, 342
raised by Socket.recvArrFrom’, 344
raised by Socket.recvArrFromNB’, 345
raised by Socket.recvArrNB’, 342
raised by Socket.recvVec’, 341
raised by Socket.recvVecFrom’, 344
raised by Socket.select, 340
raised by Socket.sendArr, 340
raised by Socket.sendArr’, 341
raised by Socket.sendArrNB’, 341
raised by Socket.sendArrTo, 342
raised by Socket.sendArrTo’, 343
raised by Socket.sendArrToNB’, 343
raised by Socket.setBROADCAST, 336
raised by Socket.setDEBUG, 336
raised by Socket.setDONTROUTE, 336
raised by Socket.setKEEPALIVE, 336
raised by Socket.setLINGER, 336
raised by Socket.setOOBINLINE, 337
raised by Socket.setRCVBUF, 337
raised by Socket.setREUSEADDR, 336
raised by Socket.setSNDBUF, 337
raised by Socket.shutdown, 339
raised by Unix.execute, 395
raised by Unix.executeInEnv, 395
raised by Unix.exit, 397
raised by Unix.kill, 397
raised by Unix.reap, 396
raised by UnixSock.socket, 399
raised by UnixSock.socketPair, 399, 400
raised by Windows.closeKey, 413
raised by Windows.createKeyEx, 413
raised by Windows.deleteKey, 413
raised by Windows.deleteValue, 414
raised by Windows.enumKeyEx, 414
raised by Windows.enumValueEx, 414
raised by Windows.execute, 417
raised by Windows.executeString, 416
raised by Windows.exit, 418
raised by Windows.findExecutable, 416
raised by Windows.getVolumeInformation,

416
raised by Windows.launchApplication, 416
raised by Windows.openDocument, 417
raised by Windows.openKeyEx, 413
raised by Windows.queryValueEx, 414

Raised exception index 469

raised by Windows.setValueEx, 414
raised by Windows.simpleExecute, 417
raised by Windows.startDialog, 416

Time exception
defined in Time, 388
raised by Socket.setLINGER, 336
raised by Time.+, 389
raised by Time.-, 389
raised by Time.fromMicroseconds, 389
raised by Time.fromMilliseconds, 389
raised by Time.fromNanoseconds, 389
raised by Time.fromReal, 388
raised by Time.fromSeconds, 389
raised by Time.fromString, 390
raised by Time.now, 390
raised by Time.scan, 390

UnequalLengths exception
defined in ListPair, 185
raised by ListPair.appEq, 186
raised by ListPair.foldlEq, 187
raised by ListPair.foldrEq, 187
raised by ListPair.mapEq, 186
raised by ListPair.zipEq, 186

Unordered exception
defined in IEEEReal, 155
raised by REAL.compare, 322

	Cover
	Half-title
	Title
	Copyright
	Contents
	Foreword
	Preface
	Overview of the book
	Contributors
	Acknowledgments

	1 Introduction
	1.1 Design rules and conventions
	1.1.1 Orthographic conventions
	1.1.2 Naming
	1.1.3 Comparisons
	1.1.4 Conversions
	1.1.5 Characters and strings
	1.1.6 Operating system interfaces
	1.1.7 Miscellany

	1.2 Documentation conventions
	1.2.1 Organization of the manual pages
	1.2.2 Terminology and notation
	Syntactic and semantic liberties

	2 Library modules
	2.1 Required modules
	2.2 Optional modules

	3 Top-level environment
	3.1 Modules in the top-level environment
	3.2 Top-level type, exception, and value identifiers
	3.3 Overloaded identifiers
	3.4 Infix identifiers
	3.5 The process environment

	4 General usages
	4.1 Linear ordering
	4.2 Option
	4.3 Exception handling
	4.4 Miscellaneous functions

	5 Text
	5.1 Characters
	5.2 Strings and substrings
	5.3 Conversions to and from text
	5.3.1 The structure
	5.3.2 Converting to text
	5.3.3 Converting from text
	5.3.4 The structure

	5.4 Taking strings apart
	5.4.1 Tokenizing
	5.4.2 Readers

	6 Numerics
	6.1 Numerical conversions
	6.1.1 Integer to integer conversions
	6.1.2 Word to word conversions
	6.1.3 Word to integer conversions
	6.1.4 Integer to word conversions
	6.1.5 Default integer-type conversions

	6.2 Floating-point numbers
	6.2.1 Floating-point conversions

	6.3 Packed data

	7 Sequential data
	7.1 Common patterns
	7.1.1 Indexed iterations

	7.2 Lists
	7.3 Array modification
	7.4 Subsequences and slices
	7.5 Operating on pairs of lists
	7.6 Two-dimensional arrays

	8 Input/Output
	8.1 The I/O model
	8.1.1 Imperative I/O
	8.1.2 Stream I/O
	8.1.3 End-of-stream
	8.1.4 Translation

	8.2 Using the I/O subsystem
	8.2.1 Opening files
	8.2.2 Imperative stream input (IMPERATIVE_IO)
	8.2.3 Functional stream input (STREAM_IO)
	Reading a pattern from a stream
	Library functions for scanning input streams
	Relationship of imperative streams to functional streams
	Getting characters without blocking
	Random access input

	8.2.4 Stream output
	Buffering
	Random access output
	Dynamic binding of output streams

	8.2.5 Readers and writers (PRIM_IO)
	Random access seeking, reading, and writing
	Random access with text I/O
	Algorithmic streams

	8.2.6 Comparison of I/O functions

	9 Systems programming
	9.1 Portable systems programming
	9.1.1 File system pathnames
	9.1.2 File system operations
	9.1.3 Processes
	9.1.4 I/O descriptors
	9.1.5 Time and dates

	9.2 Operating-system specific programming
	9.2.1 The structure
	9.2.2 System flags
	9.2.3 POSIX Programming
	9.2.4 The structure

	10 Network programming with sockets
	10.1 Overview
	10.1.1 Socket-related modules
	10.1.2 Socket-related types
	10.1.3 Socket I/O operations

	10.2 Socket addresses
	10.3 Internet-domain stream sockets
	10.4 Internet-domain datagram sockets
	10.5 Unix-domain sockets
	10.6 Advanced topics
	10.6.1 Polling sockets
	10.6.2 More socket I/O
	10.6.3 Supporting multiple domains in an application
	10.6.4 Creating sockets in other domains

	11 Manual pages
	11.1 The Array structure
	Synopsis
	Interface
	Description
	See also

	11.2 The Array2 structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.3 The ArraySlice structure
	Synopsis
	Interface
	Description
	See also

	11.4 The BinIO structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.5 The BIT_FLAGS signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.6 The Bool structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.7 The Byte structure
	Synopsis
	Interface
	Description
	See also

	11.8 The CHAR signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.9 The CommandLine structure
	Synopsis
	Interface
	Description
	Discussion

	11.10 The Date structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.11 The General structure
	Synopsis
	Interface
	Description
	Example:

	11.12 The GenericSock structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.13 The IEEEReal structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.14 The IMPERATIVE_IO signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.15 The ImperativeIO functor
	Synopsis
	Functor Argument Interface
	Description
	See also

	11.16 The INetSock structure
	Synopsis
	Interface
	Description
	See also

	11.17 The INTEGER signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.18 The IntInf structure
	Synopsis
	Interface
	Description
	Discussion
	Rationale:
	See also

	11.19 The IO structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.20 The List structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.21 The ListPair structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.22 The MATH signature
	Synopsis
	Interface
	Description
	See also

	11.23 The MONO_ARRAY signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.24 The MONO_ARRAY2 signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.25 The MONO_ARRAY_SLICE signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.26 The MONO_VECTOR signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.27 The MONO_VECTOR_SLICE signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.28 The NetHostDB structure
	Synopsis
	Interface
	Description
	See also

	11.29 The NetProtDB structure
	Synopsis
	Interface
	Description
	See also

	11.30 The NetServDB structure
	Synopsis
	Interface
	Description
	See also

	11.31 The Option structure
	Synopsis
	Interface
	Description

	11.32 The OS structure
	Synopsis
	Interface
	Description
	See also

	11.33 The OS.FileSys structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.34 The OS.IO structure
	Synopsis
	Interface
	Description
	Implementation note:
	See also

	11.35 The OS.Path structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.36 The OS.Process structure
	Synopsis
	Interface
	Description
	See also

	11.37 The PACK_REAL signature
	Synopsis
	Interface
	Description
	See also

	11.38 The PACK_WORD signature
	Synopsis
	Interface
	Description
	See also

	11.39 The Posix structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.40 The Posix.Error structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.41 The Posix.FileSys structure
	Synopsis
	Interface
	Description
	See also

	11.42 The Posix.IO structure
	Synopsis
	Interface
	Description
	See also

	11.43 The Posix.ProcEnv structure
	Synopsis
	Interface
	Description
	See also

	11.44 The Posix.Process structure
	Synopsis
	Interface
	Description
	See also

	11.45 The Posix.Signal structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.46 The Posix.SysDB structure
	Synopsis
	Interface
	Description
	See also

	11.47 The Posix.TTY structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.48 The PRIM_IO signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.49 The PrimIO functor
	Synopsis
	Functor Argument Interface
	Description
	See also

	11.50 The REAL signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.51 The Socket structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.52 The STREAM_IO signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.53 The StreamIO functor
	Synopsis
	Functor Argument Interface
	Description
	Discussion
	See also

	11.54 The STRING signature
	Synopsis
	Interface
	Description
	See also

	11.55 The StringCvt structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.56 The SUBSTRING signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.57 The TEXT signature
	Synopsis
	Interface
	See also

	11.58 The TEXT_IO signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.59 The TEXT_STREAM_IO signature
	Synopsis
	Interface
	Description
	See also

	11.60 The Time structure
	Synopsis
	Interface
	Description
	Example:
	See also

	11.61 The Time structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.62 The Unix structure
	Synopsis
	Interface
	Description
	Discussion
	See also

	11.63 The UnixSock structure
	Synopsis
	Interface
	Description
	See also

	11.64 The Vector structure
	Synopsis
	Interface
	Description
	See also

	11.65 The VectorSlice structure
	Synopsis
	Interface
	Description
	See also

	11.66 The Windows structure
	Synopsis
	Interface
	Description
	Discussion
	Rationale:
	See also

	11.67 The WORD signature
	Synopsis
	Interface
	Description
	Discussion
	See also

	Bibliography
	General index
	SML identifier index
	Raised exception index

