
this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.9375  INCH BULK -- 384 pages -- 60# Thor)

The eXPeRT’s VOIce® In .neT

Robert Pickering
Foreword by Don Syme 

Foundations of

F#

BOOks fOR PROfessIOnals By PROfessIOnals®

Foundations of F#
Dear Reader,

I wrote this book because I believe functional programming (FP) is the future of 
.NET programming. You have already seen the influence of functional program-
ming on the .NET Framework; everybody’s favorite .NET 2.0 feature, generics, 
is an idea lifted directly from FP, and F# creator Don Syme was the driving force 
behind the design and implementation of generics. To understand the full 
power of the current and future versions of the .NET Framework, every profes-
sional .NET programmer needs to learn about FP, and there’s no better way to 
do that than by learning F#—and no easier way to learn F# than by reading 
Foundations of F#.

If you’re already familiar with FP, you’ll find F# the language you’ve always 
dreamed of—it has all the power you would expect from an FP language as well 
as seamless access to the huge range of libraries and components that run on 
the .NET Framework. If you’re a .NET programmer, you will find F# to be an 
exciting real-world alternative to C# and Visual Basic. Thanks to F#’s concise 
and elegant syntax, it is an alternative in which programs can be expressed 
more clearly and in fewer lines of code. 

This book was reviewed for technical accuracy by F#’s inventor, Don Syme, 
who added his own touch of genius to many of the examples. This makes it an 
elegant, comprehensive introduction to all aspects of the language and an incisive 
guide to using F# for real-world professional development. It shows that F# is 
the future of programming (not just on .NET), and the future is now.

Robert Pickering

Foundations of F#
Pickering

 cyan
 MaGenTa

 yellOW
 Black
 PanTOne 123 c

ISBN-13: 978-1-59059-757-6
ISBN-10: 1-59059-757-5

9 781590 597576

90000

Shelve in 
Programming Languages

User level: 
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

 
See last page for details  

on $10 eBook version

Companion 
eBook Available

Related title



Robert Pickering

Foundations of F#

7575FM.qxp  4/27/07  6:54 PM  Page i



Foundations of F#

Copyright © 2007 by Robert Pickering

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-757-6

ISBN-10: 1-59059-757-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: James Huddleston, Ewan Buckingham
Technical Reviewer: Don Syme
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Dominic Shakeshaft, Matt Wade
Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole Flores
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Lynn L’Heureux
Proofreader: Elizabeth Berry
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section. 

7575FM.qxp  4/27/07  6:54 PM  Page ii



For Susan and for Jim

7575FM.qxp  4/27/07  6:54 PM  Page iii



7575FM.qxp  4/27/07  6:54 PM  Page iv



Contents at a Glance

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Preface: The Story of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

nCHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

nCHAPTER 2 How to Obtain, Install, and Use F# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

nCHAPTER 3 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

nCHAPTER 4 Imperative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

nCHAPTER 5 Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

nCHAPTER 6 Organizing, Annotating, and Quoting Code . . . . . . . . . . . . . . . . . . . . 111

nCHAPTER 7 The F# Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

nCHAPTER 8 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

nCHAPTER 9 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

nCHAPTER 10 Distributed Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

nCHAPTER 11 Language-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

nCHAPTER 12 The F# Tool Suite and .NET Programming Tools . . . . . . . . . . . . . . . 299

nCHAPTER 13 Compatibility and Advanced Interoperation . . . . . . . . . . . . . . . . . . . 323

nINDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

v

7575FM.qxp  4/27/07  6:54 PM  Page v



7575FM.qxp  4/27/07  6:54 PM  Page vi



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Preface: The Story of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

nCHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

What Is Functional Programming? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Why Is Functional Programming Important? . . . . . . . . . . . . . . . . . . . . . . . . . 2

What Is F#? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Who Is Using F#? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Who Is This Book For? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

What’s Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

nCHAPTER 2 How to Obtain, Install, and Use F# . . . . . . . . . . . . . . . . . . . . . . . . . 7

Obtaining F# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Installing F# on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Installing F# on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Using F# in Different Ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Installing the Software Used in This Book . . . . . . . . . . . . . . . . . . . . . . 13

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

nCHAPTER 3 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Values and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Anonymous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii

7575FM.qxp  4/27/07  6:54 PM  Page vii



Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

List Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Types and Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Defining Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Exceptions and Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

nCHAPTER 4 Imperative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

The unit Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

The mutable Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Defining Mutable Record Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

The ref Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Array Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Loops over Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Calling Static Methods and Properties from .NET Libraries . . . . . . . . . . 69

Using Objects and Instance Members from .NET Libraries . . . . . . . . . . 71

Using Indexers from .NET Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Working with Events from .NET Libraries . . . . . . . . . . . . . . . . . . . . . . . 74

Pattern Matching over .NET Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

The |> Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

nCHAPTER 5 Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Type Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Type Annotations for Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Records As Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

F# Types with Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Object Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Defining Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Implementing Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Classes, Fields, and Explicit Constructors . . . . . . . . . . . . . . . . . . . . . . 95

Implicit Class Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Classes and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Classes and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

nCONTENTSviii

7575FM.qxp  4/27/07  6:54 PM  Page viii



nCONTENTS ix

Accessing the Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Properties and Indexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Classes and Static Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Overriding Methods from Non-F# Libraries . . . . . . . . . . . . . . . . . . . . . 107

Defining Delegates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

nCHAPTER 6 Organizing, Annotating, and Quoting Code . . . . . . . . . . . . . . 111

Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Opening Namespaces and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Giving Namespaces and Modules Aliases . . . . . . . . . . . . . . . . . . . . . . 115

Signature Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Module Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Module Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Optional Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Doc Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Custom Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Quoted Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

nCHAPTER 7 The F# Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Libraries Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

The Native F# Library FSLib.dll . . . . . . . . . . . . . . . . . . . . . . . . . 130

The ML Compatibility Library MLLib.dll . . . . . . . . . . . . . . . . . . . 131

The Native F# Library FSLib.dll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

The Microsoft.FSharp.Core.Operators Module . . . . . . . . . . . . . . 132

The Microsoft.FSharp.Reflection Module . . . . . . . . . . . . . . . . . . 137

The Microsoft.FSharp.Collections.Seq Module . . . . . . . . . . . . . . 139

The Microsoft.FSharp.Core.Enum Module . . . . . . . . . . . . . . . . . 149

The Microsoft.FSharp.Text.Printf Module . . . . . . . . . . . . . . . . . . 151

The Microsoft.FSharp.Control.IEvent Module . . . . . . . . . . . . . . . 154

The Microsoft.FSharp.Math Namespace . . . . . . . . . . . . . . . . . . 156

The ML Compatibility Library MLLib.dll . . . . . . . . . . . . . . . . . . . . . . . 160

The Microsoft.FSharp.Compatibility.OCaml.Pervasives Module . . . 160

The Microsoft.FSharp.Compatibility.OCaml.Arg Module . . . . . . . 164

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7575FM.qxp  4/27/07  6:54 PM  Page ix



nCHAPTER 8 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Introducing WinForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Drawing WinForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Working with Controls in WinForms . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Using the Visual Studio Form Designer’s Forms in F# . . . . . . . . . . . . . 179

Working with WinForms Events and the IEvent Module . . . . . . . . . . . . 182

Creating New Forms Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Introducing ASP.NET 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Creating an IHttpHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Working with ASP.NET Web Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Introducing Windows Presentation Foundation . . . . . . . . . . . . . . . . . . 195

Introducing Windows Presentation Foundation 3D . . . . . . . . . . . . . . . 197

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

nCHAPTER 9 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

The System.Configuration Namespace . . . . . . . . . . . . . . . . . . . . . . . . 209

The System.IO Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

The System.Xml Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

ADO.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

The EntLib Data Access Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Data Binding and the DataGridView . . . . . . . . . . . . . . . . . . . . . . . . . . 225

ADO.NET Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Introducing LINQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Using LINQ to XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Using LINQ to SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

nCHAPTER 10 Distributed Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Networking Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Using TCP/IP Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Using HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Calling Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Creating Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Windows Communication Foundation . . . . . . . . . . . . . . . . . . . . . . . . . 261

Hosting WCF Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

nCONTENTSx

7575FM.qxp  4/27/07  6:54 PM  Page x



nCHAPTER 11 Language-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . 271

What Is Language-Oriented Programming? . . . . . . . . . . . . . . . . . . . . 271

Data Structures As Little Languages . . . . . . . . . . . . . . . . . . . . . . . . . 271

A Data Structure–Based Language Implementation . . . . . . . . . . 272

Metaprogramming with Quotations . . . . . . . . . . . . . . . . . . . . . . . . . . 278

An Arithmetic-Language Implementation . . . . . . . . . . . . . . . . . . . . . . 280

The Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Tokenizing the Text: Fslex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Generating a Parser: Fsyacc . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Using the Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Interpreting the AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Compiling the AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Compilation vs. Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

nCHAPTER 12 The F# Tool Suite and .NET Programming Tools . . . . . . . . . 299

Using Useful fsc.exe Command-Line Switches . . . . . . . . . . . . . . . . . . 299

Basic Compiler Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Compiler Optimization Switches . . . . . . . . . . . . . . . . . . . . . . . . 300

Compiler Warning Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Compiler Target Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Signing and Versioning Switches . . . . . . . . . . . . . . . . . . . . . . . . 303

Printing the Interface Switches . . . . . . . . . . . . . . . . . . . . . . . . . 304

Adding Resources Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Generating HTML Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

CLI Version Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Compilation Details Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Statically Linking Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Using fsi.exe Effectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

fsi.exe Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Controlling the fsi.exe Environment . . . . . . . . . . . . . . . . . . . . . . 308

fsi.exe Command-Line Switches . . . . . . . . . . . . . . . . . . . . . . . . 310

Using the Source Directory Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Writing NUnit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Using Assembly Browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Using Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

nCONTENTS xi

7575FM.qxp  4/27/07  6:54 PM  Page xi



Using Profiling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Ntimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Perfmon and Performance Counters . . . . . . . . . . . . . . . . . . . . . 317

NProf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

CLR Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

nCHAPTER 13 Compatibility and Advanced Interoperation . . . . . . . . . . . . . 323

Calling F# Libraries from C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Returning Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Exposing Functions That Take Functions As Parameters . . . . . . 324

Using Union Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Using F# Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Defining Types in a Namespace . . . . . . . . . . . . . . . . . . . . . . . . . 329

Defining Classes and Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 330

Using F# with the .NET Framework Versions 1 and 1.1 . . . . . . . . . . . 332

Calling Using COM Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Using P/Invoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Using Inline IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Using F# from Native Code via COM . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

nINDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

nCONTENTSxii

7575FM.qxp  4/27/07  6:54 PM  Page xii



Foreword

A new language needs a simple and clear introductory book that makes it accessible to a
broad range of programmers. In Foundations of F#, Robert Pickering has captured the essen-
tial elements that the professional programmer needs to master in order to get started with F#
and .NET. As the designer of F#, I am thrilled to see Robert take up the challenge of presenting
F# in a way that is accessible to a wide audience. 

F# combines the simplicity and elegance of typed functional programming with the
strengths of the .NET platform. Although typed functional programming is relatively new to
many programmers and thus requires some learning, in many ways it makes programming
simpler. This is mainly because F# programs tend to be built from compositional, correct
foundational elements, and type inference makes programs shorter and clearer. Robert first
introduces the three foundational paradigms of F#: functional programming, imperative pro-
gramming, and object-oriented programming, and he shows how F# lets you use them in
concert. He then shows how this multiparadigm approach can be used in conjunction with
the .NET libraries to perform practical programming tasks such as GUI implementation, data
access, and distributed programming. He then introduces some of the particular strengths of
F# in the area of “language-oriented” programming. 

F# is a practical language, and Robert has ensured that the reader is well equipped with
information needed to use the current generation of F# tools well. Many computer profession-
als first encounter functional programming through a short section of the undergraduate
curriculum and often leave these courses uncertain about the real-world applicability of the
techniques they have been taught. Similarly, some people encounter functional programming
only in its purest forms and are uncertain whether it is possible to combine the elements of
the paradigm with other approaches to programming and software engineering. Robert has
helped remove this uncertainty: typed functional programming is practical, easy to learn, and
a powerful addition to the .NET programming landscape.

F# is also a research language, used in part to deliver recent advances in language design,
particularly those that work well with .NET. It combines a stable and dependable base language
with more recent extensions. Robert’s book describes F# 2.0, the latest release of the language
at the time of writing. The rest of the F# team and I are very grateful to Robert’s many sugges-
tions, and the language has been greatly improved through this. I hope you enjoy reading this
book as much as I enjoyed being its technical reviewer.

Don Syme

Cambridge, UK

xiii

7575FM.qxp  4/27/07  6:54 PM  Page xiii



7575FM.qxp  4/27/07  6:54 PM  Page xiv



About the Author

nROBERT PICKERING was born in Sheffield, in the north of England, 
but a fascination with computers and the “madchester” indie music
scene led him to cross the Pennines and study computer science at the
University of Manchester. 

After finishing his degree, he moved to London to catch the tail end
of the dot-com boom working at marchFirst; then he moved to Avanade
to do some more serious work. At Avanade, he specialized in creating
enterprise applications using the .NET Framework, and he got the
chance to work on projects in Denmark, Holland, and Belgium; he
finally settled in Paris, France, where he lives now with his wife and
their two cats. He has been writing about F# almost since it began, and the F# wiki on his
http://www.strangelights.com web site is among the most popular F# web sites.

He currently works for LexiFi, which is an innovative ISV that specializes in software for
analyzing and processing complex financial derivatives—products such as swaps and options.
LexiFi has pioneered the use of functional programming in finance in order to develop a rigor-
ous formalism for representing financial instruments.

xv

7575FM.qxp  4/27/07  6:54 PM  Page xv



7575FM.qxp  4/27/07  6:54 PM  Page xvi



About the Technical Reviewer

nDON SYME is a researcher at Microsoft Research, Cambridge. Born in Toowoomba, Australia,
his love for programming was sparked by family and teachers at age 10. He studied at the
Australian National University and the University of Cambridge, becoming an expert in the
application of automated proof to real-world problems, participating in the team that for-
mally verified the correctness of aspects of the Intel Pentium IV floating-point circuits. Joining
Microsoft in 1998, he saw the opportunity to enhance and transform the design of the .NET
Framework by including elements of functional programming, beginning with the addition of
generics to C# 2.0 and the .NET common language runtime, a project he saw through to com-
pletion in Visual Studio 2005. In 2003 he began the design and implementation of F#, which
has now become the premier functional programming language for the .NET Framework. 
He continues to be a driving force in the design, implementation, and enhancement of the
language. 

xvii

7575FM.qxp  4/27/07  6:54 PM  Page xvii



7575FM.qxp  4/27/07  6:54 PM  Page xviii



Acknowledgments

If there is one person I feel I should be acknowledging, it is Jim Huddleston, the book’s editor.
Jim was there from the book’s beginning. He helped me get it commissioned, he aided me in
working out the contents, he gave me much encouragement and constructive criticism, and
he showed great skill as an editor. Sadly, Jim died on February 25, 2007, just as the book was
entering its final stages of production. Even though I never met Jim in person, never even
talked to him on the telephone, I feel a real sense of loss knowing he is gone. My thoughts are
with his family at this very sad time, and I’m very disappointed that I never got to meet him in
person and that he never saw the finished book.

Sadly, Jim’s was not the only death that coincided with the closing stages of writing this
book. On March 28, 2007, my uncle Gordon lost his battle with cancer. He was a great lover of
life, with many interests. He was a maths teacher who was an avid New Scientist reader with a
deep interest in maths and science and a passion for music; he was a talented musician who
played many gigs across Orkney and the north of Scotland. He will be greatly missed by me
and all my family.

I feel very lucky to have worked on the project with my technical reviewer, Don Syme,
who went above and beyond the cause by contributing many ideas to the book, helping
improve the implementations of many of the samples, and giving me much encouragement.
I’d also like to thank all the Apress staff who took part in creating this book, especially
Elizabeth Seymour, Kim Wimpsett, and Laura Cheu.

I’d also like to thank Don in another capacity, as the creator and developer of F#, along
with James Margetson and all the others at Microsoft Research, Cambridge, who worked on
F#. Specifically, I’d like to thank them for their hard work on the compiler, and I’d like to let
them know that their quick response times to bugs and queries have been very much
appreciated. I’d also like to thank all the F# community, in particular Christopher J. Barwick
(a.k.a. optionsScalper), who did so much to boost the F# community when he created the
hubFS (http://cs.hubfs.net).

I’d like to thank all the people who had to put up with me while I wrote this book. My
family: Mum, Dad, and Sister had to put up with me sneaking off to write whenever I went to
visit them. Also, my work colleagues often suffered grumpy mornings after late nights of F#
hacking and writing: Arnaud, Aurélie, Baptiste, Buuloc, Daniel, Dennis, Emmanuel, Fabrice,
François, Frederik, Guillaume, Ibrahima, Jean-Marc, Laurent, Lionel, Oussama, Patrice,
Philippe, Regis, Sebastien J., Sebastien P., Stefaan, Stefany, and Stephane—I thank you all. Last
but by no means least, I’d like to thank my wife, Susan, for all the help and support she has
given; without her understanding, this book could never have happened.

xix

7575FM.qxp  4/27/07  6:54 PM  Page xix



7575FM.qxp  4/27/07  6:54 PM  Page xx



Preface: The Story of the Book

In 2003 I was looking for a way to process IL, the intermediate language into which all .NET
languages are compiled. At the time, .NET was fairly new, and there weren’t a lot of options for
doing this. I quickly realized that the best option at the time, and probably still today, was an
API called Abstract IL (AbsIL). AbsIL was written in a language called F#, and I decided to use
this language to write a small wrapper around AbsIL so I could extract the information I
needed from a DLL in a form more usable from C#. But a funny thing happened while writing
the wrapper: even though in those days writing F# was a little hard going because the com-
piler was far from polished, I found that I actually enjoyed programming in F# so much that
when I had finished the wrapper, I didn’t want to go back to C#. In short, I was hooked.

At the time I was working as a consultant, so I needed to regularly check out new tech-
nologies and their APIs; therefore, I got to do all my experimentation using F#. At the same
time, people were talking about a new way to communicate on the Web, and a new word was
about to enter the English language: blog. I decided I should have a blog because anyone who
was anyone in technology seemed to have one, so I created http://www.strangelights.com
(where my blog can still be found to this today). This was later followed by a wiki about F#,
which can also be found at http://www.strangelights.com and which continues to be very
popular.

My job meant I had to do a lot of traveling, so this meant quite a lot of time in hotel rooms
or on trains and planes, and I came to view this time as time to try out stuff in F#. So, I ended
up exchanging quite a lot emails with Don Syme, and then eventually we met. We went for a
beer in the pub where Watson and Crick went after they first pieced together the structure of
DNA. Will people talk about the pub were Syme and Pickering first met years from now?
Errrm, perhaps not. Anyway, all this led me to the point where I was wondering what I should
do with my newfound knowledge of F# and functional programming. About this time a guy
called Jim Huddleston mailed the F# mailing list and asked whether anyone would like to
write a book about F#. Well, I just couldn’t help myself—it sounded like the job for me.

So, with much help and encouragement from Jim, I started writing the book. Some of it
was written in Paris where I was living on the weekends, some of it was written in Brussels
were I was working during the week, and much of it was written while I was traveling between
the two on the Thalys (the high-speed train between France and Belgium). A little of it was
written as far north as the Orkney Islands in Scotland while visiting my aunt and uncle, and a
little of the reviewing was done while meeting my in-laws in New Zealand. Finally, thanks to
the contacts I made while writing the book, I got a new job working for the prestigious ISV
LexiFi.

It has been great fun watching the language evolve over time and turn from the begin-
nings of a language into the fully fledged and highly usable language you see today. I hope
reading this book changes your life as much as writing it has changed mine.

xxi

7575FM.qxp  4/27/07  6:54 PM  Page xxi



7575FM.qxp  4/27/07  6:54 PM  Page xxii



Introduction

This introductory chapter will address some of the major questions you may have about F#
and functional programming.

What Is Functional Programming?
Functional programming (FP) is the oldest of the three major programming paradigms. The
first FP language, IPL, was invented in 1955, about a year before Fortran. The second, Lisp, was
invented in 1958, a year before Cobol. Both Fortran and Cobol are imperative (or procedural)
languages, and their immediate success in scientific and business computing made imperative
programming the dominant paradigm for more than 30 years. The rise of the object-oriented
(OO) paradigm in the 1970s and the gradual maturing of OO languages ever since have made
OO programming the most popular paradigm today.

Despite the vigorous and continuous development of powerful FP languages (SML, OCaml,
Haskell, and Clean, among others) and FP-like languages (APL and Lisp being the most success-
ful for real-world applications) since the 1950s, FP remained a primarily academic pursuit until
recently. The early commercial success of imperative languages made it the dominant paradigm
for decades. Object-oriented languages gained broad acceptance only when enterprises recog-
nized the need for more sophisticated computing solutions. Today, the promise of FP is finally
being realized to solve even more complex problems—as well as the simpler ones.

Pure functional programming views all programs as collections of functions that accept
arguments and return values. Unlike imperative and object-oriented programming, it allows
no side effects and uses recursion instead of loops for iteration. The functions in a functional
program are very much like mathematical functions because they do not change the state of
the program. In the simplest terms, once a value is assigned to an identifier, it never changes,
functions do not alter parameter values, and the results that functions return are completely
new values. In typical underlying implementations, once a value is assigned to an area in
memory, it does not change. To create results, functions copy values and then change the
copies, leaving the original values free to be used by other functions and eventually be thrown
away when no longer needed. (This is where the idea of garbage collection originated.)

The mathematical basis for pure functional programming is elegant, and FP therefore
provides beautiful, succinct solutions for many computing problems, but its stateless and
recursive nature makes the other paradigms convenient for handling many common pro-
gramming tasks. However, one of F#’s great strengths is that you can use multiple paradigms
and mix them to solve problems in the way you find most convenient.

1

C H A P T E R  1

n n n

7575Ch01.qxp  4/27/07  12:58 PM  Page 1



Why Is Functional Programming Important?
When people think of functional programming, they often view its statelessness as a fatal flaw,
without considering its advantages. One could argue that since an imperative program is often
90 percent assignment and since a functional program has no assignment, a functional pro-
gram could be 90 percent shorter. However, not many people are convinced by such
arguments or attracted to the ascetic world of stateless recursive programming, as John
Hughes pointed out in his classic paper “Why Functional Programming Matters”:

The functional programmer sounds rather like a medieval monk, denying himself the

pleasures of life in the hope that it will make him virtuous.

John Hughes, Chalmers University of Technology
(http://www.math.chalmers.se/~rjmh/Papers/whyfp.html)

To see the advantages of functional programming, you must look at what FP permits,
rather than what it prohibits. For example, functional programming allows you to treat func-
tions themselves as values and pass them to other functions. This might not seem all that
important at first glance, but its implications are extraordinary. Eliminating the distinction
between data and function means that many problems can be more naturally solved. Func-
tional programs can be shorter and more modular than corresponding imperative and
object-oriented programs.

In addition to treating functions as values, functional languages offer other features that
borrow from mathematics and are not commonly found in imperative languages. For exam-
ple, functional programming languages often offer curried functions, where arguments can be
passed to a function one at a time and, if all arguments are not given, the result is a residual
function waiting for the rest of its parameters. It’s also common for functional languages to
offer type systems with much better “power-to-weight ratios,” providing more performance
and correctness for less effort.

Further, a function might return multiple values, and the calling function is free to con-
sume them as it likes. I’ll discuss these ideas, along with many more, in detail and with plenty
of examples, in Chapter 3.

What Is F#?
Functional programming is the best approach to solving many thorny computing problems,
but pure FP isn’t suitable for general-purpose programming. So, FP languages have gradually
embraced aspects of the imperative and OO paradigms, remaining true to the FP paradigm
but incorporating features needed to easily write any kind of program. F# is a natural succes-
sor on this path. It is also much more than just an FP language.

Some of the most popular functional languages, including OCaml, Haskell, Lisp, and
Scheme, have traditionally been implemented using custom runtimes, which leads to prob-
lems such as lack of interoperability. F# is a general-purpose programming language for .NET, a
general-purpose runtime. F# smoothly integrates all three major programming paradigms.
With F#, you can choose whichever paradigm works best to solve problems in the most effec-
tive way. You can do pure FP, if you’re a purist, but you can easily combine functional,

CHAPTER 1 n INTRODUCTION2

7575Ch01.qxp  4/27/07  12:58 PM  Page 2



imperative, and object-oriented styles in the same program and exploit the strengths of each
paradigm. Like other typed functional languages, F# is strongly typed but also uses inferred
typing, so programmers don’t need to spend time explicitly specifying types unless an ambigu-
ity exists. Further, F# seamlessly integrates with the .NET Framework base class library (BCL).
Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

F# was modeled on Objective Caml (OCaml), a successful object-oriented FP language,
and then tweaked and extended to mesh well technically and philosophically with .NET. It
fully embraces .NET and enables users to do everything that .NET allows. The F# compiler can
compile for all implementations of the Common Language Infrastructure (CLI), it supports
.NET generics without changing any code, and it even provides for inline Intermediate Lan-
guage (IL) code. The F# compiler not only produces executables for any CLI but can also run
on any environment that has a CLI, which means F# is not limited to Windows but can run on
Linux, Apple Mac OS X, and OpenBSD. (Chapter 2 covers what it’s like to run F# on Linux.)

The F# compiler can be integrated into Visual Studio, supporting IntelliSense expression
completion and automatic expression checking. It also gives tooltips to show what types have
been inferred for expressions. Programmers often comment that this really helps bring the
language to life.

F# was invented by Dr. Don Syme and is now the product of a small but highly dedicated
team he heads at Microsoft Research (MSR) in Cambridge, England. However, F# is not just a
research or academic language. It is used for a wide variety of real-world applications, whose
number is growing rapidly.

Although other FP languages run on .NET, F# has established itself as the de facto .NET
functional programming language because of the quality of its implementation and its superb
integration with .NET and Visual Studio.

No other .NET language is as easy to use and as flexible as F#!

Who Is Using F#?
F# has a strong presence inside Microsoft, both in MSR and throughout the company as a
whole. Ralf Herbrich, coleader of MSR’s Applied Games Group, which specializes in machine
learning techniques, is typical of F#’s growing number of fans:

The first application was parsing 110GB of log data spread over 11,000 text files in over

300 directories and importing it into a SQL database. The whole application is 90 lines

long (including comments!) and finished the task of parsing the source files and import-

ing the data in under 18 hours; that works out to a staggering 10,000 log lines processed

per second! Note that I have not optimized the code at all but written the application in

the most obvious way. I was truly astonished as I had planned at least a week of work for

both coding and running the application.

The second application was an analysis of millions of feedbacks. We had developed the

model equations and I literally just typed them in as an F# program; together with the

reading-data-from-SQL-database and writing-results-to-MATLAB-data-file the F#

source code is 100 lines long (including comments). Again, I was astonished by the run-

ning time; the whole processing of the millions of data items takes 10 minutes on a

CHAPTER 1 n INTRODUCTION 3

7575Ch01.qxp  4/27/07  12:58 PM  Page 3



standard desktop machine. My C# reference application (from some earlier tasks) is

almost 1,000 lines long and is no faster. The whole job from developing the model equa-

tions to having first real world data results took 2 days.

Ralf Herbrich, Microsoft Research
(http://blogs.msdn.com/dsyme/archive/2006/04/01/566301.aspx)

F# usage outside Microsoft is also rapidly growing. I asked Chris Barwick, who runs hubFS
(http://cs.hubFS.net), a popular web site dedicated to F#, about why F# was now his language
of choice, and he said this:

I’ve been in scientific and mathematics computing for more than 14 years. During that

time, I have waited and hoped for a platform that would be robust in every manner.

That platform has to provide effective tools that allow for the easy construction and

usage of collateral and that makes a scientific computing environment effective. .NET

represents a platform where IL gives rise to consistency across products. F# is the lan-

guage that provides for competent scientific and mathematical computing on that

platform.With these tools and other server products, I have a wide range of options with

which to build complex systems at a very low cost of development and with very low

ongoing costs to operate and to improve. F# is the cornerstone needed for advanced sci-

entific computing.

Christopher J. Barwick, JJB Research (private email)

Finally, I talked to Jude O’Kelly, a software architect at Derivatives One, a company that
sells financial modeling software, about why Derivatives One used F# in its products:

We tested our financial models in both C# and F#; the performance was about the same,

but we liked the F# versions because of the succinct mathematical syntax. One of our

problems with F# was the lack of information; we think this book improves this situa-

tion enormously.

Jude O’Kelly, Derivatives One (private email)

Who Is This Book For?
This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A
working knowledge of the .NET Framework and some knowledge of either C# or Visual Basic
would be nice, but it’s not necessary. All you really need is some experience programming in
any language to be comfortable learning F#.

Even complete beginners, who’ve never programmed before and are learning F# as their
first computer language, should find this book very readable. Though it doesn’t attempt to
teach introductory programming per se, it does carefully present all the important details of F#.

CHAPTER 1 n INTRODUCTION4

7575Ch01.qxp  4/27/07  12:58 PM  Page 4



What’s Next?
This book teaches F#, by example, as a compiled language rather than a scripting language. By
this I mean most examples are designed to be compiled with the fsc.exe compiler, either in
Visual Studio or on a command line, rather than executed interactively with fsi.exe, the F#
interactive environment. In reality, most examples will run fine either way.

Chapter 2 gives you just enough knowledge about setting up an F# development environ-
ment to get you going.

Chapters 3, 4, 5, and 6 cover the core F# syntax. I deliberately keep the code simple,
because this will give you a better introduction to how the syntax works.

Chapter 7 looks at the core libraries distributed with F# to introduce you to their flavor and
power, rather than to describe each function in detail. The F# online documentation (http://
research.microsoft.com/fsharp/manual/namespaces.html) is the place to get the details.

Then you’ll dive into how to use F# for the bread-and-butter problems of the working pro-
grammer. Chapter 8 covers user interface programming, Chapter 9 covers data access, and
Chapter 10 covers how applications can take advantage of a network.

The final chapters take you through the topics you really need to know to master F#.
Chapter 11 looks at support for creating little languages or domain-specific languages (DSLs),
a powerful and very common programming pattern in F#. Chapter 12 covers the tools you can
use to debug and optimize F# programs. Finally, Chapter 13 explores advanced interoperation
issues.

CHAPTER 1 n INTRODUCTION 5

7575Ch01.qxp  4/27/07  12:58 PM  Page 5



7575Ch01.qxp  4/27/07  12:58 PM  Page 6



How to Obtain, Install,
and Use F#

This chapter is designed to get you up and running with F# as quickly as possible. You’ll look
at how to obtain F#, how to install it on both Windows and Linux, and how to use the compiler
in various ways. I’ll also discuss what version of software the examples in this book were tested
with and what extra software you might need to install.

Obtaining F#
You can download F# from the Microsoft Research F# Download page at http://research.
microsoft.com/fsharp/release.aspx. The package includes various versions of the compiler,
which are compatible with different versions of the CLR, fsi.exe (the F# interactive console),
some F#-based parsing tools, the F# base class libraries, the F# documentation, and some F#
samples.

Installing F# on Windows
Installing F# on Windows is straightforward. You need to be running as an account with sys-
tem administrator privileges to install F#. Simply unzip the contents of the F# distribution to a
temporary location, and then run the InstallFSharp.msi package, which is in the root of the
distribution. The .msi should work whether or not Visual Studio 2003 or Visual Studio 2005 is
installed.

If you’d prefer not to use an .msi, you can compile from the command line simply by
unzipping to your preferred location and running alternative-install.bat, which will install
the F# runtime libraries into the global assembly cache (GAC). You can also use this batch file
to install F# against the Shared Source Common Language Infrastructure (SSCLI), more com-
monly known as Rotor, by using the –sscli command-line switch.

7

C H A P T E R  2

n n n

7575Ch02.qxp  4/27/07  12:58 PM  Page 7



nNote The SSCLI is a compressed archive of the source code for a working implementation of the ECMA
CLI and the ECMA C# language specifications. This implementation builds and runs on Windows XP, and you
can also compile and run it on other operating systems such as Linux or Mac OS X. This implementation is
ideal if you really want to get under the covers and see what’s going on; however, you may find it more diffi-
cult to use than .NET, so you’re probably best off sticking with .NET while reading this book.

If you use the alternative-install.bat batch file, Visual Studio integration will not be
installed. For installing Visual Studio integration, two further batch files are available,
alternative-install-vs2003.bat and alternative-install-vs2005.bat. Please note that at
the time of this writing the free Express Editions of Visual Studio do not support plug-ins, so
you cannot use F# integration with them.

Installing F# on Linux
It’s difficult to write a simple guide to installing F# on Linux, because there are so many differ-
ent distributions of Linux and so many ways you can configure them. The following are the
steps that worked well for me running SUSE Linux on a single computer. I performed all these
steps as the root account.

1. Install Mono using the packages provided with the SUSE Linux distribution; you can
find these by searching for mono and then sharp in the Install Software dialog box
available from the Computer menu.

2. Unpack the F# distribution, and copy the resulting files to /usr/lib/fsharp.

3. In the /usr/lib/fsharp directory, run chmod +x install-mono.sh.

4. Run the dos2unix tool on the text file install-mono.sh.

5. Still in the /usr/lib/fsharp directory, run the command sh install-mono.sh.

After performing those steps, I was able to use F# from any account from the command
line by running mono /usr/lib/fsharp/bin/fsc.exe, followed by the command-line options.
Obviously, this was inconvenient to run every time, so I created a shell script file in /usr/bin
and as fsc:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsc.exe "$@"

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F#8

7575Ch02.qxp  4/27/07  12:58 PM  Page 8



I then ran chmod +x fsc to give users permission to execute it. After this, running the F#
compiler was as simple as typing fsc at the command line. The F# interactive compiler,
fsi.exe, will also run under Linux, but on the installation I used at the time of this writing, I
needed to use the --no-gui switch. The shell script for this is as follows:

#!/bin/sh
exec /usr/bin/mono $MONO_OPTIONS /usr/lib/fsharp/bin/fsi.exe --no-gui "$@"

nNote I used SUSE Linux, available from http://www.novell.com/linux/, because I found it installed
smoothly on real and virtual machines, requiring very little manual setup.

Using F# in Different Ways
F# programs are just text files, so you can use any text editor to create them. Just save your
program with the extension .fs, and use fsc.exe to compile them. For example, if you had the
following program in the text file helloworld.fs:

#light
print_endline "Hello World"

you could just run fsc.exe helloworld.fs to compile your program into helloworld.exe,
which would output the following to the console:

Hello World

In my opinion, the easiest and quickest way to develop F# programs is in Visual Studio in
conjunction with the F# interactive compiler (see Figure 2-1). You can type F# programs into
the text editor, taking advantage of syntax highlighting and IntelliSense code completion;
compile them into executables; and debug them interactively by setting breakpoints and
pressing F5. Also, you can execute parts of your code interactively using F# interactive. Just
highlight the code you want to execute, and press Alt+Enter; F# interactive will execute the
code and show the results. This is great for testing snippets individually.

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F# 9

7575Ch02.qxp  4/27/07  12:58 PM  Page 9



Figure 2-1. Visual Studio hosting F# interactive

nNote If you are not convinced you want to invest in a copy of Visual Studio, trial versions of this software
are available at https://www.tryvs2005.com.

If you prefer, you can type your programs into the F# interactive console directly when it’s
running in stand-alone mode, as shown in Figure 2-2.

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F#10

7575Ch02.qxp  4/27/07  12:58 PM  Page 10



Figure 2-2. The F# interactive console running in stand-alone mode

When you use the interactive console, you type the code you want; then when you’ve
completed a section, you use two semicolons (;;) to indicate that the compiler should com-
pile and run it.

F# interactive responds to commands in two ways. If you bind a value to an identifier, it
prints the name of the identifier and its type. So, typing the following into F# interactive:

> let i = 1 + 2;;

gives the following:

val i : int

However, if you just type a value into F# interactive, it will respond slightly differently.
Typing the following into F# interactive:

> 1 + 2;;

gives the following:

val it : int = 3

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F# 11

7575Ch02.qxp  4/27/07  12:58 PM  Page 11



This means the value has been bound to a special identifier, called it, that is available to
other code within the F# interactive session. When any expression is evaluated at the top level,
its value is also printed, after the equals sign; note the 3 in the previous example. As you get to
know fsi.exe and F# in general, using F# interactive will become more and more useful for
debugging programs and finding out how they work. (I discuss values, identifiers, and types in
more detail in Chapter 3.)

You can get code completions by pressing Tab. I find this mode of working useful in test-
ing short programs by copying and pasting them into the console or for checking properties
on existing libraries. For example, in Figure 2-2 I checked the System.Environment.Version
property. However, I find this mode inconvenient for creating longer programs since it’s diffi-
cult to store the programs once they’re coded; they have to be copied and pasted from the
console. Using Visual Studio, even if you don’t intend to just run them interactively, you can
still easily execute snippets with Alt+Enter.

If you save your program with the .fsx extension instead of the .fs extension, you can run
your programs interactively by right-clicking them and selecting the Run with F# Interactive
menu option, as shown in Figure 2-3. This scripting style of programming is great for creating
small programs to automate repetitive tasks. This way your program’s configuration, such as
the file paths it uses, can be stored inside regular strings in the program and can be quickly
edited by the programmer using any text editor as needed.

Figure 2-3. Running an F# script by right-clicking it

You can find more information about the F# programming tools and general program-
ming tools for .NET in Chapter 11.

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F#12

7575Ch02.qxp  4/27/07  12:58 PM  Page 12



Installing the Software Used in This Book
The code in this book will focus on using fsc.exe, rather than fsi.exe. This is because although
fsi.exe is great for testing code, running simple scripts, and running experiments, I believe
fsc.exe is more useful for producing finished software. Since there’s little difference between
the syntax and the commands, most examples will work with little or no adaptation in fsi.exe,
and I’ll warn you when any changes are necessary.

All the samples in this book were created using .NET 2.0 running on Windows XP
Professional. If you’re using .NET 1.0 or 1.1, you’ll experience problems with many of the
samples because quite a few of them use classes and methods from the .NET 2.0 base class
library (BCL) that aren’t available in version 1.0 or 1.1.

The most common problem you will face when working with .NET 1.0 and 1.1 is that I use
System.Collections.Generic.List, referred to as ResizeArray in F#, and System.Collections.
Generic.Dictionary. You can always work around this by replacing these two classes with
System.Collections.ArrayList and System.Collections.Hashtable, respectively. There may
be other places where I use methods or classes not available in .NET 1.0 and 1.1, but generally
you will be able to work around this with a little extra coding.

At the time of this writing, Mono shipped with its version of Framework 2.0, which the F#
compiler targets by default; however, this was still in beta, with a production-quality version
due to ship in mid-2007. A small subset of this book’s examples has been tested on Mono 2.0,
and the examples ran without problems.

A small number of examples use several other software libraries and packages. It’s not
necessary to immediately download and install all these software packages, but for specific
examples, as listed in Table 2-1, you’ll need to do this at some point.

Table 2-1. Additional Software Used Within This Book

Software Used In URL

.NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?FamilyId=10CC340B-F857-4A14-83F5-

25634C3BF043&displaylang=en

SDK for .NET Framework 3.0 Chapter 8, http://www.microsoft.com/downloads/details.
Chapter 10 aspx?familyid=C2B1E300-F358-4523-B479-

F53D234CDCCF&displaylang=en

SQL Server 2005 Chapter 9 http://msdn.microsoft.com/vstudio/express/
Express Edition sql/register/default.aspx

SQL Server 2005 Samples Chapter 9 http://www.microsoft.com/downloads/details.
aspx?familyid=E719ECF7-9F46-4312-AF89-
6AD8702E4E6E&displaylang=en

Microsoft .NET LINQ Chapter 9 http://www.microsoft.com/downloads/details.
Preview (May 2006) aspx?familyid=1e902c21-340c-4d13-9f04-

70eb5e3dceea&displaylang=en

Windows Server 2003 Chapter 12 http://www.microsoft.com/downloads/details.
Resource Kit Tools aspx?FamilyID=9d467a69-57ff-4ae7-96ee-

b18c4790cffd&DisplayLang=en

NUnit Chapter 12 http://www.nunit.org/index.php?p=download

continued

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F# 13

7575Ch02.qxp  4/27/07  12:58 PM  Page 13



Table 2-1. Continued

Software Used In URL

NProf Chapter 12 http://www.mertner.com/confluence/display/
NProf/Home

CLR Profiler for .NET 2.0 Chapter 12 http://www.microsoft.com/downloads/details.
aspx?familyid=a362781c-3870-43be-8926-
862b40aa0cd0&displaylang=en

Reflector Chapter 12 http://www.aisto.com/roeder/dotnet/

Obviously, some of these links are a little long to type, so I’ve summarized them all at
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.Downloads
where I’ll keep them updated.

Summary
This chapter described how to install and run F# and the different ways you can work with it.
The following chapters will explain how to program with F#, starting in Chapter 3 with func-
tional programming in F#.

CHAPTER 2 n HOW TO OBTAIN, INSTALL, AND USE F#14

7575Ch02.qxp  4/27/07  12:58 PM  Page 14



Functional Programming

You saw in Chapter 1 that pure functional programming treats functions as values, relies on
recursion for looping, and does not allow changes to state. In this chapter, you’ll survey the
major language constructs of F# that support the functional programming paradigm.

Identifiers
Identifiers are the way you give names to values in F# so you can refer to them later in a program.
You define an identifier using the keyword let followed by the name of the identifier, an equals
sign, and an expression that specifies the value to which the identifier refers. An expression is any
piece of code that represents a computation that will return a value. The following expression
shows a value being assigned to an identifier:

let x = 42

To most people coming from an imperative programming background, this will look like a
variable assignment. There are a lot of similarities, but there are key differences. In pure func-
tional programming, once a value is assigned to an identifier, it never changes. This is why I will
refer to them throughout this book as identifiers and not variables. You will see in the “Scope”
section later in this chapter that, under some circumstances, you can redefine identifiers and
that in imperative programming in F#, in some circumstances, the value of an identifier can
change.

An identifier can refer to either a value or a function, and since F# functions are really values
in their own right, this is hardly surprising. (I discuss this relationship in detail in the “Functions
and Values” section later in this chapter.) This means F# has no real concept of a function name
or parameter name; they are all just identifiers. You write a function definition the same way as a
value identifier, except a function has two or more identifiers between the let keyword and the
equals sign, as follows:

let raisePowerTwo x = x ** 2.0

The first identifier is the name of the function, raisePowerTwo, and the identifier that fol-
lows it is the name of the function’s parameter, x.

15

C H A P T E R  3

n n n

7575Ch03.qxp  4/27/07  12:59 PM  Page 15



Keywords
Most, if not all, programming languages have the concept of keywords. A keyword is a lan-
guage token that the compiler reserves for special use. In F# you cannot use a keyword as an
identifier name or a type name (I discuss types later in this chapter in “Defining Types”). The
following are the F# keywords:

abstract lsl

and lsr

as lxor

assert match member

asr mod

begin module

class mutable namespace

default new

delegate null

do of

done open

downcast or

downto override

else rec

end sig

exception static

false struct

finally then

for to

fun true

function try

if type

in val

inherit when

inline upcast

interface while

land with

lor

CHAPTER 3 n FUNCTIONAL PROGRAMMING16

7575Ch03.qxp  4/27/07  12:59 PM  Page 16



The words listed next are not currently F# keywords but have been reserved for possible
future use. It is possible to use them as identifiers or type names now, but the compiler will
issue a warning if you do. If you care that your code is compatible with future versions of the
compiler, then it is best to avoid using them. I will not use them in the examples in this book.

async method

atomic mixin

break namespace

checked object

component process

const property

constraint protected

constructor public

continue pure

decimal readonly

eager return

enum sealed

event switch

external virtual

fixed void

functor volatile

include where

If you really need to use a keyword as an identifier or type name, you can use the double
back quote syntax:

let ``class`` = "style"

The usual reason for doing this is when you need to use a member from a library that was
not written in F# and that uses one of F#’s keywords as a name (you’ll learn more about using
non-F# libraries in Chapter 4). The best practice is to avoid using keywords as identifiers if
possible.

Literals
Literals represent constant values and are useful building blocks for computations. F# has a
rich set of literals, summarized in Table 3-1.

CHAPTER 3 n FUNCTIONAL PROGRAMMING 17

7575Ch03.qxp  4/27/07  12:59 PM  Page 17



Table 3-1. F# Literals

Example F# Type .NET Type Description

"Hello\t ", "World\n" string System.String A string in which a backslash
(\) is an escape character

@"c:\dir\fs", @"""" string System.String A verbatim string where a
backslash (\) is a regular
character

"bytesbytesbytes"B byte array System.Byte[] A string that will be stored as
a byte array

'c' char System.Char A character

true, false bool System.Boolean A Boolean

0x22 int/int32 System.Int32 An integer as a hexadecimal

0o42 int/int32 System.Int32 An integer as an octal

0b10010 int/ int32 System.Int32 An integer as a binary

34y sbyte System.SByte A signed byte

34uy byte System.Byte An unsigned byte

34s int16 System.Int16 A 16-bit integer

34us uint16 System.UInt16 An unsigned 16-bit integer

34l int/int32 System.Int32 A 32-bit integer

34ul uint32 System.UInt32 An unsigned 32-bit integer

34n nativeint System.IntPtr A native-sized integer

34un unativeint System.UIntPtr An unsigned native-sized
integer

34L int64 System.Int64 A 32-bit integer

34UL uint64 System.Int64 An unsigned 32-bit integer

3.0F, 3.0f float32 System.Single A 32-bit IEEE floating-point
number

3.0 float System.Double A 64-bit IEEE floating-point
number

3474262622571I bigint Microsoft.FSharp. An arbitrary large integer
Math.BigInt

474262612536171N bignum Microsoft.FSharp. An arbitrary large number
Math.BigNum

In F# string literals can contain newline characters, and regular string literals can contain
standard escape codes. Verbatim string literals use a backslash (\) as a regular character, and
two double quotes ("") are the escape for a quote. You can define all integer types using hexa-
decimal and octal by using the appropriate prefix and postfix. The following example shows
some of these literals in action, along with how to use the F# printf function with a %A pattern
to output them to the console. The printf function interprets the %A format pattern using a
combination of F#’s reflection (covered in Chapter 7) and the .NET ToString method, which is
available for every type, to output values in a readable way. You can also access this function-
ality by using the print_any and any_to_string functions from the F# library.

CHAPTER 3 n FUNCTIONAL PROGRAMMING18

7575Ch03.qxp  4/27/07  12:59 PM  Page 18



#light
let message = "Hello

World\r\n\t!"
let dir = @"c:\projects"

let bytes = "bytesbytesbytes"B

let xA = 0xFFy
let xB = 0o7777un
let xC = 0b10010UL

let print x = printfn "A%" x

let main() =
print message;
print dir;
print bytes;
print xA;
print xB;
print xC

main()

The results of this example, when compiled and executed, are as follows:

"Hello\n        World\r\n\t!"
"c:\\projects"
[|98uy; 121uy; 116uy; 101uy; 115uy; 98uy; 121uy; 116uy; 101uy; 115uy; 98uy;
121uy; 116uy; 101uy; 115uy|]

-1y
4095
18UL

Values and Functions
Values and functions in F# are indistinguishable because functions are values, and F# syntax
treats them both similarly. For example, consider the following code. On the first line, the
value 10 is assigned to the identifier n; then on the second line, a function, add, which takes
two parameters and adds them together, is defined. Notice how similar the syntax is, with the
only difference being that a function has parameters that are listed after the function name.
Since everything is a value in F#, the literal 10 on the first line is a value, and the result of the
expression a + b on the next line is also a value that automatically becomes the result of the
add function. Note that there is no need to explicitly return a value from a function as you
would in an imperative language.

CHAPTER 3 n FUNCTIONAL PROGRAMMING 19

7575Ch03.qxp  4/27/07  12:59 PM  Page 19



#light
let n = 10

let add a b = a + b

let addFour = add 4

let result = addFour n

printfn "result = %i" result

The results of this code, when compiled and executed, are as follows:

result = 14

F# also supports the idea of the partial application of functions (these are sometimes called
partial or curried functions). This means you don’t have to pass all the arguments to a function
at once. I did this in the third line in the previous code, where I passed a single argument to the
add function, which takes two arguments. This is very much related to the idea that functions are
values. Because a function is just a value, if it doesn’t receive all its arguments at once, it returns a
value that is a new function waiting for the rest of the arguments. So, in the example, passing just
the value 4 to the add function results in a new function that I have named addFour because it
takes one parameter and adds the value 4 to it. At first glance, this idea can look uninteresting
and unhelpful, but it is a powerful part of functional programming that you’ll see used through-
out the book.

This behavior may not always be appropriate; for example, if the function takes two 
floating-point parameters that represent a point, it may not be desirable to have these num-
bers passed to the function separately because they both make up the point they represent.
You may alternatively surround a function’s parameters with parentheses and separate them
with commas, turning them into a tuple (rhymes with “couple”). You can see this in the follow-
ing code, which will not compile because the sub function requires both parameters to be
given at once. This is because sub now has only one parameter, the tuple (a, b), instead of
two, and although the call to sub in the second line provides only one argument, it’s not a
tuple. You’ll examine tuples properly later in this chapter in “Defining Types.”

#light
let sub (a, b) = a - b

let subFour = sub 4

When attempting to compile this example, you will receive the following error message;
this is because the program does not type check as you are trying to pass an integer to a func-
tion that takes a tuple.

prog.fs(15,19): error: FS0001: This expression has type
int

but is here used with type
'a * 'b

CHAPTER 3 n FUNCTIONAL PROGRAMMING20

7575Ch03.qxp  4/27/07  12:59 PM  Page 20



In general, functions that can be partially applied are preferred over functions that use
tuples. This is because functions that can be partially applied are more flexible than tuples,
giving users of the function more choice about how to use them. This is especially true when
creating a library to be used by other programmers. You may not be able to anticipate all the
ways your users will want to use your functions, so it is best to give them the flexibility of func-
tions that can be partially applied.

You never need to explicitly return a value, but how do you compute intermediate values
within a function? In F#, this is controlled by whitespace. An indention means that the let
binding is an intermediate value in the computation, and the end of the expression is signaled
by the end of the indented section.

To demonstrate this, the next example shows a function that computes the point halfway
between two integers. The third and fourth lines show intermediate values being calculated.
First the difference between the two numbers is calculated, and this is assigned to the identifier
dif using the let keyword. To show that this is an intermediate value within the function, it is
indented by four spaces. The choice of the number of spaces is left to the programmer, but the
convention is four. Note that you cannot use tabs because these can look different in different
text editors, which causes problems when whitespace is significant. After that, the example cal-
culates the midpoint, assigning it to the identifier mid using the same indentation. Finally, you
want the result of the function to be the midpoint plus a, so you can simply say mid + a, and
this becomes the function’s result.

#light
let halfWay a b =

let dif =  b - a
let mid = dif / 2
mid + a

printfn "(halfWay 5 11) = %i" (halfWay 5 11)
printfn "(halfWay 11 5) = %i" (halfWay 11 5)

The results of this example are as follows:

(halfWay 5 11) = 8
(halfWay 11 5) = 8

nNote It’s the #light declaration, which should be placed at the top of each F# source file, that makes
whitespace significant in F#, allowing you to omit certain keywords and symbols such as in, ;, begin, and
end. I believe that significant whitespace is a much more intuitive way of programming, because it helps the
programmer decide how the code should be laid out; therefore, in this book, I’ll cover the F# syntax only
when #light is declared.

CHAPTER 3 n FUNCTIONAL PROGRAMMING 21

7575Ch03.qxp  4/27/07  12:59 PM  Page 21



Scope
The scope of an identifier defines where you can use an identifier (or a type; see “Defining Types”
later in this chapter) within a program. Scope is a fairly simple concept, but it is important to
have a good understanding because if you try to use an identifier that’s not in scope, you will get
a compile error.

All identifiers, whether they relate to functions or values, are scoped from the end of their
definitions until the end of the sections in which they appear. So, for identifiers that are at the
top level (that is, identifiers not local to another function or other value), the scope of the iden-
tifier is from the place where it’s defined to the end of the source file. Once an identifier at the
top level has been assigned a value (or function), this value cannot be changed or redefined. An
identifier is available only after its definition has ended, meaning that it is not usually possible
to define an identifier in terms of itself.

Identifiers within functions are scoped to the end of the expression that they appear in;
ordinarily, this means they’re scoped until the end of the function definition in which they
appear. So if an identifier is defined inside a function, then it cannot be used outside it. Con-
sider the next example, which will not compile since it attempts to use the identifier message
outside the function defineMessage:

#light
let defineMessage() =

let message = "Help me"
print_endline message

print_endline message

When trying to compile this code, you’ll get the following error message:

Prog.fs(34,17): error: FS0039: The value or constructor 'message' is not defined.

Identifiers within functions behave a little differently from identifiers at the top level,
because they can be redefined using the let keyword. This is useful; it means that the F#
programmer does not have to keep inventing names to hold intermediate values. To demon-
strate, the next example shows a mathematical puzzle implemented as an F# function. Here
you need to calculate lots of intermediate values that you don’t particularly care about; invent-
ing names for each one these would be an unnecessary burden on the programmer.

#light
let mathsPuzzle() =

print_string "Enter day of the month on which you were born: "
let input =  read_int ()
let x = input * 4     // Multiply it by 4
let x = x + 13        // Add 13
let x = x * 25        // Multiply the result by 25
let x = x - 200       // Subtract 200
print_string "Enter number of the month you were born: "
let input =  read_int ()
let x = x + input

CHAPTER 3 n FUNCTIONAL PROGRAMMING22

7575Ch03.qxp  4/27/07  12:59 PM  Page 22



let x = x * 2         // Multiply by 2
let x = x - 40        // Subtract 40
let x = x * 50        // Multiply the result by 50
print_string "Enter last two digits of the year of your birth: "
let input =  read_int ()
let x = x + input
let x = x - 10500     // Finally, subtract 10,500
printf "Date of birth (ddmmyy): %i" x

mathsPuzzle()

The results of this example, when compiled and executed, are as follows:

Enter day of the month on which you were born: 23
Enter number of the month you were born: 5
Enter last two digits of the year of your birth: 78
Date of birth (ddmmyy): 230578

I should note that this is different from changing the value of an identifier. Because you’re
redefining the identifier, you’re able to change the identifier’s type, but you still retain type safety.

nNote Type safety, sometimes referred to as strong typing, basically means that F# will prevent you from
performing an inappropriate operation on a value; for example, you can’t treat an integer as if it were a 
floating-point number. I discuss types and how they lead to type safety later in this chapter in the section
“Types and Type Inference.”

The next example shows code that will not compile, because on the third line you change
the value of x from an integer to the string "change me", and then on the fourth line you try to
add a string and an integer, which is illegal in F#, so you get a compile error:

#light
let changeType () =

let x = 1             // bind x to an integer
let x = "change me"   // rebind x to a string
let x = x + 1         // attempt to rebind to itself plus an integer
print_string x

This program will give the following error message because it does not type check:

prog.fs(55,13): error: FS0001: This expression has type
int

but is here used with type
string

stopped due to error

CHAPTER 3 n FUNCTIONAL PROGRAMMING 23

7575Ch03.qxp  4/27/07  12:59 PM  Page 23



If an identifier is redefined, its old value is available while the definition of the identifier is
in progress but after it is defined; that is, after the new line at the end of the expression, the old
value is hidden. If the identifier is redefined inside a new scope, the identifier will revert to its
old value when the new scope is finished.

The next example defines a message and prints it to the console. It then redefines this
message inside an inner function called innerFun that also prints the message. Then, it calls
the function innerFun and after that prints the message a third time.

#light
let printMessages() =

// define message and print it
let message = "Important"
printfn "%s" message;

// define an inner function that redefines value of message
let innerFun () =

let message = "Very Important"
printfn "%s" message

// define message and print it
innerFun ()

// finally print message again
printfn "%s" message

printMessages()

The results of this example, when compiled and executed, are as follows:

Important
Very Important
Important

A programmer from the imperative world might have expected that message when printed
out for the final time would be bound to the value Very Important, rather than Important. It
holds the value Important because the identifier message is rebound, rather than assigned, to
the value Very Important inside the function innerFun, and this binding is valid only inside the
scope of the function innerFun, so once this function has finished, the identifier message
reverts to holding its original value.

nNote Using inner functions is a common and excellent way of breaking up a lot of functionality into
manageable portions, and you will see their usage throughout the book. They are sometimes referred to 
as closures or lambdas, although these two terms have more specific meanings. A closure means that the
function uses a value that is not defined at the top level, and a lambda is an anonymous function. The sec-
tion “Anonymous Functions” later in the chapter discusses these concepts in more detail.

CHAPTER 3 n FUNCTIONAL PROGRAMMING24

7575Ch03.qxp  4/27/07  12:59 PM  Page 24



Recursion
Recursion means defining a function in terms of itself; in other words, the function calls itself
within its definition. Recursion is often used in functional programming where you would use
a loop in imperative programming. Many believe that algorithms are much easier to under-
stand when expressed in terms of recursion rather than loops.

To use recursion in F#, use the rec keyword after the let keyword to make the identifier
available within the function definition. The following example shows recursion in action.
Notice how on the fifth line the function makes two calls to itself as part of its own definition.

#light
let rec fib x =

match x with
| 1 -> 1
| 2 -> 1
| x -> fib (x - 1) + fib (x - 2)

printfn "(fib 2) = %i" (fib 2)
printfn "(fib 6) = %i" (fib 6)
printfn "(fib 11) = %i" (fib 11)

The results of this example, when compiled and executed, are as follows:

(fib 2) = 1
(fib 6) = 8
(fib 11) = 89

This function calculates the nth term in the Fibonacci sequence. The Fibonacci sequence
is generated by adding the previous two numbers in the sequence, and it progresses as follows:
1, 1, 2, 3, 5, 8, 13, …. Recursion is most appropriate for calculating the Fibonacci sequence,
because the definition of any number in the sequence, other than the first two, depends on
being able to calculate the previous two numbers, so the Fibonacci sequence is defined in
terms of itself.

Although recursion is a powerful tool, you should always be careful when using it. It is
easy to inadvertently write a recursive function that never terminates. Although intentionally
writing a program that does not terminate is sometimes useful, it is rarely the goal when trying
to perform calculations. To ensure that recursive functions terminate, it is often useful to think
of recursion in terms of a base case and the recursive case. The recursive case is the value for
which the function is defined in terms of itself; for the function fib, this is any value other
than 1 and 2. The base case is the nonrecursive case; that is, there must be some value where
the function is not defined in terms of itself. In the fib function, 1 and 2 are the base cases.
Having a base case is not enough in itself to ensure termination. The recursive case must tend
toward the base case. In the fib example, if x is greater than or equal to 3, then the recursive
case will tend toward the base case because x will always become smaller and at some point
reach 2. However, if x is less than 1, then x will grow continually more negative, and the func-
tion will recurse until the limits of the machine are reached, resulting in a stack overflow error
(System.StackOverflowException).

CHAPTER 3 n FUNCTIONAL PROGRAMMING 25

7575Ch03.qxp  4/27/07  12:59 PM  Page 25



The previous code also uses F# pattern matching, which I discuss in the “Pattern Matching”
section later in this chapter.

Anonymous Functions
F# provides an alternative way to define functions using the keyword fun; you can see this in
the following example. Ordinarily, you would use this notation when it is not necessary to give
a name to a function, so these are referred to as anonymous functions and sometimes called
lambda functions or even just lambdas. The idea that a function does not need a name may
seem a little strange, but if a function is to be passed as an argument to another function, then
often you don’t need to give it a name of its own. I demonstrate this idea in the section “Lists”
later in this chapter when you look at operations on lists. The arguments defined for this style
of function can follow the same rules as when defining a function with a name, meaning that
you can define the arguments so they can be partially applied or defined in the form of a tuple
(see the section “Defining Types” later in this chapter for an explanation of tuples). The follow-
ing example shows two functions that are created and then immediately applied to arguments
so that the identifier x holds the result of the function rather than the function itself:

#light
let x = (fun x y -> x + y) 1 2

You can create an anonymous function with the keyword function. Creating functions
this way differs from using the keyword fun since you can use pattern matching when using
the keyword function (see the section “Pattern Matching” later in this chapter). Consequently,
it can be passed only one argument, but you can do a couple of things if the function needs to
have multiple parameters. The first line of the following example shows a function using the
function keyword written so the function can be partially applied, meaning the arguments
can be passed one at a time if needed. The second line shows a function defined using the
function keyword that takes a tuple argument.

let x1 = (function x -> function y -> x + y) 1 2
let x2 = (function (x, y) -> x + y) (1, 2)

The keyword fun is generally preferred when defining anonymous functions because it is
more compact; you can see this is the case when browsing the source for the libraries and
examples distributed with F#.

Operators
In F#, you can think of operators as a more aesthetically pleasing way to call functions.

F# has two different kinds of operators, prefix and infix; a prefix operator is an operator
that takes one operand, and an infix operator takes two or more. Prefix operators appear
before their operand, whereas infix operators appear between the first two operands.

F# provides a rich and diverse set of operators that you can use with numeric, Boolean,
string, and collection types. The operators defined in F# and its libraries are too numerous to
be covered in this section, so instead you’ll look at the way you use and define operators in 
F# rather than looking at individual operators.

CHAPTER 3 n FUNCTIONAL PROGRAMMING26

7575Ch03.qxp  4/27/07  12:59 PM  Page 26



Like in C#, F# operators are overloaded, meaning you can use more than one type with an
operator; however, unlike in C#, both operands must be the same type, or the compiler will
generate an error. F# also allows users to define and redefine operators; I discuss how to do
that at the end of this section.

Operators follow a set of rules similar to C#’s for operator overloading resolution; therefore,
any class in the BCL, or any .NET library, that was written to support operator overloading in C#
will support it in F#. For example, you can use the + operator to concatenate stings (you can also
use ^ for this) as well as to add a System.TimeSpan to a System.DataTime because these types sup-
port an overload of the + operator. The following example illustrates this:

#light
let ryhm = "Jack " + "and " + "Jill"
let anotherRyhm = "Wee " ^ "Willy " ^ "Winky"

open System
let oneYearLater =

DateTime.Now + new TimeSpan(365, 0, 0, 0, 0)

Users can define their own operators or redefine any of the existing ones if they want
(although this is not always advisable, because the operators then no longer support overload-
ing). Consider the following perverse example that redefines + to perform subtraction:

#light
let (+) a b = a - b
print_int (1 + 1)

User-defined (custom) operators must be nonalphanumeric and can be a single character
or a group of characters. You can use the following characters in custom operators:

!$%&*+-./<=>?@^|~
:

Custom operators can start with any of the characters on the first line and after that can
use any of these characters and also the colon (:), listed on the second line. The syntax for
defining an operator is the same as using the let keyword to define a function, except the
operator replaces the function name and is surrounded by parentheses so the compiler 
knows that the symbols are used as a name of an operator rather than as the operator itself.
The following example shows defining a custom operator, +:*, that adds its operands and then
multiplies them:

#light
let ( +:* ) a b = (a + b) * a * b

printfn "(1 +:* 2) = %i" (1 +:* 2)

The results of this example, when compiled and executed, are as follows:

(1 +:* 2) = 6

Unary operators always come before the operand; binary operators are always infix.

CHAPTER 3 n FUNCTIONAL PROGRAMMING 27

7575Ch03.qxp  4/27/07  12:59 PM  Page 27



Lists
F# lists are simple collection types that are built into F#. An F# list can be an empty list, repre-
sented by square brackets ([]), or it can be another list with a value concatenated to it. You
concatenate values to the front of an F# list using a built-in operator that consists of two
colons (::), pronounced “cons.” The next example shows some lists being defined, starting
with an empty list on the first line, followed by two lists where strings are placed at the front 
by concatenation:

#light
let emptyList = []
let oneItem = "one " :: []
let twoItem = "one " :: "two " :: []

The syntax to add items to a list by concatenation is a little verbose, so if you just want to
define a list, you can use shorthand. In this shorthand notation, you place the list items
between square brackets and separate them with a semicolon (;), as follows:

#light
let shortHand = ["apples "; "pairs "]

F# has a second operator that works on lists; this is the at (@) symbol, which you can use
to concatenate two lists together, as follows:

let twoLists = ["one, "; "two, "] @ ["buckle "; "my "; "shoe "]

All items in an F# list must be of the same type, and if you try to place items of different
types in a list—for example, you try to concatenate a string to a list of integers—you will get a
compile error. If you need a list of mixed types, you can create a list of type obj (the F# equiva-
lent of System.Object), as in the following code. I discuss types in F# in more detail in “Types
and Type Inference” and “Defining Types” later in this chapter.

#light
let emptyList = []
let oneItem = "one " :: []
let twoItem = "one " :: "two " :: []

let shortHand = ["apples "; "pairs "]

let twoLists = ["one, "; "two, "] @ ["buckle "; "my "; "shoe "]

let objList = [box 1; box 2.0; box "three"]

let printList l =
List.iter print_string l
print_newline()

CHAPTER 3 n FUNCTIONAL PROGRAMMING28

7575Ch03.qxp  4/27/07  12:59 PM  Page 28



let main() =
printList emptyList
printList oneItem
printList twoItem
printList shortHand
printList twoLists

for x in objList do
print_any x
print_char ' '

print_newline()

main()

The results of these examples, when compiled and executed, are as follows:

one
one two
apples pairs
one, two, buckle my shoe
1 2.000000 "three"

F# lists are immutable; in other words, once a list is created, it cannot be altered. The
functions and operators that act on lists do not alter them, but they create a new, altered ver-
sion of the list, leaving the old list available for later use if needed. The next example shows
this. An F# list containing a single string is created, and then two more lists are created, each
using the previous one as a base. Finally, the List.rev function is applied to the last list to cre-
ate a new reversed list. When you print these lists, it is easy to see that all the original lists
remain unaltered.

#light
let one = ["one "]
let two = "two " :: one
let three = "three " :: two

let rightWayRound = List.rev three

let printList l =
List.iter print_string l
print_newline()

let main() =
printList one
printList two
printList three
printList rightWayRound

main()

CHAPTER 3 n FUNCTIONAL PROGRAMMING 29

7575Ch03.qxp  4/27/07  12:59 PM  Page 29



The results of this example, when compiled and executed, are as follows:

one
two one
three two one
one two three

The regular way to work with F# lists is to use recursion. The empty list is the base case,
and when a function working on a list receives the empty list, the function terminates; when
the function receives a nonempty list, it processes the first item in the list (the head) and then
recursively processes the remainder of the list (the tail). The next example demonstrates pro-
cessing a list recursively:

#light
let listOfList = [[2; 3; 5]; [7; 11; 13]; [17; 19; 23; 29]]

let rec concatList l =
if List.nonempty l then

let head = List.hd l in
let tail = List.tl l in
head @ (concatList tail)

else
[]

let primes = concatList listOfList

print_any primes

First, you define an F# list composed of three other lists. Then, you define a recursive
function, concatList, which is designed to merge a list of lists into one list. The function uses
an F# library function, List.nonempty, to check whether the F# list is empty. If it is not empty,
the function takes the head and tail of the list, passes the tail to a call to itself, and then con-
catenates the head of the list to the result. If the tail is empty, the function must still return
something, so it simply returns the empty list, [], because concatenating the empty list with
another list has no effect on the contents of the list.

The results of this example, when compiled and executed, are as follows:

[2; 3; 5; 7; 11; 13; 17; 19; 23; 29]

The concatList function is fairly verbose for what this example is trying to achieve. Fortu-
nately, F# includes some pattern matching syntax for lists that can really help tidy this up. I
cover this syntax later in this chapter in “Pattern Matching.”

All the examples in this section demonstrate another nice feature of F# lists, the set of
library functions provided for lists. The List.iter function is a library function that takes two
arguments. The first argument is a function that will be applied to each item in the list, and
the second is the list to which that function will be applied. You can think of the List.iter
function as just a nice shorthand way to write a for loop over a list, and the library contains

CHAPTER 3 n FUNCTIONAL PROGRAMMING30

7575Ch03.qxp  4/27/07  12:59 PM  Page 30



many other functions for transforming and manipulating lists, including a List.concat func-
tion that has a similar effect to the concatList function defined earlier. For more information
about these functions, see Chapter 7, which covers the F# ML compatibility library.

List Comprehensions
List comprehensions make creating and converting collections easy. You can create F# lists,
sequences, and arrays directly using comprehension syntax. (I cover arrays in more detail in
the next chapter, and sequences are collections of type seq, which is F#’s name for the .NET
BCL’s IEnumerable type; I describe them in the section “Lazy Evaluation.”)

The simplest comprehensions specify ranges, where you write the first item you want,
either a number or a letter, followed by two periods (..) and then the last item you want, all
within square brackets (to create a list) or braces (to create a sequence). The compiler then
does the work of calculating all the items in the collection, taking the first number and incre-
menting it by 1, or similarly with characters, until it reaches the last item specified. The
following example demonstrates how to create a list of numbers from 0 through 9 and a
sequence of the characters from A through Z:

#light
let numericList = [ 0 .. 9 ]
let alpherSeq = { 'A' .. 'Z' }
printfn "%A" numericList
printfn "%A" alpherSeq

The results of this example are as follows:

[0; 1; 2; 3; 4; 5; 6; 7; 8; 9]
seq ['A'; 'B'; 'C'; 'D'; ...]

To create more interesting collections, you can also specify a step size for incrementing
numbers—note that characters do not support this type of list comprehension. You place the
step size between the first and last items separated by an extra pair of periods (..). The next
example shows a list containing multiples of 3, followed by a list that counts backward from 
9 to 0:

#light
let multiplesOfThree = [ 0 .. 3 .. 30 ]
let revNumericSeq = [ 9 .. -1 .. 0 ]
printfn "%A" multiplesOfThree
printfn "%A" revNumericSeq

The results of this example are as follows:

[0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30]
[9; 8; 7; 6; 5; 4; 3; 2; 1; 0]

CHAPTER 3 n FUNCTIONAL PROGRAMMING 31

7575Ch03.qxp  4/27/07  12:59 PM  Page 31



List comprehensions also allow loops to create a collection from another collection. The
idea is that you enumerate the old collection, transform each of its items, and place any gen-
erated items in the new collection. To specify such a loop, use the keyword for, followed by an
identifier, followed by the keyword in, at the beginning of the list comprehension. In the next
example, you create a sequence of the squares of the first ten positive integers. You use for to
enumerate the collection 1 .. 10, assigning each item in turn to the identifier x. You then use
the identifier x to calculate the new item, in this case multiplying x by itself to square it.

#light
let squares =

{ for x in 1 .. 10 -> x * x }
print_any squares

The results of this example are as follows:

seq [1; 4; 9; 16; ...]

You can also add a when guard to suppress items you don’t want in the collection. A when
guard is the keyword when followed by a Boolean expression. Only when the when guard evalu-
ates to true will an item be placed in the collection. The next example demonstrates how to use
a when guard, checking whether the modulus of x is zero. This is an easy way to check whether a
number is even, and only if the number is even is it placed in the collection. The example also
demonstrates how to create a function that returns a sequence based on a list comprehension.
In the function evens, the parameter n specifies the size of the collection to be generated.

#light
let evens n =

{ for x in 1 .. n when x % 2 = 0 -> x }
print_any (evens 10)

The results of this example are as follows:

seq [2; 4; 6; 8; ...]

It’s also possible to use list comprehensions to iterate in two or more dimensions by using
a separate loop for each dimension. In the next example, you define a function, squarePoints,
that creates a sequence of points forming a square grid, each point represented by a tuple of
two integers.

#light
let squarePoints n =

{ for x in 1 .. n
for y in 1 .. n -> x,y }

print_any (squarePoints 3)

The results of this example are as follows:

[(1, 1); (1, 2); (1, 3); (2, 1); ...]

CHAPTER 3 n FUNCTIONAL PROGRAMMING32

7575Ch03.qxp  4/27/07  12:59 PM  Page 32



You’ll look at using comprehensions with arrays and collections from the .NET Framework
BCL in Chapter 4.

Control Flow
F# has a strong notion of control flow. In this way it differs from many pure functional lan-
guages, where the notion of control flow is very loose, because expressions can be evaluated 
in essentially any order. You can see the strong notion of control flow in the following if …
then … else … expression.

In F# the if … then … else … construct is an expression, meaning it returns a value. One
of two different values will be returned, depending on the value of the Boolean expression
between the if and then keywords. The next example illustrates this. The if … then … else …
expression is evaluated to return either "heads" or "tails" depending on whether the pro-
gram is run on an even second or an odd second.

#light
let result =

if System.DateTime.Now.Second % 2 = 0 then
"heads"

else
"tails"

print_string result

The if … then … else … expression has some implications that you might not expect if
you are more familiar with imperative-style programming. F#’s type system requires that the
values being returned by the if … then … else … expression must be the same type, or the
compiler will generate an error. So, if in the previous example you were to replace the string
"tails" with an integer or Boolean value, you would get a compile error. If you really require
the values to be of different types, you can create an if … then … else … expression of type
obj (F#’s version of System.Object); the next example shows how to do this. It prints either
"heads" or false to the console.

#light
let result =

if System.DateTime.Now.Second % 2 = 0 then
box "heads"

else
box false

print_any result

Imperative programmers may be surprised that an if … then … else … expression must
have an else if the expression returns a value. This is pretty logical when you think about it
and if you consider the examples you’ve just seen. If the else were removed from the code, the
identifier result could not be assigned a value when the if evaluated to false, and having
uninitialized identifiers is something that F#, and functional programming in general, aims to
avoid. There is a way for a program to contain an if … then expression without the else, but
this is very much in the style of imperative programming, so I discuss it in Chapter 4.

CHAPTER 3 n FUNCTIONAL PROGRAMMING 33

7575Ch03.qxp  4/27/07  12:59 PM  Page 33



Types and Type Inference
F# is a strongly typed language, which means you cannot use a function with a value that is
inappropriate. You cannot call a function that has a string as a parameter with an integer argu-
ment; you must explicitly convert between the two. The way the language treats the type of its
values is referred to as its type system. F# has a type system that does not get in the way of rou-
tine programming. In F#, all values have a type, and this includes values that are functions.

Ordinarily, you don’t need to explicitly declare types; the compiler will work out the type
of a value from the types of the literals in the function and the resulting types of other func-
tions it calls. If everything is OK, the compiler will keep the types to itself; only if there is a type
mismatch will the compiler inform you by reporting a compile error. This process is generally
referred to as type inference. If you want to know more about the types in a program, you can
make the compiler display all inferred types with the –i switch. Visual Studio users get tooltips
that show types when they hover the mouse pointer over an identifier.

The way type inference works in F# is fairly easy to understand. The compiler works
through the program assigning types to identifiers as they are defined, starting with the top
leftmost identifier and working its way down to the bottom rightmost. It assigns types based
on the types it already knows, that is, the types of literals and (more commonly) the types of
functions defined in other source files or assemblies.

The next example defines two F# identifiers and then shows their inferred types displayed
on the console with the F# compiler’s –i switch. The types of these two identifiers are unsur-
prising, string and int, respectively, and the syntax used by the compiler to describe them is
fairly straightforward: the keyword val (meaning “value”) and then the identifier, a colon, and
finally the type.

#light
let aString = "Spring time in Paris"

let anInt = 42

val aString : string
val anInt : int

The definition of the function makeMessage in the next example is a little more interesting.
You should note two things about makeMessage. First, its definition is prefixed with the keyword
val, just like the two values you saw before, since even though it is a function, the F# compiler
still considers it to be a value. Second, the type itself uses the notation int -> string, meaning
a function that takes an integer and returns a string. The -> between the type names (an ASCII
arrow, or just arrow) represents the transformation of the function being applied. It is worth
noting that the arrow represents a transformation of the value but not necessarily the type,
because it can represent a function that transforms a value into a value of the same type, as
shown in the half function on the second line.

CHAPTER 3 n FUNCTIONAL PROGRAMMING34

7575Ch03.qxp  4/27/07  12:59 PM  Page 34



#light
let makeMessage x = (string_of_int x) + " days to spring time"
let half x = x / 2

val makeMessage : int -> string
val half : int -> int

The types of functions that can be partially applied and functions that take tuples differ.
See the section “Values and Functions” earlier in the chapter for an explanation of the differ-
ence between these types of functions. The functions div1 and div2 are designed to illustrate
this. The function div1 can be partially applied, and its type is int -> int -> int, represent-
ing that the arguments can be passed in separately. You can compare this to the function div2
that has the type int * int -> int, meaning a function that takes a pair of integers, a tuple of
integers, and turns them into a single integer. You can see this in the function div_remainder,
which performs integer division and also returns the remainder at the same time. Its type is
int -> int -> int * int, meaning a curried function that returns an integer tuple.

let div1 x y = x / y
let div2 (x, y) = x / y

let divRemainder  x y = x / y, x % y

val div1 : int -> int -> int
val div2 : int * int -> int
val divRemainder : int -> int -> int * int

The next function, doNothing, looks inconspicuous enough, but it is quite interesting from
a typing point of view. It has the type 'a -> 'a, meaning a function that takes a value of one
type and returns a value of the same type. Any type that begins with a single quotation mark
(') means a variable type. F# has a type, obj, that maps to System.Object and that represents a
value of any type, a concept that you will probably be familiar with from other common lan-
guage runtime (CLR)–based programming languages (and indeed many languages that do not
target the CLR). However, a variable type is not the same. Notice how the type has an 'a on
both sides of the arrow. This means the compiler knows that even though it does not yet know
the type, it knows that the type of the return value will be the same as the type of the argu-
ment. This feature of the type system, sometimes referred to as type parameterization, allows
the compiler to find more type errors at compile time and can help avoid casting.

let doNothing x = x

val doNothing : 'a -> 'a

CHAPTER 3 n FUNCTIONAL PROGRAMMING 35

7575Ch03.qxp  4/27/07  12:59 PM  Page 35



nNote The concept of a variable type, or type parameterization, is closely related to the concept of generics
that were introduced in the CLR version 2.0 and have now become part of the EMCA specification for the CLI
version 2.0. When F# targets a CLI that has generics enabled, it takes full advantage of them by using them
anywhere it finds an undetermined type. It is also worth noting that Don Syme, the creator of F#, designed and
implemented generics in the .NET CLR before he started working on F#. One might be temped to infer that he
did this so he could create F#!

The function doNothingToAnInt, shown next, is an example of a value being constrained, 
a type constraint; in this case, the function parameter x is constrained to be an int. The syntax
for constraining a value to be of a certain type is straightforward. Within parentheses, the
identifier name is followed by a colon (:) followed by the type name; this is also sometimes
called a type annotation. Constraining values is not usually necessary when writing pure F#,
though it can occasionally be useful. It’s most useful when using .NET libraries written in lan-
guages other than F# and for interoperation with unmanaged libraries. In both these cases,
the compiler has less type information, so it is often necessary to give it enough information
to disambiguate things. It is possible to constrain any identifier, not just function parameters,
to be of a certain type, though it is more typical to have to constrain parameters. The list
stringList here shows how to constrain an identifier that’s not a function parameter:

let doNothingToAnInt (x : int) = x

let intList = [1; 2; 3]
let (stringList : list<string>) = ["one"; "two"; "three"]

val doNothingToAnInt _int : int -> int
val intList : int list
val stringList : string list

The intList value is a list of integers, and the identifier’s type is int list. This indicates
that the compiler has recognized that the list contains only integers and that in this case the
type of its items is not undetermined but is int. Any attempt to add anything other than val-
ues of type int to the list will result in a compile error. The identifier stringList has a type
annotation. Although this is unnecessary, since the compiler can resolve the type from the
value, it is used to show an alternative syntax for working with undermined types. You can
place the type between angle brackets after the type that it is associated with instead of just
writing it before the type name. Note that even though the type of stringList is constrained to
be list<string> (a list of strings), the compiler still reports its type as string list when dis-
playing the type, and they mean exactly the same thing. This syntax is supported to make F#
types with a type parameter look like generic types from other .NET libraries.

CHAPTER 3 n FUNCTIONAL PROGRAMMING36

7575Ch03.qxp  4/27/07  12:59 PM  Page 36



Pattern Matching
Pattern matching allows you to look at the value of an identifier and then make different com-
putations depending on its value. It is a bit like a chain of if … then … else … expressions and
also might be compared to the switch statement in C++ and C#, but it is much more powerful
and flexible than either.

The pattern matching construct in F# allows you to pattern match over a variety of types
and values. It also has several different forms and crops up in several places in the language
including its exception handling syntax, which I discuss in “Exceptions and Exception Han-
dling” later in this chapter. The simplest form of pattern matching is matching over a value,
and you have already seen this earlier in this chapter in the section “Values and Functions,”
where you used it to implement a function that generated numbers in the Fibonacci
sequence. To illustrate the syntax, the next example shows an implementation of a function
that will produce the Lucas numbers, a sequence of numbers as follows: 1, 3, 4, 7, 11, 18, 29,
47, 76, …. The Lucas sequence has the same definition as the Fibonacci sequence; only the
starting points are different.

#light
let rec luc x =

match x with
| x when x <= 0 -> failwith "value must be greater than 0"
| 1 -> 1
| 2 -> 3
| x -> luc (x - 1) + luc (--x - 2)

printfn "(luc 2) = %i" (luc 2)
printfn "(luc 6) = %i" (luc 6)
printfn "(luc 11) = %i" (luc 11)
printfn "(luc 12) = %i" (luc 12)

The results of this example, when compiled and executed, are as follows:

(luc 2) = 3
(luc 6) = 18
(luc 11) = 199
(luc 12) = 322

This syntax for pattern matching is the keyword match followed by the identifier that will
be matched and then the keyword with. This is followed by all the possible matching rules
separated by vertical bars (|). In the simplest case, a rule consists of either a constant or an
identifier, followed by an arrow (->) and then by the expression to be used when the value
matches the rule. In this definition of the function luc, you can see that the second two cases
are literals, the values 1 and 2, and these will just be replaced with the values 1 and 3, respec-
tively. The fourth case will match any value of x greater than 2, and this will cause two further
calls to the luc function.

The rules are matched in the order in which they are defined, and the compiler will issue
an error if pattern matching is incomplete, that is, if there is some possible input value that
will not match any rule. This would be the case in the luc function if you had omitted the final

CHAPTER 3 n FUNCTIONAL PROGRAMMING 37

7575Ch03.qxp  4/27/07  12:59 PM  Page 37



rule, because any values of x greater than 2 would not match any rule. The compiler will also
issue a warning if there are any rules that will never be matched, typically because there is
another rule in front of them that is more general. This would be the case in the luc function if
the fourth rule were moved ahead of the first rule. In this case, none of the other rules would
ever be matched because the first rule would match any value of x.

You can add a when guard (as in the first rule of the example) to give exact control about
when a rule fires. A when guard is composed of the keyword when followed by a Boolean expres-
sion. Once the rule is matched, the when clause is evaluated, and the rule will fire only if the
expression evaluates to true. If the expression evaluates to false, the remaining rules will be
searched for another match. The first rule is designed to be the function’s error handler. The
first part of the rule is an identifier that will match any integer, but the when guard means the
rule will match only those integers that are less than or equal to zero.

If you want, you can omit the first |. This can be useful when the pattern match is small
and you want to fit it on one line. You can see this in the next example, which also demon-
strates the use of the underscore (_) as a wildcard. The _ will match any value and is a way 
of telling the compiler that you’re not interested in using this value. For example, in this
booleanToString function, you do not need to use the constant true in the second rule,
because if the first rule is matched, you know that the value of x will be true. Moreover, you 
do not need to use x to derive the string "True", so you can ignore the value and just use _ as 
a wildcard.

#light
let booleanToString x =

match x with false -> "False" | _ -> "True"

Another useful feature of pattern matching is that you can combine two patterns into one
rule through the use of the vertical bar (|). The next example, stringToBoolean, demonstrates
this. In the first two rules, you have two strings that you would like to have evaluate to the same
value, so rather than having two separate rules, you can just use | between the two patterns.

#light
let stringToBoolean x =

match x with
| "True" | "true" -> false
| "False" | "false" -> true
| _ -> failwith "unexpected input"

printfn "(booleanToString true) = %s"
(booleanToString true)

printfn "(booleanToString false) = %s"
(booleanToString false)

printfn "(stringToBoolean \"True\") = %b"
(stringToBoolean "True")

printfn "(stringToBoolean \"false\") = %b"
(stringToBoolean "false")

printfn "(stringToBoolean \"Hello\") = %b"
(stringToBoolean "Hello")

CHAPTER 3 n FUNCTIONAL PROGRAMMING38

7575Ch03.qxp  4/27/07  12:59 PM  Page 38



The results of these examples, when compiled and executed, are as follows:

(booleanToString true) = True
(booleanToString false) = False
(stringToBoolean "True") = false
(stringToBoolean "false") = true
(stringToBoolean "Hello") = Microsoft.FSharp.FailureException: unexpected input

at Prog.stringToBoolean(String x)
at Prog._main()

It is also possible to pattern match over most of the types defined by F#. The next two
examples demonstrate pattern matching over tuples, with two functions that implement a
Boolean “and” and “or” using pattern matching. Each takes a slightly different approach.

#light
let myOr b1 b2 =

match b1, b2 with
| true, _ -> true
| _, true -> true
| _ -> false

let myAnd p =
match p with
| true, true -> true
| _ -> false

The myOr function has two Boolean parameters, and they are placed between the match and
with keywords and separated by commas to form a tuple. The myAnd function has one parame-
ter, which is itself a tuple. Either way, the syntax for creating pattern matches for tuples is the
same and similar to the syntax for creating tuples.

If it’s necessary to match values within the tuple, the constants or identifiers are separated
by commas, and the position of the identifier or constant defines what it matches within the
tuple. This is shown in the first and second rules of the myOr function and in the first rule of the
myAnd function. In these rules, you match parts of the tuples with constants, but you could
have used identifiers if you wanted to work with the separate parts of the tuple later in the rule
definition. Just because you’re working with tuples doesn’t mean you always have to look at
the various parts that make up the tuple. The third rule of myOr and the second rule of myAnd
show the whole tuple matched with a single _ wildcard character. This too could have been
replaced with an identifier if you wanted to work with the value in the second half of the rule
definition.

printfn "(myOr true false) = %b" (myOr true false)
printfn "(myOr false false) = %b" (myOr false false)

printfn "(myAnd (true, false)) = %b" (myAnd (true, false))
printfn "(myAnd (true, true)) = %b" (myAnd (true, true))

The results of these examples, when compiled and executed, are as follows:

CHAPTER 3 n FUNCTIONAL PROGRAMMING 39

7575Ch03.qxp  4/27/07  12:59 PM  Page 39



(myOr true false) = true
(myOr false false) = false
(myAnd (true, false)) = false
(myAnd (true, true)) = true

A common use of a pattern matching in F# is pattern matching over a list; in fact, this is
the preferred way to deal with lists. The next example is a reworking of an example given in
earlier in this chapter in the “Lists” section, but this one uses pattern matching instead of 
if … then … else …. For convenience, the original function definition is shown, renamed to
concatListOrg. Comparing the two, it is easy to see that the version that uses pattern match-
ing is about half the number of lines, a much preferable implementation. The pattern syntax
for pulling the head item off a list is the same as the syntax for concatenating an item to a list.
The pattern is formed by the identifier representing the head, followed by :: and then the
identifier for the rest of the list. You can see this in the first rule of concatList. You can also
pattern match against list constants; you can see this in the second rule of concatList, where
you have an empty list.

#light
let listOfList = [[2; 3; 5]; [7; 11; 13];  [17; 19; 23; 29]]

let rec concatList l =
match l with
| head :: tail -> head @ (concatList tail)
| [] -> []

let rec concatListOrg l =
if List.nonempty l then

let head = List.hd l in
let tail = List.tl l in
head @ (concatListOrg tail)

else
[]

let primes = concatList listOfList

print_any primes

The results of this example, when compiled and executed, are as follows:

[2; 3; 5; 7; 11; 13; 17; 19; 23; 29]

Taking the head from a list, processing it, and then recursively processing the tail of the
list is the most common way of dealing with lists via pattern matching, but it certainly isn’t the
only thing you can do with pattern matching and lists. The following example shows a few
other uses of this combination of features. The first rule demonstrates how to match a list of a
fixed length, in this case a list of three items, and here you use identifiers to grab the values of
these items so they can be printed to the console. The second rule looks at the first three items

CHAPTER 3 n FUNCTIONAL PROGRAMMING40

7575Ch03.qxp  4/27/07  12:59 PM  Page 40



in the list to see whether they are the sequence of integers 1, 2, 3, and if they are, it prints a
message to the console. The final two rules are the standard head/tail treatment of a list,
designed to work their way through the list doing nothing, if there is no match with the first
two rules.

#light
let rec findSequence l =

match l with
| [x; y; z] ->

printfn "Last 3 numbers in the list were %i %i %i"
x y z

| 1 :: 2 :: 3 :: tail ->
printfn "Found sequence 1, 2, 3 within the list"
findSequence tail

| head :: tail -> findSequence tail
| [] -> ()

let testSequence = [1; 2; 3; 4; 5; 6; 7; 8; 9; 8; 7; 6; 5; 4; 3; 2; 1]

findSequence testSequence

The results of this example, when compiled and executed, are as follows:

Found sequence 1, 2, 3 within the list
Last 3 numbers in the list were 3 2 1

Because pattern matching is such a common task in F#, the language provides an alterna-
tive shorthand syntax. If the sole purpose of a function is to pattern match over something,
then it may be worth using this syntax. In this version of the pattern matching syntax, you use
the keyword function, place the pattern where the function’s parameters would usually go,
and then separate all the alternative rules with |. The next example shows this syntax in action
in a simple function that recursively processes a list of strings and concatenates them into a
single string.

#light
let rec conactStringList  =

function head :: tail -> head + conactStringList tail
| [] -> ""

let jabber = ["'Twas "; "brillig, "; "and "; "the "; "slithy "; "toves "; "..."]

let completJabber = conactStringList jabber
print_endline completJabber

The results of this example, when compiled and executed, are as follows:

'Twas brillig, and the slithy toves ...

CHAPTER 3 n FUNCTIONAL PROGRAMMING 41

7575Ch03.qxp  4/27/07  12:59 PM  Page 41

b35c9e57494312b2d2dbde8c30979005



Pattern matching has a couple of other uses within F#, but I have not yet covered in detail
the types on which these other kinds of pattern matching are based. You can find further
details on pattern matching with record types and union types in the next section, “Defining
Types.” You can find details of pattern matching and exception handling in the section “Excep-
tions and Exception Handling,” and you can find details of how to pattern match over types
from non-F# libraries in Chapter 3.

Defining Types
The type system in F# provides a number of features for defining custom types. All of F#’s type
definitions fall into two categories. The first category is types that are tuples or records. These
are a set of types composed to form a composite type (similar to structs in C or classes in C#).
The second category is sum types, sometimes referred to as union types.

Tuples are a way of quickly and conveniently composing values into a group of values.
Values are separated by commas and can then be referred to by one identifier, as shown in the
first line of the next example. You can then retrieve the values by doing the reverse, as shown
in the second and third lines, where identifiers separated by commas appear on the left side of
the equals sign, with each identifier receiving a single value from the tuple. If you want to
ignore a value in the tuple, you can use _ to tell the compiler you are not interested in the
value, as in the second and third lines.

#light
let pair = true, false
let b1, _ = pair
let _, b2 = pair

Tuples are different from most user-defined types in F# because you do not have to
explicitly declare them using the type keyword. To define a type, you use the type keyword
followed by the type name, an equals sign, and then the type you are defining. In its simplest
form, you can use this to give an alias to any existing type, including tuples. Giving aliases to
single types is not often useful, but giving aliases to tuples can be very useful, especially when
you want to use a tuple as a type constraint. The next example shows how to give an alias to a
single type and a tuple and also how to use an alias as a type constraint:

#light
type Name = string
type Fullname = string * string

let fullNameToSting (x : Fullname) =
let first, second = x in
first + " " + second

Record types are similar to tuples in that they compose multiple types into a single type.
The difference is that in record types each field is named. The next example illustrates the syn-
tax for defining record types. You place field definitions between braces and separate them
with semicolons. A field definition is composed of the field name followed by a colon and the
field’s type. The type definition Organization1 is a record type where the field names are
unique. This means you can use a simple syntax to create an instance of this type where there

CHAPTER 3 n FUNCTIONAL PROGRAMMING42

7575Ch03.qxp  4/27/07  12:59 PM  Page 42



is no need to mention the type name when it is created. To create a record, you place the field
names followed by equals signs and the field values between braces ({}), as shown in the
Rainbow identifier:

#light
type Organization1 = { boss : string ; lackeys : string list }

let rainbow =
{ boss = "Jeffrey" ;
lackeys = ["Zippy"; "George"; "Bungle"] }

type Organization2 = { chief : string ; underlings : string list }
type Organization3 = { chief : string ; indians : string list }

let thePlayers =
{ new Organization2

with chief = "Peter Quince"
and  underlings = ["Francis Flute"; "Robin Starveling";

"Tom Snout"; "Snug"; "Nick Bottom"] }
let wayneManor =

{ new Organization3
with chief = "Batman"
and  indians = ["Robin"; "Alfred"] }

F# does not force field names to be unique, so sometimes the compiler cannot infer the
type of a field from the field names alone. In this case, you must use the syntax that specifies
the type. Again, you place the record definition between braces, but the new keyword, the type
name, and the keyword with precede the field definitions. The field definitions themselves
remain the same but are separated with the keyword and instead of semicolons. This is illus-
trated by the types Organization2 and Organization3 and their instances thePlayers and
wayneManor. (This syntax is similar to that used for object expressions, which are a way of
creating .NET objects in F# and are discussed in Chapter 5.)

Ordinarily the scope of a type definition is from where it is declared forward to the end of
the source file in which it is declared. If a type needs to reference a type declared after it, it can
do so if they are declared together, in the same block. Types declared in the same block must be
declared next to each other, that is, no value definitions in between, and the keyword type is
replaced by the keyword and for every type definition after the first one. Types declared in this
way are not any different from types declared the regular way. They can reference any other
type in the block, and they can even be mutually referential. The next example shows two types,
recipe and ingredient, declared in the same block. If they were declared separately, recipe
would not be able to reference ingredient because recipe is declared before ingredient;
because their declarations are joined with the keyword and, recipe can have a field of type
ingredient.

#light
type recipe =

{ recipeName : string ;
ingredients : ingredient list ;
instructions : string }

CHAPTER 3 n FUNCTIONAL PROGRAMMING 43

7575Ch03.qxp  4/27/07  12:59 PM  Page 43



and ingredient =
{ ingredientName : string ;
quantity : int }

let greenBeansPineNuts =
{ recipeName = "Green Beans & Pine Nuts" ;
ingredients =

[{ ingredientName = "Green beans" ; quantity = 250 };
{ ingredientName = "Pine nuts" ; quantity = 250 };
{ ingredientName = "Feta cheese" ; quantity = 250 };
{ ingredientName = "Olive oil" ; quantity = 10 };
{ ingredientName = "Lemon" ; quantity = 1 }] ;

instructions = "Parboil the green beans for about 7 minutes. Roast the pine
nuts carefully in a frying pan. Drain the beans and place in a salad bowl
with the roasted pine nuts and feta cheese. Coat with the olive oil
and lemon juice and mix well. Serve ASAP." }

let name = greenBeansPineNuts.recipeName
let toBuy =

List.fold_left
(fun acc x ->

acc +
(Printf.sprintf "\t%s - %i\r\n" x.ingredientName x.quantity) )

"" greenBeansPineNuts.ingredients
let instructions = greenBeansPineNuts.instructions

printf "%s\r\n%s\r\n\r\n\t%s" name toBuy instructions

The results of this example, when compiled and executed, are as follows:

Green Beans & Pine Nuts

Green beans - 250
Pine nuts - 250
Feta cheese - 250
Olive oil - 10
Lemon - 1

Parboil the green beans for about 7 minutes. Roast the pine
nuts carefully in a frying pan. Drain the beans and place in a salad bowl
with the roasted pine nuts and feta cheese. Coat with the olive oil
and lemon juice and mix well. Serve ASAP.

As well as demonstrating two types being declared together, this example also demonstrates
how you access fields in records. One advantage that records have over tuples is that accessing
their contents is easier. The construct is simply an identifier dot (.) field name, as shown when
associating values with the identifiers name, toBuy, and instructions.

CHAPTER 3 n FUNCTIONAL PROGRAMMING44

7575Ch03.qxp  4/27/07  12:59 PM  Page 44



Record types can also be pattern matched; that is, you can use pattern matching to match
fields within the record type. The findDavid function in the next example does this. As you
would expect, the syntax for examining a record using pattern matching is similar to the syn-
tax used to construct it.

You can compare a field to a constant with field = constant. You can assign the values of
fields with identifiers with field = identifier. Or, you can ignore a field with field = _. The first
rule in the find_david function is the one that does the real work, where you check the her
field of the record to see whether it is "Posh", David’s wife. The him field is associated with the
identifier x so it can be used in the second half of the rule.

#light
type couple = { him : string ; her : string }

let couples =
[ { him = "Brad" ; her = "Angelina" };
{ him = "Becks" ; her = "Posh" };
{ him = "Chris" ; her = "Gwyneth" };
{ him = "Michael" ; her = "Catherine" } ]

let rec findDavid l =
match l with
| { him = x ; her = "Posh" } :: tail -> x
| _ :: tail -> findDavid tail
| [] -> failwith "Couldn't find David"

print_string (findDavid couples)

The results of this example, when compiled and executed, are as follows:

Becks

Field values can also be functions. Since this technique is mainly used in conjunction
with mutable state to form values similar to objects, I won’t discuss this here but in its own
section in Chapter 4.

Union types, sometimes called sum types or discriminated unions, are a way of bringing
together data that may have a different meaning or structure. The next example defines a type
volume whose values can have three different meanings—liter, U.S. pint, or imperial pint.
Although the structure of the data is the same and is represented by a float, the meanings are
quite different. Mixing up the meaning of data in an algorithm is a common cause of bugs in
programs, and the volume type is in part an attempt to avoid this.

You define a union type using the type keyword, followed by the type name, followed by an
equals sign—just as all type definitions. Then comes the definition of the different constructors,
separated by vertical bars. The first vertical bar is optional. A constructor is composed of a
name that must start with a capital letter; this is to stop the common bug of getting constructor
names mixed up with identifier names. The name can optionally be followed by the keyword of
and then the types that make up that constructor. Multiple types that make up a constructor
are separated by asterisks. The names of constructors within a type must be unique. If several
union types are defined, then the names of their constructors can overlap; however, you should

CHAPTER 3 n FUNCTIONAL PROGRAMMING 45

7575Ch03.qxp  4/27/07  12:59 PM  Page 45



be careful when doing this, because it can be that further type annotations are required when
constructing and consuming union types.

The following Volume type is a union type with three constructors, each composed of a
single item of type float. The syntax for constructing a new instance of a union type is the
constructor name followed by the values for the types, with multiple values separated by com-
mas. Optionally, you can place the values in parentheses. You use the three different Volume
constructors to construct three different identifiers, vol1, vol2, and vol3.

#light
type Volume =
| Liter of float
| UsPint of float
| ImperialPint of float

let vol1 = Liter 2.5
let vol2 = UsPint 2.5
let vol3 = ImperialPint (2.5)

To deconstruct the values of union types into their basic parts, you always use pattern
matching. When pattern matching over a union type, the constructors make up the first half of
the pattern matching rules. You don’t need a complete list of rules, but if you don’t, there must
be a default rule, using either an identifier or a wildcard to match all remaining rules. The first
part of a rule for a constructor consists of the constructor name followed by identifiers or wild-
cards to match the various values within it. The following functions, convertVolumeToLiter,
convertVolumeUsPint, and convertVolumeImperialPint, demonstrate this syntax:

let convertVolumeToLiter x =
match x with
| Liter x -> x
| UsPint x -> x * 0.473
| ImperialPint x -> x * 0.568

let convertVolumeUsPint x =
match x with
| Liter x -> x * 2.113
| UsPint x -> x
| ImperialPint x -> x * 1.201

let convertVolumeImperialPint x =
match x with
| Liter x -> x * 1.760
| UsPint x -> x * 0.833
| ImperialPint x -> x

CHAPTER 3 n FUNCTIONAL PROGRAMMING46

7575Ch03.qxp  4/27/07  12:59 PM  Page 46



let printVolumes x =
printfn "Volume in liters = %f,

in us pints = %f,
in imperial pints = %f"

(convertVolumeToLiter x)
(convertVolumeUsPint x)
(convertVolumeImperialPint x)

printVolumes vol1
printVolumes vol2
printVolumes vol3

The results of these examples, when compiled and executed, are as follows:

Volume in liters = 2.500000,
in us pints = 5.282500,
in imperial pints = 4.400000
Volume in liters = 1.182500,
in us pints = 2.500000,
in imperial pints = 2.082500
Volume in liters = 1.420000,
in us pints = 3.002500,
in imperial pints = 2.500000

Both union and record types can be parameterized. Parameterizing a type means leaving
one or more of the types within the type being defined to be determined later by the consumer
of the types. This is a similar concept to the variable types discussed earlier in this chapter.
When defining types, you must be a little bit more explicit about which types are variable.

F# supports two syntaxes for type parameterization. In the first, you place the type being
parameterized between the keyword type and the name of the type, as follows:

#light
type 'a BinaryTree =
| BinaryNode of 'a BinaryTree * 'a BinaryTree
| BinaryValue of 'a

let tree1 =
BinaryNode(

BinaryNode ( BinaryValue 1, BinaryValue 2),
BinaryNode ( BinaryValue 3, BinaryValue 4) )

CHAPTER 3 n FUNCTIONAL PROGRAMMING 47

7575Ch03.qxp  4/27/07  12:59 PM  Page 47



In the second syntax, you place the types being parameterized in angle brackets after the
type name, as follows:

#light
type Tree<'a> =
| Node of Tree<'a> list
| Value of 'a

let tree2 =
Node( [ Node( [Value "one"; Value "two"] ) ;

Node( [Value "three"; Value "four"] ) ]  )

Like variable types, the names of type parameters always start with a single quote (') fol-
lowed by an alphanumeric name for the type. Typically, just a single letter is used. If multiple
parameterized types are required, you separate them with commas. You can then use the type
parameters throughout the type definition. The previous examples defined two parameterized
types, using the two different syntaxes that F# offers. The BinaryTree type used OCaml-style
syntax, where the type parameters are placed before the name of the type. The tree type used
.NET-style syntax, with the type parameters in angle brackets after the type name.

The syntax for creating and consuming an instance of a parameterized type does not
change from that of creating and consuming a nonparameterized type. This is because the
compiler will automatically infer the type parameters of the parameterized type. You can see
this in the following construction of tree1 and tree2 and their consumption by the functions
printBinaryTreeValues and printTreeValues:

let rec printBinaryTreeValues x =
match x with
| BinaryNode (node1, node2) ->

printBinaryTreeValues node1;
printBinaryTreeValues node2

| BinaryValue x -> print_any x; print_string ", "

let rec printTreeValues x =
match x with
| Node l -> List.iter printTreeValues l
| Value x ->

print_any x
print_string ", "

printBinaryTreeValues tree1
print_newline()
printTreeValues tree2

The results of this example, when compiled and executed, are as follows:

1, 2, 3, 4,
"one", "two", "three", "four",

CHAPTER 3 n FUNCTIONAL PROGRAMMING48

7575Ch03.qxp  4/27/07  12:59 PM  Page 48



You may have noticed that although I’ve discussed defining types, creating instances of
them, and examining these instances, I haven’t discussed updating them. This is because it is
not possible to update these kinds of types because the idea of a value that changes over time
goes against the idea of functional programming. However, F# does have some types that are
updatable, and I discuss them in Chapter 4.

Exceptions and Exception Handling
Exception definitions in F# are similar to defining a constructor of a union type, and the syn-
tax for handling exceptions is similar to pattern matching.

You define exceptions using the exception keyword followed by the name of the exception
and then optionally the keyword of and the types of any values the exception should contain,
with multiple types separated by asterisks. The next example shows the definition of an excep-
tion, WrongSecond, which contains one integer value:

exception WrongSecond of int

You can raise exceptions with the raise keyword, as shown in the else clause in the follow-
ing testSecond function. F# also has an alterative to the raise keyword, the failwith function,
as shown in the following if clause. If, as is commonly the case, you just want to raise an excep-
tion with a text description of what went wrong, you can use failwith to raise a generic
exception that contains the text passed to the function.

let primes =
[ 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59 ]

let testSecond() =
try

let currentSecond = System.DateTime.Now.Second in
if List.exists (fun x -> x = currentSecond) primes then

failwith "A prime second"
else

raise (WrongSecond currentSecond)
with

WrongSecond x ->
printf "The current was %i, which is not prime" x

testSecond()

As shown in testSecond, the try and with keywords handle exceptions. The expressions
that are subject to error handling go between the try and with keywords, and one or more pat-
tern matching rules must follow the with keyword. When trying to match an F# exception, the
syntax follows that of trying to match an F# constructor from a union type. The first half of the
rule consists of the exception name, followed by identifiers or wildcards to match values that
the exception contains. The second half of the rule is an expression that states how the excep-
tion should be handled. One major difference between this and the regular pattern matching
constructs is that no warning or error is issued if pattern matching is incomplete. This is
because any exceptions that are unhandled will propagate until they reach the top level and

CHAPTER 3 n FUNCTIONAL PROGRAMMING 49

7575Ch03.qxp  4/27/07  12:59 PM  Page 49



stop execution. The example handles exception wrongSecond, while leaving the exception
raised by failwith to propagate.

F# also supports a finally keyword, which is used with the try keyword. You can use the
finally keyword in conjunction with the with keyword as well as some rules for error han-
dling or no rules. Always place the finally expression after the with block, if it exists; the
finally expression will be executed whether an exception is thrown. The next example shows
a finally block being used to ensure a file is closed and disposed of after it is written to:

#light
let writeToFile() =

let file = System.IO.File.CreateText("test.txt") in
try

file.WriteLine("Hello F# users")
finally

file.Dispose()

writeToFile()

nCaution Programmers coming from an OCaml background should be careful when using exceptions in
F#. Because of the architecture of the CLR, throwing an exception is pretty expensive—quite a bit more
expensive than in OCaml. If you throw lots of exceptions, profile your code carefully to decide whether the
performance costs are worth it. If the costs are too high, revise the code appropriately. I discuss tools for
profiling F# applications in Chapter 12.

Lazy Evaluation
Lazy evaluation is something that goes hand in hand with functional programming. The theory
is that if there are no side effects in the language, the compiler or runtime is free to choose the
evaluation order of expressions. As you know, F# allows functions to have side effects, so it’s not
possible for the compiler or runtime to have a free hand in function evaluation; therefore, F# is
said to have a strict evaluation order or be a strict language. You can still take advantage of lazy
evaluation but must be explicit about which computations can be delayed, that is, evaluated in
a lazy manner. You use the keyword lazy to delay a computation, that is, invoke lazy evaluation.
The computation within the lazy expression remains unevaluated until evaluation; it is explic-
itly forced with the force function from the Lazy module. When the force function is applied to
a particular lazy expression, the value is computed; then the result is cached, and subsequent
calls to the force function return the cached value, whatever it is, even if this means raising an
exception. The following code shows a simple use of lazy evaluation:

#light
let lazyValue = lazy ( 2 + 2 )

CHAPTER 3 n FUNCTIONAL PROGRAMMING50

7575Ch03.qxp  4/27/07  12:59 PM  Page 50



let actualValue = Lazy.force lazyValue

print_int actualValue
print_newline()

On the first line, you delay a simple expression for evaluation later. The next line forces
evaluation. Then you print the value. The value has been cached, so any side effects that take
place when the value is computed will occur only the first time the lazy value is forced. This is
fairly easy to demonstrate. In the next example, you create a lazy value that has a side effect
when it is calculated: it writes to the console. To show that this side effect takes place only
once, you force the value twice, and it is plain to see from the result that writing to the console
takes place only once.

#light
let lazySideEffect =

lazy
( let temp = 2 + 2

print_int temp
print_newline()
temp )

print_endline "Force value the first time: "
let actualValue1 = Lazy.force lazySideEffect

print_endline "Force value the second time: "
let actualValue2 = Lazy.force lazySideEffect

The results of this example are as follows:

Force value the first time:
4
Force value the second time:

Laziness can also be useful when working with collections. The idea of a lazy collection is
that elements in the collection are calculated on demand. Some collection types also cache
the results of these calculations, so there is no need to recalculate elements. F# provides the
LazyList collection type, which caches computed results and is useful for functional program-
ming and search. The second lazy collection is the seq type, a shorthand for the BCL’s
IEnumerable type. This plays a similar role to LazyList but does not cache computed results.
LazyList and seq values are created and manipulated using functions in the LazyList and Seq
modules, respectively. Many other values are also compatible with the type seq; for example,
all F# lists and arrays are compatible with this type, as are most other collection types.

The next example shows how to use the LazyList module. Possibly its most important
function, and probably the most difficult to understand, is unfold. This function allows you to
create a lazy list. What makes it complicated is that you must provide a function that will be
repeatedly evaluated to provide the elements of the list. The function passed to LazyList.
unfold can take any type of parameter and must return an option type. An option type is a
union type that can be either None or Some(x), where x is a value of any type. None is used to

CHAPTER 3 n FUNCTIONAL PROGRAMMING 51

7575Ch03.qxp  4/27/07  12:59 PM  Page 51



represent the end of a list. The Some constructor must contain a tuple. The first item in the
tuple represents the value that will become the first value in the list. The second value in the
tuple is the value that will be passed into the function the next time it is called. You can think
of this value as an accumulator.

The next example shows how this works. The identifier lazyList will contain three values.
If the value passed into the function is less than 13, you append the list using this value to
form the list element and then add 1 to the value passed to the list. This will be value passed to
the function the next time it is called. If the value is greater than or equal to 13, you terminate
the list by returning None. To display the list, you use the function display, a simple recursive
function that processes the head of the list and then recursively processes the tail.

#light
let lazyList =

LazyList.unfold
(fun x ->

if x < 13 then
Some(x, x + 1)

else
None)

10

let rec display l =
match  l with
| LazyList.Cons(h,t) ->

print_int h
print_newline ()
display t

| LazyList.Nil ->
()

display lazyList

The results of this example, when compiled and executed, are as follows:

10
11
12

Lazy lists are also useful to represent lists that don’t terminate. A nonterminating list can’t
be represented by a classic list, which is constrained by the amount of memory available. The
next example demonstrates this by creating fibs, an infinite list of all the Fibonacci numbers;
it uses the Seq module, although it could just as well have used the LazyList module because
the unfold function works in the same way in both. To display the results conveniently, you
use the function Seq.take to turn the first 20 items into an F# list, but you carry on calculating
many more Fibonacci numbers as you use F# bigint integers, so you are limited by the size of
a 32-bit integer.

CHAPTER 3 n FUNCTIONAL PROGRAMMING52

7575Ch03.qxp  4/27/07  12:59 PM  Page 52



#light
let fibs =

Seq.unfold
(fun (n0, n1) ->

Some(n0, (n1, n0 + n1)))
(1I,1I)

let first20 = Seq.take 20 fibs

print_any first20

The results of this example are as follows:

[1I; 1I; 2I; 3I; 5I; 8I; 13I; 21I; 34I; 55I; 89I; 144I; 233I; 377I; 610I; 987I;
1597I; 2584I; 4181I; 6765I]

These examples are too simple to really demonstrate the power of lazy evaluation. You’ll
look at lazy evaluation again in several places in this book, notably in Chapter 7, where you’ll
see how to use lazy evaluation in user-interface programming to make user interfaces more
responsive by ensuring computations do not happen until really needed.

Summary
In this chapter, you looked at the major functional programming constructs in F#. This is the
core of the language, and I hope you’ve developed a good feel for how to approach writing
algorithms and handling data in F#. The next chapter will cover imperative programming, and
you’ll see how to mix functional and imperative programming techniques to handle tasks
such as input/output (I/O).

CHAPTER 3 n FUNCTIONAL PROGRAMMING 53

7575Ch03.qxp  4/27/07  12:59 PM  Page 53



7575Ch03.qxp  4/27/07  12:59 PM  Page 54



Imperative Programming

As you saw in Chapter 3, you can use F# for pure functional programming. However, some
issues, most notably I/O, are almost impossible to address without some kind of state change.
F# does not require that you program in a stateless fashion. It allows you to use mutable
identifiers whose values can change over time. F# also has other constructs that support
imperative programming. You’ve already seen some in Chapter 3. Any example that wrote to
the console included a few lines of imperative code alongside functional code. In this chapter,
you’ll explore these constructs, and many others, in much more detail.

First, you’ll look at F#’s unit type, a special type that means “no value,” which enables
some aspects of imperative programming. Next, you’ll look at some of the ways F# can handle
mutable state, that is, types whose values can change over time. These are the ref type, muta-
ble record types, and arrays. Finally, you’ll look at using .NET libraries. The topics will include
calling static methods, creating objects and working with their members, using special mem-
bers such as indexers and events, and using the F# |> operator, which is handy when dealing
with .NET libraries.

The unit Type
Any function that does not accept or return values is of type unit, which is similar to the type
void in C# and System.Void in the CLR. To a functional programmer, a function that doesn’t
accept or return a value might not seem interesting, since if it doesn’t accept or return a value, it
does nothing. In the imperative paradigm, you know that side effects exist, so even if a function
accepts or returns nothing, you know it can still have its uses. The unit type is represented as a
literal value, a pair of parentheses (()). This means that whenever you want a function that
doesn’t take or return a value, you just put () in the code:

#light
let main() =

()

In this example, main is a function because you placed parentheses after the identifier,
where its parameters would go. If you didn’t this, it would mean main is not a function and
instead just a value that is not a function. As you know, all functions are values, but here the
difference between a function and a nonfunction value is important. If main were a nonfunc-
tion value, the expressions within it would be evaluated only once. Since it is a function, the
expressions will be evaluated each time it is called.

55

C H A P T E R  4

n n n

7575Ch04.qxp  4/27/07  1:00 PM  Page 55



nCaution Just because a function is named main doesn’t mean it is the entry point of the program and is
executed automatically. If you wanted your main function to be executed, then you would need to add a call
to main() at the end of the source file. Chapter 6 details exactly how the entry point is determined for an 
F# program.

Similarly, by placing () after the equals sign, you tell the compiler you are going to return
nothing. Ordinarily, you need to put something between the equals sign and the empty paren-
theses, or the function is pointless; however, for the sake of keeping things simple, I’ll leave
this function pointless. Now you’ll see the type of main by using the fsc –i switch; the results
of this are as follows. (I explained the notation used by the compiler’s –i switch in Chapter 3’s
“Types and Type Inference.”) As you can see, the type of main is a function that accepts unit
and transforms it into a value of type unit:

val main : unit -> unit

Because the compiler now knows the function doesn’t return anything, you can now use it
with some special imperative constructs. To call the function, you can use the let keyword fol-
lowed by a pair of parentheses and the equals sign. This is a special use of the let keyword,
which means “call a function that does not return a value.” Alternatively, you can simply call
the function without any extra keywords at all:

#light
let () = main()
// -- or --
main()

Similarly, you can chain functions that return unit together within a function—simply
make sure they all share the same indentation. The next example shows several print_endline
functions chained together to print text to the console:

#light
let poem() =

print_endline "I wandered lonely as a cloud"
print_endline "That floats on high o'er vales and hills,"
print_endline "When all at once I saw a crowd,"
print_endline "A host, of golden daffodils"

poem()

It’s not quite true that the only functions that return unit type can be used in this manner;
however, using them with a type other than unit will generate a warning, which is something
most programmers want to avoid. So, to avoid this, it’s sometimes useful to turn a function
that does return a value into a function of type unit, typically because it has a side effect. The
need to do this is fairly rare when just using F# libraries written in F# (although situations
where it is useful do exist), but it is more common when using .NET libraries that were not
written in F#.

CHAPTER 4 n IMPERATIVE PROGRAMMING56

7575Ch04.qxp  4/27/07  1:00 PM  Page 56



The next example shows how to turn a function that returns a value into a function that
returns unit:

#light
let getShorty() =  "shorty"

let _ = getShorty()
// -- or --
ignore(getShorty())
// -- or --
getShorty() |> ignore

First you define the function getShorty, which returns a string. Now imagine, for what-
ever reason, you want to call this function and ignore its result. The next two lines
demonstrate different ways to do this. First, you can use a let expression with an underscore
(_) character in place of the identifier. The underscore tells the compiler this is a value in
which you aren’t interested. Second, this is such a common thing to do that it has been
wrapped into a function, ignore, which is available in the F# base libraries and is demon-
strated on the third line. The final line shows an alternative way of calling ignore using the
pass-forward operator to pass the result of getShorty() to the ignore function. I explain the
pass-forward operator in the “The |> Operator” section.

The mutable Keyword
In Chapter 3 I talked about how you could bind identifiers to values using the keyword let and
noted how under some circumstances you could redefine and rebound, but not modify, these
identifiers. If you want to define an identifier whose value can change over time, you can do
this using the mutable keyword. A special operator, the left ASCII arrow (or just left arrow), is
composed of a less-than sign and a dash (<-) and is used to update these identifiers. An update
operation using the left arrow has type unit, so you can chain these operations together as dis-
cussed in the previous section. The next example demonstrates defining a mutable identifier of
type string and then changing the changing the value it holds:

#light
let mutable phrase = "How can I be sure, "
print_endline phrase
phrase <- "In a world that's constantly changing"
print_endline phrase

The results are as follows:

How can I be sure,
In a world that's constantly changing

At first glance this doesn’t look too different from redefining an identifier, but it has a couple
of key differences. When you use the left arrow to update a mutable identifier, you can change its
value but not its type—when you redefine an identifier, you can do both. A compile error is pro-
duced if you try to change the type; the next example demonstrates this:

CHAPTER 4 n IMPERATIVE PROGRAMMING 57

7575Ch04.qxp  4/27/07  1:00 PM  Page 57



#light
let mutable number = "one"
phrase <- 1

When attempting to compile this code, you’ll get the following error message:

Prog.fs(9,10): error: FS0001: This expression has type
int

but is here used with type
string

The other major difference is where these changes are visible. When you redefine an iden-
tifier, the change is visible only within the scope of the new identifier. When it passes out of
scope, it reverts to its old value. This is not the case with mutable identifiers. Any changes are
permanent, whatever the scope. The next example demonstrates this:

#light
let redefineX() =

let x = "One"
printfn "Redefining:\r\nx = %s" x
if true then

let x = "Two"
printfn "x = %s" x

else ()
printfn "x = %s" x

let mutableX() =
let mutable x = "One"
printfn "Mutating:\r\nx = %s" x
if true then

x <- "Two"
printfn "x = %s" x

else ()
printfn "x = %s" x

redefineX()
mutableX()

The results are as follows:

Redefining:
x = One
x = Two
x = One
Mutating:
x = One
x = Two
x = Two

CHAPTER 4 n IMPERATIVE PROGRAMMING58

7575Ch04.qxp  4/27/07  1:00 PM  Page 58



Identifiers defined as mutable are somewhat limited because they can’t be used within a
subfunction. You can see this in the next example:

#light
let mutableY() =

let mutable y = "One"
printfn "Mutating:\r\nx = %s" y
let f() =

y <- "Two"
printfn "x = %s" y

f()
printfn "x = %s" y

The results of this example, when compiled and executed, are as follows:

Prog.fs(35,16): error: The mutable variable 'y' has escaped its scope.  Mutable
variables may not be used within an inner subroutine.  You may need to use a heap-
allocated mutable reference cell instead, see 'ref' and '!'.

As the error messages says, this is why the ref type, a special type of mutable record, has
been made available—to handle mutable variables that need to be shared among several
functions. I discuss mutable records in the next section and the ref type in the section after
that.

Defining Mutable Record Types
In Chapter 3, when you first met record types, I did not discuss how to update their fields. This
is because record types are immutable by default. F# provides special syntax to allow the fields
in record types to be updated. You do this by using the keyword mutable before the field in a
record type. I should emphasize that this operation changes the contents of the record’s field
rather than changing the record itself.

#light
type Couple = { her : string ; mutable him : string }

let theCouple = { her = "Elizabeth Taylor " ; him = "Nicky Hilton" }

let print o = printf "%A\r\n" o

let changeCouple() =
print theCouple;
theCouple.him <- "Michael Wilding";
print theCouple;
theCouple.him <- "Michael Todd";
print theCouple;
theCouple.him <- "Eddie Fisher";
print theCouple;

CHAPTER 4 n IMPERATIVE PROGRAMMING 59

7575Ch04.qxp  4/27/07  1:00 PM  Page 59



theCouple.him <- "Richard Burton";
print theCouple;
theCouple.him <- "Richard Burton";
print theCouple;
theCouple.him <- "John Warner";
print theCouple;
theCouple.him <- "Larry Fortensky";
print theCouple

changeCouple()

The results are as follows:

{her = "Elizabeth Taylor "; him = "Nicky Hilton"}
{her = "Elizabeth Taylor "; him = "Michael Wilding"}
{her = "Elizabeth Taylor "; him = "Michael Todd"}
{her = "Elizabeth Taylor "; him = "Eddie Fisher"}
{her = "Elizabeth Taylor "; him = "Richard Burton"}
{her = "Elizabeth Taylor "; him = "Richard Burton"}
{her = "Elizabeth Taylor "; him = "John Warner"}
{her = "Elizabeth Taylor "; him = "Larry Fortensky"}

This example shows a mutable record in action. A type, couple, is defined where the field
him is mutable but the field her is not. Next, an instance of couple is initialized, and then you
change the value of him many times, each time displaying the results. I should note that the
mutable keyword applies per field, so any attempt to update a field that is not mutable will
result in a compile error; for example, the next example will fail on the second line:

#light
theCouple.her <- "Sybil Williams";
print_any theCouple

When attempting to compile this program, you’ll get the following error message:

prog.fs(2,4): error: FS0005: This field is not mutable

The ref Type
The ref type is a simple way for a program to use mutable state, that is, values that change
over time. The ref type is just a record type with a single mutable field that is defined in the F#
libraries. Some operators are defined to make accessing and updating the field as straightfor-
ward as possible. F#’s definition of the ref type uses type parameterization, a concept
introduced in the previous chapter, so although the value of the ref type can be of any type,
you cannot change the type of the value once you have created an instance of the value.

CHAPTER 4 n IMPERATIVE PROGRAMMING60

7575Ch04.qxp  4/27/07  1:00 PM  Page 60



Creating a new instance of the ref type is easy; you use the keyword ref followed by what-
ever item represents the value of ref. The next example is the compiler’s output (using the –i
option, which shows that the type of phrase is string ref, meaning a reference type that can
contain only strings):

let phrase = ref "Inconsistency"

val phrase : string ref

This syntax is similar to defining a union type’s constructors, also shown in the previous
chapter. The ref type has two built-in operators to access it; the exclamation point (!) pro-
vides access to the value of the reference type, and an operator composed of a colon followed
by an equals sign (:=) provides for updating it. The ! operator always returns a value of the
type of the contents of the ref type, known to the compiler thanks to type parameterization.
The := operator has type unit, because it doesn’t return anything.

The next example shows how to use a ref type to total the contents of an array. On the
third line of totalArray, you see the creation of the ref type. In this case, it is initialized to
hold the value 0. On the fifth line, you see the ref type being both accessed and updated. First,
! is used to access the value with the ref type; then, after it has been added to the current
value held in the array, the value of the ref type is updated through the use of the := operator.
Now the code will correctly print 6 to the console.

#light
let totalArray () =

let a = [| 1; 2; 3 |]
let x = ref 0
for n in a do

x := !x + n
print_int !x
print_newline()

totalArray()

The result is as follows:

6

nCaution If you are used to programming in one of the C family of programming languages, you should
be careful here. When reading F# code, it is quite easy to misinterpret the ref type’s ! operator as a Boolean
“not” operator. F# uses a function called not for Boolean “not” operations.

CHAPTER 4 n IMPERATIVE PROGRAMMING 61

7575Ch04.qxp  4/27/07  1:00 PM  Page 61



The ref type is a useful way to share mutable values between several functions. An identi-
fier can be bound to a ref type defined in scope that is common to all functions that want to
use the value; then the functions can use the value of the identifier as they like, changing it or
merely reading it. Because in F# functions can be passed around as if they were values, every-
where the function goes, the value follows it. This process is known as capturing a local or
creating a closure. The next example demonstrates this by defining three functions, inc, dec,
and show, which all share a common ref type holding an integer. The functions inc, dec, and
show are all defined in their own private scopes and then returned to the top level as a tuple so
they are visible everywhere. Note how n is not returned; it remains private, but inc, dec, and
show are all still able to access n. This is a useful technique for controlling what operations can
take place on mutable data.

#light
let inc, dec, show =

let n = ref 0
let inc () =

n := !n + 1
let dec () =

n := !n - 1
let show () =

print_int !n
inc, dec, show

inc()
inc()
dec()
show()

The result is as follows:

1

Arrays
Arrays are a concept that most programmers are familiar with, since almost all programming
languages have some sort of array type. The F# array type is based on the BCL System.Array
type, so anyone who has used in arrays in C# or Visual Basic will find that the underlying con-
cepts are the same.

Arrays are a mutable collection type in F#. Arrays are the opposite of lists, discussed in
Chapter 3. The values within arrays are updatable, whereas lists are not, and lists can grow
dynamically, whereas arrays cannot. One-dimensional arrays are sometimes referred to as
vectors, and multidimensional arrays are sometimes called matrices. Arrays are defined by a
sequence of items separated by semicolons (;) and delimited by an opening square bracket
and a vertical bar ([|) and a closing bar and square bracket (|]). The syntax for referencing an
array element is the name of the identifier of the array followed by period (.) and then the
index of the element in square brackets ([]). The syntax for retrieving the value of an element

CHAPTER 4 n IMPERATIVE PROGRAMMING62

7575Ch04.qxp  4/27/07  1:00 PM  Page 62



stops there. The syntax for setting the value of an element is the left arrow (<-) followed by the
value to be assigned to the element.

The next example shows an array being read from and written to. First an array, rhymeAr-
ray, is defined, and then you read all the members from it. Then you insert new values into the
array, and finally you print out all the values you have.

#light
let rhymeArray =

[| "Went to market" ;
"Stayed home" ;
"Had roast beef" ;
"Had none" |]

let firstPiggy = rhymeArray.[0]
let secondPiggy = rhymeArray.[1]
let thirdPiggy = rhymeArray.[2]
let fourthPiggy = rhymeArray.[3]

rhymeArray.[0] <- "Wee,"
rhymeArray.[1] <- "wee,"
rhymeArray.[2] <- "wee,"
rhymeArray.[3] <- "all the way home"
print_endline firstPiggy
print_endline secondPiggy
print_endline thirdPiggy
print_endline fourthPiggy
print_any rhymeArray

The results of this example, when compiled and executed, are as follows:

Went to market
Stayed home
Had roast beef
Had none
[|"Wee,"; "wee,"; "wee,"; "all the way home"|]

Arrays, like lists, use type parameterization, so the type of the array is the type of its con-
tents followed by the array’s type, so rhymeArray has type string array, which may also be
written string[].

Multidimensional arrays in F# come in two slightly different flavors, jagged and rectangu-
lar. Jagged arrays, as the name suggests, are arrays where the second dimension is not a
regular shape. They are simply arrays whose contents happen to other arrays, and the length
of the inner arrays is not forced to be the same. In rectangular arrays, all inner arrays are of the
same length; in fact, there is really no concept of an inner array since the whole array is just
the same object. The method of getting and setting items in the two different types of arrays
differs slightly.

CHAPTER 4 n IMPERATIVE PROGRAMMING 63

7575Ch04.qxp  4/27/07  1:00 PM  Page 63



For jagged arrays, you use the period followed by the index in parentheses, but you have
to use this twice (one time for each dimension), because the first time you get back the inner
array and the second time you get the element within it.

The next example demonstrates a simple jagged array, called jagged. The array members
are accessed in two different ways. The first inner array (at index 0) is assigned to the identifier
singleDim, and then its first element is assigned to itemOne. On the fourth line, the first ele-
ment of the second inner array is assigned to itemTwo, using one line of code.

#light
let jagged = [| [| "one" |] ; [| "two" ; "three" |] |]
let singleDim = jagged.[0]
let itemOne = singleDim.[0]
let itemTwo =  jagged.[1].[0]

printfn "%s %s" itemOne itemTwo

The results of this example, when compiled and executed, are as follows:

one two

To reference elements in rectangular arrays, use a period (.) followed by all the indexes in
square brackets, separated by commas. Unlike jagged arrays, which are multidimensional but
can be defined using the same ([||]) syntax as single-dimensional arrays, you must create
rectangular arrays with the create function of the Array2 and Array3 modules, which support
two- and three-dimensional arrays, respectively. This doesn’t mean rectangular arrays are lim-
ited to three dimensions, because it’s possible to use the System.Array class to create
rectangular arrays with more than three dimensions; however, creating such arrays should be
considered carefully, because adding extra dimensions can quickly lead to very large objects.

The next example creates a rectangular array, square. Then its elements are populated
with the integers 1, 2, 3, and 4.

#light
let square = Array2.create 2 2 0
square.[0,0] <- 1
square.[0,1] <- 2
square.[1,0] <- 3
square.[1,1] <- 4
printf "%A\r\n" square

Now let’s look at the differences between jagged and rectangular arrays. First create a
jagged array to represent Pascal’s Triangle:

#light
let pascalsTriangle = [|

[|1|];
[|1; 1|];
[|1; 2; 1|];
[|1; 3; 3; 1|];

CHAPTER 4 n IMPERATIVE PROGRAMMING64

7575Ch04.qxp  4/27/07  1:00 PM  Page 64



[|1; 4; 6; 4; 1|];
[|1; 5; 10; 10; 5; 1|];
[|1; 6; 15; 20; 15; 6; 1|];
[|1; 7; 21; 35; 35; 21; 7; 1|];
[|1; 8; 28; 56; 70; 56; 28; 8; 1|];
|]

Then create a rectangular array that contains various number sequences that are hidden
within pascalsTriangle:

let numbers =
let length = (Array.length pascalsTriangle) in
let temp = Array2.create 3 length 0 in
for index = 0 to length - 1 do

let naturelIndex = index - 1 in
if naturelIndex >= 0 then

temp.[0, index] <- pascalsTriangle.[index].[naturelIndex];
let triangularIndex = index - 2 in
if triangularIndex >= 0 then

temp.[1, index] <- pascalsTriangle.[index].[triangularIndex];
let tetrahedralIndex = index - 3 in
if tetrahedralIndex >= 0 then

temp.[2, index] <- pascalsTriangle.[index].[tetrahedralIndex]
done
temp

Then display the sequences you’ve retrieved:

print_any numbers

The results of this example, when compiled and executed, are as follows:

[|[|0; 1; 2; 3; 4; 5; 6; 7; 8|];
[|0; 0; 1; 3; 6; 10; 15; 21; 28|];
[|0; 0; 0; 1; 4; 10; 20; 35; 56|]|]

The following shows the types displayed when you use the compiler’s –i switch:

val pascals_triangle : int array array
val numbers : int [,]

As you may expect, jagged and rectangular arrays have different types. The type of a
jagged array is the same as a single-dimensional array, just with an array per dimension, so the
type of pascalsTriangle is int array array. Rectangular arrays use a more C#-style notation.
First comes the name of the type of the array’s elements, and after that comes square brackets
([]) with one comma for every dimension greater than 1, so the type of the example two-
dimensional numbers array is int[,].

CHAPTER 4 n IMPERATIVE PROGRAMMING 65

7575Ch04.qxp  4/27/07  1:00 PM  Page 65



nCaution To write code that is compatible with both .NET 1.1 and 2.0, you must use the Microsoft.
FSharp.Compatibility namespace’s CompatArray and CompatMatrix types. This is because of differ-
ences in the way that arrays behave in different .NET versions. In .NET 1.1, arrays are pseudogeneric,
because you can create arrays of different types as though they were generic; however, they are not really
generic, since .NET 1.1 doesn’t support generics. In .NET 2.0, arrays became properly generic, and their
behavior changed in a number of subtle ways that F# cannot abstract away. The result is that you must
explicitly choose whether you want to use arrays that are supported in .NET 1.1.

Array Comprehensions
I introduced compression syntax in Chapter 3 for lists and sequences. You can use a correspon-
ding syntax to create arrays. The only difference between this and the functional-style syntax is
the characters that delimit the array. You use vertical bars surrounded by square brackets for
arrays:

#light
let chars = [| '1' .. '9' |]

let squares =
[| for x in 1 .. 9

-> x, x*x |]
printfn "%A" chars
printfn "%A" squares

The results are as follows:

[|'1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9'|]
[|(1, 1); (2, 4); (3, 9); (4, 16); (5, 25); (6, 36); (7, 49); (8, 64); (9, 81)|]

Control Flow
Unlike the pseudo-control-flow syntax described in Chapter 3, F# does have some imperative
control-flow constructs. In addition to the imperative use of if, there are also while and for
loops.

The major difference from using the if expression in the imperative style, that is, using it
with a function that returns type unit, is that you aren’t forced to use an else, as the next
example demonstrates:

#light
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Sunday then

print_endline "Sunday Playlist: Lazy On A Sunday Afternoon - Queen"

CHAPTER 4 n IMPERATIVE PROGRAMMING66

7575Ch04.qxp  4/27/07  1:00 PM  Page 66



Though it isn’t necessary to have an else expression if the if expression has type unit,
you can add one if necessary. This too must have type unit, or the compiler will issue an error.
The next example demonstrates this:

#light
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then

print_endline "Monday Playlist: Blue Monday - New Order"
else

print_endline "Alt Playlist: Fell In Love With A Girl - White Stripes"

You can use whitespace to detect where an if expression ends. The code that belongs to
the if expression is indented, and the if expression ends when it goes back to its original
indentation. So, in the next example, the string "Tuesday Playlist: Ruby Tuesday - Rolling
Stones" will be printed on a Tuesday, and "Everyday Playlist: Eight Days A Week - Beat-
les" will be printed every day of the week.

#light
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Tuesday then

print_endline "Tuesday Playlist: Ruby Tuesday - Rolling Stones"
print_endline "Everyday Playlist: Eight Days A Week - Beatles"

If you want multiple statements to be part of the if statement, then you would simply
give them the same indention, as shown in the next example where both strings will be
printed only on a Friday:

#light
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Friday then

print_endline "Friday Playlist: Friday I'm In Love - The Cure"
print_endline "Friday Playlist: View From The Afternoon - Arctic Monkeys"

Most programmers are familiar with for loops because they are commonly found in
imperative programming languages. The idea of a for loop is to declare an identifier, whose
scope is the for loop, that increases its value by 1 after each iteration of the loop and provides
the condition for loop termination. F# follows this syntax. It starts with the keyword for fol-
lowed by the identifier that will hold the counter value; then comes an equals sign, followed by
an expression for the initial counter value, then the keyword to, and then an expression for the
terminal value. The code that forms the body of the for loop comes after this, sandwiched
between the keywords do and done. The for loop has type unit, so the code that forms the
body of the loop should have type unit; otherwise, the compiler will issue a warning.

The next example demonstrates a common usage of a for loop—to enumerate all the val-
ues in an array. The identifier index will take on values starting at 0 and ending at 1 less than
the length of the array. You can use this identifier as the index for the array.

#light
let ryunosukeAkutagawa = [| "Green "; "frog, ";

"Is "; "your "; "body "; "also ";
"freshly "; "painted?" |]

for index = 0 to Array.length ryunosukeAkutagawa - 1 do
print_string ryunosukeAkutagawa.[index]

CHAPTER 4 n IMPERATIVE PROGRAMMING 67

7575Ch04.qxp  4/27/07  1:00 PM  Page 67



The results of this example, when compiled and executed, are as follows:

Green frog, Is your body also freshly painted?

In a regular for loop, the initial value of the counter must always be less than the final
value, and the value of the counter will increase as the loop continues. There is a variation on
this, where to is replaced by downto. In this case, the initial counter value must always be
greater than the final value, and the counter will decrease as the loop continues. An example
of how to use downto is as follows:

#light
let shusonKato = [| "watching."; "been "; "have ";

"children "; "three "; "my "; "realize "; "and ";
"ant "; "an "; "kill "; "I ";
|]

for index = Array.length shusonKato - 1 downto 0 do
print_string shusonKato.[index]

The results of this example, when compiled and executed, are as follows:

I kill an ant and realize my three children have been watching.

The while loop is another familiar imperative language construct. It is an expression that
creates a loop over a section of code until a Boolean expression changes to false. To create a
while loop in F#, you use the keyword while followed by a Boolean expression that determines
whether the loop should continue. As with for loops, you place the body of the loop between
the keywords do and done, and the body should have type unit; otherwise, the compiler will
issue a warning. Here’s an example of a while loop:

#light
let matsuoBasho = ref [ "An "; "old "; "pond! ";

"A "; "frog "; "jumps "; "in- ";
"The "; "sound "; "of "; "water" ]

while (List.nonempty !matsuoBasho) do
print_string (List.hd !matsuoBasho);
matsuoBasho := List.tl !matsuoBasho

You enumerate over a list, and the Boolean expression to terminate the loop is based on
whether the list is empty. Within the body of the loop, you print the head of the list and then
remove it, shortening the list on each iteration.

The results of this example, when compiled and executed, are as follows:

An old pond! A frog jumps in- The sound of water

CHAPTER 4 n IMPERATIVE PROGRAMMING68

7575Ch04.qxp  4/27/07  1:00 PM  Page 68



Loops over Comprehensions
You can use loops using for to enumerate collections, performing an imperative action, one
that returns unit, on each element. This is similar to the foreach loop available in many pro-
gramming languages. The syntax for using a comprehension to enumerate a collection is the
for keyword followed by the identifier that will be bound to each item in the collection, then
the collection, and then the keyword do. The code for processing each item in the collection
comes next—indented to show it belongs to the for loop. The following example demon-
strates this, enumerating an array of strings and printing each one:

#light
let words = [| "Red"; "Lorry"; "Yellow"; "Lorry" |]

for word in words do
print_endline word

The results are as follows:

Red
Lorry
Yellow
Lorry

As you’ll see later in this chapter, and in many examples throughout the book, this can be
a convenient way to work with collections returned by .NET BCL methods.

Calling Static Methods and Properties from .NET
Libraries
One extremely useful feature of imperative programming in F# is being able to use just about
any library written in a .NET programming language, including the many methods and classes
available as part of the BCL itself. I consider this to be imperative programming, because
libraries written in other languages make no guarantees about how state works inside them,
so you can’t know whether a method you call has side effects.

A distinction should be made between calling libraries written in F# and libraries written
in any other language. This is because libraries written in F# have metadata that describes
extra details about the library, such as whether a method takes a tuple or whether its parame-
ters can be curried. This metadata is specific to F# and in a binary form understood by the F#
compiler. This is largely why the Microsoft.FSharp.Reflection API is provided—to bridge the
gap between F# and .NET metadata.

The basic syntax when calling static or instance properties or methods is the same.
Method calls to a non-F# library must have their arguments separated by commas and sur-
rounded by parentheses. (Remember, F# function calls usually use whitespace to separate
arguments, and parentheses are needed only to impose precedence.) Method calls to a non-F#
library cannot be curried, and the methods themselves are not equivalent to values, so they
cannot be passed as arguments. Despite this difference, calling a method from a non-F#
library is pretty straightforward. You’ll start off by using static properties and methods:

CHAPTER 4 n IMPERATIVE PROGRAMMING 69

7575Ch04.qxp  4/27/07  1:00 PM  Page 69



#light
open System.IO

if File.Exists("test.txt") then
print_endline "Text file \"test.txt\" is present"

else
print_endline "Text file \"test.txt\" does not exist"

This example calls a static method from the .NET Framework BCL. Calling a static method
is almost identical to calling an F# function. First comes the class name followed by a period
(.) and then the name of the method; the only real difference is in the syntax for passing the
arguments, which are surrounded by parentheses and separated by commas. You make a call
to the System.IO.File class’s Exists method to test whether a file exists and print an appropri-
ate message depending on the result.

Often, you’ll want to use the functionality of an existing .NET method but also want to use
it in a functional manner. A common pattern in F# to achieve this is to import the function by
writing a thin .NET wrapper. The next example demonstrates this:

#light
open System.IO
let exists filePath = File.Exists(filePath)

let files = ["test1.txt"; "test2.txt"; "test3.txt"]

let results = List.map exists files

print_any results

Unless you’ve created these specific text files in the directory where it runs, your result
will be [false; false; false]. You have used the BCL Exists method to test whether a list of
files exists. On the first line, you create a function that wraps the Exists method call, so you
can use it in a functional manner and pass it to the map function.

When using .NET methods with lots of arguments, it can sometimes be helpful to know
the names of the arguments to help you keep track of what each argument is doing. F# lets
you use named arguments, where you give the name of the argument, then an equals sign,
and then the value of the argument. The following example demonstrates this with an over-
load of File.Open() that takes four arguments:

#light
open System.IO

let file = File.Open(path = "test.txt",
mode = FileMode.Append,
access = FileAccess.Write,
share = FileShare.None)

file.Close()

CHAPTER 4 n IMPERATIVE PROGRAMMING70

7575Ch04.qxp  4/27/07  1:00 PM  Page 70



Using Objects and Instance Members from .NET
Libraries
Using classes from non-F# libraries is also straightforward. The syntax for instantiating an
object consists of the keyword new, then the name of the class to be instantiated, and then
constructor arguments separated by commas within parentheses. You can use the let key-
word to bind an instance of a class to an identifier. Once associated with an identifier, the
object behaves a lot like a record type; the object referred to cannot be changed, but its con-
tents can. Also, if the identifier is not at the top level, then it can be redefined or hidden by an
identifier of the same name in another scope. Accessing fields, properties, events, and meth-
ods should be pretty intuitive to both C# and Visual Basic programmers because the syntax is
similar. To access any member, you use the identifier of the object followed by a period (.) and
then the name of the member. Arguments to instance methods follow the same convention as
for static methods, and they must be within parentheses and separated by commas. To
retrieve the value of a property or field, only the name of member is needed, and to set it, you
use the left arrow (<-).

The next example demonstrates how to create a System.IO.FileInfo object and then use
various members of the class to manipulate it in different ways. On the first line, you make the
System.IO namespace available to F#; then on the second, you create the FileInfo object,
passing it the name of the file in which you’re interested. Then you check whether the file
exists using the Exists instance property. If it doesn’t exist, you create a new file using the
CreateText() instance method and then set it to be read-only using the Attributes instance
property. The next example uses the using function to clean up resources. I explain this fully in
the section “Microsoft.FSharp.Core.Operators” in Chapter 7.

#light
open System.IO
let file = new FileInfo("test.txt")

if not file.Exists then
using (file.CreateText()) (fun stream ->

stream.WriteLine("hello world"))
file.Attributes <- FileAttributes.ReadOnly

print_endline file.FullName

F# also lets you to set properties when you’re constructing the object. It’s quite common to
set object properties as part of the process of initially configuring the object, especially in Win-
Forms programming (see Chapter 8 for more information about WinForms). To set a property
at construction time, place the property name inside the constructor followed by an equals sign
and then by the value for the property. Separate multiple properties with commas. The follow-
ing is a variation on the previous example; it sets the ReadOnly attribute when the object is the
constructor:

CHAPTER 4 n IMPERATIVE PROGRAMMING 71

7575Ch04.qxp  4/27/07  1:00 PM  Page 71



#light
open System.IO
let filename = "test.txt"
let file =

if File.Exists(filename) then
Some(new FileInfo(filename, Attributes = FileAttributes.ReadOnly))

else
None

Note that you need to test for the file’s existence to avoid a runtime exception when trying
to set the Attributes property. F# allows you to set type parameters when calling a constructor,
because it is not always possible to infer the type parameter of when making a constructor call.
The type parameters are surrounded by angle brackets (<>) and separated by commas. The next
example demonstrates how to set a type parameter when calling a constructor. You can create
an instance of System.Collections.Generic.List, which can be used only with integers by set-
ting its type parameter when it is created. In F# System.Collections.Generic.List is called
ResizeArray to avoid confusion with F# lists.

#light
open System

let intList =
let temp = new ResizeArray<int>() in
temp.AddRange([| 1 ; 2 ; 3 |]);
temp

intList.ForEach( fun i -> Console.WriteLine(i) )

The results are as follows:

1
2
3

The previous example also demonstrates another nice feature of F# when interoperating
with non-F# libraries. .NET APIs often use a .NET construct called delegates, which are concep-
tually a kind of function value. F# functions will automatically be converted to .NET delegate
objects if their signatures match. You can see this on the last line, where an F# function is
passed directly to a method that takes a .NET delegate type.

To keep methods as flexible as possible, you may prefer not to specify a type parameter
when importing methods that take generic delegates or perhaps when you’re creating a
wrapper F# function around constructors for a non-F# library. You achieve this by using the
underscore (_) in place of the type parameter, as in the first line of the next example. (The
following example uses the forward operator, |>, which I explain in the “The |> Operator”
section.)

#light
open System

CHAPTER 4 n IMPERATIVE PROGRAMMING72

7575Ch04.qxp  4/27/07  1:00 PM  Page 72



let findIndex f arr = Array.FindIndex(arr, new Predicate<_>(f))

let rhyme = [|"The"; "cat"; "sat"; "on"; "the"; "mat" |]

printfn "First word ending in 'at' in the array: %i"
(rhyme |> findIndex (fun w -> w.EndsWith("at")))

The results of this example, when compiled and executed, are as follows:

First word ending in 'at' in the array: 1

Here you import the FindIndex method from the System.Array class, so you can use it in 
a curried style. If you had not explicitly created a delegate, the identifier f would have repre-
sented a predicate delegate rather than a function, meaning all calls to findIndex would need
to explicitly create a delegate object, which is not ideal. However, if you had specified a type
when creating the Predicate delegate in the definition of findIndex, then you would have lim-
ited the use of the findIndex function to arrays of a specific type. Occasionally, this may be
what you want to do, but it is not usually the case. By using the underscore, you avoid having
to specify a type for the findIndex function, keeping it nice and flexible.

Using Indexers from .NET Libraries
Indexers are a .NET concept that are designed to make a collection class look more like an array.
Under the hood an indexer is a special property that is always called Item and has one or more
parameters. It is important you have easy access to an indexer property, because many classes
within the BCL have indexers.

In respect to syntax, F# offers two ways of using an indexer. You can explicitly use the Item
property, or you can use an array-like syntax, with brackets instead of parentheses around the
index.

open System.Collections.Generic

let stringList =
let temp = new ResizeArray<string>() in
temp.AddRange([| "one" ; "two" ; "three" |]);
temp

let itemOne = stringList.Item(0)
let itemTwo = stringList.[1]

printfn "%s %s" itemOne itemTwo

This example associates the strings "one" and "two" with the identifiers itemOne and
itemTwo, respectively. The association of "one" with itemOne demonstrates explicitly using 
the Item property. The association of "two" with itemTwo uses the bracket syntax.

CHAPTER 4 n IMPERATIVE PROGRAMMING 73

7575Ch04.qxp  4/27/07  1:00 PM  Page 73



nNote This example also demonstrates a common pattern in F#. Note how you want to create the identifier
stringList as an object from a non-F# library and at the same time initialize it to a certain state. To do this
you assign the object to a temporary identifier and then call an instance member on the object to manipulate
its state. Finally, you return the temporary identifier so it becomes the value of stringList. In this way, you
keep the object creation and initialization logic close together.

Working with Events from .NET Libraries
Events are special properties of objects that allow functions to be attached to them. The func-
tions that are attached to events are sometimes referred to as handlers. When the event occurs,
it executes all the functions that have been attached to it. An example of this might be that a
Button object exposes a Click event, which occurs when a user clicks the button. This would
mean that any functions that have been attached to the button’s Click event would execute
when the button is clicked. This is extremely useful, since it’s common to need notifications of
what the user has done when creating user interfaces.

Adding a hander to an event is fairly straightforward. Each event exposes a method called
Add, and the handling event is passed to this method. Events come from non-F# libraries, so
the Add method follows the convention that its arguments must be surrounded by parenthe-
ses. In F# it is common to place the handler function inside the Add method itself using F#’s
anonymous function feature. The type of the handler function must match the type of the Add
method’s parameter, and this parameter has type 'a -> unit. This means that for events
exposed by objects in the BCL, the parameter of the Add method will have a type similar to
EventArgs -> Unit.

The next example shows the creation of a Timer object and a function being added to the
timer’s Elapsed event. A Timer object is an object that will fire its Elapsed event at regular inter-
vals. In this case, the handler will show a message box displaying a notice to the user. Notice
how you do not care about the argument that will be passed to the handler function, so you
ignore it using the underscore.

#light
open System.Timers
module WF = System.Windows.Forms

let timer =
let temp = new Timer()
temp.Interval <- 3000.0
temp.Enabled <- true
let messageNo = ref 0
temp.Elapsed.Add(fun _ ->

let messages = ["bet"; "this"; "gets";
"really"; "annoying"; "very"; "quickly";]
WF.MessageBox.Show(List.nth messages !messageNo) |> ignore
messageNo := (!messageNo + 1) % (List.length messages))

temp

CHAPTER 4 n IMPERATIVE PROGRAMMING74

7575Ch04.qxp  4/27/07  1:00 PM  Page 74



print_endline "Whack the return to finish!"
read_line() |> ignore
timer.Enabled <- false

It is also possible to remove handlers from events. To do this, you must keep the function
you are going to add to the event in scope; you can pass it to the event’s RemoveHandler
method. The RemoveHandler method accepts a delegate, which is an object that wraps a regular
.NET method to allow it to be passed around like a value. This means the handler function
must be given to the event already wrapped in a delegate and must therefore use the event’s
AddHandler (or Removehandler) method instead of its Add (or Remove) method. Creating a dele-
gate in F# is straightforward. You simply call the delegate’s constructor, the same way you call
any constructor for an object from any non-F# library, passing it the function that delegate
should wrap.

#light
open System
open System.Windows.Forms

let form =
let temp = new Form()
let stuff _ _ = ignore(MessageBox.Show("This is \"Doing Stuff\""))
let stuffHandler = new EventHandler(stuff)
let event = new Button(Text = "Do Stuff", Left = 8, Top = 40, Width = 80)
event.Click.AddHandler(stuffHandler)
let eventAdded = ref true
let label = new Label(Top = 8, Left = 96)
let setText b = label.Text <- (Printf.sprintf "Event is on: %b" !b)
setText eventAdded
let toggle = new Button(Text = "Toggle Event", Left = 8, Top = 8, Width = 80)
toggle.Click.Add(fun _ ->

if !eventAdded then
event.Click.RemoveHandler(stuffHandler)

else
event.Click.AddHandler(stuffHandler)

eventAdded := not !eventAdded
setText eventAdded)

let dc c = (c :> Control)
temp.Controls.AddRange([| dc toggle;  dc event;  dc label; |]);
temp

do Application.Run(form)

This example shows the creation of a simple WinForm in F#. Events are synonymous with
user interface programming, so I thought it would be good to show an example event of
events being used in this context. Near the beginning of the example, you create a delegate,
stuffHandler, which is then added to the Click event on the button event. Later you add a
handler directly to the toggle button’s Click event, which adds or removes the handler from
the button’s event.

CHAPTER 4 n IMPERATIVE PROGRAMMING 75

7575Ch04.qxp  4/27/07  1:00 PM  Page 75



nCaution The previous sample will not work in the F# interactive console, fsi, because of the call to
Application.Run. Users of fsi should replace this with form.Visible <- true;;.

Pattern Matching over .NET Types
As you saw in Chapter 3, pattern matching is a powerful feature of F#. Pattern matching allows
a programmer to specify that different computations are executed depending on some value.
F# has a construct that allows pattern matching over .NET types. The rule to match a .NET
type is formed from a colon and question mark operator (:?) followed by the name of the .NET
type to be matched. Because it is impossible have an exhaustive list of .NET types, you must
always provide a default rule when pattern matching over .NET types.

#light
let simpleList = [ box 1; box 2.0; box "three" ]

let recognizeType (item : obj) =
match item with
| :? System.Int32 -> print_endline "An integer"
| :? System.Double -> print_endline "A double"
| :? System.String -> print_endline "A string"
| _ -> print_endline "Unknown type"

List.iter recognizeType simpleList

The results are as follows:

An integer
A double
A string

This example shows a function, recognizeType, that is designed to recognize three of the
.NET basic types via pattern matching. This function is then applied to a list. A couple of details
about this function are noteworthy. First, the function takes an argument of type obj, and you
need to use a type annotation to make sure it does. If you didn’t use the type annotation, the
compiler would infer that the function can take any type and would use type 'a. This would be
a problem, because you cannot use pattern matching of this kind over F#’s types, but only over
.NET types. Second, the function’s default case uses the underscore to ignore the value.

Once you’ve recognized that a value is of a certain type, it’s common to want to be able to do
something with that value. To be able to use the value on the right side of a rule, you can use the
as keyword followed by an identifier. You can see this in the next example, where you rewrite
recognizeType to include the value in the message that is printed when a type is recognized:

CHAPTER 4 n IMPERATIVE PROGRAMMING76

7575Ch04.qxp  4/27/07  1:00 PM  Page 76



#light
let anotherList = [ box "one"; box 2; box 3.0 ]

let recognizeAndPrintType (item : obj) =
match item with
| :? System.Int32 as x -> printfn "An integer: %i" x
| :? System.Double as x -> printfn "A double: %f" x
| :? System.String as x -> printfn "A string: %s" x
| x -> printfn "An object: %A" x

List.iter recognizeAndPrintType anotherList

The results of this example, when compiled and executed, are as follows:

A string: one
An integer: 2
A double: 3.000000

Notice how for a final default rule you just use an identifier. You don’t need to match it to a
type since you already know it will be of type obj, since the value being matched over is already
of type obj. In fact, if you try to create a rule where you match with type obj, you will get a com-
pile error since this rule will always match. You can see this in the next example, where the
previous example is reworked to generate the compile error I’m talking about:

#light
let thirdList = [ ("one" :> obj); (2 :> obj); (3.0 :> obj) ]

let reconizeTypeWrongly (item : obj) =
match item with
| :? System.Int32 -> print_endline "An integer"
| :? System.Double -> print_endline "A double"
| :? System.String -> print_endline "A string"
| :? System.Object -> print_endline "Unknown type"

List.iter reconizeTypeWrongly thirdList

Pattern matching over .NET types is also useful for handling exceptions thrown by .NET
methods. The pattern match rules are formed in the same way except they are used with the
try … with construct instead of the try … match construct. The next example shows two .NET
exceptions being thrown and then caught. The exceptions thrown are pattern matched over,
and a different message is printed to the console depending on the type of exception thrown.

#light
try

if System.DateTime.Now.Second % 3 = 0 then
raise (new System.Exception())

else
raise (new System.ApplicationException())

CHAPTER 4 n IMPERATIVE PROGRAMMING 77

7575Ch04.qxp  4/27/07  1:00 PM  Page 77



with
| :? System.ApplicationException ->

print_endline "A second that was not a multiple of 3"
| _ ->

print_endline "A second that was a multiple of 3"

The |> Operator
The pass-forward, pipe-forward, or just forward operator (|>) is useful when working with
.NET libraries. This is because it helps the compiler infer the correct types for method parame-
ters without the need for explicit type annotations.

To understand why this operator is useful, it is helpful to probe a little deeper into to how
right-to-left type inference works. Consider the following simple example, where you define a
list of integers, called intList, of type int list and then pass this list as the second argument to
the library function List.iter. The first argument to List.iter is a function of type int -> unit:

let int_list = [ 1 ; 2 ; 3 ]

List.iter (fun i -> print_int i) int_list

Now you need to understand how these expressions in the program were assigned their
types. The compiler started at the top of the input file, found the identifier int_list, and
inferred its type from the literal that is bound to it. Next, it found the function List.iter and
knows that its type is ('a -> unit) -> 'a list -> unit. Since it has a generic or undeter-
mined type 'a within it, the compiler must first examine the anonymous function (fun i ->
print_int i). Because the parameter i is passed to the function print_int, the compiler
infers that the type of i is int. Similarly, because the return type of print_int is unit, the
return type of the anonymous function is unit. Because the parameter of the anonymous
function is an integer, the compiler now knows that the parameter of the type of the undeter-
mined type 'a is int, and this means the list passed to the function must be of type int list.

To fully understand the implications of this, it is helpful to look at an example that does
not compile. Consider the next example, where you pass an identifier of type string list as
the second argument to the library function List.iter whose first argument is a function of
type int -> unit. Then you rewrite the code using the forward operator.

#light
let stringList = [ "1" ; "2" ; "3" ]

List.iter (fun i -> print_int i) stringList
stringList |> List.iter (fun i -> print_int i)

When trying to compile this function, you’ll get the following error:

Prog.fs(3,36): error: FS0001: Type mismatch. Expecting a
int list

but given a
string list.

The type int does not match the type string

CHAPTER 4 n IMPERATIVE PROGRAMMING78

7575Ch04.qxp  4/27/07  1:00 PM  Page 78



Prog.fs (4,48): error: FS0001: This expression has type
string

but is here used with type
int

The problem is that in the first case you’re expecting an int list but are given a string
list, and in the second case you’re expecting an int but are given a string. In the first case,
the type of the list was inferred from the type of the function, but in the second case the type
of the function was inferred from the type of the list.

That you can infer the type of a function that operates on a list from the type of the list it
operates on is incredibly useful when working with .NET libraries not written in F#. Consider
the following example, where you define a list of type System.DateTime list and pass it to
List.iter as the second argument. For the first argument, you try to define a function that
will print the Year property of the DateTime type. Then you rewrite this function call using the
forward operator.

#light
open System
let dateList = [ new DateTime(1999,12,31);

new DateTime(1999,12,31);
new DateTime(1999,12,31) ]

List.iter (fun d -> print_int d.Year) dateList
dateList |> List.iter (fun d -> print_int d.Year)

When trying to compile this function, you’ll get the following error:

List.iter (fun d -> print_int d.Year) date_list
------------------------------^^^^^^^

Prog.fs (11,33): error: Lookup on object of indeterminate type.  A type annotation
may be needed to constrain the type of the object in order for the lookup to be
resolved.

Note that you receive only one error, when the List.iter function is written without the
forward operator. Written with the forward operator, it compiles successfully. The error you
receive means that the compiler has not been able to work out the type of the parameter d, so
it cannot verify that it has a property Year. In the second case, by using the forward operator,
the compiler is able to infer the type of the function is DateTime -> unit because it has already
seen the list dateList and knows it is of type System.DateTime list.

One subtlety to watch out for is that, when working with types defined in F#, the compiler
can often infer the type from the way it is used. Consider the next example, where you rewrite
the previous example, this time using a date type that you’ve defined as an F# type, rather
than a System.DateTime, which is defined in a library not written in F#.

#light
type date = { year : int; month : int; day : int }

CHAPTER 4 n IMPERATIVE PROGRAMMING 79

7575Ch04.qxp  4/27/07  1:00 PM  Page 79



let fsDateList =
[ { year = 1999 ; month = 12; day = 31 };
{ year = 1999 ; month = 12; day = 31 };
{ year = 1999 ; month = 12; day = 31 } ]

List.iter (fun d -> print_int d.year) fsDateList
fsDateList |> List.iter (fun d -> print_int d.year)

Although this code is virtually the same as the previous example, it will compile without
error. This is because the compiler can infer that the parameter d is of type date from the use
of date’s year field. It is important to remember that both cases work here, so although the for-
ward operator isn’t quite as useful when working with F#’s record types and its union type, you
can still use it. In fact, you should consider using it even when working with F# types, because
this will lead to working with both external .NET types and F# types in a consistent manner.

The forward operator > operator > operator is also incredibly useful when trying to chain
functions together, that is, when one function operates on the result of another. Consider the
next example, where you obtain a list of all the .NET assemblies in memory and then process
this list until you end up with a list of all the .NET methods in memory. As each function oper-
ates on the result of the previous function, the forward operator is used to show the results
being piped or passed forward to the next function. You don’t need to declare intermediate
variables to hold the results of a function.

#light
let methods = System.AppDomain.CurrentDomain.GetAssemblies()

|> List.of_array
|> List.map ( fun assm -> assm.GetTypes() )
|> Array.concat
|> List.of_array
|> List.map ( fun t -> t.GetMethods() )
|> Array.concat

print_any methods

You’ll use this technique throughout the rest of the book, particularly when you cover
data access in Chapter 9.

Summary
In this chapter, you learned about the imperative features of F#. Combined with the functional
features in Chapter 3, you now have a full range of techniques to attack any computing prob-
lem. F# allows you to choose techniques from the appropriate paradigm and combine them
whenever necessary. In the next chapter, you’ll see how F# supports the third programming
paradigm, object-oriented programming.

CHAPTER 4 n IMPERATIVE PROGRAMMING80

7575Ch04.qxp  4/27/07  1:00 PM  Page 80



Object-Oriented Programming

Object-oriented programming is the third major programming paradigm. At its heart,
object-oriented programming has a few simple ideas, some of which you’ve already encoun-
tered. Possibly the most important idea is that the implementations and state should be
encapsulated, that is, hidden behind well-defined boundaries. This makes the structure of a
program easier to manage. In F#, things are hidden by using signatures for modules and type
definitions and also by simply defining them locally to an expression or class construction
(you’ll see examples of both in this chapter).

The second idea is that you can implement abstract entities in multiple ways. In OOP this
is known as polymorphism. You’ve met a number of simple abstract entities already, such as
function types. A function type is abstract because a function with specific type can be imple-
mented in many different ways; for example, the function type int -> int can be implemented
as a function that increments the given parameter, a function that decrements the parameter,
or any one of millions of mathematical sequences. Other abstract entities can be built out of
existing abstract components such as the interface types defined in the .NET BCL. More
sophisticated abstract entities are modeled using user-defined interface types. Interface types
have the advantage that they can be arranged hierarchically; this is called interface inheritance.
For example, the .NET BCL includes a hierarchical classification of collection types, available in
the System.Collections and System.Collections.Generic namespaces.

In OOP you can sometimes arrange implementation fragments hierarchically. This is
called implementation inheritance. This tends to be less important in F# programming
because of the flexibility that functional programming provides for defining and sharing
implementation fragments. However, it is significant for domains such as graphical user
interface (GUI) programming.

Casting
Casting is a way of explicitly altering the static type of a value by either throwing information
away, upcasting, or rediscovering it, downcasting. In F#, upcasts and downcasts have their
own operators. The type hierarchy starts with obj (or System.Object) at the top and all its
descendants below it. An upcast moves a type up the hierarchy, and a downcast moves a type
down the hierarchy.

Upcasts change a value’s static type to one of its ancestor types. This is a safe operation
since the compiler can always tell whether this will work because the compiler always knows
all the ancestors of a type so is able to work out through static analysis whether an upcast will

81

C H A P T E R  5

n n n

7575Ch05.qxp  4/27/07  1:02 PM  Page 81



be successful. An upcast is represented by a colon followed by the greater-than sign (:>). The
following code shows an example of using an upcast to convert a string to an obj:

#light
let myObject = ("This is a string" :> obj)

Generally, upcasts are required when defining collections that contain disparate types. If
an upcast is not used, the compiler will infer that the collection has the type of the first ele-
ment and give a compile error if elements of other types are placed in the collection. The next
example demonstrates how to create an array of controls, a pretty common task when work-
ing with WinForms. Notice that all the individual controls are upcast to their common base
class, Control.

#light
open System.Windows.Forms

let myControls  =
[| (new Button() :> Control);

(new TextBox() :> Control);
(new Label() :> Control) |]

An upcast also has the effect of automatically boxing any value type. Value types are held
in memory on the program stack, rather than on the managed heap. Boxing means that the
value is pushed onto the managed heap, so it can be passed around by reference. The follow-
ing example demonstrates a value being boxed:

#light
let boxedInt = (1 :> obj)

A downcast changes a value’s static type to one of its descendant types and thus recovers
information hidden by an upcast. Downcasting is dangerous since the compiler doesn’t have
any way to statically determine whether an instance of a type is compatible with one of its
derived types. This means you can get it wrong, and this will cause an invalid cast exception
(System.InvalidCastException) to be issued at runtime. Because of the inherent danger of
downcasting, it is often preferred to replace it with pattern matching over .NET types, as
demonstrated in Chapter 3. Nevertheless, a downcast can be useful in some places, so a
downcast operator, composed of a colon, question mark, and greater-than sign (:?>), is avail-
able. The next example demonstrates downcasting:

#light
open System.Windows.Forms

let moreControls  =
[| (new Button() :> Control);
(new TextBox() :> Control) |]

let control =
let temp = moreControls.[0]
temp.Text <- "Click Me!"
temp

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING82

7575Ch05.qxp  4/27/07  1:02 PM  Page 82



let button =
let temp = (control :?> Button)
temp.DoubleClick.Add(fun e -> MessageBox.Show("Hello") |> ignore)
temp

It creates an array of two Windows control objects, upcasting them to their base class,
Control. Then it binds the first control to the control identifier. It then downcasts this to its
specific type, Button, before adding a handler to its DoubleClick event, an event not available
on the Control class.

Type Tests
Closely related to casting is the idea of type tests. An identifier can be bound to an object of a
derived type, as you did earlier when you bound a string to an identifier of type obj:

#light
let anotherObject = ("This is a string" :> obj)

Since an identifier can be bound to an object of a derived type, it is often useful to be able
to test what this type is. To do this, F# provides a type test operator, which consists of a colon
followed by a question mark (:?). To compile, the operator and its operands must be sur-
rounded by parentheses. If the identifier in the type test is of the specified type or a type
derived from it, the operator will return true; otherwise, it will return false. The next example
shows two type tests, one that will return true and the other false:

#light
let anotherObject = ("This is a string" :> obj)

if (anotherObject :? string) then
print_endline "This object is a string"

else
print_endline "This object is not a string"

if (anotherObject :? string[]) then
print_endline "This object is a string array"

else
print_endline "This object is not a string array"

First you create an identifier, anotherObject, of type obj but bind it to a string. Then you
test whether the anotherObject is a string, which will return true. Then you test whether it is a
string array, which will, of course, return false.

Type Annotations for Subtyping
As shown in Chapter 3, type annotations are a way of constraining an identifier, usually a
parameter of a function, to be a certain type. What may seem counterintuitive to an OO pro-
grammer is that the form of type annotation introduced in Chapter 3 is rigid; in other words, it
does not take into account the inheritance hierarchy. This means that if such a type annota-
tion is applied to an expression, then that expression must have precisely that type statically; a
derived type will not fit in its place. To illustrate this point, consider the following example:

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 83

7575Ch05.qxp  4/27/07  1:02 PM  Page 83



#light
open System.Windows.Forms

let showForm (form : Form) =
form.Show()

// PrintPreviewDialog is defined in the BCL and is
// derived directly the Form class
let myForm = new PrintPreviewDialog()

showForm myForm

When you try to compile the previous example, you will receive the following error:

Prog.fs(11,10): error: FS0001: This expression has type
PrintPreviewDialog

but is here used with type
Form

One way to call a function with a rigid type annotation on a parameter is to use an explicit
upcast at the place where the function is called in order to change the type to be the same as
the type of the function’s parameter. The following line of code changes the type of myForm to
be the same as the type of the parameter of showForm:

showForm (myForm :> Form)

Although upcasting the argument to showForm is a solution, it’s not a very pretty one,
because it means littering client code with upcasts. So, F# provides another type annotation,
the derived type annotation, in which the type name is prefixed with a hash sign. This has the
effect of constraining an identifier to be of a type or any of its derived types. This means you
can rewrite the previous example as shown next to remove the need for explicit upcasts in
calling code. I think this is a huge benefit to anyone using the functions you define.

#light
let showFormRevised (form : #Form) =

form.Show()

// ThreadExceptionDialog  is define in the BCL and is
// directly derived type of the Form class
let anotherForm = new ThreadExceptionDialog(new Exception())

showFormRevised anotherForm

You can use this kind of type annotation to tidy up code that uses a lot of casting. For
example, as shown in the “Casting” section earlier in this chapter, a lot of casting is often
needed when creating a collection with a common base type, and this can leave code looking
a little bulkier than it should. A good way to remove this repeated casting, as with any com-
monly repeated section of code, is to define a function that does it for you:

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING84

7575Ch05.qxp  4/27/07  1:02 PM  Page 84



#light
let myControls  =

[| (new Button() :> Control);
(new TextBox() :> Control);
(new Label() :> Control) |]

let uc (c : #Control) = c :> Control

let myConciseControls  =
[| uc (new Button()); uc (new TextBox()); uc (new Label()) |]

This example shows two arrays of controls being defined. The first, myControls, explicitly
upcasts every control; the second, myConciseControls, delegates this job to a function. Also,
given that the bigger the array, the bigger the savings and that it is quite common for these
arrays to get quite big when working with WinForms, this is a good technique to adopt.

Records As Objects
It is possible to use the record types you met in Chapter 3 to simulate object-like behavior.
This is because records can have fields that are functions, which you can use to simulate an
object’s methods. This technique was first invented before functional programming languages
had object-oriented constructs as a way of performing tasks that lent themselves well to
object-oriented programming. Some programmers still prefer it, because only the function’s
type (or as some prefer, its signature) is given in the record definition, so the implementation
can easily be swapped without having to define a derived class as you would in object-
oriented programming. I discuss this in greater detail in “Object Expressions” and again in
“Inheritance” later in this chapter.

Let’s take a look at a simple example of records as objects. The next example defines a
type, Shape, that has two members. The first member, reposition, is a function type that
moves the shape, and the second member, draw, draws the shape. You use the function
makeShape to create a new instance of the shape type. The makeShape function implements 
the reposition functionality for you; it does this by accepting the initPos parameter, which is
then stored in a mutable ref cell, which is updated when the reposition function is called. 
This means the position of the shape is encapsulated, accessible only through the reposition
member. Hiding values in this way is a common technique in F# programming.

#light
open System.Drawing

type Shape =
{ reposition: Point -> unit;

draw      : unit -> unit  }

let makeShape initPos draw =
let currPos  = ref initPos in
{ reposition = (fun newPos -> currPos := newPos);
draw = (fun () -> draw !currPos); }

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 85

7575Ch05.qxp  4/27/07  1:02 PM  Page 85



let circle initPos =
makeShape initPos (fun pos ->

printfn
"Circle, with x = %i and y = %i"
pos.X
pos.Y)

let square initPos =
makeShape initPos (fun pos ->

printfn
"Square, with x = %i and y = %i"
pos.X
pos.Y)

let point (x,y) = new Point(x,y)

let shapes =
[ circle (point (10,10));
square (point (30,30)) ]

let moveShapes() =
shapes |> List.iter (fun s -> s.draw())

let main() =
moveShapes()
shapes |> List.iter (fun s -> s.reposition (point (40,40)))
moveShapes()

main()

Circle, with x = 10 and y = 10
Square, with x = 30 and y = 30
Circle, with x = 40 and y = 40
Square, with x = 40 and y = 40

This example may have seemed trivial, but you can actually go quite a long way with this
technique. The next example takes things to their natural conclusion, actually drawing the
shapes on a form:

#light
open System
open System.Drawing
open System.Windows.Forms

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING86

7575Ch05.qxp  4/27/07  1:02 PM  Page 86



type Shape =
{ reposition: Point -> unit;

draw : Graphics -> unit }

let movingShape initPos draw =
let currPos  = ref initPos in
{ reposition = (fun newPos -> currPos := newPos);
draw = (fun g -> draw !currPos g); }

let movingCircle initPos diam =
movingShape initPos (fun pos g ->

g.DrawEllipse(Pens.Blue,pos.X,pos.Y,diam,diam))

let movingSquare initPos size =
movingShape initPos (fun pos g ->

g.DrawRectangle(Pens.Blue,pos.X,pos.Y,size,size) )

let fixedShape draw =
{ reposition = (fun newPos -> ());
draw       = (fun g       -> draw g); }

let fixedCircle (pos:Point) (diam:int) =
fixedShape (fun g -> g.DrawEllipse(Pens.Blue,pos.X,pos.Y,diam,diam))

let fixedSquare (pos:Point) (size:int) =
fixedShape (fun g -> g.DrawRectangle(Pens.Blue,pos.X,pos.Y,size,size))

let point (x,y) = new Point(x,y)

let shapes =
[ movingCircle (point (10,10)) 20;
movingSquare (point (30,30)) 20;
fixedCircle (point (20,20)) 20;
fixedSquare (point (40,40)) 20; ]

let mainForm =
let form = new Form()
let rand = new Random()
form.Paint.Add(fun e ->

shapes |> List.iter (fun s ->
s.draw e.Graphics)

)

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 87

7575Ch05.qxp  4/27/07  1:02 PM  Page 87



form.Click.Add(fun e ->
shapes |> List.iter (fun s ->

s.reposition(new Point(rand.Next(form.Width),
rand.Next(form.Height)));

form.Invalidate())
)
form

[<STAThread>]
do Application.Run(mainForm)

Again, you define a Shape record type that has the members reposition and draw. Then
you define the functions makeCircle and makeSquare to create different kinds of shapes and
use them to define a list of shape records. Finally, you define the form that will hold your
records. Here you must do a bit more work than perhaps you would like. Since you don’t use
inheritance, the BCL’s System.Winows.Forms.Form doesn’t know anything about your shape
“objects,” and you must iterate though the list, explicitly drawing each shape. This is actually
quite simple to do and takes just three lines of code where you add an event handler to
mainForm’s Paint event:

temp.Paint.Add(
fun e ->

List.iter (fun s -> s.draw e.Graphics) shapes);

This example shows how you can quickly create multifunctional records without having
to worry about any unwanted features you might also be inheriting. In the next section, you’ll
look at how you can represent operations on these objects in a more natural way: by adding
members to F# types.

F# Types with Members
It is possible to add functions to both F#’s record and union types. A function added to a record
or union type can be called using dot notation, just like a member of a class from a library not
written in F#. This provides a convenient way of working with records with mutable state. It is
also useful when it comes to exposing types you define in F# to other .NET languages. (I discuss
this in more detail in Chapter 13.) Some programmers from object-oriented backgrounds just
prefer to see function calls made on an instance value, and this provides a nice way of doing it
for all F# types.

The syntax for defining an F# record or union type with members is the same as the syn-
tax you learned in Chapter 3, except it includes member definitions that always come at the
end, between the with and end keywords. The definition of the members themselves start with
the keyword member, followed by an identifier that represents the parameter of the type the
member is being attached to, then a dot, then the function name, and then any other parame-
ters the function takes. After this comes an equals sign followed by the function definition,
which can be any F# expression.

The following example defines a record type, point. It has two fields, left and top, and a
member function, Swap. The function Swap is a simple function that swaps the values of left

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING88

7575Ch05.qxp  4/27/07  1:02 PM  Page 88



and top. Note how the x parameter, given before the function name swap, is used within the
function definition to get access to the record’s other members, its fields:

#light
type Point =

{ mutable top : int ;
mutable left : int }

with
member x.Swap() =

let temp = x.top
x.top <- x.left
x.left <- temp

end

let printAnyNewline x =
print_any x
print_newline()

let main() =
printAnyNewline myPoint
myPoint.Swap()
printAnyNewline myPoint

main()

The results of this example, when compiled and executed, are as follows:

{top = 3;
left = 7;}
{top = 7;
left = 3;}

You may have noticed the x parameter in the definition of the function Swap:

member x.Swap() =
let temp = x.top
x.top <- x.left
x.left <- temp

This is the parameter that represents the object on which the function is being called.
When a function is called on a value, as follows:

myPoint.Swap()

the value it is being called on is passed to the function as an argument. This is logical, when
you think about it, because the function needs to be able to access the fields and methods of
the value on which it is being called. Some OO languages use a specific keyword for this, such
as this or Me, but F# lets you choose the name of this parameter by specifying a name for it
after the keyword member, in this case x.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 89

7575Ch05.qxp  4/27/07  1:02 PM  Page 89



Union types can have member functions too. You define them in the same way as for record
types. The next example shows a union type, DrinkAmount, that has a function added to it:

#light
type DrinkAmount =

| Coffee of int
| Tea of int
| Water of int
with

override x.ToString() =
match x with
| Coffee x -> Printf.sprintf "Coffee: %i" x
| Tea x -> Printf.sprintf "Tea: %i" x
| Water x -> Printf.sprintf "Water: %i" x

end

let t = Tea 2

print_endline (t.ToString())

The results of this example, when compiled and executed, are as follows:

Tea: 2

Note how this uses the keyword override in place of the keyword member. This has the
effect of replacing, or overriding, an existing function of the type. This is not that common a
practice with function members associated with F# types because only four methods are
available to be overridden (ToString, Equals, GetHashCode, and Finalize) that are inherited
from System.Object by every .NET type. Because of the way some of these methods interact
with the CLR, the only one I recommend overriding is ToString. Only four methods are avail-
able for overriding because record and union types can’t act as base or derived classes, so you
cannot inherit methods to override (except from System.Object).

Object Expressions
Object expressions are at the heart of succinct object-oriented programming in F#. They pro-
vide a concise syntax to create an object that inherits from an existing type. This is useful if
you want to provide a short implementation of an abstract class or an interface or want to
tweak an existing class definition. An object expression allows you to provide an implementa-
tion of a class or interface while at the same time creating a new instance of it.

The syntax is similar to the alterative syntax for creating new instances of record types,
with a few small alterations. You surround the definition of an object expression with braces.
At the beginning is the name of the class or interfaces, and the name of a class must be fol-
lowed by a pair of parentheses that can have any values passed to the constructor between
them. Interface names need nothing after them, though both class names and interface
names can have a type parameter following them, which must be surrounded by angled
brackets. This is followed by the keyword with and the definition of the methods of the class or

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING90

7575Ch05.qxp  4/27/07  1:02 PM  Page 90



interfaces being implemented. These methods are separated by the keyword and, the name of
the method must be the same as the name of a virtual or abstract method in the class or inter-
face definition, and their parameters must be surrounded by parentheses and separated by
commas, like .NET methods must be (unless the method has one parameter, when you can
get away with excluding the parentheses). Ordinarily you don’t need to give type annotations,
but if the base class contains several overall for a method, then you might have to give type
annotations. After the name of a method and its parameters comes an equals sign and then
the implementation of the methods body, which is just an F# expression that must match the
return value of the method.

#light
open System
open System.Collections.Generic

let comparer =
{ new IComparer<string>

with
Compare(s1, s2) =

let rev (s : String) =
new String(Array.rev (s.ToCharArray()))

let reversed = rev s1
reversed.CompareTo(rev s2) }

let winners =
[| "Sandie Shaw" ;

"Bucks Fizz" ;
"Dana International" ;
"Abba";
"Lordi" |]

print_any winners
print_newline()
Array.Sort(winners, comparer)
print_any winners

The results of the previous example, when compiled and executed, are as follows:

[|"Sandie Shaw"; "Bucks Fizz"; "Dana International"; "Abba"; "Lordi"|]
[|"Abba"; "Lordi"; "Dana International"; "Sandie Shaw"; "Bucks Fizz"|]

The previous shows an example of the IComparer interface being implemented. This is an
interface with one method, Compare, which takes two parameters and returns an integer that
represents the result of the parameter comparison. It accepts one type parameter; in this case,
you pass it a string. You can see this on the second line of the definition of the identifier comparer.
After this comes the definition of the method body, which in this case compares reversed versions
of the string parameters. Finally, you use the comparer by defining an array and then sorting
using the comparer and displaying the “before” and “after” results in the console.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 91

7575Ch05.qxp  4/27/07  1:02 PM  Page 91



It is possible to implement multiple interfaces or a class and several other interfaces
within one object expression. It is not possible to implement more than one class within an
object expression. If you are implementing a class and an interface, the class must always
come first in the expression. In either case, the implementation of any other interfaces after
the first interface or class must come after the definitions of all the methods of the first inter-
face or class. The name of the interface is prefixed by the keyword interface and is followed
by the keyword with. The definition of the methods is the same as for the first interface or
class.

#light
open System
open System.Drawing
open System.Windows.Forms

let makeNumberControl (n : int) =
{ new Control(Tag = n, Width = 32, Height = 16) with

override x.OnPaint(e) =
let font = new Font(FontFamily.Families.[1], 12.0F)
e.Graphics.DrawString(n.ToString(),

font,
Brushes.Black,
new PointF(0.0F, 0.0F))

interface IComparable with
CompareTo(other) =

let otherControl = other :?> Control in
let n1 = otherControl.Tag :?> int in
n.CompareTo(n1) }

let numbers =
let temp = new ResizeArray<Control>()
let rand = new Random()
for index = 1 to 10 do

temp.Add(makeNumberControl (rand.Next(100)))
temp.Sort()
let height = ref 0
temp |> IEnumerable.iter

(fun c ->
c.Top <- !height
height := c.Height + !height)

temp.ToArray()

let numbersForm =
let temp = new Form() in
temp.Controls.AddRange(numbers);
temp

[<STAThread>]
do Application.Run(numbersForm)

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING92

7575Ch05.qxp  4/27/07  1:02 PM  Page 92



The previous example shows the definition of object expression that implements both the
class Control and the interface IComparable. IComparable allows objects that implement this
interface to be compared, primarily so they can be sorted. In this case, the implementation of
IComparable’s CompareTo method sorts the controls according to which number they are dis-
playing. After the implementation of the makeNumberControl function, you create an array of
controls, numbers. The definition of numbers is a little complicated; first you initialize it to be
full of controls in a random order, and then you sort the array. Finally, you ensure each control
is displayed at the appropriate height.

Object expressions are a powerful mechanism to quickly and concisely introduce object-
oriented functionality from objects from non-F# libraries into your F# code. They have the
drawback that they do not allow you to add extra properties or methods to these objects. For
example, in the previous example, notice how it was necessary to place the number associated
with control in the control’s Tag property. This is more of a workaround than a proper solution.
However, sometimes you don’t need extra properties or methods on a type, and this syntax
can be very useful then.

Defining Interfaces
Interfaces can contain only abstract methods and properties. They define a “contract” for all
classes that implement them, exposing those components that clients can use while insulat-
ing clients from their actual implementation. A class can inherit from only one base class, but
it can implement any number of interfaces. Since any class implementing an interface can be
treated as being of the interface type, interfaces provide similar benefits but avoid the com-
plexities of multiple-class inheritance.

You define interfaces using the keyword interface; after this, you list all the members of
the interface. The types of members that interfaces can have are somewhat limited, interfaces
have no constructors, and they can declare only abstract methods and properties.

The following code defines an interface that declares one method, ChangeState.

type MyInterface = interface
abstract ChangeState : myInt : int -> unit

end

Implementing Interfaces
To implement an interface, use the keyword interface, followed by the interface name, then
keyword with, then the code to affect the interface members, and then the keyword end. Mem-
ber definitions are prefixed by the keyword member but otherwise are the same as the definition
of any method or property. You can implement interfaces by either classes or structs; I cover
how to create classes in some detail in the following sections, and I cover structs in the section
“Structs” later in this chapter.

The next example defines, implements, and uses an interface. The class Implementation
implements the interface MyInterface.

#light
type MyInterface = interface

abstract ChangeState : myInt : int -> unit
end

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 93

7575Ch05.qxp  4/27/07  1:02 PM  Page 93



type Implementation = class
val mutable state : int
new() = {state = 0}
interface  MyInterface with

member x.ChangeState y = x.state <- y
end

end

let imp = new Implementation()
let inter = imp :> MyInterface

let pintIntNewline i =
print_int i
print_newline()

let main() =
inter.ChangeState 1
pintIntNewline imp.state
inter.ChangeState 2
pintIntNewline imp.state
inter.ChangeState 3
pintIntNewline imp.state

main()

The results are as follows:

1
2
3

Note near the end of the example you must cast the identifier imp to the interface
MyInterface before you can use the method ChangeState:

let imp = new Implementation()
let inter = imp :> MyInterface

This is because interfaces are explicitly implemented in F#. If you want the methods of
the interface to be available directly on the class that implements it, instead of after casting
the object to the interface, you can add the interface members to the definition of the class. To
revise the example, you simply add ChangeState as a member of the class Implementation.
Now it is no longer necessary to cast the identifier imp. I cover adding members to methods in
the section “Classes and Methods” later in the chapter.

#light
type MyInterface = interface

abstract ChangeState : int -> unit
end

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING94

7575Ch05.qxp  4/27/07  1:02 PM  Page 94



type Implementation = class
val mutable state : int
new() = {state = 0}
interface MyInterface with

member x.ChangeState y = x.state <- y
member x.ChangeState y = x.state <- y

end

let imp = new Implementation()

let pintIntNewline i =
print_int i
print_newline()

let main() =
imp.ChangeState 1
pintIntNewline imp.state
imp.ChangeState 2
pintIntNewline imp.state

main()

The results are as follows:

1
2

Classes, Fields, and Explicit Constructors
Until now you’ve relied on classes available in non-F# libraries. In this and the following sec-
tions, you’ll learn how to define classes of your own. First, you’ll learn how to define fields and
constructors so you can create instances. Then, in the following sections, you’ll learn about
inheritance and methods associated with classes.

In F#, classes are essentially just special kinds of types, so you define them using the type
keyword followed by an equals sign and then the keyword class. To terminate your class defi-
nition, you use the keyword end. The next example shows the simplest class definition
possible, of a class with nothing in it, or an empty class. It then attempts to instantiate it.

#light
type Empty = class
end

let emptyItem = new Empty()

This code will not compile because of the last line. You didn’t provide a constructor for
our class, so there’s no way to create an instance of it. To enable you to create an instance of

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 95

7575Ch05.qxp  4/27/07  1:02 PM  Page 95



the class, you must explicitly add a constructor. To do this, you need to add a member, which
is always named new and is followed the constructor within parentheses. After this comes an
equals sign followed by a block (delimited by braces), which contains expressions to initialize
every field in the class. The following example defines a simple constructor for an empty class:

#light
type JustConstruct = class

new() = {}
end

let constructed = new JustConstruct()

This may come as a surprise to experienced object-oriented programmers since most
object-oriented languages provide a default constructor for any class that doesn’t define one.
F#’s philosophy is to provide a more powerful construct called implicit class construction that
often subsumes the need for explicit constructors altogether. You’ll return to implicit class con-
struction in the next section. Furthermore, default constructors can easily leave some fields
uninitialized and therefore null and can leave some at risk of causing a NullReferenceException.
This is why a constructor in F# must initialize all fields defined by a class.

Fields are defined using the keyword val, followed the name of the field, and then the
name of the type separated from the property name by a colon. The next example shows a
simple class, file1, that has two fields, path and innerFile, that are initialized in the construc-
tor, which has one parameter, path:

#light
open System.IO

type File1 = class
val path: string
val innerFile: FileInfo
new(path) =

{ path = path ;
innerFile = new FileInfo(path) }

end

let myFile1 = new File1("whatever.txt")

It’s possible to overload constructors; one simply adds a second constructor with a differ-
ent number of parameters. If you want to overload with parameters of different types, then
you must provide type annotations. The following example shows a class, File2, with two con-
structors, one with no parameters and one with one parameter:

#light
open System.IO

type File2 = class
val path: string
val innerFile: FileInfo

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING96

7575Ch05.qxp  4/27/07  1:02 PM  Page 96



new() = new File2("default.txt")
new(path) =

{ path = path ;
innerFile = new FileInfo(path) }

end

let myFile2 = new File2("whatever2.txt")

Note that the only thing you can do in the initialization block of a constructor is to initial-
ize the fields of a class or call another constructor to do that for you. If you want to do other
things in a constructor, you must you use the keyword then after the block and follow it by the
extra expressions you want in the constructor. This separates the initialization of fields from
other code to ensure that nothing can happen to the fields of a class before they are properly
initialized. If you want to access the fields in a class outside the initialization block, you must
give a name to the instance you’re creating by qualifying the constructor; you do this using the
keyword as followed by the alias for the instance. The next example shows a constructor with
some code following the initialization block. The alias, x, is defined for the instance. This is
later used to test whether the file associated with the FileInfo object bound to the field
innerFile exists.

#light
open System.IO

type File3 = class
val path: string
val innerFile: FileInfo
new(path) as x =

{ path = path ;
innerFile = new FileInfo(path) }

then
if not x.innerFile.Exists then
let textFile = x.innerFile.CreateText()
textFile.Dispose()

end

let myFile3 = new File3("whatever.txt")

By default, fields in a class are immutable, which means once they have been bound to a
value, the value can be rebound to another value. For F# records with mutable fields and .NET
objects, this does not mean their internal state cannot change; it simply means you cannot
replace the whole value to which the field is bound. You can see this in the previous example;
if the file you are creating doesn’t exist, the file will be created, changing the value of the
Exists flag to true. However, you cannot set the field innerFile to be another instance of the
FileInfo object.

From time to time, it can be useful to rebind a field to another value. To allow this to hap-
pen, F# provides the keyword mutable; when a field is defined as mutable, it can be rebound
whenever the programmer chooses. The following example illustrates its usage. In this exam-
ple, you see that the mutable keyword is applied to the FileInfo field so that you can change

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 97

7575Ch05.qxp  4/27/07  1:02 PM  Page 97



the instance of the object it refers to later. You see that if the file does not exist, it is replaced by
the first file available in the directory.

#light
open System.IO

type File4 = class
val path: string
val mutable innerFile: FileInfo
new(path) as x =

{ path = path ;
innerFile = new FileInfo(path) }

then
if not x.innerFile.Exists then
let dir = x.innerFile.Directory in
let files = dir.GetFiles() in
if files.Length > 0 then

x.innerFile <- files.(0)
else

failwith "no files exist in that dir"
end

let myFile4 = new File4("whatever2.txt")

Implicit Class Construction
So far you’ve defined classes using the explicit syntax for constructors. A recent enhancement to
F# is called implicit class construction or the compact class syntax. This allows a class to implic-
itly define a construction sequence through a series of let bindings prior to the member
definitions of the class. These bindings are private to the class. For example, you can define the
File1 example from the previous section simply by using the following:

type File1(path) = class
let innerFile = new FileInfo(path)
member x.InnerFile = innerFile

end

let myFile1 = new File1("whatever.txt")

Classes using implicit class construction have a tuple of arguments such as path after the
name of the type constructor. Furthermore, the body of the class may contain let bindings,
which are always private to the class. Here you have also added the property member
InnerFile to reveal the value of the value of the innerFile. I discuss property members later in
this chapter. Here is a second example:

type Counter(start, increment, length) = class
let finish = start + length
let mutable current = start

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING98

7575Ch05.qxp  4/27/07  1:02 PM  Page 98



member obj.Current = current
member obj.Increment() =

if current > finish then failwith "finished!";
current <- current + increment

end

Logically speaking, this class is equivalent to the following one that defines fields and a
constructor explicitly:

// The previous code is equivalent to the following:
type Counter = class

val start: int
val increment: int
val length : int
val finish : int
val mutable current : int
new(start, increment, length) =

{ start=start;
increment=increment;
length=length;
finish = start + length;
current = start; }

member obj.Current = current
member obj.Increment() =

if obj.current > obj.finish then failwith “finished!”;
obj.current <- obj.current + obj.increme

end

However, the F# compiler is free to optimize the fields of the class away where possible.
For example, the start value is required only during initialization of the object and thus will
not be included as a field of the object.

The first definition of Counter is a third the size of the second, so obviously the syntax has
some advantages. I use both implicit and explicit constructors in this book because it is neces-
sary in some circumstances to understand the more explicit syntax, for example, when writing
classes with multiple constructors.

Classes and Inheritance
I have already covered inheritance in a limited way in the section “Object Expressions.” Inheri-
tance allows you to extend a class that is already defined and to tweak its behavior to add new
or replace original functionality. Like most modern object-oriented languages, F# allows
single inheritance (from one base class) as well as the implementation of multiple interfaces
(see the sections “Defining interfaces” and “Implementing Interfaces” later in this chapter).
This section will cover the very basics of inheritance, and then the following section, “Classes
and Their Methods,” will show how to implement methods to make full use of inheritance.

You specify inheritance with the inherit keyword, which must come directly after the
keyword class. Let’s kick off by looking at a simple example of inheritance between two F#
types. The following example shows an F# class, sub, that derives from a base class, base. The

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 99

7575Ch05.qxp  4/27/07  1:02 PM  Page 99



class base has one field, state, and the class sub has another called otherState. The example
shows that both fields can be used by the sub derived class, because state is inherited from
the base class.

#light
type Base = class

val state: int
new() = { state = 0 }

end

type Sub = class
inherit Base
val otherState: int
new() = { otherState = 0 }

end

let myObject = new Sub()

printfn
"myObject.state = %i, myObject.otherState = %i"
myObject.state
myObject.otherState

The results of this example, when compiled and executed, are as follows:

myObject.state = 0, myObject.otherState = 0

For this to work properly, the base class must have a parameterless constructor, that is, a
constructor that does not take any arguments. If the base class does not have a parameterless
constructor, then it cannot be initialized implicitly when the derived class is instantiated. This
doesn’t mean you can’t derive from it; it just means you need to explicitly call the base class’s
constructor. You do this using the inherit keyword again but this time within the constructor’s
initializer block. The following example shows how to derive from a class that has no parame-
terless constructor:

#light
type Base1 = class

val state: int
new(state) = { state = state }

end

type Sub1 = class
inherit Base1
val otherState: int
new(state) = { inherit Base1(state) ; otherState = 0 }

end

let myOtherObject = new Sub1(1)

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING100

7575Ch05.qxp  4/27/07  1:02 PM  Page 100



printfn
"myObject.state = %i, myObject.otherState = %i"
myOtherObject.state
myOtherObject.otherState

The results of this example, when compiled and executed, are as follows:

myOtherObject.state = 1, myOtherObject.otherState = 0

When using implicit class construction, the call to the base class constructor is specified
as part of the inherits declaration. For example, you can rewrite the previous example as fol-
lows, giving the same results:

type Base1(state) = class
member x.State = state

end

type Sub1(state) = class
inherit Base1(state)
member x.OtherState = state

end

let myOtherObject = new Sub1(1)

printfn
"myObject.state = %i, myObject.otherState = %i"
myOtherObject.State
myOtherObject.OtherState

Classes and Methods
The previous two sections gave you the basics of putting together a class. Now you’ll take a
look at really getting the most out of object-oriented programming by adding methods to your
class. A method is a function that has access to the fields of an object and can change them if
they are mutable. A derived class can define new methods and can override methods inher-
ited from its base class.

Methods are defined using four keywords, either member, override, abstract, or default. The
simplest way to declare a method is to use the member keyword; this defines a method that can-
not be overridden. The override keyword defines a method that overrides an inherited method
that has an implementation in a base class. The abstract keyword defines a method that has no
implementation and must be overridden in a derived class. The keyword default has a similar
meaning to the override keyword, except it is only ever used to override an abstract method.

The member, override, and default definitions have the same syntax. The keyword is fol-
lowed by the parameter that represents the instance of the object whose class you are in the
process of defining. You can use this parameter in the method implementation to get access to
all the class’s fields and properties. After this special parameter comes a dot and then the

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 101

7575Ch05.qxp  4/27/07  1:02 PM  Page 101



name of the method. Next come the parameters of the method. After that comes an equals
sign followed by the implementation of the method.

Methods declared using the keyword abstract are a little different, because there is no
implementation. Because there is no implementation, you omit the parameter that represents
the object itself, so the keyword abstract is followed directly by the method name. Following
this is the method’s type, which is separated from the method name using a colon, just like
any other type annotation.

The next example is designed to illustrate the use of all four kinds of methods:

#light
type Base = class

val mutable state: int
new() = { state = 0 }
member x.JiggleState y = x.state <- y
abstract WiggleState: int -> unit
default x.WiggleState y = x.state <- y + x.state

end

type Sub = class
inherit Base
new() = {}
default x.WiggleState y = x.state <- y &&& x.state

end

let myBase = new Base()
let mySub = new Sub()

let testBehavior (c : #Base) =
c.JiggleState 1
print_int c.state
print_newline()
c.WiggleState 3
print_int c.state
print_newline()

print_endline "base class: "
testBehavior myBase
print_endline "sub class: "
testBehavior mySub

The results of this example, when compiled and executed, are as follows:

base class:
1
4
sub class:
1
1

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING102

7575Ch05.qxp  4/27/07  1:02 PM  Page 102



You first implement a method, JiggleState, in class Base. The method cannot be overrid-
den, so all derived classes will inherit this implementation. You then define an abstract
method, WiggleState, that can be overridden (and, in fact, must be) by derived classes. To
define a new method that can be overridden, you always need to use a combination of the
abstract and default keywords. This could mean that abstract is used on the base class while
the default is used on the derived class, but often you will use them together in the same class,
as shown in the previous example. This requires the programmer to explicitly give types to a
method they are providing to be overridden. Although the F# philosophy is generally not to
require the programmer to give explicit types and to try to let the compiler work them out, the
compiler has no way to infer these types, so you must give them explicitly.

As shown in the results when JiggleState is called, the behavior remains the same in
both the base class and the derived class, where the behavior of WiggleState changes because
it is overridden.

Accessing the Base Class
When accessing methods within a class, they will usually call the version of the method in the
most derived class. That means if you try to call a method on the base class and it has been
overridden by the derived class, then it will automatically call the version on the derived class.
Ordinarily this is used to call the base implementation of a method you are overriding. This
isn’t always necessary but generally is required by library design guidelines because it can lead
to the base class malfunctioning if you do not do this.

To get access to methods on the base class, you give the base class a name. You do this by
using the keyword as after the name of the class you are inheriting from, followed by the name
you want to give to the base class. This name then acts like the keyword base in C#, giving you
access to the base class’s methods.

The following example shows an implementation of a class that derives from System.
Windows.Form. The identifier base is assigned to base class Form, as shown at the top of the defi-
nition of the MySquareForm class. The example uses implicit class construction, indicated by
the fact that the type MySquareForm takes a parameter, color.

open System.Drawing
open System.Windows.Forms

type MySquareForm(color) = class
inherit Form() as base
override x.OnPaint(e) =

e.Graphics.DrawRectangle(color,
10, 10,
x.Width - 30,
x.Height - 50)

base.OnPaint(e)
override x.OnResize(e) =

x.Invalidate()
base.OnResize(e)

end

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 103

7575Ch05.qxp  4/27/07  1:02 PM  Page 103



let form = new MySquareForm(Pens.Blue)
do Application.Run(form)

In this form you override two methods, OnPaint and OnResize, and in these methods you
use the identifier base, which grants access to the base class, to call the base class’s implemen-
tation of this method.

Properties and Indexers
Properties are a special form of method that look like a value to the code that calls it. Indexers
are a similar concept that makes a method look a bit like a collection to the calling code. Both
properties and indexers have accessors, which include a get accessor for reading and a set
accessor for writing.

A property definition starts the same way as a method definition, with the keyword member
followed by the parameter that represents the object, then a dot, and then the member name.
After this, instead of the method parameters, you use the keyword with, followed by either get
or set. Then comes the parameters; a get method must take unit, and a set method must take
one single parameter. After this is an equals sign and an expression that forms the method
body. If a second method is required, you use the keyword and to join them together.

The following sample shows the definition of a class that has a single property, MyProp,
which returns a random number. Setting the property resets the seed of the random number
generator.

#light
type Properties() = class

let mutable rand = new System.Random()
member x.MyProp

with get () = rand.Next()
and set y = rand <- new System.Random(y)

end
let prop = new Properties()

let print i = printfn "%d" i

prop.MyProp <- 12
print prop.MyProp
print prop.MyProp
print prop.MyProp

The results of the previous example, when compiled and executed, are as follows:

2137491492
726598452
334746691

It is also possible to declare abstract properties. The syntax is similar, the keyword member
is replaced by abstract, and the parameter that represents the object is omitted, just like for a

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING104

7575Ch05.qxp  4/27/07  1:02 PM  Page 104



method. After the member name comes the name of the type separated from the member
name by a colon. Then follows the keyword, followed by either get or set, representing
whether the inheritor must implement a get or set method, or both, separated by a comma.
Properties look exactly like a field to the calling code.

The following example shows the previous example revised so now it uses a base class,
AbstractProperties. You will notice how the derived class ConcreteProperties must imple-
ment the get and set methods using the keywords with and then and.

#light
type AbstractProperties() = class

abstract MyProp : int
with get, set

end

type ConcreteProperties() = class
inherit AbstractProperties()
let mutable rand = new System.Random()
override x.MyProp

with get() = rand.Next()
and set(y) = rand <- new System.Random(y)

end

Indexers are properties that take two or more parameters, one to represent the element
being placed in the pseudocollection and others to represent the index in it. In C# all indexers
are called Item in the underlying implementation, but the programmer never actually uses
this name because it is always implicit. In F#, the programmer can choose the name of the
indexer property. If the programmer chooses the name Item, then there is special syntax for
accessing the property.

The syntax for creating an indexer is the same as a property, except a get method has one
or more parameters, and a set method has two or more parameters. To access an element in
an indexer, if its name is Item, you can use a special syntax that looks like array access except
with the parentheses replaced by square brackets:

#light
type Indexers(vals:string[]) = class

member x.Item
with get (y) = vals.[y]
and set (y, z) = vals.[y] <- z

member x.MyString
with get (y) = vals.[y]
and set (y, z) = vals.[y] <- z

end

let index = new Indexers [|"One"; "Two"; "Three"; "Four"|]

index.[0] <- "Five";
index.Item(2) <- "Six";
index.MyString(3) <- "Seven";
print_endline index.[0]

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 105

7575Ch05.qxp  4/27/07  1:02 PM  Page 105



print_endline (index.Item(1))
print_endline (index.MyString(2))
print_endline (index.MyString(3))

The results of the previous example, when compiled and executed, are as follows:

Five
Two
Six
Seven

nNote When working with indexers with a name other than Item, remember that it will be difficult for
other .NET languages to use your classes.

Classes and Static Methods
Static methods are like instance methods, except they are not specific to any instance of a
class so have no access to the class’s fields.

To create a static method, you use the keyword static, followed by the keyword member.
Then comes the method name, its parameters, an equals sign, and then the method defini-
tion. This is basically the same as declaring an instance method, just with the addition of the
keyword static and the removal of the parameter that represents the object. Removing the
parameter that represents the object is quite logical because the method has no access to the
object’s properties.

The following example shows the definition of a static method, rev_string, associated
with a class, MyClass:

#light
type MyClass = class

static member revString (s : string) =
let chars = s.ToCharArray() in
let reved_chars = Array.rev chars in
new string(reved_chars)

end

let myString = MyClass.revString "dlrow olleH"

print_string myString

The results of the previous example, when compiled and executed, are as follows:

Hello world

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING106

7575Ch05.qxp  4/27/07  1:02 PM  Page 106



You will notice from the previous example that the static methods called use the name of the
type they are associated with, rather than a value of the type with which the method is associated.

Static methods can also be useful for providing operators for your classes to use. The
basic syntax for declaring an operator is the same as for declaring any other static method,
except the name of the method is replaced by the operator in brackets. The parameters of the
operator must be given as a tuple and typically need type annotations to indicate their types.

The following example assumes that for some reason you want to reimplement the int
type in a class called MyInt. The MyInt class has a plus operator defined on it.

#light
type MyInt(state:int) = class

member x.State = state
static member ( + ) (x:MyInt, y:MyInt) : MyInt = new MyInt(x.State + y.State)
override x.ToString() = string_of_int state

end

let x = new MyInt(1)
let y = new MyInt(1)

printfn "(x + y) = %A" (x + y)

The results of the previous example, when compiled and executed, are as follows:

(x + y) = 2

Overriding Methods from Non-F# Libraries
When overriding methods from non-F# libraries, the method definition must be in the tuple
style, that is, surrounded by brackets and separated by commas. If you need to use a method
like this as a value, then you will need to create an F# function from the method.

The following sample shows a class that implements the interface
System.Net.ICredentials. Its single method, GetCredential, has two parameters. Just after the
interface has been implemented, the example demonstrates using it as a value in the method
GetCredentialList.

#light
type CredentialsFactory() = class

interface System.Net.ICredentials with
member x.GetCredential(uri, authType) =

new System.Net.NetworkCredential("rob", "whatever", "F# credentials")
member x.GetCredentialList uri authTypes =

let y = (x :> System.Net.ICredentials)
let getCredential s = y.GetCredential(uri, s)
List.map getCredential authTypes

end

I discuss the relationship between F# signatures and C# signatures in Chapter 13.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 107

7575Ch05.qxp  4/27/07  1:02 PM  Page 107



Defining Delegates
Delegates are the mechanism both C# and Visual Basic use to treat their methods as values. 
A delegate basically acts as a .NET object that wraps the method and provides an invoke
method so it can be called. There is rarely a need to define delegates in F# because it can treat
a function as a value without the need for any wrapper. However, sometimes they are useful—
to define delegates to expose F# functionality to other .NET languages in a friendlier manner
and to define callbacks for directly calling C code from F#.

To define a delegate, you use the keyword delegate followed directly by the keyword of
and then the type of the delegate’s signature, which follows the standard F# type annotation
notation.

The next example shows the definition of a delegate, MyDelegate, which takes an int and
returns unit. You then create a new instance of this delegate and apply it to a list of integers.
As you’ve already seen in Chapter 3, there are much shorter ways of implementing this func-
tionality in F#.

#light
type MyDelegate = delegate of int -> unit

let inst = new MyDelegate (fun i -> print_int i)

let ints = [1 ; 2 ; 3 ]

ints
|> List.iter (fun i -> inst.Invoke(i))

The results of this example, when compiled and executed, are as follows:

123

Structs
You define structs in a similar manner to classes. The keyword class is replaced with struct.
The main difference between a class and struct is the area of memory where the object will be
allocated. When used as a local variable or parameter, a struct is allocated on the stack, while a
class is allocated on the managed heap. Because structs are allocated on the stack, they are
not garbage collected but are automatically deallocated when a function exits. It is generally
slightly faster accessing their fields and slightly slower passing them to methods, but these dif-
ferences do tend to be quite small. Because they are allocated on the stack, it is generally best
to create structs with a small number of fields to avoid stack overflow. You can’t use inheri-
tance when implementing structs, so this means structs can’t define virtual methods or
abstract methods.

The next example defines a struct representing an IP address. Note the only difference
from defining a class is that the keyword struct is used.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING108

7575Ch05.qxp  4/27/07  1:02 PM  Page 108



type IpAddress = struct
val first : byte
val second : byte
val third : byte
val fourth : byte
new(first, second, third, fourth) =

{ first = first;
second = second;
third = third;
fourth = fourth }

override x.ToString() =
Printf.sprintf "%O.%O.%O.%O" x.first x.second x.third x.fourth

member x.GetBytes() = x.first, x.second, x.third, x.fourth
end

So, when should you use a classes, and when should you use a struct? A good rule of thumb
is to avoid structs, using them only when really necessary, for example, when interoperating with
unmanaged C/C++ code (for more details on this, see Chapter 13).

Enums
Enums allow you to define a type made up of a finite set of identifiers, with each identifier
mapping to an integer. This defines a type that can then take the value associated with any
one of the defined identifiers.

To define an enum, give the names of the identifiers followed by equals signs and then the
values of the constants associated with the identifiers. The identifiers that are members of the
enum are separated by vertical bars. To demonstrate this, an enum Scale is defined in the fol-
lowing example:

#light
type Scale =
| C = 1
| D = 2
| E = 3
| F = 4
| G = 5
| A = 6
| B = 7

It’s quite common to define enums that are intended to be combined logically. To do this,
choose constants so that each number is represented by a single bit, that is, the numbers 0, 1,
2, 4, 8, and so on. F#’s binary literals are a great help here, since you can easily see how the
constants can combine.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING 109

7575Ch05.qxp  4/27/07  1:02 PM  Page 109



#light
[<System.Flags>]
type ChordScale =
| C = 0b0000000000000001
| D = 0b0000000000000010
| E = 0b0000000000000100
| F = 0b0000000000001000
| G = 0b0000000000010000
| A = 0b0000000000100000
| B = 0b0000000001000000

The module Enum provides functionality for dealing with enums in F#; I discuss it in
Chapter 7.

Summary
You’ve now seen how to use the three major programming paradigms in F# and how flexible
F# is for coding in any mix of styles. In the next chapter, you’ll look at how code is organized 
in F# and how to annotate and “quote” it.

CHAPTER 5 n OBJECT-ORIENTED PROGRAMMING110

7575Ch05.qxp  4/27/07  1:02 PM  Page 110



Organizing, Annotating, and
Quoting Code

An important part of any programming language is the ability to organize code into logical
chunks. It’s also important to be able to annotate code with notes about what it does, for
future maintainers and even yourself.

It has also become common to use attributes and data structures to annotate assemblies
and the types and values within them. Other libraries or the CLR can then interpret these
attributes. I cover this technique of marking functions and values with attributes in the sec-
tion “Attributes.” The technique of compiling code into data structures is known as quoting,
and I cover it in the section “Quoted Code” toward the end of the chapter.

Modules
F# code is organized into modules, which are basically a way of grouping values and types
under a common name. This organization has an effect on the scope of identifiers. Inside a
module, identifiers can reference each other freely. To reference identifiers outside a module,
the identifier must be qualified with the module name, unless the module is explicitly opened
with the open directive (see “Opening Namespaces and Modules” later in this chapter).

By default, each module is contained in a single source file. The entire contents of the
source file make up the module, and if the module isn’t explicitly named, it gets the name of
its source file, with the first letter capitalized. (F# is case sensitive, so it’s important to remem-
ber this.) It’s recommended that such anonymous modules be used only for very simple
programs.

To explicitly name a module, use the keyword module. The keyword has two modes of
operation. One gives the same name to the whole of the source file. The other mode gives a
name to a section of a source file; this way several modules can appear in a source file.

To include the entire contents of a source file in the same explicitly named module, you
must place the module keyword at the top of the source file. A module name can contain dots,
and these separate the name into parts. For example:

module Strangelights.Foundations.ModuleDemo

You can define nested modules within the same source file. Nested module names 
cannot contain dots. After the nested module’s name comes an equals sign followed by the
indented module definition. You can also use the keywords begin and end. To wrap the 

111

C H A P T E R  6

n n n

7575Ch06.qxp  4/27/07  1:11 PM  Page 111



module definition, you can nest submodules. The following code defines three submodules,
FirstModule, SecondModule, and ThirdModule. ThirdModule is nested within SecondModule.

#light
module FirstModule =

let n = 1

module SecondModule =
let n = 2
module ThirdModule =

let n = 3

Note that different submodules can contain the same identifiers without any problems.
Modules affect the scope of an identifier. To access an identifier outside of its module, you
need to qualify it with the module name so there is no ambiguity between identifiers in differ-
ent modules. In the previous example, the identifier n is defined in all three modules. The
following example shows how to access the identifier n specific to each of the modules:

let x = FirstModule.n
let y = SecondModule.n
let z = SecondModule.ThirdModule.n

A module will be compiled into a .NET class, with the values becoming methods and
fields within that class. You can find more details about what an F# module looks like to other
.NET programming languages in “Calling F# Libraries from C#” in Chapter 13.

Namespaces
Namespaces help organize your code hierarchically. To help keep module names unique
across assemblies, the module name is qualified with a namespace name, which is just a char-
acter string with parts separated by dots. For example, F# provides a module named List, and
the .NET BCL provides a class named List. There is no name conflict, because the F# module
is in namespace Microsoft.FSharp, and the BCL class is in namespace
System.Collections.Generic.

It’s important that namespace names be unique. The most popular convention is to start
namespace names with the name of a company or organization, followed by a specific name
that indicates functionality. Although it’s not obligatory to do this, the convention is so widely
followed that if you intend to distribute your code, especially in the form of a class library,
then you should adopt it too.

nNote Interestingly, at the IL level, there is no real concept of namespaces. A name of a class or module is
just a long identifier that might or might not contain dots. Namespaces are implemented at the compiler
level. When you use an open directive, you tell the compiler to do some extra work; to qualify all your identi-
fiers with the given name, if it needs to; and to see whether this results in a match with a value or type.

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE112

7575Ch06.qxp  4/27/07  1:11 PM  Page 112



In the simplest case, you can place a module in a namespace simply by using a module
name with dots in it. The module and namespace names will be the same. You can also explic-
itly define a namespace for a module with the namespace directive. For example, you could
replace the following:

module Strangelights.Foundations.ModuleDemo

with this to get the same result:

namespace Strangelights.Foundations
module ModuleDemo

This might not be too useful for modules, but as noted in the previous section, submodules
names cannot contain dots, so you use the namespace directive to place submodules within a
namespace. For example:

#light
namespace Strangelights.Foundations
module FirstModule =

let n = 1

module SecondModule =
let n = 2
module ThirdModule =

let n = 3

This means that once compiled to the outside world, the first instance of n will be accessi-
ble using the identifier Strangelights.Foundation.FirstModule.n instead of just
FirstModule.n.

It’s possible to define a namespace without also using a module directive, but then the
source file can contain only type definitions. For example:

#light
namespace Strangelights.Foundations

type MyRecord = { field : string }

The following example will not compile, because you can’t place a value definition
directly into a namespace without explicitly defining a module or submodule within the
namespace.

#light
namespace Strangelights.Foundations

let value = "val"

In fact, the namespace directive has some interesting and subtle effects on what your code
looks like to other languages; I cover this in “Calling F# Libraries from C#” in Chapter 13.

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 113

7575Ch06.qxp  4/27/07  1:11 PM  Page 113



Opening Namespaces and Modules
As you have seen in the previous two sections, to specify a value or type that is not defined in
the current module, you must use its qualified name. This can quickly become tedious because
some qualified names can be quite long. Fortunately, F# provides the open directive so you can
use simple names for types and values.

The open keyword is followed by the name of the namespace or module you want to open.
For example, you could replace the following:

#light
System.Console.WriteLine("Hello world")

with this:

#light
open System

Console.WriteLine("Hello world")

Note that you don’t need to specify the whole namespace name. You can specify the front
part of it and use the remaining parts to qualify simple names. For example, you can specify
System.Collections rather than the namespace, System.Collections.Generic, and then use
Generic.List to create an instance of the generic List class, as follows:

#light
open System.Collections

let l = new Generic.Dictionary<string, int>()

nCaution The technique of using partially qualified names, such as Generic.Dictionary, can make
programs difficult to maintain. Either use the name and the full namespace or use just the name.

You can open F# modules, but you cannot open classes from non-F# libraries. If you open
a module, it means you can reference values and types within it by just their simple names.
For example, the following finds the length of an array and binds this to the identifier len:

#light
open Microsoft.FSharp.MLLib.Array

let len = length [| 1 |]

Some argue that this ability to open modules directly should be used sparingly because it
can make it difficult to find where identifiers originated. In fact, modules can typically be
divided into two categories: those that are designed to be accessed using qualified names and
those that are designed to be opened directly. Most modules are designed to be accessed with
qualified names; a few, such as Microsoft.FSharp.Core.Operators, are designed to be directly
opened. The next example shows the using function from Operators being used directly:

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE114

7575Ch06.qxp  4/27/07  1:11 PM  Page 114



#light
open System.IO
open Microsoft.FSharp.Core.Operators

using (File.AppendText("text.txt") ) (fun stream ->
stream.WriteLine("Hello World"))

This example is slightly bogus because the Microsoft.FSharp.Core.Operators is opened
by the compiler by default. I used this because modules designed to be opened directly are a
rarity since it’s almost always useful for anyone reading the code to know where the function
originated.

If you open two namespaces that contain modules or classes of the same name, it won’t
cause a compile error. You can even use values from the modules or classes with the same
name, as long as the names of the values are not the same. In Figure 6-1, the namespace
System is opened. It contains the class Array, and a module, Array, is also available in F#’s
libraries. In the figure you can see both static methods from BCL’s Array class, all starting with
a capital letter, and values from F#’s Array module, which start with a small letter.

Figure 6-1. Visual Studio’s IntelliSense

Giving Namespaces and Modules Aliases
It can sometimes be useful to give an alias to a namespace or module to avoid naming clashes.
This is useful when two modules share the same name and value with a common name and
can also be a convenient way of switching some of your code to use two different implementa-
tions of similar modules. It can be more common when using libraries not written in F#.

The syntax for this is the module keyword followed by an identifier, then an equals sign,
and then the name of the namespace or module to be aliased. The following example defines
GColl as the alias for the namespace System.Collections.Generic:

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 115

7575Ch06.qxp  4/27/07  1:11 PM  Page 115



#light
module GColl = System.Collections.Generic

let l = new GColl.List<int>()

Signature Files
Signature files are a way of making function and value definitions private to a module. You’ve
already seen the syntax for the definition of a signature file in Chapter 2. It is the source that
the compiler generates when using the –i switch. Any definitions that appear in a signature
file are public and can be accessed by anyone using the module. Any that are not in the signa-
ture file are private and can be used only inside the module itself. The typical way to create a
signature file is to generate it from the module source and then go through and erase any val-
ues and functions that you want to be private.

The signature file name must be the same as the name of the module with which it is
paired. It must have the extension .fsi or .mli. You must specify the signature file to the com-
piler. On the command line, you must give it directly before the source file for its module. In
Visual Studio, the signature file must appear before the source file in Solution Explorer.

For example, if you have the following in the file Lib.fs:

#light
let funkyFunction x =

x + ": keep it funky!"

let notSoFunkyFunction x = x + 1

and you want to create a library that exposes funkyFunction but not notSoFunkyFunction, you
would use the signature code like this:

val funkyFunction : string -> string

and would use the command line like this:

fsc -a Lib.fsi Lib.fs

which results in an assembly named Lib.dll with one class named Lib, one public function
named funkyFunction, and one private function named notSoFunkyFunction.

Module Scope
The order that modules are passed to the compiler is important, because it affects the scope of
identifiers within the modules and the order in which the modules are executed. I cover scope
in this section and execution order in the next.

Values and types within a module cannot be seen from another module unless the mod-
ule they’re in appears on the command line before the module that refers to them. This is
probably easier to understand with an example. Suppose you have a source file, ModuleOne.fs,
containing the following:

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE116

7575Ch06.qxp  4/27/07  1:11 PM  Page 116



#light
module ModuleOne

let text = "some text"

and another module, ModuleTwo.fs, containing the following:

#light
module ModuleTwo

print_endline ModuleOne.text

These two modules can be compiled successfully with the following:

fsc ModuleOne.fs ModuleTwo.fs -o ModuleScope.exe

But the following command:

fsc ModuleTwo.fs ModuleOne.fs -o ModuleScope.exe

would result in this error message:

ModuleTwo.fs(3,17): error: FS0039: The namespace or module 'ModuleOne' is not
defined.

This is because ModuleOne is used in the definition of ModuleTwo, so ModuleOne must appear
before ModuleTwo in the command line, or else ModuleOne will not be in scope for ModuleTwo.

Visual Studio users should note that the order in which files appear in Solution Explorer is
the order that they are passed to the compiler. This means it is sometimes necessary to spend
a few moments rearranging the order of the files when adding a new file to a project.

Module Execution
Roughly speaking, execution in F# starts at the top of a module and works its way down to 
the bottom. Any values that are functions are calculated, and any top-level statements are
executed. So, the following:

module ModuleOne

print_endline "This is the first line"

print_endline "This is the second"

let file =
let temp = new System.IO.FileInfo("test.txt") in
Printf.printf "File exists: %b\r\n" temp.Exists;
temp

will give the following result:

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 117

7575Ch06.qxp  4/27/07  1:11 PM  Page 117



This is the first line
This is the second
File exists: false

This is all pretty much as you might expect. When a source file is compiled into an assem-
bly, none of the code in it will execute until a value from it is used by a currently executing
function. Then, when the first value in the file is touched, all the let expressions and top-level
statements in the module will execute in their lexical order. When a program is split over more
than one module, the last module passed to the compiler is special. All the items in this mod-
ule will execute, and the other items will behave as they were in an assembly. Items in other
modules will execute only when a value from that module is used by the module currently
executing. Suppose you create a program with two modules.

This is ModuleOne.fs:

#light
module ModuleOne

print_endline "This is the third and final"

This is ModuleTwo.fs:

#light
module ModuleTwo

print_endline "This is the first line"

print_endline "This is the second"

If this is compiled with the following:

fsc ModuleOne.fs ModuleTwo.fs -o ModuleExecution.exe

this will give the following result:

This is the first line
This is the second

This might not be what you expected, but it is important to remember that since ModuleOne
was not the last module passed to the compiler, nothing in it will execute until a value from it is
used by a function currently executing. In this case, no value from ModuleOne is ever used, so it
never executes. Taking this into account, you can fix your program so it behaves more as you
expect.

Here is ModuleOne.fs:

module ModuleOne

print_endline "This is the third and final"

let n = 1

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE118

7575Ch06.qxp  4/27/07  1:11 PM  Page 118



Here is ModuleTwo.fs:

module ModuleTwo

print_endline "This is the first line"

print_endline "This is the second"

let funct() =
Printf.printf "%i" ModuleOne.n

funct()

If this is compiled with the following:

fsc ModuleOne.fs ModuleTwo.fs -o ModuleExecution.exe

it will give the following result:

This is the first line
This is the second
This is the third and final
1

However, using this sort of trick to get the results you want is not recommended. It is gen-
erally best only to use statements at the top level in the last module passed to the compiler. In
fact, the typical form of an F# program is to have one statement at the top level at the bottom
of the last module that is passed to the compiler.

Optional Compilation
Optional compilation is a technique where the compiler can ignore various bits of text from a
source file. Most programming languages support some kind of optional compilation. It can
be handy, for example, if you want to build a library that supports both .NET 1.1 and 2.0 and
want to include extra values and types that take advantage of the new features of version 2.0.
However, you should use the technique sparingly and with great caution, because it can
quickly make code difficult to understand and maintain.

In F# optional compilation is supported by the compiler switch --define FLAG and the
command #if FLAG in a source file.

The following example shows how to define two different versions of a function, one for
when the code is compiled for .NET 2.0 and the other for all other versions of .NET:

#light
open Microsoft.FSharp.Compatibility

#if FRAMEWORK_AT_LEAST_2_0
let getArray() = [|1; 2; 3|]
#else

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 119

7575Ch06.qxp  4/27/07  1:11 PM  Page 119



let getArray() = CompatArray.of_array [|1; 2; 3|]
#endif

This example assumes that the compiler switch --define FRAMEWORK_AT_LEAST_2_0 is
defined when the code is being compiled for .NET 2.0. Chapter 13 gives more on the differ-
ences between .NET 1.0, 1.1, and 2.0 and covers compiler options.

Comments
F# provides two kinds of comments. Multiline comments start with a left parenthesis and an
asterisk and end with an asterisk and a right parenthesis. For example:

(* this is a comment *)

or

(* this
is a
comment

*)

You cannot nest multiline comments, and you will get a compile error if a comment is left
unclosed. Single-line comments start with two slashes and extend to the end of a line. For
example:

// this is a single-line comment

Doc Comments
Doc comments allow comments to be extracted from the source file in the form of XML or HTML.
This is useful because it allows programmers to browse code comments without having to browse
the source. This is convenient for the vendors of APIs because it allows them to provide documen-
tation about the code without having to provide the source itself, and it is just more convenient to
be able to browse the docs without having to open the source. In addition, the documentation is
stored alongside the source where it has more chance of being updated when code changes.

Doc comments start with three slashes instead of two. They can be associated only with
top-level values or type definitions and are associated with the value or type they appear
immediately before. The following code associates the comment this is an explanation with
the value myString:

#light
/// this is an explanation
let myString = "this is a string"

To extract doc comments into an XML file, you use the –doc compiler switch. If this exam-
ple were saved in a source file, prog.fs, the following command:

fsc -doc doc.xml Prog.fs

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE120

7575Ch06.qxp  4/27/07  1:11 PM  Page 120



would produce the following XML:

<?xml version="1.0" encoding="utf-8"?>
<doc>
<assembly><name>Prog</name></assembly>
<members>
<member name="F:Prog.myString">
<summary>
this is an explanation
</summary>

</member>
<member name="T:Prog">

</member>
</members>
</doc>

You can then process the XML using various tools, such as NDoc (ndoc.sourceforge.net),
to transform it into a number of more readable formats. The compiler also supports the direct
generation of HTML from doc comments. Although this is less flexible than XML, it can pro-
duce usable documentation with less effort. It can also produce better results, under some
circumstances, because notations such as generics and union types are not always well sup-
ported by documentation generation tools. I cover the compiler switches that generate HTML
in “Useful Command-Line Switches” in Chapter 12.

In F# there is no need to explicitly add any XML tags; for example, the <summary> and
</summary> tags were added automatically. I find this useful because it saves a lot of typing and
avoids wasted space in the source file; however, you can take control and write out the XML
tags themselves if you want. The following is a doc comment where the tags have been explic-
itly written out:

#light
/// <summary>
/// divides the given parameter by 10
/// </summary>
/// <param name="x">the thing to be divided by 10</param>
let divTen x = x / 10

This will produce the following XML:

<?xml version="1.0" encoding="utf-8"?>
<doc>
<assembly><name>AnotherProg</name></assembly>
<members>
<member name="M:AnotherProg.divTen (System.Int32)">
<summary>
divides the given parameter by 10
</summary>
<param name="x">the thing to be divided by 10</param>

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 121

7575Ch06.qxp  4/27/07  1:11 PM  Page 121



</member>
<member name="T:AnotherProg">

</member>
</members>
</doc>

If no signature file exists for the module file, then the doc comments are taken directly
from the module file itself. However, if a signature file exists, then doc comments come from
the signature file. This means that even if doc comments exist in the module file, they will not
be included in the resulting XML or HTML if the compiler is given a signature file for it.

Custom Attributes
Custom attributes add information to your code that will be compiled into an assembly and
stored alongside your values and types. This information can then be read programmatically
via reflection or by the runtime itself.

Attributes can be associated with types, members of types, and top-level values. They can
also be associated with do statements. An attribute is specified in brackets, with the attribute
name in angle brackets. For example:

[<Obsolete>]

Attribute names, by convention, end with the string Attribute, so the actual name of the
Obsolete attribute is ObsoleteAttribute.

An attribute must immediately precede what it modifies. The following code marks the
function, functionOne, as obsolete:

#light
open System

[<Obsolete>]
let functionOne () = ()

An attribute is essentially just a class, and when you use an attribute, you are really just
making a call to its constructor. In the previous example, Obsolete has a parameterless con-
structor, and it can be called with or without parentheses. In this case, we called it without
parentheses. If you want to pass arguments to an attribute’s constructor, then you must use
parentheses and separate arguments with commas. For example:

#light
open System

[<Obsolete("it is a pointless function anyway!")>]
let functionTwo () = ()

Sometimes an attribute’s constructor does not expose all the properties of the attribute. If
you want to set them, you need to specify the property and a value for it. You specify the prop-
erty name, an equals sign, and the value after the other arguments to the constructor. The next
example sets the Unrestricted property of the PrintingPermission attribute to true:

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE122

7575Ch06.qxp  4/27/07  1:11 PM  Page 122



#light
open System.Drawing.Printing
open System.Security.Permissions

[<PrintingPermission(SecurityAction.Demand, Unrestricted = true)>]
let functionThree () = ()

You can use two or more attributes by separating the attributes with semicolons:

#light
open System
open System.Drawing.Printing
open System.Security.Permissions

[<Obsolete; PrintingPermission(SecurityAction.Demand)>]
let functionFive () = ()

So far, we’ve used attributes only with values, but using them with type or type members
is just as straightforward. The following example marks a type and all its members as obsolete:

#light
open System

[<Obsolete>]
type OOThing = class

[<Obsolete>]
val stringThing : string
[<Obsolete>]
new() = {stringThing = ""}
[<Obsolete>]
member x.GetTheString () = x.string_thing

end

If you intend to use WinForms or Windows Presentation Foundation (WPF) graphics
within your program, you must ensure that the program is a single-thread apartment. This is
because the libraries that provide the graphical components use unmanaged (not compiled
by the CLR) code under the covers. The easiest way to do this is by using the STAThread attrib-
ute. This must modify the first do statement in the last file passed to the compiler, that is, the
first statement that will execute when the program runs. For example:

#light
open System
open System.Windows.Forms

let form = new Form()

[<STAThread>]
do Application.Run(form)

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 123

7575Ch06.qxp  4/27/07  1:11 PM  Page 123



nNote The do keyword is usually required only when not using the #light mode; however, it is also
required when applying an attribute to a group of statements.

Once attributes have been added to types and values, it’s possible to use reflection to 
find which values and types are marked with which attributes. This is usually done with the
IsDefined or GetCustomAttributes methods of the System.Reflection.MemberInfo class,
meaning they are available on most objects used for reflection including System.Type. The
next example shows how to look for all types that are marked with the Obsolete attribute:

#light
let obsolete = System.AppDomain.CurrentDomain.GetAssemblies()

|> List.of_array
|> List.map ( fun assm -> assm.GetTypes() )
|> Array.concat
|> List.of_array
|> List.filter

( fun m ->
m.IsDefined((type System.ObsoleteAttribute), true))

print_any obsolete

The results are as follows:

[System.ContextMarshalException; System.Collections.IHashCodeProvider;
System.Collections.CaseInsensitiveHashCodeProvider;
System.Runtime.InteropServices.IDispatchImplType;
System.Runtime.InteropServices.IDispatchImplAttribute;
System.Runtime.InteropServices.SetWin32ContextInIDispatchAttribute;
System.Runtime.InteropServices.BIND_OPTS;
System.Runtime.InteropServices.UCOMIBindCtx;
System.Runtime.InteropServices.UCOMIConnectionPointContainer;
...

Now that you’ve seen how you can use attributes and reflection to examine code, let’s look
at a similar but more powerful technique for analyzing compiled code, called quotation.

Quoted Code
Quotations are a way of telling the compiler, “Don’t generate code for this section of the source
file; turn it into a data structure, an expression tree, instead.” This expression tree can then be
interpreted in a number of ways, transformed or optimized, compiled into another language,
or even just ignored.

Quotations come in two types, raw and typed, the difference being that typed quotations
carry static type information whereas raw quotations do not. Both carry runtime type annota-
tions. Typed quotations are designed for use in client programs, so usually you will want to use

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE124

7575Ch06.qxp  4/27/07  1:11 PM  Page 124



typed quotations. These are the only quotations covered in this section. Raw quotations are
designed for implementing libraries based on quotations; these will generally be automati-
cally typed quotations before they are consumed.

To quote an expression, place it between guillemets (also called French quotes), « ». To
ensure the compiler recognizes these characters, you must save your file as UTF-8. Visual
Studio users can do this with File ä Advanced Save. If you have some objection to using 
UTF-8, you can use an ASCII alternative: <@ @>. Both ways of quoting an expression are
essentially just an operator defined in a module, so you need to open the module Microsoft.
FSharp.Quotations.Typed to be able to use them. The next example uses a quotation and
prints it:

#light
open Microsoft.FSharp.Quotations.Typed

let quotedInt = « 1 »

printf "%A\r\n" quotedInt

The result is as follows:

<@ Int32 1 @>

If you were to use the ASCII alternative, it would look like this:

#light
open Microsoft.FSharp.Quotations.Typed

let asciiQuotedInt = <@ 1 @>

printf "%A\r\n" asciiQuotedInt

The result is as follows:

<@ Int32 1 @>

As you can see, the code doesn’t look very different and the results are the same, so from
now I’ll use guillemets. The following example defines an identifier and uses it in a quotation:

#light
open Microsoft.FSharp.Quotations.Typed

let n = 1
let quotedId = « n »

printf "%A\r\n" quotedId

The result is as follows:

<@ Prog.n @>

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 125

7575Ch06.qxp  4/27/07  1:11 PM  Page 125



Next we’ll quote a function applied to a value. Notice that since we are quoting two items,
the result of this quotation is split into two parts. The first part represents the function, and
the second represents the value to which it is applied.

#light
open Microsoft.FSharp.Quotations.Typed

let inc x = x + 1
let quotedFun = « inc 1 »

printf "%A\r\n" quotedFun

The result is as follows:

<@ Prog.inc (Int32 1) @>

The next example shows an operator applied to two values. Because the expression has
three items, the result is split into three parts, one to represent each part of the expression.

#light
open Microsoft.FSharp.Quotations.Typed

let quotedOp = « 1 + 1 »

printf "%A\r\n" quotedOp

The result is as follows:

<@ Microsoft.FSharp.Operators.op_Addition (Int32 1) (Int32 1) @>

The next example quotes an anonymous function:

#light
open Microsoft.FSharp.Quotations.Typed

let quotedAnonFun = « fun x -> x + 1 »

printf "%A\r\n" quotedAnonFun

The result is as follows:

<@
fun x#6142.1 ->
Microsoft.FSharp.Operators.op_Addition x#6142.1 (Int32 1) @>

To interpret expressions, you must first convert them into raw expressions and then query
the expression to see whether it is of a certain type. Querying the type returns an option type
that will contain the value Some if it is of that type or None if it isn’t. The next example defines a

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE126

7575Ch06.qxp  4/27/07  1:11 PM  Page 126



function, interpretInt, that queries the expression passed to it to see whether it is an integer.
If it is, it prints the value of that integer; otherwise, it prints the string "not an int".

#light
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Typed

let interpretInt exp =
let uexp = to_raw exp in
match uexp with
| Raw.Int32 x -> printfn "%d" x
| _ -> printfn "not an int"

interpretInt « 1 »
interpretInt « 1 + 1 »

The results are as follows:

1
not an int

We printed two expressions with interpretInt. The first was an integer value, so it printed
out the value of that integer. The second was not an integer, although it contained integers.

Quotations are a very big topic, and we can’t cover them completely in this section or
even in this book. You will, however, return to them in “Meta-programming with Quotations”
in Chapter 11.

Summary
In this chapter, you saw how to organize code in F#. You also saw how to comment, annotate,
and quote code, but you just scratched the surface of both annotation and quoting.

This concludes the tour of the F# core language. The rest of the book will focus on how to
use F#, from working with relational databases to creating user interfaces, after you look at the
F# core libraries in the next chapter.

CHAPTER 6 n ORGANIZING, ANNOTATING, AND QUOTING CODE 127

7575Ch06.qxp  4/27/07  1:11 PM  Page 127



7575Ch06.qxp  4/27/07  1:11 PM  Page 128



The F# Libraries

Although F# can use all the classes available in the .NET BCL, it also ships with its own set of
libraries.

The F# libraries are split into two, FSLib.dll, which is also referred to as the native F# library
or just FSLib, and MLLib.dll, which is sometimes referred to as the ML compatibility library or
MLLib. FSLib contains everything that the F# compiler really needs to work; for example, it con-
tains the Tuple class that is used when you use a tuple. MLLib is a set of libraries for doing
common programming tasks partially based on the libraries that ship with OCaml.

The objective of this chapter is not to completely document every nuance of every F#
library type and function. It is to give you an overview of what the modules can do, with a par-
ticular focus on features that aren’t readily available in the BCL. The F# online documentation
(http://research.microsoft.com/fsharp/manual/namespaces.html) is the place to find
detailed documentation about each function.

There is some crossover between the functionality provided by the F# libraries and the
.NET BCL. Programmers often ask when should they use functions from the F# library and
when should they use the classes and methods available in the .NET BCL. Both have their
advantages and disadvantages, and a good rule of thumb is to prefer what is in FSLib over the
classes available in the .NET Framework BCL and prefer what is available in the .NET Frame-
work BCL over MLLib.

Libraries Overview
The following sections list all the modules that are contained in FSLib and MLLib; the mod-
ules covered in this chapter are highlighted in bold.

129

C H A P T E R  7

n n n

7575Ch07.qxp  4/27/07  1:03 PM  Page 129



The Native F# Library FSLib.dll
These are the modules in FSLib:

• Microsoft.FSharp

• Idioms

• Reflection

• Microsoft.FSharp.Collections

• Array • Array2 • Array3

• ComparisonIdentity • HashIdentity • IEnumerable

• LazyList • List • Map

• ReadonlyArray • ResizeArray • Seq

• Set

• Microsoft.FSharp.Collections.Tags

• Optimizations

• Microsoft.FSharp.Compatibility

• CompatArray • CompatMatrix • MATLAB

• Microsoft.FSharp.Control

• IEvent • Lazy • LazyStatus

• Microsoft.FSharp.Core

• Byte • Char • Enum

• Float • Float32 • Int16

• Int32 • Int64 • Int8

• LanguagePrimitives • Operators • OptimizedClosures

• Option • SByte • String

• UInt16 • UInt32 • UInt64

• UInt8

• Microsoft.FSharp.Math

• BigInt • BigNum • BigRational

• Complex • GlobalAssociations • Instances

• LinearAlgebra • Matrix • Notation

• RawMatrixOps • RowVector • Vector

CHAPTER 7 n THE F# L IBRARIES130

7575Ch07.qxp  4/27/07  1:03 PM  Page 130



CHAPTER 7 n THE F# L IBRARIES 131

• Microsoft.FSharp.Math.Primitive

• BigNat • FFT

• Microsoft.FSharp.NativeInterop

• NativePtr • Ref

• Microsoft.FSharp.Primitives

• Basics

• Microsoft.FSharp.Quotations

• Raw • RawTypes • Typed • Utilities

• Microsoft.FSharp.Text

• Printf • PrintfImpl

• Microsoft.FSharp.Text.StructuredFormat

• Display • LayoutOps

• Microsoft.FSharp.Tools.FsYacc

• ParseHelpers

The ML Compatibility Library MLLib.dll
These are the modules in MLLib:

• Microsoft.FSharp.Compatibility.OCaml

• Arg

• Big_int

• Buffer

• Bytearray

• Filename

• Hashtbl

• Lexing

• Num

• Obj

• Parsing

• Pervasives

• Printexc

• Sys

7575Ch07.qxp  4/27/07  1:03 PM  Page 131



The Native F# Library FSLib.dll
FSLib contains all the classes that you need to make the compiler work, such as the definition
of the type into which F#’s list literal compiles. I’ll cover the following modules:

Microsoft.FSharp.Core.Operators: A module containing functions similar to useful C#
constructs such as using and lock.

Microsoft.FSharp.Reflection: A module containing functions that supplement the .NET
Framework’s reflection classes to give a more accurate view of F# types and values.

Microsoft.FSharp.Collections.Seq: A module containing functions for any type that
supports the IEnumerable interface.

Microsoft.FSharp.Core.Enum: A module containing functions for .NET enumeration
types.

Microsoft.FSharp.Text.Printf: A module for formatting strings.

Microsoft.FSharp.Control.IEvent: A module for working with events in F#.

Microsoft.FSharp.Math: A namespace that contains several modules related to mathe-
matics. These include arbitrary precision integers and rationales, vectors, matrices, and
complex numbers.

The Microsoft.FSharp.Core.Operators Module
In F#, operators are defined by libraries rather than built into the language; this module contains
some of the language’s operators. It also contains some useful operators such as functions, and it
is these that I’ll be covering here. The module is open by default, which means the user can use
these functions with no prefix. Specifically, I will cover the following functions:

The using function: A function that helps you ensure that unmanaged or limited
resources are disposed of in a timely manner

The lock function: A function that helps you ensure that any resources that need to be
shared between threads are dealt with correctly

Tuple functions: Functions on tuples

The using Function
The IDisposable interface has one member, Dispose; typically this interface is used when a
class that wraps some unmanaged or limited resource, such as a database connection, calling
Dispose ensures that the resource can always be reclaimed in a timely manner and you do not
have to wait for garbage collection. The using function is a great way to ensure that the Dispose
method of the IDisposable interface is always called when you are finished with the class, even
if an exception is thrown.

The using function has the type 'a -> ('a -> 'b) -> 'b when 'a :> IDisposable. It
therefore has two parameters: the first must implement the IDisposable interface, and the
second is a function that must take a parameter of type IDisposable interface and that can

CHAPTER 7 n THE F# L IBRARIES132

7575Ch07.qxp  4/27/07  1:03 PM  Page 132



return a parameter of any type. The parameter returned from this function is the return type
of the using function. The following example illustrates this by opening a file to append to it:

#light
open System.IO

using (File.AppendText("test.txt"))
(fun streamWriter ->

streamWriter.WriteLine("A safe way to write to a file"))

The call to the BCL’s method File.AppendText will return a System.IO.StreamWriter,
which is a way of writing to a file. A file is managed by the operating system, so it has an
“unmanaged” aspect. This is why System.IO.StreamWriter implements IDisposable. A
System.IO.StreamWriter is passed to the function, which itself makes up the second
parameter passed to the using function. This is a neat way of ensuring that the streamWriter is
available only inside a limited scope of the function and that it is disposed of straightaway
when the function ends. If you did not write your file access using the using function, you
would have to explicitly call the Dispose method, or your text would not be flushed from
memory into the file. Similarly, there would be a risk that an exception could occur. Although
the risk is limited, there is a real risk that a file would not be closed properly and the text not
written to it.

It’s worth noting that using returns unit because the call to StreamWriter.WriteLine
returns unit. If you were performing an operation that didn’t return unit, say reading from a
file or database, you could return a value from the using function. The following example illus-
trates this by reading from a file and then binding the contents of the first line of that file to
the identifier text:

#light
open System.IO
let text =

using (File.OpenText("test.txt")) (fun streamReader ->
streamReader.ReadLine()

)

The lock Function
The lock function operates in a fashion similar to using. The purpose of the function is to lock a
section of code so that only one thread can pass through it at a time. This issue arises in multi-
threaded programming because a thread can context switch at any time, leaving operations
that should have been atomic half done. This is controlled by locking on an object; the idea is
that as soon as the lock is taken, any thread attempting to enter the section of code will be
blocked until the lock is released by the thread that holds it. Code protected in this way is
sometimes called a critical section. This is achieved by calling System.Threading.Monitor.Enter
at the start of the code that is to be protected and System.Threading.Monitor.Exit at the end; it
is important to guarantee that Monitor.Exit is called, or this could lead to threads being locked
forever. The lock function is a nice way to ensure that Monitor.Exit is always called if
Monitor.Enter has been called. It takes two parameters; the first is the object to be locked on,

CHAPTER 7 n THE F# L IBRARIES 133

7575Ch07.qxp  4/27/07  1:03 PM  Page 133



and the second is a function that contains the code to be protected. This function should take
unit as its parameter, and it can return any value.

The following example demonstrates the subtle issues involved in locking. It needs to be
quite long and has been deliberately written to exaggerate the problem of context switching.
The idea is that two threads will run at the same time, both trying to write the console. The
aim of the sample is to write the string "One ... Two ... Three ... " to the console atomi-
cally; that is, one thread should be able to finish writing its message before the next one starts.
The example has a function, called makeUnsafeThread, that creates a thread that will not be
able to write to the console atomically and a second one, makeSafeThread, that writes to the
console atomically by using a lock.

#light
open System
open System.Threading

// function to print to the console character by character
// this increases the chance of there being a context switch
// between threads.
let printSlowly (s : string) =

s.ToCharArray()
|> Array.iter print_char

// create a thread that prints to the console in an unsafe way
let makeUnsafeThread() =

new Thread(fun () ->
for x = 1 to 100 do

printSlowly "One ... Two ... Three ... "
print_newline()

done)

// the object that will be used as a lock
let lockObj = new Object()

// create a thread that prints to the console in a safe way
let makeSafeThread() =

new Thread(fun () ->
for x = 1 to 100 do

// use lock to ensure operation is atomic
lock lockObj (fun () ->

printSlowly "One ... Two ... Three ... "
print_newline()

)
done)

CHAPTER 7 n THE F# L IBRARIES134

7575Ch07.qxp  4/27/07  1:03 PM  Page 134



// helper function to run the test to
let runTest (f : unit -> Thread) message =

print_endline message;
let t1 = f() in
let t2 = f() in
t1.Start()
t2.Start()
t1.Join()
t2.Join()

// runs the demonstrations
let main() =

runTest
makeUnsafeThread
"Running test without locking ..."

runTest
makeSafeThread
"Running test with locking ..."

main ()

The part of the example that actually uses the lock is repeated next to highlight the impor-
tant points. You should note a couple of important factors. First, the declaration of the lockObj
will be used to create the critical section. Second, the use of the lock function is embedded in
the makeSafeThread function. The most important thing to notice is how the printing functions
you want to be atomic are placed inside the function that is passed to lock.

// the object that will be used as a lock
let lockObj = new Object()

// create a thread that prints to the console in a safe way
let makeSafeThread() =

new Thread(fun () ->
for x = 1 to 100 do

// use lock to ensure operation is atomic
lock lockObj (fun () ->

printSlowly "One ... Two ... Three ... "
print_newline()

)
done)

The results of the first part of the test will vary each time it is run, since it depends on when
a thread context switches. It might also vary based on the number of processors, because if a
machine has two or more processors, then threads can run at the same time, and therefore the
messages will be more tightly interspersed. On a single-processor machine, things will look less
messy, because the messages will go wrong only when a content switch takes place. The results
of the first part of the sample, run on a single-processor machine, are as follows:

CHAPTER 7 n THE F# L IBRARIES 135

7575Ch07.qxp  4/27/07  1:03 PM  Page 135



Running test without locking ...
...
One ... Two ... Three ...
One One ... Two ... Three ...
One ... Two ... Three ...
...

The results of the second half of the example will not vary at all, because of the lock, so it
will always look like this:

Running test with locking ...
One ... Two ... Three ...
One ... Two ... Three ...
One ... Two ... Three ...
...

Locking is an important aspect of concurrency. Any resource that will be written to and
shared between threads should be locked. A resource is often a variable, but it could also be a
file or even the console, as shown in this example. You should not think of locks as a magical
solution to concurrency. Although they work, they also can also create problems of their own
since they can create a deadlock, where different threads lock resources that each other needs
and neither can advance. The simplest solution to concurrency is often to simply avoid shar-
ing a resource that can be written to between threads.

nNote You can find more information about concurrency at http://www.strangelights.com/fsharp/
foundations/default.aspx/FSharpFoundations.Concurrency.

Tuple Functions
The Operators module also offers two useful functions that operate on tuples. You can use the
functions fst and snd to break up a tuple with two items in it. The following example demon-
strates their use:

printf "(fst (1, 2)): %i\r\n" (fst (1, 2))
printf "(snd (1, 2)): %i\r\n" (snd (1, 2))

The results of this code are as follows:

(fst (1, 2)): 1
(snd (1, 2)): 2

CHAPTER 7 n THE F# L IBRARIES136

7575Ch07.qxp  4/27/07  1:03 PM  Page 136



The Microsoft.FSharp.Reflection Module
This module contains F#’s own version of reflection. F# contains some types that are 100 percent
compatible with the CLR type system but aren’t precisely understood with .NET reflection. For
example, F# uses some sleight of hand to implement its union type, and this is transparent in
100 percent F# code but can look a little strange when you use the BCL to reflect over it. The F#
reflection system addresses this kind of problem. But, it blends with the BCL’s System.Reflection
namespace, so if you are reflecting over an F# type that uses BCL types, you will get the appro-
priate object from the System.Reflection namespace.

In F#, you can reflect over types or over values. The difference is a bit subtle and is best
explained with an example. Those of you familiar with .NET reflection might like to think of
reflection over types as using the Type, EventInfo, FieldInfo, MethodInfo, and PropertyInfo
types and reflections over values as calling their members such as GetProperty or InvokeMember
to get values dynamically, but reflection over values offers a high-level, easy-to-use system.

• Reflection over types lets you examine the types that make up a particular value or type.

• Reflection over values lets you examine the values that make up a particular composite
value.

Reflection Over Types
The following example shows a function that will print the type of any tuple:

#light
open Microsoft.FSharp.Reflection

let printTupleTypes x =
match  Value.GetTypeInfo(x) with
| TupleType types ->

print_string "("
types
|> List.iteri

(fun i t ->
if i <> List.length types - 1 then

Printf.printf " %s * " t.Name
else

print_string t.Name)
print_string " )"

| _ -> print_string "not a tuple"

printTupleTypes ("hello world", 1)

First you use the function Value.GetTypeInfo() to get a TypeInfo value that represents the
object passed to the function. This is similar to calling GetType() on a BCL object. If you had a
System.Type object instead of a value, you could have used Type.GetTypeInfo to retrieve the
same TypeInfo value. TypeInfo is a union type, so you pattern-match over it. In this case, you
are interested only in tuples, so you print "not a tuple" if you receive anything else. The
TupleType constructor contains a list of System.Type values that represent the members of a

CHAPTER 7 n THE F# L IBRARIES 137

7575Ch07.qxp  4/27/07  1:03 PM  Page 137



tuple, so by printing the Name property of System.Type, you can print the names of the types that
make up the tuple. This means when compiled and run, the sample outputs the following:

( String * Int32 )

Reflection Over Values
Imagine instead of displaying the types of a tuple that you wanted to display the values that
make up the tuple. To do this, you would use reflection over values, and you would need to use
the function GetValueInfo to retrieve a value of type ValueInfo that is similar to TupleType,
except that instead of containing information about types, it contains information about val-
ues. To print out the values within a tuple, you use the TupleValue constructor, which contains
a list of values that make up the tuple. The following example implements such a function:

#light
open Microsoft.FSharp.Reflection

let printTupleValues x =
match Value.GetInfo(x) with
| TupleValue vals ->

print_string "("
vals
|> List.iteri

(fun i v ->
if i <> List.length vals - 1 then

Printf.printf " %s, " (any_to_string v)
else

print_any v)
print_string " )"

| _ -> print_string "not a tuple"

printTupleValues ("hello world", 1)

The result of this code, when compiled and executed, is as follows:

( "hello world", 1 )

Reflection is used both within the implementation of fsi, the interactive command-line
tool that is part of the F# tool suite (see Chapter 11), and within the F# library functions
any_to_string and print_any. If you want to learn more about the way you can use reflection,
take a look at the source for any_to_string and print_any, available in the distribution in the
file \lib\mllib\layout.fs.

CHAPTER 7 n THE F# L IBRARIES138

7575Ch07.qxp  4/27/07  1:03 PM  Page 138



The Microsoft.FSharp.Collections.Seq Module
The Microsoft.FSharp.Collections.Seq module contains functions that work with any collec-
tion that supports the IEnumerable interface, which is most of the collections in the .NET
Framework’s BCL. The module is called Seq because F# gives the alias seq to the IEnumerable
interface to shorten it and make it easier to type and read; this alias is used when type defini-
tions are given.

nNote FSLib contains several modules designed to work with various types of collections. These include
Array, Array2 (two-dimensional arrays), Array3 (three-dimensional arrays), Hashtbl (a hash table imple-
mentation), IEnumerable, LazyList, List, Map, and Set. I’ll cover only Seq because it should generally be
favored over these collections because of its ability to work with lots of different types of collections. Also,
although each module has functions that are specific to it, many functions are common to them all.

Some of these functions can be replaced by the list comprehension syntax covered in
Chapters 3 and 4. For simple tasks and working with untyped collections, it’s generally easier
to use list comprehension, but for more complicated tasks you will want to stick to these func-
tions. You will take a look at the following functions:

map and iter: These two functions let you apply a given function to every item in the
collection.

concat: This function lets you concatenate a collection of collections into one collection.

fold: This function lets you create a summary of a list by folding the items in the collec-
tion together.

exists and for_all: These function let you make assertions about the contents of a
collection.

filter, find and tryfind: These functions let you pick elements in the list that meet
certain conditions.

choose: This function lets you perform a filter and map at the same time.

init_finite and init_infinite: These functions let you initialize collections.

unfold: This provides a more flexible way to initialize lists.

untyped: This gives you a look at the functions that are designed to work with the non-
generic version of IEnumerable, rather than IEnumerable<T>.

The map and iter Functions
You’ll look at map and iter first. These apply a function to each element in a collection. The
difference between them is that map is designed to create a new collection by transforming
each element in the collection, while iter is designed to apply an operation that has a side

CHAPTER 7 n THE F# L IBRARIES 139

7575Ch07.qxp  4/27/07  1:03 PM  Page 139



effect to each item in the collection. A typical example of a side effect would be writing the ele-
ment to the console. The following example shows both map and iter in action:

#light

let myArray = [|1; 2; 3|]

let myNewCollection =
myArray |>
Seq.map (fun x -> x * 2)

print_any myArray
print_newline()

myNewCollection |> Seq.iter (fun x -> printf "%i ... " x)

The results of this code, when compiled and executed, are as follows:

[|1; 2; 3|]
2 ... 4 ... 6 ...

The concat Function
The previous example used an array, because it was convenient to initialize this type of collec-
tion, but you could use any of the collection types available in the BCL. The next example uses
the List type provided in the System.Collections.Generic namespace and demonstrates how
to use the concat function, which has type #seq< #seq<'a> > -> seq<'a> and which collects
IEnumerable values into one IEnumerable value:

#light
open System.Collections.Generic

let myList =
let temp = new List<int[]>()
temp.Add([|1; 2; 3|])
temp.Add([|4; 5; 6|])
temp.Add([|7; 8; 9|])
temp

let myCompleteList = Seq.concat myList

myCompleteList |> Seq.iter (fun x -> printf "%i ... " x)

The results of this code, when compiled and executed, are as follows:

1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ...

CHAPTER 7 n THE F# L IBRARIES140

7575Ch07.qxp  4/27/07  1:03 PM  Page 140



The fold Function
The next example demonstrates the fold function, which has type ('b -> 'a -> 'b) -> 'b ->
#seq<'a> -> 'b. This is a function for creating a summary of a collection by threading an
accumulator value through each function call. The function takes two parameters. The first of
these is an accumulator, which is the result of the previous function, and the second is an ele-
ment from the collection. The function body should combine these two values to form a new
value of the same type as the accumulator. In the next example, the elements of myPhrase are
concatenated to the accumulator so that all the strings end up combined into one string.

#light
let myPhrase = [|"How"; "do"; "you"; "do?"|]

let myCompletePhrase =
myPhrase |>
Seq.fold (fun acc x -> acc + " " + x) ""

print_endline myCompletePhrase

The result of this code, when compiled and executed, is as follows:

How do you do?

The exists and for_all Functions
The next example demonstrates two functions that you can use to determine facts about the
contents of collections. These functions are exists and for_all, which both have the type 
('a -> bool) -> #seq<'a> -> bool. You can use the exists function to determine whether any
element in the collection exists that meets certain conditions. The conditions that must be met
are determined by the function passed to exists, and if any of the elements meet this condi-
tion, then exists will return true. The function for_all is similar except that all the elements in
the collection must meet the condition before it will return true. The following example first
uses exists to determine whether there are any elements in the collections that are multiples
of 2 and then uses for_all to determine whether all items in the collection are multiples of 2:

#light
let intArray = [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|]

let existsMultipleOfTwo =
intArray |>
Seq.exists (fun x -> x % 2 = 0)

let allMultipleOfTwo =
intArray |>
Seq.exists (fun x -> x % 2 = 0)

printfn "existsMultipleOfTwo: %b" existsMultipleOfTwo
printfn "allMultipleOfTwo: %b" allMultipleOfTwo

CHAPTER 7 n THE F# L IBRARIES 141

7575Ch07.qxp  4/27/07  1:03 PM  Page 141



The results of this code, when compiled and executed, are as follows:

existsMultipleOfTwo: true
allMultipleOfTwo: false

The filter, find, and tryfind Functions
The next example looks at three functions that are similar to exists and for_all; these func-
tions are filter of type ('a -> bool) -> #seq<'a> -> seq<'a>, find of type ('a -> bool) ->
#seq<'a> -> 'a and tryfind of type ('a -> bool) -> #seq<'a> -> 'a option. They are similar
to exists and for_all because they use functions to examine the contents of a collection, but
instead of returning a Boolean, these functions actually return the item or items found. The
function filter uses the function passed to it to check every element in the collection. The
filter function then returns a list that contains all the elements that have met the condition
of the function. If no elements meet the condition, then an empty list is returned. The func-
tions find and tryfind both return the first element in the collection to meet the condition
specified by the function passed to them. Their behavior is altered when no element in the
collection meets the condition; find throws an exception, whereas tryfind returns an option
type that will be None if no element is found. Since exceptions are relatively expensive in .NET,
you should prefer tryfind over find.

In the following example, you’ll look through a list of words; first you use filter to create
a list containing only the words that end in at. Then you’ll use find to find the first word that
ends in ot. Finally, you’ll use tryfind to check whether any of the words end in tt.

#light
let shortWordList = [|"hat"; "hot"; "bat"; "lot"; "mat"; "dot"; "rat";|]

let atWords =
shortWordList
|> Seq.filter (fun x -> x.EndsWith("at"))

let otWord =
shortWordList
|> Seq.find (fun x -> x.EndsWith("ot"))

let ttWord =
shortWordList
|> Seq.tryfind (fun x -> x.EndsWith("tt"))

atWords |> Seq.iter (fun x -> printf "%s ... " x)
print_newline()
print_endline otWord
print_endline (match ttWord with | Some x -> x | None -> "Not found")

CHAPTER 7 n THE F# L IBRARIES142

7575Ch07.qxp  4/27/07  1:03 PM  Page 142



The results of this code, when compiled and executed, are as follows:

hat ... bat ... mat ... rat ...
hot
Not found

The choose Function
The next Seq function you’ll look at is a clever function that allows you to do a filter and a map
at the same time. This function is called choose and has the type ('a -> 'b option) ->
#seq<'a> -> seq<'b>. To do this, the function that is passed to choose must return an option
type. If the element in the list can be transformed into something useful, the function should
return Some containing the new value, and when the element is not wanted, the function
returns None.

In the following example, you’ll take a list of floating-point numbers and multiply them by
2. If the value is an integer, it is returned; otherwise, it is filtered out. This leaves you with just a
list of integers.

#light
let floatArray = [|0.5; 0.75; 1.0; 1.25; 1.5; 1.75; 2.0 |]

let integers =
floatArray |>
Seq.choose

(fun x ->
let y = x * 2.0
let z = floor y
if y - z = 0.0 then

Some (int_of_float z)
else

None)

integers |> Seq.iter (fun x -> printf "%i ... " x)

The results of this code, when compiled and executed, are as follows:

1 ... 2 ... 3 ... 4 ...

The init_finite and init_infinite Functions
Next you’ll look at two functions for initializing collections, init_finite of type int -> 
(int -> 'a) -> seq<'a> and init_infinite of type (int -> 'a) -> seq<'a>. You can use the
function init_finite to make a collection of a finite size; it does this by calling the function
passed to it the number of times specified by the number passed to it. You can use the func-
tion init_infinite to create a collection of an infinite size. It does this by calling the function
passed to it each time it is asked for a new element this way; in theory, a list of unlimited size

CHAPTER 7 n THE F# L IBRARIES 143

7575Ch07.qxp  4/27/07  1:03 PM  Page 143



can be created, but in reality you are constrained by the limits of the machine performing the
computation.

The following example shows init_finite being used to create a list of ten integers, each
with the value 1. It also shows a list being created that should contain all the possible 32-bit
integers and demonstrates using the function take to create a list of the first ten.

#light
let tenOnes = Seq.init_finite 10 (fun _ -> 1)
let allIntegers = Seq.init_infinite (fun x -> System.Int32.MinValue + x)
let firstTenInts = Seq.take 10 allIntegers

tenOnes |> Seq.iter (fun x -> printf "%i ... " x)
print_newline()
print_any firstTenInts

The results of this code, when compiled and executed, are as follows:

1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ...
[-2147483648; -2147483647; -2147483646; -2147483645; -2147483644; -2147483643;
-2147483642; -2147483641; -2147483640; -2147483639]

The unfold Function
You already met unfold in Chapter 3; it is a more flexible version of the functions init_finite
and init_infinite. The first advantage of unfold is that it can be used to pass an accumulator
through the computation, which means you can store some state between computations and
do not simply have to rely on the current position in the list to calculate the value, like you do
with init_finite and init_infinite. The second advantage is that it can be used to produce a
list that is either finite or infinite. Both of these advantages are achieved by using the return
type of the function passed to unfold; the return type of the function is 'a * 'b option, mean-
ing an option type that contains a tuple of values. The first value in the option type is the value
that will be placed in the list, and the second is the accumulator. If you want to continue the
list, you return Some with this tuple contained within it. If want to stop it, you return None.

The following example, repeated from Chapter 2, shows unfold being used to compute
the Fibonacci numbers. You can see the accumulator being used to store a tuple of values rep-
resenting the next two numbers in the Fibonacci sequence. Because the list of Fibonacci
numbers is infinite, you never return None.

#light
let fibs =

(1,1) |> Seq.unfold
(fun (n0, n1) ->

Some(n0, (n1, n0 + n1)))

let first20 = Seq.take 20 fibs

print_any first20

CHAPTER 7 n THE F# L IBRARIES144

7575Ch07.qxp  4/27/07  1:03 PM  Page 144



The results of this code, when compiled and executed, are as follows:

[1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987;
1597; 2584; 4181; 6765]

The example demonstrates using unfold to produce a list that terminates. Imagine you
want to calculate a sequence of numbers where the value decreases by half its current value,
such as a nuclear source decaying. Imagine beyond a certain limit the number becomes so
small that you are no longer interested in it. You can model such a sequence in the following
example by returning None when the value has reached its limit:

#light
let decayPattern =

Seq.unfold
(fun x ->

let limit = 0.01
let n = x - (x / 2.0)
if n > limit then

Some(x, n)
else

None)
(10.0)

decayPattern |> Seq.iter (fun x -> printf "%f ... " x)

The results of this code, when compiled and executed, are as follows:

10.000000 ... 5.000000 ... 2.500000 ... 1.250000 ...
0.625000 ... 0.312500 ... 0.156250 ... 0.078125 ... 0.039063 ...

The generate and generate_using Functions
The generate function of type (unit -> 'b) -> ('b -> 'a option) -> ('b -> unit) -> seq<'a>
and the generate_using function of type (unit -> 'a) -> ('a -> 'b option) -> seq<'b> when
'a :> IDisposable are two useful functions of creating IEnumerable collections. They allow you to
generate collections from some kind of cursor. The cursor can be a file stream, as shown in these
examples, or perhaps more commonly a database cursor; or it can be any type that will generate a
sequence of elements. The generate function takes three functions: one to open the cursor (the
opener function in the following example), one to do the work of actually generating the collec-
tion (the generator function), and one to close the cursor (the closer function). The collection
can then be treated as any other IEnumerable collection, but behind the scenes, the functions you
have defined will be called to go to the data source and read the elements from it. The following
example shows the function being used to read a comma-separated list of words from a file:

CHAPTER 7 n THE F# L IBRARIES 145

7575Ch07.qxp  4/27/07  1:03 PM  Page 145



#light
open System
open System.Text
open System.IO

// test.txt: the,cat,sat,on,the,mat
let opener() = File.OpenText("test.txt")

let generator (stream : StreamReader) =
let endStream = ref false
let rec generatorInner chars =

match stream.Read() with
| -1 ->

endStream := true
chars

| x ->
match Convert.ToChar(x) with
| ',' -> chars
| c -> generatorInner (c :: chars)

let chars = generatorInner []
if List.length chars = 0 && !endStream then

None
else

Some(new string(List.to_array (List.rev chars)))

let closer (stream : StreamReader) =
stream.Dispose()

let wordList =
Seq.generate

opener
generator
closer

wordList |> Seq.iter (fun s -> print_endline s)

The results of this code, when compiled and executed, are as follows:

the
cat
sat
on
the
mat

The generate_using function is the same as the generate function, except that the type
used to create the collection must support the IDisposable interface, and this will be called
when the last item has been read from the collection instead of the closer function. This saves

CHAPTER 7 n THE F# L IBRARIES146

7575Ch07.qxp  4/27/07  1:03 PM  Page 146



you the trouble of explicitly defining a closer function, leading to short programs. I consider
the generate_using function very useful because most types you want to generate collections
from will support the IDisposable interface; its usage is demonstrated here:

#light
open System
open System.Text
open System.IO

// test.txt: the,cat,sat,on,the,mat
let opener() = File.OpenText("test.txt")

let generator (stream : StreamReader) =
let endStream = ref false
let rec generatorInner chars =

match stream.Read() with
| -1 ->

endStream := true
chars

| x ->
match Convert.ToChar(x) with
| ',' -> chars
| c -> generatorInner (c :: chars)

let chars = generatorInner []
if List.length chars = 0 && !endStream then

None
else

Some(new string(List.to_array (List.rev chars)))

let closer (stream : StreamReader) =
stream.Dispose()

let wordList =
Seq.generate_using

opener
generator

wordList |> Seq.iter (fun s -> print_endline s)
read_line()

The results of this code, when compiled and executed, are as follows:

the
cat
sat
on
the
mat

CHAPTER 7 n THE F# L IBRARIES 147

7575Ch07.qxp  4/27/07  1:03 PM  Page 147



The untyped_ Functions
The .NET Framework’s BCL contains two versions of the IEnumerable interface, one defined in
System.Collections.Generic and an older one defined in System.Collections. All the samples
shown so far have been designed to work with the new generic version from System.
Collections.Generic. However, sometimes it might be necessary to work with collections that
are not generic, so the F# IEnumerable module also provides a number of functions to work
with nongeneric collections. These functions all start with the prefix untyped and then have
the same name as their generic counterpart. The big disadvantage of using these functions is
that they do not contain any type information; therefore, the compiler cannot type check
them properly, which can mean some code might throw an invalid cast exception at runtime.

Before using these functions, I strongly recommend that you see whether you can use the
list comprehension syntax covered in Chapters 3 and 4 instead. This is because the list com-
prehension syntax can infer the types of many untyped collections, usually by looking at the
type of the Item indexer property, so there is less need for type annotations, which generally
makes programming easier.

The following example looks at an array list that stores a sequence of integers and then
uses untyped_map to double each of the integers in the list:

#light
open System.Collections

let arrayList =
let temp = new ArrayList()
temp.AddRange([| 1; 2; 3 |])
temp

let doubledArrayList =
arrayList |>
Seq.untyped_map (fun x -> x * 2)

doubledArrayList |> Seq.untyped_iter (fun x -> printf "%i ... " x)

The results of this code, when compiled and executed, are as follows:

2 ... 4 ... 6 ...

As you can see from the previous example, when the programmer gets the types right,
using the untyped functions is pretty straightforward. However, consider the following exam-
ple that tries to perform the same operation on the list, except this time it contains strings:

#light
open System.Collections

let stringArrayList =
let temp = new ArrayList()
temp.AddRange([| "one"; "two"; "three" |])
temp

CHAPTER 7 n THE F# L IBRARIES148

7575Ch07.qxp  4/27/07  1:03 PM  Page 148



let invalidCollection =
stringArrayList |>
Seq.untyped_map (fun x -> x * 2)

invalidCollection |> Seq.untyped_iter (fun x -> printf "%O ... " x)

The results of this code, when compiled and executed, are as follows:

System.InvalidCastException: Specified cast is not valid.
at Microsoft.FSharp.Collections.IEnumerator.untyped_map@25.get_Current()
at Microsoft.FSharp.Collections.IEnumerator.untyped_iter@12[A,U](FastFunc`2 f, U e)
at <StartupCode>.FSI_0011._main()
stopped due to error

It’s easy to see that using untyped collections places an extra burden on the programmer
to ensure the types in the collection are correct. So, I highly recommend that if for some rea-
son you must use an untyped collection, then it is best to convert it to a typed collection. This
is done using the function untyped_to_typed, which is demonstrated in the following example:

#light
open System.Collections
open System.Collections.Generic

let floatArrayList =
let temp = new ArrayList()
temp.AddRange([| 1.0; 2.0; 3.0 |])
temp

let (typedIntList : seq<float>) =
Seq.untyped_to_typed floatArrayList

Using untyped_to_typed always required using type annotations to tell the compiler what
type of list you are producing. Here you have a list of floats, so you use the type annotation
IEnumerable<float> to tell the compiler it will be an IEnumerable collection containing
floating-point numbers.

The Microsoft.FSharp.Core.Enum Module
The Enum module is a simple module to help deal with enumerations in F#. I will cover the fol-
lowing functions:

to_int and of_int: Functions for converting to and from integers

combine and test: Functions for combining enums with a bitwise “and” and testing
whether a bit is set

CHAPTER 7 n THE F# L IBRARIES 149

7575Ch07.qxp  4/27/07  1:03 PM  Page 149



The to_int and of_int Functions
The following example shows how to convert from an enumeration to an integer and then
convert it back to an enumeration. Converting from an enumeration to an integer is straight-
forward; you just use the to_int function. Converting back is slightly more complicated; you
use the of_int function, but you must provide a type annotation so that the compile knows
which type of enumeration to convert it to. You can see this in the following sample where you
add the annotation DayOfWeek to the identifier dayEnum:

#light
open System
let dayInt = Enum.to_int DateTime.Now.DayOfWeek
let (dayEnum : DayOfWeek) = Enum.of_int dayInt

print_int dayInt
print_newline ()
print_any dayEnum

The results of this code, when compiled and executed, are as follows:

0
Sunday

The combine and test Functions
The other common tasks that you need to perform with enumerations is to combine them
using a logical “or” and then test them using a logical “and.” The functions combine and test
are provided to fulfill these roles. The function combine takes a list of enumerations and com-
bines them into one enumeration. The function test tests whether a particular enumeration is
part of a combined enumeration.

The following example combines two enumeration values, AnchorStyles.Left and
AnchorStyles.Left, and then uses test to test the resulting enumeration:

#light
open System.Windows.Forms
let anchor = Enum.combine [AnchorStyles.Left ; AnchorStyles.Left]

printfn "(Enum.test anchor AnchorStyles.Left): %b"
(Enum.test anchor AnchorStyles.Left)

printfn "(Enum.test anchor AnchorStyles.Right): %b"
(Enum.test anchor AnchorStyles.Right)

The results of this code, when compiled and executed, are as follows:

(Enum.test anchor AnchorStyles.Left): true
(Enum.test anchor AnchorStyles.Right): false

CHAPTER 7 n THE F# L IBRARIES150

7575Ch07.qxp  4/27/07  1:03 PM  Page 150



Enum types marked with the System.Flags attribute also support the use of the &&& and
||| operators to perform these operations directly. For example, you could write the previous
code as follows:

#light
open System.Windows.Forms
let anchor = AnchorStyles.Left ||| AnchorStyles.Left

printfn "test AnchorStyles.Left: %b"
(anchor &&& AnchorStyles.Left <> Enum.of_int 0)

printfn "test AnchorStyles.Right: %b"
(anchor &&& AnchorStyles.Right <> Enum.of_int 0)

The Microsoft.FSharp.Text.Printf Module
The Printf module provides functions for formatting strings in a type-safe way. The functions
in the Printf module take a string with placeholders for values as their first argument. This
returns another function that expects values for the placeholders. You form placeholders by
using a percentage sign and a letter representing the type that they expect. Table 7-1 shows the
full list.

Table 7-1. Printf Placeholders and Flags

Flag Description

%b bool, formatted as “true” or “false.”

%s string, formatted as its unescaped contents.

%d, %i Any basic integer type (that is, sbyte, byte, int16, uint16, int32, uint32, int64,
uint64, nativeint, or unativeint) formatted as a decimal integer, signed if the
basic integer type is signed.

%u Any basic integer type formatted as an unsigned decimal integer.

%x, %X, %o Any basic integer type formatted as an unsigned hexadecimal, 
(a-f)/Hexadecimal (A-F)/Octal integer.

%e, %E Any basic floating-point type (that is, float or float32), formatted using a 
C-style floating-point format specification, signed value having the form 
[-]d.dddde[sign]ddd where d is a single decimal digit, dddd is one or more
decimal digits, ddd is exactly three decimal digits, and sign is + or –.

%f Any basic floating-point type, formatted using a C-style floating-point format
specification, signed value having the form [-]dddd.dddd, where dddd is one or
more decimal digits. The number of digits before the decimal point depends on
the magnitude of the number, and the number of digits after the decimal point
depends on the requested precision.

%g, %G Any basic floating-point type, formatted using a C-style floating-point format
specification, signed value printed in f or e format, whichever is more compact
for the given value and precision.

%M System.Decimal value.

%O Any value, printed by boxing the object and using its ToString method(s).

%A Any value, printed using the any_to_string method that pretty prints F# types.

continued

CHAPTER 7 n THE F# L IBRARIES 151

7575Ch07.qxp  4/27/07  1:03 PM  Page 151



Table 7-1. Continued

Flag Description

%a A general format specifier; requires two arguments:
A function that accepts two arguments: a context parameter of the appropriate
type for the given formatting function (such as a System.IO.TextWriter) and a
value to print and that either outputs or returns appropriate text.
The particular value to print.

%t A general format specifier; requires one argument: a function that accepts a
context parameter of the appropriate type for the given formatting function (such
as a System.IO.TextWriter) and that either outputs or returns appropriate text.

0 A flag that adds zeros instead of spaces to make up the required width.

- A flag that left justifies the result within the width specified.

+ A flag that adds a + character if the number is positive (to match the – sign for
negatives).

‘ ’ Adds an extra space if the number is positive (to match the – sign for negatives).

The following example shows how to use the printf function. It creates a function that
expects a string and then passes a string to this function.

#light
Printf.printf "Hello %s" "Robert"

The results of this code are as follows:

Hello Robert

The significance of this might not be entirely obvious, but the following example will
probably help explain it; if a parameter of the wrong type is passed to the printf function,
then it will not compile:

#light
Printf.printf "Hello %s" 1

The previous code will not compile, giving the following error:

Prog.fs(4,25): error: FS0001: This expression has type
int

but is here used with type
string

This also has an effect on type inference. If you create a function that uses printf, then
any arguments that are passed to printf will have their types inferred from this. For example,
the function myPrintInt, shown here, has the type int -> unit because of the printf function
contained within it:

#light
let myPrintInt x =

Printf.printf "An integer: %i" x

CHAPTER 7 n THE F# L IBRARIES152

7575Ch07.qxp  4/27/07  1:03 PM  Page 152



The basic placeholders in a Printf module function are %b for a Boolean; %s for a string; 
%d or %i for an integer; %u for an unsigned integer; and %x, %X, or %o for an integer formatted as
a hexadecimal. It is also possible to specify the number of decimal places that are displayed in
numeric types. The following example demonstrates this:

#light
let pi = System.Math.PI

Printf.printf "%f\r\n" pi
Printf.printf "%1.1f\r\n" pi
Printf.printf "%2.2f\r\n" pi
Printf.printf "%2.8f\r\n" pi

The results of this code are as follows:

3.141593
3.1
3.14
3.14159265

The Printf module also contains a number of other functions that allow a string to be
formatted in the same ways as printf itself but allow the result to be written to a different
destination. The following example shows some of the different versions available:

#light
// write to a string
let s = Printf.sprintf "Hello %s\r\n" "string"
print_string s

// prints the string to the given channel
Printf.fprintf stdout "Hello %s\r\n" "channel"

// prints the string to a .NET TextWriter
Printf.twprintf System.Console.Out "Hello %s\r\n" "TextWriter"

// create a string that will be placed
// in an exception message
Printf.failwithf "Hello %s" "exception"

The results of this code are as follows:

Hello string
Hello channel
Hello TextWriter
Microsoft.FSharp.FailureException: Hello exception

at Microsoft.FSharp.Text.Printf.failwithf@60.Invoke(String s)
at Microsoft.FSharp.Text.PrintfImpl.Make@188.Invoke(A inp))
at <StartupCode>.FSI_0003._main()

stopped due to error

CHAPTER 7 n THE F# L IBRARIES 153

7575Ch07.qxp  4/27/07  1:03 PM  Page 153



The Microsoft.FSharp.Control.IEvent Module
You can think of an event in F# as a collection of functions that can be triggered by a call to a
function. The idea is that functions will register themselves with the event, the collection of
functions, to await notification that the event has happened. The trigger function is then used
to give notice that the event has happened, causing all the functions that have added them-
selves to the event to be executed.

I will cover the following features of the IEvent module:

Creating and handling events: The basics of creating and handling events using the create
and add functions

The filter function: A function to filter the data coming into events

The partition function: A function that splits the data coming into events into two

The map function: A function that maps the data before it reaches the event handler

Creating and Handling Events
The first example looks at a simple event being created using the IEvent module’s create func-
tion. This function returns a tuple containing the trigger function as its first item and the event
itself as its second item. Often you need to add type annotations to say what type of event you
want, that is, what type of parameter your event’s handler functions should take. After this,
you use the event’s Add function to add a handler method, and finally you trigger the event
using the trigger function:

#light

let trigger, event = IEvent.create<string>()
event.Add(fun x -> printfn "%s" x)
trigger "hello"

The result of this code is as follows:

hello

In addition to this basic event functionality, the F# IEvent module provides a number of
functions that allow you to filter and partition events to give fine-grained control over which
data is passed to which event handler.

The filter Function
The following example demonstrates how you can use the IEvent module’s filter function so
that data being passed to the event is filtered before it reaches the event handlers. In this
example, you filter the data so that only strings beginning with H are sent to the event handler:

CHAPTER 7 n THE F# L IBRARIES154

7575Ch07.qxp  4/27/07  1:03 PM  Page 154



#light

let trigger, event = IEvent.create<string>()
let newEvent = event |> IEvent.filter (fun x -> x.StartsWith("H"))
newEvent.Add(fun x -> printfn "new event: %s" x)

trigger "Harry"
trigger "Jane"
trigger "Hillary"
trigger "John"
trigger "Henry"

The results of this code, when compiled and executed, are as follows:

new event: Harry
new event: Hillary
new event: Henry

The partition Function
The IEvent module’s partition function is similar to the filter function except two events are
returned, one where data caused the partition function to return false and one where data
caused the partition function to return true. The following example demonstrates this:

#light

let trigger, event = IEvent.create<string>()
let hData, nonHData = event |> IEvent.partition (fun x -> x.StartsWith("H"))
hData.Add(fun x -> printfn "H data: %s" x)
nonHData.Add(fun x -> printfn "None H data: %s" x)

trigger "Harry"
trigger "Jane"
trigger "Hillary"
trigger "John"
trigger "Henry"

The results of this code are as follows:

H data: Harry
None H data: Jane
H data: Hillary
None H data: John
H data: Henry

CHAPTER 7 n THE F# L IBRARIES 155

7575Ch07.qxp  4/27/07  1:03 PM  Page 155



The map Function
It is also possible to transform the data before it reaches the event handlers. You do this using
the map function provided in the IEvent module. The following example demonstrates how to
use it:

#light

let trigger, event = IEvent.create<string>()
let newEvent = event |> IEvent.map (fun x -> "Mapped data: " + x)
newEvent.Add(fun x -> print_endline x)

trigger "Harry"
trigger "Sally"

The results of this code are as follows:

Mapped data: Harry
Mapped data: Sally

This section has just provided a brief overview of events in F#. You will return to them in
more detail in Chapter 8 when I discuss user interface programming, because that is where
they are most useful.

The Microsoft.FSharp.Math Namespace
The Microsoft.FSharp.Math namespace is designed to enable F# to ensure that the F# libraries
include definitions of some of the foundational constructs used across a wide range of graphics,
mathematical, scientific, and engineering applications. First you will look briefly at the modules
that make it up, and then you’ll dive into a more detailed example.

It contains arbitrary precision numbers; these are numbers whose values have no upper
limit and include the modules BigInt and BigNum. A typical use of these would be in a program
that searches for large prime numbers, perhaps for use in cryptography.

The modules Matrix, Vector, RowVector, and Notations all contain operations related to
matrices and vectors. Matrices are sets of numbers arranged in rows and columns to form a
rectangular array. Vectors are a column of numbers and are like a matrix with one column but
are a separate type. A vector is a quantity characterized by magnitude and direction, so a two-
dimensional vector is specified by two coordinates, a three-dimensional vector by three
coordinates, and so on; therefore, vectors are represented as a matrix made up of one column
with the number of rows depending on the dimension of the vector.

There is a module, Complex, for working with complex numbers. The complex numbers
are the base for many types of fractal images, so I will demonstrate how you can use the F#
complex number library to draw the most famous fractal of all, the Mandelbrot set. The
Mandelbrot set is generated by repeated iteration of the following equation:

Cn+1 = Cn
2 + c

CHAPTER 7 n THE F# L IBRARIES156

7575Ch07.qxp  4/27/07  1:03 PM  Page 156



The next number in the series is formed from the current number squared plus the origi-
nal number. If repeated iteration of this equation stays between the complex number C(1, 1i)
and C(–1, –1i), then the original complex number is a member of the Mandelbrot set. This can
be implemented in F# with the following:

#light
open Microsoft.FSharp.Math
open Microsoft.FSharp.Math.Notation

let cMax = complex 1.0 1.0
let cMin = complex -1.0 -1.0
let iterations = 18
let isInMandelbrotSet c0 =

let rec check n c =
(n = iterations)
or (cMin < c) && (c < cMax) && check (n + 1) ((c * c) + c0)

check 0 c0

The function isInMandelbrotSet tests whether a complex number is in the Mandelbrot set
by recursively calling the check function with the new c value of ((c * c) + c0) until either the
complex number passes one of the constants cMax or cMin or the number of iterations exceeds
the constant iterations. If the number of iterations specified by iterations is reached, then
number is a member of the set; otherwise, it is not.

Because the complex numbers consist of two numbers, they can be represented in a two-
dimensional plane. The Mandelbrot complex numbers exist between C(1, 1i) and C(–1, –1i) so
the plane that you need to draw has the origin, which is the point 0, 0, in the center, and its
axis extends out in either direction until reaching a maximum of 1.0 and a minimum of –1.0,
such as the plane on the right of Figure 7-1. However, when it comes to pixels on a computer
screen, you must deal with a plane where the origin is in the top-right corner and it extends
rightward and downward. Because this type plane is made up of pixels, which are discrete val-
ues, it is represented by integers typically somewhere in the range 0 to 1600. Such a plane
appears on the left of Figure 7-1.

Figure 7-1. A bitmap plane vs. a complex plane

CHAPTER 7 n THE F# L IBRARIES 157

7575Ch07.qxp  4/27/07  1:03 PM  Page 157



So, the application must map the points in the bitmap plane to points in the complex
plane so that you can tell whether a pixel is part of the complex plane.

It is easy to perform this mapping in just a few lines of F# code:

#light
open Microsoft.FSharp.Math
open Microsoft.FSharp.Math.Notation

let scalingFactor = 1.0 / 200.0
let offset = -1.0

let mapPlane (x, y) =
let fx = ((float x) * scalingFactor) + offset
let fy = ((float y) * scalingFactor) + offset
complex fx fy

Once this is complete, you just need to cycle through all the points in your bitmap plane,
mapping them to the complex plane using the mapPlane function. Then you need to test
whether the complex number is in the Mandelbrot set using the function isInMandelbrotSet.
Then you set the color of the pixel. The full program is as follows:

#light
open System
open System.Drawing
open System.Windows.Forms
open Microsoft.FSharp.Math
open Microsoft.FSharp.Math.Notation

let cMax = complex 1.0 1.0
let cMin = complex -1.0 -1.0
let iterations = 18

let isInMandelbrotSet c0 =
let rec check n c =

(n = iterations)
or (cMin < c) && (c < cMax) && check (n + 1) ((c * c) + c0)

check 0 c0

let scalingFactor = 1.0 / 200.0
let offset = -1.0

let mapPlane (x, y) =
let fx = ((float x) * scalingFactor) + offset
let fy = ((float y) * scalingFactor) + offset
complex fx fy

CHAPTER 7 n THE F# L IBRARIES158

7575Ch07.qxp  4/27/07  1:03 PM  Page 158



let form =
let image = new Bitmap(400, 400)
for x = 0 to image.Width - 1 do

for y = 0 to image.Height - 1 do
let isMember = isInMandelbrotSet ( mapPlane (x, y) )
if isMember then

image.SetPixel(x,y, Color.Black)
let temp = new Form() in
temp.Paint.Add(fun e -> e.Graphics.DrawImage(image, 0, 0))
temp

[<STAThread>]
do Application.Run(form)

This program produces the image of the Mandelbrot set in Figure 7-2.

Figure 7-2. The Mandelbrot set

CHAPTER 7 n THE F# L IBRARIES 159

7575Ch07.qxp  4/27/07  1:03 PM  Page 159



The ML Compatibility Library MLLib.dll
The MLLib library was designed to allow cross-compilation with code written in OCaml. It
contains implementations of a subset of the modules that are distributed with OCaml. This
played an important role in the development of F# because the compiler was originally writ-
ten in OCaml and then cross-compiled into F# to produce a .NET assembly.

It contains many functions that are really useful, even to programmers who have no
intention of cross-compiling their code; the most useful of these is the Arg module. Here, I will
cover the following modules:

Microsoft.FSharp.MLLib.Pervasives: A module containing some floating-point functions
and some simple functions to help the programmer manage I/O

Microsoft.FSharp.MLLib.Arg: A module for processing command-line arguments

The Microsoft.FSharp.Compatibility.OCaml.Pervasives Module
The word pervasive means thoroughly penetrating or permeating, which is a good description
for the Pervasives module. It is automatically opened by the compiler, and its functions per-
meate through most F# code, since functions that it contains can be used automatically
without a qualifier. You have already met some of the functions in many examples in this
book, especially the print_string, print_endline, and print_int functions that were often
used to write to the console.

It’s hard to categorize the type of functions found in the Pervasives module; because they
are generally the sort of thing a programmer will find useful, I will cover the following topics:

Arithmetic operators: Operators for basic arithmetic operations such as addition and
subtraction

Floating-point arithmetic functions: More advanced arithmetic functions including loga-
rithms and trigonometry

Mutable integer functions: Functions on mutable integers

Streams: Functions to help the programmer mange I/O

Arithmetic Operators
As already covered in Chapter 2, in F# operators can be defined by the programmer, so all the
arithmetic operators are defined in the Pervasives module rather than built into the language.
Therefore, the majority of operators that you will use in your day-to-day programming in F#
are defined in the Pervasives module. I imagine that operators such as + and - need little
explanation, since their usage is straightforward:

let x1 = 1 + 1
let x2 = 1 - 1

However, the F# equality operator is a bit more subtle. This is because in F# equality is
structural equality, meaning that the contents of the objects are compared to check whether 
the items that make up the object are the same. This is opposed to referential equality, which

CHAPTER 7 n THE F# L IBRARIES160

7575Ch07.qxp  4/27/07  1:03 PM  Page 160



determines whether two identifiers are bound to the same object or the same physical area of
memory; a referential equality check can be performed using the method obj.ReferenceEquals.
The structural equality operator is =, and the structural inequality operator is <>. The next exam-
ple demonstrates this. The records robert1 and robert2 are equal, because even though they are
separate objects, their contents are the same. On the other hand, robert1 and robert3 are not
equal because their contents are different.

#light
type person = { name : string ; favoriteColor : string }

let robert1 = { name = "Robert" ; favoriteColor = "Red" }
let robert2 = { name = "Robert" ; favoriteColor = "Red" }
let robert3 = { name = "Robert" ; favoriteColor = "Green" }

printf "(robert1 = robert2): %b\r\n" (robert1 = robert2)
printf "(robert1 <> robert3): %b\r\n" (robert1 <> robert3)

The results of this code, when compiled and executed, are as follows:

(robert1 = robert2): true
(robert1 <> robert3): true

Structural comparison is also used to implement the > and < operators, which means they
too can be used to compare F#’s record types. This is demonstrated here:

#light
let robert2 = { name = "Robert" ; favoriteColor = "Red" }
let robert3 = { name = "Robert" ; favoriteColor = "Green" }

printf "(robert2 > robert3): %b\r\n" (robert2 > robert3)

The results of this code, when compiled and executed, are as follows:

(robert2 > robert3): true

If you need to determine whether two objects are physically equal, then you can use the
eq function available in the Obj module, as in the following example:

#light
let robert1 = { name = "Robert" ; favoriteColor = "Red" }
let robert2 = { name = "Robert" ; favoriteColor = "Red" }

printfn "(Obj.eq robert1 robert2): %b" (Obj.eq robert1 robert2)

Floating-Point Arithmetic Functions
The Pervasives module also offers a number of functions (see Table 7-2) specifically for floating-
point numbers, some of which are used in the following sample:

CHAPTER 7 n THE F# L IBRARIES 161

7575Ch07.qxp  4/27/07  1:03 PM  Page 161



#light
printfn "(sqrt 16.0): %f" (sqrt 16.0)
printfn "(log 160.0): %f" (log 160.0)
printfn "(cos 1.6): %f" (cos 1.6)

The results of this code, when compiled and executed, are as follows:

(sqrt 16.0): 4.000000
(log 160.0): 5.075174
(cos 1.6): -0.029200

Table 7-2. Arithmetic Functions for Floating-Point Numbers

Function Description

abs_float Returns the absolute value of the argument

acos Returns the inverse cosine (arccosine) of the argument, which should be
specified in radians

asin Returns the inverse sine (arcsine) of the argument, which should be specified in
radians

atan Returns the inverse tangent (arctangent) of the argument, which should be
specified in radians

atan2 Returns the inverse tangent (arctangent) of the two arguments, which should
both be specified in radians

ceil Returns the next highest integer value by rounding up the value if necessary; the
value returned is still of type float

floor Returns the next lowest integer value by rounding up the value if necessary; the
value returned is still of type float

exp Returns the exponential

infinity Returns the floating-point number that represents infinity

ldexp Returns the floating-point number from the mantissa and exponent

log Returns the natural log of the floating-point number

log10 Returns the base 10 log of the floating-point number

max_float Returns the maximum floating-point number

min_float Returns the minimum floating-point number

mod_float Returns the remainder of the first parameter with respect to the second
parameter

modf Returns the floating-point number split into the integer and fractional part

nan Returns the floating-point number that represents “not a number”

neg_infinity Returns the floating-point number that represents negative infinity

sqrt Returns the square root of the number

cos Returns the cosine of the parameter, which should be specified in radians

cosh Returns the hyperbolic cosine of the parameter, which should be specified in
radians

sin Returns the sine of the parameter, which should be specified in radians

CHAPTER 7 n THE F# L IBRARIES162

7575Ch07.qxp  4/27/07  1:03 PM  Page 162



Function Description

sinh Returns the hyperbolic sine of the parameter, which should be specified in radians

tan Returns the tangent of the parameter, which should be specified in radians

tanh Returns the hyperbolic tangent of the parameter, which should be specified in
radians

truncate Returns the parameter converted to an integer

float Takes an integer and returns it as a float

float32 Takes an integer and returns it as a float32

Mutable Integer Functions
The Pervasives module also offers two useful functions that operate on mutable integers. The
incr and decr functions increment and decrement a mutable integer, respectively. The use of
these functions is demonstrated here:

#light
let i = ref 0
(incr i)
print_int !i
print_newline ()
(decr i)
print_int !i

The results of this code are as follows:

1
0

Streams
Finally, you’ve come to the last major set of functions within the Pervasives module—functions
that read from and write to streams. Streams are a way of managing I/O that allows a file, a net-
work connection, or an area of memory to be written to in a homogeneous fashion. A stream is
a value that provides functions to either read from it or write to it. A stream is an abstract con-
cept, because no matter whether it represents a file, a connection, or memory, you can use the
same methods to write to it. You have already seen the functions print_endline, print_newline,
print_string, print_int, and printf used throughout the examples in this book. These are all
examples of functions that write to the standard output stream, typically the console. The
Pervasives module also provides several functions for reading from the standard input stream,
typically the keyboard:

#light
let myString = read_line ()
let myInt = read_int ()
let myFloat = read_float ()

CHAPTER 7 n THE F# L IBRARIES 163

7575Ch07.qxp  4/27/07  1:03 PM  Page 163



When executed, this sample will bind the identifier myString to a string input by the user.
It will also bind myInt and myFloat to the integer and float values input by the user, provided
the user types a correctly formed integer and float.

The fact that these functions read from and write to streams is not entirely obvious
because they don’t take stream parameters. This is because they are wrapper methods that
hide that they are reading from or writing to a stream. They are built on top of some more gen-
eral functions for reading from and writing to a stream. The next example demonstrates how
to use the stream stdout, which defaults to the console, and shows how this can be written to
in the same manner as writing to a file, using the output_string function:

#light
let getStream() =

print_string "Write to a console (y/n): "
let input = read_line ()
match input with
| "y" | "Y" -> stdout
| "n" | "N" ->

print_string "Enter file name: "
let filename = read_line ()
open_out filename

| _ -> failwith "Not an option"

let main() =
let stream = getStream()
output_string stream "Hello"
close_out stream
read_line() |> ignore

main()

The function getStream allows the user to switch between writing to the console and writing
to a file. If the user chooses to write to the console, the stream stdout is returned; otherwise, it
asks the user to provide a filename so open_out can be used to open a file stream.

The implementation of streams is based on the classes available in System.IO namespace;
the out_channel is an alias for TextWriter, and in_channel is an alias for TextReader. These
aliases were included for compatibility purposes; you probably want to consider the classes
available in the BCL’s System.IO namespace directly, because this often gives you more flexibility.

The Microsoft.FSharp.Compatibility.OCaml.Arg Module
The Arg module allows users to quickly build a command-line argument parser. It does this by
using F#’s union and list types to create a little language that is then interpreted by a number
of functions provided in the Arg module.

The Arg module exposes a tuple type called argspec, which consists of two strings and a
union type called spec. The first string in the tuple specifies the name of the command-line
argument. The second item in the tuple is the union type spec, which specifies what the com-
mand-line argument is; for example, is it followed by a string value, or is it just a flag? It also
specifies what should be done if and when the command-line token is found. The final string in

CHAPTER 7 n THE F# L IBRARIES164

7575Ch07.qxp  4/27/07  1:03 PM  Page 164



the tuple is a text description of what the flag does. This will be printed to the console in the case
of a mistake in the command-line arguments. It also serves as a useful note to the programmer.

The Arg module exposes two functions for parsing arguments: parse, which parses the
command passed in on the command line, and parse_argv, which requires the arguments to
be passed directly to it. Both should be passed a list of type argspec describing the command-
line arguments expected, a function that will be passed all the command-line arguments not
prefixed with -, and finally a string to describe the usage.

The module also exposes a third function usage, which can be passed a list of type
argspec and will just directly write out the usage.

The following example demonstrates an argument parser built in this manner. The
parameters collected from the command line are stored in identifiers for later use, in this case
being written to the console.

#light

let myFlag = ref true
let myString = ref ""
let myInt = ref 0
let myFloat = ref 0.0
let (myStringList : string list ref) = ref []

let argList =
[
("-set", Arg.Set myFlag, "Sets the value myFlag");
("-clear", Arg.Clear myFlag, "Clears the value myFlag");
("-str_val", Arg.String(fun x -> myString := x), "Sets the value myString");
("-int_val", Arg.Int(fun x -> myInt := x), "Sets the value myInt");
("-float_val", Arg.Float(fun x -> myFloat := x), "Sets the value myFloat");
]

if Sys.argv.Length <> 1 then
Arg.parse

argList
(fun x -> myStringList := x :: !myStringList)
"Arg module demo"

else
Arg.usage

argList
"Arg module demo"

exit 1

printfn "myFlag: %b" !myFlag
printfn "myString: %s" !myString
printfn "myInt: %i" !myInt
printfn "myFloat: %f" !myFloat
printfn "myStringList: "
print_any !myStringList

CHAPTER 7 n THE F# L IBRARIES 165

7575Ch07.qxp  4/27/07  1:03 PM  Page 165



When run with no command-line arguments or faulty command-line arguments, the pro-
gram will output this:

Arg module demo
-set: Sets the value my_flag
-clear: Clears the value my_flag
-str_val <string>: Sets the value my_string
-int_val <int>: Sets the value my_int
-float_val <float>: Sets the value my_float
--help: display this list of options
-help: display this list of options

When run with the command line args.exe -clear -str_val "hello world" -int_val
10 -float_val 3.14 "file1" "file2" "file3", the program will output the following:

myFlag: false
myString: hello world
myInt: 10
myFloat: 3.140000
myStringList: ["file3"; "file2"; "file1"]

The Arg module is an excellent example of how creating a little language can make pro-
gramming tasks easier and quicker and the resulting code easier to understand and more
maintainable. You’ll find more details on this style of programming in Chapter 11.

Summary
I covered a lot ground in this chapter, since the F# libraries have a diverse range of functionali-
ties. First you looked through the FSLib.dll library with its useful Collections, Reflection,
and Math modules. Then you looked at MLLib.dll, which provides functions that are excellent
building blocks for all applications. Its Seq module is something that any nontrivial F# pro-
gram will not be able to do without.

The next three chapters will look at how you can use F# with various .NET APIs for com-
mon programming tasks. You’ll start with a look at implementing user interfaces in Chapter 8,
and then you’ll move to data access in Chapter 9 and distributed applications in Chapter 10.

CHAPTER 7 n THE F# L IBRARIES166

7575Ch07.qxp  4/27/07  1:03 PM  Page 166



User Interfaces

In this chapter, you will look at one of the most common tasks a programmer needs to
perform—the art of putting pixels on the screen. In F# this is all about the libraries and API
that you call, and you have a lot of choices in this area. You can create WinForms, a set of
classes found in System.Windows.Form.dll. These classes allow you to create desktop applica-
tions based on forms and controls. You can create ASP.NET applications. This library is
contained in System.Web.dll, which is a simple way to create server-based dynamic HTML
applications. You also have the option to use Windows Presentation Foundation (WPF), which
is a new library distributed with .NET 3.0 that allows you to design interfaces in an XML-based
language called XAML. These three technologies (WinForms, ASP.NET, and WPF) will be the
focus of this chapter. Since whole books have been written on each topic, I won’t be able to
cover them all in detail. Instead, you’ll look at techniques for working with these technologies
in F#.

F# can also use a lot of other graphics libraries—some designed to work with the tech-
nologies already mentioned and others, such as the DirectX or GTK# libraries, designed to
replace them.

Introducing WinForms
WinForms are based on the System.Windows.Forms.Form class. By creating an instance of this
class, you essentially create a new window. You must then create an event loop, a way of
ensuring user interactions with the window are responded to. You do this by calling the
System.Windows.Application.Run method and passing it the form object you have created. 
You can control the look of the form by setting its properties and calling its methods. The
following example demonstrates this:

#light
open System.Drawing
open System.Windows.Forms

let form = new Form(BackColor = Color.Purple, Text = "Introducing WinForms")

Application.Run(form)

This example will not work with F# interactive, fsi, because you cannot start an event
loop from within fsi. So to work with forms in fsi, you simply call the form’s Show method or
set the form’s Visible property to true. This example shows the second technique:

167

C H A P T E R  8

n n n

7575Ch08.qxp  4/27/07  1:04 PM  Page 167



> #light
open System.Drawing
open System.Windows.Forms

let form = new Form(BackColor=Color.Purple,
Text="Introducing WinForms",
Visible=true);;

Either way, you have the advantage that you can dynamically interact with your form
object. For example:

> form.Text <- "Dynamic !!!";;

When working with WinForms, you can take one of two approaches: drawing forms your-
self or using controls to build them. First you’ll look at drawing your own forms, and then
you’ll move on to using controls.

Drawing WinForms
Drawing your own forms means you take responsibility for the pixels that actually appear on
the screen. This low-level approach might appeal to many F# users, because they might find
that many controls that come with the WinForms library are not perfectly suited to displaying
their data structures and the results of functions and algorithms. However, be warned that this
approach can be time-consuming, and your time is usually better spent looking for a graphics
library that abstracts some of the presentation logic.

To draw a WinForm, you attach an event handler to the form’s or the control’s Paint event.
This means every time Windows requests the form to be drawn, your function will be called.
The event argument that is passed into this function has a property called Graphics, which
contains an instance of a class also called Graphics. This class has methods (such as DrawLine)
that allow you to draw pixels on the form. The following example shows a simple form where
you draw a pie on it:

#light
open System.Drawing
open System.Windows.Forms

let brush = new SolidBrush(Color.Red)

let form =
let temp = new Form()
temp.Resize.Add(fun _ -> temp.Invalidate())
temp.Paint.Add

(fun e ->
if temp.Width - 64 > 0 && temp.Height - 96 > 0 then

e.Graphics.FillPie
(brush,

32,
32,

CHAPTER 8 n USER INTERFACES168

7575Ch08.qxp  4/27/07  1:04 PM  Page 168



temp.Width - 64,
temp.Height - 64,
0,
290))

temp

Application.Run(form)

Figure 8-1 shows the resulting form.

Figure 8-1. A WinForm containing a pie shape

Because this image is linked to the size of the form, you must tell the form to redraw itself
whenever the form is resized. You do this by attaching an event handling function to the
Resize event. In this function, you call the form’s Invalidate method, which tells the form that
it needs to redraw itself.

You’ll now look at a more complete WinForms example. Imagine you want to create a
form to display the Tree type defined in the next code example and displayed in Figure 8-2.

// The tree type
type 'a Tree =
| Node of 'a Tree * 'a Tree
| Leaf of 'a

// The definition of the tree
let tree =

Node(
Node(

Leaf "one",
Node(Leaf "two", Leaf "three")),

Node(
Node(Leaf "four", Leaf "five"),
Leaf "six"))

CHAPTER 8 n USER INTERFACES 169

7575Ch08.qxp  4/27/07  1:04 PM  Page 169



Figure 8-2. A WinForm showing a tree structure

You can draw this tree with the code in Listing 8-1. I will walk you through how the code
works directly after the listing.

Listing 8-1. Drawing a Tree

#light
open System
open System.Drawing
open System.Windows.Forms

// The tree type
type 'a Tree =
| Node of 'a Tree * 'a Tree
| Leaf of 'a

// The definition of the tee
let tree =

Node(
Node(

Leaf "one",
Node(Leaf "two", Leaf "three")),

Node(
Node(Leaf "four", Leaf "five"),
Leaf "six"))

// A function for finding the maximum depth of a tree
let getDepth t =

let rec getDepthInner t d =
match t with
| Node (l, r) ->

max
(getDepthInner l d + 1.0F)
(getDepthInner r d + 1.0F)

| Leaf x -> d
getDepthInner t 0.0F

CHAPTER 8 n USER INTERFACES170

7575Ch08.qxp  4/27/07  1:04 PM  Page 170



// Constants required for drawing the form
let brush = new SolidBrush(Color.Black)
let pen = new Pen(Color.Black)
let font = new Font(FontFamily.GenericSerif, 8.0F)

// a useful function for calculating the maximum number
// of nodes at any given depth
let raise2ToPower (x : float32) =

Convert.ToSingle(Math.Pow(2.0, Convert.ToDouble(x)))

let drawTree (g : Graphics) t =
// constants that relate to the size and position
// of the tree
let center = g.ClipBounds.Width / 2.0F
let maxWidth = 32.0F * raise2ToPower (getDepth t)

// function for drawing a leaf node
let drawLeaf (x : float32) (y : float32) v =

let value = any_to_string v
let l = g.MeasureString(value, font)
g.DrawString(value, font, brush, x - (l.Width / 2.0F), y)

// draw a connector between the nodes when necessary
let connectNodes (x : float32) y p =

match p with
| Some(px, py) -> g.DrawLine(pen, px, py, x, y)
| None -> ()

// the main function to walk the tree structure drawing the
// nodes as we go
let rec drawTreeInner t d w p =

let x = center - (maxWidth * w)
let y = d * 32.0F
connectNodes x y p
match t with
| Node (l, r) ->

g.FillPie(brush, x - 3.0F, y - 3.0F, 7.0F, 7.0F, 0.0F, 360.0F)
let d = (d + 1.0F)
drawTreeInner l d (w + (1.0F / d)) (Some(x, y))
drawTreeInner r d (w - (1.0F / d)) (Some(x, y))

| Leaf v -> drawLeaf x y v

drawTreeInner t 0.0F 0.0F None

CHAPTER 8 n USER INTERFACES 171

7575Ch08.qxp  4/27/07  1:04 PM  Page 171



// create the form object
let form =

let temp = new Form(WindowState = FormWindowState.Maximized)
temp.Resize.Add(fun _ -> temp.Invalidate())
temp.Paint.Add

(fun e ->
e.Graphics.Clip <-

new Region(new Rectangle(0, 0, temp.Width, temp.Height))
drawTree e.Graphics tree)

temp

Application.Run(form)

You define a function, drawTree, that has two parameters: the Graphics object and the tree
to be drawn:

let drawTree (g : Graphics) t =

This is a common pattern when drawing WinForms. Creating a function that takes the
Graphics object and a data type to be drawn allows the function to be easily reused by differ-
ent forms and controls.

To implement drawTree, you first calculate a couple of constants to be used by the function,
center and maxWidth. These are nice—since they can’t be seen by functions outside drawTree yet,
they can be used within all its inner functions without having to be passed around as parameters.

// constants that relate to the size and position
// of the tree
let center = g.ClipBounds.Width / 2.0F
let maxWidth = 32.0F * raise2ToPower (getDepth t)

The rest of the function is implemented by breaking it down into inner functions. You
define drawLeaf to take care of drawing leaf nodes:

// function for drawing a leaf node
let drawLeaf (x : float32) (y : float32) v =

let value = any_to_string v
let l = g.MeasureString(value, font)
g.DrawString(value, font, brush, x - (l.Width / 2.0F), y)

You use connectNodes to take care of drawing the connections between nodes, where
appropriate:

// draw a connector between the nodes when necessary
let connectNodes (x : float32) y p =

match p with
| Some(px, py) -> g.DrawLine(pen, px, py, x, y)
| None -> ()

Finally, you define drawTreeInner as a recursive function that does the real work of walk-
ing the Tree type and drawing it:

CHAPTER 8 n USER INTERFACES172

7575Ch08.qxp  4/27/07  1:04 PM  Page 172



// the main function to walk the tree structure drawing the
// nodes as we go
let rec drawTreeInner t d w p =

let x = center - (maxWidth * w)
let y = d * 32.0F
connectNodes x y p
match t with
| Node (l, r) ->

g.FillPie(brush, x - 3.0F, y - 3.0F, 7.0F, 7.0F, 0.0F, 360.0F)
let d = (d + 1.0F)
drawTreeInner l d (w + (1.0F / d)) (Some(x, y))
drawTreeInner r d (w - (1.0F / d)) (Some(x, y))

| Leaf v -> drawLeaf x y v

This function uses parameters to store values between recursive calls. Because it is an inner
function, you know that the outside world cannot misuse it by initializing its initial values incor-
rectly; this is because the outside world cannot see it. Hiding parameters to store working values
between recursive function calls is another common pattern in functional programming.

In some ways this tree-drawing function is satisfactory; it gives a nice hierarchical
overview of the tree in a fairly concise 86 lines of F# code. However, there is a limit to how well
this approach scales. As you draw more complicated images, the number of lines of code can
grow rapidly, and working out all the geometry can become time-consuming. To help manage
this complexity, F# can use controls, as discussed in the next section.

nCaution Although you can use these techniques to produce animation, such animations will flicker. To
avoid this flicker, you must use a technique called double buffering, which requires you to understand a lot
about how Windows draws forms. For more information about double buffering, please see http://
strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.DoubleBuffering.

To make the most of drawing on WinForms, you should get to know the System.Drawing
namespace contained in System.Drawing.dll. You should concentrate on two areas, first
learning how to use the Graphics object, particularly the overloads of methods prefixed with
either Draw or Fill. To help you get started, Table 8-1 summaries them.

Table 8-1. Important Methods on the System.Drawing.Graphics Object

Method Name Description

DrawArc Draws a portion of an ellipse.

DrawBezier Draws a Bézier spline, which is a curve represented by two endpoints
and two free-floating points controlling the angle of the curve.

DrawCurve Draws a curved line defined by an array of points.

DrawClosedCurve Draws a closed curved line defined by an array of points.

continued

CHAPTER 8 n USER INTERFACES 173

7575Ch08.qxp  4/27/07  1:04 PM  Page 173



Table 8-1. Continued

Method Name Description

DrawEllipse Draws the outline of an ellipse represented by a rectangle or
rectangular set of points.

DrawPie Draws a portion of the outline of an ellipse, represented by a rectangle
and two radial lines representing the start and finish angles.

DrawLine Draws a single line from two points.

DrawLines Draws a set of lines from an array of points.

DrawPolygon Draws the outline of a polygon, which is a closed set of lines from an
array of points.

DrawRectangle Draws the outline of a rectangle represented by a coordinate and its
width and height.

DrawRectangles Draws the outline of a set of rectangles from an array of rectangles.

FillClosedCurve Draws a solid closed curve defined by an array of points.

FillEllipse Draws a solid ellipse represented by a rectangle or rectangular set of
points.

FillPie Draws a portion of a solid ellipse, represented by a rectangle and two
radial lines representing the start and finish angles.

FillPolygon Draws a solid polygon, which is a closed set of lines from an array of
points.

FillRectangle Draws a solid rectangle represented by a coordinate and its width and
height.

FillRectangles Draws a solid set of rectangles from an array of rectangles.

DrawIcon Draws an image specified by the System.Drawing.Icon type.

DrawImage Draws an image specified by the System.Drawing.Image type.

DrawImageUnscaled Draws an image specified by the System.Drawing.Image type with no
scaling.

DrawString Draws a string of characters.

MeasureString Gives the dimensions of the string of characters so the programmer can
calculate where it should be placed on the image.

DrawPath Draws an outline represented by the
System.Drawing.Drawing2D.GraphicsPath. This is a class that allows you
to add geometric constructs such as the curves, rectangle, ellipses, and
polygons described earlier to save you from recalculating them each
time. This is useful if you want to draw something that is complicated
but fairly static.

FillPath Provides the same functionality as DrawPath, except draws an image
that is solid rather than an outline.

The second area is closely related to the System.Drawing.Graphics object; it is the creation
of the Icon, Image, Pen, and Brush objects that are used by its methods. Table 8-2 shows exam-
ples of how to create these objects via their constructors.

CHAPTER 8 n USER INTERFACES174

7575Ch08.qxp  4/27/07  1:04 PM  Page 174



Table 8-2. Important Methods on the System.Drawing.Graphics Object

Snippet Description

Color.FromArgb(33, 44, 55) Creates a color from its red, green, and
blue components

Color.FromKnownColor(KnownColor.Crimson) Creates a color from a member of the
KnownColor enumeration

Color.FromName("HotPink") Creates a color from its name in string
form

new Font(FontFamily.GenericSerif, 8.0f) Creates a new font that is a generic serif
font and 8 points tall

Image.FromFile("myimage.jpg") Creates a new image from a file

Image.FromStream(File.OpenRead
("myimage.gif")) Creates a new image from a stream

new Icon("myicon.ico") Creates a new icon from a file

new Icon(File.OpenRead("myicon.ico")) Creates a new icon from a stream

new Pen(Color.FromArgb(33, 44, 55)) Creates a pen, used to draw lines, from a
color

new Pen(SystemColors.Control, 2.0f) Creates a pen, used to draw lines, from a
color and with a width of 2 pixels

new SolidBrush(Color.FromName("Black")) Creates a solid brush that can be used to
draw filled shapes

new TexturedBrush(Image.FromFile Creates a new textured brush from an 
("myimage.jpg")) image and draws a filled shape with 

an image mapped across it

If you prefer to use standard objects, you can use several classes in the System.Drawing
namespace that contain predefined objects. These are Brushes, Pens, SystemBrushes,
SystemColors, SystemFonts, SystemIcons, and SystemPens; the following is a quick example 
of using these:

#light
open System.Drawing

let myPen = Pens.Aquamarine
let myFont = SystemFonts.DefaultFont

Working with Controls in WinForms
A control is simply a class that derives from System.Windows.Forms.Control. Any class that
derives from this can be displayed in a form by adding it to the Controls collection on the
form object.

CHAPTER 8 n USER INTERFACES 175

7575Ch08.qxp  4/27/07  1:04 PM  Page 175



You’ll now look at a way to draw the tree using controls. The WinForms library defines a
TreeView class, which is specifically for displaying tree-like structures, so you’ll use this control to
display the tree. To use TreeView, you create an instance of it and configure it by setting its prop-
erties and calling its methods. Most important, you add to its Nodes collection the nodes you
want to display. Once the control is ready to be displayed, you add it to the form’s Controls
collection.

The TreeView class uses TreeNode objects to represent nodes, so you’ll define the function
mapTreeToTreeNode to recursively walk the tree structure and create a TreeNode graph. The pro-
gram in Listing 8-2 produces the tree in Figure 8-3.

Listing 8-2. Drawing a Tree via a TreeView Control

#light
open System.Windows.Forms

// The tree type
type 'a Tree =
| Node of 'a Tree * 'a Tree
| Leaf of 'a

// The definition of the tee
let tree =

Node(
Node(

Leaf "one",
Node(Leaf "two", Leaf "three")),

Node(
Node(Leaf "four", Leaf "five"),
Leaf "six"))

// A function to transform our tree into a tree of controls
let mapTreeToTreeNode t =

let rec mapTreeToTreeNodeInner t (node : TreeNode) =
match t with
| Node (l, r) ->

let newNode = new TreeNode("Node")
node.Nodes.Add(newNode) |> ignore
mapTreeToTreeNodeInner l newNode
mapTreeToTreeNodeInner r newNode

| Leaf x ->
node.Nodes.Add(new TreeNode(any_to_string x)) |> ignore

let root = new TreeNode("Root")
mapTreeToTreeNodeInner t root
root

CHAPTER 8 n USER INTERFACES176

7575Ch08.qxp  4/27/07  1:04 PM  Page 176



// create the form object
let form =

let temp = new Form()
let treeView = new TreeView(Dock = DockStyle.Fill)
treeView.Nodes.Add(mapTreeToTreeNode tree) |> ignore
treeView.ExpandAll()
temp.Controls.Add(treeView)
temp

Application.Run(form)

Figure 8-3. A TreeView control used to view a tree

This code is about half the length of Listing 8-1, when you drew the tree yourself. It is also
more functional, because it allows you to fold away parts of the tree in which you’re not inter-
ested. This greatly improves the size of tree that can be manageably displayed.

In this example, you use the “dock style” to control how the control looks. You do this by
setting the control’s Dock property with a member of the DockStyle enumeration. Docking
means that the control will take up as much space as available in the form that contains it on
the left side if you use DockStyle.Left, on the right side if you use DockStyle.Right, at the top
if you use DockStyle.Top, on the bottom if you use DockStyle.Bottom, and on the whole form if
you use DockStyle.Fill. This is great when you have just a few controls, because it creates a
nice dynamic effect because the controls are resized when the user resizes the form; however,
it does not work well with a lot of controls because it is difficult to get lots of controls to fit
together nicely using this technique. For example, if you have two controls that are docked to
the left, it’s confusing which one is supposed to be the leftmost one and how much of the left
side they both take up. A better solution with a lot of controls is to explicitly control their lay-
out using the Top and Left properties. You can create a dynamic effect by using the Anchor
property to anchor the control to the edge of the containing form. The following example cre-
ates a form with a single textbox on it that will grow and shrink as the user resizes the form:

CHAPTER 8 n USER INTERFACES 177

7575Ch08.qxp  4/27/07  1:04 PM  Page 177



#light
open System
open System.Windows.Forms

let form =
let temp = new Form()
let textBox = new TextBox(Top=8,Left=8, Width=temp.Width – 24.

Anchor = (AnchorStyles.Left |||
AnchorStyles.Right |||
AnchorStyles.Top))

temp.Controls.Add(textBox)
temp

[<STAThread>]
do Application.Run(form)

However, this method of working with controls is not always satisfactory. Here you displayed
only one control. Often you want to display tens, even hundreds, of controls on a form. Writing all
the code to create and configure the controls can quickly become tedious and error-prone. To get
around this, Visual Studio provides some form designers that allow you to graphically create
forms. However, a designer is not currently available for F#, so the next section will discuss work-
ing in F# with forms created with the C# designer.

One of the difficulties facing the WinForms programmer when working with controls is
that there are many controls from which to choose. In this chapter, I have covered just one
control. Unfortunately, in learning what works, there’s no real substitute for experience. The
MSDN library (http://msdn.microsoft.com) provides an excellent reference, but the volume of
information there can also be a little off-putting for learners, so I have summarized some of
the most useful ones in Table 8-3 to give you a head start.

Table 8-3. Common WinForm Controls and Their Usages

Control Description

Label A control for displaying text information to the user; generally most other
controls should be accompanied by a Label to explain their usage. Placing
an & in the text of the Text property of the Label will underline the letter
directly after it and allow the keyboard user to hop to the control
associated with the Label (the control next in the tab order) by pressing
Alt+<letter>; this is good for improving application usability.

TextBox A box for entering text. The default is a single line of text but can be
changed to support multiline entry if you set the Multiline property to
true; in this case, also check that the WordWrap and ScrollBar properties
are to your liking. This is also useful for displaying text to the user that you
want them to be able to copy and paste; in this case, set the ReadOnly
property to true.

MaskedTextBox A textbox similar in a lot of respects to the previous control; it allows you
limit the data a user can enter via setting the Mask property.

Button A button for the user to click; as with the Label control, placing an & in the
text of the Text property of the Button control will allow underline the
letter directly after it and allow the keyboard user to hop to the Button by
pressing Alt+<letter>. Again, this is great for usability.

CHAPTER 8 n USER INTERFACES178

7575Ch08.qxp  4/27/07  1:04 PM  Page 178



Control Description

LinkLabel Not really to be used as a label as the name might suggest but as a type of
button that looks like an HTML link. This is great for users who are used to
a web environment or to indicate that clicking the button leads to opening
a web page.

CheckBox A box for the users to check if you have a set of options that are not
mutually exclusive.

RadioButton Similar to a CheckBox but for options that are mutually exclusive. Several of
these placed in the same container are automatically mutually exclusive.
The container is usually a Form.

DateTimePicker A control to allow the user to pick a date via a drop-down calendar.

MonthCalander A control to allow a user to pick a date from a calendar that is permanently
on display.

ComboBox A control to allow a user to make a selection from a drop-down list; this is
great for showing a dynamic set of data via data binding. For more details
on this, see Chapter 9.

ListBox Similar to a ComboBox but the list of items is displayed within the form rather
than as a drop-down list. Favor this one if your form has lots of free space.

DataGridView A control to provide an excellent way to display information from a database
table, though this can be used to display any kind of tabular data. This
should always be used in preference to the older DataGrid. I’ll discuss this
further in Chapter 9.

TreeView Another control great for showing dynamic data, but this time it is most
useful for data in a tree-like form.

ProgressBar Giving your users feedback about any long-running activity is vital for a
usable application, and this control provides a good way to do this.

RichTextBox A control for providing a way to display and edit rich text documents,
which is useful if your users want a little more formatting than offered by
the standard textbox.

WebBrowser A control for displaying HTML documents; this is useful since a lot of
information is available in HTML format.

Panel A control for breaking your form into different sections; this is highly
effective when used with HScrollBar and VScrollBar.

HScrollBar A horizontal scroll bar, used to fit more information on a Form or Panel.

VScrollBar A vertical scroll bar, used to fit more information on a Form or Panel.

TabControl A form that uses a series of tabs to display user controls.

Using the Visual Studio Form Designer’s Forms 
in F#
F# does not yet have a form designer of its own; however, thanks to the great interoperability
of .NET, it is easy to use forms created with the designer in F#. You have two approaches. You
can create an F# library and call functions from this library in your Windows form, or you can
create a library of forms and use them from your F# application. You’ll look first at creating an

CHAPTER 8 n USER INTERFACES 179

7575Ch08.qxp  4/27/07  1:04 PM  Page 179



F# library, and then you will look at creating a forms library. Then I’ll compare the two tech-
niques. Both examples will be based on the same Fibonacci calculator shown in Figure 8-4.

nCaution This book is about F#, and for the majority of the material, knowledge of no other programming
language is necessary. However, for this topic, it will be necessary to understand a little of another .NET pro-
gramming language, in this case C#. Specifically, you’ll see two short listings in C# in this section. You can
easily replace the C# code with Visual Basic .NET code if you feel more comfortable with that language.

Figure 8-4. A Fibonacci calculator form created with the Visual Studio designer

The main consideration in creating an F# library to be used from a form is making it easy
to use from the form. In this case, you’ll create a function to calculate the Fibonacci number,
so this will take an integer and return an integer. This makes things simple since a form has no
problem using the .NET integer type. You want the library to be reasonably efficient, so create
a lazy list of Fibonacci numbers and define a function that can get the nth number:

#light
module Strangelights.Fibonacci
let fibs =

(1,1) |> Seq.unfold
(fun (n0, n1) ->

Some(n0, (n1, n0 + n1)))

let getFib n =
Seq.nth n fibs

Using this function from a form is pretty straightforward; you just need to reference your
F# .dll from the Visual Studio form project. You can use the module Strangelights.Fibonacci
by opening the Strangelights namespace and treating Fibonacci as if it were a class in C#.
The following example shows how to call the function in C# and place the result in a control.
Note that because this form was created with Visual Studio 2005, the control definitions are in
a separate source file.

using System;
using System.Windows.Forms;
using Strangelights;

CHAPTER 8 n USER INTERFACES180

7575Ch08.qxp  4/27/07  1:04 PM  Page 180



namespace CSApp
{

public partial class FibForm : Form
{

public FibForm()
{

InitializeComponent();
}

private void calculate_Click(object sender, EventArgs e)
{

int n = Convert.ToInt32(input.Text);
n = Fibonacci.get(n);
result.Text = n.ToString();

}
}

}

If you want to be able to use the form created in C# from F#, you need to expose certain
controls as properties. Not all controls need to be exposed—just the ones that you want to
interact with from F#. The following example shows how to do this in C#; again, any designer-
generated code is hidden in a separate file:

using System;
using System.Windows.Forms;

namespace Strangelights.Forms
{

public partial class FibForm : Form
{

public FibForm()
{

InitializeComponent();
}

public Button Calculate
{

get { return calculate; }
}

public Label Result
{

get { return result; }
}

CHAPTER 8 n USER INTERFACES 181

7575Ch08.qxp  4/27/07  1:04 PM  Page 181



public TextBox Input
{

get { return input; }
}

}
}

It is then very straightforward to reference the C# .dll from F# and create an instance of
the form and use it. The following example demonstrates the code you use to do this:

#light
open System.Windows.Forms
open Strangelights.Forms

let fibs =
(1,1) |> Seq.unfold

(fun (n0, n1) ->
Some(n0, (n1, n0 + n1)))

let getFib n =
Seq.nth n fibs

let form =
let temp = new FibForm()
temp.Calculate.Click.Add

(fun _ ->
let n = int_of_string temp.Input.Text
let n = getFib n
temp.Result.Text <- string_of_int n)

temp

Application.Run(form)

As you have seen, you can use both techniques to produce similar results, so which is best
to use when? The problem with a C# form calling F# is that you will inevitably end up writing
quite a bit of C# to glue everything together. It can also be difficult to use some F# types, such
as union types, from C#. Considering these two facts, I generally create a C# forms library and
use this from F#. I discuss the problem of making F# libraries ready for use with other .NET
languages in Chapter 13.

Working with WinForms Events and the IEvent
Module
The IEvent module, first discussed in Chapter 7, can be useful when working with events in
WinForms. When working with events in a WinForm, there is often not an event that exactly fits
what you want. For example, the MouseButton event is raised when either the left or right mouse
button is clicked, but you might want to respond only to the click of the left mouse button. In

CHAPTER 8 n USER INTERFACES182

7575Ch08.qxp  4/27/07  1:04 PM  Page 182



this case, it can be useful to use the IEvent.filter function to create a new event that responds
only to the left mouse button click. The next example demonstrates how to do this:

light
open System.Windows.Forms

let form =
let temp = new Form()
temp.MouseClick
|> IEvent.filter (fun e -> e.Button = MouseButtons.Left)
|> IEvent.listen

(fun _ ->
MessageBox.Show("Left button") |> ignore)

temp

Application.Run(form)

Here the filter function is used with a function that checks whether the left mouse button
is pressed; the resulting event is then piped forward to the listen function that adds an event
handler to the event, exactly as if you had called the event’s .Add method. You could have
implemented this using an if expression within the event handler, but this technique has the
advantage of separating the logic that controls the event firing and what happens during the
event itself. If you want, several event handlers can reuse the new event.

Listing 8-3 demonstrates using more of IEvent’s functions to create a simple drawing
application (shown in Figure 8-5). Here you want to use the MouseDown event in different ways,
first to monitor whether the mouse is pressed at all and then to split the event into left or right
button presses using the IEvent.partition function. This is used to control the drawing color,
either red or black.

Listing 8-3. Using Events to Implement a Simple Drawing Application

#light
open System
open System.Drawing
open System.Windows.Forms

let form =
let temp = new Form(Text = "Scribble !!")

let pointsMasterList = ref []
let pointsTempList = ref []
let mouseDown = ref false
let pen = ref (new Pen(Color.Black))

temp.MouseDown.Add(fun _ -> mouseDown := true)

CHAPTER 8 n USER INTERFACES 183

7575Ch08.qxp  4/27/07  1:04 PM  Page 183



let leftMouse, rightMouse =
temp.MouseDown
|> IEvent.partition (fun e -> e.Button = MouseButtons.Left)

leftMouse.Add(fun _ -> pen := new Pen(Color.Black))
rightMouse.Add(fun _ -> pen := new Pen(Color.Red))

temp.MouseUp
|> IEvent.listen

(fun _ ->
mouseDown := false
if List.length !pointsTempList > 1 then

let points = List.to_array !pointsTempList
pointsMasterList :=

(!pen, points) :: !pointsMasterList
pointsTempList := []
temp.Invalidate())

temp.MouseMove
|> IEvent.filter(fun _ -> !mouseDown)
|> IEvent.listen

(fun e ->
pointsTempList := e.Location :: !pointsTempList
temp.Invalidate())

temp.Paint
|> IEvent.listen

(fun e ->
if List.length !pointsTempList > 1 then

e.Graphics.DrawLines
(!pen, List.to_array !pointsTempList)

!pointsMasterList
|> List.iter

(fun (pen, points) ->
e.Graphics.DrawLines(pen, points)))

temp

[<STAThread>]
do Application.Run(form)

CHAPTER 8 n USER INTERFACES184

7575Ch08.qxp  4/27/07  1:04 PM  Page 184



Figure 8-5. Scribble: a simple drawing application implemented using events

Events created this way can also be published on the form’s interface so that code consum-
ing the form can also take advantage of these events.

Again, a big problem facing a programmer working with events in WinForms is the volume
of events available, which can make choosing the right one difficult. Perhaps surprisingly, most
events are defined on the class Control, with each specialization providing only a handful of
extra events. This generally makes life a bit easier, because if you have used an event with a con-
trol, odds are it will also be available on another. To help beginners with the most common
events on the Control class, I have provided a summary in Table 8-4.

Table 8-4. A Summary of Events on the Control Class

Event Description

Click This event is caused by the user clicking the control. It is a high-level event,
and although it is ordinarily caused by the user clicking with the mouse, it
might also be caused by the user pressing Enter or the spacebar when on a
control. There are a series of events called MouseDown, MouseClick, and MouseUp
that provide more detailed information about the actions of the mouse, but
because these events just provide information about the mouse actions,
generally the Click should be handled instead of these events. Otherwise, this
will lead to the control responding in ways users expect, because it will
respond to keystrokes and mouse clicks.

DoubleClick This is raised when the mouse is clicked twice in quick succession; the
amount of time is determined by the user’s operating system settings.
Programmers should be careful when handling this event because every time
this event is raised, a Click event will have been raised before it, so in general
programmers should handle either this event or the Click event.

continued

CHAPTER 8 n USER INTERFACES 185

7575Ch08.qxp  4/27/07  1:04 PM  Page 185



Table 8-4. Continued

Event Description

Enter This event is raised when the control becomes active—either the user presses
Tab to enter it, the programmer calls Select or SelectNextControl, or the user
clicks it with the mouse. It is usually used to draw attention to the fact that the
control is active, such as setting the background to a different color. It is
suppressed on the Form class, and programmers should use Activated instead.

Leave This event is raised when the control is deactivated—either the user presses
Tab to leave it, the programmer calls Select or SelectNextControl, or the user
clicks another control with the mouse. The programmer might be tempted to
use this event for validation, but they should not do this and should use the
Validating and Validated events instead. This event is suppressed on the Form
class, and programmers should use Activated instead.

KeyPress This event is part of a sequence of events that can be used to get detailed
information about the state of the keyboard. To get details about when a key is
first pressed, use KeyDown, and to find out when it is released, use KeyUp instead.

Move This event is raised whenever the control is moved by the user.

MouseHover This event is useful to find out whether the mouse is hovering over a control
so can be used to give users more information about the control. The events
MouseEnter and MouseLeave are also useful for this.

Paint This event occurs when the form will be repainted by Windows; handle this event
if you want to take care of drawing the control yourself. For more information
about this, see the section “Drawing WinForms” earlier in this chapter.

Resize This event occurs when the user resizes the form; it can be useful to handle
this event to adjust the layout of the form to the new size.

Creating New Forms Classes
So far you’ve looked only at a script style of programming, using an existing form and controls
to quickly put forms together. This style of programming is great for the rapid development of
single-form applications but has some limitations when creating applications composed of
multiple forms or creating libraries of forms for use with other .NET languages. In these cases,
you must take a more component-oriented approach.

Typically, when creating a large WinForms application, you’ll want to use some forms
repeatedly; furthermore, these forms typically communicate with each other by adjusting
their properties and calling their methods. You usually do this by defining a new form class
that derives from System.Windows.Forms. Listing 8-4 shows a simple example of this, using the
class syntax introduced in Chapter 5.

Listing 8-4. A Demonstration of Creating a New Type of Form

#light
open System
open System.Windows.Forms

CHAPTER 8 n USER INTERFACES186

7575Ch08.qxp  4/27/07  1:04 PM  Page 186



type MyForm() as x = class
inherit Form(Width=174, Height=64)
let label = new Label(Top=8, Left=8, Width=40, Text="Input:")
let textbox = new TextBox(Top=8, Left=48, Width=40)
let button = new Button(Top=8, Left=96, Width=60, Text="Push Me!")
do button.Click.Add

(fun _ ->
let form = new MyForm(Text=textbox.Text)
form.Show())

do x.Controls.Add(label)
do x.Controls.Add(textbox)
do x.Controls.Add(button)
member x.Textbox = textbox

end

let form =
let temp = new MyForm(Text="My Form")
temp.Textbox.Text <- "Next!"
temp

[<STAThread>]
do Application.Run(form)

Figure 8-6 shows the resulting forms.

Figure 8-6. A demonstration of creating a new type of form for easy reuse

In this example, you created a form that has three fields: label, textbox, and button. These
fields can then be manipulated by external code. At the end of the example, you created a new
instance of this form and then set the Text property of the textbox field.

Events can be exposed on the interface of a form much the same way that fields can. This
takes a little more work because of some restrictions. The idea is to create a new event, then
store this event in a field in the class, and finally make this event a subscriber to the filtered
event. This is demonstrated in the next example, where you filter the MouseClick event to cre-
ate a LeftMouseClick:

CHAPTER 8 n USER INTERFACES 187

7575Ch08.qxp  4/27/07  1:04 PM  Page 187



#light
open System.Windows.Forms

type LeftClickForm() as x = class
inherit Form()
let trigger, event = IEvent.create()
do x.MouseClick

|> IEvent.filter (fun e -> e.Button = MouseButtons.Left)
|> IEvent.listen (fun e -> trigger e)

member x.LeftMouseClick = event
end

Forms created in this component-based manner will undoubtedly be easier to use than
forms created with a more scripted approach, but there are still pitfalls when creating libraries
for other .NET languages. Please refer to Chapter 13 for more information about making F#
libraries usable by other .NET languages.

Introducing ASP.NET 2.0
ASP.NET 2.0 is a technology designed to simplify creating dynamic web pages. The simplest
way to do this is to implement an interface called IHttpHandler. This interface allows the
implementer to describe how an HTTP request should be responded to; the next section of 
the chapter will concentrate on how this works.

Merely implementing the IHttpHandler interface will not allow you to take full advantage
of the ASP.NET 2.0 feature set. ASP.NET allows users to create web forms, which are composed
of controls that know how to render themselves into HTML. The advantage of this is that the
programmer has a nice object model to manipulate rather than having to code HTML tags. It
also allows a programmer to separate out the layout of controls in an .aspx file. An .aspx file is
basically all the static HTML you don’t want to worry about in your F# code, plus a few place-
holders for the dynamic controls. This approach is great for programming in F#, because it
allows you to separate the code that represents the layout of a form, which can look a little
long in F#, from the code that controls its behavior. ASP.NET also lets you store configuration
values in an XML-based web.config file.

Working with ASP.NET presents an additional challenge; you must configure the web
server that will host the ASP.NET application. Your configuration will vary depending on your
development environment.

Visual Studio 2005 comes with a built-in web server, so to create a new web site, it is just a
matter of selecting File ä New ä Web Site and then choosing the location for the web site. This
site will run only those pages written in C# or Visual Basic .NET, so you need to add an F# proj-
ect to the solution and then manually alter the solution file so that it lives inside the web site
directory. This is easier than it sounds. You just need to copy the .fsharpp file to the web site
directory, open the .sln file in Notepad, and alter the path to the .fsharpp file. After this you
merely need to configure the project file to output a library and write this to a bin subdirectory.
This might seem like a lot of effort, but after this you will just be able to press F5, and your proj-
ect will compile and run.

CHAPTER 8 n USER INTERFACES188

7575Ch08.qxp  4/27/07  1:04 PM  Page 188



If you do not have Visual Studio 2005, then the next best thing to do is host the site in IIS.
In some ways, this is easier than hosting in Visual Studio but doesn’t have the convenience of
just being able to execute your code once coding is completed. To host your code in IIS, you
need to create an IIS virtual directory with a subdirectory called bin. You then need to copy
your .aspx pages and your web.config file to the virtual directory.

nNote Getting ASP.NET to work with F# and Apache is possible but is more difficult than the situation
either with or without Visual Studio 2005. Please see the following site for more details of how to do this:
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.Apache.

Creating an IHttpHandler
Creating an IHttpHandler is the simplest way to take advantage of ASP.NET 2.0. It is a simple
interface with just two members. The first of these members is a read-only Boolean property
called IsReusable that the programmer should use to indicate whether the runtime can reuse
the instance of the object. It is generally best to set this to false.

The other member of the interface is the ProcessRequest method, and this is called when
a web request is received. It takes one parameter of HttpContent type; you can use this type to
retrieve information about the request being made through its Request property and also to
respond to the request via its Response property. The following code is a simple example of an
IHttpHandler that just responds to a request with the string "<h1>Hello World</h1>":

#light
namespace Strangelights.HttpHandlers
open System.Web

type SimpleHandler() = class
interface IHttpHandler with

member x.IsReusable = false
member x.ProcessRequest(c : HttpContext) =

c.Response.Write("<h1>Hello World</h1>")
end

end

After this, you must configure the URL where the IHttpHandler is available. You do this by
adding an entry to the web.config file. If a web.config file is not already in the project, you can
add one by right-clicking the web project and choosing Add New Item. The handlers are
added to the httpHandlers section, and you need to configure four properties for each han-
dler: path, which is the URL of the page; verb, which configures which HTTP verbs the handler
will respond to; type, which is the name of the type that will be used to handle the request;
and finally validate, which tells the runtime whether it should check the availability of the
type when the application is first loaded.

CHAPTER 8 n USER INTERFACES 189

7575Ch08.qxp  4/27/07  1:04 PM  Page 189



<configuration>
<system.web>
<httpHandlers>
<add
path="hello.aspx"
verb="*"
type="Strangelights.HttpHandlers.SimpleHandler"
validate="True" />

</httpHandlers>
</configuration>

Figure 8-7 shows the resulting web page.

Figure 8-7. The resulting web page when the SimpleHandler is executed

This technique is unsatisfactory for creating web pages, because it requires the HTML
tags to be mixed into the F# code. It does have some advantages, though. You can use this
technique to put together documents other than HTML documents; for example, you can use
it to dynamically create images on the server. The following example shows an IHttpHandler
that generates a JPEG image of a pie shape. The amount of pie shown is determined by the
angle value that that is passed in on the query string.

#light
namespace Strangelights.HttpHandlers
open System.Drawing
open System.Drawing.Imaging
open System.Web

CHAPTER 8 n USER INTERFACES190

7575Ch08.qxp  4/27/07  1:04 PM  Page 190



type PictureHandler() = class
interface IHttpHandler with

member x.IsReusable = false
member x.ProcessRequest(c : HttpContext) =

let bitmap = new Bitmap(200, 200)
let graphics = Graphics.FromImage(bitmap)
let brush = new SolidBrush(Color.Red)
let x = int_of_string(c.Request.QueryString.Get("angle"))
graphics.FillPie(brush, 10, 10, 180, 180, 0, x)
bitmap.Save(c.Response.OutputStream, ImageFormat.Gif)

end
end

Again, you still need to register this type in the web.config file; the required configuration
is as follows:

<configuration>
<system.web>
<httpHandlers>
<add
path="pic.aspx"
verb="*"
type="Strangelights.HttpHandlers.PictureHandler"
validate="True" />

</httpHandlers>
</configuration>

Figure 8-8 shows the resulting image. In this case, I passed in an angle of 200.

Figure 8-8. Using an IHttpHandler to dynamically generate a picture

CHAPTER 8 n USER INTERFACES 191

7575Ch08.qxp  4/27/07  1:04 PM  Page 191



Although this is a great technique for spicing up web sites, you should be careful when
using it. Generating images can be very processor intensive, especially if the images are large
or complicated. This can lead to web sites that do not scale up to the required number of con-
current users; therefore, if you do use this technique, ensure you profile your code correctly.
For more information about profiling your applications and for some general performance
enhancements, please see Chapter 13.

Working with ASP.NET Web Forms
If you want to create dynamic web pages, then you will probably have an easier time using
ASP.NET forms than implementing your own IHttpHandler. The main advantage of web forms
is that you do not need to deal with HTML tags in F# code; most of this is abstracted away for
you. There are other, smaller advantages too, such as that you do not have to register the page
in web.config.

To create an ASP.NET web form, you generally start by creating the user interface, defined
in an .aspx file. The .aspx file is all the static HTML, plus some placeholders for the dynamic
controls. An .aspx file always starts with a Page directive; you can see this at the top of the next
example. The Page directive allows you to specify a class that the page will inherit from; you do
this by using the Inherits attribute and giving the full name of the class. This will be a class in
F# that provides the dynamic functionality.

If you look at the following example, in among the regular HTML tags you’ll find some tags
that are prefixed with asp:. These are ASP.NET web controls, and these provide the dynamic
functionality. A web control is a class in the .NET Framework that knows how to render itself into
HTML, so for example, the <asp:TextBox /> tag will become an HTML <input /> tag. You will be
able to take control of these controls in your F# class and use them to respond to user input.

<%@ Page Inherits="Strangelights.HttpHandlers.HelloUser" %>
<html>

<head>
<title>F# - Hello User</title>

</head>
<body>

<p>Hello User</p>
<form id="theForm" runat="server">

<asp:Label
ID="OutputControl"
Text="Enter you're name ..."
runat="server" />

<br />
<asp:TextBox

ID="InputControl"
runat="server" />

CHAPTER 8 n USER INTERFACES192

7575Ch08.qxp  4/27/07  1:04 PM  Page 192



<br />
<asp:LinkButton

ID="SayHelloButton"
Text="Say Hello ..."
runat="server"
OnClick="SayHelloButton_Click" />

</form>
</body>

</html>

When designing your class, you need to provide mutable fields with the same name as the
controls you want to manipulate. Although the HTML page you created had three controls in it,
you provide only two mutable fields, because you don’t want to manipulate the third control, a
link button. You just want it to call the SayHelloButton_Click function when you click it. You do
this by adding the function name to the OnClick attribute of the asp:LinkButton control.

When the other two controls are created, a label and a textbox, they will be stored in the
mutable fields OutputControl and InputControl, respectively. It is the code contained in the
.aspx page, not your class, that is responsible for creating these controls. This is why you
explicitly initialize these controls to null in the constructor. Finally, all that remains in
SayHelloButton_Click is to take the input from InputControl and place it into OutputControl.

#light
namespace Strangelights.HttpHandlers

open System
open System.Web.UI
open System.Web.UI.WebControls

type HelloUser = class
inherit Page
val mutable OutputControl : Label
val mutable InputControl : TextBox
new() =

{ OutputControl = null
InputControl = null }

member x.SayHelloButton_Click((sender : obj), (e : EventArgs))  =
x.OutputControl.Text <- ("Hello ... " + x.InputControl.Text)

end

Figure 8-9 shows the resulting web page.

CHAPTER 8 n USER INTERFACES 193

7575Ch08.qxp  4/27/07  1:04 PM  Page 193



Figure 8-9. A page created using an ASP.NET form

This form doesn’t look great, but the nice thing about your application being defined in
HTML is that you can quickly use images and Cascading Style Sheets (CSS) to spice up the
application. Figure 8-10 shows the results of a little CSS magic.

Figure 8-10. A web page that takes full advantage of HTML and CSS

CHAPTER 8 n USER INTERFACES194

7575Ch08.qxp  4/27/07  1:04 PM  Page 194



You have taken only a brief look at all the functionality offered by ASP.NET. To give begin-
ners a starting point for investigating this further, Table 8-5 summarizes all the namespaces
available in System.Web.dll that contains the ASP.NET functionality.

Table 8-5. A Summary of the Namespaces Available in System.Web.dll

Namespace Description

System.Web This namespace provides types that are the basis to the
HTML rendering process that is ASP.NET; this is where
the IHttpHander interface, which I have already
discussed in this chapter, lives.

System.Web.Mail This namespace provides types that can be used to
send emails from ASP.NET applications.

System.Web.HtmlControls This namespace provides controls that are exact copies
of HTML tags.

System.Web.WebControls This namespace provides controls that are like HTML
tags but are more abstract. For example, the TextBox
control is rendered as an input tag if its TextMode
property is set to TextBoxMode.SingleLine and as a
textarea if it is set to TextBoxMode.MultiLine.

System.Web.WebControls.Adapters This namespace provides adapters that can be used to
affect the rendering of other controls to alter their
behavior or render different HTML tags for different
types of browsers.

System.Web.WebControls.WebParts This namespace provides web parts, controls that sup-
port a system where users can add, remove, and
dynamically configure them within a page to give a per-
sonalized experience.

Introducing Windows Presentation Foundation
WPF is a library that offers a completely new programming model for user interfaces. It is
aimed at creating desktop applications that have more pizzazz than the ones that are created
with WinForms. WPF also comes with a new XML-based language called XAML, which can be
used to code the bulk of the layout of the form, leaving F# code free to describe the interesting
parts of the application.

nNote Several XAML designers are now available; these allow F# users to design their interface using a
graphical WYSWIG tool and then add the interactivity to it using F#. Mobiform offers a designer called Aurora
(http://www.mobiform.com/eng/aurora.html), and Microsoft offers a designer called Expression Blend
(http://www.microsoft.com/products/expression/en/expression-blend/default.mspx).

The first example you’ll look at is how to create a simple form in XAML and then display it
to the user using F#. Listing 8-5 shows the XAML definition of a form with four controls: two
labels, a textbox, and a button.

CHAPTER 8 n USER INTERFACES 195

7575Ch08.qxp  4/27/07  1:04 PM  Page 195



Listing 8-5. A Simple Form Created in XAML

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:sys="clr-namespace:System;assembly=mscorlib"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="64" />
<ColumnDefinition Width="128" />
<ColumnDefinition Width="128" />
<ColumnDefinition Width="128" />

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="24"/>

</Grid.RowDefinitions>

<Label Grid.Row="0" Grid.Column="0" >Input: </Label>
<TextBox Name="input" Grid.Column="1" Text="hello" />
<Label Name="output" Grid.Row="0" Grid.Column="2" ></Label>
<Button Name="press" Grid.Column="3" >Press Me</Button>
</Grid>

</Window>

To make this XAML definition of a form useful, you need to do two things. You must load
the form’s definition and show it to the user, but just doing this will offer no interaction with the
user, so the other thing you need to do is make the form interactive. To do this, you use F# to
add event handlers to the controls, in this case to add an event handler to the button to place
the contents of the textbox into the second label. The function createWindow is a general-
purpose function for loading an XAML form. You then use this function to create the value
window, and you pass this value to the form’s FindName method to find the controls within the
form so you can interact with them. Finally, in the main function you create an instance of the
Application class and use this to show the form (see Listing 8-6).

Listing 8-6. Displaying the XAML Form and Adding Event Handlers to It

#light
open System
open System.Collections.Generic
open System.Windows
open System.Windows.Controls
open System.Windows.Markup
open System.Xml

// creates the window and loads the given XAML file into it
let createWindow (file : string) =

using (XmlReader.Create(file)) (fun stream ->
(XamlReader.Load(stream) :?> Window))

CHAPTER 8 n USER INTERFACES196

7575Ch08.qxp  4/27/07  1:04 PM  Page 196



// create the window object and add event handler
// to the button control
let window =

let temp = createWindow "Window1.xaml"
let press = temp.FindName("press") :?> Button
let textbox = temp.FindName("input") :?> TextBox
let label = temp.FindName("output") :?> Label
press.Click.Add (fun _ -> label.Content <- textbox.Text )
temp

// run the application
let main() =

let app = new Application()
app.Run(window) |> ignore

[<STAThread>]
do main()

To get this program to compile, you must add references to PresentationCore.dll,
PresentationFramework.dll, and WindowsBase.dll, which are usually found in the directory
C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0. In the other examples in
this chapter, you didn’t need to add references, since the libraries were automatically refer-
enced by the compiler. The form appears as in Figure 8-11.

Figure 8-11. A form created using XAML and F#

Introducing Windows Presentation Foundation 3D
Another great advantage of WPF is the huge number of controls it offers. One control that
you’ll dig a little deeper into is Viewport3D, which offers the ability to create impressive 3D
graphics, something not readily available with the WinForms library. You’ll learn how you can
display a 3D plane and then map an equation over it.

CHAPTER 8 n USER INTERFACES 197

7575Ch08.qxp  4/27/07  1:04 PM  Page 197



The example (shown later in Listing 8-7) starts with the XAML script. Both XAML and 3D
graphics are huge topics; my aim is not to cover them in detail but to give you enough of an
idea of what they involve and to give you the basis for your own experiments. The following
XAML script describes a window with one control, a Viewport3D, on it. The script is fairly
lengthy because there are quite a few elements required to make a 3D scene. First you must
define a camera so you know which direction you are looking at the scene from. You do this
using the <Viewport3D.Camera> element:

<Viewport3D.Camera>
<PerspectiveCamera Position="0,0,2" LookDirection="0,0,-1" FieldOfView="60" />

</Viewport3D.Camera>

The tags inside <Model3DGroup> describe what the scene will look like. The <AmbientLight
Color="White" /> tag describes how the scene will be lit, and the <GeometryModel3D.Geometry>
tag describes the 3D shape in the scene:

<GeometryModel3D.Geometry>
<MeshGeometry3D />

</GeometryModel3D.Geometry>

Here you could describe all the objects that make up the scene by giving the points that make
them up using the <MeshGeometry3D /> tag; however, you don’t describe the points that make up
the shape since it is a lot easier to do this in F# than in XAML. The <GeometryModel3D.Material>
tag describes what the surface of the shape will look like:

<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<ImageBrush ImageSource="venus.jpg" />

</DiffuseMaterial.Brush>
</DiffuseMaterial>

</GeometryModel3D.Material>

The <GeometryModel3D.Transform> tag describes a transformation that will be applied to
the shape, that is, a transformation that will mean the shape will be rotated by a certain angle:

<GeometryModel3D.Transform>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D
x:Name="MyRotation3D"
Angle="45"
Axis="0,1,0"/>

</RotateTransform3D.Rotation>
</RotateTransform3D>

</GeometryModel3D.Transform>

CHAPTER 8 n USER INTERFACES198

7575Ch08.qxp  4/27/07  1:04 PM  Page 198



You do this mainly so you can use the <Viewport3D.Triggers> tag to define an animation
that will alter the angle it is shown at over time:

<Viewport3D.Triggers>
<EventTrigger RoutedEvent="Viewport3D.Loaded">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation
From="-80"
To="80"
Duration="0:0:12"
Storyboard.TargetName="MyRotation3D"
Storyboard.TargetProperty="Angle"
RepeatBehavior="Forever"
AutoReverse="True" />

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Viewport3D.Triggers>

To demonstrate how these various sections hang together, Listing 8-7 shows the complete
example.

Listing 8-7. An XAML Definition of a 3D Scene

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Viewport3D Name="ViewPort">
<Viewport3D.Camera>
<PerspectiveCamera Position="0,0,2" LookDirection="0,0,-1" FieldOfView="60" />

</Viewport3D.Camera>

<Viewport3D.Children>
<ModelVisual3D>
<ModelVisual3D.Content>
<Model3DGroup >
<Model3DGroup.Children>
<AmbientLight Color="White" />
<GeometryModel3D>
<GeometryModel3D.Geometry>

<MeshGeometry3D />
</GeometryModel3D.Geometry>

CHAPTER 8 n USER INTERFACES 199

7575Ch08.qxp  4/27/07  1:04 PM  Page 199



<GeometryModel3D.Transform>
<RotateTransform3D>
<RotateTransform3D.Rotation>
<AxisAngleRotation3D
x:Name="MyRotation3D"
Angle="45"
Axis="0,1,0"/>

</RotateTransform3D.Rotation>
</RotateTransform3D>

</GeometryModel3D.Transform>

<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<ImageBrush ImageSource="venus.jpg" />

</DiffuseMaterial.Brush>
</DiffuseMaterial>

</GeometryModel3D.Material>

</GeometryModel3D>
</Model3DGroup.Children>

</Model3DGroup>
</ModelVisual3D.Content>

</ModelVisual3D>
</Viewport3D.Children>

<Viewport3D.Triggers>
<EventTrigger RoutedEvent="Viewport3D.Loaded">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation
From="-80"
To="80"
Duration="0:0:12"
Storyboard.TargetName="MyRotation3D"
Storyboard.TargetProperty="Angle"
RepeatBehavior="Forever"
AutoReverse="True" />

</Storyboard>
</BeginStoryboard>

</EventTrigger.Actions>
</EventTrigger>

</Viewport3D.Triggers>
</Viewport3D>

</Window>

CHAPTER 8 n USER INTERFACES200

7575Ch08.qxp  4/27/07  1:04 PM  Page 200



The example continues later in Listing 8-8, with the F# script, which borrows a couple of
functions from Listing 8-6; it also assumes that Listing 8-7 is saved in a file called
Window2.xaml. You use the createWindow function to load the window and use a similar main
function to display the window. You then use the findMeshes function to find any meshes in
the picture (a mesh is a set of points used to describe the 3D plane). You find the meshes by
walking the various objects in the Viewport3D and building up a list:

// finds all the MeshGeometry3D in a given 3D view port
let findMeshes ( viewport : Viewport3D ) =

viewport.Children
|> Seq.choose

(function :? ModelVisual3D as c -> Some(c.Content) | _ -> None)
|> Seq.choose

(function :? Model3DGroup as mg -> Some(mg.Children) | _ -> None)
|> Seq.concat
|> Seq.choose

(function :? GeometryModel3D as mg -> Some(mg.Geometry) | _ -> None)
|> Seq.choose

(function :? MeshGeometry3D as mv -> Some(mv) | _ -> None)

I kept this function generic so it could work with any Viewport3D. It is highly likely that
you will want to grab a list of all the meshes in your 3D scene in any 3D work you do in XAML
and F# because it is likely that you will want to manipulate your meshes in some way in F#.
Then you use createPlaneItemList, createSquare, createPlanePoints, createIndicesPlane,
and addPlaneToMesh to add a flat plane to the mesh object in the scene. The function
mapPositionsCenter centers the plane so it is in the middle of the scene. Finally, a clever little
function called changePositions maps the function movingWaves repeatedly across the plane
ten times a second. The core of this function creates a new Point3DCollection from the
Point3D objects contained within the old one using the function movingWaves to decide what
the new Z position should be.

let changePositions () =
let dispatcherTimer = new DispatcherTimer()
dispatcherTimer.Tick.Add

(fun e ->
let t = (float_of_int DateTime.Now.Millisecond) / 2000.0
let newPositions =

mesh.Positions
|> Seq.map

(fun position ->
let z = movingWaves t position.X position.Y
new Point3D(position.X, position.Y, z))

mesh.Positions <- new Point3DCollection(newPositions))
dispatcherTimer.Interval <- new TimeSpan(0,0,0,0,100)
dispatcherTimer.Start()

Using the DispatcherTimer class means that the code is executed on the thread that created
the form, meaning there is no need to call back to this thread to update the form. It needs to be

CHAPTER 8 n USER INTERFACES 201

7575Ch08.qxp  4/27/07  1:04 PM  Page 201



called at least ten times a second to create a smooth animation effect. Listing 8-8 shows the
complete example.

Listing 8-8. Displaying and Interacting with a 3D XAML Scene

#light
open System
open System.Collections.Generic
open System.IO
open System.Windows
open System.Windows.Controls
open System.Windows.Markup
open System.Windows.Media
open System.Windows.Media.Media3D
open System.Windows.Threading
open System.Xml

// creates the window and loads the given XAML file into it
let createWindow (file : string) =

using  (XmlReader.Create(file))
(fun stream ->

let temp = XamlReader.Load(stream) :?> Window
temp.Height <- 400.0
temp.Width <- 400.0
temp.Title <- "F# meets Xaml"
temp)

// finds all the MeshGeometry3D in a given 3D view port
let findMeshes ( viewport : Viewport3D ) =

viewport.Children
|> Seq.choose

(function :? ModelVisual3D as c -> Some(c.Content) | _ -> None)
|> Seq.choose

(function :? Model3DGroup as mg -> Some(mg.Children) | _ -> None)
|> Seq.concat
|> Seq.choose

(function :? GeometryModel3D as mg -> Some(mg.Geometry) | _ -> None)
|> Seq.choose

(function :? MeshGeometry3D as mv -> Some(mv) | _ -> None)

// loop function to create all items necessary for a plane
let createPlaneItemList f (xRes : int) (yRes : int) =

let list = new List<_>()
for x = 0 to xRes - 1 do

for y = 0 to yRes - 1 do
f list x y

list

CHAPTER 8 n USER INTERFACES202

7575Ch08.qxp  4/27/07  1:04 PM  Page 202



// function to initialize a point
let point x y = new Point(x, y)
// function to initialize a "d point
let point3D x y = new Point3D(x, y, 0.0)

// create all the points necessary for a square in the plane
let createSquare

f (xStep : float) (yStep : float) (list : List<_>) (x : int) (y : int) =
let x' =  Float.of_int x * xStep
let y' =  Float.of_int y * yStep
list.Add(f x' y')
list.Add(f (x' + xStep) y')
list.Add(f (x' + xStep) (y' + yStep))
list.Add(f (x' + xStep) (y' + yStep))
list.Add(f x' (y' + yStep))
list.Add(f x' y')

// create all items in a plane
let createPlanePoints f xRes yRes =

let xStep = 1.0 / Float.of_int xRes
let yStep = 1.0 / Float.of_int yRes
createPlaneItemList (createSquare f xStep yStep) xRes yRes

// create the 3D positions for a plane, i.e., the thing that says where
// the plane will be in 3D space
let createPlanePositions xRes yRes =

let list = createPlanePoints point3D xRes yRes
new Point3DCollection(list)

// create the texture mappings for a plane, i.e., the thing that
// maps the 2D image to the 3D plane
let createPlaneTextures xRes yRes =

let list = createPlanePoints point xRes yRes
new PointCollection(list)

// create indices list for all our triangles
let createIndicesPlane width height =

let list = new System.Collections.Generic.List<int>()
for index = 0 to width * height * 6 do

list.Add(index)
new Int32Collection(list)

// center the plane in the field of view
let mapPositionsCenter (positions : Point3DCollection) =

let newPositions =
positions
|> Seq.map

CHAPTER 8 n USER INTERFACES 203

7575Ch08.qxp  4/27/07  1:04 PM  Page 203



(fun position ->
new Point3D(

(position.X - 0.5 ) * -1.0 ,
(position.Y - 0.5 ) * -1.0,
position.Z))

new Point3DCollection(newPositions)

// create a plane and add it to the given mesh
let addPlaneToMesh (mesh : MeshGeometry3D) xRes yRes =

mesh.Positions <- mapPositionsCenter
(createPlanePositions xRes yRes)

mesh.TextureCoordinates <- createPlaneTextures xRes yRes
mesh.TriangleIndices <- createIndicesPlane xRes yRes

let movingWaves (t : float) x y =
(Math.Cos((x + t) * Math.PI * 4.0) / 3.0) *

(Math.Cos(y * Math.PI * 2.0) / 3.0)

// create our window
let window = createWindow "Window2.xaml"

let mesh =
// grab the 3D view port
let viewport = window.FindName("ViewPort") :?> Viewport3D
// find all the meshes and get the first one
let meshes = findMeshes viewport
let mesh = Seq.hd meshes
// add plane to the mesh
addPlaneToMesh mesh 20 20
mesh

let changePositions () =
let dispatcherTimer = new DispatcherTimer()
dispatcherTimer.Tick.Add

(fun e ->
let t = (float_of_int DateTime.Now.Millisecond) / 2000.0
let newPositions =

mesh.Positions
|> Seq.map

(fun position ->
let z = movingWaves t position.X position.Y
new Point3D(position.X, position.Y, z))

mesh.Positions <- new Point3DCollection(newPositions))
dispatcherTimer.Interval <- new TimeSpan(0,0,0,0,100)
dispatcherTimer.Start()

CHAPTER 8 n USER INTERFACES204

7575Ch08.qxp  4/27/07  1:04 PM  Page 204



let main() =
let app = new Application()
changePositions()
// show the window
app.Run(window) |> ignore

[<STAThread>]
do main()

Figure 8-12 shows the resulting window. It doesn’t show off the animated results, so I
encourage you to try the application yourself.

Figure 8-12. A 3D scene created using XAML and F#

One other thing I encourage you to do is play with this sample in fsi. You can subtly alter
the sample to run inside fsi, and then the function applied to the plane can be altered dynami-
cally. The original script must be altered in several small ways.

First, you must set the reference to the .dll files in an fsi style:

#I @"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0" ;;
#r @"PresentationCore.dll" ;;
#r @"PresentationFramework.dll" ;;
#r @"WindowsBase.dll" ;;

CHAPTER 8 n USER INTERFACES 205

7575Ch08.qxp  4/27/07  1:04 PM  Page 205



Then, you must alter the changePositions function to use a mutable function:

// mutable function that is used within changePositions function
let mutable f  = (fun (t : float) (x : float) (y : float) -> 0.0)

// function for changing the plane over time
let changePositions () =

let dispatcherTimer = new DispatcherTimer()
dispatcherTimer.Tick.Add

(fun e ->
let t = (float_of_int DateTime.Now.Millisecond) / 2000.0
let newPositions =

mesh.Positions
|> Seq.map

(fun position ->
let z = f t position.X position.Y
new Point3D(position.X, position.Y, z))

mesh.Positions <- new Point3DCollection(newPositions))
dispatcherTimer.Interval <- new TimeSpan(0,0,0,0,100)
dispatcherTimer.Start()

Then, finally, you show the window using its .Show() method rather than the Application
class’s Run method, not forgetting to set its Topmost property to true so that it is easy to interact
with the window and see the results:

// show the window, set it the top, and activate the function that will
// set it moving
window.Show()
window.Topmost <- true
changePositions ()

Finally, you need to define some other functions to map across the plane. This can be any
function that takes three floating-point numbers (the first representing the time and the next
two representing the X and Y coordinates, respectively) and returns a third floating-point
representing the Z coordinate. I’m practically fond of using sine and cosine functions because
these generate interesting wave patterns. Here are some examples of what you could use, but
please feel free to invent your own:

let cosXY _ x y =
Math.Cos(x * Math.PI) * Math.Cos(y * Math.PI)

let movingCosXY (t : float) x y =
Math.Cos((x + t) * Math.PI) * Math.Cos((y - t) * Math.PI)

You can then easily apply these functions to the plane by updating the mutable function:

f <- movingCosXY

Using this technique produces the image in Figure 8-13.

CHAPTER 8 n USER INTERFACES206

7575Ch08.qxp  4/27/07  1:04 PM  Page 206



Figure 8-13. Controlling a 3D XAML scene interactively using F# interactive

The WPF framework contains lots of types and controls that will take any programmer
some time to learn. Fortunately, many resources are available on the Internet to help you do
this. A good resource is the NetFx3 WPF site (http://wpf.netfx3.com) and of course the WPF
section of MSDN (http://msdn2.microsoft.com/en-us/netframework/aa663326.aspx).

Summary
This chapter provided an overview of various options for creating user interfaces with F#.
Because of the scope of this topic, I didn’t cover all the options for user interface programming
in F#. For example, there are hundreds of third-party components, built on ASP.NET, WinForms,
or WPF. These help raise the level of abstraction when creating user interfaces. There are also
libraries that offer complete alternative programming models, such as DirectX, which is
designed for high-performance 3D graphics, and the GTK# library, which is designed to give
better cross-platform support.

The next chapter will take a look at another important programming task—how to access
data.

CHAPTER 8 n USER INTERFACES 207

7575Ch08.qxp  4/27/07  1:04 PM  Page 207



7575Ch08.qxp  4/27/07  1:04 PM  Page 208



Data Access

Since computers are designed to process data, it’s a rare program that doesn’t require some
form of data access, whether it’s reading a small configuration file or accessing a full-scale
relational database management system. In this chapter, you will investigate the wide range of
options that are available for data access in F#.

The System.Configuration Namespace
Whenever you execute any program written in any .NET language, the .NET runtime will
automatically check whether a configuration file is available. This is a file with the same name
as the executable plus the extension .config that must be placed in the same directory as the
executable, meaning the configuration file for MyApp.exe would be MyApp.exe.config. In
ASP.NET applications, these files are called web.config files because there is no executable,
and they live in the web root. These files are useful for storing settings that you want to be able
to change without recompiling the application—a classic example of this is a connection
string to a database. You should be careful not to store values that are specific to a user in the
configuration file, because any changes to the file will affect all users of the application. The
best place to store user-specific settings is in a relational database. I’ll cover relational data-
base access in the “ADO.NET” section.

nNote You can use configuration files to do much more than store data for your program to access. You
can also use them to control various settings with the .NET Framework, such as controlling which version 
of the .NET runtime should be used or directing a program to automatically look for a new version of a 
.dll. I don’t cover this functionality in this chapter, but you can find more information online at http://
strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.Config.

The System.Configuration namespace provides an easy way to access configuration val-
ues, and the simplest way of accessing configuration data is with ConfigurationManager. The
next example shows how to load a simple key-value pair from a configuration file. Imagine you
have the following configuration file and want to read "MySetting" from the file:

209

C H A P T E R  9

n n n

7575Ch09.qxp  4/27/07  1:05 PM  Page 209



<configuration>
<appSettings>
<add key="MySetting" value="An important string" />

</appSettings>
</configuration>

The following code loads the setting by using ConfigurationManager’s static AppSettings
property:

#light
#r "System.Configuration.dll";;
open System.Configuration

let setting = ConfigurationManager.AppSettings.Item("MySetting")

print_string setting

The result is as follows:

An important string

nNote The way to access these values in .NET version 1.1 was through the ConfigurationSettings type
in System.dll. This type is still available in .NET 2.0 but has been depreciated, so it is best to avoid using it.

Since the most common use for these name-value pairs is to store connection strings, it is
customary to use a separate section specifically for this purpose to help separate them from
other configuration settings. The providerName property allows you to store information about
which database provider the connection string should be used with. The next example shows
how to load the connection string "MyConnectionString" from the following configuration file:

<configuration>
<connectionStrings>
<add
name="MyConnectionString"
connectionString=" Data Source=server;

Initial Catalog=pubs;
Integrated Security=SSPI;"

providerName="System.Data.SqlClient" />
</connectionStrings>

</configuration>

The following example loads the connection string via another static property on the
ConfigurationManager class, the ConnectionString property. This is a collection that gives
access to a type called ConnectionStringSettings, which has a ConnectionString property

CHAPTER 9 n DATA ACCESS210

7575Ch09.qxp  4/27/07  1:05 PM  Page 210



giving access to the connection string and a ProviderName property giving access to the
provider name string.

#light
#r "System.Configuration.dll";;

let connectionStringDetails =
ConfigurationManager.ConnectionStrings.Item("MyConnectionString")

let connectionString = connectionStringDetails.ConnectionString
let providerName = connectionStringDetails.ProviderName

printfn "%s\r\n%s"
connectionString
providerName

The results are as follows:

Data Source=server;
Initial Catalog=pubs;
Integrated Security=SSPI;

System.Data.SqlClient

nCaution Notice that because I added spaces and newline characters to the configuration file to improve
the formatting, these were also added to the connection string, which can be seen when output to the con-
sole. Most libraries consuming the connection string will correct for this, but some may not, so be careful
when formatting your configuration file.

You’ll explore the possibility of choosing between different relational databases at runtime
in “The EntLib Data Access Block” section later in this chapter.

It’s also possible to load configuration files associated with other programs or web appli-
cations and even machine.config, which contains the default settings for .NET on a particular
machine. These files can be queried, updated, and then saved. The following sample shows
how to open machine.config and enumerate the various sections within it:

#light
#r "System.Configuration.dll";;

let config =
ConfigurationManager.OpenMachineConfiguration()

for x in config.Sections do
print_endline x.SectionInformation.Name

The results, when executed on my machine, are as follows:

CHAPTER 9 n DATA ACCESS 211

7575Ch09.qxp  4/27/07  1:05 PM  Page 211



system.data
windows
system.webServer
mscorlib
system.data.oledb
system.data.oracleclient
system.data.sqlclient
configProtectedData
satelliteassemblies
system.data.dataset
startup
system.data.odbc
system.diagnostics
runtime
system.codedom
system.runtime.remoting
connectionStrings
assemblyBinding
appSettings
system.windows.forms

This section has shown how to work with configuration files, a particular kind of XML file.
The next section will show how to use the System.Xml namespace to work with any kind of
XML file.

The System.IO Namespace
The main purpose of the System.IO namespace is to provide types that give easy access to the
files and directories of the operating system’s file store, although it also provides ways of writ-
ing to memory and network streams too.

The namespace offers two main ways to deal with files and directories. FileInfo and
DirectoryInfo objects are used to get or alter information about a file or directory. There are
also File and Directory classes that offer the same functionality but that are exposed as static
members that require the filename to be passed to each method. Generally, you will use the
File and Directory classes if you want a single piece of information about a file system object
and use the FileInfo and DirectoryInfo classes if you need lots of information about a single
file system object. The two techniques are complementary; for example, you might use the
Directory type to get information about all the files in a directory and then use the FileInfo
object to find out the name and other information about the file. Here’s an example of doing
this:

#light
open System.IO

let files = Directory.GetFiles(@"c:\")

CHAPTER 9 n DATA ACCESS212

7575Ch09.qxp  4/27/07  1:05 PM  Page 212



for filepath in files do
let file = new FileInfo(filepath)
printfn "%s\t%d\t%O"

file.Name
file.Length
file.CreationTime

The results, when executed on my machine, are as follows:

addadmin.bat   95      01/10/2003 02:08:10
ATTDialer.doc  297472  03/11/2003 20:12:54
AUTOEXEC.BAT   0       12/05/2003 20:21:21
avapower.gif   1056    07/07/2004 01:27:05
boot.ini       211     12/05/2003 12:58:01
CONFIG.SYS     0       12/05/2003 20:21:21
dpst.bat       17      01/10/2003 02:08:10
imagefaq.bat   21      01/10/2003 02:08:10
IO.SYS 0 12/05/2003 20:21:22
MSDOS.SYS      0       12/05/2003 20:21:22
NTDETECT.COM   47564   23/08/2001 14:00:00
Ntldr 250032 23/08/2001 14:00:00
NavCClt.Log    35152   13/05/2003 00:44:02

The namespace also provides an extremely convenient way to work with the contents of
files. Files are open and are represented as streams, which provide a way to read or write bytes,
characters, or strings from a file. Opening a file and reading text from it could not be simpler—
just call the File.OpenText method, and you get access to a StreamReader object that allows
you to read the file line by line. The following example demonstrates reading a comma-
separated file, containing three columns of data:

#light
open System.IO
//test.csv:
//Apples,12,25
//Oranges,12,25
//Bananas,12,25
using (File.OpenText("test.csv"))

(fun f ->
while not f.EndOfStream do

let line = f.ReadLine()
let items = line.Split([|','|])
printfn "%O %O %O"

items.[0]
items.[1]
items.[2])

The results, when executed with the text file in the comments, are as follows:

CHAPTER 9 n DATA ACCESS 213

7575Ch09.qxp  4/27/07  1:05 PM  Page 213



Apples     12    25
Oranges    12    25
Bananas    12    25

nNote The File.OpenText method assumes your file has a UTF-8 encoding. If your file does not use this
text encoding, you should call the OpenRead method and then wrap the resulting FileStream object in a
StreamReader, passing in the appropriated encoding object. For example, if your file used the encoding
Windows-1252 for Western languages, you should open it via new StreamReader(File.OpenRead

("accents.txt"), Encoding.GetEncoding(1252)).

The System.Xml Namespace
XML has become a popular data format for a number of reasons, probably because for most
people it is a convenient format to represent their data and because the resulting files tend to
be reasonably human readable. Programmers tend to like that you can have both files be
unstructured (that is, don’t follow a set pattern) or have the files be structured and have the
data conform to a contract defined by an XSD schema. Programmers also like the convenience
of being able to query the data using XPath, which means that writing custom parsers for new
data formats is rarely necessary, and files can quickly be converted between different XML for-
mats using the powerful XSLT language to transform data.

The System.Xml namespace contains classes for working with XML files using all the differ-
ent technologies I have described and more besides this. You’ll look at the most common way to
work with XML files—the .NET implementation of the W3C recommendation for the XML
Document Object Model (DOM), which is generally represented by the class XmlDocument. The
first example in this section will read information from the following short XML file, fruits.xml:

<fruits>
<apples>2</apples>
< oranges >3</oranges>
<bananas>1</bananas>

</fruits>

The following code loads fruits.xml, binds it to the identifier fruitsDoc, and then uses a
loop to display the data:

#light
open System.Xml

let fruitsDoc =
let temp = new XmlDocument()
temp.Load("fruits.xml")
temp

CHAPTER 9 n DATA ACCESS214

7575Ch09.qxp  4/27/07  1:05 PM  Page 214



let fruits = fruitsDoc.SelectNodes("/fruits/*")

for x in fruits do
printfn "%s = %s " x.Name x.InnerText

The results are as follows:

apples = 2
oranges = 3
bananas = 1

The next example looks at how to build up an XML document and then write it to disk.
Say you have a set of data, bound to the identifier animals, and you’d like to write it as XML 
to the file animals.xml. You start by creating a new XmlDocument object, and then you build 
the document by creating the root node via a call to the XmlDocument instance member
CreateElement method and then append to the document object using its AppendChild
method. The rest of the document is built up by enumerating over the animals list and
creating and appending nodes.

#light
open System.Xml

let animals = [ "ants", "6"; "spiders", "8"; "cats", "4" ]

let animalsDoc =
let temp = new XmlDocument()
let root = temp.CreateElement("animals")
temp.AppendChild(root) |> ignore
animals
|> List.iter (fun x ->

let element = temp.CreateElement(fst x)
element.InnerText <- (snd x)
root.AppendChild(element) |> ignore )

temp

animalsDoc.Save("animals.xml")

The result of this code is a file, animals.xml, containing the following XML document:

<animals>
<ants>6</ants>
<spiders>8</spiders>
<cats>4</cats>

</animals>

The System.Xml namespace is large, with many interesting classes to help you work with
XML data. Table 9-1 describes some of the most useful ones.

CHAPTER 9 n DATA ACCESS 215

7575Ch09.qxp  4/27/07  1:05 PM  Page 215



Table 9-1. Summary of Useful Classes from the System.XML Namespace

Class Description

System.Xml.XmlDocument The Microsoft .NET implementation of the W3C’s
XML DOM.

System.Xml.XmlNode This class can’t be created directly but is often
used; it is the result of the XmlDocument’s
SelectSingle node method.

System.Xml.XmlNodeList This class is a collection of nodes and is the result
of the XmlDocument’s SelectNode method.

System.Xml.XmlTextReader This provides forward-only, read-only access to an
XML document. Although not as easy to use as the
XmlDocument class, it does not require the whole
document to be loaded into memory. When
working with big documents, it can often provide
better performance than the XmlDocument.

System.Xml.XmlTextWriter This class provides a forward-only way to write to
an XML document. If you must start your XML
document from scratch, this is often the easiest
way to create it.

System.Xml.Schema.XmlSchema This provides a way of loading an XML schema
into memory and then allows the user to validate
XML documents with it.

System.Xml.Serialization.XmlSerializer This allows a user to serialize .NET objects directly
to and from XML. However, unlike the
BinarySerializer available elsewhere in the
framework, this class serializes only public fields.

System.Xml.XPath.XPathDocument This class is designed to be the most efficient way
to work with XPath expressions. This class is just
the wrapper for the XML document; the
programmer must use the XPathExpression and
XPathNavigator to actually do the work.

System.Xml.XPath.XPathExpression This class represents an XPath expression to be
used with an XPathDocument; it can be compiled to
make it more efficient when used repeatedly.

System.Xml.XPath.XPathNavigator Once an XPathExpression has been executed
against the XPathDocument, this class can be used to
navigate the results; the advantage of this class is
that it pulls only one node at a time into memory,
making it efficient in terms of memory.

System.Xml.Xsl.XslTransform This class can be used to transform XML using
XSLT style sheets.

ADO.NET
Relational database management systems are the most pervasive form of data storage. ADO.NET,
in System.Data and associated namespaces, makes it easy to access relational data. In this section,
you’ll look at various ways you can use F# with ADO.NET.

CHAPTER 9 n DATA ACCESS216

7575Ch09.qxp  4/27/07  1:05 PM  Page 216



nNote All database providers use a connection string to specify the database to which to connect. You can
find a nice summary of the connection strings you need to know at http://www.connectionstrings.com.

All examples in this section use the AdventureWorks sample database and SQL Server
2005 Express Edition, both freely available for download from http://www.microsoft.com. It
should be easy to port these samples to other relational databases. To use this database with
SQL Server 2005 Express Edition, you can use the following connection settings or an adapta-
tion of them appropriate to your system:

<connectionStrings>
<add
name="MyConnection"
connectionString="

Database=AdventureWorks;
Server=.\SQLExpress;
Integrated Security=SSPI;
AttachDbFilename=

C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\AdventureWorks_Data.mdf"
providerName="System.Data.SqlClient" />

</connectionStrings>

I’ll discuss options for accessing other relational databases in the section “ADO.NET
Extensions.” The following example shows a simple way of accessing a database:

#light
#r "System.Configuration.dll";;
open System.Configuration
open System.Data
open System.Data.SqlClient

let connectionSetting =
ConfigurationManager.ConnectionStrings.Item("MyConnection")

let connectionString =
connectionSetting.ConnectionString

using (new SqlConnection(connectionString))
(fun connection ->

let command =
let temp = connection.CreateCommand()
temp.CommandText <- "select * from Person.Contact"
temp.CommandType <- CommandType.Text
temp

connection.Open()

CHAPTER 9 n DATA ACCESS 217

7575Ch09.qxp  4/27/07  1:05 PM  Page 217



using (command.ExecuteReader())
(fun reader ->

let title = reader.GetOrdinal("Title")
let firstName = reader.GetOrdinal("FirstName")
let lastName = reader.GetOrdinal("LastName")
let getString (r : #IDataReader) x =

if r.IsDBNull(x) then
""

else
r.GetString(x)

while reader.Read() do
printfn "%s %s %s"

(getString reader title )
(getString reader firstName)
(getString reader lastName)))

The results are as follows:

Mr. Gustavo Achong
Ms. Catherine Abel
Ms. Kim Abercrombie
Sr. Humberto Acevedo
Sra. Pilar Ackerman
Ms. Frances Adams
Ms. Margaret Smith
Ms. Carla Adams
Mr. Jay Adams
Mr. Ronald Adina
Mr. Samuel Agcaoili
Mr. James Aguilar
Mr. Robert Ahlering
Mr. François Ferrier
Ms. Kim Akers
...

In the previous example, first you find the connection string you are going to use; after
this, you create the connection:

using (new SqlConnection(connectionString))

You wrap it in the using function to ensure it is closed after you have finished what you’re
doing. The connection is used to create a SqlCommand class and use its CommandText property to
specify which command you want to execute:

temp.CommandText <- "select * from Person.Contact"

CHAPTER 9 n DATA ACCESS218

7575Ch09.qxp  4/27/07  1:05 PM  Page 218



Then you execute the command to create a SqlDataReader class that is used to do the
work of actually reading from the database:

using (command.ExecuteReader())

This tool is called through the using function to ensure it is closed correctly.
You probably wouldn’t write data access code in F# if you had to write this amount of code

for every query. One way to simplify things is to create a library function to execute commands
for you, allowing you to parameterize which command to run and which connection to use.

The following example shows how to write such a function. You implement the execCommand
function via Seq.generate_using, which is a way of generating an IEnumerable sequence collection.
The generate_using function takes two arguments. The first is a function to open a connection to
the database and is called each time you enumerate the resulting collection. This function is called
the opener and could just as well open a connection to a file. The second is a function to generate
the items in the collection, called the generator. In this case, this creates a Dictionary object for a
row of data.

#light
#r "System.Configuration.dll";;

open System.Configuration
open System.Collections.Generic
open System.Data
open System.Data.SqlClient
open System.Data.Common
open System

/// Create and open an SqlConnection object using the connection string found
/// in the configuration file for the given connection name
let openSQLConnection(connName:string) =

let connSetting = ConfigurationManager.ConnectionStrings.Item(connName)
let connString = connSetting.ConnectionString
let conn = new SqlConnection(connString)
conn.Open();
conn

/// Create and execute a read command for a connection using
/// the connection string found in the configuration file
/// for the given connection name
let openConnectionReader connName cmdString =

let conn = openSQLConnection(connName)
let cmd = conn.CreateCommand(CommandText=cmdString,

CommandType = CommandType.Text)
let reader = cmd.ExecuteReader(CommandBehavior.CloseConnection)
reader

CHAPTER 9 n DATA ACCESS 219

7575Ch09.qxp  4/27/07  1:05 PM  Page 219



let readOneRow (reader: #DbDataReader) =
if reader.Read() then

let dict = new Dictionary<string, obj>()
for x = 0 to (reader.FieldCount - 1) do

dict.Add(reader.GetName(x), reader.Item(x))
Some(dict)

else
None

let execCommand  (connName : string) (cmdString : string) =
Seq.generate_using

// This function gets called to open a connection and create a reader
(fun () -> openConnectionReader connName cmdString)
// This function gets called to read a single item in
// the enumerable for a reader/connection pair
(fun reader -> readOneRow(reader))

After defining a function such as execCommand, accessing a database becomes pretty easy.
You call execCommand, passing the chosen connection and command, and then enumerate the
results. This is as follows:

let contactsTable =
execCommand

"MyConnection"
"select * from Person.Contact"

for row in contactsTable do
for col in row.Keys do

printfn "%s = %O" col (row.Item(col))

The results are as follows:

...
ContactID = 18
NameStyle = False
Title = Ms.
FirstName = Anna
MiddleName = A.
LastName = Albright
Suffix =
EmailAddress = anna0@adventure-works.com
EmailPromotion = 1
Phone = 197-555-0143
PasswordHash = 6Hwr3vf9bo8CYMDbLuUt78TXCr182Vf8Zf0+uil0ANw=
PasswordSalt = SPfSr+w=
AdditionalContactInfo =
rowguid = b6e43a72-8f5f-4525-b4c0-ee84d764e86f
ModifiedDate = 01/07/2002 00:00:00
...

CHAPTER 9 n DATA ACCESS220

7575Ch09.qxp  4/27/07  1:05 PM  Page 220



One thing you should be careful about when dealing with relational databases is ensuring
that the connection is closed in a timely manner. Closing the connection quickly makes the
connection available to other database users, improving concurrent access. Let’s look at how
the previous sample creates connections and how they are “cleaned up” automatically. In the
previous example, the opener function openConnectionReader is called every time the collection
is enumerated using Seq.iter. This uses an IEnumerator object to iterate the data, which in turn
uses the generator function to generate individual results. Each call to Seq.iter creates one
SqlDataReader and one SqlDataReader object. These must be closed at the end of the iteration
or if the iteration terminates abruptly for some reason. Fortunately, the F# library implementa-
tion of Seq.iter and Seq.generate_using are careful to invoke the right functions to clean up
resources on both complete and partial iterations. They do this by calling IDisposable.Dispose
methods on the intermediate IEnumerator objects, which in turn cause the SqlDataReader to be
closed. You must also close the corresponding SqlConnection object, which is done by linking
the closing of the database connection to the closing of the SqlDataReader:

command.ExecuteReader(CommandBehavior.CloseConnection)

To avoid keeping the connection open for too long, you should avoid complicated or time-
consuming operations while iterating the resulting IEnumerable collection, and you should
especially avoid any user interaction with the collection. For example, rewriting the previous
example so the user can move on to the next record by pressing Enter would be bad for data-
base performance, as shown here:

for row in contactsTable do
for col in row.Keys do

printfn "%s = %O" col (row.Item(col))
printfn "Press <enter> to see next record"
read_line() |> ignore

If you want to use the collection more than once or let the user interact with it, you should
generally convert it to a list or an array; an example of this is as follows:

let contactsTable =
execCommand

"select * from Person.Contact"
"MyConnection"

let contactsList = Seq.to_list contactsTable

Although connections will be closed when the cursors are garbage collected, this generally
takes too long, especially if a system is under stress. For example, if the code you are writing will
run in a server application that will handle lots of concurrent users, then not closing connec-
tions will cause errors because the server will run out of database connections.

The EntLib Data Access Block
The Enterprise Library (EntLib) is a library produced by the Microsoft Patterns and Practices
department and is available for download at http://www.microsoft.com. This section uses
EntLib 2.0. It includes a data access block, which is designed to help programmers conform to
best practices when writing data access code.

CHAPTER 9 n DATA ACCESS 221

7575Ch09.qxp  4/27/07  1:05 PM  Page 221



EntLib includes a configuration console, which allows you to configure connection strings
without having to deal directly with the XML .config file. Figure 9-1 shows the configuration
console.

Figure 9-1. The enterprise library configuration console

EntLib simplifies data access by allowing you to create an instance of the Database class
that is based on the connection string and provider configured in the <connectionStrings>
section in the .config file. This Database class then allows you to execute queries against the
database with minimal effort. Further, because you don’t directly create the ADO.NET objects,
you can change which type of provider you want to use just by changing the configuration file.
I’ll discuss how this works in the section “ADO.NET Extensions” later in the chapter.

The following example shows how to use EntLib to execute a stored procedure, 
"uspGetBillOfMaterials", against the configured AdventureWorks database:

#light
#r "Microsoft.Practices.EnterpriseLibrary.Data.dll";;
open System
open Microsoft.Practices.EnterpriseLibrary.Data

let database = DatabaseFactory.CreateDatabase()

CHAPTER 9 n DATA ACCESS222

7575Ch09.qxp  4/27/07  1:05 PM  Page 222



let reader = database.ExecuteReader(
"uspGetBillOfMaterials",
[| box 316; box (new DateTime(2006,1,1)) |])

while reader.Read() do
for x = 0 to (reader.FieldCount - 1) do

printfn "%s = %O"
(reader.GetName(x))
(reader.Item(x))

The results are as follows:

ProductAssemblyID = 316
ComponentID = 486
ComponentDesc = Metal Sheet 5
TotalQuantity = 1,00
StandardCost = 0,0000
ListPrice = 0,0000
BOMLevel = 4
RecursionLevel = 0

In my experience, EntLib can help you reduce the amount of data access code you need
to write and assist you in changing between the types of databases you are using.

Data Binding
Data binding is the process of mapping a value or set of values to a user interface control. The
data does not particularly need to be from a relational database, but it is generally from some
system external to the program, and the process of accessing this data and transforming it into
a state where it can be bound is more complicated than the binding itself, which is straightfor-
ward. This is why I cover this topic in this chapter rather than in Chapter 8. The next example
shows how to bind data from a database table to a combo box:

#light
#r "Microsoft.Practices.EnterpriseLibrary.Data.dll";;
open System
open System.Collections.Generic
open System.Data
open System.Windows.Forms
open Microsoft.Practices.EnterpriseLibrary.Data

let opener commandString =
let database = DatabaseFactory.CreateDatabase()
database.ExecuteReader(CommandType.Text, commandString)

CHAPTER 9 n DATA ACCESS 223

7575Ch09.qxp  4/27/07  1:05 PM  Page 223



let generator (reader : IDataReader) =
if reader.Read() then

let dict = new Dictionary<string, obj>()
for x = 0 to (reader.FieldCount - 1) do

dict.Add(reader.GetName(x), reader.Item(x))
Some(dict)

else
None

let execCommand (commandString : string) =
Seq.generate_using

(fun () -> opener commandString)
(fun r -> generator r)

let contactsTable =
execCommand

"select top 10 * from Person.Contact"

let contacts =
[| for row in contactsTable ->

Printf.sprintf "%O %O"
(row.Item("FirstName"))
(row.Item("LastName")) |]

let form =
let temp = new Form()
let combo = new ComboBox(Top=8, Left=8, DataSource=contacts)
temp.Controls.Add(combo)
temp

Application.Run(form)

Figure 9-2 shows the resulting form.

Figure 9-2. A data-bound combo box

CHAPTER 9 n DATA ACCESS224

7575Ch09.qxp  4/27/07  1:05 PM  Page 224



If you break the previous example down a bit, first you execute the query:

let contactsTable =
execCommand

"select top 10 * from Person.Contact"

You then need to turn the resulting IEnumerable collection into something suitable to be
bound to the combo box; you do this by first grabbing the important members, then mapping
them into a string collection, and finally converting it to an array. Then you must bind the collec-
tion to the control that will display it; you do this by setting the control’s DataSource property:

combo.DataSource <- contacts

Although you’ve looked only at the ComboBox class, most Windows and web controls can
be data bound in a similar way. These include the ListBox and CheckListBox classes. Next,
you’ll look at binding data to a more complicated control, the DataGridView class.

Data Binding and the DataGridView
The DataGridView control, unlike the controls you saw in the previous section, can display
more than one column; the data must be formatted in such a way that the data grid knows
which columns to display. You can achieve this in two ways. One is to bind the DataGridView to
a DataTable. The other is to bind the grid to a list of objects that have properties; the various
properties will become the grid’s columns.

Binding to a DataSet is the simpler solution, as in the next example:

#light
#r "Microsoft.Practices.EnterpriseLibrary.Data.dll";;
open System
open System.Collections.Generic
open System.Data
open System.Windows.Forms
open Microsoft.Practices.EnterpriseLibrary.Data

let database = DatabaseFactory.CreateDatabase()

let dataSet = database.ExecuteDataSet
(CommandType.Text,
"select top 10 * from Person.Contact")

let form =
let temp = new Form()
let grid = new DataGridView(Dock = DockStyle.Fill)
temp.Controls.Add(grid)
grid.DataSource <- dataSet.Tables.Item(0)
temp

Application.Run(form)

Figure 9-3 shows the results from this example.

CHAPTER 9 n DATA ACCESS 225

7575Ch09.qxp  4/27/07  1:05 PM  Page 225



Figure 9-3. A data-bound data grid

An alternative to using a DataSet is to use an F# record type; to do this, you would gener-
ally create a generic function that uses reflection to create and populate your strongly typed
collection. Here’s an example of such a function:

#light
#r "Microsoft.Practices.EnterpriseLibrary.Data.dll";;

open System
open System.Collections.Generic
open System.Data
open System.Windows.Forms
open Microsoft.Practices.EnterpriseLibrary.Data

let execCommand<'a> commandString : seq<'a> =
let opener() =

let database = DatabaseFactory.CreateDatabase()
database.ExecuteReader(CommandType.Text, commandString)

let generator (reader : IDataReader) =
if reader.Read() then

let t = (type 'a)
let props = t.GetProperties()
let types =

props
|> Seq.map (fun x -> x.PropertyType)
|> Seq.to_array

let cstr = t.GetConstructor(types)
let values = Array.create reader.FieldCount (new obj())
reader.GetValues(values) |> ignore

CHAPTER 9 n DATA ACCESS226

7575Ch09.qxp  4/27/07  1:05 PM  Page 226



let values =
values
|> Array.map

(fun x -> match x with | :? DBNull -> null | _ -> x)
Some (cstr.Invoke(values) :?> 'a)

else
None

Seq.generate_using
opener
generator

The first line of the sample uses a technique that you have not met before. Here you explic-
itly declare your function’s type parameter:

let execCommand<'a> commandString : seq<'a>

You do this so you can explicitly give the generic argument 'a. This is used later in the
function to create a type object that you then reflect over:

let t = (type 'a)

The function is designed to work with an F# record type, whose fields exactly match the
fields resulting from the query. If this precondition is not met, then the code will fail, but such
preconditions are typical in applications that use reflection in this way.

The function execCommand you have defined is generic and can be used with any query
and matching record type. The following example shows how to apply it:

type Contact =
{

ContactID : Nullable<int> ;
NameStyle : Nullable<bool> ;
Title : string ;
FirstName : string ;
MiddleName : string ;
LastName : string ;
Suffix : string ;
EmailAddress : string ;
EmailPromotion : Nullable<int> ;
Phone: string ;
PasswordHash : string ;
PasswordSalt : string ;
AdditionalContactInfo : string ;
rowguid : Nullable<Guid> ;
ModifiedDate : Nullable<DateTime> ;

}

CHAPTER 9 n DATA ACCESS 227

7575Ch09.qxp  4/27/07  1:05 PM  Page 227



let form =
let temp = new Form()
let grid = new DataGridView(Dock = DockStyle.Fill)
temp.Controls.Add(grid)

let contacts =
execCommand<Contact> "select top 10 * from Person.Contact"

let contactsArray = contacts |> Seq.to_array
grid.DataSource <- contactsArray
temp

Application.Run(form)

The most important point is as follows:

let contacts =
execCommand<Contact> "select top 10 * from Person.Contact"

Here you have explicitly declared the type parameter for the generic function execCommand.
The results from this example are the same as the previous example and are shown in Figure 9-3.

ADO.NET Extensions
ADO.NET has been successful at providing a set of bases classes and interfaces that others have
been able to implement to provide access to their relational database, so most relational data-
bases can be accessed from F# with little effort. You have already met most of these classes, or
at least classes that implement the functionality they are intended to provide, and Table 9-2
summarizes the key ones.

Table 9-2. The Key Classes in ADO.NET

Class Description

System.Data.Common.DbConnection Represents a connection to a particular instance of a
relational database; you use classes derived from this
class to specify on which database you want the query
to be executed.

System.Data.Common.DbCommand You use classes derived from this base class to configure
what query you want to execute against the database,
whether it be an actual SQL query or a stored
procedure.

System.Data.Common.DbParameter This class represents the parameters of a query;
typically, queries that are parameterized promote reuse
in the relational database so execute more efficiently.

System.Data.Common.DbDataReader Classes derived from this class allow access to the
results of a query in a linear manner; use this class for
fast access to your results.

CHAPTER 9 n DATA ACCESS228

7575Ch09.qxp  4/27/07  1:05 PM  Page 228



Class Description

System.Data.Common.DbDataAdapter This class is used to fill a DataSet class with data from a
relational database.

System.Data.DataSet An in-memory representation of a database that can
contain tables and relationships between them; unlike
the other class in this table, this class is concrete and
can be used directly.

The classes in Table 9-2, with the exception of System.Data.DataSet, are all abstract, so
you must use concrete implementations of them. For example, here you create an instance of
System.Data.SqlClient.SqlConnection, which is an implementation of System.Data.Common.
DbConnection, which gives access to a SQL Server database:

using (new SqlConnection(connectionString))

If you wanted to access an Oracle database, you would simply replace the SqlConnection
class with the OracleConnection class. Table 9-3 summarizes some of the most popular
libraries and namespaces that implement these classes, although this table is incomplete
because the range of providers is large.

Table 9-3. Database Providers for .NET

Namespace DLL Description

System.Data.Odbc System.Data.dll This namespaces allows you to connect to any
database that provides drives that support the
Open Database Connectivity standard. Most
databases provide drivers that support this
standard, but they should generally be avoided
in favor of a more specific driver, which will
probably be more efficient.

System.Data.OleDb System.Data.dll OleDb is a COM-based standard for database
drivers; again, a huge number of relational
databases provide drivers that support this
standard, but where possible you should use
something more specific. This namespace is
often used to connect to Access databases or
Excel spreadsheets, which do not have .NET
drivers of their own.

System.Data. System.Data.dll This is the native .NET Microsoft SQL Server 
SqlClient driver. It will work with all supported versions

of SQL Server and is the de facto choice when
working with SQL Server. This has been the
namespace used by the examples in this book.

System.Data. System.Data. This is the native .NET provider for the Oracle
OracleClient OracleClient.dll database created by Microsoft; it is distributed

with the .NET Framework.

continued

CHAPTER 9 n DATA ACCESS 229

7575Ch09.qxp  4/27/07  1:05 PM  Page 229



Table 9-3. Continued

Namespace DLL Description

Oracle.DataAccess. Oracle.DataAccess. The Oracle data provider for .NET (ODP.NET)
Client Client.dll is a database provider for .NET developed by

Oracle; it is available from www.oracle.com/
technology/software/tech/windows/odpnet.

IBM.Data.DB2 IBM.Data.DB2.dll This is the native .NET provider developed by
IBM; it is provided with the distribution of the
database.

MySql.Data. MySql.Data.dll This is the open source native .NET provider 
MySqlClient created by the MySQL team. You can download it

from dev.mysql.com/downloads/connector/net.

FirebirdSql.Data. FirebirdSql.Data. This is the native provider for the open source 
FirebirdClient FirebirdClient.dll database Firebird; you can download it from

www.firebirdsql.org/index.php?op=
files&id=netprovider.

To demonstrate how to use the other .NET providers, I will now show an example of con-
necting to the Firebird employee sample database. To run this sample, you will need to install
the Firebird database engine and Firebird .NET provider components from http://www.
firebirdsql.org and be running the Firebird database service on your local machine.

#light
#I @"C:\Program Files\FirebirdClient";;
#r @"FirebirdSql.Data.FirebirdClient.dll";;
open System.Configuration
open System.Collections.Generic
open System.Data
open FirebirdSql.Data.FirebirdClient;
open System.Data.Common
open System

let connectionString =
@"Database=C:\Program Files\Firebird\" +
@"Firebird_2_0\examples\empbuild\EMPLOYEE.FDB;" +
@"User=SYSDBA;" + "Password=masterkey;" +
@"Dialect=3;" + "Server=localhost";

let openFBConnection() =
let connection = new FbConnection (connectionString)
connection.Open();
connection

CHAPTER 9 n DATA ACCESS230

7575Ch09.qxp  4/27/07  1:05 PM  Page 230



let openConnectionReader cmdString =
let conn = openFBConnection()
let cmd = conn.CreateCommand(CommandText=cmdString,

CommandType = CommandType.Text)
let reader = cmd.ExecuteReader(CommandBehavior.CloseConnection)
reader

let readOneRow (reader: #DbDataReader) =
if reader.Read() then

let dict = new Dictionary<string, obj>()
for x = 0 to (reader.FieldCount - 1) do

dict.Add(reader.GetName(x), reader.Item(x))
Some(dict)

else
None

let execCommand  (cmdString : string) =
Seq.generate_using

// This function gets called to open a conn and create a reader
(fun () -> openConnectionReader cmdString)
// This function gets called to read a single item in
// the enumerable for a reader/conn pair
(fun reader -> readOneRow(reader))

let employeeTable =
execCommand

"select * from Employee"

for row in employeeTable do
for col in row.Keys do

printfn "%s = %O " col (row.Item(col))

The results of this example are as follows:

...
EMP_NO = 145

FIRST_NAME = Mark

LAST_NAME = Guckenheimer

PHONE_EXT = 221

CHAPTER 9 n DATA ACCESS 231

7575Ch09.qxp  4/27/07  1:05 PM  Page 231



HIRE_DATE = 02/05/1994 00:00:00

DEPT_NO = 622

JOB_CODE = Eng

JOB_GRADE = 5

JOB_COUNTRY = USA

SALARY = 32000

FULL_NAME = Guckenheimer, Mark

You will observe that very little changes were needed to convert the SQL Server Adventure-
Works contact table example given earlier in the chapter to an example that executed a query
against the Firebird employee example database.

Introducing LINQ
Language-Integrated Query (LINQ) is the next generation of .NET data access technology. It
borrows heavily from functional programming, so it fits very nicely with F#.

nNote All examples in this section and other sections about LINQ are based on the Community Technology
Preview of May 2006, the Microsoft .NET LINQ Preview (May 2006), and the F# LINQ bindings that match
this release. If you use the examples with later versions of LINQ, you will have to make changes to the code.

At its heart, LINQ is a set of libraries for manipulating collections that implement the
IEnumerable<T> interface, a lot like F#’s Seq module, which was discussed in Chapter 7. The
idea is that you can use this library to query any in-memory collection, whether the data
comes from a database, an XML file, or just objects returned from another API.

Although the concepts implemented in the LINQ library will be familiar to you by now,
they follow a slightly different naming convention that is based on SQL. For instance, the
equivalent of Seq.map is called Sequence.Select, and the equivalent Seq.filter is called
Sequence.Where. The next example shows how to use this library. The first step is to import the
methods exposed by the LINQ library into a more usable form; this is how to do that:

#light
#I "C:\Program Files\LINQ Preview\Bin";;
#r "System.Query.dll";;
open System.Query
open System.Reflection

CHAPTER 9 n DATA ACCESS232

7575Ch09.qxp  4/27/07  1:05 PM  Page 232



// define easier access to LINQ methods
let select f s =  Sequence.Select(s, new Func<_,_>(f))
let where f s =  Sequence.Where(s, new Func<_,_>(f))
let groupBy f s =  Sequence.GroupBy(s, new Func<_,_>(f))
let orderBy f s =  Sequence.OrderBy(s, new Func<_,_>(f))
let count s =  Sequence.Count(s)

Once these functions have been imported, they can easily be applied, typically using the
pipe forward operator. The following example demonstrates this. It uses the LINQ library to
query the string class and group the overloads of its nonstatic methods together.

// query string methods using functions
let namesByFunction =

(type string).GetMethods()
|> where (fun m -> not m.IsStatic)
|> groupBy (fun m -> m.Name)
|> select (fun m -> m.Key, count m)
|> orderBy (fun (_, m) -> m)

namesByFunction
|> Seq.iter (fun (name, count) -> printfn "%s - %i" name count)

The results are as follows:

ToLowerInvariant - 1
TrimEnd - 1
GetHashCode - 1
TrimStart - 1
GetEnumerator - 1
GetType - 1
GetTypeCode - 1
ToUpperInvariant - 1
Clone - 1
CopyTo - 1
get_Length - 1
Insert - 1
get_Chars - 1
PadLeft - 2
CompareTo - 2
PadRight - 2
ToUpper - 2
ToLower - 2
ToString - 2
Trim - 2
Remove - 2
ToCharArray - 2
Substring - 2
IsNormalized - 2

CHAPTER 9 n DATA ACCESS 233

7575Ch09.qxp  4/27/07  1:05 PM  Page 233



Normalize - 2
Replace - 2
IndexOfAny - 3
EndsWith - 3
Equals - 3
StartsWith - 3
LastIndexOfAny - 3
Split - 6
LastIndexOf - 9
IndexOf - 9

Using LINQ to XML
The goal of LINQ to XML is to provide an XML object model that works well with LINQ’s func-
tional style of programming. Table 9-4 summarizes the important classes within this namespace.

Table 9-4. A Summary of the Classes Provided by LINQ to XML

Class Name Parent Class Description

XNode This class provides the basic functionality that is
applicable to all nodes in an XML document.

XContainer XNode This class provides the functionality for XML
nodes that can contain other nodes.

XDocument XContainer This class represents the XML document as a whole.

XElement XContainer This class represents an element in the XML
document, that is, a regular XML node that can be
a tag, <myTag />, or can possibly contain other
tags or an attribute, such as myAttribute="myVal".

XDocumentType XNode This class represents a document type tag.

XProcessInstruction XNode This class represents a processing instruction,
which is a tag of the form <? name instruction ?>.

XText XNode This class represents text contained within the
XML document.

XName This class represents the name of a tag or an
attribute.

To show how to use this object model, you can revise the example from the previous sec-
tion to output XML instead of plain text. LINQ to XML makes this easy to do; first you modify
the select statement to return an XElement instead of a tuple:

|> select (fun m -> new XElement(XName.Get(m.Key), count m))

This gives an array of XElements that you can then use to initialize another XElement,
which provides the root of the document. It is then just a matter of calling the root XElement’s
ToString method, which will provide the XML in the form of a string.

CHAPTER 9 n DATA ACCESS234

7575Ch09.qxp  4/27/07  1:05 PM  Page 234



#light
#I "C:\Program Files\LINQ Preview\Bin";;
#r "System.Query.dll";;
#r "System.Xml.XLinq.dll";;
open System.Query
open System.Reflection
open System.Xml.XLinq

// define easier access to LINQ methods
let select f s =  Sequence.Select(s, new Func<_,_>(f))
let where f s =  Sequence.Where(s, new Func<_,_>(f))
let groupBy f s =  Sequence.GroupBy(s, new Func<_,_>(f))
let orderBy f s =  Sequence.OrderBy(s, new Func<_,_>(f))
let count s =  Sequence.Count(s)

// query string methods using functions
let namesByFunction =

(type string).GetMethods()
|> where (fun m -> not m.IsStatic)
|> groupBy (fun m -> m.Name)
|> select (fun m -> new XElement(XName.Get(m.Key), count m))
|> orderBy (fun e -> int_of_string e.Value)

let overloadsXml =
new XElement(XName.Get("MethodOverloads"), namesByFunction)

print_endline (overloadsXml.ToString())

The results of this code, when compiled and executed, are as follows:

<MethodOverloads>
<Contains>1</Contains>
<ToLowerInvariant>1</ToLowerInvariant>
<TrimEnd>1</TrimEnd>
<GetHashCode>1</GetHashCode>
<TrimStart>1</TrimStart>
<GetEnumerator>1</GetEnumerator>
<GetType>1</GetType>
<GetTypeCode>1</GetTypeCode>
<ToUpperInvariant>1</ToUpperInvariant>
<Clone>1</Clone>
<CopyTo>1</CopyTo>
<get_Length>1</get_Length>
<Insert>1</Insert>
<get_Chars>1</get_Chars>
<PadLeft>2</PadLeft>
<CompareTo>2</CompareTo>
<PadRight>2</PadRight>

CHAPTER 9 n DATA ACCESS 235

7575Ch09.qxp  4/27/07  1:05 PM  Page 235



<ToUpper>2</ToUpper>
<ToLower>2</ToLower>
<ToString>2</ToString>
<Trim>2</Trim>
<Remove>2</Remove>
<ToCharArray>2</ToCharArray>
<Substring>2</Substring>
<IsNormalized>2</IsNormalized>
<Normalize>2</Normalize>
<Replace>2</Replace>
<IndexOfAny>3</IndexOfAny>
<EndsWith>3</EndsWith>
<Equals>3</Equals>
<StartsWith>3</StartsWith>
<LastIndexOfAny>3</LastIndexOfAny>
<Split>6</Split>
<LastIndexOf>9</LastIndexOf>
<IndexOf>9</IndexOf>

</MethodOverloads>

Using LINQ to SQL
LINQ to SQL is designed to allow data access to relational databases. It does this through a com-
bination of code generation and the ability to quote code. For the code generation, LINQ to SQL
provides a tool called SqlMetal.exe, which will generate a code version of your relational data-
base; this code version of your database is an object model where the tables become classes with
properties representing their columns. Quoting code means the ability to have the compile
transform a section of code into data structure called an expression tree; you first came across
this technique in Chapter 6, but this is the first time you will see it put into real use. The quoted
code will be transformed into SQL that can then be executed on the database.

The first step in working with LINQ to ADO.NET is to generate a code version of your
database. To do this, you would use the following command line, which generates a code ver-
sion of the AdventureWorks database that is running on the local version of SQL Server
Express:

SqlMetal.exe /server:.\SQLEXPRESS /database:AdventureWorks /code:AdWorks.cs
/language:csharp

The C# classes that represent the database’s objects are generated, but you do not need to
know C# to work with it, because you only ever use a compiled version of the code, just like
using any other .NET library.

This example relies on an example LINQ library distributed with F# that you can find in the
\samples\fsharp\FLinq directory of the distribution. This library also provides useful functions
that your DLINQ library requires; first it imports the .NET methods, and then it transforms them
into F# methods. The other function it provides is to transform the F# expression trees into the
trees used by DLINQ. The library is distributed as a sample, rather than being integrated into the

CHAPTER 9 n DATA ACCESS236

7575Ch09.qxp  4/27/07  1:05 PM  Page 236



F# libraries, because the F# team did not want to introduce a binary dependency onto some-
thing as experimental as LINQ. Once LINQ is released and part of the .NET Framework, the
functionalities provided by this sample library will be migrated into the F# libraries.

The following example shows how to use DLINQ in F#. It shows two powerful features of
DLINQ: the ability to have your F# code transformed into a SQL query and the ability to create
instances of rows without having to use reflection, like you did for the data binding example
earlier in the chapter:

#light
#r "Microsoft.Practices.EnterpriseLibrary.Data.dll";;
#r "flinq.dll";;
#r "AdventureWorks.dll";;
#r "System.Data.DLinq.dll";;
#r "System.Query.dll";;

open System.Windows.Forms
open Microsoft.FSharp.Quotations.Typed
open Microsoft.FSharp.Bindings.DLinq.Query
open Microsoft.Practices.EnterpriseLibrary.Data

module sOps = Microsoft.FSharp.Bindings.Linq.SequenceOps

let database = DatabaseFactory.CreateDatabase()
let adventureWorks = new AdventureWorks(database.CreateConnection())

type Person =
{ Title : string ;
FirstName : string ;
LastName : string ; }

let contacts =
adventureWorks.Person.Contact
|> where « fun c -> c.FirstName = "Robert" »
|> sOps.select

(fun c ->
{ Title = c.Title ;
FirstName = c.FirstName;
LastName = c.LastName })

|> Seq.to_array

let form =
let temp = new Form()
let grid = new DataGridView(Dock = DockStyle.Fill)
temp.Controls.Add(grid)
grid.DataSource <- contacts
temp

Application.Run(form)

CHAPTER 9 n DATA ACCESS 237

7575Ch09.qxp  4/27/07  1:05 PM  Page 237



nCaution If you want to use guillemets in your code, as in the expression « fun c -> c.FirstName =

"Robert" », then you must save the file as UTF-8.

Figure 9-4 shows that the results from both examples are the same.

Figure 9-4. Data grid containing the results of a DLINQ query

Summary
This chapter has looked at the options for data access in F#. It has shown that the combination
of F# with .NET libraries is powerful yet straightforward, no matter what your data source is.
The next chapter will look at the related topic of how applications exchange data to become
distributed applications.

CHAPTER 9 n DATA ACCESS238

7575Ch09.qxp  4/27/07  1:05 PM  Page 238



Distributed Applications

Applications that use networks, called distributed applications, become more important every
day. Fortunately, the .NET BCL and other libraries offer many constructs that make communi-
cating over a network easy, so creating distributed applications in F# is straightforward.

Networking Overview
Several types of distributed applications exist; they’re generally classified into either client-server
applications, in which clients make requests to a central server, or peer-to-peer applications, in
which computers exchange data among themselves. In this chapter, you’ll focus on building
client-server applications, since these are currently more common. Whichever type of distrib-
uted application you want to build, the way computers exchange data is controlled by a
protocol. A protocol is a standard that defines the rules for communication over a network.

Building a network-enabled application is generally considered one of the most challeng-
ing tasks a programmer can perform, with good reason. When building a network application,
you must consider three important requirements:

Scalability: The application must remain responsive when used by many users concur-
rently; typically this means extensive testing and profiling of your server code to check
that it performs when a high load is placed on it. You can find more information about
profiling code in Chapter 12.

Fault tolerance: Networks are inherently unreliable, and you shouldn’t write code that
assumes that the network will always be there. If you do, your applications will be very
frustrating to end users. Every application should go to lengths to ensure communication
failures are handled smoothly, which means giving the user appropriate feedback, dis-
playing error messages, and perhaps offering diagnostic or retry facilities. Do not let your
application crash because of a network failure. You should also consider data consistency
(that is, can you be sure that all updates necessary to keep data consistent reached the
target computer?). Using transactions and a relational database as a data store can help
with this. Depending on the type of application, you might also want to consider building
an offline mode where the user is offered access to locally stored data and network
requests are queued up until the network comes back online. A good example of this kind
of facility is the offline mode that most email clients offer.

239

C H A P T E R  1 0

n n n

7575Ch10.qxp  4/27/07  1:06 PM  Page 239



Security: Although security should be a concern for every application you write, it
becomes a hugely important issue in network programming. This is because when you
expose your application to a network, you open it up to attack from any other user of the
network; therefore, if you expose your application to the Internet, you might be opening it
up to thousands or even millions of potential attackers. Typically you need to think about
whether data traveling across the network needs to be secured, either signed to guarantee
it has not been tampered with or encrypted to guarantee only the appropriate people can
read it. You also need to ensure that the people connecting to your application are who
they say they are and are authorized to do what they are requesting to do.

Fortunately, modern programmers don’t have to tackle these problems on their own;
network protocols can help you tackle these problems. For example, if it is important that no
one else on the network reads the data you are sending, you should not attempt to encrypt
the data yourself. Instead, you should use a network protocol that offers this facility. These
protocols are exposed though components from libraries that implement them for you. The
type of protocol, and the library used, is dictated by the requirements of the applications.
Some protocols offer encryption and authentication, and others don’t. Some are suitable for
client-server applications, and others are suitable for peer-to-peer applications. You’ll look at
the following components and libraries, along with the protocols they implement, in this
chapter:

TCP/IP sockets: Provide a great deal of control over what passes over a network for either
client-server or peer-to-peer applications

HTTP/HTTPS requests: Support requests from web pages to servers, typically only for
client-server applications

Web services: Expose applications so other applications can request services, typically
used only for client-server applications

Windows Communication Foundation: Extends web services to support many features
required by modern programmers including, but not limited to, security, transactions,
and support for either client-server or peer-to-peer applications

A simple way of providing a user interface over a network is to develop a web application.
Web applications are not covered here, but you can refer to the ASP.NET sections in Chapter 8.

Using TCP/IP Sockets
TCP/IP sockets provide a low level of control over what crosses over a network. A TCP/IP socket
is a logical connection between two computers through which either computer can send or
receive data at any time. This connection remains open until it is explicitly closed by either of
the computers involved. This provides a high degree of flexibility but raises various issues that
you’ll examine in this chapter, so unless you really need a very high degree of control, you’re
better off using the more abstract network protocols you’ll look at later in this chapter.

The classes you need in order to work with TCP/IP sockets are contained in the
namespace System.Net, as summarized in Table 10-1.

CHAPTER 10 n DISTRIBUTED APPLICATIONS240

7575Ch10.qxp  4/27/07  1:06 PM  Page 240



Table 10-1. Classes Required for Working with TCP/IP Sockets

Class Description

System.Net.Sockets.TcpListener This class is used by the server to listen for incoming
requests.

System.Net.Sockets.TcpClient This class is used by both the client and the server to
control how data is sent over a network.

System.Net.Sockets.NetworkStream This class can be used to both send and receive data
over a network. It sends bytes over a network, so it is
typically wrapped in another stream type to send text.

System.IO.StreamReader This class can be used to wrap the NetworkStream class
in order to read text from it. The StreamReader provides
the methods ReadLine and ReadToEnd, which both return
a string of the data contained in the stream. Various
different text encodings can be used by supplying an
instance of the System.Text.Encoding class when the
StreamWriter is created.

System.IO.StreamWriter This class can be used to wrap the NetworkStream class
in order to write text to it. The StreamWriter provides
the methods Write and WriteLine, which both take a
string of the data to be written to the stream. Various
different text encodings can be used by supplying an
instance of the System.Text.Encoding class when the
StreamWriter is created.

In this chapter’s first example, you’ll build a chat application, consisting of a chat server
(shown in Listing 10-1) and a client (shown in Listing 10-2). It is the chat server’s job to wait
and listen for clients that connect. Once a client connects, it must ask the client to provide a
username, and then it must constantly listen for incoming messages from all clients. Once it
receives an incoming message, it must push that message out to all clients. It is the job of the
client to connect to the server and provide an interface to allow the user to read the messages
received and to write messages to send to the other users. The TCP/IP connection works well
for this type of application because the connection is always available, and this allows the
server to push any incoming messages directly to the client without polling from the client.

Listing 10-1. A Chat Server

#light
open System
open System.IO
open System.Net
open System.Net.Sockets
open System.Threading
open System.Collections.Generic

type ClientTable() = class
let clients = new Dictionary<string,StreamWriter>()

CHAPTER 10 n DISTRIBUTED APPLICATIONS 241

7575Ch10.qxp  4/27/07  1:06 PM  Page 241



/// Add a client and its stream writer
member t.Add(name,sw:StreamWriter) =

lock clients (fun () ->
if clients.ContainsKey(name) then

sw.WriteLine("ERROR - Name in use already!")
sw.Close()

else
clients.Add(name,sw))

/// Remove a client and close it, if no one else has done that first
member t.Remove(name) =

lock clients (fun () -> clients.Remove(name) |> ignore)

/// Grab a copy of the current list of clients
member t.Current =

lock clients (fun () -> clients.Values |> Seq.to_array)

/// Check whether a client exists
member t.ClientExists(name) =

lock clients (fun () -> clients.ContainsKey(name) |> ignore)

end

type Server() = class

let clients = new ClientTable()

let sendMessage name message =
let combinedMessage =

Printf.sprintf "%s: %s" name message
for sw in clients.Current do

try
lock sw (fun () ->

sw.WriteLine(combinedMessage)
sw.Flush())

with
| _ -> () // Some clients may fail

let emptyString s = (s = null || s = "")

let handleClient (connection : TcpClient) =
let stream = connection.GetStream()
let sr = new StreamReader(stream)
let sw = new StreamWriter(stream)
let rec requestAndReadName() =

sw.WriteLine("What is your name? ");
sw.Flush()

CHAPTER 10 n DISTRIBUTED APPLICATIONS242

7575Ch10.qxp  4/27/07  1:06 PM  Page 242



let rec readName() =
let name = sr.ReadLine()
if emptyString(name) then

readName()
else

name
let name = readName()
if clients.ClientExists(name) then

sw.WriteLine("ERROR - Name in use already!")
sw.Flush()
requestAndReadName()

else
name

let name = requestAndReadName()
clients.Add(name,sw)

let rec listen() =
let text = try Some(sr.ReadLine()) with _ -> None
match text with
| Some text ->

if not (emptyString(text)) then
sendMessage name text

Thread.Sleep(1)
listen()

| None ->
clients.Remove name
sw.Close()

listen()

let server = new TcpListener(IPAddress.Loopback, 4242)

let rec handleConnections() =
server.Start()
if (server.Pending()) then

let connection = server.AcceptTcpClient()
printf "New Connection"
let t = new Thread(fun () -> handleClient connection)
t.Start()

Thread.Sleep(1);
handleConnections()

member server.Start() = handleConnections()
end
(new Server()).Start()

CHAPTER 10 n DISTRIBUTED APPLICATIONS 243

7575Ch10.qxp  4/27/07  1:06 PM  Page 243



Let’s work our way through Listing 10-1 starting at the top and working down. The first
step is to define a class to help you manage the clients connected to the server. The members
Add, Remove, Current, and ClientExists share a mutable dictionary, defined by the binding:

let clients = new Dictionary<string,StreamWriter>()

This contains a mapping from client names to connections, hidden from other functions
in the program. The Current member copies the entries in the map into an array to ensure
there is no danger of the list changing while you are enumerating it, which would cause an
error. You can still update the collection of clients using Add and Remove, and the updates will
become available the next time Current is called. Because the code is multithreaded, the imple-
mentation of Add and Remove lock the client collection to ensure no changes to the collection
are lost through multiple threads trying to update it at once.

The next function you define, sendMessage, uses the Current member to get the map of
clients and enumerates it using a list comprehension, sending the message to each client as you
go through the collection. Note here how you lock the StreamWriter class before you write to it:

lock sw (fun () ->
sw.WriteLine(message)
sw.Flush())

This is to stop multiple threads writing to it at once, which would cause the text to appear
in a jumbled order on the client’s screen.

After defining the emptyString function, which is a useful little function that wraps up
some predicate that you use repeatedly, you define the handleClient function, which does the
work of handling a client’s new connection and is broken down into a series of inner functions.
The handleClient function is called by the final function you will define, handleConnections,
and will be called on a new thread that has been assigned specifically to handle the open con-
nection. The first thing handleClient does is get the stream that represents the network
connection and wrap it in both a StreamReader and a StreamWriter:

let stream = connection.GetStream()
let sr = new StreamReader(stream)
let sw = new StreamWriter(stream)

Having a separate way to read and write from the stream is useful because the functions
that will read and write to the stream are actually quite separate. You have already met the
sendMessage function, which is the way messages are sent to clients, and you will later see that
a new thread is allocated specifically to read from the client.

The inner function requestAndReadName that you define next in handleClient is fairly
straightforward; you just repeatedly ask the user for a name until you find a name that is not
an empty or null string and is not already in use. Once you have the client name, you use the
addClient function to add it to the collection of clients:

let name = requestAndReadName()
addClient name sw

The final part of handleConnection is defining the listen function, which is responsible
for listening to messages incoming from the client. Here you read some text from the stream,
wrapped in a try expression using the option type’s Some/None values to indicate whether text
was read:

CHAPTER 10 n DISTRIBUTED APPLICATIONS244

7575Ch10.qxp  4/27/07  1:06 PM  Page 244



let text = try Some(sr.ReadLine()) with _ -> None

You then use pattern matching to decide what to do next. If the text was successfully read,
then you use the sendMessage function to send that message to all the other clients; otherwise,
you remove yourself from the collection of clients and allow the function to exit, which will in
turn mean that the thread handling the connections will exit.

nNote Although the listen function is recursive and could potentially be called many times, there is no
danger of the stack overflowing. This is because the function is tail recursive, meaning that the compiler
emits a special tail instruction that tells the .NET runtime that the function should be called without using the
stack to store parameters and local variables. Any recursive function defined in F# that has the recursive call
as the last thing that happens in the function is tail recursive.

Next you create an instance of the TcpListener class. This is the class that actually does the
work of listening to the incoming connections. You normally initialize this with the IP address
and the port number on which the server will listen. When you start the listener, you tell it to
listen on the IPAddress.Any address so that the listener will listen for all traffic on any of the 
IP addresses associated with the computer’s network adapters; however, because this is just a
demonstration application, you tell the TcpListener class to listen to IPAddress.Loopback,
meaning it will pick up the request only from the local computer. The port number is how you
tell that the network traffic is for your application and not another. Using the TcpListener class,
it is possible for only one listener to listen to a port at once. The number you choose is some-
what arbitrary, but you should choose a number greater than 1023, because the port numbers
from 0 to 1023 are reserved for specific applications. So, to create a listener on port 4242 that
you code, you use the TcpListener instance in the final function you define, handleConnections:

let server = new TcpListener(IPAddress.Loopback, 4242)

This function is an infinite loop that listens for new clients connecting and creates a new
thread to handle them. It’s the following code that, once you have a connection, you use to
retrieve an instance of the connection and start the new thread to handle it:

let connection = server.AcceptTcpClient()
print_endline "New Connection"
let t = new Thread(fun () -> handleClient connection)
t.Start()

Now that you understand how the server works, let’s take a look at the client, which is in
many ways a good deal simpler than the server. Listing 10-2 shows the full code for the client,
which is followed by a discussion of how the code works.

Listing 10-2. A Chat Client

#light
open System
open System.ComponentModel
open System.IO

CHAPTER 10 n DISTRIBUTED APPLICATIONS 245

7575Ch10.qxp  4/27/07  1:06 PM  Page 245



open System.Net.Sockets
open System.Threading
open System.Windows.Forms

let form =
let temp = new Form()
temp.Text <- "F# Talk Client"

temp.Closing.Add(fun e ->
Application.Exit()
Environment.Exit(0))

let output =
new TextBox(Dock = DockStyle.Fill,

ReadOnly = true,
Multiline = true)

temp.Controls.Add(output)

let input = new TextBox(Dock = DockStyle.Bottom, Multiline = true)
temp.Controls.Add(input)

let tc = new TcpClient()
tc.Connect("localhost", 4242)

let load() =
let run() =

let sr = new StreamReader(tc.GetStream())
while(true) do

let text = sr.ReadLine()
if text <> null && text <> "" then

temp.Invoke(new MethodInvoker(fun () ->
output.AppendText(text + Environment.NewLine)
output.SelectionStart <- output.Text.Length))

|> ignore
let t = new Thread(new ThreadStart(run))
t.Start()

temp.Load.Add(fun _ -> load())

let sw = new StreamWriter(tc.GetStream())
let keyUp _ =

if(input.Lines.Length > 1) then
let text = input.Text
if (text <> null && text <> "") then

CHAPTER 10 n DISTRIBUTED APPLICATIONS246

7575Ch10.qxp  4/27/07  1:06 PM  Page 246



begin
try

sw.WriteLine(text)
sw.Flush()

with err ->
MessageBox.Show(sprintf "Server error\n\n%O" err)
|> ignore

end;
input.Text <- ""

input.KeyUp.Add(fun _ -> keyUp e)
temp

[<STAThread>]
do Application.Run(form)

Figure 10-1 shows the resulting client-server application.

Figure 10-1. The chat client-server application

Now you’ll look at how the client in Listing 10-2 works. The first portion of code in the client
is taken up initializing various aspects of the form; this is not of interest to you at the moment,
though you can find details of how WinForms applications work in Chapter 8. The first part of
Listing 10-2 that is relevant to TCP/IP sockets programming is when you connect to the server.
You do this by creating a new instance of the TcpClient class and calling its Connect method:

CHAPTER 10 n DISTRIBUTED APPLICATIONS 247

7575Ch10.qxp  4/27/07  1:06 PM  Page 247



let tc = new TcpClient()
tc.Connect("localhost", 4242)

In this example, you specify localhost, which is the local computer, and port 4242, which
is the same port on which the server is listening. In a more realistic example, you’d probably
give the DNS name of the server or allow the user to give the DNS name, but localhost is good
because it allows you to easily run the sample on one computer.

The function that drives the reading of data from the server is the load function. You attach
this to the form’s Load event; to ensure this executes after the form is loaded and initialized
properly, you need to interact with the form’s controls:

temp.Load.Add(fun _ -> load())

To ensure that you read all data coming from the server in a timely manner, you create a
new thread to read all incoming requests. To do this, you define the function run, which is
then used to start a new thread:

let t = new Thread(new ThreadStart(run))
t.Start()

Within the definition of run, you first create a StreamReader to read text from the connec-
tion, and then you loop infinitely, so the thread does not exit and reads from the connection.
When you find data, you must use the form’s Invoke method to update the form; you need to
do this because you cannot update the form from a thread other than the one on which it was
created:

temp.Invoke(new MethodInvoker(fun () ->
output.AppendText(text + Environment.NewLine)
output.SelectionStart <- output.Text.Length))

The other part of the client that is functionally important is writing messages to the server.
You do this in the keyUp function, which is attached to the input text box’s KeyUp event so that
every time a key is pressed in the text box, the code is fired:

input.KeyUp.Add(fun _ -> keyUp e)

The implementation of the keyUp function is fairly straightforward: if you find that there is
more than one line—meaning the Enter key has been pressed—you send any available text
across the wire and clear the text box.

Now that you understand both the client and server, you’ll take a look at a few general
points about the application. In both Listings 10-1 and 10-2, you called Flush() after each
network operation. Otherwise, the information will not be sent across the network until the
stream cache fills up, which leads to one user having to type many messages before they
appear on the other user’s screen.

This approach has several problems, particularly on the server side. Allocating a thread
for each incoming client ensures a good response to each client, but as the number of client
connections grows, so will the amount of context switching needed for the threads, and the
overall performance of the server will be reduced. Also, since each client requires its own
thread, the maximum number of clients is limited by the maximum number of threads a
process can contain. Although these problems can be solved, it’s often easier to simply use
one of the more abstract protocols discussed next.

CHAPTER 10 n DISTRIBUTED APPLICATIONS248

7575Ch10.qxp  4/27/07  1:06 PM  Page 248



Using HTTP
The Web uses Hypertext Transfer Protocol (HTTP) to communicate, typically with web browsers,
but you might want to make web requests from a script or a program for several reasons, for
example, to aggregate site content through RSS or Atom feeds.

To make an HTTP request, you use the static method Create from the System.Net.
WebRequest class. This creates a WebRequest object that represents a request to the uniform
resource locator (URL, an address used to uniquely address a resource on a network) that 
was passed to the Create method. You then use the GetResponse method to get the server’s
response to your request, represented by the System.Net.WebResponse class.

The following example (Listing 10-3) illustrates calling an RSS on the BBC’s website. The
core of the example is the function getUrlAsXml, which does the work of retrieving the data
from the URL and loading the data into an XmlDocument. The rest of the example illustrates the
kind of post-processing you might want to do on the data, in this case displaying the title of
each item on the console and allowing users to choose which item to display.

Listing 10-3. Using HTTP

#light
open System.Diagnostics
open System.Net
open System.Xml

let getUrlAsXml (url : string) =
let request = WebRequest.Create(url)
let response = request.GetResponse()
let stream = response.GetResponseStream()
let xml = new XmlDocument()
xml.Load(new XmlTextReader(stream))
xml

let url = "http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/sci/tech/rss.xml"
let xml = getUrlAsXml url

let mutable i = 1
for node in xml.SelectNodes("/rss/channel/item/title") do

printf "%i. %s\r\n" i node.InnerText
i <- i + 1

let item = read_int()

let newUrl =
let xpath = sprintf "/rss/channel/item[%i]/link" item
let node = xml.SelectSingleNode(xpath)
node.InnerText

let proc = new Process()

CHAPTER 10 n DISTRIBUTED APPLICATIONS 249

7575Ch10.qxp  4/27/07  1:06 PM  Page 249



proc.StartInfo.UseShellExecute <- true
proc.StartInfo.FileName <- newUrl
proc.Start()

The results of this example at the time of writing (your results will vary) were as follows:

1. Five-step check for nano safety
2. Neanderthal DNA secrets unlocked
3. Stem cells 'treat muscle disease'
4. World Cup site threat to swallows
5. Clues to pandemic bird flu found
6. Mice star as Olympic food tasters
7. Climate bill sets carbon target
8. Physics promises wireless power
9. Heart 'can carry out own repairs'
10. Average European 'is overweight'
11. Contact lost with Mars spacecraft
12. Air guitar T-shirt rocks for real
13. Chocolate 'cuts blood clot risk'
14. Case for trawl ban 'overwhelming'
15. UN chief issues climate warning
16. Japanese begin annual whale hunt
17. Roman ship thrills archaeologists
18. Study hopeful for world's forests

Calling Web Services
Web services are based on standards (typically SOAP) that allow applications to exchange data
using HTTP. Web services consist of web methods, that is, methods that have been exposed for
execution over a network. You can think of this as somewhat similar to F# functions, since a
web method has a name, can have parameters, and returns a result. The parameters and results
are described in metadata that the web services also exposes, so clients know how to call it.

You can call a web service in F# in two ways. You can use the HttpRequest class and gener-
ate the XML you need to send, or you can use the wsdl.exe tool that comes with the .NET
Framework SDK to generate a proxy for you. Generally, most people prefer using an automati-
cally generated proxy, because it is much easier, but some like to generate the XML themselves
since they think it’s easier to handle changes to a web service this way. You’ll look at both
options, starting with generating the XML yourself.

The example in Listing 10-4 calls the Microsoft Developers Network (MSDN) web 
service. (MSDN is a vast library containing details about all the APIs and other software 
aimed at developers that Microsoft provides.) The call to the web service will retrieve details
about a class or method in the BCL. The listing first defines a generic function, getWebService,
to call the web service. This is slightly more complicated than the getUrlAsXml function in
Listing 10-4, because you need to send extra data to the server; that is, you need to send the
name of the web method you are calling and the request body—the data that makes up the
request’s parameters.

CHAPTER 10 n DISTRIBUTED APPLICATIONS250

7575Ch10.qxp  4/27/07  1:06 PM  Page 250



You need to use the HTTP POST protocol, rather than the default HTTP GET protocol, so
you set this in the Method property of the WebRequest class. You also need to set the content
type to "text/xml":

webRequest.Method <- "POST"
webRequest.ContentType <- "text/xml"

Then you add the web method name to the HTTP header:

webRequest.Headers.Add("Web-Method", methodName)

And finally you use the GetRequestStream method to get a stream of data into which you
write requestBody, the data that makes up the parameters of the request:

using (new StreamWriter(webRequest.GetRequestStream()))
(fun s -> s.Write(requestBody))

You then go on to define a more specific function, queryMsdn, just to query MSDN using the
web service it exposes. This function calls the web service using a template of the request bound
to the identifier requestTemplate. The rest of queryMsdn uses XPath to determine whether any
results are available and if so writes them to the console. Listing 10-4 shows the full example.

Listing 10-4. Calling the MSDN Web Service

#light
open System
open System.IO
open System.Net
open System.Windows.Forms
open System.Xml

let getWebService (url : string) (methodName : string) (requestBody : string) =
let webRequest =

WebRequest.Create(url, Method = "POST", ContentType = "text/xml")
webRequest.Headers.Add("Web-Method", methodName)
using (new StreamWriter(webRequest.GetRequestStream()))

(fun s -> s.Write(requestBody))
let webResponse = webRequest.GetResponse()
let stream = webResponse.GetResponseStream()
let xml = new XmlDocument()
xml.Load(new XmlTextReader(stream))
xml

let (requestTemplate : Printf.string_format<_>) =
@"<soap:Envelope xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/""
xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""
xmlns:xsd=""http://www.w3.org/2001/XMLSchema"">

<soap:Body>
<getContentRequest xmlns=""urn:msdn-com:public-content-syndication"">
<contentIdentifier>%s</contentIdentifier>

CHAPTER 10 n DISTRIBUTED APPLICATIONS 251

7575Ch10.qxp  4/27/07  1:06 PM  Page 251



<locale xmlns=""urn:mtpg-com:mtps/2004/1/key"">en-us</locale>
<version xmlns=""urn:mtpg-com:mtps/2004/1/key"">VS.80</version>
<requestedDocuments>
<requestedDocument type=""common"" selector=""Mtps.Search"" />
<requestedDocument type=""primary"" selector=""Mtps.Xhtml"" />

</requestedDocuments>
</getContentRequest>

</soap:Body>
</soap:Envelope>"

let url = "http://services.msdn.microsoft.com" +
"/ContentServices/ContentService.asmx"

let xpath = "/soap:Envelope/soap:Body/c:getContentResponse/" +
"mtps:primaryDocuments/p:primary"

let queryMsdn item =
let request = Printf.sprintf requestTemplate item
let xml = getWebService url "GetContent" request
let namespaceManage =

let temp = new XmlNamespaceManager(xml.NameTable)
temp.AddNamespace("soap", "http://schemas.xmlsoap.org/soap/envelope/")
temp.AddNamespace("mtps", "urn:msdn-com:public-content-syndication")
temp.AddNamespace("c", "urn:msdn-com:public-content-syndication")
temp.AddNamespace("p", "urn:mtpg-com:mtps/2004/1/primary")
temp

match xml.SelectSingleNode(xpath, namespaceManage) with
| null -> print_endline "Not found"
| html -> print_endline html.InnerText

queryMsdn "System.IO.StreamWriter"

Running the code in Listing 10-4 queries MSDN to find out about the System.IO.
StreamWriter class. Figure 10-2 shows the results of such a query, which is run inside F#
interactive hosted in Visual Studio. It’s easy to define other queries to the web service—
just call queryMsdn, passing it a different string parameter.

Although the results of this web service can appear poorly formatted, since the body text
you grab is HTML and you simply strip the formatting tags, I often find this is the quickest way
to search for information on MSDN. If I know that I’m going to be searching MSDN a lot, I load
this script into fsi hosted in Visual Studio, and then I can query MSDN just by typing
queryMsdn, which can be much quicker than loading a browser.

CHAPTER 10 n DISTRIBUTED APPLICATIONS252

7575Ch10.qxp  4/27/07  1:06 PM  Page 252



Figure 10-2. Querying MSDN in Visual Studio

This method of calling web services has its advocates who claim it’s more resistant to
changes in the service interface than generated proxies. However, this example is flawed for at
least two reasons. It’s not typically a good idea to place a large quantity of string data in source
code, as you did with the requestTemplate identifier in Listing 10-4, and it’s often easier to
work with strongly typed objects rather than querying an XML document.

To explore the alternatives, let’s look at an example that queries Google’s web service
using a generated proxy.

First, you need to generate the proxy; you do this using the wsdl.exe tool. Using wsdl.exe is
straightforward. Just pass it the URL of the service you want to use, and wsdl.exe will generate a
proxy. So, to create the Google proxy, use the command line wsdl.exe http://strangelights.com/
EvilAPI/GoogleSearch.wsdl. This creates a C# proxy class that can easily be compiled into a .NET
assembly and used in F#.

CHAPTER 10 n DISTRIBUTED APPLICATIONS 253

7575Ch10.qxp  4/27/07  1:06 PM  Page 253



nNote You will have noticed that the Google search is hosted on http://www.strangelights.com, my
web site. This provides a copy of Google’s old web service API implemented by screen scraping the results
from Google. This idea was copied from EvilAPI.com, implemented originally by Collin Winter, in response to
Google’s decision to discontinue its SOAP API. Many companies use web services internally as a way of let-
ting teams throughout the company, or partner companies, cooperate more easily. The services provided by
Amazon.com and eBay.com are good examples of this but were not suitable for use in this example because
they require a long sign-up process.

The huge advantage of using a proxy is that once the proxy has been created, there is very
little plumbing to do. It’s simply a matter of creating an instance of the proxy class and calling
the service’s methods.

This is illustrated in the following example (Listing 10-5) where you query Google for the
first three pages of F#. Creating an instance of the GoogleSearchService class and calling its
doGoogleSearch method is straightforward, and processing the result is straightforward since
it’s available in a strongly typed class.

Listing 10-5. Calling the Google Web Service

#light
#r "Proxy.dll";;

let key = "xxxx xxxx xxxx xxxx"

let google =
new GoogleSearchService(Url = "http://strangelights.com/EvilAPI/google.asmx")

let result =
google.doGoogleSearch(key=key,

q="FSharp",
start=0,
maxResults=3,
filter=false,
restrict="",
safeSearch=false,
lr="",
ie="",
oe="")

CHAPTER 10 n DISTRIBUTED APPLICATIONS254

7575Ch10.qxp  4/27/07  1:06 PM  Page 254



result.resultElements
|> Array.iteri

(fun i result ->
printf "%i. %s\r\n%s\r\n%s\r\n\r\n"

i
result.title
result.URL
result.snippet)

read_line() |> ignore

The results of this example, when executed (on the day of this writing), are as follows:

0. <b>F#</b>
http://research.microsoft.com/fsharp/fsharp.aspx
A .NET variant of ML with a core language similar to that of the OCaml programmi
ng <br> language.

1. <b>f#</b> language
http://research.microsoft.com/fsharp/fsharp.aspx
<b>F#</b> is a programming language that provides the much sought-after <b>...</
b> The only <br>  language to provide a combination like this is <b>F#</b> (pron
ounced FSharp) - a <b>...</b>

2. F Sharp programming language - Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/F_Sharp
The correct title of this article is <b>F#</b> programming language. <b>...</b>
NET components <br>  in <b>F#</b>. Consequently, the main <b>F#</b> libraries ar
e the . <b>...</b>

Creating Web Services
In addition to calling web services, you can create web services in F#, and this is also very
straightforward. In fact, when creating a web service, the main problem is probably exposing
code through a web server. Web servers receive requests for files, in the form of a URL; you
must tell the web server to which .NET class this request will map. Typically you use an .asmx
file to run a specific F# class that will responded to the web service request if the web server
gets a request for the .asmx file. The exact way of doing this varies depending on your develop-
ment environment and the web server on which you host your services.

Visual Studio 2005 comes with a built-in web server, so creating a new web site is just a
matter of selecting File ä New ä Web Site and then choosing the location for the website. 

CHAPTER 10 n DISTRIBUTED APPLICATIONS 255

7575Ch10.qxp  4/27/07  1:06 PM  Page 255



This site will run only those pages written in C# or Visual Basic .NET, so you need to add an F#
project to the solution and then manually alter the solution file so that it lives inside the web-
site directory. This is easier than it sounds. You just need to copy the .fsharpp file to the
website directory, open the .sln file in Notepad, and alter the path to the .fsharpp file. After
this, you just need to configure the project file to output a library and write this to a bin subdi-
rectory. This might seem like a lot of effort, but afterward you will just be able to press F5, and
your project will compile and run.

If you don’t have Visual Studio 2005, then the next best thing to do is to host the site in
Internet Information Services (IIS, Microsoft’s own web server for Windows). In some ways,
this is easier than hosting in Visual Studio, but it doesn’t have the convenience of just being
able to execute your code once coding is completed. To host your code in IIS, you need to
create an IIS virtual directory with a subdirectory called bin. You then need to copy your 
.asmx pages and your web.config file to the virtual directory.

nNote Getting ASP.NET to work with F# and Apache is possible, but it is more difficult than the situation either
with or without Visual Studio 2005; see the following page for more details: http://strangelights.com/
FSharp/Foundations/default.aspx/FSharpFoundations.HostingWebServices.

The service itself is straightforward. The service should be a class that derives from
System.Web.Service.WebService and has a parameterless constructor. It should also be
marked with System.Web.Service.WebServiceAttribute. If you intend to expose your web
service publicly, you must set the attribute’s Namespace. The default is http://tempuri.org,
and even if you don’t intend to expose your service publicly, setting this attribute will lead to
more manageable web services. The members of the class can then become web methods by
simply marking them with System.Web.Service.WebServiceAttribute. This too has a number
of useful properties; it’s particularly worth setting the Description property so clients of your
service know what they’re getting.

Listing 10-6 shows the definition of a simple web service. You create a type Service with
one member, Addition, that must have its parameters in the tuple style.

Listing 10-6. Creating a Simple Web Service

#light
namespace Strangelights.WebServices

open System.Web.Services

[<WebService(Namespace =
"http://strangelights.com/FSharp/Foundations/WebServices")>]

type Service = class
inherit WebService
new() = {}
[<WebMethod(Description = "Performs integer addition")>]
member x.Addition (x : int, y : int) = x + y

end

CHAPTER 10 n DISTRIBUTED APPLICATIONS256

7575Ch10.qxp  4/27/07  1:06 PM  Page 256



To allow the web service to be found by the web server, you need to create an .asmx file.
An example .asmx file is as follows; the most important thing for you is to set the Class attrib-
ute to the name of the class that is your service. When the server receives a request for this file,
it invokes the appropriate service.

<%@ WebService Class="Strangelights.WebServices.Service" %>

If you’re running the service locally, you can test the service by simply opening it in a
browser. In a browser, you’ll see the interface shown in Figure 10-3, which allows you to give
values for the web service’s parameters and then invoke the service.

Figure 10-3. Invoking a local web service

Invoking this service with the arguments 46 and 28 produces the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://strangelights.com/FSharp/Foundations/WebServices">74</int>

CHAPTER 10 n DISTRIBUTED APPLICATIONS 257

7575Ch10.qxp  4/27/07  1:06 PM  Page 257



It is generally not efficient to send small amounts of data across the network, since there
is a certain amount of metadata that must be sent with each request. In general, it is better to
build applications that are not “chatty,” that is, applications that make one big request rather
than repeatedly making lots of small ones.

A web service will attempt to serialize any .NET object that is returned from one for its
methods to XML; however, the results can be a little unpredictable, and the resulting XML data
might not contain all the fields you expect it to and might be difficult to work with from other
programming languages. To avoid this, it’s best to use XSD schemas to define the objects that
you want to pass across the web service. An XSD schema is a type of XML document that
describes the structure of an XML document, stating things like which fields are mandatory
and the order in which the fields should appear. These schemes then become part of the web
service definition, and anyone using the web service will be able to understand what field they
can expect from the web service. This is preferable to simply defining a web service that has a
single field containing binary or hexadecimal data because the user of the web service has a
much better chance of understanding what the results mean.

Although it is possible to define your own XML schemas, Visual Studio has several graphic
modes and a text-based mode for creating them; it’s also possible to build on the work of others
in this field—many predefined schemas are available for download on the Web. For instance,
the example you are going to look at next uses RNAML, a schema you can find at http://
www-lbit.iro.umontreal.ca/rnaml/; it is one attempt to provide a schema for people who want
exchange information on RNA (Ribonucleic acid, a substance studied by molecular biologist)
in XML. Once you have downloaded the schema from the site, you can turn this into a .NET
representation of the schema using the command-line tool xsd.exe. This tool produces C#
classes that represent the XML data; typically, each tag in the XML will become a class in .NET.
This C# file can then be compiled into a .NET assembly and used from F# like any other .NET
library. The complete command line you would use is xsd rnaml.xsd /classes, and you need to
rename the downloaded schema file from rnaml.xml to rnaml.xsd for the tool to work correctly.

nNote For some complicated schemas, the code generated by xsd.exe does not always serialize perfectly
into XML; unfortunately, this is the case for RNAML. Over time, a fix should become available for this bug in
xsd.exe; the version of xsd.exe shipped with .NET Framework 2.0 is already considerably better than the
previous version. There is a workaround available from the MSDN forums that needs to be applied to the
generated code: http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=87289&SiteID=1. Or,
because the affected classes are not used in the sample, you can do as I did and simply comment out the
affected classes (numberingtable, coordinates, and revision) and about the half dozen references to
them within the code.

The following example shows how to create a web service that returns the structure of a
yeast RNA molecule. This is an abridged version of the sequence sample available from the
RNAML website (http://www-lbit.iro.umontreal.ca/rnaml/). As before, you need an .asmx
file to link the file requested to the .NET type that will handle the request; here it is:

<%@ WebService Class="Strangelights.WebServices.DnaWebService" %>

CHAPTER 10 n DISTRIBUTED APPLICATIONS258

7575Ch10.qxp  4/27/07  1:06 PM  Page 258



Listing 10-7 shows the web service; you will notice how the basic components of the
service are the same as our simple web service. You have a class definition as before, marked
with the WebService attribute. The code that actually does the work is the method definition
GetYeastMolecule; here you create and populate various objects that are defined in the library
you created from the rnaml.xsd file, such as a molecule object and a sequence object.

Listing 10-7. Creating a Web Service Returning the Definition of RNA Molecule

#light
namespace Strangelights.WebServices

open System.Web.Services

[<WebService(Namespace =
"http://strangelights.com/FSharp/Foundations/DnaWebService")>]

type DnaWebService = class
inherit WebService
new() = {}
[<WebMethod(Description = "Gets a representation of a yeast molecule")>]
member x.GetYeastMolecule () =

let yeast = new molecule(id = "Yeast-tRNA-Phe")
let id = new identity(name = "Saccharomyces cerevisiae tRNA-Phe")
let tax = new taxonomy(domain = "Eukaryota", kingdom = "Fungi",

phylum = "Ascomycota", ``class`` = "Saccharomycetes",
order = "Saccharomycetales",
family = "Saccharomycetaceae",
genus = "Saccharomyces",
species = "Saccharomyces cerevisiae")

let numRange1 = new numberingrange(start = "1", Item = "10")
let numRange2 = new numberingrange(start = "11", Item = "66")
let numSys = new numberingsystem(id="natural", usedinfile=true)
numSys.Items <- [|box numRange1; box numRange2|]
let seqData = new seqdata()
seqData.Value <- "GCGGAUUUAG CUCAGUUGGG AGAGCGCCAG ACUGAAGAUC
UGGAGGUCCU GUGUUCGAUC CACAGAAUUC GCACCA"

let seq = new sequence()
seq.numberingsystem <- [|numSys|]
seq.seqdata <- seqData
id.taxonomy <- tax
yeast.identity <- id
yeast.sequence <- [|seq|]
yeast

end

Again, the same simple web-based testing option is available, and the resulting XML is as
follows:

CHAPTER 10 n DISTRIBUTED APPLICATIONS 259

7575Ch10.qxp  4/27/07  1:06 PM  Page 259



<?xml version="1.0" encoding="utf-8"?>
<molecule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="Yeast-tRNA-Phe">
<identity>
<name>Saccharomyces cerevisiae tRNA-Phe</name>
<taxonomy>
<domain>Eukaryota</domain>
<kingdom>Fungi</kingdom>
<phylum>Ascomycota</phylum>
<class>Saccharomycetes</class>
<order>Saccharomycetales</order>
<family>Saccharomycetaceae</family>
<genus>Saccharomyces</genus>
<species>Saccharomyces cerevisiae</species>

</taxonomy>
</identity>
<sequence>
<numbering-system id="natural" used-in-file="true">
<numbering-range>
<start>1</start>
<end>10</end>

</numbering-range>
<numbering-range>
<start>11</start>
<end>66</end>

</numbering-range>
</numbering-system>
<seq-data>GCGGAUUUAG CUCAGUUGGG AGAGCGCCAG ACUGAAGAUC

UGGAGGUCCU GUGUUCGAUC CACAGAAUUC GCACCA</seq-data>
</sequence>

</molecule>

Although this example, just returning a static unchanging XML document, is not particularly
realistic, it is easy to see the potential of this sort of application. Instead of a GetYeastMolecule
method, you’d more realistically provide a GetMolecule method that took a name of a molecule,
looked the details of the molecule up in a database, and returned the resulting molecule data. The
advantage is that a program running on almost any platform can work with the resulting data; in
this case, the example site already provides an API for working with the data in C++ and Java, and
as you have seen, working with this kind of data in F# is already very straightforward. Of course,
this technology is not limited to molecular biology; there are XML schemas becoming available
for almost every field of science, engineering, math, and finance.

Web services such as these can be secured so that they can be accessed only by a subset of
users or so that the information traveling over the network is encrypted or signed, via several
methods. One option is to upgrade to Windows Communication Foundation (WCF), which is
similar to web services but offers more flexibility in this area, discussed in the next section.
The other is to configure your web server to handle these security requirements for you. I’ll

CHAPTER 10 n DISTRIBUTED APPLICATIONS260

7575Ch10.qxp  4/27/07  1:06 PM  Page 260



discuss these options as well as several troubleshooting options in the section “IIS Configura-
tion and Troubleshooting Guide.”

Windows Communication Foundation
It is the goal of the Windows Communication Framework (WCF) to provide a unified model
for creating distributed applications. The idea is that you create a service, something very sim-
ilar to a web service, containing the functionality you want to expose. This service can then be
exposed in a variety of different ways. For example, web services always pass XML messages,
but WCF services can be configured to pass binary data or XML messages. Further, WFC serv-
ices can be hosted in any process, rather than just on a web server. This means you could
create a desktop application that listens for incoming messages without having to install a
web server on the desktop.

nNote WCF is part of the .NET Framework 3, a group of APIs that were released at the same time as
Windows Vista and come already installed on that operating system. They can also be downloaded from
http://www.microsoft.com and installed on Windows XP and Windows Server 2003 (http://www.
microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-4A14-83F5-

25634C3BF043&displaylang=en). The protocols that WCF uses are based on a group of specifications that
extend web services and are sometimes referred to as the WS-* protocols because each protocol is gener-
ally given a name prefixed by WS-, such as WS-Security or WS-Reliability. Each of these protocols either has
been standardized or is currently being put forward for standardization. To develop with WCF, you need to
download the .NET Framework 3 SDK from http://www.microsoft.com/downloads.

In the first example, shown in Listing 10-8, you’ll build a simple WCF service that is hosted on
a web server and looks rather like a simple web service. You’ll refine this service to show off some
of the interesting features of WCF. To create a WCF service hosted in a web server, you follow the
same steps discussed in the “Creating Web Services” section, except that hosting in Apache on
Linux is not possible because WCF relies on some features that are specific to Windows.

Listing 10-8. Creating a Simple WCF Service

#light
namespace Strangelights.Services
open System.ServiceModel

[<ServiceContract
(Namespace =

"http://strangelights.com/FSharp/Foundations/WCFServices")>]
type IGreetingService = interface

[<OperationContract>]
abstract Greet : name:string -> string

end

CHAPTER 10 n DISTRIBUTED APPLICATIONS 261

7575Ch10.qxp  4/27/07  1:06 PM  Page 261



type GreetingService() = class
interface IGreetingService with

member x.Greet(name)  = "Hello: " + name
end

end

This service is defined in two parts, an interface that describes the service contract and an
implementation of that contract. All WCF services are defined this way. This interface is
named IGreetingService and exposes one function, named Greet. To make it a valid WCF
contract, mark the interface with System.ServiceModel.ServiceContractAttribute, which
should contain a namespace for the service. Use OperationContractAttribute to mark each
function within the interface that the service will expose. It is important that each parameter
has a name. It’s possible to create interfaces in F# where the parameters don’t have names but
are simply defined by their types. An interface acting as a WCF contract whose functions do
not have parameters will compile, but you’ll receive an error when you invoke the service
since the parameter names are used (via reflection) in the WCF framework to create the data
that is sent across the wire. The class GreetingService provides the implementation of the
contract. You simply offer a greeting by appending "hello: " to whatever name is passed.

To integrate the service with the web server, you need to create a .svc file, which plays a
similar role to the web service’s .asmx file, telling the web server what type should be used to
handle the service request. An example of an .svc that goes with the service is as follows; the
complete file is shown—they are typically only one line long. The most important attribute in
the .svc file is the Service attribute that tells the web server which type it should use:

<% @ServiceHost Debug="true" Service="Strangelights.Services.GreetingService" %>

Finally, you must configure the service. Since WCF offers a choice of protocols, you use
the configuration file to tell it which one to use. The configuration file in Listing 10-9 shows a
configuration file that could be used to configure your service. The service element defines
two endpoints; these are the protocols that a client can use to talk to this service. One of the
endpoints is a standard web service HTTP binding, and the other is a metadata exchange
binding; this allows the service to expose metadata about itself that will tell any potential
client how it should talk to the service. This is the endpoint you’ll use when you create the
client proxy.

Listing 10-9. The Configuration File for a WCF Service

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.serviceModel>
<services>
<service
name="Strangelights.Services.GreetingService"
behaviorConfiguration="MyServiceTypeBehaviors">
<endpoint
contract="Strangelights.Services.IGreetingService"
binding="wsHttpBinding"/>

CHAPTER 10 n DISTRIBUTED APPLICATIONS262

7575Ch10.qxp  4/27/07  1:06 PM  Page 262



<endpoint
contract="Strangelights.Services.IGreetingService"
binding="mexHttpBinding" address="mex"/>

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="MyServiceTypeBehaviors" >
<serviceDebug includeExceptionDetailInFaults="true" />
<serviceMetadata httpGetEnabled="true" />

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

<system.web>
<compilation debug="true"/>

</system.web>

</configuration>

To create a client for the service, you use the utility SvcUtil.exe, which has a similar
purpose to the utility wsdl.exe that I discussed in the “Creating Web Services” section. To use
SvcUtil.exe to create a proxy for your service, you need to use the following command line,
taking care to adapt the URL appropriately:

svcutil.exe http://localhost:1033/WCFService/Service.svc?wsdl

This will generate a C# proxy file that can then be compiled into a .NET assembly that can
be used from F#. It will also generate a .config file, which can be used to configure any client
application.

Using the proxy is straightforward, once you’ve added a reference to the proxy .dll file.
Simply create an instance of the proxy, and call its Greet method with the appropriate argu-
ments. Listing 10-10 shows an example of a proxy; because it is important to call the proxy’s
Dispose method, I have created it wrapped in the using function.

Listing 10-10. Invoking the WCF Service

using (new GreetingServiceClient())
(fun client ->

print_endline (client.Greet("Rob"))
read_line() |> ignore)

Listing 10-11 is an example of a generated configuration file that has had certain things
removed from it to make the sample run more smoothly. The security settings have been
removed, because these can cause the example to fail if it is run on a computer disconnected
from its domain controller (a common case for programmers on the move!). Also, one of the
two generated endpoints has been removed so there is no need to specify an endpoint in the
code.

CHAPTER 10 n DISTRIBUTED APPLICATIONS 263

7575Ch10.qxp  4/27/07  1:06 PM  Page 263



Listing 10-11. The Configuration File for Invoking the WCF Service

<configuration>
<system.serviceModel>

<bindings>
<wsHttpBinding>

<binding name="WSHttpBinding_IGreetingService"
closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00"
bypassProxyOnLocal="false" transactionFlow="false"
hostNameComparisonMode="StrongWildcard"
maxBufferPoolSize="524288"
maxReceivedMessageSize="65536" messageEncoding="Text"
textEncoding="utf-8" useDefaultWebProxy="true"
allowCookies="false">
<readerQuotas maxDepth="32"

maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<reliableSession ordered="true"
inactivityTimeout="00:10:00"
enabled="false" />

</binding>
</wsHttpBinding>

</bindings>
<client>

<endpoint address="http://localhost:8080/service"
binding="wsHttpBinding"
bindingConfiguration="WSHttpBinding_IGreetingService"
contract="IGreetingService"
name="WSHttpBinding_IGreetingService">

</endpoint>
</client>

</system.serviceModel>
</configuration>

The results of executing Listing 10-10 are as follows:

Hello: Rob

CHAPTER 10 n DISTRIBUTED APPLICATIONS264

7575Ch10.qxp  4/27/07  1:06 PM  Page 264



nCaution Although removing security settings is great for getting examples to run smoothly, security is an
important aspect that you should consider carefully throughout the development life cycle. If you are involved
in serious WCF development, I strongly recommend that you look at the appropriate security settings for your
application (for example, what kind of authentication do you want your users to provide?) as soon as possi-
ble. For further information about WCF security, please see http://strangelights.com/FSharp/
Foundations/default.aspx/FSharpFoundations.WCFSecurity.

Hosting WCF Services
To me, the most exciting aspect of WCF is the ability to host a service in any program without
the need for a web server. One possibility this opens up is the ability to create services whose
implementation can be changed dynamically because they are hosted in fsi.exe. Although it
is necessary to make some modifications to the previous sample to get it running in fsi.exe,
these modification are surprisingly straightforward.

Listing 10-12 shows a modified version of the previous example, Listing 10-8, designed to
run in fsi.exe.

Listing 10-12. A Service Designed to be Hosted in F# Interactive

#light
#I @"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0";;
#r "System.ServiceModel.dll";;
open System
open System.ServiceModel
open System.Runtime.Serialization

let mutable f = (fun x -> "Hello: " + x)
f <- (fun x -> "Bonjour: " + x)
f <- (fun x -> "Goedendag: " + x)

[<ServiceContract
(Namespace =

"http://strangelights.com/FSharp/Foundations/WCFServices")>]
type IGreetingService = interface

[<OperationContract>]
abstract Greet : name:string -> string

end

CHAPTER 10 n DISTRIBUTED APPLICATIONS 265

7575Ch10.qxp  4/27/07  1:06 PM  Page 265



type GreetingService() = class
interface IGreetingService with

member x.Greet( name ) = f name
end

end

let myServiceHost =
let baseAddress = new Uri("http://localhost:8080/service")

let temp = new ServiceHost((type GreetingService), [|baseAddress|])

let binding =
let temp =

new WSHttpBinding(Name = "binding1",
HostNameComparisonMode =
HostNameComparisonMode.StrongWildcard,

TransactionFlow = false)
temp.Security.Mode <- SecurityMode.Message
temp.ReliableSession.Enabled <- false
temp

temp.AddServiceEndpoint((type IGreetingService), binding, baseAddress)
|> ignore
temp

myServiceHost.Open()

Notice that in Listing 10-12 the IGreetingService and GreetingService types are pretty
much unchanged from Listing 10-8, except that the GreetingService type has been modified
to use a mutable function so you can manipulate what it does at runtime. You then need to
create a service host to do what the web server and web.config did in the previous example.
The web.config is shown in Listing 10-9, and the service itself is shown in Listing 10-8. Note
that myServiceHost contains a baseAddress, which the service will listen for a request on, and a
binding, which controls which protocols are used. Finally, you call the myServiceHost’s Open
method to set the service listening.

Then you make an alteration to the client to call the service repeatedly, shown in 
Listing 10-13, so you can see the service results change overtime.

Listing 10-13. A Client to Access the Service Hosted in F# Interactive

#light
using (new GreetingServiceClient()) (fun client ->

while true do
print_endline (client.Greet("Rob"))
read_line() |> ignore)

You also need to alter the client’s .config file to point to the correct address:

<endpoint address="http://localhost:8080/service"

CHAPTER 10 n DISTRIBUTED APPLICATIONS266

7575Ch10.qxp  4/27/07  1:06 PM  Page 266



The service is changed dynamically, as shown in Figure 10-4.

Figure 10-4. Invoking a dynamic WCF service

Another interesting reason to host services in a program is to create desktop applications
that can listen for updates for some kind of central server. Traditionally, these kinds of applica-
tions have been to poll central server, which can lead to a large amount of unnecessary
network traffic if polling is too frequent.

Listing 10-14 demonstrates how to do this. It shows a blank form that hosts a service that
will listen to updates from a client; in this case, the update will be a background image to display.
The service defines one function, ReceiveImage, which receives that binary data that makes up
an image. The implementation of the service raises an event, newImgEvent, every time an image
is received; this is so that the form can be updated every time a new image is received. Hooking
the form up to the event is straightforward:

newImgEvent.Add(fun img -> form.BackgroundImage <- img)

You just need to call the event’s Add method and pass it a function that updates the 
form. You will notice that the code required to host the service (that is, the code that defines
myServiceHost) is unchanged from the previous example.

CHAPTER 10 n DISTRIBUTED APPLICATIONS 267

7575Ch10.qxp  4/27/07  1:06 PM  Page 267



Listing 10-14. A Windows Form with a Service Built In

#light
open System
open System.IO
open System.Drawing
open System.ServiceModel
open System.Windows.Forms

[<ServiceContract
(Namespace =

"http://strangelights.com/FSharp/Foundations/WCFImageService")>]
type IImageService = interface

[<OperationContract>]
abstract ReceiveImage : image:array<Byte> -> unit

end

let newImgTrigger, newImgEvent = IEvent.create<Bitmap>()
type ImageService() = class

interface IImageService with
member x.ReceiveImage( image ) =

let memStream = new MemoryStream(image)
let bitmap = new Bitmap(memStream)
newImgTrigger bitmap

end
end

let myServiceHost =
let baseAddress = new Uri("http://localhost:8080/service")

let temp = new ServiceHost((type ImageService), [|baseAddress|])

let binding =
let temp =

new WSHttpBinding(Name = "binding1",
HostNameComparisonMode =
HostNameComparisonMode.StrongWildcard,

TransactionFlow = false)
temp.Security.Mode <- SecurityMode.Message
temp.ReliableSession.Enabled <- false
temp

temp.AddServiceEndpoint((type IImageService), binding, baseAddress)
|> ignore
temp

myServiceHost.Open()

CHAPTER 10 n DISTRIBUTED APPLICATIONS268

7575Ch10.qxp  4/27/07  1:06 PM  Page 268



let form = new Form()

newImgEvent.Add(fun img ->
form.BackgroundImage <- img)

[<STAThread>]
do Application.Run(form)

To create the client, you must first create a proxy, using the same technique that you used
in the example given in Listing 10-10. The utility SvcUtil.exe is run passing it the URL of the
service, and this creates a proxy in C# that can be compiled into a .NET assembly and used
from F#. In this case, the proxy is named ImageServiceClient. The definition of the client in
Listing 10-15 might look a little complicated, but a lot of the code just lays out the form’s con-
trols or opens the image files. The really interesting code comes right at the end, where you
add a function to the Send button’s click event. This code reads an image from disk and loads it
into a byte array. This byte array is then passed to the proxy’s ReceiveImage method.

Listing 10-15. A Client That Sends Images to Its Server

#light
open System
open System.IO
open System.Windows.Forms

let form =
let temp = new Form(Width=272, Height=64)

let imagePath = new TextBox(Top=8, Left=8, Width=128)

let browse = new Button(Top=8, Width=32, Left=8+imagePath.Right, Text = "...")
browse.Click.Add(fun _ ->

let dialog = new OpenFileDialog()
if dialog.ShowDialog() = DialogResult.OK then

imagePath.Text <- dialog.FileName)

let send = new Button(Top=8, Left=8+browse.Right, Text = "Send")
send.Click.Add(fun _ ->

let buffer = File.ReadAllBytes(imagePath.Text)
let service = new ImageServiceClient()
service.ReceiveImage(buffer))

temp.Controls.Add(imagePath)
temp.Controls.Add(browse)
temp.Controls.Add(send)
temp

[<STAThread>]
do Application.Run(form)

CHAPTER 10 n DISTRIBUTED APPLICATIONS 269

7575Ch10.qxp  4/27/07  1:06 PM  Page 269



Figure 10-5 shows the example being executed. The user is about to select an image to
send to the client.

Figure 10-5. A WCF service hosted in a Windows form

This is not quite the whole story for a desktop application that listens for updates. The
“client” that sends out updates needs to know the services and desktop applications to which
it should send updates. In the services, you do this very simply—by hard-coding the address of
the service. In the real world, you’d need to implement a service in the other direction as well.
This service would tell the central “client” that a service was listening for updates and alert the
central “client” when a service stops. Then the central “client” would need to loop through all
services that were listening for updates and push the data out to each one of them.

Summary
This chapter covered the main options for creating distributed applications in F#. It showed
that combining F# with .NET libraries allows the programmer to concentrate on the key tech-
nical challenges of creating distributed applications and allows them to use the features of 
F# to help control the complexity of these applications. In the next chapter, you will look at
language-oriented programming, a technique that has been tried and trusted by functional
programmers for years and can really make a programmer’s life simpler.

CHAPTER 10 n DISTRIBUTED APPLICATIONS270

7575Ch10.qxp  4/27/07  1:06 PM  Page 270



Language-Oriented
Programming

In this chapter, you will first take a look at what I mean by language-oriented programming,
a term that has been used by many people to mean different things. I’ll also briefly discuss its
advantages and disadvantages. You’ll then look at several different approaches to language-
oriented programming in F#. These techniques include using F# literals to create “little
languages,” using F# quotations, and creating a parser using fslex.exe and fsyacc.exe,
which are themselves little languages.

What Is Language-Oriented Programming?
Although people use the term language-oriented programming to describe many different
programming techniques, the techniques they refer to generally share a common theme. It’s
quite common for programmers to have to implement a predefined language; often this is
because of a need to extract structured data from information stored or received as string or
XML data that conforms to this predefined language. The techniques introduced in this
chapter will help you do this more reliably. Related to this is the idea of little languages, or
domain-specific languages (DSLs); you can create a DSL when the best way to solve a problem
is to create a specialist language to describe the problem and then use this language to solve
the problem. Functional programming has always had a strong relationship with language-
oriented programming, because functional programming languages generally have features
that are well suited to creating parsers and compilers.

Data Structures As Little Languages
Language-oriented development doesn’t necessarily mean you need to write your own parser
or compiler, although you’ll examine this possibility later in this chapter. You can accomplish
a lot by creating data structures that describe what you want to do and then creating functions
or modules that define how the structure should be interpreted.

You can create data structures that represent a program in just about any language, but F#
lends itself well to this approach. F#’s literal lists and arrays are easy to define and require no
bulky type annotations. Its union types allow the programmer to create structures that express
related concepts yet do not necessarily contain the same types of data, something that is use-
ful when creating languages. Finally, since functions can be treated as values, you can easily

271

C H A P T E R  1 1

n n n

7575Ch11.qxp  4/27/07  1:07 PM  Page 271



embed functions within data structures so F# expressions can become part of your language,
usually as an action in response to some particular condition of the language.

You’ve already seen a great example of this style of programming in Chapter 7. There you
looked at a module that provides a simple way to create a command-line argument processor.
It is simple because it allows the user to specify a data structure, such as the one shown here,
that describes what the arguments should be without really having to think about how they
will be parsed:

let argList =
[ ("-set", Arg.Set myFlag, "Sets the value myFlag");
("-clear", Arg.Clear myFlag, "Clears the value myFlag");
("-str_val", Arg.String(fun x -> myString := x), "Sets the value myString");
("-int_val", Arg.Int(fun x -> myInt := x), "Sets the value myInt");
("-float_val", Arg.Float(fun x -> myFloat := x), "Sets the value myFloat") ]

I am particularly fond of this kind of DSL because I think it makes it really clear what
arguments the program is expecting and what processing should take place if that argument is
received. The fact that the help text is also stored in the structure serves a double purpose; it
allows the function processing command-line arguments to automatically print out a help
message if anything goes wrong, and it also reminds the programmer what the argument is in
case they forget. I also like this method of creating a command-line interpreter because I have
written several command-line interpreters in imperative languages, and it is not a satisfying
experience—you end up having to write lots of code to detail how your command line should
be broken up. If you are writing it in .NET, then you usually spend way too much time calling
the string type’s IndexOf and Substring methods.

A Data Structure–Based Language Implementation
Creating any DSL should start with defining what problem you need to solve; in this case, you
will design a language to describe lines to be drawn on a graph. This is something of an obvi-
ous choice for F#, because its lambda functions lend themselves well to describing equations
to produce lines on graphs. I’ll walk you through the various elements for implementing this
language. (Listing 11-1 later in this chapter lists the full program.)

The first step is to design the types to describe the graph. The first type you need to create
is LineDefinition, which you use to describe the path of a line that will be plotted on the graph.
You want to allow three types of line: one defined by a list of x and y coordinates, one defined 
by a function, and one defined by a combination of functions and a list of points. Languages
are usually described formally by listing the valid constructs of the language, that is, the valid
syntactic ways of constructing phrases in the language. F#-discriminated unions provide a
perfect way to model the list of different possibilities, and thus a direct transcription from the
formal definition of the language into code is often possible. In this case, you define a type
LineDefinition that consists of three possibilities—the three possible phrases in the language.
The first phrase is Points, an array of type Point. The second is Function, which consists of a
function that takes a float and returns a float. The third is Combination, which consists of a list
of tuples made up of float and LineDefinitions; remember, type definitions can be recursive.
float gives a weight to the line, allowing the programmer to specify how much of this section
should appear. LineDefinitions allows the user to specify sections that consist of a list of points
or sections that consist of functions. The definition of the type is as follows:

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING272

7575Ch11.qxp  4/27/07  1:07 PM  Page 272



type LineDefinition =
| Points of Point array
| Function of (float -> float)
| Combination of (float * LineDefinition) list

Simply knowing the path of a line doesn’t give you enough information to be able to draw
it. You also need to know the color, the width, and other attributes. Fortunately, a simple way
to provide this sort of information is the System.Drawing.Pen class, which lets you specify the
color, specify the width, and add effects such as making the line a dashed one.

To group this information, you create the LineDetail record type. This has two fields: one
field of Pen type and one of LineDefinition type.

type LineDetails =
{ pen : Pen
definition : LineDefinition }

Of course, you could add more fields to this record, perhaps for a description to be added
to the graph’s legend, but I’ll leave it at these two fields to keep the example simple. You’ll then
group instances of this LineDetail type together in a list that is used to describe all the lines
that should be drawn on the graph. An example of such a list is as follows:

let wiggle = PointList [ (0.1,0.6); (0.3,-0.3); (0.5,0.8); (0.7,-0.2) ]
let straight = Function (fun x -> x + 0.1)
let square = Function (fun x -> x * x)
let strange = Combination [ (0.2, square); (0.4, wiggle); (0.4, straight) ]

let lines =
[{ pen = new Pen(Color.Blue) ;

definition = wiggle };
{ pen = new Pen(Color.Orange) ;
definition = straight };

{ pen = new Pen(Color.Red) ;
definition = square };

{ pen = new Pen(Color.Green) ;
definition = strange } ]

The last function that is critical to this example is the sample function. This allows you to
specify a range of x values for a line definition and then calculate a list of points consisting of
x, y values. This function actually does the work of turning the definition in your language into
points that you can use to draw a graph. 

The sample function definition is shown next. The first two cases are fairly straightforward. If
you have a list of points for each x value, you use an interpolate function you have defined to
calculate the appropriate y value. The interpolate function uses some straightforward geometry
to calculate the intermediate points between the points that the user of the language has
defined as a line definition and therefore work out the most appropriate y value. The case for a
function is even simpler for each x value: you simply use the function that the user has defined
to calculate the y value. The final case, where you have a combination, is a little more compli-
cated mainly because you have to weigh the value of each section of the combination. You do
this by creating a vector of all the weights and binding this to the identifier weights; then you

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 273

7575Ch11.qxp  4/27/07  1:07 PM  Page 273



create a list of points that lists all the line definitions that have been defined using the language
by recursive function calls to the sample function. The resulting list from the recursive sample
function call is bound to the identifier ptsl. Then you do the work of calculating the real y
values; you extract all the y values from the list of points within the list ptsl and create a vector 
of these lists of y values using the combinel function you have defined and the Vector.of_list
function. Then you use the Vectors module’s dot function to scale each of the resulting vectors
by the vector weights. After this, it is just a matter of combining the resulting y values with the
original x values to create a list of points.

// Sample the line at the given sequence of X values
let rec sample xs line  =

match line with
| Points(pts) ->

{ for x in xs -> interpolate pts x }

| Function(f) ->
{ for x in xs -> {X=x;Y=f x} }

| Combination wlines ->
let weights = wlines |> List.map fst |> Vector.of_list
// Sample each of the lines
let ptsl = wlines |> List.map snd |> List.map (sample xs)
// Extract the vector for each sample and combine by weight
let ys = ptsl |> List.map (Seq.map (fun p -> p.Y))

|> combinel
|> Seq.map Vector.of_list
|> Seq.map (Vector.dot weights)

// Make the results
Seq.map2 (fun x y -> { X=x;Y=y }) xs ys

Listing 11-1 shows the full program.

Listing 11-1. A Graph Control, Based on Language-Oriented Programming Techniques

#light
open System
open System.Drawing
open System.Windows.Forms
open Microsoft.FSharp.Math

type Point = { X : float; Y : float }

type LineDefinition =
| Points of Point array
| Function of (float -> float)
| Combination of (float * LineDefinition) list

// Derived construction function

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING274

7575Ch11.qxp  4/27/07  1:07 PM  Page 274



let PointList pts =
Points(pts |> Array.of_list |> Array.map (fun (x,y) -> {X=x;Y=y}))

module LineFunctions = begin

// Helper function to take a list of sequences and return a sequence of lists
// where the sequences are iterated in lockstep.
let combinel (seqs : list< #seq<'a> >) : seq< list<'a> > =

Seq.generate
(fun () -> seqs |> List.map (fun s -> s.GetEnumerator()) )
(fun ies ->

let more = ies |> List.for_all (fun ie -> ie.MoveNext())
if more then Some(ies |> List.map (fun ie -> ie.Current))
else None)

(fun ies -> ies |> List.iter (fun ie -> ie.Dispose()))

// Interoplate the given points to find a Y value for the given X
let interpolate pts x =

let best p z = Array.fold_right (fun x y -> if p x y then x else y) pts z
let l = best (fun p1 p2 -> p1.X > p2.X && p1.X <= x) pts.[0]
let r = best (fun p1 p2 -> p1.X < p2.X && p1.X >= x) pts.[pts.Length-1]
let y = (if l.X = r.X then (l.Y+r.Y)/2.0

else l.Y + (r.Y-l.Y)*(x-l.X)/(r.X-l.X))
{ X=x; Y=y }

// Sample the line at the given sequence of X values
let rec sample xs line  =

match line with
| Points(pts) ->

{ for x in xs -> interpolate pts x }

| Function(f) ->
{ for x in xs -> {X=x;Y=f x} }

| Combination wlines ->
let weights = wlines |> List.map fst |> Vector.of_list
// Sample each of the lines
let ptsl = wlines |> List.map snd |> List.map (sample xs)
// Extract the vector for each sample and combine by weight
let ys = ptsl |> List.map (Seq.map (fun p -> p.Y))

|> combinel
|> Seq.map Vector.of_list
|> Seq.map (Vector.dot weights)

// Make the results
Seq.map2 (fun x y -> { X=x;Y=y }) xs ys

end

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 275

7575Ch11.qxp  4/27/07  1:07 PM  Page 275



type LineDetails =
{ pen : Pen
definition : LineDefinition }

let f32 x = Float32.of_float x
let f64 x = Float.of_float32 x

type Graph = class
inherit Control
val mutable maxX : float
val mutable maxY : float
val mutable minX : float
val mutable minY : float
val mutable lines : LineDetails list
new () as x =
{ maxX = 1.0;
maxY = 1.0;
minX = -1.0;
minY = -1.0;
lines = [] }

then
x.Paint.Add(fun e -> x.DrawGraph(e.Graphics))
x.Resize.Add(fun _ -> x.Invalidate())

member f.DrawGraph(graphics : Graphics) =
let height = Convert.ToSingle(f.Height)
let width = Convert.ToSingle(f.Width)
let widthF = f32 f.maxY - f32 f.minY
let heightF = f32 f.maxX - f32 f.minX
let stepY = height / heightF
let stepX =  width / widthF
let orginY = (0.0f - f32 f.minY) * stepY
let orginX = (0.0f - f32 f.minX) * stepX
let black = new Pen(Color.Black)
graphics.DrawLine(black, 0.0f, orginY, width, orginY)
graphics.DrawLine(black, orginX, 0.0f, orginX, height)

let mapPoint pt =
new PointF(orginX + (f32 pt.X * stepX),

height - (orginY + (f32 pt.Y * stepY)))

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING276

7575Ch11.qxp  4/27/07  1:07 PM  Page 276



let xs = { f.minX .. (1.0 / f64 stepX) .. f.maxX }
f.lines
|> List.iter

(fun line -> LineFunctions.sample xs line.definition
|> Seq.map mapPoint
|> Seq.to_array
|> (fun pts -> graphics.DrawLines(line.pen, pts)))

end

module GraphTest = begin

let wiggle = PointList [ (0.1,0.6); (0.3,-0.3); (0.5,0.8); (0.7,-0.2) ]
let straight = Function (fun x -> x + 0.1)
let square = Function (fun x -> x * x)
let strange = Combination [ (0.2, square); (0.4, wiggle); (0.4, straight) ]

let lines =
[{ pen = new Pen(Color.Blue) ;

definition = wiggle };
{ pen = new Pen(Color.Orange,

DashStyle = DashStyle.Dot, 
Width = 2.0f) ;

definition = straight };
{ pen = new Pen(Color.Red, 

DashStyle = DashStyle.Dash, 
Width = 2.0f) ;

definition = square };
{ pen = new Pen(Color.Green, Width = 2.0f) ;
definition = strange } ]

let form =
let temp = new Form(Visible=true,TopMost=true)
let g = new Graph(Dock = DockStyle.Fill)
g.lines <- lines
temp.Controls.Add(g)
temp

[<STAThread>]
do Application.Run(form)

end

This example produces the graph in Figure 11-1.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 277

7575Ch11.qxp  4/27/07  1:07 PM  Page 277



Figure 11-1. Drawing lines with a DSL

Metaprogramming with Quotations
In Chapter 6 you used quotations; these are quoted sections of F# code where the quote oper-
ator instructs the compiler to generate data structures representing the code rather than IL
representing the code. This means instead of code that can be executed, you have a data
structure that represents the code that was coded, and you’re free to do what you want with it.
You can either interpret it, performing the actions you require as you go along, or compile it
into another language. Or you can simply ignore it if you want. You could, for example, take a
section of quoted code and compile it for another runtime, such as the Java virtual machine
(JVM). Or, like the LINQ example in Chapter 9, you could turn it into SQL and execute it
against a database.

In the next example, you’ll write an interpreter for integer-based arithmetic expressions in
F#. This might be useful for learning how stack-based calculations work. Here, your language
is already designed for you; it is the syntax available in F#. You’ll work exclusively with arith-
metic expressions of the form « (2 * (2 - 1)) / 2 ». This means you need to generate an
error whenever you come across syntax that is neither an integer nor an operation. When
working with quotations, you have to query the expression that you receive to see whether it is
a specific type of expression. For example, here you query an expression to see whether it is an
integer, and if it is, you push it onto the stack:

match uexp with
| Raw.Int32(x) -> 

printf "Push: %i\r\n" x
operandsStack.Push(x)

| _ ->

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING278

7575Ch11.qxp  4/27/07  1:07 PM  Page 278



If it isn’t an integer, you check whether it is of several other types. Listing 11-2 shows the
full example.

Listing 11-2. Stack-Based Evaluation of F# Quoted Arithmetic Expressions

#light
open System.Collections.Generic
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Typed

let interpret exp = 
let uexp = to_raw exp 
let operandsStack = new Stack<int>()
let rec interpretInner uexp =

match uexp with
| Raw.Apps(op, args) when args.Length > 0 -> 

args |> List.iter (fun x -> interpretInner x)
interpretInner op

| _ ->
match uexp with
| Raw.Int32 x ->

printf "Push: %i\r\n" x
operandsStack.Push(x)

| Raw.AnyTopDefnUse(def, types) ->
let preformOp f name =

let x, y = operandsStack.Pop(), operandsStack.Pop()
printf "%s %i, %i\r\n" name x y
let result = f x y
operandsStack.Push(result)

let _,name = def.Path
match name with
| "op_Addition" ->

let f x y = x + y
preformOp f "Add"

| "op_Subtraction" ->
let f x y = y - x
preformOp f "Sub"

| "op_Multiply" ->
let f x y = y * x
preformOp f "Multi"

| "op_Division" ->
let f x y = y / x
preformOp f "Div"

| _ -> failwith "not a valid op"
| _ -> failwith "not a valid op"

interpretInner uexp
printfn "Result: %i" (operandsStack.Pop())

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 279

7575Ch11.qxp  4/27/07  1:07 PM  Page 279



interpret « (2 * (2 - 1)) / 2 »
read_line()

The results of this example are as follows:

Push: 2
Push: 2
Push: 1
Sub 1, 2
Multi 1, 2
Push: 2
Div 2, 2
Result: 1

When you use quotations, you are always working with F# syntax, which is both an
advantage and a disadvantage. The advantage is that you can produce powerful libraries
based on this technique that integrate very well with F# code, without having to create a
parser. The disadvantage is that it is difficult to produce tools suitable for end users based 
on this technique; however, libraries that consume or transform F# quotations can still be
used from other .NET languages because the F# libraries include functions and samples to
convert between F# quotations and other common metaprogramming formats such as 
LINQ quotations.

You’ll code a parser for a small arithmetic language in the next section. Although the
results are much more flexible, more design work is potentially involved if you are creating a
new language rather than implementing an existing one; in addition, there is always more
programming work because you need to create a parser—although the tools F# provides help
simplify the creation of a parser.

An Arithmetic-Language Implementation
Another approach to language-oriented programming is to create your own language repre-
sented in a textual format. This doesn’t necessarily have to be a complicated process—if your
language is quite simple, then you will find it straightforward to implement. Whether creating
a simple language to be embedded into an application or full-fledged DSLs, the approach is
similar. It’s just that the more constructs you add to your language, the more work it will be to
implement it.

You’ll spend the remainder of this chapter looking at how to implement a really simple
arithmetic language consisting of floating-point literals; floating-point identifiers; the operators
+, -, *, and /; and parentheses for the disambiguation of expressions. Although this language is
probably too simple to be of much benefit, it’s easy to see how with a few simple extensions it
could be a useful tool to embed into many financial or mathematical applications.

Creating the language can be broken down into two steps: parsing the user input and then
acting on the input.

Parsing the language can itself be broken down into three steps: defining the abstract 
syntax tree (AST), creating the grammar, and tokenizing the text. When creating the parser, 
you can implement these steps in any order, and in fact you would probably design your
grammar in small, repeated iterations of all three steps. You will look at the steps separately,

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING280

7575Ch11.qxp  4/27/07  1:07 PM  Page 280



in the sections “The Abstract Syntax Tree,” “Tokenizing the Text: Fslex,” and “Generating a
Parser: Fsyacc.”

There are two distinct modes of acting on the results of the parser: compiling the results
and interpreting them. Compiling simply means changing the AST into some other format
that is faster or easier for a machine to execute. Originally this nearly always meant native
code, but these days it’s more likely to be something a little more abstract, such as IL, F#, or
even C#. Interpreting the results means acting on the results straightaway without any trans-
formation of the AST. You’ll look briefly at both topics in the sections “Interpreting the AST”
and “Compiling the AST”; then you’ll compare the two approaches to get some idea of when
to use each one in the section “Compilation vs. Interpretation.”

The Abstract Syntax Tree
An AST is a representation of the construct that makes up the program that is meant to be
easy for the programmer to use. One reason F# is good for this kind of development is its
union type. Because you can use this type to represent items that are related yet do not share
the same structure, it is great for representing languages. The following example shows the
abstract syntax tree:

type Expr =
| Ident of string
| Val of System.Double
| Multi of Expr * Expr
| Div of Expr * Expr
| Plus of Expr * Expr
| Minus of Expr * Expr

The tree consists of just one type because it is quite simple. A complicated tree would
contain many more types, but all will be generally based around this pattern. Here you can see
that the tree, the type Expr, will consist of either identifiers (the Ident type), the names of the
identifiers represented by a string, or values (the Val type), with their values represented by a
System.Double. The type Expr consists of four more types (Multi, Div, Plus, and Minus), which
represent the arithmetic operations and use recursion so are composed of other expressions.

Tokenizing the Text: Fslex
Tokenizing the text (sometimes called lexical analysis or lexing) basically means breaking up
the text into manageable lumps, or tokens. To do this, you use the tool fslex.exe, which is
itself a DSL for creating lexers (sometimes called scanners), programs, or modules for tokeniz-
ing text. The program fslex.exe is a command-line application that takes a text file
representing the lexer and turns into an F# file that implements the lexer.

An fslex.exe file has the extension .fsl. The file can have an optional header, which is
placed between braces ({}) and is pure F# code, generally used to open modules or possibly to
define helper functions. The rest is used to define the regular expressions that make up the
lexer. You can bind a regular expression to an identifier using the let keyword, like this:

let digit = ['0'-'9']

or you can define a regular expression as part of a rule. A rule is a collection of regular expres-
sions that are in competition to match sections of the text. A rule is defined with the keyword

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 281

7575Ch11.qxp  4/27/07  1:07 PM  Page 281



rule and followed by a name for the rule and then an equals sign and the keyword parse. Next
come the definitions of the regular expressions, which should be followed by an action, which
is an F# expression surrounded by braces. Each rule is separated by a vertical bar (|). Each rule
will become a function that is capable of matching against a stream of text. If a match is
found, then the rule fires, and the F# expression is executed. If several regular expressions
match the rule, then the longest match is used. The value returned by the function is the value
returned by the action. This means that each action must be of the same type. If no match is
found, then an exception is raised.

nNote The regular expressions used in the lexer are not the same as the ones used with the .NET BCL
Regex class. You can find more details about the syntax at http://strangelights.com/FSharp/
Foundations/default.aspx/FSharpFoundations.FSLexRegEx.

Although the actions can be any valid F# expressions, it’s normal to return the token decla-
rations that you will make in the fsyacc file. See the next section, “Generating a Parser: Fsyacc,”
for more information about this. If you want to use the lexer on its own, you will place whatever
logic you want to happen here, such as writing the token to the console or storing the token
found in a list.

The following example shows a file that is capable of tokenizing your little language. You
usually do one of two things in the actions. If you’re interested in the match, you return a
token that has been defined in the parser file. These are the identifiers in block capitals like
RPAREN or MULTI. If you’re not interested, you call token with the special lexbuf value function
to start the parsing again. The lexbuf value is automatically placed in your parser definition
and represents the text stream being processed. It is of type
Microsoft.FSharp.Tools.FsLex.LexBuffer. Also notice how, in places where you’re actually
interested in the value found rather than just the fact a value was found, you use a function
lexeme from the module Microsoft.FSharp.Compatibility.OCaml.Lexing to get the string rep-
resenting the match from the lexbuf. Table 11-1 summarizes other useful functions from this
module.

{
open System
open Pars
open Lexing
}

let digit = ['0'-'9']
let whitespace = [' ' '\t' ]
let newline = ('\n' | '\r' '\n')

rule token = parse
| whitespace        { token lexbuf }
| newline           { token lexbuf }
| "(" { LPAREN }
| ")" { RPAREN }

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING282

7575Ch11.qxp  4/27/07  1:07 PM  Page 282



| "*" { MULTI }
| "/"               { DIV }
| "+"               { PLUS }
| "-" { MINUS }
| '['[^']']+']'     { ID(lexeme lexbuf) }
| ['-']?digit+('.'digit+)?(['e''E']digit+)?

{ FLOAT (Double.Parse(lexeme lexbuf)) }
| eof               { EOF }

Table 11-1. Useful Functions from the Lexing Module

Function Description

lexeme Gets the current lexeme from the lexbuf as a string

lexeme_bytes Gets the current lexeme from the lexbuf as a byte array

lexeme_char Takes an integer and returns the character at this index from the current
lexeme in the lexbuf as a char from the lexbuf as a string

lexeme_end Gets the absolute position of the lexeme, which is useful when trying to
provide error information to the user

from_text_reader Creates a lexbuf from a text reader, which is useful when using the lexer
from F# code

from_string Creates a lexbuf from a string, which is useful when using the lexer from
F# code

A lexer can contain several rules; any further rules are separated from each other by the
keyword and, then a name for the rule, then an equals sign, and then the keyword parse. After
this come the definitions of the regular expressions that make up this rule. This is often useful
if you want to implement comments in your language. Comments often produce false posi-
tives in lexers, since they can contain any text. To deal with this, when a start-comment token
is detected, it is customary to switch to another rule that looks only for an end-comment
token and ignores all other input.

The following example shows a simple parser that either finds strings that are like F#
identifiers or discards C#-style multiline comments. Notice how when you find the start of a
comment, you call the comment function to hop into the comment rule, and to find the end of it,
you return unit to hop out of it.

{
open Lexing
}

rule token = parse
| "/*" { comment lexbuf; token lexbuf }
| ['_''a'-'z''A'-'Z']['_''a'-'z''A'-'Z''0'-'9']*

{ lexeme lexbuf }
and comment = parse
| "*/" | eof { () }
| _ { comment lexbuf }

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 283

7575Ch11.qxp  4/27/07  1:07 PM  Page 283



This has been quite a rapid overview of fslex.exe; you can find more information about it
at http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.FSLex.

Generating a Parser: Fsyacc
A scanner is a program or module that breaks a text stream into pieces. You can think of a
parser as the thing that reorganizes the text into something more meaningful. The aim of the
parser is usually to produce an AST, and this is done by defining rules that determine the order
in which the tokens should appear. The tool fsyacc.exe can generate parsers that are look-
ahead left-to-right parsers, more commonly called LALR(1). This is an algorithm for parsing
grammars. Not all grammars can be parsed by this algorithm, but grammars that can’t are
quite rare. For more information about how the LALR(1) algorithm works, please see
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.LALR.

nNote The YACC part of the name fsyacc.exe is an acronym for Yet Another Compiler Compiler.

The tool fsyacc.exe works with text files with the extension .fsy. These files have three dis-
tinct parts. First is the header, which is a section of pure F# code surrounded by percentage signs
and braces (%{ for opening and %} for closing). This section is typically used to open your AST
module and to define short helper functions for creating the AST. Next comes the declarations,
defining the terminals of your language. A terminal is something concrete in your grammar such
as an identifier name or a symbol. Typically these are found by the lexer. Declarations have sev-
eral different forms that are summarized in Table 11-2. The third section contains the rules that
make up the grammar; these are described in the next paragraph.

Table 11-2. Declarations of Terminals in an fsyacc.exe File

Declaration Description

%token This declares the given symbol as the token in the language.

%token<type> This declares the given symbol as a token, like %token, but with arguments of the
given type; this is useful for things such as identifiers and literals when you need
to store information about them.

%start This declares the rule at which the parser should start parsing.

%type<type> This declares the type of a particular rule; it is mandatory for the start rule but
optional for all other rules.

%left This declares a token as left-associative, which can help resolve ambiguity in the
grammar.

%right This declares a token as right-associative, which can help resolve ambiguity in
the grammar.

%nonassoc This declares a token as nonassociative, which can help resolve ambiguity in the
grammar.

The declarations are separated from the rules by two percentage signs, which make up
the last section of the file. Rules are the nonterminals of the grammar. A nonterminal defines

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING284

7575Ch11.qxp  4/27/07  1:07 PM  Page 284



something that can be made up of several terminals. So, each rule must have a name, which is
followed by a colon and then the definition of all the items that make up the rule, which are
separated by vertical bar. The items that make up rule are either the names of tokens you have
defined or the names of rules; this must always be followed by an action that is F# code sur-
rounded by braces. Here is a snippet of a rule:

Expression: ID { Ident($1) }
| FLOAT { Val($1) }

Expession is the rule name, and ID and FLOAT are two rules made up of just terminals. The
sections { Ident($1) } and { Ident($1) } are the rule actions. Within these actions, you can
grab the data associated with the terminal or nonterminal using a dollar sign and then the
number representing the position of the item in which you are interested. The result of the
action will itself become associated with the rule. All the actions of a rule must be of the same
type, since a rule will be implemented as an F# function with the actions making up the items
that it returns. Any comments within the rules should use the C-style comment markers, /* */.

The following example shows a simple parser definition for your language. Note how all
the actions associated with rules are simple, just creating instances of types from the AST, and
that all the languages terminals are in block capitals.

%{

open Strangelights.ExpressionParser.Ast

%}

%start Expression
%token <string> ID
%token <System.Double> FLOAT
%token LPAREN RPAREN EOF MULTI DIV PLUS MINUS
%type < Strangelights.ExpressionParser.Ast.Expr > Expression

%left MULTI
%left DIV
%left PLUS
%left MINUS

%%

Expression: ID { Ident($1) }
| FLOAT { Val($1) }
| LPAREN Expression RPAREN { $2 }
| Expression MULTI Expression { Multi($1, $3) }
| Expression DIV Expression { Div($1, $3) }
| Expression PLUS Expression { Plus($1, $3) }
| Expression MINUS Expression { Minus($1, $3) }

Let’s take a closer look at the items that make up your rule. The simplest rule item you
have consists of one terminal, ID, in this case an identifier:

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 285

7575Ch11.qxp  4/27/07  1:07 PM  Page 285



ID { Ident($1) }

In the rule item’s action, the string that represents the identifier is used to create an instance
of the Ident constructor from the AST. A slightly more complex rule is one that involves both ter-
minals and nonterminals:

| Expression MULTI Expression {  Multi($1, $3)  }

This rule item recognizes the case where you have a valid expression followed by a
multiplication sign and then a valid expression. These expressions are then loaded into the
constructor Multi from your AST. These expressions could be terminals in your language, 
such as an identifier or a literal, or they might be an expression composed of several 
terminals, such as a multiplication operation.

The hardest thing about creating a grammar is making sure it is not ambiguous. A gram-
mar is ambiguous when two or more rules could be matched by the same input. Fortunately,
fsyacc.exe can spot this automatically and warns you when this has occurred. It is only a
warning, because the parser can still function; it just has some rules that will not be matched
so is probably incorrect in some way.

nNote For more information about debugging grammars, see http://strangelights.com/FSharp/
Foundations/default.aspx/FSharpFoundations.FsYaccAmbigous. This has been quite a rapid
overview of fsyacc.exe. You can find more information about it at http://strangelights.com/
FSharp/Foundations/default.aspx/FSharpFoundations.FsYacc.

Using the Parser
Using the parser is very straightforward. You can use a lexer on its own, but a parser generated
with fsyacc.exe always requires a lexer to work. You’ll look at how to use your lexer on its own
and combined with a parser in this section.

nCaution Remember, .fsl and .fsy files cannot be used directly by the F# compiler. You need to
compile them using fslex.exe and fsyacc.exe and then use the generated .fs files.

To use your lexer, you first need to create a LexBuffer that represents the text to be
processed. The easiest way to do this is to create the LexBuffer from a string using the
function Lexing.from_string, although it is not difficult to create one from a file using the
Lexing.from_text_reader function. You can then pass this buffer to a function created by a
rule in your lexer, and it will pull off the first token.

The following example shows your lexer in action. You’ve compiled the lexer into a module,
Lex, and you use the token function to find the first, and in this case the only, token in the string.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING286

7575Ch11.qxp  4/27/07  1:07 PM  Page 286



#light
let lexbuf = Lexing.from_string "1"
let token = Lex.token lexbuf
print_any token

The result of this example is as follows:

FLOAT 1.0

Just grabbing the first token from the buffer is rarely of much value, so if you use the lexer
in stand-alone mode, it is much more common to create a loop that repeatedly grabs all tokens
from the buffer. The next example demonstrates how to do this, printing the tokens found as
you go:

#light
let lexbuf2 = Lexing.from_string "(1 * 1) + 2"
while not lexbuf2.IsPastEndOfStream do

let token = Lex.token lexbuf2
printf "%s\r\n" (any_to_string token)

The results of this example are as follows:

LPAREN
FLOAT 1.0
MULTI
FLOAT 1.0
RPAREN
PLUS
FLOAT 2.0
EOF

It is much more common for a lexer to be used in conjunction with a parser module. The
functions generated by the parser expect their first parameter to be a function that takes a
LexBuffer and transforms it into a token (LexBuffer<'a,'cty> -> Pars.token in this case).
Fortunately, this is the signature that your lexer’s token function has. The next example shows
how you would implement this:

#light
let lexbuf3 = Lexing.from_string "(1 * 1) + 2"
let e = Pars.Expression Lex.token lexbuf3
print_any e

The result of this example is as follows:

Plus (Multi (Val 1.0,Val 1.0),Val 2.0)

And that’s it! Once you have your AST, you have a nice abstract form of your grammar, so
now it is up to you to create a program that acts on this tree.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 287

7575Ch11.qxp  4/27/07  1:07 PM  Page 287



Interpreting the AST
When you have created your AST, you have two choices; you can either interpret it or compile
it. Interpreting it simply means walking the tree and performing actions as you go. Compiling
it means changing it into some other form that is easier, or more typically faster, for the
machine to execute. This section will examine interpreting the results, and the next will look at
the options for compiling them; finally, you will look at when you should use interpretation
and when you should use compilation.

The following example shows a short interpreter for your program. The main work of
interpreting the AST is done by the function interpret, which walks the tree performing the
necessary action as it goes. The logic is quite simple. If you find a literal value or an identifier,
you simply return the appropriate value.

| Ident (s) -> variableDict.[s]
| Val (v) -> v

If you find an operand, you recursively evaluate the expressions it contains to obtain their
values and then perform the operation:

| Multi (e1, e2) -> (interpretInner e1) * (interpretInner e2)

Listing 11-3 gives the full interpreter.

Listing 11-3. Interpreting an AST Generated from Command-Line Input

#light
open System.Collections.Generic
open Strangelights.ExpressionParser.Ast

// requesting a value for variable from the user
let getVariableValues e =

let rec getVariableValuesInner input (variables : Map<string, float>) =
match input with
| Ident (s) ->

match variables.TryFind(s) with
| Some _ -> variables
| None ->

printf "%s: " s
let v = read_float()
variables.Add(s,v)

| Multi (e1, e2) ->
variables
|> getVariableValuesInner e1
|> getVariableValuesInner e2

| Div (e1, e2) ->
variables
|> getVariableValuesInner e1
|> getVariableValuesInner e2

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING288

7575Ch11.qxp  4/27/07  1:07 PM  Page 288



| Plus (e1, e2) ->
variables
|> getVariableValuesInner e1
|> getVariableValuesInner e2

| Minus (e1, e2) ->
variables
|> getVariableValuesInner e1
|> getVariableValuesInner e2

| _ -> variables
getVariableValuesInner e (Map.Empty())

// function to handle the interpretation
let interpret input (variableDict : Map<string,float>) =

let rec interpretInner input =
match input with
| Ident (s) -> variableDict.[s]
| Val (v) -> v
| Multi (e1, e2) -> (interpretInner e1) * (interpretInner e2)
| Div (e1, e2) -> (interpretInner e1) / (interpretInner e2)
| Plus (e1, e2) -> (interpretInner e1) + (interpretInner e2)
| Minus (e1, e2) -> (interpretInner e1) - (interpretInner e2)

interpretInner input

// request input from user and interpret it
printf "input expression: "
let lexbuf = Lexing.from_string (read_line())
let e = Pars.Expression Lex.token lexbuf
let args = getVariableValues e
let v = interpret e args
printf "result: %f" v
read_line()

The results of this example, when compiled and executed, are as follows:

input expression: (1 + 3) * [my var]
[my var]: 12
result: 48.000000

Compiling the AST
To many, compilation means generating native code, so it has a reputation for being difficult.
But it doesn’t have to mean generating native code, and for a DSL you typically generate some
other more general-purpose programming language. The .NET Framework provides several
features for compiling an AST into a program.

Your choice of technology depends on several factors. For example, if you’re targeting
your language at developers, it might be enough to generate a text file containing F#, some

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 289

7575Ch11.qxp  4/27/07  1:07 PM  Page 289



other language, or a compiled assembly that can then used within an application. However, if
you’re targeting end users, you will almost certainly have to compile and then execute it on
the fly. Table 11-3 summarizes the various options available.

Table 11-3. .NET Code-Generation Technologies

Technology Description

Microsoft.CSharp. This class supports compilation of a C# file that has been created on
CSharpCodeProvider the fly, either by using simple string concatenation or by using the

System.CodeDom namespace. Once the code has been compiled into
an assembly, it can be loaded dynamically into memory and
executed via reflection. This operation is relatively expensive,
because it requires writing to the disk and using reflection to
execute methods.

System.CodeDom This is a set of classes aimed at abstracting between operations
available in different languages. The idea is that you describe your
operations using the classes available in this namespace and then
use a provider to compile them into the language of your choice.
.NET ships with a provider for both C# and Visual Basic. Providers
for other languages are available for download. They are often the
results of community projects.

System.Reflection.Emit This namespace allows you to build up assemblies using IL. Since IL
offers more features than either F#, C#, or System.CodeDom, it
provides more flexibility; however, it is lower level so requires more
patience and will probably take more time to get right.

AbstractIL This is a library written in F# for manipulating IL. It provides roughly
the same functionality as System.Reflection.Emit, but F# program-
mers might find it is more suited to their style of programming than
the options available in System.Reflection.Emit.

nNote If you want to use System.CodeDom, you could consider compiling these into F# code rather than
C# code using the code DOM provider written by Tomas Petricek, which is available from http://www.
codeplex.com/fscodedom.

You’ll use the System.Reflection.Emit.DynamicMethod class, not particularly because you
need the flexibility of IL, but since IL has built-in instructions for floating-point arithmetic, it’s
well suited to implement the little language. The DynamicMethod also provides a fast and easy
way to let you call into the resulting program.

The method createDynamicMethod actually compiles the AST by walking the AST and gen-
erating code. First, it creates an instance of the DynamicMethod class to hold the IL you define to
represent the method:

let temp = new DynamicMethod("", (type float), paramsTypes, meth.Module)

Then createDynamicMethod starts walking the tree. When you encounter an identifier, you
emit some code to load an argument of your dynamic method:

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING290

7575Ch11.qxp  4/27/07  1:07 PM  Page 290



| Ident name ->
il.Emit(OpCodes.Ldarg, paramNames.IndexOf(name))

When you encounter a literal, you emit the IL code to load the literal value:

| Val x -> il.Emit(OpCodes.Ldc_R8, x)

When you encounter an operation, you must recursively evaluate both expressions and
then emit the instruction that represents the required operation:

| Multi (e1 , e2) ->
generateIlInner e1
generateIlInner e2
il.Emit(OpCodes.Mul)

Note how the operation is emitted last, after both expressions have been recursively
evaluated. This is because IL is stack based, so data from the other operations must have
been pushed onto the stack before the operator is evaluated.

nNote It is beyond the scope of this book to give you a full overview of IL; however, you can find more
details at http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.IL.

Listing 11-4 gives the full compiler.

Listing 11-4. Compiling an AST Generated from Command-Line Input

#light
open System.Collections.Generic
open System.Reflection
open System.Reflection.Emit
open Strangelights.ExpressionParser.Ast

// get a list of all the parameter names
let rec getParamList e =

let rec getParamListInner e names =
match e with
| Ident name ->

if not (List.exists (fun s -> s = name) names) then
name :: names

else
names

| Multi (e1 , e2) ->
names
|> getParamListInner e1
|> getParamListInner e2

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 291

7575Ch11.qxp  4/27/07  1:07 PM  Page 291



| Div (e1 , e2) ->
names
|> getParamListInner e1
|> getParamListInner e2

| Plus (e1 , e2) ->
names
|> getParamListInner e1
|> getParamListInner e2

| Minus (e1 , e2) ->
names
|> getParamListInner e1
|> getParamListInner e2

| _ -> names
getParamListInner e []

// create the dynamic method
let createDynamicMethod e (paramNames: string list) =

let generateIl e (il : ILGenerator) =
let rec generateIlInner e  =

match e with
| Ident name ->

let index = List.find_index (fun s -> s = name) paramNames
il.Emit(OpCodes.Ldarg, index)

| Val x -> il.Emit(OpCodes.Ldc_R8, x)
| Multi (e1 , e2) ->

generateIlInner e1
generateIlInner e2
il.Emit(OpCodes.Mul)

| Div (e1 , e2) ->
generateIlInner e1
generateIlInner e2
il.Emit(OpCodes.Div)

| Plus (e1 , e2) ->
generateIlInner e1
generateIlInner e2
il.Emit(OpCodes.Add)

| Minus (e1 , e2) ->
generateIlInner e1
generateIlInner e2
il.Emit(OpCodes.Sub)

generateIlInner e
il.Emit(OpCodes.Ret)

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING292

7575Ch11.qxp  4/27/07  1:07 PM  Page 292



let paramsTypes = Array.create paramNames.Length (type float)
let meth = MethodInfo.GetCurrentMethod()
let temp = new DynamicMethod("", (type float), paramsTypes, meth.Module)
let il = temp.GetILGenerator()
generateIl e il
temp

let collectArgs (paramNames : string list) =
paramNames
|> IEnumerable.map

(fun n ->
printf "%s: " n
box (read_float()))

|> Array.of_seq

printf "input expression: "
let lexbuf = Lexing.from_string (read_line())
let e = Pars.Expression Lex.token lexbuf
let paramNames = getParamList e
let dm = createDynamicMethod e paramNames
let args = collectArgs paramNames
printf "result: %O" (dm.Invoke(null, args))
read_line()

The results of this example are as follows:

input expression: 5 * ([my var] + 2)
[my var]: 4
result: 30

This has been a brief overview of code generation and compilation. You can find more
information at http://strangelights.com/FSharp/Foundations/default.aspx/
FSharpFoundations.Compilation.

Compilation vs. Interpretation
So, when should you use compilation, and when should you use interpretation? Because the
final result is pretty much the same, the answer generally comes down to the raw speed of the
final generated code, though memory usage and start-up times are also key concerns. If you
need your code to execute more quickly, then compilation will generally give you better
results, with some activities.

The test harness in Listing 11-5 enables you to execute the interpret function results of
createDynamicMethod repeatedly and time how long this takes. It also tests an important varia-
tion on dynamic methods; that is where you also generate a new .NET delegate value to act as
the handle by which you invoke the generated code. As you will see, it turns out that this is by
far the fastest technique. Remember, you’re timing how long it takes to evaluate the AST either
directly or in a compiled form; you’re not measuring the parse time or compilation time.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 293

7575Ch11.qxp  4/27/07  1:07 PM  Page 293



Listing 11-5. A Test Harness for Comparing

#light
open System.Diagnostics

printf "input expression: "
let input = read_line()
printf "Interpret/Compile/Compile Through Delegate [i/c/cd]: "
let interpertFlag = read_line()
printf "reps: "
let reps = read_int()

type Df0 = delegate of unit -> float
type Df1 = delegate of float -> float
type Df2 = delegate of float * float -> float
type Df3 = delegate of float * float * float -> float
type Df4 = delegate of float * float * float * float -> float

match interpertFlag with
| "i" ->

let lexbuf = Lexing.from_string input
let e = Pars.Expression Lex.token lexbuf
let args = Interpret.getVariableValues e
let clock = new Stopwatch()
clock.Start()
for i = 1 to reps do

Interpret.interpret e args |> ignore
clock.Stop()
printf "%Li" clock.ElapsedTicks

| "c" ->
let lexbuf = Lexing.from_string input
let e = Pars.Expression Lex.token lexbuf
let paramNames = Compile.getParamList e
let dm = Compile.createDynamicMethod e paramNames
let args = Compile.collectArgs paramNames
let clock = new Stopwatch()
clock.Start()
for i = 1 to reps do

dm.Invoke(null, args) |> ignore
clock.Stop()
printf "%Li" clock.ElapsedTicks

| "cd" ->
let lexbuf = Lexing.from_string input
let e = Pars.Expression Lex.token lexbuf
let paramNames = Compile.getParamList e

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING294

7575Ch11.qxp  4/27/07  1:07 PM  Page 294



let dm = Compile.createDynamicMethod e paramNames
let args = Compile.collectArgs paramNames
let args = args |> Array.map (fun f -> f :?> float)
let d =

match args.Length with
| 0 -> dm.CreateDelegate(type Df0)
| 1 -> dm.CreateDelegate(type Df1)
| 2 -> dm.CreateDelegate(type Df2)
| 3 -> dm.CreateDelegate(type Df3)
| 4 -> dm.CreateDelegate(type Df4)
| _ -> failwith "too many parameters"

let clock = new Stopwatch()
clock.Start()
for i = 1 to reps do

match d with
| :? Df0 as d -> d.Invoke() |> ignore
| :? Df1 as d -> d.Invoke(args.(0)) |> ignore
| :? Df2 as d -> d.Invoke(args.(0), args.(1)) |> ignore
| :? Df3 as d -> d.Invoke(args.(0), args.(1), args.(2)) |> ignore
| :? Df4 as d -> d.Invoke(args.(0), args.(1), args.(2), args.(4)) |> ignore
| _ -> failwith "too many parameters"

clock.Stop()
printf "%Li" clock.ElapsedTicks

| _ -> failwith "not an option"

Table 11-4 summarizes the results of this program, when executed on the expression 1 + 1.

Table 11-4. Summary of Processing the Expression 1 + 1 for Various Numbers of Repetitions

Repetitions 1 10 100 1,000 10,000 100,000 1,000,000

Interpreted 6,890 6,979 6,932 7,608 14,835 84,823 799,788

Compiled via 8,65 856 854 1,007 2,369 15,871 151,602
delegate

Compiled 1,112 1,409 2,463 16,895 151,135 1,500,437 14,869,692

From Table 11-4 and Figure 11-2, you can see that “Compiled” and “Compiled via dele-
gate” are much faster over a small number of repetitions. But notice that over 1, 10, and 100
repetitions, the amount of time required grows negligibly. This is because over these small
numbers of repetitions, the time taken for each repetition is insignificant. It is the time that
the JIT compiler takes to compile the IL code into native code that is significant. This is why
the “Compiled” and “Compiled via delegate” times are so close. They both have a similar
amount of code to JIT compile. The “Interpreted” time takes longer because you must JIT
compile more code, specifically the interpreter. But JIT is a one-off cost because you need to
JIT each method only once; therefore, as the number of repetitions go up, this one-off cost is
paid for, and you begin to see a truer picture of the relative performance cost.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 295

7575Ch11.qxp  4/27/07  1:07 PM  Page 295



Figure 11-2. The evaluation time in machine ticks of the expression 1 + 1 against the number of
evaluations of the express

You can see clearly from Figure 11-2 that as the number of repetitions goes up, the cost 
of “Compiled” goes up steeply. This is because accessing the compiled DynamicMethod through
its Invoke method is expensive, and you incur this cost on every repetition, so the time taken
for a “Compiled” method increases at the same rate as the number of repetitions. However,
the problem lies not with compilation but with how you are invoking the compiled code. It
turns out that calling a DynamicMethod through a delegate rather than the Invoke member on
the dynamic delegate allows you to pay only once for the cost of binding to the method, so
executing a DynamicMethod this way is much more efficient if you intend to evaluate the
expression multiple times. So from the results, compilation with invocation via a delegate is
the best option in terms of speed.

This analysis shows the importance of measurement: don’t assume that compilation has
given you the expected performance gains until you actually see the benefits on realistic data
sets and have used all the available techniques to ensure no unnecessary overhead is lurking.
However, in reality, many other factors can affect this. For example, if your expressions change
often, your interpreter will need to be JIT compiled only once, but each compiled expression

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING296

7575Ch11.qxp  4/27/07  1:07 PM  Page 296



will need to be to JIT compiled, so you’ll need to run your compiled code many times if you
want to see any performance gains. Given that interpretation is usually easier to implement
and that compiled code provides only significant performance gains in certain situations,
interpretation is often a better choice.

When dealing with situations that require code to perform as quickly as possible, it’s gen-
erally best to try a few different approaches and then profile your application to see which one
gives better results. You can find more information about performance profiling in Chapter 12.

Summary
In this chapter, you looked at the main features and techniques for language-oriented 
programming in F#. You have seen various techniques; some use data structures as little
languages or work with quotations, which involve working with the existing F# syntax to
change or extend it. Others, such as implementing a parser, enable you to work with just
about any language that is text based, whether this language is of your own design or 
perhaps more commonly a preexisting language. All these techniques when used correctly 
can lead to big productivity gains.

The next chapter will look at the tools available to help you to program in F#, not only the
tools that are distributed with F# but also the various tools available for .NET that are useful
for F# programming.

CHAPTER 11 n LANGUAGE-ORIENTED PROGRAMMING 297

7575Ch11.qxp  4/27/07  1:07 PM  Page 297



7575Ch11.qxp  4/27/07  1:07 PM  Page 298



The F# Tool Suite and .NET
Programming Tools

This chapter will be a little different from most of the chapters in this book; instead of focus-
ing on examples of F# programs, it’ll focus on how to use various programming tools, both
those that are distributed with F# and those that target .NET in general.

The F# distribution includes two versions of the compiler and a number of other tools.
These are all available in the distribution’s \bin directory. You can find the F# compiler, at the
time of writing, in c:\Program Files\FSharp<version>\bin where <version> is the version
number of F# that you have installed. This chapter will give a quick tour of the useful tools in
this directory.

Specifically, I’ll cover the following:

fsc.exe: The F# compiler

fsi.exe: F# interactive, which is an interactive version of the compiler

fslex.exe: A tool for creating lexical analyzers

fsyacc.exe: A tool for creating parsers

resxc.exe: A resource file compiler

First, you’ll take a closer look at the various command-line switches for fsc.exe. Next,
you’ll examine various ways you can use fsi.exe more effectively.

Using Useful fsc.exe Command-Line Switches
You can view the basic F# command-line options using the -help switch; I describe them in
the section “Basic Compiler Switches.” F# also has a large number of advanced command-line
switches; you can view them using the --full-help command-line flag. You don’t need to
know all of them for your everyday F# programming. A lot of them are just for using the com-
piler in experimental ways, so I won’t document them here. Don’t think this means you
shouldn’t use the switches that aren’t documented, but if you do use them, then carefully test
any resulting assembly before it is released. I’ve grouped the nonexperimental switches by
functional area, and I’ll describe them in the rest of this chapter.

299

C H A P T E R  1 2

n n n

7575Ch12.qxp  4/27/07  1:07 PM  Page 299



Basic Compiler Switches
F# offers a number of basic command-line switches that do everything you’d expected a com-
piler to be able to do. I summarize them in Table 12-1.

Table 12-1. Basic F# Compiler Switches

Switch Description

-o <string> This controls the name of the assembly that will be produced.

-a This produces an archive, a .dll, rather than an executable. You can
use the advanced command-line options that start with --target to get
more fined-grained control over this.

-r <string> This is the filename of a .NET assembly to reference so types and
methods can be used from the assembly. If a full file path is given, then
this is used as is; if just the filename or a relative path that is given, then
the current directory, the F# binaries directory (usually c:\Program
Files\FSharp-<version>\bin), and the framework directory (usually
c:\WINDOWS\Microsoft.NET\Framework\v<version>) are searched for the
assembly. You can add directories to this search path by using the -I
switch described in this table. If no assembly is found matching the
given name, an error is raised, whether the input source files are valid
or not.

-R <string> This is the same as -r, except that the assembly being referenced is
copied locally. This is useful because it means the .NET loader will be
able to find the assembly when it is run.

-I <string> This specifics a directory that will be used in the search for assemblies
when they are referenced with the -r or -R flag.

-g This produces a symbol file, a .pdb, that will allow you to set
breakpoints and step through the source line by line in a debugger. This
also turns off all optimizations, unless you give one of the
optimizations flags (flags that begin with -O).

--define <string> This defines a symbol for conditional compilation, a technique that you
can use to exclude source code from compilation. I discuss this
technique further in Chapter 6.

-i This prints the inferred interface of a file to the console so that you can
see what types have been inferred by the compiler for your values. This
is useful for creating signature files, which I discuss further in Chapter 6.

-doc <string> This writes the doc comments for the assembly to the given file. Doc
comments are a special type of comment and are intended to create
documentation for programmers who will use the finished assembly. I
discuss them further in Chapter 6.

Compiler Optimization Switches
The compiler optimization switches are listed among the basic command-line options when
you use the -help command-line option. I recommend that you compile code using the opti-
mization switches when you compile your code for release, because compiler optimizations
can significantly increase the performance of your code. Table 12-2 summarizes the optimiza-
tion switches.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS300

7575Ch12.qxp  4/27/07  1:07 PM  Page 300



Table 12-2. Optimization F# Compiler Switches

Switch Description

-Ooff This turns off all optimizations including those performed by the .NET Framework’s
JIT compiler.

-O0 This enables optimizations by the JIT compiler but turns off all optimizations by the
F# compiler.

-O1 This enables optimizations by the JIT compiler and optimizations that are local to
an F# module.

-O This is the same as -O2; it is the default unless you specify that debugging symbols
should be produced (by using the -g flag).

-O2 This is the same as -O1 except that optimizations between F# modules are also
allowed.

-O3 This is the same as -O2 but with increased inlining and lambda lifting.

I took the OCaml “Spectral Norm” benchmark from the Computer Language Shootout
Benchmarks site (http://shootout.alioth.debian.org/) and ported it to F#. You can find infor-
mation about what a spectral norm is at http://mathworld.wolfram.com/SpectralNorm.html.
Here’s the code used to do the benchmark:

#light
let evalA i j = 1.0 / float((i+j)*(i+j+1)/2+i+1)

let evalATimesU u v =
let n = Array.length v - 1
for i = 0 to  n do

v.(i) <- 0.0
for j = 0 to n do

v.(i) <- v.(i) + evalA i j * u.(j)

let evalAtTimesU u v =
let n = Array.length v -1 in
for i = 0 to n do

v.(i) <- 0.0
for j = 0 to n do

v.(i) <- v.(i) + evalA j i * u.(j)

let evalAtATimesU u v =
let w = Array.create (Array.length u) 0.0
evalATimesU u w
evalAtTimesU w v

let main() =
let n =

try
int_of_string(Sys.argv.(1))

with _ -> 2000

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 301

7575Ch12.qxp  4/27/07  1:07 PM  Page 301



let u = Array.create n 1.0
let v = Array.create n 0.0
for i = 0 to 9 do

evalAtATimesU u v
evalAtATimesU v u

let vv = ref 0.0
let vBv = ref 0.0
for i=0 to n-1 do

vv := !vv + v.(i) * v.(i)
vBv := !vBv + u.(i) * v.(i)

Printf.printf "%0.9f\n" (sqrt(!vBv / !vv))

main()

I then compiled this into a number of different executables, differing only by optimiza-
tion level, and I timed the execution of these programs using ntimer.exe, which is available
with the Windows Server 2003 Resource Kit. The times shown in Table 12-3 are all in seconds,
and the “Percentage Diff” number is the percentage change from the unoptimized time.

Table 12-3. Times from the Spectral Norm Benchmark

Optimization Command Line Kernel User Total Percentage 
Level Diff

-Ooff ntimer spectral-Ooff.exe 2000 00.090 03.535 03.715 0

-O0 ntimer spectral-O0.exe 2000 00.080 03.525 03.725 –0.27

-O1 ntimer spectral-O1.exe 2000 00.080 02.954 03.174 17.0

-02 ntimer spectral-O2.exe 2000 00.030 02.984 03.154 17.9

-03 ntimer spectral-O3.exe 2000 00.050 03.214 03.394 9.5

Although the time difference might look relatively small, there is actually a 17.9 percent
difference between the fastest time and the unoptimized time. Although it’s difficult to predict
what effect these flags would have on other programs, and particularly on user perception of
response time, a 17.9 percent increase in execution speed is not insignificant, and it’s worth
using these switches since they can give performance gains for such little effort.

Compiler Warning Switches
The compiler generates warnings to let you know when it thinks you’ve done something you
didn’t mean to, such as initializing a private identifier or not using it within the module in
which it’s defined. Unlike errors that cause the compilation to fail, when the compiler pro-
duces only warnings, it will still compile the code. Table 12-4 summarizes the warning
switches.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS302

7575Ch12.qxp  4/27/07  1:07 PM  Page 302



Table 12-4. Warning F# Compiler Switches

Switch Description

--all-warnings This flag means the compiler will print all the warnings it finds with
the source code.

--no-warnings This means the compiler will not print any warnings; it is generally
not advisable to use this flag.

--all-warnings-as-errors This means that any warning will be treated as an error, meaning
that an assembly will not be produced. This is useful to stop yourself
from getting lazy and ignoring warnings; if left unchecked, warnings
can quickly get out of control on large projects, especially if they are
shared between many programmers.

--warn-as-error <int> This is a lesser form of the --all-warnings-as-errors flag, allowing
you to treat a specific warning as an error.

--warn <int> This informs the compiler to warn you when it finds a specific
warning; this is useful in conjunction with the --no-warnings flag.

--no-warn <int> This informs the compiler to not warn you about a specific warning;
this is useful when there are mitigating circumstances for a warning
appearing in your code; however, you should not use it without
careful consideration.

Compiler Target Switches
These flags give you fine-grained control over what the compiler produces. These are most
useful when producing a WinForms application that does not need to write to the console.
Table 12-5 summarizes the target switches.

Table 12-5. Target F# Compiler Switches

Switch Description

--target-exe This produces an executable assembly designed to execute within the
window’s console; if you execute it outside the console, it will pop up its
own console, even if the application uses WinForms components.

--target-winexe This produces an executable assembly that does not have a console
associated with it; usually you will use this flag when you create WinForm
applications in F#.

--target-dll This produces a .dll file.

--target-module This produces a binary file that is a module rather than an assembly; several
modules can be composed into a multifile assembly using tools distributed
with the .NET SDK. However, this functionality is not used very often.

Signing and Versioning Switches
Assemblies must be cryptographically signed and have a version number before they can be
installed in the GAC. Assemblies are signed with keys produced by the sn.exe tool, distributed
with the .NET SDK. Signing an assembly also gives you some level of confidence that the
assembly has not been tampered with after it left its creator; since anyone can create a strong

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 303

7575Ch12.qxp  4/27/07  1:07 PM  Page 303



name key, this does not tell you anything about who the creator was. Adding a version number
of an assembly is most useful for the producers of libraries, because it allows the users of your
library to better track changes to it and to decide which of their applications will upgrade to
the new version when it is released. Table 12-6 summarizes the signing switches.

Table 12-6. Signing F# Compiler Switches

Switch Description

--keyfile <string> This tells the compiler to sign the assembly with the key that it
finds in the given key file.

--public-keyfile <string> This tells the compiler to sign the assembly with a key file that
contains only a public key. This is a process known as delayed
signing; by signing with the public key, it allows many developers
to work on an assembly while keeping the private key safe, limited
to a privileged few. The assemblies produced will run a machine
only where the CLR has been told to skip verification for the
specific key. This can be achieved using the sn.exe tool.

--version <string> This sets the version number of an assembly; the format of the
string is <major version>.<minor version>.<build
number>.<revision number>, resulting in a string like 2.1.53.3. If
this flag is not set, then it defaults to 0.0.0.0.

--version-file <string> This sets the version number the same way as the --version flag
does, but it takes the version number for a text file. This is useful if
you intended to increment your file number for each build, keep-
ing track of it via a file under source control.

nNote You can find more information about the sn.exe tool, which is used to create the key files, at
http://msdn2.microsoft.com/en-us/library/k5b5tt23(VS.80).aspx.

Printing the Interface Switches
The -ifile <string> flag prints the inferred interface of an assembly the same way that -i
does, but it prints it to a file rather than to the console.

Adding Resources Switches
A resource is something that is embedded in an assembly. It can be one of several different
things. It might be a string that will be displayed to the user, or it might be an image, icon,
video, music file, or any sort of binary data. Resources can help make application deployment
easier. For example, if your application needs to display an image to the user, embedding it in
the assembly as a resource will mean that it is always there when your code needs to use it,
and you do not need to worry about deploying it along with your assembly.

Resources can be divided into two groups, Win32 resources and .NET resources. Win32
resources are created using the resource compiler (http://msdn2.microsoft.com/en-us/library/
aa381042.aspx), which allows the user to define resources in a C++-like language that is stored

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS304

7575Ch12.qxp  4/27/07  1:07 PM  Page 304



in a text file with the extension .rc. Although you can use these resource files to define lots of
different types of resources, it is generally best to use them just for storing icons, because it is
generally easier to store and access your resources using .NET resource files. However, you can
use embedded Win32 icons to control what the resulting assembly files look like in Windows
Explorer. .NET resources are either text files that have the normal .txt extension or XML files
that have the extension .resx. The latter can be included on the F# command line directly or
can alternatively be converted into a binary .resource format by using the .NET resources
generator, resgen.exe (http://msdn2.microsoft.com/en-us/library/ccec7sz1(VS.80).aspx),
or the resxc.exe tool distributed with F#. .NET resource files have a number of advantages
over Win32 resource files. The .NET file format is much easier to understand and work with,
and also Visual Studio provides some nice resource management tools. It is also much easier
to localize your applications, making them available in different languages, with .NET
resource files. Table 12-7 summarizes the resource switches.

Table 12-7. Resource F# Compiler Switches

Switch Description

--win32res <string> This specifies a file that should be embedded into the assembly as
a Win32 resource.

--resource <string> This embeds the specified .NET .resource file in the assembly. A
.resource file is created using the tool resgen.exe distributed with
the .NET SDK or the tool resxc.exe distributed with F#. Note that
you can also give a .resx file directly as a source input to the F#
compiler, and it will invoke resxc.exe for you.

--link-resource <string> This is the same as the --resource flag but gives control over 
the name of the embedded resource file and whether it is public 
or private. The format of the string passed to this flag is 
<filename>,<resource name>,<public | private>. The 
<resource name> and <public | private> fields are optional
strings such as res.resource,AssemblyResources or
res.resource,AssemblyResources,private.

nNote You can find more information about the format of .resx files, which are used to produce managed
.resource files, at http://msdn2.microsoft.com/en-us/library/ekyft91f.aspx.

Generating HTML Switches
You can use the compiler’s -doc switch to place doc comments, described in Chapter 6, into an
XML file. Tools such as NDoc or Microsoft’s Sandcastle can then turn these into different docu-
mentation formats. Although F# ultimately produces .NET code, its type system is, practically
speaking, more expressive than the .NET type system and uses .NET constructs in powerful
ways; therefore, under some circumstances, these tools do not always do a good job producing
documentation for F# assemblies. That is why the compiler provides a set of switches to pro-
duce HTML documents directly. Table 12-8 summarizes the HTML documentation switches.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 305

7575Ch12.qxp  4/27/07  1:07 PM  Page 305



Table 12-8. HTML Documentation F# Compiler Switches

Switch Description

--generate-html This flag will make the compiler output HTML
documentation for the assembly.

--html-output-directory <string> This flag allows you to specify the directory to which
the HTML documentation is output.

--html-css <string> This flag allows the user to specify a path to a CSS
file that will be automatically embedded into the
headers of each resulting documentation file.

--html-namespace-file <string> This allows the user to specify the name of a file that
the namespaces within the assembly should
summarize, creating an index of all the types and
modules within the assembly.

--html-namespace-file-append This specifies that the summary of the namespace in
an assembly should be appended to a file, rather
than overwriting it. This is useful if you are aiming to
produce a set of two or more libraries.

The choice about whether you should use these flags to document your code or whether
you should use a tool that targets .NET is usually dictated by the type of library you produce. If
you want a library that can be easily used only from F#, then you should use these command-
line tools. If your aim is to produce a library that can be used easily from any language, then
you’ll probably get better results using Sandcastle or NDoc. You can find a more detailed expla-
nation of why these two types of libraries exist and how you can create them in Chapter 13.

CLI Version Switches
Because the .NET Framework has multiple versions, it’s highly likely that you will have multiple
versions installed on your machine; typically, most users will have versions 1.1 and 2.0 installed.
The story can be even more complicated because various implementations of the CLI standard
exist, such as Mono and SSCLI (Rotor), meaning these versions of the CLI (or even customized
builds of these versions) could also be installed.

These two flags allow you to control exactly which version of the CLI is used; this is
important because there are variations in the types and methods that exist in the different ver-
sions. This means a program that will compile one version may not compile with another. It is
therefore important that the programmer has control over which version is used. Table 12-9
summarizes the CLI version switches.

Table 12-9. CLI Version F# Compiler Switches

Switch Description

--cli-version <string> This flag controls the version number of the CLI that is used. It can
take the values 1.0, 1.1, and 2.0 and custom build tags such as
v2.0.x86chk. You may need to use the flag --clr-root to direct the
compiler to the right version of the CLI; typically you need to use this
when you are using a custom-built CLR.

--clr-root <string> This directs the compiler to the framework directory, where the
libraries for that particular version of the framework can be found.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS306

7575Ch12.qxp  4/27/07  1:07 PM  Page 306



Compilation Details Switches
The --progress flag shows the progress of the compiler to let you know a little about what is
going on inside the compiler.

Statically Linking Switches
Static linking is the process where methods and types from referenced assemblies are copied
and embedded directly into an assembly. This removes the dependency on the referenced
assembly. Table 12-10 summarizes the linking switches.

Table 12-10. Linking F# Compiler Switches

Switch Description

--standalone This will place all the types and values from any F# library DLL, or
any referenced DLL that transitively depends on an F# library DLL,
into the assembly being produced. For this process to work
effectively, the program being compiled must not expose any F#
types on its interface; for example, this means a public function
should not return a tuple because this is an F# type.

--static-link <string> This will statically link any assembly referenced, not just F# library
DLLs. The given string should be the name of the assembly with-
out its extension, so it’s MyLib, not MyLib.dll.

Using fsi.exe Effectively
The interactive version of F#, fsi.exe, allows you to execute code as you type it into the console.
The following sections will look at the commands that were added to F# to aid users working
with the console, cover the command-line switches it supports, and give some general tips for
working with F# interactive.

fsi.exe Commands
Because of fsi.exe’s dynamic nature, you need to perform some tasks with special commands
that you would ordinarily use command-line switches for with the fsc.exe compiler. There are
also some features, such as automatically timing program execution and quitting the com-
piler, that just aren’t relevant to the command-line compiler. Table 12-11 describes the fsi.exe
commands.

Table 12-11. The F# Interactive Commands

Command Description

#r "<assembly file>";; This allows an assembly to be referenced by fsi.exe, meaning that
programs created within the console can use their types and
values. It has the same meaning as the compiler’s -r flag.

#I "<file path>";; This adds a directory to the list of directories that are searched
when looking for referenced assemblies. If a filename, or a relative
file path, is used when using the #r command, then this list of
directories will be searched for the assembly.

continued

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 307

7575Ch12.qxp  4/27/07  1:07 PM  Page 307



Table 12-11. Continued

Command Description

#use "<source file>";; This loads, compiles, and runs a single F# source file as if it had
been typed into the console directly.

#load "<source file>" This loads and compiles a series of F# source files, as if they were to
... "<source file>";; form a single assembly file. Commands from the sources are not

executed immediately, but the types and values they contain are
available in the console session.

#time;; This toggles on and off the timing mode of F# interactive.

#types;; This is used to control whether types are displayed.

#quit;; This exits F# interactive; it has a short form of #q;;.

nNote The Ctrl+C combination cannot be used to quit F# interactive because Ctrl+C is used to abort long-
running computations.

Controlling the fsi.exe Environment
One of the most useful features of fsi.exe is its ability to print values, meaning that you can
more easily see the contents of lists, arrays, or any IEnumerable collection. For example, you
might want to see the assemblies that are currently in memory, and you could do that by typ-
ing the following program into fsi.exe:

> open System;;

> AppDomain.CurrentDomain.GetAssemblies();;

When entered, the program will start with the following output and carry on for many
hundreds of lines:

val it : Assembly []
= [|mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

{CodeBase = "file:///C:/WINDOWS/Microsoft.NET/Framework/v2.0.50727/mscorlib.dll";
EntryPoint = null;

...

So much information is shown because fsi.exe automatically prints the values of any prop-
erties it finds too. Although this can be useful sometimes, it can be undesirable because it can
lead to too much information being shown, as demonstrated with the previous program. To give

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS308

7575Ch12.qxp  4/27/07  1:07 PM  Page 308



the user fine-grained control over what actually should be shown, fsi.exe provides the special
value fsi of type InteractiveSession, which can be used to control the fsi.exe environment.
The easiest way to see what you can do with the fsi values is simply to type fsi;; into the F#
interactive console, which gives the following output:

val it : InteractiveSession
= Microsoft.FSharp.Compiler.Interactive.InteractiveSession

{EventLoop = Microsoft.FSharp.Compiler.Interactive.Shell+main@1283;
FloatingPointFormat = "g10";
FormatProvider = ;
PrintDepth = 100;
PrintIntercepts = null;
PrintLength = 100;
PrintWidth = 78;
ShowIEnumerable = true;
ShowProperties = true;}

All the properties of fsi are mutable so can be set to control the environment. In the pre-
vious example, too much information was shown because the properties of each value were
printed; you could correct this by using the following command:

> fsi.ShowProperties <- false;;

So, rerunning the previous example would now result in the following output, a much
more manageable amount of information:

val it : Assembly []
= [|mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089;

fsi, Version=1.1.13.8, Culture=neutral, PublicKeyToken=null;
fslib, Version=1.1.13.8, Culture=neutral, PublicKeyToken=a19089b1c74d0809;
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089;
mllib, Version=1.1.13.8, Culture=neutral, PublicKeyToken=a19089b1c74d0809;
FSharp.Compiler, Version=1.1.13.8, Culture=neutral,

PublicKeyToken=a19089b1c74d0809;
System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089;
System.Drawing, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a;
FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null;
FSharp.Interactive.Settings, Version=1.1.13.8, Culture=neutral,

PublicKeyToken=a19089b1c74d0809|]

Table 12-12 summarizes the members of the fsi value.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 309

7575Ch12.qxp  4/27/07  1:07 PM  Page 309



Table 12-12. The Properties of the F# Interactive Command’s fsiValue

Property Description

EventLoop This gives access to F# interactive’s event loop, which is the thread
that takes care of any forms that are currently shown.

FloatingPointFormat This is a string that controls the format in which floating-point
numbers are printed.

FormatProvider This an instance of the standard .NET interface
System.IFormatProvider.

PrintDepth This is the number of levels of inner lists or properties that will be
printed.

PrintIntercepts This is a list of functions that will be executed on items that are
printed, before they are printed. This gives the user very fine-
grained control over what is printed. See the functions
AddPrinterTransformer and AddPrinter for more details.

PrintLength The number of items in any collection type that will be printed.

PrintWidth The number of characters that will be printed on each line before
automatically wrapping.

ShowIEnumerable This controls whether IEnumerable collections will be printed.

ShowProperties This controls whether properties should be shown.

AddPrintTransformer This adds a print transformer, which is a function that will be called
on an object to transform it before it is printed. This function takes a
function of type 'a -> obj; the function is executed only on types
that match the type of the parameter of the function.

AddPrinter This adds a printer, which is a function that will be called to get the
output that should be printed for an object. It differs from a print
transformer because the function is directly responsible for creating
text that will be printed, whereas a printer transformer transforms
the object to be printed into something more relevant to be printed.
This function takes a function of type 'a -> string, and the func-
tion is executed only on types that match the type of the parameter
of the function.

fsi.exe Command-Line Switches
Table 12-13 summarizes the command-line switches that you can use with fsi.exe.

Table 12-13. The F# Interactive Command-Line Switches

Switch Description

--gui This creates a GUI loop so that the fsi.exe user can open WinForms
windows. There is a script, load-wpf.fsx, available as part of the samples
in the F# distribution that shows how to replace the WinForms event loop
with WPF so WPF applications will run correctly interactively. You can find
more information about WPF in Chapter 8.

--no-gui This turns off the GUI loop required for a WinForms application.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS310

7575Ch12.qxp  4/27/07  1:07 PM  Page 310



Switch Description

--exec This causes fsi.exe to exit after running the scripts given on the
command line, which is useful for using F# to execute finished scripts.

--no-logo This stops the splash text being shown on start-up.

--no-banner This is the same as --no-logo.

--no-readline This stops attempts to process individual keystrokes from the console.

Using the Source Directory Macro
The source directory macro is a #define macro with the name __SOURCE_DIRECTORY__
automatically set to the directory for each file being processed by fsi.exe and to the current
directory for a script fragment being loaded into fsi.exe (including fragments loaded interac-
tively using Visual Studio). You could use this to access image files that are required for the
script and are stored in the same directory as the script.

You can use the identifier __SOURCE_DIRECTORY__ as if it were a string inside any F# fsi.exe
script. The following example shows it being used to create a DirectoryInfo object that could
then be used to find out what files that directory contains:

#light
open System.IO
let dir = new DirectoryInfo(__SOURCE_DIRECTORY__);;

Writing NUnit Tests
NUnit is an open-source framework for creating NUnit tests for .NET code. The idea is loosely
based on JUnit, a Java open source framework. The idea has been popular amongst the .NET
development community, and a similar framework is now also included in the Team Editions
of Visual Studio 2005.

The idea behind NUnit is simple; you create a .NET class that is a suite of unit tests for
your code. Ideally each test will call the functions that you have created with a number of dif-
ferent parameters, asserting that each function returns the expected result. The class and class
members are then marked with attributes that show they represent a test. NUnit then provides
a framework for running your tests, either through a GUI so programs can easily see the
results of their test and drill down on any that are failing or through a command-line tool so
the test can be automated as part of a build process.

The following example shows a small library and a unit test suite associated with it. Notice
how the test suite, the class TestCases, is marked with the custom attribute TestFixture, and all
its members are marked with the custom attribute Test. These custom attributes are both
defined in the assembly NUnit.Framework.dll. This is so NUnit knows that this class is a test
suite. The assembly can contain other types that are test suites, and equally the class

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 311

7575Ch12.qxp  4/27/07  1:07 PM  Page 311



TestCases can contain other members that are not directly test cases but are, for example,
helper functions. It would be more natural to separate the code for the test cases from the
code being tested into separate files and even separate assembles, but for simplicity I’ll show
them both together.

Each test case typically calls the function it is testing and then uses the Assert class to
check the result. This is not true for the TestDiv02 case; here you know that calling div with a
second argument of 0 will cause the function to raise an exception, so you mark the method
with the ExpectedException attribute instead of making an assertion.

#light
open System

let add x y = x + y
let div x y = x / y

open NUnit.Framework

[<TestFixture>]
type TestCases = class

new() = {}
[<Test>]
member x.TestAdd01() =

Assert.AreEqual(3, add 1 2)
[<Test>]
member x.TestAdd02() =

Assert.AreEqual(4, add 2 2)
[<Test>]
member x.TestDiv01() =

Assert.AreEqual(1, div 2 2)
[<Test; ExpectedException(type DivideByZeroException)>]
member x.TestDiv02() =

div 1 0 |> ignore
end

You could load this test case into the NUnit GUI, allowing you to call each test individually
or all the tests together. Figure 12-1 shows the NUnit GUI in action, with the TestDiv01 case
being run.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS312

7575Ch12.qxp  4/27/07  1:07 PM  Page 312



Figure 12-1. The NUnit GUI

Using Assembly Browsers
Because of all the metadata built into .NET assemblies, it is a fairly easy task to reflect over an
assembly to determine its contents. Several class browsers are available that take advantage of
this to let developers see the contents of an assembly. The .NET Framework SDK includes a
tool called ildasm.exe that lets you browse the contents of an assembly and even look at the IL
bytecodes that make up the method bodies. Visual Studio also ships with a .NET class browser
that allows you to browse classes and view the signatures of their methods.

However, the best class browser in my opinion is Reflector, which is shown in Figure 12-2
and available for download from http://www.aisto.com/roeder/dotnet/. Reflector lets you
browse a number of different assembles at once and provides an easy way to navigate
between related types. It also allows you to view the method signatures, and even the code
itself, in a variety of different languages. At the time of this writing, IL, C#, VB .NET, and Delphi
were supported by default with the option to add others through a plug-in system; currently, a
plug-in to view code in F# is in the early stages of development.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 313

7575Ch12.qxp  4/27/07  1:07 PM  Page 313



Although looking at the code that makes up an assembly is fun, there are some serious
uses for the F# user. If you intend to produce a library that is suitable for use from other lan-
guages, it is likely that your target audience will consist of a lot of C# and VB .NET developers.
If you want them to be able to use the library easily, it is important to know what the method
signatures will look like in C# or VB .NET. Although after a while you’ll have a good idea of
what will play nicely in other languages and what won’t, Reflector can help shortcut this by
allowing you to view the method signature and check that it looks OK. You can find more
about how to create a .NET library that will work well when used from other languages in
Chapter 13.

Figure 12-2. Reflector, a class browser

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS314

7575Ch12.qxp  4/27/07  1:07 PM  Page 314



Using Debugging Tools
Visual Studio provides a graphical debugger that is easy and intuitive to use. If you have F#
integration installed, then debugging is simply a matter of setting a breakpoint and pressing
F5. However, not everybody uses Visual Studio; if you don’t, several other debugging options
are available.

The .NET Framework SDK comes with two command-line debuggers, mdbg.exe and
cordbg.exe, but personally I find command-line debuggers too difficult to use. Fortunately, it
also comes with a graphical debugger. The debugger is located by default in SDK\v2.0\
GuiDebug, under the install root of the SDK. This debugger, shown in Figure 12-3, is also simple
to use. You generally open a source file, set breakpoints within it, and then use the Tools ä
Attach to Process menu option to choose the program you want to debug. If the program has
debugging symbols (generated by the -g option) and the debugger can find them, then your
breakpoints will be hit, and you can step through the code. A good way to check whether sym-
bols are loaded is through the Modules windows (Debug ä Windows ä Modules). This shows
all the DLLs that are currently loaded into the process and whether they have debugging sym-
bols associated with them. If no symbols are associated with a particular DLL, then you can
try to load some by right-clicking and searching for the correct symbols on the disk.

Figure 12-3. Debugging using the GUI debugger available with the .NET Framework SDK

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 315

7575Ch12.qxp  4/27/07  1:07 PM  Page 315



Some sections of code can be difficult to debug because it is impossible to attach the
debugger before they’ve executed. To allow these sections to be debugged more easily, .NET
provides the System.Diagnostics.Debugger class. This has a useful method called Launch().
When this method is hit, it will generate a special type of exception that will cause Windows to
show a dialog box offering the user the opportunity to attach a debugger. Once attached, the
debugger will function normally, and you’ll be able to step through the code as you’d expect.

nNote Another option for debugging on the Windows platform is WinDbg. This is a tool originally targeted
at unmanaged code, but it has been extended to managed code, such as F# programs, via SOS.dll. WinDbg
is quite a bit harder to use than your typical graphical debugger, but it has the advantage that it can be used
to monitor software in production and thus investigate any production problems you have. You can find more
information about how to set up WinDbg at http://strangelights.com/FSharp/Foundations/
default.aspx/FSharpFoundations.WinDbg. Also, if you release your software and an exception is gen-
erated while a user is using it, the user will get the option to send an error report to Microsoft. You can
register to receive these reports of your crashes at http://msdn.microsoft.com/isv/resources/wer/.

Using Profiling Tools
Debugging performance problems is one of the most difficult challenges for programmers.
Fortunately, several tools exist to help you profile applications so you can see where problems
lie. Although performance profiling and optimizing a program is a huge subject, it is generally
based on a simple set of steps. I find that most performance optimizations follow these steps:

1. Time the execution of your application to create a baseline. This is an important step
because it will allow you to judge whether your changes really have enhanced per-
formance. This means running your applications and generating some load on them,
either by directly interacting with the program or preferably by using a script to auto-
matically perform tasks that would commonly be performed by users. The advantage
of using a script is that you can more easily run your test multiple times. The tool
ntimer.exe is good for this.

2. Use a profiler to create a profile of your application. This will allow you to look at how your
application could be enhanced. It is important to perform this as a separate step from
your baseline because profilers can seriously slow the execution of your application.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS316

7575Ch12.qxp  4/27/07  1:07 PM  Page 316



3. Form a hypothesis about what is causing your code to run slowly. This is the most diffi-
cult part of any performance investigation and generally involves a detailed analysis of
the profile you generated.

4. Make changes to your code base, based on the conclusions you came to in the previ-
ous steps.

5. Rerun the baseline you took of your application. This will allow you to see whether
your hypothesis is correct and whether you have enhanced the performance of your
application.

6. If you have enhanced the performance of your code base, then you should commit the
changes you made; otherwise, you should throw them away.

Typically, you’ll repeat these steps until you are happy with the performance of your
application. You’ll now look at some tools that can help you profile your applications.

Ntimer
Although not actually a profiler, ntimer.exe is a nifty little tool that allows you to get the over-
all execution time for a program, which is useful for establishing a baseline for application
performance. It’s part of Windows 2003 Resource Kit Tools. Using ntimer.exe couldn’t be sim-
pler; just run ntimer followed by the name of the program you want to time and any
command-line arguments you want to pass to it.

Perfmon and Performance Counters
Perfmon is a monitoring tool built into Windows, so it’s readily available on every Windows
machine. It allows you to examine performance counters that reveal information about
almost every aspect of a machine. Select Control Panel ä Administrative Tools to open it (see
Figure 12-4). The three counters that are loaded by default, Pages/sec (the number of pages
swapped from disk each second), Avg. Disk Queue (the amount of information in the queue to
be read or written to the disk), and % Processor Time (the amount of time the processor is
actually in use), give you a good idea of the overall health of the machine. If any of these values
are high, then the machine will probably seem slow and unresponsive.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 317

7575Ch12.qxp  4/27/07  1:07 PM  Page 317



Figure 12-4. Perfmon, a tool for monitoring performance

If you want to examine other aspects of the machine’s performance, you can add more
counters by right-clicking the graph pane and choosing Add Counters. Since each piece of soft-
ware installed on a machine can install its own counters, the number of counters varies from
machine to machine, but a typical machine has at least 50 categories of counters (performance
objects) and more than 100 counters. To help you navigate this maze of counters, Table 12-14
summarizes some of the most useful ones to the .NET programmer. It’s important to remember
when adding counters that most counters either can be the total for the machine or can be the
total for a specific process; often it best to choose the one that is specific to the process you are
trying to profile.

Table 12-14. Useful Performance Counters and Their Meanings

Performance Object Counter Description

Process % Processor Time This is the amount of processor time consumed
by the process.

Process Page Faults/sec This is the number of page faults per second. If
this number increases dramatically, this means
the process does not have enough memory to
operate effectively; you need to reduce your
memory consumption.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS318

7575Ch12.qxp  4/27/07  1:07 PM  Page 318



Performance Object Counter Description

Process Handle Count This represents the number of files the process
has open. If this number increases throughout
the lifetime of an application, you are probably
leaking file handles. In other words, you forgot to
close a file stream by calling its Dispose()
method.

Process Private Bytes This is the number of bytes used by the process
that are not shared with other processes. If this
figure continues to rise throughout the lifetime of
an application, this typically means you have a
memory leak.

.NET CLR # of Exceptions This measures the amount of .NET exceptions 
Exceptions Thrown/sec being thrown. If this number is high, then your

application will perform poorly since exceptions
are relatively expensive in .NET.

.NET CLR Jit % Time in Jit This tells how much of the CLR’s time is spent
just-in-time compiling the application. If this
figure is too high, then you might consider using
ngen.exe when you deploy your application. This
will precompile the application, removing the
need for the JIT compiler.

.NET CLR Memory # Bytes in all Heaps This is the amount of memory consumed by
managed objects in your program. If this figure
grows continually, then you might have a
memory leak.

.NET CLR Memory % Time in GC This is the amount of time your application
spends in garbage collection (GC). If this number
is too high, then you might need to consider
changing the way you use memory; typically you
will be looking to reduce the number of objects
you create. However, do not panic if the
application spends a seemingly large amount of
time in GC; typically, most applications, managed
or unmanaged, spend a lot of time managing
memory. If this figure is greater than 20 percent,
then there might be cause for concern. However,
only if the figure is consistently higher than 50
percent should you put some effort into trying to
bring this number down.

.NET CLR Memory Finalization This is the number of objects that were not 
Survivors garbage collected because they required finaliza-

tion. If this counter is high, it means that you are
forgetting to call the Dispose() method on
objects that implement the IDisposable inter-
face, which will add unnecessary overhead to
your application.

Although the counters in Table 12-2 will serve as a useful starting point when investigating
any .NET performance problem, it’s probably best not to limit yourself to these counters. It is
usually best to try to find the counter that most directly relates to your problem.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 319

7575Ch12.qxp  4/27/07  1:07 PM  Page 319



nCaution Memory leaks can still occur in managed applications, typically when you still have references
to objects that you are no longer using. For example, if your program places an object in a collection at the
top level of a module and doesn’t remove it when it has finished with it, then the memory associated with
that object has effectively been leaked, since it’s no longer in use and won’t be reclaimed.

You can also use Perfmon to log performance counter values to a file. This can be useful
when monitoring applications in production. Typically, you set up Perfmon to log counters
you think will help you diagnose performance problems. Then if users complain about a sud-
den drop in application performance, you retrieve the logs to evaluate what caused the
problem. Logging performance counters to a file is quite easy and intuitive; you just need to
open the Performance Logs and Alerts node on the left side of Perfmon, then right-click the
main pane, and finally choose New Log Settings, which allows you to choose the counters you
want to log and when you want to log them. Again, for this logging to work correctly, you must
start the Performance Logs and Alerts service, which is not started by default.

nNote You can read performance counter values within your code and create your own performance
counters using the class System.Diagnostics.PerformanceCounter. You can find more information
about how to do this at http://strangelights.com/FSharp/Foundations/default.aspx/
FSharpFoundations.PerfCounters.

NProf
NProf is a timing profiler. It measures the amount of time it takes to execute a method and dis-
plays this to the user as a percentage of the overall execution time. As a timing profiler, it is
suitable for investigating problems where you believe a section of code is running too slowly.
It is an open source utility available from http://www.sourceforge.net.

NProf, shown in Figure 12-5, is quite straightforward to use; it is the interpretation of the
results that can be the tricky part. To start a profile, just select the executable you want to pro-
file, and give its command-line arguments; alternatively, you can connect to an ASP.NET
application. When you’ve chosen the application you want to profile, you can start profiling by
pressing F5, and when the application finishes, NProf will list all the methods called during
the application and statistics about them such as the number of times a method was called
and the overall percentage of time spent in this method. There is also a window that allows
you to see the callees of the method.

Once you’ve collected this information, you usually look at which methods take the high-
est overall percentage of execution time and consider how this can be reduced. Typically, you
look at the callees to try to figure out whether any of them can be removed or replaced with
calls to other methods that execute faster.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS320

7575Ch12.qxp  4/27/07  1:07 PM  Page 320



Figure 12-5. The NProf profiler GUI

It’s also worth looking at the methods that have the highest number of calls. In this case,
you typically look at the callers to try to figure out whether a method is being called when it’s
not necessary to call it.

nNote At the time of this writing, two releases of NProf, 0.10 and 0.9.1, are available. Both are available
from http://nprof.sourceforge.net. Release 0.10 runs considerably faster than 0.9.1, but the UI has
been cut down to the bare minimum. I actually prefer the 0.9.1 version because I find it easier to use. I hope
future releases will revert to the old UI while retaining the speed of the latest version.

CLR Profiler
Despite its name, the CLR Profiler is not a general-purpose profiler for the CLR. It is, in fact, a
managed-memory profiler. If you see that your application has memory-related performance
problems but have no idea what is causing them, then the CLR Profiler can help you get a bet-
ter idea of what types of objects are taking up memory and when they get allocated.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS 321

7575Ch12.qxp  4/27/07  1:07 PM  Page 321



The CLR Profiler can generate several different types of graph to help you visualize how
memory is being used. It can generate an allocation graph that shows which methods created
which object types, a histogram of all the allocated types, histograms of objects by ages and
address, and timelines of object allocation.

Perhaps the most useful feature is the ability to generate a histogram of the types in use
on the managed heap, as shown in Figure 12-6. This allows you to get a better idea of which
types are consuming memory. With this knowledge, you can review the code and look for
places where you can remove instances of types.

Figure 12-6. A histogram generated by the CLR Profiler

CLR Profiler also has a command-line mode where it logs its results to a file. This is useful
because you can use it as part of an automated testing process to check that each build doesn’t
have any regression errors.

nNote This tool is freely available for download from http://www.microsoft.com/downloads/
details.aspx?familyid=a362781c-3870-43be-8926-862b40aa0cd0&displaylang=en.

Summary
In this chapter, you surveyed a number of development tools that help make the lives of the F#
users easier. Some tools, such as fsi.exe (F# interactive), are very flexible, and you’ll probably
use them every time you code in F#; others you’ll use less frequently to track down tricky bugs.
In the next chapter, you’ll look at compatibility and advanced interoperation.

CHAPTER 12 n THE F# TOOL SUITE AND .NET PROGRAMMING TOOLS322

7575Ch12.qxp  4/27/07  1:07 PM  Page 322



Compatibility and Advanced
Interoperation

In this chapter, you will look at everything you need to make F# interoperate well with other
languages, not just within the .NET Framework but also using unmanaged code from F# and
using F# from unmanaged code.

nCaution Throughout this book, I have made every effort to make sure the only language you need to
understand is F#. However, in this chapter, it will help if you know a little C#, C++, or .NET Common IL,
although I’ve kept the code in these languages to the minimum necessary.

Calling F# Libraries from C#
You can create two kinds of libraries in F#: libraries that are designed to be used from F# only
and libraries that are designed to be used from any .NET language. This is because F# utilizes
the .NET type system in a rich and powerful way, so some types can look a little unusual to
other .NET languages; however, these types will always look like they should when viewed
from F#.

So, although you could use any library written in F# from any .NET language, you need to
follow a few rules if you want to make the library as friendly as possible. Here is how I summa-
rize these rules:

• Always use a signature .fsi file to hide implementation details and document the API
expected by clients.

• Avoid public functions that return tuples.

• If you want to expose a function that takes another function as a value, expose the value
as a delegate.

• Do not use union types in the API, but if you absolutely must use these types, add
members to make them easier to use.

323

C H A P T E R  1 3

n n n

7575Ch13.qxp  4/27/07  1:08 PM  Page 323



• Avoid returning F# lists, and use the array System.Collections.Generic.IEnumerable or
System.Collections.Generic.List instead.

• When possible, place type definitions in a namespace, and place only value definitions
within a module.

• Be careful with the signatures you define on classes and interfaces; a small change in
the syntax can make a big difference.

I will illustrate these points with examples in the following sections.

Returning Tuples
First I’ll talk about why you should avoid tuples; if you return a tuple from your function, you
will force the user to reference fslib.dll. Also, the code needed to use the tuple just doesn’t
look that great from C#. Consider the following example where you define the function
hourAndMinute that returns the hour and minute from a DateTime structure:

#light
module Strangelights.DemoModule
open System

let hourAndMinute (time : DateTime) = time.Hour, time.Minute

To call this from C#, you will need to follow the next example. Although this isn’t too ugly, it
would be better if the function had been split in two, one to return the hour and one to return
the minute.

static void HourMinute()
{

Tuple<int, int> t = DemoModule.hourAndMinute(DateTime.Now);
Console.WriteLine("Hour {0} Minute {1}", t.Item1, t.Item2);

}

The results of this example, when compiled and executed, are as follows:

Hour 16 Minute 1

Exposing Functions That Take Functions As Parameters
If you want to expose functions that take other functions as parameters, the best way to do
this is using delegates. Consider the following example that defines one function that exposes
a function and one that exposes this as a delegate:

#light
open System
open System.Collections.Generic

let filterStringList f (l : List<string>) = l |> Seq.filter f

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION324

7575Ch13.qxp  4/27/07  1:08 PM  Page 324



let filterStringListDelegate
(del : Predicate<string>)
(l : List<string>) =

let f x = del.Invoke(x)
new List<string>(l |> Seq.filter f)

Although the filterStringList is considerably shorter than filterStringListDelegate,
the users of your library will appreciate the extra effort you’ve put in to expose the function as
a delegate. When you look at using the functions from C#, it’s pretty clear why. The following
example demonstrates calling filterStringList; to call your function, you need to create a
delegate and then use the FuncConvert class to convert it into a FastFunc, which is the type F#
uses to represent function values. As well as being pretty annoying for the user of your library,
this also requires a dependency on fslib.dll that the user probably didn’t want.

static void MapOne()
{

List<string> l = new List<string>(
new string[] { "Stefany", "Oussama",

"Sebastien", "Frederik" });
Converter<string, bool> pred =

delegate (string s) { return s.StartsWith("S");};
FastFunc<string, bool> ff =

FuncConvert.ToFastFunc<string, bool>(pred);
IEnumerable<string> ie =

DemoModule.filterStringList(ff, l);
foreach (string s in ie)
{

Console.WriteLine(s);
}

}

The results of this example, when compiled and executed, are as follows:

Stefany
Sebastien

Now, compare and contrast this to calling the filterStringListDelegate function, shown
in the following example. Because you used a delegate, you can use the C# anonymous dele-
gate feature and embed the delegate directly into the function call, reducing the amount of
work the library user has to do and removing the compile-time dependency on fslib.dll.

static void MapTwo(
{

List<string> l = new List<string>(
new string[] { "Aurelie", "Fabrice",

"Ibrahima", "Lionel" });
List<string> l2 =

DemoModule.filterStringListDelegate(
delegate(string s) { return s.StartsWith("A"); }, l);

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 325

7575Ch13.qxp  4/27/07  1:08 PM  Page 325



foreach (string s in l2)
{

Console.WriteLine(s);
}

}

The results of this example, when compiled and executed, are as follows:

Aurelie

Using Union Types
You can use union types from C#, but because C# has no real concept of a union type, they do
not look very pretty when used in C# code. In this section, you will examine how you can use
them in C# and how you as a library designer can decide whether your library will expose
them (though personally I recommend avoiding exposing them in cross-language scenarios).

For the first example, you will define the simple union type Quantity, which consists of
two constructors, one containing an integer and the other a floating-point number. You also
provide the function getRandomQuantity() to initialize a new instance of Quantity.

#light
open System

type Quantity =
| Discrete of int
| Continuous of float

let rand = new Random()

let getRandomQuantity() =
match rand.Next(1) with
| 0 -> Quantity.Discrete (rand.Next())
| _ ->

Quantity.Continuous
(rand.NextDouble() * float_of_int (rand.Next()))

Although you provide getRandomQuantity() to create a new version of the Quantity type,
the type itself provides static methods for creating new instances of the different constructors
that make up the type. These static methods are available on all union types that are exposed
by the assembly by default; you do not have to do anything special to get the compiler to cre-
ate them. The following example shows how to use these methods from C#:

static void GetQuantityZero()
{

DemoModule.Quantity d = DemoModule.Quantity.Discrete(12);
DemoModule.Quantity c = DemoModule.Quantity.Continuous(12.0);

}

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION326

7575Ch13.qxp  4/27/07  1:08 PM  Page 326



Now you know how to create union types from C#, so the next most important task is being
able to determine the constructor to which a particular Quantity value belongs. You can do this
in three ways; I cover the first two in the next two code examples, and I cover the third at the
end of this section.

The first option is that you can switch on the value’s Tag property. This property is just an
integer, but the compiled version of the union type provides constants, always prefixed with
tag_, to help you decode the meaning of the integer. So if you want to use the Tag property to
find out what kind of Quantity you have, you would usually write a switch statement, as
shown in the following example:

static void GetQuantityOne()
{

DemoModule.Quantity q = DemoModule.getRandomQuantity();
switch (q.Tag)
{

case DemoModule.Quantity.tag_Discrete:
Console.WriteLine("Discrete value: {0}", q.Discrete1);
break;

case DemoModule.Quantity.tag_Continuous:
Console.WriteLine("Continuous value: {0}", q.Continuous1);
break;

}
}

The results of this example, when compiled and executed, are as follows:

Discrete value: 65676

If you prefer, the compiled form of the union type also offers a series of methods, all pre-
fixed with Is; this allows you to check whether a value belongs to a particular constructor
within the union type. For example, on the Quantity union type, two methods, IsDiscrete()
and IsContinuous(), allow you to check whether the Quantity is Discrete or Continuous. The
following example demonstrates how to use them:

static void GetQuantityTwo()
{

DemoModule.Quantity q = DemoModule.getRandomQuantity();
if (q.IsDiscrete())
{

Console.WriteLine("Discrete value: {0}", q.Discrete1);
}
else if (q.IsContinuous())
{

Console.WriteLine("Continuous value: {0}", q.Continuous1);
}

}

The results of this example, when compiled and executed, are as follows:

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 327

7575Ch13.qxp  4/27/07  1:08 PM  Page 327



Discrete value: 2058

Neither option is particularly pleasing because the code required to perform the pattern
matching is quite bulky. There is also a risk that the user could get it wrong and write something
like the following example where they check whether a value is Discrete and then mistakenly
use the Continuous1 property. This would lead to a NullReferenceException being thrown.

DemoModule.EasyQuantity q = DemoModule.getRandomEasyQuantity();
if (q.IsDiscrete())
{

Console.WriteLine("Discrete value: {0}", q.Continuous1);
}

To give your libraries’ users some protection against this, it is a good idea to add members
to union types that perform the pattern matching for them. The following example revises the
Quantity type to produce EasyQuantity, adding two members to transform the type into an
integer or a floating-point number:

#light
open System

let rand = new Random()

type EasyQuantity =
| Discrete of int
| Continuous of float

with
member x.ToFloat() =

match x with
| Discrete x -> float_of_int x
| Continuous x -> x

member x.ToInt() =
match x with
| Discrete x -> x
| Continuous x -> int_of_float x

end

let getRandomEasyQuantity() =
match rand.Next(1) with
| 0 -> EasyQuantity.Discrete (rand.Next())
| _ ->

EasyQuantity.Continuous
(rand.NextDouble() * float_of_int (rand.Next()))

This will allow the user of the library to transform the value into either an integer or a
floating-point without having to worry about pattern matching, as shown in the following
example:

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION328

7575Ch13.qxp  4/27/07  1:08 PM  Page 328



static void GetQuantityThree()
{

DemoModule.EasyQuantity q = DemoModule.getRandomEasyQuantity();
Console.WriteLine("Value as a float: {0}", q.ToFloat());

}

Using F# Lists
It is entirely possible to use F# lists from C#, but I recommend avoiding this since a little work on
your part will make things seem more natural for C# programmers. For example, it is simple to
convert a list to an array using the List.to_array function, to a System.Collections.Generic.List
using the List.to_ResizeArray function, or to a System.Collections.Generic.IEnumerable using
the List.to_seq function. These types are generally a bit easier for C# programmers to work with,
especially System.Array and System.Collections.Generic.List, because these provide a lot more
member methods. You can do the conversion directly before the list is returned to the calling
client, making it entirely feasible to use the F# list type inside your F# code.

If you need to return an F# list directly, you can do so, as shown in the following example:

let getList() =
[1; 2; 3]

To use this list in C#, you typically use a foreach loop:

static void GetList()
{

Microsoft.FSharp.Collections.List<int> l = DemoModule.getList();
foreach (int i in l)
{

Console.WriteLine(i);
}

}

The results of this example, when compiled and executed, are as follows:

1
2
3

Defining Types in a Namespace
If you are defining types that will be used from other .NET languages, then you should place
them inside a namespace rather than inside a module. This is because modules are compiled
into what C# and other .NET languages consider to be a class, and any types defined within
the module become inner classes of that type. Although this does not present a huge problem
to C# users, the C# client code does look cleaner if a namespace is used rather than a module.
This is because in C# you can open namespaces using only the using statement, so if a type is
inside a module, it must always be prefixed with the module name when used from C#.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 329

7575Ch13.qxp  4/27/07  1:08 PM  Page 329



I’ll now show you an example of doing this. The following example defines the class
TheClass, which is defined inside a namespace. You also want to provide some functions that
go with this class; these can’t be placed directly inside a namespace because values cannot be
defined inside a namespace. In this case, you define a module with a related name TheModule
to hold the function values.

#light
namespace Strangelights
open System.Collections.Generic

type TheClass = class
val mutable TheField : int
new(i) = { TheField = i }
member x.Increment() =

x.TheField <- x.TheField + 1
member x.Decrement() =

x.TheField <- x.TheField - 1
end

module TheModule = begin
let incList (l : List<TheClass>) =

l |> Seq.iter (fun c -> c.Increment())
let decList (l : List<TheClass>) =

l |> Seq.iter (fun c -> c.Decrement())
end

Using the TheClass class in C# is now straightforward because you do not have to provide
a prefix, and you can also get access to the related functions in TheModule easily:

static void UseTheClass()
{

List<TheClass> l = new List<TheClass>();
l.Add(new TheClass(5));
l.Add(new TheClass(6));
l.Add(new TheClass(7));
TheModule.incList(l);
foreach (TheClass c in l)
{

Console.WriteLine(c.TheField);
}

}

Defining Classes and Interfaces
In F# there are two ways you can define parameters for functions and members of classes: the
“curried” style where members can be partially applied and the “tuple” style where all members
must be given at once. When defining classes, your C# clients will find it easier to use your
classes if you use the tuple style.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION330

7575Ch13.qxp  4/27/07  1:08 PM  Page 330



Consider the following example in which you define a class in F#. Here one member has
been defined in the curried style, called CurriedStyle, and the other has been defined in the
tuple style, called TupleStyle.

type DemoClass = class
val Z : int
new(z) = { Z = z}
member this.CurriedStyle x y = x + y + this.Z
member this.TupleStyle (x, y) = x + y + this.Z

end

When viewed from C#, the member CurriedStyle has the following signature:

public FastFunc<int, int> CurriedStyle(int x)

whereas the TupleStyle will have the following signature:

public int TupleStyle(int x, int y);

So if you wanted to use both methods from C#, you would end up with code that looked
as follows:

static void UseDemoClass()
{

DemoClass c = new DemoClass(3);
FastFunc<int, int> ff = c.CurriedStyle(4);
int result = ff.Invoke(5);
Console.WriteLine("Curried Style Result {0}", result);
result = c.TupleStyle(4, 5);
Console.WriteLine("Tuple Style Result {0}", result);

}

It is clear from this sample that users of your library will be much happier if you use the
tuple style for the public members of your classes.

Specifying abstract members in interfaces and classes is slightly more complicated because
you have a few more options. The following example demonstrates this:

type IDemoInterface = interface
abstract CurriedStyle : int -> int -> int
abstract OneArgStyle : (int * int) -> int
abstract MultiArgStyle : int * int -> int
abstract NamedArgStyle : x : int * y : int -> int

end

Note that the only difference between OneArgStyle and MultiArgStyle is that the latter is
not surrounded by parentheses. This small difference in the F# definition has a big effect on
the signature as seen from C#. With the former, you see the signature as this:

int OneArgStyle(Tuple<int, int>);

With the latter, you see the following signature:

int MultiArgStyle(int, int);

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 331

7575Ch13.qxp  4/27/07  1:08 PM  Page 331



The latter is a good bit friendlier for the C# user. However, you can take it bit further and
add names to each of your parameters. This won’t change the signature the C# user will use
when implementing the method, but it will change the names they see when using Visual
Studio tools to implement the interface; furthermore, some other .NET languages treat
argument names as significant. This may sound like a small difference, but it will make imple-
menting your interface a lot easier, because the implementer will have a much better idea of
what the parameters of the method actually mean.

The following example shows the C# code for implementing the interface IDemoInterface
defined in the previous example. It makes it clear that C# users will be happier with interfaces
containing methods specified using either MultiArgStyle or NamedArgStyle.

class DemoImplementation : IDemoInterface
{

public FastFunc<int, int> CurriedStyle(int x)
{

Converter<int, int> d =
delegate (int y) {return x + y;};

return FuncConvert.ToFastFunc(d);
}

public int OneArgStyle(Tuple<int, int> t)
{

return t.Item1 + t.Item2;
}

public int MultiArgStyle(int x, int y)
{

return x + y;
}

public int NamedArgStyle(int x, int y)
{

return x + y;
}

}

Using F# with the .NET Framework Versions 1 
and 1.1
Using F# with the .NET Framework versions 1 and 1.1 is surprisingly straightforward, because all
you need to do is use the compiler switch --cli-version, discussed in more detail in Chapter 12.
However, there are some small differences in both the F# code that you can write and the result-
ing assembly that you need to be aware of, so if at all possible, I recommend using the .NET
Framework 2.

Readers who are familiar with the differences between the .NET Framework versions 1,
1.1, and 2 may have expected that any code that uses type parameterization, or generics as it

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION332

7575Ch13.qxp  4/27/07  1:08 PM  Page 332



more commonly known, would not compile using the .NET Framework versions 1 and 1.1.
However, this is not the case, because these differences can be compiled away by the F#
compiler.

Consider the following simple example:

let doNothing x = x

The function doNothing is generic because the parameters are of any type, and you can
guarantee that the returned value will be the same as the input parameter. If you check the
function’s signature, using the Visual Studio tooltips or the compiler’s -i switch, you see the
following:

val doNothing : 'a -> 'a

meaning that doNothing takes a parameter of type 'a and returns a value of type 'a where 'a is
a type parameter. Unsurprisingly, in the .NET Framework 2, this compiles down to have the
following signature in C#:

public static T doNothing<T>(T x)

However, when compiled under the .NET Framework version 1 or 1.1, the function will
have the following signature:

public static object doNothing(object x)

This means if you are creating a library for use with the .NET Framework version 1 or 1.1,
the users of your functions from other .NET languages will have to cast the object returned to
its original type. They would not have to do this if using a version of the library compiled for
the .NET Framework 2.

The other problem area is arrays, because these were pseudogeneric in the .NET Framework
versions 1 and 1.1 and fully generic in the .NET Framework 2. For those of you not familiar with
the .NET Framework version 1 or 1.1, pseudogeneric means that arrays in the .NET Framework
version 1 or 1.1 could have a type parameter, but nothing else could. For example, the method
GetFiles from the System.IO.Directory class has the following signature, meaning that it returns
an array of type string:

public static string[] GetFiles(string path);

These pseudogeneric arrays are trouble for F# because its array type is fully generic.
Effectively this means that if you are using “pure F#” (that is, not calling methods from
libraries written in C#), then it is OK to use the F# Array module when using the .NET Frame-
work version 1 or 1.1. You will notice that arrays will always appear as object arrays (Object[])
when viewed from other .NET languages, but they seamlessly keep their types when used
from F# code. When calling methods that accept arrays, or return arrays, like the aforemen-
tioned GetFiles method, then you will need to use the CompatArray module located in the
Microsoft.FSharp.Compatibility namespace.

This will all be clearer when you see an example. Consider the following F# code that cre-
ates an array and then maps it to create a new array:

#light
let ones = Array.create 1 3
let twos = ones |> Array.map (fun x -> x + 1)

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 333

7575Ch13.qxp  4/27/07  1:08 PM  Page 333



This code will compile under the .NET Framework versions 1, 1.1, and 2; however, the sig-
natures of these values when viewed from other .NET languages would be as follows:

public static object[] ones { get; }
public static object[] twos { get; }

If you are designing a library and interoperation is important to you, you could replace
the calls to the array module with calls to the CompatArray module, and you get the signatures
typed using pseudogeneric arrays, just as your clients from other .NET code would probably
want and expect. This means under the .NET Framework versions 1 and 1.1, you should use
the following code:

#light
open Microsoft.FSharp.Compatibility
let ones = CompatArray.create 1 3
let twos = ones |> CompatArray.map (fun x -> x + 1)

This would mean that your module would have the signatures as shown here when viewed
from other .NET languages:

public static int[] ones { get; }
public static int[] twos { get; }

Similarly, when using the .NET Framework versions 1 and 1.1, calls to methods from assem-
blies not written in F#, including all assemblies in the BCL, will generally use pseudogeneric
arrays. This means when using the .NET Framework versions 1 and 1.1, it’s important to use the
CompatArray module and not the Array module. For example, the following will compile without
a problem in the .NET Framework 2, but in both 1 and 1.1, it will not compile.

#light
open System.IO
open Microsoft.FSharp.Compatibility
let paths = Directory.GetFiles(@"c:\")
let files = paths |> Array.map (fun path -> new FileInfo(path))

When compiled using the --cli-version 1.1 switch, it will give the following error:

prog.fs(5,13): error: FS0001: Type mismatch. Expecting a
string [] -> 'c

but given a
'a array -> 'b array.

The type string [] does not match the type 'a array

This is easily corrected by replacing functions from the Array module with their equiva-
lents in ComptArray, as shown in the following example:

#light
open System.IO
open Microsoft.FSharp.Compatibility
let paths = Directory.GetFiles(@"c:\")
let files = paths |> CompatArray.map (fun path -> new FileInfo(path))

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION334

7575Ch13.qxp  4/27/07  1:08 PM  Page 334



Calling Using COM Objects
Most programmers who work with the Windows platform will be familiar with the Component
Object Model (COM). To a certain extent the .NET Framework was meant to replace COM, 
but the system remains popular and is likely to be with us for some time. Many of the APIs in
Windows are exposed as COM objects, and although more and more now have managed
equivalents within the .NET Framework, there are still some without managed equivalents.
Also, there are still some vendors that sell software that exposes its APIs via COM.

The .NET Framework was designed to interoperate well with COM, and calling COM
components is generally quite straightforward. Calling COM components is always done
through a managed wrapper that takes care of calling the unmanaged code for you. You can
produce these wrappers using a tool called TlbImp.exe, the Type Library Importer, that ships
with the .NET SDK.

nNote You can find more information about the TlbImp.exe tool at the following site:
http://msdn2.microsoft.com/en-us/library/tt0cf3sx(VS.80).aspx.

However, despite the existence of TlbImp.exe, if you find yourself in a situation where you
need to use a COM component, first check whether the vendor provides a managed wrapper
for it. This is quite common; for example, if you want to automatically manipulate programs
from Microsoft Office 2003, then you need to use the COM APIs they provide, but there is no
need to use TlbImp.exe to create a new wrapper, because Office already ships a series of man-
aged wrappers contained in assemblies prefixed with Microsoft.Office.Interop.

However, sometimes it is necessary to use TlbImp.exe directly. Fortunately, this is very
straightforward; normally all that is necessary is to pass TlbImp.exe the location of the .dll
that contains the COM component, and the managed wrapper will be placed in the current
directory. So if you wanted to create a managed wrapper for the Microsoft Speech API, you
would use the following command line:

tlbimp "C:\Program Files\Common Files\Microsoft Shared\Speech\sapi.dll"

nNote I find two command-line switches to be useful with TlbImp.exe. These are /out:, which controls
the name and location of the resulting manage wrapper, and /keyfile:, which can provide a key to sign
the output assembly.

The resulting .dll is a .NET assembly and can be used just like any .NET assembly—by
referencing it via the fsc.exe command-line switch -r. A useful side effect of this is if the API
is not well documented, you can use an assembly browser, such as Reflector discussed in
Chapter 12, to find out more about the structure of the API.

After that, the worst thing I can say about using managed wrappers is you might find the
structure of these assemblies a little unusual since the COM model dictates structure, and

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 335

7575Ch13.qxp  4/27/07  1:08 PM  Page 335



therefore they do not share the same naming conversions as most .NET assemblies. You will
notice that all classes in the assembly are post-fixed with the word Class, and each one is
provided with a separate interface; this is just a requirement of COM objects. The following
example shows the wrapper for the Microsoft Speech API that you created in the previous
example being used:

#light
open SpeechLib

let voice = new SpVoiceClass()
voice.Speak("Hello world", SpeechVoiceSpeakFlags.SVSFDefault)

nNote More managed .NET APIs are becoming available all the time; the latest version of Office, Office
2007, ships with a fully managed .NET API, and Windows Vista includes a managed version of the Speech
API. Although the basic calling of COM components is straightforward if you do a lot of COM-based program-
ming in F#, you will soon find there are subtleties. You can find more information about COM programming at
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.COM.

Using P/Invoke
P/Invoke, or platform invoke to give its full name, is used to call unmanaged flat APIs imple-
mented in DLLs and is called using the C or C++ calling convention. The most famous example
of this is the Win32 API, a vast library that exposes all the functionality built into Windows.

To call a flat unmanaged API, you must first define the function you want to call; you can
do this in two parts. First you use the DllImport attribute from the
System.Runtime.InteropServices namespace, which allows you to define which .dll contains
the function you want to import, along with some other optional attributes. Then, you use the
keyword extern, followed by the signature of the function to be called in the C style, meaning
you give the return type, the F# type, the name of the function, and finally the types and
names of the parameters surrounded by parentheses. The resulting function can then be
called as if it were an external .NET method.

The following example shows how to import the Windows function MessageBeep and then
call it:

#light
open System.Runtime.InteropServices

[<DllImport("User32.dll")>]
extern bool MessageBeep(uint32 beepType)

MessageBeep(0ul) |> ignore

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION336

7575Ch13.qxp  4/27/07  1:08 PM  Page 336



nNote The trickiest part of using P/Invoke can often be working out what signature to use to call the function;
the website http://pinvoke.net contains a list of signatures for common APIs in C# and VB .NET, which are
similar to the required signature in F#. The site is a wiki, so feel free to add the F# signatures as you find them.

The following code shows how to use P/Invoke when the target function expects a pointer.
You need to note several points about setting up the pointer. When defining the function, you
need to put an asterisk (*) after the type name to show that you are passing a pointer. You need
to define a mutable identifier before the function call to represent the area of memory that is
pointed to; this may not be global, in the top level, but it must be part of a function definition.
This is why you define the function main, so the identifier status can be part of the definition of
this. Finally, you must use the address of operator (&&) to ensure the pointer is passed to the
function rather than the value itself.

nTip This compiled code will always result in a warning because of the use of the address of operator (&&).
This can be suppressed by using the compiler flag --nowarn 51 or the command #nowarn 51.

#light
open System.Runtime.InteropServices

[<DllImport("Advapi32.dll")>]
extern bool FileEncryptionStatus(string filename, uint32* status)

let main() =
let mutable status = 0ul
FileEncryptionStatus(@"C:\test.txt", && status) |> ignore
print_any status

main()

The results of this example, when compiled and executed (assuming you have a file at the
root of your C: drive called test.txt that is encrypted), are as follows:

1ul

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 337

7575Ch13.qxp  4/27/07  1:08 PM  Page 337



nNote P/Invoke can be one of the trickiest things you can do in .NET because of the need to marshal data
between the managed and unmanaged worlds, often requiring you to define structures that represent the
data to be marshaled. You can find more information about marshaling and other aspects of P/Invoke at
http://strangelights.com/FSharp/Foundations/default.aspx/FSharpFoundations.PInvoke.

The DllImport attribute has some useful functions that you can set to control how the
unmanaged function is called; I summarize them in Table 13-1.

Table 13-1. Useful Attributes on the DllImport Attribute

Attribute Name Description

CharSet This defines the character set to be used when marshaling string data; it
can be CharSet.Auto, CharSet.Ansi, or CharSet.Unicode.

EntryPoint This allows you to set the name of the function to be called. If no name is
given, then it defaults to the name of the function as defined after the
extern keyword.

SetLastError This is a Boolean value that allows you to specify whether any error that
occurs should be marshaled and therefore available by calling the
Marshell.GetLastWin32Error() method.

nNote As with COM components, the number of flat unmanaged APIs that have no .NET equivalent is
decreasing all the time; always check whether a managed equivalent of the function you are calling is
available, which will generally save you lots of time.

Using Inline IL
Inline IL allows you to define your function’s body directly in intermediate language (IL), the
language into which F# is compiled. This was mainly added to the language to implement cer-
tain low operators and functions such as addition and box and not. It is rare that you will need
to use this feature because the F# libraries fslib.dll and mllib.dll already expose all of the
functionality built into IL that you are likely to need. However, for those rare occasions where
you need to do something that you can’t do in F# but you can in IL, it’s nice to know you have
the option of inline IL.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION338

7575Ch13.qxp  4/27/07  1:08 PM  Page 338



nCaution To use inline IL effectively, you really need to have a good understanding of IL. Some of the
passages in this section will not make sense if you do not have at least a basic knowledge of IL. You can find
resources to help you learn IL at http://strangelights.com/FSharp/Foundations/default.aspx/
FSharpFoundations.IL.

Using inline IL is simple; you just place the IL instructions you would like between paren-
theses with pound signs, as in (# #). The IL instructions are placed inside a string and use the
standard notation that can be compiled with ilasm.exe. This must be correctly formed IL, or
you will get a compiler error. You can then pass parameters to your IL instruction; they are
pushed onto the IL evaluation stack. You must also use the standard colon notation to tell the
compiler what the return type will be; this is placed inside the parentheses. You will also need
to be explicit about the types of the parameters since the compiler has no way of inferring
their types.

You’ll now look at an example of using inline IL. Imagine for whatever reason that you do
not want to use the add and subtract operators defined in the F# base library fslib.dll; say
you want to replace them with your own functions. So, you define two functions, add and sub,
whose bodies are defined using IL:

#light
let add (x:int) (y:int) = (# "add" x y : int #)
let sub (x:int) (y:int) = (# "sub" x y : int #)

let x = add 1 1
let y = sub 4 2

printf "x: %i y: %i" x y

The results of this example, when compiled and executed, are as follows:

x: 2 y: 2

The programmer should be careful when using this technique because it is trivial to write
a program that does not make any sense, and the compiler is unable to warn you about this.
Consider the following program where you revise your previous example to replace the "add"
instruction with a "ret" instruction, which means “return a value” and makes no sense in this
context. This example will compile without error or warning; on execution, you will get an
error.

#light
let add (x:int) (y:int) = (# "ret" x y : int #)

let x = add 1 1

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 339

7575Ch13.qxp  4/27/07  1:08 PM  Page 339



The results of this example, when compiled and executed, are as follows:

Unhandled Exception: System.InvalidProgramException: Common Language Runtime
detected an invalid program.

at Error.add(Int32 x, Int32 y)

nNote One tool distributed with .NET SDK can help you detect these kinds of errors. The tool is called
peverify.exe, and you can find more information about peverify.exe at http://msdn2.microsoft.
com/en-us/library/62bwd2yd(vs.80).aspx.

Using F# from Native Code via COM
Although it is more likely that you will want to call native code from F# code, sometimes you
might want to call F# library functions from native code. For example, suppose you have a
large application written in C++, and perhaps you are happy for the user interface to remain in
C++ but want to migrate some logic that performs complicated mathematical calculations to
F# for easier maintenance. In this case, you would want to call F# from native code. The easi-
est way to do this is to use the tools provided with .NET to create a COM wrapper for your F#
assembly; you can then use the COM runtime to call the F# functions from C++.

nCaution Using COM in C++ is a huge topic, and it is advisable that any programmer wanting to call 
F# in this way is already experienced in C++/COM. If you need more information about this topic, you can
find some starting points at http://strangelights.com/FSharp/Foundations/default.aspx/
FSharpFoundations.CPPCOM.

To expose functions through COM, you need to develop them in a certain way. First you
must define an interface that will specify the contract for your functions, the members of the
interface must be written using named arguments (see the section “Calling F# Libraries from
C#” earlier in the chapter), and the interface itself must be marked with the
System.Runtime.InteropServices.Guid attribute. Then you must provide a class that imple-
ments the interface; this too must be marked with the System.Runtime.InteropServices.Guid
attribute and also System.Runtime.InteropServices.ClassInterface, and you should always
pass the ClassInterfaceType.None enumeration member to the ClassInterface attribute con-
structor to say that no interface should be automatically generated.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION340

7575Ch13.qxp  4/27/07  1:08 PM  Page 340



I’ll now show an example of doing this; suppose you want to expose two functions called
Add and Sub to your unmanaged client. So, create an interface IMath in the namespace
Strangelights, and then create a class Math to implement this interface. You then need to
ensure that both the class and the interface are marked with the appropriate attributes. The
resulting code is as follows:

namespace Strangelights
open System
open System.Runtime.InteropServices

[<Guid("6180B9DF-2BA7-4a9f-8B67-AD43D4EE0563")>]
type IMath = interface

abstract Add : x: int * y: int -> int
abstract Sub : x: int * y: int -> int

end

[<Guid("B040B134-734B-4a57-8B46-9090B41F0D62");
ClassInterface(ClassInterfaceType.None)>]
type Math = class

new () = {}
interface IMath with

member this.Add(x, y) = x + y
member this.Sub(x, y) = x - y

end
end

The functions Add and Sub are of course simple, so there is no problem implementing
them directly in the body of the Math class. If you needed to break them down into other
helper functions outside the class, then this would not have been a problem; it is fine to
implement your class members in any way you see fit. You simply need to provide the inter-
face and the class so the COM runtime has an entry point into your code.

Now comes arguably the most complicated part of the process—registering the assembly
so the COM runtime can find it. To do this, you need to use a tool called RegAsm.exe. Suppose
you compiled the previous sample code into a .NET .dll called ComLibrary.dll; then you
would need to call RegAsm.exe twice using the following command lines:

regasm comlibrary.dll /tlb:comlibrary.tlb
regasm comlibrary.dll

The first time is to create a type library file, a .tlb file, which you can use in your C++
project to develop against. The second registers the assembly itself so the COM runtime can
find it. You will also need to perform these two steps on any machine to which you deploy
your assembly.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 341

7575Ch13.qxp  4/27/07  1:08 PM  Page 341



The C++ to call the Add function appears after the next list; the development environment
and how you set up the C++ compiler will also play a large part in getting this code to compile.
In this case, I created a Visual Studio project, choosing a console application template, and
activated ATL. Notice the following about this source code:

• The #import command tells the compiler to import your type library; you may need to use
the full path to its location. The compiler will also automatically generate a header file, in
this case comlibrary.tlh, located in the debug or release directory. This is useful because it
lets you know the functions and identifiers that are available as a result of your type library.

• You then need to initialize the COM runtime; you do this by calling the CoInitialize
function.

• You then need to declare a pointer to the IMath interface you created; you do this via the
code comlibrary::IMathPtr pDotNetCOMPtr;. Note how the namespace comes from the
library name rather than the .NET namespace.

• Next you need to create an instance of your Math class; you achieve this by calling the
CreateInstance, method passing it the GUID of the Math class. Fortunately, there is a
constant defined for this purpose.

• If this was successful, you can call the Add function; note how the result of the function
is actually an HRESULT, a value that will tell you whether the call was successful. The
actual result of the function is passed out via an out parameter.

Here’s the code:

#include "stdafx.h"
#import "ComLibrary.tlb" named_guids raw_interfaces_only

int _tmain(int argc, _TCHAR* argv[])
{

CoInitialize(NULL);
comlibrary::IMathPtr pDotNetCOMPtr;

HRESULT hRes = pDotNetCOMPtr.CreateInstance(comlibrary::CLSID_Math);
if (hRes == S_OK)
{

long res = 0L;
hRes = pDotNetCOMPtr->Add(1, 2, &res);
if (hRes == S_OK)
{

printf("The result was: %ld", res);
}

pDotNetCOMPtr.Release();
}

CoUninitialize ();
return 0;

}

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION342

7575Ch13.qxp  4/27/07  1:08 PM  Page 342



The results of this example, when compiled and executed, are as follows:

The result was: 3

When you execute the resulting executable, you must ensure that ComLibrary.dll is in the
same directory as the executable, or the COM runtime will not be able to find it. If you intend
that the library be used by several clients, then I strongly recommend that you sign the assem-
bly and place it in the GAC; this will allow all clients to be able to find it without having to keep
a copy in the directory with them.

nNote Another option for calling F# code from unmanaged code is by the custom hosting of the CLR. This is
even more complicated than calling F# methods via COM; however, it can give you fine-grained control over the
behavior of the CLR. If you want to investigate this option, please see http://strangelights.com/FSharp/
Foundations/default.aspx/FSharpFoundations.CLRHosting.

Summary
In this chapter, you saw some advanced techniques in F# for compatibility and interoperation.
Although these techniques are definitely some of the most difficult to master, they also add a
huge degree of flexibility to your F# programming.

CHAPTER 13 n COMPATIBIL ITY AND ADVANCED INTEROPERATION 343

7575Ch13.qxp  4/27/07  1:08 PM  Page 343



7575Ch13.qxp  4/27/07  1:08 PM  Page 344



nSpecial Characters
"" (double quotes), 18
#define macro, 311
#I "<file path>";; command, 307
#if FLAG command, 119
#import command, 342
#light declaration, 21
#load "<source file>.".."<source file>";;

command, 308
#nowarn 51 command, 337
#quit;; command, 308
#r "<assembly file>";; command, 307
#time;; command, 308
#types;; command, 308
#use "<source file>";; command, 308
%A flag, 151
%a flag, 152
%A format pattern, 18
%b flag, 151
%d flag, 151
%E flag, 151
%e flag, 151
%f flag, 151
%g flag, 151
%i flag, 151
%left declaration, fsyacc.exe file, 284
%M flag, 151
%nonassoc declaration, fsyacc.exe file, 284
%O flag, 151
%right declaration, fsyacc.exe file, 284
%s flag, 151
%start declaration, fsyacc.exe file, 284
%t flag, 152
%token declaration, fsyacc.exe file, 284
%token<type> declaration, fsyacc.exe file, 284
%type<type> declaration, fsyacc.exe file, 284
%u flag, 151
%x flag, 151
&&& operator, 151
* (asterisk), 337
:? (colon and question mark operator), 76
[ ] (square brackets), 28, 62
_ (underscore) character, 38, 57, 72
| (vertical bar), 37–38, 62
||| operator, 151
|> operator, 55
+ flag, 152
+ operator, 27
<- (dash), 57

<- (left arrow), 63, 71
< operator, 161
:= operator, 61
-> (arrow), 34, 37
> (greater-than sign), 82
> operator, 161
0 flag, 152
\ (backslash), 18
: (colon), 27–28
! (exclamation point), 61
. (period), 62, 70
; (semicolons), 28, 62
' ' flag, 152
( ) (parentheses), 55

nA
a switch, 300
abs_float function, 162
abstract keyword, 101
abstract method, 101
Abstract Syntax Tree (AST), 280–281

compiling, 289–293
interpreting, 288–289

AbstractIL library, 290
AbstractProperties base class, 105
accessors, 104
acos function, 162
add function, 19
Add function, 154, 341–342
"add" instruction, 339
Add method, 74
AddHandler method, 75
AddPrinter property, fsi Value, 310
AddPrintTransformer property, fsi Value, 310
ADO.NET

extensions, 228–232
overview, 216–221

advanced interoperation. See compatibility and
advanced interoperation

aliases, for namespaces and modules, 115
allocation graph, 322
all-warnings switch, 303
all-warnings-as-errors switch, 303
alternative-install.bat batch file, 8
alternative-install.bat command, 7
alternative-install-vs2003.bat batch file, 8
alternative-install-vs2005.bat batch file, 8
Anchor property, 177
AnchorStyles.Left enumeration value, 150

Index 

345

7575Index.qxp  4/27/07  5:48 PM  Page 345



and keyword, 43, 91, 105, 283
anonymous function, 24, 26, 126
anonymous modules, 111
any_to_string function, 18
AppendChild method, 215
Application class, 196, 206
Applied Games Group, 3
Arg module, 160, 164
argspec tuple type, 164
arithmetic operators, 160
arithmetic-language implementation, 280–297

Abstract Syntax Tree (AST), 281
compilation vs. interpretation, 293–297
compiling AST, 289–293
generating parser, 284–286
interpreting AST, 288–289
overview, 280–281
tokenizing text, 281–284
using parser, 286–287

Array class, 115
array comprehensions, 66
Array module, 333–334
arrays, 62–66
arrow (->), 34, 37
as keyword, 76, 97, 103
ASCII arrow, 34
asin function, 162
.asmx file, 255, 257, 262
asp:LinkButton control, 193
ASP.NET 2.0, 188–189
ASP.NET web forms, 192–195
.aspx file, 188, 192
.aspx pages, 189
assembly browsers, 313–314
Assert class, 312
AST. See Abstract Syntax Tree (AST)
asterisk (*), 337
atan2 function, 162
Attribute string, 122
attributes, custom, 122–124
Attributes property, 71–72
Aurora, 195

nB
backslash (\), 18
Barwick, Chris, 4
base class, 100
Base class, 103
base class, 103–104
base class library (BCL), 3, 13
BCL (base class library), 3, 13
BCL Exists method, 70
BCL System.Array type, 62
begin keyword, 111
bigint integers, 52
bin subdirectory, 188, 256
binary operators, 27

BinaryTree type, 48
block, 43
booleanToString function, 38
boxing, 82
Button control, WinForm, 178
button field, 187
Button object, 74
Button type, 83

nC
'c' char, 18
C#, calling F# libraries from, 323–332

defining classes and interfaces, 330–332
defining types in namespace, 329–330
exposing functions that take functions as

parameters, 324–326
overview, 323–324
returning tuples, 324
using F# lists, 329
using union types, 326–329

casting, 81–83
ceil function, 162
center function, 172
changePositions function, 201, 206
ChangeState method, 93–94
CharSet attribute, DllImport attribute, 338
CheckBox control, WinForm, 179
CheckListBox class, 225
chmod +x fsc command, 9
choose function, 139, 143
class keyword, 99, 108
classes, 95–97

defining, 330–332
implicit class construction, 98–99
and inheritance, 99–101
and methods, 101–103
and static methods, 106–107

classes keyword, 108
ClassInterface attribute, 340
ClassInterfaceType.None attribute, 340
CLI (Common Language Infrastructure), 3
CLI version switches, 306
Click event, 74–75, 185
client-server applications, 239
cli-version <string> switch, 306
cli-version 1.1 switch, 334
cli-version compiler switch, 332
closer function, 145–146
closures, 24
CLR (common language runtime), 35
CLR Profiler, 14, 321–322
clr-root <string> switch, 306
cMax constant, 157
cMin constant, 157
code samples, installing, 13–14
CoInitialize function, 342
colon (:), 27

nINDEX346

7575Index.qxp  4/27/07  5:48 PM  Page 346



colon and question mark operator (:?), 76
colons (::), 28
color parameter, 103
Color.FromArgb(33, 44, 55) method,

System.Drawing.Graphics object, 175
Color.FromKnownColor(KnownColor.Crimson)

method, System.Drawing.Graphics
object, 175

Color.FromName("HotPink") method,
System.Drawing.Graphics object, 175

COM. See Component Object Model (COM)
Combination phrase, 272
combine function, 149–151
combinel function, 274
ComboBox class, 225
ComboBox control, WinForm, 179
ComLibrary.dll file, 341, 343
comlibrary::IMathPtr pDotNetCOMPtr code,

342
comlibrary.tlh file, 342
command-line switches

fsc.exe, 299–307
adding resources switches, 304–305
basic compiler options, 300
CLI version switches, 306
compilation details switches, 307
compiler optimization options, 300–302
compiler target switches, 303
compiler warning switches, 302–303
generating HTML switches, 305–306
overview, 299
printing interface switches, 304
signing switches, 303–304
statically linking switches, 307

fsi.exe, 310–311
CommandText property, 218
comment function, 283
comment rule, 283
comments, 120–122
Common Language Infrastructure (CLI), 3
common language runtime (CLR), 35
compact class syntax, 98
Compare method, 91
comparer identifier, 91
CompareTo method, 93
CompatArray module, 333
CompatArray types,

Microsoft.FSharp.Compatibility
namespace, 66

compatibility and advanced interoperation,
323–343

calling F# libraries from C#, 323–332
defining classes and interfaces, 330–332
defining types in namespace, 329–330
exposing functions that take functions as

parameters, 324–326
overview, 323–324

returning tuples, 324
using F# lists, 329
using union types, 326–329

calling using COM objects, 335–336
overview, 323
using F# from native code via COM, 340–343
using F# with .NET frameworks versions 1

and 1.1, 332–334
using Inline IL, 338–340
using P/Invoke, 336–338

CompatMatrix types,
Microsoft.FSharp.Compatibility
namespace, 66

compilation details switches, 307
compiler optimization options, 300–302
compiler options, 300
compiler target switches, 303
compiler warning switches, 302–303
compiling F# programs, 9–12
Component Object Model (COM)

objects, 335–336
using F# from native code via, 340–343

concat function, 139–140
concatList function, 30, 40
concatListOrg function, 40
.config extension, 209
.config file, 222, 263, 266
ConfigurationManager class, 209
Connect method, TcpClient class, 247
ConnectionString property, 210
constructors, 45, 95
Continuous1 property, 328
Control base class, 82
Control class, 93, 185
control flow, 33, 66–68
Controls collection, 175
convertVolumeImperialPint function, 46
convertVolumeToLiter function, 46
convertVolumeUsPint function, 46
cordbg.exe command-line debugger, 315
cos function, 162
cosh function, 162
couple type, 60
create function, IEvent module, 154
Create static method, 249
createDynamicMethod method, 290, 293
CreateElement method, 215
CreateInstance method, 342
CreateText( ) instance method, 71
createWindow function, 196, 201
critical section, 133
Current member, 244
curried functions, 2, 20
CurriedStyle class, 331
custom attributes, 122–124
custom operators, 27

nINDEX 347

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 347



nD
dash (<-), 57
data access

ADO.NET
extensions, 228–232
overview, 216–221

data binding
and DataGridView, 225–228
overview, 223–225

EntLib data access block, 221–223
Language-Integrated Query (LINQ), 232–233

using to SQL, 236–238
using to XML, 234–235

overview, 209
System.Configuration namespace, 209–212
System.IO namespace, 212–214
System.Xml namespace, 214–216

data binding
and DataGridView, 225–228
overview, 223–225

Database class, 222
DataGridView, and data binding, 225–228
DataGridView control, WinForm, 179
DataSource property, 225
date type, 79
DateTime structure, 324
DateTime type, 79
DateTimePicker control, WinForm, 179
dayEnum, 150
debugging tools, 315–316
declarations, 284
decr function, 163
default keyword, 101
define <string> switch, 300
define FLAG compiler switch, 119
define FRAMEWORK_AT_LEAST_2_0 compiler

switch, 120
defineMessage function, 22
delegate keyword, 108
delegates, 72, 108
Derivatives One, 4
derived type annotation, 84
Description property, 256
Dictionary object, 219
Directory class, 212
DirectoryInfo class, 212, 311
discriminated unions, 45
DispatcherTimer class, 201
display function, 52
Dispose( ) method, 263, 319
Dispose interface, 132
distributed applications

calling web services, 250–255
creating web services, 255–261
hosting WCF services, 265–270
HTTP, 249–250
networking overview, 239–240
overview, 239

TCP/IP sockets, 240–248
WCF, 261–265

div_remainder function, 35
div1 function, 35
div2 function, 35
DLINQ library, 236
.dll files, 205, 263, 335
DllImport attribute, 336, 338
do keyword, 69
do statements, 122–123
doc <string> switch, 300
doc comments, 120–122
doc compiler switch, 120
doc switch, 305
Dock property, 177
docking, 177
DockStyle enumeration, 177
Document Object Model (DOM), 214
doGoogleSearch method, GoogleSearchService

class, 254
DOM (Document Object Model), 214
domain-specific languages (DSLs), 5, 271
doNothing function, 35, 333
doNothingToAnInt function, 36
dot function, 274
double buffering, 173
double quotes (""), 18
DoubleClick event, 83, 185
downcasting, 81
draw type, 85
DrawArc method, System.Drawing.Graphics

object, 173
DrawBezier method, System.Drawing.Graphics

object, 173
DrawClosedCurve method,

System.Drawing.Graphics object, 173
DrawCurve method, System.Drawing.Graphics

object, 173
DrawEllipse method,

System.Drawing.Graphics object, 174
DrawIcon method, System.Drawing.Graphics

object, 174
DrawImage method, System.Drawing.Graphics

object, 174
DrawImageUnscaled method,

System.Drawing.Graphics object, 174
drawLeaf function, 172
DrawLine method, System.Drawing.Graphics

object, 174
DrawLines method, System.Drawing.Graphics

object, 174
DrawPath method, System.Drawing.Graphics

object, 174
DrawPie method, System.Drawing.Graphics

object, 174
DrawPolygon method,

System.Drawing.Graphics object, 174

nINDEX348

7575Index.qxp  4/27/07  5:48 PM  Page 348



DrawRectangle method,
System.Drawing.Graphics object, 174

DrawRectangles method,
System.Drawing.Graphics object, 174

DrawString method, System.Drawing.Graphics
object, 174

drawTree function, 172
drawTreeInner function, 172
DrinkAmount union type, 90
DSLs (domain-specific languages), 5, 271
DynamicMethod class, 290, 296

nE
Elapsed event, 74
else clause, 49
else expression, 67
empty class, 95
empty list, 27
emptyString function, 244
end keyword, 88, 95, 111
Enter event, Control class, 186
Enterprise Library (EntLib) data access block,

221–223
EntryPoint attribute, DllImport attribute, 338
Enum module, 149
enums, 109–110
evens function, 32
event loop, 167
EventLoop property, fsi Value, 310
events, from .NET libraries, 74–76
exception keyword, 49
exceptions and exception handling, 49–50
exclamation point (!), 61
exec switch, 311
execCommand function, 219–220, 227
Exists flag, 97
exists function, 139, 141–142
Exists instance property, 71
exp function, 162
ExpectedException attribute, 312
Expession rule, 285
explicit constructors, 95–98
explicit syntax, 98
Expr type, 281
expression tree, 124, 236
expressions, object, 90–93
eXtensible Markup Language (XML), and LINQ,

234–235
extern keyword, 336

nF
F#

compiling programs, 9–12
creating programs, 9–12
installing

on Linux, 8–9
on Windows, 7–8

using programs, 9–12

failwith function, 49
failwith keyword, 50
false bool, 18
fault tolerance, 239
fib function, 25
Fibonacci calculator, 180
Fibonacci numbers, 52
Fibonacci sequence, 25
field = constant, 45
field = identifier, 45
File class, 212
file1 class, 96
File2 class, 96
File.AppendText method, 132
FileInfo class, 71, 97, 212
File.Open( ) function, 70
File.OpenText method, 213
FileStream object, 214
FillClosedCurve method,

System.Drawing.Graphics object, 174
FillEllipse method, System.Drawing.Graphics

object, 174
FillPath method, System.Drawing.Graphics

object, 174
FillPie method, System.Drawing.Graphics

object, 174
FillPolygon method, System.Drawing.Graphics

object, 174
FillRectangle method,

System.Drawing.Graphics object, 174
FillRectangles method,

System.Drawing.Graphics object, 174
filter function, 139, 142–143, 154–155, 183
filterStringList function, 325
filterStringListDelegate function, 325
finally keyword, 50
find function, 139, 142–143
find_david function, 45
findDavid function, 45
FindIndex method, System.Array class, 73
findMeshes function, 201
FindName method, 196
FirebirdSql.Data.FirebirdClient namespace,

.NET, 230
float function, 163
float32 function, 163
floating-point arithmetic functions, 160
FloatingPointFormat property, fsi Value, 310
floor function, 162
Flush( ) method, 248
fold function, 139, 141
for keyword, 32, 69
for loop, 30, 66–68
for_all function, 139, 141–142
force function, 50
foreach loop, 69, 329
FormatProvider property, fsi Value, 310
FP. See functional programming (FP)

nINDEX 349

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 349



French quotes, 125
from_string function, Lexing module, 283
from_text_reader function, Lexing module, 283
.fs extension, 9, 12
fsc command, 9
fsc -i switch, 56
fsc.exe, 5, 9, 13, 299, 307, 335
fsc.exe command-line switches, 299–307

adding resources switches, 304–305
basic compiler options, 300
CLI version switches, 306
compilation details switches, 307
compiler optimization options, 300–302
compiler target switches, 303
compiler warning switches, 302–303
generating HTML switches, 305–306
overview, 299
printing interface switches, 304
signing switches, 303–304
statically linking switches, 307
versioning switches, 303–304

.fsharpp file, 188, 256
fsi style, 205
fsi value, InteractiveSession type, 309
fsi.exe, 7, 12, 265, 299, 307–311

command-line switches, 310–311
commands, 307–308
controlling environment, 308–310
overview, 307

.fsl extension, 281
fslex.exe, 271, 281–284, 299
FSLib.dll, 129
fslib.dll, 324, 338–339
fst function, 136
.fsx extension, 12
.fsy extension, 284
fsyacc.exe, 271, 282, 284–286, 299
full-help command-line flag, 299
FuncConvert class, 325
function keyword, 26, 41
Function phrase, 272
function type, 81
functional programming (FP), 1

anonymous functions, 26
control flow, 33
defining types, 42–49
exceptions and exception handling, 49–50
identifiers, 15
keywords, 16–17
lazy evaluation, 50–53
list comprehensions, 31–33
lists, 28–31
literals, 17–19
operators, 26–27
overview, 15
pattern matching, 37–42
recursion, 25–26

scope, 22–24
types and type inference, 34–36
values and functions, 19–21
what it is, 1
why it's important, 2

functionOne function, 122
functions, 1

anonymous, 26
that take functions as parameters, 324–326

nG
g switch, 300
GAC (global assembly cache), 7
generate function, 145–147
generate_using function, 145–147, 219
generate-html switch, 306
generating HTML switches, 305–306
GetCredential method, 107
GetCredentialList method, 107
GetCustomAttributes method, 124
GetFiles method, 333
GetMolecule method, 260
GetProperty method, 137
getRandomQuantity( ) function, 326
GetRequestStream method, 251
GetResponse method, 249
getShorty function, 57
getStream function, 164
GetType( ) function, 137
getUrlAsXml function, 249–250
GetValueInfo function, 138
getWebService function, 250
GetYeastMolecule method, 260
global assembly cache (GAC), 7
GoogleSearchService class, 254
graphical user interface (GUI) programming,

81
Graphics class, 168
Graphics object, 172–173
greater-than sign (>), 82
Greet function, 262–263
GreetingService class, 262
GreetingService type, 266
GUI (graphical user interface) programming,

81
gui switch, 310
guillemets, 125

nH
half function, 34
handleClient function, 244
handleConnections function, 244
handlers, 74
helloworld.fs text file, 9
help command-line option, 300
help switch, 299
Herbrich, Ralf, 3

nINDEX350

7575Index.qxp  4/27/07  5:48 PM  Page 350



hosting WCF services, 265–270
hourAndMinute function, 324
HScrollBar control, WinForm, 179
html-css <string> switch, 306
html-namespace-file <string> switch, 306
html-namespace-file-append switch, 306
html-output-directory <string> switch, 306
HTTP (Hypertext Transfer Protocol), 249–250
HttpContent type, 189
httpHandlers section, 189
HTTP/HTTPS requests, 240
HttpRequest class, 250
Hypertext Transfer Protocol (HTTP), 249–250

nI
i switch, 65, 116, 300, 333
IBM.Data.DB2 namespace, .NET, 230
IComparable interface, 93
IComparer interface, 91
IDemoInterface interface, 332
Ident constructor, 286
identifiers, 15
IDisposable interface, 132, 146, 319
IDisposable.Dispose method, 221
IEnumerable collection, 145, 225, 308
IEnumerable interface, 139
IEnumerable module, 148
IEnumerable type, 31, 51
IEnumerable value, 140
IEnumerable<float> annotation, 149
IEnumerable<T> interface, 232
IEnumerator object, 221
IEvent module, 154, 182–186
IEvent.filter function, 183
IEvent.partition function, 183
if expression, 66, 183
if statement, 67
if…then expression, 33
if…then…else expression, 33
ifile <string> flag, 304
ignore function, 57
IGreetingService interface, 262
IGreetingService type, 266
IHttpHandler, creating, 189–192
IL (Intermediate Language) code, 3
ilasm.exe file, 339
ildasm.exe tool, 313
Image.FromFile("myimage.jpg") method,

System.Drawing.Graphics object, 175
Image.FromStream(File.OpenRead("myimage.

gif")) method, System.Drawing.
Graphics object, 175

ImageServiceClient proxy, 269
IMath interface, 341–342
imp identifier, 94
imperative programming

array comprehensions, 66
arrays, 62–66

calling static methods and properties from
.NET libraries, 69–70

control flow, 66–68
defining mutable record types, 59–60
loops over comprehensions, 69
mutable keyword, 57–59
overview, 55
pattern matching over .NET types, 76–78
ref type, 60–62
unit type, 55–57
using indexers from .NET libraries, 73–74
using objects and instance members from

.NET libraries, 71–73
working with events from .NET libraries,

74–76
Implementation class, 93–94
implementation inheritance, 81
implicit class construction, 96, 98–99
Important value, 24
in keyword, 32
incr function, 163
index identifier, 67
indexers

and properties, 104–106
using from .NET libraries, 73–74

infinity function, 162
infix operator, 26
inherit keyword, 99–100
inheritance, and classes, 99–101
Inherits attribute, 192
inherits declaration, 101
init_finite and init_infinite functions, 143–144
init_finite function, 139, 144
init_infinite function, 139, 144
initPos parameter, 85
Inline IL, 338–340
inner function, 24
innerFile field, 97
InnerFile property, 98
innerFun inner function, 24
InputControl field, 193
Install Software dialog box, 8
InstallFSharp.msi package, 7
installing

F# on Linux, 8–9
F# on Windows, 7–8
software samples from book, 13–14

instance members, using from .NET libraries,
71–73

int -> int function type, 81
int array array type, 65
InteractiveSession type, 309
interface inheritance, 81
interface keyword, 92–93
interfaces, 99

defining, 330–332
implementing, 93–95

Intermediate Language (IL) code, 3

nINDEX 351

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 351



interpolate function, 273
interpret function, 288, 293
interpretInt function, 127
intList integers, 78
intList value, 36
Invalidate method, 169
Invoke method, 248, 296
InvokeMember method, 137
IPAddress.Any address, 245
IsContinuous( ) method, 327
IsDefined method, 124
IsDiscrete( ) method, 327
isInMandelbrotSet function, 158
IsReusable Boolean property, 189
it identifier, 12
Item indexer property, 148
Item indexers, 105
Item property, 73
itemOne identifier, 73
itemTwo identifier, 73
iter function, 139–140

nJ
jagged arrays, 63
Java virtual machine (JVM), 278
JiggleState method, 103
JIT compiler, 295
JVM (Java virtual machine), 278

nK
keyfile <string> switch, 304
KeyPress event, Control class, 186
KeyUp event, 248
keyUp function, 248
keywords, 16–17

nL
Label control, WinForm, 178
label field, 187
LALR(1 (lookahead left-to-right parsers)), 284
lambdas, 24, 26
Language-Integrated Query. See LINQ

(Language-Integrated Query)
language-oriented programming, 271–297

arithmetic-language implementation,
280–297

Abstract Syntax Tree (AST), 281
compilation vs. interpretation, 293–297
compiling AST, 289–293
generating parser, 284–286
interpreting AST, 288–289
overview, 280–281
tokenizing text, 281–284
using parser, 286–287

data structures as little languages, 271–277
metaprogramming with quotations, 278–280
overview, 271

Launch( ) method, System.Diagnostics.
Debugger class, 316

lazy evaluation, 50–53
lazy keyword, 50
LazyList collection type, 51
lazyList identifier, 52
LazyList.unfold function, 51
ldexp function, 162
Leave event, Control class, 186
left arrow (<-), 63, 71
left ASCII arrow, 57
Left property, 177
let expressions, 57, 118
let keyword, 15, 21, 25, 27, 56, 281
lexbuf value function, 282
LexBuffer, 286
lexeme function, 282–283
lexeme_bytes function, Lexing module, 283
lexeme_char function, Lexing module, 283
lexeme_end function, Lexing module, 283
lexical analysis, 281
lexing, 281
Lexing.from_string function, 286
Lexing.from_text_reader function, 286
libraries

calling from C#, 323–332
defining classes and interfaces, 330–332
defining types in namespace, 329–330
exposing functions that take functions as

parameters, 324–326
overview, 323–324
returning tuples, 324
using F# lists, 329
using union types, 326–329

Microsoft.FSharp.Compatibility.OCaml.
Arg module, 164–166

ML Compatibility Library MLLib.dll, 131,
160–164

native F# library FSLib.dll, 130–131
Microsoft.FSharp.Collections.

Seq module, 139–149
Microsoft.FSharp.Control.IEvent module,

154–156
Microsoft.FSharp.Core.Enum module,

149–151
Microsoft.FSharp.Core.operators module,

132–136
Microsoft.FSharp.Math namespace,

156–159
Microsoft.FSharp.reflection module,

137–138
Microsoft.FSharp.Text.Printf module,

151–153
overview, 132

overview, 129
LineDefinition type, 272–273
LineDetail record type, 273

nINDEX352

7575Index.qxp  4/27/07  5:48 PM  Page 352



LinkLabel control, WinForm, 179
link-resource <string> switch, 305
LINQ (Language-Integrated Query), 232

overview, 232–233
and SQL, 236–238
and XML, 234–235

Linux, installing F# on, 8–9
list comprehensions, 31–33
List type, 140
ListBox class, 225
ListBox control, WinForm, 179
List.concat function, 31
listen function, 183, 244
List.iter function, 30, 78
List.nonempty function, 30
List.rev function, 29
lists, 28–31, 329
List.to_array function, 329
List.to_ResizeArray function, 329
List.to_seq function, 329
literals, 17–19
Load event, 248
lock function, 132–136
lockObj function, 135
log function, 162
log10 function, 162
lookahead left-to-right parsers (LALR(1)), 284
loops over comprehensions, 69
luc function, 37

nM
machine.config, 211
main function, 55, 196, 201, 337
makeCircle function, 88
makeMessage function, 34
makeNumberControl function, 93
makeSafeThread function, 134
makeShape function, 85
makeSquare function, 88
makeUnsafeThread function, 134
map function, 70, 139–140, 154, 156
mapPlane function, 158
mapPositionsCenter function, 201
MaskedTextBox control, WinForm, 178
match keyword, 37
Math class, 341–342
max_float function, 162
maxWidth function, 172
mdbg.exe command-line debugger, 315
MeasureString method, System.Drawing.

Graphics object, 174
member keyword, 88, 93, 101, 104, 106
members, types with, 88–90
message identifier, 22
MessageBeep function, 336
metaprogramming, with quotations, 278–280
Method calls, 69

Method property, WebRequest class, 251
methods

and classes, 101–107
overriding from non-F# libraries, 107
static, calling from .NET libraries, 69–70

Microsoft Developers Network (MSDN) web
service, 250

Microsoft Research (MSR), 3
Microsoft.CSharp.CSharpCodeProvider class,

290
Microsoft.FSharp.Collections.Seq module, 132

choose function, 143
concat function, 140
exists and for_all functions, 141–142
filter, find, and tryfind functions, 142–143
fold function, 141
generate and generate_using functions,

145–147
init_finite and init_infinite functions,

143–144
map and iter functions, 139–140
overview, 139
unfold function, 144–145
untyped_ functions, 148–149

Microsoft.FSharp.Compatibility namespace,
333

Microsoft.FSharp.Control.IEvent module, 132
creating and handling events, 154
filter function, 154–155
map function, 156
overview, 154
partition function, 155

Microsoft.FSharp.Core.Enum module, 132
combine and test functions, 150–151
overview, 149
to_int and of_int functions, 150

Microsoft.FSharp.Core.Operators module, 114,
132

Microsoft.FSharp.Core.operators module
lock function, 133–136
overview, 132
tuple functions, 136
using function, 132–133

Microsoft.FSharp.Math namespace, 156–159
Microsoft.FSharp.MLLib.Arg module, 160
Microsoft.FSharp.MLLib.Pervasives module,

160
Microsoft.FSharp.Reflection module, 132
Microsoft.FSharp.reflection module

overview, 137
reflection over types, 137–138
reflection over values, 138

Microsoft.FSharp.Text.Printf module, 132,
151–153

Microsoft.Office.Interop prefix, 335
mid identifier, 21
min_float function, 162

nINDEX 353

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 353



ML Compatibility Library MLLib.dll, 131
.mli extension, 116
MLLib.dll, 129
mod_float function, 162
modf function, 162
module, execution, 117–119
module directive, 113
module keyword, 111, 115
modules, 111–112

giving aliases, 115
opening, 114–115
scope, 116–117

molecule object, 259
Mono, 8, 306
MonthCalander control, WinForm, 179
MouseButton event, 182
MouseHover event, Control class, 186
MouseUp event, Control class, 185
Move event, Control class, 186
movingWaves function, 201
MSDN (Microsoft Developers Network) web

service, 250
MSDN library, 178
.msi extension, 7
MSR (Microsoft Research), 3
Multi constructor, 286
MultiArgStyle class, 331
multiline comments, 120
mutable identifiers, 55
mutable integer functions, 160
mutable keyword, 57–59, 97
mutable record types, 59–60
mutable state, 55
mutually referential, 43
myAnd function, 39
MyClass class, 106
myConciseControls function, 85
myControls function, 85
MyDelegate delegate, 108
myForm type, 84
MyInt class, 107
MyInterface interface, 93–94
myOr function, 39
myPrintInt function, 152
MyProp property, 104
MySql.Data.MySqlClient namespace, .NET, 230
MySquareForm class, 103
myString identifier, 164
myString value, 120

nN
n identifier, 112
n parameter, 32
Name property, System.Type, 138
Namespace attribute, 256
namespace directive, 113

namespaces, 112–113
defining types in, 329–330
giving aliases, 115
opening, 114–115

nan function, 162
native F# library FSLib.dll

Microsoft.FSharp.Collections.Seq module
choose function, 143
concat function, 140
exists and for_all functions, 141–142
filter, find, and tryfind functions, 142–143
fold function, 141
generate and generate_using functions,

145–147
init_finite and init_infinite functions,

143–144
map and iter functions, 139–140
overview, 139
unfold function, 144–145
untyped_ functions, 148–149

Microsoft.FSharp.Control.IEvent module
creating and handling events, 154
filter function, 154–155
map function, 156
overview, 154
partition function, 155

Microsoft.FSharp.Core.Enum module
combine and test functions, 150–151
overview, 149
to_int and of_int functions, 150

Microsoft.FSharp.Core.operators module
lock function, 133–136
overview, 132
tuple functions, 136
using function, 132–133

Microsoft.FSharp.Math namespace, 156–159
Microsoft.FSharp.reflection module

overview, 137
reflection over types, 137–138
reflection over values, 138

Microsoft.FSharp.Text.Printf module,
151–153

overview, 132
neg_infinity function, 162
.NET CLR Exceptions # of Exceptions

Thrown/sec performance object, 319
.NET CLR Jit % Time in Jit performance object,

319
.NET CLR Memory # Bytes in all Heaps

performance object, 319
.NET CLR Memory % Time in GC performance

object, 319
.NET CLR Memory Finalization Survivors

performance object, 319
.NET Framework 1 and 1.1, 332–334
.NET Framework 3.0, 13
.NET libraries

nINDEX354

7575Index.qxp  4/27/07  5:48 PM  Page 354



calling static methods and properties in,
69–70

using indexers from, 73–74
using objects and instance members from,

71–73
working with events from, 74–76

.NET programming tools, 299–322
assembly browsers, 313–314
debugging tools, 315–316
fsc.exe command-line switches, 299–307

adding resources switches, 304–305
basic compiler options, 300
CLI version switches, 306
compilation details switches, 307
compiler optimization options, 300–302
compiler target switches, 303
compiler warning switches, 302–303
generating HTML switches, 305–306
overview, 299
printing interface switches, 304
signing switches, 303–304
statically linking switches, 307
versioning switches, 303–304

fsi.exe, 307–311
command-line switches, 310–311
commands, 307–308
controlling environment, 308–310
overview, 307

NUnit tests, 311–312
overview, 299
profiling tools, 316–322

CLR Profiler, 321–322
NProf, 320–321
ntimer, 317
overview, 316–317
Perfmon, 317–320
performance counters, 317–320

source directory macro, 311
networking overview, 239–240
new Font(FontFamily.GenericSerif, 8.0f), 175
new Icon(File.OpenRead("myicon.ico"))

method, System.Drawing.Graphics
object, 175

new Icon("myicon.ico") method,
System.Drawing.Graphics object, 175

new keyword, 43, 71
new Pen(Color.FromArgb(33, 44, 55)) method,

System.Drawing.Graphics object, 175
new SolidBrush(Color.FromName("Black"))

method, System.Drawing.Graphics
object, 175

newImgEvent event, 267
no-banner switch, 311
no-gui switch, 9, 310
no-logo switch, 311
nonterminals, 284
no-readline switch, 311

no-warn <int> switch, 303
nowarn 51 compiler flag, 337
no-warnings switch, 303
NProf, 14, 320–321
ntimer.exe tool, 302, 316–317
NullReferenceException interface, 96
numbers array, 65
NUnit, 13, 311–312
NUnit.Framework.dll assembly, 311

nO
o <string> switch, 300
O switch, 301
O0 switch, 301
O1 switch, 301
O2 switch, 301
O3 switch, 301
Obj module, 161
obj type, 77, 81, 83
object expressions, 93
Objective Caml (OCaml), 3
object-oriented programming

accessing base class, 103–104
casting, 81–83
classes

implicit class construction, 98–99
and inheritance, 99–101
and methods, 101–103
and static methods, 106–107

classes, fields, and explicit constructors,
95–98

defining delegates, 108
defining interfaces, 93
enums, 109–110
implementing interfaces, 93–95
methods, overriding from non-F# libraries,

107
object expressions, 90–93
overview, 81
properties and indexers, 104–106
records as objects, 85–88
structs, 108–109
type annotations for subtyping, 83–85
type tests, 83
types with members, 88–90

objects
records as, 85–88
using from .NET libraries, 71–73

obj.ReferenceEquals method, 161
Obsolete attribute, 122, 124
ObsoleteAttribute attribute, 122
obtaining F#, 7
OCaml (Objective Caml), 3
OCaml background, 50
of keyword, 49
of_int function, 149–150
O'Kelly, Jude, 4

nINDEX 355

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 355



OnClick attribute, 193
OneArgStyle class, 331
OnPaint method, 104
OnResize method, 104
Ooff switch, 301
open directive, 111–112
open keyword, 114
Open method, myServiceHost, 266
openConnectionReader function, 221
opener function, 145
OpenRead method, 214
OperationContractAttribute, 262
operators, 26–27
Operators module, 136
option type, 51, 126
optional compilation, 119–120
OracleConnection class, 229
Oracle.DataAccess.Client namespace, .NET,

230
Organization2 type, 43
Organization3 type, 43
output_string function, 164
OutputControl field, 193
override keyword, 90, 101
overriding, 90

nP
Page directive, 192
Paint event, Control class, 186
Paint method, 168
Panel control, WinForm, 179
parameterless constructor, 100
parentheses, 55
parse keyword, 283
parsers

generating, 284–286
using, 286–287

partial functions, 20
partition function, 154–155
pascalsTriangle type, 65
path argument, 98
path parameter, 96
pattern matching, 37–42, 76–78
peer-to-peer applications, 239
Pen type, 273
Perfmon, 317–320
performance counters, 317–320
performance objects, 318
period (.), 62, 70
Pervasives module, 160–161, 163
phrase type, 61
P/Invoke, 336–338
point record type, 88
Points phrase, 272
polymorphism, 81
Predicate delegate, 73
print_any function, 18

print_endline function, 56, 160
print_int function, 160
print_string function, 160
printBinaryTreeValues function, 48
PrintDepth property, fsi Value, 310
printf function, 18, 152
Printf module, 151, 153
printing interface switches, 304
PrintingPermission attribute, 122
PrintIntercepts property, fsi Value, 310
PrintLength property, fsi Value, 310
printTreeValues function, 48
PrintWidth property, fsi Value, 310
Process % Processor Time performance object,

318
Process Handle Count performance object, 319
Process Page Faults/sec performance object, 318
Process Private Bytes performance object, 319
ProcessRequest method, 189
profiling tools, 316–322

CLR Profiler, 321–322
NProf, 320–321
ntimer, 317
overview, 316–317
Perfmon, 317–320
performance counters, 317–320

progress flag, 307
ProgressBar control, WinForm, 179
properties

and indexers, 104–106
static, calling from .NET libraries, 69–70

protocol, 239
providerName property, 210
ProviderName property, 211
pseudogeneric, 333
public functions, 323
public-keyfile <string> switch, 304

nQ
Quantity union type, 326
queryMsdn function, 251
quotation, 124
quoted code, 124–127
quoting, 111

nR
R <string> switch, 300
r command-line switch, 335
RadioButton control, WinForm, 179
Rainbow identifier, 43
raise keyword, 49
raisePowerTwo function, 15
ReadOnly attribute, 71
rec keyword, 25
ReceiveImage function, 267, 269
recognizeType function, 76

nINDEX356

7575Index.qxp  4/27/07  5:48 PM  Page 356



records
as objects, 85–88
types, 42

rectangular arrays, 63
recursion, 25–26
ref cell, 85
ref type, 55, 59–62
Reflector, 14
RegAsm.exe tool, 341
Remove function, 244
RemoveHandler method, 75
reposition type, 85
Request property, 189
requestAndReadName function, 244
requestTemplate identifier, 251, 253
resgen.exe generator, 305
Resize event, 169, 186
ResizeArray attribute, 72
resource <string> switch, 305
.resource format, 305
Response property, 189
result identifier, 33
.resx extension, 305
resxc.exe tool, 299, 305
"ret" instruction, 339
rev_string method, 106
rhymeArray type, 63
RichTextBox control, WinForm, 179
RNAML, 258
rnaml.xsd file, 259
Run method, Application class, 206

nS
sample function, 273–274
SayHelloButton_Click function, 193
scalability, 239
Scale enum, 109
scanner, 284
scope, 22–24
SDK for .NET Framework 3.0, 13
security, 240
select statement, 234
semicolons (;), 28, 62
sendMessage function, 244–245
Seq function, 143
Seq module, 52, 139, 232
seq type, 51
Seq.iter function, 221
Seq.take function, 52
sequence object, 259
sequences, 31
Service attribute, 262
service element, 262
SetLastError attribute, DllImport attribute, 338
Shape record type, 88
Shape type, 85

Shared Source Common Language
Infrastructure (SSCLI), 7, 306

Show( ) method, 167, 206
showForm type, 84
ShowIEnumerable property, fsi Value, 310
ShowProperties property, fsi Value, 310
signature files, 116
signing switches, 303–304
sin function, 162
single inheritance, 99
singleDim identifier, 64
single-line comments, 120
single-thread apartment, 123
sinh function, 163
.sln file, 188
snd function, 136
sn.exe tool, 303
software, installing samples from book, 13–14
Some constructor, 52
source directory macro, 311
spec union type, 164
SQL (Structured Query Language), and LINQ,

236–238
SQL Server 2005 Express Edition, 13, 217
SqlCommand class, 218
SqlConnection class, 229
SqlConnection object, 221
SqlDataReader class, 219, 221
SqlMetal.exe tool, 236
sqrt function, 162
square brackets ([ ]), 28, 62
square rectangular array, 64
squarePoints function, 32
SSCLI (Shared Source Common Language

Infrastructure), 7, 306
sscli command-line switch, 7
standalone switch, 307
standard input stream, 163
standard output stream, 163
start value, 99
STAThread attribute, 123
static keyword, 106
static methods

and classes, 106–107
and properties, calling from .NET libraries,

69–70
statically linking switches, 307
static-link <string> switch, 307
status identifier, 337
stdout stream, 164
Strangelights namespace, 180, 341
Strangelights.Fibonacci module, 180
StreamReader object, 213
streams, 160
StreamWriter class, 244
strict evaluation order, 50
strict language, 50

nINDEX 357

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 357



string array type, 63
string identifier, 83
string list type, 78
string ref type, 61
string type, 57, 82
stringList identifier, 36
stringToBoolean function, 38
strong typing, 23
strongly typed language, 34
struct keyword, 108
structs, 108–109
Structured Query Language (SQL), and LINQ,

236–238
sub class, 100
Sub function, 341
subtyping, type annotations for, 83–85
sum types, 42, 45
.svc file, 262
SvcUtil.exe utility, 263, 269
Swap function, 88
switch statement, 37, 327
Syme, Dr. Don, 3
System.Array class, 64
System.Array method, 329
System.CodeDom classes, 290
System.Collections namespace, 81
System.Collections.ArrayList class, 13
System.Collections.Generic namespace, 81, 140
System.Collections.Generic.IEnumerable array,

324
System.Collections.Generic.IEnumerable

function, 329
System.Collections.Generic.List array, 324
System.Collections.Generic.List function, 329
System.Collections.Generic.List property, 13
System.Collections.Hashtable class, 13
System.Configuration namespace, 209–212
System.Data.Common.DbCommand class,

ADO.NET, 228
System.Data.Common.DbConnection class,

ADO.NET, 228
System.Data.Common.DbDataAdapter class,

ADO.NET, 229
System.Data.Common.DbDataReader class,

ADO.NET, 228
System.Data.Common.DbParameter class,

ADO.NET, 228
System.Data.DataSet class, ADO.NET, 229
System.Data.Odbc namespace, .NET, 229
System.Data.OleDb namespace, .NET, 229
System.Data.OracleClient namespace, .NET,

229
System.DateTime list type, 79
System.Diagnostics.Debugger class, 316
System.Drawing namespace, 173
System.Drawing.Graphics object, 173
System.Drawing.Pen class, 273

System.Environment.Version property, 12
System.Flags attribute, 151
System.IO namespace, 71, 164, 212–214
System.IO.Directory class, 333
System.IO.FileInfo object, 71
System.IO.StreamReader class, 241
System.IO.StreamWriter class, 241, 252
System.IO.StreamWriter method, 133
System.Net namespace, 240
System.Net.ICredentials interface, 107
System.Net.Sockets.NetworkStream class, 241
System.Net.Sockets.TcpClient class, 241
System.Net.Sockets.TcpListener class, 241
System.Net.WebRequest class, 249
System.Net.WebResponse class, 249
System.Reflection namespace, 137
System.Reflection.Emit namespace, 290
System.Reflection.Emit.DynamicMethod class,

290
System.Reflection.MemberInfo class, 124
System.Runtime.InteropServices namespace,

336
System.Runtime.InteropServices.

ClassInterface attribute, 340
System.Runtime.InteropServices.

Guid attribute, 340
System.ServiceModel.

ServiceContractAttribute, 262
System.Type object, 137
System.Web namespace, 195
System.Web.HtmlControls namespace, 195
System.Web.Mail namespace, 195
System.Web.Service.WebService, 256
System.Web.Service.WebServiceAttribute, 256
System.Web.WebControls namespace, 195
System.Web.WebControls.Adapters

namespace, 195
System.Web.WebControls.WebParts

namespace, 195
System.Windows.Application.Run method, 167
System.Windows.Forms.Form class, 167
System.Winows.Forms.Form inheritance, 88
System.Xml namespace, 212, 214–216
System.Xml.Schema.XmlSchema class,

System.XML namespace, 216
System.Xml.Serialization.XmlSerializer class,

System.XML namespace, 216
System.Xml.XmlDocument class, System.XML

namespace, 216
System.Xml.XmlNode class, System.XML

namespace, 216
System.Xml.XmlNodeList class, System.XML

namespace, 216
System.Xml.XmlTextReader class, System.XML

namespace, 216
System.Xml.XmlTextWriter class, System.XML

namespace, 216

nINDEX358

7575Index.qxp  4/27/07  5:48 PM  Page 358



System.Xml.XPath.XPathDocument class,
System.XML namespace, 216

System.Xml.XPath.XPathExpression class,
System.XML namespace, 216

System.Xml.XPath.XPathNavigator class,
System.XML namespace, 216

System.Xml.Xsl.XslTransform class,
System.XML namespace, 216

nT
TabControl control, WinForm, 179
Tag property, 93, 327
take function, 144
tan function, 163
tanh function, 163
target-dll switch, 303
target-exe switch, 303
target-module switch, 303
target-winexe switch, 303
TcpClient class, 247
TCP/IP sockets, 240–248
TcpListener class, 245
Test attribute, 311
test function, 149–151
TestCases class, 311
TestDiv02 case, 312
TestFixture attribute, 311
testSecond function, 49
text, tokenizing, 281–284
Text property, 187
TextBox control, WinForm, 178
textbox field, 187
TheClass class, 330
TheModule class, 330
then keyword, 97
thePlayers instance, 43
Timer object, 74
TlbImp.exe tool, 335
to_int function, 149–150
token function, 286
tokenizing text, 281–284
tokens, 281
tool suite, 299–322

assembly browsers, 313–314
debugging tools, 315–316
fsc.exe command-line switches, 299–307

adding resources switches, 304–305
basic compiler options, 300
CLI version switches, 306
compilation details switches, 307
compiler optimization options, 300–302
compiler target switches, 303
compiler warning switches, 302–303
generating HTML switches, 305–306
overview, 299
printing interface switches, 304
signing switches, 303–304

statically linking switches, 307
versioning switches, 303–304

fsi.exe, 307–311
command-line switches, 310–311
commands, 307–308
controlling environment, 308–310
overview, 307

NUnit tests, 311–312
overview, 299
profiling tools, 316–322

CLR Profiler, 321–322
NProf, 320–321
ntimer, 317
overview, 316–317
Perfmon, 317–320
performance counters, 317–320

source directory macro, 311
Top property, 177
Topmost property, 206
ToString function, 18, 90, 234
tree type, 48
TreeNode objects, 176
TreeView class, 175
TreeView control, WinForm, 179
trigger function, 154
true bool, 18
truncate function, 163
try keyword, 49–50
try…match construct, 77
try…with construct, 77
tryfind function, 139, 142–143
Tuple class, 129
Tuple functions, 132
tuple functions, 136
tuples, 20, 42, 324
TupleStyle class, 331
TupleType constructor, 137
TupleValue constructor, 138
type annotations, 36, 83–85
type constraint, 36
type keyword, 42–43, 45, 47, 95
Type Library Importer, 335
type parameterization, 35, 60
TypeInfo value, 137
types

defining, 42–49
defining in namespace, 329–330
with members, 88–90
and type inference, 34–36

nU
underscore (_) character, 38, 57, 72
unfold function, 51–52, 139, 144–145
union types, 42, 45, 323, 326–329
unit function, 133
unit type, 55–57, 66–67
unmanaged code, 123

nINDEX 359

Find
itfasterathttp://superindex.apress.com

/

7575Index.qxp  4/27/07  5:48 PM  Page 359



Unrestricted property, PrintingPermission
attribute, 122

untyped function, 139, 148
untyped prefixed, 148
untyped_ function, 148–149
untyped_to_typed function, 149
upcasting, 81
user interfaces

ASP.NET 2.0, 188–189
ASP.NET web forms, 192–195
creating IHttpHandler, 189–192
creating new forms classes, 186–188
overview, 167
using Visual Studio Form Designer's forms

in F#, 179–182
Windows Presentation Foundation, 195–197
WinForms

controls in, 175–179
drawing, 168–175
events and IEvent module, 182–186
overview, 167–168

using function, 71, 114, 132–133, 218–219, 263
using statement, 329
/usr/bin file, 8

nV
val keyword, 34, 96
Value.GetInfo( ) function, 137
values, 19–21
variable type, 35
Vector.of_list function, 274
vectors, 62, 156
version <string> switch, 304
version-file <string> switch, 304
versioning switches, 303–304
vertical bar ( | ), 37–38, 62
Very Important value, 24
Visible property, 167
Visual Studio Form Designer's forms in F#,

179–182
void type, 55
Volume type, 46
VScrollBar control, WinForm, 179

nW
warn <int> switch, 303
warn-as-error <int> switch, 303
wayneManor instance, 43
WCF (Windows Communication Framework),

261–270
web services, 240

calling, 250–255
creating, 255–261

WebBrowser control, WinForm, 179
web.config file, 188–189, 209, 256
WebRequest object, 249
WebService attribute, 259

when clause, 38
when guard, 32, 38
when keyword, 32, 38
while loop, 66, 68
WiggleState method, 103
wildcard, 38
win32res <string> switch, 305
Windows, installing F# on, 7–8
Windows Communication Framework (WCF),

261–270
Windows Presentation Foundation (WPF), 123,

167, 195–197
Windows Server 2003 Resource Kit Tools, 13
WinForms, 123

controls in, 175–179
drawing, 168–175
events and IEvent module, 182–186
overview, 167–168

with block, 50
with keyword, 43, 49, 88, 90, 104–105
WPF (Windows Presentation Foundation), 123,

167, 195–197
wrapper function, 72
writing NUnit tests, 311–312
WrongSecond exception, 49
wrongSecond exception, 50
wsdl.exe tool, 250, 253, 263

nX
x function parameter, 36
x identifier, 26
x parameter, 15
x values, 273
XAML, 167
XContainer class, LINQ, 234
XDocument class, LINQ, 234
XDocumentType class, LINQ, 234
XElement class, LINQ, 234
XML (eXtensible Markup Language), and LINQ,

234–235
XmlDocument class, 214–215
XName class, LINQ, 234
XNode class, LINQ, 234
XPath, 214
XProcessInstruction class, LINQ, 234
XSD schemas, 214, 258
xsd.exe command-line tool, 258
XSLT language, 214
XText class, LINQ, 234

nY
Year property, DateTime type, 79

nINDEX360

7575Index.qxp  4/27/07  5:48 PM  Page 360


	Foundations of F#
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Index




