
CONCURRENT PROGRAMMING IN ML

Concurrent Programming in ML presents the language Concurrent ML (CML), which sup-
ports the union of two important programming models: concurrent programming and func-
tional programming. CML is an extension of the functional language Standard ML (SML)
and is included as part of the Standard ML of New Jersey (SML/NJ) distribution. CML
supports the programming of process communication and synchronization using a unique
higher-order concurrent programming mechanism which allows programmers to define their
own communication and synchronization abstractions.

The main focus of the book is on the practical use of concurrency to implement naturally
concurrent applications. In addition to a tutorial introduction to programming in CML, this
book presents three extended examples of using CML for systems programming: a parallel
software build system, a simple concurrent window manager, and an implementation of
distributed tuple spaces.

This book includes a chapter on the implementation of concurrency using features pro-
vided by the SML/NJ system and provides many examples of advanced SML programming
techniques. The appendices include the CML reference manual and a formal semantics of
CML.

This book is aimed at programmers and professional developers who want to use CML,
as well as students, faculty, and other researchers.
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Preface

This book is about the union of two important paradigms in programming languages,
namely, higher-order languages and concurrent languages. Higher-order programming
languages, often referred to as “functional programming” languages, 1 are languages that
support functions as first-class values. The language used here is the popular higher-
order language Standard ML (SML) [MTH90, MTHM97], which is the most prominent
member of the ML family of languages. In particular, the bulk of this book focuses
on concurrent programming using the language Concurrent ML (CML), which extends
SML with independent processes and higher-order communication and synchronization
primitives. The power of CML is that a wide range of communication and synchroniza-
tion abstractions can be programmed using a small collection of primitives.

A concurrent program is composed from two or more sequential programs, called
processes, that execute (at least conceptually) in parallel. The sequential part of the exe-
cution of these processes is independent, but they also must interact via shared resources
in order to collaborate on achieving their common purpose. In this book, we are con-
cerned with the situation in which the concurrency and process interaction are explicit.
This is in contrast with implicitly parallel languages, such as parallel functional lan-
guages [Hud89, Nik91, PvE93] and concurrent logic programming languages [Sha89].
The choice of language mechanisms used for process interaction is the key issue in con-
current programming language design. In this aspect, CML takes the unique approach
of supporting higher-order concurrent programming, in which the communication and
synchronization operations are first-class values, in much the same way that functions
are first-class values in higher-order languages.

Concurrent programming is an especially important technique in the construction of
systems software. Such software must deal with the unpredictable sequencing of external
events, often from multiple sources, which is difficult to manage in sequential languages.

1I choose the term “higher-order” to avoid confusion with “pure” (i.e., referentially transparent) functional languages.
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Structuring a program as multiple threads of control, one for each external agent or event,
greatly improves the modularity and manageability of the program. Concurrent program-
ming replaces the artificial total ordering of execution imposed by sequential languages
by a more natural partial ordering. The resulting program is nondeterministic, but this is
necessary to deal with a nondeterministic external world efficiently.

This book differs from most books on concurrent programming in that the underlying
sequential language, SML, is a higher-order language. The use of SML as the sequential
sub-language has a number of advantages. SML programs tend to be “mostly-functional”
and typically do not rely on heavy use of global state; this reduces the effort needed to
migrate from a sequential to a concurrent programming style. The high-level features
of SML, such as datatypes, pattern matching, the module system, and garbage collec-
tion, provide a more concise programming notation. Recent advances in implementation
technology allow us to take advantage of the benefits of SML, without sacrificing good
performance [SA94, Sha94, TMC+96]. One of the theses of this book is that efficient
system software can be written in a language such as SML.

History

The language design ideas presented in this book date back to the language PML [Rep88],
an ML dialect developed at AT&T Bell Laboratories as part of the Pegasus system [RG86,
GR92]. The purpose of the Pegasus project was to provide a better foundation for build-
ing interactive systems than that provided by the C/UNIX world circa 1985. We believed
then, and still do, that interactive applications are inherently concurrent, and that they
should be programmed in a concurrent language. This was the motivation for design-
ing a concurrent programming language. We finished an implementation of the Pegasus
run-time system before the design of PML was complete. We tested our ideas on this
run-time system by writing prototype applications in C with calls to our concurrency li-
brary. Our experience with these applications convinced us that the concurrency features
of PML should be designed to support abstraction. It was this design goal that led me to
develop “first-class synchronous operations” [Rep88].

Shortly thereafter, I began a graduate program at Cornell University, and started work-
ing with early versions of Standard ML of New Jersey (SML/NJ) [AM87, AM91]. In
the spring of 1989, Appel and Jim developed a new back-end for SML/NJ, based on
a continuation-passing style representation [AJ89, App92]. A key feature of this back-
end is that the program stack was replaced by heap-allocated return closures. In the
fall of 1989, this led to the addition of first-class continuations as a language exten-
sion in SML/NJ [DHM91], which made it possible to implement concurrency primi-
tives directly in SML. Exploiting this feature, I implemented a coroutine version of the
PML primitives on top of SML/NJ [Rep89]. Others also exploited the first-class con-
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tinuations provided by SML/NJ: Ramsey, at Princeton, implemented PML-like prim-
itives [Ram90], and Cooper and Morrisett, at Carnegie-Mellon, implemented Modula
2+ style shared-memory primitives [CM90]. Morrisett and Tolmach later implemented a
multiprocessor version of low-level shared-memory primitives [MT93].

While first-class continuations provided an important mechanism for implementing
concurrency primitives, they did not provide a mechanism for preemptive scheduling,
which is key to supporting modular concurrent programming. To address this problem, I
added support for UNIX style signal handling to the SML/NJ run-time system [Rep90].
With this support, I modified my coroutine version of the PML primitives to include pre-
emptive scheduling, and the first version of CML was born. It was released in November
of 1990. This implementation evolved into the version of CML that was described in
the first published paper about CML [Rep91a], and was the subject of my doctoral dis-
sertation [Rep92]. In February of 1993, version 0.9.8 of CML was released as part of
the SML/NJ distribution. After that release, a major effort was undertaken to redesign
the Basis Library provided by SML implementations [GR04]. This effort grew into what
is now known as Standard ML 1997 (SML’97), which includes the new basis library,
as well as a number of language improvements and simplifications. From the program-
mer’s perspective, the most notable of these changes is the elimination of imperative
type variables and the introduction of new primitive types for characters and machine
words [MTHM97]. CML has also been overhauled to be compatible with SML’97 and
the new Basis Library, and to use more uniform naming conventions. Although some of
the names have changed since version 0.9.8, the core features and concepts are the same.
Most recently, Riccardo Pucella has ported CML to run on Microsoft’s Windows NT
operating system.

Since its introduction, CML has been used by many people around the world. Uses in-
clude experimental telephony software [FO93], as a target language for a concurrent con-
straint programming language [Pel92], as a basis for distributed programming [Kru93],
and for programming dataflow networks [Čub94b, Čub94a]. My own use of CML has fo-
cused on the original motivation of the Pegasus work: providing a foundation for user in-
terface construction. Emden Gansner and I have constructed a multithreaded X Window
System toolkit, called eXene, which is implemented entirely in CML [GR91, GR93].

CML has also been the focus of a fair bit of theoretical work. The semantics of the
PML subset of the language has been formalized in several different ways [BMT92,
MM94, FHJ96]. My dissertation also presents a full semantics of the CML concur-
rency mechanisms [Rep91b, Rep92] (Appendix B presents this semantics, but without
the proofs). Nielson and Nielson have worked on analyzing the communication patterns
(or topology) of CML programs [NN93, NN94] as well as on control-flow analysis for
CML [GNN97]. Such analysis can be used to specialize communication operations to
provide better performance.
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While CML is not likely to change, there will continue to be improvements and en-
hancements to its implementation. The most important improvement is to provide the
benefits of kernel-level threads to CML applications (e.g., to mask the latency of system
calls). To provide these benefits requires a new run-time system, which is under con-
struction as of this writing. This new run-time system should also make a multiprocessor
implementation of CML possible. The other major effort is to build useful libraries,
particularly in the area of distributed programming and network applications. The CML
home page (see below) will provide information about these, and other, improvements as
they become available.

Getting the software

The SML/NJ system, CML, eXene, and other related software are all available, free of
charge, on the internet.

Information about the latest and greatest version of CML, as well as user documenta-
tion, technical papers, and the sample code from this book can be found at the Concurrent
ML home page:

http://cml.cs.uchicago.edu/index.html

CML is also available as part of the SML/NJ distribution, which can be found at the
SML/NJ home page:

http://smlnj.org/index.html

This page also provides links to the SML/NJ Library documentation and to the online
version of the Standard ML Basis Library manual.

Overview of the book

This book was written with several purposes in mind. The primary purpose of this book
is to promote the use of CML as a concurrent language; it provides not only a tutorial
introduction to the language, but also examples of more advanced uses. Although it is
not designed as a teaching text, this book does provide an introduction to Concurrent
Programming, and drafts of it have been used in courses at various universities. Because
of the strong typing of SML and the choice of concurrency primitives, CML provides a
friendlier introduction to concurrent programming than in many other languages. CML
also provides a good example of systems programming using SML/NJ, and I hope that
this book will inspire other non-traditional uses of the language. This book does not make
an attempt to introduce or describe SML, as there are a number of books and technical
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reports that already fill that purpose; a list of these can be found in the Chapter 1 notes
(and on the SML/NJ home page).

The book is loosely organized into three parts: an introduction to concurrent program-
ming, an expository description of CML (essentially a CML tutorial), and finally, a
practicum consisting of example applications.

The first chapter motivates the rest of the book by arguing the merits of concurrent pro-
gramming. Chapter 2 introduces various concepts and issues in concurrent programming
and concurrent programming languages.

The next four chapters focus on the design and use of CML. First, Chapters 3 and 4
give a tutorial introduction to the basic CML features and programming techniques.
Chapter 5 expands on this discussion by exploring various synchronization and commu-
nication abstractions. Finally, Chapter 6 describes the rationale for the design of CML;
this chapter is mainly intended for those interested in language design issues, and may
be skipped by the casual reader.

The subsequent three chapters present extended examples of CML programs. While
space restrictions constrain the scope of these examples, each is a representative of a nat-
ural application area for concurrent programming. Furthermore, they provide examples
of complete CML programs, rather than just program fragments. Chapter 7 describes
a controller for a simple parallel software-build system. This illustrates the use of con-
currency to manage parallel system-level processes. The next example, in Chapter 8,
is a toy concurrent window manager, which illustrates the use of concurrency in user
interface software. Chapter 9 describes an implementation of distributed tuple spaces.
This provides both an illustration of how a distributed systems interface might fit into the
CML framework, and how systems programming can be done in SML and CML.

The book concludes with a chapter on the implementation of concurrency in SML/NJ
using its first-class continuations. SML/NJ provides a fairly unique test-bed for exper-
imenting in concurrent language design, and this chapter provides a “how-to” guide for
such experimentation.

There are two appendices, which provide a more concise description of CML. Ap-
pendix A is an abridged version of the CML Reference Manual; the complete manual is
available from the CML home page. Appendix B gives an operational semantics for the
concurrency features of CML, along with statements of some of its properties (proofs
can be found in my dissertation [Rep92]).

Citations and a discussion of related work are collected in “Notes” sections at the end
of each chapter. These notes also provide some historical context. The text is illustrated
with numerous examples; the source code for most of these is available from the CML
home page.
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1
Introduction

Concurrent programming is the task of writing programs consisting of multiple inde-
pendent threads of control, called processes. Conceptually, we view these processes as
executing in parallel, but in practice their execution may be interleaved on a single pro-
cessor. For this reason, we distinguish between concurrency in a programming language,
and parallelism in hardware. We say that operations in a program are concurrent if they
can be executed in parallel, and we say that operations in hardware are parallel if they
overlap in time.

Operating systems, where there is a need to allow useful computation to be done in
parallel with relatively slow input/output (I/O) operations, provide one of the earliest
examples of concurrency. For example, during its execution, a program P might write
a line of text to a printer by calling the operating system. Since this operation takes
a relatively long time, the operating system initiates it, suspends P, and starts running
another program Q. Eventually, the output operation completes and an interrupt is re-
ceived by the operating system, at which point it can resume executing P. In addition to
introducing parallelism and hiding latency, as in the case of slow I/O devices, there are
other important uses of concurrency in operating systems. Using interrupts from a hard-
ware interval timer, the operating system can multiplex the processor among a collection
of user programs, which is called time-sharing. Most time-sharing operating systems
allow user programs to interact, which provides a form of user-level concurrency. On
multiprocessors, the operating systems are, by necessity, concurrent programs; further-
more, application programs may use concurrent programming to exploit the parallelism
provided by the hardware.

One important motivation for concurrent programming is that processes are a useful
abstraction mechanism: they provide encapsulation of state and control with well-defined
interfaces. Unfortunately, if the mechanisms for concurrent programming are too expen-
sive, then programmers will break the natural abstraction boundaries in order to ensure
acceptable performance. The concurrency provided by operating system processes is
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the most widespread mechanism for concurrent programming. But, there are several
disadvantages with using system-level processes for concurrent programming: they are
expensive to create and require substantial memory resources, and the mechanisms for
interprocess communication are cumbersome and expensive. 1 As a result, even when
faced with a naturally concurrent task, application programmers often choose complex
sequential solutions to avoid the high costs of system-level processes.

Concurrent programming languages, on the other hand, provide notational support for
concurrent programming, and generally provide lighter-weight concurrency, often inside
a single system-level process. Thus, just as efficient subroutine linkages make proce-
dural abstraction more acceptable, efficient implementations of concurrent programming
languages make process abstraction more acceptable.

1.1 Concurrency as a structuring tool

This book focuses on the use of concurrent programming for applications with natu-
rally concurrent structure. These applications share the property that flexibility in the
scheduling of computation is required. Whereas sequential languages force a total order
on computation, concurrent languages permit a partial order, which provides the needed
flexibility.

For example, consider the xrn program, which is a popular UNIX program that pro-
vides a graphical user interface for reading network news. It is both an example of an
interactive application and of a distributed-systems application, since it maintains a con-
nection to a remote news server. This program has a rather annoying “feature” that is a
result of its being programmed in a sequential language.2 If xrn loses its connection to
the remote news server (because the server goes down, or the connection times out), it
displays a message window (or “dialog box”) on the screen to inform the user of the lost
connection. Unfortunately, after putting up the window, but before writing the message,
xrn attempts to reestablish the connection, which causes it to hang until the server comes
back on line. Thus, you have the phenomenon of a blank message window appearing on
the user’s screen, followed by a long pause, followed by the simultaneous display of two
messages: the first saying that the connection has been lost, and a second saying that the
connection has been restored. Besides being an example of poor interface design, this
illustrates the kind of sequential orderings that concurrent programming easily avoids.

1It should be noted that most recent operating systems provide support for multiple threads of control inside a single
protection domain.

2This anecdote refers to version 6.17 of xrn.
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1.1.1 Interactive systems

Interactive systems, such as graphical user interfaces and window managers, are the pri-
mary motivation of much of the work described in this book, and the author believes that
they are one of the most important application areas for concurrent programming. Inter-
active systems are typically programmed in sequential languages, which results in awk-
ward program structures, since these programs are naturally concurrent. They must deal
with multiple asynchronous input streams and support multiple contexts, while maintain-
ing responsiveness. In the following discussion, we present a number of scenarios that
demonstrate the naturally concurrent structure of interactive software.

User interaction

Handling user input is the most complex aspect of an interactive program. An application
may be sensitive to multiple input devices, such as a mouse and keyboard, and may
multiplex these among multiple input contexts (e.g., different windows). Managing this
many-to-many mapping is usually the province of User Interface Management System
(UIMS) toolkits. Since most UIMS toolkits are implemented in sequential languages,
they must resort to various techniques to emulate the necessary concurrency. Typically,
these toolkits use an event-loop that monitors the stream of input events and maps the
events to call-back functions (or event handlers) provided by the application programmer.
In effect, this structure is a poor-man’s concurrency: the event-handlers are coroutines,
and the event-loop is the scheduler.

The call-back approach to managing user input leads to an unnatural program structure,
known as the “inverted program structure,” where the application program hands over
control to the library’s event-loop. While event-driven code is sometimes appropriate
for an application, this choice should be up to the application programmer, and not be
dictated by the library.

Multiple services

Interactive applications often provide multiple services; for example, a spreadsheet might
provide an editor for composing macros, and a window for viewing graphical displays
of the data, in addition to the actual spreadsheet. Each service is largely independent,
having its own internal state and control-flow, so it is natural to view them as independent
processes.

An additional benefit of using process abstraction to structure such services is that
it makes replication of services fairly easy. This is because processes are reentrant by
their very nature (i.e., they typically encapsulate their own state). In our spreadsheet
example, supporting multiple data sets or graphical views should be as easy as spawning
an additional process.

This is a situation where an “object-oriented” language might also claim benefits, since
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each service could be encapsulated as an object. In many respects, processes and objects
provide the same kind of abstraction: hiding state and providing well-defined interfaces.
The obvious difference is that concurrent languages provide the additional benefit of
interleaved execution of services, whereas in a sequential object-oriented language the
execution of services must be serialized.3

Interleaving computation

Even on a uniprocessor, it is possible to gain performance benefits from concurrency. An
event driven interactive system has large amounts of “dead-time” between input events.
If an application receives a hundred input events per second (which is quite a lot), then it
has millions of instructions it can execute between events. Since most events can be han-
dled in a few thousand instructions (e.g., add a character to an input buffer, and echo it),
there is an opportunity to execute other useful computation between input events. While
multi-tasking operating systems support this kind of interleaving between processes, it is
difficult to interleave computation with I/O inside a single sequential program. Applica-
tions that are programmed in a concurrent language, however, can exploit this interleav-
ing for “free.” Furthermore, as processors become faster, the amount of useful work that
can be done between input events increases.

In addition to the performance benefits, interleaving computation is very important
to the responsiveness of an application. For example, a user of a document preparation
system may want to edit one part of a document while another part is being formatted.
Since formatting may take a significant amount of time, providing a responsive interface
requires interleaving formatting and editing. A traditional UIMS toolkit makes it diffi-
cult to write applications that provide responsive interactive interfaces and do substantial
computation, since the application cannot handle events while computing. Typically, the
computation must be broken into short-duration chunks that will not affect responsive-
ness. This structure has the added disadvantage of destroying the separation between
the application and the interface. Concurrent programs, in contrast, avoid this problem
without any additional complexity.

Output-driven interfaces

The inverted program structure required by traditional UIMS toolkits has the disadvan-
tage of biasing a program’s structure towards input. The application is quiescent until the
user prods it, at which time it reacts in some way, and then waits for the next event. This
is fine for many applications, such as text editors, which do not have much to do when
the user’s attention is elsewhere, but it is a hindrance for applications with output-driven
interfaces.

3Of course, this restriction does not apply to concurrent object-oriented languages.
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Consider, for example, a computationally intensive simulation that maintains a graph-
ical display of its current state. The interface to this application is output-driven, since
under normal circumstances the display is updated only when a new state is computed.
But this application must also monitor window events, such as refresh and resize noti-
fications, so that it can redraw itself when necessary. In a sequential implementation,
the handling of these events must be postponed until the simulation is ready to update
the displayed information. Separating the display code and simulation code into separate
processes simplifies the handling of asynchronous redrawing.

Discussion

While the use of heavy-weight operating-system processes provides some support for
multiple services and interleaved computation, it does not address the other two sources
of concurrent program structure. Similarly, although event-loops and call-back functions
provide flexibility in reacting to user input, they bias the application towards an input-
driven model and do not provide much support for interleaved computation. A concurrent
language, on the other hand, addresses all of these concerns.

1.1.2 Distributed systems

Distributed programs are, by their very nature, concurrent; each processor, or node, in
a distributed system has its own state and control flow. But, in addition to the obvious
concurrency that results from executing on multiple processors, there are natural uses of
concurrency in the individual node programs.

As the story about xrn illustrated, synchronous communication over a network can
block a program for unacceptable periods of time. This phenomenon is called remote
delay, where the execution on one machine is delayed while waiting for a response from
another. Using multiple threads to manage such communications allows other tasks to be
interleaved with remote interactions.

Another performance problem that should be avoided in distributed programs is local
delay, where execution is blocked because some resource is unavailable. For example,
a file server might have to wait for a disk operation to complete before completing a
file operation. In a server that allows multiple outstanding requests, local delay can be
a serious bottleneck, since the delay associated with one request affects the servicing of
other requests. A solution to this is to use a separate local process for each outstanding
request; when one process experiences local delay, the others can still proceed. This is
essentially the same as using concurrency to hide I/O latency in operating systems.
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1.1.3 Other uses of concurrency

Reactive systems are another class of naturally concurrent programs. A reactive system
is one that reacts to its environment at a speed determined by its environment. Examples
of reactive systems include call processing, process control, and signal processing. User
interfaces and, to some extent, the node programs in distributed systems might be con-
sidered reactive systems, although they do not have the hard real-time requirements of
“pure” reactive systems.

Many other kinds of programs also have a naturally concurrent structure. Discrete
event simulations, for example, can be structured as a collection of processes represent-
ing the objects being simulated. Concurrency can also be used to provide a different
look at a sequential algorithm. For example, power series can be programmed elegantly
as dataflow networks. And, of course, concurrency is important in expressing parallel
algorithms.

1.2 High-level languages

Writing correct concurrent programs is a difficult task. In addition to the bugs that may
arise in sequential programming, concurrent programs suffer from their own particular
kinds of problems, such as races, deadlock, and starvation. What makes this even more
difficult is that concurrent programs execute nondeterministically, which means that a
program may work one time and fail the next. A common suggestion to address this
problem is to use formal methods and logical reasoning to verify that one’s program
satisfies various properties. While this is a useful pedagogical tool, it does not scale well
to large programs.

For large systems, one has to mostly rely on good design and careful implementation,
which is where the choice of programming language makes an important difference. A
high-level language with well-designed primitives is the most important ingredient in
helping the programmer write correct and robust software.

The question of which programming notation to use is often the subject of religious
debate. The trade-offs are fairly obvious: higher-level languages help programmer pro-
ductivity and improve the robustness of software, while lower-level languages allow more
programmer control over performance details. As implementation technology improves
(and computer time becomes cheaper), the trend has been to migrate towards higher-level
languages. While most people would agree that the performance lost when switching
from assembly language to C is well worth the improved programmer productivity, there
is no such consensus about the next step.

It is the view of the author that the higher-order language Standard ML (SML), which
provides the sequential substrate for the programming examples in this book, is a good



1.3 Concurrent ML 7

candidate for the next step. SML provides a number of important benefits for program-
mers:

• A strong type system, which guarantees that programs will not have run-time type
errors (or “dump core”).

• A garbage collector, which improves modularity and prevents many kinds of mem-
ory management errors.

• An expressive module system, which supports large-scale software construction
and code reuse.

• Higher-order functions and polymorphism, which further support code reuse.

• A datatype mechanism and pattern matching facility, which provide a concise no-
tation for many data structures and algorithms.

• A well-defined semantics and independence from architectural details, which makes
code truly portable.

SML also provides a level of performance that is becoming competitive with lower-
level languages, such as C. In particular, there is a widely used and freely distributed
SML system, called Standard ML of New Jersey (SML/NJ), which provides quite good
performance.4 It is the author’s view that the notational advantages of programming in
SML outweigh the slight loss of performance, when compared to C. A thesis of this book
is that efficient system software can be written in a language such as SML.

1.3 Concurrent ML

This book uses a concurrent extension to SML, called Concurrent ML (CML), as its
primary programming notation. CML can either be viewed as a library, since it compiles
directly on top of SML/NJ, or as a language in its own right, since it defines a different
programming discipline.

Following the tradition of SML, CML is designed to provide high-level, but efficient,
mechanisms for concurrent programming. Its basic model of communication and syn-
chronization is synchronous message-passing (or rendezvous) on typed channels. Cre-
ation of both threads and channels is dynamic. Most importantly, CML provides a
mechanism for users to define new communication and synchronization abstractions.
This allows proper isolation of the implementation details, improving the robustness of

4Of course, this is application specific. SML beats C on many symbolic applications, but does not compete as well on
array-based numerical applications.
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the system. CML also addresses performance issues by providing efficient concurrency
primitives. CML has a number of features that make it a good programming notation for
building large-scale systems software:

• CML is a higher-order concurrent language. Just as SML supports functions
as first-class values, CML supports synchronous operations as first-class values.
These values, called events, provide the tools for building new synchronization
abstractions.

• It provides integrated support for I/O operations. Potentially blocking I/O opera-
tions, such as reading from an input stream, are full-fledged synchronous opera-
tions. Low-level support is also provided, from which distributed communication
abstractions can be constructed.

• It provides automatic reclamation of threads and channels, once they become in-
accessible. This permits a technique of speculative communication, which is not
possible in other concurrent languages and libraries.

• Scheduling is preemptive, which ensures that a single thread cannot monopolize
the processor. This allows “off-the-shelf” code to be incorporated in a concurrent
thread without destroying interactive responsiveness.

• It has an efficient implementation. Concurrency operations, such as thread cre-
ation, context switching, and message passing are very fast, often faster than lower-
level C-based libraries.

• CML is implemented on top of SML/NJ and is written completely in SML. It
runs on every hardware and operating system combination supported by SML/NJ
(although we have not had a chance to test all combinations).

CML, and the multithreaded user-interface toolkit eXene, which is built on top of CML,
have been used for a number of substantial applications (i.e., applications consisting of
at least 10,000 lines of SML/CML code).

Notes

The importance of using concurrency in the construction of user-interface software has
been argued by a number of people. Most notably by Pike [Pik89a, Pik94], and by
Gansner and the author [RG86, GR92]. A recent paper by Hauser et al. describes the
various paradigms of thread use in two large interactive software systems [HJT+93].

Liskov, Herlihy, and Gilbert give arguments as to why the node programs in dis-
tributed systems should either have dynamic thread creation or use one-way message
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passing (which they call asynchronous communication) for communicating with other
nodes [LHG86]. The basic argument is that without one of these features, avoiding per-
formance problems with local and remote delays requires too much complexity. These
arguments are also motivation for using a concurrent language, instead of a sequential
one, to program the nodes. Many languages and toolkits for distributed programming
provide some form of light-weight concurrency for use in the node programs. Examples
include the language Argus [LS83], the language SR [AOCE88, AO93], and the Isis
toolkit [BCJ+90].

In addition to the examples found in later chapters of this book, there are a number of
examples of the application of concurrency in the literature. McIlroy describes the imple-
mentation of various power series computations using the language newsqueak [McI90].
Andrews and Olsson illustrate the use of SR with a number of small application exam-
ples, including parallel numerical computation and simulation [AO93]. A book by Arm-
strong, et al. gives examples of the use of the concurrent language Erlang for a number
of applications, including database servers, real-time control, and telephony [AVWW96].
CML has also been used for experimental telephony applications [FO93].

It is expected that the reader is familiar with the 1997 revision of SML, since it is
the primary notation used in this book. A number of books give good introductions to
SML. The second edition of Paulson’s book [Pau96] gives a comprehensive description
of the language, concentrating mostly on “functional programming” using SML, but it
also discusses the module system and imperative features. A book by Ullman provides
an introduction to SML aimed at people with experience programming in traditional
imperative languages, and has been recently revised for SML’97 [Ull98]. Other books
include Reade’s book on functional programming using SML [Rea89], Stansifer’s primer
on ML [Sta92], and a book on abstract data types in SML by Harrison [Har93]. A re-
cent book by Okasaki describes many purely functional data structures [Oka98]; these
can be particularly useful for concurrent programming since there is no danger of shared
state. In addition, there are tutorials written by Harper [Har86] and Tofte [Tof89]. The
formal definition of SML and commentary on the definition were published as a pair of
books [MTH90, MT91]; a revised definition, which covers SML’97, has also been pub-
lished [MTHM97]. In addition, the SML Basis Library Manual is available electronically
from

http://standardml.org/Basis/index.html

and also as a book [GR04].

This book also uses libraries and features that are specific to the SML/NJ system; these
are described as they are encountered. More detailed documentation is included in the
SML/NJ distribution, and is also available from the SML/NJ home page. An abridged
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version of the CML Reference Manual is provided in Appendix A. As described in the
preface, both SML/NJ and CML are distributed electronically free of charge.



2
Concepts in Concurrent Programming

Concurrent programming differs from sequential programming in several significant ways.
Conceptually, we can view the execution of a concurrent program as an interleaving of
the sequential execution of its constituent processes. Since there are many possible in-
terleavings, the execution of a concurrent program is nondeterministic; i.e., different
interleavings may produce different results. In effect, a concurrent program defines a
partial order on its actions, whereas a sequential program defines a total order. This non-
determinism is both the bane and boon of concurrent programming: on the one hand, it
creates additional correctness problems, while on the other hand, it provides flexibility
and a more natural program structure. As argued in Chapter 1, the choice of program-
ming notation can help the programmer control the complexity of concurrency, while
reaping its benefits.

A concurrent language typically consists of a sequential core (or sub-language), ex-
tended with support for concurrency. The concurrency support can be divided into three
different kinds of mechanism:

• A mechanism for introducing independent sequential threads of control, called
processes. The process creation mechanism can be either static, restricting the
program to a fixed number of processes, or dynamic, allowing new processes to be
created “on-the-fly.”

• A mechanism for processes to communicate. Communication involves exchang-
ing data, either through shared memory locations (e.g., variables) or by explicit
message passing.

• And a mechanism for processes to synchronize. Synchronization restricts the or-
dering of execution in otherwise independent threads, and is used to limit the pro-
gram’s nondeterminism where necessary.

The choice of language features used to provide these mechanisms, along with the se-
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quential sub-language, characterize a concurrent programming language. In particular,
the choice of synchronization and communication mechanisms are the most important
aspects of concurrent language design. Most concurrent languages can be classified
as either shared-memory languages or message-passing languages (sometimes called
distributed-memory languages). Shared-memory languages rely on the imperative fea-
tures of the sequential sub-language for interprocess communication, and provide sep-
arate synchronization primitives to control access to the shared state. Message-passing
languages provide a single unified mechanism for both synchronization and communica-
tion. Note that the distinction between shared-memory and message-passing languages
has to do with the style of process interaction; many message-passing languages, includ-
ing CML, are implemented in shared address spaces.

In this chapter, we survey the important issues in concurrent programming, and ex-
amine some of the better known language features for supporting concurrency. This
discussion is partially to give the reader a feeling for some of the design choices, as well
as a way of highlighting some of the important issues in concurrent programming. It also
provides definitions of various abstractions that are implemented later in the book using
CML.

2.1 Processes

A process consists of a thread of control (i.e., an instruction stream and program counter),
and a local state (i.e., local variables, program stack, etc.). A process is essentially a
sequential program that shares some of its state with other sequential programs. A con-
current programming language must provide a mechanism for defining the processes that
comprise a program; in the remainder of this section, we examine some of the ways in
which this mechanism is provided.

Perhaps the simplest notation for process creation is the static concurrent composition
of statements, which has the form:

stmt1 || stmt2 || · · · || stmtn

and is executed by executing each of the stmt i in parallel; the whole statement terminates
when each of the individual statements has terminated. This construct is often called a
cobegin statement, since it was first introduced as a way to compose concurrent begin-
blocks. If combined with recursive procedures, the cobegin statement can support the
creation of arbitrary numbers of processes, but it is an awkward programming notation.

Another approach to process creation is to provide a declarative notation for processes,
similar to procedure or module declarations. The Ada task declaration provides one
example of this. In Ada, task implementations are defined in task type declarations and
instances of a task are created by declaring variables of the corresponding task type.
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While this approach provides more flexibility than the cobegin statement, it is still rather
heavyweight and cumbersome.

Most recent concurrent languages provide process creation via a spawn (or fork) prim-
itive that dynamically creates a new thread of control to run concurrently with its creator.
While there are widely used concurrent languages that only provide static process cre-
ation, there do not seem to be very strong arguments in favor of it. On the other hand,
there are strong arguments in favor of providing dynamic process creation, many of which
are presented in this book.

2.2 Interference

Most concurrent programs require some sharing of data between different processes, but
if independent processes are accessing and modifying shared state, the order of accesses
can affect the result of the program. Sequential programs do not suffer from this prob-
lem, since the order of execution is deterministic. To illustrate this point, consider the
following program:

let val x = ref 0
in

x := !x + 1; x := !x + 2;
print (!x)

end

Simple examination is sufficient to determine that this program will print the integer 3
every time it is executed. But consider a version where the assignment statements are
composed in parallel, instead of sequentially:

let val x = ref 0
in
(x := !x + 1) || (x := !x + 2);
print (!x)

end

The execution of each assignment statement consists of three individual steps: read x,
add a constant to it, and store the result. We assume that the individual steps are atomic;
i.e., that they are executed as indivisible operations. Since the statements are composed
in parallel, the steps can be interleaved in different ways, resulting in either 1, 2, or 3
being printed. This is the canonical example of interference between processes. The
two assignment statements are examples of critical regions; i.e., regions of code that are
potential sources of interference in the absence of proper concurrency control. Synchro-
nization provides the mechanism for avoiding this interference.

While the above example is expressed in terms of shared-memory primitives, it is im-
portant to realize that interference also occurs in message-passing concurrent programs.
For example, memory could be an independent process and the memory operations could
be implemented using messages.
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2.3 Correctness issues in concurrent programming

Because concurrent programs consist of multiple processes and have nondeterministic
behavior, they give rise to a number of correctness issues not found in sequential pro-
grams.

A common problem suffered by concurrent programs is deadlock, which is a situa-
tion in which a set of processes are blocked waiting for some event that cannot occur.
Deadlock is caused by cyclic dependencies among processes. For example, consider the
following program, where two processes P and Q share two resources A and B:

P: acquire A; acquire B; compute; release B; release A
Q: acquire B; acquire A; compute; release A; release B

Assuming that only one process can hold a resource at a time, the following program
can deadlock with P holding A and Q holding B. The problem is that there is a cyclic
dependency between P ’s acquiring of resource B and Q’s acquiring of resource A.

A problem that is similar to deadlock is livelock, where processes are not making
progress, even though they are not blocked. For example, suppose that we modified the
above program so that P and Q release the first resource that they acquire when the
second is held, and then try again:

P

l: acquire A;
if (B is held)

then (release A; goto l)
else acquire B

compute
release B; release A

Q

l: acquire B;
if (A is held)

then (release B; goto l)
else acquire A

compute
release A; release B

One possible execution of this program is a strict interleaving of P and Q, which results
in an infinite execution:

P: acquire A
Q: acquire B
P: if (B is held)
Q: if (A is held)
P: then release A
Q: then release B
P: acquire A
Q: acquire B
...

Neither process is blocked, but neither makes progress.

When reasoning about concurrent programs, it is necessary to consider all possible
execution sequences (or process histories). We define a property of a concurrent program
to be a statement about the program’s behavior that is true in all possible executions of
the program. There are two classes of properties that are of interest:
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• Safety properties assert that a program never enters a bad state. Or more formally,
that for any program execution, every state satisfies the statement. Mutual exclu-
sion is an example of a safety property, since it asserts that the program is never in
a state where two processes are executing in a critical region. Another important
safety property is the absence of deadlock.

• Liveness properties assert that a program eventually reaches a desirable state — for
every execution there is some state in which the statement is true. Termination is
an example of a liveness property, since it asserts that a program will eventually
terminate.

Fairness is a particular form of liveness property that is important to concurrent pro-
gramming. The most general concept of fairness is that a system component that is en-
abled sufficiently often should not be delayed indefinitely. For example, in a time-sharing
system, is a process guaranteed to make progress if it is ready? If the scheduler is prior-
ity based, and there are always higher priority processes that are also ready to run, then
the process will be delayed (this is called starvation). There are different strengths of
fairness based on how the phrase “sufficiently often” is interpreted. Under strong fair-
ness, any component that is enabled infinitely often is never delayed indefinitely. While
under weak fairness, any component that is enabled “almost always” is never delayed
indefinitely.1 For example, if we have a component that alternates being enabled for a
second then not enabled for a second ad infinitum, then under strong fairness it will not
be starved (because it is enabled infinitely often), whereas under weak fairness it can be
starved (because it is not enabled infinitely often).

We can also distinguish different notions of fairness by the kind of system component
that they refer to: process fairness says that a process will get to make progress, while
event fairness says that an enabled event will get to occur. The scheduling example in
the previous paragraph is an example of a process fairness concern. An example of event
fairness can be found in selective communication. Consider a process that repeatedly
synchronizes on the choice of reading from two channels, where there is always input
available on both channels. If the process always reads from the same channel, then the
“event” of reading from the other channel is delayed indefinitely, which is unfair.

In the implementation of concurrent programming languages, fairness concerns are
closely coupled with scheduling policies. For example, consider a process scheduling
policy for a uniprocessor that lets the currently running process have sole access to the
processor until it either blocks or terminates. Such a policy allows an infinitely looping
process to starve other processes, and thus is unfair. While a strongly fair scheduling

1This terminology is a bit confusing. The statement that a component is enabled almost always means that it is not
enabled only finitely often.
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policy is impractical to implement in general, it is possible to implement strongly fair
policies for many higher-level concurrency primitives.

2.4 Shared-memory languages

As seen in Section 2.2, correct execution of shared-memory programs requires synchro-
nization to control the access to shared state. In general, there are two kinds of situations
in which synchronization is required between processes: to avoid interference when ac-
cessing shared variables, and to ensure that operations are only performed under certain
conditions.

As we saw above, when the operations on a shared value consist of a sequence of
statements, concurrent execution of the operations by two or more threads can result in
indeterminate results. To avoid this, the operations must be executed atomically. For
example, if the assignment statements in the above example are atomic, then the answer
will always be 3. Mutual exclusion synchronization is used to ensure that processes
execute the critical regions atomically.

The other situation arises when the state of the shared object determines which oper-
ations are enabled. For example, a shared object might allow multiple readers to access
it concurrently, but require exclusive access for writers. In this case, both the read and
write operations are disabled when another process is writing, and the write operation is
disabled when processes are performing reads. A process uses condition synchronization
to wait until some condition holds before executing an operation.

To illustrate the different forms of shared-memory synchronization primitives, we use
the classic example of a producer/consumer buffer. This is an abstraction of a common
situation in which one, or more, processes, called producers are generating data that are
being fed to one, or more, consumer processes. Figure 2.1 gives the basic structure of
the system. The interesting part is the finite buffer used to connect the producer and
consumer processes. A natural way to implement the buffer is as an abstract data type
with the following interface:

removeinsert
Buffer

ConsumerProducer

Figure 2.1: Producer/consumer system
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type ’a buffer
val buffer : unit -> ’a buffer
val insert : (’a * ’a buffer) -> unit
val remove : ’a buffer -> ’a

The buffer is the shared state in the system, and access to its internal representation
must be controlled, which requires mutual exclusion synchronization. There is additional
condition synchronization required to keep the producer from inserting items into a full
buffer, and to keep the consumer from attempting to remove items from an empty buffer.
To simplify the presentation, we use a buffer size of one.

2.4.1 Semaphores

One of the most basic synchronization mechanisms is the semaphore, which is a special
integer variable with two operations: P and V. Given a semaphore s, the execution of
P(s) by a process p forces it to delay until s > 0, at which point p executes s := s − 1
and proceeds; the test and update of s are performed together as an atomic operation.
Execution of V(s) results in the atomic execution of s := s + 1.

A semaphore s can be used to implement mutual exclusion for a critical region by
initializing s to 1, and by bracketing the critical region with P(s) . . . V(s). When a
process P enters the critical region, s goes to 0, which prevents any other process from
entering until P exits. Such a semaphore is called a binary semaphore, since it only has
two values. Semaphores can also be used to implement condition synchronization. In
this case, the semaphore is initialized to 0. When a process wants to wait for a condition
to become true, it executes P(s), causing it to block. When another process makes the
condition true, it executes V(s), which signals to the waiting process that it may proceed.

The code in Listing 2.1 gives a possible implementation of the one-element producer/
consumer buffer using semaphores, which illustrates both styles of semaphore use. We
assume that the function semaphore creates a new semaphore initialized to the given
value, and that the functions P and V are as described above. The semaphore lockSem
is used for mutual exclusion synchronization to ensure that only one process can access
the buffer’s state at a time, while the auxiliary counter waiting and the semaphore
waitSem are used to provide condition synchronization on the state of the buffer (i.e.,
empty or full). The actual condition synchronization scheduling is performed by the
functions wait and signal. This implementation allows multiple producers and con-
sumers to share the buffer. The key to making this sharing work is that signalwakes up
all the waiting processes, which means that when a producer puts a value into the buffer
it is guaranteed that if there is a blocked consumer, then the value will be consumed (and
vice versa).

There is a more concise implementation of the one-element producer/consumer buffer
that uses one semaphore to mark the empty state, and another to mark the full state. In



18 2 Concepts in Concurrent Programming

datatype ’a buffer = BUF of {
data : ’a option ref,
waiting : int ref,
lockSem : semaphore,
waitSem : semaphore

}

fun buffer () = BUF{
data = ref NONE,
waiting = ref 0,
lockSem = semaphore 1,
waitSem = semaphore 0

}

fun wait (BUF{waiting, lockSem, waitSem, ...}) = (
waiting := !waiting+1; V lockSem; P waitSem)

fun signal (buf as BUF{waiting, waitSem, ...}) =
if (!waiting > 0)
then (

waiting := !waiting-1; V waitSem;
signal buf)

else ()

fun insert (buf as BUF{data, lockSem, ...}, v) = (
P lockSem;
case !data
of NONE => (data := SOME v; signal buf; V lockSem)
| (SOME _) => (wait buf; insert (buf, v))

(* end case *))

fun remove (buf as BUF{data, lockSem, ...}) = (
P lockSem;
case !data
of (SOME v) => (data := NONE; signal buf; V lockSem; v)
| NONE => (wait buf; remove buf)

(* end case *))

Listing 2.1: Producer/consumer buffer implemented with lock and wait semaphores

effect, this scheme implements both the mutual exclusion and condition synchronization
using the same semaphores. Listing 2.2 gives the code for this version. While this version
is more compact, the alternating use of the two semaphores is subtle and makes its harder
to extend.

A major problem with semaphores is that there is no linguistic support for their correct
use. For example, the code in Figures 2.1 and 2.2 have P and V operations scattered
throughout; insuring that they are properly matched and that all accesses to shared state
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datatype ’a buffer = BUF of {
data : ’a option ref,
emptySem : semaphore,
fullSem : semaphore

}

fun buffer () = BUF{
data = ref NONE,
emptySem = semaphore 1,
fullSem = semaphore 0

}

fun insert (BUF{data, emptySem, fullSem}, v) = (
P emptySem;
data := SOME v;
V fullSem)

fun remove (BUF{data, emptySem, fullSem}) = let
val _ = P fullSem
val (SOME v) = !data
in
data := NONE;
V emptySem;
v

end

Listing 2.2: Producer/consumer buffer implemented with condition semaphores

are protected requires close examination. Furthermore, implementing patterns of syn-
chronization that are more complicated than mutual exclusion can be tricky.

2.4.2 Mutex locks and condition variables

The term mutex lock is essentially another name for a binary semaphore (it is a contrac-
tion of “mutual exclusion”). A mutex lock has two states: locked or unlocked. One of
the advantages of mutex locks is that they are supported naturally by the test-and-set
instruction found on many multiprocessors.

Mutex locks are meant to be used to control access to shared data. The idea is that each
piece of shared data has an associated lock, which a process must acquire before it can
access the data. We have already seen an example of this; the semaphore lockSem in
Listing 2.1 is essentially a mutex lock. This idiom can be supported by syntactic sugar;
for example, Modula-3 provides the statement syntax

LOCK m DO statements END

which executes by first acquiring the lock m, then executing the statements, and finally
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releasing m. In SML, this idiom might be supported by a higher-order function with the
type

val withLock : mutex -> (’a -> ’b) -> ’a -> ’b

The semantics of the expression

withLock mu f x

are that first the lock mu is acquired, then the function f is applied to x, and then the
function’s result is returned after releasing the lock.

Mutex locks are sufficient for insuring mutual exclusion in critical regions, but do not
provide an easy way to implement condition synchronization. In our producer/consumer
example, if the buffer is empty, then the consumer must wait for the producer to add
something to it; likewise, if the buffer is full, the producer must wait for the consumer
to remove something. While it is possible to program this using only mutex locks, it is
more natural to use condition variables. A condition variable is used to delay a process
until some condition in a critical region is satisfied (e.g., the buffer is not empty). Just as
a mutex lock is specialized to support mutual exclusion synchronization, the condition
variable is designed to support condition synchronization.

The basic operations on condition variables are

val wait : condition -> unit

which causes a process to block on the condition variable, and

val signal : condition -> unit

which wakes up one waiting process. A condition variable is associated with a specific
mutex lock, which must be held when performing a wait operation on the variable.
The semantics of the wait operation are that the mutex lock is released, and then the
process is blocked; when the condition is signaled, the next process in the condition’s
waiting queue is unblocked and it reacquires the mutex lock and proceeds. A signal
operation on a condition variable that has an empty waiting queue has no effect; in this
sense condition variables are memoryless.

The implementation of the producer/consumer buffer is much cleaner using mutex
locks and condition variables than using semaphores. The code for this is given in List-
ing 2.3. Here we use the mutex lock mu to provide mutual exclusion, and the two con-
dition variables dataAvail and dataEmpty to block waiting processes. Note that
waiting on a condition is implemented as a loop, with the waiting process checking the
condition after it wakes up. This is necessary to avoid the potential problem of another
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datatype ’a buffer = BUF of {
data : ’a option ref,
mu : mutex,
dataAvail : condition,
dataEmpty : condition

}

fun buffer () = let
val mu = mutex()
in

BUF{
data = ref NONE,
mu = mu,
dataAvail = condition mu,
dataEmpty = condition mu

}
end

fun insert (BUF{data, mu, dataAvail, dataEmpty}, v) = let
fun waitLp NONE = (data := SOME v; signal dataAvail)

| waitLp (SOME v) = (wait dataEmpty; waitLp(!data))
in

withLock mu waitLp (!data)
end

fun remove (BUF{data, mu, dataAvail, dataEmpty}) = let
fun waitLp NONE = (wait dataAvail; waitLp(!data))

| waitLp (SOME v) = (data := NONE; signal dataEmpty; v)
in

withLock mu waitLp (!data)
end

Listing 2.3: Producer/consumer buffer implemented with mutex locks

process acquiring the mutex lock and invalidating the condition between the time the
waiting process is unblocked and the time it reacquires the lock. This situation is an
example of a race condition, which is a situation where the relative speed and schedul-
ing of processes can affect the correctness of the program. By rechecking the condition
after being signaled, we avoid the possibility of a race. We could use a single condition
variable to block waiting processes, but then we would have had to use broadcast to
support sharing of the buffer between multiple producers and consumers (as we did in
the semaphore implementation).

2.4.3 Monitors

Monitors are a special form of module that can be used to encapsulate shared state. As
with a regular module, a monitor provides data abstraction, with access to its state being
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restricted to a collection of exported procedures. In addition to data abstraction, moni-
tors provide mutual exclusion by only allowing a single process to be executing inside
the monitor at a time. In effect, this is equivalent to having a single mutex lock for the
whole monitor, and wrapping the body of each exported procedure with a LOCK state-
ment. In addition to the implicit locking provided by the exported procedures, monitors
also provide condition variables for condition synchronization. In fact, programming lan-
guages with monitors predate the kind of support for mutex locks and condition variables
described in the previous section. While monitors provide more linguistic support than
mutex locks, it can be argued that providing mutex locks as a separate mechanism is a
better approach, since it separates two orthogonal language features (i.e., modules and
mutual exclusion).

2.5 Message-passing languages

In the previous section, we used the producer/consumer buffer as an example to illus-
trate different shared-memory primitives. Message-passing languages support this style
of interprocess communication more directly. The basic operations in message-passing
languages are “send a message” and “receive a message.” Since a message must be sent
before it can be received, message-passing imposes an causal order on the actions of the
program.

One way to distinguish message-passing languages is by the mechanism used to spec-
ify the destination of a send operation and the source of a receive. This pair of names
is called a communication channel. Different schemes for specifying communication
channels support different communication topologies. The most basic way to specify
a communication channel is direct naming, where the endpoints (i.e., the sending and
receiving processes) are named explicitly. In this case, the topology of a channel is a
one-to-one connection. A variation on this is to allow receive operations to accept mes-
sages from any sending process, which allows many-to-one connections. Direct naming
is quite restrictive, so a natural generalization is to allow process names to be stored in
variables and sent in messages. In a strongly-typed language direct naming has the addi-
tional disadvantage that a process can only receive messages of one type, which means
that the programmer must use a union type and case analysis to support multiple types of
messages. This problem can be addressed by associating multiple ports with each pro-
cess, where each port can support a different type of message. The send operation then
must specify both the destination process and port, while the receive operation specifies
an input port. Another common mechanism is to make the communication channels into
first-class citizens, and specify them independently of the sender and receiver processes.
When communication channels are supported as values, many-to-many connections are
possible using a single channel (multiple processes may read and write from the chan-
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nel). When we discuss message passing in the sequel, we use channels as the naming
scheme, and allow multiple processes to read or write on a channel. In addition to point-
to-point messages, where each message that is sent is received by only one process, some
message-passing schemes support broadcast (or multicast), where a message can be sent
to every process in a group of processes.

Another, more important, way to distinguish between different forms of message pass-
ing is the amount of synchronization provided by the message-passing operations. The
basic issue is whether an operation is blocking or non-blocking (the terms synchronous
and asynchronous are sometimes used instead). Since there are two different operations,
we can organize the design space into a taxonomy of four choices. In practice, the re-
ceive operation is almost always a blocking operation,2 which leaves us the choice of
non-blocking versus blocking send. There is also the question of whether communica-
tion is bidirectional (i.e., whether the send operation blocks until a reply is received). In
the next three sections, we discuss these choices in more detail.

2.5.1 Asynchronous message passing

An asynchronous message-passing mechanism buffers the communication between the
sender and receiver, which allows the sender to continue execution after sending a mes-
sage. This is analogous to mailing a letter; once the letter is in the postbox, the sender can
continue with other tasks. One issue is whether the ordering of messages that the sender
sees is also seen by the receiver. Most languages with asynchronous message passing
provide FIFO (First-In, First-Out) ordering of messages, but FIFO ordering of messages
is not guaranteed in distributed systems or in some implementations of asynchronous
message passing. Figure 2.2 gives examples of asynchronous message passing. The
vertical lines are pictorial representations of the process histories (or time-lines) for the
processes P and Q, with time progressing down the page. Both figures cover a situation
in which P sends two messages to Q, and then receives one, and Q receives a message,
sends one, and then receives another. The difference is in the ordering of P’s messages; in
Figure 2.2(a), the messages obey a FIFO ordering, whereas they do not in Figure 2.2(b).
An asynchronous channel can be viewed as a semaphore with data. The send operation
corresponds to V, and the recv operation to P. The number of outstanding messages in
the buffer represents the value of the semaphore.

Some implementations of asynchronous message passing only provide finite buffering.
In this situation, if the producer outpaces the consumer, then the send operation eventu-
ally becomes blocking, since the sender must wait for empty space in the buffer. While
this violates the spirit of asynchronous message passing, the alternative may be worse.

2One notable exception is the SR language, which allows one to define a receive operation that is asynchronously
invoked when a message arrives.
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Figure 2.2: Asynchronous message passing

If the language implementation allows buffers to grow without bound, then the available
memory could be exhausted, causing the system to crash.

The producer/consumer example illustrates this problem well. The producer and con-
sumer processes can be connected directly using an asynchronous communication chan-
nel, but if the producer generates new items faster than the consumer uses them, the pro-
gram will have unbounded space consumption. To avoid this, some form of flow-control
is required. The finite buffer provides this, since the buffer size limits the distance the
producer can get ahead of the consumer. Listing 2.4 gives the code for an implementation
of the producer-consumer buffer using asynchronous message passing. This version of
the implementation avoids the need for mutual exclusion synchronization, since only one
process can access the buffer’s state directly. The condition synchronization is provided
by the buffer process sending messages on the emptyCh and remCh channels (recall
that an asynchronous channel is like a semaphore with data). The producer (or consumer)
process must wait for a message to be available, before it can insert (resp. remove)
an item. Flow-control is provided by handshaking on the remove operation; the buffer
process waits for an acknowledgement, before sending the “empty” message. This type
of handshaking could also be used for the insert operation, but that would effectively
increase the buffer size by the number of producers, since each producer could send
a message and then wait for the acknowledgement. Figure 2.3 illustrates the message
traffic used in this implementation. It is also interesting to note that the buffer’s state is
implemented as a pair of mutually recursive functions: empty and full. This is a com-
mon idiom when programming message-passing concurrency in ML-style languages.
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datatype ’a buffer = BUF of {
emptyCh : unit chan,
insCh : ’a chan,
remCh : ’a chan,
remAckCh : unit chan

}

fun buffer () = let
val emptyCh = channel () and insCh = channel()
val remCh = channel() and remAckCh = channel()
fun empty () = (

send (emptyCh, ());
full (recv insCh))

and full x = (
send (remCh, x);
empty (recv remAckCh))

in
spawn empty;
BUF{

emptyCh = emptyCh, insCh = insCh,
remCh = remCh, remAckCh = remAckCh

}
end

fun insert (BUF{insCh, emptyCh, ...}, v) = (
recv emptyCh; send (insCh, v))

fun remove (BUF{remCh, remAckCh, ...}) =
(recv remCh) before send(remAckCh, ())

Listing 2.4: Producer/consumer buffer implemented with asynchronous message passing

2.5.2 Synchronous message passing

In synchronous message passing, the sender is blocked until its message is received. 3

This is somewhat analogous to making a phone call, where the caller must wait until
someone picks up the phone (i.e., accepts the call) before talking. There are two basic
scenarios for synchronously sending a message: either the sender waits or the receiver
waits. Figure 2.4 shows the process histories for these two scenarios, where the dot-
ted lines correspond to a process being blocked. Because the two processes must wait
for each other, synchronous message passing is sometimes called rendezvous (or simple
rendezvous).

Implementing the producer/consumer buffer using synchronous message passing is
straightforward; the code is given in Listing 2.5. As with the asynchronous case, a pro-
cess is used to encapsulate the buffer state, but unlike the asynchronous case, no extra

3In the case of synchronous message passing, the “recv” operation is sometimes called “accept.”
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communication is required for flow-control. The condition synchronization is imple-
mented by the enabling of communication on the channels. When the buffer is empty,
then communication on the channel insCh is enabled, but not on the channel remCh.
Conversely, when the buffer is full, the situation is reversed.

While synchronous communication patterns are more common than asynchronous pat-
terns, it is occasionally necessary to communicate asynchronously — for example, when
cyclic communication patterns are required that might otherwise result in deadlock. The
producer/consumer buffer example illustrates one technique for supporting asynchronous
communication in a synchronous language. Another technique is to have the sender dy-
namically spawn a new process to actually send the message; this way the new process
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Figure 2.4: Synchronous message passing (simple rendezvous)
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datatype ’a buffer = BUF of {
insCh : ’a chan,
remCh : ’a chan

}

fun buffer () = let
val insCh = channel() and remCh = channel()
fun empty () = full (recv insCh)
and full x = (send (remCh, x); empty())
in

spawn empty;
BUF{

insCh = insCh,
remCh = remCh

}
end

fun insert (BUF{insCh, ...}, v) = send (insCh, v)

fun remove (BUF{remCh, ...}) = recv remCh

Listing 2.5: Producer/consumer buffer implemented with synchronous message passing

may block, but the sender can continue executing. When process creation is inexpen-
sive, this is a useful technique. Note, however, that unlike using a buffer process, this
technique does not guarantee a FIFO ordering of the messages.

2.5.3 Selective communication

In message-passing programs, it is often necessary to manage communication with mul-
tiple partners. For example, if we wish to modify the producer/consumer buffer imple-
mentation of Listing 2.5 to use a larger buffer, then when the buffer is partially full, the
buffer process must be able to handle communications with both the producer and the
consumer. There are several ways that this might be accomplished.

It is possible to design a protocol based on the simple operations used in Listing 2.5.
The idea is to use a single channel for both insert and remove requests. The producer
(or consumer) first sends a request, and then attempts its operation; when the buffer pro-
cess receives an insert (or remove) request, it enables communication on the appropriate
channel. This becomes quite complicated, however, because the buffer process must also
manage outstanding insert requests when it is full (and outstanding remove requests
when it is empty). Another problem is that we have lost the benefits of rendezvous, and
have reverted to explicit handshaking. Furthermore, this kind of protocol is not very ab-
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stract, and may have to be modified to be used in other contexts (for example, a process
that wants to read from two different buffered channels).

To avoid the complexities and inefficiencies of such protocols, most message-passing
languages provide a mechanism for selecting from a choice of several blocking com-
munications. One approach is to provide a polling operation (or non-blocking recv
operation) that allows a process to attempt a communication without blocking (if the op-
eration would block, then the attempt fails). Using this, one might implement the buffer
by repeatedly polling the insCh and remCh channels. While this spinning provides
the desired nondeterministic choice of communications, it is wasteful of computing re-
sources. A better approach is to provide a selective communication operation that allows
a process to block until one of a choice of operations is possible. Using such a mecha-
nism, the finite producer/consumer buffer process can be implemented quite elegantly as
follows (using the previous implementation of insert and remove):

fun loop [] = loop [recv insCh]
| loop buf = if (length buf > maxLen)

then (send (remCh, hd buf); loop (tl buf))
else (select remCh!(hd buf) => loop (tl buf)

or insCh?x => loop (buf @ [x]))

where we are assuming syntactic support for selective communication in the form of
the select expression, and use a list to represent the buffer. This has two clauses:
the first attempts to send the first item in the buffer on the remCh channel (the “!”
operator), and the second attempts to receive a message from the insCh channel (the
“?” operator). The communications in these clauses are called guards, because they
“guard” the actions following the “=>.” The select operation becomes enabled, when
one of the guards becomes enabled; if both guards are simultaneously enabled, then one
is selected nondeterministically.

There are variations in the design of selective communication mechanisms. Many
languages provide input-only selective communication, where the guards are restricted
to input operations only. For the above example, that would mean that the remove
operation would have to be implemented using a request from the consumer, so that the
buffer process could select on two input operations. When both input and output guards
are allowed, the mechanism is called generalized selective communication.

2.5.4 Remote procedure call

A common idiom in message-passing programs is the client-server structure, where one
process, called the server, provides some service (usually involving access to shared
state) to clients. A typical client-server protocol involves the client sending a request,
and then waiting for a reply from the server, where the server is structured as a loop with
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each iteration corresponding to the handling of one client request. Because of the impor-
tance of this idiom, some languages, such as Ada, provide it as the basic communication
mechanism. In such a mechanism, the clients use a call operation to request a service
and wait for the reply, while the server uses the entry operation to wait for requests
and a reply operation to return the result. The server-side entry operations are typically
gathered into a selective communication. Figure 2.5 shows a process history for a server
responding to requests from two different clients. Languages based on this mechanism
typically also supply a selective communication construct to allow the server to offer a
choice of different entries.

There are a number of different names for this mechanism. Because it involves block-
ing both the sender and receiver, it is sometimes called rendezvous (or extended ren-
dezvous). Others describe the communications as transactions. In this book, we use the
term Remote Procedure Call (RPC), because the request/reply protocol is similar to the
procedure call/return linkage. This analogy can be made stronger; the server process is
actually playing the rôle of a monitor, with the entries corresponding to the monitor’s
procedures. The server process provides both data abstraction, by encapsulating its state,
and concurrency control, by only accepting one request at a time.

One variant on RPC is the mechanism of asynchronous RPC, also called promises.
The idea is that the client can decouple the sending of a request from the waiting for a
reply. When the client sends a request, it gets a promise of a reply; later it can claim the
promise, which causes the client process to block until the reply is received. Figure 2.6
illustrates this mechanism. This is useful for hiding network and server latency when
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using the client-server paradigm.

2.5.5 Comparison of message-passing mechanisms

Given these various choices of mechanisms, it is worth comparing them (Chapter 6 con-
tains a more technical discussion of some of these issues).

The main argument in favor of asynchronous message passing is performance; both
because the implementation overhead of the asynchronous primitives is lower, and be-
cause the senders do not have to block. In practice, however, most uses of asynchronous
message passing involve synchronization via acknowledgement messages (such as the
flow-control in the producer/consumer example). This explicit synchronization loses the
advantage of lower overhead; in fact, it is likely to be more expensive than the implicit
acknowledgements provided by the synchronous send operation. Using asynchronous
messages, one can achieve parallelism by overlapping useful computation with waiting
for the acknowledgement. This is not as big of an advantage as it may seem at first for
two reasons. Often there is no suitable computation for a thread to do while waiting
for the acknowledgement, and when there are multiple threads in a program, parallelism
can be gained by running other threads. To use asynchronous message passing correctly
without acknowledgements usually requires some a priori knowledge of the system’s be-
havior. The main disadvantages of asynchronous message passing are rooted in the fact
that it provides very little synchronization. Thus, the programmer is forced to implement
more complicated protocols to achieve the necessary synchronization.
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Rendezvous (or blocking send), on the other hand, provides a very strong form of
synchronization; namely, the two processes involved in a rendezvous achieve common
knowledge about the communication. This property makes synchronous message passing
easier to reason about, since it avoids a kind of interference where the state of the sender
when the message is sent is different than when the message is received. This is also
reflected in the typical failure modes of erroneous programs. In asynchronous systems,
the typical failure mode is an overflow of the memory used to buffer messages, which is
likely to be far removed in time (and possibly place) from the source of the problem. In
synchronous systems, the typical failure mode is deadlock, which is immediate and easily
detected. Thus, detecting and fixing bugs in a synchronous message-passing program is
easier.

Occasionally the buffering provided by asynchronous message passing can be seman-
tically useful, such as in situations where some buffering is required to avoid cyclic de-
pendencies that might cause deadlock. For example, processes can send messages to
themselves via a buffered channel, which is not possible over a synchronous channel. In
these cases, however, the buffering can be easily provided using an additional process ( à
la the producer/consumer example), or by spawning a new thread to send the message.

The main disadvantage of choosing RPC as the basic communication mechanism is
that it is asymmetric. While it makes programming client-server abstractions easier, it
does not support other styles, such as producer-consumer networks. For this reason,
and because implementing RPC using message passing is more natural than vice versa,
message passing is a better choice than RPC for the basic communication primitive of a
concurrent language.

A related issue is the choice between generalized selective communication and the
input-only form. The advantage of the input-only form is that it is fairly easy to imple-
ment efficiently, whereas the generalized form can be quite expensive. On the other hand,
the input-only form suffers from the same asymmetry as RPC.

2.6 Parallel programming mechanisms

While the focus of this book is on programming with explicit concurrency, there are some
parallel programming mechanisms that are of interest later in the book.

2.6.1 Futures

Various parallel dialects of Lisp, such as Multilisp, provide a mechanism called futures
for specifying the parallel evaluation of expressions. Futures combine thread creation,
communication, and synchronization into a single mechanism. The Lisp expression
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(let
((x (future exp)))
body)

is evaluated by creating a placeholder (sometimes called a future cell) binding the variable
x to it, and spawning a new process to evaluate exp. When the new process has completed
the evaluation of exp, it fills in the future cell with the result. An attempt to access the
value of x in body is called touching x, and must synchronize on the availability of
the value. If the value of x is not available, then the touching process blocks until the
evaluation of exp is complete and the future cell has been filled.

Futures are not designed to support concurrent programming, rather they are designed
to be a parallel programming mechanism. Their main limitation as a concurrent pro-
gramming notation is that they only provide one chance for communication and synchro-
nization between the parent and child threads. Multilisp provides shared memory and
low-level locking mechanisms (essentially test-and-set) for supporting other patterns of
communication and synchronization. Using other communication and synchronization
mechanisms in conjunction with futures can lead to problems, since some implemen-
tations consider it optional as to whether a new thread actually gets spawned for each
future. For example, if the body of a future has code that synchronizes with its context,
this can result in deadlock if the run-time system chooses to use the same process to
evaluate both the future’s body and its context.

2.6.2 Synchronizing shared-memory

The programming language ID-90, and its predecessors, provide synchronizing shared-
memory for process communication and synchronization. There are two flavors of this:
I-structures provide write-once semantics, while M-structures allow multiple updates. 4

In both cases, the semantics are generalized to various different classes of data structures
(e.g., vectors and tuples), but for simplicity, we consider the case of single cells.

An I-structure cell has two states: empty and full. Unlike variables in SML (which are
also “single assignment”), an I-structure cell is first allocated and then initialized, which
allows one to build up a data structure incrementally. In addition to creation, there are two
operations on I-structures: put, which puts a value into an empty cell, and take, which
returns the value of a full cell. Figure 2.7(a) gives the allowed state transitions of an
I-structure cell. Applying put to a full cell is a dynamic error, while attempting a take
on an empty cell causes a process to block until the cell is full (i.e., some other process
does a put). Notice that I-structures capture the basic synchronization mechanism of
futures; completing the evaluation of a future causes a put of the result, and a touch
corresponds to a get.

4The “I” stands for incremental, and the “M” for mutable.
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Like an I-structure, an M-structure cell also has two states (empty and full). The dif-
ference is that a full M-structure becomes empty when a process takes its value (see
Figure 2.7(b)). This leads to a protocol for atomic updates: take-modify-put. If an M-
structure cell is initialized by its creator, and if subsequent to that, every process takes the
value, uses it, and then puts a new value back, access to the value will be serialized. This
is because taking the value has the effect of locking out other processes until the cell is
full again.

A unit valued M-structure effectively implements a binary semaphore, with take
as the P operation, and put as the V operation. Exploiting this fact, we can translate
the producer/consumer buffer implementation of Listing 2.2 to one using M-structures,
which is given in Listing 2.6. We also make a slight improvement by storing the data
value in the full M-structure, instead of using a separate reference cell.

2.6.3 Tuple spaces

Tuple spaces are a model of communication for parallel distributed-memory programming.
A tuple space is basically an associative memory that is shared by the processes of a sys-
tem. Unlike hardware memory, the values in a tuple space are tuples of typed fields,
which are similar to SML tuples. Processes communicate by reading and writing tuple
values. Reading a tuple is done by pattern matching on a subset of the tuple’s fields.

Tuple spaces have been popularized by the Linda family of programming languages.
The Linda languages are traditional sequential languages, such as C, extended with a
small collection of tuple-space operations. There are four basic operations in the Linda
model:

out is used to add a tuple to the tuple space.
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in takes a tuple template (or pattern) as an argument, and removes a tuple that matches
the template from the tuple space, binding the values in the tuple to the formal
parameters in the template. If there is no tuple that matches the template, then the
process suspends until the in can complete.

rd is like in, but does not remove the tuple from the tuple space.

eval is used to add an active tuple to the tuple space. This mechanism creates a new
process that computes the active tuple value; when the process terminates, the
tuple becomes passive, and may be read by other processes.

There are also non-blocking variants of in and rd, called inp and rdp (the “p” suffix
stands for polling).

Communication in Linda differs from most other distributed-memory communication
models, in that the messages (i.e., tuples) are not directed at any particular destination.
Instead, once inserted into tuple space, a tuple can be read by any process that executes a
matching rd operation. This flexibility of communication is further aided by the fact that
the templates used in rd operations can have undefined fields, called formals. A formal
matches any field of the right type, no matter what its value. A formal also provides a
mechanism to bind the values in the tuple being read to local variables in the process.

As with message passing, tuple spaces can be used directly to provide a connection
between a producer and consumer, but, as in the case of asynchronous channels, control-
flow must be explicitly programmed. Ensuring FIFO ordering in tuple spaces is also a

datatype ’a buffer = BUF of {
empty : unit m_struct,
full : ’a m_struct

}

fun buffer () = let
val empty = m_struct ()
in
put(empty, ());
BUF{empty = empty, full = m_struct()}

end

fun insert (BUF{empty, full}, v) = (
take empty;
put (full, v))

fun remove (BUF{empty, full}) = (
(take full) before put(empty, ()))

Listing 2.6: Producer/consumer buffer implemented using M-structures
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fun mkBuffer () = let
val bufName = a new buffer name
in

out 〈bufName, "empty"〉;
bufName

end

fun insert (bufName, v) = (
in 〈bufName, ”empty”〉;
out 〈bufName, ”full”, v〉)

fun remove bufName = (
in 〈bufName, ”full”, formal v〉;
out 〈bufName, ”empty”〉;
v)

Listing 2.7: Producer/consumer buffer implemented in Linda

problem, since reading tuples is nondeterministic. FIFO ordering can be imposed in-
dependently of flow-control, by including sequence numbers in the tuples, although to
support multiple producer or consumer processes requires keeping the sequence coun-
ters in tuple space. The implementation of the one-element producer/consumer buffer is
given in Listing 2.7 and is quite simple. In this code, v is assumed to be a local variable
of the correct type. Unlike in the message-passing case, no extra process is required for
the buffer. The tuple 〈bufName,"empty"〉 is used to synchronize the producer and
consumer; when it is present in the tuple space, the buffer is “empty.” The buffer name is
a globally unique value used to distinguish one buffer from another. This use of names to
tag tuples is very common in Linda. It is also one of the weaknesses of Linda as a pro-
gramming notation, since it forces the user to manage the names of the communication
channels explicitly. On the other hand, Linda does make it easy to support a wide range
of different communication patterns, such as multicast and shared work lists.

Notes

There are a number of good surveys of concurrent language design. Bryant and Den-
nis compare a number of different concurrency mechanisms using two example prob-
lems [BD80]. Andrews and Schneider [AS83] survey a broad range of concurrency
mechanisms. A more recent survey by Bal, Steiner, and Tanenbaum [BST89] reviews
over 90 different concurrent and distributed programming languages, including CML’s
predecessor PML [Rep88]. Wegner and Smolka compare the use of processes and mon-
itors to protect shared state [WS83].

There are also many books on concurrent programming. Andrews [And91] covers
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concurrent programming using various different languages, as well as covering in detail
most of the issues surveyed in this chapter. Birrell gives a tutorial on programming with
threads, mutex locks, and condition variables in Modula-3 [Bir91]. A paper by Hauser et
al. describes ten different paradigms of concurrency used in two large interactive appli-
cations (one research, one commercial) [HJT+93]. And Gehani and McGettrick [GM88]
have collected reprints of significant papers on concurrent languages and programming
(including [AS83] and [WS83]).

There are many languages and concurrency libraries based on various shared-memory
primitives. Semaphores are often supported by operating systems as a synchronization
mechanism (System V, Release 4 is one example [UNI90]). Monitors were an early
attempt to provide more programming language support for shared-memory concur-
rency [Hoa74]. A number of languages, such as Concurrent Pascal [Bri77], Concur-
rent Euclid [Hol83b], and Mesa [MMS79, LR80] provide monitors along with condi-
tion variables. The experiences with Mesa directly influenced the language Modula-
2+ [RLW85] and its successor Modula-3 [Nel91], which provide independent mutex
locks instead of monitors. Following this trend, Cooper and Morrisett, at Carnegie-
Mellon University, have developed a concurrency package, called ML-threads, which
provides threads, mutex locks, and condition variables for SML [CM90]. The design of
ML-threads is owed to the C-threads package [CD88], which in turn owes its design
to Modula-2+. A principal application of the ML-threads library is the construction of
low-level operating system services, which requires heavy use of shared state [CHL91].
There is also a multiprocessor implementation of a version of ML-threads done by Mor-
risett and Tolmach [MT93]. With the popularity of object-oriented sequential languages,
the monitor is making a comeback in the form of synchronizing objects, which provide
mutual exclusion in method calls. The most well-known example of this comeback is
Java [AG98], although Java confuses the issue by allowing an object’s lock to be used
in other ways.

The concept of a set of sequential processes running in parallel and communicating
by synchronous message passing was introduced in a seminal paper by Hoare [Hoa78],
which described the language Communicating Sequential Processes (CSP). While CSP
was quite limited as first described (static process creation, direct naming, and input-only
guards), it has been the inspiration for many synchronous message-passing languages.
The language occam [INM84, Bur88] is derived from CSP, but includes channels and
a limited form of dynamic process creation. The higher-order language Amber [Car86]
provides generalized selective communication on typed channels, as well as dynamic
process and channel creation. Other languages that owe an intellectual debt to CSP in-
clude Joyce [Bri89] and Pascal-m [AB86]. A pared down version of CSP, called TCSP,
has been used for theoretical study of concurrent systems [Hoa85].

Actors are a well-known class of concurrent programming languages and systems [Agh86]
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that are based on asynchronous message passing. The concurrent language Erlang
is a dynamically typed higher-order language based on asynchronous message pass-
ing [AVWW96] and can be viewed as an example of an actor language. It uses dynamic
direct naming to specify the destination of messages, and provides an input-only form
of selective communication that uses pattern matching to choose between messages in
a process’s mailbox. Erlang was developed at the Ellemtel Computer Science Labora-
tory for use in programming telephony software. The distributed programming language
SR provides both shared-memory primitives for local concurrency, and an orthogonal
collection of message-passing operations for distributed communication (including an
interrupt-driven asynchronous receive mechanism) [AO93].

The choice between asynchronous versus synchronous message passing, and between
input-only and generalized selective communication, comes down to two issues: per-
formance and expressiveness. Panangaden and the author have examined the relative
expressiveness of different rendezvous primitives [PR97]. These issues are discussed
further in Chapter 6.

In the author’s personal experience, synchronous message passing is an easier frame-
work for debugging concurrent programs. An early version of the Pegasus system [RG86]
used asynchronous message passing, but we had great difficulty in debugging our pro-
grams. Our experience with implementing eXene in CML [GR91], on the other hand,
demonstrates that large synchronous message-passing programs can be debugged fairly
easily, even without debugging tools.

The term “synchronous languages” is used to describe a family of languages that are
globally synchronous. The semantics of these languages restrict the history of a sys-
tem to a totally ordered sequence of instances at which events occur. Because of the
total ordering of events, these languages are deterministic. Applications of synchronous
languages include specifying hardware systems and programming reactive systems. A
description of four different synchronous languages and their use in programming reac-
tive systems is given by Halbwachs [Hal93]. Recently, Pucella has been exploring the
support of synchronous programming in the context of SML (and CML) [Puc98].

Futures were originally developed by Halstead in Multilisp [Hal85]; they also appear
in other parallel Lisps, such as Mul-T [KH88]. I-structures and M-structures are from
the language ID [Nik91]. Arvind, Nikhil, and Pingali discuss the use of I-structures
in parallel programs with some small example programs [ANP89]. Barth, Nikhil, and
Arvind give some examples of the use of M-structures in ID [BNA91]. Milewski pro-
posed a mechanism similar to M-structures for use as an update-in-place data structure
in implementations of functional programming languages [Mil90].

The tuple spaces supported by the Linda family of languages were first described by
Gelernter and Bernstein [GB82, Gel85]. Tuple spaces have been shown to be a portable
model of parallel computation, with implementations on machines ranging from shared-
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memory multiprocessors to distributed-memory multiprocessors to networks of worksta-
tions [BCGL87]. A book by Carriero and Gelernter uses C-Linda to illustrate parallel
programming techniques [CG90]. In Chapter 9, we present a distributed implementation
of tuple spaces in the CML framework.

While most concurrent languages consist of a sequential sub-language (often a lan-
guage in its own right) extended with concurrency mechanisms, there are a few languages
that have concurrency built in from the ground up. For example, in the language occam
there are only a few sequential mechanisms, such as iteration [INM84, Bur88]. Another
example is the parallel language ID, where computation is implicitly parallel, unless
explicitly sequenced [Nik91]. An even more extreme case is the recent experimental
language Pict, in which every construct, including both control and data structures, is
expressed in terms of processes and communication [PT97].

There are a number of different approaches to reasoning about concurrent systems. An-
drews uses axiomatic reasoning based on first-order logic of programs [And91]. While
this approach is sufficient to prove safety properties, a richer logic is required to prove
liveness properties. Such a logic is called a temporal logic and includes modal operators
for expressing such concepts as “always” and “eventually.” Manna and Pnueli describe
the use of temporal logic for specifying reactive and concurrent systems [MP92]. Other
approaches to the study of concurrency are the various process calculi [Mil89, MPW89a,
MPW89b] and process algebras [Hen88] that have been developed. These attempt to cap-
ture the essence of concurrent computation, much the same way that the λ-calculus cap-
tures the essence of sequential computation. While this work is theoretically oriented, it
may have an affect on the design of future concurrent languages; for example, the experi-
mental language Pict [PT97] is derived from Milner’s π-calculus [MPW89a, MPW89b].

Most books on concurrent programming discuss fairness, albeit in an informal way.
Kwiatkowska gives a more rigorous treatment in her survey [Kwi89], which is the source
of the taxonomy presented in Section 2.3. A wide ranging study of fairness issues can be
found in a book by Francez [Fra86]. The fairness requirements on CML implementations
are discussed in Appendix B.
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An Introduction to Concurrent ML

This chapter is the first of three tutorial chapters on the basic features and programming
techniques of CML. This chapter focuses on the features that make up CML’s seman-
tic core. The next chapter continues with a discussion of the two most important styles
of CML programming: process networks and client-server protocols. Chapter 5 com-
pletes the tutorial with further discussion of CML’s synchronization and communication
mechanisms.

3.1 Sequential programming

As is the case with most concurrent languages, CML consists of a sequential core
language — Standard ML — extended with concurrency primitives. The individual
processes in a CML program are programmed using the features of SML. 1 While we
conceptually view CML as a programming language, it is actually implemented as a col-
lection of modules on top of SML/NJ. The aspects of CML described in this chapter all
belong to the core structure of this library, which is named CML. To reduce notational
clutter, most of the examples in this chapter are assumed to be given in an environment
where the CML structure has been pre-opened (i.e., all of its bindings are at top-level).
The CML structure’s interface is described in Appendix A, which contains an abridged
version of the CML Reference Manual.

CML is a message-passing language, which means that processes are viewed as exe-
cuting in independent address spaces with their only communication being via messages.
But, since SML provides updatable references, this is a fiction that must be maintained
by programming style and convention. It is good practice to avoid situations where two
or more threads share access to a reference or array. Usually, this is not a significant re-
striction. Shared-state is most likely to be an issue when incorporating existing sequential

1The term “communicating sequential processes” is often used to describe this style of programming.



40 3 An Introduction to Concurrent ML

code into a CML application, but even this situation is usually not a problem, since the
preferred ML programming style is mostly functional. Another potential source of in-
terference is input/output (I/O) using ML’s buffered I/O streams. To avoid this problem,
CML provides its own implementation of the SML I/O modules. Discussion of I/O is
left to Chapter 5 and the CML Reference Manual in Appendix A.

3.2 Basic concurrency primitives

We start with a discussion of the basic concurrency primitives provided by CML, which
includes process creation and simple message passing via typed channels. In keeping
with the flavor of SML, both processes and channels are created dynamically.

3.2.1 Threads

Processes in CML are called threads; this choice of terminology is both to emphasize
that they are lightweight, and to distinguish between them and the host operating system’s
notion of processes. When a CML program starts executing, it consists of a single thread
of control. This initial thread may create additional threads using the spawn primitive,
which has the type

val spawn : (unit -> unit) -> thread_id

The spawn function takes a function as an argument and creates a new thread of control
to evaluate the function applied to the unit value. This use of a function as an argument
is a standard technique to delay a computation in a call-by-value language. The newly
created thread is called the child, and its creator is the parent. The return value of spawn
is a thread ID that uniquely identifies the child thread.2 The child thread will run until the
evaluation of the function application is complete, at which time it terminates. CML does
not attach any semantics to the parent-child relationship. For example, the termination
of the parent thread does not affect the child — once created, the child thread is an
independent agent. In particular, this means that the initial thread may terminate without
the whole program terminating.

In addition to completing execution of its body, there are two other ways that a thread
may terminate. First, it may explicitly terminate itself by calling the exit function,
which has the type

val exit : unit -> ’a

2See Appendix A for information on the operations on thread IDs.
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Like a raise expression, the result type of exit is ’a, since it never returns. The other
way a thread may terminate is if its execution causes an exception to be raised that is not
caught by any handler. Note that such an exception is local to the thread in which it is
raised; it does not propagate to its parent.3

Since the number of threads in a CML program is unbounded and the number of
processors on the system is limited, the processors are multiplexed among the threads.
This is handled automatically by the CML run-time system, which uses periodic timer
interrupts to provide preemptive scheduling. This is in contrast with so-called coroutine
implementations of concurrency, which require the application programmer to ensure that
each thread yields the processor at regular intervals. Preemptive scheduling is important
for program modularity, since it allows “off-the-shelf” sequential code, such as libraries,
to be used in concurrent programs, without having to add explicit scheduling code. As
discussed above, incorporating sequential code into a concurrent program still requires
some care, since the code may not be reentrant (e.g., it may use globally allocated mutable
data structures).

One important property of threads in CML is that they are represented by SML values
(see Chapter 10). This has two significant consequences: first, they are extremely cheap
to create and impose very little space overhead; and second, the storage used to represent
a thread is reclaimed by the garbage collector. As we show throughout this book, these
properties allow a programming style that uses threads very liberally.

3.2.2 Channels

For multiple threads to be useful, they must have some mechanism for communication
and synchronization. CML provides a collection of such mechanisms, both as primitives
and as libraries. For now, we focus on the most important of these, which is synchronous
message passing on typed channels. The type constructor

type ’a chan

is used to generate the types of channels. A channel for communicating values of type τ

has the type τ chan. Two operations are provided for channel communication: 4

val recv : ’a chan -> ’a
val send : (’a chan * ’a) -> unit

Message passing is synchronous, which means that both the sender and receiver must
be ready to communicate before either can proceed (see Section 2.5.2). When a thread

3The CML run-time system provides a mechanism for reporting the termination of threads as a result of uncaught
exceptions. This mechanism is described in the release notes included in the distribution.

4Earlier versions of CML used the name accept for the recv operation.
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executes a send or recv on a channel, we say that it is offering communication. The
thread will block until some other thread offers a matching communication, that is, the
complementary operation on the same channel. When two threads offer matching com-
munications, the message is passed from the sender to the receiver and both threads
continue execution. Thus, message passing involves both communication of data and
synchronization.

Channels can be viewed as labels for rendezvous points — they do not name the sender
or receiver, and they do not specify a direction of communication. More than one thread
may attempt to send or recv a message on the same channel. Channels are created
dynamically by the function:

val channel : unit -> ’a chan

3.2.3 Example — Updatable storage cells

A natural first example is the implementation of updatable storage cells on top of threads
and channels. We define the following abstract interface to storage cells:

signature CELL =
sig
type ’a cell

val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val put : (’a cell * ’a) -> unit

end

The operation cell creates a new cell initialized to the given value; and the operations
get and put are used to read and update a cell’s value. Our approach is to represent
the state of a cell by a thread, which we call the server, and represent the cell type as
a pair of channels for communicating with the server. The request messages and cell
type are defined as follows:

datatype ’a request = GET | PUT of ’a

datatype ’a cell = CELL of {
reqCh : ’a request chan,
replyCh : ’a chan

}

The channelreqCh carries both PUT andGET client requests, and the channelreplyCh
carries replies to GET requests. The client-side implementation of the get and put
operations is straightforward. Each operation requires sending the appropriate request
message, and in the case of get, accepting a reply:
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replyCh!v

reqCh?PUT

C1 C2

reqCh?GET

Figure 3.1: The state diagram for the cell server thread

fun get (CELL{reqCh, replyCh}) = (
send (reqCh, GET);
recv replyCh)

fun put (CELL{reqCh, ...}, x) = send(reqCh, PUT x)

Note that this protocol requires that the server send a reply to any GET request it receives.
The cell function creates a new cell, which involves allocating the two channels and
spawning a new server thread, with the initial value as its state:

fun cell x = let
val reqCh = channel()
val replyCh = channel()
fun loop x = (case (recv reqCh)

of GET => (send (replyCh, x); loop x)
| (PUT x’) => loop x’

(* end case *))
in
spawn (fn () => loop x);
CELL{reqCh = reqCh, replyCh = replyCh}

end

Servers are typically implemented as infinite loops, with each iteration corresponding
to a single client request (or transaction). Since we are programming in ML, we use
tail recursion to code the loop (i.e., the loop function). These definitions are collected
together in the Cell structure, which is shown in Listing 3.1.

While this example is trivial, it illustrates a number of important points. This imple-
mentation is a prototypical example of the client-server style of concurrent programming
(see Section 2.5.4). It is often useful to view a server as a state machine; for example,
Figure 3.1 gives the state transition diagram for the cell server thread. We use the nota-
tion channel?value for input transitions and channel!value for output transitions (e.g.,
reqCh?GET means read a GET request from the reqCh channel). In this diagram,
State C1 represents the situation where the server is waiting for a message on the reqCh
channel, and State C2 represents the situation where a GET request has been received,
and the server is attempting to send the reply.
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structure Cell : CELL =
struct

datatype ’a request = GET | PUT of ’a

datatype ’a cell = CELL of {
reqCh : ’a request chan,
replyCh : ’a chan

}

fun get (CELL{reqCh, replyCh}) = (
send (reqCh, GET);
recv replyCh)

fun put (CELL{reqCh, ...}, x) = send(reqCh, PUT x)

fun cell x = let
val reqCh = channel()
val replyCh = channel()
fun loop x = (case (recv reqCh)

of GET => (send (replyCh, x); loop x)
| (PUT x’) => loop x’

(* end case *))
in

spawn (fn () => loop x);
CELL{reqCh = reqCh, replyCh = replyCh}

end

end (* Cell *)

Listing 3.1: The complete implementation of updatable cells

These kinds of state diagrams are quite useful for informal reasoning about the behav-
ior of a protocol. For example, the correctness of this implementation relies on the fact
that each client’s GET request is answered by a server reply, and that each client-server
transaction is atomic. The latter fact is a direct result of using synchronous message
passing; once the server receives a GET request, it will not accept another request until
its reply has been received by the client. This is illustrated in Figure 3.1 by the fact that
a GET message causes a transition to State C2, and the only way back to State C1 is by
sending the reply message. This guarantees that the transactions are serialized, and thus
that multiple clients cannot interfere, even though they share the same request and reply
channels. If send was not a blocking operation, then we would have to add additional
synchronization to guarantee that the reply to a GET request reaches the right client.

This implementation could still be broken by a client violating the protocol (e.g., trying
to read a reply without sending a GET request). This problem is avoided by making the
cell type abstract, and restricting the user to the get and put operations, which are
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guaranteed to be well-behaved. For example, the client state transitions associated with
the get operation are

replyCh?v
T1

get

reqCh!GET
T3T2

Matching the transitions in this state diagram with those in Figure 3.1 shows that the get
operation can only proceed when the server is in State C1, and that it completes with the
server back in State C1. Looking at the system as a whole, the transitions are

(C1, T1) → (C2, T2) → (C1, T3)

Thus, we see that by protecting the implementation inside an abstraction, we can guaran-
tee that clients use it correctly. The use of data and procedural abstraction is an important
technique in writing correct concurrent programs (or sequential ones for that matter!).

The above example also illustrates the use of SML’s scoping and abstraction mecha-
nisms to implement the hiding of channels. The cell function allocates two channels
and uses lexical scoping to pass them to the server thread that it spawns (i.e., the channels
are in the server’s closure). The channels used to communicate with the server are hidden
from the client’s direct access by the use of an SML datatype to hold them, coupled with
the CELL signature, which does not expose the datatype’s representation.

Another important paradigm in message-passing programs is the structuring of com-
putations as networks of processes. These are sometimes called dataflow networks, since
the data flows from one process to another. The simplest example of this is a pipeline,
where a group of processes are arranged in series (much like a factory assembly line).
Process networks can be viewed as graphs, where the processes are the nodes, and the
channels are the edges.

A classic application of dataflow networks is for stream processing. A stream can be
viewed as a possibly infinite sequence of values. For example, the recurrence

nat0 = 0

nat i+1 = nat i + 1

defines the infinite sequence of natural numbers. This definition can be implemented in
CML as follows:

fun makeNatStream () = let
val ch = channel()
fun count i = (send(ch, i); count(i+1))
in
spawn (fn () => count 0);
ch

end
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which has the type

val makeNatStream : unit -> int chan

Each call to makeNatStream creates a new instance of the stream of natural numbers.
Values are consumed from the stream by applying recv to the channel.

3.2.4 Example — Sieve of Eratosthenes

A traditional example of stream programming is computing prime numbers using the
Sieve of Eratosthenes. We start with the stream of integers beginning with 2 (the first
prime). To compute the primes, we filter out multiples of 2, which gives a stream with 3
(the second prime) as its head. We then filter out multiples of 3, giving a stream with 5
(the third prime) as its head. At each step, we take the head of the stream (which is the
next prime), and construct a new stream by filtering out multiples of the prime.

The implementation of this sifting process starts with a generalization of the natural
number stream that allows us to specify the first number in the sequence. This more
general function has the type

val counter : int -> int chan

The filtering of a stream is provided by the following function, which takes a prime
number p and an input stream as arguments, and returns an new stream with multiples of
p removed:

fun filter (p, inCh) = let
val outCh = channel()
fun loop () = let val i = recv inCh

in
if ((i mod p) 0) then send (outCh, i) else ();
loop ()

end
in

spawn loop;
outCh

end

Using the filter and counter functions, we can define the sieve, which creates a
stream of primes:

fun sieve () = let
val primes = channel ()
fun head ch = let val p = recv ch

in
send (primes, p);
head (filter (p, ch))

end
in

spawn (fn () => head (counter 2));
primes

end
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Figure 3.2: Evaluating primes(4)

Thesieve function creates a network of threads consisting of a counter thread, which
produces the stream of integers, and a chain of filter threads, which end in a head
thread. The sieve function returns the channel primes, on which the head thread
sends the stream of primes. There is one filter thread in the chain for each prime
number sent by the head thread. After the head thread sends a prime p on the primes
channel, it spawns a new filter thread to remove multiples of p from the stream, and
then reads the next prime from the channel provided by the new filter thread.

The function primes uses the sieve function to compute a list of the first n prime
numbers:

fun primes n = let
val ch = sieve ()
fun loop (0, l) = rev l
| loop (i, l) = loop (i-1, (recv ch)::l)

in
loop (n, [])

end

Figure 3.2 shows the state of the sieve at each iteration of evaluating primes(4). The
counter thread is represented as a square labeled by the current counter value. The fil-
ters are circles labeled by their prime number, and the head is represented by a diamond
labeled with the next prime. The number labeling an arrow between two threads is the
value that the thread on the left is offering the thread on the right.

This style of stream processing is similar to the notion of lazy streams found in func-
tional languages. The main difference is that there is no mechanism for capturing an
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copy+

c2

c1

copy

delay outCh
c5
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Figure 3.3: The Fibonacci stream network

intermediate value and using it multiple times (the way one can do with a lazy stream).
The streams here are stateful, once a value is read from a stream it cannot be read again.
As we will see in the next example, we can introduce copy nodes when we need to use a
stream in multiple places.

3.2.5 Example — Fibonacci series

Another classic example of dataflow programming is the Fibonacci series, which is de-
fined by the recurrence

fib1 = 1

fib2 = 1

fibi+2 = fibi + fibi+1

Before implementing a CML program that generates this series, let us examine the pro-
cess network. Each new element in the series is computed from the two previous ele-
ments. This means that when the value fib i is computed, it needs to be fed back into
the network for the computation of fib i+1 and fibi+2. This will require nodes that copy
their input to two output channels, and a node that provides a one-element delay. Fig-
ure 3.3 gives a picture of this network (the labels on the arcs correspond to the names of
the channels used in the implementation below). When the addition node (labeled by a
“+”) produces a result, it is fed back into the computation of the next two elements in the
series.

As shown in Figure 3.3, we can implement the Fibonacci stream using three general
purpose dataflow combinators: add, which adds the values from two streams; delay,
which provides a one-element delay; and copy, which copies its input to two output
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fun add (inCh1, inCh2, outCh) =
forever () (fn () =>
send (outCh, (recv inCh1) + (recv inCh2)))

fun delay init (inCh, outCh) =
forever init (
fn NONE => SOME(recv inCh)
| (SOME x) => (send(outCh, x); NONE)

(* end fn *))

fun copy (inCh, outCh1, outCh2) =
forever () (fn () => let
val x = recv inCh
in

send(outCh1, x); send(outCh2, x)
end)

Listing 3.2: Some general dataflow combinators

streams. Each of these combinators is implemented as an infinitely looping thread; the
following function is useful in constructing such threads:

val forever : ’a -> (’a -> ’a) -> unit

The forever function takes two arguments: an initial state, and a function from states
to states (forever is polymorphic in the type of states), and it spawns a thread that
repeatedly iterates the function. The implementation is

fun forever init f = let
fun loop s = loop (f s)
in
ignore (spawn (fn () => loop init))

end

It is expected that the iterated function does some form of blocking communication. Note
that we choose to ignore the thread ID of the spawned thread, which gives forever a
result type of unit.

The implementation of the combinators is given in Listing 3.2. Unlike in the Sieve of
Eratosthenes example, the node creation functions do not create their own channels. This
is because we need to construct a cyclic process network, which would require a fix-point
operator on channel bindings. Instead, we pre-allocate the channels and pass them in as
arguments to the node creation functions. The delay combinator is essentially the one-
element producer/consumer buffer discussed in Chapter 2. Note that the initial state of
the buffer is specified as an argument.

The implementation of the network is essentially a direct construction of the picture
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fun mkFibNetwork () = let
val outCh = channel()
val c1 = channel() and c2 = channel() and c3 = channel()
val c4 = channel() and c5 = channel()
in
delay (SOME 0) (c4, c5);
copy (c2, c3, c4);
add (c3, c5, c1);
copy (c1, c2, outCh);
send (c1, 1);
outCh

end

Listing 3.3: Implementing the Fibonacci network

in Figure 3.3. As mentioned above, we start by allocating the channels that connect the
nodes in the network, and then we create the nodes. Listing 3.3 gives the code for this
implementation; note that we use the channel names from the figure in the code. The
tricky part in this code is initializing the network. We do this by initializing the delay
node to 0 (one may think of this as fib0), and by sending the value 1 (fib 1) on channel
c1. This value then feeds back (via c2 and c3) to be added to 0 to produce the value 1
(fib2).

There is a subtlety to the implementation of the Fibonacci network that is worth exam-
ining. The correctness of this implementation depends on the order in which the copy
combinator sends messages on its two output channels, and on the order that the add
combinator receives messages on its input channels. If one were to reverse the order of
the sends on c3 and c4, the network would deadlock. The problem is that the add node
would be attempting to read a value from c3, while the copy node would be attempting
to send a value on channel c4, and the delay node would be attempting to send a value
to the add node on c5. Although careful coding can avoid this problem in this case, a
more robust solution is to make the order of the blocking communication operations non-
deterministic. This nondeterminism can be introduced using the mechanism of selective
communication (see Section 2.5.3).

3.2.6 Selective communication

Selective communication is a key programming mechanism in message-passing concur-
rent languages. The basic idea is to allow a thread to block on a nondeterministic choice
of several blocking communications — the first communication that becomes enabled is
chosen. If two or more communications are simultaneously enabled, then one is chosen
nondeterministically. CML provides the select operator for this purpose. This opera-
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tor takes a list of communications as its argument, and blocks the calling thread until one
of the operations is enabled. For example, the add combinator from Listing 3.2 could be
recoded to use select to block on reading a value from either inCh1 or inCh2. If it
gets a value from inCh1 first, then it must wait to read a value from inCh2 (and vice
versa). In CML, this is written as:

fun add (inCh1, inCh2, outCh) =
forever () (fn () => let
val (a, b) = select [

wrap (recvEvt inCh1, fn a => (a, recv inCh2)),
wrap (recvEvt inCh2, fn b => (recv inCh1, b))

]
in

send (outCh, a + b)
end)

This code introduces three new CML features: the select operation selects from a
choice of communications, the recvEvt function specifies a recv operation inside a
select,5 and the wrap function associates an action with a communication operation.
In this example, we are choosing between the operation of receiving a message oninCh1
and the operation of receiving a message on inCh2. In each case, we use wrap to
associate the action of waiting for a message on the other channel. The result of this is a
pair of values, one from each input channel, that gets summed and sent out on outCh.
The body of the add thread executes by blocking until another thread offers a matching
send operation on either inCh1 or inCh2, at which point both threads perform the
communication. For example, assume that the add thread is blocked on the select
operation, and that a thread P executes the following operation:

send (inCh1, 17)

where inCh1 is bound to the same channel in both threads. Then theadd thread receives
the value 17 on inCh1, and applies the associated action function to it; in effect, it
evaluates the expression

(fn a => (a, recv inCh2)) 17

which blocks the thread until a value is available from inCh2.

We can also select among output operations, as is illustrated by this recoding of the
copy combinator:

5Earlier versions of CML used the name receive instead of recvEvt for this function.
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fun copy (inCh, outCh1, outCh2) =
forever () (fn () => let
val x = recv inCh
in

select [
wrap (sendEvt (outCh1, x),

fn () => send (outCh2, x)),
wrap (sendEvt (outCh2, x),

fn () => send (outCh1, x))
]

end)

Similar to recvEvt, the sendEvt function specifies a send operation inside a
select.6 A select may include both input and output operations. In fact, a thread
may even offer to both send and receive a message on the same channel in the same
select, although this does not allow a thread to communicate with itself, since
select can only choose one communication.

3.2.7 Example — Updatable cells revisited

An alternative implementation of updatable cells provides a good example of selective
communication. Instead of using two different kinds of request messages (GET andPUT),
we can use two different channels: one to get the current value from the server, and one
to send a new value to the server. Listing 3.4 gives the code for this implementation (the
interface is as before). Again the server consists of a tail-recursive loop, with the cell’s
state as an argument to the function and with each iteration corresponding to one client
request. In this implementation, however, the body of the loop consists of a select
operation. The server offers to either send the current value on the getCh channel or
receive a new value on the putCh channel. The get and put operations are simply im-
plemented as the complementary message-passing operations on the appropriate channel.

3.3 First-class synchronous operations

We have seen wrap, sendEvt, and recvEvt used to form the clauses of selective
communications, but they have another important rôle as part of the general mechanism
of first-class synchronous operations. The basic idea is to decouple the description of a
synchronous operation (e.g., “send the message m on channel c”) from the actual act of
synchronizing on the operation. We introduce a new kind of abstract value, called an
event, for representing synchronous operations. CML defines the type constructor

type ’a event

6Earlier versions of CML used the name transmit instead of sendEvt for this function.
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datatype ’a cell = CELL of {
getCh : ’a chan,
putCh : ’a chan

}

fun get (CELL{getCh, ...}) = recv getCh

fun put (CELL{putCh, ...}, x) = send(putCh, x)

fun cell x = let
val getCh = channel()
val putCh = channel()
fun loop x = select [

wrap (sendEvt(getCh, x), fn () => loop x),
wrap (recvEvt putCh, loop)

]
in

spawn (fn () => loop x);
CELL{getCh = getCh, putCh = putCh}

end

Listing 3.4: Updatable cells implemented with select

which is used to generate the types of abstract synchronous operations. The type τ event
is the type of a synchronous operation that returns a value of type τ when it is synchro-
nized upon. The aforementioned selective communication operators all produce event
values. For example, sending a message returns the type unit, so the sendEvt opera-
tor has the type

val sendEvt : (’a chan * ’a) -> unit event

The argument to the chan type constructor specifies the type of the messages carried by
the channel, so the recvEvt operation has the type

val recvEvt : ’a chan -> ’a event

The functions sendEvt and recvEvt are called base-event constructors, because they
create event values that describe a single primitive synchronous operation. CML follows
the convention of appending the “Evt” suffix to base-event constructor names.

The power of first-class synchronous operators comes from event combinators, which
can be used to build more complicated events from the base event values. We have
already seen the wrap combinator, which has the type

val wrap : (’a event * (’a -> ’b)) -> ’b event
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The wrap combinator associates a post-synchronization action, which is called the wrap-
per function, with an event value. For example, synchronizing on

wrap (recvEvt ch, fn x => x+1)

causes the thread to block until a matching communication is available on ch, at which
point it completes the communication and applies the wrapper function to the received
value (i.e., it adds 1 to it).

This raises the question of how do threads synchronize on events? We have already
seen examples of the select operator, which has the type:

val select : ’a event list -> ’a

This takes a list of events and blocks the calling thread until one of the events is enabled,
at which point the thread synchronizes on the enabled event. If two or more events in the
list are enabled simultaneously, then one is chosen nondeterministically. The select
operator is actually syntactic sugar for the composition of the sync operator and the
choose event combinator7

val select = sync o choose

The sync operator is the basic mechanism for synchronization in CML. It takes an event
value and synchronizes on it, returning the result. As might be expected, sync has the
type

val sync : ’a event -> ’a

The choose combinator is used to express nondeterministic choice in an event value,
and has the type

val choose : ’a event list -> ’a event

This combinator takes a list of events and returns an event that represents the nondeter-
ministic choice of the events. When choose is applied to the empty list, it returns an
event that can never be synchronized on; if a thread attempts to do so, it blocks forever
(likewise, executing “select[]” blocks the thread forever).

As with the select operator, we can also view the message-passing operations recv
and send as the composition of sync and the corresponding event-valued function

val recv = sync o recvEvt
val send = sync o sendEvt

7For performance reasons, select is actually implemented as a separate primitive.
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This illustrates the decoupling of the description of the operation (i.e., the values created
by recvEvt and sendEvt) from the act of synchronization. A good analogy is the use
of procedural abstraction, which decouples the description of a computation (the body of
the procedure) from the act of computing (the application of the procedure).

The purpose of this separation is to permit user-defined communication and synchro-
nization abstractions that are “first-class citizens.” Specifically, these new abstractions
can be used in the context of selective communication. We have seen examples of us-
ing procedural abstraction to protect the integrity of protocols (the implementation of the
Cell structure in Listing 3.1, for example). The limitation of this approach to abstrac-
tion is that the operations (e.g., get and put) are functions, which cannot be used as
clauses of a selective communication. Procedural abstraction hides too much, because
it hides the synchronous nature of the operations. While this is not important in the
case of updatable cells, there are many examples where this limitation would be a prob-
lem. Fortunately, by using CML’s first-class synchronous operations, we can have our
abstractions and use them too!

It is worth noting that the fact that choose and select take lists of events as ar-
guments makes it easy to support dynamically changing communication structures (an
example of this can be found in Chapter 5). This is in contrast with most other message-
passing languages, which support selective communication with a select statement. Since
any instance of a select statement has a fixed number of clauses, supporting selection
from a dynamic number of communications is not possible.

Before looking at examples of using the event constructors and combinators to con-
struct new synchronous abstractions, an informal discussion of their semantics is in or-
der. An event value can be viewed as a tree, where the leaves are the base events (e.g.,
recvEvt and sendEvt events), and the internal nodes correspond to applications of
wrap and choose. For example, consider the event value constructed by

val ev = choose [
wrap (bev 1, w1),
wrap (choose [

wrap (bev 2, w2),
wrap (bev 3, w3),

], w4)
]

where the bev i are base events, and the wi are wrapper functions. This value can be
viewed as the tree in Figure 3.4. In this picture, the choose nodes are labeled with ⊕,
and the wrap nodes are labeled with the wrapper functions. We can understand the se-
mantics of applying sync to the event value ev in terms of this picture. The thread blocks
until one of the bevi is enabled by some other thread offering a matching communication.
At that point, the communication can proceed, producing result () for the sender, and
the sent message for the receiver. The wrapper functions on the path from the selected
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Figure 3.4: An event value tree representation

bevi to the root are then applied to the result, producing the result of the synchronization.
For example, if bev2 is selected, with result v, then the result of the sync is w4(w2(v)).

3.3.1 Example — Directional channels

Channels in CML are bidirectional; a thread that has access to a channel can both send
and receive messages on it. A safer discipline would be to distinguish between input and
output accesses to a channel, so that threads could be restricted to only send or receive
on a channel. Another way to think of a channel is as a directional pipe, with each end
represented by a value of a different type. While such a view of channels could be built
into the language, in CML we can use events to provide this different style of channels
as a first-class abstraction. The interface signature for directional channels is given in
Listing 3.5. Values of the in_chan type can only be used to read messages, and those of
the out_ch type can only be used to send messages. Both procedural and event-valued
versions of the channel operations are provided. The implementation is very simple,
and can be found in Listing 3.6; note that we use qualified names for the operations
from the CML structure, since we use the same names for the directional operations.
A directional channel is represented by two values, which share the same underlying
bidirectional channel. The communication operations are implemented directly using
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signature DIR_CHAN =
sig
type ’a in_chan and ’a out_chan

val channel : unit -> (’a in_chan * ’a out_chan)

val recv : ’a in_chan -> ’a
val send : (’a out_chan * ’a) -> unit

val recvEvt : ’a in_chan -> ’a event
val sendEvt : (’a out_chan * ’a) -> unit event

end; (* DIR_CHAN *)

Listing 3.5: Directional channels signature

their bidirectional counterparts. We use SML signature matching to control access to the
underlying channel.

The importance of this example is that the event-valued operations allow directional
channels to be used in selective communications. If we were only interested in provid-
ing the procedural operations send and recv, then we could have implemented this
abstraction without events. The problem is that send and recv are synchronous oper-
ations, and we would like to use them in selective communications, but the procedural

structure DirChan : DIR_CHAN =
struct

datatype ’a in_chan = IN of ’a CML.chan
and ’a out_chan = OUT of ’a CML.chan

fun channel () = let val ch = CML.channel()
in

(IN ch, OUT ch)
end

fun recv (IN ch) = CML.recv ch
fun send (OUT ch, x) = CML.send(ch, x)

fun recvEvt (IN ch) = CML.recvEvt ch
fun sendEvt (OUT ch, x) = CML.sendEvt(ch, x)

end;

Listing 3.6: The implementation of directional channels



58 3 An Introduction to Concurrent ML

fun cell x = let
val (getInCh, getOutCh) = DirChan.channel()
val (putInCh, putOutCh) = DirChan.channel()
fun loop x = select [

wrap (DirChan.sendEvt(getOutCh, x),
fn () => loop x),

wrap (DirChan.recvEvt putInCh, loop)
]

in
spawn (fn () => loop x);
(getInCh, putOutCh)

end

Listing 3.7: Updatable cells implemented with directional channels

abstraction used to implement them hides too much. The abstraction provided by events,
however, allows access to the channel to be controlled, while not disguising the fact that
recvEvt and sendEvt are synchronous operations. In this sense, the directional
channel abstraction is first-class, since its operations can be used in any context that the
built in channel operations can be used in. For example, we can implement the updatable
cells, using a pair of directional channels to represent each cell. This version does not
require get or put operations; instead, we use directional nature of the channels in the
return type of cell:

val cell : ’a -> (’a DirChan.in_chan * ’a DirChan.out_chan)

The cell server must be able to handle either get or put operations at any time, which
means that selective communication is required. But since the directional channel ab-
straction provides event-valued operations, there is no problem with combining them
with selective communication. Listing 3.7 gives this implementation of the cell func-
tion. We use these directional channels again in the next chapter.

We have seen the wrap combinator, which allows a post-synchronization action to
be associated with an event; CML also provides the guard combinator, which allows
a pre-synchronization action to be associated with an event. This is useful to allocate
resources, such as reply channels, and to initiate communication with a server. This
combinator has the type

val guard : (unit -> ’a event) -> ’a event

It takes an event-valued function, called a guard function, and makes it into an event
value; when sync is applied to a guard event, the function is first evaluated and then
sync is applied to its result. Each time a thread synchronizes on the event, the guard
function is invoked.
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Figure 3.5: A swap mismatch

3.3.2 Example — Swap channels

A simple example of a communication abstraction that uses guards in its implementation
is the swap channel. This is a new type of channel that allows two processes to swap
values when they rendezvous (one might call this symmetric rendezvous, since there is
no sender/receiver distinction). The interface consists of an abstract type:

type ’a swap_chan

and functions for creating channels and “swap” events:

val swapChannel : unit -> ’a swap_chan
val swap : (’a swap_chan * ’a) -> ’a event

When two processes communicate on a swap channel, each sends a value and each re-
ceives a value. Implementing this correctly requires some care.

Our implementation is based on the asymmetric message passing operations, so to
ensure the symmetry of the operation, each thread in a swap must both offer to send a
message and to receive a message on the same channel. We can use the choose combi-
nator for this purpose. Once one thread completes a send (which means that the other
has completed an recv), we need to complete the swap, which means sending a value
in the other direction. A first solution might be to use another channel for completing the
swap, but this results in a race condition when two separate pairs of threads attempt swap
operations on the same swap channel at the same time. For example, Figure 3.5 shows
what might happen if threads P1, P2, Q1, and Q2 all attempt a swap operation on the
same swap channel at roughly the same time (where the swap channel is represented by
the channels ch and ch’). In this scenario, P1 and P2 are initially paired, as are Q1 and
Q2. But there is a race in the second phase of the swaps, and P1 ends up being paired
with Q2, and P2 ends up with Q1 (because Q1 beats P1 to reading a value from ch’, and
P2 beats Q2 to sending a value on ch’).
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datatype ’a swap_chan = SC of (’a * ’a chan) chan

fun swapChannel () = SC(channel ())

fun swap (SC ch, msgOut) = guard (fn () => let
val inCh = channel ()
in

choose [
wrap (recvEvt ch,

fn (msgIn, outCh) => (send(outCh, msgOut); msgIn)),
wrap (sendEvt (ch, (msgOut, inCh)),

fn () => recv inCh)
]

end)

Listing 3.8: The swap channel implementation

To avoid this problem, we need to allocate a fresh channel for completing the second
phase of the swap operation each time the swap operation is executed. Listing 3.8 shows
how the implementation of the swap channel abstraction can allocate a fresh channel for
each swap operation. The representation of a swap channel is a single channel that car-
ries both the value communicated in the first phase, and a channel for communicating
the other value in the second phase. The channel for the second phase must be allocated
before the synchronization on the first message, which is the kind of situation for which
guardwas designed. The guard function first allocates the channel for the second phase,
and then constructs the swap event using the choose combinator. Because of the sym-
metry of the operation, each side of the swap must allocate a channel, even though only
one of them will be used. Fortunately, allocating a channel is very cheap, and the garbage
collector takes care of reclaiming it after we are done.

The swap channel example illustrates several important CML programming tech-
niques. The use of dynamically allocating a new channel to serve as the unique identifier
of a transaction comes up quite often in client-server protocols. It is also an example
where the nondeterministic choice is used inside an abstraction, which is why we have
both choose and sync, instead of just the select operator. And, lastly, this example
illustrates the use of the guard combinator.

3.4 Summary

This chapter has focused on a small core set of CML features: thread creation, chan-
nel operations, and first-class synchronous operations. The next chapter continues this
tutorial with a discussion of more advanced programming techniques. CML extends
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this set of primitives with additional combinators, base-event constructors, and various
miscellaneous operations. These are described in Chapter 5 and in Appendix A.

Notes

The use of threads and channels to implement mutable storage cells is one of a number
of examples of encoding sequential language features using concurrency. Berry, Mil-
ner, and Turner have shown that this encoding is faithful to the sequential semantics of
references [BMT92]. Other examples include the Y combinator [GMP89, Rep92] and
various data structures [PT97]. The Y combinator encoding leads to an implementation
of reference cells without explicit recursion [Rep92].





4
CML Programming Techniques

This chapter continues the tutorial introduction to CML by examining a number of im-
portant CML programming techniques, as well as introducing some additional CML
features. The discussion is focused around two important styles of concurrent program-
ming: process networks and client-server programming. We have already seen examples
of these styles, but we look at them in much greater depth here.

4.1 Process networks

Process networks are an important tool for structuring concurrent computations. In the
previous chapter, we saw two examples of process networks: computing primes using
the Sieve of Eratosthenes and generating the Fibonacci series. In this section, we look at
two more examples of programming in this style: merge sort, and computing the product
of two power series. Both examples illustrate the use of recursively expanding networks,
as well as further illustrating the CML features that we have seen so far.

4.1.1 Example — Merge sort

Our first example is concerned with sorting a finite sequence of integers using merge sort.
Merge sort is a divide and conquer algorithm that proceeds by dividing its input into two
equal sized sequences, recursively sorting them, and then merging the resulting sorted
sequences into a single sorted sequence. The high-level code is

fun mergeSort seq = if (length seq = 1)
then seq
else let val (s1, s2) = split seq

in
merge (mergeSort s1, mergeSort s2)

end
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Figure 4.1: Splitting the sequence [3,5,1,8,10]

where the split operation divides the input sequence into two subsequences, which
are recursively sorted, and the merge operation merges the two sorted subsequences.

In our CML implementation of merge sort, each recursive invocation corresponds to
a separate thread, and the sequences are represented by sequences of values sent on a
channel. Figure 4.1 shows the downward flow of data in the process network when
sorting the sequence [3,5,1,8,10]. Each node represents a thread, and the edges
represent the connecting channels. The edges are labeled with the sequence that is passed
from the parent to the child.

There are a couple of design details to address. The sequences are finite, so we need
a way to mark the end of a sequence. We do this by making the channels carry int
option values, and use NONE to represent the end of the sequence. The other issue
we need to address is the interface between a merge-sort thread and its two children.
We could use two channels for each child thread: one to pass the subsequences from
the parent down to the child, and another to pass the sorted subsequences back up. But
we can get away with just one channel for each child by exploiting a property of the
algorithm. A merge-sort thread will not start reading the sorted subsequences until after



4.1 Process networks 65

fun mergeSort () = let
val ch = channel()
fun sort () = (

case (recv ch)
of NONE => ()
| v1 => (case (recv ch)

of NONE => send(ch, v1)
| v2 => let

val ch1 = mergeSort()
val ch2 = mergeSort()
in
send (ch1, v1); send (ch2, v2);
split (ch, ch1, ch2);
merge (ch1, ch2, ch)

end
(* end case *))

(* end case *);
send (ch, NONE))

in
spawn sort;
ch

end

Listing 4.1: The implementation of a merge-sort thread

it has completely passed both of the unsorted subsequences to its children, and its children
must see the entire subsequence before they can pass back the sorted subsequence. Thus,
there is no danger of both the child and parent trying to send at the same time.

With these design points decided, we can now look at the implementation. Listing 4.1
gives the code for the body of a merge-sort thread. The mergeSort function creates a
new sorting thread and returns the channel for communicating with the thread. It has the
type

val mergeSort : unit -> int option chan

The actual work is done in the sort function, which first attempts to read the first two
values in the sequence. If there are fewer than two values, no sorting is required, and it
just sends the sequence back. If the sequence has two or more values in it, it recursively
creates two sorting threads, with channels ch1 and ch2 as their interfaces. It sends the
first two values to its children, and then calls the function split to distribute the rest
of the incoming sequence to its children. The implementation of split is given in
Listing 4.2. This function is a good example of using the order of arguments to encode
state; it alternates between sending a value on ch1 and ch2. The first argument is the
incoming value, the second argument is the channel to send the value out on, and the
third argument is the other channel. On each iteration, split swaps the second and
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fun split (inCh, outCh1, outCh2) = let
fun loop (NONE, _, _) = (

send (outCh1, NONE); send (outCh2, NONE))
| loop (x, out1, out2) = (

send (out1, x);
loop (recv inCh, out2, out1))

in
loop (recv inCh, outCh1, outCh2)

end

fun merge (inCh1, inCh2, outCh : int option chan) = let
fun copy (fromCh, toCh) = let

fun loop v = (
send (toCh, v);
if (isSome v) then loop(recv fromCh) else ())

in
loop (recv fromCh)

end
fun merge’ (from1, from2) = (

case (from1, from2)
of (NONE, NONE) => send (outCh, NONE)
| (_, NONE) => (

send (outCh, from1); copy (inCh1, outCh))
| (NONE, _) => (

send (outCh, from2); copy (inCh2, outCh))
| (SOME a, SOME b) =>

if (a < b)
then (

send (outCh, from1);
merge’ (recv inCh1, from2))

else (
send (outCh, from2);
merge’ (from1, recv inCh2))

(* end case *))
in

merge’ (recv inCh1, recv inCh2)
end

Listing 4.2: The implementation of the split and merge operations

third arguments. When split receives the terminating NONE, it sends NONE to both
children.

Once sort has received and split its entire input, it then calls the function merge to
merge the sorted subsequences. The code for this function is also given in Listing 4.2.
The merge function takes the two input channels to merge and the output channel for
the merged sequences as arguments. Its body consists of a loop (the merge’ function),
which repeatedly compares the heads of the two subsequences, sending the smaller value
on the output channel. When one of the subsequences is exhausted, the loop continues
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to copy the other. When both are exhausted, a NONE is sent on the output channel to
mark the end of the merge. Note that the merge function does not require selective
communication, because we know a priori that there will be values on both input channels
until a NONE is encountered.

4.1.2 Example — Power series multiplication

Our second example concerns computations on power series, which are a natural appli-
cation of stream programming. A power series

F (x) =
∞∑
i=0

Fix
i = F0 + F1x + F2x

2 + · · ·

can be represented as the infinite stream of its coefficients, with the exponents implicit
in the position. For notational convenience, we drop the argument x, and write F to
denote the power series F (x). In this example, we consider power series with rational
coefficients, and assume the existence of a structure named RatNum that implements a
rational numbers package. While RatNum presumably provides a full range of opera-
tions on rationals, for our example we need only the following limited interface:

type rational

val zero : rational

val add : (rational * rational) -> rational
val mul : (rational * rational) -> rational

The type rational is the representation of a rational number; the value zero is the
representation of 0 as a rational, and the functions add and mul provide rational addi-
tion and multiplication, respectively. With this type, a power series can be represented
as a channel carrying a sequence of rational coefficients. Since there is a direction to
these channels, we use the directional channel abstraction from Listing 3.5. To make the
example code more concise, we make the following local structure bindings:1

structure R = RatNum
structure DC = DirChan

With these bindings, the type of a power series stream is

type ps_stream = R.rational DC.in_chan

The basic structure of a power-series operation is to allocate a channel for the result,
spawn a thread to consume the inputs and calculate the result series, and return the input
end of the result channel.

1This kind of local renaming of structures is a much better way to reduce typing than the wanton use of open.
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The first power series operation that we consider is the addition of two power series,
which is achieved by pointwise addition of coefficients:

F + G =
∞∑
i=0

(Fi + Gi)xi

This operation is implemented as a ps_stream using a thread that repeatedly reads a
value from each of two input streams and sends their sum on its output stream. As we
saw in the Fibonacci example, we do not want to constrain the order that the inputs are
read. It is useful to define a general-purpose function for combining the values from a
pair of events that are synchronized in arbitrary order:

fun combine f (ev1, ev2) = select [
wrap (ev1, fn a => f (a, sync ev2)),
wrap (ev2, fn b => f (sync ev1, b))

]

This function takes a combining function f, and two events as arguments, and synchro-
nizes on the choice of the two events. When one, or the other, event is chosen, combine
synchronizes on the other, and then returns the result of applying f to the pair of syn-
chronization results. It has the type

val combine : ((’a * ’b) -> ’c) -> (’a event * ’b event) -> ’c

In addition, we use the forever function defined above (page 49). The implementation
of power series addition is similar to the revised version of the add function from the
Fibonacci example

fun psAdd (psF, psG) = let
val (inCh, outCh) = DC.channel()
fun add (f, g) = DC.send (outCh, R.add(f, g))
in

forever () (fn () =>
combine add (DC.recvEvt psF, DC.recvEvt psG));

inCh
end

The main difference is that the psAdd function takes its input channels as arguments,
but allocates its output channel, which it returns as its result. We structure it this way to
exploit the directional nature of the channels.

Multiplying a power series by a constant is defined as multiplying the coefficients by
the constant

cF =
∞∑
i=0

(cFi)xi

Implementing this as a ps_stream is straightforward:
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fun psMulByConst (c, psF) = let
val (inCh, outCh) = DC.channel()
in
forever () (fn () =>

DC.send (outCh, R.mul(c, DC.recv psF)));
inCh

end

Multiplying a power series by a term is slightly more complicated. We have the
definition

xF =
∞∑
i=0

Fix
i+1

which can be viewed as the series

0 + F0x + F1x
2 + F2x

3 + · · ·
In terms of the stream implementation, this is implemented by adding a leading 0 coeffi-
cient, and then copying the rest of the stream

fun psMulByTerm psF = let
val (inCh, outCh) = DC.channel()
fun loop () = (DC.send (outCh, DC.recv psF); loop())
in

spawn (fn () => (
DC.send (outCh, R.zero);
loop()));

inCh
end

We now have the building blocks we need for the main part of our example — computing
the product of two power series. This is a significantly more complicated problem. The
product is defined as

P = F × G

Expanding the definitions gives

∞∑
i=0

Pix
i =

⎛
⎝ ∞∑

j=0

Fjx
j

⎞
⎠ ×

⎛
⎝ ∞∑

k=0

Gkx
k

⎞
⎠

From this we get the definition of the kth coefficient of P :

Pk =
k∑

i=0

(Fi × Gk−i)

This does not map well onto our streams model, since it requires all of the previous inputs
to compute the next output. A better approach is to treat the computation recursively. We
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Figure 4.2: The process network for power-series multiplication

use the notation F for the power series that forms the tail of F ; i.e., F = F0 + xF . We
can then write the product of F and G as

P = P0 + xP = F0G0 + x(G0F + F0G) + x2(F × G)

which gives

P0 = F0G0

P = G0F + F0G + x(F × G)

This is much more attractive. The tail of P is the sum of a constant G0 times the series
F , a constant F0 times the series G, and a term times the series formed by multiplying
F and G, which we know how to compute by recursion. Figure 4.2 gives the process
network for this computation; the shaded box represents the recursive invocation of the
network to compute F × G. Not shown in this picture is the reading of F0 and G0 from
the input streams, and the output of F0G0 as the first coefficient in F × G.
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fun psCopy psF = let
val (in1, out1) = DC.channel()
val (in2, out2) = DC.channel()
in

forever () (fn () => let
val f = DC.recv psF
in
combine (fn _ => ())

(DC.sendEvt(out1, f), DC.sendEvt(out2, f))
end);

(in1, in2)
end

Listing 4.3: Copying a power series stream

In addition to multiplication by a constant, and multiplication by a term, this computa-
tion also needs to copy a stream into two copies. This is done by the function psCopy,
which has the type

val psCopy : ps_stream -> (ps_stream * ps_stream)

The implementation of this function is given in Listing 4.3. Note that we again use
combine to synchronize on a pair of events in arbitrary order, although this time the
operations are outputs and the resulting unit values are discarded.

Listing 4.4 gives the code for the function psMul, which implements power series
multiplication. This function allocates its result channel, and then spawns a thread (the
function mul) to implement the network of Figure 4.2. The function mul first reads the
heads of the two input streams (f0 and g0). The product of these two values is the first
element of the result stream. The remainder of the result stream is copied from the stream
psFG, which represents the computation

P = G0F + F0G + x(F × G)

Note that the streams representing F and G must be copied.

An important correctness issue with recursive functions is termination. In this case,
the corresponding question is can the recursive invocation of the multiplication network
get unfolded infinitely deep? We are saved from this problem by the fact that the mul
function first reads f0 and g0 before recursively invoking psMul. Since communication
is synchronous, the number of recursive invocations is proportional to the number of
terms of the result that are demanded (n values require n + 6 nested invocations of the
network).

Although these two examples of process networks are somewhat contrived, they serve
to illustrate many of the techniques used in constructing process networks in CML.
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fun psMul (psF, psG) = let
val (inCh, outCh) = DC.channel()
fun mul () = let

val f0 = DC.recv psF
val g0 = DC.recv psG
val (psF’, psF’’) = psCopy psF
val (psG’, psG’’) = psCopy psG
val psFG = psAdd (

psMulByTerm (psMul(psF’, psG’)),
psAdd (

psMulByConst (f0, psG’’),
psMulByConst (g0, psF’’)))

fun loop () = (DC.send (outCh, DC.recv psFG); loop())
in

DC.send (outCh, R.mul(f0, g0));
loop ()

end
in

spawn mul; inCh
end

Listing 4.4: Implementing power series multiplication

Chapters 7 and 8 describe more realistic applications that are structured around process
networks.

4.2 Client-server programming

The client-server paradigm is a very important model for structuring CML programs.
Many applications need some notion of shared state; in a message-passing framework,
server threads provide a mechanism for mediating access to such shared state. We have
already seen simple examples of client-server abstraction in the various versions of updat-
able cells. In this section, we examine a number of additional examples of client-server
protocols.

A typical client-server protocol involves a request message sent by the client to the
server, followed by a reply sent by the server to the client. In the simplest case, the
request or reply may be implicit in the synchronization. For example, the put operation
of the updatable cell example did not involve an explicit reply from the server. The fact
that the client’s send operation blocks until the server accepts it means that the send
serves as its own acknowledgement.
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4.2.1 Example — A unique ID service

An example where the request is implicit is a unique ID server that provides globally
unique IDs (represented by integers) to clients. This service has the following simple
interface:

val mkUIdSrc : unit -> unit -> int

This function creates a fresh source of IDs, which is represented as a function. In a
sequential implementation, this would be implemented using an integer counter stored in
a reference cell

fun mkUIdSrc () = let
val cnt = ref 0
fun next () = let val n = !cnt

in
cnt := n+1; n

end
in
next

end

This implementation is not safe for CML, since accesses to the counter cnt are a po-
tential source of interference. For example, if two threads attempt to get unique IDs
from the same source at the same time, they might get the same IDs, which violates the
global uniqueness property that we are trying to implement. To provide this service in
CML, we need to encapsulate the state in a server thread and use a channel to get the
IDs. The function mkUIdSrc allocates a new channel, spawns a new server, and returns
a function that reads values from the channel:

fun mkUIdSrc () = let
val ch = channel()
fun loop i = (send(ch, i); loop(i+1))
in
spawn (fn () => loop 0);
fn () => recv ch

end

Instead of using a reference cell as a counter, we keep track of the next ID as the argument
to loop. Because communication on the channel is synchronous, we do not need any
kind of request or acknowledgement message.

Notice that the mkUIdSrc function is similar to some of the functions we used to
generate streams. Sometimes the distinction between stream-style and client-server style
programming is fuzzy.

4.2.2 Commit points

While one-way communication is useful in client-server implementations, a more typi-
cal interaction involves communication in both directions (e.g., the storage cell in Sec-
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tion 3.2.3). When presenting such a protocol as an abstract synchronous operation, there
is a question about when the client should synchronize on the event. For example, con-
sider the following client-side implementation of a simple request-reply protocol:

fun rpc req = wrap (
sendEvt (reqCh, req),
fn () => recv replyCh)

If this is used inside a select, the decision to choose this event over another is going to
be based on whether the sendEvt event is enabled (i.e., whether the server is offering to
accept a request). We call the sendEvt base event the commit point (or synchronization
point) of the protocol, because of its rôle in a selective communication. Once a thread
has synchronized on the commit point of a protocol, it is committed to the choice of that
particular protocol.

For client-server protocols that use two-way communication, there are two possible
choices for the commit point: either the request message communication or the reply
message communication. Which is better depends on the server’s semantics and protocol.
The simplest choice is to make the request be the commit point, since this has both the
client and server agreeing to the transaction up front. We have already seen the wrap
combinator used to implement this style of protocol; in the remainder of this chapter, we
look at the issues related to making the reply be the commit point.

4.2.3 Guards in RPC

The guard combinator introduced in the previous chapter is an important mechanism in
the implementation of RPC-style protocols; namely, it allows a client to send a request,
and then use the acceptance of the server’s reply as the commit point. For example, the
client-server protocol from above can be recast as follows:

fun rpc req = guard (fn () => (
send(reqCh, req);
recvEvt replyCh))

where the guard function first sends the request, and then returns the event value for
accepting the server’s reply. In practice, however, there are a number of subtleties to this
kind of protocol.

When using guard to construct an event value, one must be careful to make sure that
the guard function is a “good citizen.” It should be written so as to execute in a bounded
and reasonably short amount of time, and should not raise exceptions. The most common
problem is when a guard involves communication, such as in the example above. Unless
one has a priori knowledge that sending the request to the server will not block for an
unbounded amount of time, such as in the case when the server is always available, one
should use asynchronous communication.
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4.2.4 Example — A clock server

A simple example of the use of guards in a client-server protocol, where the client syn-
chronizes on the reply, is the implementation of a timeout mechanism using a clock
server. We want to define a module, called ClockServer, that provides an event con-
structor atTimeEvt, which returns an event for synchronizing on a specified time. This
constructor has the signature

val atTimeEvt : Time.time -> unit event

The basic client-server protocol is for the client to send a request to the clock server,
which includes the wake-up time and a fresh reply channel; when the wake-up time
arrives, the server sends a message on the reply channel. The reply channel serves as a
unique identifier for the client’s request. We use a top-level channel for requests:

val timerReqCh : (time * unit chan) chan

This channel is global in the sense that it is shared by all clients of the server; of
course, it is hidden inside the ClockServer structure, and clients only access it via the
atTimeEvt function.2 The implementation of atTimeEvt uses a guard function to
allocate the reply channel, and send the request, returning an event that synchronizes on
the reply:

fun atTimeEvt t = guard (fn () => let
val replyCh = channel()
in
spawn (fn () => send (timerReqCh, (t, replyCh)));
recvEvt replyCh

end)

Note that the request is sent asynchronously (by spawning a new thread to send it).

The implementation of the clock server is given in Listing 4.5. In this figure, we as-
sume that there is a unit event called tick, which produces a synchronization event at
regular intervals (this can be viewed as a read-only channel that provides a unit message
every tick of the clock).3

As usual, the clock server is written as a tail-recursive loop; its state is the set of
waiting threads, which is represented as a sorted list. Each element contains the time to
wake the thread, and the channel on which to send the wake-up message. The function
insert is used to insert an element into the sorted list. The server waits on the choice
of two events: either receiving a client’s request or a clock tick. When a client request

2The initialization and management of global channels and servers requires some special hooks. The CML Reference
Manual that comes with the CML distribution describes these in detail.

3Such a channel does not exist in CML, but CML does directly support the timeout mechanism described in this
example (see Section 5.2.2).
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fun server waitingList = let
fun insert (req as (t, _), []) = [req]
| insert (req as (t, _), (elem as (t’, _))::r) =

if Time.< (t, t’)
then req::elem::r
else elem::(insert(req, r))

fun wakeup () = let
val now = Time.now()
fun wake [] = []
| wake (waiting as ((t, replyCh)::r)) =

if Time.< (now, t)
then waiting
else (

spawn (fn () => send (replyCh, ()));
wake r)

in
wake waitingList

end
in
select [

wrap (recvEvt timerReqCh,
fn req => server (insert (req, waitingList))),

wrap (tick,
fn () => server (wakeup ()))

]
end

Listing 4.5: The clock server implementation

is received, it is inserted into the waiting list. When a clock tick occurs, the server calls
the wakeup function, which gets the current time and sends wake-up messages to those
clients whose time has come.

The sending of the wake-up messages must be done asynchronously, because the client
may have been synchronizing on the choice of an atTimeEvt event and some other
synchronous operation. If the other operation is chosen before the specified time, then
the client will never accept the wake-up message, and the thread that sends the wake-up
message will deadlock. Therefore, the wakeup function spawns a new thread to send the
wake-up message. Figure 4.3 shows the two possible histories for an interaction between
a client and the clock-server. We assume that the client has executed the expression

select [ev, atTimeEvt t]

where ev is some other synchronous event. In these pictures, the jagged arrows represent
spawning a thread, the open square is the beginning of a thread’s execution, and the
filled square represents a thread’s termination. In Figure 4.3(a), the waiting time occurs
before the event ev was enabled, and the client receives the wake-up message. On the



4.2 Client-server programming 77

t

replyCh

recv
timerReqCh

reply

Server

request

select

Client

(a) The client times out

t
reply

timerReqCh
recv

Server

select

request

ev

Client

(b) The client selects some other event ev

Figure 4.3: Clock-server histories



78 4 CML Programming Techniques

client’s history, the label request is the point at which the atTimeEvt guard function is
evaluated, and the label select is where it starts waiting for the base events that make up
the choice. The other scenario, which is depicted in Figure 4.3(b), is where the event ev
becomes enabled and is chosen before time t occurs. Note that the thread spawned by the
server is blocked forever, since the client selected ev and will not accept the reply.

One might be concerned that this implementation has a space leak, since each time a
client thread chooses some other event, there is a reply thread left blocked forever. In
CML, however, these blocked threads are not a problem because they will be automati-
cally garbage collected. When a thread is blocked waiting for a synchronous operation to
be enabled, its state is only reachable through the data structures associated with the op-
eration (e.g., through the channel waiting queue, when the thread is sending a message).
If those data structures are not reachable from some active thread, then both they, and the
blocked thread, will be garbage collected. In this example, since neither the client nor
the server has a reference to the channel that was allocated for the reply, both it and the
thread spawned by the server to send the reply will be garbage collected. This style of
speculatively spawning threads to send communication that might never be accepted is
an important CML programming technique.

4.2.5 Negative acknowledgements

The clock server example has the property that the server is idempotent; i.e., that the han-
dling of a given request is independent of other requests. Thus, using a new thread to send
a reply is sufficient to protect the server against the situation in which the client selects
some other event. For some services, however, this is not sufficient; the server needs to
know whether to commit or abort the transaction. The synchronization involved in send-
ing the reply allows the server to know when the client has committed to the transaction,
but there is no way to know when the client has aborted the transaction by selecting some
other event. While a timeout on the reply might work in some situations, the absence
of a reply does not guarantee that the client has selected some other event; the client
might just be slow. To ensure the correct semantics, we need a mechanism for negative
acknowledgements. The following event combinator provides such a mechanism:

val withNack : (unit event -> ’a event) -> ’a event

This combinator behaves like guard, in that it takes a function whose evaluation is
delayed until synchronization time, and returns it as an event value. The main difference
is that at synchronization time, the guard function is applied to an abort event, which is
enabled only if some other event is selected in the synchronization.

To make the workings of negative acknowledgements more concrete, consider the fol-
lowing simple use of withNack:
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fun mkEvent (ev, ackMsg, nackMsg) = withNack (fn nack => (
spawn (fn () => (sync nack; TextIO.print nackMsg));
wrap(ev, fn _ => TextIO.print ackMsg))

This function takes an event, and returns one that will print the message ackMsg, if it is
chosen, and the messagenackMsg if another event is chosen. Printing the acknowledge-
ment is easy — mkEvent wraps the event with a wrapper function that prints ackMsg.
To print the negative acknowledgement message, mkEvent spawns a thread that waits
for the negative acknowledgement event nack and then prints nackMsg. If the event
is chosen, then the nack event will never be enabled, and thus the nackMsg will not
be printed (instead, the thread will be garbage collected). For example, consider what
happens if ch2 is chosen when executing the following synchronization:

select [
mkEvent (recvEvt ch1, "ch1\n", "not ch1\n"),
mkEvent (recvEvt ch2, "ch2\n", "not ch2\n")

]

This will cause the messages “ch2” and “not ch1” to be printed (the actual order of
the messages is nondeterministic).

There are a couple of points about withNack that are worth clarification. Let ev be
an event value constructed by applying withNack to a guard function g. Then, each
time ev is involved in a synchronization, g will be applied to a fresh abort event. This
property holds even in situations such as

select [ev, ev]

where there are multiple instances of ev in a single synchronization. In this case, each
instance of ev has its own abort event. If the event value returned by withNack is
composed of the choice of several base events, then the abort event is only enabled if
none of the base events is chosen.

4.2.6 Example — Lock server

To illustrate the use of withNack, we present the implementation of a lock server. This
service provides a collection of locks that can be acquired or released (much like mutex
locks). The interface is

type lock

val acquireLockEvt : lock -> unit event
val releaseLock : lock -> unit

where the abstract type lock represents a lock identifier. For purposes of this example,
we ignore the question of how lock names are created.
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If a client attempts to acquire a lock that is held, then it must wait until the holder of the
lock releases it. Since a client may not want to wait indefinitely, the acquireLockEvt
function is event-valued so that it can be used in selective communication (with a timeout,
for example). This is clearly a case where we want to synchronize on the acquiring of
the lock, rather than on the sending of the request. Thus, we need to use a guard function
to send the request, and return an event that represents the acquisition of the lock.

The server maintains a set of locks that are currently held; for each lock in the set,
it keeps a queue of pending requests for the lock. When a lock is released, the next
requesting thread on the queue gets the lock. There is a subtlety to the servicing of
pending requests. Consider the case where a client A requests a lock l that is held by
some other thread B. By the time B releases l, A may no longer be interested in it (e.g.,
its attempt to synchronize on acquiring the lock may have timed out). In this case, if the
server still thinks that A wants the lock l, it will assign l to A, resulting in starvation for
any future attempt to acquire the lock. Clearly, this situation is a problem — we need to
structure the protocol so that the server gets the negative information that the requesting
client is no longer interested in the lock. This problem is what withNack is designed
to solve.

The lock type is represented by integer lock IDs wrapped by a datatype constructor:

datatype lock = LOCK of int

We assume that there is some mechanism for generating the lock IDs, such as an instance
of the unique ID server from above. As with the clock server, we use a top-level channel,
called reqCh, for sending requests to the lock server. There are two kinds of request
messages, corresponding to the two operations:

datatype req_msg
= ACQ of {

lock : int,
replyCh : unit chan,
abortEvt : unit event

}
| REL of int

In these messages, we strip off the LOCK constructor and just send the integer ID of the
lock.

The client-side implementation of the acquireLockEvt operation is implemented
using withNack applied to a guard function:

fun acquireLockEvt (LOCK id) = withNack (fn nack => let
val replyCh = channel()
in
spawn (fn () => send (reqCh, ACQ{

lock= id, replyCh= replyCh, abortEvt= nack
}));

recvEvt replyCh
end)
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structure M = IntBinaryMap

fun mkLockServer () = let
fun replyToAcquire (replyCh, abortEvt) = select [

wrap (sendEvt(replyCh, ()), fn () => true),
wrap (abortEvt, fn () => false)

]
fun server locks = (case (recv reqCh)

of (ACQ{lock, replyCh, abortEvt}) => (
case M.find(locks, lock)
of NONE =>

if (replyToAcquire (replyCh, abortEvt))
then server (M.insert(locks, lock, ref[]))
else server locks

| (SOME pending) => (
pending := !pending @ [(replyCh, abortEvt)];
server locks)

(* end case *))
| (REL lock) => let

val (locks’, pending) = M.remove(locks, lock)
fun assign [] = locks’

| assign (req::r) = if (replyToAcquire req)
then (pending := r; locks)
else assign r

in
server (assign (!pending))

end
(* end case *))

in
spawn (fn () => server(M.empty)); ()

end

Listing 4.6: The lock server implementation

The guard function allocates a channel for the server’s reply, and sends an ACQ re-
quest message, containing the lock’s ID, the reply channel, and the abort event, to the
server. The guard function returns the reply event. The client-side implementation of the
releaseLock operation is trivial:

fun releaseLock (LOCK id) = send (reqCh, REL id)

The implementation of the lock server is given in Listing 4.6. The server’s state is
represented by finite map from lock IDs to queues of pending acquire requests. We use
the SML/NJ Library’s IntBinaryMap structure to implement the finite map.4 The ID
map has the type

4The IntBinaryMap structure provides a functional implementation of finite maps with integer keys.
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(unit chan * unit event) list ref IntBinaryMap.map

where each pending acquire request is represented by the pair of the reply channel and
abort event. We use a reference to a list to represent the pending request queue, because
it simplifies the code for inserting and removing requests for held locks.

When an ACQ request comes in, the server checks to see if the lock is held (i.e., if it is in
the domain of locks). If so, the request is added to the end of the pending request queue
for the lock; otherwise, the server attempts to assign the lock to the requesting client
by calling replyToAcquire. This function synchronizes on the choice of the client
accepting the reply and the transaction’s abort event. We are guaranteed that exactly one
of these events will be enabled.5 The function replyToAcquire returns true if the
transaction commits, and false if it aborts.

When a REL request comes in, the server checks to see if there are any pending ac-
quire requests for the lock. If there are no pending requests, then the lock is released by
removing it from locks. In the case that there are pending acquire requests, the server
attempts to assign the lock to the next pending request in the queue. The recursive func-
tion assign repeatedly attempts this until either a client commits to acquiring the lock
or the queue is exhausted. In the latter case, the lock is released.

Figure 4.4 shows process histories for the two scenarios that an interaction between
a client and the lock server might follow. We assume that the client has executed the
expression

select [ev, acquireLockEvt l]

where ev is some other synchronous event, such as a timeout. The picture in Figure 4.4(a)
shows the history when the client successfully acquires the lock. The history when the
client selects some other event and the transaction is aborted is shown in Figure 4.4(b).
The diagonal dashed arrow represents the enabling of the abort event.

Notes

The structuring of programs using streams dates back to Landin [Lan65]. Abelson and
Sussman discuss the use of streams for programming a number of problems [ASS85].
The realization of streams programs as process networks can be traced to a seminal paper
by Kahn and MacQueen [KM77]; for this reason, these are often called Kahn-MacQueen
networks. The use of process networks to implement power series computations was
suggested by Kahn and MacQueen, but not described in any detail. The presentation
here is owed to McIlroy, who described implementations of power series multiplication

5This guarantee assumes well-behaved guards in the client’s synchronization expression.
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and a number of additional power series computations, such as composition and expo-
nentiation [McI90], using the language newsqueak [Pik89b]. Čubrić has developed a
library package on top of CML for dataflow programming [Čub94b, Čub94a]. The main
focus of her work is the use of dataflow to implement DSP (Digital Signal Processing)
applications.

Earlier versions of CML [Rep91a] provided support for negative acknowledgements
in the form of the event combinator wrapAbort, which has the type

val wrapAbort : (’a event * (unit -> unit)) -> ’a event

This function takes an event value ev and an abort action as arguments, and returns an
event ev’. Whenever a thread synchronizes on a choice of events that includes ev’, and
chooses some other event, a thread is spawned that executes the abort action. We can
define this combinator in terms of withNack

fun wrapAbort (ev, abortFn) = withNack (fn nack => (
spawn (fn () => (sync nack; abortFn()));
ev))

It is also possible to implement withNack using wrapAbort. The main reason for
favoring withNack is that it more closely matches common usage. Most uses of
wrapAbort involved abort actions that consisted solely of sending a negative acknowl-
edgement message.

The lock server example in Section 4.2 was motivated by Gehani and Roome’s descrip-
tion of a Concurrent C implementation of a similar server [GR86]. Their implementa-
tion uses the conditional accept mechanism of Concurrent C to accept only requests for
locks that are free. This mechanism is necessary because in Concurrent C the client
can synchronize only on the server accepting the request, and not on the server’s reply.
Chapter 5 of the author’s dissertation describes an implementation of Concurrent C’s
conditional entry mechanism using CML primitives, and presents a version of the lock
server built using it [Rep92].
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Synchronization and Communication Mechanisms

In the previous two chapters, we have studied CML as a message-passing language.
While this is the most natural model of CML programming, we can also view it as
a language for programming synchronization. CML’s event values provide a uniform
framework for incorporating a range of synchronous operations. Some are implemented
as primitives in the CML, while others are provided by libraries, and still others are
defined by the application programmer. Independent of their implementation, however,
these operations all fit into the same uniform framework of event values. In this chapter,
we examine a variety of synchronization mechanisms in the context of CML.

5.1 Other base-event constructors

So far, we have seen event constructors for synchronous message passing, but there are a
number of other constructors. The simplest of these is the event-valued constant never,
which has the type

val never : ’a event

This value will never be enabled for synchronization (it is equivalent to the expression
“choose[]”), and is the identity for the choose combinator.

The alwaysEvt constructor is used to build an event-value that is always available
for synchronization. It has the type

val alwaysEvt : ’a -> ’a event

When applied to a value v, it returns an event value that is always enabled for synchro-
nization with the result v. For example, an infinite stream of 1s can be implemented
as

val ones = always 1
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Note that using alwaysEvt in a choice does not provide a reliable polling mechanism.
For example, the following function does not poll a channel for input accurately:

fun pollCh ch = select [
alwaysEvt NONE,
wrap (recvEvt ch, SOME)

]

Although it will never block, it may return NONE even when there is a matching com-
munication available on ch. This result is because there is no priority ordering of base
events and the alwaysEvt might be chosen over the recvEvt.

In general, polling is the wrong technique to use in CML. It is much simpler, and more
efficient, to use selective communication and additional threads of control. There are
some protocols, however, where polling for the availability of a communication may im-
prove efficiency. One example is the implementation of asynchronous RPC (or promises)
in a distributed setting (see Section 2.5.4). This mechanism might have the interface

val promiseEvt : t -> s event

where “t” is the argument type and “s” is the result type of the RPC. The result of calling
promiseEvt is an event value that represents the promise of a reply from the server. 1

The basic implementation of this might consist of a client-side buffer thread that collects
requests and occasionally forwards them to the remote server. The reason that we do not
transmit each request directly to the remote server is that by batching the messages, we
can reduce system call overhead and make better use of network bandwidth. The buffer
thread is also responsible for forwarding the server’s replies to the clients. A possible
communication pattern for this implementation is given in Figure 5.1. Notice that if
the client thread synchronizes on the promise before the buffer thread has forwarded the
requests, it will have to wait longer than necessary. We can avoid this inefficiency by
polling for the reply in the event value that represents the promise. The following is a
sketch of how this might be implemented:

fun promiseEvt x = let
val replyCh = channel ()
in
request (x, replyCh);
guard (fn () => (case (recvPoll replyCh)

of NONE => (flush(); recvEvt replyCh)
| (SOME y) => alwaysEvt y

(* end case *)))
end

In this example, the request function is used to initiate the RPC by sending the argu-
ment to the buffer thread, and the flush function is used to tell the buffer thread to flush

1Note that unlike some of the other client-server examples we have seen, each synchronization on the promise event
does not result in another request.
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Figure 5.1: Asynchronous remote procedure call

messages to the server. The recvPoll function is provided by CML, and has the type

val recvPoll : ’a chan -> ’a option

Notice that in the case where the reply is available already, we use alwaysEvt to turn
the reply into an event value.2

5.2 External synchronous events

In Chapter 1, we argued that concurrency was necessary to handle external synchronous
events, but, so far, we have not seen how these external events manifest themselves in
CML programs. In this section, we describe the CML interface to various kinds of
external synchronous events. Again, we exploit first-class synchronous operations to
treat these in the same framework as internal synchronization.

5.2.1 Input/output

An important form of external event is the availability of user input. The SML Basis
Library organizes the portable I/O interface into three levels:

2Note that many of the communication mechanisms provide a primitive polling operation; see Appendix A for details.
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1. Primitive I/O — provides readers and writers, which are an abstraction of the
underlying operating system’s unbuffered I/O operations.

2. Stream I/O — provides functional input streams and buffered output streams.

3. Imperative I/O — provides dynamically redirectable input and output streams.

In addition, there are operating system specific I/O operations. CML supports event-
based input operations at every level of I/O, including the operating system specific op-
erations.

CML extends the SML Basis Library stream and imperative I/O interfaces with event-
value constructors for the input operations.3 The CML versions of these signatures match
the corresponding SML signatures, which supports easier reuse of code between CML
and SML. At the primitive I/O level, the CML interface is not compatible with the SML
interface — the main difference is that the non-blocking I/O operations in the readers and
writers are replaced with event-value constructors. CML also provides a mechanism for
making a text input or output stream from a string-valued channel.

The availability of event constructors for input operations allows threads to combine
them with other synchronous operations. For example, one could read a user-supplied
input, such as a password, with a time limit using the following function:

fun inputOrTimeOut timeLimit = select [
wrap (timeOutEvt timeLimit, fn () => NONE),
wrap (TextIO.inputLineEvt TextIO.stdIn, SOME)

]

The timeOutEvt constructor is described in the next section.

CML does not provide event-value constructors for imperative and stream-level output
operations, since output streams are buffered. At the primitive I/O level, however, there
are event-value constructors for output operations, but synchronization on output is only
useful for devices with flow-control.

5.2.2 Timeouts

Timeouts are another important example of external synchronous events. Most concur-
rent languages provide special mechanisms for “timing out” on a blocking operation; in
CML this notion fits naturally into the framework of events. CML provides two event
constructors for synchronizing on time events:4

val timeOutEvt : Time.time -> unit event
val atTimeEvt : Time.time -> unit event

3The text versions of these extensions are described in Appendix A.
4In earlier versions, these were called timeout and waitUntil.
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The timeOutEvt constructor returns an event for synchronizing on a time that is
relative to time at which synchronization is performed. For example, the following code
delays the calling thread for one second:

sync (timeOutEvt (Time.fromSeconds 1))

The atTimeEvt constructor is used to synchronize on an absolute time.

Synchronization on time values is, by necessity, approximate. The granularity of the
underlying system’s clock, scheduling delays in the underlying operating system, and
delays in the CML scheduler tend to delay synchronization on a time value slightly. For
example, consider the following code for advancing the display of a clock face:

fun loop () = (
sync (timeOutEvt (Time.fromSeconds 60));
advanceClock();
loop())

Because of the possible delays in resuming the thread, the clock face would slowly lose
time. To avoid this kind of problem, one should use atTimeEvt when the application
is sensitive to clock drift.

When using a timeout in conjunction with other synchronizations, some thought should
be given to the desired semantics. For example, consider the buffer thread in the imple-
mentation of promises given in Section 5.1. We might program the main loop of this
thread as follows:

fun loop msgs = select [
wrap (timeOutEvt tq,

fn () => (flushMsgs msgs; loop [])),
wrap (recvEvt reqCh,

fn (MSG m) => loop (m :: msgs)
| FLUSH => (flushMsgs msgs; loop []))

]

where the valuetq is the amount of time to wait before sending data over the network, the
function flushMsgs sends the messages over the network, and reqCh is the channel
on which new messages (MSG) and flush requests (FLUSH) arrive. The problem with this
implementation is that the timeout gets reset each time a new message comes in, which
will delay the sending of messages over the network. In fact, if new messages arrive
at a rate that is greater than 1

tq , then the messages will never be sent (unless a FLUSH
request comes in). To avoid this problem, we could use the atTimeEvt constructor, or
we could use a separate timer thread. We chose the latter in the following code:
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fun loop () = let
fun timerThread () = (sync(timeOutEvt tq); send(reqCh, FLUSH))
fun empty () = (case (recv reqCh)

of (MSG m) => (spawn timerThread; nonempty [m])
| FLUSH => msgs)

(* end case *))
and nonempty msgs = (case (recv reqCh)

of (MSG m) => nonempty (m :: msgs)
| FLUSH => (flushMsgs msgs; empty())

(* end case *))
in

empty ()
end

In this code, whenever a message is received when the buffer is empty, a new timer
thread is spawned. This ensures that a message will have to wait no longer than the time
specified by tq before being sent over the network.

5.2.3 Signals

Signals are a mechanism for presenting external events to a UNIX process. While they are
OS-specific, a small subset of them have equivalents on almost every modern operating
system. These include alarms, keyboard interrupts, program termination, and a signal
from the run-time system notifying the application that a garbage collection has occurred.
Since CML already provides a timeout mechanism, it only provides interrupt (sigINT),
termination (sigTERM), and garbage collection (sigGC) signals.5 Signals are delivered
to the CML application as a buffered stream of messages. Whether a signal is actually
delivered to an application depends on the signal’s state, which can be handled, ignored,
or default. In the handled case, when a signal occurs, it is sent on the appropriate signal
stream. If a signal is being ignored, then no action is taken when it occurs. The default
action depends on the operating system and the signal, but it will either be to ignore the
signal or to terminate the program.

For example, an application may wish to print a message and terminate upon receiving
a sigINT signal. The following initialization code enables this behavior:

let fun handler () = let
val strm = Signals.signalStream()
in

Signals.setHandler (Signals.sigINT, Signals.HANDLE strm);
Signals.recvSig strm;
TextIO.print "[Interrupt]\n";
OS.Process.exit OS.Process.failure

end
in

spawn handler
end

5On some operating systems, such as UNIX, a larger collection of signals is supported. The details are in the documen-
tation distributed with the CML software.



5.3 Synchronizing shared-memory 91

The handler thread works by creating a new signal stream and installing it as the stream
for sigINT. It then waits for a signal on the stream, and then terminates the program
with a failure status code. For further information about CML’s signal mechanism, see
the documentation distributed with the CML software.

5.3 Synchronizing shared-memory

Synchronizing shared-memory provides an attractive alternative to traditional shared-
memory mechanisms, since it couples synchronization with memory access. Because of
the synchronous aspect of memory accesses, synchronizing shared-memory fits into the
CML framework in a natural way. In this section, we first show how M-structure cells,
which we call M-variables, can be implemented as an abstraction. CML provides both
M-variables and I-variables, and we describe uses of these in Section 5.3.2.

5.3.1 Implementing M-variables

We have seen threads used to hold the state of an updatable cell. This technique can also
be used to implement synchronizing memory, such as an M-structure cell. Recall from
Section 2.6.2 that M-structure cells are either empty or full, and that the take operation
blocks until the cell is full, and that attempting to put a value into a full cell is an error.
The interface is as follows:

type ’a mvar

val mVar : unit -> ’a mvar

exception Put

val mTakeEvt : ’a mvar -> ’a event
val mPut : (’a mvar * ’a) -> unit

M-variable cells are created in an empty state. The take operation is supported by the
event-value constructor mTakeEvt, since it may block, and the mPut operation raises
the Put exception when the cell is already full.

The implementation of this abstraction is given in Listing 5.1. The mvar type is an
abstraction of a set of channels for communicating with the server. The getCh channel
is used to take values from the server, and the putCh and ackCh channels are used
to implement that mPut operation. The mvar function creates the M-variable server
and allocates the channels for communicating with clients. The server implementation
follows the state machine described in Figure 2.7(b) (page 33), with the exception that
there is no error state. The mutually recursive functions empty and full represent
the two states of the M-variable. In the empty state, the server will only accept a mPut
operation; when it does so, it sends a true acknowledgement and becomes full. In
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datatype ’a mvar = MV of {
takeCh : ’a chan,
putCh : ’a chan,
ackCh : bool chan

}

fun mVar () = let
val takeCh = channel()
val putCh = channel()
val ackCh = channel()
fun empty () = let val x = recv putCh

in
send (ackCh, true);
full x

end
and full x = select [

wrap (sendEvt(takeCh, x), empty),
wrap (recvEvt putCh,
fn _ => (send(ackCh, false); full x))

]
in

spawn empty;
MV{ takeCh = takeCh, putCh = putCh, ackCh = ackCh }

end

fun mTakeEvt (MV{takeCh, ...}) = recvEvt takeCh

exception Put

fun mPut (MV{putCh, ackCh, ...}, x) = (
send (putCh, x);
if (recv ackCh) then () else raise Put)

Listing 5.1: The M-variable implementation

the full state, the server offers its contents on the getCh; when this is taken, the server
becomes empty again. The server will also accept a put request when full, but in this case
it sends a false acknowledgement and does not change its state.

The mTake operation is very simple: it just attempts to read a value from the getCh
channel. Effectively, this implementation uses the channel’s waiting queue to manage
waiting threads. The mPut operation involves communication in both directions: the
client first sends a put request, and then accepts an acknowledgement. If the acknowl-
edgement is true, the cell was empty and the mPut operation succeeded, but if the
acknowledgement is false, then the cell was full and the Put exception is raised.
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exception Put

type ’a ivar

val iVar : unit -> ’a ivar
val iPut : (’a ivar * ’a) -> unit
val iGet : ’a ivar -> ’a
val iGetEvt : ’a ivar -> ’a CML.event
val iGetPoll : ’a ivar -> ’a option
val sameIVar : (’a ivar * ’a ivar) -> bool

Listing 5.2: I-variable operations

5.3.2 Synchronous variables in CML

CML provides “variables” with I-structure and M-structure semantics; these can be
found in the SyncVar structure (see Appendix A for the full interface). While we have
seen how these objects can be implemented in terms of threads and message passing,
the actual CML implementation is more direct and efficient. Because of this, I-variables
and M-variables can often be used to improve performance in situations where the full
generality of message passing is overkill. M-variables are used typically to hold some
rarely changing shared state (essentially a safe replacement for reference cells). In the
remainder of this section, we examine situations where I-variables can be useful. The
CML interface to the principal I-variable operations is given in Listing 5.2; a complete
list can be found in Appendix A (as well as a description of the M-variable operations).

Futures

Futures are a mechanism for specifying parallel computation found in many parallel di-
alects of Lisp (see Section 2.6.1). The future construct wraps up a computation as a
logically separate thread, and returns a placeholder, called a future cell for the computa-
tion’s result. The act of attempting to read a value from a future cell is called touching.
If a thread attempts to touch a future, before the computation of its value is completed,
then the touching thread blocks.

Implementing a simple version of futures in CML is quite easy. Since touching a future
cell is a synchronous operation, we represent the future cells directly as event values
(instead of introducing new type), and we use sync to touch a value. The future
operation has the type:

val future : (’a -> ’b) -> ’a -> ’b event

We use an I-variable to represent a future cell, since it directly supports the right
synchronization semantics. Because the evaluation of a future might result in a raised
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exception, the I-variable must be able to hold either the result or an exception. The fol-
lowing datatype is used to represent the contents of a future cell:

datatype ’a result = RESULT of ’a | EXN of exn

The implementation of future is straightforward:

fun future f x = let
val futureCell = SyncVar.iVar()
fun f’ () = (RESULT(f x) handle ex => EXN ex)
in
spawn (fn () => SyncVar.iPut (futureCell, f’()));
wrap (

SyncVar.iGetEvt futureCell,
fn (RESULT x) => x | (EXN ex) => raise ex)

end

This function spawns a new thread to evaluate its first argument applied to its second,
and creates an I-variable for reporting the result. The application of f to x is wrapped up
in f’; notice that if the application raises an exception, then it is caught and returned as
the result. The result of future is an event value that synchronizes on the result of the
application being written into futureCell. This event is wrapped with a function that
strips off the RESULT constructor in the normal case, and raises the exception otherwise.
Note that the exception is raised in the touching thread’s exception context.

RPC protocols

An important use of I-variables is for the efficient implementation of “one-shot” commu-
nications. For example, the communication from the timer thread to the buffer thread in
Section 5.2.2 is done only once, and could be implemented using an I-variable. A prime
example of one-shot communications are the reply communications found in many RPC-
style protocols. For example, the clock server of Section 4.2.3 allocated a new reply
channel for each request, which was used to send only one reply (the wake-up mes-
sage). We can reimplement this server using an I-variable to replace the reply channel.
The changes are quite simple. We replace the reply channel with an I-variable, and the
channel operations with the corresponding I-variable operations, and change the request
channel’s type to

val timerReqCh : (time * unit SyncVar.ivar) chan

The advantage of this implementation is that sending a message on a channel is signif-
icantly more expensive than writing to an I-variable. An additional benefit is gained by
the fact that writeVar is a non-blocking operation, which means that the server does
not have to spawn a thread to send the wake-up message. Listing 5.3 shows the new im-
plementation of the clock server from Section 4.2.3 (modifications are underlined). The
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fun atTimeEvt t = guard (fn () => let
val replyV = SyncVar.iVar()
in

spawn (fn () => send (timerReqCh, (t, replyV)));
SyncVar.iGetEvt replyV

end)

fun server waitingList = let
fun insert ...
fun wakeup () = let

val now = Time.now()
fun wake [] = []

| wake (waiting as ((t, replyV)::r)) =
if Time.< (now, t)

then waiting
else (

SyncVar.iPut (replyV, ());
wake r)

in
wake waitingList

end
in

...
end

Listing 5.3: The clock server using I-variables

changes affect only the atTimeEvt function and the wakeup function in the server.

Measurements suggest that using an I-variable for the reply in an RPC protocol can
save around 35% of the synchronization and communication costs. In this example, the
savings are even greater, since we avoid spawning a thread for the reply. Of course, we
can only use an I-variable when the protocol does not depend on the server synchronizing
on its reply being accepted. Protocols that involve negative acknowledgements, such as
the lock-server protocol in Section 4.2.5, cannot be implemented using I-variables.

Stream programming

In Chapter 3, we saw several examples of stream-style programming, where streams
were represented as channels. The drawback to this representation is that the streams
are stateful, once a value is read, it cannot be read again. I-variables can be used to
implement “true” streams; i.e., stream values that can be used multiple times without
copying.6 The type of streams as seen by a consumer is

6This observation should come as no surprise, since I-variables were designed for implementing incremental data
structures, such as streams.
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datatype ’a stream = NIL | HD of (’a * ’a stream event)

where NIL represents the termination of a finite stream, and HD represents the head
element plus an event for getting the stream’s tail. In practice, it is useful to view a
stream as represented by a stream event. Using this representation, the following
function constructs a list of the first n elements of a stream:

fun takeN (s, n) = let
fun f (0, _, l) = rev l

| f (_, NIL, l) = rev l
| f (i, HD(x, s), l) = f (i-1, sync s, x::l)

in
f (n, sync s, [])

end

The recursion here is quite similar to the recursion used to iterate on lists; the only differ-
ence is that we synchronize to get the next element of the stream. The difference between
this view of streams, and that of Chapter 3 is that a stream value is “functional.” Reading
from it multiple times will always produce the same answer.

We could implement this representation using threads and channels. It requires creat-
ing a new thread and channel for each element in the stream, where the thread repeatedly
offers to send the element’s value on the channel. A more direct approach is to implement
these streams using I-variables. For the producer of a stream, each element of a stream is
represented as an I-variable:

type ’a stream_elem = ’a stream SyncVar.ivar

The following function creates a new stream and returns the pair of the producer’s view
and the consumer’s view:

fun stream () = let
val iv = SyncVar.iVar()
in

(iv, SyncVar.iGetEvt iv)
end

A producer can extend or terminate a stream using the following two functions:

fun extendStream (iv, v) = let
val iv’ = SyncVar.iVar()
in

SyncVar.iPut (iv, HD(v, SyncVar.iGetEvt iv’));
iv’

end

fun terminateStream iv = SyncVar.iPut (iv, NIL)

A simple example of a producer is a thread that generates a finite stream of integers from
i to j:
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fun fromTo (i, j) = let
val (iv, strm) = stream()
fun iter (iv, i) = if (i < j)

then iter (extendStream (iv, i), i+1)
else terminateStream iv

in
spawn (fn () => iter (iv, i));
strm

end

Careful examination of this program reveals a fatal flaw in this representation of streams
— these streams are being evaluated eagerly instead of lazily. For example, calling the
function fromTo will immediately result in the entire stream being computed. The
problem is that writing to an I-variable is an asynchronous operation, so there is no flow-
control to inhibit evaluation (see Section 2.5.1). As is shown in Section 5.5, there are
situations where the eager version of streams is useful, but for the stream algorithms
given in Chapter 3 we need lazy evaluation.

To force lazy evaluation, we need to introduce synchronization to inhibit the producer
from racing ahead of the consumer. This synchronization can be achieved either by
having the consumer demand the next value or by having the consumer acknowledge
the consumption of a value. A potential problem with these schemes is that multiple
consumers may demand (or acknowledge) the same value, but only the first of these
communications matters. One solution is to use a datatype to represent the forward link,
with constructors for evaluated and unevaluated links, and an M-variable to hold the link.
To get the next element, one can take the value from the variable, and if it is evaluated
follow it (after putting it back), and if it is unevaluated demand the value. CML uses
a mechanism similar to this one to implement the functional input streams described in
Section 5.2.1.

5.4 Buffered channels

Buffered channels provide a mechanism for asynchronous communication between threads.
Buffering of communication is useful in a number of situations. One important example
is when a cyclic communication pattern is required, which would result in deadlock if
programmed using synchronous communication. Sometimes this buffering can be pro-
vided by having additional threads on the communication path (the copy nodes played
this rôle in the Fibonacci example in Section 3.2), but in other cases it is necessary to
introduce unbounded buffering.

A buffered channel consists of a queue of messages; when a thread sends a message
on a buffered channel, it is added to the queue without blocking the sender. If a thread
attempts to read a message from an empty buffered channel, then it blocks until some
other thread sends a message. This design is a generalization of the one-element pro-
ducer/consumer buffer that was used as a running example in Chapter 2. The signature
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signature BUFFER_CHAN =
sig
type ’a buffer_chan

val bufferChannel : unit -> ’a buffer_chan

val send : (’a buffer_chan * ’a) -> unit
val recvEvt : ’a buffer_chan -> ’a event

end; (* BUFFER_CHAN *)

Listing 5.4: The buffered channels interface

of this abstraction is given in Listing 5.4. Sending a message is non-blocking, so the send
operation is provided as a unit-valued function (send), while a thread attempting to re-
ceive a message may block, so the receive operation is provided as an event constructor
(recvEvt).

The queue of messages is maintained by a buffer thread. Communication to the buffer
thread is via a pair of channels, one for send operations, and one for recvEvt op-
erations. The implementation is given in Listing 5.5. The function bufferChannel
creates the channels that represent the buffer channel, and spawns the buffer thread. The
channel inCh is used to send messages to the buffer thread, while the channel outCh
is used to receive messages from the buffer. As usual, the buffer thread is a tail-recursive
function, with its state maintained in its arguments. The state is the message queue,
which is represented using the functional queues provided by the Fifo structure from
the SML/NJ Library. When the queue is empty, the buffer thread can only offer to accept
messages from inCh, which means that any attempt to read a message from the buffer
will block. When there is at least one message in the queue, the buffer thread offers to
both accept an additional message, which gets added to the rear of the queue, and to send
the queue’s first message on the outCh. The operations send and recvEvt perform
the corresponding CML operation on the appropriate channel in the buffer channel’s
representation. Note that although send is implemented using the blocking send oper-
ation, it cannot be delayed indefinitely, since the buffer thread is always willing to accept
a communication on the inCh. Sometimes it is useful to apply a filter or translation to
the messages in the buffer, in which case the implementation described here can be eas-
ily modified. CML supports buffered asynchronous communication via the mailbox
abstract type, which is described in the reference manual (see Appendix A).
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structure BufferChan : BUFFER_CHAN =
struct

datatype ’a buffer_chan = BC of {
inCh : ’a chan,
outCh : ’a chan

}

structure Q = Fifo

fun bufferChannel () = let
val inCh = channel() and outCh = channel()
fun loop q = if (Q.isEmpty q)

then loop(Q.enqueue(q, recv inCh))
else select [

wrap (recvEvt inCh,
fn y => loop(Q.enqueue(q, y))),

wrap (sendEvt(outCh, Q.head q),
fn () => loop(#1(Q.dequeue q)))

]
in
spawn (fn () => loop(Q.empty));
BC{inCh=inCh, outCh=outCh}

end

fun send (BC{inCh, ...}, x) = CML.send (inCh, x)

fun recvEvt (BC{outCh, ...}) = CML.recvEvt outCh

end; (* BufferChan *)

Listing 5.5: The implementation of buffered channels

5.5 Multicast channels

Another useful abstraction is a buffered multicast channel, which builds on the buffered
channel abstraction by providing fan-out to multiple readers. A multicast channel has
a single input port and number of output ports. When a thread sends a message on a
multicast channel, it is delivered once to each output port. The interface to the multicast
channel abstraction is given in Listing 5.6. The type constructor mchan generates the
types of multicast channels, and port is the corresponding type of output ports. The
interface includes operations for creating a new channel (mChannel), asynchronously
sending a message to the ports of a channel (multicast), creating a new output port
(port), and constructing an event for receiving a message from a port (recvEvt).

A multicast channel is implemented as a process network, consisting of a server thread
that supports the multicast and port operations, and a chain of ports ending in a
sink. Figure 5.2 gives a pictorial view of this process network. Each port consists of a pair
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signature MULTICAST =
sig

type ’a mchan
type ’a port

val mChannel : unit -> ’a mchan
val port : ’a mchan -> ’a port
val multicast : (’a mchan * ’a) -> unit
val recvEvt : ’a port -> ’a event

end (* MULTICAST *)

Listing 5.6: The multicast channel interface

of threads: a tee thread that provides the linkage between the ports, and a buffer thread
that provides the output buffering for the port. For the buffer, we use CML mailboxes,
which are similar to the buffered channels described in the previous section. When a
message is multicast, the server sends it to the first thread in the chain. When a tee thread
gets a message, it sends the message to the corresponding mailbox and to the next tee
thread in the chain (or to the sink). New ports are added to the front of the chain by the
server.

The implementation of the multicast abstraction is given in Listing 5.7. A multicast
channel value is represented by a request/reply channel pair that provides an interface

multicast
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newPort
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Server

portn−1 port1portn

Figure 5.2: Multicast channel process network
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structure Multicast : MULTICAST =
struct

structure MB = Mailbox

datatype ’a port = Port of ’a MB.mbox

datatype ’a mchan = MChan of (’a request chan * ’a port chan)

and ’a request
= Message of ’a
| NewPort

fun mChannel () = let
val reqCh = channel() and replyCh = channel()
fun mkPort outFn = let

val mbox = MB.mailbox()
val inCh = channel()
fun tee () = let val m = recv inCh

in
MB.send(mbox, m);
outFn m;
tee()

end
in
spawn tee;
(fn msg => send(inCh, msg), Port mbox)

end
fun server outFn = (case (recv reqCh)

of NewPort => let val (outFn’, port) = mkPort outFn
in
send (replyCh, port);
server outFn’

end
| (Message m) => (outFn m; server outFn)

(* end case *))
in
spawn (fn () => server (fn _ => ()));
MChan(reqCh, replyCh)

end

fun multicast (MChan(ch, _), m) = send (ch, Message m)

fun port (MChan(reqCh, replyCh)) = (
send (reqCh, NewPort);
recv replyCh)

fun recvEvt (Port mbox) = MB.recvEvt mbox

end (* Multicast *)

Listing 5.7: The implementation of multicast channels
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to the server thread. A request is either a message to be broadcast or a request for a
new port. The multicast and port functions are trivial; the interesting function is
mChannel, which implements the process network in Figure 5.2.

The mChannel function creates the request and reply channels, and spawns the server
thread. In its initial state, any messages that are sent on the channel will just be dumped in
the sink. Instead of directly representing the links in the chain of ports as channels, which
would require making the sink a thread, we use an abstract output function (outFn) to
implement the links (i.e., the right-pointing arrows in Figure 5.2). For the sink, this
output function is a no-op, and for the other links, it is implemented using send. The
server thread’s state consists of the output function for the current head of the chain.
As usual, each iteration of the server handles a client request. When the server gets a
Message request, it simply passes the message on to the head of the chain. When it
gets a NewPort request, it calls the mkPort function with the current output function
as an argument. This returns a new output function for the server and the event value that
represents the port, which the server sends back to the requesting client. The mkPort
function creates the new tee thread and buffer channel, and connects them together.

There are problems with this implementation of the multicast-channel abstraction.
Once a thread acquires a port, it must consume all future messages that are sent on the
channel. If it stops consuming messages while another process is still producing them,
the buffering of these messages in the port becomes a space leak. Of course this problem
can occur with the simple buffered channel abstraction of the previous section, but it is a
greater restriction in the case of the multicast channel, since often the set of consumers
is dynamic. For example, multicast channels can be used in GUIs to support multiple
views of a shared object. If the user closes one of the views, then some provision for
releasing the corresponding port must be made. There are several possible solutions to
this problem:

• A client can attach a “sink” thread to the port, which consumes any future mes-
sages. This addresses the main source of space leaks, but does not work very well
in the situation where clients are repeatedly creating and discarding ports, since
the chain of ports continues to grow. It also has the disadvantage of requiring the
client to manage the freeing of ports explicitly.

• The abstraction can be extended to include a delete operation that removes the
port from the multicast network. This approach avoids the problem of the mono-
tonically growing chain of ports, but the implementation is fairly complicated, and
it also requires explicit management of ports by the client.

• One might use some form of finalization mechanism (as provided by the SML/NJ
garbage collector), but this does not address the basic complexity of the deleting
ports from the chain.
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Another approach, which is much more attractive, uses a completely different imple-
mentation of the abstraction. The idea is to generalize the “true” streams implementation
described in Section 5.3.2. These streams allow multiple threads to read the same value,
which is the essence of multicast. We can view the sequence of values sent on a multicast
channel as a stream, and the state of each multicast port as a point in the stream. Reading
a value from a port advances that port’s view of the stream, but does not affect the other
ports. Using a stream obviates the need for providing a port for each buffer, but we still
use a tee thread for each port to keep track of the port’s state and to map the stream value
to a message on a channel.

An element v in the stream of values is represented by the pair (v, iv), where iv is the
I-variable that refers to the next stream element. The concrete representation of a stream
cell is the recursive datatype

datatype ’a mc_state = MCState of (’a * ’a mc_state SyncVar.ivar)

The type name includes the word state, because the state of a port is one of these values.

The stream-based implementation has the same interface as the previous version (see
Listing 5.6), and the representation of multicast channels and the implementation of the
multicast and port operations is almost identical to those given in Listing 5.7. The
only difference is that we use a synchronous channel to connect the tee thread with the
client of a port — this has the effect of reducing space consumption. Most of the changes
are localized to the mChannel operation, which is shown in Listing 5.8. The body of
the server thread handles newPortmessages in essentially the same way as before. The
main difference in the server thread is that its state is now represented by the I-variable
that will hold the next stream value (iv). When the server receives a Message request,
it allocates a new I-variable (nextIV) for the next stream element, and writes the pair of
the message value and nextIV into iv; nextIV then becomes the server’s new state.
The main difference in the mkPort function is in the tee thread, which now consumes
the stream of values, sending each one on its output channel.

Figure 5.3 gives a pictorial view of the process network for the stream-based version
of Figure 5.2. In this picture, the shaded band represents the stream of values that have
been multicast (v1 through v5 so far). Each element in the stream is represented as a
pair of the value and a reference to the next value in the stream; the symbol Λ is used
to represent the empty I-variable. The dotted lines connect the threads (represented as
rounded rectangles) with the stream element that they are currently holding. For example,
the client of port1 will see v4 as its next message. The initial I-variable and the first
stream cell, which holds v1, are not referenced by any thread and thus can be reclaimed
by the garbage collector.
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structure Multicast : MULTICAST =
struct

datatype ’a port = Port of ’a chan

datatype ’a mchan = MChan of (’a request chan * ’a port chan)

and ’a request
= Message of ’a
| NewPort

datatype ’a mc_state = MCState of (’a * ’a mc_state SyncVar.ivar)

fun mChannel () = let
val reqCh = channel() and replyCh = channel()
fun mkPort iv = let

val outCh = channel()
fun tee iv = let

val (MCState(v, nextIV)) = SyncVar.iGet iv
in

send (outCh, v);
tee nextIV

end
in

spawn (fn () => tee iv);
Port outCh

end
fun server iv = (case (recv reqCh)

of NewPort => (
send (replyCh, mkPort iv);
server iv)

| (Message m) => let val nextIV = SyncVar.iVar()
in

SyncVar.iPut (iv, MCState(m, nextIV));
server nextIV

end
(* end case *))

in
spawn (fn () => server (SyncVar.iVar()));
MChan(reqCh, replyCh)

end

...

end (* Multicast *)

Listing 5.8: Multicast channels using I-variables
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Figure 5.3: Stream-based multicast network

5.6 Meta-programming RPC protocols

As we have seen, client-server (or RPC) communication structures are very important in
many concurrent programs. This importance has led the designers of several languages,
such as Ada and Concurrent C, to provide RPC-style communication as the basic com-
munication and synchronization mechanism (see Section 2.5.4). Unfortunately, this ap-
proach has the disadvantage of making other communication patterns, such as process
networks, more difficult to program. CML takes the alternative approach of providing
one-way communication as its primitive, and providing an abstraction mechanism for
building more complicated protocols such as RPC. Of course, the CML approach has
the disadvantage of requiring more programming when using RPC-style protocols. In
this section, we show how a combination of higher-order functions and event values can
be used to provide a “meta-programming” facility for RPC-style protocols, which elimi-
nates most of the programming overhead.

5.6.1 Simple RPC

The basic idea is to take a definition of a server operation and package up the communi-
cation protocol as a pair of operations: one for the server and one for the client. A server
operation is an instance of the polymorphic type:

(’a * ’b) -> (’a * ’c)
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signature MAKE_RPC =
sig

val mkRPC : ((’a * ’b) -> (’a * ’c)) -> {
call : ’b -> ’c,
entryEvt : ’a -> ’a event

}

val mkServer : ’a -> (’a -> ’a event) list -> unit

end;

Listing 5.9: Meta-programming RPC signature

where the type variable ’a is the type of the server’s state, the variable ’b is the type of
the operation’s argument, and the variable ’c is the type of the operation’s result. Thus,
a server operation takes a state and an argument and returns a new state and result.

The RPC meta-programming module, called MakeRPC,7 has two operations: mkRPC,
which implements the client and server-side operations for a given server operation, and
mkServer, which implements the server from a list of server operations. Listing 5.9
gives the interface of these operations. The mkRPC function takes a server operation, and
returns a record consisting of the client-side call, and the server-side entryEvt. The
resulting entryEvt function maps the server’s state to an event that returns the new
state as a synchronization result. The mkServer function takes an initial server state
and a list of entries, and spawns a server that handles the entries.

Listing 5.10 gives the implementation of the MakeRPC structure. The mkRPC function
implements a vanilla RPC protocol with the client-side call operation represented as
a blocking function call. On the client side, the call function allocates an I-variable
for the reply, sends the server a request consisting of the call’s arguments and the reply
variable, and then waits for the reply. The server-side entryEvt function is not much
more complicated. It wraps the doCall function around the receiving of a client’s
request. The doCall wrapper evaluates the operation on the given state and arguments,
sends the result back to the client, and returns the new state as the synchronization state.
The mkServer function is quite simple. It spawns a thread that repeatedly synchronizes
on the choice of the list of entry events. The selection is constructed by applying each
entry event function to the current state. The result of the selection is the server’s next
state.

7The CML Library also provides an RPC meta-programming module called SimpleRPC. See the CML Reference
Manual in Appendix A for details.
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structure MakeRPC : MAKE_RPC =
struct

fun mkRPC f = let
val reqCh = channel ()
fun call arg = let

val reply = SyncVar.iVar ()
in

send (reqCh, (arg, reply));
SyncVar.iGet reply

end
fun entryEvt state = let

fun doCall (arg, replyV) = let
val (newState, result) = f (state, arg)
in

SyncVar.iPut (replyV, result);
newState

end
in

wrap(recvEvt reqCh, doCall)
end

in
{call=call, entryEvt=entryEvt}

end

fun mkServer initState entries = let
fun selectEntries state =

select (map (fn f => f state) entries)
fun loop state = loop (selectEntries state)
in

spawn (fn () => loop initState);
()

end

end;

Listing 5.10: The MakeRPC structure

We use an I-variable for the reply message in order to improve performance. We could
also use asynchronous communication (e.g., a mailbox) to communicate the request to
the server. We choose not to do this because the examples in the sequel require the extra
synchronization provided by synchronous message passing.

To illustrate the use of the MakeRPC module, we revisit the updatable cells example
from Chapter 3. Recall that the updatable cell abstraction supports two RPC-style oper-
ations: get, which gets the cell’s current state, and put, which updates the cell’s state.
Listing 5.11 shows how we can use meta-programming to implement this abstraction.
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fun mkCell initVal = let
val {call=get, entryEvt=get’} =

MakeRPC.mkRPC (fn (x, _) => (x, x))
val {call=put, entryEvt=put’} =

MakeRPC.mkRPC (fn (_, x) => (x, ()))
in
MakeRPC.mkServer initVal [get’, put’];
{get = get, put = put}

end

Listing 5.11: Example of MakeRPC: updatable cells

5.6.2 Event-valued RPC

The MakeRPC structure provides support for the asymmetric Ada-style extended ren-
dezvous, where the client-side operation cannot be used in selective communication. In
CML, we can extend this package to provide an event-valued interface to the client by
adding the following function:

val mkRPCEvt : ((’a * ’b) -> (’a * ’c)) -> {
call : ’b -> ’c event,
entryEvt : ’a -> ’a event

}

There are two possible implementations of this operation, depending on whether the
client’s request or the server’s reply is the commit event (see Section 4.2.2). For this ex-
ample, we choose the client’s request as the commit event. The mkRPCEvt function can
then be implemented by a small modification to the mkRPC function from Listing 5.10:

fun mkRPCEvt f = let
val reqCh = channel ()
fun call arg = guard (fn () => let

val reply = SyncVar.iVar ()
in

wrap (
sendEvt (reqCh, (arg, reply)),
fn () => SyncVar.iGet reply)

end)
fun entryEvt state = ...
in

{call=call, entryEvt=entryEvt}
end

As before, we underline the changes. The server-side entryEvt function is unchanged,
but we now implement the call function as a guard event. We could also provide func-
tions to create RPC protocols where the server’s response is the commit point (with or
without negative acknowledgements); how to implement this form is left as an exercise.
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5.6.3 Conditional RPC

In systems programming, it is often necessary to deal with the possibility that some
expected event might not occur. To this end, Ada supports several variations on its basic
rendezvous mechanism — namely, a delay clause in the server’s select statement, a timed
entry call, and a conditional entry call. These operations can be implemented easily in
CML. The server-side delay clause is implemented using the following function:

fun delay (tim, act) state =
wrap (timeOutEvt tim, fn () => act state)

This takes a timeout interval and an associated action, and returns a function that can
be used as an argument to mkServer. Using event-valued client-side calls, we can
implement the timed entry call as

select [
wrap (timeOutEvt t, timeout action),
wrap (call args, call action)

]

where t is the timeout interval and call is the RPC event

An implementation of Ada’s conditional entry requires modifying the call function
in mkRPC (see Listing 5.10) to poll the server to see if it will accept a request:

fun condCall arg = let
val reply = SyncVar.iVar ()
in

if sendPoll(reqCh, (arg, reply))
then SOME(SyncVar.iGet reply)
else NONE

end

Modifying mkRPCEvt to support conditional entry requires a more complicated proto-
col, since even if the poll of the server succeeds, the client may still choose a different
event and the transaction will have to be aborted. Implementing this protocol can be done
using negative acknowledgements, and is left as an exercise.

Some languages, such as Concurrent C and SR, go further in their support for con-
ditional entry and provide a mechanism for a server to conditionally accept a request
based on a boolean predicate. This predicate can depend on both the state of the server,
and on the contents of the message. In this section, we look at how we can emulate this
mechanism in CML.

In the case where this predicate only depends on the server’s state, there are a couple
of ways to program it in CML. For the buffered channel example in Section 5.4, we
structured the server to select from different sets of events in different states. The other
technique is to use guard to test the predicate. For example, the following event con-
structor takes a predicate on states (pred) and a function for making an event from a
state (mkEvt), and returns a function for conditionally making an event from a state:
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fun condEvt (pred, mkEvt) state = guard (fn () => (
if (pred state) then mkEvt state else never))

This function returns the event value never when the predicate is false, which is the
identity for choose. It has the type

val condEvt : ((’a -> bool) * (’a -> ’b event)) -> ’a -> ’b event

where “’a” is the type of the server’s state.

When the predicate depends on the message’s contents, the techniques of the previous
paragraph do not apply. We have already seen one example where this situation arises.
The lock server presented in Section 4.2.5 can only handle a request when the lock spec-
ified in the request message is not held. This can be described as a predicate on the
server’s state and the request message’s contents. The approach used in the lock server
to handle this case is to tentatively accept any request, but to only commit to accepting
a request when the requested lock is actually available. In the remainder of this section,
we examine ways to support conditional acceptance of RPCs as an abstraction.

We can extend the RPC meta-programming module to support conditional acceptance
of requests. We extend the interface of Listing 5.9 with the following function:

val mkCondRPC : ((’a -> ’b -> bool) * ((’a * ’b) -> (’a * ’c)))
-> {

call : ’b -> ’c,
entryEvt : ’a -> ’a event

}

This function is like the makeRPC function in Section 5.6.1, except that it also takes a
predicate function as an argument. The predicate is curried over the state and the call
argument. As an illustration of this abstraction, Listing 5.12 gives the implementation of
a lock server using the MakeRPC structure. Note that this implementation can represent
the set of held locks as a set of integers, instead of as a map from integers to outstanding
requests (cf., Listing 4.6).

Our implementation of makeCondRPC uses a buffer thread between the client and the
server. When the client executes a call, it sends a request message to the buffer thread,
which tracks the outstanding requests. The buffer thread is also responsible for testing
requests against the predicate; when the server offers to accept an entry, it partially evalu-
ates the predicate against its current state, and then sends the partially evaluated predicate
to the buffer. When the buffer finds a request that satisfies the predicate, it forwards the
call to the server; the server’s reply goes directly back to the client. Figure 5.4 illustrates
this communication network.

The communication pattern described above is a simplification, however, since it does
not address the issue of selective communication in the server (recall that mkServer
can handle a list of entries). For this we must use negative acknowledgements to inform
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datatype lock = LOCK of int

fun mkLockServer () = let
fun isLocked locks (LOCK lock) =

IntBinarySet.member(locks, lock)
fun lockFn (locks, LOCK lock) =

(IntBinarySet.add(locks, lock), ())
val {call=lock, entryEvt=lockEntryEvt} =

MakeRPC.mkCondRPC (isLocked, lockFn)
fun unlockFn (locks, LOCK lock) =

(IntBinarySet.delete(locks, lock), ())
val {call=unlock, entryEvt=unlockEntryEvt} =

MakeRPC.mkRPC unlockFn
in
MakeRPC.mkServer IntBinarySet.empty [

lockEntryEvt,
unlockEntryEvt

];
{lock=lock, unlock=unlock}

end

Listing 5.12: Lock server implemented using mkCondRPC

the buffer thread that the predicate it has is stale. We split mkCondRPC’s implementation
into the construction of the client and server operations, and the implementation of the
buffer. Listing 5.13 gives the code for makeRPC. This code is a slight modification of
the code in Listing 5.10 and again we underline the changes. In addition to the request
channel (reqCh), the mkCondRPC function also allocates a channel for the server to
send the predicate to the buffer (predCh), and a channel for the buffer to forward client
messages to the server (forwCh). The client-side operation (call) is identical to the
unconditional version, but the server side is more complicated. The entryEvt function
now constructs an event using the withNack combinator. The guard function first sends

Client forward call

predicate
call

reply

ServerBuffer

Figure 5.4: The conditional client/server communication network
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fun mkCondRPC (pred, f) = let
val reqCh = channel()
val predCh = channel()
val forwCh = channel()

(* the client side call *)
fun call arg = let

val reply = SyncVar.iVar ()
in

send (reqCh, (arg, reply));
SyncVar.iGet reply

end
(* the server side entry event *)

fun entryEvt state = withNack (fn nak => let
fun doCall (arg, replyV) = let

val (newState, result) = f (state, arg)
in

send (predCh, (pred state, nak));
SyncVar.iPut (replyV, result);
newState

end
in

wrap (recvEvt forwCh, doCall)
end)

in
condBuffer (recvEvt predCh, recvEvt reqCh, forwCh);
{call=call, entryEvt=entryEvt}

end

Listing 5.13: Making a conditional RPC operation

the partially applied predicate and the negative acknowledgement event to the buffer, and
then constructs the entry event.

The most complicated part of makeCondRPC is in the implementation of the condi-
tion buffer, which is given in Listing 5.14. The buffer maintains a queue of outstanding
client calls, which is represented as a list of pairs, where the first item is the call argument
and the second is the I-variable for sending the reply. The function ins adds a call to
the end of the queue, and the function scan searches the queue for the first call whose
argument satisfies the predicate pred. The queue maintains a FIFO ordering of requests,
so that if two requests both satisfy the server’s predicate, then the first request is chosen
by scan. The other utility function is forwCall, which is used to forward a call to the
server. Since the server might have selected some other entry, forwCall selects on the
choice of the negative acknowledgement (disable) and the server accepting the call;
it returns true, if the call is accepted. The buffer can be in one of two states: it is said
to be enabled if it has a valid predicate from the server; otherwise, it is disabled. The
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fun condBuffer (predEvt, reqEvt, forwCh) = let
fun forwCall (call, disable) = select [

wrap (disable, fn _ => false),
wrap (sendEvt(forwCh, call), fn () => true)

]
fun ins (calls, call) = calls @ [call]
fun scan (pred, calls) = let

fun scan’ ([], _) = NONE
| scan’ ((call as (req, _))::r, front) =

if (pred req)
then SOME(call, List.revAppend(front, r))
else scan’(r, call::front)

in
scan’ (calls, [])

end
fun enabledBuf (calls, pred, disable) = select [

wrap (disable, fn () => disabledBuf calls),
wrap (reqEvt, fn (call as (req, _)) => (

if (pred req)
then if (forwCall (call, disable))
then disabledBuf calls
else disabledBuf (ins(calls, call))

else enabledBuf (ins(calls, call), pred, disable)))
]

and disabledBuf calls = select [
wrap (reqEvt, fn call =>

disabledBuf (ins(calls, call))),
wrap (predEvt, fn (pred, disable) => (

case (scan (pred, calls))
of NONE => enabledBuf (calls, pred, disable)
| (SOME(call, calls’)) =>

if (forwCall (call, disable))
then disabledBuf calls’
else disabledBuf calls

(* end case *)))
]

in
spawn (fn () => disabledBuf []); ()

end

Listing 5.14: The condition buffer
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mutually recursive functions enabledBuf and disabledBuf are used to represent
these states.

The enabledBuf function synchronizes on the choice of two events: either receiving
a call request (reqEvt) or being informed that the predicate is stale because the server
has selected some other entry (disable). This function maintains the invariant that no
outstanding call satisfies the predicate. When a new call comes in, it checks it against the
predicate; if it is not satisfied, then the message is added to the outstanding call queue. If
the new call satisfies the predicate, then the call is forwarded to the server. As mentioned
above, forwarding a message may fail if the predicate is stale; in this case, the new call
is added to the outstanding call queue, but independent of whether the call is forwarded
successfully, the buffer becomes disabled.

The disabledBuf function also synchronizes on the choice of two events: ei-
ther receiving a call request (reqEvt) or receiving a new predicate from the server
(predEvt). When a new call request is received, it adds the request to the outstanding
call queue. If a new predicate is received, then the outstanding queue must be checked
for any calls that match the predicate. If no such calls are found, then the buffer becomes
enabled (note that the enabled state invariant is satisfied). Otherwise, the matching call
is forwarded to the server.

One might complain that this abstraction does not provide a way for the client to use
its side of the protocol in a selective communication. One can imagine combining the
mkRPCEvt function of Section 5.6.2 with a form of conditional accept mechanism im-
plemented using the condition buffer from above. Unfortunately, this is provably impos-
sible. The problem is that such an implementation would require a three-way rendezvous
between the client, buffer, and server, and it is not possible to implement a three-way ren-
dezvous in CML, since it only provides two-way rendezvous as a primitive. 8 It should
be noted, however, that if we move the predicate test into the server thread (reducing
the number of threads involved to two), then it would work. But this would lose the
modularity of the meta-programming approach.

Notes

While we have now covered most of the features of CML in this and the previous two
chapters, the reader is referred to the CML Reference Manual for a complete description
of CML. The core parts of the reference manual can be found in Appendix A.

CML’s I-variables and M-variables are taken from the parallel language ID [ANP89,
Nik91]. Earlier versions of CML did not provide M-variables, and used the name “con-
dition variable” instead of I-variable. An implementation of condition variables using

8By n-way rendezvous, we mean a synchronous communication involving n processes. Since message passing in
CML is synchronous, it provides a 2-way rendezvous. This problem is discussed in greater detail in Section 6.4.
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channels and threads can be found in the author’s dissertation [Rep92]. The language
Concurrent Haskell [PGF96] also provides M-variables as a primitive; in fact, it is the
only synchronization and communication mechanism in the language.

Futures were developed originally by Halstead in the language Multilisp [Hal85]; they
also appear in other parallel Lisps, such as Mul-T [KH88]. Most implementations of
futures are designed to support parallel programming, and so must deal with issues such
as task granularity and throttling excessive parallelism. One way to do this is for the
run-time system to decide dynamically whether to evaluate the body of a future inline,
or in parallel. Mohr, Kranz, and Halstead have developed an approach to inlining futures
called lazy task creation, which has the advantage of being deadlock free [MKH91]. An
implementation of futures in CML that uses lazy task creation is described in Chapter 12
of the author’s dissertation [Rep92].

The buffered channel abstraction in Section 5.4 provides the communication mech-
anism found in asynchronous message-passing languages, such as Erlang [AVWW96]
and actor languages [Agh86].

The multicast channels described in Section 5.5 are quite useful for implementing
so-called publish and subscribe interactions (also known as the Observer design pat-
tern [GHJV95]), which is why they are provided as a module in the CML Library. Ex-
amples of their use can be found in Chapters 7, 8, and 9.

The RPC, or extended rendezvous, mechanisms of Sections 5.6, 5.6.2, and 5.6.3 are
found in a number of languages. Ada [DoD83] and Concurrent C [GR86] both use
extended rendezvous as their basic communication mechanism. Concurrent C extends
the basic mechanism by allowing the server to accept requests conditionally (as in Sec-
tion 5.6.3). And the synchronization expressions found in SR are also a form of condi-
tional accept [AO93].

A different approach to providing extended rendezvous in CML is to define an abstract
type

type (’a, ’b) entry

where the first type argument is the entry argument type, and the second is the entry’s
result type. This abstraction provides a name for an extended rendezvous in the same
way that a channel names a simple rendezvous [Rep92].

The problems with supporting three-way rendezvous in CML were discussed infor-
mally in the author’s dissertation [Rep92]. More recently, Panangaden and the author
have developed a formal model for reasoning about these questions [PR97]; this topic
is discussed in the next chapter. Charlesworth has proposed a generalized multiway ren-
dezvous mechanism as an extension for Ada [Cha87]. Another proposed mechanism for
defining multi-party interactions are scripts [FHT86, EFK89]. Multiway rendezvous is
an instance of the committee coordination problem [CM88].





6
The Rationale for CML

The design of CML has been driven by practical experience. In particular, the mecha-
nism of first-class synchronous operations is motivated by the fundamental conflict be-
tween selective communication and abstraction. This chapter explains the rationale for
the design of CML, and especially for first-class synchronous operations. It is aimed at
people interested in language design, and is not required to understand the remainder of
the book. In this chapter, we focus on core CML — synchronous message passing plus
the event combinators — the other synchronization mechanisms found in CML, such as
mailboxes, I-variables, and M-variables, can be viewed as derived forms. Some of the
discussion here repeats earlier arguments, but is included for coherence.

6.1 Basic design choices

As surveyed in Chapter 2, there are many possible choices for the design of a concur-
rent language. CML chooses message passing over shared memory, synchronous com-
munication over asynchronous, and simple rendezvous over extended rendezvous. This
section argues in favor of these choices.

While SML is an imperative language, its design greatly encourages a mostly func-
tional style of programming.1 Mutable values must be declared explicitly as such, and
there is syntactic overhead on their use. For these reasons, extending SML with shared-
memory concurrency primitives is not true to the “spirit” of the language. Message pass-
ing, on the other hand, encourages a mostly functional programming style that fits well
with ML. As we have seen, much of the state in typical CML programs is represented as
immutable arguments to the tail-recursive functions that implement threads. The actual
side-effects are hidden in the context switching and communication operations. Further-
more, combining synchronization and communication into the same mechanism provides

1One might call this “value-oriented” programming.



118 6 The Rationale for CML

a more robust programming model than shared-memory with mutex locks and condition
variables.

Given the choice of message passing as the basic communication and synchroniza-
tion mechanism, the next decision is how much synchronization should be provided.
There is an obvious trade-off between the efficiency of the communication primitives
and the amount of synchronization they provide. Asynchronous message passing can be
implemented with very low overhead, but provides no synchronization information to
the sender. In synchronous message passing, on the other hand, the sender and receiver
attain common knowledge of the message transmission, which makes synchronous mes-
sage passing easier to reason about and to program with. For example, using synchronous
message passing, we can use a single pair of channels to implement a client-server pro-
tocol (as shown in Section 3.2.3), whereas implementing the same protocol using asyn-
chronous message passing requires dynamic allocation of reply channels. Furthermore,
programs based on asynchronous message passing often require sending acknowledge-
ment messages explicitly; once the cost of these extra messages is factored in, the perfor-
mance advantages of asynchronous message passing may be lost. Synchronous message
passing also has the advantage that its failure mode is typically deadlock, whereas asyn-
chronous message passing will often postpone the detection of errors until the channel
buffers are exhausted.2 For these reasons, we rejected asynchronous message passing
as the basis of CML. Since this design decision was made, we have proven that the
synchronous communication provided by CML is inherently more powerful than asyn-
chronous communication (see Section 6.4).

Another argument in favor of asynchronous message passing is that it supports the
transparent distribution of an application (e.g., a client does not need to know if com-
munication with a server is done locally, or remotely via a proxy). Figure 6.1 illustrates
this situation when the client-server protocol is visible to the client. If this protocol is
based on synchronous message passing, then the semantics of the local and distributed
implementations are different. If the client sends a request in the local case, then it knows
that the server has accepted the request, whereas in the distributed case, the proxy has
accepted the request, but the server may still refuse it. On the other hand, if the pro-
tocol is based on asynchronous message passing, then the client knows nothing about
the server’s state in either case. Effectively, because asynchronous message passing is a
weaker mechanism, it reduces the local case to the distributed case. For some, this is a
compelling argument in favor of asynchronous communication. There are two reasons,
however, why this argument does not justify the choice of asynchronous message passing
over synchronous message passing.

First, there is a real distinction between local and distributed communication. If the

2If the channel buffers are unbounded, this is when memory is exhausted.
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Figure 6.1: A client-server protocol

client and server are executing on physically different processors, they may suffer in-
dependent processor failure, or their communication link may fail. A robust distributed
program must be able to handle these situations. Furthermore, distributed communication
has higher latency and lower bandwidth than local communication. A program that fails
to note these performance differences may be wildly inefficient. For this reason, distrib-
uted programming is qualitatively different from concurrent programming, and requires
a different programming model.

Second, even if we assume a reliable distributed setting, this argument draws the wrong
conclusion from the example. The real problem with the protocol in Figure 6.1 is that the
client should not be exposed to the implementation details of the protocol. The protocol
should be abstract, so that the client cannot distinguish between local and remote servers.
Figure 6.2 illustrates an abstract client-server protocol.

Another possible design choice is the extended rendezvous mechanism, which involves
two-way message traffic; languages such as Ada and Concurrent C are based on such
mechanisms. There are two problems with choosing extended rendezvous as the base
mechanism: it is not clear which of the many forms of extended rendezvous should be
chosen, and extended rendezvous does not support producer-consumer communication
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Figure 6.2: An abstract client-server protocol

very well, where communication is unidirectional. Given the extensibility afforded by
CML’s events, it is clear that starting with the more primitive simple rendezvous oper-
ation is a better choice than building in some complicated extended rendezvous mecha-
nism.

6.2 First-class synchronous operations

The support for first-class synchronous operations is the major distinguishing feature of
CML. In this section, we describe the motivation for this approach.

6.2.1 The need for selective communication

A language, such as CML, with synchronous communication must provide some mech-
anism for selecting between communication alternatives. For example, Figure 6.3 gives
the communication network for a terminal server. The terminal server must be able to
accept output from the client (on the outstream) and from the keyboard. Since there
is no a priori way to know which input is next, the server must be able to accept either.
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Figure 6.3: A terminal manager network

To address this need, synchronous message-passing languages provide a selective com-
munication mechanism. For example, in an Amber-style notation, the body of the termi-
nal server might be implemented as

select kbd?key => code to handle key press messages
or outstrm?c => code to handle client output

where kbd is the keyboard channel, outstrm is the outstream channel, and “?” is the
input operation on channels. The semantics of this operation is to wait until there is input
on either kbd or outstrm, bind the input message to the corresponding variable (i.e.,
key or c), and then take the associated action.

6.2.2 The need for abstraction

Abstraction is the principal mechanism for structuring software. In concurrent program-
ming, we use abstraction to hide the details of process interactions. For example, consider
a server thread that provides a service via a request-reply (or RPC) protocol. The server
side of this protocol is something like

fun serverLoop () = if serviceAvailable()
then let

val request = recv reqCh
in

send (replyCh, doit request);
serverLoop ()

end
else doSomethingElse()

where the function doit actually implements the service. Note that the service is not
always available. This protocol requires that clients obey the following two rules:
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1. A client must send a request before trying to read a reply.

2. Following a request, the client must read exactly one reply before issuing another
request.

If all clients obey these rules, then we can guarantee that each request is answered with
the correct reply, but if a client breaks one of these rules, then the requests and replies
will be out of sync. An obvious way to improve the reliability of programs that use this
service is to bundle the client-side protocol into a function that hides the details, thus
ensuring that the rules are followed. The following code implements this abstraction:

fun clientCall x = (
send (reqCh, x);
recv replyCh)

By hiding the request and reply channels (e.g., by using the module system), we can
guarantee that clients of this implementation interact with the server correctly.

6.2.3 Selective communication vs. abstraction

Unfortunately, there is a conflict between selective communication and using procedu-
ral abstraction to implement abstract protocols. For example, while the clientCall
function given above ensures that the protocol is observed, it hides too much. If a client
blocks on a call to clientCall (e.g., because the server is not available), then it cannot
respond to other communications. Avoiding this situation requires using selective com-
munication, but the client cannot do this because the abstraction hides the synchronous
aspect of the protocol. This is the fundamental conflict between selective communica-
tion and existing forms of abstraction. If we make the operation abstract, we lose the
flexibility of selective communication, but if we expose the protocol to allow selective
communication, we lose the safety and ease of maintenance provided by abstraction. Re-
solving this conflict requires introducing a new abstraction mechanism that preserves the
synchronous nature of the abstraction. This is the rôle of first-class synchronous opera-
tions.

6.2.4 The facets of selective communication

The motivation for first-class synchronous operations is to provide a way to do selective
communication with abstract communication protocols as the choices. For this purpose
we introduce a new type of value, called an event, that represents an abstract communica-
tion protocol. In addition to the new type, we need to define a collection of constructors,
combinators, and operators on event values. The design of these is guided by the natural
decomposition of the traditional select construct.
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This decomposition is best explained using an example. Consider the following loop
(again using Amber-style notation):

fun accum sum = (
select addCh?x => accum(sum+x)

or subCh?x => accum(sum-x)
or readCh!sum => accum sum)

This code implements the body of an accumulator thread that supports three operations:
addition, subtraction, and read the current value. Each of these operations is implemented
as a clause in the select, consisting of a channel I/O operation and an associated action:

Operation I/O operation Action

addition addCh? x => accum(sum+x)
subtraction subCh? x => accum(sum-x)
read current value readCh!sum => accum sum

These clauses are joined in a nondeterministic choice, which forms the body of the syn-
chronization operation. This example illustrates the four facets of the traditional select
construct:

1. the communication operations,

2. the actions associated with the communications,

3. the nondeterministic choice of multiple communications, and

4. the synchronization operation.

Our approach is to unbundle these facets and support each one independently. Most
important is the separation of the description of the synchronous operations (the first
three facets) from the synchronization itself. We introduce the type of events to describe
synchronous operations, and a collection of constructors, combinators, and operations to
support the different facets of selective communication:

1. the base-event constructors (e.g., recvEvt and sendEvt) are used to create the
event values that describe the communication operations,

2. the wrap combinator is used to associate an action with a synchronous operation,

3. the choose combinator is used to define the nondeterministic choice of a collec-
tion of synchronous operations, and

4. the sync operator is used to synchronize on a synchronous operation (i.e., event
value).
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For example, we write the accumulator example in CML as follows:

fun accum sum = sync (
choose [

wrap (recvEvt addCh, fn x => accum(sum+x)),
wrap (recvEvt subCh, fn x => accum(sum-x)),
wrap (sendEvt (readCh, sum), fn () => accum sum)

])

By starting with base-event values to represent the communication operations, and
providing combinators to associate actions with events and to build nondeterministic
choices of events, we provide a flexible mechanism for building new synchronization and
communication abstractions.3 Event values provide a mechanism for building an abstract
representation of a protocol without obscuring its synchronous nature. For example, the
client-call abstraction from page 122 can be implemented as an event-value constructor:

fun clientCallEvt x = wrap (
sendEvt (reqCh, x),
fn () => recv replyCh)

This abstraction is “first-class” in the sense that it has the same status as the built-in
event-value constructors.

This formulation of first-class synchronous operations corresponds to the mechanism
first proposed in the PML language. CML extends this mechanism in a number of
significant ways; the next section motivates these extensions.

6.3 Extending PML events

The previous discussion explains the motivation for first-class synchronous operations as
found in the language PML. There are some limitations with this mechanism, however,
which are addressed by the richer set of event combinators provided by CML.

6.3.1 The need for guards

Consider a protocol consisting of a sequence of communications: c1; c2; · · · ; cn. When
this protocol is used in a selective communication, one of the c i must be designated as
the commit point; i.e., the communication by which this protocol is chosen instead of the
others in the select. For example, in the events constructed by the clientCallEvt
function above, the sendEvt on reqCh is the commit point. Using the PML set of
event combinators, the only possible commit point is c1. The wrap combinator allows
one to tack on c2; · · · ; cn after c1 is chosen, but there is no way to make any of the other
ci the commit point.

3Chapter 5 gives numerous examples.
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This asymmetry seriously limits the kinds of protocols that can be implemented as
abstractions. A simple example of this is the implementation of a timer service. Suppose
that we want to provide the event constructor

val atTimeEvt : Time.time -> unit event

which constructs an event that is enabled at the specified time. This can be implemented
using a request-reply protocol with a clock server. The client’s request specifies a wake-
up time for the server, and the server’s reply is sent to notify the client that the requested
time has come. Obviously, the client needs to synchronize on the server’s reply, which
is not possible using only the PML subset of events. To address this limitation, CML
provides the guard combinator

val guard : (unit -> ’a event) -> ’a event

This combinator allows computation, including communication, prior to the commit
point to be included in the abstract representation of a protocol. Using the guard com-
binator, we can easily implement the atTimeEvt constructor4

fun atTimeEvt t = guard (fn () => let
val replyCh = channel()
in

send (reqCh, (t, replyCh));
recvEvt replyCh

end)

This example also illustrates the use of guard to include other pre-commit computation
in a protocol, such as allocating a reply channel.

Returning to the idealized client-server interaction that we have been examining, we
see that there are two basic forms for the abstraction. The form where the client’s request
is the commit point:

fun clientCallEvt1 x = wrap (
sendEvt (reqCh, x),
fn () => recv replyCh)

and the form where the server’s reply is the commit point:

fun clientCallEvt2 x = guard (fn () => (
send (reqCh, x);
recvEvt replyCh))

The choice, of course, depends on the semantics of the service.

There are some additional problems caused by our use of synchronous message pass-
ing for the request and reply. For example, if the server is not available, the sending of
the request in clientCallEvt2 will block the client. This is solved by making the
request asynchronous:

4This is a simplified presentation of the example on page 75 (Section 4.2.4).
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fun clientCallEvt3 x = guard (fn () => (
spawn (fn () => send (reqCh, x));
recvEvt replyCh))

There is also the problem that the client might commit to a different communication in
a choice involving this protocol; in this case, the server would block forever on trying to
send the reply. In the case of idempotent services, such as the clock server, we can again
solve this by making the communication asynchronous. There are situations, however,
where this is insufficient.

6.3.2 The need for negative acknowledgements

Once we introduce the ability to communicate with a server prior to the commit point, we
are faced with the problem of how to inform the server that the client has decided to abort
the transaction. As discussed above, this is not necessary for idempotent services, but it is
sometimes necessary for the server to know whether to commit or abort the transaction.
The synchronization involved in sending the reply allows the server to know when the
client has committed to the transaction, but there is no way to know when the client
has aborted the transaction by selecting some other event. While a timeout on the reply
might work in some situations, the absence of a reply does not guarantee that the client
has selected some other event; the client just might be slow. To address this problem,
CML extends the traditional synchronous message-passing operations with support for
negative acknowledgements.

To illustrate, consider the implementation of an input-stream abstraction using a client-
server model. Input streams provide several different operations for reading different
amounts of data (a single character, a whole line, etc.). Furthermore, input streams should
be smoothly integrated into the concurrency model, which means that the input opera-
tions should be event-valued. For example, the function

val input1 : instream -> char event

is used to read a single character.5 Let us assume that the implementation of these op-
erations uses a request-reply protocol; thus, a successful input operation involves the
communication sequence

send (chreq, request); recv(chreply)

where chreq and chreply are the request and reply channels. As in the case of
atTimeEvt, it is necessary for the client to synchronize on receiving the reply, so the re-
quest is sent prior to the commit point. But what if the client does not complete the trans-
action? If the server were to just send the input character to the client asynchronously, it

5Note that these operations should not be confused with the actual I/O stream interface provided by CML.
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would be lost. In order for the server to ensure that each character of input is received
by one client exactly once, it needs a confirmation of both the successful completion and
abortion of each transaction. The synchronization of sending a reply can provide the con-
firmation of the completion, but we also need a negative acknowledgement mechanism
to signal that the transaction should be aborted. Furthermore, this mechanism should be
compatible with the abstraction provided by event values.

CML supports negative acknowledgements by providing the event combinator

val withNack : (unit event -> ’a event) -> ’a event

which is an extension of the guard combinator.6 As does the guard combinator,
withNack takes a function whose evaluation is delayed until synchronization time,
and returns an event value. The main difference is that at synchronization time, the guard
function is applied to an abort event, which is enabled only if some other event is selected
in the synchronization (this is more fully described in Section 4.2.5).

Returning to the input stream example, the client-side implementation of the input
event becomes something like

withNack (fn nack => let
val replyCh = channel()
in
spawn (fn () => send(reqCh, REQ_INPUT(replyCh, nack)));
recvEvt replyCh

end)

When the server is ready to reply to a request, it synchronizes on the choice of sending
the reply, and the negative acknowledgement event

sync (choose [
wrap (sendEvt(replyCh, data), fn () => commit),
wrap (nack, fn () => abort),

])

6.4 The expressiveness of CML

The orthogonality between the primitive communication operations and the event com-
binators in CML raises an interesting expressiveness question. Given a certain set of
primitive event constructors (e.g., sendEvt and recvEvt), what kinds of event values
can be implemented? For example, can one implement a three-way rendezvous primi-
tive? Unfortunately, the answer to this question is negative, as stated in the following
theorem:

6Earlier versions of CML used a different combinator for supporting abort actions, called wrapAbort. The two
combinators have the same expressive power, but the withNack combinator is more natural to use. See the Notes section
in Chapter 4 for more discussion.
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Theorem 6.1 Given the standard CML event combinators and an n-way rendezvous
base-event constructor, one cannot implement an (n+1)-way rendezvous operation ab-
stractly (i.e., as an event value).

For CML, which provides two-way rendezvous primitives, this means that it is impossi-
ble to construct an event-valued implementation of three-way rendezvous.

While the technical arguments are beyond the scope of this book, the intuition behind
them is fairly straightforward. An n-way rendezvous mechanism is a way for n processes
to agree simultaneously. For example, in a synchronous message transmission, both the
sender and receiver agree to the communication at the same instant. Another way of
viewing this is that the processes involved in an n-way rendezvous achieve some form
of common knowledge. The intuition behind the theorem is that if a language provides
a primitive mechanism for n-way agreement, there is no way to ensure that (n+1) pro-
cesses agree in an abstract fashion; i.e., in a way that is independent of context. The
problem is that while one can get n of the processes in agreement, the (n+1)th process
is not constrained to make the same choice.

One of the immediate conclusions from these results is that there is a real difference
in the expressiveness of synchronous and asynchronous message passing (in the pres-
ence of general choice). A language based on asynchronous message passing, even if
it supports first-class synchronous operations, cannot support abstract implementations
of synchronous message passing. For the programmer, this means that situations that
require both synchronous message passing and selective communication will have to be
programmed on a case-by-case basis. It is interesting to note, however, that in a language
with asynchronous communication and input-only choice, it is possible to implement
synchronous communication (two-way rendezvous) with input-only choice as an abstrac-
tion, using a simple acknowledgement-based protocol. From this, we conclude that gen-
eralized selective communication is strictly more expressive than the input-only form
found in many languages. Furthermore, given a language with two-way rendezvous and
with input-only choice, one cannot implement a communication abstraction that would
allow output guards.

These arguments also explain why the two implementations of the client-server
protocol in Figure 6.1 are distinct in the synchronous case. For the distributed imple-
mentation to mimic the local one would require a four-way rendezvous between the two
proxies, client and server processes, which is not possible in the CML framework. The
reason that we can avoid trouble in the abstract case is that we can allow for the re-
duced amount of synchronization in the distributed setting without having to modify the
client’s code. Of course, not all protocols allow such adjustments, but essentially all of
the client-server protocols encountered in practice are amenable to distribution.
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c1 ‖ nack2

g1(nack1); g2(nack2); ⊕
c2 ‖ nack1

w2

w1

Figure 6.4: The diagram for (g1(nack1); c1; w1) ⊕ (g2(nack1); c2; w2)

6.5 Discussion

CML provides four basic event combinators: choose, wrap, guard, and withNack.
The first three combinators have analogs in many concurrent languages, but the

withNack combinator is unique to CML. Adding support for negative acknowledge-
ments was motivated originally by the need to program protocols, such as the input stream
example above. But further analysis shows that the concept of negative acknowledge-
ments is a natural part of the design space. To illustrate this, consider the most general
form of event value without internal choice, which has the abstract form

g(nack ); c; w

where g is the guard function (parameterized by the negative acknowledgement event
nack ), c is the commit point, and w is the wrapper function. Figure 6.4 gives a dia-
grammatic view of the possible synchronization on the choice of two such generalized
event values. We see from this diagram that the negative acknowledgement event is the
complement of the commit event.

The choice of synchronous message passing for PML and CML was based on expe-
rience and intuition, but as we see from the discussion in Section 6.4, there are strong
technical arguments for it as well. In practice, however, one needs a richer collection of
synchronization primitives. Support for timeouts and operating system events are obvi-
ous extensions, but it is also useful to have other flavors of communication primitives,
such as asynchronous channels and synchronizing memory. A nice aspect of first-class
synchronous operations is that additional synchronous operations can be easily incorpo-
rated in the framework as new types and event-value constructors. Furthermore, these
additional operators can be implemented either as primitives or on top of the existing
primitives without affecting their semantics.

The fact that CML is a library on top of SML/NJ forces certain design choices, such



130 6 The Rationale for CML

as the use of functions to create threads and channels dynamically. The most interesting
of these forced choices is the introduction of a type of value to represent communications
and their associated actions. In retrospect, this choice seems to be a natural consequence
of adding message passing with choice to SML as a library.7 This is best explained by
an example. Assume that we have a boolean valued channel cb and an integer valued
channel ci, and want to choose a value from one of them. To make the types work out,
we must use a wrapper function around at least one of the recvEvt operations (e.g.,
wrapping a function that maps integers to booleans around the recvEvt on ci). Since
type constructors in SML have a fixed number of arguments, we are forced to repre-
sent the result of wrapping a channel I/O operation as an abstract value (the underlying
type of the channel cannot be part of the result type), which requires a type constructor
for the type of these abstract values.8 If we are willing to restrict ourselves to homoge-
neous choice, then first-class synchronous operations are not required (for example, see
Section 10.4.3).

Notes

The idea of first-class synchronous operations was first incorporated in the design of
concurrency mechanisms for PML [Rep88], which was in turn influenced by Cardelli’s
language Amber [Car86]. The design of CML has also been discussed in [Rep91a],
[Rep92], and [PR97]. As mentioned above, adding message passing with selection to
an ML-like language seems to result in something similar to first-class synchronous op-
erations. Two other examples of this are Holmström’s language PFL, and Ramsey’s
concurrency primitives for SML [Ram90]. These designs, however, were not motivated
by the need to support abstraction.

The expressiveness results presented in Section 6.4 are joint work between the author
and Panangaden [PR97]. They are proven using an abstract model of process interaction
and knowledge theoretic arguments. The strength of the common knowledge achieved by
a rendezvous operation depends on the form of the rendezvous mechanism. For example,
a primitive notion of atomic rendezvous achieves common knowledge in the sense of
Halpern and Moses [HM90], while a rendezvous protocol achieves the weaker concurrent
common knowledge [PT92].

7The original design of events in PML was not forced in this way, since communication was built into the language
with special syntactic forms.

8If the SML type system were extended to support existential types, this would no longer be the case.
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A Software Build System

A natural application of concurrency is the management of multiple independent tasks.
For example, building a large C program involves a number of individual compilations,
each of which is run as a separate UNIX command. Since these compilations are indepen-
dent, they may be run at the same time (possibly on different machines). In this chapter,
we describe the implementation of a “parallel” build system using CML.

7.1 The problem

The basic problem is that we are given a set of objects, and a set of dependencies between
the objects. Associated with some objects is an action that describes how to build the
object; other objects (e.g., source files) do not have associated actions. Taken together,
they form an acyclic dependency graph, whose topological order defines the order in
which objects should be built. We use the term antecedents to denote the nodes that a
node depends on, and successors to denote the nodes that depend on it. The nodes of the
graph are classified into internal nodes (those that have non-zero in-degree), leaf nodes
(those with no antecedents), and the root node (which has no successors). We restrict
ourselves to graphs with exactly one root. For the graph to be well formed, any internal
node should have an associated action. Leaf nodes may also have actions.

Also associated with each object is a timestamp that tells when the object was last built
or modified. If a node in the graph has a timestamp that is earlier than the timestamp
of one of its antecedents, then we say that the graph is inconsistent. The problem of
incrementally rebuilding a system is that of making the dependency graph consistent.

In more concrete terms, the objects are files in the system, and the actions are UNIX

commands. We specify these dependencies using a UNIX-style makefile, which consists
of a sequence of rules, possibly separated by blank lines. Each rule is two lines: the
first is the object dependency information, and the second line is the associated action.
The action is a command in the underlying system’s command shell (e.g., /bin/sh in
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prog : main.o util.o
cc -o prog main.o util.o

main.o : main.c util.h
cc -c main.c

util.o : util.c util.h
cc -c util.c

Listing 7.1: A simple makefile

UNIX systems). The first rule in the makefile defines the root object. More formally, our
makefiles have the following simple grammar:

File → Root Rule∗

Root → Rule
Rule → Dependency EndOfLine Action EndOfLine
Dependency → Object : Object∗

Where EndOfLine is the end-of-line marker, Action is an action, and Object is an object
name token (in our case, this is a sequence of characters not containing whitespace).
Listing 7.1 gives a simple example of a makefile in this syntax. This makefile defines
dependencies and actions for the objects prog, main.o, and util.o. The dependency
graph for this system is given in Figure 7.1. Looking at this graph, one can see the
potential for parallelism: namely, that the objects util.o and main.o can be built
independently.

prog

util.h

util.o main.o

main.cutil.c

Figure 7.1: The dependency graph for the makefile in Listing 7.1
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7.2 The design

Our make system is implemented as a function that takes a filename, and returns a func-
tion for rebuilding the system:

val make : string -> unit -> bool

If the build operation is successful, then true is returned; a result of false signifies
that an error occurred in one of the actions.

The system translates the makefile into a dataflow network that represents the depen-
dency graph, with nodes for the objects, and communication channels for the dependency
edges. The messages sent along the dependency edges provide double duty: in addition
to notifying an object that its antecedents are available, we also use them to communicate
the timestamp of the antecedent object. We use the following datatype to represent these
messages:

datatype stamp
= STAMP of Time.time
| ERROR

A stamp is either the timestamp of the antecedent object or ERROR. In the latter case, the
antecedent is not available.

Each node in the graph is implemented as a separate thread. The outgoing edges
of a node (i.e., the edges to its immediate successors) are represented as a multicast
channel, provided by the CML Library.1 Using a single multicast channel to represent
all outgoing edges from a node has the advantage that it simplifies the construction of
the graph, since at the time that the node and its channel are created we do not need to
know how many successors it has. Furthermore, it avoids introducing artificial orderings
among the successors, which could inhibit parallelism or cause deadlock.

The system also has a controller thread that has a multicast channel to each of the
leaf nodes. Figure 7.2 gives the process network for the simple dependency graph of
Figure 7.1. In this picture, the ellipses represent the threads for the leaf objects, the
rectangles are the internal objects (the controller thread is also a rectangle), and the grey
bars represent the multicast channels. The controller thread initiates a build sequence by
sending a unit message to the leaves, which in turn send timestamps to their successors.
Once an internal node has received timestamps from all of its antecedents, it executes its
action to build its object and then multicasts the timestamp of the newly created object.
Once the root receives timestamps from all of its antecedents, the build is complete, and
it notifies the controller.

We describe the implementation details of this design in the remainder of this chapter.
First we describe the construction of the dataflow network from a list of rules, then we

1Multicast channels were also described in Section 5.5.
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make

prog

Multicast channel

Controller

main.cutil.hutil.c

util.o main.o

Figure 7.2: The process network for the simple dependency graph

describe the implementation details of the threads at the nodes and leaves. We complete
the discussion by describing the makefile parser and the top-level glue that pulls it all
together. The Notes section at the end of this chapter offers implementation alternatives
and possible extensions.

7.3 Building the dependency graph

The construction of the dependency graph network is done by the makeGraph function
(see Listing 7.2). The creation of the threads that represent the leaves and internal nodes
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fun makeGraph (signalCh, {root, rules}) = let
val makeLeaf = makeLeaf signalCh
datatype objnd_state
= DEF of stamp Multicast.mchan
| MARK
| UNDEF of {

target : string,
antecedents : string list,
action : string

}
val objTbl = ObjTbl.mkTable (2 * length rules, Fail "ObjTbl")
val insert = ObjTbl.insert objTbl
val find = ObjTbl.find objTbl
fun getNd objName = (case (find objName)

of SOME(DEF nd) => Multicast.port nd
| _ => raise Fail "missing definition"

(* end case *))
fun addNd {target, antecedents=[], action} =

insert (target, DEF(makeLeaf{
target=target, action=SOME action

}))
| addNd {target, antecedents, action} = (

insert (target, MARK);
app insNd antecedents;
insert (target, DEF(
makeNode {

target = target,
antecedents = map getNd antecedents,
action = action

})))
and addLeaf target =

insert (target, DEF(makeLeaf{
target=target, action=NONE

}))
and insNd target = (case (find target)

of (SOME(DEF nd)) => ()
| (SOME MARK) => raise Fail "cyclic dependency"
| (SOME(UNDEF nd)) => addNd nd
| NONE => addLeaf target

(* end case *))
in
app (fn nd => insert(#target nd, UNDEF nd)) rules;
app (fn nd => insNd(#target nd)) rules;
case (find root)
of (SOME(DEF nd)) => nd
| _ => raise Fail "impossible: missing root definition"

(* end case *)
end

Listing 7.2: The implementation of makeGraph
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are provided, respectively, by the functions makeLeaf

val makeLeaf : unit Multicast.mchan -> {
target : string,
action : string option

} -> stamp Multicast.mchan

and makeNode

val makeNode : {
target : string,
antecedents : stamp Multicast.port list,
action : string

} -> stamp Multicast.mchan

These functions are described in Section 7.4.

The input to the makeGraph function is the multicast channel for signaling the start
of a build cycle, and a record consisting of the name of the root object and the list of
rules. Each rule in the list is a record of the target name, list of antecedent names, and the
string specifying the action. To translate this list-based representation of the graph into
the network, we need a mechanism to map object names to nodes in the network. For
this purpose, we define the structure ObjTbl:

structure ObjTbl = HashTableFn (
struct

type hash_key = string
val hashVal = HashString.hashString
fun sameKey (s1 : string, s2) = (s1 = s2)

end)

which implements hash tables on object names using the HashTableFn functor from
the SML/NJ Library.

The makeGraph function begins by creating a fresh hash table for mapping object
names to the state of its network node. These states are represented by the following
datatype:

datatype objnd_state
= DEF of stamp Multicast.mchan
| MARK
| UNDEF of {

target : string,
antecedents : string list,
action : string

}

Initially, for each rule in the input, makeGraphmaps the object defined by the rule to the
UNDEF state. There are actually four states that a node might be in during construction
of the network:

1. Defined — when the node and all of its antecedents have been created and linked
into the network. This state is represented by mapping the node to DEF(mc),
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where mc is the multicast channel used by the node to send currency information
to its successors.

2. Marked — when the antecedents of the node are being constructed, prior to defin-
ing the node itself. This state is necessary to detect cycles in the dependency graph,
and is represented by mapping the node to MARK.

3. Undefined internal node — when the node has not been encountered yet. This state
is represented by mapping the node to UNDEF(info), where info is the initial rule
information for the node.

4. Undefined leaf — when the leaf node has not been encountered yet. This state is
represented by the node not being mapped (recall that a leaf node does not have
antecedents and thus may not be the target of any rule in the makefile).

Once the hash table has been initialized, we construct the network by applying the
function insNd to the target object of each rule. This function looks the target up in
the hash table and processes it according to which of the four possible states it is in. If
the target node is defined, then there is no further action required. If the target node
is marked, then there is a cycle and the Fail exception is raised (this case occurs on
recursive calls to insNd). In the case that the target node is undefined, we call the
function addNd, which does a depth-first traversal of the subgraph rooted at the target
node. As each internal node is visited in this traversal, it is first marked, and then we
apply insNd to its antecedents, and finally we create the network node for the object
using makeNode. Lastly, if the target node is an undefined leaf (i.e., not in the table),
then we call addLeaf, which adds it to the table as a defined leaf node.

7.4 Creating the graph nodes

The main work of the system is performed by the threads that represent the nodes in the
dependency graph. As mentioned above, there are two functions for creating the leaf
and internal nodes. The threads spawned by these functions are responsible for running
actions and getting currency information from the file system. To help with this, we
define a few useful system operations (see Listing 7.3). The function getMTime gets
the timestamp of a file (or ERROR if the file does not exist); the function fileStatus
checks to see if a file exists, and if so returns SOME of its modification time — otherwise
it returns NONE; and the function runProcess runs an action and returns true if the
execution was successful.

The function makeNode is used to create a thread for an internal node in the graph.
It takes as arguments the name of the object corresponding to the node, a list of an-
tecedent events, and the action that builds the object. It creates the thread for the object,



138 7 A Software Build System

fun getMTime objName =
STAMP(OS.FileSys.modTime objName)
handle _ => ERROR

fun fileStatus path = if (OS.FileSys.access (path, []))
then SOME(OS.FileSys.modTime path)
else NONE

fun runProcess prog =
(OS.Process.system prog = OS.Process.success)
handle _ => false

Listing 7.3: Useful system operations

and returns the multicast channel used to communicate with the node’s successors. The
implementation of makeNode is given in Listing 7.4.

The body of a the thread is a loop (the function objThread) that iterates once for
each build cycle. On each iteration it first waits for all of its antecedents to be made
current.2 Once it has received stamps from all of its antecedents, it determines the most
recent stamp. If an ERROR stamp was received, the thread immediately propagates the
ERROR stamp. Otherwise, it checks the currency of the object by comparing the most
recent antecedent stamp with the modification time of the object. In the case that the
object does not exist, we use time zero for its timestamp. If the object’s timestamp pre-
dates the antecedent’s, then the object needs to be rebuilt. Finally, the object’s timestamp
(after rebuilding) is multicast to its successors. If an error occurs while rebuilding the
object (signaled by an exception), an error message is printed and the ERROR stamp is
sent instead of the timestamp.

The implementation of makeLeaf is somewhat simpler, since there are no antecedents;
the implementation is given in Listing 7.5. The makeLeaf function takes as arguments
the signal channel that the controller uses to start a build cycle, and the object name and
an optional action. The function allocates a new multicast channel for sending the objects
currency information to its successors; this channel is returned as the result. This distinc-
tion between leaves with actions and those without is encapsulated in the doAction
function. Where there is an action, doAction runs it; otherwise, it just returns true
(signifying a successful execution).

As with makeNode, the body of a leaf thread is a loop (the function waiting) that
iterates once for each build cycle. An iteration is triggered by a signal coming in from
the controller via the multicast channel signalCh. Each iteration consists of executing

2Note that since the multicast channel is asynchronous, we can synchronize on the antecedent events in any order with-
out risking deadlock. If we were using synchronous message passing, then we would have to use selective communication.
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fun makeNode {target, antecedents, action} = let
val status = Multicast.mChannel()
fun notify msg = Multicast.multicast (status, msg)
fun objThread () = let

val stamps = map Multicast.recv antecedents
fun maxStamp (STAMP t1, STAMP t2) =

if (Time.< (t1, t2))
then STAMP t2 else STAMP t1

| maxStamp _ = ERROR
in

case foldr maxStamp (STAMP Time.zeroTime) stamps
of ERROR => notify ERROR
| (STAMP t) => let

fun doAction () = if (runProcess action)
then notify (getMTime target)
else (

TextIO.output(TextIO.stdErr, concat [
"Error making \"", target, "\"\n"

]);
notify ERROR)

in
case (fileStatus target)
of (SOME objTime) =>

if (Time.<= (objTime, t))
then doAction ()
else notify (STAMP objTime)

| NONE => doAction ()
(* endcase *)

end
(* end case *);
objThread ()

end
in

spawn objThread;
status

end

Listing 7.4: The implementation of makeNode

the action (if any), getting the timestamp of the object, and then sending the stamp out on
the multicast channel to the leaf’s successors. If executing the action results in an error,
then the thread prints an error message and sends the ERROR stamp.

7.5 Parsing makefiles

The other major portion of the system is the parser that translates a makefile to a form
suitable for makeGraph. We implement a low-tech parser for the grammar given in
Section 7.1; a full-featured make system would require a richer grammar and might better
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fun makeLeaf signalCh {target, action} = let
val start = Multicast.port signalCh
val status = Multicast.mChannel()
fun notify msg = Multicast.multicast (status, msg)
val doAction = (case action

of (SOME act) => (fn () => runProcess act)
| NONE => (fn () => true)

(* end case *))
fun waiting () = (

Multicast.recv start;
if (doAction())

then notify (getMTime target)
else (

TextIO.output(TextIO.stdErr, concat [
"Error making \"", target, "\"\n"

]);
notify ERROR);

waiting ())
in

spawn waiting;
status

end

Listing 7.5: The implementation of makeLeaf

be handled using an automatic parser-generation tool, such as ML-Yacc. The code for
the parser is given in Listing 7.6. The parser works by parsing rules until the end-of-file
is encountered (signified by the empty string). We use the Substringmodule from the
SML Basis Library to implement various string manipulations. The function stripWS
takes a line and strips any leading and trailing whitespace from it; stripWS returns a
substring for further manipulation. The function getRule is responsible for parsing
the two lines that comprise a rule. It uses parseRule to parse the dependency line into
the target and antecedents. If the dependency information is not well formed, or if the
action is missing, then the Fail exception is raised. The action part of the rule is not
analyzed beyond stripping any leading or trailing white space from the line (in particular,
we do not check for empty actions).

7.6 Putting it all together

The final step is to glue the parser with the graph-builder, and to define the controller
thread. These tasks are handled in the body of the make function, which is given in
Listing 7.7. This function parses the makefile and builds the dependency graph from it.
It then creates the controller thread, and returns a request/reply interface to the controller.

The controller thread is a loop consisting of three simple steps. Each iteration begins
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structure SS = Substring

fun parseMakefile strm = let
fun stripWS l = SS.dropl Char.isSpace

(SS.dropr Char.isSpace (SS.all l))
fun getLine () = (case (TextIO.inputLine strm)

of "" => NONE
| l => SOME(stripWS l)

(* end case *))
fun getNonBlankLine () = (case getLine()

of NONE => NONE
| (SOME l) => if (SS.isEmpty l)

then getNonBlankLine()
else SOME l

(* end case *))
fun parseRule l =

map (SS.tokens Char.isSpace)
(SS.fields (Char.contains ":") l)

fun getRule () = (case (getNonBlankLine ())
of NONE => NONE
| (SOME l) => (case (parseRule l)

of [[dst], srcLst] => (case getLine()
of (SOME act) => SOME{

target = SS.string dst,
antecedents = map SS.string srcLst,
action = SS.string act

}
| NONE => raise Fail "Missing action"

(* end case *))
| _ => raise Fail "Rule syntax"

(* end case *))
(* end case *))

fun parse rules = (case getRule()
of (SOME rule) => parse (rule::rules)
| NONE => rev rules

(* end case *))
in

case parse []
of [] => raise Fail "Empty makefile"
| (rules as ({target, ...} :: _)) =>

{root = target, rules = rules}
(* end case *)

end

Listing 7.6: The makefile parser
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fun make file = let
val reqCh = channel() and replCh = channel()
val signalCh = Multicast.mChannel()
val inStrm = TextIO.openIn file
val rootCh = makeGraph (signalCh, parseMakefile inStrm)

handle ex => (TextIO.closeIn inStrm; raise ex)
val root = Multicast.port rootCh
fun controller () = (

recv reqCh;
Multicast.multicast(signalCh, ());
case (Multicast.recv root)
of (STAMP _) => send (replCh, true)
| ERROR => send (replCh, false)

(* end case *);
controller ())

in
TextIO.closeIn inStrm;
spawn controller;
fn () => (send(reqCh, ()); recv replCh)

end

Listing 7.7: The implementation of make

with the controller waiting for a request to initiate a build of the system. When a re-
quest is received, the controller sends out a signal to the leaves on the multicast channel
signalCh. The controller then waits for the currency information from the root ob-
ject. If it receives a timestamp, then it reports success on the reply channel; otherwise it
reports failure. At this point, the system is ready for another iteration.

Notes

This chapter illustrates the use of CML as a concurrent shell language. Many appli-
cations of shell languages provide opportunity for parallelism — either using a unipro-
cessor’s multitasking or by exploiting multiprocessors or local area networks of work-
stations. In this chapter, we have seen how CML can be used to structure parallel exe-
cution of system processes. More traditional shells have also been used for this purpose.
For example, Fowler describes a version of sh that supports execution on remote proces-
sors in a local area network [Fow93], and the Condor system developed at the University
of Wisconsin provides an infrastructure for using a local area network as a parallel pro-
cessor [BLL92].

The make system described in this chapter is quite restricted in its function. There
are a number of obvious extensions that the reader may wish to consider. For example,
the system could support multiple root objects and allow the desired target to be defined
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as an argument to the make function. This would require a very different pattern of
communication, since only the antecedents of the target should be built. We might also
want to allow any arbitrary node to be the target. Another example is to support tools that
produce multiple objects. A common example are parser builders, such as ML-Yacc,
which produces both an interface and an implementation.

Another issue is the mechanism used to trigger rebuilds. In most make systems, this is
under user control, but it might be useful to have a system that automatically rebuilds the
system when any leaf object changes. There are many applications of such event-driven
systems, and this may be a fruitful area for the use of languages like CML. For example,
an effort is underway to implement a version of the Yeast system in CML,3 which is a
general-purpose tool for implementing event-driven applications [KR95].

The UNIX make program was invented by Feldman in the late ’70s [Fel79], and has
been a mainstay of the UNIX development environment ever since. Oram and Talbott
discuss the UNIX make program in detail [OT91], while Fowler discusses many of the
issues related to the design and implementation of make and related tools [Fow90].

Another way to organize this type of system is as a demand-driven computation. In-
stead of objects sending their timestamp to their successors, they could demand the time-
stamps of their antecedents. This kind of communication pattern would be able to support
the multiple root objects suggested above.

3Balachandra Krishnamurthy, personal communication, 1995.





8
A Concurrent Window System

The control structure of an interactive program can be quite complex when implemented
in a sequential language. This problem arises because interactive programs must be able
to deal with asynchronous external events responsively, while also executing the applica-
tion code. The usual solution to this problem is to structure the program around a central
event loop, which dispatches control to parts of the application in reaction to external
events. Often, the event-loop is part of a library, and applications are programmed using
the so-called “inverted program structure.”1 This is not too bad when the application
is purely reactive, that is, it only does something as a reaction to user input, but many
interactive applications do not fit this model. In such cases, the application must define
special call-backs to perform computation when the system is otherwise idle. In order
to guarantee responsiveness, these call-backs must execute quickly and then pass control
back to the event loop. In effect, the use of an event-loop is a “poor man’s concurrency.”
This structure makes programming computationally significant algorithms difficult, and
leads to a bias towards reactive, or input-driven, systems.2

A more natural way to program these systems is as a set of communicating processes.
Some window systems, such as the X Window System, provide concurrency between
applications by using multiple system processes, but the individual applications are se-
quential and suffer from the problems mentioned above. Using a concurrent language to
program all aspects of the window system, from the window manager to application code,
leads to a much cleaner structure and exposes more of the system’s natural concurrency.

In this chapter, we examine a toy window system implemented in CML, along with a
simple example application. Compared to the latest graphical web applets and fancy user
interface builders, this system is primitive and crude. The reader should understand that

1Inverted in the sense that the library has control and calls application code, instead of the other way around.
2The reader may recall that these issues were discussed in somewhat greater detail in Section 1.1.1.
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the focus of this chapter is on the use of concurrency to handle user interaction. While
the graphics side of the system is primitive, it is sufficient to provide a realistic context.

8.1 Overview

The rôle of a window system is to manage multiple windows on a display, which are
being used by independent client applications. The window system provides the client
applications with access to their subset of the display, and to the multiplexed keyboard
and mouse input devices. To the clients, it is as if they are executing with their own
display, keyboard, and mouse. Thus we can view a client as a function that takes a
window, keyboard, and mouse as arguments. Pictorially, we can view a client as

Window

Mouse

Keyboard
Client

Since the window system itself executes in an environment consisting of a window, key-
board, and mouse, we can view it as a client too.

The function of a window system is typically divided into three logically distinct com-
ponents: a display system that multiplexes the display, mouse, and keyboard among mul-
tiple clients, and provides an abstraction layer over the hardware; a user-interface library
that provides an API for graphics and user input; and a window manager that allows the
user to manage applications. To simplify the presentation, we assume the existence of the
display system and user-interface library, which are described in the next two sections,
and focus on the implementation of the window manager and sample clients.

8.2 Geometry

The display has the standard rectilinear geometry, with one unit representing one pixel on
the screen. As is conventional, the origin is in the upper-left-hand corner, x coordinates
increasing to the right and y coordinates increasing downwards. There are two geometric
types used in this chapter: points and rectangles. These types are defined in the structure
Geom. In addition, the Geom structure also provides a small collection of standard
operations on points and rectangles. Its signature is given in Listing 8.1. Most of these
operations have the obvious semantics, but a few of them may be unfamiliar:

ptLess(p1, p2) returns true if p1 is above and to the left of p2.

rectOrigin(r) returns the upper left-hand corner of the rectangle.
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datatype point = PT of {
x : int, y : int

}

datatype rect = RECT of {
x : int, y : int,
wid : int, ht : int

}

val origin : point
val ptAdd : point * point -> point
val ptSub : point * point -> point
val ptLess : point * point -> bool
val ptInRect : point * rect -> bool

val rectOrigin : rect -> point
val rectWid : rect -> int
val rectHt : rect -> int
val rectMove : (rect * point) -> rect
val rectInset : (rect * int) -> rect
val rectAdd : (rect * point) -> rect
val rectSub : (rect * point) -> rect
val rectWithin : (rect * rect) -> rect

Listing 8.1: The Geom structure’s signature

rectMove(r, p) moves the origin of r to p and returns the new rectangle.

rectInset(r, n) returns a rectangle that is inset from r by n pixels in each dimension
(i.e., the origin is moved down and to the right by n pixels, and the width and height
are decreased by 2 ∗ n each). Note that by specifying a negative value for n, we
can grow the rectangle.

rectAdd(r, p) adds p to the origin of r and returns the new rectangle.

rectSub(r, p) subtracts p from the origin of r and returns the new rectangle.

rectWithin (r1, r2) returns a rectangle with the size of r2 that is within r1. It does
this by moving r2 the minimum distance required for it to be contained by r1. If
r2 is wider (resp. higher) than r1, then r2’s left side (resp. top) is aligned with r1’s.

8.3 The display system

Our display system provides a simple black and white bitmap-graphics model with a
small collection of drawing operations. For input devices, the display system provides a
simple keyboard and a single-button mouse. The DpySystem structure implements an
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signature DPY_SYSTEM =
sig
...
datatype rastor_op = CPY | XOR | OR | AND | CLR | SET

datatype texture = SOLID | TEXTURE of word list

val drawLine : bitmap -> rastor_op -> (Geom.point * Geom.point) -> unit
val drawRect : bitmap -> rastor_op -> Geom.rect -> unit
val fillRect : bitmap -> (rastor_op * texture) -> Geom.rect -> unit

val bitblt : {
dst : bitmap,
rop : rastor_op,
pt : Geom.point,
src : bitmap,
srcRect : Geom.rect

} -> unit

val drawText : bitmap -> rastor_op -> (Geom.point * string) -> unit

val stringSize : (bitmap * string)
-> {wid : int, ht : int, ascent : int}

...
end; (* DPY_SYSTEM *)

Listing 8.2: Graphical types and operations

interface to the display system; it has the signature DPY_SYSTEM, which is detailed in
the rest of this section.

8.3.1 The graphics model

The display system provides bitmaps, which are rectangular collections of one-bit pixels.
A small set of standard graphical operations is provided; Listing 8.2 gives the signature of
these operations. Each operation takes a raster_op as an argument, which determines
the effect of the drawing operation. Each raster operator is a different function of the
source and destination pixels; Table 8.1 gives the semantics of these operators. For the
drawText, drawLine, and drawRect operations, the source pixel is always black.
For the fillRect operation, the source pixels are specified by the texture argument,
and for bitblt operation, the source pixels are taken from the source bitmap.

The function drawLine draws a line between the given points, which includes the
end points. Applying drawLine to the argument (p,p) draws a single pixel at the
point p. The function drawRect draws a rectangle, and the function fillRect fills
a rectangle with a given texture. A texture is a 16 × 16 array of pixels; it can either
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Table 8.1: Rastor operator semantics (◦ = white, • = black)

(source destination)
Operator (◦ ◦) (◦ •) (• ◦) (• •)
CPY ◦ ◦ • •
XOR ◦ • • ◦
OR ◦ • • •
AND ◦ ◦ ◦ •
CLR ◦ ◦ ◦ ◦
SET • • • •

be SOLID (i.e., all 1’s) or represented as a list of 16 words, with the high-order bit of
the first word being the upper-left-hand corner (i.e., row-major order). A bit value of 0
is drawn as white and a 1 is drawn as black. There is an important difference between
the way that drawRect and fillRect interpret their arguments: drawRect draws
a rectangle that is wid+ 1 pixels wide and ht+ 1 pixels high, while fillRect fills a
wid× ht block of pixels.

The most complicated operation is bitblt, which copies a rectangle of pixels from
one bitmap (src) to another (dst). The srcRect argument specifies the rectangle to
copy in the source bitmap, and the pt argument specifies the upper-left-hand corner of
the rectangle in the destination.

There are two functions that support the drawing of text: drawText draws the given
string starting at the given point, and stringSize returns the size that the rendered
image of a string would have. The size of a piece of text is described in terms of the
rectangle that it occupies (with height ht and width wid), and the distance from the top
of the rectangle to the baseline (the ascent). When drawing text, its position is given
in terms of the baseline (i.e., the y coordinate of the point given to drawText specifies
the position of the text’s baseline).

8.3.2 Layers

Most modern window systems support the “covered window” paradigm, in which win-
dows are allowed to overlap.3 When a portion of a window is covered by another window

3Some early window systems used the “tiling” paradigm, in which the total area covered by windows is limited to the
size of the display.
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signature DPY_SYSTEM =
sig
...
type bitmap

val mkBitmap : (bitmap * Geom.rect) -> bitmap
val toFront : bitmap -> unit
val toBack : bitmap -> unit
val move : (bitmap * Geom.point) -> unit
val delete : bitmap -> unit

val sameBitmap : (bitmap * bitmap) -> bool
val bitmapRect : bitmap -> Geom.rect
val bitmapClr : bitmap -> unit
...

end; (* DPY_SYSTEM *)

Listing 8.3: Layer operations

and then becomes uncovered, the newly unobscured area must be displayed on the screen.
There are various techniques for supporting covered windows. The Toy Display System
uses the “layers” approach, which is perhaps the simplest technique from the point of
view of the window system. In this model, the display system is responsible for keep-
ing track of the contents of any obscured regions. The refreshing of obscured regions is
handled completely by the display system, and does not require window system or client
action.

A common alternative to the layers approach is the so-called “damage control” model.
In this scheme, the display system informs the client when an obscured portion of its
window has become exposed. The client is responsible for redisplaying the obscured
portion. While this is much simpler for the display system implementation, it adds an
implementation burden to the client code, which is why we use the layers model here.

Listing 8.3 gives the signature of the operations provided by the Toy Display System
to support overlapping windows. In this scheme, we use the bitmap type to represent
windows. The function mkBitmap creates a new subwindow of the given bitmap.
The rectangle argument specifies the position and size of the subwindow with respect to
its parent’s origin. The newly created bitmap will have its own coordinate system with
its origin at its upper-left-hand corner, and the contents of the new bitmap will occlude
its parent. Using the mkBitmap function, one can create a tree-structured hierarchy of
windows. At each level of the hierarchy, there is also a front-to-back ordering on the
windows. For the children of a single parent, this order is initially determined by the
order of creation (windows are created in front), but it can be changed by the toFront
and toBack functions, which move the specified window to the front (resp. back) of all
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signature DPY_SYSTEM =
sig

...
datatype mouse_msg = M of {btn : bool, pos : Geom.point}

val mouseUp : mouse_msg -> bool
val mouseDn : mouse_msg -> bool
val mousePos : mouse_msg -> Geom.point
val mouseTrans : Geom.point -> mouse_msg -> mouse_msg

datatype key_press = K of char

val keyDEL : key_press
val keyBS : key_press
val keyRET : key_press
val keyTAB : key_press
...

end; (* DPY_SYSTEM *)

Listing 8.4: Keyboard and mouse messages

of its siblings. If two windows at the same level in the hierarchy have different parents,
then their order is defined by the order of their parents. The position of a window with
respect to its parent can be changed by the move operation. The move operation also
has the effect of moving the window to the front of its siblings. Lastly, the delete
operation deletes a window, and all of its subwindows.

Listing 8.3 also includes three other operations on bitmaps. The sameBitmap
function returns truewhen its two arguments are the same bitmap. The bitmapRect
function returns the rectangle that a bitmap occupies in its parent’s coordinate system.
And the bitmapClr function clears all the pixels in the bitmap to white.

8.3.3 Keyboard and mouse input

The keyboard and mouse input devices each generate a stream of input messages. 4 Mouse
messages carry information about the mouse’s button and the current position of the
mouse cursor in the display’s coordinate system. The representation of mouse mes-
sages is given in Listing 8.4. Together, these values constitute the mouse state. The
DpySystem structure provides a small collection of functions for examining mouse
messages and a function (mouseTrans) for translating the mouse position relative to
a point. The latter function is used when propagating mouse messages from parents to

4These are often called input events, but we wish to avoid confusion with CML’s events.
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children. Each time the mouse state changes, the display system sends a new mouse
message.

Likewise, whenever the user presses a key on the keyboard, the display system sends
a new key_press message, which is also defined in Listing 8.4. We assume a simple
keyboard with the printable characters, and a few special keys. Symbolic values
are defined for some of the special keys: return (keyRET), backspace (keyBS), delete
(keyDEL), and tab (keyTAB). As one would expect, the interface to these streams of
input messages is event-valued.

8.3.4 Initialization

The last part of the display system interface is the initialization function, which has the
following specification:

signature DPY_SYSTEM =
sig

...
val display : string option -> {

dpy : bitmap,
mouse : mouse_msg event,
kbd : key_press event

}
...

end; (* DPY_SYSTEM *)

The display function initializes the display system and returns the display bitmap and
the mouse and keyboard input streams (represented as event values). The display system
is shut down when either the CML program exits or when the display bitmap is deleted.

8.4 The Toy Window System architecture

The display system described above provides a way to create bitmaps and to draw on
them, and it provides a single point of access to the mouse and keyboard input devices.
In order to write graphical applications that can run concurrently, we need mechanisms
for managing bitmaps and for distributing input. These mechanisms are the job of the
window system. The window system defines a policy for how windows and their associ-
ated threads interact, and provides code that supports the implementation of that policy
in graphical components and applications.

In the Toy Window System, a graphical component has a bitmap associated with it
that it uses to display information to the user. In many cases, the component may also
have sub-components, which, in turn, have their own associated bitmaps. This hierarchy
of nested components is supported by the display system’s mkBitmap function, which
takes the parent bitmap as an argument. We also use this hierarchy of nested components
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to guide the distribution of user input. We use the same interface and interaction protocols
for all graphical components in the system, ranging from simple components like push
buttons, through applications to even the window manager.

As we noted above, a graphical component or application can be viewed as a function
that takes its window, keyboard, and mouse as arguments, but in practice things are a
bit more complicated. In addition to the mouse and keyboard, components need to com-
municate control information to their parent and children. Thus, we represent a window
environment as a record type (win_env) consisting of a bitmap, three input channels
(mouse, keyboard, and control in), and a mailbox for outbound control messages. We
use a mailbox for the command-out communication channel, instead of a channel, as a
way to break the cyclic dependency between the parent and child. If not broken, this
dependency could result in deadlock (e.g., the child is trying to send a control message
to its parent, while the parent is trying to send the child a mouse message).

The win_env type is defined in the WSys structure, whose signature can be found
in Listing 8.5. The WSys structure defines a collection of types (including win_env)
that specifies the interface between components. It also implements a mapping from the
display manager’s interface to the interface defined by these types. The functions bmap,
mouse, kbd, cmdIn, and cmdOut may be used to project the components of a win-
dow environment. The rect function returns the rectangle of the environment’s bitmap.
The sameBitmap function returns true if the two argument environments contain the

same bitmap; it is used to check the identity of environments. Sometimes it is useful
to ignore all of the messages on one of an environment’s channels; the sink function
serves this purpose. The init function initializes the display system and then wraps
up the root bitmap and raw input channels provided as a window environment. Sending
a delete command (described below) on the command-out mailbox of this environment
causes the display system to shut down. We describe the other operations in the WSys
structure in the remainder of this section.

8.4.1 The window manager

The window manager is an application that supports creating and destroying applications
and their windows. As noted above, the window manager has exactly the same interface
to its parent as any other component or application, which means that it is possible to
recursively run a copy of the window manager inside an application window.

8.4.2 Input routing policy

A distinguishing feature of a window system is the policy used to decide which client
should receive a particular user input event. For our system, which uses a top-down
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signature WSYS =
sig

type bitmap = DpySystem.bitmap

datatype mouse_msg = datatype DpySystem.mouse_msg
datatype key_press = datatype DpySystem.key_press
datatype cntl_msg = CMD of {

msg : string,
rect : Geom.rect option

}

datatype win_env = WEnv of {
win : bitmap,
m : mouse_msg chan,
k : key_press chan,
ci : cntl_msg chan,
co : cntl_msg Mailbox.mbox

}

val mkEnv : bitmap -> win_env
val realize : (bitmap * Geom.rect) -> (win_env -> ’a) -> ’a

val bmap : win_env -> bitmap
val mouse : win_env -> mouse_msg chan
val kbd : win_env -> key_press chan
val cmdIn : win_env -> cntl_msg chan
val cmdOut : win_env -> cntl_msg Mailbox.mbox
val rect : win_env -> Geom.rect

val sameBitmap : (win_env * win_env) -> bool

val sink : ’a chan -> unit

val init : string option -> win_env

end; (* WSYS *)

Listing 8.5: The window system interface

distribution of input messages, the choice of policy determines the implementation of
routing by the window manager.

Many window managers for the X Window System use the so-called “focus follows
mouse” policy, in which the current location of the mouse cursor determines which client
receives any keyboard or mouse input events. One wrinkle to this policy is the mouse
grab. Consider an application menu that pops up when the mouse is depressed; we
would like the menu to stay active as long as the mouse button is depressed, even if
the mouse leaves the area of the application. The window manager’s input-event router
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provides this behavior by declaring that the application has grabbed the mouse when the
button is depressed (i.e., all mouse messages are routed to the application until the button
is released).

The other common policy is to distinguish a particular window, called the current
window, and to direct all input messages to that window. The user is required to change
the current window explicitly by clicking with the mouse (hence the name “click to type”
for this policy). There are two versions of this policy, which are distinguished by the
treatment of mouse messages generated when the mouse is outside the current application
window. One approach is to discard any mouse message that is generated outside the
current window. In this case, the router must support the mouse-grab mechanism. The
other approach is to route all input messages (except the down-click used to select a
new current window) to the current window. This approach does not require a special
mouse-grab mechanism, since all messages are being routed to the current window.

For the Toy Window System, we choose the last of these policies, as it is the simplest to
implement. The others are left as an exercise for the reader. Note that under any of these
routing policies, components must be able to handle mouse messages with coordinates
outside their window.

8.4.3 Window creation and deletion

In addition to the input routing policy, we need protocols to specify how parent and
child windows interact. In a full-fledged system, this interaction would include window
movement and resizing, but to keep things simple, we are concerned only with window
creation and deletion.

As noted above, the window hierarchy is created top-down. First a parent creates the
bitmap and window environment for its child. Then the parent calls the child’s realization
function, passing in the child’s window environment. The realization function creates the
various threads that implement the child, and any descendants of the child. The WSys
structure (see Listing 8.5) provides two functions to help with creating the hierarchy:
the function mkEnv creates a window environment given a bitmap (i.e., it allocates the
communication channels); and the function realize takes a parent bitmap, a child
rectangle and realization function, and realizes the child.

When the window system wants to delete an application window, it sends a "Delete"
message on the application’s ci channel. When an application receives a deletion re-
quest, it is responsible for suspending any activity, and then sending its parent a"Delete"
message via its co mailbox. When the window system receives a "Delete" request, it
is free to delete the application’s bitmap (which also has the effect of deleting all child
bitmaps in the application). The application is also free to initiate its own deletion by
sending a request to the window manager (i.e., skipping the first step of the protocol).



156 8 A Concurrent Window System

signature FRAME =
sig

type frame

val frameWid : int
val mkFrame : (WSys.win_env -> ’a)

-> WSys.win_env -> (frame * ’a)
val sameFrame : (frame * frame) -> bool
val frameEnv : frame -> WSys.win_env
val highlight : (frame * bool) -> unit

end;

Listing 8.6: The frame interface

8.4.4 Naming conventions

In the rest of this chapter, we follow the convention of introducing local names for the
common modules. The bindings we use are

structure G = Geom
structure D = DpySystem
structure W = WSys

8.5 Some simple components

Before diving into the full complexity of the window system implementation, let us con-
sider three simple examples of UI components in this framework.

8.5.1 Window frames

It is very common to decorate a window with a border or frame, and often the frame may
have both normal and highlighted modes (in fact, we use this in the window manager
below). While many window systems build this feature into their windows, it is natural
in our approach to implement a frame by embedding the window in a frame window that
is a few pixels larger in each dimension.

Since the frame window is the parent of the window being framed, it must be allo-
cated first. The mkFrame function (see Listing 8.6) handles this by taking a realiza-
tion function as an argument, and returning both the frame and the result of realizing
the child. The Frame structure provides a few additional operations on frames: the
sameFrame function tests for equality, the frameEnv function returns the environ-
ment used to communicate with the frame component, and the highlight function
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Figure 8.1: The Frame communication network

turns the highlighting of the frame’s border on and off. The Frame structure also ex-
ports the value frameWid, which is the width of the frame in pixels, so that clients can
compute layouts correctly.

For the most part, the implementation of frames is straightforward. Figure 8.1 shows
the communication network that mkFrame sets up. Mouse messages must be filtered
to get the coordinate system right, but all other messages are passed directly through
without intervention. In addition, there is a thread for managing the highlighting state of
the frame.

Listing 8.7 gives the code for the frame implementation. Most of the implementation of
mkFrame is concerned with the geometry computations and highlighting support. First,
we compute three rectangles: frameRect is the rectangle we draw for the outer frame;
highlightRect is inset one pixel from frameRect and is drawn when the frame
is highlighted (giving a two pixel wide frame); lastly, childRect is the rectangle that
defines the child bitmap extent. Then we allocate the child’s environment, which consists
of a new sub-bitmap, a new mouse channel, and the other channels from the frame’s
environment. The mouseLp function is the body of the thread that translates mouse
messages from the frame’s coordinate system to the child’s, before passing them onto the
child. The highlightLp function provides control of the frame’s highlighting; it keeps
track of the current highlighting state and accepts requests on the hlightCh channel.
After initializing the frame’s graphics and spawning the mouse filter and highlighting
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datatype frame = F of {
env : WSys.win_env,
hlightCh : bool chan

}

fun mkFrame realize wenv = let
val frameBM = WSys.bmap wenv
val (frameRect, highlightRect, childRect) = let

val G.RECT{wid, ht, ...} = D.bitmapRect frameBM
in

( G.RECT{x=0, y=0, wid=wid-1, ht=ht-1},
G.RECT{x=1, y=1, wid=wid-3, ht=ht-3},
G.RECT{x=frameWid, y=frameWid,

wid=wid-2*frameWid, ht=ht-2*frameWid
}

)
end

val childEnv = WSys.WEnv{
win = D.mkBitmap (frameBM, childRect),
m = channel(),
k = WSys.kbd wenv,
ci = WSys.cmdIn wenv,
co = WSys.cmdOut wenv

}
val mTrans = D.mouseTrans (G.PT{x=frameWid, y=frameWid})
fun mouseLp () = (

send (
WSys.mouse childEnv,
mTrans (recv (WSys.mouse wenv)));

mouseLp ())
val hlightCh = channel()
fun drawHL rator = D.drawRect frameBM rator highlightRect
fun hlightLp isOn = (case (isOn, recv hlightCh)

of (true, false) => (drawHL D.CLR; hlightLp false)
| (false, true) => (drawHL D.SET; hlightLp true)
| _ => hlightLp isOn

(* end case *))
in

D.bitmapClr frameBM;
D.drawRect frameBM D.SET frameRect;
ignore (spawn mouseLp);
ignore (spawn (fn () => hlightLp false));
(F{env = wenv, hlightCh = hlightCh}, realize childEnv)

end

fun sameFrame (F{env=e1, ...}, F{env=e2, ...}) =
D.sameBitmap(WSys.bmap e1, WSys.bmap e2)

fun frameEnv (F{env, ...}) = env
fun highlight (F{hlightCh, ...}, b) = send(hlightCh, b)

Listing 8.7: The frame implementation
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threads, the mkFrame function returns the frame and the result of realizing its child.
The representation of a frame is a record of its environment and the channel for changing
the highlighting; the other frame operations work on this representation in the obvious
way.

The observant reader will note that the frame implementation ignores the deletion
protocol described above (Section 8.4.3). We can get away with this for two reasons:
since the frame component is just a filter on mouse messages (and completely ignores
all other messages), it can rely on its child to handle the deletion protocol interaction;
and once the child has sent the "Delete" message on its command-out mailbox, the
parent of the frame will delete the frame’s bitmap, which also has the effect of deleting
the frame’s child’s bitmap.

8.5.2 Buttons

Another standard component in user interfaces is the button. We implement buttons in
the Button structure, with the following interface:

val mkButton : (string * (unit -> unit))
-> WSys.win_env -> WSys.win_env

The mkButton function takes a string, which is the button’s label, and an action
function, and returns the button’s realization function. The communication network
for the button component is quite simple: a single thread monitors both the mouse and
command-in channels, while the keyboard channel is diverted to a sink. Figure 8.2 shows
this network.

The button’s implementation is given in Listing 8.8. As with the frame component,
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fun mkButton (msg, act) (wenv as W.WEnv{win, m, k, ci, co}) = let
val G.RECT{wid=butWid, ht=butHt, ...} = D.bitmapRect win
val butRect = G.rectMove(D.bitmapRect win, G.origin)
val {ht, wid, ascent} = D.stringSize (win, msg)
val txtOrigin = G.PT{

x = Int.max(0, (butWid - wid) div 2),
y = Int.min(butHt-1, ((butHt - ht) div 2) + ascent)

}
fun mouseState (D.M{btn, pos}) = (btn, G.ptInRect(pos, butRect))
fun loop wasInAndUp = let

fun handleM msg = (
case (wasInAndUp, mouseState msg)
of (true, (true, true)) => (act(); loop false)
| (_, (isDn, isIn)) => loop(not isDn andalso isIn)

(* end case *))
fun handleC (m as W.CMD{msg="Delete", ...}) =

Mailbox.send (co, m)
| handleC _ = loop wasInAndUp

in
select [

wrap (recvEvt m, handleM),
wrap (recvEvt ci, handleC)

]
end

in
D.drawRect win D.SET

(G.RECT{x=0, y=0, wid=butWid-1, ht=butHt-1});
D.drawText win D.CPY (txtOrigin, msg);
W.sink k;
ignore (spawn(fn () => loop false));
wenv

end

Listing 8.8: The button implementation

much of the button component’s implementation is concerned with geometry and graph-
ics, but there is a non-trivial control part as well, which is contained in theloop function.
In order to detect the difference between the mouse moving into the button’s window
while the mouse button is depressed and a genuine mouse-click in the button, the loop
function keeps track of the previous mouse state. The variable wasInAndUp is true
if the previous mouse message was in the window with the button not depressed. If
wasInAndUp is true and the new state is also in the window with the mouse button
depressed, then a mouse-click has occurred and the button’s action is executed. 5 The
control loop also monitors the command-in channel for "Delete" commands. If it

5Given the routing policy described above, one might wonder how the button can see the mouse outside its window.
This happens because of the mouse grab policy; if the mouse button is depressed in the window and then moved out, the
button continues to see mouse messages.
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sees such a message, it echoes it back on the command-out channel and terminates. This
fulfills the requirements of the deletion protocol.

8.5.3 Popup menus

Our last example component is a popup menu. Unlike the previous two examples, this
is a transient component, and as such, does not follow the standard creation and deletion
protocols. Instead, when it is determined that a mouse message has triggered the menu,
we pass control of the mouse channel to the menu function, which has the following
specification:

val menu : (WSys.win_env * Geom.point * ’a item list) -> ’a option

The arguments to the menu function are: the caller’s window environment, the position
at which to place the upper-left-hand corner of the menu, and the list of menu items.
A menu item is a pair of the menu label and some associated information, and has the
following type:

type ’a item = (string * ’a)

The menu function creates a new bitmap for the menu at the requested position, and
monitors the caller’s mouse channel until the mouse button is released. If the mouse is
inside the menu when it is released, then the selected item is returned; otherwise NONE
is returned.

Popup menus are implemented by the Menu structure. There are two steps to executing
the menu function: first, we compute the layout of the menu items and the total size of
the menu, and then we draw it and track the mouse until its button is released. The first
step is handled by the layout function, which is given in Listing 8.9. This function first
computes the total height of the items (including inter-item padding) and the maximum
item width. It then uses the rectWithin function from the Geom structure to ensure
that the menu fits into its parent’s window. Finally, it computes and returns the menu’s
rectangle and a list of layout information for each menu item.

Once the menu layout has been computed, we need to display it and then track the
mouse. This is handled by the body of the menu function, which can be found in List-
ing 8.10. Given the layout, we first allocate the menu bitmap and set up the drawing
functions, which are used to draw the menu items (drawText) and highlight the items
(fillRect). The menu function uses a simple helper function to map mouse coordi-
nates to menu items:

fun whichItem (items : ’a item_info list) pt =
List.find (fn item => G.ptInRect(pt, #rect item)) items
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type ’a item_info = {
lab : string,
value : ’a,
pt : G.point,
rect : G.rect

}

val itemSep = 2

fun layout (w, G.PT{x, y}, items) = let
fun f ((s, _), (maxWid, totHt, posns)) = let

val {wid, ht, ascent} = D.stringSize(w, s)
val y = totHt + itemSep
val ys = (y, y + ascent, ht)
in
(Int.max(maxWid, wid), y+ht, ys::posns)

end
val (wid, ht, posns) = List.foldl f (0, 0, []) items
val menuRect = G.rectWithin (

D.bitmapRect w,
G.RECT{

x = x, y = y,
wid = wid+2*itemSep, ht = ht+itemSep

})
fun mkItemInfo ((s, v), (y, base, ht)) = {

lab = s, value = v,
pt = G.PT{x=itemSep, y=base},
rect = G.RECT{x=itemSep, y=y, ht=ht, wid=wid}

}
in
(menuRect, ListPair.map mkItemInfo (items, rev posns))

end

Listing 8.9: Computing menu layout information

We use this function to determine which menu item is under the initial mouse position
(this may not be the first item, since the layout function may move the position of the
menu). Since the layout function has already determined the locations of the text for
the items, drawing the menu is quite simple. We then highlight the initial item and invoke
the mouse tracking loop with it. This loop consumes mouse messages and provides
feedback by highlighting the current item until the mouse button is released. When this
happens, the tracking loop terminates and returns the current item to the menu function,
which deletes the menu window before passing the selected item to the caller.



8.6 The implementation of a window manager 163

fun menu (W.WEnv{win, m, ...}, pt, items) = let
val (menuRect, items) = layout (win, pt, items)
val menuWin = D.mkBitmap (win, menuRect)
val drawText = D.drawText menuWin D.SET
val fillRect = D.fillRect menuWin (D.XOR, D.SOLID)
val whichItem = whichItem items
fun highlight (item : ’a item_info) = fillRect (#rect item)
fun loop curItem = (

case (D.mouseTrans (G.rectOrigin menuRect) (recv m))
of (W.M{btn=true, pos}) => let

val newCur = whichItem pos
in

case (curItem, newCur)
of (NONE, SOME item) => highlight item
| (SOME item, NONE) => highlight item
| (SOME item, SOME item’) =>

if (#pt item #pt item’)
then (highlight item; highlight item’)
else ()

| (NONE, NONE) => ()
(* end case *);
loop newCur

end
| (W.M{pos, ...}) => Option.map #value (whichItem pos)

(* end case *))
val initialItem = whichItem pt
in

List.app (fn item => drawText (#pt item, #lab item)) items;
ignore(Option.map highlight initialItem);
loop initialItem before D.delete menuWin

end

Listing 8.10: The menu function

8.6 The implementation of a window manager

We are now ready to examine the implementation of a window manager for the Toy
Window System. As we described above, a window manager is responsible for manag-
ing a dynamic collection of application windows. This includes supporting creation of
new application windows, routing of input to the appropriate application, and deletion of
applications. It is implemented in the WinMngr structure, and has a simple interface:
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signature WIN_MNGR =
sig

type client = {
name : string,
size : Geom.rect,
realize : WSys.win_env -> unit

}

val winManager : (WSys.win_env * client list) -> unit

end;

We create a window manager by calling the winManager function with the manager’s
environment and a list of client applications. For each client, we specify its name, size
(as a zero-based rectangle), and realization function. The window manager uses this list
to create a popup menu that can be used to start new applications. In the remainder of
this section, we describe the implementation of the window manager.

8.6.1 The window map

A key ingredient of the window system is the window map, which is a data structure used
to map messages to the correct sub-window. It keeps track of the existing windows, their
corresponding environments, and their relative stacking order. Since the window map is
useful outside the window manager, it is implemented as a separate module (structure
WinMap), which has the signature given in Listing 8.11. A window map also allows
additional information to be associated with each window; the type of the information
is given as the argument to the win_map type constructor. A window map is created
by calling the mkWinMap function with the environment for the parent window and
its associated information. The functions insert and delete are used to add and
remove child windows from the map, and the listAll function returns a list of
all of the children. The delete function also takes care of deleting the child bitmap.
The window map is also used to change the stacking order of the windows (since it must
keep track of this information anyway). The functions toFront, toBack, and move
have the same effect as their counterparts in the DpySystem structure. The mapMouse
function maps a mouse message to the foremost child window that includes the mouse
location (or to the parent, if no child covers that point). It also translates the mouse
position to the coordinate system of the window that includes it. Note that the window
map is only responsible for mapping a point to a window environment; it does not handle
the actual routing of messages. There are also two functions for looking up information
in the map; findByPt returns the foremost window containing the given point, while
findByEnv returns the information associated with the given window environment.
The findByPt returns the parent window and its information when the given point is
not contained in any child window.
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signature WINMAP =
sig

type ’a win_map

val mkWinMap : (WSys.win_env * ’a) -> ’a win_map

val parent : ’a win_map -> (WSys.win_env * ’a)
val insert : (’a win_map * WSys.win_env * ’a) -> unit
val delete : (’a win_map * WSys.win_env) -> unit
val listAll : ’a win_map -> (WSys.win_env * ’a) list

val toFront : (’a win_map * WSys.win_env) -> unit
val toBack : (’a win_map * WSys.win_env) -> unit
val move : (’a win_map * WSys.win_env * Geom.point) -> unit

val mapMouse : (’a win_map * WSys.mouse_msg)
-> (WSys.mouse_msg * WSys.win_env * ’a)

val findByPt : (’a win_map * Geom.point) -> (WSys.win_env * ’a)
val findByEnv : (’a win_map * WSys.win_env) -> ’a

end;

Listing 8.11: The window map interface

The implementation of the window map is straightforward, so we just sketch it with-
out presenting the code. The window map maintains the list of window environments
and their associated information as its state. The list is ordered from front to back (note
that for non-overlapping windows, the order does not matter). Inserting and removing
windows from the managed list is straightforward. The window map implements the
toFront and toBack functions by reordering its list of windows, and having the dis-
play system reorder the windows on the screen. A point in the parent window coordinate
system is mapped to a specific subwindow by searching the window list. Because the list
is ordered front to back, if the point occurs in a region where two windows overlap, the
front window will be chosen.

8.6.2 The window mananger

The window manager is created by the winManager function, whose implementation
is partially given in Listing 8.12. The window manager consists of three threads: the
controller, the keyboard router, and the command-in router. These threads share a global
M-variable (curFrame), which is used to keep track of the current application window
(more precisely, it holds the frame of the current application, or NONE if there is no
current application). There is also a global I-variable (quitFlg), which is used by the
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structure MB = Mailbox
structure F = Frame

fun highlight (SOME f, onOrOff) = F.highlight (f, onOrOff)
| highlight _ = ()

fun sameFrame (SOME f1, SOME f2) = F.sameFrame(f1, f2)
| sameFrame _ = false

fun winManager (rootEnv as W.WEnv{m, k, ci, co, ...}, clients) = let
val quitFlg = SyncVar.iVar()
val curFrame = SyncVar.mVarInit NONE
fun controller () = let

val wMap =
WinMap.mkWinMap (rootEnv, {name="", frame=NONE})

fun trackMouse () = let
fun cmdWrap (wenv, {name, frame}) =

wrap (MB.recvEvt(W.cmdOut wenv),
fn msg => (msg, wenv, valOf frame))

val childCmdEvt =
choose (map cmdWrap (WinMap.listAll wMap))

in
mouseRouter (false, childCmdEvt)

end
and mouseRouter (wasDn, childCmdEvt) = ...
and doMenu pos = ...
in

trackMouse ()
end

fun kbdRouter () = let
val msg = recv k
val current = SyncVar.mTake curFrame
in

case current
of NONE => ()
| (SOME f) => send(W.kbd(F.frameEnv f), msg)

(* end case *);
SyncVar.mPut(curFrame, current);
kbdRouter ()

end
fun cmdInRouter () = (case recv ci

of (W.CMD{msg="Delete", ...}) =>
SyncVar.iPut (quitFlg, ())

| _ => cmdInRouter()
(* end case *))

in
ignore (spawn controller);
ignore (spawn kbdRouter);
ignore (spawn cmdInRouter)

end

Listing 8.12: The window manager
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command-in router to signal that the window manager should quit. The controller thread
is responsible for managing the client applications and for handling the mouse — it is
described in the next section. The keyboard router is implemented by the kbdRouter
function. It monitors the keyboard channel, and whenever it receives a keyboard message,
it forwards it to the current client application. The command-in router is implemented
by the cmdInRouter function; it monitors the command-in channel for a "Delete"
message. When it receives one, it writes the unit value into the quitFlg I-variable,
which signals to the controller that it should shut down the window manager.

Listing 8.12 also includes the code for two helper functions: highlight and sameFrame,
which extend the corresponding frame operations to accept frame options as arguments.
These functions are used by the mouseRouter and doMenu functions in the controller
thread.

8.6.3 The controller thread

The bulk of the window manager’s code is contained in the controller function,
which implements the controller thread. Listing 8.12 shows the code for this func-
tion, but omits the bodies of the mouseRouter and doMenu functions. The code for
the former is given in Listing 8.13, and we leave the latter for the next section. The
controller function starts by allocating the window map that it uses to keep track of
the application windows. For each entry in the window map, we record the name of the
application that owns the window and the application’s frame (as an option). For the root
window (i.e., the window manager’s window), there is no frame, so we record NONE.

Execution of the controller thread is handled by three mutually recursive functions:
trackMouse, mouseRouter, and doMenu. The trackMouse function is called
when there is a change in the set of child applications (e.g., when a child is created or
terminated). It creates an event value (childCmdEvt) that monitors the co mailboxes
of all of the children, and then calls the mouseRouter with the child event as an ar-
gument. In the childCmdEvt event, when a message is received in one of the child
mailboxes, the message is wrapped up with the child’s window environment and frame.

The code for the mouseRouter function is given in Listing 8.13. It takes two ar-
guments: the first of these (wasDn) is a boolean that holds the mouse’s button state,
and the second (childCmdEvt) is the child command event created by trackMouse.
This function implements a loop that monitors the window manager’s mouse channel,
the event childCmdEvt, and the quit flag. We describe the handling of each of these
in turn.

The mouseRouter function handles mouse events with the handleM function.
Each time a mouse message is received, the mouse’s position is mapped to the foremost
window containing that position. As a side-effect of this mapping process, we also get
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fun trackMouse () = ...
and mouseRouter (wasDn, childCmdEvt) = let

fun handleM (msg as D.M{btn, pos}) = let
val (msg’, wEnv, {frame = optFr, ...}) =

WinMap.mapMouse (wMap, msg)
in

case (wasDn, btn, SyncVar.mTake curFrame, optFr)
of (false, true, optFr, NONE) => (

highlight(optFr, false);
SyncVar.mPut(curFrame, NONE);
doMenu pos)

| (false, true, optFr, someFr) => (
if not(sameFrame(optFr, someFr))
then (

highlight(optFr, false);
highlight(someFr, true))

else ();
send(W.mouse wEnv, msg’);
SyncVar.mPut(curFrame, someFr);
mouseRouter (true, childCmdEvt))

| (_, _, SOME f, _) => (
send(W.mouse wEnv, msg’);
SyncVar.mPut(curFrame, SOME f);
mouseRouter (btn, childCmdEvt))

| (_, _, NONE, _) => (
SyncVar.mPut(curFrame, NONE);
mouseRouter (btn, childCmdEvt))

(* end case *)
end

fun handleCI (W.CMD{msg="Delete", ...}, wEnv, fr) = let
val current = SyncVar.mTake curFrame
in

WinMap.delete (wMap, wEnv);
if (sameFrame(current, SOME fr))
then SyncVar.mPut(curFrame, NONE)
else SyncVar.mPut(curFrame, current);

trackMouse ()
end

| handleCI _ = mouseRouter (wasDn, childCmdEvt)
fun quit () = (

app ((deleteChild wMap) o #1) (WinMap.listAll wMap);
MB.send (co, W.CMD{msg="Delete", rect=NONE}))

in
select [

wrap (recvEvt m, handleM),
wrap (childCmdEvt, handleCI),
wrap (SyncVar.iGetEvt quitFlg, quit)

]
end

and doMenu pos = ...

Listing 8.13: The window manager mouse router
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the mouse message translated to the window’s coordinate system and window’s frame.
In the case that the mouse is not in any application window, then the frame will be NONE.
We then do a case analysis of the previous and current mouse-button states (checking for
a down transition), the current frame, and the window’s frame. There are four cases:

1. There is a down transition, and the mouse is not inside any application window.
In this case, we deselect the current application window and invoke the window-
manager menu, which is described in the next section.

2. There is a down transition, and the mouse is in an application window. If the mouse
is inside the current application window, then we just forward the translated mouse
message to it. Otherwise, we need to change the window that contains the mouse
cursor be the current window, and we also forward the translated mouse message
to the new current application.

3. There is not a down transition, and there is a current application window. In this
case, the translated mouse message is forwarded to the current application window.

4. Otherwise, there is not a down transition and there is no current application win-
dow. In this case, the mouse message is discarded.

In each of these cases, except the first, the mouseRouter function is recursively called.

The childCmdEvt event is handled by the handleCI function in the mouse-
Router. If the event is a "Delete" request, then the requesting application is re-
moved from the window map. If the deleted application window happens to also be the
current window, then we set the current application to be NONE. Finally, since the list of
applications has changed, we call the trackMouse function, which will recompute the
childCmdEvt event value.

The last part of the mouseRouter handles the quitFlg event. When this event is
enabled, the quit function is called. The quit function applies the deleteChild
function to each of the applications in the window map and then sends a "Delete"mes-
sage on the window manager’s command-out mailbox, which completes the termination
protocol for the window manager.

Note that the quitFlg and childCmdEvt events are both asynchronous. This
means that we can ignore them for a while, while monitoring only the mouse channel
(e.g., when handling a menu) and not have to worry about deadlock.

8.6.4 The window manager menu

The last piece of the window manager to describe is the code that puts up its menu and
handles the menu actions. As described above, when the user presses the mouse button
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while the mouse cursor is not inside any application window, the doMenu function is
called with the mouse’s position as its argument. The code for this function is given in
Listing 8.14.

The first thing the doMenu function does is construct the list of menu items. There are
four kinds of menu items, which are represented by the menu_item datatype. For each
type of client, there is a NewClient item that contains the application name, size, and
realization function. These items are constructed using the mkCLientItem function;
note that we increase the size of the client to account for the frame. The menu item
list also contains a Select item for each application window, and one Kill and one
Quit item. Once the list of items is created, doMenu passes it, along with the window
manager’s environment and the mouse’s position, to the menu function described in
Section 8.5.3. It then does a case analysis on the user’s menu selection, and takes the
appropriate action. The menu actions require a number of utility functions, which are
given in Listing 8.15 and will be described as they are encountered.

If the user selects a NewClient item, we need to pick a location for the applica-
tion window and then create it and realize the application. We start by calling the utility
function whileMouseBtn, which eats mouse messages until the button state is differ-
ent than its second argument, and then returns the position of the mouse cursor at this
point. In this case, we wait for the button to be depressed, and use the position as the
upper-left corner of the client window. Since the client window might not fit at this po-
sition, we call the rectWithin function from the Geom module to adjust its position
if necessary. We then call the utility function createChild to create the application’s
window and frame and to start it up. The createChild function uses a combination
of the realize operation from the WSys module and the mkFrame function to realize
the application in its window. It then inserts the application into the window map and
returns its frame. The doMenu function then takes this frame and makes it the current
application window, by highlighting it and storing it in the curFrameM-variable (recall
that handleM previously stored NONE in this). Lastly, we eat mouse messages until the
user releases the mouse button (recall that trackMouse is called with a button state of
false).

When the user chooses a Select item, we make the corresponding application be
the current one. We do this by highlighting the selected frame and storing it into the
curFrame M-variable.

The user can kill an application by selecting the Kill item. In this case, we use the
pickWin utility function to select the victim. This function uses the whileMouseBtn
function twice: first to wait until the user presses the mouse button and then to wait until
the user releases the button. We map both positions to windows and then check to see that
they are the same window and are not the root window. In this case, pickWin returns
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fun trackMouse () = ...
and mouseRouter (wasDn, childCmdEvt) = ...
and doMenu pos = let

datatype menu_item
= NewClient of (string * G.rect * (WSys.win_env -> unit))
| Select of F.frame
| Kill
| Quit

val frDelta = G.PT{x=2*F.frameWid, y=2*F.frameWid}
fun mkClientItem {name, size, realize} = let

val size = G.rectAdd(size, frDelta)
in

("new "ˆname, NewClient(name, size, realize))
end

fun mkSelItem (wenv, {name, frame}) =
(name, Select(valOf frame))

val items =
(List.map mkClientItem clients) @

(List.map mkSelItem (WinMap.listAll wMap)) @
[("Kill", Kill), ("Quit", Quit)]

in
case Menu.menu (rootEnv, pos, items)
of SOME(NewClient(name, rect, realize)) => let

val pos = whileMouseBtn (m, false)
val rect = G.rectWithin (W.rect rootEnv, rect)
val frame = createChild wMap (name, rect, realize)
in

F.highlight (frame, true);
ignore (SyncVar.mSwap (curFrame, SOME frame));
ignore (whileMouseBtn (m, true))

end
| SOME(Select frame) => (

F.highlight (frame, true);
ignore (SyncVar.mSwap (curFrame, SOME frame)))

| (SOME Kill) => (case pickWin(wMap, m)
of NONE => ()
| (SOME we) => deleteChild wMap we

(* end case *))
| (SOME Quit) => SyncVar.iPut (quitFlg, ())
| NONE => ()

(* end case *);
trackMouse ()

end

Listing 8.14: The window manager menu handler
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fun whileMouseBtn (m, b) = let
fun track () = let val D.M{btn, pos} = recv m

in
if (btn = b) then track() else pos

end
in
track ()

end

fun pickWin (wMap, m) = let
val w1 = #1(WinMap.findByPt (wMap, whileMouseBtn (m, false)))
val w2 = #1(WinMap.findByPt (wMap, whileMouseBtn (m, true)))
in
if (not(W.sameBitmap(w1, #1(WinMap.parent wMap)))
andalso W.sameBitmap(w1, w2))

then SOME w1
else NONE

end

fun createChild wMap (name, rect, realize) = let
val (child, _) =

W.realize (W.bmap(#1(WinMap.parent wMap)), rect)
(F.mkFrame realize)

in
WinMap.insert (wMap, F.frameEnv child,

{name = name, frame = SOME child});
child

end

fun deleteChild wMap (wEnv as W.WEnv{co, ci, ...}) = let
fun getAck () = (case MB.recv co

of W.CMD{msg="delete", ...} => ()
| _ => getAck()

(* end case *))
in
send (ci, W.CMD{msg="Delete", rect=NONE});
getAck ();
WinMap.delete (wMap, wEnv)

end

Listing 8.15: Window manager utilities

the selected window, otherwise it returns NONE. In the case where a window is selected,
we call deleteChild to execute the deletion protocol on it.

If the user selects the Quit item, then we write the unit value into the quitFlg
I-variable, and call trackMouse. When control gets back to the mouseRouter func-
tion, the quit clause of the select will be enabled and termination will occur.

The last case in doMouse handles the situation when no item was selected by the user.
Once we have handled the user’s menu selection, we conclude by calling trackMouse,
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which constructs a new childCmdEvt event that reflects any creation or deletion of
child applications.

8.7 A sample application

To conclude this chapter, we describe the implementation of a simple texture editor.6

The texture editor provides the user with two views of the texture being edited: the large
view allows the user to set and clear individual pixels in the texture, while the small view
shows the actual appearance of the texture on the screen. The texture editor also has a
clear button for clearing the texture, and a quit button.

8.7.1 The editor’s architecture

The texture editor consists of four graphical components: the clear and quit buttons, the
small view, and the large editable view. In addition, there is a server thread that main-
tains the current state of the texture. Figure 8.3 shows the communication network of
the editor. The most interesting part of this is the interaction between the small and
large texture views and the texture state server. The texture state server supports both a
client-server style interface for operations on specific pixels, and a notification mecha-
nism (using a multicast channel) to inform views of changes. This architecture allows the
views to be decoupled from the state of the texture, which provides a modular framework
for multi-view editing. While this application only uses two fixed views of the texture,
this architecture allows easy extension to new view types and support for dynamic view
creation and deletion.

8.7.2 The TextureUtil structure

The texture editor uses a small utility module in its implementation. This module, named
TextureUtil, has the following interface:

val dim : int

val foreachCoord : (int * int -> unit) -> unit

The value dim is the size of a texture (i.e., 16), and the function foreachCoord is an
iterator that applies its argument to each coordinate of a texture in row-major order.

6This might more properly be called a bitmap editor, but we are following the naming conventions of the display
manager.
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Figure 8.3: The Texture Editor communication network

8.7.3 The texture state server

The current state of the texture is maintained by the texture state server thread, which is
implemented by the TextureState structure. The interface of this structure is given
in Listing 8.16. The newTexture function creates a new texture state and returns a
connection to its server. As can be seen from the communication network diagram in
Figure 8.3, the texture state server provides two kinds of interaction. Other threads can
modify and query specific cells in the texture using the functions set, clr, toggle,
and get. The state server also publishes notifications about changes to its state for
interested parties. A notification message consists of the coordinates of a cell and its new
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type texture_state

val newTexture : unit -> texture_state

val viewEvt : texture_state -> (int * int * bool) event

val set : (texture_state * int * int) -> unit
val clr : (texture_state * int * int) -> unit
val toggle : (texture_state * int * int) -> unit
val get : (texture_state * int * int) -> bool

Listing 8.16: The texture state interface

value. Threads can subscribe to these notifications by calling the viewEvt function,
which returns an event value for synchronizing on the stream of notifications.

The implementation of the texture state server is typical of servers (see Listing 8.17).
The texture_state type is a record of a request mailbox and a multicast channel for
change notifications. There are request messages to set a texture cell (SetReq), to toggle
a cell (ToggleReq), and to get a cell’s value (GetReq). The internal representation
of the texture is a two-dimensional array of booleans, and the server handles requests
by updating, using the set function, or reading elements of the array, using the get
function. In addition to updating the cell, the set function also sends out a change
notification when the cell’s value has been modified.

8.7.4 The small view

The small texture view provides a read-only view of the texture as it would appear on the
screen (i.e., each cell in the texture is represented by one pixel). It is implemented by the
SmallView structure, which has the following signature:

val viewRect : Geom.rect

val mkView : TextureState.texture_state
-> WSys.win_env -> WSys.win_env

The viewRect value specifies the required size of the small view’s window, and the
mkView function creates the view when given a connection to the texture state server
and a window environment. The small view server is a passive component; it ignores
the mouse and keyboard, and only reacts to changes in the texture state or "Delete"
messages.

The implementation of the SmallView structure is given in Listing 8.18. The small
view’s window size is just the dimension of a texture (16 by 16). Much of the mkView
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structure MB = Mailbox
structure MC = Multicast

datatype request_msg
= SetReq of (int * int * bool)
| ToggleReq of (int * int)
| GetReq of (int * int * bool SyncVar.ivar)

datatype texture_state = TS of {
reqMb : request_msg MB.mbox,
viewCh : (int * int * bool) MC.mchan

}

val dim = TextureUtil.dim

fun newTexture () = let
val reqMb = MB.mailbox()
val viewCh = MC.mChannel()
val data = Array2.array (dim, dim, false)
fun get (i, j) = Array2.sub (data, i, j)
fun set (i, j, v) = if (Array2.sub (data, i, j) v)

then (
Array2.update (data, i, j, v);
MC.multicast (viewCh, (i, j, v)))

else ()
fun serverLoop () = (

case (MB.recv reqMb)
of (SetReq(i, j, v)) => set(i, j, v)
| (ToggleReq(i, j)) => set(i, j, not(get(i, j)))
| (GetReq(i, j, replV)) =>

SyncVar.iPut(replV, get(i, j))
(* end case *);
serverLoop ())

in
spawn serverLoop;
TS{reqMb = reqMb, viewCh = viewCh}

end

fun viewEvt (TS{viewCh, ...}) = MC.recvEvt(MC.port viewCh)
fun set (TS{reqMb, ...}, i, j) = MB.send(reqMb, SetReq(i, j, true))
fun clr (TS{reqMb, ...}, i, j) = MB.send(reqMb, SetReq(i, j, false))
fun toggle (TS{reqMb, ...}, i, j) = MB.send(reqMb, ToggleReq(i, j))
fun get (TS{reqMb, ...}, i, j) = let

val replV = SyncVar.iVar()
in

MB.send(reqMb, GetReq(i, j, replV));
SyncVar.iGet replV

end

Listing 8.17: The texture state server
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structure A = Array
structure T = TextureState

val dim = TextureUtil.dim

val viewRect = G.RECT{x = 0, y = 0, wid=dim, ht=dim}

fun mkView state (wenv as W.WEnv{win, k, m, ci, co}) = let
val rawTexture = A.array(dim, 0w0)
fun mkTexture () = D.TEXTURE(A.foldr (op ::) [] rawTexture)
fun update (i, j, mode) = let

val bit = Word.<< (0w1, Word.fromInt(dim - (j+1)))
val w = A.sub(rawTexture, i)
in

A.update (rawTexture, i,
if mode
then Word.orb(w, bit)
else Word.andb(w, Word.notb bit))

end
val changeEvt = wrap(T.viewEvt state, update)
val quitEvt = wrap(recvEvt ci,

fn (W.CMD{msg="Delete", ...}) => exit()
| _ => ())

fun redraw () =
D.fillRect win (D.SET, mkTexture()) viewRect

fun server () = (
redraw();
select [changeEvt, quitEvt];
server())

in
TextureUtil.foreachCoord

(fn (i, j) => update(i, j, T.get(state, i, j)));
W.sink k; W.sink m;
ignore (spawn server);
wenv

end

Listing 8.18: The small texture view server

function is concerned with managing a local copy of the texture state, which is repre-
sented by an array of words. We choose this representation as it is halfway between the
display system’s representation of textures (lists of words) and the two-dimensional array
of the texture server. The mkTexture function creates a display system texture value
from this array. Changing the values of texture cells in the local representation requires
some bit twiddling, which is handled by the update function. The small view server
loop is simple: each iteration begins by redrawing the texture, and then waiting for either
a texture-state change notification or a "Delete"message. In the former case, the local
state is updated and the server continues; in the latter case, the server thread exits. Ini-
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val blockSz = 7
val padSz = 2
val gridWid = 1
val cellSz = gridWid+padSz+blockSz+padSz
val totalSz = TextureUtil.dim*cellSz + gridWid

val viewRect = G.RECT{
x = 0, y = 0, wid = totalSz, ht = totalSz

}

fun coordToCell (x, y) = (y div cellSz, x div cellSz)

fun cellToRect (i, j) = G.RECT{
x = cellSz*j + gridWid + padSz,
y = cellSz*i + gridWid + padSz,
wid = blockSz, ht = blockSz

}

fun drawGrid win = let
val drawLn = D.drawLine win D.SET
fun drawLns (mkP1, mkP2) = let

fun draw z = if (z <= totalSz)
then (drawLn (mkP1 z, mkP2 z); draw(z+cellSz))
else ()

in
draw 0

end
in

drawLns
(fn z => G.PT{x=0, y=z}, fn z => G.PT{x=totalSz, y=z});

drawLns
(fn z => G.PT{x=z, y=0}, fn z => G.PT{x=z, y=totalSz})

end

Listing 8.19: The large texture-view layout

tialization of the local state is done by doing a get operation on each cell of the texture
(note that the first iteration of the server loop will draw the initial texture).

8.7.5 The large view

The large texture view provides an editable view of the texture. It is implemented by
the LargeView structure, which has the same signature as the small view above. The
implementation of the LargeView structure is given in Listings 8.19 and 8.20. The
graphical appearance of the large view is as a rectangular grid of square cells separated by
grid lines. Each cell consists of a square block, which is drawn white or black depending
on the cell’s value, and padding around the block. The variables blockSz, padSz,
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structure T = TextureState

fun mkView state (wenv as W.WEnv{win, k, m, ci, co}) = let
fun mouseServer prevBtn = (case (prevBtn, recv m)

of (false, D.M{btn=true, pos=G.PT{x, y}}) => let
val (row, col) = coordToCell (x, y)
in

T.toggle (state, row, col);
mouseServer true

end
| (_, D.M{btn, ...}) => mouseServer btn

(* end case *))
fun drawCell (i, j, mode) = let

val rect = cellToRect (i, j)
val rop = if mode then D.SET else D.CLR
in

D.fillRect win (rop, D.SOLID) rect
end

val changeEvt = wrap(T.viewEvt state, drawCell)
val quitEvt = wrap(recvEvt ci,

fn (W.CMD{msg="Delete", ...}) => exit()
| _ => ())

fun drawServer () = (
select [changeEvt, quitEvt];
drawServer ())

in
drawGrid win;
TextureUtil.foreachCoord (fn (i, j) =>
drawCell(i, j, T.get(state, i, j)));

W.sink k;
ignore (spawn (fn () => mouseServer false));
ignore (spawn drawServer);
wenv

end

Listing 8.20: The large texture-view server

and gridWid are the dimensions of these various graphical elements, and together they
define the size of a cell (cellSz) and total size of the view (totalSz). The helper
function coordToCell maps a point in the view to a cell’s row and column. We also
need the function cellToRect, which maps a cell’s row and column to the rectangle
that defines its block. Finally, the drawGrid function draws the grid lines.

The large view actually consists of a pair of threads. The mouse thread (imple-
mented by the mouseServer function) monitors the mouse channel looking for down
clicks. When it sees one, it tells the texture state server to toggle the state of the corre-
sponding cell. The other thread (implemented by the drawServer function) waits for
texture-state change notifications. When it receives one, it redraws the affected cell. The
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drawServer function also monitors the command-in channel for "Delete" events,
and exits when it receives one.

8.7.6 Bringing it all together

Now that we have described the individual components, we can show how these are
assembled into the texture editor application. This is handled by the following function:

val mkEditor : WSys.win_env -> unit

which has the appropriate type to be a window-system client. The implementation of
the mkEditor function is given in Listing 8.21. We start off by creating the texture
state server, a window environment for the application (myEnv), and a window map. We
then create each of the subcomponents and install it in the window map. This is done
by applying the mkWin function to a list of pairs of realization functions and rectangles.
Note that we have omitted the definition of the layout geometry for the components.
Finally, we set up a sink on the texture editor’s keyboard channel, and on the mouse
channel of the myEnv environment, and then spawn the editor’s controller thread.

The functions quitAct and clearAct are the actions for the quit and clear buttons.
The quit action is to send a "Delete" message on the editor’s command-in channel;
this will cause the controller (described below) to initiate the termination procedure. The
clear action clears each of the texture coordinates to the texture state server, which, in
turn, causes update messages to be sent to the views. We could avoid this brute force
approach by providing a clear all operation on the texture state.

The controller thread is the central dispatcher for the texture editor. It monitors
the mouse and command-in channels (the keyboard channel is ignored by this appli-
cation). When a mouse message comes in, it calls handleM, which maps the mouse
location to a window and forwards the translated message to it. Commands are handled
by the handleCI function. When a "Delete" command is received, the command is
forwarded to each subwindow and acknowledgement is accepted from each in turn. Note
that we do not need to check the format of the acknowledgements, since we know that the
subcomponents do not send any other messages on the co channels. Once the deletion
protocol has been completed with each of the subwindows, the texture editor sends an
acknowledgement to its parent and exits. We do not bother deleting the windows of the
subcomponents, since they will be deleted by the display system when the texture editor
window is deleted.
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fun mkEditor (env as W.WEnv{win, m, k, ci, co}) = let
val state = TextureState.newTexture ()
val myEnv = W.mkEnv win
val wMap = WinMap.mkWinMap (myEnv, ())
fun quitAct () =

send (ci, W.CMD{msg="Delete", rect=NONE})
fun clearAct () =

TextureUtil.foreachCoord
(fn (i, j) => TextureState.clr(state, i, j))

fun mkSubwin (mkFn, rect) =
WinMap.insert (wMap, W.realize(win, rect) mkFn, ())

val envs = List.app mkSubwin [
(B.mkButton ("Quit", quitAct), quitButRect),
(B.mkButton ("Clear", clearAct), clearButRect),
(SmallView.mkView state, smallViewRect),
(LargeView.mkView state, largeViewRect)

]
fun handleM msg = let

val (msg’, tgt, _) = WinMap.mapMouse (wMap, msg)
in

send(W.mouse tgt, msg’)
end

fun handleCI (msg as W.CMD{msg="Delete", ...}) = let
fun fwd (W.WEnv{ci, co, ...}, _) = (

send(ci, msg);
ignore (Mailbox.recv co))

in
List.app fwd (WinMap.listAll wMap);
Mailbox.send(co, msg);
exit ()

end
| handleCI _ = ()

fun controller () = (
select [

wrap (recvEvt m, handleM),
wrap (recvEvt ci, handleCI)

];
controller ())

in
W.sink k;
W.sink (W.mouse myEnv);
ignore(spawn controller)

end

Listing 8.21: The texture editor implementation
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Notes

In this chapter, we have presented a toy implementation of a window system and simple
interactive application that illustrates some of the ways that concurrency can be used to
structure user interfaces and interactive applications. The display system API described
in Section 8.3 is implemented on top of eXene [GR93], which is a multithreaded X
Window System toolkit implemented in CML.

The argument that user-interface software is most naturally programmed in a con-
current language has been made by a number of people [RG86, Pik89a, Haa90, GR92,
GR93].

While the code in this chapter is necessarily simplified, it has the user-input architec-
ture employed by systems such as Pike’s squint system [Pik89a], Haahr’s Montage sys-
tem, and eXene. Earlier systems with similar architectures include Cardelli and Pike’s
language squeak [CP85], which was designed for handling user input. This language
evolved into newsqueak [Pik89b], which is the implementation language of squint. The
Pegasus system [RG86, GR92] was a precursor of CML and many of the ideas found in
eXene. There are other examples of window systems and GUI toolkits that use a concur-
rent programming model. Schmidtmann et al. describe the design and implementation of
a multithreaded version of the Xlib library [STW93]. Hauser et al. describe the differ-
ent ways that threads are used in two large interactive systems [HJT+93]. The Haggis
toolkit [PF95], which is implemented in Concurrent Haskell [PGF96], uses concurrency
quite heavily in its implementation, although the model that is presented to the user is se-
quential. Some toolkits, such as Trestle [MN91] and Java’s AWT library [CL98], are
implemented in concurrent languages, but do not exploit this fact in their programming
model. If the application programmer wishes components to run in separate threads, she
must program this explicitly.

The window system described in this chapter relies on an implementation of overlap-
ping bitmap graphics (Section 8.3.2). Algorithms and data structures for this task have
been described by Pike [Pik83] and Myers [Mye86]. The latter technique was used in the
Pegasus window system [GR92].

One aspect of this chapter that is different from much of the rest of the book is that
the example code makes little use of CML’s abstraction mechanisms — the multicast
channel used in Section 8.7 is the example of a more complicated communication ab-
straction being used. This is mainly a result of the simplified programming model used
in this chapter. In a richer framework, such as eXene, there are many places where
CML’s abstraction mechanisms are useful. A description of some of these can be found
in Chapter 9 of [Rep92], and in [GR93].
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A principal use of concurrent programming is in the implementation of distributed sys-
tems. A distributed system consists of processes running in different address spaces on
logically different processors. Because the processes are physically disjoint, there are
a number of issues that arise in distributed systems that are not present in concurrent
programming:

• Communication latency is significantly higher over a network than between threads
running in the same address space.

• Processors and network links can go down, and come back up, during the execution
of a distributed program.

• Programs running on different nodes may be compiled independently, which means
that type security cannot be guaranteed statically.

For these reasons, the synchronous model used in CML does not map well to the dis-
tributed setting.1 A different programming model is required for dealing with remote
communication.

Although concurrent programming languages, such as CML, may not directly provide
a notation for distributed programming, they do have an important rôle in implementing
distributed systems. A distributed system is made up of individual programs running on
different machines, which must communicate with each other. Managing this communi-
cation is easier in a concurrent language. Furthermore, multiple threads of control can
help hide the latency of network communication. For these reasons, most distributed
programming languages and toolkits provide concurrent programming features.

1Strictly speaking, it is impossible to implement a language like CML, which has synchronous channels and both input
and output operations in choice contexts, in a distributed system (see Section 6.4).
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This chapter explores a distributed implementation of Linda-style tuple spaces (de-
scribed in Section 2.6.3). The implementation illustrates several points: first, it shows
how CML can be used to implement low-level systems services; second, it shows how
the CML primitives can provide a useful interface to asynchronous distributed program-
ming primitives; and third, it is another extended example of programming in CML. The
chapter is organized into three parts: first we describe the interface to the CML-Linda
Library, and present a simple, but classic, programming example. Then we give a high-
level description of the implementation, including the major components and protocols.
Finally, we explore into the implementation details in all their glory. The implementation
details are presented in a bottom-up order, starting with the network interface and ending
with the programmer’s API. The description of the implementation is quite involved and
the casual reader may wish to skip the material after Section 9.4.

9.1 CML-Linda

As discussed in Chapter 2, Linda is not a programming language per se, but rather is
a small collection of primitives that can be added to an existing language to provide
distribution and parallelism. Our CML interface to tuple spaces supports the three basic
tuple I/O operations: output, input, and read. It does not provide an eval operation, since
CML’s spawn operation provides multiple threads locally, and implementing remote
evaluation is beyond the scope of this book.

The programmer’s interface to the CML-Linda library is provided by the Linda
structure, which has the interface given in Listing 9.1. In addition to the tuple-space op-
erations, this interface also includes the concrete representation of tuples and templates,
and a mechanism for a program to join a distributed tuple space. For the purposes of
this chapter, we choose a fairly restricted class of tuples; it would be straightforward to
extend them to richer structures. Tuples and templates have the same internal structure,
but differ in the kinds of values found at their leaves: tuples have values, while tem-
plates have both values and formal parameters. We use a common parameterized type,
tuple_rep, to represent the internal structure. The datatype val_atom is a tagged
union of the values found at the leaves of a tuple (integers, strings and booleans). This
type is also used to represent the tag of a tuple or template, which is the first element of
a tuple_rep value. The leaves of a template are represented by the pat_atom type,
and include tagged values, typed formals, and a wildcard that matches any value of any
type. The out operation puts a tuple into the specified tuple space. Since the input op-
erations inEvt and rdEvt may block, they are given an event-value return type. These
input operations take a template as an argument and return a list of values, which are the
bindings for the formals in the matched template. The rules for template/tuple matching
are defined in Table 9.1.
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signature LINDA =
sig

datatype val_atom
= IVal of int
| SVal of string
| BVal of bool

datatype pat_atom
= IPat of int
| SPat of string
| BPat of bool
| IFormal
| SFormal
| BFormal
| Wild

datatype ’a tuple_rep = T of (val_atom * ’a list)

type tuple = val_atom tuple_rep
type template = pat_atom tuple_rep

type tuple_space

val joinTupleSpace : {
localPort : int option,
remoteHosts : string list

} -> tuple_space

val out : (tuple_space * tuple) -> unit
val inEvt : (tuple_space * template) -> val_atom list event
val rdEvt : (tuple_space * template) -> val_atom list event

end;

Listing 9.1: The CML-Linda interface

The joinTupleSpace operation provides a mechanism for a distributed tuple
space to be established in an incremental fashion. Suppose, for example, that we want to
have three processors (A, B, and C) share a tuple space. Then, we start by executing the
code

Linda.joinTupleSpace{localPort = NONE, remoteHosts = []}

on processor A, which creates the initial tuple space on A. Then B joins the tuple space
by executing

Linda.joinTupleSpace{localPort = NONE, remoteHosts = ["A"]}
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Table 9.1: Template matching semantics

Pattern Matching tuple
IPat i IVal i
SPat s SVal s
BPat b BVal b
IFormal IVal i
SFormal SVal s
BFormal BVal b
Wild any value

Lastly, C joins by executing

Linda.joinTupleSpace{localPort = NONE, remoteHosts = ["A", "B"]}

Since the joinTupleSpace operation is designed for joining an existing tuple space
(as defined by the list of remote hosts), the order in which these commands get executed
is important.2

As an example of programming in CML-Linda, we consider a solution to the classic
Dining Philosophers problem. The program is a simulation of n philosophers sitting at
a round table with a bowl of noodles in the center. The philosophers alternate between
thinking and eating. To eat, a philosopher must have two chopsticks, but there are only
n chopsticks at the table (one between each pair of adjacent philosophers). The philoso-
phers represent processes in a concurrent system, and the chopsticks are resources. The
problem is that if each philosopher acquires a single chopstick, then no philosopher can
make progress (i.e., eat) and the system is deadlocked. Our solution to this problem is to
introduce tickets that must be acquired by a philosopher before chopsticks are acquired.
By limiting the number of tickets to n−1, we guarantee that at least one philosopher will
be able to eat. The CML-Linda implementation of this scheduling policy can be found
in Listing 9.2. Each philosopher is assigned to a processor in the system; the chopsticks
and tickets are represented by tuples in the tuple space. Since a philosopher may only use
the chopsticks that are next to him, the chopsticks are labeled with their position, and we
use the tuple-space pattern matching to match a philosopher with the correct chopsticks.
The function philosopher is called to start a philosopher; it takes the total number
of philosophers and list of remote hosts to join as arguments. It joins the tuple space,
and then starts executing the philsopher’s actions. Since a different list of hosts will be

2A more sophisticated implementation could remove this restriction.
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structure L = Linda

val tagCHOPSTICK = L.SVal "chopstick"
val tagTICKET = L.SVal "ticket"

fun initTS (ts, 0) = L.out (ts, L.T(tagCHOPSTICK, [L.IVal 0]))
| initTS (ts, i) = (

L.out (ts, L.T(tagCHOPSTICK, [L.IVal i]));
L.out (ts, L.T(tagTICKET, [])))

fun philosopher (numPhils, hosts) = let
val ts = L.joinTupleSpace {

localPort = NONE,
remoteHosts = hosts

}
val philId = length hosts
fun input x = sync(L.inEvt (ts, x))
val left = philId and right = (philId+1) mod numPhils
fun loop () = (

think philId;
input (L.T(tagTICKET, []));
input (L.T(tagCHOPSTICK, [L.IPat left]));
input (L.T(tagCHOPSTICK, [L.IPat right]));
eat philId;
L.out (ts, L.T(tagCHOPSTICK, [L.IVal left]));
L.out (ts, L.T(tagCHOPSTICK, [L.IVal right]));
L.out (ts, L.T(tagTICKET, []));
loop ())

in
initTS(ts, philId);
loop()

end

Listing 9.2: Dining philosophers in CML-Linda

used on each machine (as in the example above), we can use the length of the host list
to assign philosopher IDs. Note that the initialization of the tuple space is handled in a
distributed fashion.

9.2 An implementation overview

A CML-Linda program consists of one, or more, CML programs running on one, or
more, machines in a network. These programs communicate via shared tuple spaces,
where a tuple-space representation is distributed among the CML programs that have
joined the space. Without loss of generality, we assume a one-to-one correspondence
between the CML programs in the system and the machines they run on. And we use
the term “processor” to mean either the program or the machine. To simplify the imple-
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mentation, we ignore the problems related to failure (i.e., what happens when one of the
machines or programs crashes).

In the remainder of this section, we describe the architecture of the system and give an
overview of the major system components.

9.2.1 Distribution of tuple space

The main design issue is how to distribute the tuples of a tuple space over the processors
in a system. There are two basic ways to implement a distributed tuple space:

• Read-all, write-one: where each tuple is located at a single processor. A write
operation adds a tuple to some processor, while a read operation must query all the
processors in the system for a match.

• Read-one, write-all: where each processor has a copy of every tuple. A write
operation must add the tuple to all processors, while a read operation need only
query the local processor’s copy of tuple space. Note, however, that a successful
input operation must communicate with all of the other processors to remove the
tuple from their copies of the tuple space. This means that both the inEvt and
out (but not rdEvt) operations involve communicating with all other processors
in the system.

For our implementation, we use the first organization. Each processor has a thread, called
the tuple server, that maintains a tuple store, which is the processor’s portion of the tuple
space.

With a read-all, write-one distribution, the implementation of the out operation is
straightforward. When a tuple is written, some decision must be made as to where the
tuple should be placed, and then a message is sent to the appropriate processor. Simple
policies for tuple placement include always placing tuples locally, and round-robin place-
ment. More sophisticated schemes might use static analysis or dynamic information for
better placement. In our implementation, each processor has a thread, called the output
server, that implements the distribution policy for output operations.

The inEvt and rdEvt operations require that a client communicate with all of the
tuple servers in the system. To provide a uniform interface to the tuple servers, each
processor has a tuple-server proxy for each tuple server in the system (including its own).
Client threads in the system communicate with the proxies, which in turn communicate
with the tuple servers.

Figure 9.1 shows how these various servers are interconnected in a two-processor tuple
space. The solid lines represent local communications (using CML operations), while the
dotted lines are remote communications (using network operations). A CML application
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that uses the CML-Linda library (called a client) communicates with the tuple-server
proxies for input and read operations, and with the output server for output operations. In
turn, the proxies must communication with their corresponding tuple servers. The output
server also communicates with the tuple servers when distributing tuples. Note that the
actual implementation has additional threads, such as network-buffer threads, that are not
shown in this diagram.

9.3 The protocols

There are three basic protocols implemented by the CML-Linda library: the input pro-
tocol, which implements the inEvt and rdEvt operations; the protocol for outputing
tuples; and the protocol for joining a tuple space. To understand better the detailed im-
plementation description that follows, we first give a high-level description of how these
protocols work.

9.3.1 The input protocol

The input operations (inEvt and rdEvt) require a fairly complicated protocol. The
basic protocol for inEvt is as follows:

1. The reading processor, call it P , broadcasts the template to all the tuple-space
servers in the system.

2. Each tuple-space server checks for a match. If it finds one, then it places a hold on
the tuple and sends the tuple to P ; otherwise, it remembers the input request in a
table of outstanding requests. If some subsequent output tuple matches the input
request, then the tuple server will send the matching tuple to P .

3. The processor P waits for a matching tuple. Once P receives a matching tuple, say
from Q, it sends Q a message acknowledging the tuple, and sends a cancellation
message to the other processors.

4. When Q receives the acknowledgement, it removes the tuple from its space. When
a processor that has a matching tuple receives a cancellation message, it cancels
the hold it placed on the matching tuple, which allows it to be used to match other
requests. When a processor that does not have a matching tuple receives a can-
cellation message, it removes the record of the original request from its table of
outstanding requests.

The protocol for rdEvt is similar; the main difference is that the tuple is not removed in
step 4.
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For each input (or read) request, we spawn a new thread to manage the operation.
This thread broadcasts the template to be matched to the tuple servers, and coordinates
the replies. Furthermore, its thread ID serves as a locally unique ID for the transaction.3

Once a matching tuple has been found, it is communicated to the reading thread, and
the cancellation messages are sent out to the other processors. Figure 9.2 shows the
message traffic for such a situation. Since the inEvt and rdEvt operations are event-
valued, there is the added complication that these operations can be used in a selection
context, where they might be aborted. We use negative acknowledgements to handle this
situation. Once the manager thread has broadcast the read request, it waits for either

3The thread ID is mapped to an integer ID by the proxy and this integer is paired with the tuple-space ID to give a
system-wide unique ID for the transaction.
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a reply from a proxy or an abort event from the client. Figure 9.3 shows the message
traffic when the client aborts the operation. When the manager thread receives a negative
acknowledgement, it sends cancellation messages to all of the tuple-space servers. We
also take care not to send the acknowledgement message until we are sure that the tuple
has been accepted. We do this by synchronizing on the choice of sending the matching
tuple on the reply channel and receiving the negative acknowledgement. The semantics
of CML channels guarantee that only one of these can occur.

9.3.2 The output protocol

The out operation protocol is trivial. For this implementation, we choose a round-robin
distribution policy for tuples, which is implemented by the local output server.

9.3.3 The join protocol

The join protocol provides a mechanism for a process to join an already existing tuple
space. When an application calls joinTupleSpace, it supplies a list of remote hosts.
Implementing this operation requires creating a local proxy for each remote host and
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establishing a connection between the proxy and the remote host. These connections
are also used by the output server to place tuples in the remote parts of the tuple space.
At each remote host, a proxy for the new member of the tuple space must be created,
and the new member must be added to output server’s list. Since our implementation is
based on TCP/IP sockets, which provide bidirectional communication, the remote hosts
do not have to establish a network connection back to the new member. One tricky point
about the join protocol is that once it is completed, the new member should have a view
of the tuple-space state that is consistent with the rest of the members, including any
outstanding input operations. Without this information, tuples at the new member cannot
be used to satisfy outstanding requests that were made prior to when it joined. To address
this problem, we employ a log server, which keeps a log of outstanding requests that were
issued by its local clients. When a new member joins, each existing member sends the
new member a list of outstanding requests, which results in a consistent global state.

9.4 The major components

Before diving into a detailed description of the implementation, it is useful to survey
the major components. The system is implemented in seven distinct modules, which are
logically organized into three layers — client, server, and network — as follows:

Client layer
The client layer is implemented by the Linda structure, which has the interface
given in Listing 9.1. It includes the implementation of the threads that are spawned
to manage input operations.

Server layer
The server layer contains the bulk of the system. It includes the output server,
which implements the output mapping policy for tuples; the tuple server prox-
ies, which provide a uniform interface between the client operations and the tuple
servers; and the tuple server itself, which maintains the local portion of the distrib-
uted tuple space. It consists of the following modules:

structure TupleServer : TUPLE_SERVER
This structure implements the local tuple server, the tuple-server proxies, and
the log server.

structure TupleStore : TUPLE_STORE
This structure implements the storage mechanism for the local portion of
tuple space.

structure OutputServer
This structure implements the output server thread, including the policy for
distributing tuples.
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Network layer
The network layer provides an abstract interface to distributed communication over
some communication fabric.4 It consists of the following modules:

structure Network : NETWORK
This structure provides the network layer API to the server layer. It includes
operations for sending/receiving messages to/from specific remote hosts.

structure NetMessage
This structure defines the basic message types used by the network communi-
cation and provides operations to read and write messages over the network.

structure DataRep
This structure implements operations for marshalling and unmarshalling tu-
ple and template data.

In addition, there is the Tuple structure, which defines the tuple and template types.
Since these have already been described above (see Listing 9.1), we do not discuss this
structure any further. The remainder of this chapter examines each of these layers in
detail, starting from the bottom (network interface).

9.5 The network layer

At the lowest level, the servers that implement the distributed tuple space must communi-
cate over some sort of network. There are many different kinds of network communica-
tion, so it is useful to isolate the implementation details in an abstraction of the required
network services. The implementation of this abstraction layer must address several is-
sues: establishing and managing connections to the other tuple servers in the tuple space;
routing messages from the network connections to the appropriate threads; and encoding
and decoding messages.

There are a number of ways that we might implement this layer, including a single ad-
dress space implementation on top of CML primitives. For the purpose of this chapter,
we choose an implementation on top of TCP/IP streams, which provide ordered reli-
able communication between processors. While it would be more efficient to use UDP
datagrams, it would require additional complexity for handling lost and out-of-order mes-
sages, and so we leave it as an exercise for the reader.

For any TCP/IP connection, one process is called the client and the other is the server.
This asymmetry is reflected in the way that the connection is established. For a connec-
tion between a tuple server on processor A and a tuple-server proxy for A on processor
B, we designate A as the server and B as the client.

4We use TCP/IP for network communication, but other mechanisms could be used without affecting the other layers
of the system.
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Figure 9.4 gives the local communication topology for the network layer in a two-
processor tuple space. The network layer consists of the network server thread and a
socket buffer thread for each remote connection. The network server thread is responsible
for accepting new connections and creating socket buffer threads. The socket buffer
threads handle socket I/O and marshalling and unmarshalling of messages.

9.5.1 Message representation

The first issue that must be addressed is how the various requests and replies are repre-
sented when communicated between processors. When designing such a representation,
we must be aware that different processors in a common tuple space may have differ-
ent internal representations of ML values. For the purpose of this system, we assume a
basic machine size of 32 bits,5 so we only have to worry about endianess. We choose
a big-endian representation for this implementation (i.e., the most significant byte has
the lower address). Figure 9.5 gives a pictorial view of the message representation. All

5As of this writing, SML/NJ only has 32-bit implementations, although 64-bit versions may appear in the future.
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messages have a standard 4-byte header consisting of a 16-bit message kind and a 16-bit
message length. The message length specifies the number of bytes following the header.
For all message kinds except OutTuple, the first element of the message body is the
transaction ID, which is a 4-byte integer.

We also use a simple encoding scheme for tuples, templates, and bound values. Ta-
ble 9.2 gives the encoding scheme for the fields of a template; values are encoded in
the same format, except that there are no formals or wildcards. A template, tuple, or
sequence of bound values is represented as a sequence of the field encodings, terminated
by a semicolon.

The encoding and decoding of messages is implemented across two modules: the
message header and transaction ID is handled in the NetMessage structure, which is
described in the next section; and the encoding of tuples, templates, and value sequences
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Table 9.2: Template field encoding

Encoding Field
ib1b2b3b4 IPat k where k = 224 · b1 + 216 · b2 + 28 · b3 + b4

t BPattrue
f BPatfalse

sb1b2b3b4c1 . . . ck SPat"c1 · · · ck" where k = 224 · b1 + 216 · b2 + 28 · b3 + b4

I IFormal
B BFormal
S SFormal

Wild

is implemented by the DataRep structure, whose interface is given in Listing 9.3. This
structure also provides functions for computing the size of tuples, templates, and value
sequences. The decoding functions take a vector of bytes and an index into the vector,
and return the decoded value and next index. Similarly, the encoding functions take a
value, an array of bytes, and a starting index in the array, and return the index of the
first byte after the encoded value. Returning the next index allows multiple values to
be included in a message; while our implementation does not use this feature, a more
optimized network layer might want to piggyback multiple messages in a single network
message. We do not include the implementation of the DataRep structure here, since it
is straightforward.

type vector = Word8Vector.vector
val decodeTuple : (vector * int) -> (Tuple.tuple * int)
val decodeTemplate : (vector * int) -> (Tuple.template * int)
val decodeValues : (vector * int) -> (Tuple.val_atom list * int)

type array = Word8Array.array
val encodeTuple : (Tuple.tuple * array * int) -> int
val encodeTemplate : (Tuple.template * array * int) -> int
val encodeValues : (Tuple.val_atom list * array * int) -> int

val tupleSz : Tuple.tuple -> int
val templateSz : Tuple.template -> int
val valuesSz : Tuple.val_atom list -> int

Listing 9.3: The DataRep interface
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datatype message
= OutTuple of Tuple.tuple
| InReq of {

transId : int,
pat : Tuple.template

}
| RdReq of {

transId : int,
pat : Tuple.template

}
| Accept of { transId : int }
| Cancel of { transId : int }
| InReply of {

transId : int,
vals : Tuple.val_atom list

}

type ’a sock = (’a, Socket.active Socket.stream) Socket.sock

val recvMessage : ’a sock -> message
val sendMessage : (’a sock * message) -> unit

Listing 9.4: The NetMessage interface

9.5.2 Network communication

The reading and writing of messages on a socket is implemented in the NetMessage
structure; its interface is given in Listing 9.4. In addition to handling socket I/O, the
functions recvMessage and sendMessage also manage the conversion between
the message datatype and the wire representation of messages. Listing 9.5 gives the
implementation of the recvMessage function. This function first reads the 4-byte
header and unpacks the message kind and length (notice we use the big-endian unpacking
operations).6 We then read the rest of the message data, then decode it based on the
message’s kind (using the DataRep structure to decode the Linda values carried in a
message). We do not present the code for the sendMessage function here, but it is
similar.

9.5.3 Network interface

The Network structure provides the interface to the network layer; its interface, the
NETWORK signature, is given in Listing 9.6. The abstract network type is used as
a handle for the collection of network threads; its only use is as an argument to the

6We use the utility function, recvVec, from the SML/NJ Library to read a specific number of bytes from a socket.
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structure DR = DataRep

fun recvMessage sock = let
val hdr = SockUtil.recvVec (sock, 4)
val kind = Pack16Big.subVec(hdr, 0)
val len = LargeWord.toInt(Pack16Big.subVec(hdr, 1))
val data = SockUtil.recvVec (sock, len)
fun getId () = LargeWord.toInt(Pack32Big.subVec(data, 0))
fun getTuple () = #1 (DR.decodeTuple (data, 0))
fun getPat () = #1 (DR.decodeTemplate (data, 4))
fun getVals () = #1 (DR.decodeValues (data, 4))
in

case kind
of 0w0 => OutTuple(getTuple ())
| 0w1 => InReq{transId=getId(), pat=getPat()}
| 0w2 => RdReq{transId=getId(), pat=getPat()}
| 0w3 => Accept{transId=getId()}
| 0w4 => Cancel{transId=getId()}
| 0w5 => InReply{transId=getId(), vals=getVals()}
| _ => error "recvMessage: bogus message kind"

(* end case *)
end

Listing 9.5: The implementation of recvMessage

shutdown function.7 The abstract server_conn type is an abstraction of the con-
nection to a remote server. It is used to send requests, receive replies, and to acknowledge
replies. Tuple-server IDs are represented by the ts_id type. The network layer assigns
these IDs when creating connections to remote members of the tuple space. The reply
type represents a reply to an input operation. It is a record of a transaction ID (generated
by the remote server) and a list of the values bound to the free variables of input op-
eration’s template. Requests from remote clients are represented by the client_req
datatype. Note that each of the client request constructors corresponds to a send opera-
tion on a server connection. The InReq constructor deserves additional comment: the
remove field is used to distinguish between input requests generated from in and those
from rd operations; in the former case, the remove flag will be true, and the tuple
should be removed when successfully read. The reply field is a function that is used to
send a reply to the appropriate remote client (via the corresponding socket buffer thread).
The last type defined in the Network structure is remote_server_info, which is
a record of information about a remote server (name, ID, and the server connection).

The function initNetwork is used to establish the network server thread and ini-

7In this implementation, the shutdown is just a stub. Implementing a shutdown protocol is left as an exercise for the
reader.
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signature NETWORK =
sig
type network
type server_conn
eqtype ts_id

type reply = {transId : int, vals : Tuple.val_atom list}

datatype client_req
= OutTuple of Tuple.tuple
| InReq of {

from : ts_id,
transId : int,
remove : bool,
pat : Tuple.template,
reply : reply -> unit

}
| Accept of {from : ts_id, transId : int}
| Cancel of {from : ts_id, transId : int}

type remote_server_info = {
name : string,
id : ts_id,
conn : server_conn

}

val initNetwork : {
port : int option,
remote : string list,
tsReqMb : client_req Mailbox.mbox,
addTS : remote_server_info -> unit

} -> {
myId : ts_id,
network : network,
servers : remote_server_info list

}

val sendOutTuple : server_conn -> Tuple.tuple -> unit
val sendInReq : server_conn -> {

transId : int,
remove : bool,
pat : Tuple.template

} -> unit
val sendAccept : server_conn -> {transId : int} -> unit
val sendCancel : server_conn -> {transId : int} -> unit
val replyEvt : server_conn -> reply event

val shutdown : network -> unit

end (* NETWORK *)

Listing 9.6: The abstract network interface
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tial remote connections. It takes as arguments an optional port number,8 a list of remote
servers, a mailbox for communicating with the local tuple server thread, and a function to
notify the server level that a new member has joined the tuple space. TheinitNetwork
function returns the tuple-server ID assigned to the local server, the network handle, and
information about each of the remote servers. Listing 9.7 gives the implementation of
initNetwork. We start by parsing the list of remote server names into host name, ad-
dress, and port records, which is done by mapping the parseHost function over the list
of remote hosts. We then spawn the network server with a call to spawnNetServer.
The network server is responsible for assigning tuple-server IDs to members that join
after initialization. Internally, we use integers for the tuple-server IDs (type ts_id).
We assign 0 to the local server, and 1 through n for the initial n remote hosts. We pass
the first ID after that (n + 1) to spawnNetServer. The remote server information is
created by folding the mkServer function over the list of hosts. This function connects
a fresh socket to the remote hosts and calls spawnBuffers to spawn the socket buffer
threads. The spawnBuffers function (described below) returns the client connection
for the remote host.

The parseHost function is responsible for translating a host name into uniform ad-
dress information. A hostname consists of a host part and an optional port part, separated
by a colon. The host part may be a numeric IP address, or a symbolic name. Likewise,
the port may be specified by an integer port number, or by the name of a service. We use
a couple of functions from the SockUtil structure provided by the SML/NJ Library
to handle the parsing of the host information. The scanAddr function is first used to
parse the hostname into the host and port parts, and to classify the parts as symbolic or
numeric. Then we use the resolveAddr function to resolve symbolic addresses. If
the port is not specified, we use the default of 7001.

The last piece of the network initialization code is the spawnNetServer function,
which creates a new socket and thread for listening for new connections. Each time a new
connection is accepted, we spawn new socket buffer threads for the connection, figure
out the name of the connecting host,9 and pass this information to the addTS function,
which handles adding the new connection at the server level (see Section 9.7.1). The
spawnNetServer function also creates the network object, which has the following
representation:

datatype network = NETWORK of {shutdown : unit SyncVar.ivar}

Note that the shutdown field is not being used in this implementation.

8The full “address” of a socket consists of the machine that it is on and its port number. The CML-Linda library uses
port 7001 as its default port, but the port argument allows this to be overridden.

9The hostname is not strictly necessary, but it is useful to have this information when debugging higher levels of the
implementation.
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fun parseHost h = (case (StringCvt.scanString SockUtil.scanAddr h)
of NONE => error "bad hostname format"
| (SOME info) => (case SockUtil.resolveAddr info

of {host, addr, port = NONE} =>
{host = host, addr = addr, port = 7001}

| {host, addr, port = SOME p} =>
{host = host, addr = addr, port = p}

(* end case *))
handle (SockUtil.BadAddr msg) => error msg

(* end case *))

fun spawnNetServer (myPort, startId, tsMb, addTS) = let
val mySock = INetSock.TCP.socket()
fun loop nextId = let

val (newSock, addr) = Socket.accept mySock
val proxyConn = spawnBuffers (nextId, newSock, tsMb)
val (host, port) = INetSock.fromAddr addr
val name = (case NetHostDB.getByAddr host

of (SOME ent) => NetHostDB.name ent
| NONE => "??"

(* end case *))
in

addTS {name = name, id = nextId, conn = proxyConn};
loop (nextId+1)

end
val port = getOpt(myPort, 7001)
in

Socket.bind (mySock, INetSock.any port);
Socket.listen (mySock, 5);
spawn (fn () => loop startId);
NETWORK{shutdown = SyncVar.iVar()}

end

fun initNetwork {port, remote, tsReqMb, addTS} = let
val hosts = List.map parseHost remote
val startId = length hosts + 1
val network = spawnNetServer (port, startId, tsReqMb, addTS)
fun mkServer ({host, addr, port}, (id, l)) = let

val sock = INetSock.TCP.socket()
val sockAddr = INetSock.toAddr(addr, port)
val _ = Socket.connect (sock, sockAddr)
val conn = spawnBuffers (id, sock, tsReqMb)
in

(id+1, {name = host, id = id, conn = conn}::l)
end

in
{ myId = 0, network = network,
servers = #2 (List.foldl mkServer (1, []) hosts)

}
end

Listing 9.7: Initializing the network interface
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datatype server_conn = CONN of {
out : Msg.message -> unit,
replyEvt : reply event

}

fun spawnBuffers (id, sock, tsMb) = let
val outMb = Mailbox.mailbox()
fun outLoop () = (

Msg.sendMessage (sock, Mailbox.recv outMb);
outLoop())

val inMb = Mailbox.mailbox()
fun reply r = Mailbox.send(outMb, Msg.InReply r)
fun inLoop () = (

case Msg.recvMessage sock
of (Msg.OutTuple t) => Mailbox.send(tsMb, OutTuple t)
| (Msg.InReq{transId, pat}) =>

Mailbox.send(tsMb, InReq{
from=id, transId=transId,
remove = true, pat=pat, reply=reply

})
| (Msg.RdReq{transId, pat}) =>

Mailbox.send(tsMb, InReq{
from=id, transId=transId,
remove = false, pat=pat, reply=reply

})
| (Msg.Accept{transId}) =>

Mailbox.send(tsMb, Accept{from=id, transId=transId})
| (Msg.Cancel{transId}) =>

Mailbox.send(tsMb, Cancel{from=id, transId=transId})
| (Msg.InReply repl) => Mailbox.send(inMb, repl)

(* end case *);
inLoop ())

in
spawn outLoop; spawn inLoop;
CONN{

out = fn req => Mailbox.send(outMb, req),
replyEvt = Mailbox.recvEvt inMb

}
end

Listing 9.8: Creating the socket buffer threads

The spawnBuffers function (see Listing 9.8) is responsible for creating the socket
buffer threads. The output buffer thread is quite simple: it repeatedly gets a message
from a mailbox and uses sendMessage to send it out on the network connection. The
input buffer thread is more complicated. When it receives a message from the socket, it
examines the message type and routes it to the appropriate target: to the tuple server’s
mailbox (tsMb) for output operations and requests from a remote client, and to the client
connection mailbox (inMb) for replies to requests from local clients. The request mes-



204 9 A CML Implementation of Linda

signature TUPLE_SERVER =
sig

type ts_id = Network.ts_id

datatype ts_msg
= IN of {

tid : thread_id,
remove : bool,
pat : Tuple.template,
replFn : (Tuple.val_atom list * ts_id) -> unit

}
| CANCEL of thread_id
| ACCEPT of (thread_id * ts_id)

val mkLogServer : ts_msg Multicast.port
-> unit -> (ts_msg Multicast.port * ts_msg list)

val mkTupleServer :
(ts_id * Network.client_req Mailbox.mbox * ts_msg event)
-> unit

val mkProxyServer :
(ts_id * Network.server_conn * ts_msg event * ts_msg list)
-> unit

end

Listing 9.9: The TupleServer interface

sages passed to the tuple server are tagged with the ID of the connection. In the case of
input or read requests, the input buffer also adds the reply function to the message. The
reply function routes the reply to the output buffer’s mailbox. With the use of this reply
function and the tuple-server mailbox, the tuple server is isolated from having to know
about the individual remote connections.

9.6 The server layer

The server layer is the meat of the CML-Linda system. It consists of four kinds of
threads: a set of tuple-server proxies, which provide a uniform interface between the
client level and the tuple servers (both remote and local); the local tuple server, which
maintains the local portion of the tuple space; the log server, which maintains a log of
the current outstanding requests; and the output server, which manages the distribution of
locally generated tuples. The first three of these are implemented in the TupleServer
structure, which has the signature given in Listing 9.9. The local tuple server is built on
top of the tuple storage mechanism provided by the TupleStore structure. The output
server thread is implemented in the OutputServer structure. We examine each of
these threads, as well as the tuple storage mechanism, in turn.
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structure TransTbl = Hash2TableFn (
structure Key1 = struct

type hash_key = thread_id
val hashVal = hashTid
val sameKey = sameTid

end
structure Key2 = struct

type hash_key = int
val hashVal = Word.fromInt
val sameKey = (op = : (int * int) -> bool)

end)

Listing 9.10: The transaction table structure

9.6.1 The tuple-server proxies

The tuple server proxies provide an abstraction layer between the transaction manager
threads that implement the input operations, and the tuple servers. This abstraction layer
hides the location of the particular tuple server represented by a given proxy.

A tuple-server proxy must maintain the set of outstanding transactions, and be able
to locate a transaction based on the local ID, which is the thread ID of the transaction
manager, and the remote ID. To accomplish this, we use the double-keyed hash table
functor from the SML/NJ Library to implement transaction tables (see Listing 9.10).
The items that we store in these tables have the following record type:

type trans_info = {
id : int,
replFn : (T.val_atom list * ts_id) -> unit

}

The id field is the transaction ID that is assigned to the transaction by the proxy server
and is forwarded to the remote tuple servers,10 and the replFn field is used to send a
matching tuple to the thread that is managing the transaction.

The actual implementation of a proxy server is contained in the proxyServer func-
tion, which is given in Listing 9.11. This function is used to create proxy servers for both
remote tuple servers and the local tuple server, so it is necessary to use an abstraction
of the connection to the tuple server. We use a record of functions for this interface (the
conn_ops record type). The body of the proxy server is a simple message handling
loop. Requests from local clients are handled by handleMsg, while handleReply
deals with replies from the tuple server. The set of outstanding transactions is kept in
a double-keyed hash table, as described above. When an IN message is received from
the client, a new transaction ID is generated (using the function nextId), the request

10We do not use the transaction manager’s thread ID for this because there is no easy way to send it to a remote system.



206 9 A CML Implementation of Linda

type conn_ops = {
sendInReq : {

transId : int, remove : bool, pat : T.template
} -> unit,

sendAccept : {transId : int} -> unit,
sendCancel : {transId : int} -> unit,
replyEvt : Net.reply event

}

fun proxyServer (myId, conn : conn_ops, reqEvt, initInReqs) = let
val tbl = TransTbl.mkTable (32, Fail "TransTbl")
val nextId = let val cnt = ref 0

in
fn () => let val id = !cnt in cnt := id+1; id end

end
fun handleMsg (IN{tid, remove, pat, replFn}) = let

val id = nextId()
val req = {transId = id, remove = remove, pat = pat}
in

TransTbl.insert tbl (tid, id, {id=id, replFn=replFn});
#sendInReq conn req

end
| handleMsg (CANCEL tid) = let

val {id, ...} = TransTbl.remove1 tbl tid
in

#sendCancel conn {transId=id}
end

| handleMsg (ACCEPT(tid, tsId)) = let
val {id, ...} = TransTbl.remove1 tbl tid
in

if (tsId = myId)
then #sendAccept conn {transId=id}
else #sendCancel conn {transId=id}

end
fun handleReply {transId, vals} = (

case TransTbl.find2 tbl transId
of NONE => ()
| (SOME{id, replFn}) => replFn (vals, myId)

(* end case *))
fun loop () = (

select [
wrap (reqEvt, handleMsg),
wrap (#replyEvt conn, handleReply)

];
loop ())

in
List.app handleMsg initInReqs;
ignore (spawn loop)

end

Listing 9.11: The implementation of proxyServer
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fun mkProxyServer (myId, conn, reqEvt, initInList) = let
val conn = {

sendInReq = Net.sendInReq conn,
sendAccept = Net.sendAccept conn,
sendCancel = Net.sendCancel conn,
replyEvt = Net.replyEvt conn

}
in

proxyServer (myId, conn, reqEvt, initInList)
end

Listing 9.12: The implementation of mkProxyServer

is recorded in the table, and the request is forwarded to the tuple server with the gen-
erated ID as the transaction ID. When a CANCEL or ACCEPT message is received, the
corresponding entry is removed from the table and the transaction ID is retrieved. Then
the message is tagged with the transaction ID, and forwarded to the tuple server. Replies
from the tuple server are a bit easier to deal with, since there is only one kind of message
involved. When a reply comes in, we use the transaction ID to find the corresponding
item in the table, and use the item’s replFn field to forward the reply back to the trans-
action manager in the client level. Note that there is a race between a cancel message
being received by the remote server, and the remote server offering a matching tuple. To
avoid any problems caused by this race condition, the handleReply function detects
the situation where the transaction has already been removed from the table and ignores
the reply.

A proxy server for a remote tuple server is created by the function mkProxyServer,
which is shown in Listing 9.12. This function is a wrapper on proxyServer; its
only work is to package up the server connection provided by the network layer (see
Listing 9.6) as a conn_ops record.

9.6.2 The tuple store

The TupleStore structure implements the storage mechanism for the local piece of
the distributed tuple space (i.e., the part managed by the local tuple server). Listing 9.13
gives the interface of this structure. The abstract tuple_store type contains the tuples
in the local part of the tuple space (including those that are held), as well as a record
of outstanding input requests. The id type is used to tag input requests. It consists
of the tuple server ID that generated the request and a unique transaction ID (which is
an integer). The match type constructor is used to represent information about input
requests. It is a record consisting of the ID of the input request, a function for replying
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signature TUPLE_STORE =
sig

type tuple_store
type id = (Network.ts_id * int)
type ’a match = {

id : id,
reply : Network.reply -> unit,
ext : ’a

}
type bindings = Tuple.val_atom list

val newStore : unit -> tuple_store

val add : (tuple_store * Tuple.tuple) -> bindings match option
val input : (tuple_store * Tuple.template match) -> bindings option
val cancel : (tuple_store * id) -> bindings match option
val remove : (tuple_store * id) -> unit

end

Listing 9.13: The TUPLE STORE signature

to the request, and an extension field with additional information. Depending on the
context, the extension field of a match is either a template or set of variable bindings (the
bindings type is a list of values that are bound to the free variables of a template).

The TupleStore structure also provides operations that correspond to the messages
that a tuple server must handle (see Section 9.6.3). The add operation is used to add new
tuples to the store (i.e., because of an output operation). Since the new tuple may match
some outstanding input request, the add operation returns optional match information.
The input operation is used to query the store for possible matches to an input request.
If the request cannot be satisfied immediately, it is recorded in the store. Lastly, the
cancel and remove operations are used to complete the transaction initiated by an
input request: cancel removes the hold on a tuple (which frees the tuple to match
another outstanding request), and remove removes the tuple from the store.

The type declarations for the data structures used to represent the tuple store are given
in Listing 9.14. The tuple_store type is actually represented by a pair of hash tables.
The tuple table maps the key portion of a tuple or template to a bucket, where the bucket
for a given key is a record of the list of outstanding input requests with that key and the
list of tuples with that key. The other hash table in a tuple_store is the hold table,
which is used to keep track of those tuples that are being held pending acceptance or
cancellation of a matching input operation.

One important operation used in the implementation of the tuple store is matching
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structure T = Tuple

type id = (Network.ts_id * int)

type ’a match = {
id : id,
reply : Network.reply -> unit,
ext : ’a

}
type bindings = T.val_atom list

type bucket = {
waiting : T.template match list ref,
holds : (id * T.tuple) list ref,
items : T.tuple list ref

}

structure TupleTbl = HashTableFn (struct
type hash_key = T.val_atom
fun hashVal (T.BVal false) = 0w0

| hashVal (T.BVal true) = 0w1
| hashVal (T.IVal n) = Word.fromInt n
| hashVal (T.SVal s) = HashString.hashString s

fun sameKey (k1 : T.val_atom, k2) = (k1 = k2)
end)

structure QueryTbl = HashTableFn (struct
type hash_key = id
fun hashVal (_, id) = Word.fromInt id
fun sameKey ((tsId1, id1), (tsId2, id2) : hash_key) =

((tsId1 = tsId2) andalso (id1 = id2))
end)

datatype query_status = Held | Waiting

datatype tuple_store = TS of {
queries : (query_status * bucket) QueryTbl.hash_table,
tuples : bucket TupleTbl.hash_table

}

Listing 9.14: The various types used in the tuple-store representation

a template to a tuple. This is done by the match function given in Listing 9.15. This
function takes a template and tuple as arguments and returns NONE if there is no match or
some bindings if there is a match. The match function is only called in contexts where
the keys have already been matched (by the hash table lookup), so only the rest of the
template and tuple are compared. The implementation is straightforward: the mFields
function iterates over the field list accumulating bindings, while the mField function
checks a pattern field against a value field using the rules in Table 9.1.
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fun match (T.T(_, rest1), T.T(_, rest2)) = let
fun mFields ([], [], binds) = SOME binds

| mFields (f1::r1, f2::r2, binds) = (
case mField(f1, f2, binds)
of (SOME binds) => mFields(r1, r2, binds)
| NONE => NONE

(* end case *))
| mFields _ = NONE

and mField (T.IPat a, T.IVal b, binds) =
if (a = b) then SOME binds else NONE

| mField (T.BPat a, T.BVal b, binds) =
if (a = b) then SOME binds else NONE

| mField (T.SPat a, T.SVal b, binds) =
if (a = b) then SOME binds else NONE

| mField (T.IFormal, x as (T.IVal _), binds) =
SOME(x::binds)

| mField (T.BFormal, x as (T.BVal _), binds) =
SOME(x::binds)

| mField (T.SFormal, x as (T.SVal _), binds) =
SOME(x::binds)

| mField (T.Wild, _, binds) = SOME binds
| mField _ = NONE

in
mFields (rest1, rest2, [])

end

Listing 9.15: Matching a template and tuple

The implementation of the add function is given in Listing 9.16. The add function
takes a tuple store and tuple to be added and returns a match option. We first do a lookup
in the tuple table using the tuple’s key. The simple case is where there is no bucket with
this key in the table, in which case, we insert a new bucket with the tuple as its only item
into the tuple table and return NONE. In the case where there is already a bucket for the
tuple’s key, we must scan the list of outstanding input requests for a possible match. If
we find such a match, we put the tuple in the hold table (instead of in the tuple table),
and return the match information. If there is no match, then we add the tuple to the list
of tuples in the bucket and return NONE.

The code for the remaining tuple-store operations is presented in Listings 9.17 and 9.18.
The input operation searches the tuple store for a tuple that matches the given template.
We start by using the template’s key to do a lookup in the tuple table. If there is no bucket
with the given key, then we insert a new bucket with no items and the input request in-
formation in the waiting list, and return NONE. When the tuple table already contains a
bucket with the given key, we need to scan the item list for a matching tuple. If we find a
matching tuple, then we remove it from the item list and put it into the hold table, and we
return the bindings from the match. If the matching tuple is the only tuple in the bucket,
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fun add (TS{tuples, queries}, tuple as T.T(key, _)) = (
case (TupleTbl.find tuples key)
of NONE => (

TupleTbl.insert tuples (key, {
items = ref [tuple],
waiting = ref[],
holds = ref[]

});
NONE)

| (SOME(bucket as {items, waiting, holds})) => let
fun scan ([], _) = (items := tuple :: !items; NONE)
| scan ((x as {reply, id, ext})::r, wl) = (

case match(ext, tuple)
of NONE => scan(r, x::wl)
| (SOME binds) => (

waiting := List.revAppend(wl, r);
holds := (id, tuple) :: !holds;
QueryTbl.insert queries (id, (Held, bucket));
SOME{reply=reply, id=id, ext=binds})

(* end case *))
in
scan (!waiting, [])

end
(* end case *))

Listing 9.16: Adding a tuple to the tuple store

then we also remove the bucket from the tuple table. When there is no matching tuple,
we add input request information to the waiting list, and return NONE.

The cancel and remove operations are quite simple. They just remove the specified
held tuple from the hold table; in the case of cancel, this tuple is then added to the tuple
table, while in the case of remove, the tuple is discarded.

9.6.3 The local tuple server

The tuple server thread manages a tuple store in response to request messages. As seen
in Figure 9.1, these messages come from the local output server, from remote output
servers and proxies (via the socket buffer), and from the local proxy server. All of the
sources that send client_req messages use the same mailbox to communicate with
the tuple server, which greatly simplifies the implementation.11 Listing 9.19 gives the
code for the tuple server. The body of the server is the handleReq function, which
maps each client_req message (see Listing 9.6) onto a tuple-store operation. In the

11This is why input request messages carry a reply operation; it frees the tuple server from having to know the source
of the message when sending a reply.
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fun input (TS{tuples, queries}, {reply, ext as T.T(key, _), id}) = (
case (TupleTbl.find tuples key)
of NONE => let

val bucket = {
waiting = ref[{reply=reply, id=id, ext=ext}],
holds = ref[],
items = ref[]

}
in
TupleTbl.insert tuples (key, bucket);
QueryTbl.insert queries (id, (Waiting, bucket));
NONE

end
| (SOME(bucket as {items, waiting, holds})) => let

fun look (_, []) = (
waiting := !waiting @
[{reply=reply, id=id, ext=ext}];

QueryTbl.insert queries (id, (Waiting, bucket));
NONE)

| look (prefix, item :: r) = (
case match(ext, item)
of NONE => look (item::prefix, r)
| (SOME binds) => (

items := List.revAppend(prefix, r);
holds := (id, item) :: !holds;
QueryTbl.insert queries (id, (Held, bucket));
SOME binds)

(* end case *))
in
look ([], !items)

end
(* end case *))

Listing 9.17: The tuple-store input operation

case of adding a tuple or cancelling a hold, we may have to reply to an outstanding input
request. The replyIfMatch function takes care of this. Likewise, an input request
may be immediately satisfied, in which case we send a reply.

The function mkTupleServer is actually responsible for creating the tuple server
and local proxy, and for hooking them together. Listing 9.20 gives the code for this
function. Most of the code is involved in implementing the conn_ops record for the
proxy connection. Once this is built, we spawn off the tuple server and its proxy server.

9.6.4 The log server

The log server keeps track of outstanding input requests, so that when a new member
joins the tuple space, it can be told about them. The log server is created by the function
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fun cancel (tbl as TS{tuples, queries}, id) = (
case (QueryTbl.remove queries id)
of (Waiting, {items, waiting, holds}) => (

case (removeFromList (fn t => (#id t = id)) (! waiting))
of ({ext, ...}, []) =>

if (null(! items) andalso null(! holds))
then ignore(TupleTbl.remove tuples (T.key ext))
else waiting := []

| (_, l) => waiting := l
(* end case *);
NONE)

| (Held, {items, waiting, holds}) => let
val ((_, tuple), l) =

removeFromList (fn (id’, _) => (id’ = id)) (! holds)
in

holds := l;
add (tbl, tuple)

end
(* end case *))

fun remove (tbl as TS{tuples, queries}, id) = let
val (_, {items, waiting, holds}) = QueryTbl.remove queries id
val ((_, tuple), l) =

removeFromList (fn (id’, _) => (id’ = id)) (! holds)
in

if (null l andalso null(! items) andalso null(! waiting))
then ignore(TupleTbl.remove tuples (T.key tuple))
else holds := l

end

Listing 9.18: Other tuple-store operations

mkLogServer, which is shown in Listing 9.21. This function takes a port on the
client request multicast channel, and returns a function to get a new port on the multicast
channel plus a list of outstanding input requests. The list of outstanding requests is a
compressed prefix of the local client request stream, which reflects the local contribution
to the global state of the distributed tuple space.

The implementation of the log server is a simple message handling loop that accepts
requests from the client-request multicast channel, and requests for a new port. It main-
tains a hash table of outstanding input transactions: IN requests are added to the table,
while ACCEPT and CANCEL messages cause the corresponding IN requests to be re-
moved. When a new port is needed for the proxy of some new member, we copy the
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fun tupleServer tsMb = let
val tupleTbl = TupleStore.newStore()
fun replyIfMatch NONE = ()

| replyIfMatch (SOME{reply, id = (_, transId), ext}) =
reply{transId = transId, vals = ext}

fun handleReq (Net.OutTuple t) =
replyIfMatch (TupleStore.add (tupleTbl, t))

| handleReq (Net.InReq{from, transId, remove, pat, reply}) =
let
val match = {

reply = reply,
id = (from, transId),
ext = pat

}
in

case TupleStore.input (tupleTbl, match)
of (SOME binds) => reply {transId=transId, vals=binds}
| NONE => ()

(* end case *)
end

| handleReq (Net.Accept{from, transId}) =
TupleStore.remove (tupleTbl, (from, transId))

| handleReq (Net.Cancel{from, transId}) =
replyIfMatch(TupleStore.cancel(tupleTbl, (from, transId)))

fun serverLoop () = (
handleReq(Mailbox.recv tsMb);
serverLoop ())

in
spawn serverLoop

end

Listing 9.19: The implementation of the local tuple server

master port12 and get the current list of outstanding requests. This request/reply interac-
tion is packaged up as a simple RPC using the mkRPC function from the CML Library.

9.6.5 The output server

The output server is responsible for the distribution of tuples to tuple servers according
to some policy. For our system, we use a simple round-robin scheme. The output server
is implemented in the OutputServer structure, which is given in Listing 9.22. The
output server, which is created by the function spawnServer, maintains a list of tuple
servers (represented by output functions) and distributes tuples to them in a round-robin
fashion. The spawnServer takes the local server connection as an argument, and

12The Multicast.copy operation produces a new port that will give exactly the same stream of messages as the
port being copied.
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fun mkTupleServer (myId, tsMb, reqEvt) = let
val replyToProxyCh = channel()
fun sendInReq {transId, remove, pat} =

Mailbox.send (tsMb, Net.InReq{
from = myId, transId = transId,
remove = remove, pat = pat,
reply = fn repl => send(replyToProxyCh, repl)

})
fun sendAccept {transId} =

Mailbox.send (tsMb, Net.Accept{
from = myId, transId = transId

})
fun sendCancel {transId} =

Mailbox.send (tsMb, Net.Cancel{
from = myId, transId = transId

})
val conn = {

sendInReq = sendInReq,
sendAccept = sendAccept,
sendCancel = sendCancel,
replyEvt = recvEvt replyToProxyCh

}
in

tupleServer tsMb;
proxyServer (myId, conn, reqEvt, [])

end

Listing 9.20: The implementation of mkTupleServer

returns a record of two operations: output for outputing a tuple, and addTS for adding
a new tuple server to the list. We use a function abstraction to represent the connection to
the tuple servers; in the local case, this sends the tuple to the local tuple server’s mailbox,
and in the remote case, this sends the tuple to the appropriate output buffer thread (see
sendOutTuple in Listing 9.6). As we will see, the addTS operation is used during
initialization and as part of the join protocol.

9.7 The client layer

The programmer’s interface to CML-Linda is provided by the Linda structure, which
has the interface given above in Listing 9.1. The implementation of this structure collects
together bindings from other structures. The type definitions for tuples and templates are
defined in the Tuple structure. The definition of the tuple_space type and the client-
side implementation of the tuple-space operations is provided by the Linda structure.
We also open the Tuple structure inside the Linda structure to inherit its components.
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structure TidTbl = HashTableFn (struct
type hash_key = thread_id
val hashVal = hashTid
val sameKey = sameTid

end)

fun mkLogServer masterPort = let
val log = TidTbl.mkTable (16, Fail "TransactionLog")
fun handleTrans (trans as IN{tid, ...}) =

TidTbl.insert log (tid, trans)
| handleTrans (CANCEL tid) =

ignore(TidTbl.remove log tid)
| handleTrans (ACCEPT(tid, _)) =

ignore(TidTbl.remove log tid)
val transEvt =

CML.wrap(Multicast.recvEvt masterPort, handleTrans)
fun handleGetLog () =

(Multicast.copy masterPort, TidTbl.listItems log)
val {call, entryEvt} = SimpleRPC.mkRPC handleGetLog
fun serverLoop () = (

select [entryEvt, transEvt]; serverLoop())
in

spawn serverLoop;
call

end

Listing 9.21: The implementation of the log server

Since the Tuple structure consists solely of the type definitions, we do not give its
source here.

As noted above, the representation of the tuple_space type is defined in the Linda
structure. A tuple space is represented by a record of two functions:

datatype tuple_space = TS of {
request : TupleServer.ts_msg -> unit,
output : Tuple.tuple -> unit

}

The request function multicasts a request to the tuple-server proxies, and the output
function sends a tuple to the output server. The Linda structure also holds the client-
side implementation of the tuple-space operations, which we describe in the remainder
of this section.

9.7.1 The joinTupleSpace operation

The implementation of the joinTupleSpace operation in the Linda structure is
given in Listing 9.23. This function brings together the various pieces that we have
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structure OutputServer : sig

val spawnServer : (Tuple.tuple -> unit) -> {
output : Tuple.tuple -> unit,
addTS : (Tuple.tuple -> unit) -> unit

}

end = struct
structure MB = Mailbox

fun spawnServer localServer = let
datatype msg

= OUT of Tuple.tuple
| ADD of (Tuple.tuple -> unit)

val mbox = MB.mailbox()
fun server tupleServers = let

fun loop [] = loop tupleServers
| loop (next::r) = (case MB.recv mbox

of (OUT t) => (next t; loop r)
| (ADD f) => server (f::tupleServers)

(* end case *))
in

loop tupleServers
end

in
spawn (fn () => server [localServer]);
{ output = fn tuple => MB.send (mbox, OUT tuple),

addTS = fn f => MB.send (mbox, ADD f)
}

end

end (* OutputServer *)

Listing 9.22: The output server creation function

described above. It starts by creating the multicast channel (reqMCh) that is used to
communicate to the tuple-server proxies, and the request mailbox (tsReqBox) used to
send requests to the local tuple server. It then spawns the output server (see Section 9.6.5),
passing in a function (out) for outputing a tuple to the local tuple server. The function
newRemoteTS is defined for handling a new remote tuple server. It notifies the output
server about the remote server and creates a new tuple server proxy. With this function
defined, the network layer is initialized by a call to initNetwork (see Section 9.5.2).
Once the network is initialized, we can create the local tuple server and the proxies for the
remote tuple servers. Lastly, the representation of the tuple space is created and returned.
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structure MChan = Multicast
structure SRV = TupleServer
structure Net = Network

fun joinTupleSpace {localPort, remoteHosts} = let
val reqMCh = MChan.mChannel()
val tsReqMb = Mailbox.mailbox()
fun out tuple = Mailbox.send(tsReqMb, Net.OutTuple tuple)
val {output, addTS} = OutputServer.spawnServer out
val getInReqLog = SRV.mkLogServer (MChan.port reqMCh)
fun newRemoteTS {name, id, conn} = let

val (port, initInReqs) = getInReqLog()
in

addTS (Net.sendOutTuple conn);
SRV.mkProxyServer (

id, conn, MChan.recvEvt port, initInReqs)
end

val {myId, network, servers} = Net.initNetwork{
port = localPort,
remote = remoteHosts,
tsReqMb = tsReqMb,
addTS = newRemoteTS

}
in

SRV.mkTupleServer (
myId, tsReqMb, MChan.recvEvt(MChan.port reqMCh));

List.app newRemoteTS servers;
TS{

request = fn msg => MChan.multicast(reqMCh, msg),
output = output

}
end

Listing 9.23: The implementation of joinTupleSpace

9.7.2 The tuple-space operations

The implementation of the inEvt, rdEvt, and out operations is given in List-
ing 9.24. Recall from the discussion of the input protocols (Section 9.3.1) that we need
negative acknowledgements to abort the operation when another event is chosen. Thus,
we use withNack to implement the inEvt and rdEvt operations. The doInputOp
function (also given in Listing 9.24) implements the actual operation for both operations.
The only difference between the two is the value of the remove flag sent in the input
request (recall that inEvt removes the tuple, while rdEvt does not).

The doInputOpworks by allocating a fresh reply channel and spawning the transac-
tion manager for the request; it returns the event of receiving a reply, which is what the
client will synchronize upon. Most of the details are in the implementation of this thread.
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fun doInputOp (TS{request, ...}, template, removeFlg) nack = let
val replCh = channel ()
fun transactionMngr () = let

val tid = getTid()
val replMB = Mailbox.mailbox()
fun handleNack () = request(SRV.CANCEL tid)
fun handleRepl (msg, tsId) = select [

wrap (nack, handleNack),
wrap (sendEvt(replCh, msg),

fn () => request(SRV.ACCEPT(tid, tsId)))
]

in
request (SRV.IN{

tid = tid,
remove = removeFlg,
pat = template,
replFn = fn x => Mailbox.send(replMB, x)

});
select [

wrap (nack, handleNack),
wrap (Mailbox.recvEvt replMB, handleRepl)

]
end

in
spawn transactionMngr;
recvEvt replCh

end

fun inEvt (ts, template) = withNack (doInputOp (ts, template, true))
fun rdEvt (ts, template) = withNack (doInputOp (ts, template, false))

fun out (TS{output, ...}, tuple) = output tuple

Listing 9.24: The client-side implementation of CML-Linda input operations

After creating a reply mailbox, the transaction manager thread multicasts an IN request
to all of the tuple-server proxies in the system. This request includes the transaction
manager’s thread ID, which serves as the local transaction ID, the remove flag, the tem-
plate to be matched, and a function for sending replies to the reply mailbox. We might
have considered using an I-variable for the reply, but that would not work in the situation
where we get multiple replies. Once the request has been sent, the transaction manager
waits for a reply or for the nackEvt to be enabled. If the manager thread receives a
negative acknowledgement, then it sends cancellation messages to all of the tuple-space
servers. We also take care not to send the acknowledgement message until we are sure
that the tuple has been accepted. We do this by synchronizing on the choice of sending
the matching tuple on the replyCh and receiving the negative acknowledgement. The
semantics of CML guarantee that only one of these can occur.
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Lastly, the user-level out operation is trivial; it is implemented by sending the argu-
ment tuple to the tuple space’s output server.

Notes

A discussion of the Linda programming model can be found in Chapter 2, and further in-
formation can be found in a survey article by Carriero and Gelernter [CG89a], or in their
book on parallel programming [CG90]. The implementation of the Dining Philosophers
problem is adapted from another article by Carriero and Gelernter [CG89b].

This chapter was inspired by Siegel and Cooper’s implementation of Linda in SML
done at Carnegie Mellon University [SC91]. The protocol we use for implementing input
requests is adopted from their implementation. One can also find a discussion of tuple-
space distribution in a technical report by Bjornson et al [BCGL87]. Harkavy and Stone
have also implemented a distributed version of Linda using CML.13

The implementation presented in this chapter can be extended and improved in a num-
ber of ways. At the user level, we can extend the tuple and template types to support
structured data and we can add an operation for leaving the tuple space. The efficiency
of the implementation can be improved by reimplementing the network layer on top of
the UDP protocol and by using more sophisticated tuple distribution techniques.

Another example of distributed systems programming using CML is the Distributed
ML (DML) system, developed by Krumvieda and Cooper at Cornell [Kru91, CK92,
Kru92, Kru93]. DML is based on the reliable multicast primitives of Isis [BJ87, Bv93],
and uses the CML events to provide a synchronous interface to a collection of distributed
programming abstractions.

There are many books about low-level network programming in general, and specifi-
cally programming with sockets. Stevens provides a comprehensive description of UNIX

network programming [Ste90], while Hall et al. describe sockets programming on Mi-
crosoft Windows [HTA+93]. The SML sockets API is part of the SML Basis Li-
brary [GR04]. This chapter also used additional functions from the SML/NJ Library,
which are described in the accompanying documentation.

13Chris Stone, personal communication, March 1995.



10
Implementing Concurrency in SML/NJ

The main focus of this book is concurrent programming, but in this chapter, we examine
the related topic of using the features of SML/NJ to implement concurrency libraries (in-
cluding the basic ideas used in the implementation of CML). The compiler technology
used in the SML/NJ system makes it an excellent basis for the implementation of con-
currency primitives. Most importantly, SML/NJ provides constant-time first-class con-
tinuations as an extension. Continuations capture the essence of the process abstraction.
Because they are first class in SML/NJ, it is possible to implement process scheduling
mechanisms directly in SML without any special run-time support.

10.1 First-class continuations

Continuations are a semantic concept that captures the meaning of the “rest of the pro-
gram.” They have a wide and varied rôle in programming language design, implementa-
tion, and semantics. Our main interest here, however, is the provision of first-class con-
tinuations in programming languages. At any given point in the execution of a program,
there is a notion of “what to do next.” For example, consider the expression “(x+y)+z,”
at the point that x and y are added, the next thing to do is to take the result of “x+y”
and add z to it. In a higher-order language such as SML, we can explicitly represent the
notion of “what to do next” by using functions

(fn k => k(x+y)) (fn v => v+z)

Here, the variable k is bound to a function that represents the next thing to do following
the addition of x and y; this function is an example of a continuation. We could further
transform this program to represent the continuation of the whole expression explicitly:

fn k’ => (fn k => k(x+y)) (fn v => k’(v+z))
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where this is applied to a continuation representing the next thing to do after computing
the sum. The result of this transformation is called continuation-passing style (CPS),
since the continuation of a function call is explicitly passed as an argument to the call.
The CPS representation has the property that all functions end in a call, and that all calls
are tail calls. Because of these properties of CPS, the program’s control flow is repre-
sented explicitly. This means that it is easy to capture the current thread of computation
(it is just the continuation value that represents the rest of the program), which pro-
vides sufficient support for process abstraction. CPS is an awkward programming style,
however, so using it as the notational base of a concurrent language is unreasonable.
Fortunately, some languages provide a mechanism for programs to capture the current
continuation explicitly when necessary. In the case where the compiler uses CPS as an
internal representation, capturing these continuations can be extremely cheap.

The SML/NJ system uses CPS as its internal representation in its optimization phases.
As a result, it can provide language-level access to first-class continuations. Continua-
tions are represented as an abstract type with two operations:

type ’a cont
val callcc : ’(a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

The function callcc (call with current continuation) calls a function with the current
continuation (which is the function’s return continuation) as an argument. The function
throw is used to transfer control to a continuation; notice that the application throw
does not return, and thus its return type is polymorphic. These operations are defined in
the SMLofNJ structure, but we assume that they have been rebound at top-level in this
chapter, so as to reduce clutter.

First-class continuations can be used to implement loops, back-tracking, exceptions,
and various concurrency mechanisms. For example, the following is a continuation-based
version of a function that computes the product of a list of integers:

fun product l = callcc (
fn exit => let

fun loop ([], n) = n
| loop (0::_, _) = throw exit 0
| loop (i::r, n) = loop (r, i*n)

in
loop (l, 1)

end)

This function uses the continuation exit to short-circuit the evaluation if any element
in the argument list is 0.

A more complicated example is a function that prepends a function onto a continua-
tion:

val prepend : (’a -> ’b) -> ’b cont -> ’a cont
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signature COROUTINES =
sig
val yield : unit -> unit
val fork : (unit -> unit) -> unit
val exit : unit -> ’a

end (* COROUTINES *)

Listing 10.1: Coroutine operations

When applied to a function and a continuation, it returns a new continuation that will
evaluate the function and throw the result to the continuation. The implementation is
somewhat tricky:

fun prepend f k = callcc (
fn k1 => throw k (f (callcc (fn k2 => throw k1 k2))))

The continuation bound to k2 will pass its argument to f; we use the the continuation
bound to k1 to pass k2 out as the result of prepend. One important point about this
example is what happens if f raises an exception. A continuation in SML/NJ includes
the exception handler context of the point at which it was bound. Thus, if evaluation
of f raises an exception, control will be passed to the handler that was in effect when
prepend was defined.

10.2 Coroutines

To begin our examination of implementing concurrency in SML/NJ, we consider the
problem of introducing multiple threads of control.

The simplest example is the implementation of a coroutine package that supports cre-
ation of threads with explicit context switching. There are three operations: yield
relinquishes the processor allowing another thread to run, fork creates a new thread,
and exit terminates the current thread. Listing 10.1 gives the signature of this interface.

The implementation of multiple threads of control is quite straightforward, and is based
on the observation that a suspended thread of control can be represented directly as a con-
tinuation. Listing 10.2 gives the implementation of the coroutine interface. The main data
structure is a queue of threads that are ready to run, called the ready queue, which is rep-
resented by the top-level variable rdyQ. We use the Queue structure from the SML/NJ
Library to implement this queue. A thread is represented as a unit continuation. The
dispatch function is a utility function that removes the next thread in the queue, which
is a continuation, and resumes executing the thread by throwing the unit value to it. If the
ready queue is empty, which is symptomatic of deadlock, then the dispatch operation
will fail (the dequeue function raises an exception).
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structure Coroutines : COROUTINES =
struct

structure Q = Queue

val rdyQ : unit cont Q.queue = Q.mkQueue()

fun dispatch () = throw (Q.dequeue rdyQ) ()

fun yield () = callcc (fn k => (
Q.enqueue (rdyQ, k);
dispatch ()))

fun exit () = dispatch ()

fun fork f = callcc (fn parentK => (
Q.enqueue (rdyQ, parentK);
(f ()) handle _ => ();
exit ()))

end; (* Coroutines *)

Listing 10.2: The implementation of coroutines

The yield operation saves the current thread’s state and then dispatches another
thread. Grabbing the current thread’s state is just a matter of capturing its current contin-
uation (i.e., callcc). The current continuation k is added to the ready queue, and then
the next thread is dispatched. The exit operation is similar to yield, except that the
current thread’s continuation is not saved, which means that the thread is terminated.

In the implementation of fork, we grab the parent’s continuation and put it into the
ready queue, and start executing the newly created child thread immediately. In effect,
the parent’s thread of control becomes the child, and the newly created thread of control
becomes the parent. We must ensure that when the child thread terminates, it does not
return from the fork call, so after executing the child’s body (the function f), we call
exit. Note also, that the evaluation of the thread’s body is wrapped in an exception
handler.

This implementation of fork defines a scheduling policy that favors the child over the
parent (i.e., the parent is suspended, while the child is dispatched immediately). In some
cases, it might be preferable to insert the newly created child into the ready queue, and
continue executing the parent. This scheduling policy requires a bit of trickery to imple-
ment, as shown in Listing 10.3. We need to create a continuation that will execute the
body of the new thread (i.e., the application of the function f), and store the continuation
in the ready queue. We do this by using an outer callcc to avoid having to execute
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fun fork f = let
val newThread = callcc (fn k1 => (

callcc (fn k2 => (throw k1 k2));
(f ()) handle _ => ();
exit ()))

in
Q.enqueue (rdyQ, newThread)

end

Listing 10.3: An alternative implementation of fork

the continuation of the inner callcc. In Listing 10.3, the continuation bound to k2 is
bound to the initial representation of the new thread, and the continuation bound to k1 is
used to escape the inner callcc without returning, that is, without executing the calls
to f and exit. Throwing the k2 continuation to k1 results in k2 being bound to the
variable newThread. The fork operation then enqueues newThread in the ready
queue.

An implementation of threads by itself is not very interesting; we need mechanisms
for the threads to communicate and synchronize. In the remainder of this chapter, we
look at extending this implementation with various different synchronization and com-
munication mechanisms.

10.3 Shared-memory concurrency

In this section, we extend the coroutine implementation with simple shared-memory
synchronization primitives. Listing 10.4 gives the signature of our coroutine package
extended with mutex locks and condition variables (see Section 2.4.2). The functions
mutex and condition create new locks and condition variables, respectively. Note
that condition variables are created with respect to a specific lock. The operationwithLock
is used to protect the execution of a critical region; the critical region is encapsulated as
a function. When in a critical region, a thread may use the wait operation for condi-
tion synchronization. The wait operation automatically releases the associated mutex
lock and then blocks the thread on the condition. The signal operation releases one of
the threads waiting on a condition, while the broadcast operation releases all threads
waiting on a condition. When a waiting thread is signaled, it must first reacquire the
mutex lock before it can proceed; if the mutex lock is held by some other thread, then the
signaled thread must wait until the mutex is available.
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signature MUTEX =
sig

val yield : unit -> unit
val fork : (unit -> unit) -> unit
val exit : unit -> ’a

type mutex
type condition

val mutex : unit -> mutex
val condition : mutex -> condition
val withLock : mutex -> (’a -> ’b) -> ’a -> ’b
val signal : condition -> unit
val broadcast : condition -> unit
val wait : condition -> unit (* implicit mutex lock *)

end; (* MUTEX *)

Listing 10.4: Shared-memory synchronization primitives

10.3.1 Implementing mutex locks

First we examine the implementation of mutex locks, which is given in Listing 10.5. A
mutex lock consists of a boolean flag, which is true when the lock is held by some
thread, and a queue of threads that are waiting for the lock. Initially, the lock is unheld
and the queue is empty. We use two low-level operations, acquire and release, to
handle locks. The acquire operation checks to see if the mutex is locked; if it is, then
the current thread is added to the blocked thread queue, and a new thread is dispatched.
Otherwise, the acquire function acquires the lock for the calling thread by setting
the flag to true. The release function is used to unlock the mutex, but there is some
subtlety in how this is accomplished. It first checks to see if there are any waiting threads;
if not, then release sets the lock flag to false. But if there are blocked threads,
release puts the current thread on the ready queue and dispatches the next waiting
thread without changing the lock flag. In effect, this passes control of the lock from the
releasing thread to the first thread blocked waiting to acquire the lock, which is why the
acquire function does not have to set the flag when it resumes.

Using these basic operations, the implementation of withLock is straightforward;
the only subtlety is in handling the case in which the critical region raises an exception.
This situation is handled by catching the exception, releasing the lock, and then reraising
the exception.
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structure Mutex : MUTEX =
struct

structure Q = Queue

...

datatype mutex = M of {
locked : bool ref,
blocked : unit cont Q.queue

}

fun mutex () = M{locked = ref false, blocked = Q.mkQueue()}

fun acquire (mu as M{locked, blocked}) =
if (! locked)
then callcc (fn k => (

Q.enqueue (blocked, k);
dispatch()))

else locked := true

fun release (M{locked, blocked}) =
if (Q.isEmpty blocked)
then locked := false
else callcc (fn k => (

Q.enqueue (rdyQ, k);
throw (Q.dequeue blocked) ()))

fun withLock mu f x = (
acquire mu;
((f x) handle ex => (release mu; raise ex))

before release mu)

...

end (* Mutex *)

Listing 10.5: The implementation of mutex locks

10.3.2 Implementing conditions

The Mutex structure is completed by the implementation of conditions, which is given
in Listing 10.6. A condition is represented as a record consisting of the associated mutex
lock and a queue of waiting threads. The wait operation releases the associated mutex
and suspends the thread until it is signaled, at which point the thread reacquires the lock.
This is accomplished by capturing a continuation (bound to k) that will reacquire the lock
and adding it to the queue of treads blocked on the condition. The wait function then
releases the lock and dispatches another thread. Note that the code for releasing the lock
is a specialized version of the release function implementation from Listing 10.5.
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structure Mutex : MUTEX =
struct

structure Q = Queue

...

datatype condition = COND of {
lock : mutex,
waiting : unit cont Q.queue

}

fun condition mu = COND{lock = mu, waiting = Q.mkQueue()}

fun wait (COND{lock as M{locked, blocked}, waiting}) = (
callcc (fn k => (

Q.enqueue (waiting, k);
if (Q.isEmpty blocked)

then (locked := false; dispatch())
else throw (Q.dequeue blocked) ()));

acquire lock)

fun signal (COND{waiting, ...}) =
if (Q.isEmpty waiting)

then ()
else (Q.enqueue (rdyQ, Q.dequeue waiting))

fun broadcast (COND{waiting, ...}) = let
fun clearQ () = if (Q.isEmpty waiting)

then ()
else (

Q.enqueue (rdyQ, Q.dequeue waiting);
clearQ())

in
clearQ ()

end

end (* Mutex *)

Listing 10.6: The implementation of conditions

A waiting thread is signaled by removing it from the waiting queue and adding it to
the ready queue. In the case of signal, this is done once (assuming the queue is not
empty), while in the case of broadcast, this is done until all the waiting threads have
been signaled.

The semantics of conditions requires that a thread holds the associated mutex lock
before waiting on a condition. This implementation does not check that this requirement
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signature CRXW =
sig

type crxw_lock

val crxwLock : unit -> crxw_lock
val readAccess : crxw_lock -> (unit -> ’a) -> ’a
val writeAccess : crxw_lock -> (unit -> ’a) -> ’a

end

Listing 10.7: Concurrent-read, exclusive-write locks

is met in the implementation of wait; to do so would require introducing some form of
thread identity.

10.3.3 Concurrent-read, Exclusive-write locks

Given the implementation of simple mutex locks and condition variables, one can imple-
ment higher-level mechanisms, such as the producer/consumer buffer in Section 2.4.2.
In this section, we illustrate this with the implementation of a more sophisticated locking
mechanism using the simple mutex locks and condition variables.

Often, a shared data object can support access by multiple, concurrent readers, but
require that write access be exclusive. We can use a concurrent-read, exclusive-write
(CRXW) lock to provide concurrency control for such objects. Listing 10.7 gives the sig-
nature of this mechanism. The function crxwLock creates a new CRXW lock. The two
functions readAccess and writeAccess are similar to the withLock operation:
readAccess is used by readers, and allows concurrent access, while writeAccess
is used by writers, and ensures exclusive access.

Listing 10.8 gives the implementation of the CRXW locks. A CRXW lock has three
basic states: IDLE, when the no threads are accessing the shared object; READ, when
one, or more, threads has read access to the object; and WRITE, when exactly one thread
has write access to the object. The representation of a CRXW lock consists of its state, a
mutex lock to protect access to its state, and a condition variable for signaling when the
state becomes idle. Creating a new CRXW lock (crxwLock) requires creating a mutex
lock and associated condition variable, and initializing the state.

The access functions have a common structure: wait until access is legal; then execute
the operation; and finally reset the state. The readAccess and writeAccess func-
tions are defined in terms of the higher-order access function, which takes the mutex
lock and functions to wait for access and finish access as arguments.

The readAccesswait function loops until there are no writers (i.e., the state is either
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structure CRXW : CRXW =
struct

datatype lock_state = IDLE | WRITE | READ of int

datatype crxw_lock = LOCK of {
state : lock_state ref,
lock : Mutex.mutex,
cond : Mutex.condition

}

fun crxwLock () = let val mu = Mutex.mutex()
in

LOCK{
state = ref IDLE,
lock = mu,
cond = Mutex.condition mu

}
end

fun access (lock, wait, finish) f = (
Mutex.withLock lock wait;

f () before
Mutex.withLock lock finish)

fun readAccess (LOCK{state, lock, cond}) = let
fun wait () = (case (! state)

of WRITE => (Mutex.wait cond; wait())
| IDLE => state := READ 1
| (READ n) => state := READ(n+1)

(* end case *))
fun finish () = (case (! state)

of (READ 1) => (state := IDLE; Mutex.signal cond)
| (READ n) => state := READ(n-1)

(* end case *))
in

access (lock, wait, finish)
end

fun writeAccess (LOCK{state, lock, cond}) = let
fun wait () = (case (! state)

of IDLE => state := WRITE
| _ => (Mutex.wait cond; wait())

(* end case *))
fun finish () = (state := IDLE; Mutex.broadcast cond)
in

access (lock, wait, finish)
end

end;

Listing 10.8: Concurrent-read, exclusive-write lock implementation
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signature CHAN =
sig
val yield : unit -> unit
val fork : (unit -> unit) -> unit
val exit : unit -> ’a

type ’a chan
val channel : unit -> ’a chan
val send : (’a chan * ’a) -> unit
val recv : ’a chan -> ’a

end; (* CHAN *)

Listing 10.9: Simple message-passing operations

idle or reading). When a reader finishes access, it decrements the number of readers; if
the number falls to zero, then the state becomes IDLE, and the condition is signaled.
Note that at this point, only writers can be waiting for the lock, since concurrent readers
are allowed. This is why the condition is signaled, instead of being broadcast.

The writeAccess wait function must wait until the state is idle, since exclusive
access is required. When the writer finishes access, the state is reset to IDLE, and the
condition is broadcast. We use broadcast here, since there may be multiple readers wait-
ing for access.

10.4 Simple message passing

Using the shared-memory primitives of the previous section, one can implement higher-
level concurrency mechanisms, such as message-passing primitives. It is more efficient,
however, to implement them directly, in much the same way that we implemented mutex
locks and conditions. Listing 10.9 gives the interface of a simple set of message-passing
operations on typed channels.

The message-passing interface does not specify whether the send operation is blocking
or non-bocking, so we present implementations for both versions. Both implementations
represent channels as a pair of queues: one for pending sends and one for pending re-
ceives.

10.4.1 Asynchronous message passing

We start with the asynchronous implementation of channels, which is given in List-
ing 10.10. As noted above, a channel is represented by two queues; the channel
function creates a channel by allocating two new queues. The sendQ queue contains
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structure AsyncChan : CHAN =
struct

structure Q = Queue

...

datatype ’a chan = CH of {
sendQ : ’a Q.queue,
recvQ : ’a cont Q.queue

}

fun channel () = CH{
sendQ = Q.mkQueue(),
recvQ = Q.mkQueue()

}

fun send (CH{sendQ, recvQ}, msg) =
if (Q.isEmpty recvQ)

then Q.enqueue(sendQ, msg)
else callcc (fn k => (

Q.enqueue(rdyQ, k);
throw (Q.dequeue recvQ) msg))

fun recv (CH{sendQ, recvQ}) =
if (Q.isEmpty sendQ)

then callcc (fn k => (
Q.enqueue(recvQ, k); dispatch()))

else Q.dequeue sendQ

end; (* AsyncChan *)

Listing 10.10: An implementation of asynchronous message passing

messages that have been sent, but not received. The recvQ queue contains the continu-
ations of threads waiting for messages. The channel representation has the invariant that
at most one of the queues is non-empty.

The implementation of the asynchronous send operation first checks to see if recvQ
is empty; if this is the case, then the message is added to sendQ and the sender continues
its execution. If recvQ is non-empty, then the send function throws the message to the
next continuation in recvQ. But before doing this, it grabs the sender’s continuation
and puts it into the queue of ready threads. It would be possible to implement a different
scheduling policy, where the receiver is added to the ready queue and the sender continues
execution (i.e., giving higher priority to the sender), but it would require some callcc
gymnastics.

The recv operation first checks to see if the sendQ holds any pending messages.



10.4 Simple message passing 233

When the sendQ is empty, it uses callcc to capture the receiving thread’s continua-
tion, which it adds to the recvQ and then it dispatches another thread. In the case that
there is already a message waiting for the receiver, recv just dequeues the message and
returns it.

There is a problem with this implementation in that if a thread rapidly executes a loop
containing a send operation, the sendQ can grow without bound. To avoid this, we can
rewrite the send operation to force a context switch whenever it is executed:

fun send (CH{sendQ, recvQ}, msg) = callcc (fn k => (
if (Q.isEmpty recvQ)

then (
Q.enqueue(rdyQ, k);
Q.enqueue(sendQ, msg);
dispatch())

else (
Q.enqueue(rdyQ, k);
throw (Q.dequeue recvQ) msg)))

Note that the converse situation is not a problem, since the recv operation is blocking.

10.4.2 Synchronous message passing

The simple channel interface can also be implemented with a blocking send operation.
The synchronous version requires a modification of the representation of channels, since
the sendQ now must contain both the message being sent, as well as the continuation of
the blocked sending thread. It also requires minor modifications to the message-passing
operations. The implementation is given in Listing 10.11; we have omitted the channel
function, since it is identical to the asynchronous case.

The synchronous send operation differs from the second asynchronous version only
in the case where the channel’s recvQ is empty. In this situation, it enqueues the pair of
the message and the sender’s continuation in the sendQ. The only difference in the recv
operation is when the channel’s sendQ is non-empty. In this case, both the message and
sender’s continuation are dequeued, and the sender is added to the queue of ready threads.

10.4.3 Supporting simple selective communication

It is fairly easy to extend either of the message passing implementations described above
with support for a restricted form of selective communication. We extend the CHAN
interface, given in Listing 10.9, with the operation

val select : (’a chan * (’a -> ’b)) list -> ’b
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structure SyncChan : CHAN =
struct

structure Q = Queue

...

datatype ’a chan = CH of {
sendQ : (’a * unit cont) Q.queue,
recvQ : ’a cont Q.queue

}

fun channel () = ...

fun send (CH{sendQ, recvQ}, msg) = callcc (fn k => (
if (Q.isEmpty recvQ)

then (Q.enqueue(sendQ, (msg, k)); dispatch())
else (
Q.enqueue(rdyQ, k);
throw (Q.dequeue recvQ) msg)))

fun recv (CH{sendQ, recvQ}) =
if (Q.isEmpty sendQ)

then callcc (fn k => (
Q.enqueue(recvQ, k); dispatch()))

else let val (msg, senderK) = Q.dequeue sendQ
in

Q.enqueue(rdyQ, senderK);
msg

end

end; (* SyncChan *)

Listing 10.11: An implementation of synchronous message passing

which is an input-only, first-order, selective communication operation. This operation
takes a list of input clauses; each of which consists of an input channel and an associated
action. The select operation blocks the calling thread until there is input on one of the
channels, at which time it invokes the associated action. Note that all the channels (and
actions) must have the same type.

As mentioned above, this operation fits into both the asynchronous and synchronous
models; for purposes of this section, we implement the asynchronous version. The im-
plementation of the synchronous version is similar.

The main difficulty in implementing this simple form of select is bookkeeping.
When a thread attempts to read from several empty channels, its continuation will be
enqueued in each channel’s recvQ, but only one of these continuations is actually used.
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Therefore, we need a mechanism to remove the unused continuations, once one of the
clauses has been selected. To manage this bookkeeping, we associate a unique ID with
each blocked input operation.1 The unique IDs are represented as reference cells (recall
that two reference cells are equal only if they are the same cell). Since the contents of
the cell are unimportant, we use unit references. This requires modifying the type of the
recvQ in the representation of channels:

datatype ’a chan = CH of {
sendQ : ’a Q.queue,
recvQ : (unit ref * (unit ref * ’a) cont) Q.queue

}

We add a unique ID to each element of recvQ, and add an ID as an argument to the
continuations of threads waiting for input. In the case of the basic message-passing
operations, the unique ID is mostly ignored. When resuming a blocked thread from the
recvQ, the send operation passes both the message and the unique ID to the receiver,
while the recv operation allocates a dummy ID, which it ignores. Listing 10.12 gives
the code for these as operations.

The select operation is structured into three phases: first it polls for available input; if
all of the channels are empty, then it waits for input; and when resumed, it removes the
unused input continuations. Listing 10.13 gives the code for this.

The polling phase is implemented as a linear search over the list of channels. The
first non-empty channel is selected, and the associated action is applied to the enqueued
message. Such an implementation is quite unfair, which could result in problems for
the user. It could be improved by randomizing the search, or by associating an “age”
with outstanding messages and selecting the oldest available (we discuss this further in
Section 10.5.6).

If the polling phase fails to find a non-empty channel, then the thread must wait for
a message. First a list of unique IDs is generated, one for each clause in the select.
Then callcc is used to capture the thread’s continuation; this continuation, along with
the corresponding ID, is added to each channel’s recvQ. The enqueueing of continu-
ations is done by the wait function, which dispatches another thread when it is done.
The blocked thread is resumed by some other thread sending a message on one of the
channels. When this is done, the unique tag is also passed to the blocked thread’s re-
sumption continuation. The tag of the selected input operation is used when deleting the
now defunct pending I/O operations from the channel recvQs. In addition, the action
associated with the selected channel is extracted and returned by the remove function.
Finally, the returned action is applied to the message which computes the result of the
select operation.

1As shown in the next section, there are other techniques for managing this bookkeeping.
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structure AsyncSelectChan : CHAN =
struct

structure Q = Queue

...

fun send (CH{sendQ, recvQ}, msg) = callcc (fn k => (
if (Q.isEmpty recvQ)
then (

Q.enqueue(rdyQ, k);
Q.enqueue(sendQ, msg);
dispatch())

else let
val (id, recvK) = Q.dequeue recvQ
in

Q.enqueue(rdyQ, k);
throw recvK (id, msg)

end))

fun recv (CH{sendQ, recvQ}) =
if (Q.isEmpty sendQ)
then let

val (_, msg) = callcc (fn k => (
Q.enqueue(recvQ, (ref(), k));
dispatch()))

in
msg

end
else Q.dequeue sendQ

...

end; (* AsyncSelectChan *)

Listing 10.12: Channel I/O operations with simple selective communication

10.5 First-class synchronous operations

In the previous section, we examined one approach to implementing simple selective
communication. While this approach could be extended to handle generalized selective
communication, it suffers from the serious limitation that all of the channels must have
the same type. First-class synchronous operations, on the other hand, provide a much
more general mechanism. In this section, we extend the simple synchronous message-
passing operations with event values and event combinators; Listing 10.14 gives the in-
terface of this extension.

The implementation of first-class synchronous operations is fairly complex, so before
diving into the details, it is useful to first consider a very simple subset of events without
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structure AsyncSelectChan : CHAN =
struct

structure Q = Queue

...

fun select choices = let
fun pollCh (CH{sendQ, ...}, _) = not(Q.isEmpty sendQ)
fun wait ids k = let

fun blk (id, (CH{recvQ, ...}, _)) =
Q.enqueue (recvQ, (id, k))

in
ListPair.app blk (ids, choices);
dispatch()

end
fun remove (id, ids) = let

fun del (id’::r1, (CH{recvQ, ...}, act)::r2) =
if (id = id’)
then (del (r1, r2); act)
else (

Q.delete (recvQ,
fn (id’’, _) => (id’ = id’’));

del (r1, r2))
in
del (ids, choices)

end
in
case (List.find pollCh choices)
of (SOME(CH{sendQ, ...}, act)) =>

act(Q.dequeue sendQ)
| NONE => let

val ids = List.map (fn _ => ref()) choices
val (id, msg) = callcc (wait ids)
in

remove (id, ids) msg
end

(* end case *)
end

end; (* AsyncSelectChan *)

Listing 10.13: Implementing simple selective communication
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signature EVENTS =
sig

val yield : unit -> unit
val fork : (unit -> unit) -> unit
val exit : unit -> ’a

type ’a chan
type ’a event

val channel : unit -> ’a chan
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event
val wrap : (’a event * (’a -> ’b)) -> ’b event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a

end; (* EVENTS *)

Listing 10.14: Simple event operations

choice. In particular, consider the asynchronousrecv operation from Listing 10.10. For
pedagogical purposes, we rewrite it as follows:

fun recv (CH{sendQ, recvQ}) = let
fun body k = if (Q.isEmpty sendQ)

then (Q.enqueue(recvQ, k); dispatch())
else Q.dequeue sendQ

in
callcc body

end

Notice that the resumption continuation of the calling process, denoted by the variable
k, is a free variable in the body of the operation. This observation, which holds for
all synchronous operations, is the key to the implementation of first-class synchronous
operations. In this simple setting, it means that an event value can be represented as a
function that abstracts over the resumption continuation

type ’a event = (’a cont -> ’a)

Using this representation, the event-valued version of recv is

fun recvEvt (CH{sendQ, recvQ}) = let
fun body k = if (Q.isEmpty sendQ)

then (Q.enqueue(recvQ, k); dispatch())
else Q.dequeue sendQ

in
body

end

It follows that sync is implemented directly by callcc. The implementation of wrap
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must feed the value produced by synchronizing on its first argument to its second argu-
ment, which can be done as follows:

fun wrap (evt, f) = fn k => (throw k (f (callcc evt)))

The continuation that appliesf to its argument is passed to the event value being wrapped;
the result of evaluating f is then thrown to the continuation that is the argument to the
event value constructed by wrap. Note that this is just a convoluted form of function
composition.

10.5.1 Representing event values

Unfortunately, this simple representation of events is unable to support selective commu-
nication. As we observed in Section 10.4.3, implementing choice requires a multi-phase
operation. For the richer collection of operations given in Listing 10.14, the act of syn-
chronizing on an event value has four distinct phases:

Polling. The first step is to poll the base events to see if any of them are satisfiable
immediately.

Selection. If one or more of the base events is satisfiable immediately, then one of these
is selected and executed.

Logging. If there are no immediately satisfiable base events, then the synchronizing
thread must be added to the waiting queues of the base events.

Unlogging. Once one of the base events is satisfied, the thread must be removed from
the other base events’ waiting queues, and the chosen event’s wrappers must be
applied.

This organization is slightly different from that in Section 10.4.3, because the implemen-
tation of choice is distributed over several different event operations.

The representation of base-event values reflects the phases of a selective communica-
tion. A base-event value is represented as a triple of functions: the pollFn tests an
event to see if it is enabled, the doFn is used to execute an enabled event immediately,
and the blockFn is used to log an event value. To support choice, we represent an event
as a list, with one item per base event. Listing 10.15 gives the datatype declarations for
this representation of event values. The bool ref argument to the blockFn is used to
support unlogging in a lazy fashion, and is discussed below.
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datatype ’a base_evt = BEVT of {
pollFn : unit -> bool,
doFn : unit -> ’a,
blockFn : (bool ref * ’a cont) -> unit

}

and ’a event = EVT of ’a base_evt list

Listing 10.15: The representation of event values

10.5.2 The sync operator

The sync operator’s rôle is to manage the synchronization; the heavy lifting is done
by the three functions that comprise the base-event values. The code for sync is given
in Listing 10.16. The basic structure is not much different from the simple selective
communication operation in Section 10.4.3. First, the list of base events is polled until
an enabled event is found, or all of the events have been polled. If there is an enabled
event, then its doFn is invoked and the sync operation is done. Otherwise, each event is
logged by calling its blockFn, and then some other thread is dispatched. Note that each
successful synchronization involves one thread executing a blockFn followed by an-
other thread executing the doFn of a matching event (at least for the case of synchronous
message passing).

This implementation of events uses a lazy unlogging scheme. As we saw in List-
ing 10.16, each instance of a blocking sync operation has a unique boolean flag asso-
ciated with it, which is called its dirty flag. When the sync operation is completed, the
dirty flag is set to true by the doFn that completes the synchronization. The pollFns

fun sync (EVT evts) = let
fun poll (BEVT{pollFn, ...}) = pollFn()
in
case (List.find poll evts)
of (SOME(BEVT{doFn, ...})) => doFn()
| NONE => callcc (fn k => let

val dirtyFlg = ref false
fun block (BEVT{blockFn, ...}) = blockFn(dirtyFlg, k)
in

app block evts; dispatch()
end)

(* end case *)
end

Listing 10.16: The implementation of sync
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of base events are responsible for removing any dirty entries in the underlying queues.
To support this lazy unlogging of events, we again modify the representation of channels:

datatype ’a chan = CH of {
sendQ : (bool ref * (’a * unit cont)) Q.queue,
recvQ : (bool ref * ’a cont) Q.queue

}

We also define a function that discards dirty elements while checking for a non-empty
channel queue:

fun pollQ q = if (Q.isEmpty q)
then false
else (case (Q.head q)

of (ref true, _) => (Q.dequeue q; pollQ q)
| (ref false, _) => true

(* end case *))

In effect, this approach uses one ID per synchronization, whereas the simple select im-
plementation of Section 10.4.3 used one ID per communication.

10.5.3 Implementing base-event constructors

The implementation of the base-event constructors sendEvt and recvEvt is mostly
a reorganization of the implementations of send and recv in Listing 10.11. The test
for an empty queue becomes the pollFn, the non-empty case becomes the doFn, and
the empty case becomes the blockFn. Listing 10.17 gives the code for these base-event
constructors. Note that the doFns set the dirty flag of the dequeued item.

10.5.4 Implementing event combinators

The implementation of the event combinators wrap and choose must maintain the
representation of event values in Listing 10.15. This is, in effect, a rewriting of the event
values into a “canonical” representation. To illustrate, consider the example event value
from page 55:

val ev = choose [
wrap (bev 1, w1),
wrap (choose [

wrap (bev 2, w2),
wrap (bev 3, w3),

], w4)
]

This has the tree representation given in Figure 10.1(a). To map this to the canonical
representation, shown in Figure 10.1(b), requires composing the wrapper functions and
flattening the lists of choices. The implementation does this rewriting incrementally as
each event combinator application is evaluated.
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fun sendEvt (CH{sendQ, recvQ}, msg) = let
fun pollFn () = pollQ recvQ
fun doFn () = callcc (fn k => let

val (flg, recvK) = Q.dequeue recvQ
in
flg := true;
Q.enqueue(rdyQ, k);
throw recvK msg

end)
fun blockFn (flg, k) = Q.enqueue(sendQ, (flg, (msg, k)))
in
EVT[BEVT{pollFn = pollFn, doFn = doFn, blockFn = blockFn}]

end

fun recvEvt (CH{sendQ, recvQ}) = let
fun pollFn () = pollQ sendQ
fun doFn () = let val (flg, (msg, senderK)) = Q.dequeue sendQ

in
flg := true;
Q.enqueue(rdyQ, senderK);
msg

end
fun blockFn (flg, k) = Q.enqueue(recvQ, (flg, k))
in
EVT[BEVT{pollFn = pollFn, doFn = doFn, blockFn = blockFn}]

end

Listing 10.17: The implementation of sendEvt and recvEvt

The implementation of the event combinators is given in Listing 10.18. The wrap
operation must compose its second argument with each of the wrappers of its first argu-
ment’s base events. In the canonical representation, a base event’s wrapper is folded into
both the doFn and blockFn functions. For the doFn, the composition of wrappers is
implemented directly using function composition, but in the case of the blockFn, we
need a tricky use of callcc to implement function composition. The implementation
of choose is a straightforward flattening of lists of lists, with the proper wrapping and
unwrapping of the EVT constructor to get the types right.

10.5.5 Preserving tail recursion

One important, but subtle, aspect of the implementation of sync is the preservation of
tail recursion. We have seen many examples of the form

fun loop state = sync (choose [
wrap (recvEvt ch1, fn x => loop (f (state, x))),
wrap (recvEvt ch2, fn x => loop (h (state, x)))

])
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Figure 10.1: An example of event-value representations

where a synchronous operation is wrapped with a tail-recursive call. If the implemen-
tation of sync (and select) does not preserve the tail recursion, these kinds of loops
will cause the program to exhaust the available memory.

Unfortunately, it turns out that the above implementation of sync does not preserve
tail recursion, because of the semantics of callcc. In SML, the current thread of
control is actually comprised of two continuations: the regular continuation, and the
exception handler continuation. The callcc binds both continuations into a cont
value. This means that an application of callcc in a tail-call position is not tail re-
cursive (much the same way that an exception handler wrapped around a tail-recursive
call makes it non-tail recursive). Because callcc is not tail-recursive, sync is not tail
recursive. The implementation of CML avoids this problem by using a special version
of callcc that does not save and restore the exception handler continuation.

10.5.6 Fairness

Another implementation issue is ensuring the fairness of the synchronization primitives
(see Section 2.3). The implementation of sync in Listing 10.16 is not fair. For example,
if a thread repeatedly synchronizes on the choice of two events, where the first one is
always available, then the second one will never be selected. There are several ways to
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fun wrap (EVT bevs, f) = let
fun wrapBEvt (BEVT{pollFn, doFn, blockFn}) = let

fun blockFn’ (flg, k) =
throw k (f (callcc (fn k’ => (

blockFn (flg, k’);
raise Fail "never get here"))))

in
BEVT{

pollFn = pollFn,
doFn = (f o doFn),
blockFn = blockFn’

}
end

in
EVT(map wrapBEvt bevs)

end

fun choose evts =
EVT(foldr (fn (EVT bevs’, bevs) => bevs’ @ bevs) [] evts)

Listing 10.18: The implementation of wrap and choose

avoid this problem. One simple approach is to poll all of the events, and when there is
more than one enabled, to select one randomly. This gives a probabilistic guarantee of
fairness that should be sufficient in practice. A more complicated scheme is to associate
priorities with channels, based on how many times they have been enabled in a choice
without being selected. In this scheme, the pollFn returns a priority, and the highest
priority base event is selected.

10.6 Scheduling issues

In order to prevent a thread that is executing a long (or infinite) computation from mo-
nopolizing the processor, CML uses preemptive thread scheduling. This is done in a
straightforward manner using an interval timer provided by the operating system, and the
SML/NJ signal mechanism. The interval timer is set to generate an alarm signal every
n milliseconds (n is typically in the range from 10 to 50). CML installs a signal handler
that forces a context switch on each alarm.

Preemption introduces some complexity to the implementation, since there can now be
interference between threads accessing the same channel data structures, and between the
threads and the signal handler when accessing the readyQ. We could implement mutex
locks to protect these critical regions, but since we are executing on a uniprocessor, a
much simpler technique will work.

We define a global flag that is used to mark when execution is in a critical region:
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Figure 10.2: Simple round-robin scheduling

datatype atomic_state = NonAtomic | Atomic | SignalPending
val atomicState : atomic_state ref

and two operations for bracketing critical regions:

val atomicBegin : unit -> unit
val atomicEnd : unit -> unit

The function atomicBegin, which sets the atomicState flag to Atomic, is called
just prior to entering a critical region, and the function atomicEnd, which resets the flag
to NonAtomic, is called on exit. If a signal occurs while atomic_state is Atomic,
then the signal handler does not force a context switch; instead it sets atomic_state
to SignalPending and returns. The function atomicEnd checks the flag before
resetting it; if it is SignalPending, then a context switch is performed.2 Note that
this mechanism is internal to the implementation of CML; users have no access to these
operations.

Another scheduling issue is insuring that computationally intensive threads do not mo-
nopolize the processor.3 The basic round-robin scheduling that we use in this chapter
does not prevent this. Consider the scenario where we have a single computationally
intensive thread and several threads that are communicating frequently (so-called inter-
active threads). Figure 10.2 illustrates what three successive time slices might look like
in such a case; here, the threads P, Q, and R are interactive, and the thread S is compu-
tationally intensive. This figure shows that the interactive threads only get to run once
per time-slice; if there were two computationally intensive threads the interactive threads
would only get to run once per two slices. For any application that is sensitive to real-
time constraints, this scheduling results in unacceptable performance. One obvious way

2The reader may recognize that there is a potential race when exiting a critical region between the time of the test for
a pending signal and the resetting of the flag. The implementation of signals in SML/NJ, however, ensures that this race
cannot happen.

3A computationally intensive thread is one that computes with little or no communication.
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Figure 10.3: Two-level round-robin scheduling

to address this problem is to use finer grain time slices, but many operating systems do
not support granularities finer than 10 ms. granularity, which is not fine enough. Fur-
thermore, using finer slices does not scale to large numbers of computationally intensive
threads.

The implementation of CML uses a two-level scheduling queue; interactive threads are
scheduled out of the primary queue, while computationally intensive threads are sched-
uled out of the secondary queue. A simple hueristic is used to catalogue threads. Each
thread has an associated boolean flag, called doneComm, which is set to true when-
ever it voluntarily yields the processor during a concurrency operation. The flag is set to
false whenever the thread is preempted. If a thread is preempted and its doneComm
flag is false, then it is classified as a computationally intensive thread and is placed
into the secondary queue. If an interactive thread is preempted, then one thread from
the secondary queue is promoted to the primary queue.4 This has the effect of allowing
a computationally intensive thread to run once every other time slice, which means that
interactive threads get at least 50% of the processor. Figure 10.3 illustrates this policy for
our example.

Notes

Continuations are one of the fundamental ideas in computer science, and appear in
many contexts. The idea of first-class continuations dates back to Landin’s J oper-
ator [Lan65, Fel87], although other researchers also discovered the concept indepen-
dently. A paper by Reynolds provides an interesting history of these multiple discov-
eries of continuations [Rey93]. Continuation-passing style has been used in lazy lan-
guages to program I/O [HS88], including Holmström’s concurrent extension of ML

4A thread can also be promoted if there are no threads available in the primary queue.
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called PFL [Hol83a]. Continuations have also been important in the understanding of
the semantics of control [Gor79]. The use of continuation-passing style in the SML/NJ
compiler is described in Appel’s book [App92].

SML/NJ’s callcc function was inspired by the language Scheme [RC86]. Most of
the work on using continuations to implement concurrency has been done in the context
of Scheme. The basic technique dates back to Wand’s seminal paper in which he de-
scribed the implementation of coroutines using Scheme’s continuations [Wan80]. This
work was refined further by Haynes, Friedman, and Wand [HFW84]. Dybvig and Hieb
have shown how to implement “engines,” which are an abstraction of time slices, us-
ing continuations [DH89]. Most recently, Shivers has explored the connections between
threads and continuations in the context of operating system software [Shi97].

It is interesting to note that the representation of wrapped base events as functions is
required by the type system. With a richer type system, it would be possible to represent
event values as a datatype with constructors for the different combinators, and imple-
ment sync as an interpreter of the datatype. As noted in the text, our implementation
of first-class synchronous operations omitted important implementation details, such as
preserving tail recursion, ensuring fairness, preemptive scheduling, and the full set of
CML event combinators. The event rewriting discussed in Section 10.5.4, was used as
an informal specification of the semantics of PML [Rep88]. Ferreira, Hennessy, and Jef-
frey have proved that this transformation is semantics preserving for the PML subset of
CML [FHJ96].

In addition to CML, there have been several other implementations of concurrency
features using SML/NJ’s first-class continuations. The dirty flag technique described
in Section 10.5.2 was invented by Ramsey in his implementation of PML-like prim-
itives [Ram90]. The shared-memory primitives of Section 10.3 are a subset of those
implemented by Cooper and Morrisett [CM90]. Morrisett and Tolmach implemented a
multi-processor version of low-level thread primitives [MT93].

Another approach to implementing concurrency is to provide primitives in the run-
time system that support the concurrency operations. PML was implemented this way,
as was Pike’s language newsqueak [Pik90], and Cardelli described an implementation
model for Amber in terms of an abstract machine [Car84].

This chapter describes a uniprocessor implementation of selective communication,
which takes advantage of the fact that there is only one active thread of control at any
point in time in its implementation of concurrency control. Implementing selective com-
munication on a multiprocessor is significantly more difficult. Various researchers, such
as Buckley and Silberschatz [BS83], Bornat [Bor86], and Bagrodia [Bag89], have de-
scribed such implementations. The basic strategy in these implementations is to first
make tentative offers of communication; when two tentative offers match, one thread
must freeze its state until the other thread either commits or rejects the communication.
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The choice of which thread will fix its state is based upon the order of the threads’ IDs;
this avoids the possibility of cyclic dependencies and deadlock. Generalized selective
communication cannot be implemented in a distributed setting because of the possibil-
ity of failures and communication delays. If one assumes a reliable network, however,
it is possible to design distributed protocols for choice, as was done by Knabe for the
implementation of Facile [Kna92].



Appendix A

A CML Reference

This appendix provides a reference for the CML features used in this book. It is ex-
cerpted from The Concurrent ML Reference Manual, which is included in the CML
distribution, and can also be found on the Web at the following URL:

http://cml.cs.uchicago.edu/index.html

The full manual contains information about additional libraries, as well as instructions
on compiling and running CML programs. The remainder of this appendix contains
descriptions of most of the modules in the CML system. In order of their appearance,
these are as follows:

structure CML : CML
This module contains the basic types and operations used by CML.

structure SyncVar : SYNC_VAR
This module defines synchronous memory in the form of I-variables and M-variables
and their operations.

structure Mailbox : MAILBOX
This module defines buffered asynchronous channels, which are called mailboxes.

structure Result : RESULT
This module provides a way of communicating both values and exceptions as re-
sults.

structure OS : CML_OS
This module is an extension of the OS structure defined in the SML Basis Library.
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signature CML_TEXT_STREAM_IO
This module is an extension of the TEXT_STREAM_IO signature defined in the
SML Basis Library.

structure TextIO : CML_TEXT_IO
This module is an extension of the TextIO structure defined in the SML Basis
Library.

structure Multicast : MULTICAST
This module defines asynchronous multicast channels.

structure SimpleRPC : SIMPLE_RPC
This module provides some help in implementing simple servers.

The first four of these are core CML modules, the next three are CML specific versions
of SML Basis Library modules,1 and the last two are CML library modules. Note that
while we do not include the documentation for CML’s version of the binary I/O inter-
faces here, the extensions are similar to those provided for text I/O.

1We assume that the reader is familiar with the SML Basis Library specification.
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The CML structure
The CML structure provides the basic operations for thread creation, synchronous channels,
and the event type constructor and combinators.

Synopsis
signature CML
structure CML : CML

Interface
type thread_id
type ’a event
type ’a chan

val version : {system : string, version_id : int list, date : string}
val banner : string

val spawnc : (’a -> unit) -> ’a -> thread_id
val spawn : (unit -> unit) -> thread_id
val yield : unit -> unit
val exit : unit -> ’a

val wrap : (’a event * (’a -> ’b)) -> ’b event
val wrapHandler : (’a event * (exn -> ’a)) -> ’a event
val guard : (unit -> ’a event) -> ’a event
val withNack : (unit event -> ’a event) -> ’a event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a
val select : ’a event list -> ’a
val never : ’a event
val alwaysEvt : ’a -> ’a event

val channel : unit -> ’a chan
val sameChannel : (’a chan * ’a chan) -> bool
val send : (’a chan * ’a) -> unit
val recv : ’a chan -> ’a
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event
val sendPoll : (’a chan * ’a) -> bool
val recvPoll : ’a chan -> ’a option

val getTid : unit -> thread_id
val sameTid : (thread_id * thread_id) -> bool
val compareTid : (thread_id * thread_id) -> order
val hashTid : thread_id -> word
val tidToString : thread_id -> string
val joinEvt : thread_id -> unit event

val timeOutEvt : Time.time -> unit event
val atTimeEvt : Time.time -> unit event



252 A CML Reference

Description

type thread_id

Each thread in a CML execution has a unique thread ID. These IDs are in an unspecified
total order that can be used to break cyclic dependencies (see compareTid).

type ’a event

Event values are abstract representations of synchronous operations (so-called first-class
synchronous operations).

type ’a chan

This type constructor generates the types for synchronous channels, where the parameter
specifies the types of values carried on the channel.

val version : {system : string, version_id : int list, date : string}
val banner : string

These specify which version of CML is implemented by this structure (banner is a string
representation of the version value).

val spawnc : (’a -> unit) -> ’a -> thread_id

spawnc f x spawns a new thread, which evaluates the application of f to x. The thread
ID of the new thread is returned.

val spawn : (unit -> unit) -> thread_id

spawn f is equivalent to the expression spawnc f ().

val yield : unit -> unit

This function can be used to implement an explicit context switch. Since CML is preemp-
tively scheduled, it should never be necessary for user programs to call this function. It is
mainly used for performance measurements.

val exit : unit -> ’a

This function terminates the calling thread.

val wrap : (’a event * (’a -> ’b)) -> ’b event

wrap (ev, f) wraps the post-synchronization action f around the event value ev.
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val wrapHandler : (’a event * (exn -> ’a)) -> ’a event

wrapHandler (ev, h) wraps the exception handler function h around the event
value ev. If, during execution of some post-synchronization action in ev, an exception
is raised, it will be caught and passed to h. Nesting of handlers works as would be ex-
pected: the innermost handler is the first one invoked. Note that exceptions raised in the
pre-synchronization actions in ev (i.e., actions defined by guard and withNack) are not
handled by h.

val guard : (unit -> ’a event) -> ’a event

guard g creates a delayed event value from the function g. When the resulting event
value is synchronized on, the function g will be evaluated and the resulting event value will
be used in the synchronization. This combinator provides a mechanism for implementing
pre-synchronization actions, such as sending a request to a server.

val withNack : (unit event -> ’a event) -> ’a event

withNack g creates a delayed event value from the function g. As in the case of
guard, the function g will be evaluated at synchronization time and the resulting event
value will be used in the synchronization. Furthermore, when g is evaluated, it is passed
a negative acknowledgement event as an argument. This negative acknowledgement event
is enabled in the case where some other event involved in the synchronization is chosen
instead of the one produced by g. The withNack combinator provides a mechanism for
informing servers that a client has aborted a transaction.

val choose : ’a event list -> ’a event

choose evs constructs an event value that represents the non-deterministic choice of
the events in the list evs.

val sync : ’a event -> ’a

sync ev synchronizes the calling thread on the event ev.

val select : ’a event list -> ’a

select evs synchronizes on the non-deterministic choice of the events in the list evs. It
is semantically equivalent to the expression sync (choose evs) but is more efficient.

val never : ’a event

This event value is one that is never enabled for synchronization. It is semantically equiva-
lent to the expression choose[].
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val alwaysEvt : ’a -> ’a event

alwaysEvt x creates an event value that is always enabled, and that returns the value x
upon synchronization. A thread that synchronizes on a choice of events, which includes an
event created by alwaysEvt, is guaranteed not to block, but there is no guarantee that the
event created by alwaysEvt will be chosen, since there may be some other enabled event
(i.e., there is no priority on enabled events in a choice).

val channel : unit -> ’a chan

This function creates a new synchronous channel.

val sameChannel : (’a chan * ’a chan) -> bool

This function returns true, if its two arguments are the same channel.

val send : (’a chan * ’a) -> unit

send (ch, msg) sends the message msg on the synchronous channel ch. This oper-
ation blocks the calling thread until there is another thread attempting to receive a message
from the channel ch, at which point the receiving thread gets the message and both threads
continue execution.

val recv : ’a chan -> ’a

recv ch receives a message from the channel ch. This operation blocks the calling
thread until there is another thread attempting to send a message on the channel ch, at
which point both threads continue execution.

val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event

These functions create event values that represent the send and recv operations, respec-
tively.

val sendPoll : (’a chan * ’a) -> bool

sendPoll (ch, msg) attempts to send the message msg on the synchronous channel
ch. If this operation can complete without blocking the calling thread, then the message
is sent and true is returned. Otherwise, no communication is performed and false is
returned. This function is not recommended for general use; it is provided as an efficiency
aid for certain kinds of protocols.
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val recvPoll : ’a chan -> ’a option

recvPoll ch attempts to receive a message from the channel ch. If there is no other
thread offering to send a message on ch, then this returns NONE. Otherwise it returns SOME
wrapped around the message. This function is not recommended for general use; it is pro-
vided as an efficiency aid for certain kinds of protocols.

val getTid : unit -> thread_id

This function returns the thread ID of the calling thread.

val sameTid : (thread_id * thread_id) -> bool

This function returns true if its two arguments are the same thread ID, and otherwise
returns false.

val compareTid : (thread_id * thread_id) -> order

This function compares the two thread IDs and returns their order in the total ordering of
thread IDs. The precise semantics of this ordering is left unspecified, other than to say it is
a total order.

val hashTid : thread_id -> word

This function returns a word value that can be used as a hash key for the thread ID. Note
that it is possible that two different thread IDs will have the same hash value.

val tidToString : thread_id -> string

This function returns a string representation of the thread ID.

val joinEvt : thread_id -> unit event

joinEvt tid creates an event value for synchronizing on the termination of the thread
with the ID tid. There are three ways that a thread may terminate: the function that was
passed to spawn (or spawnc) may return; it may call the exit function; or it may have an
uncaught exception. Note that joinEvt does not distinguish between these cases; it also
does not become enabled if the named thread deadlocks (even if it is garbage collected).

val timeOutEvt : Time.time -> unit event

timeOutEvt t creates an event value that becomes enabled at the time interval t after
synchronization. For example, the expression

sync (timeOutEvt (Time.fromSeconds 1))

will delay the calling thread for one second. Note that the specified time interval is actually
a minimum waiting time, and the delay may be longer.
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val atTimeEvt : Time.time -> unit event

atTimeEvt t creates an event value that becomes enabled at the specified time t. For
example, the expression

sync (atTimeEvt (Date.toTime (Date.date {
year = 2000, month = Date.Jan, day = 0,
hour = 0, minute = 0, second = 0,
offset = NONE

})))
blocks the calling thread until the beginning of the year 2000.
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The SyncVar structure
The SyncVar structure provides Id-style synchronous variables (or memory cells). These
variables have two states: empty and full. An attempt to read a value from an empty variable
blocks the calling thread until there is a value available. An attempt to put a value into
a variable that is full results in the Put exception being raised. There are two kinds of
synchronous variables: I-variables are write-once, while M-variables are mutable.

Synopsis
signature SYNC_VAR
structure SyncVar : SYNC_VAR

Interface
exception Put

type ’a ivar

val iVar : unit -> ’a ivar
val iPut : (’a ivar * ’a) -> unit
val iGet : ’a ivar -> ’a
val iGetEvt : ’a ivar -> ’a CML.event
val iGetPoll : ’a ivar -> ’a option
val sameIVar : (’a ivar * ’a ivar) -> bool

type ’a mvar

val mVar : unit -> ’a mvar
val mVarInit : ’a -> ’a mvar
val mPut : (’a mvar * ’a) -> unit
val mTake : ’a mvar -> ’a
val mTakeEvt : ’a mvar -> ’a CML.event
val mTakePoll : ’a mvar -> ’a option
val mGet : ’a mvar -> ’a
val mGetEvt : ’a mvar -> ’a CML.event
val mGetPoll : ’a mvar -> ’a option
val mSwap : (’a mvar * ’a) -> ’a
val mSwapEvt : (’a mvar * ’a) -> ’a CML.event
val sameMVar : (’a mvar * ’a mvar) -> bool

Description

exception Put

This exception is raised when an attempt is made to put a value into a variable that is already
full (see iPut and mPut).

type ’a ivar
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This type constructor generates the types for I-variables, where the parameter specifies the
types of values stored in the variable I-structured variables are write-once variables that
provide synchronization on read operations. They are especially useful for one-shot com-
munications, such as reply messages in client/server protocols, and can also be used to
implement shared incremental data structures.

val iVar : unit -> ’a ivar

This function creates a new empty I-variable.

val iPut : (’a ivar * ’a) -> unit

iPut (iv, x) fills the I-variable iv with the value x. Any threads that are blocked
on iv will be resumed. If iv already has a value in it, then the Put exception is raised.

val iGet : ’a ivar -> ’a

iGet iv returns the contents of the I-variable iv. If the variable is empty, then the
calling thread blocks until the variable becomes full.

val iGetEvt : ’a ivar -> ’a CML.event

iGetEvt iv returns an event value that represents the iGet operation on iv.

val iGetPoll : ’a ivar -> ’a option

This function is a non-blocking version of iGet. If the corresponding blocking form would
block, then it returns NONE; otherwise it returns SOME of the variable’s contents.

val sameIVar : (’a ivar * ’a ivar) -> bool

sameIVar (iv1, iv2) returns true, if iv1 and iv2 are the same I-variable.

type ’a mvar

This type constructor generates the types for M-variables, where the parameter specifies
the types of values stored in the variable. Unlike ivar values, M-structured variables may
be updated multiple times. Like I-variables, however, they may only be written if they are
empty.

val mVar : unit -> ’a mvar

mVar () creates a new empty M-variable.

val mVarInit : ’a -> ’a mvar

mVarInit x creates a new M-variable initialized to x.
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val mPut : (’a mvar * ’a) -> unit

mPut (mv, x) fills the M-variable mv with the value x. Any threads that are blocked
on mv will be resumed. If mv already has a value in it, then the Put exception is raised.

val mTake : ’a mvar -> ’a

mTake mv removes and returns the contents of the M-variable mv making it empty. If
the variable is already empty, then the calling thread is blocked until a value is available.

val mTakeEvt : ’a mvar -> ’a CML.event

mTakeEvt mv returns an event value that represents the mTake operation on mv.

val mGet : ’a mvar -> ’a

mGet mv returns the contents of the M-variable mv without emptying the variable; if the
variable is empty, then the thread blocks until a value is available. It is equivalent to the
atomic execution of the following expression:

let val x = mTake mv in mPut(mv, x); x end

val mGetEvt : ’a mvar -> ’a CML.event

mGetEvt mv returns an event value that represents the mGet operation on mv.

val mTakePoll : ’a mvar -> ’a option
val mGetPoll : ’a mvar -> ’a option

These are non-blocking versions of mTake and mGet, respectively. If the corresponding
blocking form would block, then they return NONE; otherwise they return SOME of the
variable’s contents.

val mSwap : (’a mvar * ’a) -> ’a

mSwap (mv, newV) puts the value newV into the M-variable mv and returns the
previous contents. If the variable is empty, then the thread blocks until a value is available.
It is equivalent to the atomic execution of the following expression:

let val x = mTake mv in mPut(mv, newV); x end

val mSwapEvt : (’a mvar * ’a) -> ’a CML.event

mSwapEvt (mv, newV) returns an event value that represents the mSwap operation
on mv and newV.

val sameMVar : (’a mvar * ’a mvar) -> bool

sameMVar (mv1, mv2) returns true, if mv1 and mv2 are the same M-variable.
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The Mailbox structure
The Mailbox structure provides support for buffered asynchronous communication, via
mailboxes. Mailbox buffers are unbounded and preserve the order that messages are sent
(e.g., FIFO ordering).

Synopsis
signature MAILBOX
structure Mailbox : MAILBOX

Interface
type ’a mbox

val mailbox : unit -> ’a mbox
val sameMailbox : (’a mbox * ’a mbox) -> bool
val send : (’a mbox * ’a) -> unit
val recv : ’a mbox -> ’a
val recvEvt : ’a mbox -> ’a CML.event
val recvPoll : ’a mbox -> ’a option

Description

type ’a mbox

This type constructor generates the types for mailboxes, where the parameter specifies the
types of values that can be sent to the mailbox. A mailbox is a communication channel with
unbounded buffering.

val mailbox : unit -> ’a mbox

This function creates a new mailbox.

val sameMailbox : (’a mbox * ’a mbox) -> bool

sameMailbox (mb1, mb2) returns true, if mb1 and mb2 are the same mailbox.

val send : (’a mbox * ’a) -> unit

send (mb, msg) sends the message msg to the mailbox mb. Note that unlike the
CML.send operation, sending a message on a mailbox will never block the sending thread.

val recv : ’a mbox -> ’a

recv mb receives the next message from the mailbox mb. If mb is empty, then this
blocks the calling thread until there is a message available.



A CML Reference 261

val recvEvt : ’a mbox -> ’a CML.event

recvEvt mb returns the event value that represents the recv operation on mb.

val recvPoll : ’a mbox -> ’a option

This function is the non-blocking version of recv. If the corresponding blocking form
would block (because the mailbox is empty), then this returns NONE. Otherwise it returns
SOME of the received message.

Discussion

Note that mailbox buffers are unbounded, which means that there is no flow control to
prevent a producer from greatly outstripping a consumer, and thus exhausting memory. In
situations where there is no natural limit to the rate of send operations, it is recommended
that the synchronous channels from the CML structure be used instead.
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The Result structure
The Result structure provides support for communicating results. A result variable is a
write-once memory cell that can contain either a value or an exception.

Synopsis
signature RESULT
structure Result : RESULT

Interface
type ’a result

val result : unit -> ’a result
val put : (’a result * ’a) -> unit
val putExn : (’a result * exn) -> unit
val get : ’a result -> ’a
val getEvt : ’a result -> ’a CML.event

Description

type ’a result

This type constructor generates the types for result variables, where the parameter specifies
the types of values stored in the variable Aresult value has essentially the same semantics
as an ivar, except that it can contain either a value or an exception packet to raise.

val result : unit -> ’a result

This function creates a new result variable.

val put : (’a result * ’a) -> unit

put (r, v) puts the value v into the result variable r. If the result variable r already
holds a result, then the SyncVar.Put exception is raised.

val putExn : (’a result * exn) -> unit

putExn (r, exn) puts the exception packet exn into the result variable r. If the
result variable r already holds a result, then the SyncVar.Put exception is raised.

val get : ’a result -> ’a

get r gets the contents of the result variable r. If r is empty, then the calling thread
blocks until another thread puts a value into r (using put or putExn). If r holds an
exception packet, then that exception is raised; otherwise the value that r holds is returned.
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val getEvt : ’a result -> ’a CML.event

This function constructs an event value that represents the get operation.
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The OS structure
CML extends the OS structure, which is part of the SML Basis Library, by adding event-
value constructors for low-level system events.

Synopsis
signature CML_OS
structure OS : CML_OS

Interface
include OS

structure Process : sig
include OS_PROCESS
val systemEvt : string -> status Event.event

end

structure IO : sig
include OS_IO
val pollEvt : poll_desc list -> poll_info list Event.event

end

Description

structure Process : sig ... end

The Process substructure extends the OS.Process structure from the SML Basis Li-
brary by adding an event constructor for the system function.

val systemEvt : string -> status Event.event

systemEvt cmd asks the operating system to execute the command cmd, and
returns an event value that can be used to synchronize on the termination of the com-
mand’s execution. This function will raise OS.SysErr, if the command cannot be
executed for some reason.

Note that, although this function is independent of the operating system, the inter-
pretation of the string cmd depends very much on the underlying operating system
and shell.

structure IO : sig ... end

The IO substructure extends the OS.IO structure from the SML Basis Library by adding
an event constructor for the poll function.

val pollEvt : poll_desc list -> poll_info list Event.event

pollEvt l returns an event value that synchronizes on one or more of a collec-
tion of I/O devices satisfying the conditions specified by the list of poll descriptors
l. Successful synchronization will return a non-empty list of poll_info values
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corresponding to those descriptors in l whose conditions are enabled. The returned
list respects the order of the argument list, and a value in the returned list will reflect a
(nonempty) subset of the conditions specified in the corresponding argument descrip-
tor. The pollEvt function will raise OS.SysErr if, for example, one of the file
descriptors refers to a closed file.

Note that unlike the poll function, there is no timeout argument. A non-zero
timeout can be provided by putting the polling event in a choice with a timeout event.

Discussion

Note that the interface as given is not a valid SML signature, since it redefines the Process
and IO substructures.
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The CML_TEXT_STREAM_IO signature
The CML_TEXT_STREAM_IO signature defines the interface of the Stream I/O layer in
CML’s text I/O stack. It provides input streams, which are treated in the lazy functional
style, and output streams, which are treated more conventionally. This signature is an en-
richment of the TEXT_STREAM_IO signature from the SML Basis Library. In addition to
the operations provided by the Basis Library, it adds event-value constructors for the var-
ious input operations. For more information see the descriptions of the STREAM_IO and
TEXT_STREAM_IO signatures in the SML Basis Library documentation.

Synopsis
signature CML_TEXT_STREAM_IO

Interface
include TEXT_STREAM_IO

val input1Evt : instream -> (elem * instream) option CML.event
val inputNEvt : (instream * int) -> (string * instream) CML.event
val inputEvt : instream -> (string * instream) CML.event
val inputAllEvt : instream -> (string * instream) CML.event
val inputLineEvt : instream -> (string * instream) CML.event

Description

val inputEvt : instream -> (string * instream) CML.event

inputEvt instrm returns an event value that represents the input operation on the
instream instrm. More precisely, the returned event value can be used to synchronize on
there either being input available or an end-of-stream being detected. In the former case,
the result of synchronization is the available input and the continuation of the stream, while
in the latter case the empty string and stream continuation are returned. While inputEvt
does not raise any exceptions itself, synchronizing on the returned event value will raise the
Io exception when there is an error in the underlying system calls.

val input1Evt : instream -> (elem * instream) option CML.event

input1Evt instrm returns an event value that represents the input1 operation on
the instream instrm. Synchronizing on the resulting event will produce a character and
the rest of the stream, or else NONE when the end of stream is reached. While input1Evt
does not raise any exceptions itself, synchronizing on the returned event value will raise the
Io exception when there is an error in the underlying system calls.

val inputNEvt : (instream * int) -> (string * instream) CML.event

inputNEvt (instrm, n) returns an event value that represents the inputN opera-
tion. This function raises the Size exception when n is either less than zero or larger than
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the maximum length string. Furthermore, synchronizing on the resulting event value will
raise the Io exception when there is an error in the underlying system calls.

val inputAllEvt : instream -> (string * instream) CML.event

inputAllEvt instrm returns an event value that represents the inputAll opera-
tion on the instream instrm. While inputAllEvt does not raise any exceptions itself,
synchronizing on the returned event value will raise the Io exception when there is an error
in the underlying system calls, and will raise Size when if the number of elements to be
returned is greater than the maximum string length.

val inputLineEvt : instream -> (string * instream) CML.event

inputLineEvt instrm returns an event value that represents the inputLine op-
eration on the instream instrm. While inputLineEvt does not raise any exceptions
itself, synchronizing on the returned event value will raise the Io exception when there is
an error in the underlying system calls, and will raise Size when if the number of elements
to be returned is greater than the maximum string length.

Discussion

One point that may not be obvious from the above descriptions is that these functions con-
struct event values with respect to a specific input stream value. Thus, each time one syn-
chronizes on an input event one gets the same result.
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The TextIO structure

The TextIO structure defines the interface of the imperative I/O layer in the text I/O
stack. This layer provides buffered I/O using mutable streams, and the ability to rebind
imperative-level streams dynamically to different stream-level streams. The CML im-
plementation of imperative input streams serializes access to the underlying functional
stream. Thus, if a thread is blocked attempting to read from a stream strm, any other
thread that attempts an operation on strm will have to wait until the first thread’s op-
eration completes (even if the second thread is attempting a non-blocking operation like
endOfStream).

Synopsis
signature CML_TEXT_IO
structure TextIO : CML_TEXT_IO

Interface
include TEXT_IO

structure StreamIO : CML_TEXT_STREAM_IO
where type reader = TextPrimIO.reader
where type writer = TextPrimIO.writer
where type pos = TextPrimIO.pos
where type vector = string
where type elem = char

val input1Evt : instream -> elem option CML.event
val inputNEvt : (instream * int) -> string CML.event
val inputEvt : instream -> string CML.event
val inputAllEvt : instream -> string CML.event

val openChanIn : string CML.chan -> instream
val openChanOut : string CML.chan -> outstream

Description

structure StreamIO : CML_TEXT_STREAM_IO

This substructure implements the Stream I/O layer of the text I/O stack. Note that it has the
enriched CML specific signature.

val input1Evt : instream -> elem option CML.event
val inputNEvt : (instream * int) -> string CML.event
val inputEvt : instream -> string CML.event
val inputAllEvt : instream -> string CML.event

These operations are event-value constructors for the standard input operations on input
streams.
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val openChanIn : string CML.chan -> instream

openChanIn ch returns an input stream that is connected to the output end of the
channel ch. Strings sent on the channel ch can be read by using any of the input operations
on the stream. Note that sending a message on ch may block the sending thread until some
other thread performs an input operation on the stream.

val openChanOut : string CML.chan -> outstream

openChanOut ch returns an output stream that is connected to the input end of the
channelch. Data written to the output stream is buffered, and may be read from the channel.

Discussion

Note that the interface as given is not a valid SML signature, since it redefines the StreamIO
substructure.
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The Multicast structure
Multicast channels provide a mechanism for broadcasting a stream of messages to a collec-
tion of threads. Threads receive multicast messages via an output port; each port receives
each message sent since the port was created. Multicast channels are particularly useful for
communicating with a dynamically varying group of threads, since the sender does not need
to know how many threads are listening.

Synopsis
signature MULTICAST
structure Multicast : MULTICAST

Interface
type ’a mchan
type ’a port
type ’a event = ’a CML.event

val mChannel : unit -> ’a mchan
val port : ’a mchan -> ’a port
val copy : ’a port -> ’a port
val recv : ’a port -> ’a
val recvEvt : ’a port -> ’a event
val multicast : (’a mchan * ’a) -> unit

Description

type ’a mchan

The type constructor for multicast channels.

type ’a port

The type constructor for output ports on multicast channels.

val mChannel : unit -> ’a mchan

This function creates a new multicast channel.

val port : ’a mchan -> ’a port

port mc creates a new output port on the multicast channel mc.

val copy : ’a port -> ’a port

copy p creates a new output port that has the same state as the port p; i.e., the stream of
messages seen on the two ports will be identical. This function is useful when two threads
need to see exactly the same stream of messages.
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val recv : ’a port -> ’a

recv p receives the next message from the port p. The calling thread is blocked until
there is a message available.

val recvEvt : ’a port -> ’a event

recvEvt p creates an event value that represents the recv operation on the port p.

val multicast : (’a mchan * ’a) -> unit

multicast (mc, v) multicasts the value v on the channel mc. It is a nonblocking
operation.
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The SimpleRPC structure
The SimpleRPC structure provides higher-order functions for implementing a simple RPC
(remote procedure call) protocol. The protocol is one where the client’s call blocks until a
reply is received from the server, and the server’s entry event is enabled whenever there is a
client attempting a call. These functions take a server action as an argument and return the
client call function and server entry as results.

Synopsis
signature SIMPLE_RPC
structure SimpleRPC : SIMPLE_RPC

Interface
type ’a event = ’a CML.event

val mkRPC : (’a -> ’b) -> {
call : ’a -> ’b,
entryEvt : unit event

}

val mkRPC_In : ((’a * ’c) -> ’b) -> {
call : ’a -> ’b,
entryEvt : ’c -> unit event

}

val mkRPC_Out : (’a -> (’b * ’c)) -> {
call : ’a -> ’b,
entryEvt : ’c event

}

val mkRPC_InOut : ((’a * ’c) -> (’b * ’d)) -> {
call : ’a -> ’b,
entryEvt : ’c -> ’d event

}

Description

val mkRPC : (’a -> ’b) -> {
call : ’a -> ’b,
entryEvt : unit event

}

mkRPC action packages the action function action in a simple RPC protocol, where
the client operation is a blocking function and the server entry is an event that is enabled
whenever a client request is made. The mkRPC function is the least general of the functions
in this structure; there are no additional arguments or results to the action function. Any
state that is local to the server must be included in the action’s closure. For example, the
following code shows how mkRPC can be used to implement access to shared state:
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fun mkServer init = let
val r = ref init
val {call=get, entryEvt=getEvt} = mkRPC(fn () => !r)
val {call=put, entryEvt=putEvt} = mkRPC(fn x => r := x)
fun server () = (select[getEvt, putEvt]; server())
in
ignore (spawn server);
{get = get, put = put}

end

val mkRPC_In : ((’a * ’c) -> ’b) -> {
call : ’a -> ’b,
entryEvt : ’c -> unit event

}

The mkRPC_In function supports an action function that takes an additional argument.
This argument is supplied by the server when creating the entry event value. For example,
we can modify the reference cell example to use mkRPC_In for the get action
fun mkServer init = let

val r = ref init
val {call=get, entryEvt=getEvt} = mkRPC_In(fn (_, x) => x)
val {call=put, entryEvt=putEvt} = mkRPC(fn x => r := x)
fun server () = (select[getEvt(!r), putEvt]; server())
in

ignore (spawn server);
{get = get, put = put}

end

val mkRPC_Out : (’a -> (’b * ’c)) -> {
call : ’a -> ’b,
entryEvt : ’c event

}

The mkRPC_Out function supports an action function that returns an additional result. This
argument is supplied by the server when creating the entry event value. Using mkRPC_In
for the get operation and mkRPC_Out for the put operation results in the following
implementation of the shared cell:
fun mkServer init = let

val {call=get, entryEvt=getEvt} = mkRPC_In(fn (_, x) => x)
val {call=put, entryEvt=putEvt} = mkRPC_Out(fn x => ((), x))
fun server v = server(select[getEvt v, putEvt])
in
ignore (spawnc server init);
{get = get, put = put}

end

val mkRPC_InOut : ((’a * ’c) -> (’b * ’d)) -> {
call : ’a -> ’b,
entryEvt : ’c -> ’d event

}

The mkRPC_InOut function provides for both additional arguments and results to the
action function.
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Discussion

Note that these functions do not support communicating server-side exceptions back to the
client; in fact, they are written under the assumption that the action functions never produce
uncaught exceptions.
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The Semantics of CML

One of the attractive properties of SML is that it has a formal definition, which serves as
both a guide to implementors and users. Following this tradition, a semantics of “Mini-
CML” has been developed, and some basic properties of the semantics have been proven.
In this appendix, we present both the dynamic and static semantics of Mini-CML, and
state some theorems relating the two. Mini-CML is based on a purely functional subset
of SML without datatypes, pattern matching, modules, or exceptions.1 This sequential
base is extended with the complete set of CML event combinators, as well as threads and
channels. While we have necessarily restricted ourselves to a subset of CML, the full
range of CML concurrency primitives is covered by this semantics. This appendix is not
meant to be a theoretical treatise, but rather an aid to understanding the language.

B.1 Notation

Before diving into the semantics of Mini-CML, it is necessary to review notation.

If A and B are sets, then A∪B is their union, A∩B is their intersection, and A \B is

their difference. The notation A
fin−→ B denotes the set of finite maps from A to B (i.e.,

partial functions with finite domains). If f is a map, then the domain and range of f are
defined as

dom(f) = {x | f(x) is defined}
rng(f) = {f(x) | x ∈ dom(f)}

The notation {a1 �→ b1, . . . , an �→ bn} denotes a finite map with domain {a1, . . . , an},
such that ai is mapped to bi; we write {} for the map with the empty domain. If A′ ⊂ A,

1Of these features, exceptions are the only feature that would require significant reworking of the dynamic semantics.
This is because exception names are global over all processes in the system, which requires extra bookkeeping in the
semantic rules.
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A′ is finite and b ∈ B, then {A′ �→ b} ∈ A
fin−→ B is the finite map that maps each a ∈ A′

to B. If f and g are maps, then f ◦ g is their composition, and f ± g, called f modified
by g, is a map with domain dom(f) ∪ dom(g), such that

(f ± g)(x) =

{
g(x) if x ∈ dom(g)
f(x) otherwise

The symbol ± is used because something is added and something is take away (when
dom(g) ∩ dom(f) = ∅). We often find it useful to view finite maps as sets of ordered
pairs and write f ⊆ g, if dom(f) ⊆ dom(g) and for x ∈ dom(f), f(x) = g(x). In this
case, g is called an extension of f . We write e[x ′ �→ e′] for the capture-free substitution
of the term e′ for the variable x′ in the term e.

B.2 Syntax

We first present the surface syntax of Mini-CML.2 As is usual, we assume the existence
of countable sets of variables and constants:

x ∈ VAR variables
b ∈ CONST = BCONST ∪ FCONST constants

BCONST = {(),true,false,0,1, . . .} base constants
FCONST = {+,-,fst,snd, . . .} function constants

The set of function constants, FCONST, includes the following symbols for the concur-
rency primitives: alwaysEvt, channel, choose, guard, neverEvt, recvEvt,
sendEvt, wrap, and withNack.

The surface syntax of Mini-CML expressions is defined by the following grammar:

e ::= x variables
| b constants
| (e1, e2) pairs
| fn x=> e function abstraction
| (e1 e2) function application
| let x= e1 in e2 let binding
| spawn e process creation
| sync e synchronization

The dynamic semantics of Mini-CML are defined in terms of an internal syntax, which
is the surface syntax extended with special syntactic forms used to represent semantic

2That is, the syntax used by programmers and accepted by compilers.
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objects. We need two additional sets of names for channels and conditions, which are
distinct from the variables and constants:

κ ∈ CH channel names
γ ∈ COND condition names

We then extend the surface syntax with the following grammar productions:

e ::= . . .

| κ channel names
| γ condition event
| e? receive event
| e1!e2 send event
| e1 ⇒ e2 wrap event
| N e guarded event function with nack
| (e1 ⊕ e2) event choice
| (e1 | e2) abort wrapper
| Λ never event

Note that we use N e to represent the product of both guard and withNack.

It is useful to distinguish two subsets of expressions: values (denoted v) and event
values (denoted ev ). These are defined as the least subsets of expressions satisfying the
following grammars:

v ::= b

| κ

| (v1, v2)
| fn x=> e

| N v

| ev

ev ::= κ?
| κ!v
| γ

| ev ⇒ v

| (ev1 ⊕ ev2)
| (ev | v)
| Λ

Variables are not included in the set of values, because our dynamic semantics is sub-
stitution based, instead of environment based. Thus, there are three syntactic classes of
terms in Mini-CML:

e ∈ EXP expressions
v ∈ VAL ⊂ EXP values

ev ∈ EVENT ⊂ VAL event values
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B.3 Dynamic semantics

Specifying the dynamic semantics requires some additional notation. We use K ⊂ CH

to denote finite sets of channels, and C ∈ COND
fin−→ {true, false} to denote the state

of a collection of conditions. Each Mini-CML process has a unique process identifier

π ∈ PROCID. We use P ∈ PROCID
fin−→ EXP to denote the state of a set of processes.

With this notation, the state of a Mini-CML computation is defined as a configuration
C,K,P , where C is the condition state, K is the set of allocated channel names, and P is
the process state. We say that a configuration C,K,P is well formed, if for any γ in the
terms of P we have γ ∈ C, and if for any κ in the terms of P we have κ ∈ K.

The dynamic semantic of Mini-CML is organized around four reduction relations.
Concurrent evaluation defines how configurations evolve:

C,K,P ⇒ C′,K′,P ′

The rendezvous projection relation describes how a collection of processes can execute a
rendezvous:

C,P �→ (P ′,P ′′)/A
where A is the set of negative acknowledgement conditions (NACK conditions) of the
rendezvous. The primitive notions of synchronization and communication are captured
by a family of event-matching relations

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
where A ⊂ COND is the set of NACK conditions of the match. A sequential configura-
tion is a triple C,K, e. The sequential evaluation of individual processes is defined by the
sequential evaluation relation on sequential configurations

C,K, e ↪→ C′,K′, e′

Each of these is defined in detail in the sequel. While it would be possible to collapse
these into two relations (concurrent evaluation and event matching), we prefer this orga-
nization because it separates the concept of concurrent evaluation from sequential evalu-
ation.

Our semantics is given as a transition system, and we use Felleisen’s notion of an eval-
uation context to define the concurrent and sequential evaluation relations. An evaluation
context is a single-hole context where the hole marks the next redex (or is at the top if
the term is irreducible). The evaluation of Mini-CML is call-by-value and left-to-right,
which leads to the following grammar for the evaluation contexts:

E ::= [ ] | (E e) | (v E) | (E, e) | (v, E)
| let x=E in e | spawnE | syncE

| (E | γ)
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The last of these deserves some comment. As shown below, it is necessary to evaluate on
the left-hand side of an abort expression to properly describe the semantics of negative
acknowledgements (withNack).

B.3.1 Concurrent evaluation

The concurrent evaluation relation is defined by three simple rules. The first describes a
single sequential step by one of the processes in the configuration

C,K, e ↪→ C′,K′, e′ π ∈ dom(P)
C,K,P ∪ {〈π, e〉} ⇒ C′,K′,P ∪ {〈π, e′〉}

The second rule describes the spawning of a new process:

π ∈ dom(P) π′ ∈ dom(P) π = π′

C,K,P ∪ {〈π, E [spawn v]〉} ⇒ C,K,P ∪ {〈π, E [()]〉, 〈π′, v ()〉}
The third rule describes communication and synchronization:

C,P �→ (P ′,P ′′)/A C′ = C ± {A �→ true}
C,K,P ⇒ C′,K, (P \ P ′) ∪ P ′′

As will be seen in the rules below, the set A is the set of NACK conditions of the events
not selected in this synchronization. The condition state is updated to enable these NACK
conditions.

B.3.2 Rendezvous projection

The rendezvous projection is used to choose a possible rendezvous from a set of well-
formed processes. We define

C,P �→ (P ′,P ′′)/A
to mean that there is a rendezvous enabled in P involving P ′ ⊆ P, where the rendezvous
maps the processes in P ′ to P ′′. We require that dom(P ′) = dom(P ′′). The following
rule allows the addition of processes that are not involved in the rendezvous:

C,P �→ (P ′,P ′′)/A P ⊆ P ′′′

C,P ′′′ �→ (P ′,P ′′)/A
The basic notion of a set of k processes performing a rendezvous is defined by the fol-
lowing rule:

p1 = 〈π1, E 1[sync ev1]〉 · · · pk = 〈πk, Ek[sync evk]〉
C � (ev1, . . . , evk) �k (e1, . . . , ek)/A

C, {p1, . . . , pk} �→ ({p1, . . . , pk}, {〈π1, E 1[e1]〉, . . . , 〈πk, E k[ek]〉})/A
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B.3.3 Event matching

The actual rules used to specify the event matching depend on the rendezvous primitives
provided by the language. Intuitively, the judgement

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
means that the event values ev i match yielding the corresponding results ei with the
additional result of a set of NACK conditions A. For CML, which provides two-way
rendezvous, we get the following rule:

C � (κ!v, κ?) �2 ((), v)/∅
One-way synchronization on conditions (which includes alwaysEvt) is defined by

C(γ) = true
C � γ �1 ()/∅

The semantics of the event combinators are defined by the following rules (for k-way
matching):

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
C � (ev1 ⊕ ev ′, . . . , evk) �k (e1, . . . , ek)/A ∪ nack(ev ′)

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
C � (ev ′ ⊕ ev1, . . . , evk) �k (e1, . . . , ek)/A ∪ nack(ev ′)

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
C � (ev1 ⇒ f, . . . , evk) �k ((f e1), . . . , ek)/A

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A
C � (ev1 | γ, . . . , evk) �k (e1, . . . , ek)/A

C � (ev1, ev2, . . . , evk) �k (e1, e2, . . . , ek)/A {ij | 1 ≤ ij ≤ k}
C � (ev i1 , . . . , ev ik

) �k (ei1 , . . . , eik
)/A

where the NACK conditions of an event are defined as

nack(ev1 ⊕ ev2) = nack(ev1) ∪ nack(ev2)
nack(ev ⇒ v) = nack(ev)

nack(ev | γ) = nack(ev) ∪ {γ}
nack(ev) = ∅ otherwise

Note that abort events are introduced by the choice combinator — if the match involves
one branch, the abort conditions of the other branch are enabled.
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B.3.4 Sequential evaluation

The sequential evaluation relation is defined by six rules, which are given in terms of
evaluation contexts. The first three of these are the standard rules for call-by-value λ-
calculus evaluation:

C,K,E [b v] ↪→ C,K,E [δ(b, v)]
C,K,E [(fn x=> e) v] ↪→ C,K,E [e[x �→ v]]
C,K,E [let x= v in e] ↪→ C,K,E [e[x �→ v]]

We have special evaluation rules for alwaysEvt and channel creation:

C,K,E [alwaysEvt v] ↪→ C ± {γ �→ true},K,E [γ ⇒ (fn ()=> v)]
C,K,E [channel ()] ↪→ C,K ∪ {κ},E [κ]

where (γ ∈ dom(C)) and (κ ∈ K). The last rule describes the effect of applying sync
to a guarded event function:

C,K,E [sync (N v)] ↪→ C ± {γ �→ false},K,E [sync (v γ)] (γ ∈ dom(C))

The meaning of function constants is given by the partial function

δ : FCONST × VAL → VAL

Since a value can have free condition and channel names, we require that the application
of δ not introduce any new condition or channel names (this requirement is necessary
to preserve well-formed configurations under sequential evaluation). For the standard
built-in function constants, the meaning of δ is the expected one; for example,

δ(+, (1, 1)) ≡def 2
δ(fst, (v1, v2)) ≡def v1

δ(snd, (v1, v2)) ≡def v2

There is a technical issue with respect to type soundness and the definition of δ. In the
static semantics described below, we place the restriction that δ(f, v) should be defined
for any well-typed application of f to v. If we extended Mini-CML with an exception
mechanism, then this restriction is not required (e.g., division by zero raises an excep-
tion).

The δ function also defines the translation from the surface syntax of Mini-CML
events to the internal representation. For the base-event constructors, the rules for this
are as follows:

δ(neverEvt,()) ≡def Λ
δ(recvEvt, κ) ≡def κ?

δ(sendEvt, (κ, v)) ≡def κ!v
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Recall that guard and withNack delay the evaluation of their argument to synchro-
nization time, and that the nack event passed to the argument of withNack is unique to
the synchronization. These functions introduce guarded event functions

δ(guard, v) ≡def N (fn a=> v ())
δ(withNack, v) ≡def N (fn a=> (v a | a))

where a is a fresh variable. In the case of guard, the abort event (bound to a) is ignored
by the guarded function, while in the case of withNack, the abort event is passed to the
guarded function and also used in the abort wrapper. Note that the application of v to a

requires evaluation on the left-hand side of the abort wrapper.

Preserving the delay semantics of guarded functions creates some complications in the
definition of the wrap and choose functions. For wrap we have the following rules:

δ(wrap, (N v1, v2)) ≡def N (fn a=>wrap (v1 a, v2))
δ(wrap, (ev , v)) ≡def ev ⇒ v

where we assume a is a fresh variable.

The situation is even more complicated in the case of the choose function, since
guarded functions can appear in either (or both) branches, and we may have both a regular
guard and nack guard in the same choice:

δ(choose, (N v1, N v2)) ≡def N (fn a1 =>N (fn a2 =>choose (v1 a1, v2 a2)))
δ(choose, (N v, ev)) ≡def N (fn a=>choose (v a, ev))
δ(choose, (ev , N v)) ≡def N (fn a=>choose (ev , v a))

δ(choose, (ev 1, ev2)) ≡def (ev1 ⊕ ev2)

where we assume a, a1, and a2 are fresh variables.

B.4 Execution traces

Unlike in the sequential semantics of SML, a CML program can have many (often in-
finitely many) different evaluations. Furthermore, there are many interesting programs
that do not terminate. Thus some new terminology and notation for describing evaluation
sequences is required. This is used to describe some reasonable fairness constraints on
implementations and to state type soundness results for Mini-CML.

Definition B.1 A trace T is a (possibly infinite) sequence of well-formed configurations

T = 〈〈C0,K0,P0; C1,K1,P1; . . . 〉〉
such that Ci,Ki,P i ⇒ Ci+1,Ki+1,P i+1 (for i < n, if T is finite with length n). The
head of T is C0,K0,P0.
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Note that if a configuration C0,K0,P0 is well-formed, then any sequence of evaluation
steps starting with C0,K0,P0 is a trace.

The possible states of a process with respect to a configuration are given by the fol-
lowing definition.

Definition B.2 Let C,K,P be a well-formed configuration and let 〈π, e〉 ∈ P. The state
of π in P is either zombie, blocked, stuck, or ready, depending on the form of e:

• if e = [v], then π is a zombie,

• if e = E [sync ev ] and there does not exist a set of processes

{〈πi, E i[sync ev i]〉 | 1 ≤ i ≤ k} ⊆ P \ {〈π, e〉}
such that C � (ev , ev 1, . . . , evk) �k+1 (e′, e1, . . . , ek)/A, then π is blocked.

• if there is no sequential configuration C,K, e′, such that C,K, e ↪→ C,K, e′, then π

is stuck.

• otherwise, π is ready.

We define the set of ready processes in C,K,P by

Rdy(C,K,P) = {π | π is ready in C,K,P}

A configuration C,K,P is terminal if Rdy(P) = ∅. A terminal configuration with
blocked processes is said to be deadlocked.

Definition B.3 A trace is a computation if it is maximal; i.e., if it is infinite or if it is finite
and ends in a terminal configuration. If e is a program, then we define the computations
of e to be

Comp(e) = {T | T is a computation with head ∅, ∅, {〈π0, e〉}. }

We follow the convention of using π0 as the process identifier of the initial process in a
computation of a program.

Definition B.4 The set of processes of a trace T is defined as

Procs(T ) = {π | ∃ Ci,Ki,P i ∈ T with π ∈ dom(P i)}

Since a given program can evaluate in different ways, the sequential notions of con-
vergence and divergence are inadequate. Instead, we define convergence and divergence
relative to a particular computation of a program.
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Definition B.5 A process π ∈ Procs(T ) converges to a value v in T , written π⇓T v,
if C,K,P ∪ {〈π, v〉} ∈ T . We say that π diverges in T , written π⇑T , if for every
C,K,P ∈ T , with π ∈ dom(P), π is ready or blocked in P .

Divergence includes deadlocked processes and terminating processes that are not evalu-
ated often enough to reach termination, as well as those with infinite loops. It does not
include stuck processes.

B.4.1 Fairness

The semantics presented above admits unfair traces, and thus is not adequate as a spec-
ification of CML implementations. It is necessary to distinguish the acceptable traces.
Informally, we require that ready processes make progress and that synchronization on a
given channel or condition not be starved.

A couple of definitions are required before formalizing the notions of fairness. We
have already defined the notion of a process being ready in a configuration; a similar
definition is required for channels and conditions.

Definition B.6 The synchronization objects of an event value ev are defined as

SyncObj(κ!v) = {κ}
SyncObj(κ?) = {κ}
SyncObj(γ) = {γ}
SyncObj(Λ) = ∅

SyncObj(ev1 ⊕ ev2) = SyncObj(ev1) ∪ SyncObj(ev2)
SyncObj(ev ⇒ v) = SyncObj(ev)

SyncObj(ev | γ) = SyncObj(ev)

We say that a synchronization object ψ is used in a synchronization if it is the synchro-
nization object of the chosen base event for some process involved in the synchronization.

Definition B.7 A synchronization object ψ is enabled in a configuration C,K,P if there
are k processes 〈πi, E i[sync ev i]〉 ∈ P for 1 ≤ i ≤ k, such that ψ ∈ SyncObj(ev 1)
and

C � (ev1, . . . , evk) �k (e1, . . . , ek)/A

The acceptable computations of a program are defined in terms of fairness restrictions.

Definition B.8 A computation T is acceptable if it ends in a terminal configuration, or
if T satisfies the following fairness constraints:

(1) Any process that is ready infinitely often is selected infinitely often.
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(2) Any synchronization object that is enabled infinitely often is used infinitely often.

An implementation of CML should prohibit the possibility of unacceptable computa-
tions. In practice this requires that an implementation satisfy some stronger property on
finite traces.

B.5 Static semantics

It is well known that references (i.e., updatable memory cells) can cause type soundness
problems for polymorphic languages like SML. Furthermore, it is known that references
can be coded using channels and processes, so the question of type soundness of a poly-
morphic concurrent language like CML deserves examination. In this section, we present
a type system for Mini-CML programs, and state soundness results about the system.

The presentation uses standard notation. Let ι ∈ TYCON = {int,bool, . . .} desig-
nate the type constants, and α ∈ TYVAR designate type variables. Then, the set of types,
τ ∈ TY, is defined by

τ ::= ι type constants
| α type variables
| (τ1 → τ2) function types
| (τ1 × τ2) pair types
| τ chan channel types
| τ event event types

and the set of type schemes, σ ∈ TYSCHEME, is defined by

σ ::= τ

| ∀α.σ

We write ∀α1 · · ·αn.τ for the type scheme σ = ∀α1 · · · ∀αn.τ . The type variables
α1, . . . , αn are said to be bound in σ. A type variable that occurs in τ and is not bound is
said to be free in σ. We write FTV(σ) for the free type variables of σ. If FTV(τ) = ∅,
then τ is said to be a monotype.

Type environments assign type schemes to variables in terms. Since we are interested
in assigning types to intermediate stages of evaluation, channel names also need to be
assigned types. Therefore, a typing environment is a pair of finite maps: a variable
typing and a channel typing:

VT ∈ VARTY = VAR
fin−→ TYSCHEME

CT ∈ CHANTY = CH
fin−→ TY

TE = (VT,CT) ∈ TYENV = (VARTY × CHANTY)
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We use FTV(VT) and FTV(CT) to denote the sets of free type variables of variable
and channel typings, and

FTV(TE) = FTV(VT) ∪ FTV(CT)

where TE = (VT,CT). Note that there are no bound type variables in a channel typing.
The following shorthand is useful for type environment modification:

TE ± {x �→ σ} ≡def (VT ± {x �→ σ},CT)

where x ∈ VAR, κ ∈ CH, and TE = (VT,CT).
A substitution is a map from type variables to types. A substitution S can be naturally

extended to map types to types as follows:

Sι = ι

Sα = S(α)
S(τ1 → τ2) = (Sτ1 → Sτ2)
S(τ1 × τ2) = (Sτ1 × Sτ2)
Sτ chan = (Sτ) chan

Sτ event = (Sτ) event

Application of a substitution to a type scheme respects bound variables and avoids cap-
ture. It is defined as

S(∀α1 · · ·αn.τ) = ∀α′
1 . . . α′

n.S(τ [αi �→ α′
i])

where α′
i ∈ dom(S) ∪ FTV(rng(S)). Application of a substitution S to a type en-

vironment TE is defined as S(TE) = S ◦ TE. A type τ ′ is an instance of a type
scheme σ = ∀α1 · · ·αn.τ , written σ � τ ′, if there exists a finite substitution, S, with
dom(S) = {α1, . . . αn} and Sτ = τ ′. If σ � τ ′, then we say that σ is a generalization
of τ ′.

Lastly, the closure of a type τ with respect to a type environment TE is defined as
CLOSTE(τ) = ∀α1 · · ·αn.τ , where

{α1, . . . , αn} = FTV(τ) \ FTV(TE)

B.5.1 Expression typing rules

To associate types with the constants, we assume the existence of a function

TypeOf : CONST → TYSCHEME
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For the concurrency related constants, it assigns the following type schemes:

channel : ∀α.(unit→ α chan)
neverEvt : ∀α.(unit→ α event)
alwaysEvt : ∀α.(α → α event)
recvEvt : ∀α.(α chan→ α event)
sendEvt : ∀α.((α chan× α) → unit event)
wrap : ∀α1α2.((α1 event× (α1 → α2)) → α2 event)
choose : ∀α.((α event× α event) → α event)
guard : ∀α.((unit→ α event) → α event)
withNack : ∀α.((unit event→ α event) → α event)

We also assume that there are no event-valued constants. More formally, we require that
there does not exist any b such that TypeOf(b) = τ event, for some type τ .

The typing rules for Mini-CML are divided into two groups. The rules for the surface
language are given in Figure B.1. There are two rules for let: the rule (τ -let-val) applies
in the non-expansive case (in the syntax of Mini-CML, this is when the bound expression
is in VAL); the rule (τ -let) applies when the expression is expansive (not a value). There
are also rules for typing channel names, and pair expressions. In addition to these core
typing rules, there are rules for the other syntactic forms (see Figure B.2). Given the
appropriate environment, these rules can be derived from rule (τ -app) (rule (τ -const) in
the case of Λ). It is useful, however, to include them explicitly. As before, it is worth
noting that the syntactic form of a term uniquely determines which typing rule applies.

In order that the typing of constants be sensible, we impose a typability restriction
on the definitions of δ and TypeOf. If TypeOf(b) � (τ ′ → τ) and TE � v : τ ′, then
δ(b, v) is defined and TE � δ(b, v) : τ . It is worth noting that the δ rules we defined for
the concurrency constants respect this restriction.

B.5.2 Process typings

A process typing is a finite map from process identifiers to types:

PT ∈ PROCTY = PROCID
fin−→ TY

Typing judgements are extended to process configurations by the following definition.

Definition B.9 A well-formed configuration C,K,P has type PT under a channel typing
CT, written

CT � C,K,P : PT

if the following hold:
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TypeOf(b) � τ

TE � b : τ
(τ -const)

x ∈ dom(VT) VT(x) � τ

(VT,CT) � x : τ
(τ -var)

TE � e1 : (τ ′ → τ) TE � e2 : τ ′

TE � (e1 e2) : τ
(τ -app)

TE ± {x �→ τ} � e : τ ′

TE � fn x=> e : (τ → τ ′)
(τ -abs)

TE � e1 : τ1 TE � e2 : τ2

TE � (e1, e2) : (τ1 × τ2)
(τ -pair)

TE � v : τ ′ TE ± {x �→ CLOSTE(τ ′)} � e : τ

TE � let x= v in e : τ
(τ -let-val)

TE � e1 : τ ′ TE ± {x �→ τ ′} � e2 : τ

TE � let x= e1 in e2 : τ
(τ -let)

TE � e : (unit→ τ)
TE � spawn e : unit (τ -spawn)

TE � e : τ event
TE � sync e : τ (τ -sync)

Figure B.1: Type inference rules for the surface language

• K ⊆ dom(CT),

• dom(P) ⊆ dom(PT), and

• for every 〈π, e〉 ∈ P , ({},CT) � e : PT(π).

For CML, where spawn requires a (unit → unit) argument, the process typing is
PT(π) = unit for all π ∈ dom(P).
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CT(κ) = τ

(VT,CT) � κ : τ
(τ -chvar)

TE � κ : τ chan
TE � κ? : τ event (τ -input)

TE � κ : τ chan TE � v : τ
TE � κ!v : unit event (τ -output)

TE � ev : τ ′ event TE � e : (τ ′ → τ)
TE � ev ⇒ e : τ event

(τ -wrap)

TE � e : τ event
TE � N e : τ event (τ -nack)

TE � ev1 : τ event TE � ev2 : τ event
TE � (ev1 ⊕ ev2) : τ event

(τ -choice)

TE � e : τ event
TE � e | γ : τ event (τ -abort)

∀α.α event � τ
TE � Λ : τ (τ -never)

TE � γ : unit (τ -condition)

Figure B.2: Other type inference rules for Mini-CML

B.5.3 Type soundness

This section presents a statement of the soundness of the above type system with respect
to the dynamic semantics of Section B.3. To prove these results, we first show that
evaluation preserves types (also called subject reduction), then we characterize run-time
type errors (called “stuck states”) and show that stuck states are untypable. This allows
us to conclude that well-typed programs cannot go wrong.

The first step in this process is to show that the sequential evaluation relation preserves
the types of expressions.

Theorem B.1 (Sequential type preservation) For any type environment TE, expres-
sion e1 and type τ , such that TE � e1 : τ , if e1 ↪→ e2 then TE � e2 : τ .
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This result is then extended to concurrent evaluation and process typings.

Theorem B.2 (Concurrent type preservation) If a configuration C,K,P is well-formed
with

C,K,P ⇒ C′,K′,P ′

and, for some channel typing CT,

CT � C,K,P : PT

then there is a channel typing CT′ and a process typing PT′, such that the following
hold:

• CT ⊆ CT′,

• PT ⊆ PT′, and

• CT′ � C′,K′,P ′ : PT′.

• CT′ � C,K,P : PT′.

With these results, it is fairly easy to show soundness results:

Theorem B.3 (Syntactic soundness) Let e be a program, with � e : τ . Then, for any
T ∈ Comp(e), π ∈ Procs(T ), with Ci,Ki,P i the first occurrence of π in T , there exists
a CT and PT, such that CT � C i,Ki,P i : PT, and either

• π⇑T or

• π⇓T v and there exists an extension CT′ of CT with ({},CT′) � v : PT(π).

To state more traditional soundness results, we need to define a notion of evaluation that
distinguishes those processes that have run-time type errors.

Definition B.10 For a computation T , we define the evaluation of a process π in T by
the following partial function:

evalT (π) =

{
WRONG if π is stuck in some configuration in T

v if π⇓Tv

Theorem B.4 (Soundness) If e is a program with � e : τ , then for any computation
T ∈ Comp(e) and any process ID π ∈ Procs(T ), the following hold:

(Strong soundness) If evalT (π) = v, and Ci,Ki,P i is the first occurrence of π in T ,
then for any CT and PT, such that CT � C i,Ki,P i : PT and PT(π0) = τ , there
is an extension CT′ of CT, such that ({},CT′) � v : PT(π).

(Weak soundness) evalT (π) = WRONG
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Notes

The semantics presented here serves two purposes: most important, it provides a refer-
ence to guide the implementation of CML, and it provides a base to prove the type sound-
ness of the primitives.3 There are other semantics treatments of CML (or at least subsets
of CML). Mosses and Musicante have defined an action semantics for CML [MM94],
and Ferreira, Hennessy and Jeffrey have explored the semantics of CML from a tradi-
tional process cacluli point of view [FHJ96]. This latter work is probably the right basis
for developing tools for reasoning about CML programs.

This appendix is a revised version of the semantics for λcv that is presented in the
author’s Ph.D. dissertation [Rep92]. The language λcv is similar in scope to Mini-CML,
except that it reflects the design of CML circa 1991. The most significant difference is
that λcv uses imperative types to avoid problems with polymorphic typing of channels.
The other main difference is that the wrapAbort combinator of λcv was replaced by
withNack in Mini-CML. The theorems of Section B.5.3 are proved using the “syn-
tactic” approach of Wright and Felleisen [WF91]; the author’s dissertation includes the
proofs for the λcv version of the semantics [Rep92]. There is also a discussion of extend-
ing λcv with various features, such as references, exceptions, and the joinEvt event
constructor (which was called threadWait).

Kwiatkowska has written a nice survey of fairness issues [Kwi89]. In her taxonomy,
the first restriction of Definition B.8 is strong process fairness and the second is strong
event fairness.

3With the adoption of the value restriction in SML’97, the type soundness of CML is less in question.
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MULTICAST signature, 100, 250, 270
Multicast structure, 101, 104, 250, 270
Multilisp, 31, 32, 37, 115
multiway rendezvous, 115
Musicante, M., 291
mutex lock, 19, 36

implementation of, 225, 226
mutual exclusion, 15, 16, 20
mVar function, 91, 258
mvar type, 91, 258
mVarInit function, 258
Myers, B., 182

NACK condition, 278, 280
negative acknowledgement, 78, 84, 126, 127, 253, 278
negative acknowledgement condition, see NACK con-

dition
NetMessage structure, 194, 196, 198
network layer, see tuple space
NETWORK signature, 194, 198
Network structure, 194, 198
network type, 198, 201
never value, 85, 253
newRemoteTS function, 217
newsqueak, 9, 84, 182, 247
newTexture function, 174
Nielson, F., xi
Nielson, H., xi
Nikhil, R., 37
nondeterminism, 11, 50, 54

objnd_state type, 136
observer pattern, see publish and subscribe
occam, 36, 38
offer communication, 42
Okasaki, C., 9
Olsson, R., 9
openChanIn function, 269
openChanOut function, 269
Oram, A., 143
origin value, 147
OS signature, 264
OS structure, 249, 264
OS.IO structure, 264
OS.Process structure, 264
out_chan type, 56
out function, 184, 218
output protocol, see tuple space
output server, 188, 214
OutputServer structure, 193, 204, 214

Panangaden, P., 37, 115, 130
parallel build system, 131
parallel make, see parallel build system
parallel programming, 31
parent function, 165
parseHost function, 201
Pascal-m, 36
pat_atom type, 184

Paulson, L., 9
Pegasus, x, xi, 37, 182
Pegasus ML, see PML
PFL, 130, 247
philosopher function, 186
π-calculus, 38
Pike, R., 8, 182, 247
Pingali, K., 37
PML, x, xi, 35, 124, 125, 129, 130, 247
Pnueli, A., 38
point type, 146
pollEvt function, 264
polling, 28, 34, 87

channel, 254, 255
I-variable, 258
M-variable, 259
mailbox, 261

popup menu, 161
port function, 99, 270
port type, 100, 270
post-synchronization action, see wrap combinator
power series, 67, 84
power series multiplication, 67
pre-synchronization action, see guard combinator
preemptive scheduling, xi, 8, 41, 244, 252
primes function, 47
procedural abstraction, 2, 55, 122
process, see thread
process abstraction, 1–4
process algebra, 38
process calculi, 38
process history, 14, 23
process network, see dataflow network
process state, 278
process typing, 287
producer/consumer buffer, 16
promise, 29, 86
promiseEvt function, 86
proxyServer function, 205
ps_stream type, 67
psAdd function, 68
psCopy function, 71
psMulByConst function, 69
psMulByTerm function, 69
ptAdd function, 147
ptInRect function, 147
ptLess function, 146
ptSub function, 147
publish and subscribe, 115, 174
Pucella, R., xi, 37
Put exception, 91, 257
put function
Cell structure, 42
Result structure, 262

putExn function, 262

Queue structure, 223

race condition, 6, 21
Ramsey, N., 130, 247
raster_op type, 148
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rational type, 67
RatNum structure, 67
rdEvt function, 184, 218
reactive language, see synchronous language
reactive system, 6
read-all, write-one, 188
read-one, write-all, 188
Reade, C., 9
ready process state, 283
ready queue, 223
realization function, 155
realize function, 155
rect function, 153
rect type, 146
rectAdd function, 147
rectHt function, 147
rectInset function, 147
rectMove function, 147
rectOrigin function, 146
rectSub function, 147
rectWid function, 147
rectWithin function, 147
recv function, 41, 271
CML structure, 254
DirChan structure, 57
Mailbox structure, 260

recvEvt event constructor, 51–53, 123
CML structure, 254
DirChan structure, 57, 58
implementation of, 241, 242
Mailbox structure, 261
Multicast structure, 99, 271

recvMessage function, 198
recvPoll function, 87
CML structure, 255
Mailbox structure, 261

releaseLock function, 79, 81
remote delay, 5
remote procedure call, see RPC
remote_server_info type, 199
remove function, 208
rendezvous, see synchronous message passing
rendezvous projection, 278, 279
reply type, 199
replyIfMatch function, 212
resolveAddr function
SockUtil structure, 201

result function, 262
RESULT signature, 249, 262
Result structure, 249, 262
Reynolds, J., 246
Roome, W., 84
RPC, 28, 29, 74, 94, 105, 119, 121, 272
RPC protocol, 94
runProcess function, 137

safety property, 15, 38
sameBitmap function, 151, 153
sameChannel function, 254
sameFrame function, 156, 167
sameIVar function, 258

sameMailbox function, 260
sameMVar function, 259
sameTid function, 255
scanAddr function
SockUtil structure, 201

Scheme, 247
Schmidtmann, C., 182
Schneider, F., 35
select operator, 50, 51, 54, 253
selective communication, 15, 27, 28, 37, 50, 55, 121,

122
facets of, 122, 123
implementation of simple, 233–235

semaphore, 17, 36
send function, 41
CML structure, 254
DirChan structure, 57
Mailbox structure, 260

sendEvt event constructor, 52, 53, 123
CML structure, 254
DirChan structure, 57, 58
implementation of, 241, 242

sendMessage function, 198
sendPoll function
CML structure, 254

sequential configuration, 278
sequential evaluation relation, 278, 281
server layer, see tuple space
server_conn type, 199
set function, 174
shared-memory language, 12, 16
Shivers, O., 247
shutdown function, 199
Siegel, E., 220
sieve function, 47
Sieve of Eratosthenes, 46
signal handling, xi, 90, 244
Silberschatz, A., 247
simple rendezvous, see synchronous message passing
SIMPLE_RPC signature, 250, 272
SimpleRPC structure, 106, 250, 272
sink function, 153
small texture view, 175
SmallView structure, 175
SML, 6, 275
SML Basis Library, xi, xii, 9, 87, 88, 249, 250, 264, 266
SML’97, xi
SML/NJ, x, xii, 7, 9, 39, 129
SML/NJ Library, xii, 81, 98, 136, 198, 201, 205, 220,

223
SMLofNJ structure, 222
Smolka, S., 35
SockUtil structure, 201
spawn function, 40, 252
spawnBuffers function, 201
spawnc function, 252
spawnNetServer function, 201
spawnServer function, 214
split function, 63, 65
squeak, 182
squint, 182
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SR, 9, 23, 37, 109, 115
stamp type, 133
Standard ML, see SML
Standard ML of NJ, see SML/NJ
Stansifer, R., 9
starvation, 6, 15
state machine, 43
Steiner, J., 35
Stevens, W., 220
Stone, C., 220
stream, 45, 47, 67, 82, 95
stream processing, see stream
stream programming, see stream
stringSize function, 149
stuck process state, 283
stuck state, 289, 290
subject reduction, see type preservation
substitution, 286
Substring structure, 140
Sussman, G., 82
swap channel, 59
swap function, 59
swap_chan type, 59
swapChannel function, 59
sync operator, 54, 123, 253

implementation of, 240
SYNC_VAR signature, 249, 257
synchronization, see thread synchronization, 55
synchronization object, 284
synchronization point, see commit point
synchronizing shared-memory, 32, 91
synchronous language, 37
synchronous message passing, 23, 25, 31, 37, 41, 44,

85, 118, 120
implementation of, 233

synchronous variable, see synchronous shared-memory
SyncVar structure, 93, 249, 257
systemEvt function, 264

tail recursion, 43, 242–243
and callcc, 243

Talbott, S., 143
Tanenbaum, A., 35
TCP/IP, 194
template, see tuple space, 34
template tag, 184
template/tuple matching, 184
terminal configuration, 283
text ascent, 149
text baseline, 149
TEXT_IO signature, 268
TEXT_STREAM_IO signature, 250, 266
TextIO structure, 250, 268
TextIO.StreamIO structure, 268
texture editor example, 173
texture state server, 174
texture type, 148
texture_state type, 175
TextureState structure, 174
TextureUtil structure, 173
thread, 12, 40

communication, 11, 41
creation, 12–13
garbage collection, 78
garbage collection of, 41
spawning, see thread creation, 40
synchronization, 11, 13, 16, 41

thread ID, see thread_id type
thread of control, 11, 12
thread_id type, 40, 252
throw function, 222
tidToString function, 255
tiled window paradigm, 149
time sharing, 1
timeout, 88, 255, 256
timeOutEvt event constructor, 88, 89, 255
toBack function, 150, 164
toFront function, 150, 164
Tofte, M., 9
toggle function, 174
Tolmach, A., 36, 247
trace, 282, 283
trackMouse function, 167
trans_info type, 205
Trestle, 182
ts_id type, 199
tuple, see tuple space
tuple hold, 190, 208
tuple server, 188
tuple server IDs, see ts_id type
tuple server thread, 211
tuple space, 33, 37, 184

client layer, 193
distributed, 188
input protocol, 190
join protocol, 190, 192
network network, 194
output protocol, 190, 192
server layer, 193, 204

tuple store, 188
Tuple structure, 194
tuple tag, 184
tuple-server proxy, 188, 205
tuple/template matching, 209
tuple_rep type, 184
TUPLE_SERVER signature, 193
tuple_space type, 215
TUPLE_STORE signature, 193, 208
tuple_store type, 207
TupleServer structure, 193, 204
TupleStore structure, 193, 207, 208
Turner, D., 61
type constant, 285
type preservation, 289, 290
type scheme, 285
type soundness, 289, 290
TypeOf function, 287
typing environment, 285

UDP, 194
Ullman, J., 9
unique ID server, 73
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UNIX, x, xi, 2, 90, 131, 132, 143, 220
unmarshalling, see marshalling
updatable storage cell, 42, 52, 58, 74, 107, 118
user-interface library, see user-interface toolkit
user-interface toolkit, 3, 146

val_atom type, 184
value restriction, 291
value-oriented programming, 117
variable typing environment, 285
viewEvt function, 175
viewRect function
LargeView structure, 178
SmallView structure, 175

Wand, M., 247
Wegner, P., 35
well-formed configuration, see configuration
whichItem function, 161
win_env type, 153
WIN_MNGR signature, 164
window

border, see window frame
creation protocol, 155, 161
deletion protocol, 155, 159, 161, 172, 180
frame, 156

window environment, 153
window geometry, 146
window manager, 146, 153, 163, 165
window manager menu, 169–173
window map, 164
window system, 146
Windows NT, xi, xiv
winManager function, 164, 165
WINMAP signature, 165
WinMap structure, 164
WinMngr structure, 163
withNack combinator, 78, 127, 129, 253
wrap combinator, 51, 52, 54, 58, 123, 129, 252

implementation of, 241, 242, 244
wrapAbort combinator, 84, 127
wrapHandler combinator, 253
Wright, A., 291
WSYS signature, 154
WSys structure, 153, 156

X Window System, 145, 154, 182

Y combinator, 61
Yeast, 143
yield function, 252

zero value
RatNum structure, 67

zombie process state, 283


