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Preface

Functional languages

In a declarative programming language a computation is expressed in
a static fashion, as a list of declarations. A program in such a language
is regarded as a specification that happens to be executable as well. In
this textbook we focus on a subclass of the declarative languages, the
functional programming languages, sometimes called applicative
languages. In these languages a program consists of a list of function
definitions. The execution of a program consists of the evaluation of a
function application given the functions that have been defined.

In this book we want to show that functional programming lan-
guages can be used to write compact, reliable and readable programs.
As example languages we shall use the functional languages Miranda
and Concurrent Clean. We shall explain the advantages and disadvan-
tages of functional languages, show how efficient implementations can
be obtained on sequential and parallel architectures, and discuss the im-
portant underlying theoretical frameworks. The expressive power of
functional languages is shown not only by some small examples. The
descriptions, transformation and compilation schemes, as well as the
definitions of the abstract machine architectures given in this textbook
are all presented in a functional style illustrating the suitability of func-
tional languages as specification tools.

Graph rewriting systems

The concept of a function is a fundamental notion in mathematics. One
of the very strong points of functional languages is the property that
their semantics is based very directly on well-defined mathematical
models of computation. In fact, functional languages can be regarded as
sugared versions of these models. These models are very important be-
cause they abstract from unimportant language details. In this way they
help to get a better understanding of the essential underlying concepts of
a language. This knowledge can then be used to improve the language
itself, but it can also be used to make better implementations.
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The traditional model of computation used for functional lan-
guages is the λ-calculus. Field and Harrison (1988) give a very good,
thorough survey of several functional languages and their implementa-
tions using the λ-calculus as the basic model of computation. They use
HOPE as a functional language instead of Miranda and they restrict
themselves mainly to sequential implementations.

This book differs from other textbooks in that it focuses on an al-
ternative model of computation: graph rewriting systems. Like the λ-
calculus this model has the advantage that it is simple and that it can
model functions. Unlike the λ-calculus it additionally contains the im-
portant notions of patterns and graphs. Graphs (and the related notion of
sharing) play a key role in any efficient (parallel) implementation. To
reason about the computational complexity of a program it is essential
to know whether computations are shared or not. Furthermore, the no-
tion of uniqueness in graphs gives an efficient solution for modelling
interaction and side-effects within a pure functional framework.

Implementation on sequential architectures

The implementation of functional languages is quite complex when ef-
ficient code has to be generated. In this book we shall explain how such
an implementation can be achieved on traditional sequential architec-
tures. The implementation of functional languages is explained in a
number of steps. Starting from Miranda, we go down in level of abstrac-
tion until we reach the concrete machine level. In this compilation pro-
cess the functional language Concurrent Clean (based upon graph
rewriting systems) is used as intermediate language.

Concurrent programming and parallel evaluation

Another advantage of functional languages is that they are, in principle,
suited for concurrent (parallel or interleaved) evaluation. However, an
implementation on parallel hardware is much more difficult than on se-
quential hardware, mainly because parallel machines are hard to pro-
gram anyway. Concurrent functional programming is being investigated
at several research institutes but is still in its infancy. We shall demon-
strate its potential power and discuss the implementation on loosely
coupled parallel architectures.

About this book

This book is intended as a textbook for a one or two semester (term)
course: an introductory course on functional programming, models of
computation and the implementation of functional programming lan-
guages on traditional sequential machine architectures (Parts 1, 2 and
4), optionally followed by an advanced course focused on analysis
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methods (strictness analysis and type theory), concurrent functional pro-
gramming and implementation on parallel architectures (Parts 3 and 5).

The prerequisite for this book is an introductory course in com-
puter science including knowledge of programming in a high-level lan-
guage as well as some basic understanding about (parallel) computer
architectures and compiler construction.

This textbook is suited for advanced undergraduate students, for
postgraduate students of computer science and for researchers interested
in the area of functional programming and the implementation tech-
niques on sequential and parallel architectures.

The subject of this textbook is a hot and very interesting research
topic. It is not an easy topic because many aspects of computer science
play a role in it. Although much progress has been made during the last
decade, also many problems are still to be solved and are expected to
remain unsolved for quite a while. Instead of covering all existing and
proposed lines of research we have chosen to base this book mainly on
the work performed by our research team at the University of Nijmegen.
This has the advantage that one complete line of approach, involving
theory, specification and implementation, can be described in detail
based upon actual experience. For example, all translation schemes pre-
sented in this book are abstracts from the prototype specifications writ-
ten in a functional formalism that have been used as blueprint for the ac-
tual implementations. The approaches explained in this book have pro-
duced good results. Furthermore, they have many things in common
with other approaches, so one will still get a very good overall insight
on the actual problems and how they can be handled.

About the Concurrent Clean software

The Concurrent Clean system, the software system developed at the
University of Nijmegen using the approaches described in this textbook,
can be ordered separately via the authors (from the address at the end of
the Preface). This software can be used to obtain practical experience in
(concurrent) functional programming. With this system one can develop
real applications.

The Concurrent Clean system contains a programming environ-
ment (including text editor and project manager), an interpreter and a
code generator for the lazy functional language Concurrent Clean (Brus
et al., 1987; Nöcker et al., 1991b). The system is especially designed for
the Apple Macintosh (Plasmeijer et al., 1991) and generates efficient
code for any Mac. An I/O-library is available offering a very high-level
specification of modern I/O-handling (windows, dialogues and the like).
Furthermore, it is possible to generate parallel code for Macs connected
in a local area network (AppleTalk/Ethernet).

Concurrent Clean and the Concurrent Clean system are also avail-
able on other platforms. The Macintosh version runs on an Atari ST
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(using a Mac emulator). There is a version for Sun3 (Motorola) and
Sun4 (SPARC) under UNIX using an X Window System with
Open Look or OSF-Motif for the low-level I/O-handling. Clean pro-
grams can run on any of these platforms without the need to modify
source code. A cross-compiler is available for ParSyTec's Supercluster
(transputer). A version for the IBM-PC (look-alikes) is under develop-
ment.

The Clean research team is working on the improvement of Con-
current Clean and the Concurrent Clean system. Please contact the au-
thors for the latest information.

Outline of this book

This book is divided into five parts. In the first two parts we focus on
functional programming and suitable underlying models of computation.
Then, in Part 3 these models are used to show how properties of func-
tional programs can be analysed. Part 4 uses a particular model to show
in detail how functional programs can be implemented efficiently on
traditional architectures. The final part (Part 5) covers the same kind of
subjects as Parts 1, 2 and 4 respectively, but focuses on parallelism.
Since the research in this area is less stabilized, this final part is of a
more introductory and reflective nature. Exercises are given at the end
of each chapter (difficult or large exercises are marked *).

Part 1: Functional programming

In this first chapter we give a description of the basic language concepts
that most functional languages have in common (Chapter 1). Hereafter
we show in more detail the descriptive power and syntactic sugar of the
advanced language concepts as offered by one particular functional
programming language: Miranda (Chapter 2).

Part 2: Models of computation

In this part we concentrate on three models of computation: λ-calculus
(Chapter 3) as the best known computational model and term rewriting
systems (Chapter 4) and graph rewriting systems (Chapter 5) as alterna-
tive models of computation. The latter is used throughout this book as a
basis for implementations and for reasoning about efficiency aspects.

Part 3: Analysis of functional programs

The models of computation introduced in Part 2 are used in Part 3 to
show how additional information can be obtained by static analysis. In
particular, type assignment systems (Chapter 6) and strictness analysis
(Chapter 7) are discussed. Type and strictness information is needed to
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obtain efficient implementations. This theoretical part might be skipped
by readers with a greater interest in more practical subjects.

Part 4: Implementation on sequential architectures

This part of the book covers the implementation of functional languages
on traditional machine architectures. The implementation is discussed in
a number of steps. In each step we go down in level of abstraction until
the concrete machine level is reached (Figure 0.1).

Motorola
code

ABC machine
simulator

Motorola
processor

Functional
graph

rewriting

Miranda
program

Clean
program ABC code

Figure 0.1 Sequential implementation of functional programming lan-
guages in four levels of abstraction.

The language Clean is introduced in Chapter 8. This language is
based on functional graph rewriting systems. It is shown how a Miranda
program can be translated into an equivalent Clean program (Chapter
9). Hereafter an abstract machine, the ABC machine, is introduced mod-
elling traditional stack-based machine architectures (Chapter 10). The
use of an abstract machine prevents us from getting lost in the details of
concrete architectures. Step by step we shall deduce compilation
schemes from Clean to the instruction set of the ABC machine (Chapter
11). Finally, the remaining problems of an actual implementation on
concrete target machines are discussed (Chapter 12). As a representative
target architecture the Motorola processor is used.

Part 5: Concurrency issues

There are several ways in which concurrency can be exploited in a
functional program. Because loosely coupled parallel architectures are
becoming widely available we concentrate on the implementation on
this type of architecture. To get an optimal performance on these ma-
chines the parallelism should be explicitly specified by the programmer.

None of the existing well-known functional languages have lan-
guage facilities to control parallelism. Therefore we introduce a possible
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extension to express concurrency in functional languages (Chapter 13).
How the underlying model of computation can be extended to capture
the notion of processes and process communication is the subject of
Chapter 14.

Finally, the implementation of functional languages on loosely
coupled parallel machine architectures is discussed. As in Part 4 the im-
plementation is explained through a series of abstraction steps down to
the concrete machine level (Figure 0.2).

Transputer
code

PABC machine
simulator

Transputer
processors

Parallel
graph

rewriting

Miranda
with

concurrency

Concurrent
Clean PABC code

Figure 0.2 Parallel implementation of functional programming lan-
guages in four levels of abstraction.

First, we introduce the extension of Clean to Concurrent Clean and
show how a concurrent functional program can be translated into an
equivalent Concurrent Clean program (Chapter 15). Then, we extend
the ABC machine (Chapter 10) to a parallel ABC machine modelling
loosely coupled machine architectures and show how Clean’s concur-
rency primitives are translated to abstract machine instructions (Chapter
16). Finally, we discuss the remaining problems of an actual implemen-
tation (Chapter 17) on a concrete parallel target machine. As a represen-
tative target architecture the transputer processor is used.
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Part 1
Functional programming

Chapter 1 Basic concepts

Chapter 2 Advanced concepts: Miranda



2 FUNCTIONAL PROGRAMMING

This part serves as an introduction to functional programming.
 Since there are many different functional programming languages,

the first chapter focuses on the basic concepts most functional lan-
guages have in common. By first focusing on these concepts it will be
relatively easy to master the basics of any functional language with its
own syntactical sugar. The concrete examples in Chapter 1 are given in
a subset of Miranda.

In Chapter 2 the more sophisticated features of Miranda are shown
to demonstrate the expressive power and notational elegance of a spe-
cific state-of-the-art functional programming language. More elaborate
program examples are given with modest suggestions for a functional
programming methodology.

For readers who want to study the art of functional programming in
more detail good introductory books are available (e.g. Bird and
Wadler, 1988).
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Chapter 1
Basic concepts

1.1 Why functional programming?
1.2 Functions in mathematics
1.3 A functional program
1.4 The evaluation of a functional

program
1.5 Functions with guarded

equations and patterns

1.6 Data structures
1.7 Higher order functions and

currying
1.8 Correctness proof of functional

programs
1.9 Program examples

This chapter first explains the advantages and drawbacks of a func-
tional programming style compared with the commonly used classical
imperative style of programming (Section 1.1). The difference in objec-
tives between a mathematical specification of a function and a function
specification in a functional programming language is explained in Sec-
tion 1.2.

This is followed by an overview of the basic concepts of most
functional programming languages (Sections 1.3–1.7). These concepts
are explained using a concrete functional programming language: Mi-
randa (Turner, 1985). Functions can be defined by a single equation
(Section 1.3) as well as by more than one equation using guards and
patterns to discriminate between the alternative equations (Section
1.5). Other topics that are covered are: higher order functions and cur-
rying (Section 1.7), lists as basic data structures (Section 1.6) and (lazy
as well as eager) function evaluation (Section 1.4).

Traditional proof techniques like symbolic substitution and mathe-
matical induction can be used to prove correctness of functional pro-
grams (Section 1.8). Finally, some small example programs are pre-
sented in Section 1.9.
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1.1 Why functional programming?

Imagine the availability of perfect computer systems: software and
hardware systems that are user-friendly, cheap, reliable and fast. Imag-
ine that programs can be specified in such a way that they are not only
very understandable but that their correctness can easily be proven as
well. Moreover, the underlying hardware ideally supports these software
systems and superconduction in highly parallel architectures makes it
possible to get an answer to our problems at dazzling speed.

Well, in reality people always have problems with their computer
systems. Actually, one does not often find a bug-free piece of software
or hardware. We have learned to live with the software crisis, and have
to accept that most software products are unreliable, unmanageable and
unprovable. We spend money on a new release of a piece of software in
which old bugs are removed and new ones are introduced. Hardware
systems are generally much more reliable than software systems, but
most hardware systems appear to be designed in a hurry and even well-
established processors contain errors.

Software and hardware systems clearly have become very com-
plex. A good, orthogonal design needs many person years of research
and development, while at the same time pressure increases to put the
product on the market. So it is understandable that these systems con-
tain bugs. The good news is that hardware becomes cheaper and
cheaper (thanks to very large scale integration) and speed can be bought
for prices one never imagined. But the increase of processing power
automatically leads to an increase of the use of that power with an in-
creasing complexity of the software as a result. So computers are never
fast enough, while the complexity of the systems is growing enor-
mously.

The two key problems that the computer science community has to
solve are:

• How can we, at low cost, make large software systems that remain
reliable and user-friendly?

• How can we increase processing power at low cost?

Researchers are looking for solutions to these problems: by investigat-
ing software engineering techniques, to deal with problems related to
the management of software projects and the construction and mainte-
nance of software; by designing new proof techniques to tackle the
problems in proving the correctness of systems; by developing program
transformation techniques, to transform the specification of a problem
into a program that solves it; and by designing new (parallel) computer
architectures using many processors (thousands or more). In the mean
time the quest for revolutionary new technologies (e.g. optical chips,
superconduction) is always going on.
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Another approach is based on the idea that the problems mentioned
above are fundamental problems that cannot be solved unless a totally
different approach is used and hardware and software are designed with
a completely different model of computation in mind.

1.1.1 An imperative programming style

Most computer programs are written in an imperative programming
language in which algorithms are expressed by a sequence of com-
mands. These languages, such as FORTRAN, C, Algol, COBOL, PL/1
and Pascal, are originally deduced from (and form an abstraction of) the
computer architectures they are running on (see Figure 1.1). These com-
puter architectures, although different in detail, are all based on the
same architecture: the Von Neumann computer architecture (Burks et
al., 1946). The Von Neumann computer architecture is based on a
mathematical model of computation proposed by Turing in 1937: the
Turing machine.

Von Neumann architecture imperative program

abstraction

compilation

central
processing

unit

main memory

data

+

machine
instructions

global data

+

sequence of
commands

Figure 1.1 Imperative programming and the Von Neumann computer
architecture.

 The great advantage of this model and the corresponding architec-
ture is that they are extremely simple. The Von Neumann architecture
consists of a piece of memory that contains information that can be read
and changed by a central processing unit (the CPU). Conceptually there
are two kinds of information: program instructions in the form of ma-
chine code, information that is interpreted by the CPU and that controls
the computation in the computer; and data, information that is manipu-
lated by the program. This simple concept has made it possible to make
efficient realizations in hardware at a relatively low cost.

In the beginning of the computer era, the ‘high-level’ imperative
programming languages were designed to provide a notation to express
computations in a machine-independent way. Later on, one recognized
the importance of expressing computations such that programs are
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understandable for the human being and their correctness can be proven.
It became clear that, in order to make it possible to reason about pro-
grams, not every machine instruction should have a direct equivalent in
the high-level programming language. For instance, it is common
knowledge that with the use of GOTO statements, which are the direct
abstraction of the branch and jump instructions that are available on any
computer, programs can be written in such a way that reasoning about
them is almost impossible (Dijkstra, 1968). We strongly believe that a
similar kind of problem is caused by the assignment statement.

Consider the following example written in an imperative programming style:

BOOLEAN even := TRUE;
…
PROCEDURE calculate (INTEGER value) : INTEGER;
BEGIN

even := NOT even;
IF even
THEN value + 1
ELSE value + 2
ENDIF

END;
…
print(calculate (6));
…
print(calculate (6));

Both print statements in this program are syntactically the same. Still they
may produce different results. Clearly either the value 7 or 8 is printed in both
cases, but the exact value printed depends on the number of times the proce-
dure calculate is called. The result returned by the procedure not only depends
on the actual value of its argument, but also on the value the global boolean
has at that particular moment. This value is ‘secretly’ changed in each proce-
dure call. Such side-effects cause the result of a procedure call to be context
dependent. Results become very hard to predict when, in a large program,
global variables are changed all over the place.

One of the most important drawbacks of an imperative program-
ming style is that an imperative program consists of a sequence of
commands of which the dynamic behaviour must be known to under-
stand how such a program works. The assignment causes problems be-
cause it changes the value (and often even the meaning) of a variable.
Owing to side-effects it can happen that evaluating the same expression
in succession produces different answers. Reasoning about the correct-
ness of an imperative program is therefore very difficult.
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Furthermore, because of the command sequence, algorithms are
more sequential than is necessary. Therefore it is hard to detect which
parts of the algorithm can or cannot be executed concurrently. This is a
pity, since concurrent evaluation seems to be a natural way to increase
execution speed.

A conjecture adopted by many researchers nowadays is that the
software crisis and the speed problem are inherent to the nature of im-
perative programming languages and the underlying model of computa-
tion. Therefore, other styles of programming, such as object oriented,
logical and functional styles of programming are investigated.

1.1.2 A functional programming style

John Backus (1978) pointed out that the solution for the software prob-
lems has to be found in using a new discipline of programming: a func-
tional programming style instead of an imperative one.

In a functional program the result of a function call is uniquely
determined by the actual values of the function arguments. No assign-
ments are used, so no side-effects are possible. As a consequence, it
makes no difference where and under what conditions a function is
called. The result of a function will, under all conditions, be determined
solely by the value of its arguments. For instance, in the program below
the value printed will be 42 in both cases.

FUNCTION increment (INTEGER value) : INTEGER;
BEGIN

value + 1
END;
…
print(increment (41));
…
print(increment (41));

It is much easier to reason about the result produced by a function that
has no side-effects than about the result of an imperative procedure call
with side-effects (see also Section 1.8).

Advantages of functional programming languages

So perhaps a functional programming style is important and side-
effects, and hence the assignment statement, should be abandoned. But
why should we use a functional programming language? Is it not pos-
sible to use the familiar languages? The common imperative languages
also have functions, so why not restrict ourselves and only use the func-
tional subset of for instance C, Algol or Modula2?
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Well, one can use the functional subset of imperative languages
(i.e. only using functions and leaving out the assignment), but then one
is deprived of the expressive power of the new generation of functional
languages that treat functions as ‘first class citizens’. In most imperative
languages functions can only be used restrictively. An arbitrary func-
tion cannot be passed as an argument to a function nor yielded as result.

For instance, the function twice takes a function and an argument, applies the
function ‘twice’ to the argument and yields the result that again might be a
function. The function twice can be used in various ways, e.g. by applying the
result again as a function to respectively one or two arguments, etc.

FUNCTION
twice (f : FUNCTION from ANYTYPE to ANYTYPE, x: ANYTYPE ) :

result ANYTYPE;
BEGIN

f ( f (x) )
END;
…
print( twice (increment, 0) );
print( ( twice (twice, increment) ) (0) );
print( ( twice (twice, twice) ) (increment, 0) );
print( ( ( twice (twice, twice) ) (twice, increment) ) (0) );
…

Functions like twice are hard to express in a classical imperative language.

Functional programming languages have the advantage that they
offer a general use of functions which is not available in classical im-
perative languages. This is a fact of life, not a fundamental problem.
The restricted treatment of functions in imperative languages is due to
the fact that when these languages were designed people simply did not
know how to implement the general use of functions efficiently. It is
also not easy to change the imperative languages afterwards. For in-
stance, the type systems of these languages are not designed to handle
these kinds of function. Also the compilers have to be changed dramati-
cally.

In a traditional imperative language one would probably have severe problems
expressing the type of twice. In a functional language such a function defini-
tion and its application can be expressed and typed in the following way:

twice:: (* -> *) -> * -> * || type definition
twice f x = f (f x) || function definition

?twice increment 0 || function application, yields a number
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?twice twice increment 0 || function application, yields a number
?twice twice twice increment 0 || function application, yields a number
…

Another advantage is that in most modern functional programming
language(s) (FPLs) the functional programming style is guaranteed: the
assignment statement is simply not available (like GOTOs are not avail-
able in decent modern imperative languages). FPLs in which there are
no side-effects or imperative features of any kind are called pure func-
tional languages. Examples of pure functional languages are Miranda,
LML  (Augustsson, 1984), HOPE (Burstall et al., 1980), Haskell (Hudak
et al., 1992) and Concurrent Clean (Nöcker et al., 1991b). LISP
(McCarthy, 1960) and ML (Harper et al., 1986) are examples of well-
known functional languages which are impure. From now on only pure
aspects of FPLs are considered.

In pure FPLs the programmer can only define functions that com-
pute values uniquely determined by the values of their arguments. The
assignment statement is not available, and nor is the heavily used pro-
gramming notion of a variable as something that holds a value that is
changed from time to time by an assignment. Rather, the variables that
exist in purely functional languages are used in mathematics to name
and refer to a yet unknown constant value. This value can never be al-
tered. In a functional style a desired computation is expressed in a static
fashion instead of a dynamic one. Due to the absence of side-effects,
program correctness proofs are easier than for imperative languages (see
Section 1.8). Functions can be evaluated in any order, which makes
FPLs suitable for parallel evaluation (see Section 1.4). Furthermore, the
guaranteed absence of side-effects enables certain kinds of analysis of a
program, for example strictness analysis (see Chapter 7) and uniqueness
analysis (see Chapter 8).

Besides the full availability of functions, the new generation func-
tional languages also offer an elegant, user-friendly notation. Patterns
and guards provide the user with simple access to complex data struc-
tures; basically one does not have to worry about memory management
any more. Incorrect access of data structures is impossible. Functional
programs are in general much shorter than their conventional counter-
parts and thus in principle easier to enhance and maintain.

The question arises, is it possible to express any possible computa-
tion by using pure functions only? Fortunately, this question has already
been answered years ago. The concept of a function is one of the funda-
mental notions in mathematics. One of the greatest advantages of func-
tional languages is that they are based on a sound and well-understood
mathematical model, the λ-calculus (Church, 1932; 1933). One could
say that functional languages are sugared versions of this calculus. The
λ-calculus was introduced at approximately the same time as the Turing
model (Turing, 1937). Church’s thesis (Church, 1936) states that the
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class of effectively computable functions, i.e. the functions that intu-
itively can be computed, is the same as the class of functions that can be
defined in the λ-calculus. Turing formalized machine computability and
showed that the resulting notion of Turing computability is equivalent to
λ-definability. So the power of both models is the same. Hence any
computation can be expressed using a functional style only. For more
information on λ-calculus we refer to Barendregt (1984).

Disadvantages of functional programming languages

The advantages mentioned above are very important. But although
functional languages are being used more frequently, in particular as a
language for rapid prototyping and as a language in which students
learn how to program, functional languages are not yet commonly used
for general purpose programming. The two main drawbacks lie in the
fields of

• efficiency and
• suitability for applications with a strongly imperative nature.

Firstly, until recently programs written in a functional language ran
very, very slowly in comparison with their imperative counterparts. The
main problem is that the traditional machine architectures on which
these programs have to be executed are not designed to support func-
tional languages. On these architectures function calls are relatively ex-
pensive, in particular when the lazy evaluation scheme (see Section 1.4)
is used. Our computers are ideally suited for destructive updates as pre-
sent in imperative languages (assignments), but these are conceptually
absent in functional languages. It is therefore not easy to find an effi-
cient compilation scheme. Another big problem is caused by the fact
that for some algorithms, due to the absence of destructive updates, the
time and space complexity can be much worse for a functional program
than for its imperative equivalent. In such a case, to retain the effi-
ciency, program transformations are necessary.

As will be shown in this textbook, by using several new (and old)
compilation techniques, the efficiency of (lazy) functional programs can
nowadays be made acceptable in many (but certainly not all) cases. New
compilation techniques have been developed at several research insti-
tutes. These techniques are quite complex. Commercial compilers are
therefore not widely available yet. This will soon change. Anyhow, in
our opinion, the advantages of functional languages are so important
that some loss of efficiency is quite acceptable. One has to keep in mind
that decades ago we accepted a loss of efficiency when we started to use
high-level imperative languages instead of machine assembly lan-
guages.
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Secondly, a very important drawback of functional languages was
that some algorithms could not be expressed elegantly in a functional
programming style. In particular, this seemed to hold for applications
that strongly interact with the environment (interactive programs,
databases, operating systems, process control). But, the problem is
largely caused by the fact that the art of functional programming is still
in development. We had and still have to learn how to express the dif-
ferent kinds of applications elegantly in a functional style. We now
know that strongly interactive applications can be expressed very ele-
gantly in a functional programming style. One example is the way inter-
active programs that use windows, dialogs, menus and the like can be
specified in Clean (see Chapter 8). Another example is the definition of
the abstract imperative machine given in Chapter 10.

The advantages of a functional programming style are very impor-
tant for the development of reliable software. The disadvantages can be
reduced to an acceptable level. Therefore we strongly believe that one
day functional languages will be used worldwide as general purpose
programming languages.

1.2 Functions in mathematics

Before discussing the basic concepts of most functional languages, we
want to recall the mathematical concept of a function. In mathematics a
function is a mapping from objects of a set called the domain to objects
of a set called co-domain or range (see Figure 1.2).

x2

x1

x3

x4

x5

f(x1)

f(x2)

f(x3) = f(x5)

f(x4)

Domain f Range f

Figure 1.2 A function f maps objects x from the domain set to objects
f(x) in the range set.

This mapping need not be defined for all objects in the domain. If the
mapping is defined for an object, this object is mapped to exactly one
object in the range. This object in the range is called the image of the
corresponding object in the domain. If all objects in the domain have an
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image, the function is called a total function, otherwise it is called a
partial function. If x is an object in domain A and f is a function de-
fined on domain A, the image of x is called f(x).

The type of a function is defined as follows. If x is an object in the
domain A, x is said to be of type A. If y is an object in range B, y is said
to be of type B. If a function f maps objects from the domain A to the
range B,  f is said to be of type A → B, which is pronounced as ‘from A
to B’. The type of f  is generally specified as:

f: A → B

In mathematics, there are several ways to define a function. The type of
a function can be specified separately from the function definition.

One way to define a function is by explicit enumeration of all ob-
jects in the domain on which the function is defined with their corre-
sponding images. An example of this is the following partial function
(domain names Z and N are used for the domains of integers and natural
numbers).

abs: Z → N
abs(–1) = 1
abs( 0) = 0
abs( 1) = 1

Another way to define functions is by using definitions that consist of
one or more (recursive) equations. For example, with this method the
abs-function above can easily be defined as a total function, applicable
for all objects in the domain. Of course, the functions and operators
used on the right-hand side must be defined on the appropriate domains.

abs: Ζ → Ν
abs(n) = n, n > 0

= 0, n = 0
= –n, n < 0

A function like factorial can be defined as follows:

fac: Ν → Ν
fac(n) = 1, n = 0

= n * fac (n – 1), n > 0

or an alternative definition method is:

fac: Ν → Ν
fac(0) = 1
fac(n) = n * fac (n – 1), n > 0
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A mathematician would consider the definitions above as very common,
ordinary function definitions. But these examples are also perfect ex-
amples of function definitions in a functional programming language.
Notationally a function definition in a functional language has many
similarities with a function definition in mathematics. However, there is
an important difference in objective. The objective in a functional lan-
guage is not only to define a function, but also to define a computation
that automatically computes the image (result) of a function when it is
applied to a specific object in its domain (the actual argument of the
function).

Some function definitions, well-defined from a mathematical point
of view, cannot be defined similarly in a functional language, because
the images of some functions are very difficult to compute or even can-
not be computed at all.

Consider, for example, the following function definition:

halting: All_Programs → Ν
halting(p) = 1, if the execution of p will stop

0, otherwise

The halting function as indicated above is a problem that is not computable,
and therefore an attempt to express it will not produce the desired computa-
tion. Suppose that a function in an FPL would try to calculate the image of the
halting function for an arbitrary program. The only way of doing this is more
or less running the program. But then the function would simply not terminate
if the argument program does not terminate, in which case the result 0 would
never be produced. For another example, consider:

f: R → R, g: R → R
f '' – 6g' = 6 sin x
6g'' + a2f ' = 6 cos x
f(0) = 0, f '(0) = 0, g(0) = 1, g'(0) = 1

The equations for f, g and their derivatives f ', f '', g' and g'' are solvable, but it
is not easy to compute such functions.

Some special purpose programming languages are able to calculate
functions by applying special purpose calculation techniques (symbolic
computation using computer algebra techniques or formula transforma-
tions). But a general purpose functional programming language uses a
very simple model of computation, based on substitution. So when func-
tions are defined in an FPL a computation through substitutions is de-
fined implicitly (see Section 1.4).
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1.3 A functional program

A program written in a functional language consists of a collection of
function definitions written in the form of recursive equations and an
initial expression that has to be evaluated. From now on a Miranda-
based syntax (see Appendix A) will be used.

1.3.1 Function definitions

A function definition consists of one or more equations. An equation
consists of a left-hand side, an equals symbol (=) and a right-hand side.

The left-hand side defines the function name and its formal argu-
ments (also called formal parameters). The right-hand side specifies
the function result. It is also called the function body. This function
body consists of an expression. Such an expression can be a denotation
of some value, or it can be a formal argument, or a function application.

In a function application a function is applied to an expression,
the actual argument. The application of a function f to an expression a
is denoted as f a. So function application is denoted by simple juxtapo-
sition of the function and its argument. An important syntactical con-
vention is that in every expression function application has always the
highest priority (on both sides of the equations). A function definition
can be preceded by its type definition (indicated by post-fixing the
function name with a ‘::’ followed by its type).

Below are some examples of function definitions (now in Miranda-based no-
tation). In Section 1.6 more complex definitions can be found with more than
one alternative per function and guards or patterns to indicate which alterna-
tive has to be chosen. The || indicates that the rest of the line is a comment.

ident:: num -> num || ident is a function from num to num,
ident x = x || the identity function on numbers

alwaysseven:: num -> num || a function from num to num,
alwaysseven x = 7 || that yields 7, independent of arg. x

inc:: num -> num || a function from num to num,
inc x = x + 1 || that returns the value of its arg. + 1

square:: num -> num || square function
square x = x * x

squareinc:: num -> num || square increment of argument
squareinc x = square (inc x)

fac:: num -> num || the factorial function
fac x = cond (x = 0) 1 (x * fac (x – 1))
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In the last example cond is a predefined operator with three arguments: a
boolean, a then part and an else part. Its semantics corresponds to a condi-
tional choice in imperative languages.

A formal argument, such as x in the example above, is also called a
variable. The word variable is used here in the mathematical sense of
the word that is not to be confused with the use of the word variable in
an imperative language. This variable does not vary. Its scope is limited
to the equation in which it occurs (whereas the defined function names
have the whole program as scope).

Functions defined as above are called user-defined functions. One
can also denote and manipulate objects of certain predefined types with
given predefined operators. These predefined basic operators can be re-
garded as predefined functions. For mathematical–historical reasons,
and therefore also for user convenience, such primitive functions are of-
ten defined as infix functions or operators. This is in contrast to the user-
defined functions that are generally defined as prefix functions.

Examples of predefined types (numbers, booleans, characters), corresponding
to predefined operators (functions), denotation of values (concrete objects) of
these types, and the ‘real-life’ domain with which they can be compared.

Types Operators Denotation of values Comparable with
num +, –, *, … 0, 1, 34.7, –1.2E15, … real numbers
bool and, or, … True, False truth values
char =, <, … 'a', 'c', … characters

1.3.2 The initial expression

The initial expression is the expression whose value has to be calcu-
lated.

For example, in the case that the value of 2 + 3 has to be calculated, the initial
expression 2 + 3 is written. But one can also calculate any application of user-
defined functions: squareinc 7.

1.4 The evaluation of a functional program

The execution of a functional program consists of the evaluation of the
initial expression in the context of the function definitions in the pro-
gram called the environment.

A functional program: a set of function definitions and an initial expression.

ident:: num -> num
ident x = x
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inc:: num -> num
inc x = x + 1

square:: num -> num
square x = x * x

squareinc:: num -> num
squareinc x = square (inc x)

squareinc 7

The evaluation consists of repeatedly performing reduction or
rewriting steps. In each reduction step (indicated by a ‘→’ ) a function
application in the expression is replaced (reduced, rewritten) by the cor-
responding function body (the right-hand side of the equation), substi-
tuting the formal arguments by the corresponding actual arguments. A
(sub)expression that can be rewritten according to some function defini-
tion is called a redex (reducible expression). The basic idea is that the
reduction process stops when none of the function definitions can be ap-
plied any more (there are no redexes left) and the initial expression is in
its most simple form, the normal form. This is the result of the func-
tional program that is then printed out.

For instance, given the function definitions above (the environment), the ini-
tial expressions below can be evaluated (reduced) as follows. In the examples
the redex that will be reduced has been underlined.

ident 42 → 42

squareinc 7 → square (inc 7) → square (7 + 1)
→ square 8 → 8 * 8 → 64

square (1 + 2) → (1 + 2) * (1 + 2) → 3 * (1 + 2) → 3 * 3 → 9

However, the initial expression may not have a normal form at all.
As a consequence, the evaluation of such an initial expression will not
terminate. Infinite computations may produce partial results that will be
printed as soon as they are known (see Section 1.6.3).

Example of a non-terminating reduction. Take the following definition:

inf = inf

then the evaluation of the following initial expression will not terminate:

inf → inf → inf → …
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1.4.1 The order of evaluation

Because there are in general many redexes in the expression, one can
perform rewrite steps in several orders. The actual order of evaluation is
determined by the reduction strategy which is dependent on the kind
of language being used. There are a couple of important things to know
about the ordering of reduction steps.

Due to the absence of side-effects, the result of a computation does
not depend on the chosen order of reduction (see also Chapter 3). If all
redexes are vanished and the initial expression is in normal form, the re-
sult of the computation (if it terminates) will always be the same: the
normal form is unique.

For instance, one can compute one of the previous expressions in a different
order, but the result is identical:

square (1 + 2) → square 3 → 3 * 3 → 9

It is sometimes even possible to rewrite several redexes at the same
time. This forms the basis for parallel evaluation.

Reducing several redexes at the same time:

square (1 + 2) → (1 + 2) * (1 + 2) → 3 * 3 → 9

However, the order is not completely irrelevant. Some reduction orders
may not lead to the normal form at all. So a computation may not ter-
minate in one particular order while it would terminate when the right
order was chosen (see again Chapter 3).

Example of a non-terminating reduction order. Assume that the following (re-
cursive) functions are defined:

inf = inf

alwaysseven x = 7

Now it is possible to repeatedly choose the ‘wrong’ redex which causes an in-
finite calculation:

alwaysseven inf → alwaysseven inf → alwaysseven inf → …

In this case another choice would lead to termination and to the unique normal
form:

alwaysseven inf → 7
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The reduction strategy followed depends on the kind of FPL. In some
languages, e.g. LISP, ML and HOPE, the arguments of a function are
always reduced before the function application itself is considered as a
redex. These languages are called eager or strict languages. In most re-
cent FPLs, e.g. Miranda and Haskell, the rewriting is done lazily. In
lazy functional languages the value of a subexpression (redex) is cal-
culated if and only if this value must be known to find the normal form.
The lazy evaluation order will find the normal form if it exists.

Illustrating lazy rewriting:

alwaysseven inf → 7

A more complex example to illustrate lazy evaluation is shown below. The
predefined conditional function demands the evaluation of its first argument to
make a choice between the then and else parts possible. The equality function
forces evaluation in order to yield the appropriate Boolean value. Multiplica-
tion and subtraction are only possible on numbers; again evaluation is forced.

fac 2
→ cond (2 = 0) 1 (2 * fac (2 – 1))
→ cond FALSE 1 (2 * fac (2 – 1))
→ 2 * fac (2 – 1)
→ 2 * cond (2 – 1 = 0)1 ((2 – 1) * fac ((2 – 1) – 1))
→ 2 * cond (1 = 0) 1 ((2 – 1) * fac ((2 – 1) – 1))
→ 2 * cond FALSE 1 ((2 – 1) * fac ((2 – 1) – 1))
→ 2 * (2 – 1) * fac ((2 – 1) – 1)
→ 2 * 1 * fac ((2 – 1) – 1)
→ 2 * fac ((2 – 1) – 1 )
→ 2 * cond ((2 – 1) – 1 = 0) 1 (((2 – 1) – 1) * fac (((2 – 1) – 1) – 1))
→ … → 2 * 1 * 1 → 2 * 1 → 2

1.5 Functions with guarded equations and patterns

In the previous section ordinary recursive equations were used to define
a function. But often one needs a function description that depends on
the actual values of the objects in the domain, or one wants to make a
separate description for each subclass of the domain that has to be dis-
tinguished. Of course, a (predefined) function can be used, like cond in
the factorial example in Section 1.3. However, it is much more conve-
nient to use guarded equations or patterns for such a case analysis.

1.5.1 Guarded equations

The right-hand side of a definition can be a guarded equation. A func-
tion definition using guarded equations consists of a sequence of al-



FUNCTIONS WITH GUARDED EQUATIONS AND PATTERNS  19

ternative equations, each having a guard: an expression yielding a
Boolean result, the textual first alternative for which the corresponding
guard is True being selected. Guards can be preceded by the keyword if.
The guard of the last alternative can be just the keyword otherwise and
the corresponding alternative is chosen if and only if all other guards
evaluate to False. Although it is allowed, it is good programming style
not to use overlapping guards.

Function definitions with guarded equations:

fac:: num -> num
fac n = 1, if  n = 0

= n * fac (n – 1), if  n > 0

abs:: num -> num
abs n = n, if  n >= 0

= –n, otherwise

It is quite possible to define partial functions using guards. When a
function is called with actual parameters that do not satisfy any of the
guards, it is considered to be a fatal programming error.

For example, the Fibonacci function below will cause a fatal error when it is
called with an argument less than one (the \/-operator denotes the logical OR).

fib:: num -> num
fib n = 1, if  (n = 1) \/ (n = 2)

= fib (n – 1) + fib (n – 2), if  n > 2

The programmer should of course avoid this situation. One way to
avoid it is to specify the domain (type) of a function accurately, in such
a way that a total function is defined on that domain. The type system of
the language should therefore allow the specification of new types or of
subtypes (see Chapter 2). However, an arbitrary accurate specification
of the domain is generally not possible because it leads to undecidable
type systems. Total functions can be accomplished in another way by
adjusting the definition of the partial function. The guards should then
always cover the whole domain the function is defined on. To make this
possible in an easy way most languages are equipped with an error rou-
tine that fits in any type.

The Fibonacci function above is now changed into a total function. It will still
yield a run-time error when it is called with an argument less than one. But
now this situation is handled by the programmer and an appropriate error mes-
sage can be given.
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fib:: num -> num
fib n = 1, if  (n = 1) \/ (n = 2)

= fib (n – 1) + fib (n – 2), if  n > 2
= error "Fibonacci called with argument less than one", otherwise

1.5.2 Patterns

It is also possible to discriminate between alternative equations by using
patterns on the left-hand side. These patterns are values (e.g. 0) includ-
ing data constructors (see the next section) or variables. The meaning
of a pattern is that the equation in question is only applicable if the ac-
tual arguments of the function match the pattern. An actual argument
matches a corresponding pattern value if it has the same value. A pat-
tern variable is matched by any actual argument. An equation is only
applicable if all the actual arguments match the corresponding patterns.
Patterns are tried from left to right, equations are tried in textual order:
from top to bottom. When an actual argument is matched against a non-
variable pattern, the argument is evaluated first after which the resulting
value is compared with the specified pattern.

A function definition with patterns:

fac:: num -> num
fac 0 = 1
fac n = n * fac (n – 1)

0 and n are the patterns of the first two rules (a variable as formal parameter
indicates that it does not matter what the value is). Calling fac (7 – 1) will re-
sult in a call to the pattern-matching facility, which decides that (after the
evaluation of the actual argument) only the second rule is applicable (6 ~= 0).

Patterns can also be used in combination with guarded equations.

fac:: num -> num
fac 0 = 1
fac n = n * fac (n – 1), if  n > 0

= error "factorial called with argument less than zero", otherwise

1.5.3 The difference between patterns and guards

Patterns have a limited power: they can only be used to test whether ac-
tual arguments are of a certain value or form. Using guards any function
yielding a Boolean result can be applied to the actual arguments. So
guards are more powerful than patterns, but, on the other hand, patterns
are easier to read and sufficient for most definitions. Using patterns in
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combination with guards often leads to clearer and more concise defini-
tions and is highly recommended.

1.6 Data structures

In imperative languages one can define global data structures that are
globally accessible for reading and writing during execution. Since this
is not possible in functional languages it will be clear that the use of
data structures in these languages is quite different. After creation of a
data structure, the only possible access is read access. Data structures
cannot be overwritten. Furthermore, data structures are not globally
available but they must always be passed as arguments to the functions
that need them.

Modern functional languages allow the definition of structured
data objects like the records in Pascal. How user-defined data structures
can be defined is explained in the next chapter. In this chapter only lists
are treated.

Lists are the most important basic data structure in any FPL. Lists
in FPLs are actually linked lists, each element in the list has the same1
type T (see Figure 1.3). The last element in the list is indicated by a spe-
cial element, generally called Nil.

Nil1 2 3

Figure 1.3 An example of a list.

Because lists are so important, they are generally predefined. A list is
conceptually not different from any other user-defined data structure
(see Chapter 2).

Lists, like any data structure in an FPL, are built using data con-
structors. A data  constructor is a special constant value that is used as
a tag that uniquely identifies (and is part of) an object of a certain type.
So one can recognize the type of a data structure just by looking at the
data constructor it contains. Several different data constructors can be
used to identify the different objects of the same type.

Lists are constructed using two data constructors (see Figures 1.4
and 1.5). A list element is tagged with a constructor that is usually
named ‘Cons’ (prefix notation) or ‘:’ (infix notation, as used in Mi-
randa). The end of a list is an empty list that just contains a tag, the
constructor ‘Nil’ or ‘ [ ]’. A non-empty list element contains, besides the
constructor ‘Cons’ (or ‘ :’), a value of a certain type T and (a reference

1 Note that in most languages all elements of a list have to be of the same type.
In some other languages (e.g. LISP) the types of the list elements may differ from
each other. In Miranda tuples are used for this purpose (see Chapter 2).
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to) the rest of the list of that same type T. A list of elements of type T is
denoted as [T].

NilCons 1 Cons 2 Cons 3

Figure 1.4 A list prefix tagged with the constructors Cons and Nil.

Hence, in Miranda, a non-empty list element contains the infix construc-
tor ‘:’, while the end of the list only contains a ‘[ ]’.

[ ]1 2 :3::

Figure 1.5 Miranda lists are infix tagged with the constructors : and [ ].

1.6.1 Denotation of lists

In Miranda, lists are denoted as follows.

Denotation of lists:

1 : (2 : (3 : (4 : (5 : [ ])))) || list of numbers from 1 up to 5
True : (False : (False : [ ])) || list of booleans
[ ] || denotes the empty list
1 : 2 : 3 : 4 : 5 : [ ] || list of numbers from 1 up to 5

Note that the list constructor ‘:’ is right associative. For the convenience
of the programmer Miranda allows a special notation for lists, with
square brackets:

Lists, shorthand notation:

[1, 2, 3, 4, 5] || same as 1 : 2 : 3 : 4 : 5 : [ ]
[True, False, False] || same as True : False : False : [ ]
0 : [1, 2, 3] || same as [0, 1, 2, 3]

1.6.2 Predefined functions on lists

The data constructors ‘:’ and ‘[ ]’ are special constant values. The ele-
ments of a list can therefore easily be selected by using the pattern
match mechanism in which these data constructors appear.

The (usually predefined) projection functions on lists are head (hd) and tail
(tl). Projection functions like these are of general use and can be defined on
lists of any type (see Chapter 2). The functions given below are restrictively
defined on list of numbers.
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hd:: [num] -> num || hd is a function from list-of-num to num
hd (first : rest) = first || yields the first element of a non-empty list

tl:: [num] -> [num] || a function from list-of-num to list-of-num
tl (first : rest) = rest || returns the tail of the list

Note that the parentheses on the left-hand side are not part of the list denota-
tion. They are added to disambiguate the patterns concerning the application.

This way of handling lists is very user-friendly. One does not need to
worry about ‘memory management’ nor about ‘updating pointers’.

Below some other predefined operations on lists are given. These
are: length of a list (denoted by #), subscription, followed by a number
indicating the subscript (counting from zero), and concatenation (++).

List operations:

# [2, 3, 4, 5] || length of list, yields 4
[2, 3, 4, 5] ! 2 || subscription, yields 4
[0, 1] ++ [2, 3] || concatenation, yields [0, 1, 2, 3]

1.6.3 Infinite lists

One of the powerful features of lazy FPLs is the possibility of declaring
infinite data structures by recursive definitions.

Definition of a function yielding an infinite list of numbers n , equal to
[n, n, n, n, …]:

infnums:: num -> [num]
infnums n = n : infnums n

The following program, the sieve of Eratosthenes, yields an infinite list of
prime numbers. First an infinite list of all numbers [n, n+1, n+2, …] is defined
using the function gen.

gen:: num -> [num]
gen n = n : gen (inc n)

filter has two arguments: a number and a (possibly infinite) list. The filter re-
moves all multiples of the given number pr from the list. Note the type of this
function. It is explained in the next section.

filter:: num -> [num] -> [num]
filter pr (x : xs) = x : filter pr xs, if  x mod pr ~= 0

= filter pr xs, otherwise
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sieve yields an infinite list of primes. It is assumed that the first element in the
infinite list is a prime. This value is delivered as result in the head of a list.
The function recursively calls itself, filtering all multiples of the found prime
from the input list.

sieve:: [num] -> [num]
sieve (pr : rest) = pr : sieve (filter pr rest)

The initial expression that will yield the infinite list of all prime numbers [2, 3,
5, 7, 11, …] is the following:

sieve (gen 2)

Programs having infinite data structures as results do not terminate,
of course. When an infinite list is yielded, the lazy evaluation scheme
will force the evaluation of the list elements from ‘left to right’. It
would not be wise to postpone printing this list until the last element has
been calculated. Therefore, one after another the values of the elements
of the list are printed as soon as they have been evaluated.

Infinite data structures are of more practical importance than one
may conclude from the examples above. One has to remember that, if
functions are evaluated with the lazy evaluation scheme, the computa-
tion of a value is only started when its value is needed to produce the re-
sult. For instance, if one needs a certain element of an infinite list, the
computation will not force the evaluation of the whole list, but only of
the part that is needed for the evaluation of the required element. There-
fore, such a computation can be performed in finite time, even if an in-
finite list is being used. Of course, if an attempt to find the last element
of an infinite list is made, the computation will not terminate.

So in lazy languages infinite data structures can be defined; more-
over, they make elegant programs possible. For example, if a function
has to be defined that yields the first thousand prime numbers, one can
simply take the first thousand elements of the list of all primes.

The following initial expression will yield the second prime number of an infi-
nite list of all primes. The evaluation will terminate even if an infinite list is
being used.

hd (tl (sieve (gen 2)))
→ hd (tl (sieve (2 : gen (inc 2))))
→ hd (tl (2 : sieve (filter 2 (gen (inc 2)))))
→ hd (sieve (filter 2 (gen (inc 2))))
→ hd (sieve (filter 2 (inc 2 : gen (inc (inc 2)))))
→ hd (sieve (filter 2 (3 : gen (inc (inc 2)))))
→ hd (sieve (3 : filter 2 (gen (inc (inc 2)))))
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→ hd (3 : sieve (filter 3 (filter 2 (gen (inc (inc 2))))))
→ 3

Infinite data structures cannot be handled in eager languages, because
they evaluate arguments regardless of whether they are needed or not,
which leads to infinite computations.

The evaluation of the initial expression in the previous example in eager FPLs
will not terminate.

hd (tl (sieve (gen 2)))
→ hd (tl (sieve (2 : gen (inc 2))))
→ hd (tl (sieve (2 : gen 3)))
→ hd (tl (sieve (2 : 3 : gen (inc 3))))
→ hd (tl (sieve (2 : 3 : …)

In a lazy functional programming language most functions that are de-
fined on lists can also be used to handle infinite lists. For instance, the
hd function (defined above) can take the head of all lists, regardless of
whether the list is finite or infinite.

1.7 Higher order functions and currying

Compared with the traditional imperative languages, which normally
allow also the declaration of functions, functional programming lan-
guages such as Miranda have a more general view of the concept of
functions: they are treated as ‘first-class citizens’, i.e. functions are
treated just like other objects in the language. As a consequence, func-
tions can have functions as arguments and as results.

1.7.1 Higher order functions

Functions that have functions as actual arguments or yield a function as
result are called higher order functions, in contrast to first-order
functions, which have only non-function values as argument or as re-
sult.

Example of a higher order function that takes a function as argument (note
how this is reflected in the type):

atzero:: (num -> num) -> num
atzero f = f 0

Now consider the following initial expressions (inc, square and ident are
taken to be defined as in Section 1.3):
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atzero inc → inc 0 → 0 + 1 → 1
atzero square → square 0 → 0 * 0 → 0
atzero ident → ident 0 → 0

Example of a higher order function that yields a function as result (note the
type):

funcresult:: num -> (num -> num)
funcresult 0 = inc
funcresult 1 = square
funcresult n = ident

And consider the following initial expressions:

funcresult 0 6 → inc 6 → 6 + 1 → 7
funcresult 1 6 → square 6 → 6 * 6 → 36
funcresult 2 6 → ident 6 → 6
funcresult 3 6 → ident 6 → 6

At first sight the substitutions in the example above may seem a bit
strange. But, remember that the application of a function f to an expres-
sion a is denoted as f a. So if a function is applied to more than one ar-
gument, say n, this can be denoted as:

( … ((f a1) a2) … an)

Function application is left associative. So this can be denoted in an
equivalent, more readable way:

f a1 a2 … an

Hence, the expression funcresult 0 6 is equivalent to (funcresult 0) 6, which
immediately explains why the substitution above is allowed. Higher or-
der functions are very natural and provide a powerful programming
tool, as is shown below.

1.7.2 Currying

The possibility of yielding a function as result makes it unnecessary to
have functions with more than one argument. A function with n argu-
ments can be simulated by a higher order function with one argument
that returns a new function. Now this new function can be applied to the
next argument, and so on, until finally all n arguments are handled.

The idea of handling functions with n arguments by using a se-
quence of applications of higher order functions with one argument is
called currying (Schönfinkel, 1924; Curry and Feys, 1958), see also
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Chapter 3. The final result of such a sequence of applications of higher
order functions with one argument is the same as the result yielded by
the equivalent function with n arguments.

Consider a function definition, in Miranda, of a function with more
than one argument, say n. Assume that these arguments are, respec-
tively, of type A1, A2, …, An and that the result of the function is of type
B. In general such a function definition has the following form:

function-name arg1 arg2 … argn = expression

In Miranda, all functions are used in a curried manner. Functions with
more than one argument are simulated by a sequence of applications
using currying. Therefore the definition above should be read as:

( … ((function-name arg1) arg2) … argn) = expression

The type of this function is not

function-name:: A1 x A2 x … x An -> B

which is the mathematical type with as domain the Cartesian product of
the n argument types, but

function-name:: A1 -> (A2 -> … -> (An -> B) … )

The arrow -> is defined to be right associative, so the type can also be
specified as

function-name:: A1 -> A2 -> … -> An -> B

1.7.3 The use of currying

The question arises: why should one use this currying scheme and make
things more complicated? Well, notationally it is almost equivalent to
having functions with more than one argument: function application is
left associative, so the parentheses can be left out. Currying enables the
use of a familiar notation; only the types of the functions are different.
But a great advantage of currying is that it increases the expressive
power of a functional language.

Parametrizing functions

The currying scheme makes it possible to apply a function defined on n
arguments to any number of arguments from 1 up to n, resulting in a
parametrized function. A function defined with n arguments can, with-
out currying, only be applied when all these n arguments are available.
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In the curried variant some of the arguments can be ‘fed’ to the func-
tion; the result (a parametrized function) can be passed to another
function that can fill in the remaining arguments.

Consider the following definition:

plus:: num -> num -> num
plus x y = x + y

This definition is equivalent to:

plus:: num -> (num -> num)
(plus x) y = x + y

Now take the following initial expression:

plus 1

Clearly, we need another argument to be able to actually perform the addition
specified in the function body. The result of this initial expression is a func-
tion of type num -> num. It is a function of one argument; the function has no
name.

Assuming plus to be defined as above, the function incr can be defined in two
ways: as a function with an explicit formal argument:

incr:: num -> num
incr x = plus 1 x

or as a parametrized version of plus:

incr:: num -> num
incr = plus 1

The only difference between the two incr functions is that the second defini-
tion is more concise.

It is very useful to be able to create new functions by adding parameters
to more general functions. So currying enables a new way of pro-
gramming by elegantly specifying general purpose functions.

Another example of parametrized functions. The function map takes a func-
tion of type num -> num, a (possibly infinite) list of numbers and applies the
given function to all numbers in the list. incr and plus are assumed to be de-
fined as above.
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map:: (num -> num) -> [num] -> [num]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

A function that increments the elements of a list can now simply be con-
structed as follows:

mapincr:: [num] -> [num]
mapincr = map incr

or as

mapincr:: [num] -> [num]
mapincr = map (plus 1)

In Miranda it is, in general, not the intention to yield a function as
the final result of a program. Functions cannot be printed. The intention
is to yield some non-function value, probably a string of characters, as
the final result. Therefore, in ordinary programs curried functions will
in the end receive all arguments needed to do the computation.

The following example of an expression with mapincr as defined above (the
second definition) shows how evaluation might actually proceed when curry-
ing is used.

mapincr [1,2,3]
→ map (plus 1) [1,2,3]
= map (plus 1) (1 : 2 : 3 : [ ])
→ plus 1 1 : map (plus 1) (2 : 3 : [ ])
→ 2 : map (plus 1) (2 : 3 : [ ])
→ 2 : (plus 1) 2 : map (plus 1) (3 : [ ])
→ … → 2 : 3 : 4 : [ ] = [2,3,4]

1.8 Correctness proof of functional programs

A functional programming style has advantages that are common in any
mathematical notation:

• There is consistency in the use of names: variables do not vary,
they stand for a, perhaps not yet known, constant value throughout
their scope.

• Thanks to the absence of side-effects, in FPLs the same expression
always denotes the same value. This property is called referential
transparency.
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A definition like x = x + 1 would mean in an imperative language
that x is incremented. In a functional language however this definition
means that any occurrence of x can always be substituted by x + 1.
Clearly the initial expression x does not have a normal form: substitu-
tion will continue forever (some systems recognize such situations in
certain simple cases and report an error message).

x → x + 1 → (x + 1) + 1 → …

Due to the referential transparency1 one is allowed to replace in any ex-
pression any occurrence of any left-hand side of a definition by its cor-
responding right-hand side and vice versa.

Referential transparency makes it possible to use common mathe-
matical techniques such as symbolic substitution and induction. With the
help of these techniques a program can be transformed into a more effi-
cient one or certain properties of a program, such as its correctness, can
be proven. Take again the factorial example:

fac:: num -> num
fac 0 = 1 || (1)
fac n = n * fac (n – 1), if  n > 0 || (2)

= error "factorial called with argument less than zero", otherwise

The Miranda definition of this function has a great similarity to the
mathematical definition of factorial. In order to prove that this function
indeed calculates the mathematical factorial written as n! for n >= 0,
mathematical induction is used: first it has to be proven that the function
calculates factorial for a start value n = 0 (step 1). Then, under the as-
sumption that the function calculates factorial for a certain value n (the
induction hypothesis), it has to be proven that the function also calcu-
lates factorial for the value n + 1 (step 2). The proof is trivial:

step 1: fac 0 = 1 , by applying rule (1)
1 = 0! , by the definition of factorial

step 2: Assume that fac n = n!, n >= 0 (induction hypothesis)
fac (n + 1) = (n + 1) * fac n , by applying rule (2): n+1>0
(n + 1) * n! , by the induction hypothesis
(n + 1)! , by the definition of factorial

1 Sometimes the notion ‘functional programming language’ is used for lan-
guages which support higher order functions and the notion ‘applicative program-
ming language’ for languages which support referential transparency. Outside the
functional programming community the notion ‘functional’ is widely used as a syn-
onym for ‘useful’.
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Note that the proof assumes, as is common in mathematics, that the
function is only applied to arguments on which it is defined: the math-
ematical definition does not concern itself with ‘incorrect input’ (n < 0).
In general, a proof must cover the complete domain of the function.

There is a strong correspondence between a recursive definition
and an induction proof. Recursive functions generally have the form of
a sequence of definitions: first the special cases (corresponding to the
start values in an induction proof), textually followed by the general
cases that are recursively expressed (corresponding to the induction
step).

1.9 Program examples

This section illustrates the expressive power of the functional pro-
gramming languages in two small examples.

1.9.1 Sorting a list

The function (quick) sort needs a list of numbers as argument and deliv-
ers the sorted list as result.

sort:: [num] -> [num]
sort [ ] = [ ]
sort (x : xs) = sort (smalleq x xs) ++ [x] ++ sort (greater x xs)

The functions smalleq and greater take two arguments, namely an ele-
ment and a list. This element must be of the same type as the type of the
elements of the list. It is assumed that the elements are of type num; the
operators <= and > are therefore well defined.

smalleq:: num -> [num] -> [num]
smalleq a [ ] = [ ]
smalleq a (x : xs) = x : smalleq a xs, if  x <= a

= smalleq a xs, otherwise

greater:: num -> [num] -> [num]
greater a [ ] = [ ]
greater a (x : xs) = x : greater a xs, if  x > a

= greater a xs, otherwise

1.9.2 Roman numbers

Outline of the problem
Roman numbers consist of the characters (roman ciphers) M, D, C, L, X,
V and I. Each of these characters has its own value. The values of roman
ciphers are: M := 1000, D := 500, C := 100, L := 50, X := 10, V := 5, I := 1.
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These characters always occur in sorted order, characters with a higher
value before characters with a lower value. Exceptions to this rule are a
number of ‘abbreviations’, given below. The value of a roman number
can be found by adding the values of the characters that occur in the
roman number (MCCLVI = 1000 + 100 + 100 + 50 + 5 + 1 = 1256). The fol-
lowing abbreviations are commonly used: DCCCC := CM, CCCC := CD,
LXXXX := XC, XXXX := XL, VIIII := IX, IIII := IV. These abbreviations make it
less simple to calculate the value of a roman number because now the
value of the character depends on its position in the string. Negative
numbers and the number zero cannot be expressed in roman numbers.

Task
• Develop an algorithm that calculates the integer value of a roman

number, represented as a string, assuming that the string is a proper
roman number.

• Develop an algorithm that converts an integer value into a roman
number without abbreviations, assuming that the integer value is
positive.

Solution
First the value of a roman cipher is defined:

value:: char -> num
value 'M' = 1000
value 'D' = 500
value 'C' = 100
value 'L' = 50
value 'X' = 10
value 'V' = 5
value 'I' = 1

The function romtonum converts a roman number to a decimal number. It
assumes that the supplied argument is a proper roman number.

romtonum:: [char] -> num
romtonum ('C' : 'M' : rs) = value 'M' – value 'C' + romtonum rs
romtonum ('C' : 'D' : rs) = value 'D' – value 'C' + romtonum rs
romtonum ('X' : 'C' : rs) = value 'C' – value 'X' + romtonum rs
romtonum ('X' : 'L' : rs) = value 'L' – value 'X' + romtonum rs
romtonum ('I' : 'X' : rs) = value 'X' – value 'I' + romtonum rs
romtonum ('I' : 'V' : rs) = value 'V' – value 'I' + romtonum rs
romtonum ( r : rs) = value r + romtonum rs
romtonum [ ] = 0
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The function numtorom converts a decimal number to a roman number
by repeated subtraction of 1000, 500, 100, 50, 10, 5 and 1, in this order. It
assumes that the argument is a number greater than zero.

numtorom:: num -> [char]
numtorom n = countdown n ['M','D','C','L','X','V','I']

countdown:: num -> [char] -> [char]
countdown 0 rs = [ ]
countdown n (r : rs) = [r] ++ countdown (n – value r) (r : rs), if  n >= value r

= countdown n rs, otherwise

The style in which these algorithms were presented (bottom-up) is not
the way in which they were deduced. In Chapter 2 styles of functional
programming are discussed.

Summary

• A functional  program consists of a collection of (predefined) func-
tion definitions and an initial expression that has to be evaluated
according to these definitions.

• A function definition consists of a sequence of one or more alterna-
tive equations. The choice between these alternatives is determined
by patterns and/or guards.

• The evaluation of a functional program is called reduction or
rewriting.

• A function application that can be rewritten according to a function
definition is called a redex.

• In each reduction step a redex is replaced by the corresponding
function body, substituting formal arguments by actual arguments.

• The evaluation of a functional program stops if there are no more
redexes left in the resulting expression. Then the expression is in
normal form.

• Redexes can be chosen in arbitrary order; in principle it is even
possible that they are reduced in parallel.

• A reduction strategy determines the order in which redexes are re-
duced.

• In a lazy FPL redexes are only chosen if their result is needed to
achieve the normal form.

• In an eager FPL the arguments of a function are reduced to normal
form before the function application itself is reduced.
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• Data  structures in FPLs are not globally available but constructed
in expressions, passed as arguments, decomposed and used as
components for the construction of new structures.

• Data structures in FPLs are composed using data  constructors.
With pattern matching data structures can be decomposed.

• The most important basic data structure in FPLs is a list.
• Lazy FPLs can handle infinite data structures, eager FPLs cannot.
• A function with n arguments can be simulated using higher order

functions with at most one argument (currying).
• FPLs have a high expressive power due to the availability of higher

order functions, pattern matching and guarded equations.
• Due to referential transparency traditional mathematical proof

techniques, such as induction and substitution, can be used for the
correctness proof of functional programs.

EXERCISES

1.1 Write in your favourite imperative language a program that finds
the maximum element in a list of numbers. Rewrite the program so
that only the functional subset of the imperative language is used.

1.2 Consider the following function definition:
maxi:: num -> num -> num
maxi x y = x, if  x >= y

= y, if  x < y

Check whether the following initial expressions are legal, and if so,
give the result yielded:
• maxi 5 6 • maxi (5) • maxi 5
• maxi (5,6) • maxi maxi 5 6 4 • maxi [5,6]
• maxi (maxi 5 6) 4 • maxi 'a' 4

1.3 Write a function maxilist that uses the function maxi of Exercise 1.2
to calculate the greatest element of a list of numbers. How does
maxilist react on the empty list? Are there lists for which your pro-
gram does not terminate? Does it make any difference if you
change the order of the guards or patterns in your program?

1.4 Suppose you now want to find the smallest element of a list with
minimal rewriting of the programs written in Exercise 1.3. To
solve this problem first write a higher order function find in Mi-
randa that gets a list of numbers and a function f of type num -> num
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-> num as arguments and produces a num as its result such that find
[a1,a2,…,an] f = f a1 (f a2 ( … (f an–1 an ))).
Then, write down the stepwise lazy evaluation of the function ap-
plication find [1,2,3] s with s:: num -> num -> num and s a b = a + b.
What does find list s calculate?
Finally, write a function to find the smallest element of a list.

1.5 Define functions that print a list of characters on the screen in dif-
ferent ways: vertically below each other; each character in the
same place; with two spaces between the characters; diagonally.

1.6 Define a function which yields the last two elements in a list.

1.7 Define a function which yields the average of a list of numbers.

1.8 Define a function search that takes two arguments of type [char]
yielding a bool indicating whether the first argument is part of the
second.

1.9 Examine the definition of the function map in this chapter. Define a
function mapfun that applies a list of functions to a number and re-
turns a list of the results of the function applications. So the fol-
lowing must hold: mapfun [f,g,h] x = [f x, g x, h x].

1.10 Define a function that yields all factorial numbers.
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Chapter 2
Advanced concepts: Miranda

2.1 Defining functions
2.2 Predefined data structures
2.3 The type system
2.4 User-defined data structures and

their types

2.5 The use of functions as basic
building blocks

2.6 Interactive programs
2.7 Top-down functional

programming

In this chapter the more sophisticated language features as found in
modern lazy functional languages are discussed. Again Miranda
(Turner, 1985) is taken as example language. The intention of this
chapter is to show the programming power and notational elegance
provided by such a state-of-the-art-language.

Many of the advanced concepts treated in this chapter can also
be found in other languages. Those who are already familiar with simi-
lar languages like ML (Harper et al., 1986), LML (Augustsson, 1984),
HOPE (Burstall et al., 1980), Haskell (Hudak et al., 1992) or others will
recognize most concepts.

Examples of simple function definitions using patterns and
guarded equations have been shown in the previous chapter. In addi-
tion Miranda allows function definitions with a local scope to support a
more modular programming style (see Section 2.1). Besides lists, tu-
ples are also available as predefined data structures. Furthermore, a
powerful and elegant notation based on mathematics is provided to
generate all kinds of lists (Section 2.2). Miranda’s type system has
many features useful for programming. Functions can be of polymor-
phic type (Section 2.3). User-defined data structures (Section 2.4) can
be declared using algebraic type declarations or abstract type declara-
tions. The use of (higher order) functions as basic building blocks
(Section 2.5) is a useful and reliable method for producing more com-
plex functions. Due to lazy evaluation it is possible to write fairly general
interactive programs in a functional language (Section 2.6). Finally, in
Section 2.7 some guidelines are given on how to perform a top-down
design of a functional program.
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2.1 Defining functions

The basic ideas of Miranda are taken from earlier functional languages
such as SASL (Turner, 1979b). The word ‘Miranda’ is Latin and it
means ‘she who is to be admired’.

Miranda is a lazy functional programming language featuring the
basic concepts discussed in the previous chapter. Miranda is equipped
with many additional features such as a rich type system that helps the
user to develop meaningful, elegant and compact programs.

A Miranda program consists of two parts: a collection of declara-
tions, called the script, and an initial expression to be evaluated. The
declarations in the script can be function definitions or type declarations.
In general, a function definition has the following form:

f_name pattern1 pattern2 … patternn = expression

Some examples of valid Miranda expressions:

x || an identifier
127 || a value of type num(eral)
True || a value of type bool(ean)
'a' || a value of type char(acter)
"hello world" || a value of type [char]
y * x – 17 || an expression of type num using predefined operators
[1,5,7,9] || a list of nums
[+, –, *, /] || a list of operators of type num -> num -> num
fac 3 || a function application
(any_expression) || an expression

There are a variety of predefined infix and prefix operators, of various
binding powers (see below).

List of prefix and infix operators, in order of increasing binding power. The
table reveals that Miranda allows functions of polymorphic type (see Section
2.3). Comparison operators can be continued, e.g. 0 <= x < 5.

Left associative operators: + , – , * , / , div , mod , !
Right associative operators: ++ , – – , : , ̂
Associative operators: ., \/ , &
Prefix operators: ~ , # , –
Continuable operators: > , >= , = , ~= , <= , <

Operator Type Meaning
: * -> [*] -> [*] prefix an element to a list
++, – – [*] -> [*] -> [*] list concatenation,

list subtraction
\/, & bool -> bool -> bool logical OR, AND
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~ bool -> bool logical negation
>, >=, =, ~=, <=, < * -> * -> bool greater, greater than,

equal, not equal,
less than, less

+, – num -> num -> num plus, minus
– num -> num unary minus
*, /, div, mod num -> num -> num times, divide,

integer divide, remainder
^ num -> num -> num to the power of
. (** -> ***) -> (* -> **) -> * -> *** function composition
# [*] -> num length of list
! [*] -> num -> * list subscription

The evaluation strategy in Miranda is lazy. Function alternatives are
tried in textual order and the patterns in an alternative are tried from left
to right. This strategy is intuitively easy to understand. However, it is
not truly lazy, i.e. it does not always find a normal form if it exists.

Miranda’s evaluation strategy is not truly lazy. Take the following definitions:

f 1 [ ] = 0
f x (a : b) = a

inf = inf

With the initial expression f inf [1..2] the evaluation in Miranda will not termi-
nate since the first argument will be evaluated first. So the strategy will not
find the normal form 1. However, one would expect that a truly lazy strategy
would evaluate the second argument of f first, but the strategy of Miranda first
tries to match the patterns of the topmost rule from left to right and therefore it
first evaluates the first argument of f.

Furthermore some specific aspects of Miranda are:
• Named constants in patterns are not possible: you can define a

function linewidth = 80 for usage as a named constant throughout
your program, but it is not possible to use this constant as a pattern
on the left-hand side of a function definition: syntactically it would
be a pattern variable.

• A string actually is a list of characters; hence "It is fun" is shorthand
for 'I' : 't' : ' ' : 'i' : 's' : ' ' : 'f' : 'u' : 'n' : [ ]. This implies that one can use the
pattern match mechanism for lists to decompose strings.

2.1.1 Local function definitions

Ordinary functions defined in Miranda have a global scope. This means
that such a function can be applied in any expression anywhere in the
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program script. It is also possible to define functions with a local scope
using a where clause. Such a local function is only defined in the small-
est surrounding block. Outside a block such a function is not visible. In
most programming languages the beginning and the end of a block
structure are indicated by special keywords such as ‘begin’ or ‘end’, or in
other languages a block is surrounded by parentheses. In Miranda a
block is indicated by the layout of a program: a block consists of all ex-
pressions and definitions within one function definition or where clause
that is either directly below or to the right of the first token after the
equal sign of the function definition. A token that is outside the block of
a definition is said to be offside (Landin, 1966).

The boxes indicate the blocks of, respectively, the function definition and the
where clause:

glob_func a1 … an = expr1
glob_func b1 … bn = expr2

where

local_func1 c1 c2 … cm = expr3
local_func2 d1 d2 … ds = expr4

A where clause can contain any number of definitions. The where
clause must be indented, to show that it is part of the right-hand side.

primes:: [num]

primes = sieve (from 2)
where

sieve (p : x) = p : sieve (filter p x)
from n = n : from (n + 1)
filter p (a : x) = filter p x,   if a mod p = 0

= a : filter p x, otherwise

A disadvantage of the offside rule is that it can lead to errors when
names are changed globally in the script.

A not-offside program:

f a = g
where g = 3

An offside program:

a_meaningful_long_name_for_this_function a = g
where g = 3
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Actually (for purists), it is a consequence of the offside rule that a Mi-
randa program is no longer referentially transparent: a uniform substitu-
tion can introduce an error and hence change the meaning of a program.
One can overcome this problem by using a layout that is safe with re-
spect to global name changes.

An example of such a safe layout is given below:

f a
= g

where g = 3

2.2 Predefined data structures

In Miranda two kinds of data structure are predefined: lists and tuples.
In the first part of this section tuples are discussed and compared with
lists which were already introduced in the previous chapter.

Modern languages like Miranda and Haskell furthermore offer
compact alternative notations to define lists: list comprehensions. These
list comprehensions offer the possibility of defining lists in a style com-
monly used in mathematics. In the second part of this section these no-
tations are discussed.

2.2.1 Tuples

The most important difference between lists and tuples is that the ele-
ments of a tuple can have different types while all the elements of a list
must be of the same type. Furthermore a list is a linked list, possibly of
infinite length. A tuple is just a record with some finite number of fields
(Figure 2.1). There must be at least two fields in the tuple. Each field
contains an object of a certain type.In Miranda, the notation for lists and
tuples is quite similar: brackets are used to denote lists, parentheses are
used to denote tuples. Parentheses are also used for disambiguating the
structure of expressions. There is no concept of a 1-tuple, so the use of
parentheses for disambiguating never conflicts with their use for tu-
pling.

[ ]1 2 :3::

1Tuple-3 2 3

Figure 2.1 General difference between a list and a tuple.
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The correspondence between the Miranda notation for lists and tuples:

[1, 2, 3] || the list 1 : 2 : 3 : [ ]
(1, 2, 3) || a tuple containing the elements 1, 2 and 3

In a tuple the elements can have different types. If the elements of a tu-
ple are of type T1, T2 … Tn, the type of that tuple is indicated by (T1, T2,
… , Tn) (see also Section 2.3).

Example of tuples and their types:

(3, 0, 'a') || 3-tuple of type (num, num, char)
([0,1,2], +) || 2-tuple of type ([num], num -> num -> num)

As with any other data structure, pattern matching can be used to access
elements. In this way projection functions can be constructed that select
a certain element from a tuple.

Using pattern matching to select an element of a tuple with three elements:

first (x, y, z) = x
second (x, y, z) = y
last (x, y, z) = z

Here follows a summary of the differences between the two prede-
fined data structures lists and tuples:

• the length of lists can vary and can even be infinite, the length of
tuples will always be fixed and finite;

• all the elements in a list must be of the same type, the elements in a
tuple need not;

• lists are enclosed in square brackets, tuples are enclosed in round
parentheses;

• in a pattern match and in a denotation all the elements in a tuple
must be enumerated, whereas for lists this is not necessary;

• subscription as in lists is not defined in tuples; however there is the
possibility of extracting elements of a tuple by using pattern
matching.

As will be shown in Section 2.4, both lists and tuples could have
been defined as ordinary user-defined algebraic data types. The reason
that they have been predefined is that they are used so frequently that
both data structures deserve a compact notation as well as special atten-
tion in an implementation.
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2.2.2 List comprehensions

Miranda offers three alternative notations to define lists in a style com-
monly used in mathematics: by means of dotdot expressions, ZF-ex-
pressions and recurrent generators. These notations do not offer any
additional expressive power, but are just syntactic sugar. The advantage
of the notations is that they may be used to express certain algorithms
concisely and elegantly (although the concept of recurrent generators is
a bit overdone in our opinion). A disadvantage of the notations is that it
may be less clear how the list will be computed. As a result program-
mers may sometimes find their programs to be unexpectedly slow or
even non-terminating.

Dotdot expressions

The following abbreviations are provided for defining lists whose mem-
bers form a finite or infinite arithmetic series.

Dotdot notations (let a, b, c stand for arbitrary numeric expressions):

[a..b] finite list of numbers from a with interval 1, last member not
exceeding b

[a..] infinite list from a with interval 1
[a,b..c] finite list from a with interval (b–a), last member not exceeding c
[a,b..] infinite list from a with interval (b–a)

The following examples show the use of these abbreviations together
with an equivalent definition showing that it is all just syntactical sugar.

Two auxiliary functions that are used in the expansion of the abbreviations:

inbetween:: num -> num -> num -> [num]
inbetween start limit interval
= start : inbetween (start + interval) limit interval,

if (interval >= 0 & start <= limit) \/ (interval <= 0 & start >= limit)
= [ ], otherwise

from:: num -> num -> [num]
from start interval = start : from (start + interval) interval

Examples of the use of dotdot expressions with (on the right) an equivalent
ordinary definition.

The ciphers from 0 up to 9:

ciphers:: [num] ciphers:: [num]
ciphers = [0..9] ciphers = inbetween 0 9 1
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The natural numbers:

nats:: [num] nats:: [num]
nats = [1..] nats = from 1 1

Even ciphers:

evenciphers:: [num] evenciphers:: [num]
evenciphers = [0, 2..9] evenciphers = inbetween 0 9 (2–0)

Even natural numbers:

evens:: [num] evens:: [num]
evens = [2, 4..] evens = from 2 (4–2)

ZF-expressions

ZF-expressions give a concise syntax for a general class of iterations
over lists. The notation is adapted from the Zermelo–Fraenkel set theory
(Fraenkel, 1922; Zermelo, 1908). Note that Miranda is dealing with lists
and not with sets. A ZF-expression has two possible forms:

[ exp | qualifiers ] or [ exp // qualifiers ]

The above must be read as ‘list of all exp such that qualifiers’. The ex-
pression yields a list with elements of the form dictated by exp. The el-
ements are produced by qualifiers. When multiple qualifiers are specified,
they are separated by semicolons. There are two kinds of qualifiers:
generators and filters. A qualifier can be a generator, of the form:

pattern1, pattern2, … , patternn <- exp

which is a shorthand for the following multiple generators:

pattern1 <- exp; pattern2 <- exp; … ; patternn <- exp

The ‘<-’ sign denotes that the patterns, of which the variables are locally
introduced on its left, range over all the elements of the list on its right.

The function squares yields an infinite list containing (in order) the squares of
all natural numbers. The ZF-expression is read aloud as ‘list of all n*n such
that n is drawn from the list [1..]’. The pattern n is just a local variable.

squares:: [num]
squares = [ n*n | n <- [1..] ]
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The function sqlist employs a more complex pattern to yield a list of tuples.
With the pattern (x, y) these tuples are generated from that list and used to
yield the list of cubes, i.e. the list of all numbers to the power 3.

cubes:: [num]
cubes = [ x*y | (x, y) <- sqlist ]

sqlist:: [(num,num)]
sqlist = [ (n, n*n) | n <- [1..] ]

If there is more than one generator specified as qualifier, the rightmost
will vary first, as if the generators were specified as nested for loops.

Example of the use of multiple generators:

list:: [(num, num)]
list = [ (x, y) | x, y <- [1..2] ]

is an abbreviation for

list = [ (x, y) | x <- [1..2]; y <- [1..2] ]

The rightmost generator varies first, so list yields the following list of tuples:
[(1,1), (1,2), (2,1), (2,2)].

A qualifier can also be a filter, i.e. a Boolean expression used to impose
restrictions on the objects generated by the generators.

The function factors gives the list of all factors of a given number n using a
filter qualifier.

factors:: num -> [num]
factors n = [ r | r <- [1..n div 2]; n mod r = 0 ]

A nice demonstration of the elegance of ZF-expressions is given by the fol-
lowing definition of the quicksort algorithm:

quick_sort:: [num] -> [num]
quick_sort [ ] = [ ]
quick_sort (a : x) = quick_sort [b | b <- x ; b <= a] ++

[a] ++
quick_sort [b | b <- x ; b > a]

Since in the case of multiple generators the rightmost generator will
vary first, other generators cannot produce new solutions if the right-
most generator yields an infinite sequence. Hence, one has to be aware
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of the possibility that a specification looks fine at first sight, but is not
producing any result due to the way the computation is performed.

The Pythagorean numbers with multiple generators varying over infinite lists:

pyths:: [(num, num, num)]
pyths = [ (a, b, c) | a, b, c <- [1..]; a^2 + b^2 = c^2]

This ‘solution’ will not yield anything because of the order in which the gen-
erators vary: [(1, 1, 1), (1, 1, 2), (1, 1, 3), …]

The problem can be solved by diagonalizing generators such that all
generators have equal priority, i.e. these generators are evaluated
breadth-first from left to right instead of depth-first. This different type
of generator is specified by using ‘//’ instead of the ‘|’.

Example: the Pythagorean numbers with diagonalized generators:

pyths:: [(num, num, num)]
pyths = [ (a, b, c) // a, b, c <- [1..]; a^2 + b^2 = c^2]

Now the generators yield a list of tuples in the following way: [(1, 1, 1), (1, 1,
2), (2, 1, 1), (1, 2, 1), (2, 1, 2), (3, 1, 1), (1, 1, 3), (2, 2, 1), …].

Recurrent generators

Recurrent generators allow the construction of lists from arbitrary recur-
rence relations using the dotdot notation:

pattern <- exp1, exp2 ..

The meaning of a recurrent generator is expressed by expanding it to a
normal generator in the following way:

pattern <- iterate f exp1

where f pattern = exp2

iterate:: (* -> *) -> * -> [*]
iterate f x = x : iterate f (f x)

The result of iterate is the infinite list [x, f x, f (f x), f (f (f x)), …]. The meaning
of the type specification of iterate will be explained in the next section.

The recurrent generator combines the pattern and the second expression
into a recurrent relation f. This f is iterated with start expression exp1

yielding a list.
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With a recurrent generator the Fibonacci series can be defined as:

fibs:: [num]
fibs = [ a | (a,b) <- (1,1), (b,a+b).. ]

This can be expanded to:

fibs = [ a | (a,b) <- iterate f (1,1) ]
where
f (a,b) = (b, a+b)

The generator yields [(1,1), (1,2), (2,3), (3,5), (5,8),…]

Recurrent generators are special syntactical constructs for a special kind
of recursive definition, generating a list.

2.3 The type system

Miranda is a strongly typed language, i.e. every expression and every
subexpression has a type. The type system of Miranda is based upon the
type assignment systems of Milner–Mycroft (Milner, 1978; Mycroft,
1984). Explicit type declarations are not required. If the types are not
specified, they are inferred by the compiler by analysing the function
definitions. Any inconsistency in the deduced types or any conflict with
the specified types results in a compile-time error message. However,
the explicit specification of types is highly recommended. It gives a lot
of information about the specified functions. By choosing meaningful
names for user-defined types (and for all other identifiers used in the
program) the readability can be improved dramatically.

The advantages of adding a type system to a language are twofold.
Firstly, it stimulates the programmer to write correct programs: only
correctly typed programs are accepted by the compiler. Hence, for
example, if the type of a function application is inconsistent with the
type of the corresponding function definition, a compile-time error is
generated. In this way the type system is of help in writing programs
that make (more) sense.

Given the type of the infix + to be num -> num -> num, the expression

1 + 'a'

will be detected by the compiler as a type error.

A second advantage of having a typed language is that the type informa-
tion can be used to generate efficient code. This is explained in Part 4.
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There are also some disadvantages in having a typed language. To
obtain the advantages claimed above, it is necessary to determine the
consistency of types at compile-time. It can be proven that it is in gen-
eral impossible to determine a proper type for all sensible expressions
(see also Chapter 6). Fortunately, powerful type systems such as the
Milner–Mycroft scheme used in Miranda can deduce and check the
types of most expressions. As shown in this chapter later on, some ex-
pressions cannot be typed in this system and a compile-time error is
generated even if the expression made sense. A peculiarity of the com-
bination of the Milner type system (type deduction of a function that has
not been typed) and the way the Mycroft system is used (checking a
type specified by a programmer) is that in some cases expressions are
accepted when they are explicitly typed by the programmer, but rejected
otherwise (see also Section 2.3.6).

Hence, a type system always limits the number of legal programs.
In most cases this limitation is of great help for the programmer, be-
cause an illegal program generally contains a program error. But in
some more rare cases an illegal program does not contain a program-
ming error at all. It simply could not be handled by the type system. In
such cases the programmer is obliged to change the program to make it
acceptable for the type system.

2.3.1 Basic types

In Miranda three basic types are predefined: num(bers), bool(eans) and
char(acters). There is no type distinction between integer and floating-
point numbers: they are both of type num. At run-time integer numbers
are taken where possible. They are automatically converted into float-
ing-point numbers when needed. It is important to note that due to the
nature of floating-point numbers (rounding errors) this automatic con-
version can create a conflict with referential transparency.

2.3.2 Type constructors

Complex types can be constructed by using type constructors. Type
constructors make it possible to construct new types by combining ex-
isting types. The available type constructors are ‘[’ and ‘]’ (for con-
structing lists), ‘(’ and ‘)’ (for constructing tuples) and ‘->’  (for con-
structing functions).

For these type constructors the following holds:

• If T is a type, then [T] denotes the type list of   T.
• If T1,…,Tn are types, then (T1,…,Tn) denotes the type tuple of

T1,…,Tn.
• If T1,T2 are types, then (T1 -> T2) denotes the type function from T1

to T2.
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The best way to understand complex types built with the type con-
structors is to read them aloud, as in the following example.

Using type constructors to build complex types:

[ [num] ] || list of list of num
([char],[num] -> bool) || tuple with list of char and

|| function from list of num to bool
num -> num -> num || function from num to

|| function from num to num

2.3.3 Polymorphic types

A useful type system should not restrict the programmer too much. The
example below illustrates this.

Function reverse:

reverse [ ] = [ ]
reverse (a : as) = reverse as ++ [a]

If the function reverse is applied to a list of characters, it will yield a list
in which all characters are in reversed order. On the other hand, if ap-
plied to a list of numbers, it will yield this list in reversed order too.
Hence it would be nice if the type system would allow the use of such a
function for any sort of list. The Miranda system allows such a type
specification. The type of reverse is denoted by

reverse:: [*] -> [*]

which indicates that reverse takes a list with elements of an arbitrary
type as an argument and yields a list with elements of the same type.

To indicate arbitrary types there is an alphabet of generic  type
variables denoted by the symbols *, **, ***, and so on. A variable name
can occur more than once in a type definition. In such a case each occur-
rence of the same name denotes the same type. Unequal names only in-
dicate that the corresponding types can differ from each other (they
could be the same). If a type variable occurs in the type definition of a
function, the type of the function is said to be polymorphic (or
generic) in the sense of Milner (1978).

Some examples of polymorphic functions:

ident:: * -> *
ident x = x
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hd:: [*] -> *
hd (x : xs) = x

second:: (*, **, ***) -> **
second (x, y, z) = y

2.3.4 Type deduction

Generally a programmer will know the type of the function that he or
she is defining. It is not always clear what the type of a concrete func-
tion is. For example, consider the function twice and try to deduce (infer)
its type.

twice f x = f (f x)

In order to solve this problem the programmer actually has to perform
the same kind of analysis that is performed by the type system incorpo-
rated in the Miranda compiler. This is only possible in all cases if the
type system and the type inference mechanism are fully understood by
the programmer. For the moment we shall only present a basic inference
scheme that helps to derive the type of a function in most cases. Type
systems and type inference mechanisms are explained in detail in
Chapter 6.

The general idea of the inference scheme is the following: first the
left-hand side of a function definition is analysed, making assumptions
for the type of the function, its arguments and its result. The next step is
to analyse this right-hand side using all assumptions already made. The
type of the result must be compatible with the type of the right-hand
side. Furthermore, function and arguments must be used consistently in
the right-hand side. This analysis leads to equations that have to be
solved to infer the type of the function.

Below the basic inference scheme is explained in more detail. For
reasons of readability Greek characters are used for type variables in-
stead of the *s that are used in Miranda.

1. Left-hand side analysis

For the general case f x1 x2 … xn = right-hand side for each argument and
for the result a new type variable is introduced leading to the following
assumptions:

x1:: α1, x2:: α2, …, xn:: αn, result:: αn+1
f:: α1 -> α2 ->… -> αn -> αn+1

If a pattern is specified, the corresponding type information is incorpo-
rated directly in the assumptions.
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Incorporating pattern information in assumptions for left-hand side type analy-
sis:

hd (x : y) = x

The constructor ‘:’ is a constructor of the type list, so the following types are
assumed:

(x : y):: [α1], x:: α1, y:: [α1], result:: α2, hd:: [α1] -> α2.

2. Right-hand side analysis

The right-hand side is analysed using the assumptions made so far, lead-
ing to one or more equations. First of all, the assumed result type must
be compatible with the type of the right-hand side as a whole. Further-
more, every application must be type-consistent. So for every occur-
rence of an application (function argument) on the right-hand side the re-
quired equation for the type of the function, the argument and the result
of the application itself is:

function type = argument type -> result type.

Remember that all functions are considered to be curried. So for a func-
tion with multiple arguments several applications must be considered.

Already known types of functions are used in such a way that for
each application of a polymorphic function in the assumed type fresh
variables are taken. When no assumption is available new assumptions
are made introducing fresh variables. Equations are constructed that
specify the conditions that have to be fulfilled to make every application
type consistent.

Right-hand side type analysis of previous example: hd (x : y) = x. Left-hand
side assumptions were: (x : y):: [α1], x:: α1, y:: [α1], result:: α2, hd:: [α1] -> α2.
Inspecting the right-hand side shows that the result type must equal the type of
x (the right-hand side):

α2 = α1

This equation is solved in the next step.

3. Solving equations

The equations are solved by substituting for the type variables other
type variables or actual types. In general there are many solutions for
the equations. The solution we want is of course the most general solu-
tion. The process of finding such a solution is called unification, and
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the requested solution is called the most general unifier. In Chapter 6 a
method will be given that performs the unification by solving the equa-
tions during the analysis.

Solving equations for the running example: hd (x : y) = x. Assumptions: (x :
y):: [α1], x:: α1, y:: [α1], result:: α2, hd:: [α1] -> α2. Equations: α2 = α1.

Solution: substitute α2 by α1, leading to the following derived types:

(x : y):: [α1], x:: α1, y:: [α1], result:: α1, hd:: [α1] -> α1

We could also substitute α1 by α2 yielding the same solution, since the names
of the type variables can be chosen freely. The compiler would have deduced
the type hd:: [*] -> *. A different solution of the equation would have been
found by substituting both α2 and α1 by num, leading to hd:: [num] -> num.
Obviously, this is not the most general solution.

These three steps complete the basic type inference scheme. In this
scheme not all syntactic constructs of Miranda, such as local definitions,
type synonyms, algebraic data types, ZF-expressions etc., are taken into
account. It is left to the reader to extend the scheme where necessary.
To illustrate the basic type inference scheme it is applied to the follow-
ing examples:

doublehd x = hd (hd x)

Left-hand side analysis: x:: α1, result:: α2, doublehd:: α1 -> α2

Right-hand side analysis: generally, it is easier to do the innermost application
first.
Analysis of application: hd x leads to: type of hd = (type of x)->(type of (hd x))
Take fresh variables for the type of hd:: [α4] -> α4. The type of x is already as-
sumed to be α1. For hd x no assumption is available, so assume hd x:: α3.
The resulting equation: [α4] -> α4 = α1 -> α3

The application hd (hd x) leads in the same way to the following equation:
[α5] -> α5 = α3 -> α2

Solving the equations: both sides of -> have to be equal:
[α4] = α1, α4 = α3, [α5]  = α3, α5 = α2.
Leading to the following substitutions: α1 = [ [α5] ], α2 = α5.
So doublehd:: [ [α5] ] -> α5.
The compiler would have deduced the type of doublehd as [ [*] ] -> *.

Another example: twice f x = f (f x)

Left-hand side analysis: f:: α1, x:: α2, result:: α3, twice:: α1 -> α2 -> α3.
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Right-hand side analysis:
Analysis of application: f x leads to: type of f = (type of x) -> (type of (f x))
For f x no assumption is available, so assume f x:: α4.
The resulting equation: α1 = α2 -> α4
Analysis of application: f (f x) leads to: (type of f) = (type of (f x)) -> (type of (f
(f x)))
f (f x) is the right-hand side, so its type is assumed to be the result type: α3.
The resulting equation: α1 = α4 -> α3

Solving the equations leads to α2 = α4 = α3 and α1 = α2 -> α2.
So the derived type is twice:: (α2 -> α2) -> α2 -> α2.
The compiler would have deduced the type of twice as (* -> *) -> * -> *.

2.3.5 Untypable function definitions

Not all functions can be typed in Milner’s type system (see also Chapter
6). Two different kinds of untypable functions are given below:

A Milner untypable function:

selfapplication f = f f

This function cannot be typed in Milner’s system because f cannot have both *
and * -> * as type since the equation α1 = α1 -> α1 has no solution.

The function definition in the example above cannot be typed. In this
case one can argue that such functions should not be written. However,
although the Milner type system is very powerful compared with the
type systems generally available in more traditional languages, some
very reasonable functions also cannot be expressed.

A Milner untypable function:

length:: [*] -> num
length [ ] = 0
length (a : b) = 1 + length b

fun:: ([*] -> num) -> [*] -> [*] -> num
fun f list1 list2 = f list1 + f list2

missionimpossible = fun length [1,2,3] "abc"

The actual argument f is not allowed to have two different types within the
body of the function fun. In this case f has to have type [num] -> num when
applied to list1 but type [char] -> num when applied to list2.
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Milner’s type inference scheme inherently does not allow internal
polymorphism, where the same object is used with different types
within one function definition. Although the deduction scheme used can
be improved for some cases, a satisfactory algorithm for general cases is
not possible.

The problem mentioned above can be solved by making the polymorphism ex-
ternal:

fun2:: ([*] -> num) -> ([**] -> num) -> [*] -> [**] -> num
fun2 f1 f2 list1 list2 = f1 list1 + f2 list2

missionpossible:: num
missionpossible = fun2 length length [1,2,3] "abc"

2.3.6 Differences between type deduction and checking

Explicit declaration of types makes it possible to declare the type of
twice more restrictively as (num -> num) -> num -> num. In this way a type
declaration can also be used to impose additional restrictions on a func-
tion (the declared type is more restrictive than the general derived type).
Another difference between type deduction and type checking is due to
the fact that the type checking algorithm uses an algorithm of Mycroft
that differs from the type deduction algorithm of Milner (this is dis-
cussed in more detail in Chapter 6).

Difference between type inferencing and type checking:

g x = 1 : g (g 'c')

The type deduction algorithm of Milner cannot deduce the type of g. Hence an
error message will be produced. In this case g is used polymorphically in the
right-hand side of its own definition, with type instances: char -> [num] and
[num] -> [num]. However, when the user explicitly specifies the type of g as
g:: * -> [num] the type checker has no problems handling this case: the speci-
fied type is accepted and no error message is produced.

Maybe it would be better to insist always on explicit specification of
types and to have a type inference tool assisting with this specification.

Another example with a difference between type checking and type deduction:

g x = g 1

Type deduction yields g:: num -> * while type checking will accept g:: ** -> *.
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2.3.7 Type synonym declaration

In Miranda it is possible to define a new name for a given type by
means of a type synonym declaration.

Examples of type synonym declarations:

string = = [char]
matrix = = [ [num] ]

For obvious reasons (what should be substituted for what), recursive
type synonyms are not permitted. Type synonyms are entirely transpar-
ent to the type system, and it is best to think of them as macros.

Using generic type variables, it is also possible to introduce a new
name for a family of types.

Type synonym for a family of types:

array * = = [*]

In the examples above the predefined type [ [num] ] is renamed. It can be
called matrix, but also array (array num). In both cases, an object of the
newly defined type will be checked by the type system against the type
[ [num] ], illustrating that indeed the type synonyms are entirely transpar-
ent (which is the only way to handle synonym types in the case that the
type system must be able to deduce the type of the objects on its own).

Example of a type synonym declaration:

invert * ** = = (* -> **) -> (** -> *)
string = = [char]

invert num string is then shorthand for (num -> [char]) -> ([char] -> num).

2.4 User-defined data structures and their types

Data structures are defined by defining new types. For this purpose it is
possible to define (polymorphic) types using algebraic type definitions
and abstract type definitions. Such a type specifies all legal occurrences
of the user-defined data structure. With an algebraic data type a new
data structure (like a record) can recursively be defined that is com-
posed of existing data structures. Each record contains a discriminating
data constructor (see also the section on lists in the previous chapter)
and zero or more other objects called the arguments of the data con-
structor. The data constructor is an identifier (tag) that uniquely identi-
fies an object to be of a specific type. Abstract data types make it possi-
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ble to create data structures of which the actual implementations are
hidden from the user. On such a data structure only the functions
specified in the abstract signature can be applied. The concrete
definition of these functions can be defined elsewhere.

2.4.1 Algebraic data types

A (recursive) algebraic  data type definition enumerates the new data
constructors with their arguments. Every alternative of an algebraic type
definition begins with a unique discriminating data constructor.

Examples of algebraic type definitions:

day :: = Mon | Tue | Wed | Thu | Fri | Sat | Sun
numlist :: = Nillist | Numlist num numlist
numtree :: = Niltree | Node num numtree numtree

In these definitions there are predefined types (num), user-defined algebraic
types (day, numlist, numtree) and user-defined data constructors (Mon, Tue,
… , Sun, Nillist, Numlist, Niltree, Node). In Miranda, data constructors have to
start with a capital letter.

The data constructors defined in an algebraic type can be used in func-
tion definitions. They appear in expressions to construct new objects of
the specified algebraic type. They appear in patterns, for instance to dis-
criminate between objects of the same algebraic type or to make projec-
tion functions for accessing the arguments of the data constructor. The
influence of pattern matching on soundness criteria for type systems is
discussed in Chapter 6. There it is shown that the use of algebraic data
constructors as proposed here is indeed sound with respect to the type
inference mechanism.

Constructing objects of an algebraic type:

payment_day:: day
payment_day = Fri

tree1:: numtree
tree1 = Node 1 (Node 3 Niltree Niltree) Niltree

Using data constructors as patterns, the following function yields the mirror
image of a numtree.

mirror:: numtree -> numtree
mirror Niltree = Niltree
mirror (Node n l r) = Node n (mirror r) (mirror l)
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In a definition of an algebraic data type a new discriminating construc-
tor is needed for every new type and for every new alternative. Conse-
quently, it is impossible to define a general Nil. Every new type must
have its own special constructor to denote an empty object of that type.

2.4.2 Polymorphic algebraic types

Algebraic types can also be polymorphic. One or more generic type
variables can be used as parameters in the type definition.

Polymorphic algebraic type definition:

tree * :: = Niltree | Node * (tree *) (tree *)

This definition can be used for instance as follows:

numtree = = tree num

In this way a family of tree types can be defined (including tree num, tree
bool, tree char, tree (num -> num), and so on). It is important to know that,
in principle, all predefined types of Miranda can be defined using poly-
morphic algebraic type definitions. So in theory no built-in predefined
types are needed. In practice, however, representing all predefined types
algebraically would be rather inconvenient and inefficient.

Algebraic type definition for predefined types:

bool :: = True | False
char :: = ‘A’ | ‘B’ | ‘C’ | …
[*] = = list * :: = Nil | Cons * (list *)
(*, **) = = tuple2 * ** :: = Tuple2 * **

2.4.3 Abstract data types

An abstract data type is a hidden (algebraic or synonym) type for
which functions are defined. These functions are the only way to create
and access objects of that specific abstract type. The concrete definition
of the abstract type and the concrete definitions of the functions, the
concrete signature, are not visible to the outside world. Only the ab-
stract type itself and the type of its functions, called the abstract signa-
ture, are visible.

Example: the well-known abstract data type stack with its signature.

abstype stack * || the abstract data type
with empty :: stack * || and its abstract signature
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isempty :: stack * -> bool
push :: * -> stack * -> stack *
pop :: stack * -> stack *
top :: stack * -> *

The concrete definition of the abstract type and the functions defined on
it are specified separately. The outside world cannot make use of the
particular implementation chosen.

For example: the abstract data type stack can be implemented as a list. The
outside world cannot make use of this fact: [ ] and empty are incomparable ob-
jects of two different and unrelated types, [*] and stack * respectively.

stack * = = [*] || the concrete data type
empty = [ ] || its implementation equations
isempty [ ] = True
isempty s = False
push e s = e : s
pop (e : s) = s
top (e : s) = e

The implementation equations do not have to appear immediately after
the corresponding abstype declaration. They can occur anywhere in the
script, but it is probably best to keep them nearby.

2.5 The use of functions as basic building blocks

In this section some important functions are given that, due to their
general nature, are often used as basic building blocks in functional
programs. The availability of higher order functions in combination
with polymorphic types makes it possible to write very powerful func-
tions that cannot be defined in most imperative languages that often use
a more rigid type system. These powerful higher order functions can be
used as basic building blocks for the creation of more sophisticated
functions. Bird and Wadler extensively show the use of higher order
functions as basic building blocks in the construction of functional pro-
grams and their correctness proofs (Bird and Wadler, 1988).

Function composition

There is a special operator to compose two functions. This associative
operator is denoted as a single dot ‘.’ and can be used in infix notation
like the other operators in Miranda. The composition of two functions,
say f and g, is a function comp f g, such that

comp f g x = f (g x)



THE USE OF FUNCTIONS AS BASIC BUILDING BLOCKS  59

or, using the infix operator:

(f . g) x = f (g x)

The operator ‘.’ takes two functions as arguments and yields a new
function: the composition of the two argument functions. The type of
the composition operator is therefore (** -> ***) -> (* -> **) -> (* -> ***). The
rightmost parentheses are not necessary, but they make it more clear
that the composition of two functions yields a function as result. This
type can be deduced as follows. Look at the function body in the defini-
tion of the composition operator: f (g x). Assume that x is of type *. Then
g must be a function of type (* -> **). Hence f must be of type (** -> ***).
The composition of f and g therefore yields a function of type (* -> ***).

Example of function composition. The function code is a predefined function
in Miranda that returns the ASCII code of a character. The function decode is
also predefined and returns the corresponding ASCII character when it is ap-
plied to a number between 0 and 256. The function nextchar is constructed by
using function composition and yields the next character in the ASCII table
when it is applied to a character with ASCII code less than 255.

code:: char -> num
decode:: num -> char

nextchar:: char -> char
nextchar = decode . (+ 1) . code

The predefined operator + is used in a special curried way here. The following
expressions are all equivalent in Miranda: a + b, (+) a b, (a +) b, (+ b) a. The
same holds for other predefined infix operators.

Evaluation of the function nextchar:

nextchar 'b'
→ ((decode . (+ 1)) . code) 'b'
→ (decode . (+ 1))(code 'b')  || according to the definition of '.'
→ decode ((+ 1) (code 'b')) || according to the definition of '.'
→ decode ((+ 1) 98)
→ decode 99
→ 'c'

Three alternative definitions of nextchar that are equivalent to the one above:

nextchar1 x = (decode . (+ 1) . code) x
nextchar2 x = decode ((+ 1) (code x))
nextchar3 x = decode (code x + 1)
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The example above also illustrates that a sequence of functions can be
combined as one new function using function composition. One can re-
gard a composition of the form (fn . fn–1 . … . f1) x as a pipeline of func-
tions applied to x, as illustrated in Figure 2.2.

fn–1fn … f2 f1 x

Figure 2.2 A ‘pipeline’ of functions created with function composition.

Functions to manipulate lists

There are several handy functions that are frequently used to manipulate
lists. In this section an overview is given of these functions and their use
is illustrated with some examples.

The polymorphic function map is very powerful: it applies any
function of appropriate type to all the elements of a list.

map:: (* -> **) -> [*] -> [**]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

For example, if

max:: num -> num -> num
max a b = a, if a > b

= b, otherwise

then

map (max 0) [–2, 3, –5] → … → [0, 3, 0]

The function filter has as arguments a predicate and a list. The result list
will contain only those elements from the argument list that satisfy the
predicate.

filter:: (* -> bool) -> [*] -> [*]
filter pred [ ] = [ ]
filter pred (x : xs) = x : filter pred xs, if pred x

= filter pred xs, otherwise

filter (> 0) [2, –3, 5, 1, –2, –100] → … → [2, 5, 1]

The function take has as arguments a number, say n, and a list and yields
the first n elements of that list.
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take:: num -> [*] -> [*]
take n [ ] = [ ]
take n (x : xs) = x : take (n – 1) xs, if n > 0

= [ ], otherwise

take 2 [1, 2, 3, 4] → … → [1, 2]
take 3 "abcd" → … → "abc"

The function drop when applied to a number, say n, and a list of ele-
ments returns that list without the first n elements.

drop:: num -> [*] -> [*]
drop n [ ] = [ ]
drop n (x : xs) = drop (n – 1) xs, if n > 0

= x : xs, otherwise

drop 2 ['a','b','c'] → … ['c']

The function takewhile has a predicate and a list as arguments. It takes
elements from the front of the input list as long as they satisfy the predi-
cate, and returns these elements in a list.

takewhile:: (* -> bool) -> [*] -> [*]
takewhile pred [ ] = [ ]
takewhile pred (x : xs) = x : takewhile pred xs, if pred x

= [ ], otherwise

takewhile (~= "stop") ["hello","world","stop","nice"]
→ … → ["hello","world"]

The function dropwhile is analogous to takewhile, but now the elements
that satisfy the predicate are dropped. The rest of the list is the result of
this function.

dropwhile:: (*->bool)-> [*] -> [*]
dropwhile pred [ ] = [ ]
dropwhile pred (x : xs) = dropwhile pred xs, if pred x

= x : xs, otherwise

dropwhile (~= "stop") ["hello","world","stop","nice"]
→ … → ["stop","nice"]

The function zip2 has two lists as arguments and yields a list of pairs.
The nth pair of the result list consists of the nth element of the first list
together with the nth element of the second list. Analogous functions
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that ‘zip’ three, four, five or six lists together are also useful. The result-
ing list of tuples is as long as the shortest of the argument lists.

zip2:: [*] -> [**] -> [(*,**)]
zip2 (x : xs) (y : ys) = (x,y) : zip2 xs ys
zip2 xs ys = [ ]

zip2 [1..] "index" → … → [(1,'i'),(2,'n'),(3,'d'),(4,'e'),(5,'x')]

The function last yields the last element of a given list. This is the dual
function of the function hd, which yields the head of a list.

last:: [*] -> *
last (x : xs) = x, if xs = [ ]

= last xs, otherwise
last [ ] = error "last of [ ]"

last [1,2,3] … → 3

The function init is the dual function of the tail-function tl. It takes a list
and yields a list of all elements of the input list without the last one.

init:: [*] -> [*]
init (x : xs) = [ ], if xs = [ ]

= x : init xs, otherwise
init [ ] = error "init of [ ]"

init ['g','r','a','v','e', 'l'] → … → ['g','r','a','v','e']

A frequently used function is the function foldr. foldr is used to apply a
function, say f, recursively in an accumulating way on all elements, say
a1, a2, … an, of a list as follows:

f a1 (f a2 ( … (f an i) … ))

The initial value i indicates the value to be substituted for the empty list.

foldr:: (* -> ** -> **) -> ** -> [*] -> **
foldr f i [ ] = i
foldr f i (x : xs) = f x (foldr f i xs)

Using foldr it is easy to give examples defining functions that calculate the
product of all elements of a list, or their sum etc.

product = foldr (*) 1
sum = foldr (+) 0
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and = foldr (&) True
or = foldr (\/) False

In these examples predefined operators are passed as arguments to the func-
tion foldr. To disambiguate this use of a predefined operator with its ordinary
use the additional parentheses are needed.

product [1, 2, 3, 4]
→ foldr (*) 1 [1, 2, 3, 4]
→ (*) 1 (foldr (*) 1 [2, 3, 4])
→ (*) 1 ((*) 2 (foldr (*) 1 [3, 4]))
→ (*) 1 ((*) 2 ((*) 3 (foldr (*) 1 [4])))
→ (*) 1 ((*) 2 ((*) 3 ((*) 4 (foldr (*) 1 [ ]))))
→ (*) 1 ((*) 2 ((*) 3 ((*) 4 1)))
→ … → 24

On finite lists foldr is often used instead of recursion.

Example of the use of foldr

This example shows how to design an algorithm for computing the
powerset of a given set of elements with the help of the function foldr.

Example of the function :

powerset [1,2,3] = [ [ ],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3] ]

The result list represents a set of elements, so it is not allowed to have more
than one occurrence of an element. powerset [1,2,3] can be made out of pow-
erset [2,3] by adding 1 to every element of the powerset [2,3] and concatenat-
ing it with powerset [2,3]:

powerset [2,3] = [ [ ],[2],[3],[2,3] ]
powerset [1,2,3] = [1 : [ ],1 : [2],1 : [3],1 : [2,3] ] ++ powerset [2,3]

Recursive definition of the function powerset:

powerset:: [*] -> [ [*] ]
powerset [ ] = [ [ ] ]
powerset (x : xs) = map (x :) (powerset xs) ++ powerset xs

The above example contains a halting criterion: powerset [ ] = [ [ ] ]. The
definition also clearly reflects the above described method for making
the powerset of a list (x : xs) out of the powerset of the list xs.

The definition of foldr has three formal arguments. These arguments
are in the following way related to aspects of a recursive definition. The
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halting criterion, in the definition of foldr called i (derived from init), can
be defined as [ [ ] ], like the halting criterion in the recursive definition.
The relation between the powerset of list (x : xs) and the list xs can be
represented by the function f from the parameter list of foldr. Define f as:

f:: * -> [ [*] ] -> [ [*] ]
f x powersofar = map (x :) powersofar ++ powersofar

powersofar stands for the result of the powerset of the list without the new ele-
ment x.

The new definition of the function powerset using the function foldr:

powerset:: [*] -> [ [*] ]
powerset xs = foldr f [ [ ] ] xs

So combining the halting criterion with a constructive inductive recur-
sion step leads to a short definition with foldr.

2.6 Interactive programs

Requiring that a functional program is interactive at first sight seems to
be in contrast with referential transparency. An interactive system does
not always react in the same way on the same input value. Take for ex-
ample a program that repeatedly gets a value as input and outputs the
sum of all the values so far. Such a program reacts differently when it
gets the same value two times in a row. However, it always reacts in the
same way on the whole input so far. This observation leads to the con-
clusion that interactive  programs can be written in a functional lan-
guage by considering the input as an argument that is a conceptually in-
finite list of values (called a stream). The output is also a stream: the
result of the program. Owing to lazy evaluation such infinite lists can be
handled. On the input side this means that not all the input has to be
given at once. On the output side it means that those parts of the result
that are already available can be printed. Together this allows interac-
tive programs to be written.

Combining both input and output it is possible to write a program
that gives a prompt (part of the result is already evaluated), reads a
value (the head of an infinite input list is needed for the evaluation), re-
sponds and prompts again. One has to take care that the rest of the input
list is passed as a parameter to functions that require input and further-
more one has to take care that no cyclic dependencies are required.
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One way to create an interactive functional program in a lazy language:

function:: * -> [char] -> [char]
function state input = response ++ function newstate restinput

where
response = …
newstate = …
restinput = …

Generally some kind of state is adapted due to the input. Furthermore, one has
to be able to indicate that a certain argument is actually the input of the pro-
gram. In Miranda the input of the program can be indicated in the initial ex-
pression by specifying $– as an argument. So a typical call of the function
above would be:

function initialstate $–

in which initialstate is a function that produces the initial state.

A program that repeatedly checks an input line for palindromicity (a word or
sentence is a palindrome if it is the same as its reverse, e.g. ‘able was I ere I
saw elba’ is a palindrome). The basic function is rather simple using the pre-
viously defined function reverse.

palindrome:: [char] -> bool
palindrome chars = chars = reverse chars

Extending the program for interactive use requires some extra definitions in
which the interaction with the user is defined. The program will prompt for an
input line, respond and stop when an empty line is given as input:

pal_io:: [char] -> [char]
pal_io input = prompt ++ pal_react input

prompt:: [char]
prompt = "Type in a line, please?\n"

pal_react:: [char] -> [char]
pal_react input = "Have a good day.\n", if thisline = ""

= response ++ pal_io restlines, otherwise
where
response = "Is a palindrome!\n", if palindrome thisline

= "Is not a palindrome.\n", otherwise
(thisline, restlines) = splitline input
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splitline:: [char] -> ([char], [char])
splitline chars = (line, restlines)

where
line = takewhile (~= '\n') chars
restlines = tl (dropwhile (~= '\n') chars)

The function splitline is defined using the basic functions tl, takewhile and
dropwhile defined previously. Note that this is not a very efficient program: it
would have been more efficient to define a new function that combined the
definitions of takewhile and dropwhile producing both results together. The
program is called with the following initial expression:

pal_io $–

In Koopman (1987) it is shown how using this method one can write
strongly interactive programs like an editor. The basic structure of, for
example, such an editor is given below:

commandinterpreter:: [char] -> [char] -> [char]
commandinterpreter text commands

= response ++ prompt ++ commandinterpreter newtext nextcommands
where
(commandline, rest) = splitline commands
editoperation = parse commandline
(response, newtext, nextcommands) = editoperation text rest
prompt = …
splitline x = …
parse x = …

This command interpreter parses a command line and produces directly a
function (not some encoding for a function) that performs the required opera-
tion.

A disadvantage of the given method for writing interactive func-
tional programs is that every part of the output has to be part of the re-
sult of the whole program on the top level. As a consequence it is not a
trivial task to change a program in such a way that for a specific func-
tion that is used somewhere in an expression the value of its arguments
is printed every time the function is called. A change like that, which
can be of interest for tracing or debugging, requires a change of the
structure of the whole program.

Furthermore, it does not seem to be very practical to program file
handling and menu and mouse-driven applications with the facilities
that are provided by Miranda. In the language Concurrent Clean a dif-
ferent method for writing interactive programs is given that offers the
required practical facilities for such applications (see Chapter 8).
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2.7 Top-down functional programming

There is already much knowledge about programming in imperative
programming languages. The two most important programming styles
used are the top-down method and the bottom-up method.

Generally, when a large program is developed, several layers of
abstraction are created. Each layer of abstraction is based on layers on a
lower level of abstraction. Each layer has its own locally defined data
structures with operations on them and performs its own task.

In a bottom-up style one starts with the lowest layer upwards to
the next layer and finally one defines the top layer. In this style one de-
signs data structures and the corresponding operations on them that are
made available for the next layer. In a top-down style it is exactly the
other way around. The problems left in each layer are solved in the next
layer. In this way one refines the problems step-wise down to the basic
level. Generally both methods are mixed when large programs are de-
veloped. One could say that with the bottom-up approach one designs
the programming tools needed on a certain level of abstraction, whereas
with the top-down approach one decides how these tools are being used.

These programming styles, commonly used to develop imperative
programs, can also be used for the development of functional programs.
For a bottom-up style of programming one can use, for instance, ab-
stract data types. An example of their use was given in Section 2.4.3.
The kind of data structures and operations will strongly depend on the
kind of problem one has to solve. Top-down programming is based on
step-wise refinement, which means that a problem is divided into sub-
problems if there is no simple way to write down the solution directly
with the help of basic language constructs. In functional programming
languages there is an excellent way to glue those partial solutions to-
gether, for solutions will consist of function definitions, and functions
can be composed using function composition or function application.
And of course, there is no danger of side-effects. Furthermore the strong
typing provides an extra test of whether the functions are composed
correctly.

2.7.1 A check-list for a top-down design

The check-list in Table 2.1 may be useful for designing functional pro-
grams. The check-list consists of seven parts that reflect the common
phases of a top-down program design. Each phase consists of issues to
think about when designing a program. It is not strictly necessary to
work out all the issues nor to do them in the given order: experienced
programmers can merge some of these steps or do them unconsciously
or implicitly.
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Table 2.1 A check-list for a top-down design.

1 Analysis
1.1 Work out some examples to get an understanding of the problem.
1.2 Write down the essential aspects of the given problem.
1.3 Give the relation between these aspects and the desired result.
1.4 Work out concrete examples.
1.5 Try to find general constraints and exceptions.
1.6 Find out whether there are special constraints for the solution.

2 Specification
2.1 Give the type of the arguments of the function(s).
2.2 Give the type of the result of the function(s).
2.3 Give the type of the function(s).
2.4 Look for inconsistencies and missing specifications in the problem.
2.5 Formulate the specification with the help of mathematics or a graphical

representation.

3 Design
3.1 Make the data structure that will be used explicit.
3.2 Formulate a global algorithm that will solve the problem.
3.3 Decide whether the solution can be given directly with the help of

 language elements and if not
3.4 Divide the problem into subproblems.
3.5 Apply the method of this check-list to each of the subproblems.
3.6 Make alternative designs and choose the best one to implement.

4 Implementation
4.1 Work out the designed algorithm (including the data structures and the

operations on them) into a Miranda script with comments,
significant names and a structured layout.

4.2 Type the script into the computer.

5 Test and debug
5.1 Design critical test values to test all designed functions.
5.2 Test functions that solve subproblems before testing the total solution.
5.3 Debug functions if necessary.

6 Documentation
6.1 Check comments and names on consistency with (revised) functions.

7 Reflection
7.1 Note why decisions were made, and check whether this is documented.
7.2 Summarize what you have learned about designing an algorithm for the
 given problem.
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In addition to this check-list it is useful to pay attention to the following
points:

• use significant names everywhere;
• include meaningful comments where needed;
• always write down the type of a function explicitly;
• do not combine too many function compositions as this may make

a program unreadable;
• use pattern matching where possible.

Example of a top-down design

Take again the roman number problem from the previous chapter. A
closer look shows that the designed function romtonum is not very ro-
bust. It assumes that its argument will always be a correct roman num-
ber. With the help of the check-list below a function will be designed
that decides whether a list of characters represents a correct roman
number. Not all the points of the check-list are worked out because most
of the points are trivial for experienced programmers (in an imperative
language) and they do not differ much from the way one could handle
them in the design of an imperative language. Names of subproblems
that are not solved yet are printed in italic.

1 Analysis
1.1 Work out some examples to get an understanding of the problem.

MDCCCLXXXVIII = 1888
MCDXCII = 1492

1.2 Write down the essential aspects of the given problem.

It is important to know what exactly a roman number is. From the
description of the problem one can find that:
• Roman ciphers consist of the following characters: M, D, C, L,

X, V and I.
• These characters have values, respectively: 1000, 500, 100, 50,

10, 5 and 1.
• The characters in the roman numbers are always sorted from

the highest value to the lowest from left to right, with the ex-
ception that some combinations of characters are abbreviated:

DCCCC = CM LXXXX = XC VIIII = IX
CCCC = CD XXXX = XL IIII = IV
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1.3 Give the relation between these aspects and the desired result.
Given: Description of roman numbers.
Desired result: A function that decides whether a list of characters
is a roman number.

1.4 Work out concrete examples.

MCDXCII = MCCCCLXXXXII

1.5 Try to find general constraints and exceptions.
It is not possible to denote negative numbers or zero.

2 Specification
2.3 Give the type of the function(s).

Let us call the desired function isroman; it will be of type [char] ->
bool.

2.4 Look for inconsistencies and missing specifications in the problem.
According to the description of the problem, IVI is a correct roman
number (5). However, this is not true. An extra constraint on Ro-
man numbers has to be added, namely that roman numbers are al-
ways written in the shortest possible way.

2.5 Formulate the specification with the help of mathematics or a
graphical representation.
isroman romnumber → true <=>
romnumber is a non-empty character sequence that obeys the syntax
of roman numbers. The syntax of roman numbers is as follows (a
BNF-like notation (Backus–Naur form) is used; literals are put be-
tween quotes):

Roman-number = Thousands;
Thousands = {'M'} Fivehundreds;
Fivehundreds = 'CM' Fifties | 'D' Hundreds

| 'CD' Fifties | Hundreds;
Hundreds = ['C'] ['C'] ['C'] Fifties;
Fifties = 'XC' Fives | 'L' Tens

| 'XL' Fives | Tens;
Tens = ['X'] ['X'] ['X'] Fives;
Fives = 'IX' | 'V' Ones

| 'IV' | Ones;
Ones = ['I'] ['I'] ['I'];

3 Design
3.1 Make the data structure that will be used explicit.
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rom_num = = [char]

3.2 Formulate a global algorithm that will solve the problem.
Apart from a global test for non-emptiness for each syntax rule
there is a function that handles that rule.

3.4 Divide the problem into subproblems.
3.5 Apply the method of this check-list to each of the subproblems.

rom_num = = [char]

isroman:: rom_num -> bool
isroman [ ] = False
isroman roms = syntax_check roms

syntax_check:: rom_num -> bool
syntax_check roms = thousands roms

thousands:: rom_num -> bool
thousands ('M' : rest) = thousands rest
thousands roms = fivehundreds roms

fivehundreds:: rom_num -> bool
fivehundreds ('C' : 'M' : rest) = fifties rest
fivehundreds ('D' : rest) = hundreds rest
fivehundreds ('C' : 'D' : rest) = fifties rest
fivehundreds roms = hundreds roms

hundreds:: rom_num -> bool
hundreds ('C' : 'C' : 'C' : rest) = fifties rest
hundreds ('C' : 'C' : rest) = fifties rest
hundreds ('C' : rest) = fifties rest
hundreds roms = fifties roms

fifties:: rom_num -> bool
fifties ('X' : 'C' : rest) = fives rest
fifties ('L' : rest) = tens rest
fifties ('X' : 'L' : rest) = fives rest
fifties roms = tens roms

tens:: rom_num -> bool
tens ('X' : 'X' : 'X' : rest) = fives rest
tens ('X' : 'X' : rest) = fives rest
tens ('X' : rest) = fives rest
tens roms = fives roms
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fives:: rom_num -> bool
fives ['I', 'X'] = True
fives ('V' : rest) = ones rest
fives ['I', 'V'] = True
fives roms = ones roms

ones:: rom_num -> bool
ones ['I', 'I', 'I'] = True
ones ['I', 'I'] = True
ones ['I'] = True
ones [ ] = True || all possibilities have been checked:
ones roms = False || if anything is left, it must be incorrect

3.6 Make alternative designs and choose the best one to implement.
It is much more efficient to combine the functions for checking and
for calculating the value described in this chapter and in the previ-
ous chapter into one function that runs through the character se-
quence only once. So the design (and in fact even the task defini-
tion) is changed accordingly.

4 Implementation
4.1 Implement the designed algorithm (including the data structures

and their operations) into a Miranda script with comments, signifi-
cant names and a structured layout.

|| An efficient algorithm that computes the value of a proper roman number.
|| Error messages will be given for incorrect arguments.
|| Roman numbers are represented as character sequences
|| rom_num = = [char]
|| The main function is rom_to_num:: rom_num -> num

rom_num = = [char]

rom_to_num:: rom_num -> num
rom_to_num [ ] = error "an empty sequence is not a roman number"
rom_to_num roms = compute_and_check roms

compute_and_check:: rom_num -> num
compute_and_check roms = thousands roms

thousands:: rom_num -> num
thousands ('M' : rest) = value 'M' + thousands rest
thousands roms = fivehundreds roms
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fivehundreds:: rom_num -> num
fivehundreds ('C' : 'M' : rest) = value 'M' – value 'C' + fifties rest
fivehundreds ('D' : rest) = value 'D' + hundreds rest
fivehundreds ('C' : 'D' : rest) = value 'D' – value 'C' + fifties rest
fivehundreds roms = hundreds roms

hundreds:: rom_num -> num
hundreds ('C' : 'C' : 'C' : rest) = 3 * value 'C' + fifties rest
hundreds ('C' : 'C' : rest) = 2 * value 'C' + fifties rest
hundreds ('C' : rest) = value 'C' + fifties rest
hundreds roms = fifties roms

fifties:: rom_num -> num
fifties ('X' : 'C' : rest) = value 'C' – value 'X' + fives rest
fifties ('L' : rest) = value 'L' + tens rest
fifties ('X' : 'L' : rest) = value 'L' – value 'X' + fives rest
fifties roms = tens roms

tens:: rom_num -> num
tens ('X' : 'X' : 'X' : rest) = 3 * value 'X' + fives rest
tens ('X' : 'X' : rest) = 2 * value 'X' + fives rest
tens ('X' : rest) = value 'X' + fives rest
tens roms = fives roms

fives:: rom_num -> num
fives ['I', 'X'] = value 'X' – value 'I'
fives ('V' : rest) = value 'V' + ones rest
fives ['I', 'V'] = value 'V' – value 'I'
fives roms = ones roms

ones:: rom_num -> num
ones ['I', 'I', 'I'] = 3 * value 'I'
ones ['I', 'I'] = 2 * value 'I'
ones ['I'] = value 'I'
ones [ ] = 0
ones roms = error ( "not a proper roman number: " ++

roms ++ " is the incorrect part" )

value:: char -> num
value 'M' = 1000
value 'D' = 500
value 'C' = 100
value 'L' = 50
value 'X' = 10
value 'V' = 5
value 'I' = 1
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5 Test and debug
5.1 Design critical test values to test all designed functions.

Check types, design critical test function. For example, test the
function rom_to_num with arguments IVI, –I, IIIII, IVXLCDM, CMI, I.

6 Documentation
6.1 Check comments and names on consistency with (revised) func-

tions.
Check the significance of names, check the comments to see if
they are consistent with the latest version of the program.

7 Reflection
7.2 Summarize what you have learned about designing an algorithm

for the given problem.
To avoid running through a list structure more times than neces-
sary it is in many cases more efficient to combine function defini-
tions that manipulate a list structure into new function definitions
that produce multiple results, e.g. in a tuple. Accordingly, the algo-
rithm was changed (for further reflection see Exercise 2.9).

Summary

• The functional programming language Miranda extends the basic
concepts with syntactical sugar incorporating most of the ad-
vanced concepts found in modern functional languages.

• The language has a nice, purely functional notation fully based on
function application.

• Pattern matching can be used in combination with guarded equa-
tions.

• Local function definitions can be defined in a nested way inside the
scope of a global function definition.

• Data structuring facilities are given by the presence of lists, tuples,
list comprehensions, algebraic data types and abstract data types.

• Milner’s type inference algorithm provides strong polymorphic
typing. However, for some cases Mycroft’s type checking algo-
rithm is used allowing more functions to be correctly typed.

• With these sophisticated features one can write compact and ele-
gant (even interactive) functional programs.

• The elegant mathematical style of programming common in the
functional programming community still requires, of course, a pro-
grammer to pay attention to a good programming methodology.
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EXERCISES

2.1 Define a function takesum that takes two functions f:: num -> num, g::
num -> num and a number n to calculate

∑
 i = 0

n
  f(gi(0)) = f(0) + f(g(0)) + f(g(g(0))) +...

For instance, if f(x) = x2, g(x) = x + 1 and n = 2 than the result must
be: 02 + g(0)2 + g(g(0))2 = 02 + 12 + 22 = 5

Show how this function can be used to approximate e = ∑
 i = 0

∞
  

1
 i!

2.2 Write functions that compute the following lists using list compre-
hensions where possible:
(a) All 5-tuples of integers such that their sum is less than 7 and
greater than –7.
(b) All perfect natural numbers (natural numbers that are equal to
the sum of their dividers; e.g. 6 = 1 + 2 + 3)

2.3 The function numchar yields the number of times a given character
is appearing in a finite list of characters. Define numchar (a) with
recursion, (b) with foldr and (c) with list comprehension.

2.4 Define the function map (a) with foldr and (b) with a ZF-expression.

2.5 Write a function eightqueens that yields all solutions of the eight
queens problem: the queens should be put down on a 8 * 8 chess-
board such that they cannot take each other.

2.6* A binary search tree T is an AVL-tree if for every node v in T: –1
<= depth (right (v)) – depth (left (v)) <= 1 with depth, right and
left defined as usual. The balance factor of a node v is: depth (right
(v)) – depth (left (v)). So in an AVL-tree the balance factor of ev-
ery node is –1, 0 or +1. Inserting or deleting a node cannot be done
in the way it is done in ordinary binary search trees. The AVL-tree
may not be balanced any more after a deletion or insertion. In such
a case there is a node with balance factor +2 or –2. Define an ab-
stract data type avl_tree * with, as operations:
empty delivers an empty AVL-tree.
key delivers the value of the root.
left, right gives the left or right subtree of an AVL-tree.
is_empty tests if an AVL-tree is empty.
depth gives the depth of an AVL-tree.
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retrieve delivers the ith value in the AVL-tree.
find decides if a certain value is contained in the tree.
insert inserts a given value in the AVL-tree.
delete deletes a value in the AVL-tree.

2.7* Write a small editor. An editor operates on a set of lines, called the
buffer. Implement the buffer as an abstract data type with appro-
priate operations (get_line, remove_ line). An editor should be able to
show lines, insert lines, delete lines and change lines (replace a
substring).

2.8* Write an interactive program that can play the Mastermind game.
The program has to guess a secret code of 4 numbers (0–9). For
each guess given by the program a player returns how many num-
bers appear in the code and how many of these numbers are on a
correct position.

2.9 In the final program in Section 2.7 an error is given if the argument
is incorrect. So the function cannot be used in a context in which
the programmer wants to specify what has to be done for incorrect
arguments. Write a function that produces a tuple with a boolean
indicating the correctness and a number indicating the value if the
argument was correct.
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Part 2
Models of computation

Chapter 3 The λ-calculus

Chapter 4 Term rewriting systems

Chapter 5 Graph rewriting systems
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This part contains an overview of three important models of computa-
tion: λ-calculus, term rewriting systems and graph rewriting systems. In
three consecutive chapters these models are compared with respect to
their ability to serve as the basic model for functional languages and
their implementation.

The best-known model is the λ-calculus introduced by Church
(1932; 1933). This calculus is a model of computation based on consis-
tent substitution of variables in nameless functions. Evaluation is done
by two rules only: α-conversion and β-reduction. Many semantic prop-
erties that are deduced for the λ-calculus immediately carry over to
functional languages. Therefore, the λ-calculus is studied intensively
and used as the basic model of computation. But, although the model is
very suitable as a model to study the basic semantics of functional lan-
guages, it is in our opinion not very suitable to study implementation
aspects of functional languages.

Term rewriting systems (Huet and Oppen, 1980; Klop, 1992)
form a model of computation based on pattern matching on terms that
do not contain variables. In term rewriting systems evaluation is not
done using a fixed set of reduction rules but in every term rewriting
system a set of rules is specified that define how terms can be rewritten.
Semantically, a functional program can be seen as a specific term
rewriting system in a special class of term rewriting systems. Implemen-
tations of functional languages are usually more close to term rewriting
systems than to the λ-calculus.

Graph rewriting systems (Barendregt et al., 1987a; 1987b) ex-
tend term rewriting systems with the notion of sharing such that a model
of computation is obtained based on pattern matching on graphs not
containing variables. Every efficient implementation of functional lan-
guages avoids duplication of work by sharing subexpressions. There-
fore, graph rewriting systems are considered to be best suited to serve as
the basic model for functional languages and their implementation.
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Chapter 3
The λ-calculus

3.1 λ-expressions
3.2 Reduction rules for

λ-expressions
3.3 Reduction sequences and

normal forms
3.4 Properties of λ-calculus
3.5 Reduction strategies

3.6 Properties of subclasses of the
λ-calculus

3.7 λ-calculus as a basis for
functional languages

3.8 λ-calculus as a basis for
implementations

The theory of the λ-calculus has been introduced by Church (Church,
1932; 1933) to describe the properties of mathematical functions using
a textual substitution model, and has since been investigated further.
All functions that are effectively computable can be expressed in the
calculus (see also Section 1.1.2). Another important property of the
calculus is the Church–Rosser property, which states that alternative
evaluation orders cannot yield different results. Many of the theoretical
properties of functional programming can be deduced from the (known)
theoretical properties of the λ-calculus. The semantics of a high-level
functional language can be explained by giving the translation schemes
to the calculus. The close relation between the (relatively old) calculus
and (relatively new) functional languages makes it clear why anyone
interested in the underlying basic concepts of functional languages
should study the λ-calculus.

In Sections 3.1–3.6 a short overview is given of the theory of the
λ-calculus. Readers interested in a detailed overview of the λ-calculus
(including proofs of the theorems discussed in this chapter) are referred
to the book of Barendregt (1984).

One can regard the λ-calculus also as a very simple low-level
functional programming language that is as equally powerful as a high-
level functional language such as Miranda. One often regards these
high-level functional programming languages as sugared versions of
the λ-calculus. It is possible to translate programs written in an arbitrary
functional programming language into an equivalent expression in the
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λ-calculus. In Section 3.7 it is shown how, in principle, Miranda func-
tions can be translated into equivalent λ-expressions.

Since the λ-calculus can be considered as a basic functional lan-
guage, a λ-calculus machine should be suited to executing all functional
programs. However, as discussed in Section 3.8 an efficient realization
of a λ-calculus machine is not so easy to achieve. The computational
models that are introduced in Chapters 4 and 5 are more closely related
to functional languages and the way they are generally implemented.

3.1 λ-expressions

In the λ-calculus one can write down expressions (λ-terms or λ-ex-
pressions) in which anonymous functions can be defined together with
the expressions on which these functions have to be applied. Further-
more there are a couple of evaluation rules called reduction rules (or
rewrite rules) defined in the calculus that specify how a λ-expression
can be transformed into an equivalent λ-expression, i.e. an expression
denoting the same value. In this section the λ-expressions are intro-
duced, in the next section reduction rules are discussed.

Syntax definition

Syntax of λ-expressions in BNF-like notation (literals between quotes):

Lambda-expression = Lambda-abstraction | Application
| Variable | Constant ;

Lambda-abstraction = '(' 'λ' Variable '.' Lambda-expression ')' ;
Application = '(' Lambda-expression Lambda-expression ')' ;

Further syntactical aspects are the following: variables will always start
with a lower case character and constants with an upper case character
or some special character (a digit, an asterisk, etc.); in general, the
outermost parentheses are left out; as in Miranda, application (juxtaposi-
tion) is left associative; λ-abstraction (.) is right associative; application
has a stronger binding than abstraction; and parentheses can be omitted
when they are redundant (see Section 3.1.2).

3.1.1 λ-abstraction

With λ-abstraction anonymous functions are specified, i.e. functions
that have no name. A λ-abstraction is a λ-expression with which one
can define an anonymous function of a certain variable. This variable
can be considered as the formal argument of the function. The variable
is called the bound variable of the abstraction. The general form of a
λ-abstraction is:



λ-EXPRESSIONS  81

λ-abstraction:

λ v . expression
↑ ↑ ↑ ↑
a function of variable v that returns this value

The expression behind the dot is again a λ-expression that expresses the
body of the function. In general, the value denoted by the expression
will depend on the bound variable.

Examples of λ-abstraction. It is assumed that Inc and * are externally defined
functions (see the end of this section on constants):

λ x . Inc x
↑ ↑ ↑ ↑
the function of x that increments x

λ x . * x 2
↑ ↑ ↑ ↑
the function of x that multiplies x by 2

In the λ-calculus only functions with one argument can be speci-
fied. Functions with more than one argument are simulated by using a
cascade of (higher order) functions each with exactly one argument (see
also Section 1.7.2). A higher order function yielding a function can be
defined by specifying another λ-abstraction as function body.

Defining higher order functions:

λ x . (λ y . + x y)
↑ ↑ ↑ ↑ ↑ ↑ ↑
the function of x that yields

the function of y that adds x and y

This is equivalent to the Miranda definition:

f x y = x + y

In Miranda most functions have a name, whereas in the λ-calculus all
functions are anonymous; in the λ-calculus all functions are specified in
prefix notation.

3.1.2 Function application

As in functional programming languages, application is fundamental in
the λ-calculus and it is denoted simply by juxtaposition.
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Function application:

f a
↑ ↑
f has to be applied toa

If f is a function (λ-abstraction), the expression to which the function is
applied is called the actual argument of the function.

Example of function application:

(λ x.Inc x) 5
↑ ↑
this function of x has to be applied to the constant5

((λx.(λy.+ x y)) 4) 5
↑ ↑ ↑
this function of x has to be applied to 4
and the result which is a function of y has to be applied to 5

Notational conventions

Parentheses can be left out when they are redundant. The main cases are
given below with other ways to abbreviate λ-expressions. The symbol
‘ ≡’ means: ‘is an abbreviation for’.

λx.exp1 exp2 ≡ λx.(exp1 exp2)
exp1 exp2 exp3 ≡ (exp1 exp2) exp3
λx.λy.exp ≡ λx.(λy.exp)
λxy.exp ≡ λx.λy.exp

Although functions have no name in the λ-calculus it is sometimes con-
venient to use an abbreviation as a synonym for a complex λ-expres-
sion. Such an abbreviation is generally an identifier in upper case char-
acters. Do not confuse this notation with a (possibly recursive) function
call in Miranda. The identifier is just an abbreviation for the correspond-
ing λ-expression and nothing else.

A common abbreviation for a specific λ-expression:

TWICE ≡ (λf.λx.f (f x))

3.1.3 Constants

In the original λ-calculus model, pure λ-calculus, constants were not
included. Nevertheless, any computable function can be expressed in
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pure λ-calculus. For notational convenience however, we do include
constants in the model to represent constant values (such as numbers)
or externally defined functions (such as arithmetical functions). Such a
function is called a δ-rule or a δ-function (see Section 3.2.3).

Some λ-expressions containing constant values (2, 3 and 5) and externally de-
fined functions (+, *, –):

5
+ 2 3
λx.* (+ 2 x) (– y x)

3.1.4 Representing λ-expressions as trees

Sometimes a λ-expression is also represented as a tree, which clarifies
the structure of an expression.

E

λv

F A

@

Figure 3.1 A tree representation of, respectively, λ-abstraction (λv.E)
and application (F A).

x

λx

λx

x y

@

λx

+

y

@

x

@

λy

1

@

y

@

Figure 3.2 Tree representations of λx.x, λx.x y and λx.(λy.+ y 1) x y.

As shown in Figures 3.1 and 3.2, a λ-abstraction λv.E is represented in
such a tree by a vertical line with on the top the λv and on the bottom the
tree representing E, the function body of the anonymous function of v.
An application of an expression F applied to an expression A is repre-
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sented by a binary tree with @ (indicating an application) as root, a left
subtree representing F and a right subtree representing A.

3.1.5 Bound and free variables

A λ -expression can contain variables. Traditionally, a one-character
identifier (x, y, z, v, w, a, b, c, …) is used to denote a variable. There are
free variables and bound variables. Informally it can be stated that a
variable occurs bound in a λ-expression if and only if there is an enclos-
ing λ-abstraction that binds it, i.e. the variable is the formal argument of
an enclosing λ-abstraction. Otherwise, the variable occurs free in this λ-
expression. The notion of free and bound variables plays an important
role in the reduction rules (see Section 3.2).

The precise definition of bound and free variables can easily be
given using the tree representation of a λ-expression:

• An occurrence of a variable, say x, is bound if on the path starting
from the occurrence of the variable (this will always be a leaf in
the tree) going up to the root of the tree a λ is encountered with a
variable with the same name you started with, i.e. λx. The first oc-
currence of λx in the path from the leaf up to the root is said to
bind the occurrence of x.

• An occurrence of a variable is free if it is not bound.

Follow this algorithm for the variables in the trees given in Figure
3.2 and compare the results with the examples below.

Ιllustrating free and bound variables:

x
↑
free variable

λx. x y
↑ ↑
bound free

λx. x
↑
bound variable

λx.(λy. + y 1) x y
↑ ↑ ↑
bound bound free

Note that a variable can occur bound as well as free in one and the same ex-
pression.

3.1.6 α-conversion

In the λ-calculus the term λx.x is considered to be equivalent to λz.z. A
λ-expression can be converted into another equivalent one by renaming
bound variables. It can be compared to a function definition in Miranda
in which the names of the formal arguments can be chosen freely
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(without changing the semantics) as long as they do not conflict with
other names. Expressions that can be made textually equivalent by re-
naming bound variables are called α-convertible or alphabetically
equivalent. The renaming process is called α-conversion.

If names are changed, a new name which is chosen must not be in
conflict with one of the old names. Therefore α-conversion only allows
us to change the name of a bound variable under the following condi-
tions:

Definition of α-conversion

λx.E =α (λy.E [x:= y])

where E [x := A] means E in which all free occurrences of x (which means
occurrences of x not bound by other λs inside E) are replaced by y. The
variable y has to be a fresh variable, i.e. y does not occur free in E and y
does not get bound in E by the substitution.

Here are some examples of valid and invalid α-conversions on λ-
expressions (the α-converted variables are underlined):

Examples of valid α-conversions:

λx.Succ x =α λy.Succ y
λx.(λy.y) x =α λy.(λy.y) y
(λx.λy.* x y) y =α (λx.λz.* x z) y

Examples of invalid α-conversions:

λx.Succ x y ≠α λy.Succ y y, because y occurs free in Succ x y
λx.(λy.y x) ≠α λy.(λy.y y), because y will get bound in λy. y x
λy.y x ≠α λy.y z, because x is not bound

One has to be careful because the same name does not always
stand for the same variable. Whether or not the same name stands for
the same variable is determined by the context: when the variables are
bound by the same λ or when they are both free then they also stand for
the same variable. From now on, two λ-expressions are considered to be
equal if they are α-convertible to each other.

3.2 Reduction rules for λ-expressions

There are a number of reduction rules or rewrite rules that define how
λ-terms can be converted to other, equivalent, λ-terms. Two transforma-
tion rules are treated in this section: β-reduction and δ-reduction.
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3.2.1 β-reduction

β-reduction  is a reduction rule that describes how to evaluate an appli-
cation of a function (a λ-abstraction) to its actual argument. In the λ-
calculus, β-reduction states that any function applied to an argument
forms a β-redex, a reducible (sub)expression according to the β-reduc-
tion rule. The result of β-reduction is the body of the λ-abstraction in
which all occurrences of the formal argument are textually substituted
(replaced, reduced, rewritten) by the actual argument on which the
function is applied. Hence, all occurrences of the variable that are bound
by the corresponding λ are replaced by the actual argument. The re-
placement is also called a β-reduction step or a rewrite step.

Definition of β-reduction

(λx.E) A →β E [x := A]

where E [x := A] means E in which all free occurrences of x are replaced
by expression A. Furthermore, as explained below, it is not allowed that
one of the free variables in A becomes bound when substituted in E.

As an example some λ-terms are given together with some β-
reduction steps. As usual, the chosen redexes are underlined.

β-reduction on a simple λ-term:

(λx.x) 0 →β 0

Using currying to simulate functions with more than one argument:

(λx.(λy.x) ) 0 1 →β (λy.0) 1 →β 0

In the example above an anonymous function is returned after applica-
tion of the function to the first argument. When λ-calculus is used to
model currying, a new anonymous function is explicitly created each
time a curried function is applied to another one of its arguments.

A function with another function as its argument:

(λf.f 0) (λx.x) →β (λx.x) 0 →β 0

A β-redex can easily be recognized in a tree representation. It is a
function application with as left subtree a λ-abstraction (see Figure 3.3).
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λx

E

A

@

Figure 3.3 A β-redex, the application (@) of a λ-abstraction (λx.E) to
an expression (A).

3.2.2 α-conversion and β-reduction

According to the definition, β-reduction is only valid if the free vari-
ables that are present in the actual argument remain free after substitu-
tion.

Example of an illegal β-reduction: after substitution, the free variable y has
become a bound variable. The name of the free variable ‘conflicts’ with the
name of the bound variable.

(λx.λy.x y) y →β/ λy. y y
↑ ↑ ↑ ↑
bound free both bound

The name conflict can be avoided by performing α-conversion first, replacing
the function of y by an equivalent function of, say z.

(λx.λy.x y) y =α (λx.λz.x z) y →β λz.y z

Note that the illegal substitution above would have changed the meaning of
the expression: λy.y y ≠α λz.y z. For the same reason it is not allowed to avoid
the name conflict by renaming the free variable y.

The examples show why β-reduction is only allowed when the substitu-
tion is ‘safe’, i.e. when no names of free variables get bound through the
substitution. From now on it will be assumed that α-conversion will al-
ways be performed where needed to make β-reduction possible.

α-conversion needed during β-reduction

At first sight it may seem possible to avoid name conflicts by choosing
different names for the different variables in the initial λ-expression.
However, name conflicts can arise during β-reduction even if in the ini-
tial expression all different variables had different names.
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Consider the following λ-expression: TWICE ≡ (λf.λx.f (f x)). α-conversion is
necessary during β-reduction to avoid name conflicts:

(λy.y y) TWICE
→β TWICE TWICE ≡ (λf.λx.f (f x)) TWICE
→β λx.TWICE (TWICE x) ≡ λx.TWICE ((λf.λx.f(f x)) x)

In this term the underlined subterm is not allowed to be β-reduced since oth-
erwise the free variable x would get bound. So first the names have to be
changed: α-conversion is applied, renaming all occurrences of x that are
bound by the innermost λx:

λx.TWICE ((λf.λx.f(f x)) x) =α λx.TWICE ((λf.λy.f(f y)) x)
→β λx.TWICE (λy.x(x y))

The example shows that changing of names can in general be necessary
after any β-reduction because as a consequence of (self-)application
new conflicts can come up. Note that α-conversion is not considered to
be an explicit step in the reduction process: it is a renaming process that
does not change the structure of an expression and it is assumed to be
performed implicitly where needed.

Practical ways to deal with α-conversion are explained in Section
3.8. Furthermore, in that section it will be shown that there are certain
conditions under which α-conversion is not needed at all.

3.2.3 δ-reduction

As explained in Section 3.1, the impure λ-calculus can contain exter-
nally defined functions which are called δ-rules or δ-functions. Such δ-
functions can be defined on predefined constants, such as, for instance,
constants that represent numbers. Although it is possible to define most
of these functions and constants directly in the pure λ-calculus (see
Section 3.7), it is sometimes more convenient for readability and illus-
tration purposes to assume the availability of these external functions. δ-
rules are sometimes also introduced to increase efficiency: with one δ-
reduction one can obtain the same result that otherwise would have cost
many β-reductions in the pure λ-calculus.

If a δ-function is applied to the number of arguments it needs and
these arguments are of the correct type, the corresponding subexpres-
sion is called a δ-redex. If the external function is applied it is called a
δ-reduction step.

For example, assume that an external δ-rule + is defined which re-
quires that its arguments are constants of a specific type, e.g. constant
numbers. An application of the function + is not a δ-redex until this re-
striction is satisfied. This implies that one first has to reduce the argu-
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ments of + to obtain the required constant numbers, before this δ-rule
can be applied.

Example of a δ-reduction step, assuming that +, 2, 3 and 5 are externally de-
fined δ-rules:

+ 2 3 →δ+ 5

The function + cannot be applied until its arguments are constant numbers:

+ (* 1 2) 3 →δ* + 2 3 →δ+ 5

In principle, it is allowed that external functions investigate the in-
ternal structure of their arguments. This means that, for instance, it is
possible to have δ-rules that can determine whether two arbitrary λ-ex-
pressions are syntactically equal. Such a function cannot be defined in
the pure λ-calculus. Hence with δ-rules one can introduce arbitrary
computational power in the λ-calculus (see also Section 3.7).

3.3 Reduction sequences and normal forms

A reduction sequence of a λ-expression consists of zero or more re-
duction steps (rewrite steps) performed on that expression. If expression
E1 can be reduced to expression E2 by a reduction sequence, E2 is called
a reduct of E1. This is denoted as: E1 →∗ E2. So →∗ is the reflexive
transitive closure of →.

A λ-expression that does not contain a redex is in normal form. A
λ-expression has a normal form if there exists some sequence of reduc-
tion steps starting with this expression that results in an expression in
normal form. Not all expressions have a normal form. In that case there
exists an infinite reduction sequence (see the example below).

A reduction sequence (of length 1), where the reduct is in normal form:

λx.(λy.y) (λx.x) →β λx.(λx.x)

Example of an expression that has no normal form :

(λx.x x) (λx.x x) →β (λx.x x) (λx.x x) →β …

Note the difference between being in normal form and having a normal form:

x is in normal form, because it does not contain a redex.
(λx.x)(λx.x) is not in normal form, but it has a normal form: λx.x.
(λx.x x)(λx.x x) is not in normal form, and it has no normal form.
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3.4 Properties of the λ-calculus

3.4.1 Church–Rosser property

A λ-expression can contain several redexes:

Example: the following expression:

(λx.(λy.y) (λz.z)) (λu.u)

contains two redexes, namely:(λx.(λy.y) (λz.z)) (λu.u)
and (λx.(λy.y) (λz.z)) (λu.u)

If more than one redex occurs in an expression, different reduction se-
quences are possible. Hence, the available redexes can be reduced in
different reduction orders. An interesting question is: is it possible that
an expression has more than one normal form depending on the chosen
order of reduction?

Two alternative reduction orders leading to the same result. First method:

(λx.(λy.y) (λz.z)) (λu.u) →β (λx.λz.z) (λu.u) →β λz.z

or, with an alternative reduction order

(λx.(λy.y) (λz.z)) (λu.u) →β (λy.y) (λz.z) →β λz.z

Two different reduction sequences: one leads to a normal form, the other is an
infinite reduction sequence:

(λy.λz.z)((λx.x x)(λx.x x)) →β λz.z

(λy.λz.z)((λx.x x)(λx.x x)) →β (λy.λz.z)((λx.x x)(λx.x x)) →β …

The examples show that not all reduction orders lead to a normal
form, not even if the initial expression has a normal form.

A reduction system (such as the λ-calculus) has the Church–
Rosser property (Church and Rosser, 1936) or is confluent if and only
if for every two ‘divergent’ reduction sequences E →∗ E 1 and E →∗ E 2
there are two ‘convergent’ reduction sequences E1 →∗ E3 and E2 →∗ E3.
The Church–Rosser property is also called the diamond property
(Figure 3.4).

Theorem: The λ-calculus satisfies the Church–Rosser property.
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The Church–Rosser theorem has a very important consequence: in a re-
duction system, in which the Church–Rosser property holds, every ex-
pression has at most one normal form: the normal form is unique. As-
sume that an expression has two normal forms. The Church–Rosser
property implies that there must be a common reduct to which both
these normal forms can be reduced. Since both expressions are already
in normal form, they must have been the same.

E

E1 E2

E3

* *

**

Figure 3.4 The Church–Rosser property.

If a λ-term can be reduced by several reduction sequences and several
of these sequences lead to a normal form, the result is always the same,
independent of the reduction order chosen. λ-expressions that have a
common reduct are β-convertible  (=β). Due to the Church–Rosser
property the following holds: if E1 →∗ E3 and E2 →∗ E3 then E1 =β E2 =β
E3 and if E1 =β E2 then there is an E3 such that E1 →∗ E3 and E2 →∗ E3.

3.4.2 Computability

Conjecture (Church’s thesis): The class of effectively computable
functions, i.e. functions that intuitively can be computed, is the same as
the class of functions that can be defined in λ-calculus (Church, 1936).

Theorem: The class of Turing computable functions is the same as the
class of  λ-definable functions (Turing, 1937).

So the power of Turing machines is the same as the power of the λ-cal-
culus. Both models capture the intuitive idea of computation.

3.5 Reduction strategies

A reduction strategy in the λ-calculus is a mathematical function that
prescribes which redex in a given, arbitrary λ-expression has to be
rewritten. When it is repeatedly applied to a λ-expression and its
reducts, a strategy defines the order  in which redexes are reduced. In
this way a (possibly infinite) reduction sequence can be defined. A
normalizing reduction strategy is a reduction strategy that results, af-
ter repetitive application, in the normal form, if this normal form exists.
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3.5.1 Normal order reduction

In the normal order reduction strategy the leftmost-outermost redex in
a given expression is rewritten and therefore it is also known as the
leftmost-outermost reduction strategy, or as the leftmost strategy. The
leftmost-outermost redex of a λ-expression is the redex that is not sur-
rounded by any other redex (outermost) and is to the left of all the other
outermost redexes in that expression (leftmost).

The notion leftmost-outermost redex:

((λx.x x) (λy.y)) ((λx.x x) (λx.x x))
↑ r1 ↑ r2

r1 is the leftmost redex, because this redex is to the left of all other redexes in
that expression. Furthermore this redex is also an outermost redex, because
there is no other redex in this expression that surrounds r1. Note that r2 is also
an outermost redex, but not the leftmost one.

(λz.(λx x) z) (λz.z)
↑ r1

(λz.(λx x) z) (λz.z)
↑ r2

r1 is the leftmost-outermost redex. r2 is not an outermost redex.

Theorem: In the λ-calculus the normal order strategy is a normalizing
strategy (Curry and Feys, 1958).
So reducing normal order will always yield the normal form if it exists.

3.5.2 Applicative order reduction

The applicative order reduction strategy prescribes rewriting the left-
most-innermost redex in a given expression and therefore it is also
known as the leftmost-innermost reduction strategy, or the innermost
strategy. The leftmost-innermost redex of a λ-expression is the redex
that does not contain any other redex (innermost) and is to the left of all
the other innermost redexes in that expression (leftmost). Hence, the in-
nermost reduction strategy will always rewrite the argument of a func-
tion first, before a β-reduction is performed on that function and its ar-
gument.

Innermost reduction: The third example shows that the innermost reduction
strategy is not normalizing (the expression does have a normal form: 0).

(λx.x) ((λz.z z) y) →β (λx.x) (y y) →β y y

(λx.x) ((λx.x) (λx.x)) →β (λx.x) (λx.x) →β λx.x
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(λx.0) ((λx.x x) (λx.x x)) →β (λx.0) ((λx.x x) (λx.x x)) →β …

Analogous to leftmost-outermost and leftmost-innermost one can
define the notions rightmost-outermost and rightmost-innermost. To
find leftmost, rightmost, innermost or outermost redexes, again the tree
representation is very helpful (Figure 3.5).

λ-term as tree: (λx.λy.x y) ((λz.z) ((λx.x) z)) ((λx.x) ((λx.x) ((λx.x) z)))

y

@

@

@

λx

λy

x

@

λz

λx

x

z z

leftmost
outermost

leftmost
innermost

λx

x

rightmost
outermost

λx

x zλx

x

rightmost
innermost

Figure 3.5 Tree showing leftmost, rightmost, innermost and outermost
redexes (marked with @).

3.6 Properties of subclasses of the λ-calculus

3.6.1 Combinatory logic

A combinator is a λ-expression (a λ-abstraction) without free variables.
The theory of such λ-terms is the combinatory logic (Curry, 1930).

The combinators S and K:

S ≡ λx.λy.λz.x z (y z)
K ≡ λx.λy.x

Combinators can be regarded as function constants, e.g. S and K are
functions with the following property:

S x y z = x z (y z) (distributor)
K x y = x (cancellator)
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With these combinators applicative expressions can be con-
structed, i.e. expressions in which only applications (of combinators)
occur. It turns out that with only the two combinators, S and K, one can
construct a system that has the same power as the pure λ-calculus: one
can construct all effectively computable functions with it:

With an applicative expression of the combinators S and K one can build for
example the identity combinator (often referred to as I), with the property

I x = x (identity)

Generally, for convenience, the I-combinator is added to the system, although
it can be expressed in S and K (e.g. as S K S or S K K).

I e ≡ S K S e =S K e (S e) =K e

It is amazing that with only two combinators, any computable
function can be expressed. Intuitively this can be explained as follows.
The pure λ-calculus consists of variables, functions and applications.
When a function is applied to an argument, the actual argument is sub-
stituted for all occurrences of the formal argument, the variable bound
by the corresponding λ. So actually all that matters is to get a copy of an
expression in the right place. With an S combinator an expression can
be duplicated and inserted into two subexpressions. With a K combina-
tor an expression can be removed. With a proper combination of the two
one can copy any expression into another until it is in the right place. If
a copy arrives at a place where it is not needed, it is simply removed by
a K.

Transforming λ-expressions to combinators

An algorithm for translating λ-expressions into an applicative expres-
sion of SKI-combinators is presented below.

All translation rules used in this textbook are presented in a func-
tional style. These functions define how a (part of a) language can be
translated into another language. The objects of the translation are syn-
tactic objects. To make a translation description in a functional formal-
ism as short and as readable as possible a notational convenience is
added that allows specification of arbitrary syntactic objects. To empha-
size that these objects are special they are placed between double square
brackets ([ and ]). If one would like to specify these transformations di-
rectly in Miranda, one would actually need a data structure (an abstract
syntax tree) that is able to represent any sentence in the language one
wants to translate. The algorithm for translating λ-expressions into
combinators, known as bracket-abstraction (probably due to the use of
the double square brackets), is defined below.
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Algorithm for bracket-abstraction: x and y are variables, c is any constant, E,
E1 and E2 are λ-expressions. The rules have to be tried in textual order.

LamToSKI [  λx.x ] = I
LamToSKI [  λx.y ] = K y
LamToSKI [  λx.c ] = K c
LamToSKI [  λx.E1 E2 ] = S (LamToSKI [  λx.E1 ]) (LamToSKI [ λx.E2 ])
LamToSKI [  λx.E ] = LamToSKI [  λx.LamToSKI [ E ] ]
LamToSKI [  E1 E2 ] = (LamToSKI [ E 1 ]) (LamToSKI [ E2 ])
LamToSKI [  E ] = E

For example, consider the following λ-expression:

INV ≡ λx.λf.f x

The bracket-abstraction algorithm applied to this λ-expression:

LamToSKI [  INV ] ≡ LamToSKI [  λx.λf.f x ]
→ LamToSKI [  λx.LamToSKI [ λf.f x ]  ]
→ LamToSKI [  λx.S (LamToSKI [ λf.f ])) (LamToSKI [  λf.x ]) ]
→∗ LamToSKI [  λx.S I (K x) ]
→ S (LamToSKI [  λx.S I ]) (LamToSKI [ λx.K x ])
→ S (S (LamToSKI [ λx.S ]) (LamToSKI [ λx.I ]))(LamToSKI [  λx.K x ])
→∗ S (S (K S)(K I)) (S (LamToSKI [ λx.K ]) (LamToSKI [ λx.x ]))
→∗ S (S (K S)(K I)) (S (K K) I)

This complicated expression will, when it is applied to two arguments (say X
and F), yield the same result as the original λ-expression:

S (S (K S)(K I)) (S (K K) I) X F =S (S (K S)(K I) X) (S (K K) I X) F
=S (K S X) (K I X) (S (K K) I X) F =K,K S I (S (K K) I X) F
=S I F (S (K K) I X F) =I,S F ((K K X) (I X) F)
=K F (K (I X) F) =K F (I X)
=I F X

The example above shows that there is a slight disadvantage when
only these few combinators are used: the resulting expression is of ex-
ponential length with respect to the original expression. This can be im-
proved by the following optimization rules (Curry and Feys, 1958):

S (K E1) (K E2) = K (E1 E2)
S (K E) I = E

These equalities can be proven as follows:

S (K E1) (K E2) anything =S (K E1 anything) (K E2 anything) =K,K E1 E2
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K (E1 E2) anything =K E1 E2

Since the combinators yield the same result for any argument, they are
equal. Likewise

S (K E) I anything =S (K E anything) (I anything) =K,I E anything

So the following rules can be added to the translation scheme that
Transforms an SKI-expression inside out into a more optimal one:

Tr [ E1 E2 ] = OptiSKI [  (Tr [ E1 ]) (Tr [ E2 ]) ]
Tr [ c ] = c

OptiSKI [  S (K E1) (K E2) ] = K (OptiSKI [  E1 E2 ])
OptiSKI [  S (K E) I ] = E
OptiSKI [  E ] = E

These optimizations can be applied to our example expression

Tr [ S (S (K S)(K I)) (S (K K) I) ]
→ OptiSKI [  (Tr [ S (S (K S)(K I)) ]) (Tr [ S (K K) I ]) ]
→ OptiSKI [  (Tr [ S (S (K S)(K I)) ]) (OptiSKI [ (Tr [ S (K K) ])(Tr [ I ]) ]) ]
→ OptiSKI [  (Tr [ S (S (K S)(K I)) ]) (OptiSKI [ (Tr [ S (K K) ]) I ]) ]
→* OptiSKI [  (Tr [ S (S (K S)(K I)) ]) (OptiSKI [ S (K K) I ]) ]
→ OptiSKI [  (Tr [ S (S (K S)(K I)) ]) K ]
→* S (K (S I)) K

and indeed:

S (K (S I)) K X F =S (K (S I) X) (K X) F =K S I (K X) F
=S (I F) (K X F) =I,K F X

Further optimizations involve the introduction of new combinators, e.g.:

B ≡ λf.λg.λx.f (g x)
C ≡ λf.λx.λy.f y x

with corresponding new optimization rules (note that only two new
rules are added):

OptiSKI [  S (K E1) (K E2) ] = K (OptiSKI [  E1 E2 ])
OptiSKI [  S (K E) I ] = E
OptiSKI [  S (K E1) E2 ] = B E1 E2
OptiSKI [  S E1 (K E2) ] = C E1 E2
OptiSKI [  E ] = E
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These optimizations are easily proven to be correct. With the help of
these new combinators and optimization rules the complexity can be
improved to O(n2), where n is the length of the original expression.

In this way INV can be expressed as B (S I) K. But on the other hand
there is nothing wrong with introducing INV itself as an extra combina-
tor. Many other combinators can be defined. It is an interesting line of
research to find out which set is the best in a certain sense.

3.7 λ-calculus as a basis for functional languages

As stated before, the λ-calculus can be seen as a desugared functional
language to which all existing functional languages can be translated.
The same is possible for the other models of computation treated in this
part of the book. An exhaustive transformation scheme from Miranda to
a graph rewriting system is given in Chapter 9. The intention of this
section is to illustrate how, in principle, the basic concepts of functional
languages (see Chapter 1) can be expressed in the pure λ-calculus. This
will give the reader an intuitive idea how it can be proven that in the
pure λ-calculus all recursive functions can be expressed. The transfor-
mation of the more advanced language concepts can be found, for
example, in Peyton Jones (1987).

3.7.1 Functions and applications

A simple Miranda function definition without patterns and guards is
easy to translate to the λ-calculus since application is a basic operation
in both languages. Furthermore, all Miranda functions are considered to
be curried so they are actually functions with one argument.

MirToLam [ f a1 a2 ... an = expression ]
= λa1.λa2 ... λan. (MirToLam [ expression ])

MirToLam [ f a ] = (MirToLam [ f ]) (MirToLam [  a ])

The notation means: a function definition in a Miranda program is
translated into a λ-expression with a λ for each argument of the function
definition. The body of the λ-expression is the translation of the body of
the function. The resulting λ-expression is replaced for every applica-
tion of f, possibly abbreviated by a symbolic name. Furthermore, any
application of operands is translated directly to an application of the
translated operands.

For instance,

twice f x = f (f x)
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will be translated into

TWICE ≡ λf.λx.f (f x)

Since all functions are anonymous, an application of the function
twice in Miranda results in a textual substitution of the λ-expression
TWICE in the corresponding λ-expression.

3.7.2 Booleans and the conditional

Boolean values can be translated as follows:

MirToLam [ True ] = λx.λy.x
MirToLam [ False ] = λx.λy.y

The translation of True and False is not a value, but a function that is able
to select the first or second argument to which it is applied. This func-
tion corresponds to the conditional in Miranda. So the conditional itself
disappears in the translation. Hence a conditional expression can be
translated as follows:

MirToLam [ cond boolexpr thenpart elsepart ]
= MirToLam [ boolexpr ] (MirToLam [ thenpart ]) (MirToLam [ elsepart ])

because

TRUE THENPART ELSEPART ≡ (λx.λy.x) THENPART ELSEPART
→β (λy.THENPART) ELSEPART →β THENPART

and

FALSE THENPART ELSEPART ≡ (λx.λy.y) THENPART ELSEPART
→β (λy.y) ELSEPART →β ELSEPART

The names in upper case characters are again abbreviations that represent λ-
expressions that are the translation of corresponding Miranda expressions, e.g.
TRUE ≡ λx.λy.x, FALSE ≡ λx.λy.y

3.7.3 Recursion

In the λ-calculus functions have no name. So recursion cannot be
achieved by using recursive function calls, as in Miranda.

The factorial function in Miranda:

fac n = cond (n = 0) 1 (n * fac (n – 1))
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cannot be translated into

FAC ≡ λn. (EQUAL n 0) 1 (TIMES n (FAC (MINUS n 1)))

In the recursive abbreviation above an infinite λ-expression is ac-
tually expressed. However, the λ-calculus deals with finite terms only.
There is a trick to solve this problem. There exist special λ-expressions,
called fixed point combinators, having the following property (Y is a
fixed point combinator, f is any λ-expression):

Y f =β f (Y f)

Recursive functions now will get an additional parameter in which
such a special duplicate of their own code is filled in, but this time this
will happen only when the function is applied. Hence there is a kind of
lazy duplication of code. In the following Y stands for any fixed point
combinator.

A correct translation of the factorial function:

FAC ≡ Y F
F ≡ λf.λn.(EQUAL n 0) 1 (TIMES n (f (MINUS n 1)))

Now,

FAC 3 ≡ Y F 3
= F (Y F) 3 ≡ (λf.λn.(EQUAL n 0) 1 (TIMES n (f (MINUS n 1)))) (Y F) 3
≡ (λf.λn.(EQUAL n 0) 1 (TIMES n (f (MINUS n 1)))) FAC 3
→β λn.(EQUAL n 0) 1 (TIMES n (FAC (MINUS n 1))) 3
→β (EQUAL 3 0) 1 (TIMES 3 (FAC (MINUS 3 1)))
→∗ FALSE 1 (TIMES 3 (FAC (MINUS 3 1)))
≡ (λx.λy.y) 1 (TIMES 3 (FAC (MINUS 3 1))
→∗ TIMES 3 (FAC (MINUS 3 1))
≡ TIMES 3 (Y F (MINUS 3 1)), …

Each time Y F is applied, F is returned, and the original expression
Y F is duplicated which guarantees that this kind of lazy code duplica-
tion can be repeated in the sequel. The property of fixed point combina-
tors may seem very magical at first sight. Therefore an example of the
definition of such a fixed point combinator is given below.

θ ≡ A A
A ≡ λx.λy.y (x x y)

The following reduction steps show that θ f →∗ f (θ f), which implies that
θ indeed has the fixed point property:
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θ f ≡ A A f ≡ (λx.λy.y (x x y)) A f
→β (λy.y (A A y)) f →β f (A A f) ≡ f (θ f)

3.7.4 Representation of natural numbers

In the λ-calculus one can represent natural numbers and arithmetical
functions. In this section every numeral n is represented by the nth
Church numeral. The Church numerals c0, c1, c2, … are defined by
(f0(x) stands for x, fn+1(x) stands for f(fn(x)):

cn ≡ λf.λx.fn(x)

Hence,
0 ≡ c0 ≡ λf.λx.x
1 ≡ c1 ≡ λf.λx.f(x)
2 ≡ c2 ≡ λf.λx.f(f(x))

Now it is possible to represent the arithmetical functions +, * and exp in
the λ-calculus. Rosser defines the following λ-expressions:

A+ ≡ λx.λy.λp.λq. x p (y p q)
A* ≡ λx.λy.λp. x (y p)
Aexp ≡ λx.λy. y x

Now for all n,m ∈ Ν

(i) A+ cn cm →* cn+m
(ii) A

*
 cn cm →* cn*m

(iii) Aexp cn cm →* c(nm), except for m=0

Below it is shown that A+ yields the Church numeral representing the arith-
metical sum of the two Church numerals it is applied to:

A+ cn cm ≡ (λx.λy.λp.λq. x p (y p q)) cn cm
→β (λy.λp.λq. cn p (y p q)) cm
→β (λp.λq. cn p (cm p q)) ≡ (λp.λq.(λf.λx.fn(x)) p (cm p q))
→β (λp.λq.(λx.pn(x)) (cm p q))
→β (λp.λq.pn(cm p q) ≡ (λp.λq.pn((λf.λx.fm(x)) p q)
→β (λp.λq.pn((λx.pm(x)) q)
→β (λp.λq.pn(pm(q)) =α (λf.λx.fn(f m(x)) ≡ cn+m

So the arithmetic operations +, * and exp on the numerals can be repre-
sented respectively by the λ-terms A+ , A

*
 and Aexp operating on the

Church numerals. It will be clear that it is much more efficient to actu-
ally use the machine representation of numerals.
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3.7.5 Lists

The translation of lists is not as intuitively simple as the translation of
simple function definitions. The trick is to translate every constructor
with its arguments to a λ-term representing a function that given a pro-
jection as an argument produces the desired component. So the con-
structors are translated as follows (implicitly defining CONS and NIL):

MirToLam [ x:xs ] = λz.z (MirToLam [ x ]) (MirToLam [  xs ])
MirToLam [ [ ] ] = λx.TRUE

Functions like head and tail are translated into λ-terms that given a
list as an argument apply the list to the appropriate projection (implicitly
defining HD and TL):

MirToLam [ hd ] = λx.x TRUE
MirToLam [ tl ] = λx.x FALSE

such that hd (x:xs) is translated into HD (CONS X XS) ≡ (λx.x TRUE) (λz.z X
XS). In an analogous way, tl (x:xs) is translated into: TL (CONS X XS) ≡ (λx.x
FALSE) (λz.z X XS). Below it is shown that the translations are correct:

HD (CONS X XS)
≡ (λx.x TRUE) (λz.z X XS)
→β (λz.z X XS) TRUE
→β TRUE X XS
≡ (λx.λy.x) X XS
→∗ X

TL (CONS X XS)
≡ (λx.x FALSE) (λz.z X XS)
→β (λz.z X XS) FALSE
→β FALSE X XS
≡ (λx.λy.y) X XS
→∗ XS

3.7.6 Patterns

One can simulate pattern matching by using conditionals in combination
with a test for equality.

Modelling pattern matching by conditionals:

fac 0 = 1
fac n = * n (fac (– n 1))

can be written as (in which the conditional is created in λ-calculus as above):

fac n = cond (= n 0) 1 (* n (fac (– n 1)))

A test for syntactic equality is however not easy to achieve in pure
λ-calculus. It can be realized in two ways.

The first way is choose a suitable representation (λ-term) such that
each constant one would like to compare can be examined via an appli-



102 THE λ-CALCULUS

cation of a specially designed test function. The comparison is done by
applying the test function to the object and reducing the application to
normal form. If the normal form is the λ-term that corresponds to TRUE,

then they are equal; if it is the λ-term that corresponds to FALSE they are
not. The disadvantage of this method is that it is sometimes hard to
come up with an appropriate representation.

For instance, define

ZERO ≡ CONS TRUE NIL
ONE ≡ CONS FALSE ZERO
TWO ≡ CONS FALSE ONE

Now a test on the equality on ZERO can be performed by taking the head of
the representation of the numeral. A test on ONE can be performed by taking
the head of the tail, and so on.

The second way is to add additional power to the model by the in-
troduction of a special δ-rule (Church’s δ) that is defined on normal
forms. This δ-rule returns TRUE or FALSE depending on the syntactic
equality of its arguments. The strategy has to ensure that the arguments
are reduced to normal form before the δ-rule is applied.

3.8 λ-calculus as a basis for implementations

A reducer is a piece of hardware and/or software that evaluates an ex-
pression by performing reductions. Although the λ-calculus appears to
be simple, an implementation of a λ-reducer is not straightforward, par-
ticularly if efficiency is important. This section discusses some of the
problems that have to be solved.

First of all, for efficiency reasons δ-rules will have to be used for
pattern matching and for dealing with basic values.

Then, since our prime interest is a reducer that tries to reduce to
normal form, one of the problems is caused by the α-conversion. Im-
plementation of α-conversion has a considerable impact on efficiency.
Below the relevant issues related with α-conversion will be discussed.

But there are more implementation problems. During the reduction
process the reducer has to look up the actual argument to substitute for a
particular variable. For this substitution process a rather complicated
administration is needed. Only via the proper λ that binds the variable
can the corresponding argument be found. The consequence is that in
the actual implementation either all arguments accessible in a function
body are passed to a function or a pointer structure has to be set up that
makes it possible to switch back to the appropriate environment in
which an argument can be evaluated.
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3.8.1 α-conversion

It is clear that performing α-conversions after every reduction will
never yield an efficient implementation. De Bruijn (1972) and Berkling
and Fehr (1982) have developed solutions to the problem of name con-
flicts. Both their solutions are described here. They are basically equiva-
lent to each other. The general idea is that in every variable name it is
encoded via a counter to which λ the variable is bound.

Berkling and Fehr introduce the λ-bar operator: ‘#’. The number
of λ-bar operators in front of a variable indicates the number of sur-
rounding λs, which bind variables with the same name, to skip. A λ
surrounds a variable in a λ-term if the λ is above the variable in the
tree representation of that λ-term. In that case the variable is in the body
of the function corresponding to that λ. The following example illus-
trates the function of this operator.

λ-bar operator:

λx.x || x is bound.

λx.#x || the # indicates to skip the first λ-occurrence
|| that binds x. So x is free in this expression.

λx.λx.#x || x is bound by the indicated λ, because #
↑ || indicates to ignore the first surrounding λ.

λx.λx.λx.##x || x is bound by the indicated λ.
↑

λx.λy.λx.#x || x is bound by the indicated λ.
↑

λx. λx. #x (λx. ##x) || both xs are bound by the same indicated λ.
↑

λx.(λx. #x) (λx. #x) || both xs are bound by the same indicated λ.
↑ || note that the second λ does not surround the second #x.

The following problem arises: doing a β-reduction implies that the
number of λ-bar operators in the expression has to be adjusted in the
body of the function as well as in the argument.

Examples of the adjustment of the number of λ-bar operators:

(λx.(λy.x y))      y →β λy.#y y
↑
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It is not λy.y y, because the indicated y is a free variable of the expression and
β-reduction should not change the meaning of variables.

λy.((λy.#y y) z) →β λy.y z

Not λy.#y z, because in λy.#y z, #y is a free variable whereas #y was bound in
the expression before the β-reduction took place.

The solution of De Bruijn uses nameless dummies: instead of named
variables. A nameless dummy is a number that replaces a named vari-
able. The nameless dummy indicates by which λ the replaced variable is
bound. The λs are counted starting from the nameless dummy going to
the top of the tree representation of the term. For free occurrences of
variables nameless dummies are replaced as if extra λs binding them
were added in front of the term. In this way effectively also the names
of the free variables are modelled by the nameless dummies. Note that
De Bruijn’s n means that the nth surrounding λ binds, while Berkling
and Fehr’s #nx means to skip n surrounding λs that bind x.

Nameless dummies:

λ. 1 || 1 is a dummy for a variable bound by the indicated λ.
↑

λ. 2 || 2 is a dummy for a variable that is free.

λ. λ. 2 (λ. 3) || 2 and 3 indicate the same variable, bound by indicated λ.
↑

λ. (λ. 2) (λ. 2) || 2 and 2 indicate the same variable, bound by indicated λ.
↑

As with the # operator, the numbers of the nameless dummies have
to be adjusted when doing a β-reduction.

Adjusting the numbers of De Bruijn:

(λ. (λ. 2 1) ) 1 →β λ. 2 1 || not λ. 1 1
λ.((λ. 2 1) 2) →β λ. 1 2 || not λ. 2 2

3.8.2 Avoiding α-conversion

It has been shown that, in general, α-conversion cannot be avoided
during β-reduction. However, if redexes are reduced in a special order
and the final result does not have to be in normal form, α-conversion
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can be avoided. This can be used in a reducer that reduces a λ-expres-
sion which is the result of a translation of a Miranda program.

Suppose, when reducing in normal order, the leftmost-outermost
redex is rewritten. Starting from Miranda the initial expression is a
closed term, i.e. it does not contain free variables. So if the correspond-
ing argument is substituted in the function body it is not possible that
free variables in the argument get bound. Name conflicts cannot arise if
the leftmost-outermost redex is repeatedly reduced in this way and the
reduction process is stopped as soon as the result is a function. As long
as reduction inside the body of a function (under an abstraction) does
not occur, no α-conversion is needed.

Example: if the underlined redex inside the function body is reduced, name
conflicts arise:

(λy.(λx.λy.x y) y) (λx.λy.x y)

However, reducing in normal order will not give any problems:

(λy.(λx.λy.x y) y) (λx.λy.x y) →β (λx.λy.x y) (λx.λy.x y) →β λy.(λx.λy.x y) y

Now conversion problems would arise if reduction would continue inside the
body of the function.

So the evaluation has to be stopped as soon as the result is known to be
a function. Starting from Miranda this is all right. In general, Miranda
programs do not yield a function but a value of a basic type, e.g. a
string. In the case that a function is yielded, the message <function> is
printed and no further reduction to normal form takes place. So it is
possible to proceed with reduction in the way that is described above.
Below the formal foundation for this approach will be given.

An expression E in the pure λ-calculus is in head normal form if it
is of the form λx1.λx2. … λxn.x E1 E2 … Em with x1, x2, … xn, x (not necessarily
different) variables and n, m ≥ 0. In that case x is the head variable of the
expression E. If E is of the form λx1.λx2. … λxn. (λx.E0) E1 E2 … Em with n ≥ 0, m
≥ 1, then (λx.E0) E1 is called the head redex of E. An expression E in the
pure λ-calculus is in weak head normal form  if it is an expression of
either the form λx.E or the form x E1 E2 …  Em with m ≥ 0. A head normal
form is always a weak head normal form.

A head normal form does not contain a head redex. A λ-abstraction
in weak head normal form may still contain a head redex in its body. So
a (weak) head normal form does not have to be a normal form.

The notion of reduction in which reduction never takes place under
an abstraction is called weak reduction (conversely, reduction under an
abstraction is sometimes called strong reduction). When only weak re-
duction is performed, no α-conversion is needed if initially the free
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variables are chosen to be distinct from the bound variables. Since weak
reduction cannot reduce under a λ-abstraction it generally cannot yield a
head normal form but only a weak head normal form.

Abramsky’s work on lazy λ-calculus formalizes the notion of lazy
(leftmost) reduction to weak head normal form (Abramsky, 1990; Ong,
1988). Lazy reduction is a form of weak reduction, so in lazy λ-calculus
no α-conversion is necessary.

3.8.3 Sharing of expressions to avoid duplication of work

Consider the following expression:

(λx.+ x x) heavy-computation

Assume that the evaluation of the argument involves many reductions.
The following reduction steps are performed if the expression is evalu-
ated in normal order:

(λx.+ x x) heavy-computation
→β + heavy-computation heavy-computation
→∗ + easy-number heavy-computation
→∗ + easy-number easy-number
→δ+ twice-the-easy-number

The argument is substituted for each occurrence of the variable in the
function body. But if such an argument is a complicated expression re-
quiring many reductions then each additional substitution implies dupli-
cation of work. This is of course a terrible waste because the result of
the computation will be the same for each occurrence. In the example
above this problem can be solved by reducing the expression in ap-
plicative order.

(λx.+ x x) heavy-computation
→∗ (λx.+ x x) easy-number
→β + easy-number easy-number
→δ+ twice-the-easy-number

In general, it is much more efficient to reduce in applicative order
instead of in normal order. But unfortunately, when reduction is per-
formed in applicative order, termination is no longer guaranteed (see
Section 3.3).

There are several solutions to retain the efficiency. One solution is
to analyse the arguments of a function to determine whether or not they
can be reduced in applicative order instead of in normal order. This is
allowed if the termination behaviour compared with normal order re-
duction is not changed (see Chapter 7). If such arguments can be found
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a mixture of normal order and applicative order evaluation is obtained.
The analysis to determine whether or not arguments can be evaluated in
applicative order is known as strictness analysis (see Chapter 7).

The problem of the duplication of work can be partly solved by
choosing a different representation for a λ-expression. A computer sci-
entist would use pointers, i.e. use a graph representation instead of us-
ing strings or trees. However, this changes the reduction behaviour
since several redexes are now contracted at once. So it is not sufficient
just to use a different representation. The pure λ-calculus has to be ex-
tended with some notion of sharing of terms. The first proposal for us-
ing λ-calculus graph reduction instead of the ordinary string reduc-
tion is due to Wadsworth (1971). Graphically this sharing can be ex-
pressed as in Figure 3.6.

@

@

λx

x

@

+

heavy-
computation

→β

@

@

+ heavy-
computation

→β

@

@

+ easy-
number

→β twice-the-easy-number

Figure 3.6 Sharing of λ-expressions to avoid duplication of work.

The following linear notation is chosen to indicate shared λ-expres-
sions:

(λx.+ x x) S, where S ≡ heavy-computation
→β + S S, where S ≡ heavy-computation
→∗ + S S, where S ≡ easy-number
→δ+ twice-the-easy-number

Unfortunately, the sharing has to be broken if the shared expression is a
function that is applied to different arguments (Figure 3.7).

For instance, consider the following expression:

S 3 (S 4), where S ≡ λx.+ x (Fac 1000)
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If the argument 3 were to be substituted in the function S, this shared function
would be corrupted. Consequently, the shared expression S has to be partially
deshared (i.e. a copy is made of the shared structure) as shown in Figure 3.7.

4

+ x

Fac 1000

3
@

@
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@

@
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λx
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Fac 1000
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@

@+ x

@

@
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@
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Figure 3.7 Desharing needed when the shared expression is a function.

To keep things sound, that part of the
shared function has to be copied that is af-
fected by a possible substitution of the
variable. This process of partly desharing
is also called peeling off a copy (Wads-
worth, 1971). It increases the complexity
of an implementation.

The example of Figure 3.8, due to J.J.
Lévy, shows that, because of the forced
copy action, duplication of work is some-
times hard to avoid. When the leftmost re-
dex is reduced, there seems to be no way
to deshare (parts of) the λf expression with-
out introducing a copy of a λx-redex. This
is due to the fact that when a copy is
peeled off, a copy has to be made of all
applications above the variable to be sub-
stituted up to the λ that binds it. So the
application f 1 has to be copied but also the
two applications above it including the λx
redex.

The problem of avoiding duplication

@

@

@

f

@

λy

y

@

λx

x

λf

1

Figure 3.8 J.J. Lévy example.

of work is called the optimality problem (Lévy, 1980). Recently, in
Lamping (1990) an algorithm is given that solves the optimality prob-
lem. However, the algorithm is very complex. A lot of administration is
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needed to always avoid duplication of work. In practice, for most cases
it may be more efficient to duplicate the work instead.

3.8.4 Implementations based on combinatory logic

The use of combinators has been studied very extensively in the context
of implementing functional languages. Combinators do not suffer from
the problems with copying shared subexpressions that are treated in the
previous section. Expressions of these combinators do not contain vari-
ables. So if combinators are implemented as basic primitives, no admin-
istration for variables is needed at all.

David Turner was the first to introduce an implementation of a
functional language using combinators as an intermediate language
(Turner, 1979a). He used about 15 combinators including S, K, I, B and
C named above and of course some δ-rules. This paper led to a lot of re-
search on the question of which set of combinators was best for imple-
mentation purposes (e.g. super-combinators (Hughes, 1982) and cate-
gorical combinators (Curien, 1986)) and even to research on machine
architectures based on such sets of combinators.

Striving for ultimate efficiency recent implementations tend to
employ sharing not with a fixed set of combinators but with a dedicated
set of combinator-like definitions (rewrite rules) that are deduced from
the program. The next chapters cover the concepts of (graph) rewrite
rules of which combinators are treated as a special case.

3.8.5 Translating evaluation orders

In the translation schemes given in Section 3.7 the evaluation order was
not taken into account. Actually, when λ-terms were reduced in the ex-
amples, normal order evaluation was used. This is not remarkable since
Miranda is a lazy language. Lazy evaluation corresponds with normal
order reduction in the λ-calculus, whereas eager evaluation corre-
sponds to applicative order reduction. Lazy languages can handle infi-
nite lists as long as the evaluation of the last element is not being asked
for. This corresponds with normal order reduction that will find the
normal form if it exists.

Languages can also be characterized by the way parameters are
passed, the calling mechanisms. Call-by-value implies applicative or-
der reduction, call-by-name corresponds with normal order reduction;
and call-by-need corresponds to normal order reduction in a context in
which the arguments are shared such that they are evaluated only once.

Summary

• The λ-calculus can be considered to be the computational basis of
all functional languages.
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• In the λ-calculus anonymous functions are defined.
• Reduction rules translate λ-expressions into equivalent ones.
• The most important reduction rule is β-reduction that defines how

a function applied to an argument is evaluated by applying textual
substitution.

• With α-conversion bound variables can be renamed.
• In general α-conversion is needed when doing β-reduction.
• α-conversion can be avoided when only weak reduction is done.
• Lazy evaluation in functional languages corresponds to normal or-

der reduction in the λ-calculus.
• Eager evaluation in functional languages corresponds to applica-

tive order reduction in the λ-calculus.
• Theoretical and practical properties of functional languages can be

derived directly from the λ-calculus:
– all effectively computable functions can be defined;
– normal forms are unique;
– not every expression has a normal form;
– lazy evaluation is normalizing;
– with lazy evaluation work can be duplicated while eager eval-

uation avoids duplication of work;
– eager evaluation is not normalizing.

• The λ-calculus is not very well suited as a basis for efficient im-
plementation for the following reasons:
– full sharing of expressions is difficult to maintain;
– testing on syntactic equality is not possible in the pure λ-cal-

culus. The extension of the calculus with Church’s δ-rule is
rather artificial. For reasoning about implementations of
functional languages it seems to be a better approach to start
with a computational model in which syntactical tests (pattern
matching) are inherently present (see the next chapter).

EXERCISES

3.1 Make tree-representations of the following λ-expressions:
(a) (λx.λy. x+y) ((λx. y) 1) ((λy.λz. x z) ((λx. 2*x) z) 5)
(b) FAC y

where FAC is the abbreviation of the λ-expression for the factorial
function given in Section 3.7.3.
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Mark the free variables and the leftmost-outermost, leftmost-
innermost, rightmost-outermost and rightmost-innermost redexes.

3.2 Consider the λ-expression λx.x ((λx.λy.x y) y) x. Give its tree repre-
sentation. Reduce the expression normal order to weak head nor-
mal form and to normal form.

3.3 Reduce the following expressions in normal order, once using the
λ-bar operator and once using the numbers of De Bruin.
(a) λx.((λx.λy.y z x) y x)
(b)* (λf.λx. f(f x)) x) ((λf.λx. f(f x)) x)

3.4 Show that Aexp cn cm ->* c(nm), except for m = 0, where cn and cm are
the Church numerals and Aexp = λx.λy.y x.

3.5 Define λ-expressions AND, OR and NOT with standard semantics.

3.6 Represent the following expression by a graph, and so build a tree
but share (sub)expressions where possible.
(+) (F (F 3)) (F 300) where F = λx. * (Fib 10) x

Fib represents the Fibonacci function. Show with the help of the
graph what happens when the following redexes will be β-reduced:
(a) (+) (F (F 3)) (F 300)
(b) (+) (F (G)) (F 300) where G stands for result of previous reduction
(c) (+) (H) (F 300) where H stands for result of previous reduction

3.7* Write a reducer for λ-expressions in Miranda. This function should
reduce a λ-expression to normal form using normal order reduc-
tion. The program should accept a list of characters as input and
deliver the reduced λ-expression again as a list of characters. Take
as internal data structures to represent λ-expressions:
lcalc ::= AP lcalc lcalc | ABS var lcalc | VAR var | CONST const
var = = [ char ]
const = = [ char ]

Furthermore, define a parser function to parse the input string to
this data structure lcalc, a reducer (of type reduce:: lcalc -> lcalc) and a
display function that converts the data structure back to a list of
chars. Make sure that your reducer does α-conversion when neces-
sary (this is probably the most difficult part of this exercise).
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Chapter 4
Term rewriting systems

4.1 TRSs
4.2 Rewriting with a TRS
4.3 Reduction sequences and

normal forms
4.4 Properties of TRSs
4.5 Reduction strategies

4.6 Orthogonal TRSs
4.7 Priority rewrite systems
4.8 TRSs as a basis for functional

languages
4.9 TRSs as a basis for

implementations

Term rewriting systems (TRSs) form an important computational
paradigm for which applications are found in several fields, including
formal software specification, analysis of algebraic specifications, de-
sign and implementation of functional languages, computing by means
of equations and mechanizing deduction systems. Surveys of theory of
TRSs are given in Huet and Oppen (1980) and Klop (1992).

A TRS consists of a collection of rewrite rules. Rewrite rules have
many similarities with function definitions in a functional language but it
is only possible to define rules on one global level. The rules in a TRS
are used to rewrite a given term in the same way as function definitions
in a functional language are used to evaluate a given initial expression.
In TRSs tests on syntactic equality (using pattern matching) form a key
concept in the semantics of reduction. The left-hand side of a rewrite
rule consists of a pattern that determines whether or not the rule can be
applied to rewrite a (sub)term.

One can regard TRSs as the extension of combinatory logic with
pattern matching. TRSs are also related to the λ-calculus. The descrip-
tive power of TRSs is greater than of these systems, e.g. non-determin-
ism can be expressed in a TRS but not in λ-calculus nor in combinatory
logic. TRSs are a subset of Graph rewriting systems (GRSs) which will
be explained in the next chapter. A good understanding of TRSs is a
prerequisite for a good understanding of GRSs.

An important difference between TRSs and functional languages
is that in the basic semantics of TRSs there is no ordering in the rewrite
rules (all rules have equal priority) and furthermore no strategy is pre-
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defined that prescribes in which order redexes in the term are rewritten.
So in a certain sense one can say that TRSs are ‘more declarative’
than functional languages. They just contain a collection of rules that
can be applied to a given term. No reduction order is specified explicitly
that determines how a given term has to be evaluated.

The bad news is that in contrast with the λ-calculus, there does
not exist a decidable normalizing strategy for a general TRS (see Sec-
tion 4.5). Since the basic semantics of TRSs is quite simple (Sections
4.1, 4.2 and 4.3), the emphasis of this chapter lies in a quest for an effi-
ciently implementable, intuitively clear, reduction strategy that is nor-
malizing for a large class of TRSs. One of the problems encountered in
this quest is caused by the possibility of defining ambiguous rules
(partly due to the fact that all rewrite rules have equal priority in the ba-
sic semantics). On one hand this has the advantage that TRSs allow
the expression of non-deterministic computations. But on the other
hand this has the disadvantage that (of course) the uniqueness of nor-
mal forms is no longer guaranteed (Section 4.4). With certain restric-
tions imposed on TRSs (orthogonal TRSs, see Sections 4.4 and 4.6),
uniqueness of normal forms can be guaranteed. Also, there exists a
normalizing strategy (parallel outermost) for such orthogonal systems.
Unfortunately, this normalizing strategy is certainly not efficiently im-
plementable. Efficiently implementable normalizing strategies are pos-
sible, but they will only work for certain subclasses of orthogonal TRSs.
Furthermore, it is not always intuitively clear how these strategies pro-
ceed nor for which subclass they can or cannot be applied (see Section
4.6).

It appeals to the intuition to take priority of rules into account. The
basic problems encountered in a TRS with standard semantics also
appear in TRSs extended with a functional language-like priority in their
rules (Section 4.7). Forcing evaluation of arguments to tell whether or
not they match a corresponding pattern in a rule definition now seems
to be the only sensible thing to do. The disadvantage of forcing evalua-
tion is that infinite computations can occur, even if a normal form exists
according to the priority semantics. As a special case of this general
approach of forcing evaluation the functional strategy is presented.
When reduced with the functional strategy priority rewrite systems
(PRSs) capture priority of rules similar to a functional language.

A functional language is easily translated to various subclasses of
TRSs (Section 4.8). Implementations of functional languages are usu-
ally more close to term rewriting systems than to the λ-calculus. An im-
plementation based on TRSs causes fewer problems than an imple-
mentation based on the λ-calculus. Efficient implementations of func-
tional language-like PRSs can be obtained (Section 4.9). If graphs are
used instead of terms even state-of-the-art efficiency is possible (see
Part 4).
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4.1 TRSs

Term rewriting systems consist of a collection of rewrite rules. These
rewrite rules specify how a given term can be translated (reduced,
rewritten) to another term.

4.1.1 Terms

A collection of terms over a set of constant symbols and a set of vari-
ables is defined by the following syntactic definition (the curly braces
specify zero or more occurrences of the enclosed objects):

Term = Variable | Constant | '(' Constant {Term} ')' ;

Variables always begin with a lower case character; constant symbols
with an upper case character or some special character (a digit, an aster-
isk etc.). The outermost brackets of a term are usually omitted. The
(zero or more) terms following a constant are called the arguments of
the constant. The fixed arity  of an occurrence of a particular constant is
equal to its number of arguments. A term that does not contain any vari-
ables is called a closed term, otherwise it is an open term.

Examples of terms:

x
1000
Fac x
Fac 1000

Reverse (Cons 2 Nil)
Select 3 (Array 1 2 3 4 5 6)
Sqrt (– (* b b) (* 4 (* a c)))
Ap (Ap x z) (Ap y z)

A non-example:

x z (y z)

A term τ' is a subterm of a term τ iff (i.e. if and only if) τ' is contained
in τ and τ' is a term in the syntactic construction of τ. A subterm τ' of τ
is a proper subterm if τ' and τ are not the same. Subterms do differ
from subexpressions in Miranda and in the λ-calculus. This is due to the
absence of implicit application. Implicit application would allow any
two expressions to be put together by juxtaposition to form a new ex-
pression. With explicit application one has to specify a function that de-
fines application (see Section 4.1.4).

Subterms of the term Ap (Ap x K) K are (see Figure 4.1):

Ap (Ap x K) K
Ap x K

x
K (occurs twice)



116 TERM REWRITING SYSTEMS

The following are not subterms of the term Ap (Ap x K) K:

Ap
Ap (Ap x K)
Ap x

x K
(Ap x K) K

Ap

Ap

K

K

x

Figure 4.1 Tree representation (see Section 4.1.2) of Ap (Ap x K) K.

4.1.2 Representing terms as trees

A term can be represented as a tree (Figure 4.2).

Fac

1000

Reverse

Cons

Nil2

Array

1 2 3 4 5

3

Select

4

-

* *

*bb

a c

Sqrt

Ap

Ap Ap

x z y z

Figure 4.2 Tree representation of the term Fac 1000, Reverse (Cons 2
Nil), Select 3 (Array 1 2 3 4 5 6), Sqrt (– (* b b) (* 4 (* a c))),
Ap (Ap x z) (Ap y z).

This tree representation makes the structure of a term clearer in most
cases. A constant symbol is represented by a node labelled with that
constant. A directed arc is drawn to each argument of a constant. Hence,
the arity of a constant determines the number of outgoing arcs from the
corresponding node. A subtree of a tree consists of a node with all
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nodes that are reachable (following the arcs) from that node. Any sub-
tree represents a subterm.

4.1.3 Term rewriting systems

A term rewriting system (TRS) is a collection of rewrite rules αi → βi
over sets of constants and variables, where αi, βi are terms, such that all
variables in βi also occur in αi and none of the αi is a term consisting of
a single variable.

Example of a TRS:

Fac 0 → 1
Fac n → * n (Fac (– n 1))

Cond True x y → x
Cond False x y → y

Non examples:

x → 1

Illegal x → y

Syntax of TRSs

TRS = {TRS-Rule} ;
TRS-Rule = Left-Hand-Side '→' Right-Hand-Side ;
Left-Hand-Side = Constant {Term} ;
Right-Hand-Side = Term ;

The constants used in a TRS are divided in two classes. All constant
symbols in a TRS that appear as the leftmost constant on the left-hand
side of a rule are called (recursive) functions. The corresponding rule
is then called a rule for the function and the corresponding occurrence
of the symbol is called a defining occurrence of the symbol. All other
constants are called constructors. The term on the left-hand side is
called a pattern. A subterm of a left-hand side is called a (sub)pattern.

4.1.4 Notation used in this book

The notation for TRSs used in this textbook is a variant of the functional
style. We use an alternative bracketing, resulting in a LISP-like nota-
tion. In the literature this notation is very unusual. Either an applicative
style (like in Miranda, with implicit application functions) or a func-
tional style is used. In a functional style application is written down ex-



118 TERM REWRITING SYSTEMS

plicitly as a function (say the function Ap which, of course, stands for
Application). However, traditionally, in a functional style the arguments
of functions and constructors are placed between brackets and separated
by commas.

Example of the notation used in this book (the combinatory logic example; see
also Section 3.6.1):

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z)
Ap (Ap K x) y → x

The SK example in the traditional functional notation (compare this with our
notation in the example above):

Ap (Ap (Ap (S, x), y), z) → Ap (Ap (x, z), Ap (y, z))
Ap (Ap (K, x), y) → x

Ap

Ap

x

Ap

y

z

S
→

Ap

Ap Ap

x z y z

Ap

x

y

K

Ap

→ x

Figure 4.3 Tree representation of SK rules in (alternative) functional
style.

When the rewrite rules of a TRS are represented graphically (see Figure
4.3) using the tree notation for terms, it is immediately clear that the dif-
ference in both notations is a matter of syntax only.

In a TRS using an applicative style function applications are im-
plicit. The applicative style is commonly used when application is the
only actual function that is being used and all other symbols have arity
zero (Figure 4.4). When application is the only function, it can be left
out in the notation and juxtaposition can stand for application.

In this textbook we generally want to consider also other functions
than apply (Ap) but we do not like to write down too many brackets.
Therefore we have chosen a functional style with a LISP-like bracket-
ing. We will use this notation throughout this textbook.
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The SK example in the applicative notation:

S x y z → x z (y z)
K x y → x

x

y

z

S

@

@

@

→

@

x z y z

@ @

Figure 4.4 Tree representation of a TRS with implicit application func-
tions (indicated by @ labels).

4.2 Rewriting with a TRS

A TRS can be used to rewrite a given closed term τ, which consists of
constants only. This closed term can be compared with the initial ex-
pression to be evaluated in Miranda.

4.2.1 Redexes

A (sub)term is a redex iff there is a left-hand side of a rule (a pattern)
that matches this term. A left-hand side matches a (sub)term if this term
is syntactically equal with respect to all constants in the pattern.

More formally: a redex of a closed term τ is a subterm τ' that is
syntactically equal to an instance of a left-hand side αi of a rule of the
TRS. An instance of a term αi is a term σ(αi) where σ is a substitution
of closed terms for all variables in αi. One also says: τ' matches αi. By
σ  every variable of a left-hand side is bound to a subterm of the redex.

Example of pattern matching; consider again:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z)
Ap (Ap K x) y → x

and the term

Ap (Ap K K) (Ap S K)

This term matches the pattern Ap (Ap K x) y. The corresponding substitution is
σ(x) = K, σ(y) = Ap S K, yielding σ(Ap (Ap K x) y) = Ap (Ap K K) (Ap S K).
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Consider the following TRS:

Eq x x → True

The term Eq (+ 0 1) 1 does not match Eq x x. There is simply no substitution
for x that achieves this. The term Eq (+ 0 1) (+ 0 1) does match Eq x x with
σ(x) = + 0 1.

Consequently, whether or not a subterm is a redex now depends on the
structure of the rewrite rules in the TRS itself: a subterm is a redex iff
there exists a rule in the TRS with a pattern that matches the subterm.
This is in contrast with the λ-calculus where a redex is created when-
ever a function is applied to an argument.

4.2.2 Rewriting a term

A rewrite  (or reduction) of a term τ is the replacement of a redex of τ,
say τ', by the right-hand side of the rule using the substitution function
of the corresponding match: σ. The redex τ', which is equal to σ(αi), is
replaced by σ(βi): the right-hand side in which the substitution function
is applied on the variables (by σ  every variable is bound to a subterm of
the redex).

Consider the TRS

Hd (Cons a b) → a

The term Hd (Hd (Cons (Cons 0 Nil) Nil)) can be rewritten as follows using the
only rewrite rule in the TRS:

Hd (Hd (Cons (Cons 0 Nil) Nil)) || σ(a) = Cons 0 Nil, σ(b) = Nil
→Hd Hd (Cons 0 Nil) || σ(a) = 0, σ(b) = Nil
→Hd 0

where the subscript Hd on the arrow indicates that the rule for Hd is used.

This rewriting of terms is the TRS equivalent of β-reduction in the λ-
calculus. The main difference is that a λ-expression like (λx.M) N is al-
ways a redex and that it binds exactly one variable. For TRSs it depends
on the set of rules in a concrete TRS whether a (sub)term is a redex or
not. Furthermore, in TRSs functions can be specified with more than
one argument. These rules can only be applied if all the arguments are
present and match the pattern. Therefore, no currying is needed to simu-
late functions with more than one argument.
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Example of functions with more than one argument:

G x y → x
H x y z → G z x

The term G 2 3 →G 2, but the term G 2 will not be reduced: it is not a redex
because it has only one argument and not two.

Name conflicts, as they occurred in the λ-calculus, cannot arise in
TRSs. The initial term is a closed term and free variables cannot be in-
troduced in the rewrite rules. So the term that is rewritten will never
contain variables, therefore no name conflicts occur.

4.2.3 δ-rules

As in the λ-calculus there can exist externally defined functions and
constants. Such an externally defined function is called a δ-rule or a δ-
function. If a δ-function is applied to the number of arguments it needs,
the corresponding subexpression is called a δ-redex. If the external
function is applied it is called a δ-reduction step. Although it is possi-
ble to define rewrite rules with the same behaviour directly in TRSs, it
is sometimes more convenient for readability and illustration purposes
to assume the availability of these external functions.

Example of a δ-reduction step, assuming that + is an externally defined δ-rule
and 2 and 3 are externally defined constants:

+ 2 3 →δ+ 5

An external function like + requires that its arguments are indeed con-
stants of a specific type, in this case the arguments should be constant
numbers. If this is not the case, the corresponding subexpression is not a
δ-redex until this restriction is satisfied. This implies that one first has to
reduce the arguments of + before this δ-rule can be applied.

4.3 Reduction sequences and normal forms

One reduction is often called a reduction step (or rewrite step). A re-
duction sequence (or rewrite sequence) of a term is a sequence of zero
or more reduction steps (or rewrites) performed on that term. If term τ1
can be reduced by a sequence of reductions to expression τ2, τ2 is called
a reduct of τ1. This is denoted as τ1 →*  τ2. So →* is the reflexive transi-
tive closure of →.

Given a TRS, a term is in normal form if no rule in the TRS
matches the term or one of its subterms. Note that whether or not a term
is in normal form depends on the concrete TRS. Given a TRS, a term
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has a normal form if there exists some sequence of reduction steps that
results in a term in normal form.

A term is in head normal form if the term as a whole is not a re-
dex and the term as a whole will never become a redex. Such a term
need not be in normal form since it may contain subterms that are re-
dexes. Whether or not a term as a whole will ever become a redex is in
general undecidable, so it is also undecidable whether a term is in head
normal form. In many cases, however, the head normal form property is
decidable, e.g. when the term begins with a constructor it is trivially in
head normal form.

Examples of head normal forms; take the following rules:

H (Cons a b) 0 → a
H Nil 1 → Nil

Cons (H Nil 1) 1 is clearly in head normal form because the head of the term
is a constructor

H (H Nil 1) 0 is in head normal form although the head is a function and
the second argument matches. However, the first argument
is a redex that reduces to Nil

H (H Nil 1) 1 is not in head normal form

Since the head normal form property is in general undecidable, the fol-
lowing notion is used to define a decidable approximation. A rule par-
tially matches a term if its pattern partially matches the term. A pat-
tern α i partially matches a term τ if firstly the first constant of α i
equals the first constant of τ and secondly for each argument τ' of the
first constant of τ corresponding to a non-variable argument αi' of the
first constant of αi, αi' also partially matches τ' or there exists a rule
with a pattern partially matching τ'. Intuitively, a rule partially matches
a term if by just looking at the left-hand sides the rule might after some
reductions match the term. In Klop (1992), a term for which there exists
a partially matching rule is called a soft term.

Illustrating the definition of a partial match:

H (Cons a b) 0 → a
H Nil 1 → Nil

H Nil 0 there is no rule with a pattern partially matching this
term

H (H Nil 1) 0 partial match for the first rule of H; H Nil 1 is a redex
H (H (H Nil 1) 0) 0 partial match for the first rule of H; H (H Nil 1) 0 itself

partially matches the first rule of H
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A term is in strong head normal form if none of the rules partially
matches this term. It is decidable whether or not a term is in strong head
normal form. A term in strong head normal form does not partially
match any rule so it is also in head normal form. A term in head normal
form need not be in strong head normal form (see the examples above).

It is important to note that because of the rewrite semantics of
TRSs there is a difference between TRSs and functional languages with
respect to normal forms for the case of partial functions:

Difference between functional languages and rewriting system for a partial
function:

F 1 → 2
F 2 → 3

Suppose the term to be reduced is F 3: in a functional language this would re-
sult in an error because it does not match any of the rules; in a rewriting sys-
tem it is just not rewritten because it does not match, and the normal form is
then simply F 3.

A function that is applied with a number of arguments that does not
correspond to the number of arguments specified on a left-hand side,
will never be a redex. This is why one can consider occurrences of con-
stants with different numbers of arguments as different constants. This
has no influence on the semantics.

4.4 Properties of TRSs

In this section some properties of TRSs are considered that are indepen-
dent of the specific term one wants to rewrite and independent of the
specific reduction strategy (see Section 4.5) that is used.

4.4.1 Ambiguity

The patterns specified in a TRS determine whether or not a (sub)term is
a redex. However, it is possible that a term matches several left-hand
sides of the rewrite rules of the TRS. In that case there are several alter-
native rewrite rules by which the term can be rewritten. A TRS is am-
biguous iff it contains rules of one of the following types:

• non-deterministic rules, i.e. their left-hand sides are totally over-
lapping;

• partially ambiguous rules, i.e. their left-hand sides are partially
overlapping.
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Two left-hand sides of two different rules are totally overlapping  if a
term exists that is an instance of both left-hand sides. Two left-hand
sides α1 and α2 of two (not necessarily different) rules are partially
overlapping  if a term exists that is an instance of α1 and that is also an
instance of a non-variable, proper subterm of α2. Two such (partially)
overlapping left-hand sides are also called a critical pair . Depending on
the right-hand sides the existence of a critical pair can invalidate
uniqueness of normal forms.

Example of non-deterministic rules:

Choose x y → x
Choose x y → y

Given this TRS, the term Choose 1 2 can be reduced to either 1 or to 2: there
is no unique normal form.

The following very familiar looking set of definitions forms a TRS that is non-
deterministic. The term Fac 0 matches both left-hand sides. Unlike function
definitions in Miranda, in ordinary TRSs all rules have equal priority. Choos-
ing the wrong rule will lead to unexpected and unwanted results.

Fac 0 → 1
Fac n → * n (Fac (– n 1))

Example of partial ambiguity:

G ( K n 1 ) → 1
K x y → x

Given this TRS, the term K 0 1 is a redex and an instance of the subterm K n 1
in G (K n 1). The term G (K 0 1) can be reduced to either 1 or to G 0.

A more subtle example of a partial ambiguous TRS:

F ( F x ) → A

This TRS is ambiguous with itself. The term F (F 1) is a redex and an instance
of the subterm F x in F (F x). Given this TRS the following term can be re-
duced as follows:

F (F (F 1)) →F F A F (F (F 1))  →F A

So the term F (F (F 1)) has two different normal forms in this TRS.
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4.4.2 Comparing

A TRS is comparing iff one or more left-hand sides of the rules of the
TRS is comparing, i.e. it contains a multiple occurrence of the same
variable, such as

Eq x x → True

A comparing rule is also called non-left-linear because of the corre-
spondence with multiple occurrences of variables in multiplicative
terms of polynomial expressions.

Restricting a TRS to be non-comparing is natural. A rewrite rule
using a left-hand side that contains a multiple occurrence of the same
variable induces a test on syntactic equality of the corresponding argu-
ments of the term. However, it is possible that the arguments are se-
mantically equal but syntactically not. In general, it is undecidable
whether two terms are semantically equal. Comparing is therefore only
sound if the two terms are in normal form, i.e. they do not contain any
redexes (this is similar to Church’s δ, see Section 3.7.6). In that case
terms that are semantically the same are also syntactically equal, be-
cause the only semantics is the rewriting semantics.

In the term below the arguments are not always syntactically equal. If they are
in normal form, then syntactic equality implies semantic equality.

Eq (+ 1 1) (+ 1 1) →δ+ Eq 2 (+ 1 1) →δ+ Eq 2 2 →Eq True

4.4.3 Confluency

A TRS is confluent (or has the Church–Rosser property) iff for every
two (divergent) reduction sequences τ →∗ τ1 and τ →∗ τ2 there is a τ3
such that there are two (convergent) reduction sequences τ1 →∗ τ3 and τ2
→∗ τ3 (see also Section 3.4). The Church–Rosser property implies the
unique normal form property. As in the λ-calculus, this does not imply
that every term has a normal form. It states only that if there is a normal
form, it is a unique one.

Not every term has a normal form in a confluent TRS:

F x → G x
G x → F x
H 0 → 1

This TRS is confluent. H 0 has as normal form 1, However, the term F 1 does
not have a normal form.

But, in contrast with the λ-calculus, a TRS is in general not confluent.
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The examples in the previous section show that ambiguity can in-
terfere with confluency. However, ambiguity does not necessarily lead
to non-confluency in all cases. Furthermore, comparing can also be a
source of non-confluency. The following examples clarify this.

Ambiguity versus confluency:

• a non-ambiguous and confluent TRS:

K x y → x

• ‘parallel OR’, an ambiguous but confluent TRS:

Or True x → True
Or x True → True
Or False False → False

• an ambiguous and non-confluent TRS:

F 0 → 0
F x → 1

The following marvellous example is due to J.W. Klop. It shows that
comparing is also a source of non-confluency. This is caused by the fact
that the terms that are compared need not be in normal form.

• a non-ambiguous and non-confluent TRS (Klop’s example):

D x x → E
C x → D x (C x)
A → C A

Explanation: the term C A can be reduced in the following ways:

C A
→C D A (C A)
→A D (C A) (C A)
→D E

C A
→A C (C A)
→C C (D A (C A))
→A C (D (C A) (C A))
→D C E
→C D E (C E)

The term D E (C E) cannot be reduced to E any more. Note that just before the
D-reductions are done the terms can still be reduced to a common reduct.
Further note that the arguments of D are not in normal form when the D-rule is
applied.
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Orthogonal TRSs

A TRS is orthogonal iff it is non-ambiguous and non-comparing.

Theorem  (Klop, 1992): Every orthogonal TRS is confluent.

Hence, in an orthogonal TRS a unique normal form is guaranteed. As in
the λ-calculus it depends on the chosen reduction order whether or not
the reduction process will find the normal form (if it exists). In Section
4.6 a normalizing strategy for orthogonal TRSs is presented.

4.5 Reduction strategies

A reduction strategy is a function that, given a TRS and a term, pre-
scribes which redexes in the term have to be rewritten next. It also pre-
scribes for each redex, if there is more than one matching rule, which
one of these rules has to be applied. It is possible that the strategy func-
tion prescribes more than one redex to be reduced next in arbitrary or-
der. Such a strategy is called a parallel reduction strategy. It is also
possible that the strategy function returns more than one redex or rule to
choose from. In that case the strategy function is called non-determin-
istic. Note that for the λ-calculus we only considered non-parallel and
deterministic strategies. In TRSs parallel and non-deterministic strate-
gies play a more important role than in the λ-calculus.

Without knowing the reduction strategy it is in general impossible
to reason about the actual evaluation of terms in a TRS: a TRS with a
term specifies many possible computations. When the reduction strat-
egy is known, a term with a TRS fully specifies the computation and
then it is possible to reason about properties of this computation.

A reducer is a process that consecutively reduces the redexes that
are indicated by some strategy. The result of a reducer is reached as
soon as the reduction strategy does not indicate any more redexes. A re-
duction strategy is normalizing iff for any term, having a normal form,
the reducer applying the strategy will terminate at a normal form.
Parallel reducers are assumed to reduce the redexes indicated by a
parallel reduction strategy in parallel, i.e. in arbitrary order. Non-de-
terministic reducers should choose non-deterministically one of the
redexes offered by a non-deterministic strategy.

If the intention of non-deterministic rules is indeed to make a non-
deterministic choice between the overlapping rules, a non-deterministic
reduction strategy must be used. Such a strategy will yield both rules as
candidate to rewrite a matching redex. A non-deterministic reducer will
arbitrarily choose one of these rules.
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The reduct depends on the chosen rewrite rule (the first or the second rule for
Choose):

Choose x y → x
Choose x y → y

Choose 1 2 →Choose1 1 Choose 1 2 →Choose2 2

Of course it is possible to define an algorithm that finds the normal form
for all TRSs: just produce breadth-first the reduction tree of a term with
all possible reductions. If a normal form exists it will certainly be found
and then the algorithm can stop. This is not a very efficient algorithm.
The algorithm is not a strategy since the algorithm does not just indicate
which redexes are to be reduced next possibly in parallel, but indicates
which possible reducts have to be investigated and remembered. In the
following we shall only investigate proper strategies.

A redex in a term is needed iff for all possible reduction sequences
of this term ending at a normal form this redex (or if it is copied by a
rule, one of these copies) must have been reduced. In confluent TRSs a
reduction strategy is trivially normalizing if it chooses needed redexes
only.

Needed redex: consider the following (part of a) TRS:

If True x y → x
If False x y → y

Consider the term If (= 0 0) (+ 1 1) (+ 2 2) (assume that the TRS has rules for +
and =). Then it contains three redexes, namely (= 0 0), (+ 1 1) and (+ 2 2).
Enumerating all possible reduction sequences shows that (= 0 0) and (+ 1 1)
are needed redexes and (+ 2 2) is not.

Whether or not a redex is needed is in general undecidable. It is even
undecidable for orthogonal TRSs. So always choosing the needed re-
dexes is not a practical strategy for orthogonal TRSs or indeed for con-
fluent TRSs in general. However, for (subclasses of) orthogonal TRSs it
is possible to define decidable strategies that are normalizing for that
class. Sometimes it is even possible to define for a certain subclass a
decidable normalizing strategy that only reduces needed redexes.

4.6 Orthogonal TRSs

Orthogonal TRSs are confluent (see Section 4.4.3). In this section vari-
ous rule-based and non-rule-based reduction strategies are investigated.
There is a normalizing strategy for orthogonal TRSs (parallel outer-
most), but this strategy is not efficient: generally too many redexes are
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indicated. There are other more efficient strategies, but they are only
normalizing for certain subclasses of orthogonal TRSs.

4.6.1 Classes with non-rule-based normalizing strategies

In a non-rule-based strategy the decision of which redex to reduce de-
pends only on the position of the redex in the term.

Given the following rule:

F x y → 1

and the following term (Figure 4.5): Triple (F 0 (F 1 2)) (F (F 3 4) 5) (F 6 7)

Triple

F

0 F

1 2 3 4

5 6 7

F

F

F
leftmost-
outermost

inner-
most

inner-
most

outer-
most

rightmost-outermost
and innermost

Figure 4.5 Leftmost, rightmost, outermost and innermost redexes in the
tree of the term Triple (F 0 (F 1 2)) (F (F 3 4) 5) (F 6 7).

Definitions of leftmost, rightmost, innermost, outermost redexes and
strategies are similar to the definitions for the λ-calculus (see Chapter
3). For TRSs parallel versions of innermost and outermost strategies are
also considered.

Innermost  strategy

Innermost strategies are not normalizing for arbitrary orthogonal TRSs.

An orthogonal TRS for which innermost strategies are not normalizing:

K x → 0
W → W

Using an innermost strategy the reduction process starting with the term K W
will not terminate. On the other hand, using the leftmost-outermost strategy
the reduction process starting with K W will terminate with the normal form 0.
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Innermost strategies are normalizing for those confluent TRSs for which
infinite reduction sequences do not exist, called strongly normalizing
TRSs. Innermost strategies correspond with eager evaluation in func-
tional languages. So innermost strategies rule out concepts similar to
lazy evaluation.

Leftmost-outermost strategy

The leftmost-outermost strategy chooses the leftmost of the outermost
redexes. In the λ-calculus the leftmost-outermost reduction strategy is
normalizing, but even for orthogonal TRSs this is not true.

An orthogonal TRS for which a leftmost-outermost reducer is not normaliz-
ing:

F x 0 → 1
G → 0
W → W

Leftmost-outermost does not find the normal form 1 of F W G in this TRS:

F W G →W F W G →W F W G →W …

Note the difference between this strategy (non-rule-based) and the way
redexes are chosen in Miranda (rule-based). In the example the redex W
is reduced because it happens to be the leftmost-outermost redex in the
term to be reduced. But from the pattern of the rewrite rule for F it can
be deduced that the evaluation of this argument was not needed.

Left-normal TRSs

An orthogonal TRS is called left-normal  if in no left-hand side a vari-
able occurs before a constant.

Example of a left-normal system:

Hd (Cons a b) → a

Not a left-normal system:

F (Cons a b) (Cons c d) → 0

The variable a on the left occurs before the second Cons.

In left-normal systems the leftmost-outermost redex is always needed.
So leftmost-outermost is normalizing for left-normal systems.
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The restriction that in a pattern no variable occurs before a constant
is a serious restriction. It implies that many patterns are not allowed.
Still, the expressive power of such systems is very high. For instance,
every combinatorial system (see below) is left-normal.

Combinatorial TRSs

A subclass of left-normal systems is the class of combinatorial systems
(see also Section 3.6.1). Rules in combinatorial systems all have the fol-
lowing form:

Combinatorial systems, general form:

Ap (Ap… (Ap C x1)… xn–1) xn → A term with only Aps and variables

Such a rule defines the combinator C. These combinators are equivalent
to those defined in the λ-calculus in the previous chapter:

Equivalent definition to the one above:

C ≡ λx1. … λxn–1.λxn.term with juxtaposition instead of Aps

Consider the following λ-calculus combinators:

S ≡ λx.λy.λz. x z (y z)
K ≡ λx.λy.x
I ≡ λx.x

The same combinators defined in a TRS:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z)
Ap (Ap K x) y → x
Ap I x → x

The only function that is present in these combinatorial TRSs is the
dyadic function Ap(ply). The combinators are discriminating construc-
tors: they determine which of the alternative rules for the apply function
is applicable.

An example of reduction in a combinatorial system:

Ap (Ap (Ap S K) K) X →S Ap (K X) (K X) →K X

Every combinatorial system is left-normal. Therefore, leftmost-outer-
most is normalizing for the class of combinatorial systems.
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Parallel-outermost strategy

Leftmost-outermost is not normalizing for arbitrary orthogonal TRSs. It
is even impossible to define a decidable normalizing strategy that indi-
cates separately for each rule which argument has to be reduced first.
The normal form can only be found using a parallel reduction strategy.

The example given by G. Berry shows that TRSs can be constructed for which
it is undecidable to indicate an argument that has to be reduced first:

B 0 1 x → 1
B 1 x 0 → 2
B x 0 1 → 3

Berry’s TRS is orthogonal, so it guarantees a unique normal form. Suppose
the term B R1 R2 R3 has to be reduced, given that the reduction process per-
formed on one of the arguments may not terminate. The strategy still has to
choose one of the arguments, but unfortunately it does not know beforehand
which one will not terminate. So enforcing argument evaluation at one of the
arguments for which a pattern is specified may start a non-terminating compu-
tation. The only safe way to reach the normal form is to reduce each argument
of B a finite number of steps to see if the term as a whole has become a redex.
The parallel-outermost strategy satisfies this idea of reducing each argument
of B one step at a time.

The parallel-outermost reduction strategy indicates all outermost re-
dexes. It is assumed that all these redexes are reduced in parallel (i.e. in
arbitrary order) in one reduction step of the reducer. The parallel-outer-
most reduction strategy is not normalizing for a general TRS.

Consider the following (ambiguous) TRS:

F G 0 → W
F A 0 → B
G → A
W → W

A parallel-outermost reducer would reduce the next term as follows:

P G (F A 0) →G,F2 P A B

Parallel-outermost does not find the normal form B of F G 0 in this TRS:

F G 0 →F W →W W →W …

Theorem (O’Donnell, 1985): Parallel outermost is normalizing for
orthogonal TRSs.
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By reducing all outermost redexes by one step a breadth-first reduction
order is chosen. Clearly, at least one of the outermost redexes is needed
for the reduction to normal form, but it is unknown which ones are
needed and which are not. So it is apparent that the parallel-outermost
strategy is not always the most efficient one. It indicates all outermost
redexes, but not all of them might be needed.

Parallel-outermost finds the normal form of the following orthogonal TRS that
includes Berry’s example. However, too many redexes are reduced: the W-
steps performed with the parallel-outermost reduction are not needed.

B 0 1 x → 1
B 1 x 0 → 2
B x 0 1 → 3
W → W
A → 1
C → A

B W 0 C →W,C B W 0 A →W,A B W 0 1 →B3 3

4.6.2 Classes with rule-based normalizing strategies

In a rule-based strategy the decision which redex to choose depends on
the kind of rules in the TRS. Since analysis of the rules that takes the
right-hand side into account is bound to be undecidable, only left-hand
side analysis is treated. Even by looking only at the left-hand side it is in
general undecidable for orthogonal TRSs to indicate needed redexes, as
is illustrated by Berry’s example. So, in this section, for orthogonal
TRSs restrictions are imposed on the left-hand side that allow a decision
tree to be defined that is used by the reduction strategy to point out the
next needed redex.

Discriminating positions strategy

Next we will present a strategy that uses the patterns of the rewrite rules
to produce a decision tree. In contrast with the term-based strategies the
decision tree does not always indicate a redex if there is one in the term
to be reduced. So the strategy will be normalizing only for certain
classes of orthogonal TRSs.

The discriminating position strategy: consider the set of all par-
tially matching rules, i.e. all rules that partially match the given term;

• if this set of rules is empty no redex is indicated: the term is in
strong head normal form;

• if the term is a redex for one of the rules in the set, then this redex
is indicated;
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• otherwise:
- if there is a proper subterm of the given term for which in every
rule in the set in the corresponding position in the pattern a non-
matching subpattern appears then this subterm is in a discriminat-
ing position;
- if there are subterms on discriminating positions, first the strategy
is recursively applied on the leftmost-outermost of such subterms,
and afterwards the strategy is recursively applied again on the
given term;
- otherwise, no redex is indicated.

If a normal form is required the strategy must recursively be applied to
all subterms of obtained head normal forms.

Illustrating discriminating positions:

G (Pair a 1) 0 → a
G (Pair a 0) 1 → Nil
A → Pair A B
B → 0

For G A B both the first and the second arguments are in a discriminating posi-
tion. A will be indicated since it is the leftmost-outermost redex. For G (Pair A
B) B the second subargument of the pair will be indicated.

An orthogonal TRS without discriminating positions:

B 0 1 x → 1
B 1 x 0 → 2
B x 0 1 → 3

In Berry’s example given above there is a variable on each argument position
so no redex on these positions is indicated by the strategy. Clearly, for this
TRS the discriminating position strategy is not normalizing.

The example above shows that when discriminating positions do not ex-
ist the strategy is not normalizing. The examples below show that the
discriminating position strategy is not always normalizing even if dis-
criminating positions do exist. The reason for this is that the strategy
when it is recursively applied on a discriminating position does not ex-
amine the term as a whole but only tries to match subterms locally
against the discriminating patterns.
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An orthogonal TRS for which the discriminating position strategy is normaliz-
ing:

F (Cons a b) (Cons 1 c) → a
F (Cons a b) (Cons 2 c) → b
F Nil c → c

The discriminating position strategy will first choose the first argument a1 of a
term F a1 a2 for evaluation. The second argument of F is only chosen if the
term after evaluation partially matches the first two rule alternatives.

Another orthogonal TRS for which the discriminating position strategy is
normalizing:

F (D x A) B → 1
F (D A x) C → 2

In the term F a1 a2 the subterms a1 and a2 are in a discriminating position.
First a1 will be chosen, then a2.

An orthogonal TRS for which the discriminating position strategy is not nor-
malizing:

F (G x A) B → 1
F (G A x) C → 2
G D D → 3

In the term F (G a1 a2) a3 the subterm (G a1 a2) is in a discriminating posi-
tion. The strategy is recursively applied on G a1 a2. Now it finds that both a1
a2 are in discriminating positions in the rule for G. They are chosen next. A
more clever strategy would reduce a3 in F (G a1 a2) a3 next. Compare this
with the example above, where this order was taken by absence of the G rule.

For left-normal systems the discriminating position strategy coincides
with the leftmost-outermost strategy. Therefore the discriminating posi-
tion strategy is trivially normalizing for left-normal systems. The class
of orthogonal TRSs for which the discriminating position strategy is
normalizing is called locally discriminating TRSs since each recursive
call of the strategy considers only locally the given subterm. For this
class of TRSs the strategy always indicates a needed redex. The class is
characterized by a decidable syntactical test that guarantees that a dis-
criminating position is indeed needed.
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Huet–Lévy strategy

Huet and Lévy (1979) have defined a class of orthogonal TRSs and a
corresponding strategy (the Huet–Lévy strategy) in which they always
take as much of the term as a whole into account as necessary. In their
strongly sequential or globally discriminating systems needed redexes
are identified by looking at the left-hand sides of the rules. Strongly se-
quential systems are a decidable subclass of sequential systems. In se-
quential systems the right-hand sides are also taken into account to
identify a needed redex. Berry’s TRS is clearly not strongly sequential.
Below we give examples of TRSs that are globally discriminating but
not locally discriminating. Furthermore another example of an orthogo-
nal not strongly sequential TRS is given.

A strongly sequential TRS that is not locally discriminating:

F (G x A) B → 1
F (G A x) C → 1
G D D → 2

For this TRS it turns out to be possible to identify in every term a needed re-
dex if it exists. For instance, in F (G a1 a2) a3 the subterm a3 is needed.

Another strongly sequential TRS that is not locally discriminating:

F (F x A) B → …
F C (F D x) → …

For this TRS it turns out to be possible to identify in every term a needed re-
dex if it exists. For instance, in F (F x1 x2) (F x3 x4) both x2 and x3 are needed.
The TRS is not locally discriminating because x1 would have been indicated
wrongly by the discriminating position strategy.

An orthogonal TRS that is not strongly sequential:

F (G A x) (F B y) → …
F (G x A) (F C y) → …
G D D → …

In the term F (G x1 x2) (F (G x3 x4) x5) one cannot identify a needed redex
(supposing the xs are complicated expressions with undecidable reducts). If
the second rule for F is applicable x2 has to be reduced and if the first rule for
F is applicable x1 has to be reduced. Which rule for F is applicable is deter-
mined by the second argument of F. It is important to note that this argument
by itself can also be a redex for one of the rules for F and that, in order to de-
termine for which rule this is the case, the reduction of x5 is needed. This
means that on the one hand it depends on the reduction of G x3 x4 (and conse-
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quently on the reduction of x3 and x4) whether the rule as a whole might be a
redex for the first or the second rule for F. On the other hand it depends on the
reduction of x5 whether F (G x3 x4) x5 might become a redex as a whole for
one of the rules for F. So it is impossible to indicate a needed redex, i.e. to
make a choice between the xs.

Unfortunately there does not exist an efficient test to determine whether
a system is strongly sequential or not. Furthermore it is hard to see
whether or not a specific TRS is strongly sequential and how evaluation
will proceed. The Huet–Lévy strategy will not be fully treated here. It
would require extending the notions of partial match and strong head
normal form to definitions that recursively take more of the whole term
into account.

4.7 Priority rewrite systems

There are several other interesting related systems for term rewriting
that are not treated in this textbook, such as conditional rewriting sys-
tems (Meinke and Tucker, 1992), in which rewriting can only proceed
if a guard is fulfilled (like in Miranda) and narrowing rewriting sys-
tems (De Groot and Lindstrom, 1986), in which the term that is rewrit-
ten may have free variables. Narrowing  means that the variable in the
term is instantiated with (is narrowed to) the value that is specified in a
pattern. There are various ways of using this mechanism. Narrowing
rewriting systems are investigated in the context of logical program-
ming languages.

This section treats term rewriting systems with priorities (Baeten et
al., 1987), also called priority rewrite systems (PRSs), that try to cap-
ture the theoretical basis of the order dependency in the rules. The dif-
ference with an ordinary TRS is that in a PRS, whenever a rule matches
a given redex, it can only be chosen if none of the rules with higher pri-
ority can ever match the (internally rewritten) term. A reduction step is
called internal  if it proceeds entirely within the arguments of the left-
most symbol of the term.

In a PRS the factorial function can be defined as follows:

Fac 0 → 1
> Fac n → * n (Fac (– n 1))

The greater than sign indicates that the top rule has priority over the bottom
rule. If the argument of Fac is 0 then the first rule is applicable. However, if it
is somehow known that the argument can never be reduced to 0, then the pri-
ority of the rules makes it possible to choose the second rule without actually
reducing the argument. So the second rule can be applied on Fac (+ 1 1) but
not on Fac (– 1 1).
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Of course it is in general undecidable whether or not a term can ever be
made to match a pattern via internal rewrites. So a practical approxima-
tion is simply to force the evaluation of the term. Forcing evaluation
means reduction to strong head normal form via some strategy. Uni-
formly forcing evaluation means that the choice for a rule with lower
priority is only made if the subterms on ambiguous positions are re-
duced to strong head normal form. In this way, no choice for a rule with
lower priority is ever made wrongly.

Forcing evaluation solves the problems in examples like Fac above.
Fac (+ 1 1) and Fac (– 1 1) are first reduced to, respectively, Fac 2 and Fac
0, and then the choice between the prioritized rules is made. However,
due to forcing evaluation non-termination may occur, although semanti-
cally this was avoidable.

Non-termination caused by forcing evaluation:

G 0 → 1
> G n → 2

F → G F

A very clever strategy could know that F can only reduce to G (G (…(G F)...))
so never to G 0, so the second rule of G can be applied. The normal form of F
is 2. Forcing evaluation of the argument of G leads to non-termination. The
argument of G is not in strong head normal form since a partial match occurs.

Furthermore, in partially ambiguous cases a normal form may not be
reached, just as was the case without priorities.

Normal forms in partially ambiguous cases not reached by forcing evaluation:

F G → 1
> F A → F G

G → A

The normal form of F G is 1. However, forcing evaluation of the argument of
F would lead to non-termination.

A strategy still must indicate which of the arguments must be forced for
evaluation. This is essentially the same problem as with ordinary TRSs.
For orthogonal TRSs the priorities do not make a difference. It is possi-
ble to investigate again various non-rule-based and rule-based strategies
for PRSs. However, we only investigate one specific strategy: the func-
tional strategy.
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4.7.1 The functional strategy

The functional strategy combines the discriminating position strategy
with uniformly forcing evaluation in priority rewrite systems such that
the reduction proceeds in a similar way to most functional languages;
subtle uses of priority for only certain sets of rules are not used, but tex-
tual order is assumed always to correspond to increasing priority; if a
normal form is required the strategy is recursively applied to all sub-
terms of obtained head normal forms. Effectively, this means that the
discriminating position strategy is applied for one rule alternative at a
time, with as a consequence that each non-variable subpattern under
consideration induces a discriminating position. This leads to an effi-
cient reduction strategy that is relatively easy to understand. Priority
rewrite systems with an additional restriction that the functional strategy
is being used are called functional term rewriting systems (FTRSs).

In other words, the functional strategy chooses redexes as follows:
if there are several rewrite rules for a particular function, the rules are
tried in textual order; patterns are tested from left to right; and evalua-
tion of an actual argument is always forced when this argument must
match a non-variable in the corresponding pattern (even in overlapping
cases). This forcing of the evaluation of an argument reduces the argu-
ment to strong head normal form. If in the resulting term the argument
matches the corresponding part of the pattern, the next (sub)argument is
tried until the whole pattern matches and the rule can be applied. If in
the resulting term the argument does not match the corresponding part
of the pattern, the left-hand side of the next rule is tried to match the re-
sulting term, proceeding in the same way, enforcing evaluation of sub-
terms. If in the end none of the rules matches, the whole term is in
strong head normal form. If a normal form is required the strategy is re-
cursively applied to all subterms of obtained head normal forms.

A natural way to define the factorial function is:

Fac 0 → 1
Fac n → * n (Fac (– n 1))

This example has the intended semantics if the functional strategy is chosen.
Fac (– 1 1) will be reduced to Fac 0 and the priority of the rules guarantees
that Fac 0 matches the first rule and not the second.

If the functional strategy yields a normal form, it is a correct one with
respect to the priority semantics. Of course, the functional strategy is
not normalizing for a general PRS.
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A (non-ambiguous) PRS for which the functional strategy is not normalizing:

F 0 0 → 1
F x 1 → 2
W → W

F W 1 →W F W 1 →W …

Owing to the forced evaluation the normal form 2 of F W 1 is not reached in
this PRS: owing to the priority of the rules the functional strategy does not
first reduce the second argument of F, but first forces evaluation to establish
whether or not the first argument reduces to 0.

So the functional strategy is actually a practical compromise: it is effi-
ciently implementable and it makes it possible to express computations
in a user-friendly manner. It has the following advantages:

• it is easy to explain;
• it is easy to use: the priority in the rules makes alternative rules

similar to an if-then-else control structure;
• it is easy to understand, such that a programmer will not often

specify unintended infinite computations;
• it can be implemented very efficiently.

The class of TRSs without priority for which the functional strategy is
normalizing is characterized in Toyama et al. (1993).

4.8 TRSs as a basis for functional languages

TRSs have much in common with functional languages. Since TRSs
have even greater expressive power than the λ-calculus, it will certainly
be possible to translate functional programs into equivalent rewrite
rules. An initial expression will be translated into a term that has to be
rewritten.

However, there are several translation schemes possible depending
on the kind of TRS one would like to obtain, such as an orthogonal, left-
normal, combinatorial or priority system. This choice will influence:

• the complexity of the compilation scheme;
• the complexity of the obtained code (the number and size of the

rewrite rules);
• the reduction strategy to be used;
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• the number of reduction steps needed to reach the normal form
(assuming that the compilation is correct and the normal form will
be found if it exists);

• the efficiency of the reducer.

For instance, one can choose to compile to an orthogonal TRS and use
the parallel-outermost strategy. This means that one has to make sure
that patterns do not overlap, as is possible in functional languages.

Here we illustrate how the basic concepts of functional languages
can be translated to an FTRS. It should not come as a surprise that such
a compilation is a very straightforward one. Most of the details of an
actual translation can be found in Chapter 9, where the translation from
Miranda to GRSs is given. In most cases these translation schemes are
also applicable to the translation to TRSs.

Booleans and the conditional

Booleans can be expressed as constants: True, False. Now a conditional
expression can be created by

Cond True x y → x
Cond False x y → y

Recursion

Recursion can be expressed directly, e.g.

Fac 0 → 1
Fac n → * n (Fac (– n 1)

Representation of natural numbers

In TRSs one can represent natural numbers and arithmetical functions.

Define

0 ≡ Zero
1 ≡ Succ Zero
2 ≡ Succ (Succ Zero)

etc. Now a function for addition can be defined as follows:

Add x Zero → x
Add x (Succ y) → Add (Succ x) y
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It will be clear that the use of the machine representation of numerals
and δ-rules yields a much more efficient implementation.

Lists

Lists and other data structures can be defined easily using constructors.

x : y ≡ Cons x y
[ ] ≡ Nil

Now functions on these lists can be defined via pattern matching on the
constructors:

Hd (Cons x y) → x
Tl (Cons x y) → y

Patterns

Patterns are part of TRSs as well as of FPLs.

Currying

In Miranda, all functions are curried and have at most one argument.
Curried applications of functions can be realized in TRSs by introduc-
ing additional rewrite rules for those functions that are actually used in a
curried way. These additional rules explicitly transfer curried applica-
tions of these functions into uncurried ones. Hence, currying is only
performed when it is needed.

For instance, consider the well-known function Map:

Map f Nil → Nil
Map f (Cons a b) → Cons (AP f a) (Map f b)

Assume that all elements of an integer list have to be multiplied with the
number 2, using this function Map. Assume that * is a predefined δ-rule for
integer multiplication that is defined with arity 2. Now its curried application
can be realized as follows by defining the following additional rule:

AP (AP * a) b → * a b

This AP-rule transforms the curried application of the multiplication into an
uncurried application as shown in the following rewrite sequence:

Map (AP * 2) (Cons 3 (Cons 4 Nil))
→Map2 Cons (AP (AP * 2) 3) (Map (AP * 2) Cons 4 Nil)
→AP Cons (* 2 3) (Map (AP * 2) Cons 4 Nil)
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→* Cons 6 (Map (AP * 2) Cons 4 Nil)
→Map2 Cons 6 (Cons (AP (AP * 2) 4) (Map (AP * 2) Nil))
→Ap Cons 6 (Cons (* 2 4) (Map (AP * 2) Nil))
→* Cons 6 (Cons 8 (Map (AP * 2) Nil))
→Map1 Cons 6 (Cons 8 Nil)

In general, an extra AP-rule has to be defined for every function that is actu-
ally used in a curried way.

4.9 TRSs as a basis for implementations

In contrast with implementations based on the λ-calculus, name con-
flicts cannot occur in an implementation based on TRSs. Still, an im-
plementation of general TRSs is not straightforward, in particular when
efficiency is important. Only some subclasses and strategies can be im-
plemented efficiently. Orthogonal systems require parallel-outermost as
strategy, which is inherently inefficient. Left-normal systems can be
implemented efficiently by means of the leftmost-outermost reduction
strategy. Locally and globally discriminating systems can be efficiently
implemented, but their characterization is difficult to comprehend. Effi-
cient implementations of FTRSs which use the functional strategy can
be obtained via the introduction of sharing (see the next chapter).

4.9.1 Combinators

As explained in the previous chapter, combinators (and hence also com-
binatorial systems) can be implemented efficiently. However, an advan-
tage of the use of more general TRSs is that pattern information is ex-
plicitly present in the model allowing special kinds of analysis (for ex-
ample the strictness analysis using abstract reduction in Chapter 7).

4.9.2 Sharing

To avoid unnecessary computations one can share terms in the actual
implementation. In such a case, graphs are rewritten instead of terms.
Because local definitions do not exist in TRSs, the problem that parts of
the graph sometimes have to be copied does not occur. However, using
graphs instead of terms will change the semantics in certain cases. This
is discussed in the next chapter.

4.9.3 The functional strategy

The functional strategy chooses redexes in a similar way as in Miranda.
So, as shown in Chapter 9, a functional program can be compiled to a
PRS using a functional strategy in such a way that:
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• the compilation scheme is straightforward;
• the length of the obtained code is linear with respect to the length

of the original program.

If graphs are being used instead of terms, even state-of-the-art effi-
ciency is possible (see Part 4). The language Clean (introduced in Chap-
ter 8) which uses the functional strategy, is based on this extension to
graph rewriting. In Chapters 10, 11 and 12 it is explained how an ef-
ficient implementation of Clean can be achieved.

Summary

• In TRSs tests on syntactic equality (pattern matching) are used to
rewrite terms according to the specified rewrite rules.

• Most notions like normal forms, strategies and rewriting are simi-
lar to the corresponding notions in the λ-calculus. But for a general
TRS:
– normal forms are not unique;
– the head normal form property is undecidable;
– the strong head normal form property is decidable;
– there is no normalizing strategy.

• Ambiguity and comparing are the sources of non-confluency, so
orthogonal systems are confluent.

• The parallel-outermost strategy is normalizing for orthogonal sys-
tems; it is an inefficient strategy because it can indicate redexes
that are not needed.

• The leftmost-outermost strategy is normalizing for left-normal sys-
tems among which are combinatorial systems; left-normal systems
allow only a very restricted use of patterns.

• The discriminating position strategy as well as the Huet–Lévy
strategy are normalizing for, respectively, locally and globally dis-
criminating systems. The strategies are efficient but their classes of
TRSs are difficult to characterize and it is difficult to understand
how evaluation will proceed.

• The functional strategy combines the discriminating position strat-
egy with uniformly forcing evaluation to strong head normal form
in systems with priority in the rules. It is similar to the way eval-
uation proceeds in most lazy functional programming languages.
The functional strategy is efficiently implementable and intuitively
clear.

• Conceptually there are fewer problems in making an implementa-
tion based on a TRS than on the λ-calculus:
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– there is no need for α-conversion, as name conflicts cannot
arise;

– sharing of terms is easy to use as an optimization in the imple-
mentation (see the next chapter).

EXERCISES

4.1 Give all subterms of the expression
Ap (Ap x z) (Ap y z)

Is Ap a subterm in the expression above? If so, say why; if not can
you tell whether there is a term in which Ap is a subterm? Give an
example.

4.2 Indicate for each of the following TRSs whether it is partially am-
biguous, non-deterministic, comparing, confluent or left-normal.
(a) F F → 1

F F → 2
(b) F x (G x) → 1

F x (H y) → 2
G x → 1
H x → 2

(c) F x → H x
F x → G
H x → F (F x)

4.3 For each of the following TRSs, give a reduction sequence of the
given term using respectively the leftmost-outermost reduction
strategy, the parallel-outermost reduction strategy, the discriminat-
ing position strategy and the functional strategy.
(a) F x 0 → 0 Term: F G G

F 0 x → 1
F 0 0 → 2
G → 0

(b) F x (G x) → F (G x) x Term: F G G
F G x → F x (G x)
G → G

(c) F x y 1 → 1 Term: F (F 1 1 2) (F 1 1 2) (F 1 1 2)
F x 1 2 → 2
F 1 2 2 → 3

4.4 Try to translate Berry’s example into the λ-calculus and show that
for every possible translation the resulting λ-expression can be
normalized with the leftmost-outermost reduction strategy.
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Chapter 5
Graph rewriting systems

5.1 Extending TRSs to GRSs
5.2 GRSs
5.3 Rewriting with a GRS
5.4 Reduction sequences and nor-

mal forms
5.5 Shorthand form
5.6 Properties of GRSs

5.7 Reduction strategies
5.8 Term graph rewriting
5.9 Generalized graph rewriting

systems
5.10 GRSs as a basis for functional

languages
5.11 GRSs as a basis for

implementations

Graph rewriting systems (GRSs) (introduced in Barendregt et al.
(1987a, b) are an extension of term rewriting systems where the terms
are replaced by directed graphs. The main goal is to obtain a sound ex-
tension of the TRS model in which duplication of work is avoided via
sharing of subgraphs (see Section 5.1). More information on this ap-
proach and on related approaches can be found in Ehrig et al. (1973),
Raoult (1984), Staples (1980) and Kennaway (1990).

A computation in a GRS is specified by a set of graph rewrite
rules that are used to rewrite a given initial graph to its final result. The
rules contain graph patterns that can match some part of the graph. If
the graph matches a rule it can be rewritten according to the specifica-
tion in that rule. This specification makes it possible to construct an ad-
ditional graph structure which is linked to the existing graph by redirect-
ing all arcs from the root of the redex to the root of the result (Sections
5.2 and 5.3).

Many notions in GRSs are similar to the notions in TRSs and also
many properties of subclasses carry over from TRSs to GRSs
(Sections 5.4, 5.6 and 5.7). For instance, GRSs are also in general not
confluent. However, similar to the TRS world it is possible to define
confluent subclasses with normalizing strategies. As with term rewriting,
priority can be added to graph rewrite rules. The functional strategy can
be used to rewrite graphs in a GRS with priorities (Section 5.8).
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A TRS can be converted (lifted) to a GRS (Section 5.8). This con-
version has been made very easy by a special shorthand notation that
is defined for GRSs (Section 5.5). In most cases a GRS obtained via
lifting is syntactically equivalent to the original TRS. The GRS seman-
tics is then applied instead of the TRS semantics. Rewriting graphs in-
stead of terms has the advantage that duplication of work is avoided.
Generally, fewer rewrite steps are needed to reach a normal form. The
resulting graph in normal form can be converted back to a term again
(unravelled). Under certain conditions the same reduct is obtained via
this term graph rewriting as would have been the case when the original
term was reduced in the term world. In particular, sharing can be used
safely in lifted FTRSs.

Graph rewriting can be generalized to allow multiple redirections
(Section 5.9). Such a generalized graph rewriting model allows much
more complex changes of a graph structure than is necessary for lifted
TRSs. Generalized graph rewriting can model basic concepts of other
languages than pure functional languages, such as those found in logic
languages and even in imperative languages. Generalized GRSs are
used for instance to investigate the possibility of combining different
kinds of language concepts into one framework.

GRSs are referentially transparent, since in a rewrite step all arcs
to the root of the subgraph matching a pattern are redirected to the re-
sult. GRSs with priority and the functional strategy very much resemble
a functional language and therefore can serve very well as a basis for
functional languages (Section 5.10). Transformation schemes that
specify the conversion of a functional program into an equivalent GRS
are discussed in detail in Part 4. An efficient implementation of a gen-
eralized GRS is very hard to obtain. However, efficient implementations
of functional language-like GRSs are very possible (Section 5.11). In
Part 4, efficient implementations of functional languages based on
GRSs are treated in detail.

5.1 Extending TRSs to GRSs

In this section the differences and correspondences between term and
graph rewriting are briefly explained in order to give the reader a first
intuition on the subject.

TRS terms can be regarded as trees (see Chapter 4). The basic mo-
tivation behind the extension of TRSs to GRSs is to include the notion
of sharing of computation. For this purpose the objects of rewriting be-
come directed acyclic graphs instead of trees. The GRS model is even
more general: it also allows cyclic structures to be manipulated. In
TRSs rewriting of terms consists of replacing a subterm by another sub-
term. In graph rewriting the natural extension of subterm replacement is
subgraph replacement. This subgraph replacement is achieved via a
change of the graph structure retaining as much sharing as possible.
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5.1.1 Terms versus graphs

There are many similarities between the tree representation of terms and
the graphs as used in GRSs. However, in order to be able to express
sharing and cycles a unique label (like an address) is added to every
node, called the node identifier or node-id (Figure 5.1). A node is then
referred to by its node-id. A subgraph can be identified via the node-id
of the root of that subgraph.

Tree representation of a closed term: A closed graph:

Reverse

Cons

Nil2

@1: Reverse

@2: Cons

@4: Nil@3: 2

Figure 5.1 Closed terms in TRSs versus closed graphs in GRSs.

5.1.2 Term rewrite rules versus graph rewrite rules

In a graph rewrite rule graphs are specified instead of terms.

Tree representation of a TRS-term
in a rewrite rule:

A GRS-graph in a rewrite rule:

4

-

* *

*bb

a c

Sqrt

h:  4

e:  -

f:  *

b:

a: c:

g:  *

i:  *

d:  Sqrt

Figure 5.2 Terms versus graphs in rewrite rules.

The graphs that are specified in the rewrite rules of a GRS are open
graphs, i.e. these graphs are labelled with node-id variables. The graph
that is rewritten is a closed graph, i.e. the nodes of the graph are la-
belled with node-id constants. There is a difference between variables in
TRSs and variables in GRSs. Variables that appear in the rewrite rules
of a TRS are bound to a whole subterm (or subtree) of the term to be
rewritten. Since a subgraph of a graph to be rewritten can be identified
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by the node-id of the root node of that subgraph, a node-id variable in a
GRS-rule is bound to just a simple node-id constant.

5.1.3 Term rewriting versus graph rewriting

An important difference between term rewriting and graph rewriting is
that with term rewriting subterms are duplicated if a corresponding
variable appears more than once on the right-hand side whereas with
graph rewriting the subterms will be shared. This is caused by the fact
that the variables in graph rewriting rules stand for node-ids.

Consider the following TRS:

Double x → + x x
Heavy_Computation → Easy_Number

The term Double Heavy_Computation will be reduced in this TRS as follows
(using a lazy strategy):

Double Heavy_Computation
→Double + Heavy_Computation Heavy_Computation
→Heavy_Computation + Easy_Number Heavy_Computation
→Heavy_Computation + Easy_Number Easy_Number

which is displayed in Figure 5.3. using the tree representation of TRS terms.

Heavy_Computation

Double +

Heavy_Computation Heavy_Computation

+

Easy_Number Heavy_Computation Easy_Number

+

Easy_Number

Figure 5.3 Four snapshots of the term rewriting process.

The example above shows that in term rewriting work may be dupli-
cated by subtree replacement. In GRSs duplication of work is avoided.
The graph structure makes it possible to share a subgraph representing a
computation that has to be performed (see also Section 5.8). If such a
subgraph is replaced by the subgraph representing the result of the com-
putation all arcs pointing to the computation automatically become arcs
pointing to that result. Subgraph replacement in GRSs is accomplished
via redirection of arcs in the graph.
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Avoiding duplication of work by sharing computations.

@3: +

@2: Heavy_Computation

@3: +

@4: Easy_Number@2: Heavy_Computation

Figure 5.4 Two snapshots of the graph rewriting process.

In Figure 5.4 the same rules as above are used with graph rewriting semantics
instead of term rewriting semantics. The snapshots in Figure 5.4 show that the
right-hand side of the Double rule induced the sharing of the expression repre-
senting the heavy computation. The reduction of the heavy computation to the
easy number is only done once after which all arcs to the root of the heavy
computation subgraph are redirected to the root of the result (2nd snapshot).

5.2 GRSs

A GRS consists of a collection of rewrite rules. These rewrite rules
specify how a given graph can be rewritten (reduced) to another graph.

In a GRS there are two syntactic ways of specifying graphs and
rules: the shorthand form and the canonical form. In the shorthand form
the graph structure need not be fully specified if it can be deduced from
the notation. The shorthand notation is designed in such a way that
those GRSs that very much resemble TRSs can also be written in a syn-
tactic form that is very much like a TRS. In the canonical form every-
thing is specified explicitly. Generally, the shorthand form is used for
specifying computations whereas the canonical form is mainly used to
analyse the semantics of GRSs. Keep in mind that both forms denote
exactly the same rules and objects, so they can be interchanged freely.

In this section the canonical form will be treated. This form will
also be used in explaining the semantics in Section 5.3. In Section 5.5
the more readable TRS-like shorthand form will be explained.

5.2.1 Graphs

A collection of graphs over a set of constant symbols and a set of node
identifiers (or node-ids) is defined by the following syntactic definition:

Graph = NodeDef {',' NodeDef} ;
NodeDef = Nodeid ':' Node ;
Node = Symbol {Arg} | EmptyNode ;
Symbol = Constant ;
Arg = Nodeid ;
Nodeid = NodeidVariable | NodeidConstant ;
EmptyNode = '⊥' ;



152 GRAPH REWRITING SYSTEMS

Constants always begin with an upper case character or some special
character (a digit, an asterisk etc.), node-id variables with a lower case
character, and node-id constants with the character @ (the at sign). An
empty node contains a special symbol. The role of empty nodes is dis-
cussed in Section 5.6.

Some graphs in canonical form: Their pictorial equivalent:

@1: Hd @2,
@2: Cons @3 @4,
@3: 0,
@4: Nil

@1: Hd

@2: Cons

@4: Nil@3: 0

@1: Add @2 @2,
@2: Fac @3,
@3: 1000

@1:  Add

@2:  Fac

@3: 1000

@1: Cons @2 @1
@2: 1

@1: Cons

1

@1: Tuple @2 @3 @4 @5 @6,
@2: 1,
@3: –3,
@4: 5,
@5: –7,
@6: 11

@1:  Tuple

@2: 1 @3: -3 @4: 5 @5: -7 @6: 11

x: Add y z,
y: Succ z,
z: Zero

x:  Add

z:  Zeroy:  Succ

Figure 5.5 Some graphs.

A graph consists of a set of node definitions. Each node in the graph
has a unique node-identifier or node-id associated with it (Figure 5.5).
Occurrences of node-ids before a colon are defining occurrences. Each
node consists of a constant symbol with a (possibly empty) sequence
of arguments: node-ids defining arcs pointing to (other) nodes in the
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graph. There are node-id constants and node-id variables. A graph
that contains no node-id variables is called a closed graph, otherwise it
is called an open graph. A subgraph of a graph is a set of node defini-
tions contained in the given graph. A graph can be cyclic. Symbols have
fixed arities.

There is a distinguished node in every graph that is the root of that
graph. When the set of node-id definitions is textually enumerated, the
topmost node-id definition is always the definition of the root of the
graph. A path in a graph is a sequence of node-ids of the graph such
that each node-id is an argument of the node associated with its prede-
cessor in the sequence; the path is said to be a path from  A to B where
A and B are the nodes associated with respectively the first and the last
node-id of the path. A node A is reachable from a node B if there exists
a path from B to A. When all nodes in the graph are reachable from the
root of the graph, the graph is said to be a connected graph. In GRSs
all graphs (also in the rules) are connected. The subgraph of a node-id
n in a graph g is defined as the connected subgraph of g which is rooted
at n and contains the node definitions of all nodes in g that are reachable
from n.

Two closed graphs are considered to be equivalent when the
graphs are identical up to the node-id constants. This means that the
graphs have the same graph structure and that corresponding nodes con-
tain the same symbol with the same arity. So between two equivalent
graphs there exists a rooted isomorphism. From now on graphs will be
considered to be indistinguishable with respect to this equivalency.

From a standard graph theory point of view, a GRS graph is a con-
nected directed graph in which each node is labelled with a symbol
whose set of out-arcs is given an ordering. In standard graph theory, cy-
cles in directed graphs are usually referred to as circuits.

5.2.2 Graph rewriting systems

A graph rewriting system (GRS) is a collection of rewrite rules αi →
βi,ϕi over sets of constant symbols and node-id variables obeying the
syntactical restrictions described below. The object that is manipulated
in a GRS is a connected closed graph called the data graph. When
there is no confusion, the data graph is simply called the graph.

Syntax of GRSs (canonical form)

In the notation below the square brackets specify an optional occurrence
of the enclosed objects:

CanonicalGRS = {Rule} ;
Rule = RedexPattern '→' [ContractumPattern ','] Redirection ;
RedexPattern = Graph ;
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ContractumPattern = Graph ;
Redirection = Nodeid ':=' Nodeid ;

The left-hand side αi of a rewrite rule consists of a connected open
graph that is called the redex pattern. The right-hand side βi consists of
a connected open graph called the contractum pattern (optional) and a
redirection ϕi.

The patterns are open graphs not containing node-id constants
(only node-id variables). Every node-id variable must have at most one
defining occurrence within a rule. A node-id variable that appears on
the right-hand side of a rule, must either have a defining occurrence on
this right-hand side or it must appear on the corresponding left-hand
side. Note that node-id variables are allowed only in rewrite rules
whereas node-id constants are allowed only in the data graph.

The left node-id of the redirection is always the root of the redex
pattern. The right node-id of the redirection must either be the root of
the contractum pattern or a node-id that occurs in the redex pattern. The
redirection specifies to which node arcs to the root of the redex pattern
are redirected.

The first symbol in a redex pattern is called the function symbol.
Function symbols can also occur at positions that are not the head of the
pattern. A symbol that does not occur at the head of any pattern in the
GRS is called a constructor symbol.

Example of a GRS (compare this with the example in Section 5.5 that uses the
much more readable shorthand notation):

r: Hd x,
x: Cons a b → r := a

r: Fac x,
x: 0 → r': 1, r := r'

r: Fac n → r': * n u,
u: Fac v,
v: – n w,
w: 1, r := r'

r: Start → r': Fac a,
a: Hd b,
b: Cons c d,
c: 1000,
d: Nil, r: = r'
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5.3 Rewriting with a GRS

In this section the full operational semantics for GRSs is given. As said
before, a GRS is used to rewrite a given closed data graph γ. The data
graph that is to be rewritten can be compared with the initial expression
to be evaluated as present in TRSs and in Miranda.

5.3.1 The initial graph

One can specify on which data graph the set of rules has to be applied.
However, since change of graph structure is obtained via redirecting ex-
isting arcs, it is more convenient for the specification of the semantics to
assume a fixed initial graph to be present. This initial graph consists of
the root node that always remains the root of the data graph, even after
rewriting. The purpose of the root node is always to have an arc point-
ing to the actual graph to be rewritten. Initially the root node contains an
arc to the start node. A GRS should contain a rule matching the start
node to initiate the computation.

The initial graph in linear notation: In pictorial notation:

@DataRoot: Graph @StartNode,
@StartNode: Start

@DataRoot: Graph

@StartNode: Start

Requiring an initial graph does not impose a serious restriction be-
cause on the right-hand side of a start rule one can always specify the
desired graph one would actually like to rewrite. When such a start rule
is applied, the arc pointing from the root node to the start node will be
redirected to this desired graph. This graph then becomes the object of
rewriting. For reasons of simplicity sometimes the start rule is omitted
in examples and a desired graph is specified directly.

5.3.2 Redexes

As explained above, a redex pattern consists of constant symbols and
node-id variables. An instance of a redex pattern is a subgraph of the
data graph, such that there is a mapping from the pattern to this sub-
graph. Such a mapping must be the identity on symbols and it has to
preserve the node structure. The corresponding subgraph is called a re-
dex (reducible expression). The redex pattern (and the corresponding
rewrite rule) is said to match the redex. As in TRSs, it depends on the
rules present in the GRS whether or not a subgraph is a redex or not.

In order to define a match more formally, some terminology has to
be introduced. Let F be a set of symbols and N be a set of node-ids.
Further, let C be a function (the contents function) from N to F × N*.
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Then C specifies a GRS graph over F and N. Furthermore, for each
GRS graph γ there is a unique contents function: Cγ. The canonical form
can be regarded as a tabulation of the contents function. Let γ be a GRS
graph, and ρ the set of rewrite rules. Then µ is a mapping from the
node-id variables in a redex pattern π of ρ to node-id constants of the
graph γ such that for every node with node-id x in π with contents, say
Cπ (x) = S x1 x2 … xn it holds that Cγ (µ(x)) = S µ(x1) µ(x2) … µ(xn). That
is, µ preserves the node structure.

Consider the following GRS:

r: Hd x,
x: Cons a b → r := a

and the following data graph:

@1: Hd @2,
@2: Cons @3 @4,
@3: Cons @5 @4,
@4: Nil,
@5: 36

@1: Hd

@2: Cons

@4: Nil@3: Cons

@5: 36

The mapping µ is defined by: µ(r) = @1, µ(x) = @2, µ(a) = @3, µ(b) = @4.

5.3.3 Rewriting a graph

The semantics of a GRS is explained using the canonical form. The op-
erational semantics (Barendregt et al., 1987b) is similar to Staples’
model of graph rewriting (Staples, 1980). A categorical semantics of
graph rewriting is given in Kennaway (1990).

A rewrite  (or reduction) of a graph γ and the set of rewrite rules ρ
is performed in a number of steps. Consider a rewrite rule and a redex
that matches the rule with a corresponding concrete mapping µ. The ba-
sic idea is to construct a new data graph out of the old data graph and
out of a graph called the contractum via redirection of arcs. The con-
tractum is only constructed if a contractum pattern is specified on the
right-hand side of the chosen rule. More precisely, the operational se-
mantics of graph rewriting is defined by the following steps:

(1) Choose a redex together with a matching rule and a mapping µ.
(2) When a contractum pattern is specified in the matching rule the

contractum is constructed in the following way:



REWRITING WITH A GRS  157

• invent new constant node-ids (not present in γ) for each node-
id variable on a defining occurrence in the contractum pattern.
This mapping is called µ'. These new node-ids correspond to
the identifiers of new nodes to be introduced during rewriting.

• apply µ", the combination of µ and µ', to the node-ids in the
contractum pattern of the rule yielding the contractum graph
γ '.

If no contractum pattern is specified, then γ ' is empty.
(3) A graph γ " is constructed by taking the union of γ and γ '.
(4) The redirection in a rule takes the form r := n where r is the root

node of the redex pattern. Now all arcs pointing to the root node of
the redex are redirected to the specified node-id. By applying µ",
node-id constants @R  and @N are determined from the node-id
variables that occur in the redirection. In terms of the syntactic rep-
resentation, redirection is performed by substituting @N for every
occurrence of @R as an argument in every node of the graph γ ".
This results in the new graph γ'''. Note that the node definition of
@R still remains.

(5) The graph γ ''' thus constructed may be a graph that is disconnected.
In order to make the resulting new data graph connected again only
those nodes are considered to be part of the new data graph that are
reachable from @DataRoot, the root of the initial graph. All nodes
that are not reachable from the root of the graph are removed from
the graph. This is known as garbage collection.

Since the node that is the root of the redex plays such an important role
in the rewrite, one sometimes by abuse of language speaks of rewriting
or reducing a node when one means rewriting the graph of which the
node is the root.

5.3.4 A small example

When the rewriting process starts, the data graph γ always consists of
the following initial graph:

@DataRoot : Graph @StartNode,
@StartNode: Start

@DataRoot: Graph

@StartNode: Start

In the following example the data graph will be rewritten until it con-
tains no redexes (to normal form) given the following graph rewrite
rules.
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x: Add y z,
y: Zero → x := z (1)

x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m (2)

x: Start → m: Add n o,
n: Succ o,
o: Zero,
x := m (3)

The following semantic actions are performed:

(1) The start node is the only redex matching rule (3). The mapping is
trivial: µ(x) = @StartNode.

(2) Invent new node-ids for the node-id variables defined in the con-
tractum pattern: µ'(m) = @A, µ'(n) = @B, µ'(o) = @C. Applying µ"
(the combination of µ and µ') to the node-ids in the contractum
pattern will leave this unchanged as x does not appear in it. Now
the contractum γ ' can be constructed:

@A: Add @B @C,
@B: Succ @C,
@C: Zero

@A: Add

@B: Succ @C: Zero

(3) The union of contractum γ ' and graph γ is the new graph γ":

@DataRoot : graph @StartNode,
@StartNode: Start,
@A: Add @B @C,
@B: Succ @C,
@C: Zero

@A: Add

@B: Succ @C: Zero

@DataRoot: Graph

@StartNode: Start

(4) µ"(x) = @StartNode has to be redirected to µ"(m) = @A. All occur-
rences of @StartNode as an argument will be replaced by occur-
rences of @A. The graph γ ''' resulting after rewriting is now:
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@DataRoot : Graph @A,
@StartNode: Start,
@A: Add @B @C,
@B: Succ @C,
@C: Zero

@A: Add

@B: Succ @C: Zero

@DataRoot: Graph

@StartNode: Start

(5) The start node is no longer reachable from the data root node: it is
garbage. Hence it is removed:

@DataRoot: Graph @A,
@A: Add @B @C,
@B: Succ @C,
@C: Zero

@A: Add

@B: Succ @C: Zero

@DataRoot: Graph

This completes one rewrite. The graph still contains a redex. So reduc-
tion can go on:

(1) There is only one redex to choose.
It matches rule 2: µ(x) = @A, µ(y) = @B, µ(z) = @C, µ(a) = @C.

(2) Invent new node-ids and map the variables as follows: µ'(m) = @D,
µ'(n) = @E. The contractum can now be constructed:

@D: Succ @E,
@E: Add @C @C

(3) The union of γ ' and γ is γ ":

@DataRoot: Graph @A,
@A: Add @B @C,
@B: Succ @C,
@C: Zero,
@D: Succ @E,
@E: Add @C @C

(4) µ"(x) = @A is redirected to µ"(m) = @D:

@DataRoot: Graph @D,
@A: Add @B @C,
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@B: Succ @C,
@C: Zero,
@D: Succ @E,
@E: Add @C @C

(5) The graph γ ''' after removing garbage is:

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @E,
@E: Add @C @C

It is now clear how this process may continue: @E is a redex and it
matches rule 1: µ(x) = @E, µ(y) = @C, µ(z) = @C. The strategy chooses
this redex; there is no new contractum graph but just a single redirection
that takes µ"(x) = @E to µ"(z) = @C, yielding the expected normal form:

@DataRoot: Graph @D,
@C: Zero,
@D: Succ @C

5.3.5 δ-rules

δ-rules are used in the same way as in TRSs and λ-calculus.

5.4 Reduction sequences and normal forms

The notions defined in this section are all very similar to the corre-
sponding notions in TRSs with the exception that computation is initi-
ated by the start rule.

One reduction is often called a reduction step (or rewrite step). A
reduction sequence (or rewrite sequence) of a graph is a sequence of
zero or more reduction steps (or rewrites) performed on that graph. If
graph γ1 can be reduced by a sequence of reductions to graph γ2, γ2 is
called a reduct of γ1. This is denoted as: γ1 →∗ γ2. So →∗ is the reflexive
transitive closure of →.

Given a GRS, a graph is in normal form  if no rule in the GRS
matches the graph or one of its subgraphs.

The root normal form property in GRSs is the natural generaliza-
tion of the head normal form property in TRSs: a graph is in root nor-
mal form  if the graph as a whole is not a redex and the graph as a
whole will never become a redex. In general it is undecidable whether a
graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the
root of the pattern equals the symbol of the root of the graph and sec-
ondly in positions where symbols in the pattern are not syntactically
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equal to symbols in the graph, the corresponding subgraph is a redex or
the subgraph itself is partially matching a rule. A graph is in strong
root normal form  if the graph does not partially match any rule. It is
decidable whether or not a graph is in strong root normal form. A graph
in strong root normal form does not partially match any rule, so it is also
in root normal form. A graph in root normal form need not be in strong
root normal form (see also the previous chapter). In the graph world the
notions partial match and strong root normal form are only partially de-
fined. The cases where these notions are not defined are cases of cycle-
in-spine errors (see also Section 5.8).

Consider the following GRS:

A 0 → 1

For the term @N: A @N the notion partial match is undefined.

5.5 Shorthand form

Before some important properties and aspects of GRSs are discussed,
first the shorthand notation is introduced. In the canonical form every
node has a definition and definitions are not nested. Redirection is ex-
plicitly specified. In the shorthand form it is not necessary to specify
all the node-ids. Furthermore redirection need not be specified explic-
itly. This notation makes it possible to use a more readable TRS-like
notation for GRSs. The shorthand notation will be used throughout the
rest of this chapter.

Syntax of GRS graphs and GRSs (shorthand form)

GRS = {Rule} ;
Rule = RedexPattern '→' ContractumPattern [',' Redirection]

| RedexPattern '→' Redirection ;
RedexPattern = Graph ;
ContractumPattern = Graph ;
Graph = [Nodeid ':'] Node {',' NodeDef} ;
Nodeid = NodeIdVariable | NodeIdConstant ;
Node = Symbol {Arg} | EmptyNode ;
Symbol = Constant ;
Arg = Nodeid | [Nodeid ':'] Symbol

| [Nodeid ':'] '(' Node ')' ;
EmptyNode = ⊥ ;
NodeDef = Nodeid ':' Node ;
Redirection = Nodeid ':=' Nodeid | Nodeid ;
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Some graphs in shorthand form (compare this with the equivalent examples of
Section 5.2 that use the canonical form):

Hd (Cons a b) → a

Fac 0 → 1
Fac n → * n (Fac (– n 1))

Ones → n: Cons 1 n

Start → Fac (Hd (Cons 1000 Nil))

The shorthand notation is more readable and hence generally this form
is used for specifying computations. Both forms denote the same rules
and objects so there is no semantic difference between them. The short-
hand form is not only used in the rules, but also to denote graphs that
are being reduced:

Consider the following example in shorthand form:

Add Zero z → z
Add (Succ a) z → Succ (Add a z)

and the following data graph:

Add (Succ @1) @1, @1: Zero

The data graph can be rewritten in the following way:

Add (Succ @1) @1, @1: Zero
→Add2 Succ (Add @1 @1), @1: Zero
→Add1 Succ Zero

The reduction of this graph is also given in canonical form in Section 5.3.

Translating shorthand form to canonical form

The shorthand form can be translated into canonical form via two steps:

(1) Add explicit node-ids and flatten
In the canonical form all nodes have explicit node-ids and there are
no nested node definitions. In each rule for every argument that
does not consist of a single node-id, a new node is defined with the
same contents as that argument. The new node is labelled with a
new unique node-id. The original argument is replaced by this new
node-id. With this replacement brackets disappear. Adding explicit
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node definitions and replacing corresponding arguments is re-
peated until there is no nesting and all node-ids are explicit.

The rules that were used before in the small example to illustrate the seman-
tics of GRSs, denoted in the shorthand form:

Add Zero z → z (1)
Add (Succ a) z → Succ (Add a z) (2)

Start → Add (Succ o) o,
o: Zero (3)

Note the sharing on the right-hand side of the Start rule. The first transforma-
tion step towards canonical form replaces the rules by:

x: Add y z,
y: Zero → z (1')

x: Add y z,
y: Succ a → m: Succ n,

n: Add a z (2')

x: Start → m: Add n o,
n: Succ o,
o: Zero (3')

(2) Make redirection explicit
The root of the redex pattern is redirected to the root of the con-
tractum pattern or if the right-hand side consists of a single node-id
variable, it is redirected to that node-id variable.

The same example with explicit redirections in the canonical form:

x: Add y z,
y: Zero → x := z (1'')

x: Add y z,
y: Succ a → m: Succ n,

n: Add a z,
x := m (2'')

x: Start → m: Add n o,
n: Succ o,
o: Zero,
x := m (3'')
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5.6 Properties of GRSs

Although there are many notions in GRSs that are similar to the notions
in TRSs and also many properties of subclasses carry over from TRSs
to GRSs (Smetsers, 1993), there are also subtle differences between
these two worlds. These similarities and differences are discussed
briefly in this section.

5.6.1 Sources of non-confluency

A GRS is confluent (or has the Church–Rosser property) iff for every
two ‘divergent’ reduction sequences γ  →∗ γ1 and γ →∗ γ2 there are two
‘convergent’ reduction sequences γ1 →∗ γ3 and γ2 →∗ γ3 (similar to the
definition in TRS and the λ-calculus). The Church–Rosser property
implies the unique normal form property.

Ambiguity

Just like in a TRS (partial) overlapping patterns in a GRS give rise to
ambiguity and they can be a source of non-confluency. However, cyclic
structures make it also possible that a subgraph can be matched in sev-
eral ways on the same partially overlapping rule.

Example of several ways of matching with a cyclic structure:

r: F x,
x: F a → r := a

Take the following graph:

@1: F @2,
@2: F @1

This graph matches the rule in two ways. There are two possible mappings:
µ(r) = @1, µ(x) = @2, µ(a) = @1 but also µ(r) = @2, µ(x) = @1, µ(a) = @2.

Comparing is not a source of non-confluency

In a TRS multiple occurrences of a variable in the left-hand side mean
that the arguments are tested on their syntactic equality. In a GRS how-
ever, this means that a test is done on the equality of the node-ids of the
arguments. If the node-ids are the same, the arguments are also syntacti-
cally equal. But subgraphs with the same contents need not have the
same node-id of course. We conjecture that because of the different se-
mantics, in a GRS comparing is not a source of non-confluency.
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Consider the following example as a GRS (see also Section 4.4.3):

D x x → E
C x → D x (C x)
A → C A

In the rule for C on the right-hand side for the second argument of D a new
node-id is invented for the node C x. This new node-id cannot be the same as
the node-id corresponding with x. Since there is no rule C x → x these node-
ids will remain different such that the rule for D can never be applied.

Self-embedding redexes

In GRSs a very special source of non-confluency exists, called self-
embedding redexes. A redex is self-embedding iff there is a mapping µ
for a rule ρ with redirection ϕ such that the corresponding µ" applied to
the redirection maps both left- and right-hand sides of the redirection to
one and the same node-id constant in the graph. In other words: the root
of the redex has to be redirected to itself. So such a self-embedding
redex reduces to itself.

Consider the following GRS:

I x → x

The graph @1: I @1 is a self-embedding redex. It will be reduced to itself as
follows with the semantics as described up to now:

@1: I @1 →I @1: I @1 →I …

The example below shows that with self-embedding redexes a non-
confluent situation can occur.

Self-embedding redexes can give rise to a non-confluent situation:

A x → x
B x → x

The graph

@1: G @2 @3,
@2: A @3,
@3: B @2

@1: G

@2: A @3: B

contains two redexes.



166 GRAPH REWRITING SYSTEMS

Depending on the order of evaluation two different self-embedding redexes
are created:

@1: G @2 @3, @2: A @3, @3: B @2
→A @1: G @3 @3, @3: B @3
→B @1: G @3 @3, @3: B @3
→B …

@1: G

@3: B

@1: G @2 @3, @2: A @3, @3: B @2
→B @1: G @2 @2, @2: A @2
→A @1: G @2 @2, @2: A @2
→A …

@1: G

@2: A

In the two resulting graphs there are no other redexes than the self-embedding
redexes reducing to themselves, so the two graphs have no common reduct.

The only case in which this kind of non-confluency occurs is the
case where self-embedding redexes do not have a common reduct
(Kennaway et al., 1993a). This source of non-confluency can only be
taken away by changing the semantics of graph rewriting by adding a
special empty node with the property that a self-embedding redex is re-
duced to this empty node instead of to itself. Besides removing the
source of non-confluency, this solution has the advantage that it allows
a categorical description of the semantics with only one push-out in-
stead of two (Kennaway, 1990).

In the operational semantics it means a slight adaptation of step 4
(Section 5.3.3): a special case is inserted for a redirection of a self-
embedding redex; in such a case instead of the standard redirection a
redirection to an empty node is performed.

In the sequel it will always be assumed that the semantics is
changed in this way. This has as a consequence that self-embedding re-
dexes are not a source of non-confluency any more.

The graph @1: G @2 @3, @2: A @3, @3: B @2 reduced with the new se-
mantics and the same rules described above. Both self-embedding redexes are
reduced to an empty node.

@1: G @2 @3, @2: A @3, @3: B @2
→A @1: G @3 @3, @3: B @3
→B @1: G @4 @4, @4: ⊥

@1: G

@3: B

→B

@1: G

@4: ⊥

@1: G @2 @3, @2: A @3, @3: B @2
→B @1: G @2 @2, @2: A @2
→A @1: G @4 @4, @4: ⊥

@1: G

@2: A

→A

@1: G

@4: ⊥
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5.6.2 Sharing and computational complexity

Sharing can be used on the right-hand side of rewrite rules to avoid du-
plication of work by creating shared subgraphs or even cyclic graphs.
Node-ids can be used on the left-hand side to address subgraphs in vari-
ous ways.

In the following example cyclic objects are reduced to other cyclic
objects. It is a solution for a Hamming problem: it computes an ordered
list of all numbers of the form 2n3m, with n, m ≥ 0. An efficient solution
to this problem can be obtained by means of creating cyclic sharing in
the contractum making heavy use of computations already done.

Ham → x: Cons 1 (Merge (Map (* 2) x) (Map (* 3) x))

The map and merge functions (mapping a function on a list and merging
two sorted lists into one sorted list with no multiple elements) can be
defined as follows (IF, <, = and * are assumed to be defined elsewhere,
Cons and Nil are just constructors with no special (predefined) meaning):

Merge Nil Nil → Nil
Merge f: (Cons a b) Nil → f
Merge Nil s: (Cons c d) → s
Merge f: (Cons a b) s: (Cons c d) → IF (< a c)

(Cons a (Merge b s))
(IF (= a c)

(Merge f d)
(Cons c (Merge f d)))

Map f Nil → Nil
Map f (Cons a b) → Cons (Ap f a) (Map f b)

Ap (* a) b → * a b

Note the use of Ap for the rewriting of a curried application of * (used as a
constructor with one argument) to an application of * as a δ-rule (a function
with two arguments). Further note that because f is specified in the redex pat-
tern of Merge, both the components a and b as well as the subgraph f as a
whole are available on the right-hand side.

The cyclic solution presented above has a polynomial complexity.
The behaviour of this solution is much better than a solution in which
recursion was used instead of this cyclic structure. The recursive solu-
tion specified below has an exponential complexity because previous
computations performed by a call of Ham have to be recomputed.

Ham → Cons 1 (Merge (Map (* 2) Ham) (Map (* 3) Ham))
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5.6.3 Copying

GRSs are designed to exploit sharing wherever possible. As GRSs are
an extension of TRSs, in GRSs one would expect a possibility of creat-
ing copies of subgraphs similar to the creation of duplicates of subterms
in TRSs. However, in an ordinary GRS it is not possible to copy an arbi-
trary unknown data structure since in the contractum pattern multiple
references to node-ids always imply sharing. In Chapter 14 an extension
of GRSs is discussed that provides copying of arbitrary graph structures.

5.7 Reduction strategies

A reduction strategy is a function that, given a GRS and a graph, pre-
scribes which redexes in the graph have to be rewritten next. It is pos-
sible that the strategy function prescribes more than one redex to be re-
duced next in arbitrary order. Such a strategy is called a parallel reduc-
tion strategy. It is also possible that the strategy function returns more
than one redex or rule to choose from. In that case the strategy function
is called non-deterministic . A reducer is a process that repeatedly re-
duces the redexes that are indicated by some strategy. The result of a
reducer is reached as soon as the reduction strategy does not indicate
redexes any more. A reduction strategy is normalizing iff, for any
graph, having a normal form, the reducer applying the strategy will
terminate at a normal form.

Another property a strategy can have is being hypernormalizing. A
reduction strategy is hypernormalizing iff the strategy is normalizing
even if it is diluted with a finite number of arbitrary reduction steps. The
notion of hypernormalizing strategies can in the same way be defined in
the TRS world and in the λ-calculus. However, the notion is particularly
important in the context of term graph rewriting (see Section 5.8). It is
also an important property when GRSs are used as the basis for a pro-
gramming language. It makes it possible to deviate from the standard
strategy to allow a more efficient evaluation order (see Part 4).

Parallel reducers are assumed to reduce the redexes indicated by
a parallel reduction strategy in parallel, i.e. in arbitrary order. Non-
deterministic reducers should choose non-deterministically one of the
redexes offered by a non-deterministic strategy.

As is the case with TRSs, there exists no normalizing strategy for
an arbitrary GRS. Instead of starting another independent quest for sub-
classes and normalizing strategies for GRSs, it seems to be more natural
to investigate GRSs as extensions of TRSs.

5.8 Term graph rewriting

Although it is possible to search for confluent subclasses of GRSs with
corresponding normalizing strategies we shall only investigate proper-
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ties of TRSs that are converted into the GRS world to see whether it is
possible to use sharing of subterms in general. Special attention is paid
to the conversion of the most important TRS subclass for functional lan-
guages: priority rewrite systems with the functional strategy.

Term graph rewriting  means that first a TRS and the term to be
rewritten is converted (lifted) to a GRS; then in the GRS world reduc-
tion takes place and a normal form which is a graph is converted again
(unravelled) to a term in the TRS world (Figure 5.6). Term graph
rewriting (Barendregt et al., 1987a) formally connects TRSs with GRSs.

graph rewriting
graphs, GRS-rules graph normal forms

lifting term graph rewriting unravelling

terms, TRS-rules term normal forms
term rewriting

Figure 5.6 Diagram of term graph rewriting.

The conversion of a TRS to a GRS is called the lifting  of a TRS to
a GRS. One can easily convert a TRS to a GRS almost without any syn-
tactic change in the rules, because the TRS notation is also a valid GRS
(shorthand) notation. Although the rules of that GRS are syntactically
the same as the TRS rules, semantically they get a different meaning.
Note that TRSs and GRSs work on different objects and the comparing
of terms in TRSs is not at all the same thing as the comparing of node-
ids in GRSs. However, many properties of TRSs are inherited if TRSs
are lifted. In many cases the only difference between TRSs and GRSs
will be that, through sharing, fewer steps are needed to reach a normal
form.

The conversion of a graph to a term is called the unravelling of the
graph. A graph is unravelled by recursively duplicating all shared sub-
graphs starting from the root of the graph. This yields a tree representa-
tion of the term that is the result of the unravelling. When the graph to
be unravelled is cyclic, recursive duplication goes on forever resulting
in an infinite term.

There are various ways of lifting TRSs and they have led to the in-
vestigation of special classes of GRSs. Since the semantics of a compar-
ing rule that is lifted would change too dramatically, these classes have
in common that no rule is comparing. This restriction implies that it is
impossible to pattern match on equivalency of node-ids (sharing). So a
left-hand side in these classes is always a graph without sharing (like a
term). Because of this restriction the classes are called term … rewrit-
ing systems where … indicates what kind of right-hand sides are al-



170 GRAPH REWRITING SYSTEMS

lowed. The most simple subclass is term tree rewriting systems
(TTRSs) in which right-hand sides must be trees. In order to express
this properly a special semantic action for duplication of arguments on
the right-hand side is necessary (see Section 5.6.3). TTRSs are equiva-
lent to TRSs.

The most natural subclass of TGRSs is term dag rewriting sys-
tems (TDRSs) in which right-hand sides must be dags (directed acyclic
graphs). When a TRS is lifted to a TDRS all rules remain syntactically
the same.

The following TRS is syntactically equal to its lifted TDRS:

Double x → + x x
Heavy_Computation → Easy_Number

Figure 5.3 shows how the term Double Heavy_Computation is reduced in a
TRS (using a lazy strategy). In a TRS four reduction steps are needed. The
graph Double Heavy_Computation will be reduced in the TDRS as follows:

@2: Heavy_Computation

@1: Double @3: +

@2: Heavy_Computation

@3: +

@4: Easy_Number@2: Heavy_Computation

Figure 5.7 Sharing of computations in graph rewriting.

Figure 5.7 shows that in a GRS only three reduction steps are needed to per-
form the corresponding computation. Due to sharing the Heavy_Computation
is only reduced once. The results of both computations, modulo unravelling,
are the same.

In Barendregt et al. (1987a) it is proven that lifted orthogonal
TRSs are also confluent as TDRSs. It is shown that if strategies are hy-
pernormalizing for an orthogonal TRS, these strategies are normalizing
when they are used in the corresponding TDRS. This can be explained
as follows: if a shared subgraph is chosen by a strategy, not only is the
GRS counterpart of the original term reduced, but as a side-effect (due
to the sharing) also the counterpart of other equivalent terms. If the
original strategy is hypernormalizing, the additional rewriting steps that
are performed cannot influence the outcome of the computation.

Lifting is not always safe for a general TRS. There are some subtle
differences between TRSs and corresponding TDRSs. It is possible that
the corresponding TDRS has less normal forms than its original TRS.
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The normal form properties can change when an ambiguous TRS is lifted to a
TDRS :

A x → B x x
C → D
D → C
B C D → E

The normal form of A C in the TRS world is E according to A C →A B C C
→C B C D →B E (Figure 5.8).

A

C

→A

B

C C

→C

B

C D

→B

E

Figure 5.8 Reduction to normal form in the original TRS.

In the graph world the TDRS with the same rules will reduce the graph A C to

@1: A @2, @2: C
→A @3: B @2 @2, @2: C
→C @3: B @4 @4, @4: D
→D @3: B @5 @5, @5: C →∗ …

There is no normal form. The double occurrence of x on the right-hand side of
the A-rule creates sharing that (in this example) will exist forever (Figure 5.9).

@1: A

@2: C

→A

@3: B

@2: C

→C

@3: B

@4: D

→D

@3: B

@5: C

→C …

Figure 5.9 Fewer normal forms in the lifted TRS than in the original
TRS.

Via term graph rewriting in TDRSs it is proven that, independent
of the chosen strategy, sharing terms is sound (i.e. an unravelled normal
form of the TDRS is also a normal form for the TRS) for all TRSs and
complete (i.e. for any normal form in the TRS, the TDRS will have a
normal form that can be unravelled to it) for orthogonal TRSs.

Well-known strategies that are hypernormalizing for certain sub-
classes are, for example, parallel-outermost, leftmost-outermost, the
discriminating position strategy and the Huet–Lévy strategy. So a TRS
with one of these hypernormalizing strategies can be lifted to a TDRS
safely. The result (modulo unravelling) will be the same. In general, due
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to the sharing of subterms, fewer reduction steps will be needed in the
TDRS to reach the normal form.

The most general subclass is the one in which no further restric-
tions are given: term graph rewriting systems (TGRSs). In a TGRS
right-hand sides are GRS graphs that may contain cycles. For certain
simple recursive rewrite rules in a TRS (see, for example, the solution
for the Hamming problem in Section 5.6) rules with cycles on the right-
hand side are created in the corresponding TGRS. In this way infinite
data structures can be implemented efficiently with cyclic graphs.

Lifted orthogonal TRSs are also confluent as TGRSs (due to the
changed semantics introduced in Section 5.6.1). Strategies that are hy-
pernormalizing for orthogonal TRSs are also normalizing when they are
used in the corresponding TGRS.

There is one important difference compared with TDRSs. The re-
duction in the TGRS may yield a normal form that is a cyclic graph,
while the corresponding reduction in the TRS does not terminate.

Consider the following TRS: Lifting this to a TGRS yields:

F x → A x
G → F G
Start → G

F x → A x
G → x: F x
Start → G

The normal form of the TGRS is @N: A @N. In the TRS the computation
does not terminate. The term reduces to terms of the following form:
A(A(A( ... ))).

The unravelling of a cyclic graph in normal form results in an infi-
nite term. Note that it is impossible to specify infinite terms in TRSs.
However, an infinite term can be seen as a limit of a non-terminating
computation. In a TGRS an infinite term can be specified in a cyclic
graph. But, if such a cyclic graph normal form is unravelled to a term,
the unravelling process does not terminate either. If in an implementa-
tion the result of the unravelled graph would be printed it is indistin-
guishable from the printing of the head normal form parts of the non-
terminating computation obtained via term reduction. Both prints pro-
duce equal output and do not terminate.

The unravelling of an empty node results in a bottom symbol, ⊥,
i.e. a special symbol in the TRS world that represents a non-terminating
computation producing no result. Again the results are indistinguishable
since in both cases no resulting output is produced.

So in that sense also lifting a TRS to a TGRS is sound (i.e. an un-
ravelled normal form of the TGRS is also a normal form for the TRS if
the unravelled normal form is a finite non-bottom term while the results
are indistinguishable otherwise) for all TRSs and complete (i.e. for any
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normal form in the TRS, the TGRS will have a normal form that can be
unravelled to it) for orthogonal TRSs (Kennaway et al., 1993b).

Empty nodes in the context of functional languages:

f = h f
h x = x

f?

F → x: H x
H x → x

Start → F

In a functional language a computation corresponding to an empty node is as-
sumed to be not intended. The Miranda program on the left halts with a black
hole error. The GRS reduces the initial graph to an empty node. In the func-
tional graph rewriting language Clean (see Chapter 8) a cycle_in_spine error
would be given.

So a TRS with a hypernormalizing strategy can also be lifted to a
TGRS safely. Due to the presence of cycles even fewer reduction steps
may be needed in the TGRS world than in the TDRS world.

5.8.1 Functional graph rewriting systems

FTRSs can also be lifted to a GRS class called functional graph
rewriting systems (FGRSs): TGRSs with priorities added using the
functional strategy. Lifting is accomplished in the same way as ex-
plained above. FGRSs will be heavily used in this textbook. In Parts 4
and 5 it is shown that efficient state-of-the-art implementations on se-
quential and parallel hardware can be obtained by compiling functional
languages to Clean, a language that is based on FGRSs.

Adding priorities in GRSs has similar semantics as in TRSs, i.e. a
matching rule can only be chosen if no rule with higher priority can ever
match on the (internally rewritten) graph. As in TRSs this has the fol-
lowing properties:

• it is undecidable whether a term can ever match a pattern via inter-
nal rewrites;

• forcing evaluation leads to a decidable approximation of the prior-
ity semantics in which reduction is always correct with respect to
the priority semantics; however, in some cases forcing evaluation
leads to non-termination, although semantically it was avoidable;

• textual order is defined to correspond to increasing priority;
• the functional strategy effectively applies the discriminating posi-

tion strategy to one rule alternative at a time.
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Factorial as an FGRS (syntactically unchanged by the lifting process):

Fac 0 → 1
Fac n → * n (Fac (– n 1))

Note that n is shared on the right-hand side of the second alternative.

The definition of the functional strategy has to be slightly adapted
for FGRSs. Evaluation is not uniformly forced to strong head normal
form but to its analogue in GRSs: strong root normal form. The func-
tional strategy is efficiently implementable, intuitively clear and nor-
malizing for a large class of FGRSs (see the previous chapter). The
functional strategy is even hypernormalizing for this class. Of course,
only diluted reductions are allowed that are not in conflict with the pri-
ority in the rules.

So also lifting a TRS with priorities and the functional strategy to a
FGRS is sound (i.e. an unravelled normal form of the FGRS is also a
normal form for the TRS if the unravelled normal form is a finite non-
bottom term while the results are indistinguishable otherwise) for all
TRSs and complete (i.e. for any normal form in the TRS, the FGRS will
have a normal form that can be unravelled to it).

Due to the use of the functional strategy FGRSs can be regarded as
a very simple functional language with a more explicit notion of con-
trolling the sharing of terms.

The functional strategy is a partial function for FGRSs

There is a subtle difference between the functional strategy in TRSs and
its analogue in FGRSs: owing to the presence of cycles the functional
strategy is a partial function for FGRSs. The explanation for this is that
it can happen that the functional strategy itself does not terminate when
it recursively searches for a redex on a cycle.

Consider the following TRS: The FGRS resulting from lifting this TRS:

F (F a) → 1
G → F (F G)

initial term: G

F (F a) → 1
G → x: F (F x)

Start → G

In the TRS the functional strategy tries to force the evaluation of the argument
of F (after reduction of G). Since the argument of F contains an F again, also
this argument is forced. This leads to reduction of G resulting in further appli-
cations of F. The reduction process will not terminate.

Also in the FGRS the functional strategy tries to force the evaluation of
the argument of F (after reduction of Start and G). Since on the cycle every
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node consists of F with an argument, the process of selecting a candidate for
evaluation will go on for ever. Reduction will never take place.

Note that in both systems termination would have been possible if eval-
uation was not forced.

Non-termination of the strategy in the FGRS corresponds to non-termi-
nation of the computation with the functional strategy in the TRS.

A special aspect of the non-termination of the functional strategy
in FGRSs is that non-termination can be detected as an erroneous situa-
tion: whenever it occurs, the strategy is running on a cycle.

One could be tempted to change the semantics of the functional
strategy such that when the strategy runs on a cycle, evaluation is not
forced. Instead, a test could be performed to see whether the pattern
matches the graph and a redex is indicated accordingly. Then, the strat-
egy becomes a total function. But an important property of the func-
tional strategy would be lost: the strategy would not be hypernormaliz-
ing any more. The problem is caused by an interference between partial
ambiguity in the rule system and a cyclic graph structure that matches in
various ways.

The functional strategy would not be hypernormalizing if it would not always
force evaluation:

F (F a) → 1

G 1 x → 1
G x y → G x y

Take the following graph:

@1: G @2 @3,
@2: F @3,
@3: F @2

@1: G

@2: F @3: F

Then, the normal form would be 1 since it would be detected that the strategy
runs on a cycle: forcing evaluation is stopped, the cycle matches the redex pat-
tern of the F rule and reduction to normal form takes place.

@1: G @2 @3, @2: F @3, @3: F @2
→F @1: G @4 @3, @4: 1, @3: F @4
→G1 @4: 1

@1: G

@4: 1 @3: F

If such a reduction is diluted with reduction of the second argument of G, then
afterwards the functional strategy will not reach the normal form any more:
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@1: G @2 @3, @2: F @3, @3: F @2
→F @1: G @2 @4, @2: F @4, @4: 1
→G2 @1: G @2 @4, @2: F @4, @4: 1
→∗ …

@1: G

@2: F @4: 1

The functional strategy being a partial function for FGRSs is just a
new aspect of the fact that forcing evaluation is a decidable approxima-
tion of the priority semantics: for graphs that correspond to infinite
computations in the term rewrite world, the non-termination may not
only concern the reduction process but also the strategy itself.

5.8.2 GRSs versus TRSs

We have shown that many interesting TRSs can be lifted safely to
GRSs. For these systems the outcome of a computation in the TRS
world is equal to the unravelled outcome of the corresponding compu-
tation in the GRS world. It has been shown that this is not a general
property as one might have expected.

Different behaviours between TRSs and GRSs are generally pos-
sible when graphs with cyclic structures are being used. Also comparing
in TRSs has quite a different meaning than comparing in GRSs and is
therefore forbidden when TRSs are lifted to GRSs. But fortunately the
lifting process is sound and complete for important (sub)classes of or-
thogonal TRSs and TRSs with priorities.

As a consequence one can say that the most important difference
between these kinds of TRSs and GRSs is that in the latter duplication
of work is avoided. This is an efficiency aspect: fewer rewrite steps are
needed in the GRS than in the original TRS. Although GRSs can be re-
garded as an extension of TRSs one should realize that in general it is
impossible in a standard GRS to duplicate work explicitly since it is im-
possible to copy arbitrary graph structures in these systems. An exten-
sion of GRSs in which copying as well as sharing can be expressed is
given in Chapter 14.

5.9 Generalized graph rewriting systems

A very high expressive power is realized in generalized graph rewrit-
ing systems (Barendregt et al., 1987b) because the transformations that
can be performed are extended. This induces a trade-off: adding restric-
tions decreases expressiveness but it may yield important properties for
reasoning or implementation (e.g. referential transparency or efficient
fine-grain parallelism). In a generalized GRS the right-hand side of a
rewrite rule may contain several redirections. Any node can be redi-
rected to another one. All redirections specified in the rule are done in
parallel in one reduction step.
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This extension makes it possible to express much more complex
changes of a graph structure than simple subgraph replacement. A gen-
eralized GRS can be regarded as a very powerful graph assembler. In
such a system confluency is by no means guaranteed. Assignment can
be modelled very well. Unification can be expressed. Any concrete ma-
chine language can be modelled in such a generalized system. As a con-
sequence, referential transparency is no longer guaranteed.

So generalized graph rewriting can model other languages than
pure functional languages, such as logical languages and even impera-
tive languages (Glauert et al., 1987). Although generalized graph
rewriting systems are not of direct importance in the context of this
textbook they are explained here briefly to illustrate their conceptual
power.

5.9.1 Multiple redirections

With multiple redirections side-effects can be expressed. All redirec-
tions specified in a rule are done in parallel in one reduction step. As a
consequence, parallel redirections act like parallel assignments with
which it is possible to interchange values of variables. With parallel
redirections it is possible to effectively interchange node-ids.

Illustration of parallel evaluation of multiple redirections:

r: F x y z → r := x, y := z

Take the following graph @1: F @2 @2 @1. This graph matches the rule and
the redirections that have to be performed are @1 := @2, @2 := @1. Because
of the parallel evaluation (like in a parallel assignment) the effect will be that
the applied occurrences of @1 and @2 are exchanged. So the result will be
@1: F @1 @1 @2.

Now suppose that with the same rule the graph is @1: F @2 @1 @3.
Also this graph matches the rule and now the redirections that have to be per-
formed are @1 := @2, @1 := @3. Because of the parallel evaluation of the
substitutions either all applied occurrences of @1 will be replaced by @2 or
all applied occurrences of @1 will be replaced by @3. The choice between
these two possibilities is made non-deterministically. Note that the semantics
does not allow some of the applied occurrences of @1 to be replaced by @2
and others to be replaced by @3. In this sense a redirection is indivisible.

It is intuitively clear that side-effects can be created with multiple
redirections. This will be further illustrated by an example designed by
E. Meijer: a GRS that implements a simple unification algorithm, using
multiple redirections. It operates on representations of two types, return-
ing ‘cannot unify’ in case of failure. The types are constructed from
three basic types I(nteger), B(oolean) and V(ariable) and a composition
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constructor Com(position). Different type variables are represented by
distinct nodes. References to the same shared node are taken to be refer-
ences to the same type variable. The unification rule has as arguments
the two types that have to be unified. During the unification process the
graph representing the unification is constructed and delivered as the re-
sult. However, it may also turn out that unification is not possible. Then,
the graph constructed so far has to be replaced by ‘cannot unify’ in
cases of failure. To make this possible the root of this graph is passed as
a third argument such that it can be redirected when unification is not
possible.

Unify x x r → x
o: Unify t1:(Com x y) t2:(Com p q) r → n: Com (Unify x p r) (Unify y q r),

o := n, t1 := n, t2 := n
o: Unify t1:V t2 r → o := t2, t1 := t2
o: Unify t1 t2:V r → o := t1, t2 := t1

Unify (Com x y) I r → n: "cannot unify", r := n
Unify (Com x y) B r → n: "cannot unify", r := n
Unify I (Com x y) r → n: "cannot unify", r := n
Unify B (Com x y) r → n: "cannot unify", r := n
Unify I B r → n: "cannot unify", r := n
Unify B I r → n: "cannot unify", r := n

For instance, find the unification of a cycle y: Com I y and the same cycle
unravelled once z: Com I (Com I z). The result will be u: Com I u. Hence,
assume that the start rule is

Start → x: Unify y z x,
y: Com I y,
z: Com I (Com I z)

After reduction of the start rule there is the following graph:

@DataRoot: Graph @1,
@1: Unify @2 @3 @1,
@2: Com @5 @2,
@3: Com @5 @4,
@4: Com @5 @3,
@5: I

@1: Unify

@4: Com

@DataRoot: Graph

@5: I

@3: Com@2: Com

It can be rewritten as follows by applying the second rule for Unify:

µ(o) = @1, µ(t1) = @2, µ(t2) = @3, µ(x) = @5, µ(y) = @2, µ(p) = @5, µ(q) =
@4, µ(r) = @1
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The contractum is:

@6: Com @7 @8, @7: Unify @5 @5 @1, @8: Unify @2 @4 @1

After redirection and garbage collection this yields

@DataRoot: Graph @6,
@6: Com @7 @8,
@7: Unify @5 @5 @6,
@5: I,
@8: Unify @6 @4 @6,
@4: Com @5 @6

@7: Unify

@6: Com

@4: Com

@DataRoot: Graph

@5: I

@8: Unify

Rewriting this graph by applying the first rule for Unify to @7 yields:

@DataRoot: Graph @6,
@6: Com @5 @8,
@5: I,
@8: Unify @6 @4 @6,
@4: Com @5 @6

@6: Com

@DataRoot: Graph

@5: I

@8: Unify

@4: Com

This can be rewritten by applying the second rule for Unify to @8:

µ(o) = @8, µ(t1) = @6, µ(t2) = @4, µ(x) = @5, µ(y) = @8, µ(p) = @5, µ(q) =
@6, µ(r) = @6

The contractum is

@9: Com @10 @11, @10: Unify @5 @5 @6, @11: Unify @8 @6 @6

After redirection and garbage collection this yields

@DataRoot: Graph @9,
@9: Com @10 @11,
@10: Unify @5 @5 @9,
@5: I,
@11: Unify @9 @9 @9 @10: Unify

@9: Com

@DataRoot: Graph

@5: I

@11: Unify
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Finally, on this graph the first rule for Unify on @10 and on @11 can be
applied, yielding the wanted unifier:

@DataRoot: Graph @9,
@9: Com @5 @9,
@5: I @9: Com

@DataRoot: Graph

@5: I

Of course, this small example does not model unification in general.
But, it gives an idea of the power of redirection and how it might be
used to solve these kinds of problems.

5.10 GRSs as a basis for functional languages

In the previous chapter we have seen that there are several kinds of
TRSs that can be used as a basis for functional languages. Most proper-
ties of a TRS are inherited if the TRS is lifted to a GRS. The most im-
portant difference between TRSs and GRSs is that in the latter duplica-
tion of work is avoided. This makes GRSs more suited to serve as a ba-
sis for functional languages if efficiency is of interest.

As with TRSs, if a functional program is translated to a GRS the
complexity of the compilation scheme, the complexity of the obtained
code and the efficiency of the reducer are heavily influenced by the kind
of GRS chosen. For a lazy functional language without explicit graph
rewriting semantics one has to assume that sharing is created and that
for certain recursive definitions a cyclic structure is created (which in
fact means that assumptions are made about some unknown graph
rewriting semantics). These assumptions may be essential not only for
reasoning about the efficiency of the program but in certain cases even
for reasoning about the computational complexity of the program (see
Section 5.6.2).

The most obvious choice is to use FGRSs as a basis. Owing to the
use of the functional strategy FGRSs can be regarded as a very simple
functional language with a more explicit notion of controlling the shar-
ing of terms. Part 4 treats the translation from Miranda to the FGRS
based language Clean.

5.11 GRSs as a basis for implementations

In practice almost all implementations of functional languages use
sharing in one way or another. Many implementations (e.g. of HOPE,
Haskell, LML and Miranda) can therefore be regarded as implementa-
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tions of GRSs. For instance, the implementation of Sasl, described in
Turner (1979a), is based on the following combinatorial GRS:

Ap (Ap (Ap S x) y) z → Ap (Ap x z) (Ap y z)
Ap (Ap K x) y → x
Ap I x → x

Note that in the S-rule sharing of the distributed argument z is main-
tained. Leftmost-outermost is hypernormalizing for a combinatorial
TRS and therefore this strategy can be used as normalizing strategy for
a combinatorial GRS also. Of course, when an implementation is made
for a GRS, special attention is paid to make such an implementation as
fast as possible. This may lead to exploiting stacks, registers, δ-rules,
avoiding building of graphs whenever possible, implementation of redi-
rection via overwriting of nodes or via creation of indirection nodes, etc.
In Parts 4 and 5 of this book we show in detail how efficient state-of-
the-art implementations of the FGRS-based language Clean is achieved.

Summary

• In GRSs graphs are being rewritten instead of terms. This makes it
possible to share computations during rewriting such that duplica-
tion of work can be avoided.

• There are many similarities between TRSs and GRSs; many no-
tions like normal forms, strategies and rewriting in GRSs are simi-
lar to these notions in TRSs; many properties of GRSs are similar
to properties of TRSs:
– normal forms are not unique;
– the root normal form property is undecidable;
– the strong root normal form property is decidable;
– there is no normalizing strategy.

• There are some important differences between TRSs and GRSs:
– in GRSs connected, possibly cyclic graphs are being rewritten

instead of trees (terms);
– comparing in GRSs implies a test that checks whether two

subgraphs are shared or not; two syntactically equivalent sub-
graphs are considered to be unequal in GRSs if they are not
shared; in TRSs two syntactically equivalent subterms are al-
ways considered to be equal.

• Ambiguity is a source of non-confluency in GRSs. Comparing is
conjectured to be not a source of non-confluency. The introduction
of empty nodes removes self-embedding redexes as a source of
non-confluency.
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• A TRS can be lifted to a GRS; this transformation can be per-
formed almost without any change in syntax.
– Owing to the difference in semantics comparing is not al-

lowed in TRSs that are lifted.
– If lifting is sound and complete, reduction can be performed

in the GRS world instead of the TRS world; if the resulting
graph is converted back to a term the result is equivalent with
the result that would have been obtained in the TRS world;
owing to the sharing the number of reduction steps that is
needed to reach the normal form is generally decreased.

• A TRS can be lifted to a GRS without cycles (resulting in a term
dag rewriting system) or to a GRS with cycles (resulting in a term
graph rewriting system).
– Strategies that are hypernormalizing for an orthogonal TRS

are normalizing when they are used in the corresponding
TDRS/TGRS: parallel-outermost, leftmost-outermost, the dis-
criminating position strategy and the Huet–Lévy strategy are
hypernormalizing and hence normalizing in a lifted context.

– When a TRS is lifted to a TDRS/TGRS, sharing of terms is
sound for all TRSs and complete for orthogonal TRSs; these
properties are independent of the reduction strategy.

– Lifting a FTRS to a FGRS is sound and complete.
• Graph rewriting can be generalized in such a way that non-func-

tional concepts as found in logic languages and imperative lan-
guages can also be modelled.

• Graph rewriting semantics is required to make it possible to reason
about the actual computational complexity of a lazy functional
program.

• The class of FGRSs seems best suited to be used as a computa-
tional model for functional languages; important concepts in
FGRSs also play an important role in functional languages:
– pattern matching is available;
– sharing is used as an optimization in the implementation;
– reduction proceeds with the functional strategy.

EXERCISES

5.1 Write the GRS-rules in their canonical form.
(a) F (F 5) → G 5 5
(b) F x y → G x (F x y)
(c) F x:5 x → G x (H 5)
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5.2 Write the GRS-rules in shorthand form, as short as possible.
(a) r: F x,

x: Cons x y,
y: F r → a: G r b,

b: F a
(b)  r: F x x,

x: Cons x r → a: Cons b c,
b: Cons c b,
c: Cons b r

(c)  r: F x,
x: Cons y z,
z: Nil → y

5.3 The following GRS and initial graph is given:
Eq x x → True
Eq x y → False
F (G x y) → G (F x y) y
initial graph: @0:F @1:(G @2:(Eq @3:5 @4:5) @1)

Show all redexes in the graph. Give, for each redex, the mapping
from the corresponding rule to the graph. Rewrite, step by step, the
redex corresponding to the rule for F (the third rule).

5.4* Write a GRS-rule generating a list of pairs, each pair containing a
natural number (in ascending order) and a reference to the pair in
the list containing half of that number (rounded downwards). So
Cons a:(Pair 0 a) (Cons b:(Pair 1 a) (Cons c:(Pair 2 b) (Cons d:(Pair 3 b) ...

is the initial segment of this list.

5.5 Write a GRS-rule that traverses a tree from left to right, yielding a
list of all nodes in this tree in the order in which they are visited.
The tree is built with the constructor Tree, taking two arguments,
and the constructor Leaf, which has no arguments (e.g. Tree Leaf
(Tree Leaf (Tree Leaf Leaf)) is a tree).

5.6 Give the possible results of the following systems both when you
consider them as TRSs and when you consider them as GRSs.
(a) F x → G x x

G (+ 0 1) 1 → 0
initial expression: F (+ 0 1)

(b) F g (Cons a b) → Cons (g a) (F g b)
F g Nil → Nil
initial expression: F (+ 1) (Cons 1 (Cons 0 Nil))
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This part treats two important kinds of static analysis of functional pro-
grams: type assignment systems and strictness analysis.

The purpose of static analysis is to deduce certain properties of a
particular program at compile-time. The properties that are of interest
can vary from properties that are important for the correctness of the
program, such as type checking, to properties that are important for an
efficient execution, such as complexity analysis, termination analysis,
reference count analysis and strictness analysis.

Properties are generally studied on the level of the model of com-
putation. Most interesting properties turn out to be undecidable. There-
fore, with a static analysis usually only a decidable approximation of the
desired property can be derived. This results in a methodology for the
analysis that can be applied on the level of the model and also in prac-
tice directly on some internal data structure of a compiler. Every static
analysis tries to deduce at compile-time as much information as possible
from the program.

Type systems are traditionally studied in the λ-calculus via formal
schemes to infer types of λ-terms. We also study a type system for
TRSs that can easily be transferred to FGRSs.

Strictness analysis is usually also studied in the λ-calculus via a
technique called abstract  interpretation. We also describe a methodol-
ogy for the analysis that is performed in rewriting systems via a tech-
nique called abstract  reduction.
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Chapter 6
Type assignment systems

6.1 Type assignment for the
λ-calculus

6.2 Polymorphism and recursion

6.3 Type assignment for term
rewriting systems

Adding type information to a program is important for several reasons.
Type information makes a program more readable because it gives a
human being additional information about the structure of a program.
Furthermore, type information plays an essential role in the implemen-
tation: the information is needed to obtain an efficient implementation
and it also makes separate compilation of program modules possible
(see Part 4). However, one of the most important aspects of type sys-
tems is that they warn the programmer at an early stage (at compile-
time) if a program contains severe errors. If a program is type-error
free, it is assumed to be safe to run: ‘Typed programs cannot go wrong’
(Milner, 1978). So a compile-time analysis of a program rejects pro-
grams in which errors may occur at run-time. However, some errors
depend on the values computed at run-time (e.g. divide by zero or stack
overflow). They cannot be detected at compile-time. So only some
special classes of run-time errors can be found at compile-time.

Typing concerns the analysis of the domain and the range on
which functions are defined and a check that these functions are indeed
applied consistently. The exact domain and range of a function can de-
pend on its run-time behaviour and is therefore undecidable at compile-
time. A decidable compile-time approximation can be found by looking
at the syntactic structure of the program only. This chapter deals with
such type assignment systems for functional languages.

Although, as shown in Part 2, graph rewriting systems are best
suited as a basis to reason about functional languages and their imple-
mentation, a type system that exploits the special properties of GRSs
(e.g. by using cyclic types) has not yet been developed. Therefore, type
systems for functional languages are still based upon type systems for
the λ-calculus. In this chapter, type systems are treated in their histori-
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cal context: the λ-calculus, followed by a context that is more close to
functional languages: term rewriting systems. These type systems for
the λ-calculus and TRSs can be transferred easily to FGRSs.

The basis of every type system for the λ-calculus (Section 6.1)
has been defined by H.B. Curry (Curry and Feys, 1958). Type assign-
ment in this system is decidable and most type assignment algorithms
used in functional programming languages are based upon it. Unfortu-
nately, the type system can only type terms that are strongly normal-
izing, i.e. terms that reduce to normal form in all possible reduction or-
ders. Furthermore, the type system can only type a subclass of these
strongly normalizing terms. This subclass does not contain terms in
which self-application occurs. Examples of terms with self-application
are fixed point combinators which play an essential role in dealing with
recursion.

The λ-calculus, and a type assignment system for it, can be ex-
tended in a natural way to incorporate recursion. In this chapter it will
be done by presenting an intermediate language Λ+ (Section 6.2) in
which λ-terms can be named such that recursion can be expressed.
Both Milner’s as well as Mycroft’s type assignment systems are pre-
sented. Their properties are analysed and compared.

Finally, also type assignment on TRSs is discussed (Section 6.3)
as a generalization of the Mycroft type assignment system for Λ+. It
turns out that some general properties of Mycroft’s system (like subject
reduction) are only valid for TRSs under certain restrictions.

6.1 Type assignment for the λ-calculus

H.B. Curry was the first to study typing for the pure λ-calculus. He de-
signed a straightforward system that is completely syntax-directed: like
the definition of the set of λ-terms, the Curry type system also expresses
abstraction (function definition) and (function) application.

First, the basic concepts of this system are explained using the con-
cept of typed trees. A tree representation of a λ-term can be labelled
with types according to type assignment rules. The resulting typed tree
corresponds with a formal logic deduction in standard type theory. Such
a deduction is constructed with inference rules that correspond directly
to the type assignment rules that label the tree.

Then, it is shown how intuitively a type can be derived in this sys-
tem. A formal specification of several related type assignment algo-
rithms is given in a functional style.

Finally, some general properties of the Curry system are discussed.

6.1.1 Basic concepts of the Curry type system

Intuitively, the Curry type system restricts all occurrences of the same
bound variable to have the same type and furthermore in every applica-
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tion the argument is of the desired domain type and the result of the
function applied to that argument has to be of the desired range type.
This means that a function definition is of type σ → τ if the function body
is of type τ (the range) and in the body the argument is used consistently
with type σ (the domain). For a function application this means that the
application is of type τ when a function of type σ → τ is applied to an ar-
gument of type σ.

Curry types

The set of Curry types contains all types that can be built from type
variables and the type constructor → (arrow). Its inductive definition is:

(1) all type variables ϕ0, ϕ1, … are Curry types.
(2) if σ and τ are Curry types, then (σ→τ) is a Curry type.

In this chapter, σ, τ, ρ0, ρ1, … are used to name arbitrary Curry types. M
and N are used to name arbitrary λ-terms. Not all brackets are used in
the notation of a type. The arrow constructor is right associative and
outermost brackets are omitted.

Typed trees

Assigning a type to a λ-term consists of first constructing a tree repre-
sentation of that term (see Chapter 3), extended with an edge to the root
node. Then, the nodes and edges of this tree are labelled by adding la-
bels of the form ‘::’, fol lowed by a type. This results in a typed tree
(Figure 6.1).

x::ϕ0

::ϕ0

::ϕ0→ϕ0

x::ϕ0

::ϕ0

λx
@

::(ϕ0→ϕ0)→ϕ0→ϕ0

::ϕ0→ϕ0

::ϕ0→ϕ0

λx

x::ϕ0→ϕ0

::ϕ0→ϕ0
λx

x::ϕ0

::ϕ0

Figure 6.1 A typed tree for respectively, x, λx.x and (λx.x)(λx.x). Note
that in the rightmost tree x::ϕ0→ϕ0 was assumed in the left
subtree while x::ϕ0 was assumed in the right subtree.

A typed tree is a tree representation of a λ-expression labelled
with type information in such a way that the types of variables, applica-
tion nodes and abstraction nodes are consistent with respect to the Curry
type restrictions mentioned above. Then, the type at the top edge of a
typed tree is a correct Curry type for the λ-term involved. The leaves of
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the tree (containing term variables) are called assumptions, and the set
of all assumptions for a term is called the basis. The combination of
type σ at the top edge and basis is called a pair for the term N. The nota-
tion N::σ is called a statement and expresses the fact that σ is a suitable
type for N; the combination of this type and λ-term is called the conclu-
sion of the typed tree.

Type assignment constraints

Type assignment constraints are a translation of the Curry type restric-
tions to consistency requirements for typed trees: assigning types to a λ-
term is consistent if it satisfies the type assignment constraints defined
below. There are only two type assignment constraints in Curry’s sys-
tem (Figure 6.2), the application constraint (@), and abstraction con-
straint (λ). In the literature these constraints are defined by giving type
assignment rules respectively arrow elimination (→E) and arrow in-
troduction (→I). Here, starting with typed subtrees a constraint states
how these subtrees can be combined into other typed trees. Further-
more, the type assignment constraints play an important role in the type
assignment algorithm that constructs a typed tree.

(λ)

x::σ

::σ→τ

::τ
λx

(@)

M N

::σ::σ→τ

::τ
@

Figure 6.2 The two constraints of the Curry type system.

The type assignment constraint (@) assumes a type σ→τ was found
for M and σ for N. Put together this gives type τ for the application M N.

In both subtrees the assumption
x::ϕ0 is made giving rise to a con-
flict in the root of the tree. No con-
clusion is possible since the types
do not obey the application-con-
straint (@).

@
::ϕ0→ϕ0

::?

::ϕ0→ϕ0

λx

x::ϕ0

::ϕ0
λx

x::ϕ0

::ϕ0

Figure 6.3 Impossible typed tree for (λx.x)(λx.x): inconsistent types.

The type assignment constraint (λ) is used to construct a type to a
λ-abstraction term λx.M. It assumes that constructing the typed tree for
M was successful and the type found for M was τ. If the assumption x::σ
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is the only assumption for x needed to reach the conclusion M::τ (so no
other assumption like x::ρ is used where ρ is different from σ) the (λ)-
step can be performed. The result will be that finding a type for the λ-
term λx.M was successful and the type found is σ→τ.

There is no separate constraint for term variables. The constraints
(λ) and (@) only limit the possible combinations of typed (sub)trees (see
Figure 6.3). These constraints do not express how a type is found for a
specific λ-term: they only formalize what a consistent typed tree should
look like.

6.1.2 Finding a type for a term

Type assignment is decidable in Curry’s system. There is an algorithm
that, given a λ-term M, will say ‘NO’ if there is no possible typed tree for
M and will yield a type for M if there is a possible typed tree for M. In
this algorithm, unification (described below) plays a crucial role.

The basic idea of the type deduction algorithm is the following. It
starts at the variables in the leaves of the tree. It assumes that a variable
is of the most general type and assigns a fresh (i.e. new, not yet used)
type variable to it. Then the tree is traversed upwards. For each visited
node the consistency of the subtree with that node as root is checked
against the type assignment constraints. If there is an inconsistency an
attempt is made to make the tree consistent by deriving more accurate
types. This is done by unification. If the unification succeeds the algo-
rithm continues, otherwise no typed tree can be created at all.

Unification

Types consist of arrows and type variables. Types can be obtained from
other types by replacing, in a consistent way, type variables by types.
An operation that uniformly replaces type variables by types (i.e. each
occurrence of the same variable is replaced by the same type) is called a
substitution. Substitution is a sound operation on typed trees, i.e. if in a
typed tree all types are replaced by a substitution with other types, then
the resulting typed tree is consistent. A type that is produced by substi-
tution is called an instance of the original type.

Two types that are not equal can have a common instance:

((ϕ6→ϕ6)→ϕ5)→ϕ6→ϕ6 can be obtained from the type ϕ2→ϕ3→ϕ3 by uni-
formly replacing ϕ2 by (ϕ6→ϕ6)→ϕ5 and ϕ3 by ϕ6.
((ϕ6→ϕ6)→ϕ5)→ϕ6→ϕ6 is also an instance of the type (ϕ0→ϕ1)→ϕ0.

Two types are equivalent if there exists both a substitution of type
variables to type variables such that the substitution applied to the first
type gives the second type as well as a similar substitution from the sec-
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ond type to the first type. In the following, types are considered modulo
this equivalency. So equivalent types are considered to be equal.

A type that is an instance of two different types is called a unifier
of these types. If two types have a unifier, they also have a most gen-
eral unifier, i.e. all unifiers of the two types are instances of their most
general unifier. Trying to find the most general unifier for two types is
called unification. Two types are unifiable if a (most general) unifier
exists. For Curry types, unification is decidable.

Robinson’s unification algorithm

In Robinson (1965) an algorithm unify is given that takes two types σ
and τ and either fails, or succeeds yielding a substitution S such that:

• S σ = S τ, so S unifies σ and τ;
• S σ is the most general unifier of σ and τ;
• S is only defined on variables occurring in σ and τ.

For example, let

S = unify ϕ2→ϕ3→ϕ3  (ϕ0→ϕ1)→ϕ0

then S unifies ϕ2→ϕ3→ϕ3 and (ϕ0→ϕ1)→ϕ0 and

S ϕ0 = ϕ3→ϕ3
S ϕ1 = ϕ1
S ϕ2 = (ϕ3→ϕ3)→ϕ1
S ϕ3 = ϕ3

and therefore

S ϕ2→ϕ3→ϕ3 = ((ϕ3→ϕ3)→ϕ1)→ϕ3→ϕ3
S (ϕ0→ϕ1)→ϕ0 = ((ϕ3→ϕ3)→ϕ1)→ϕ3→ϕ3

which gives that ((ϕ3→ϕ3)→ϕ1)→ϕ3→ϕ3 is the most general unifier of
ϕ2→ϕ3→ϕ3 and (ϕ0→ ϕ1)→ϕ 0. Another unifier of these two types is
((ϕ4→ϕ4)→ϕ4→ϕ4)→ϕ4→ϕ4. It is indeed an instance of the most general
unifier by substituting ϕ1 by ϕ4→ϕ4 and ϕ3 by ϕ4.

Robinson’s algorithm, written in a functional style:

type :: = Typevar typevar | Arrow type type
substitution = = type -> type
typevar = = num
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unify:: type -> type -> substitution
unify (Typevar ϕ0) (Typevar ϕ1) = sub ϕ0 (Typevar ϕ1)
unify (Typevar ϕ) τ = sub ϕ τ, if not_in τ ϕ
unify σ (Typevar ϕ) = unify (Typevar ϕ) σ
unify (Arrow σ0 σ1) (Arrow τ0 τ1) = res1 . res0

where res0 = unify σ0 τ0
res1 = unify (res0 σ1) (res0 τ1)

sub:: typevar -> type -> substitution
sub ϕ0 τ = s

where s (Typevar ϕ1) = τ, if ϕ0 = ϕ1
= Typevar ϕ1, otherwise

 s (Arrow σ ρ) = Arrow ((sub ϕ0 τ) σ) ((sub ϕ0 τ) ρ)

not_in:: type -> typevar -> bool
not_in (Typevar ϕ0) ϕ1 = ϕ1 ~= ϕ0
not_in (Arrow σ τ) ϕ1 = not_in σ ϕ1 & not_in τ ϕ1

In this algorithm sub ϕ σ returns the substitution that replaces the type
variable ϕ by the type σ and does not affect other type variables. R.T
(the function composition of R and T) is the substitution that first per-
forms T and afterwards performs R.

The result of the function unify is built by function composition of
the substitutions found while unifying subtypes. The substitution found
while unifying the left-hand sides of two arrow types is first performed
on the right-hand sides before unifying them.

Assigning types to trees

The general idea of the method to find the most general type for every
λ-term in Curry’s system is as follows. Start by building a tree in which
all labels are empty. Then, traverse the tree to label the nodes containing
variables and the edges with types, making use of the type assignment
constraints. Sometimes, while trying to assign a type to a node, a unifi-
cation is performed. In that case the resulting substitution is performed
on the whole tree. Because substitution is a sound operation, such repla-
cing of type variables by types in a correctly typed tree will always give
a correctly typed tree. If unification fails, the whole term cannot be
typed.

More precisely, the following algorithm is used: traverse the tree
depth-first from left to right performing at each position one of the fol-
lowing three steps:

• If a leaf is encountered, the variable and the edge going into this
node are labelled with the same fresh type variable.
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• If an abstraction node is visited, the subtree below it is a tree that is
already typed, say M. Now an abstraction step (λ) to a variable, say
x, is performed, to type λx.M.
The algorithm therefore checks the assumptions made on the corre-
sponding x (all labelled) to see whether they are all typed with the
same type. If they are the same, everything is fine. If no assump-
tions have been made, because the variable x did not occur in the
term, a fresh type variable will be assumed. If the assumptions on x
are not the same, the algorithm tries to unify the assumed types. If
this succeeds, the substitution generated by this unification will be
performed on the typed subtree, giving a typed subtree in which all
assumptions on x are labelled with the found unifier.
In either case the result will be a typed subtree with conclusion,
say, M::τ in which all assumptions on x are labelled with the same
type, say ::σ. The edge going into the abstraction node λx.M is then
labelled with ::σ→τ.

• If an application node is visited, there are two typed subtrees with
conclusions, say M::σ and N::τ. Now an application step (@) is per-
formed. To perform this step, the types on both subtrees should
match the requirements of (@).
The algorithm employs a fresh type variable ϕ0 and unifies the
types σ and τ→ϕ0. If this unification is successful, a substitution S is
yielded such that S(σ) = S(τ→ϕ0) = ρ0→ρ1, so S(σ) = ρ0→ρ1 and S(τ)
= ρ0. Applying this substitution to the two typed subtrees yields a
left subtree with conclusion M::ρ0→ρ1, and a right subtree with con-
clusion N::ρ0. Now the (@)-constraint can be taken into account la-
belling the edge into the application node with ::ρ1.

The type assignment algorithm returns the unused fresh variables, the
type found for the term, and the set of typed term variables that are free
in the term. The algorithm is illustrated below with two examples.

Example 1: (λa.λb.a b)(λx.x). First, an untyped tree is constructed (Figure
6.4(a)). Then the algorithm visits the left subtree, assuming a::ϕ1 and b::ϕ2.
An (@)-step should be performed, so a new type variable ϕ3 is picked and the
algorithm unifies ϕ1 and ϕ2→ϕ3. This yields that ϕ1 will be replaced by
ϕ2→ϕ3. The edge going into the application node will be labelled by ϕ3. The
two abstraction nodes give no difficulties (this results in Figure 6.4(b)). Then,
the algorithm visits the right subtree. It assumes a type variable for the as-
sumption x::ϕ4. Again the abstraction node gives no difficulties. This yields
Figure 6.4(c). Lastly, the algorithm visits the top node. It is an application
node so the subtree should satisfy the @-constraint. The types involved are
(ϕ2→ϕ3)→ϕ2→ϕ 3  and ϕ 4→ϕ 4 ; a fresh type variable ϕ 5  is taken and
(ϕ2→ϕ3)→ϕ2→ϕ3 and (ϕ4→ϕ4)→ϕ5 are unified. This yields the substitution
that replaces both ϕ2 and ϕ3 by ϕ4, and ϕ5 by ϕ4→ϕ4 (Figure 6.4(d)).
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Figure 6.4 (a) Initial tree, (b) typed left subtree, (c) right subtree,
(d) conclusion.

Example 2: λa.λb.a. In the initial tree (Figure 6.5(a)) it is assumed that a has
type ϕ0. For the first abstraction node, there is no assumption made on b yet.
This means that any type can be taken for b, because the typed tree puts no
limits on the type for b. The result is shown in Figure 6.5(b).

a

λa

λb

a::ϕ0

λa

λb

::ϕ0→ϕ1→ϕ0

::ϕ1→ϕ0

(a) (b)

Figure 6.5 (a) Initial tree, (b) final typed tree.
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A Curry-type assignment algorithm

The function curry takes a list of fresh type variables and a λ-term and
produces as its result a triple consisting of the unused fresh type vari-
ables, the required basis and the assigned type.

λ-term :: = Var var | Abstr var λ-term | Appl λ-term λ-term
var = = char
assumption = = (var, type)
basis = = [assumption]
freshtypevars = = [typevar]
typeresults = = (freshtypevars, basis, type)

curry:: freshtypevars -> λ-term -> typeresults
curry (ϕ : ftvs) (Var x)

= (ftvs, [(x, Typevar ϕ)], Typevar ϕ)
curry (ϕ : ftvs) (Appl f g)

= (ftvs'', basis, s (Typevar ϕ))
where basis = substitute s (basleft ++ basright)

s = unify ρ (Arrow σ (Typevar ϕ))
(ftvs', basleft, ρ) = curry ftvs f
(ftvs'', basright, σ) = curry ftvs' g

curry (ϕ : ftvs) (Abstr x g)
= (ftvs', basis, s (Arrow (Typevar ϕ) τ))

where (basis, s) = check_assmptn (x, Typevar ϕ) bas
(ftvs', bas, τ) = curry ftvs g

substitute:: substitution -> basis -> basis
substitute s [ ] = [ ]
substitute s ((x, σ) : rest ) = (x, s σ) : substitute s rest

check_assmptn:: assumption -> basis -> (basis, substitution)
check_assmptn ass [ ] = ([ ], identsub)
check_assmptn (x, σ) ((y, τ) : rest)

= (substitute (s2 . s1) bas1, s2 . s1), if y = x
= (substitute s ((y, τ) : bas), s), otherwise

where s1 = unify σ τ
(bas1, s2) = check_assmptn (x, s1 σ) rest
(bas, s) = check_assmptn (x, σ) rest

identsub:: substitution
identsub σ = σ

The function check_assmptn goes through the basis and unifies the
type it has already found (initially ϕ) with the types for the term vari-
able. It returns a basis that equals the original one from which all state-
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ments for the term variable are removed, together with the substitution
that unifies all types in the statements for the term variable.

6.1.3 Properties of the Curry system

Curry’s type assignment system satisfies the subject reduction prop-
erty: if σ is a suitable type for M, and M can be reduced to N, then σ is
also a suitable type for N. So a type found for a λ-term will also be a
type for any of its reducts (such as the normal form). In a way, this
property formalizes the notion that typed programs cannot go wrong.

Curry’s system also has the principal type property (Hindley,
1969): for every closed λ-term M that is typeable, a type σM can be
found such that all other types that can be found for M in Curry’s system
are instances of σM and can therefore be obtained by substitution. This
type σM is called the principal type of M.

For open terms there exists a principal pair, consisting of the
principal basis and the principal type. All other pairs for this open term
can be obtained from this principal pair by substitution. The algorithm
presented above returns the principal pair for each typeable λ-term: the
last part of its result is the principal type.

The principal type of λx.x is ϕ0→ϕ0. All other possible types are instances of
this principal type. For example: (ϕ2→ϕ1)→ϕ2→ϕ1 is such a type.

The principal type of a term M can be used as a scheme for the construc-
tion of the actual type of M when it occurs as a subterm in a specific
context: the actual type must be an instance of the principal type. This
property forms the basis for polymorphic type systems, as described in
the next section.

Principal types are not preserved under reduction: if σ is the princi-
pal type for M, and M can be reduced to N, σ does not need to be the
principal type for N; it can be that N has a principal type τ that is differ-
ent from σ. Of course, σ and τ are in such cases related: because of sub-
ject reduction, σ is a correct type for the reduct N, and because τ is its
principal type, σ is then an instance of τ. The intuition behind this is the
following: an application generally contains more information than its
reduct. So the type of an application will in general be more specific
than the type of its reduct.

The principal type of (λx.λy.λz.x z (y z)) (λa.λb.a) is (ϕ0→ϕ1)→ϕ0→ϕ0, that
of λy.λz.z is ϕ2→ϕ3→ϕ3. (λx.λy.λz.x z (y z)) (λa.λb.a) reduces in three steps
to λy.λz.z, and (ϕ0→ϕ1)→ϕ0→ϕ0 is an instance of the type ϕ2→ϕ3→ϕ3. The
function in the original application requires its second argument y to be appli-
cable on the third argument z. The reduct does not require this any more.
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Drawbacks

Curry’s type assignment system is decidable but an important class of
terms is not typeable within this system.

The typed subtree x::ϕ0 uses two
different assumptions for x that
cannot be unified. This is easily
checked by computing the result
of unify ϕ1→ϕ0 ϕ1.

λx

x::ϕ0→ϕ1 b::ϕ0

::ϕ1

::?→ϕ4

@

Figure 6.6 λx.x x is not typeable in Curry’s type system.

Curry’s type assignment system can only type a subclass of the strongly
normalizing terms. This subclass does not contain terms in which self-
application occurs (Figure 6.6). Hence, recursion cannot be modelled
since all fixed combinators contain self-application.

6.2 Polymorphism and recursion

The language Λ+ presented in this section is an extension of the λ-cal-
culus that enables us to focus on polymorphism and recursion by intro-
ducing names for closed λ-terms. Several solutions for finding a type
for recursive definitions are discussed.

6.2.1 Syntax of Λ+

Program = {Definition} Term ;
Definition = Name '=' Term ;
Term = Var | Name | Abstraction | Application ;
Abstraction = '(' 'λ' Var '.' Term ')' ;
Application = '(' Term Term ')' ;

Variables are characters, names are strings starting with a capital. This
syntax allows recursive definitions. Redundant brackets will be omitted.

Example of a program written in Λ+:

S = λx.λy.λz.x z (y z)
K = λx.λy.x
I = λx.x

S K I
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Programs written in Λ+ can easily be translated into λ-terms. For non-
recursive programs the translation consists of replacing, starting with
the final term, all names by their bodies. In the case of a recursive defi-
nition, the translation to the λ-calculus has to use a fixed point combi-
nator.

6.2.2 Finding a type in Λ+

Type assignment in Λ+ is an extension of Curry’s type assignment for
the λ-calculus. Basically, principal Curry types are assigned to named
λ-terms. Furthermore, there is a special way to deal with recursion, as
described below.

When trying to find a type for the final term in a program, each
definition is typed separately. Its right-hand side is treated as a closed λ-
term. So in principle the typed tree representing the principal type of the
term is derived as usual.

For every definition, a pair, consisting of the principal type (found
for the right-hand side) and the name of the defined function, is put in a
list, the environment. The environment is represented as a function
from names to types. This representation of an environment is possible
assuming that all names are (made) different. The environment is used
to find types for terms that contain names: each occurrence of a name
Name in the program can be regarded as an abbreviation of the right-
hand side in its definition, and, therefore, the type associated with the
occurrence should be an instance of the principal type of Name in the
environment. The different occurrences of Name can have different
types, the only relation between their types is that they are all instances
of the principal type of Name. The type used for an occurrence of Name
does not affect the type of Name in the environment: the type of Name is
called generic, and the function defined by Name is called a polymor-
phic function.

Every time Name is encountered in a right-hand side, the algorithm
looks in the environment to see what its type is. It takes a fresh in-
stance of this type, i.e. an instance which is produced by substituting all
type variables consistently with fresh type variables. This fresh instance
is used to find a type for the right-hand side. In this way, the types actu-
ally used for Name in the final typed tree will always be instances of the
principal type that is associated with Name in the environment.

For reasons of simplicity, it is assumed that names are defined be-
fore they are used. A problem arises when Name does not occur in the
environment. This can be the case when the program is recursive. Re-
cursion is dealt with later on.

Consider I = λy.y and the application I I
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::ϕ0→ϕ0

x::ϕ0

λx @

I::(ϕ1→ϕ1)→ϕ1→ϕ1 I::ϕ4→ϕ4

::ϕ4→ϕ4

Figure 6.7 Typed trees for I and I I.

The term I I in the program above is typeable by ϕ1→ϕ1. In finding this type
the polymorphism of I is used. The first I in I I is typed by (ϕ1→ϕ1)→ϕ1→ϕ1,
whereas the second one is typed by ϕ1→ϕ1. Both types are substitution in-
stances of the principal type found for I, ϕ0→ϕ0 (see also Figure 6.7).

Solving recursion with a fixed point construction

Also for occurrences of recursively defined names in a right-hand side
the types actually used for the occurrences of a name G have to be at
least instances of the type found for that name. However, a problem
arises when dealing with the occurrences of G in its own body, because
when finding the type for G, no type is associated with G in the envi-
ronment. So in the case of recursive definitions, this condition is diffi-
cult to meet. In general, a fixed point construction is necessary to solve
the repeated unifications that are involved.

For mutually recursive definitions one needs a special kind of fixed
point construction that treats all mutually dependent definitions to-
gether. For reasons of clarity that kind of recursive definition is not
considered here. In the rest of this chapter only directly recursive defi-
nitions are considered.

A fixed point construction is a general method to find solutions of
recursive equations (see also Section 7.3). Starting from an initial ap-
proximation of the solution the equations are solved and the solution is
taken as a new approximation. If in this approximating process a solu-
tion is found that equals the previous approximation, the fixed point is
reached: the solution of the original equation.

Take for example the following program with a recursive definition:

I = λx.x
K = λa.λb.a
G = λv.K (G I) (G K)

To find the type for G, a fixed point construction is needed: the first approxi-
mation assumes a type variable ϕ0 for G. When building the type for the body
of G, this type variable will be instantiated to, respectively, (ϕ1→ϕ1)→ϕ2 and
(ϕ3→ϕ4→ϕ3)→ϕ5. The type found for the body of G is ϕ6→ϕ2. The original
assumption for G, ϕ0, is not an instance of the type found. Apparently this as-
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sumed type was too general. It should be replaced by a type that is at least an
instance of ϕ6→ϕ2. So in the fixed point construction a next approximation is
made to find the type for G, using as a new assumption the type ϕ6→ϕ2 found
for G in the first try. In this case, this second attempt will give exactly the
same typed tree for the body of G (Figure 6.8). So the fixed point is reached.

G::(ϕ3→ϕ4→ϕ3)→ϕ5 K::ϕ3→ϕ4→ϕ3

::ϕ2

@

::ϕ5::ϕ5→ϕ2
@

::ϕ6→ϕ2

λv

G::(ϕ1→ϕ1)→ϕ2 I::ϕ1→ϕ1

K::ϕ2→ϕ5→ϕ2

::ϕ2
@

@

Figure 6.8 Typed tree for G in the example above.

This fixed point construction always finds a correct type if one exists.
Unfortunately, type assignment with the fixed point construction is un-
decidable due to the possibility of non-termination, as is shown in the
next example.

Example of non-termination of the fixed point construction:

F = λx.F

The fixed point construction for F starts with assuming that F is of type ϕ0.
Then it performs the (λ)-step and finds ϕ1→ϕ0 for λx.F. Obviously, the type
ϕ0 is not an instance of ϕ1→ϕ0. So a second approximation has to be made as-
suming ϕ1→ϕ0 for F. The type found is then ϕ2→ϕ1→ϕ0 and another approx-
imation has to be made. This will go on and on.

Two different solutions for the problem of recursive definitions are
commonly used, both avoiding the fixed point calculation such that both
systems become decidable. In fact, they each perform only the first step
of the fixed point calculation, each in a different way.

Milner’s solution

The first solution is part of Milner’s type assignment algorithm defined
for the functional programming language ML (Milner, 1978) in which
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naming of terms is possible via special constructs: the let-construct for
non-recursive definitions and the fix-construct for recursive ones.

Instead of calculating the fixed point, Milner’s solution simply re-
quires that all types used for a recursively defined name in its definition
are one and the same. This seems to be a severe restriction, but with
Milner’s solution surprisingly many programs can be adequately typed.
In Miranda the Milner approach is used when no types are specified by
the programmer. In most cases (see Chapter 2) the recursive definitions
written down by the programmer can be typed, so the restriction is not a
big problem in practice.

It is important to note that Milner’s solution is not sufficiently
powerful to find a type for G in the example given above. (ϕ1→ϕ1)→ϕ2
and (ϕ3→ϕ4→ϕ3)→ϕ5 are the types actually used for G in its definition.
These types cannot be unified.

The intuition behind Milner’s solution becomes apparent in the
translation of functional programs in Λ+ to λ-terms. In this translation
the fix-construct is translated using a fixed point combinator Y, which is
assumed to be typeable by the type (ϕ0→ϕ0)→ϕ0. Note that in the trans-
lation the λ-term λf.(λx.f (x x))(λx.f (x x)) is not used, because it cannot be
typed. The algorithm below will assume that occurrences of a recur-
sively defined name in its own definition are represented as Defrecname
name.

The Milner algorithm

program = = ([definition], term)
definition = = (name, term)
name = = [char]
term :: = Var var | Defrecname name | Name name

| Abstr var term | Appl term term
environment = = name -> type

find_type:: freshtypevars -> environment -> program -> type
find_type ftvs env ([ ], t)
= σ

where ((ftvs', bas, σ), s) = milner ftvs env t
find_type (ϕ:ftvs) env (((n, body) : defs), t)
= find_type ftvs' (addto env n (s1 σ1)) (defs, t), if occurs_in n body
= find_type ftvs'' (addto env n σ2) (defs, t), otherwise

where ((ftvs', bas1, σ1), s2) = milner ftvs
(addto env n (Typevar ϕ)) body

s1 = unify (s2 (Typevar ϕ)) σ1
((ftvs'', bas2, σ2), s3) = milner (ϕ:ftvs) env body

milner:: freshtypevars -> environment -> term -> (typeresults, substitution)
milner (ϕ:ftvs) env (Var x)
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= ((ftvs, [(x, Typevar ϕ)], Typevar ϕ), identsub)
milner ftvs env (Defrecname n)
= ((ftvs, [ ], env n), identsub)
milner ftvs env (Name n)
= ((ftvs', [ ], typeinstance), identsub)

where (ftvs', typeinstance) = fresh_instance ftvs (env n)
milner (ϕ:ftvs) env (Appl f g)
= ((ftvs'', bas, s (Typevar ϕ)), s2 . s1)

where bas = substitute s (basl ++ basr)
s = unify ρ (Arrow τ (Typevar ϕ))
((ftvs', basl, ρ), s1) = milner ftvs env f
((ftvs'', basr, τ), s2) = milner ftvs' (s1 . env) g

milner (ϕ:ftvs) env (Abstr x g)
= ((ftvs', resultbas, s2 (Arrow (Typevar ϕ) τ)), s2 . s1)

where (resultbas, s2) = check_assmptn (x, Typevar ϕ) bas
((ftvs', bas, τ), s1) = milner ftvs env g

addto:: environment -> name -> type -> environment
addto env x σ = newenv

where newenv z = σ, if x = z
= env z, otherwise

The function find_type takes three operands, a list of fresh variables,
the environment and the program. An infinite list of fresh variables is
assumed to be passed initially as an argument.

As its result find_type produces the type for the final term. When
find_type encounters a definition, it checks whether it is a recursive defi-
nition (with the function occurs_in, which is left undefined here). If so, it
assumes the name is typed by a type variable and it tries to find a type
for its body, by calling the function milner. The type variable assumed
will very probably be changed by the resulting substitution s2. The final
type should be the same as the type used for the name and therefore the
resulting type σ1 is unified with s2 ϕ, yielding s1. If this unification is
successful, s1 σ1 is the type found for the name.

The algorithm milner takes three operands: the fresh variables list,
the environment and the term to be typed, and returns the type results
found for the term and a substitution. The algorithm milner is almost the
same as the algorithm curry. It differs in the way it is capable of dealing
with recursive definitions. For recursive definitions, all occurrences of
the defined name in the recursive definition (Defrecnames) must have the
same type. If a non-recursive name is encountered in a term, the type
that is associated with that name in the environment can be instantiated:
the function fresh_instance (not defined here) returns a fresh instance of
its argument and the remaining part of the list of fresh variables.

If an identifier occurs in its own body, the type in the environment
is taken itself instead of being instantiated. This type can be changed in
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the process of finding a type for the recursive definition: the substitution
that is found can also affect the environment. Therefore this substitution
is passed as a result of the function milner, and the substitution that is
returned by the first recursive call when dealing with an application is
also performed on the environment when performing the second recur-
sive call. So all types used for a name in its body will be the same. The
substitution is passed as an argument for this purpose only.

Mycroft’s solution

The second solution is based on a type assignment system defined by
A. Mycroft (Mycroft, 1984). This solution deals with the problem in a
way frequently used for many hard problems in computer science: the
programmer has to specify the solution; it insists on the type for a recur-
sively defined name being given by the programmer. Instead of calculat-
ing the fixed point, this solution simply requires that all types used for a
recursively defined name in its definition are instances of the given
type. This always terminates, since in looking for a type for the body,
the given type is instantiated and no new assumptions are made. Of
course, the given type also has to correspond with the type derived for
the body. It is even sufficient to require that the given type is an in-
stance of the type derived. This makes it possible that the programmer
specifies a type that is more restrictive than the type derived.

Mycroft’s solution solves the example:

I:: ϕ1→ϕ1
I = λx.x

K:: ϕ1→ϕ2→ϕ1
K = λa.λb.a

G:: ϕ1→ϕ2
G = λv.K (G I) (G K)

Again the types actually used for G are (ϕ1→ϕ1)→ϕ2 and (ϕ3→ϕ4→ϕ3)→ϕ5.
These are both instances of the type given, which is the same as the type
found. Therefore Mycroft’s solution succeeds.

For any σ and τ, Mycroft’s solution rejects the following typed definition:

F:: σ→τ
F = λx.F
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The Mycroft algorithm

mycroft:: freshtypevars -> environment -> term -> typeresults
mycroft (ϕ:ftvs) env (Var x)

= (ftvs, [(x, Typevar ϕ)], Typevar ϕ)
mycroft ftvs env (Name n)

= (ftvs', [ ], typeinstance)
where (ftvs', typeinstance) = fresh_instance ftvs (env n)

mycroft (ϕ:ftvs) env (Appl f g)
= (ftvs'', bas, s (Typevar ϕ))

where bas = substitute s (basl ++ basr)
s = unify ρ (Arrow σ (Typevar ϕ))
(ftvs', basl, ρ) = mycroft ftvs env f
(ftvs'', basr, σ) = mycroft ftvs' env g

mycroft (ϕ:ftvs) env (Abstr x g)
= (ftvs', resultbas, s (Arrow (Typevar ϕ) τ))

where (resultbas, s) = check_assmptn (x, Typevar ϕ) bas
(ftvs', bas, τ) = mycroft ftvs env g

check_type:: freshtypevars -> environment -> program -> type
check_type ftvs env ([ ], g)

= σ
where (ftvs', bas, σ) = mycroft ftvs env g

check_type ftvs env ((n, body):defs, g)
= check_type ftvs' env (defs, g), if equal_types σ τ

where σ = env n
(ftvs', bas, τ) = mycroft ftvs env body

The algorithm mycroft differs from the algorithm milner in some points.
mycroft does not distinguish between different kinds of occurrences of
names. All names are dealt with in the same manner (so Defrecname is
assumed never to be used). Furthermore, the algorithm assumes that in
the environment a type is returned for every name that appears in the
program. So if mycroft encounters a name, it takes an instance of the type
that is already in the environment. Hence, this algorithm does not affect
types in the environment, and the resulting substitution need not be
performed on the environment as in milner. Consequently, this substi-
tution is not returned as a part of the result.

The function equal_types (not defined here) checks whether two
types are equal.

A mixed approach solution

The functional programming language Miranda uses a combination of
Milner’s and Mycroft’s solutions. If the programmer has defined a type
for a recursive definition, the algorithm tries to find it using Mycroft’s
solution, otherwise it uses Milner’s. In Miranda therefore there is a ma-
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jor difference between type checking, taking types supplied for defini-
tions by the programmer and checking whether these types are correct,
and type inferencing, analysing the definitions in a program and trying
to find the principal types for them (see also Chapter 2).

The mixed approach algorithm

mixed_type:: freshtypevars -> environment -> program -> type
mixed_type ftvs env ([ ], t)

= σ where ((ftvs', bas, σ), s) = milner ftvs env t
mixed_type ftvs env (((n, body):b), t)

= find_type ftvs env (((n, body):b), t), if env n = Undefined
= check_type ftvs env (((n, body):b), t), otherwise

In order to be able to test whether in the environment a type is already
defined for a name, the definition of type is assumed to be extended with
Undefined. As a consequence, functions that are applied on objects of
type type have to be extended accordingly.

6.2.3 Properties of type assignment in Λ+

Both type assignment systems for Λ+ cover important features of func-
tional programming languages: polymorphism and recursion. They also
have the principal type property and satisfy subject reduction.

However, some terms still cannot be typed in the proposed sys-
tems. For example, self-applications like λx.x x cannot be typed. More-
over, the type systems cannot deal with definitions that have internal
polymorphism: i.e. different occurrences of a defined object have dif-
ferent types inside the definition.

Take for example the following program:

I = λy.y
E = λc.λd.c d
K = λa.λb.a
F = λf.λg.λc.λi.f (g c)(g i)

F K I K E

While reducing the term F K I K E, I will be applied to two different terms K
and E, whose principal types are not unifiable. One might think that, because I
is polymorphic and can be used several times with different, maybe even non-
unifiable types, the final term will be typeable. This is not true.

The problem is the λ-term that is at the basis of the Milner untypeable
function given in Chapter 2. In the tree for the principal type of λf.λg.λc.λi.f (g
c) (g i) (and therefore in all possible types for that term) the types for c and i
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should be the same. This is best illustrated by giving the principal typed tree
for the λ-term λc.λi.f (g c) (g i) (Figure 6.9) and performing the (λ)-step to g.
Until this step two different assumptions for g, g::ϕ0→ϕ1 and g::ϕ5→ϕ3 are
used. The (λ)-step to g unifies these types, giving a substitution that replaces
ϕ0 by ϕ5 and ϕ1 by ϕ3. Therefore it is concluded that the types used for c and i
are to be the same (see Figure 6.10). This conclusion is too restrictive. Since
the types for c and i are the same, when trying to find a type for the final term
F K I K E instances of the types for K and E are unified. This will fail.

::ϕ0→ϕ5→ϕ4

λc

::ϕ4

@ @

::ϕ3::ϕ3→ϕ4

g::ϕ0→ϕ1 c::ϕ0

f::ϕ1→ϕ3→ϕ4

::ϕ1

@

@ g::ϕ5→ϕ3 i::ϕ5

::ϕ5→ϕ4

λi

Figure 6.9 Typed tree for λc.λi.f (g c) (g i).

::(ϕ3→ϕ3→ϕ4)→(ϕ5→ϕ3)→ϕ5→ϕ5→ϕ4

::(ϕ5→ϕ3)→ϕ5→ϕ5→ϕ4
λf

λg

::ϕ5→ϕ4

::ϕ5→ϕ5→ϕ4

::ϕ4

λc

λi

@ @

::ϕ3::ϕ3→ϕ4

g::ϕ5→ϕ3 c::ϕ5

f::ϕ3→ϕ3→ϕ4

::ϕ3

@

@ g::ϕ5→ϕ3 i::ϕ5

Figure 6.10 Typed tree for λf.λg.λc.λi.f (g c) (g i).



208 TYPE ASSIGNMENT SYSTEMS

Furthermore, it can happen that applications of functions in which at
run-time some arguments are not used, are typed too restrictively since
at compile-time their possible use is taken into account.

Consider the following well-known definitions:

S:: (ϕ0→ϕ1→ϕ2)→(ϕ0→ϕ1)→ϕ0→ϕ2
S = λx.λy.λz.x z (y z)

K:: ϕ1→ϕ2→ϕ1
K = λa.λb.a

S K S:: (ϕ3→ϕ4→ϕ5)→ϕ3→ϕ4→ϕ5

Although S K S reduces to I, neither the Milner nor the Mycroft algorithm
finds the type ϕ0→ϕ0, due to the imposed restrictions.

There is one final remark to make on the type assignment systems
that use Milner’s and Mycroft’s approaches. In both systems all occur-
rences for a function symbol are assigned types that are substitution in-
stances of the type provided by the environment for this symbol. One
could easily think that since all substitutions are allowed on types, one
could replace the type in the environment by any arbitrary substitution
instance. For the system that uses Milner’s approach, in which of course
also types could be provided for definitions, this holds: substitution is a
sound operation for terms as well as for definitions.

However, as shown above, in the Mycroft approach recursive def-
initions can be typed that are not typeable in Milner’s. It is not very well
known that there are terms, typeable in both systems for which My-
croft’s approach allows a more general type than Milner’s. Take for ex-
ample the definitions

K:: ϕ1→ϕ2→ϕ1
K = λa. λb. a

R:: (ϕ1→ϕ2→ϕ1) → (ϕ1→ϕ2→ϕ1) → ϕ1→ϕ2→ϕ1
R = λx. λy. R (R y K) x

The types for the definitions (note in particular the type for R) are cor-
rect in both Milner’s and Mycroft’s systems. In Mycroft’s system, how-
ever, it is possible to take a more general type for R; also the following
is correctly typed:

K:: ϕ1→ϕ2→ϕ1
K = λa. λb. a
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R:: ϕ1→ϕ2→ϕ3
R = λx. λy. R (R y K) x

This same program can be used to illustrate that in Mycroft’s sys-
tem substitution is no longer a sound operation on definitions. Although
the type assignment algorithm is allowed to take any substitution in-
stance of the type ϕ1→ϕ2→ϕ3, not every substitution instance of this type
can be put in the environment. For example, using the type ϕ1→ϕ1→ϕ1,
the definition for R cannot be typed. The underlying problem here is in
fact the same as, for example, in the program:

K = λa. λb. a
I = λc. c

I K

This program is typeable with the types ϕ1→ϕ2→ϕ1 for K, and ϕ3→ϕ3 for
I, but not when the type for I is replaced by (ϕ4→ϕ4)→ϕ4→ϕ4. The only
thing that can be said about this ‘problem’ is that in Mycroft’s system it
becomes apparent within definitions.

Instead of the very common idea that supplying a type for a defini-
tion is equivalent to asking if the definition has this type, it is in fact giv-
ing the algorithm the instruction that all occurrences should have types
that are instances of the supplied type. So systems that allow program-
mers to specify types should not be called type-check systems. The no-
tion partial type assignment system is better.

6.3 Type assignment for term rewriting systems

6.3.1 Extending Λ+ to a functional programming language

It is, from the type assignment point of view, no real problem to extend
the language Λ+ to a real functional programming language. This can be
done by, for example, defining the set of types as follows:

(1) all type variables ϕ0, ϕ1, … are types;
(2) num, real and bool are types;
(3) if σ and τ are types, then (σ→τ) and [σ] are types, where [σ] denotes

a list of objects of type σ.

The unification algorithm for such types will be almost the same as
unify, extended with conditions to solve the problems with the added
types. Of course unification of, for example, num and real fails.
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When instead of

F = λa.G

the notation

F a = G

is used, the operand a can be given a structure, making programs written
in the functional programming language look like term rewriting sys-
tems. Then the type assignment algorithm would also have to cope with
pattern matching by finding the types for the given operands. In this
section it will be shown that, if arbitrary patterns are allowed, the sub-
ject reduction property is lost.

Another extension is the introduction of constructors and alge-
braic type definitions. Constructors are symbols that, when applied to
the right arguments, construct an object of a certain type. They are de-
fined by giving an algebraic type definition. It is also customary to in-
troduce constructors that do not take operands. Take, for example:

List σ = = Nil | Cons σ (List σ)
num = = 1 | 2 | 3 | . . .

The first definition is one for the algebraic type List; this definition de-
fines two constructors, Nil and Cons. The second defines the numerals
that have type num. Then Cons 1 (Cons 2 Nil) is an object of type List num.

When assigning types to definitions that use (objects of) these al-
gebraic types, before analysing the definitions the environment must
contain types for all the constructors, like

Nil :: List ϕ
Cons :: ϕ → (List ϕ) → (List ϕ)
1 :: num
2 :: num

In functional programming languages rule alternatives are also in-
troduced, forcing the algorithm to unify the resulting types of alterna-
tives such that a function always yields the same type.

To get programming convenience, the type assignment algorithm
also has to deal with definitions used before they are defined (and mu-
tually recursive definitions). This is not difficult to implement.

6.3.2 Type assignment and term rewriting systems

In this section we focus on type assignment in TRSs (see Chapter 4),
since in TRSs pattern matching is closer to functional programming
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languages than in the λ-calculus. Such a type system can easily be trans-
ferred to FGRSs (see Chapter 8). Since the proposed type system does
not make use of graph information it is best studied in TRSs. The strat-
egy used to assign types to the tree representation of terms will be simi-
lar to the previous defined type systems for the language Λ+. There are,
however, some differences, due to the differences between a λ-term and
a TRS-term (see Sections 4.1.1 and 4.1.4).

• As for Λ+, an environment is used to store the types for the con-
stants. However, unlike in Λ+, there can be more than one rule that
defines a constant. In finding a type assignment for the second
rule, all constants will already have a type. For convenience, the
choice has been made to require that the environment initially
provides a type for every constant that appears in the TRS.

• As with Mycroft’s solution it is required that the type assigned to a
defining occurrence of a symbol (see Section 4.1.3) equals its type
provided by the environment, while to other occurrences an in-
stance of this type can be assigned.

• In TRSs symbols have fixed arity. Standard Curry types seem to be
more appropriate for a variable arity context. So Curry types are
extended with a Cartesian product (denoted as x) which is used for
the types of the arguments of a function. This means that the defi-
nitions of type, unify, sub and not_in of Section 6.1.2 have to be ex-
tended accordingly (this is left to the reader).

• For type assignment on rewrite rules the left- and right-hand sides
are treated as terms. A rewrite rule Lhs → Rhs is correctly typed if
Lhs and Rhs are typed with the same type, and all the types as-
signed to one term variable (that appears in the left- and right-hand
sides’ bases) are one and the same.

• For type assignment on TRS-terms there is only one constraint, the
constant constraint (C). If F is a constant symbol, and F A1 ... An is
a TRS-term, then there is a substitution S, and types σ1, ..., σn and
σ, such that S applied to the type for F provided by the environment
is (σ1 x ... x σn)→σ. In the tree representation, typing is performed
accordingly (see Figure 6.11).

(C)

::σ

A1

F::σ1 x ... x σn → σ

::σ2 ::σn-1

::σn

. . .

::σ1

An

An-1A2

Figure 6.11 The constant constraint.
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This notion of type assignment has the principal type property.

Example: stack handling. This example deals with stacks of natural numbers
and contains, next to the standard stack functions Top and Pop, the function
Alternate that combines two stacks. The types that are assigned are similar to
the types that are assigned in the approach using sorts, as in Dershowitz and
Jouannaud (1990). The main difference between the two typing approaches is
that the approach presented here also allows higher order and polymorphic
types. Stacks of natural numbers are represented as terms of the form

Push S1 (Push S2 . . .(Push Sn Empty). . .)),

where Empty is the empty stack, and the Si denote representations of the natu-
ral numbers 0, Succ (0), Succ (Succ (0)), etc. according to the following alge-
braic type definitions:

Nat = = Zero | Succ (Nat)
Stack = = Empty | Push (Nat, Stack)

Push and Empty are stack constructors, and Zero and Succ are number con-
structors. The functions Top, Pop and Alternate are defined by:

Top:: Stack → Nat
Top (Push x y) → x

Pop:: Stack → Stack
Pop (Push x y) → y

Alternate:: (Stack x Stack) → Stack
Alternate Empty z → z
Alternate (Push x y) z → Push x (Alternate z y)

With these rules it can be shown, for example, that the term Alternate (Push
(Top (Push Zero Empty)) Empty) (Pop (Push (Succ Zero) Empty)) rewrites to:
Push Zero Empty.

In term rewriting systems function symbols are also allowed on
other positions in left-hand sides of rules than just the left-most one
(note that this is not allowed in Miranda, see also Section 8.2.3). So it is
possible to define optimizations like:

Push x (Pop (Push z y)) → Push x y
Push (Top (Push x z)) y → Push x y
Push (Top (Push x w)) (Pop (Push z y)) → Push x y

With these rewrite rules for Push the TRS can still be typed correctly.
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Currying

In term rewriting systems currying is modelled via an extra symbol for
explicit curried application: Ap. Furthermore, for each symbol F a cur-
ried variant F0 is used as an argument of such explicit applications.
Finally, for each curried symbol a rewrite rule is added that transforms
the curried application into an uncurried one. With respect to typing
such (partly) curried systems some special actions have to be taken:

• For the symbol A p in the environment the higher order type
((ϕ1→ϕ2) x ϕ1)→ϕ2 has to be added. When typing occurrences of this
symbol the standard constant-constraint is applicable.

• For each pair of related symbols F and F0 the types in the environ-
ment have to be equivalent with respect to currying, as explained
in Section 1.7.2.

• The added rules for transforming curried applications into uncur-
ried applications need to be typed as defining rules for the curried
symbols (and not as alternative defining rules for Ap).

Consequently, the following rules for combinator application are typeable, for
example, with the given environment:

I :: ϕ1 → ϕ1
K :: (ϕ1 x ϕ2) → ϕ1
S :: ((ϕ1→ϕ2→ϕ3) x (ϕ1→ϕ2) x ϕ1 )→ϕ 3
Ap :: ((ϕ1→ϕ2) x ϕ1 )→ ϕ2
I0 :: ϕ1→ϕ1
K0 :: ϕ1→ϕ2→ϕ1
S0 :: (ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3

I x → x
K x y → x
S x y z → Ap (Ap x z) (Ap y z)

Ap I0 x → I x
Ap (Ap K0 x) y → K x y
Ap (Ap (Ap S0 x) y) z → S x y z

Subject reduction

In general, when assigning types to TRSs as defined above, the subject
reduction property is lost.
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Take the following rules that are well typed with the given environment:

I :: ϕ1→ϕ1
K :: (ϕ1 x ϕ2) → ϕ1
S :: ((ϕ1→ϕ2→ϕ3) x (ϕ1→ϕ2) x ϕ1 )→ϕ 3
M :: (((ϕ1→ϕ2)→ϕ3) x (ϕ1→ϕ2))→ ϕ2
Ap :: ((ϕ1→ϕ2) x ϕ1 )→ ϕ2
I0 :: ϕ1→ϕ1
K0 :: ϕ1→ϕ2→ϕ1
S0 :: (ϕ1→ϕ2→ϕ3)→(ϕ1→ϕ2)→ϕ1→ϕ3
M0 :: ((ϕ1→ϕ2)→ϕ3)→(ϕ1→ϕ2)→ϕ2

I x → x
K x y → x
S x y z → Ap (Ap x z) (Ap y z)
M (Ap (Ap S0 x) y) → Ap (Ap S0 I0) y

Ap I0 x → I x
Ap (Ap K0 x) y → K x y
Ap (Ap (Ap S0 x) y) z → S x y z
Ap M0 x → M x

Then, the term M (Ap (Ap S0 K0) I0) is typeable with the type (ϕ4→ϕ5)→ϕ5. A
rewrite rule matches this term, so it can be rewritten to Ap (Ap S0 I0) I0. This
last term, however, is not typeable with the type (ϕ4→ϕ5)→ϕ5. In fact, it is
not typeable at all.

It is possible to filter out the rewrite rules that do not satisfy the subject
reduction property. Rules are called safe if they satisfy the following
condition which is needed and sufficient for the required property (see
Bakel et al., 1992):

• If (basis, σ) is the principal pair for the left-hand side term, then it
is possible to type the right-hand side with σ such that all term
variables are typed with the same type as in basis, so if (basis, σ) is
the principal pair for the left-hand side term, then (basis, σ) is a pair
for the right-hand side.

The Miranda type system satisfies this safety criterion due to the fact
that in Miranda in left-hand sides functions can appear as left most
symbols only, in combination with the way algebraic type definitions
are specified.
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6.3.3 The type check algorithm

The goal of the type check algorithm presented below is to determine
whether a safe type assignment can be constructed such that all the con-
ditions on type assignment of term rewrite systems are satisfied. The
main function of the algorithm, type_rules, has a set of rules, as well as
an environment, as parameters. It returns a boolean that indicates
whether the construction of the type assignment to all rules was suc-
cessful and safe. The algorithm type_term returns the principal pair for
every term.

trs = = ([rule] , trsterm)
rule = = (trsterm, trsterm)
trsterm :: = Var var | Const const [trsterm] | DefSymb const [trsterm]
const = = name

The last alternative for trsterm (defining the constructor DefSymb) is used
to indicate that the corresponding (sub)term starts with the defined sym-
bol. So using DefSymb only makes sense when specifying the left-hand
side of a rewrite rule. Of course, it would have been very possible to de-
termine the defined symbol of a certain left-hand side of a rewrite rule
without such a construct. This, however, would have made the algo-
rithm somewhat more complicated and less clear.

The type of a constant is either an instance of the type for that con-
stant given by the environment (in the case of a Const) or that type itself
(in the case of a DefSymb). The distinction between the two is deter-
mined by the function type_term.

The defining node of a rewrite rule can only be typed with one
type. So any substitution resulting from a unification is forbidden to
change this type. This is solved by using as the unification algorithm not
unify but unify_types, an extension of Robinson’s unification algorithm
which is not defined here; it is capable of deciding whether or not a type
variable is special (so it appears in some environment type) and it re-
fuses to substitute this variable by other types. This extension can be
encoded easily by taking corresponding negative numbers as representa-
tion for such variables. The function unify_types must be used throughout
instead of unify also where unify is applied in auxiliary functions such as
check_assmptn.

type_trs:: freshtypevars -> environment -> trs -> typeresults
type_trs ftvs env (rules, term)

= type_term ftvs env term, if type_rules ftvs env rules

type_rules:: freshtypevars -> environment -> [rule] -> bool
type_rules ftvs env rules = foldr (&) True (map (type_rule ftvs env) rules)
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type_rule:: freshtypevars -> environment -> rule -> bool
type_rule ftvs env (lhs, rhs)
= equal_bases (substitute (s2 . s1) basl) basl

where s2 = unify_basis (substitute s1 basl ++ substitute s1 basr)
s1 = unify_types σ τ
(ftvs', basl, σ) = type_term ftvs env lhs
(ftvs'', basr, τ) = type_term ftvs' env rhs

type_term:: freshtypevars -> environment -> trsterm -> typeresults
type_term (ϕ:ftvs) env (Var var)

= (ftvs, [(var, Typevar ϕ)], Typevar ϕ)
type_term ftvs env (DefSymb const args)

= type_func_app ftvs env (env const) args
type_term ftvs env (Const const args)

= type_func_app ftvs' env typeinstance args
where (ftvs', typeinstance) = fresh_instance ftvs (env const)

type_func_app:: freshtypevars -> environment -> type -> [trsterm]->typeresults
type_func_app ftvs env σ [ ] = (ftvs, [ ], σ)
type_func_app (ϕ:ftvs) env σ terms

= (ftvs', substitute s bas, s (Typevar ϕ))
where s = unify_types (Arrow τ (Typevar ϕ)) σ

(ftvs', bas, τ) = type_args ftvs env terms

type_args:: freshtypevars -> environment -> [trsterm] -> typeresults
type_args ftvs env [ t ] = type_term ftvs env t
type_args ftvs env (t : ts) = (ftvs'', bas ++ rbas, CartProd σ1 σ2)

where (ftvs', bas, σ1) = type_term ftvs env t
(ftvs'', rbas, σ2) = type_args ftvs' env ts

unify_basis:: basis -> substitution
unify_basis [ ] = identsub
unify_basis ((x, σ): rest) = unify_basis bas . s

where (bas, s) = check_assmptn (x, σ) rest

The algorithm type_rule returns TRUE only for rewrite systems that are
safely typeable. For every term variable occurring in a rewrite rule, all
the types assigned to this variable in the bases for both the left- and the
right-hand sides should be the same. This is provided in type_rule by uni-
fying all those types after a rule has been type checked. These unifica-
tions are performed by the function unify_basis. The function type_rule
also takes care of checking the safety constraint, by checking, using
equal_bases, if the unification of left- and right-hand sides of a rewrite
rule has changed the left-hand side basis. This last function is not speci-
fied, because its definition is rather tedious while its intention is clear.
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The function type_func_app looks for the type of a function applica-
tion. It calls type_args, which is an auxiliary function that derives the
types for all arguments of a node and constructs an arrow type out of
these types. type_args assumes that the definition of type is extended with
a binary constructor CartProd denoting a Cartesian product. Of course,
such an extension also requires an adjustment of several other function
definitions used in this chapter.

Summary

• Type assignment systems are used to perform a compile-time
check on the type consistency of a program. Most type assignment
algorithms for functional programming languages are based upon
the Curry system for the λ-calculus.

• Type assignment in the Curry system takes place just by looking at
the syntactic structure of a λ-term: there is one type assignment
constraint for a λ-application (the arrow elimination) and one for a
λ-abstraction (the arrow introduction). All instances of the same
variable are assumed to have the same type.

• Type assignment in the Curry system is decidable and the principal
type for a typeable term is found.

• Self-application cannot be typed with the consequence that the
Curry system cannot be used to type recursive functions.

• By naming λ-terms recursive definitions can be introduced. Func-
tions can be polymorphic.

• With a fixed point construction it is possible to find a type for any
(recursive) function definition, if one exists. But whether there ex-
ists a type or not is undecidable.

• Milner’s solution is a decidable algorithm that finds a type for
many recursive definitions. It requires that all types used for a re-
cursive definition can be unified. All instances of the same variable
have the same type.

• Mycroft’s solution checks on consistency of given types and is also
decidable. It can approve more types than can be derived with the
Milner algorithm.

• Neither Milner’s nor Mycroft’s solution can type self-application
nor can they handle internal polymorphism.

• Type assignment in term rewriting systems is a natural extension
of type assignment in the λ-calculus. But not all properties of type
assignment for the λ-calculus are inherited by term rewriting sys-
tems. Subject reduction only holds for safe rewrite rules.
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EXERCISES

6.1 Give a formal derivation for the type of:
(a) λab.a (c) (λxyz. x z (y z)) (λab.a)
(b) λxyz. x z (y z) (d) (λxy.x y) (λa.a) (λa.a)

6.2 Show that the term (λz.(λxy.x y) z z) (λa.a) cannot be typed.

6.3 Derive the types for the Push rules of the TRS in Section 6.3.2.
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Chapter 7
Strictness analysis

7.1 Strictness
7.2 Abstract interpretation
7.3 Basic domain theory
7.4 Strictness analysis using

abstract interpretation

7.5 Analysing function definitions
7.6 Analysing non-flat domains
7.7 Abstract reduction
7.8 Strictness analysis using

abstract reduction

Programs in lazy functional languages are evaluated lazily. The order of
evaluation corresponds to normal order reduction of an equivalent λ-
term in the λ-calculus. It also corresponds to evaluation according to
the functional strategy for an equivalent FTRS or FGRS. Each of these
evaluation orders is normalizing for its corresponding system.

However, in practice, lazy evaluation has as a disadvantage that
this order of evaluation is not very efficient. In many cases, a lot of effi-
ciency (both in space and time) can be gained when eager  evaluation
is chosen instead of lazy evaluation, both for sequential (see Part 4) as
well as for parallel implementations (see Part 5). Eager evaluation cor-
responds in the λ-calculus to applicative order reduction, while in
FTRSs and FGRSs it corresponds to innermost strategies.

As shown in the previous part of this book one cannot simply
change the overall evaluation order from lazy to eager. The normal or-
der reduction strategy as well as the functional strategy are both hyper-
normalizing (see Part 2). So if the corresponding evaluation orders are
diluted with an arbitrary finite number of reduction steps, the result will
always be the same. The problem is that by switching to eager evalua-
tion the default strategy might be diluted with an infinite number of re-
duction steps. This can lead to a change in the termination behaviour of
the program. So the evaluation order can only be changed at those
places where it is certain that the termination behaviour of the program
is not affected. The arguments in which a function is strict have this
property.

A function is strict in a certain argument if the (eager) evaluation
of that argument does not change the termination behaviour of the pro-
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gram. Strictness analysis is a compile-time analysis of a program that is
used to tell whether or not a function is strict in its arguments. This
strictness information is used to change the default reduction order at
certain points in the program such that the performance of that program
is improved. Whether or not a function is strict in a certain argument is,
of course, in general undecidable. So strictness analysers use some
kind of approximation method. Such an approximation method must be
safe, i.e. the termination behaviour of a program has to remain un-
changed.

There are various kinds and levels of approximations and there-
fore also various kinds of strictness analysers. Good strictness analy-
sers are complex programs: for a good approximation it is not sufficient
just to look at the syntactic structure of a program, as is the case with
type assignment systems. For an accurate analysis some kind of ap-
proximation of the run-time behaviour of a program has to be performed
at compile-time. This technique is known as abstract interpretation.

Strictness is explained in Section 7.1. A general introduction in
abstract interpretation is given in Section 7.2. Some necessary basic
formal knowledge about domain theory is presented in Section 7.3.
Then, strictness analysis for lazy functional languages based on ab-
stract interpretation is explained. This technique, introduced by Mycroft
(1981), can only deal with first-order functions and flat domains (Section
7.4). In Section 7.5 we explain how one can deal with recursive func-
tions and higher order functions (Burn et al., 1985). The analysis for
lists (Wadler, 1987) is treated in Section 7.6.

Sections 7.7 and 7.8 explore a related approximation method that
can deal with arbitrary data structures. This method is known as ab-
stract reduction (Nöcker, 1988; 1993). An analyser based on abstract
reduction is incorporated in the Clean System (see Chapter 8).

7.1 Strictness

A function is strict in a certain argument if the (eager) evaluation of
that argument does not change the termination behaviour of the pro-
gram. Formally, this can be defined as follows: a function f of arity n is
strict in its ith argument iff

f x1 … xi–1 ⊥ xi+1 … xn = ⊥

for all possible values xj (j ≠ i). In this definition ⊥  (bottom) stands for
any non-terminating expression.

A strict argument can arise in two situations. In the first place it
can be the case that an argument is needed (see Chapter 4), i.e. it cer-
tainly has to be reduced in each possible application of the function. So
when an argument is needed it can be evaluated in advance without
changing the termination behaviour of the function. This property is
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very important for changing lazy evaluation into eager evaluation. In
the second place an argument is strict when the function represents an
infinite computation, even disregarding the argument.

Example of strictness due to neededness:

g x = x + 1

The function g is strict in x because the value of x is needed for the addition.
Hence, x can be evaluated safely before applying g. If the evaluation of x does
not terminate, the lazy strategy would also end up in non-termination because
x would be evaluated anyway. So indeed: g ⊥ = ⊥.

Example of strictness due to non-termination:

g x = g x

In spite of the fact that x is not needed in g, it is still safe to evaluate it before
applying g. The termination properties remain the same: g ⊥ = ⊥.

Strictness analysis is a compile-time analysis of the strictness
properties of a program. Strictness is in general undecidable. So inher-
ently strictness analysers use some kind of approximation method
which is safe, i.e. the termination behaviour of a program has to remain
unchanged. Two analysis methods are described in this chapter: ab-
stract interpretation and abstract reduction.

7.2 Abstract interpretation

The technique of abstract interpretation is used to perform a compile-
time analysis of certain properties of a complex computation. It is often
used to perform strictness analysis, but the technique can also be used to
analyse many other properties, such as the complexity of a program, or
to predict whether a computation is shared or not. The basic idea of the
method is that the standard interpretation at run-time (the ordinary,
possibly non-terminating, evaluation of the program) is approximated
by a terminating abstract interpretation at compile-time. To make this
compile-time evaluation possible, only those evaluation aspects are re-
garded that are needed for the derivation of the desired property. So the
kind of analysis is highly dependent upon the property of interest.

7.2.1 Rule of signs

As an example the well-known ‘rule of signs’ is presented. Assume that
one is interested in the sign of the result of a multiplication of integer
values. The sign of the result can be calculated in two ways: either by
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first calculating the result and then taking the sign or by first taking the
sign of the arguments and then deducing the sign of the result.

Take the following computation:

–33 * 728 * –301 → +7231224

The obvious way to find out the sign of the result is by simply calculating the
result, +7231224, which obviously is positive. The other method only looks at
the signs of the arguments:

(–) * (+) * (–) → (+)

The sign of the result follows by applying a special ‘multiplication’ on signs.

Formally, the first method starts with calculating the result in the do-
main Z of numbers as usual (with the standard interpretation). Then, an
abstraction of the result from that domain to an abstract domain Z# of
representations of signs is made.

The first method calculates the sign after performing a standard multiplication.

abs +7231224 → plus

where the abstraction function abs and the domains Z and Z# are defined as:

Z = { …, –2, –1, 0, 1, 2, … }
Z# = {minus, zero, plus}

abs:: Z → Z#

abs x = plus, if x > 0
= minus, if x < 0
= zero, otherwise

The second method first abstracts numbers to signs with the ab-
straction function from Z to Z#. Then, instead of the standard multiplica-
tion in Z  an abstract multiplication is performed in Z#.

Abstract multiplication is an abstract function from Z# to Z#. Do not
confuse such an abstract function with the abstraction function that is
defined from Z to Z#.

The second method uses an abstract multiplication *#: an abstract version (in
prefix form) of the standard multiplication, working on abstracted values.

*# (abs –33) (*# (abs 728) (abs –301))
→ *# minus (*# plus minus) → *# minus minus → plus
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where the abstract multiplication *# is defined as:

*#:: Z# x Z# → Z#

*# plus plus = plus
*# plus zero = zero
*# zero plus = zero
*# plus minus = minus
*# minus plus = minus
*# minus zero = zero
*# zero minus = zero
*# zero zero = zero
*# minus minus = plus

Z x Z

abs abs

*

*
#

Z# x Z#

Z

Z#

Figure 7.1 Two ways to calculate the sign of a multiplication.

So the sign of the result of a multiplication can be obtained in two ways
(see Figure 7.1). The first way corresponds to the arrows going from Z x
Z to Z (using the standard interpretation) and then from Z to Z# (an ab-
straction from Z). The second way corresponds to the arrows going from
Z x Z to Z# x Z# (an abstraction from Z x Z) and then from Z# x Z# to Z#

(using an abstract interpretation). Both ways reach the same property,
represented by an element of Z#. But, with abstract interpretation the re-
sult can be obtained more easily and faster.

In the running example the result of both calculation methods is the same:

abs (x * y) = *# (abs x) (abs y)

So the abstract interpretation can replace the standard interpretation.

We have shown that abstract interpretation can be used to derive signs
of multiplicative expressions. However, not all properties can be de-
rived via abstract interpretation.

Assume that we want to calculate the sign of the result of integer addition via
abstract interpretation. Then, an abstract function +# has to be defined:

+#:: Z# x Z# → Z#

+# plus plus = plus



224 STRICTNESS ANALYSIS

+# plus zero = plus
+# plus minus = ??
…

The third alternative is problematic. The sign of the addition of a positive and
a negative value can only be computed by actually doing the computation. In
the abstract domain the result is unknown. This can be expressed by adding a
new element to Z#: unknown. The definition of +# can now be completed. One
also has to take care that the new value unknown can appear as an argument of
+# as well.

+# plus minus = unknown
+# plus unknown = unknown
+# zero zero = zero
+# zero unknown = unknown
…

When the outcome of the abstract addition yields the value unknown nothing
can be said of the sign of the actual result in the standard interpretation.

In the abstract domain various approximations are possible. If a
value y in the abstract domain represents many elements in the concrete
domain, it is a coarser approximation than an abstract value x represent-
ing fewer of these concrete elements. The operator ≤ (less than or equal)
expresses this ordering. If x ≤  y then x represents fewer concrete ele-
ments than y. So x contains more information than y. The inverse ab-
straction function abs–1 yields, given a value v# in the abstract domain,
the set of all corresponding values v in the concrete domain for which
abs–1 v# = v. Formally, the abstract ordering is defined as x ≤ y iff abs–1

x ≤ abs–1 y.

All integers in the concrete domain Z correspond to the value unknown,
whereas, for instance, only the positive integers correspond to the abstract
value plus. Hence the value unknown holds less information than plus.

plus ≤ unknown

Not all elements in Z# contain the same amount of information. So
in some cases the abstract interpretation is less informative. Therefore
only an approximation of the desired property can be found. Such an
approximation should not yield wrong results, i.e. be in contradiction
with the results obtained by using the standard interpretation. However,
being an approximation it may contain less information. The main re-
quirement for an abstract interpretation is that it is safe (correct), i.e.

abs . f ≤ f# . abs
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for all elements in the concrete domain (‘.’  stands for function composi-
tion). This important criterion is called the safety criterion.

For deriving the sign for multiplication there is no difference between the out-
come with abstract interpretation or without abstract interpretation, since

abs . * = *# . abs

For deriving the sign for addition only an approximation can be achieved:

abs . + ≤ +# . abs

So due to the loss of information, abstract interpretation will generally
only give an approximation. This does not have to be a serious problem.
A decidable analysis at compile-time that can predict an undecidable
run-time property of a program can only be achieved by using an ap-
proximation method.

For a further understanding of strictness analysis via abstract inter-
pretation, a short informal introduction to domain theory is needed.

7.3 Basic domain theory

The fundamental concept in domain theory is a  semantic domain, a set
of elements grouped together because they share some common prop-
erty or use. In the literature many approaches, more or less equivalent,
can be found (see, for example, Markovsky (1976), Stoy (1977)). All of
them are based on the concept of a complete partial ordering (cpo). A
set D with an ordering relation over that set ≤d (or ≤ for short) is a com-
plete partial ordering (D, ≤) if it has the following properties:

(1) It is a partially ordered set (a poset), i.e. ≤ is
• reflexive: d ≤ d for all d ∈ D;
• transitive: if  d ≤ e and e ≤ f for d,e,f ∈ D then d ≤ f ;
• and anti-symmetric: if d ≤ e for d,e ∈ D and d ≠ e, then not e

≤ d.
(2) It is complete, i.e.

• D has a least  element ⊥d (or ⊥) such that ⊥ ≤ d for all d ∈ D;
• and, for each increasing sequence S = d1 ≤ d2 ≤ … ≤ dn ≤ … in

D, there exists a least upper bound ∪ S ∈ D.
A least  upper bound is defined as:
– it is an upper bound: dj  ≤ ∪ S for all dj  ∈ S;
– and it is least: if dj ≤ u for all dj  ∈ S and some u ∈ D, then ∪ S ≤

u.
The least upper bound (lub) is also used as an infix operator.
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From now on all domains are assumed to be cpos.

A pictorial representation of
a finite semantic domain is
shown in Figure 7.2. All
points represent elements of
the domain. The arcs define
the ordering. If x and y are
connected and x is ‘below’ y
in the picture, then x ≤ y.

 

Figure 7.2 A finite cpo.

A domain <D, ≤> is flat (Figure 7.3) iff:

• for all a,b ∈ D: if a ≤ b then a = b or a = ⊥.

Figure 7.3 Pictorial representation of a flat domain.

Some examples of complete partial orderings:

<{0,1}, ≤> with 0 ≤ 1. The least element is 0; for the sequence 0 ≤ 1 the least
upper bound is 1. This is a flat domain.

<N⊥, ≤> with ⊥ ≤ n, n ∈ N⊥ where N⊥ is the set of natural numbers extended
with a bottom element: N ∪ {⊥} (also called the lifted domain of N). Note
that the ≤ has nothing to do with the ordinary less than or equal: elements of N
are incomparable in this domain. Further note that this is a flat domain.

<P({0, 1, 2}), ≤> where P({0, 1, 2}) is the powerset of the set {0, 1, 2} con-
taining all subsets of this set: {{}, {0}, {1}, {2}, {0, 1}, {0, 2}, … , {0, 1, 2}}
where ≤ is the standard subset relation defined on sets.

The functions over domains are in general monotonic and continuous:

• A function f:: D → E is monotonic iff for all d,e ∈ D, if d ≤ e, then f
d ≤ f e.

• A monotonic function f:: D → E is continuous iff for every increas-
ing sequence S in D, f (∪ S) = ∪ { f di | di ∈ S}.

If a function is continuous, it is also monotonic. For finite domains the
two are equivalent. The intuitive meaning of monotonicity is that all
‘nice’ properties and the structure of a domain are maintained. For ex-
ample, an increasing sequence stays an increasing sequence after func-
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tion application. Continuity ensures that there is no surprise at least up-
per bounds: the least upper bound of an increasing sequence stays a
least upper bound after function application.

Starting with domains new domains can be constructed. Suppose D
and E are domains. Then the product domain D x E is defined as: D x E
= <{(x,y) | x ∈ D, y ∈ E}, ≤x>. The ordering  relation ≤x for the product
domain is defined as: (x,y) ≤x (x',y') iff x ≤d x' and y ≤e y'.

The function domain D  → E  contains all continuous functions
from D to E. It is defined as: D → E = <{f | f is a continuous function
from D to E}, ≤→>. The ordering relation for the function domain is
defined as: f ≤→ g iff f d ≤e g d for all d ∈ D.

Take for example the following domain with its product domain:

D = <{0,1}, ≤> with 0 ≤ 1
D x D = <{(0,0), (0,1), (1,0), (1,1)}, ≤x>

The domain D contains only two values, 0 and 1. Therefore only four func-
tions from D to D can be constructed:

f⊥ x = 0
fI x = x
f~I x = ~x (~ is negation)
fT x = 1

Only the function f~I is not continuous, so the function domain D →  D  is
(Figure 7.4):

D → D = <{f⊥, fI, fT}, ≤→>

1

0 (0,0)

(0,1)

(1,1)

(1,0) fI

f⊥

fT

Figure 7.4 Pictorial representation of the domains D, D x D and D → D.

For continuous functions the fixed point theorem holds: if f:: D → D is
continuous, then

• f   has a least fixed point d ∈ D with the following properties:
– d is a fixed point: f d = d;
– d is least: if f e = e, e ∈ D, then d ≤ e.
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This least fixed point d can be constructed as follows:d = ∪ {f n ⊥ | n ≥ 0}.
This set equals {⊥, f ⊥, f (f ⊥), …}. So it follows that if the domain D is
finite, the least fixed point can be found in finite time: just start comput-
ing the sequence ⊥, f ⊥, f (f ⊥), … (which is increasing since f is continu-
ous) until two consecutive values are the same.

7.4 Strictness analysis using abstract interpretation

In this section strictness analysis is discussed for a very restricted situa-
tion: only simple non-recursive functions are considered working on a
flat domain D of integers, booleans and the like. Function bodies can
only contain function applications (non-recursive, no higher order), con-
stants (numbers, booleans etc.) and variables. So it is assumed that gen-
erally a function f is defined as:

f:: Dn → D
f x1 … xi … xn = E

To make an abstract interpretation to determine strictness two things
have to be done (Figure 7.5).

Dn

abs abs

f#

D

(D#)n D#

Figure 7.5 Abstract interpretation diagram for strictness analysis.

First an abstraction function abs and a domain D# have to be found in
which the strictness property can be expressed. Then, the interpretation
function f# has to be defined working on the abstract domain. For each
possible function f such an abstract interpretation function f# has to be
found.

The strictness question contains entities like ‘all possible values’
and ‘any non-terminating expression’. So it is natural to represent these
notions as elements of D#.

Define:

1 the value representing all possible (terminating as well as non-
terminating) expressions (generally also indicated as ‘top’);

0 the value representing all non-terminating (⊥) expressions
(generally also indicated as ‘bottom’);

and define the abstraction function abs accordingly:
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abs:: D → D#

abs x = 0, if x does not terminate
= 1, otherwise

where

D# = {0, 1}
D = {expressions}

D# is a domain with 0 ≤ 1 (since the set of all non-terminating expres-
sions is a subset of the set of all possible expressions); 0 is the least ele-
ment; 1 is the least upper bound for the increasing sequence 0 ≤ 1.

The abstraction function abs is clearly undecidable. Fortunately,
the abstraction does not actually have to be made. Suppose that for an
abstract function f# the equation

f# 1 … 1 0 1 … 1 = 0

can be solved. Then, the remaining problem is to find the proper ab-
stract version f# for each function f, and to prove that this abstraction is
safe (abs . f ≤ f# . abs). It can be proven that it is possible to construct
abstract functions in such a way that the abstraction is safe. Proofs like
this go beyond the scope of this book. For a more formal treatment of
strictness analysis and abstract interpretation the reader is referred to
Mycroft (1981), Burn et al. (1985) or Renardel (1988).

Owing to the safety criterion the actual determination of the unde-
cidable abs functions can be avoided, since, when it is known that

f# 1 … 1 0 1 … 1 = 0

it follows that

f x1 … xi–1 ⊥ xi+1 … xn = ⊥

which can be shown as follows (using the safety criterion):

(abs . f) x1 … xi–1 ⊥ xi+1 … xn ≤ f# (abs x1 … xi–1 ⊥ xi+1 … xn)
⇒ (abs . f) x1 … xi–1 ⊥ xi+1 … xn ≤ f# 1 … 1 0 1 … 1
⇒ (abs . f) x1 … xi–1 ⊥ xi+1 … xn ≤ 0
⇒ (abs . f) x1 … xi–1 ⊥ xi+1 … xn = 0
⇒ abs (f x1 … xi–1 ⊥ xi+1 … xn) = 0
⇒ f x1 … xi–1 ⊥ xi+1 … xn = ⊥

For the construction of an abstract function f# a transformation function
# can be defined that translates an arbitrary function f over Dn to its ab-
stract counterpart f#. If f is defined by
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f:: Dn → D
f x1 … xi … xn = E

then f# is defined using a transformation function #:

f#:: (D#)n → D#

f# x1 … xi … xn = # [ E ]

Next we show how this transformation function # has to be defined. The
resulting functions will satisfy the safety criterion.

7.4.1 Constants, variables and function applications

First, assume that a right-hand side of a function body only consists of
constants, variables and applications of other functions. Constant ex-
pressions always terminate, so # [ constant ] = 1. The translation function
# then becomes:

# [ c ] = 1 where c is a constant
# [ x ] = x where x is a variable
# [ f E1 … En ] = f# # [ E1 ] … # [ En ] where f is a function

7.4.2 δ-rules

Now consider abstract versions of simple functions like δ-rules. Take,
for example, the addition. To perform an addition both arguments are
needed. So clearly, ⊥ + E = ⊥ for all expressions E. In the abstract world
this means that always +# 0 x = 0. In this way +# can be defined for all
possible arguments. It follows that +# equals the logical AND operator &
(where 0 and 1 represent Boolean values):

& 0 x = 0
& x 0 = 0
& 1 1 = 1

The same holds for multiplication and many other δ-rules. So the ab-
straction function # can now be refined:

# [ + E1 E2 ] = & # [ E1 ]  # [ E2 ]
# [ * E1 E2 ] = & # [ E1 ]  # [ E2 ]
…

A more difficult standard function is the conditional. The condition in a
conditional expression is needed, so: if ⊥ t e = ⊥. Hence, in the abstract
world: if# 0 t e = 0 for all t and e in D#. Furthermore, either the ‘then’ or
the ‘else’ part is needed. Non-termination is possible if only one of
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these branches is non-terminating. Non-termination is certain when both
‘then’ and ‘else’ parts are non-terminating. The abstract conditional is
defined as

if# c t e = & c (| t e)

where | is the logical OR operator. So:

# [ if Ec Et Ee ] = & # [ Ec ]  (| # [ Et ]  # [ Ee ] )

7.5 Analysing function definitions

The definitions above can be used for deriving abstract versions of
simple functions. Clearly, it can be the case that in the resulting abstract
functions information is lost.

Consider the following example:

f x y z = if (x = 0) (y + z) (x – y)

then

f# x y z
= # [ if (x = 0) (y + z) (x – y) ]
= & # [ (x = 0) ]  (| # [ (y + z) ]  # [ (x – y) ] )
= & (& # [ x ]  # [ 0 ] ) (| (& # [ y ] # [ z ]  ) (& # [ x ]  # [ y ] ))
= & (& x 1) (| (& y z) (& x y))

Now this abstract function can be used for deriving strictness information by
evaluating f# 0 1 1, f# 1 0 1 etc.:

f# 0 1 1 → & (& 0 1) (| (& 1 1) (& 0 1)) → & 0 (| 1 0) → 0
f# 1 0 1 → & (& 1 1) (| (& 0 1) (& 1 0)) → 0
f# 1 1 0 → & (& 1 1) (| (& 1 0) (& 1 1)) → 1

From the first two derivations it can be concluded that f is strict in x and y.
This is what would be expected: x will always be evaluated in the condition, y
will always be evaluated because it appears in both the ‘then’ and ‘else’
branches of the conditional. Of course, it cannot be concluded from the
derivations above that f is not strict in z. Consider a slightly different defini-
tion of f:

f x y z = if (x = x) (y + z) (x – y)

Abstract interpretation will give that f# 1 1 0 = 1. However, f is strict in z, be-
cause the ‘then’ part will always be chosen (so always: f x y ⊥ = ⊥ ).
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7.5.1 Recursive functions

When recursive functions are considered the analysis is more complex.

Consider the following recursive definition:

f x y = if (x = 0) y (f (x – 1) y)
then, f# x y = & (& x 1) (| y (f# (& x 1) y))
hence, f# 0 1 → & (& 0 1) (| y (f# (& 0 1) y)) → 0

So the method described above finds f to be strict in its first argument.

In general, however, (mutually) recursive functions can lead to a non-
terminating reduction in the abstract world. It is in principle undecidable
whether or not this situation occurs.

For instance, when the strictness of the second argument of the example above
is calculated, the abstract reduction sequence is non-terminating:

f# 1 0 → & (& 1 1) (| 0 (f# (& 1 1) 0)) → & 1 (f# (& 1 1) 0)) → f# 1 0 → …

Since 1 is the upper bound of D#, it is always true that f# x1 … xn ≤ 1. This
can be used to stop a (possibly infinite) computation at any moment to
approximate the result with 1. In this way the interpretation stays safe,
but too much information is lost.

With some help from domain theory the problem can be solved.
Because D# is a domain, the continuous functions over it also form a do-
main. Since D# is finite, the domain D# x D# → D# is also finite. Abstract
functions that are constructed with continuous functions like &, | and if
are continuous as well.

With abstract functions that are defined by a recursive equation,
initially the only thing that is known of the function is the recursive
equation and the fact that it is continuous. Since for finite domains this
means that the function is also monotonic, the function can be approxi-
mated from below by a fixed point computation as follows: if f# is a
function of arity n, defined by the equation f# x1 … xn = E, then functions
f#m, m ≥ 0, are defined as follows:

f#0 x1 … xn = 0
f#m x1 … xn = E [ f# := f#m–1 ]

where [ x := y ] means that all occurrences of x have to be replaced by y.
This sequence of functions is increasing. Therefore it has a least upper
bound f#u, for which f#u = f#u+1 and therefore f#u = f#.

In the function domain the function defined by

F f x1 … xn = E [ f# := f ]



ANALYSING FUNCTION DEFINITIONS  233

takes a function and returns the next approximation which is a continu-
ous function as well. Hence, this function has a fixed point for which F
d = d, i.e. E [ f# := f ] = f. This corresponds directly to the solution of the
equation being found. Therefore, the computation via an approximating
increasing sequence is a proper fixed point computation. In the case of
mutually recursive functions a set of equations has to be solved simulta-
neously with a fixed point calculation. As a first approximation all
functions are returning the bottom element for all their arguments. Each
iteration calculates the next approximation for each function.

The fixed point calculation applied to the example above:

f# x y = & (& x 1) (| y (f# (& x 1) y))

then (by definition):

f#0 x y = 0

and (by repeated substitution):

f#1 x y = & (& x 1) (| y (f#0 (& x 1) y)) = & (& x 1) (| y 0) = & x y

f#2 x y = & (& x 1) (| y (f#1 (& x 1) y)) = & (& x 1) (| y (f#1 x y))
= & x (| y (& x y)) = & x y

The sequence for this function converges quickly. The first and second ele-
ment are already the same: f#1 = f#2. So the solution is f# = f#1 and therefore:

f# x y = & x y

such that f# 1 0 → 0. Hence, f is also strict in its second argument.

A disadvantage of the method is that it requires that functions are tested
for equality. Two functions are equal if they yield the same value for
each possible combination of arguments. Because the complexity of
comparing functions is exponential in the number of arguments, the
derivation of the fixed point can be computationally expensive. In prac-
tice, the fixed point can often be found quickly. In the example above,
one can see directly without computing any result that f#1 and f#2 are
equal. However, a brute force comparison of f#1 and f#2 requires 22 com-
parisons.

7.5.2 Higher order functions

Until now only functions working from Dn to D were considered. Strict-
ness analysis is more complex when higher order functions are allowed.
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Consider the following higher order function:

hof g a b = (g a b) + (g b b)

The first element of hof is a function: an element of D x D → D assumed that
hof delivers an element of D. For finding the abstract function hof# the same
technique as before can be used:

hof# g a b = & (g a b) (g b b)

The test for strictness becomes difficult because hof# 0 1 1 cannot be com-
puted. The first argument of hof# is of the wrong type. It should be a member
of the domain D# x D# → D#, so the appropriate top and bottom elements from
this domain should be chosen.

In order to deal with higher order functions new functions for the top el-
ement and bottom element have to be defined in the appropriate do-
main. So the bottom element is represented by a function that always
yields 0, and the top element by a function that always yields 1.

For example, for the domain D# x D# → D# define f⊥ and fT

f⊥:: D# x D# → D#

f⊥ x y = 0

fT:: D# x D# → D#

fT x y = 1

With these elements the strictness properties of hof can be determined: hof is
only strict in its first argument.

hof# f⊥ 1 1 = 0
hof# fT 0 1 = 1
hof# fT 1 0 = 1

Functions over higher order functions can be recursive as well. The
fixed point technique for recursive functions must now be applied in
more complex domains. Finding such a fixed point can be expensive.

rechof g x y = if (x = 0) (g x y) (rechof g (x – 1) (y + 1))

The function rechof#u has to be found in the domain (D# x D# → D#) x D# x
D#. For testing whether rechof is strict in argument x no fixed point computa-
tion has to be done. But for determining the strictness in y a least upper bound
has to be determined.
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Fortunately, many programs do not contain very complex higher order
functions. So in practice, fixed points can often be found fairly easily.

7.6 Analysing non-flat domains

So far, only functions over flat domains such as integers and booleans
are considered. No lists or other data types (constructors) were in-
volved. Again, the analysis method described above can easily be ex-
tended by mapping all constructors to top:

# [ Con E1 … En ] = 1

where Con is a constructor of arity n. The disadvantage of such a rough
approximation is that too much information is lost.

Consider for example the function that sums all elements of a list:

sum [ ] = 0
sum (a : x) = a + sum x

It can easily be seen that sum is strict in its argument: the list given to sum can
be evaluated to head normal form before applying sum to it. Furthermore, all
the elements of the list can be evaluated in advance also.

The sum example above shows that for data structures like lists
another kind of strictness analysis is required. The kind of strictness
cannot be found by the abstract interpretation used thus far. But what
abstract interpretation is strong enough for finding this kind of informa-
tion? The most natural way seems to maintain the constructors in the
abstract domain:

# [ Con E1 … En ] = Con# # [ E1 ] … # [ En ]

So the abstract domain (for lists) contains elements like Nil#, Cons# 0 Nil#,
Cons# 0 (Cons# 0 Nil#) etc. This (non-flat) domain has a disadvantage: the
domain is in general infinite. As a consequence, fixed point compu-
tations are no longer possible. Also, the kind of evaluation needed for
the sum example is very difficult to express in this domain. What is
needed is a finite domain in which several kinds of termination property
can be expressed.

7.6.1 The four-point domain on lists

The method of Wadler (1987) is based on the observation that only
some special kinds of reduction on lists are useful:
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• reduction to head normal form:

is_empty (h : t) = False
is_empty [ ] = True

is_empty does not terminate when its argument has no head normal form.

• spine reduction: reduction of the ‘spine’ [e1, e 2 , … , em] of a list,
but no reduction of the list elements e1, e2, … , em themselves:

length [ ] = 0
length (h : t) = 1 + length t

length only terminates for finite lists. The elements of the list are not needed.

• element reduction: reduction of the spine of the list and reduction
to head normal form of all the list elements:

sum [ ] = 0
sum (h : t) = h + sum t

sum only terminates for finite lists with no non-terminating elements.

All these kinds of reduction have to be represented in the abstract do-
main. Therefore abstract values avi have to be introduced such that:

is_empty# av1 = 0
length# av2 = 0
sum# av3 = 0

Let LD be the domain of lists over the simple values of D. The following
abstract values in the abstract domain LD# are defined:

Bot the bottom element, representing all certainly non-termi-
nating expressions;

Inf represents the same as Bot extended with all infinite lists;
BotMem represents the same as Inf extended with all lists with at

least one non-terminating element (member);
TopMem represents all possible lists.

These values are sometimes also represented as the numbers 0, 1, 2 and
3. We shall use the above notation to prevent confusion with the ele-
ments of the domain D# (0 and 1). In this analysis an infinite list can be a
real infinite list as well as a list of which the tail is a non-terminating re-
duction. As a consequence, the domain LD# has the following ordering:
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Bot ≤  Inf ≤ BotMem ≤ TopMem. The meaning of these values is explained
by considering the function f::LD → D. Suppose that in the abstract do-
main the result of applying f# to the four abstract values can be derived:

• reduction to head normal form: if f# Bot = 0, it is known that calling
f with a non-terminating reduction will result in non-termination
(hence f ⊥ = ⊥). The argument of f can be reduced safely to head
normal form before applying f. If f# Bot = 1, this is not possible.

is_empty# Bot = 0
length# Bot = 0
sum# Bot = 0

• spine reduction: if f# Inf = 0, it is known that calling f with an infi-
nite list will result in non-termination (hence f inflist = ⊥, where inflist
is some infinite list). Note that then also f# Bot = 0 since f# is contin-
uous. In this case the spine of the argument of f can safely be eval-
uated before applying the function. If f# Inf = 1, this is not possible.

is_empty# Inf = 1
length# Inf = 0
sum# Inf = 0

• element reduction: if f# BotMem = 0, it is known that calling f with a
list containing a non-terminating element will result in non-termi-
nation (hence f botelemlist = ⊥, where botelemlist is such a list). Note
that then also f# Inf = 0 and f# Bot = 0. In this case both the spine and
the elements of the argument of f can safely be evaluated before
applying the function. If f# BotMem = 1, this is not possible.

is_empty# BotMem = 1
length# BotMem = 1
sum# BotMem = 0

• if f# TopMem = 0, an application of f will never terminate (then also
f# BotMem = 0, f# Inf = 0 and f# Bot = 0).

is_empty# TopMem = 1
length# TopMem = 1
sum# TopMem = 1
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7.6.2 Constructing abstract functions in the four-point domain

For the construction of the abstract functions so far only a translation of
the right-hand side was necessary. Now also pattern matching on the
left-hand side is taken into account.

The translation is explained by considering a more or less general
function definition (in which E and N are functions with respectively
zero and two arguments representing the right-hand sides of the alterna-
tives):

f [ ] = E
f (h : t) = N h t

The abstract function f# is now examined for the four possible argu-
ments in the domain LD#.

The result of f# Bot corresponds to the result of a call to f with a
non-terminating element: f ⊥. Because the pattern matching never will
terminate, the result of this will be ⊥, corresponding to bottom in the re-
sult domain. So f ⊥ = ⊥. Hence, we deduce f# Bot = bottom.

The result of f# Inf corresponds to the result of a call to f with an in-
fi nite list. Hence, the second member of f will always match. What can
be said of the head and tail of an infinite list? The head (variable h) can
have any value (Top), and in the abstract domain all occurrences of vari-
able h can be replaced by 1. The tail of an infinite list can either be a
non-terminating reduction (⊥), or it can also be an infinite list. There-
fore, in the abstract domain variable t can be replaced by Bot or Inf. The
result in the abstract domain will be the least upper bound of both pos-
sibilities (the smallest safe value in the abstract domain). Since all ab-
stract functions are monotonic it is sufficient to replace the variable t by
Inf.

A similar construction can be made for determining f# BotMem. This
corresponds to calling f with a list containing at least one element that
does not terminate. This implies that in this case the second member of f
will always match. Again two possibilities arise: either the head of the
list does not terminate, in which case nothing more can be said about
the tail, or the head of the list might terminate, in which case the tail of
the list has to contain the non-terminating element. In the abstract world
the first case corresponds to replacing variable h by 0 and variable t by
TopMem. The second case corresponds to replacing variable h by 1 and
variable t by BotMem.

Lastly, the same procedure has to be followed for TopMem. Func-
tion f is called with some list. One of the two members will match. If the
second one does, nothing special can be said of the tail of the list. So the
least upper bound has to be taken of the two right-hand sides. Hence

f# Bot = bottom
f# Inf = # [ N ]  1 Inf
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f# BotMem = (# [  N ] 0 TopMem) ∪ (# [  N ]  1 BotMem)
f# TopMem = # [ E ] ∪ (# [ N ]  1 TopMem)

Extending the method to functions with more arguments and more
complex types is straightforward.

Another part of the translation scheme is formed by the right-hand
sides. With the list constructors special things have to be done. Nil (or [ ])
is clearly a terminating list, and its abstract representation is TopMem.
Cons (or :) becomes a predefined function: Cons# .

# [ [ ] ] = TopMem
# [ E1 : E2 ] = Cons# # [ E1 ] # [ E2 ]

The Cons of a non-terminating expression and some list is a list
with a non-terminating element, or abstractly: Cons# 0 TopMem = BotMem.
Similarly, Cons# x y is defined for other arguments (see the table below).

Cons# x y x = 1 x = 0

y = TopMem
y = BotMem
y = Inf
y = Bot

TopMem
BotMem
Inf
Inf

BotMem
BotMem
Inf
Inf

Consider for example the function reverse: it reverses a list by using the stan-
dard function append:

reverse [ ] = [ ]
reverse (h : t) = append (reverse t) (h : [ ])

Convert the right-hand sides:

# [ [ ] ] = TopMem
# [append (reverse t) (h : [ ])] = … = append# (reverse# t) (Cons# h TopMem)

Convert pattern matching (with E = [ ] and N h t = append (reverse t) (h:[ ]))
and apply the Cons# table defined above:

reverse# Bot = Bot || bottom
reverse# Inf || # [ N ]  1 Inf

= append# (reverse# Inf) (Cons# 1 TopMem)
= append# (reverse# Inf) TopMem

reverse# BotMem || (# [  N ] 0 TopMem)∪(# [  N ] 1 BotMem)
= (append# (reverse# BotMem) (Cons# 1 TopMem))

∪ (append# (reverse# TopMem) (Cons# 0 TopMem))
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= (append# (reverse# BotMem) TopMem)
∪ (append# (reverse# TopMem) BotMem)

reverse# TopMem || # [ E ] ∪(# [ N ]  1 TopMem)
= TopMem ∪ (append# (reverse# TopMem) (Cons# 1 TopMem))
= TopMem

The resulting equations will still have to be solved to achieve proper
abstract function definitions. Also the following defining equations of
abstract functions can be derived in the same way:

is_empty# Bot = 0
is_empty# Inf = 1
is_empty# BotMem = 1
is_empty# TopMem = 1

length# Bot = 0
length# Inf = length# Inf
length# BotMem = length# TopMem = 1
length# TopMem = 1

sum# Bot = 0
sum# Inf = sum# Inf
sum# BotMem = sum# BotMem
sum# TopMem = 1

Some of the resulting equations are solved directly, e.g. for the function
is_empty. For a function like sum, however, the abstract equation is re-
cursive. As for functions over the domain D, a fixed point computation
has to be performed to solve this recursive equation. For the functions
sum and length this is easy since sum# Inf, sum# BotMem and length# Inf are
all 0.

The fixed point computation for the function sum:

sum# Bot = 0
sum# Inf = sum# Inf
sum# BotMem = sum# BotMem
sum# TopMem = 1

then (by definition):

sum#0 x = 0

and (by substitution):

sum#1 Bot = 0
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sum#1 Inf = sum#0 Inf = 0
sum#1 BotMem = sum#0 BotMem = 0
sum#1 TopMem = 1

sum#2 Bot = 0
sum#2 Inf = sum#1 Inf = 0
sum#2 BotMem = sum#1 BotMem = 0
sum#2 TopMem = 1

The first and second approximations are equal, so the fixed point is found.

For reverse the computation is more complex: first the values for the
function append should be known, then a fixed point of reverse can be
determined in the domain LD# → LD# (see Exercise 7.3).

For mutually recursive function definitions fixed points cannot be
calculated separately. In such a case the fixed points have to be calcu-
lated together.

7.6.3 Lists with more complex elements

To derive more information for lists with more complex elements, an-
other abstract domain has to be constructed. Suppose the list consists of
elements of a domain S for which the abstract domain S# contains n el-
ements si (i ≤ n). The abstract domain LS# is constructed as follows. LS#

contains the elements Inf and Bot. Furthermore, for each element si of S#

an equivalent element siMem is added to LS#.

Consider for example the construction of LLD#:

D# LD# LLD# …

1 (Top) TopMem TopMemMem …
0 (Bot) BotMem BotMemMem

Inf InfMem
Bot BotMem

Inf
Bot

Then, for example, BotMemMem corresponds to lists that have at least
one element that is a list containing at least one element that is bottom.
Of course the same can be done for lists of functions etc.

It will be clear that this kind of strictness analysis is difficult when
more complicated data structures (e.g. trees) are taken into account. In
that case the abstract domains that have to be constructed are compli-
cated as well. As a result, the complexity of the analysis can explode.
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7.7 Abstract reduction

Another strictness information deduction method is based on abstract
reduction. With both abstract interpretation and abstract reduction a
compile-time abstract computation is performed in an abstract domain.
An important difference is that abstract reduction takes arbitrary data
structures (data constructors) into account as well as pattern matching
on these data constructors. Abstract reduction can be regarded as a spe-
cial kind of symbolic graph rewriting and is therefore based on GRSs,
whereas abstract interpretation is based on the λ-calculus.

A disadvantage of the possibility of handling arbitrary data struc-
tures is that the abstract domain in which the abstract reduction takes
place can become infinite. Hence the computation of a fixed point can
take an infinite amount of time. So, in principle, strictness analysis
based on abstract reduction may not terminate. In practice, an approxi-
mating analyser can be defined that will terminate and that will find
strictness in many cases in a relatively short time.

In this section proofs of properties are omitted. For further details
the reader is referred to (Nöcker, 1988; 1993).

7.7.1 The abstract domain

Strictness analysis via abstract reduction proceeds as follows: via an
undecidable abstraction function abs the concrete domain S is abstracted
to the abstract power domain PS#. PS# is defined by first taking the
powerset of S , i.e. the set P S of all subsets of S. Then, PS# is con-
structed by joining every element of PS with the set Bot of all non-termi-
nating and undefined expressions of S. In this way Bot is the least ele-
ment of the domain PS#. The greatest element of PS# is S, from now on
referred to as Top. PS# is in general an infinite domain since S   can be
infinite (S contains all possible terms).

No distinction is made between a partial function that is undefined
for a particular value of its arguments and a function that is non-termi-
nating for a particular value of its arguments. Both kinds of function are
united in the least element Bot.

An important advantage of the abstract domain PS# is that it con-
tains all subsets of all kinds of expressions. This enables reasoning
about all kinds of structures without the necessity to define special ab-
stract domains for it. Another consequence is that a least upper bound
always exists for any two elements in the abstract domain and that this
lub can be found by taking the set union of these elements.

Rewriting in PS# implies that rewriting is now defined on sets. The
constructors that are used in the rewrite rules denote elements of PS#.

Top ≡ S
Bot ≡ the set of all non-terminating expressions
Constructor# Top ≡ the set of all terms starting with Constructor ∪ Bot
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Nil# ≡ {Nil} ∪ Bot
Cons# Bot Nil# ≡ the set of all lists of length 1 with a non-terminating

element ∪ Bot

Below, the method of abstract reduction will be explained. Com-
pared with abstract interpretation the construction of abstract functions
will turn out to be a trivial task. The important aspect of the analysis
now lies in the definition of abstract rewriting.

7.7.2 Transforming functions to abstract functions

Functions defined on S are transformed into abstract functions defined
on PS# in the following way. Assume that a function f of arity n is de-
fined with k rule alternatives:

f:: Sn → S
f p11 … p1n = rhs1
…
f pk1 … pkn = rhsk

For the construction of an abstract function f# the following transforma-
tion function # can be defined that translates an arbitrary function f over
Dn to its abstract counterpart f#::(PS#)n → PS#.

# [ f p11 … p1n = rhs1
…
f pk1 … pkn = rhsk ] = # [ f p11 … p1n ] = # [ rhs1 ]

…
# [ f pk1 … pkn ] = # [ rhsk ]

# [ s x1 … xn ] = s# # [ x1 ]  … # [ xn ]
# [ x ] = x

Here s stands for a function or constructor symbol; x stands for a variable.

So the transformation is trivial: every symbol s is converted to s#.

For the following function definitions the corresponding abstracted functions
are constructed by applying the transformation #.

f x = g (Constructor (h x))
g (Constructor x) = x
h 0 = 0
h x = x

f# x = g# (Constructor# (h# x))
g# (Constructor# x) = x
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h# 0# = 0#

h# x = x

7.7.3 Rewriting

In principle, the functional strategy is used for reduction as usual. How-
ever, rewriting in the abstract domain is defined on sets. In order to de-
fine rewriting on sets some small changes are necessary. A variable on a
left-hand side now stands for the set of all expressions (Top). Further-
more, four situations have to be distinguished during the pattern
matching phase (for each situation an example is given):

(1) There is a  total match: the formal argument is a superset of the
actual argument, i.e. the actual argument is contained in the formal
argument. When there is a total match, the matching can continue.

The term h# 0# totally matches h# 0#

(2) There is a  partial match: the actual argument is a superset of the
formal argument. When there is a partial match another rule alter-
native may be applicable as well. So although a match has been
found and matching can continue with this rule alternative, the next
rule alternatives also have to be considered with as actual argument
the remaining non-matching part of the original argument. The re-
maining part is defined as follows: if A is the actual argument, B
the formal argument and A ⊃ B, then the remaining part C is all el-
ements of A that are not contained in B, united with Bot. This is de-
noted as C = A \ B.

The term g# Top partially matches g# (Constructor# x).
The remaining part is Top \ (Constructor# Top)

(3) There is an  infinite match: the formal argument is a non-variable;
the actual argument is Bot. This case corresponds to forcing evalua-
tion of a non-terminating expression to match it against a non-vari-
able pattern. This will lead to a non-terminating reduction in the
concrete world. In the abstract world the rule alternative is appli-
cable: the term reduces to Bot, independent of its right-hand side.

The term g# Bot infinitely matches g# (Constructor# x)

(4) There is no match: none of the previous cases arises: the rule al-
ternative is not applicable. Matching proceeds with the next rule
alternative.
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The term g# Nil# does not match g# (Constructor# x)

After the matching phase rewriting is done accordingly with the
special extension that when more than one rule alternative is applicable
(due to a partial match) the union of all possible results is taken.

If none of the rule alternatives matches, the result of the rewriting
is Bot, indicating that the partial function is undefined.

One-step rewriting of the terms in the examples of Section 7.7.2:

h# 0# → 0#

g# Top = g# ((Constructor# Top)∪(Top \ (Constructor# Top))) → Top∪Bot
= Top

g# Bot → Bot
g# Nil# → Bot

In an implementation of abstract reduction, for reasons of effi-
ciency and termination, further approximations can be made (see also
Section 7.8.1). For example, one can approximate all numbers by Top.
In the case of a partial match one can continue with the complete argu-
ment instead of with the remaining non-matching part. Another opti-
mization concerns the use of graph structures in the analysis. Combined
with sensible criteria for termination (see Section 7.8.1), an efficient
implementation of abstract reduction can be obtained.

7.8 Strictness analysis using abstract reduction

The concrete reduction in the standard domain is approximated by re-
duction on sets in the abstract domain. Approximation takes place in
two ways. Firstly, the objects of reduction are sets of which the ele-
ments cannot be distinguished any more. Secondly, the reduct can be a
set that is larger than necessary, e.g. the reduct always contains Bot.

Just as with abstract interpretation the safety criterion has to hold.
For abstract reduction the safety criterion (abs . f ≤ f# . abs) means that for
every function, when it is applied with concrete arguments, the abstrac-
tion of all its results has to be a subset of the set of the results of the cor-
responding abstract function applied on all corresponding abstract ar-
guments.

In other words, the safety criterion for abstract reduction re-
quires that for all x1 … xn ∈ S it holds that when t, t'∈ PS# are defined as t =
∪ x# | f x1 … xn →∗ x and t' = ∪ x# | f# x1 # … xn# →∗ x# then, t ≤ t'.

Matching and rewriting on sets are defined in such a way that this
safety criterion holds. As a consequence, the strictness question for the
ith argument of a function f of arity n:

f x1 … xi–1 ⊥ xi+1 … xn = ⊥
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can be approximated via abstract reduction as follows:

f# Top … Top Bot Top … Top →∗ Bot

This question can be answered via abstract reduction to normal form.

Consider again an example of Section 7.5: f x y z = if (x = 0) (y + z) (x – y).
With pattern matching this function can now be defined as:

f 0 y z = y + z
f x y z = x – y

The abstract reduction for the various strictness questions yields the same an-
swers as in Section 7.5:

f# Bot Top Top → Bot
f# Top Bot Top → (Bot +# Top)∪(Top –# Bot) → … → Bot∪Bot = Bot
f# Top Top Bot → (Top +# Bot)∪(Top –# Top) → … → Bot∪Top = Top

However, with respect to the strictness of f# of the example in Section 7.7.2
abstract reduction yields better results than abstract interpretation:

f# Bot → g# (Constructor# (h# Bot)) → h# Bot → Bot

So f# is strict in its first argument. This fact would not have been found using
abstract interpretation as explained in this chapter.

Strictness analysis using abstract reduction on sets can be per-
formed relatively easily. The introduction of new constructors does not
increase the complexity of the analysis. Owing to the possibility of per-
forming pattern matching on abstract constructors, results can be ob-
tained that are much harder to obtain with strictness analysis based on
abstract interpretation. However, abstract reduction has the disadvan-
tage that it is not guaranteed to terminate.

Non-terminating abstract reduction:

f# x = f# x

f# Bot → f# Bot → …

Since the domain PS# is infinite a fixed point analysis cannot be per-
formed. So termination of the analysis must be realized in another way.
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7.8.1 Termination of abstract reduction

Although in principle the analysis is non-terminating, it can always be
stopped. When it is stopped the result is approximated. Fortunately, it is
always safe to approximate a reduction with Top since this set contains
all possible terms. Some limit must be placed upon the reduction se-
quence. For instance, we can use the depth of the recursion in the reduc-
tion, or the number of reductions that have been performed in the anal-
ysis, or the length of the term that is analysed. An implementation crite-
rion can also be the depth of the recursion stack, or the time needed, or
the memory required, or a combination of these.

In certain special cases an analysis of the reduction path (path
analysis) can introduce an extra stop criterion when the analysis leads to
the conclusion that a non-terminating reduction is going on. An example
of such an path analysis is the following:

Suppose an analysis of the reduction path yields the following
about a term t: t →∗ E(t) in which E(t) is an expression, not in head normal
form, in which t occurs. When the reduction of t is needed to reduce E(t),
the term t in E(t) can be replaced by Bot. When it is not known whether
the reduction of t is needed to reduce E(t), the term t in E(t) can be re-
placed by Top.

Path analysis avoids non-termination in the previous example:

f# Bot → f# Bot → Bot

Clearly, reduction of the term f# Bot is needed in the expression f# Bot.

Consider one of the examples of Section 7.5.1: f x y = if (x = 0) y (f (x – 1) y).
With pattern matching this function can now be defined as:

f 0 y = y
f x y = f (x – 1) y

For this case path analysis yields the same answer as the fixed point analysis
in Section 7.5.1:

f# Top Bot = (f# 0# Bot)∪(f# (Top\0#) Bot)
→ Bot ∪ f# ((Top\0#)–# 1#) Bot = f# ((Top\0#)–# 1#) Bot
→ f# Top Bot
→ Bot

7.8.2 Abstract reduction on non-flat domains

Other questions than the standard strictness question fit nicely in the
general framework of abstract reduction. Consider, for example, strict-
ness analysis on non-flat domains, e.g. list structures. With abstract in-
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terpretation the most simple analysis is done via the introduction of the
four-point domain for which appropriate abstract functions have to be
constructed. With abstract reduction a similar analysis can be performed
directly. The elements of the four-point domain correspond directly
with sets that are elements of the domain PS#:

Bot ≡ the set of all non-terminating expressions: least element of PS#

Inf ≡ the set of all infinite lists ∪ Bot
BotMem ≡ the set of all lists with at least 1 non-terminating element ∪ Inf
TopMem ≡ the set of all possible lists

These sets are elements of the domain PS# and as sets they obey the
following relation: Bot ⊆  Inf ⊆ BotMem ⊆ TopMem which corresponds to
the ordering in the four-point domain.

In order to perform abstract reduction, first abstract functions have
to be constructed, and then strictness questions can be asked. The results
of the abstract functions for each of the indicated sets can be computed
in the standard way using abstract reduction. Note that the abstract
functions are not just defined on the four special sets, but are defined on
the complete domain PS#.

Take again an example of Section 7.6: sum. The abstract function is now:

sum# Nil# = 0#

sum# (Cons# a x) = a +# sum# x

In order to be able to perform the pattern matching on the indicated
sets, more about the structure of these sets has to be known. The follow-
ing recursive set equations are sufficient to perform pattern matching.

Inf = Cons# Top Inf
BotMem = (Cons# Top BotMem) ∪ (Cons# Bot TopMem)
TopMem = Nil# ∪ (Cons# Top TopMem)

With these equations and path analysis abstract reduction is performed.

The sum example with abstract reduction:

sum# Bot → Bot
sum# Inf = sum# (Cons# Top Inf)

→ Top +# (sum# Inf)
→ Top +# Bot
→ Bot

sum# BotMem = sum# ((Cons# Top BotMem) ∪ (Cons# Bot TopMem))
→ (Top +# (sum# BotMem)) ∪ (Bot +# (sum# TopMem))
→ (Top +# (sum# BotMem)) ∪ Bot



STRICTNESS ANALYSIS USING ABSTRACT REDUCTION  249

→ Top +# (sum# BotMem)
→ Top +# Bot
→ Bot

sum# TopMem = sum# (Nil# ∪ (Cons# Top TopMem))
→ 0# ∪ (sum# (Cons# Top TopMem))
→ 0# ∪ (Top +# (sum# TopMem)))
→ 0# ∪ (Top +# Top)
→ 0# ∪ Top
= Top

Another important aspect of abstract reduction is the fact that a
priori  no restriction is imposed on the considered structures. The strict-
ness of functions that manipulate user-defined data structures can be in-
vestigated in the same way as the strictness of lists. Furthermore, the
complexity of the analysis does not explode if more complex structures
are considered. There is no necessity to define more complicated do-
mains (with more complex fixed point analysis) for such structures. An
increasing complexity of the structures that are considered only leads to
increasing complexity of the arguments of the abstract functions. The
complexity of the path analysis and of the abstract reduction itself does
not increase.

Summary

• A function is strict in a certain argument if evaluation of that ar-
gument does not change the termination behaviour of the program.

• Strictness analysis is a compile-time analysis to obtain strictness
information. It can be used to change the reduction order in such a
way that the time and space behaviour of the program is improved.

• Strictness is inherently undecidable. Therefore, practical strictness
analysis always deals with approximations that must be safe, i.e.
the termination behaviour of a program has to remain unchanged.

• Two general techniques of strictness analysis are discussed: ab-
stract interpretation on finite abstract domains and abstract reduc-
tion on the powerset domain that can be infinite.

• Abstract interpretation approximates strictness via an analysis in a
finite domain that is constructed with the purpose of answering a
special kind of strictness question.
– The use of continuous functions on the finite domain makes it

possible to deal with recursion via a fixed point analysis.
– With the four-point domain list structures are handled.
– For more complex information more complex domains have

to be defined; the complexity of the analysis explodes.
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• Abstract reduction approximates strictness via a special way of re-
ducing sets of expressions.
– Pattern matching and reduction with sets is defined in a safe

way such that the reduct of a set contains at least all reducts of
all expressions in the original set.

– In principle, abstract reduction is non-terminating. However,
path analysis and practical heuristics make it possible to
avoid this non-termination in practice at the price of making
further approximations.

– Recursive set equations are used to deal with pattern matching
and reduction on all kinds of sets.

– Within the general framework of abstract reduction, strictness
of all kinds of structures is relatively easily examined since it
is not necessary to construct new domains and abstract func-
tions for every new kind of question. No explosion of com-
plexity takes place.

EXERCISES

7.1 Give for each element a of the four-point domain (TopMem, BotMem,
Inf, Bot) an element x of the concrete domain such that x ∈ abs–1 a
and for all a' < a it holds that x ∉ abs–1 a'.

7.2 The definition of the append function is:
append:: LD->LD->LD
append [ ] list = list
append (h : t) list = h : append t list

Give the defining equations of the abstract function append# in the
four-point domain. Solve the equations using fixed point analysis.

7.3 Solve with the resulting definition of append# the defining equa-
tions of reverse# in Section 7.6.2. Derive the required strictness in-
formation from the resulting definition.

7.4 Derive both using abstract interpretation as well as using abstract
reduction the strictness information for f, as defined below.

head:: LD->D
head (a : as) = a

f:: D->D
f x = head (x : [ ])
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Part 4
Implementation
on
sequential architectures

Chapter 8 Clean

Chapter 9 Translation into Clean

Chapter 10 The abstract ABC machine

Chapter 11 Translating Clean into ABC code

Chapter 12 Realizing the ABC machine
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An efficient implementation of a functional language can be obtained in
many ways. We shall not give a general overview of the several avail-
able methods (e.g. Landin, 1964; Turner, 1979a; Augustsson, 1984;
Peyton Jones, 1987). Instead, we shall describe one implementation
method in detail (Smetsers et al., 1991). We think it is highly illustra-
tive to study one particular implementation starting from the level of a
particular full-featured programming language, leading through inter-
mediate levels (see Figure P4.1) and finally ending with concrete ma-
chine code. Furthermore, the described implementation method is state-
of-the-art and has many aspects in common with other methods.

So an implementation is described for a particular functional lan-
guage (Miranda) based on the model that we consider to be the most
suited for this purpose: FGRSs. First, the language is translated into an
intermediate language (Clean) based on FGRSs. Since the level of
Clean is still rather high compared with the level of a concrete machine,
a Clean program is translated into code for an abstract stack-based ma-
chine (the ABC machine). The abstract machine forms an additional
more concrete intermediate level enabling a relatively easy production
of interpreters and code generators for various target machines.

Motorola
code

ABC machine
simulator

Motorola
processor

Functional
graph

rewriting

Miranda
program

Clean
program ABC code

Figure P4.1 Two intermediate levels; three translations.

Owing to the intermediate levels, some of the information present
in the original program might get lost, so some loss of efficiency might
be introduced. This conceptual loss is generally well compensated since
the compiler becomes more structured and easier to maintain.

Five chapters treat the two intermediate levels and the three corre-
sponding translations. These transformations are also used in the Con-
current Clean system: the software package that goes with this book.
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Chapter 8
Clean

8.1 Clean, a language for functional
graph rewriting

8.2 The type system
8.3 Strict annotations

8.4 Modules
8.5 Unique types and destructive

updates
8.6 Input/output handling

Clean is an experimental lazy higher order functional programming lan-
guage based on functional graph rewriting systems (FGRSs) (see
Chapter 5). So Clean is a functional language in which computations
are expressed in terms of graph rewriting. Clean is originally designed
as an intermediate language to be used in the compilation path from
(eager as well as lazy) functional languages to concrete machine archi-
tectures (Figure 8.1).

Motorola
code

ABC machine
simulator

Motorola
processor

Miranda
program ABC codeClean

program

Figure 8.1 Clean as intermediate language.

In contrast with most other functional programming languages
Clean supports only the most basic aspects of functional programming
(see Chapter 1). Syntactical sugar (such as infix notation or ZF-expres-
sions) is mainly excluded. Clean basically just realizes FGRSs syntacti-
cally extended with macros and guards. However, many additional se-
mantic features have been added enabling an efficient and usable im-
plementation, e.g. a type system, annotations to control evaluation or-
der, a modular structure and type attributes enabling destructive up-
dates of objects, as well as a library that enables a high-level specifica-
tion of input and output.
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Type information is important for programmers since it will help
them to design programs which are correct and understandable. But,
type information is also important because it can be used to generate
efficient code. Furthermore, the type information can be used to create
a modular environment. The type system of Clean is based on the type
assignment system for TRSs as explained in Section 6.3. It includes
polymorphic types, abstract types, algebraic types and synonym types,
as well as basic types (see Section 8.2). Lists, tuples and function type
constructors are predefined.

With annotations the evaluation order of a Clean program can be
influenced by the programmer: the evaluation can be made (partially)
eager instead of lazy. In this way a better space and time behaviour of
functional programs can be obtained in a machine-independent manner
(see Section 8.3). For efficient solutions of some problems the ability to
share computations and to control the evaluation order is essential. In
the extended language, Concurrent Clean (see Chapter 15), even
parallel evaluation can be specified by the programmer.

Clean’s modular structure (see Section 8.4) consists of separate
implementation modules and definition modules, including a facility to
import definitions from other modules implicitly and explicitly. There are
predefined modules (libraries) for basic operations (δ-rules) on objects
of basic types (integers, reals, characters, strings and booleans).

The interaction with the outside world has always been hard to in-
corporate in the functional framework. The Clean type system is ex-
tended with the unique type attribute that can be assigned to an object
of any type (see Section 8.5). An object with the unique type attribute
that is passed as an argument to a function can, under certain condi-
tions, be reused. Referential transparency is still guaranteed while de-
structive updates of arrays, files and the like are made possible, result-
ing in an important efficiency gain.

Owing to these unique types one can specify with the Clean I/O
library I/O devices (dialogs, menus, windows and the like) on a very
high level of abstraction (see Section 8.6). As much as possible of the
low-level I/O handling is done automatically by the library system. Pre-
defined algebraic data types can be used to specify which devices
should be activated and how these devices should be initialized. A pro-
grammer just specifies which (higher order) function is called when a
certain part of an active device is triggered (e.g. a particular menu item
has been chosen).

Using Clean as intermediate language has made it possible to
concentrate on the implementation of the basic aspects only, instead of
getting lost in the details of a specific full-featured functional language.
Since Clean is an experimental language, it has been equipped with
some special features that are not found (yet) in other functional lan-
guages. Major and minor changes and extensions can be expected in
future versions of the language.
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8.1 Clean, a language for functional graph rewriting

Clean (Brus et al., 1987; Nöcker et al., 1991b; Van Eekelen et al., 1992)
was designed at the University of Nijmegen and it stands for: Clean
Lean1. Clean is based on functional graph rewriting systems (see Chap-
ter 5).

8.1.1 Basic syntax of rewrite rules

Clean uses the shorthand notation of graph rewrite rules. Apart from
some additions for typing and for programming convenience (see Ap-
pendix B for a full syntax description of the language) the only syntactic
differences from FGRSs are:

• The rule alternatives of a function definition are grouped together.
• A ‘ ;’ marks the end of each rule alternative.
• Redirections consist of a single node-id only.
• The keyword RULE indicates that a sequence of graph rewrite rule

definitions follows (so that they can be distinguished from other
kinds of declaration).

• ‘ ->‘ is used instead of an →.
• Empty nodes cannot be denoted in Clean.
• Several functions on basic types are predefined (see Section 8.1.3).
• Guards are added for choosing between rule alternatives (see Sec-

tion 8.1.4).
• Lists and tuples are predefined data structures (see Section 8.1.5).
• Currying is allowed. A curried application is transformed at com-

pile-time to an application of an internal ‘apply rule’ (see Section
8.1.6).

• Macros are used for programming convenience (see Section 8.1.7).

8.1.2 Semantics

Clean’s basic semantics are treated in Chapter 5 (semantics of FGRSs).
There are, however, some differences between FGRSs and Clean:

• When at run-time an empty node is created, in Clean an error mes-
sage is given (see Section 5.8).

• Clean rules are typed (see Sections 6.3 and 8.2).

1 Lean (Barendregt et al., 1988) stands for the Language of East Anglia and Nij-
megen, jointly designed at both universities. Lean has been used to experiment with
generalized graph rewriting systems (see Section 5.9).
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• In Clean, the functional strategy can be influenced by using anno-
tations that make the evaluation partially eager instead of lazy (see
Section 8.3).

• Input/output is treated in a special way. In order to communicate
with the outside world, the Start rule optionally can have a parame-
ter of type UNQ WORLD, representing the environment in which the
program is called (see Sections 8.5 and 8.6).

8.1.3 Predefined functions and basic types

For practical reasons it is convenient that rules for performing arith-
metic on objects of basic types (integers, reals etc.) are predefined. Then
they can be implemented efficiently with the concrete representation
and corresponding instructions available on the concrete machine.

<< The factorial function in Clean using predefined functions.
>>
RULE
:: Fac INT -> INT; == type definition

Fac 0 -> 1; == the factorial function
Fac n -> * n (Fac (– – n));

:: Start -> INT; == type definition
Start -> Fac 20; == the initial expression

As in FGRSs prefix notation is used. Rules starting with ‘::’ are type rules (see
Section 8.2). Comments are placed between ‘<<’ and ‘>>’ or after a ‘==’.

Below, a list is given of several predefined functions (for a full list of
the functions in the Clean library, see Appendix B).

Basic type Examples of denotations Examples of predefined functions

INT 1, 2, 2147483647 +, –, =, >=, AND%
REAL 1.5, 0.314E10 +R, –R, =R, >=R, SIN, EXP
CHAR 'a', 'b', 'c', '\n', '\007' =C, >=C
BOOL TRUE, FALSE NOT, AND, XOR, =B
STRING "This is a string \n" +S, –S, =S, >=S, SLICE
FILE StdIO, FOpen, FWriteC

8.1.4 Guarded expressions

In Clean, guards can be added to rewrite rules. A guard is a Boolean ex-
pression that can be seen as an extension of the pattern matching mecha-
nism: a rule alternative is only chosen when its pattern matches a sub-
graph and its guard evaluates to TRUE. Pattern matching always takes
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place before the guard is evaluated. A guard is separated from the right-
hand side of a rule by an optional comma and the keyword IF. In a guard
the infix operators || (conditional OR) and && (conditional AND) can be
used. The arguments of the operators are evaluated from left to right,
and parentheses can be used to specify the priorities. Arguments of op-
erators are not evaluated when their value is of no influence on the
value of the result. For instance, when the first operand of || evaluates to
TRUE, the second operand will not be evaluated: the result will be TRUE
anyway.

Rule alternatives that have the same left-hand side (but different
guards) can be grouped together separated by arrow symbols (‘->’).
When the last guarded expression has a guard that always evaluates to
TRUE that guard can be omitted (the ‘otherwise’ or ‘default’ case).

Example of the use of guards in Clean:

:: Fib INT -> INT;
Fib n -> 1, IF  = n 1  ||  = n 2

-> + (Fib (– n 1)) (Fib (– n 2)), IF  > n 2
-> ABORT "Fibonacci called with argument less than one";

8.1.5 Predefined data structures and type constructors

To provide some programming convenience, denotations for lists and
tuples are predefined.

Lists

Lists are denoted as follows: Nil is denoted as [ ], Cons h t as [h | t] and the
list with elements 1, 2, 3 and 4 is denoted as [1, 2, 3, 4]. Furthermore, [e1,
… , en | r] denotes a list r prefixed with elements e1 … en. If T is a type,
than [ T ] denotes the type list of T.

Merge merges two sorted lists of integers, removing double occurrences:

:: Merge [INT] [INT] -> [INT];
Merge [ ] g -> g;
Merge f [ ] -> f;
Merge f:[ a | b ] g:[ c | d ] -> [ a | Merge b g ], IF  < a c

-> Merge f d, IF  = a c
-> [ c | Merge f d ];

Tuples

Tuples and tuple type constructors are denoted as in Miranda. If T1, … ,
Tn are types, then (T1, …, Tn) denotes the type tuple of  T1, …, Tn.
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Example of Clean tuples and their types:

(3, 0, 'a') == 3-tuple of type (INT, INT, CHAR)
([0, 1, 2], +) == 2-tuple of type ([INT], => INT (=> INT INT))

In order to simplify the use of tuples a special syntactical construct is
added that automatically generates projection functions. One can specify
a definition of a number of node-ids simultaneously by placing a tuple
of node-ids before a colon symbol in a node definition. The basic idea
of this construct is illustrated by the example below:

Instead of

G … -> H a b,
a: First g,
b: Second g,
g: F …;

F … -> (x, y);

First (a, b) -> a;
Second (a, b) -> b;

one can define G more compactly (First and Second are no longer needed):

G … -> H a b,
(a, b): F …;

The meaning of such a construct is that all these node-ids are bound at
run-time to parts of the graph on the right-hand side of the colon sym-
bol. This only makes sense if this graph denotes a function that delivers
a tuple. The type checker (Section 8.2) verifies that this is true.

Example of the use of tuples before a colon symbol in a node definition.

RULE
== FindElem traverses a list of lists of integers to search for the element el.
== The list containing the element and its index in this list is returned.

:: FindElem [[INT]] INT -> ([INT], INT);
FindElem [ l | ls ] el -> (l, index), IF  found

-> FindElem ls el,
(found, index): Index l el 1;

:: Index [INT] INT INT -> (BOOL, INT);
Index [ ] el n -> (FALSE, n);
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Index [ f | r ] el n -> (TRUE, n), IF  = el f
-> Index r el (++ n);

:: Start -> ([INT], INT);
Start -> FindElem [ l1, l2, l3 ] 6,

l1: [ 2, 3, 5, 7, 11, 13, 17, 19 ],
l2: [ –9, –6, –3, 0, 3, 6, 9 ],
l3: [ 1, 4, 9, 16, 25, 36 ];

Besides the benefit of notational elegance, the list and tuple constructs
have the advantage that they indicate special predefined cases that can
be implemented more efficiently than the fully user-defined data struc-
tures. In the case of the tuples it might even lead to fewer reductions
since it is not necessary any more to apply a selector function explicitly
to access the elements of the tuple.

8.1.6 Currying

Clean conceptually uses the functional notation (see Section 4.1.4). As
explained in Sections 4.8 and 6.3.2, curried applications of functions
can be realized by introducing additional rewrite rules that transform
curried applications into uncurried ones. This method has a disadvan-
tage. Many of these additional ‘AP-rule’ alternatives are needed: one
alternative for each function that is used in a curried manner. It is much
more convenient if this curry conversion is performed automatically.

This automatic conversion has been realized in Clean in the follow-
ing way: a generic internal rule _AP is predefined (internal here means
that this _AP rule cannot be used by the programmer explicitly) with
which curried applications of any symbol F are transformed into uncur-
ried applications at compile-time.

The Twice function as defined in Clean is given below.

:: Twice (=> x x) x -> x;
Twice f x -> f (f x);

The curried applications of f are internally transformed leading to

Twice f x -> _AP f (_AP f x);

The internal rewriting code for _AP provides that when a symbol is sup-
plied with a sufficient number of arguments it will be rewritten accord-
ing to the rule that corresponds to the curried symbol. This allows the
programmer to use symbols with an arbitrary arity or to apply node-ids
to arguments. If F is defined with arity n, say F a1 a2 ... an -> ar, then
_AP ( ... (_AP (_AP F a1) a2) … ) an reduces to F a1 a2 … an. If there are too
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few arguments the expression is in root normal form (_AP is a partial
function). Since the conversion of curried applications into uncurried
ones will be done automatically there is no need at all for the program-
mer to be aware of the presence of this internal _AP rule.

This facility implies the need for a special predefined type con-
structor, the curried function type, denoted by =>. This predefined type
can be compared with the function type constructor as predefined in Mi-
randa, used in prefix notation. So the type => a b stands for a curried
function (of arity one) that, when applied to an argument of type a, will
produce a result of type b (pronounce => a b as: curried function from a
to b). Consequently, the type axioms of the Clean type system include
the equivalence of

:: F -> => t1 (=> t2 (=> ... (=> tn tr) ... )) ; to :: F t1 t2 ... tn -> tr ;

if F is defined with arity n. The internal function _AP is typed as:

:: _AP (=> a b) a -> b ;

The first argument of _AP (i.e. the function that has to be applied) al-
ways has to be evaluated in order to compute the result. So _AP is strict
in its first argument.

With this syntactic sugar the Hamming example of Chapter 5 can be specified
in Clean in the following way (with the IMPORT statement, general δ-rules for
arithmetic are imported (see Section 8.4)):

MODULE Hamming;
IMPORT delta;
RULE
:: Ham -> [INT];

Ham -> x: [ 1 | Merge (Map (* 2) x) (Map (* 3) x) ];

:: Map (=> x y) [x] -> [y];
Map f [ ] -> [ ];
Map f [ a | b ] -> [ f a | Map f b ];

8.1.7 Macros

In Clean one can define macros: macros are special rewrite rules that
are rewritten (expanded) at compile-time. Macros can be used to assign
a meaningful name to a constant or to an expression (graph). They can
reduce the number of function calls at run-time. Furthermore, macros
can be used as a named constant in a redex pattern.

A MACRO block consists of a number of macro definitions of the
form Left-hand-side-graph -> Right-hand-side-graph;. At compile-time the
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right-hand side of the macro definition will be substituted for every oc-
currence of the left-hand side. Macros may have parameters, but it is not
allowed to specify a pattern on the left-hand side of a macro definition.
Consequently, a macro rule always consists of a single alternative. It is
clear that, at compile-time, the rewriting of the macros should always
terminate. This is guaranteed by prohibiting macros that are mutually
dependent or recursive.

Example of the use of macros in Clean.

MACRO
Size -> 6;
UnsortedList -> [ 3, 1, 5, 2, 4 ];
Singleton x -> [ x ];
+SC string char -> +S string (CTOS char);
*R4 r1 r2 r3 r4 -> *R r1 (*R r2 (*R r3 r4));

8.2 The type system

Clean is a typed language conforming to the type system introduced in
Section 6.3. So, in many cases, types in Clean are similar to but not ex-
actly the same as those in Miranda. Note that in Clean each symbol is
defined with a fixed arity. In Miranda functions are always curried and
have at most one argument. As already explained in Section 8.1.4, the
function type => (in prefix notation) is used for curried functions. An-
other difference is that identifiers are used for type variables instead of
*s. Two major differences concern abstract types (in Clean abstract
types are connected to the module structure; see Section 8.2.2) and typ-
ing patterns (see Section 8.2.3).

As in Miranda, types do not have to be specified explicitly by the
programmer. For programmers in a hurry, types can be inferred by the
Clean compiler if type information is left out. However, the program-
mer is strongly advised to give an explicit specification of the types.

As a special facility of the Clean system, type checking can be
switched off. In that case specified types are not checked but assumed to
be correct. When the type of a function is not specified at all, the most
general type is assumed. This facility of Clean can be used to experi-
ment with GRS rules that are not typeable in the usual system. It is also
useful when Clean is used as intermediate language for an untyped
functional language, such as SASL (Turner, 1979b). Of course, its use is
very dangerous and it will generally lead to inefficient code.

8.2.1 Type definitions

The objects that are manipulated in Clean are graphs. With a type defi-
nition one specifies certain restrictions imposed on the graphs on which
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rewrite rules are defined. Syntactically, graph rewrite rules are used to
define types. Semantically there is of course a great difference between
type rules and rewrite rules. In fact, in Clean types specify restrictions
on the underlying term structure, rather than on the specific graph struc-
ture. Therefore, all graphs in type definitions have to be directed acyclic
graphs (dags) without explicit node definitions.

Types are defined in a TYPE block, just like rewrite rules are de-
fined in a RULE block. Blocks may be specified in any order. Each type
rule must be preceded by a ‘::’. The function symbol of the type rule is
called the type symbol. Each time the same type variable is used in a
particular type rule, it stands for the same type.

8.2.2 Defining new types

As in Chapter 2 there are three kinds of type definition that introduce
new types: algebraic type definitions, synonym type definitions and ab-
stract type definitions.

Algebraic types

Algebraic types are specified by means of a type rule where each alter-
native has a right-hand side with a fresh root symbol: the constructor.
All the arguments of the constructor are type instances. A type instance
is either a type variable or a dag with a type symbol, as root of which all
the arguments are type instances. The alternatives of an algebraic type
definition can be separated either by an arrow symbol (‘->’) or by a ver-
tical bar (‘|’).

Compare the following (polymorphic) algebraic type definitions with the cor-
responding definitions given in Chapter 2:

TYPE
:: Day -> Mon | Tue | Wed | Thu | Fri | Sat | Sun;

:: Intlist -> NilList
-> IntList INT Intlist;

:: Tree x -> NilTree
-> NodeTree x (Tree x) (Tree x);

Synonym types

Synonym types permit the user to introduce a new name for an already
existing type. Mutual dependencies of synonym type definitions are pro-
hibited.
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Example of a type synonym definition in Clean:

TYPE
:: Stack x -> [x];

Abstract types

In Clean, abstract type definitions are only allowed in definition mod-
ules (see Section 8.4). Abstraction and hiding are considered to be two
sides of a coin. So the module structure is used to hide the concrete
signature of the abstract type to the outside world. An abstract type is
actually a synonym type or an algebraic type of which the concrete def-
inition is hidden in the corresponding implementation module. In the
definition module only the left-hand side of the type definition is shown
as well as the type of the functions defined on the abstract data structure
(the abstract signature). To distinguish an abstract type definition from
an ordinary type definition a special kind of type block is provided: an
ABSTYPE block.

A well-known example of an abstract data type is given below:

DEFINITION MODULE Stack;
ABSTYPE
:: Stack x;

RULE
:: Empty -> Stack x;
:: IsEmpty (Stack x) -> BOOL;
:: Push x (Stack x) -> Stack x;
:: Pop (Stack x) -> Stack x;
:: Top (Stack x) -> x;

The corresponding implementation module:

IMPLEMENTATION MODULE Stack;
IMPORT delta ;
TYPE
:: Stack x -> [x] ;

RULE
:: Empty -> Stack x;

Empty -> [ ];

:: IsEmpty (Stack x) -> BOOL;
IsEmpty [ ] -> TRUE;
IsEmpty s -> FALSE;
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:: Push x (Stack x) -> Stack x;
Push e s -> [ e | s ];

:: Pop (Stack x) -> Stack x;
Pop [ e | s ] -> s;

:: Top (Stack x) -> x;
Top [ e | s ] -> e;

Note that predefined types can be seen as special cases of abstract types.

8.2.3 Type specifications for functions

The type of a rewrite rule is either explicitly specified or it is inferred by
the system. When it is explicitly specified the type specification must
precede the corresponding rewrite rule. The type rule consists of one
rule; free type variables may appear on the right-hand side.

Using free type variables on the right-hand side of a type definition for a
rewrite rule: F has as result type any list.

:: F -> [x];
F -> [ ];

Typing partial functions

Some type errors cannot be detected at compile-time. A partial function
can be called with an actual argument of the correct type (domain) for
which no image exists, due to a failing pattern match. An error is gener-
ated at run-time if this leads to a wrong value.

At run-time the application of F in the start rule will not match. So F 1 will not
yield the required type: INT. Hence, at run-time a type error is generated:

:: F INT -> INT;
F 0 -> 0;

:: Start -> INT;
Start -> F 1;

However, a failing match does not always have to be wrong. A match
may fail as long as no type conflicts are caused by this failure and safe
rewrite rules are being used (see also Section 6.3.2). In FGRSs there is
no special situation when a function application does not match any of
the rewrite rules of the function: the result is a root head normal form.
In Clean this is also the case as long as no type conflicts occur and
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functions are safely typed (see Section 6.3.2). So in Clean functions can
appear on a ‘constructor position’. In Miranda a non-matching function
will always result in a run-time error: Miranda is a function constructor
system.

Consider the following example:

TYPE
:: Num -> Zero

-> Succ Num
-> Pred Num;

RULE
:: Succ Num -> Num;

Succ (Pred n) -> n;

:: Pred Num -> Num;
Pred (Succ n) -> n;

:: Start -> Num;
Start -> Succ (Succ Zero);

The graph Succ (Succ Zero) in the start rule will not match any rule. But, the
resulting graph is still correctly typed and has type Num. In Clean Succ and
Pred have to be defined twice, once as function and once as constructor. No-
tice that the definitions of the functions Succ and Pred are safe according to
the condition given in Section 6.3.2.

8.3 Strict annotations

By default Clean rules are reduced using the functional strategy. This
strategy may be locally influenced by the use of annotations added to
the Clean program. Annotations can be considered as parameters of the
strategy function. They are very important if one wants to optimize the
time and space behaviour of the reduction process.

In this section the strict annotations are discussed that can be
added in Clean to the rewrite rules and to type rules with the effect that
sometimes partially eager evaluation is used instead of lazy evaluation.
Strict annotations are important because, in general, functions with an-
notated arguments can be implemented very efficiently (see Chapters 10
and 11). The largest gain in efficiency is obtained when arguments of
the basic types are being annotated. Strict annotations are also conve-
nient when Clean is used as an intermediate language for eager lan-
guages (such as HOPE (Burstall et al., 1980) or FP (Backus, 1978)).
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Strict annotations and the order of evaluation

Annotations let the reduction strategy deviate from the default func-
tional evaluation order, making the evaluation order partially eager in-
stead of lazy. Annotations can be placed in definitions of new types and
in type specifications of rewrite rules (global annotations) as well as in
the right-hand sides of the rewrite rules themselves (local annotations).
If a strict annotation is specified, the evaluation of the indicated sub-
graph is forced. This forced evaluation will also follow the functional
strategy, yielding a root normal form. After the forced evaluation has
delivered the root normal form, the reduction process continues with the
ordinary reduction order following the functional strategy.

Strict annotations can only be added safely when it is known that
the termination behaviour of the original program is not changed.

A strict annotation might change the termination behaviour of a program: be-
fore the rewrite rule for F is applied, the reduction of the argument of F is
forced due to the specified strict annotation. As a consequence, the normal
form 1 of F W will not be reached any more.

:: Start -> INT;
Start -> F !W;

:: W -> INT;
W -> W;

:: F INT -> INT;
F x -> 1;

Strict annotations are in general used to force the evaluation of argu-
ments of a function in the case that the function is known to be strict in
these arguments (see Chapter 7). A strict argument can safely be evalu-
ated in advance.

Ideally, a programmer should not be bothered at all with annota-
tions to gain efficiency. As shown in Chapter 7, a good strictness anal-
yser (such as incorporated in the Clean system) can detect many cases
where strict annotations can be put safely. Therefore, user-defined strict
annotations are generally only used when an ultimate gain in efficiency
is demanded.

8.3.1 Global strict annotations in type rules

The strict annotations in a type specification are called global because
they change the reduction order for all applications of a particular func-
tion. Annotations in a type specification of a function are allowed to be
placed before the type specification of an argument on the left-hand side
of the type rule.
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Example of a global strict annotation in type rules:

:: Cond !BOOL x x -> x;
Cond TRUE then else -> then;
Cond FALSE then else -> else;

Note that the strict annotation will force the evaluation of the first argument
before the Cond function is examined as a candidate for rewriting.

In reasoning about programs with global strict annotations it will
always be true that the annotated argument is in root normal form when
the corresponding rule is applied. In the pattern matching phase this
knowledge can be used: one can start by comparing symbols.

Another example of a global strict annotation: the Nfib function calculates the
number of times it is called. Nfib is frequently used to determine the number of
function calls per second for a particular implementation.

:: Nfib !INT -> INT;
Nfib n -> 1, IF < n 2

-> ++ (+ (Nfib (– n 1)) (Nfib (– n 2)));

Strict annotations can also be placed in type rules to indicate that the
corresponding parts of an argument or a result will always be evaluated
when the object as a whole is evaluated.

Example of global strict annotations in tuple types:

:: +C !(!REAL, !REAL) !(!REAL, !REAL) -> (!REAL, !REAL);
+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);

Strict annotations may be used in the same manner in a type syn-
onym definition. The meaning of these annotated synonym types can be
explained with the aid of a simple program transformation with which
all occurrences of these synonym types are replaced by their right-hand
sides (annotations included).

Example of (partially) strict tuple types in a type synonym definition. The def-
inition of +C is equivalent to the definition given above.

TYPE
:: Complex -> (!REAL, !REAL);

RULE
:: +C !Complex !Complex -> Complex;

+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);
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Allowing tuples to be strict makes it possible to define functions that de-
liver multiple results eagerly (i.e. all results already evaluated). This is
in contrast with the general lazy case where the evaluation of the argu-
ments of a tuple is not forced since the tuple constructor that ‘glues’ the
results together induces a lazy context for these arguments. With a strict
annotation it is possible to overrule this laziness. The use of (partially)
strict data types can lead to very efficient code (Nöcker and Smetsers,
1993).

8.3.2 Local strict annotations in rewrite rules

Strict annotations in rewrite rules are called local. They change only the
order of evaluation for a specific function application. Local strict anno-
tations can be placed anywhere on the right-hand side of a rewrite rule,
both on arguments as well as on nodes. If a local strict annotation is put
on a node, this is equivalent to putting the annotation on each reference
to that node. When a rewrite rule is applied, all strict annotated nodes of
the right-hand side of the applied rewrite rule are evaluated before the
evaluation continues.

Example of strict annotations on the right-hand side. For this particular occur-
rence of Cond (as defined in a previous example) it is indicated that a com-
mon part of the then and else part can be reduced safely.

F x y -> Cond x !y (++ !y);

Each node on the right-hand side is considered to be either strict
(appearing in a strict context: it has to be evaluated to root normal
form) or lazy (appearing in a lazy context: not yet to be evaluated to
root normal form). The following rules specify whether or not a particu-
lar node is lazy or strict:

(1) the root node of the right-hand side is strict;
(2) the global annotated arguments of a strict node are strict;
(3) a local annotated node is strict;
(4) all the other nodes are lazy.

Before reducing the root node of the right-hand side all strict nodes
other than the root node are evaluated to root normal form.

Example illustrating states of nodes:

:: F ![INT] INT -> [INT];
F [ ] n -> [ ];
F [ a | b ] n -> [ n | F b (G a n) ];
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G a b -> + a b;

Start w -> r: F a b, a: F e c, e: [ 1 ], c: ++ 5, b: G 1 !d, d: ++ 4;

In the Start rule, the nodes r, a, e and d are strict; the others are lazy.

8.3.3 Strictness analysis

A strictness analyser is incorporated in the Clean system. This analyser
is based on abstract reduction (see Chapter 7). The analyser can often
determine strictness and is quite fast. When a function is found to be
strict in a certain argument, a global strict annotation is generated auto-
matically. Certain strictness information is very difficult to detect. Find-
ing information for tuple types is almost impossible since it would re-
quire an analysis of all the possible uses of the type.

Consider again the following example:

+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);

The only information that can be derived for the function +C is that it is strict
in its arguments (because of the pattern matching). The result of the function
is a tuple that is in root normal form. One generally cannot conclude that the
tuple arguments are needed and hence they cannot be reduced in advance.

8.3.4 Strict annotations and gain in efficiency

The following example illustrates the gain in efficiency that is achieved
when strict annotations are added to a Clean program. Consider the fol-
lowing Clean program that calculates the Ackermann function.

:: LazyAcker INT INT -> INT;
LazyAcker 0 j -> ++ j;
LazyAcker i 0 -> LazyAcker (– – i) 1;
LazyAcker i j -> LazyAcker (– – i) (LazyAcker i (– – j));

:: Start -> INT;
Start -> LazyAcker 3 7;

Performing this computation on a MacIIx with a 4Mb heap takes 16.3 s
+ 0.2 s for garbage collection.

:: StrAcker INT INT -> INT;
StrAcker i 0 -> StrAcker !(– – i) 1;
StrAcker i j -> StrAcker !(– – i) !(StrAcker i (– – j));
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The same computation (StrAcker 3 7), but now with local strict annota-
tions added (as shown in the definition of StrAcker) will only cost 9.6 s +
0.1 s for garbage collection. The gain in efficiency is obtained because
fewer nodes have to be made. In general, it is hard to predict how much
gain will be achieved.

:: Acker !INT !INT -> INT;
Acker 0 j -> ++ j;
Acker i 0 -> Acker (– – i) 1;
Acker i j -> Acker (– – i) (Acker i (– – j));

A significant gain in efficiency can be obtained when strict annotations
are placed in global positions (see the (type) definition of Acker above).
The same computation (Acker 3 7) will now only take 1.9 s + 0.0 s
garbage collection. The gain is one order of magnitude compared with
the previous definitions. It is now known that for all applications of the
function the evaluation of the argument is needed, in particular for the
recursive call itself. As will be explained in Chapter 11, no nodes are
made at all (hence no garbage collection is needed) because both argu-
ment and result are of type INT. The calculation is performed on a stack
and registers are used where possible. The speed is comparable with a
recursive call in highly optimized C or with the speed obtainable when
the function is programmed directly in assembler. The example already
reveals the cost of lazy evaluation and pure graph reduction compared
with eager evaluation using stacks and registers. Fortunately, with the
help of strictness analysis, much strictness information can be found
automatically (for instance in the case of the Ackermann function de-
fined above).

8.4 Modules

For a practical useful language separate compilation is a must. A modu-
lar structure enables this with the facility to hide actual implementations
of types and functions. This can also be used to specify abstract data
types (see also Section 8.2). The Clean modular structure very much re-
sembles the Modula2 approach (Wirth, 1982) with one major exception:
Clean’s implicit imports, which simplify the definition of modules that
just collect and pass-through definitions of other modules.

A Clean program consists of definition modules and implementa-
tion modules. In general, each definition module has a corresponding
implementation module. An implementation module and its correspond-
ing definition module bear the same module name. Each module is
stored in a separate file with the same name as the module, with an ap-
propriate extension (e.g. name.icl, name.dcl).
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8.4.1 Implementation modules

An implementation module consists of a sequence of type and rule def-
initions. The types and rules defined in such an implementation module
have in principle only a local scope: they have meaning only in the im-
plementation module in which they are defined.

Example of an implementation module:

IMPLEMENTATION MODULE ListOperations;
FROM deltaM IMPORT ABORT;
RULE
:: Hd [x] -> x;

Hd [ x | y ] -> x;
Hd x -> ABORT "head of empty list ?! ";

:: Tl [x] -> [x];
Tl [ x | y ] -> y;
Tl x -> ABORT "tail of empty list ?! ";

:: IsNil [x] -> BOOL;
IsNil [ ] -> TRUE;
IsNil x -> FALSE;

An executable Clean program should have an implementation module
with a Start rule declared in it. This module is called the start module.

8.4.2 Definition modules

In a definition module one can specify which types and rules (defined in
the corresponding implementation module) are exported, i.e. are made
visible to the outside world. To export a type or a function from an im-
plementation module one has to repeat its type definition in the corre-
sponding definition module. All other definitions in the implementation
module remain hidden.

Example of a definition module:

DEFINITION MODULE ListOperations;
RULE
:: Hd [x] -> x;
:: Tl [x] -> [x];
:: IsNil [x] -> BOOL;

An abstract type can be realized by exporting the name of an algebraic
or synonym type, but not its concrete realization (see also Section
8.2.2). A definition module does not need to have a corresponding im-
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plementation module. This can be useful for defining types on a global
level. Such a definition module can also serve as a ‘pass-through’
module (see Section 8.4.3).

System modules

System modules are special definition modules indicated by the key-
word SYSTEM instead of DEFINITION. This indicates that the correspond-
ing implementation module does not contain ordinary Clean rules, but
abstract ABC machine code instead (the ABC machine is explained in
Chapter 10). This facility makes it possible to program directly in ABC
code. This can be used to increase execution speed of heavily used
functions or complex data structures. On demand, the Clean compiler
will substitute the ABC code of a function in-line at the place in which
the corresponding function is called. In this way execution speed can be
increased even more. An advantage of system modules is that a certain
increase of efficiency can be obtained in a device-independent manner,
since ABC code is device independent. It goes without saying that for
ABC programming advanced knowledge is needed of the code genera-
tion schemes and the run-time behaviour of the ABC machine. Impru-
dent programming of system modules will generally lead to unpre-
dictable errors. Typically, predefined δ-rules are implemented as system
modules (see Appendix B).

8.4.3 Implicit and explicit importing

Via an import statement an exported definition can be used in another
implementation or definition module. Imported types and rules can be
regarded as being predefined. There are two kinds of import statement:
explicit and implicit imports.

Explicit imports

Explicit imports are import statements in which every type or rule that
has to be imported from a particular module is explicitly mentioned. In
this way only these explicitly indicated types and rules are declared
within the importing module.

Example of the use of explicit IMPORT statements: the sieve of Eratosthenes,
which calculates prime numbers.

IMPLEMENTATION MODULE Eratosthenes;
FROM deltaI IMPORT ++, =, % ;
RULE
:: Start -> [INT];

Start -> Sieve (Gen 2);
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:: Sieve [INT] -> [INT];
Sieve [ pr | str ] -> [ pr | Sieve (Filter pr str) ];

:: Filter INT [INT] -> [INT];
Filter pr [ n | str ] -> Filter pr str, IF  = (% n pr) 0

-> [ pr | Filter pr str ];

:: Gen INT -> [INT];
Gen n -> [ n | Gen (++ n) ];

Implicit imports

Implicit imports are import statements in which only the imported mod-
ule name is mentioned. In this case all symbols that are declared (i.e.
defined or imported) in the imported module are imported (and hence
also declared in the module that contains the import statement). So not
only are all symbols exported by the indicated module imported, but
also all symbols which in their turn are imported in that definition
module. In this aspect the Clean modular structure differs from the
Modula2 approach. So with one simple IMPORT statement all related
declarations are imported implicitly. Consequently, definition modules
can serve as a kind of ‘pass-through’.

All delta-rules can be imported easily by importing the module delta via the
implicit import statement: IMPORT delta; . This is due to the fact that all pre-
defined definition modules for arithmetic are in their turn implicitly imported
in the definition module delta .

DEFINITION MODULE delta;
IMPORT deltaB, deltaC, deltaI, deltaR, deltaS, deltaM;

8.5 Unique types and destructive updates

Section 2.6 describes the Miranda method of writing interactive pro-
grams. However, this approach has many disadvantages. To interact
with the operating system the initial expression has to yield special con-
structors which have to be interpreted by the run-time system. To ensure
referential transparency, certain restrictions are imposed on the kind of
I/O that is permitted (e.g. a file cannot be rewritten). Furthermore, the
solution is rather inefficient and the structure of highly interactive pro-
grams can become rather ugly. Generally, there is a direct relation be-
tween input and output which is not always clearly visible in the Mi-
randa approach: input is converted into a list to read from, output has to
be produced by an eager printing of the result yielded by the initial ex-
pression. Since the order in which functions are evaluated is hard to
predict, a frequently occurring error consists of the specification of a
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program that demands input before a prompt for such is given. So the
Miranda solution is not a satisfactory method for writing interactive pro-
grams.

On the other hand, it is not easy to find a good solution. The prob-
lem is that certain kinds of destructive updates, which occur for exam-
ple in traditional file I/O, would be very nice to have. But one cannot
have destructive updates in the functional framework without some
drawbacks. So the questions that arise are:

• How is it possible to perform destructive updates efficiently with-
out violating the functional properties of the program (referential
transparency, Church–Rosser property)?

• Since the evaluation of a functional program is unpredictable, how
can one control the order in which destructive updates are per-
formed?

When are destructive updates safe?

What kind of problems are caused by functions that perform destructive
updates? Such functions are, for example, functions that destructively
update an array, instantaneously write to a file on disk or to a window
on a screen.

Take, for example, file I/O. The most obvious and efficient way to
perform file I/O is by implementing functions that directly read and
write to a file, such as is common in imperative languages. However, a
naïve implementation of such functions in a functional language would
conflict with referential transparency. For instance, assume a function
that upon evaluation directly writes a character to a given file. Assume
that such a function is of type:

:: FWriteC CHAR FILE -> FILE;

This function takes a character and a file as an argument. However, the
character cannot be written into the given file and returned as result be-
cause the original file can be shared and used in other function applica-
tions. Modification of the argument will therefore also affect the out-
come of other computations that share the same argument. The result of
a program will now depend on the evaluation order, and the Church–
Rosser property is lost.

Example of an illegal destructive update:

:: F FILE -> (FILE,FILE);
F file -> (file1, file2),

file1: FWriteC 'a' file,
file2: FWriteC 'b' file;
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Assume that the function FWriteC would actually append the given character
to the file it gets as an argument. Now, since the file is used twice in the func-
tion body of F the result will depend on the evaluation order. It will either be
(file++'a', file++"ab") or (file++"ba", file++'b'). But, if FWriteC does not change
the original file the result would be (file++'a', file++'b'), independent of the
chosen evaluation order.

The destructive update is also in conflict with the standard graph
rewriting semantics of FWriteC (see also Appendix B) that prescribes
construction of a new file (contractum) in the function body with the
contents of the given file and the given character. So each time a
character is written such a data structure has to be constructed. This is of
course very inefficient and it is not the intention either. One really
wants to have the possibility of modifying an existing file instanta-
neously. The problem becomes even more obvious when one wants to
write to a window on a screen: one would like to be able to draw in an
existing window. In the standard semantics one would be obliged to
construct a new window with each drawing command.

However, under certain conditions destructive updates can be al-
lowed. If it can be guaranteed that an argument of a particular function
application is not used by (shared with) other function applications, then
the argument becomes garbage if it is not used in the corresponding
function body. In principle one can destructively update such an argu-
ment to construct the function result. This would make it possible to
construct a function FWriteC that can actually write the character to the
given file, yielding the updated file. But, such a function can only re-
strictively be used. For example, the illegal example above would in-
deed not be allowed.

Controlling the evaluation order

Assume that we can define functions that perform destructive updates in
such a way that the Church–Rosser property of the program is retained.
One certainly would not want destructive updates such as interaction
with the user to occur in arbitrary order. How can one ensure that de-
structive updates are performed in the intended order? A well-known
method is environment passing. The state of the environment one wants
to regard is then coded into an (abstract) object (e.g. a FILE in the case of
file I/O). Each function that modifies the environment needs the current
state of the environment as argument and yields the updated environ-
ment as result. In the case of file I/O this means that all functions that
perform file I/O need a file as argument and return an updated file (see
Section 8.5.2 and Appendix B). So such an object has to be passed from
one function to another. When a function performs an update of an
argument, it must be guaranteed that all previous updates of that argu-
ment by other functions have already taken place. So a function that
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updates an argument must be hyper-strict in this argument, i.e. it must
be guaranteed that the argument is always in normal form before the
function is applied. Passing around unique objects from just one func-
tion to another is called the single-threaded use of objects. For such use
destructive updates are allowed and they take place in a fixed sequential
order (innermost).

Solutions for incorporating destructive updates

Currently, there are two promising ways to incorporate destructive up-
dates as described above in a pure functional language. The first method
is by using monads (Peyton Jones and Wadler, 1993). Monads are ab-
stract data structures on which functions are defined in such a way that a
single threaded use of the monad is guaranteed. However, a disadvan-
tage of the method is that one can only manipulate one monad at a time.
So, for example, destructive file I/O and destructive array manipulation
are hard to combine. In Clean a second method is introduced that does
not have this disadvantage but it does require a special type system. One
can assign a unique type attribute (Smetsers et al., 1993) to an arbitrary
object that can be used to guarantee that such an object can be destruc-
tively updated safely.

8.5.1 The unique type attribute

A node n of a graph G is unique with respect to a node m of G if n is
only reachable from the root of G via m and there exists exactly one
path from m to n (Figure 8.2).

m: F a1 … an

n:

root of G

Figure 8.2 Unique node n with respect to the root m of the redex.

A property of a unique node is the fact that it has a reference count
(in-grade) of one. A shared node which has a larger reference count than
one clearly cannot be unique with respect to any node. A reference
count of one is, however, not sufficient for uniqueness with respect to
any other node: there can still be more paths leading to such a node. As-
sume that a node is passed as argument of a certain function application
in such a way that the node is unique with respect to that function appli-
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cation: if such a node is accessed via a variable in a pattern of the corre-
sponding rewrite rule and that variable is not used on the right-hand side
of that rule, it can be considered as garbage and reused for building the
contractum.

It would be nice if at compile-time the uniqueness of arguments
and results of functions could be determined. Unfortunately, this is un-
decidable. In Clean a decidable approximation has been incorporated
using unique types. Unique types (Smetsers et al., 1993), defined on
graphs, have many similarities with linear types, defined on λ-terms
(Girard, 1987; Wadler, 1990). An important difference is that Clean’s
unique types give information about the way a specific function has to
be applied (e.g. this function has to be called with an argument that is
used in a linear way) while other linear type systems give information
about the way expressions are being used in the function body (e.g. this
argument of the function is used in a linear way in the function body).

Unique type specifications and functions

The type of a graph in a rewrite rule can have the unique type at-
tribute, i.e. the graph can be of type UNQ T. If a graph on a left-hand
side or on the right-hand side of a rewrite rule is of type UNQ T, it is
guaranteed that at run-time the root of the corresponding graph is
unique with respect to the root of, respectively, the function application
or contractum. When no contractum is specified, a result of type UNQ T
means that a redirection is performed to an object that was unique with
respect to the root of the function application. When this cannot lead to
confusion the phrase ‘a unique graph’ will be used instead of ‘a graph
which is unique with respect to the function application/contractum’.

The UNQ type attribute can be added by the programmer to any
type to express the restricted use of an object of that type. To verify the
correctness of the use of UNQ attributes the type system has been ex-
tended. This means that all applications on the right-hand side of a
function are examined to check that when a parameter or a result of a
UNQ type is demanded, a unique graph of the demanded type is offered.
Here, demanded means that either the corresponding formal parameter
of the applied function has a UNQ attribute or the result type of the de-
fined function itself is attributed with UNQ. To get a well-typed pro-
gram, the following general rules have to be obeyed:

• An applied occurrence of a node-id bound to a graph can have the
UNQ type attribute only if there exists at most one path from the
root of the right-hand side of a rule alternative to that applied oc-
currence.

Not well-typed example. The type specification of the function F defined be-
low will be rejected since two paths are leading from the root of the contrac-
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tum to the same node x. The unique argument of the function F is not unique
any more in the resulting pair. So the following types for F would be accepted:
::F UNQ INT -> ([INT], [INT]) or ::F INT -> ([INT], [INT]).

:: F UNQ INT -> ( [UNQ INT], [UNQ INT] );
F x -> ( y, y ),

y: [ x ];

Each function alternative is separately checked for consistency. Although in
the definition of F below the unique node-id n is used twice this does not lead
to a conflict: only one of the guarded expressions is chosen at run-time.

:: F UNQ INT INT -> UNQ INT;
F n m -> n, IF  = m 0

-> F (G n) (– – m);

:: G UNQ INT -> UNQ INT;
…

It is not always wrong to use a UNQ-typed graph more than once in
one and the same function alternative. A unique node-id may be
shared between the guard and the guarded expression belonging to
it. The reason is that a guard is evaluated in advance to determine
which of the function alternatives has to be chosen. A guard will
yield a Boolean result that cannot contain references to UNQ nodes.
To guarantee that no destructive updates occur when a guard is
evaluated, a graph that is being used in both guard and guarded ex-
pression will lose its unique type attribute in the guard. This en-
ables the non-destructive (observing) inspection of such a graph in
a guard. This property for guards can be generalized to a more
general property for uniqueness connected to the order of evalua-
tion (see Smetsers et al., 1993).

Example of sharing of a unique node-id in guard and right-hand side:

:: F UNQ INT -> UNQ INT;
F n -> n, IF  = n 0  ||  = n 1

-> F (G n);

Although the node-id n is shared between the guard and both guarded expres-
sions this will not lead to an erroneous situation. After the evaluation of the
guard still only one non-garbage reference to n exists. The type system will
assign the type INT (and not UNQ INT) to both uses of n in the guard.

• Demanded UNQs have to be obeyed (with an exception for function
types, see below): when a demanded type T and an offered type T'
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are unifiable (in the standard sense, ignoring the UNQ attributes)
then for each position where in T the UNQ attribute occurs, there
has to be a corresponding position in T' with the UNQ attribute.

Not well-typed example. F is recursively called with a graph of type INT,
while in the type specification of F an argument of type UNQ INT is de-
manded. This will yield a type error.

:: F UNQ INT -> INT;
F n -> F (G n);

:: G INT -> INT;
…

For demanded function types with UNQ arguments the offered ar-
gument type need not be unique: a demanded type => UNQ T T' and
an offered type => S S' are unifiable (when in the standard sense, ig-
noring the UNQ attributes, => T T' and => S S' are unifiable).

• When a UNQ type is offered but not demanded, this offered type is
accepted (with an exception for function types, see below). This
can be explained by the fact that a UNQ type imposes an additional
restriction on the way the object is used. If this restriction is not
demanded by the context this is of course fine. It does mean that
type conversions have to take place. An offered object of type UNQ
T is automatically converted to type T if this type is demanded from
the context.

Take the previous example and consider the application of G n. G demands an
argument of type INT while G is applied with a graph of type UNQ INT. The
type system will automatically convert the UNQ INT to an INT and will then
conclude that the type of the application G n is correct.

Offered unique function types are never converted: when a type
UNQ => T T' is offered, the demanded type must be of type UNQ => S
S' and unifiable in the standard sense.

:: F UNQ FILE CHAR -> UNQ FILE;
F f c -> FWriteC c f;

:: G (=> CHAR UNQ FILE) -> (UNQ FILE, UNQ FILE);
G g -> (g ‘a’, g ‘b’);
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With the well-typed rules above the expression G (F StdErr) would be re-
jected. The type of F StdErr is UNQ (=> CHAR UNQ FILE) owing to the left to
right UNQ propagation rule which is explained in the next subsection.

Furthermore, offered function types with UNQ arguments have to be
obeyed: when a demanded type => T T' and an offered type => UNQ
S S' are unifiable (in the standard sense, ignoring the UNQ at-
tributes) then they are not unifiable taking UNQ into account. The
demanded type must be => UNQ T T'.

:: UMap (=> UNQ x UNQ y) [UNQ x] -> [UNQ y];
UMap f [ ] -> [ ];
UMap f [ x | xs ] -> [ f x | UMap f xs ];

:: WriteAll CHAR [UNQ FILE] -> [UNQ FILE];
WriteAll c ufiles -> UMap (FWriteC 'a') ufiles;

This variant of Map is defined on functions that take a graph of type UNQ x
and yield a graph of type UNQ y. UMap applies such a function to a unique list
(see below) with elements of type UNQ x yielding a unique list with elements
of type UNQ y. This function UMap is used in the function WriteAll to map a
function FWriteC that writes a character into a unique file on a list of unique
files. It has to be guaranteed that the offered function FWriteC is always ap-
plied to a unique file. From the type of the standard function Map one cannot
deduce whether this condition is fulfilled. Therefore in this example the use of
Map instead of UMap would have been rejected. Note that there is no distinc-
tion between the definition of the function Map and UMap: there is only a dif-
ference in the specified type.

When functions are allowed to be polymorphic in their UNQ attributes
one can define a generic Map function that can be used both as the stan-
dard Map function and as the UMap function in the example above.

Defining types with UNQ attributes

A programmer can add unique type attributes to any type. List, tuples
and function types, as well as their subtypes, can have the unique at-
tribute. Furthermore, type attributes can be used in the definition of new
types (algebraic, abstract and synonym types). In this section it is ex-
plained what the meaning of such a definition is.

An important aspect of a function application containing a unique
graph is that it cannot be a part of a graph that is not unique with respect
to that function application. In other words, when a graph with type T
contains unique parts (which means that the type T has unique subtypes)
the graph itself must be unique (this is called the UNQ propagation
rule). Otherwise, there can be multiple paths leading to this graph
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which means that its components would not be unique any more. The
propagation rule holds for all types, and also for function types. For
non-function types UNQ attributes propagate from inside-out, for func-
tion types it propagates from left to right. In Clean, it is not necessary
to give the full type specification; the propagation of the UNQ attributes
is done automatically by the compiler.

Example of ‘inside-out’ propagation: consider the type (INT, UNQ CHAR). An
instance of such a type is a pair containing an INT and a unique CHAR. Due to
the propagation rule, the pair itself has to be unique as well, i.e. the full type
specification is UNQ (INT, UNQ CHAR).
Example of ‘left to right’ propagation: take F typed as :: F UNQ INT INT ->
INT; the type of the curried function F is => UNQ INT (=> INT INT). Now con-
sider the curried application F 3. This application has taken a unique integer
value. When there are multiple paths leading to F 3 there are also multiple
paths leading to 3. So F 3 has to be unique as well. Hence, the full type spec-
ification for F is => UNQ INT UNQ (=> INT INT).

Synonym types

Synonym types can be used in the usual way.

TYPE
:: UTUPLE UNQ x -> (UNQ x, UNQ x);

Applying UNQ propagation to achieve the full type specification for this ex-
ample gives UNQ UTUPLE UNQ x -> UNQ (UNQ x, UNQ x).

Algebraic types

The following rules guarantee that when unique substructures are being
used, a consistent (recursive) algebraic data type is defined.

(1) All occurrences in both left- and right-hand sides of a certain type
variable must have the same type attribute.

(2) All occurrences of a recursive algebraic type must be attributed
uniformly.

(3) When the root of a right-hand side of a type alternative is attributed
with UNQ, all other type alternatives will get the UNQ attribute on
their root as well. Moreover, the algebraic type itself (and hence all
occurrences of that type) will get the UNQ attribute.

A list with a unique spine but not necessarily with unique elements:

:: List x -> Cons x UNQ (List x)
-> Nil;
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Due to the UNQ propagation rule the uniqueness of the spine will propagate
over the Cons. As a consequence, Nil will get the UNQ attribute (being the
root of the other type alternative) as well as all occurrences of List x (being the
defined algebraic type). So the full definition deduced by the compiler is:

:: UNQ List x -> UNQ Cons x UNQ (List x)
-> UNQ Nil;

For clarity, we advise specifying the left-hand side completely:

:: UNQ List x -> Cons x (List x)
-> Nil;

A list with unique elements and hence with a unique spine:

:: List UNQ x -> Cons UNQ x (List UNQ x)
-> Nil;

Owing to the UNQ propagation rule the uniqueness of list elements will propa-
gate over the Cons. As in the case above, the root of both alternatives as well
as the algebraic type itself become unique and therefore so does the whole
spine. So the complete list has to be unique (lists elements as well as the
spine). The full definition is:

:: UNQ List UNQ x -> UNQ Cons UNQ x UNQ (List UNQ x)
-> UNQ Nil;

The advised definition is:

:: UNQ List UNQ x -> Cons UNQ x (List UNQ x)
-> Nil;

Unique types can be used as instantiations of polymorphic types. The
meaning of a type T parametrized with a unique type is rather obvious:
the resulting type is deduced from the type obtained by substituting the
parameters (including the UNQ attributes) in the definition of T.

Take for example the following common definition of a list:

:: List x -> Cons x (List x)
-> Nil;

Then for the type List UNQ INT the following full type definition is deduced:

:: UNQ List UNQ INT -> UNQ Cons UNQ INT UNQ (List UNQ INT)
-> UNQ Nil;



UNIQUE TYPES AND DESTRUCTIVE UPDATES  283

The substitution of a UNQ instantiation in a polymorphic type will not
always yield a UNQ type as result.

Take for example the following definition:

:: T x -> C (=> x (=> INT INT));

Left to right propagation deduces for the type T UNQ INT the following:

:: T UNQ INT -> C (=> UNQ INT UNQ (=> INT INT));

Abstract types

Abstract types with UNQ attributes are specified by giving the full type
specification of the left-hand side of the corresponding type definition
in the implementation module.

The previous fully unique List type is turned into an abstract type as follows:

ABSTYPE
:: UNQ List UNQ x;

8.6 Input/output handling

Using the UNQ type attribute, single-threaded use of file I/O and screen
I/O (in Clean called event I/O) can be assured. In this way incremental
updates of persistent data are made possible (see Section 8.6.2). Specifi-
cation of modern I/O that uses modules, windows, menus and the like
can be done on a very high level of abstraction by making use of the
predefined Clean library (Achten et al., 1993) that heavily uses UNQ
types. This library is part of Appendix B.

...

FILES

FILEFILE FILE

WORLD

EVENTS

File Edit

Window

Figure 8.3 The I/O environment hierarchy of Clean.

The I/O constructs of Clean are referentially transparent and hence
‘100% functional’. An abstract object representing the outside world
has been predefined with type UNQ WORLD. From this world the follow-
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ing disjoint abstract objects can be extracted (see Figure 8.3): an object
of type UNQ EVENTS which is used to perform screen I/O and an object
of type UNQ FILES (the file system) from which in its turn objects of type
FILE (concrete files) can be extracted (opened) to perform file I/O. One
can open unique files (if these files have to be modified) or non-unique
ones (for read-only files).

8.6.1 The world

The world contains all the information about the concrete environment
that is relevant to the program. There is no function to create a world.
The world is an abstract object of predefined type UNQ WORLD option-
ally given to a Clean program as an argument of the Start rule:

RULE
:: Start UNQ WORLD -> … == any type

Start w -> … == any computation yielding the indicated type;

Pure computations ignore the world and its subenvironments. Interac-
tive programs need to access and change the world using functions
which require a unique world. When the world becomes garbage it does
not mean that the world has ceased to exist, but it means that the pro-
gram no longer performs operations on the world. If the subenviron-
ments have been retrieved earlier, then they can still be accessed in the
program.

8.6.2 File I/O

FILES is the unique subenvironment of the world containing all the files
that are visible to the program (the file system). The file system is re-
trieved from a unique world by the rule OpenFiles and can be put back
again by the rule CloseFiles. Once the file system has been retrieved from
the world, it cannot be retrieved again without closing it first.

:: OpenFiles UNQ WORLD -> (UNQ FILES, UNQ WORLD);
:: CloseFiles UNQ FILES UNQ WORLD -> UNQ WORLD;

A Clean file has type FILE. To open a file (to read or write) one needs
the file system. Only writable files are opened as UNQ FILE; read-only
files do not require the unique attribute. For example, the following
functions have been predefined (there are many more: see Appendix B).

:: FOpen STRING INT UNQ FILES -> (BOOL, UNQ FILE, UNQ FILES);
:: SFOpen STRING INT UNQ FILES -> (BOOL, FILE, UNQ FILES);
:: FWriteC CHAR UNQ FILE -> UNQ FILE;
:: SFReadC FILE -> (BOOL, CHAR, FILE);
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In the Clean library also an FSeek function is predefined with which the
file pointer can be moved explicitly such that a file can be randomly ac-
cessed. Note that all functions return a (UNQ) FILE on which I/O func-
tions can continue.

The following example illustrates the use of WORLD, FILES and FILEs:

RULE
:: Start UNQ WORLD -> UNQ FILE;

Start w -> CopyF sf df,
(fs, w'): OpenFiles w,
(source_open, sf, fs' ): SFOpen "Source" FReadData fs,
(dest_open, df, fs''): FOpen "Dest" FWriteData fs';

:: CopyF FILE UNQ FILE -> UNQ FILE;
CopyF sf df -> df, IF  NOT read_ok

-> CopyF sf' (FWriteC char df),
(read_ok, char, sf'): SFReadC sf;

This program copies the contents of one file to another. First it retrieves the
file system from the world. This file system is used to open the source and the
destination file. The world and the file system are no further needed and be-
come garbage. The source file is only being read (indicated by FReadData),
so it does not have to be unique. The destination file is being written
(FWriteData) and therefore this file must be unique. After completion of copy-
ing, the source file becomes garbage, and the program yields the written file.
To do the actual copying on the open files CopyF is applied. When the source
file is empty the destination file is yielded, otherwise CopyChars reads a char-
acter from the source file, writes it to the destination file and continues recur-
sively.

It is possible that a UNQ FILE is used in such a way that it loses its
UNQ attribute (e.g. when the file gets shared). Since all destructive op-
erations on files require an object of type UNQ FILE, an ordinary
(possibly shared) file of type FILE cannot be modified any more. But
there are several non-destructive operations defined on an object of type
FILE with which such a file can still be examined.

8.6.3 Event I/O

Event I/O is a different class of I/O than file I/O. In event I/O the ob-
jects that are being manipulated are graphical interface objects such as
windows, menus and dialogs. Graphical interface systems are event
driven: actions performed by the user generate events to the program.
Clean’s event I/O library (written in Clean) offers a way to define these
graphical interface objects on a level that is very close to the way these
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objects actually appear on the screen. The library completely takes care
of all the low-level event handling.

Devices

A device in Clean is an interface object such as a window or a menu.
There are four devices predefined in the Clean library: the menu device,
the window device, the dialog device and the timer device.

Contents

Title Zoom area

Arrow

Thumb

Scrollbar

Grow area

Figure 8.4 Example of a window.

A window device (see Figure 8.4) is an interactive device: it reacts
on key presses and releases and mouse clicks and releases, coupled with
mouse positions. Windows are the only way a program can visualize
output. A window gives a view on a picture (again a UNQ abstract ob-
ject) on which a set of drawing functions is defined.

user-defined control

pop up menustatic text

editable text

check boxes

radio buttons

buttons

user-defined
button

Figure 8.5 Example of a dialog.

The relationship between the visible part of the picture and the window
is defined by the positions of the thumbs of the window’s scroll bars.
One can open several windows dynamically, at most one of them is ac-
tive. Almost all window management is handled automatically by the



INPUT/OUTPUT HANDLING  287

library. The programmer just has to define the update management
which is the redrawing that should be performed if an invisible part of
the window becomes visible again. The programmer can also define
what should be done when a window is closed.

The menu device (see Figure 8.7) conceptualizes choosing from a
distinguished set of available commands. A menu device can contain
pull-down menus each containing commands or submenus.

The dialog device (see Figure 8.5) conceptualizes structured com-
munication between the program and the user via a form that has to be
filled in. One can have modal and modeless dialogs, as well as notices.
Modal and modeless dialogs can contain editable text fields, static text
fields, pop-up menus, radio buttons, check boxes, buttons, final buttons
and user-defined controls.

With the timer device a program can be synchronized (see Section
8.6.4): a function can be evaluated every time a certain time interval has
passed. Several timers can be installed. When a time interval is set to
zero, a timer event is generated whenever no other event is generated.

Interactions

The concept of events and devices can now be used to define interac-
tions. An interaction is a state transition system in which I/O is per-
formed. The state of an interaction is composed of two objects: the pro-
gram state and the I/O state.

The program state is a program-defined data structure. The pro-
gram state can be used by the programmer to maintain the current state
of the program (which is dependent on the kind of program).

Devices EVENTS

IOState

Menu
File

Window
Title

Hello world
Open
Close

Quit

Dialog Timer

Quit now?

OK

Cancel

(70,145)
MouseDown

9:27:32.72
KeyUp 'A'

9:27:33.09
Activate #1

9:27:33.16
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• the event stream (modelled by the EVENTS);
• the definition of all the devices that participate in the interaction.

Transitions are triggered by the events in the event stream. Each event
in the event stream is dispatched in the library to the proper device,
which computes the next interaction state by calling the proper event
handler.

The event stream

The event stream can be retrieved from and put back into the WORLD by
means of the following predefined functions from the deltaEventIO mod-
ule:

:: OpenEvents UNQ WORLD -> (UNQ EVENTS, UNQ WORLD);
:: CloseEvents UNQ EVENTS UNQ WORLD -> UNQ WORLD;

The definition of the devices

Devices are specified with the help of a predefined algebraic data type
DeviceSystem. With this type actually a special kind of declarative lan-
guage is introduced in which the programmer can specify the properties
of the devices that are being used (see the example in Section 8.6.4).
The programmer has to specify:

• which of the predefined I/O devices are being used;
• how these devices should be initialized;
• which event handler or call-back routine has to be called when a

certain active device has been triggered (e.g. a particular menu
item that has been chosen). An event handler is a user-defined
higher order state transition function that takes the program state
and I/O state as an argument to yield a pair with the new program
state and the new I/O state as result.

Starting and terminating interactions

Starting and terminating interactions are handled by two special func-
tions: StartIO and QuitIO. StartIO takes the specification of the set-up of
the I/O system as described above, the initial program state s0, a possi-
bly empty list of functions that can be used to change the default set-
tings of the system, and the event stream obtained from the world.
StartIO takes the description of the devices, after which these devices are
activated and drawn on the screen. Then, the device description and the
event queue are stored in the I/O state. Finally, the default settings are
set and an internal function DoIO is called with the initial program state
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s0 and the initial I/O state IOState0. This function DoIO recursively calls
itself. In each call an input event en is taken from the event stream. The
input event is dispatched to the proper device which computes the next
program state sn+1 and the next I/O state IOStaten+1 by applying the
proper event handler. In this way a sequence of pairs of program state
and IOState, starting from the program state s 0 and I/O state IOState0, is
computed. Below the simplified implementation of StartIO is given using
internal library functions InitIO, DoIO, GetEvent, GetEvents and GetHandler.

StartIO device_defs program_state default_settings events
-> DoIO (program_state, io_state),

io_state: InitIO device_defs default_settings events;

DoIO (program_state, io_state: ClosedIO_State)
-> (program_state, GetEvents io_state);
DoIO (program_state, io_state)
-> DoIO (event_handler program_state io_state''),

(event_handler, io_state''): GetHandler event io_state',
(event, io_state' ): GetEvent io_state;

The order of evaluation guarantees that the transition triggered by event
en+1 is only reduced after the transition triggered by en has yielded a
complete IOStaten+1. The interaction obtained in this way can only be
terminated by having any of the device functions apply QuitIO to its IO-
State argument. The function QuitIO produces a special I/O state, Closed-
IO_State, in which all devices are closed. DoIO matches on this special
state producing the final program state and the remaining event stream.

8.6.4 An example: the game of Life

In this section we present an example of a typical interactive Clean pro-
gram that uses the Clean I/O library. The program describes the inter-
face for a system playing the game of Life. This is a ‘game’ consisting
of an infinite two-dimensional space (the universe). A cell is identified
by a Cartesian position in the universe. A cell is either alive or dead.
When an initial generation of living cells is given, each following gen-
eration is computed as follows:

• if a living cell has just two or three living neighbour cells, it sur-
vives to the next generation;

• if a dead cell has exactly three living neighbour cells, it becomes
alive in the next generation.

In this example we concentrate on the specification of the interactive
part of the program, so our prime interest is not, for instance, the func-
tion that calculates a new generation given the current generation.
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An efficient implementation of a functional language can be obtained in
many ways. We shall not give a general overview of the several avail-
able methods (e.g. Landin, 1964; Turner, 1979a; Augustsson, 1984;
Peyton Jones, 1987). Instead, we shall describe one implementation
method in detail (Smetsers et al., 1991). We think it is highly illustra-
tive to study one particular implementation starting from the level of a
particular full-featured programming language, leading through inter-
mediate levels (see Figure P4.1) and finally ending with concrete ma-
chine code. Furthermore, the described implementation method is state-
of-the-art and has many aspects in common with other methods.

So an implementation is described for a particular functional lan-
guage (Miranda) based on the model that we consider to be the most
suited for this purpose: FGRSs. First, the language is translated into an
intermediate language (Clean) based on FGRSs. Since the level of
Clean is still rather high compared with the level of a concrete machine,
a Clean program is translated into code for an abstract stack-based ma-
chine (the ABC machine). The abstract machine forms an additional
more concrete intermediate level enabling a relatively easy production
of interpreters and code generators for various target machines.

Motorola
code

ABC machine
simulator

Motorola
processor

Functional
graph

rewriting

Miranda
program

Clean
program ABC code

Figure P4.1 Two intermediate levels; three translations.

Owing to the intermediate levels, some of the information present
in the original program might get lost, so some loss of efficiency might
be introduced. This conceptual loss is generally well compensated since
the compiler becomes more structured and easier to maintain.

Five chapters treat the two intermediate levels and the three corre-
sponding translations. These transformations are also used in the Con-
current Clean system: the software package that goes with this book.
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Chapter 8
Clean

8.1 Clean, a language for functional
graph rewriting

8.2 The type system
8.3 Strict annotations

8.4 Modules
8.5 Unique types and destructive

updates
8.6 Input/output handling

Clean is an experimental lazy higher order functional programming lan-
guage based on functional graph rewriting systems (FGRSs) (see
Chapter 5). So Clean is a functional language in which computations
are expressed in terms of graph rewriting. Clean is originally designed
as an intermediate language to be used in the compilation path from
(eager as well as lazy) functional languages to concrete machine archi-
tectures (Figure 8.1).

Motorola
code

ABC machine
simulator

Motorola
processor

Miranda
program ABC codeClean

program

Figure 8.1 Clean as intermediate language.

In contrast with most other functional programming languages
Clean supports only the most basic aspects of functional programming
(see Chapter 1). Syntactical sugar (such as infix notation or ZF-expres-
sions) is mainly excluded. Clean basically just realizes FGRSs syntacti-
cally extended with macros and guards. However, many additional se-
mantic features have been added enabling an efficient and usable im-
plementation, e.g. a type system, annotations to control evaluation or-
der, a modular structure and type attributes enabling destructive up-
dates of objects, as well as a library that enables a high-level specifica-
tion of input and output.
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Type information is important for programmers since it will help
them to design programs which are correct and understandable. But,
type information is also important because it can be used to generate
efficient code. Furthermore, the type information can be used to create
a modular environment. The type system of Clean is based on the type
assignment system for TRSs as explained in Section 6.3. It includes
polymorphic types, abstract types, algebraic types and synonym types,
as well as basic types (see Section 8.2). Lists, tuples and function type
constructors are predefined.

With annotations the evaluation order of a Clean program can be
influenced by the programmer: the evaluation can be made (partially)
eager instead of lazy. In this way a better space and time behaviour of
functional programs can be obtained in a machine-independent manner
(see Section 8.3). For efficient solutions of some problems the ability to
share computations and to control the evaluation order is essential. In
the extended language, Concurrent Clean (see Chapter 15), even
parallel evaluation can be specified by the programmer.

Clean’s modular structure (see Section 8.4) consists of separate
implementation modules and definition modules, including a facility to
import definitions from other modules implicitly and explicitly. There are
predefined modules (libraries) for basic operations (δ-rules) on objects
of basic types (integers, reals, characters, strings and booleans).

The interaction with the outside world has always been hard to in-
corporate in the functional framework. The Clean type system is ex-
tended with the unique type attribute that can be assigned to an object
of any type (see Section 8.5). An object with the unique type attribute
that is passed as an argument to a function can, under certain condi-
tions, be reused. Referential transparency is still guaranteed while de-
structive updates of arrays, files and the like are made possible, result-
ing in an important efficiency gain.

Owing to these unique types one can specify with the Clean I/O
library I/O devices (dialogs, menus, windows and the like) on a very
high level of abstraction (see Section 8.6). As much as possible of the
low-level I/O handling is done automatically by the library system. Pre-
defined algebraic data types can be used to specify which devices
should be activated and how these devices should be initialized. A pro-
grammer just specifies which (higher order) function is called when a
certain part of an active device is triggered (e.g. a particular menu item
has been chosen).

Using Clean as intermediate language has made it possible to
concentrate on the implementation of the basic aspects only, instead of
getting lost in the details of a specific full-featured functional language.
Since Clean is an experimental language, it has been equipped with
some special features that are not found (yet) in other functional lan-
guages. Major and minor changes and extensions can be expected in
future versions of the language.
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8.1 Clean, a language for functional graph rewriting

Clean (Brus et al., 1987; Nöcker et al., 1991b; Van Eekelen et al., 1992)
was designed at the University of Nijmegen and it stands for: Clean
Lean1. Clean is based on functional graph rewriting systems (see Chap-
ter 5).

8.1.1 Basic syntax of rewrite rules

Clean uses the shorthand notation of graph rewrite rules. Apart from
some additions for typing and for programming convenience (see Ap-
pendix B for a full syntax description of the language) the only syntactic
differences from FGRSs are:

• The rule alternatives of a function definition are grouped together.
• A ‘ ;’ marks the end of each rule alternative.
• Redirections consist of a single node-id only.
• The keyword RULE indicates that a sequence of graph rewrite rule

definitions follows (so that they can be distinguished from other
kinds of declaration).

• ‘ ->‘ is used instead of an →.
• Empty nodes cannot be denoted in Clean.
• Several functions on basic types are predefined (see Section 8.1.3).
• Guards are added for choosing between rule alternatives (see Sec-

tion 8.1.4).
• Lists and tuples are predefined data structures (see Section 8.1.5).
• Currying is allowed. A curried application is transformed at com-

pile-time to an application of an internal ‘apply rule’ (see Section
8.1.6).

• Macros are used for programming convenience (see Section 8.1.7).

8.1.2 Semantics

Clean’s basic semantics are treated in Chapter 5 (semantics of FGRSs).
There are, however, some differences between FGRSs and Clean:

• When at run-time an empty node is created, in Clean an error mes-
sage is given (see Section 5.8).

• Clean rules are typed (see Sections 6.3 and 8.2).

1 Lean (Barendregt et al., 1988) stands for the Language of East Anglia and Nij-
megen, jointly designed at both universities. Lean has been used to experiment with
generalized graph rewriting systems (see Section 5.9).
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• In Clean, the functional strategy can be influenced by using anno-
tations that make the evaluation partially eager instead of lazy (see
Section 8.3).

• Input/output is treated in a special way. In order to communicate
with the outside world, the Start rule optionally can have a parame-
ter of type UNQ WORLD, representing the environment in which the
program is called (see Sections 8.5 and 8.6).

8.1.3 Predefined functions and basic types

For practical reasons it is convenient that rules for performing arith-
metic on objects of basic types (integers, reals etc.) are predefined. Then
they can be implemented efficiently with the concrete representation
and corresponding instructions available on the concrete machine.

<< The factorial function in Clean using predefined functions.
>>
RULE
:: Fac INT -> INT; == type definition

Fac 0 -> 1; == the factorial function
Fac n -> * n (Fac (– – n));

:: Start -> INT; == type definition
Start -> Fac 20; == the initial expression

As in FGRSs prefix notation is used. Rules starting with ‘::’ are type rules (see
Section 8.2). Comments are placed between ‘<<’ and ‘>>’ or after a ‘==’.

Below, a list is given of several predefined functions (for a full list of
the functions in the Clean library, see Appendix B).

Basic type Examples of denotations Examples of predefined functions

INT 1, 2, 2147483647 +, –, =, >=, AND%
REAL 1.5, 0.314E10 +R, –R, =R, >=R, SIN, EXP
CHAR 'a', 'b', 'c', '\n', '\007' =C, >=C
BOOL TRUE, FALSE NOT, AND, XOR, =B
STRING "This is a string \n" +S, –S, =S, >=S, SLICE
FILE StdIO, FOpen, FWriteC

8.1.4 Guarded expressions

In Clean, guards can be added to rewrite rules. A guard is a Boolean ex-
pression that can be seen as an extension of the pattern matching mecha-
nism: a rule alternative is only chosen when its pattern matches a sub-
graph and its guard evaluates to TRUE. Pattern matching always takes
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place before the guard is evaluated. A guard is separated from the right-
hand side of a rule by an optional comma and the keyword IF. In a guard
the infix operators || (conditional OR) and && (conditional AND) can be
used. The arguments of the operators are evaluated from left to right,
and parentheses can be used to specify the priorities. Arguments of op-
erators are not evaluated when their value is of no influence on the
value of the result. For instance, when the first operand of || evaluates to
TRUE, the second operand will not be evaluated: the result will be TRUE
anyway.

Rule alternatives that have the same left-hand side (but different
guards) can be grouped together separated by arrow symbols (‘->’).
When the last guarded expression has a guard that always evaluates to
TRUE that guard can be omitted (the ‘otherwise’ or ‘default’ case).

Example of the use of guards in Clean:

:: Fib INT -> INT;
Fib n -> 1, IF  = n 1  ||  = n 2

-> + (Fib (– n 1)) (Fib (– n 2)), IF  > n 2
-> ABORT "Fibonacci called with argument less than one";

8.1.5 Predefined data structures and type constructors

To provide some programming convenience, denotations for lists and
tuples are predefined.

Lists

Lists are denoted as follows: Nil is denoted as [ ], Cons h t as [h | t] and the
list with elements 1, 2, 3 and 4 is denoted as [1, 2, 3, 4]. Furthermore, [e1,
… , en | r] denotes a list r prefixed with elements e1 … en. If T is a type,
than [ T ] denotes the type list of T.

Merge merges two sorted lists of integers, removing double occurrences:

:: Merge [INT] [INT] -> [INT];
Merge [ ] g -> g;
Merge f [ ] -> f;
Merge f:[ a | b ] g:[ c | d ] -> [ a | Merge b g ], IF  < a c

-> Merge f d, IF  = a c
-> [ c | Merge f d ];

Tuples

Tuples and tuple type constructors are denoted as in Miranda. If T1, … ,
Tn are types, then (T1, …, Tn) denotes the type tuple of  T1, …, Tn.
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Example of Clean tuples and their types:

(3, 0, 'a') == 3-tuple of type (INT, INT, CHAR)
([0, 1, 2], +) == 2-tuple of type ([INT], => INT (=> INT INT))

In order to simplify the use of tuples a special syntactical construct is
added that automatically generates projection functions. One can specify
a definition of a number of node-ids simultaneously by placing a tuple
of node-ids before a colon symbol in a node definition. The basic idea
of this construct is illustrated by the example below:

Instead of

G … -> H a b,
a: First g,
b: Second g,
g: F …;

F … -> (x, y);

First (a, b) -> a;
Second (a, b) -> b;

one can define G more compactly (First and Second are no longer needed):

G … -> H a b,
(a, b): F …;

The meaning of such a construct is that all these node-ids are bound at
run-time to parts of the graph on the right-hand side of the colon sym-
bol. This only makes sense if this graph denotes a function that delivers
a tuple. The type checker (Section 8.2) verifies that this is true.

Example of the use of tuples before a colon symbol in a node definition.

RULE
== FindElem traverses a list of lists of integers to search for the element el.
== The list containing the element and its index in this list is returned.

:: FindElem [[INT]] INT -> ([INT], INT);
FindElem [ l | ls ] el -> (l, index), IF  found

-> FindElem ls el,
(found, index): Index l el 1;

:: Index [INT] INT INT -> (BOOL, INT);
Index [ ] el n -> (FALSE, n);
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Index [ f | r ] el n -> (TRUE, n), IF  = el f
-> Index r el (++ n);

:: Start -> ([INT], INT);
Start -> FindElem [ l1, l2, l3 ] 6,

l1: [ 2, 3, 5, 7, 11, 13, 17, 19 ],
l2: [ –9, –6, –3, 0, 3, 6, 9 ],
l3: [ 1, 4, 9, 16, 25, 36 ];

Besides the benefit of notational elegance, the list and tuple constructs
have the advantage that they indicate special predefined cases that can
be implemented more efficiently than the fully user-defined data struc-
tures. In the case of the tuples it might even lead to fewer reductions
since it is not necessary any more to apply a selector function explicitly
to access the elements of the tuple.

8.1.6 Currying

Clean conceptually uses the functional notation (see Section 4.1.4). As
explained in Sections 4.8 and 6.3.2, curried applications of functions
can be realized by introducing additional rewrite rules that transform
curried applications into uncurried ones. This method has a disadvan-
tage. Many of these additional ‘AP-rule’ alternatives are needed: one
alternative for each function that is used in a curried manner. It is much
more convenient if this curry conversion is performed automatically.

This automatic conversion has been realized in Clean in the follow-
ing way: a generic internal rule _AP is predefined (internal here means
that this _AP rule cannot be used by the programmer explicitly) with
which curried applications of any symbol F are transformed into uncur-
ried applications at compile-time.

The Twice function as defined in Clean is given below.

:: Twice (=> x x) x -> x;
Twice f x -> f (f x);

The curried applications of f are internally transformed leading to

Twice f x -> _AP f (_AP f x);

The internal rewriting code for _AP provides that when a symbol is sup-
plied with a sufficient number of arguments it will be rewritten accord-
ing to the rule that corresponds to the curried symbol. This allows the
programmer to use symbols with an arbitrary arity or to apply node-ids
to arguments. If F is defined with arity n, say F a1 a2 ... an -> ar, then
_AP ( ... (_AP (_AP F a1) a2) … ) an reduces to F a1 a2 … an. If there are too
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few arguments the expression is in root normal form (_AP is a partial
function). Since the conversion of curried applications into uncurried
ones will be done automatically there is no need at all for the program-
mer to be aware of the presence of this internal _AP rule.

This facility implies the need for a special predefined type con-
structor, the curried function type, denoted by =>. This predefined type
can be compared with the function type constructor as predefined in Mi-
randa, used in prefix notation. So the type => a b stands for a curried
function (of arity one) that, when applied to an argument of type a, will
produce a result of type b (pronounce => a b as: curried function from a
to b). Consequently, the type axioms of the Clean type system include
the equivalence of

:: F -> => t1 (=> t2 (=> ... (=> tn tr) ... )) ; to :: F t1 t2 ... tn -> tr ;

if F is defined with arity n. The internal function _AP is typed as:

:: _AP (=> a b) a -> b ;

The first argument of _AP (i.e. the function that has to be applied) al-
ways has to be evaluated in order to compute the result. So _AP is strict
in its first argument.

With this syntactic sugar the Hamming example of Chapter 5 can be specified
in Clean in the following way (with the IMPORT statement, general δ-rules for
arithmetic are imported (see Section 8.4)):

MODULE Hamming;
IMPORT delta;
RULE
:: Ham -> [INT];

Ham -> x: [ 1 | Merge (Map (* 2) x) (Map (* 3) x) ];

:: Map (=> x y) [x] -> [y];
Map f [ ] -> [ ];
Map f [ a | b ] -> [ f a | Map f b ];

8.1.7 Macros

In Clean one can define macros: macros are special rewrite rules that
are rewritten (expanded) at compile-time. Macros can be used to assign
a meaningful name to a constant or to an expression (graph). They can
reduce the number of function calls at run-time. Furthermore, macros
can be used as a named constant in a redex pattern.

A MACRO block consists of a number of macro definitions of the
form Left-hand-side-graph -> Right-hand-side-graph;. At compile-time the
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right-hand side of the macro definition will be substituted for every oc-
currence of the left-hand side. Macros may have parameters, but it is not
allowed to specify a pattern on the left-hand side of a macro definition.
Consequently, a macro rule always consists of a single alternative. It is
clear that, at compile-time, the rewriting of the macros should always
terminate. This is guaranteed by prohibiting macros that are mutually
dependent or recursive.

Example of the use of macros in Clean.

MACRO
Size -> 6;
UnsortedList -> [ 3, 1, 5, 2, 4 ];
Singleton x -> [ x ];
+SC string char -> +S string (CTOS char);
*R4 r1 r2 r3 r4 -> *R r1 (*R r2 (*R r3 r4));

8.2 The type system

Clean is a typed language conforming to the type system introduced in
Section 6.3. So, in many cases, types in Clean are similar to but not ex-
actly the same as those in Miranda. Note that in Clean each symbol is
defined with a fixed arity. In Miranda functions are always curried and
have at most one argument. As already explained in Section 8.1.4, the
function type => (in prefix notation) is used for curried functions. An-
other difference is that identifiers are used for type variables instead of
*s. Two major differences concern abstract types (in Clean abstract
types are connected to the module structure; see Section 8.2.2) and typ-
ing patterns (see Section 8.2.3).

As in Miranda, types do not have to be specified explicitly by the
programmer. For programmers in a hurry, types can be inferred by the
Clean compiler if type information is left out. However, the program-
mer is strongly advised to give an explicit specification of the types.

As a special facility of the Clean system, type checking can be
switched off. In that case specified types are not checked but assumed to
be correct. When the type of a function is not specified at all, the most
general type is assumed. This facility of Clean can be used to experi-
ment with GRS rules that are not typeable in the usual system. It is also
useful when Clean is used as intermediate language for an untyped
functional language, such as SASL (Turner, 1979b). Of course, its use is
very dangerous and it will generally lead to inefficient code.

8.2.1 Type definitions

The objects that are manipulated in Clean are graphs. With a type defi-
nition one specifies certain restrictions imposed on the graphs on which
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rewrite rules are defined. Syntactically, graph rewrite rules are used to
define types. Semantically there is of course a great difference between
type rules and rewrite rules. In fact, in Clean types specify restrictions
on the underlying term structure, rather than on the specific graph struc-
ture. Therefore, all graphs in type definitions have to be directed acyclic
graphs (dags) without explicit node definitions.

Types are defined in a TYPE block, just like rewrite rules are de-
fined in a RULE block. Blocks may be specified in any order. Each type
rule must be preceded by a ‘::’. The function symbol of the type rule is
called the type symbol. Each time the same type variable is used in a
particular type rule, it stands for the same type.

8.2.2 Defining new types

As in Chapter 2 there are three kinds of type definition that introduce
new types: algebraic type definitions, synonym type definitions and ab-
stract type definitions.

Algebraic types

Algebraic types are specified by means of a type rule where each alter-
native has a right-hand side with a fresh root symbol: the constructor.
All the arguments of the constructor are type instances. A type instance
is either a type variable or a dag with a type symbol, as root of which all
the arguments are type instances. The alternatives of an algebraic type
definition can be separated either by an arrow symbol (‘->’) or by a ver-
tical bar (‘|’).

Compare the following (polymorphic) algebraic type definitions with the cor-
responding definitions given in Chapter 2:

TYPE
:: Day -> Mon | Tue | Wed | Thu | Fri | Sat | Sun;

:: Intlist -> NilList
-> IntList INT Intlist;

:: Tree x -> NilTree
-> NodeTree x (Tree x) (Tree x);

Synonym types

Synonym types permit the user to introduce a new name for an already
existing type. Mutual dependencies of synonym type definitions are pro-
hibited.
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Example of a type synonym definition in Clean:

TYPE
:: Stack x -> [x];

Abstract types

In Clean, abstract type definitions are only allowed in definition mod-
ules (see Section 8.4). Abstraction and hiding are considered to be two
sides of a coin. So the module structure is used to hide the concrete
signature of the abstract type to the outside world. An abstract type is
actually a synonym type or an algebraic type of which the concrete def-
inition is hidden in the corresponding implementation module. In the
definition module only the left-hand side of the type definition is shown
as well as the type of the functions defined on the abstract data structure
(the abstract signature). To distinguish an abstract type definition from
an ordinary type definition a special kind of type block is provided: an
ABSTYPE block.

A well-known example of an abstract data type is given below:

DEFINITION MODULE Stack;
ABSTYPE
:: Stack x;

RULE
:: Empty -> Stack x;
:: IsEmpty (Stack x) -> BOOL;
:: Push x (Stack x) -> Stack x;
:: Pop (Stack x) -> Stack x;
:: Top (Stack x) -> x;

The corresponding implementation module:

IMPLEMENTATION MODULE Stack;
IMPORT delta ;
TYPE
:: Stack x -> [x] ;

RULE
:: Empty -> Stack x;

Empty -> [ ];

:: IsEmpty (Stack x) -> BOOL;
IsEmpty [ ] -> TRUE;
IsEmpty s -> FALSE;
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:: Push x (Stack x) -> Stack x;
Push e s -> [ e | s ];

:: Pop (Stack x) -> Stack x;
Pop [ e | s ] -> s;

:: Top (Stack x) -> x;
Top [ e | s ] -> e;

Note that predefined types can be seen as special cases of abstract types.

8.2.3 Type specifications for functions

The type of a rewrite rule is either explicitly specified or it is inferred by
the system. When it is explicitly specified the type specification must
precede the corresponding rewrite rule. The type rule consists of one
rule; free type variables may appear on the right-hand side.

Using free type variables on the right-hand side of a type definition for a
rewrite rule: F has as result type any list.

:: F -> [x];
F -> [ ];

Typing partial functions

Some type errors cannot be detected at compile-time. A partial function
can be called with an actual argument of the correct type (domain) for
which no image exists, due to a failing pattern match. An error is gener-
ated at run-time if this leads to a wrong value.

At run-time the application of F in the start rule will not match. So F 1 will not
yield the required type: INT. Hence, at run-time a type error is generated:

:: F INT -> INT;
F 0 -> 0;

:: Start -> INT;
Start -> F 1;

However, a failing match does not always have to be wrong. A match
may fail as long as no type conflicts are caused by this failure and safe
rewrite rules are being used (see also Section 6.3.2). In FGRSs there is
no special situation when a function application does not match any of
the rewrite rules of the function: the result is a root head normal form.
In Clean this is also the case as long as no type conflicts occur and
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functions are safely typed (see Section 6.3.2). So in Clean functions can
appear on a ‘constructor position’. In Miranda a non-matching function
will always result in a run-time error: Miranda is a function constructor
system.

Consider the following example:

TYPE
:: Num -> Zero

-> Succ Num
-> Pred Num;

RULE
:: Succ Num -> Num;

Succ (Pred n) -> n;

:: Pred Num -> Num;
Pred (Succ n) -> n;

:: Start -> Num;
Start -> Succ (Succ Zero);

The graph Succ (Succ Zero) in the start rule will not match any rule. But, the
resulting graph is still correctly typed and has type Num. In Clean Succ and
Pred have to be defined twice, once as function and once as constructor. No-
tice that the definitions of the functions Succ and Pred are safe according to
the condition given in Section 6.3.2.

8.3 Strict annotations

By default Clean rules are reduced using the functional strategy. This
strategy may be locally influenced by the use of annotations added to
the Clean program. Annotations can be considered as parameters of the
strategy function. They are very important if one wants to optimize the
time and space behaviour of the reduction process.

In this section the strict annotations are discussed that can be
added in Clean to the rewrite rules and to type rules with the effect that
sometimes partially eager evaluation is used instead of lazy evaluation.
Strict annotations are important because, in general, functions with an-
notated arguments can be implemented very efficiently (see Chapters 10
and 11). The largest gain in efficiency is obtained when arguments of
the basic types are being annotated. Strict annotations are also conve-
nient when Clean is used as an intermediate language for eager lan-
guages (such as HOPE (Burstall et al., 1980) or FP (Backus, 1978)).
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Strict annotations and the order of evaluation

Annotations let the reduction strategy deviate from the default func-
tional evaluation order, making the evaluation order partially eager in-
stead of lazy. Annotations can be placed in definitions of new types and
in type specifications of rewrite rules (global annotations) as well as in
the right-hand sides of the rewrite rules themselves (local annotations).
If a strict annotation is specified, the evaluation of the indicated sub-
graph is forced. This forced evaluation will also follow the functional
strategy, yielding a root normal form. After the forced evaluation has
delivered the root normal form, the reduction process continues with the
ordinary reduction order following the functional strategy.

Strict annotations can only be added safely when it is known that
the termination behaviour of the original program is not changed.

A strict annotation might change the termination behaviour of a program: be-
fore the rewrite rule for F is applied, the reduction of the argument of F is
forced due to the specified strict annotation. As a consequence, the normal
form 1 of F W will not be reached any more.

:: Start -> INT;
Start -> F !W;

:: W -> INT;
W -> W;

:: F INT -> INT;
F x -> 1;

Strict annotations are in general used to force the evaluation of argu-
ments of a function in the case that the function is known to be strict in
these arguments (see Chapter 7). A strict argument can safely be evalu-
ated in advance.

Ideally, a programmer should not be bothered at all with annota-
tions to gain efficiency. As shown in Chapter 7, a good strictness anal-
yser (such as incorporated in the Clean system) can detect many cases
where strict annotations can be put safely. Therefore, user-defined strict
annotations are generally only used when an ultimate gain in efficiency
is demanded.

8.3.1 Global strict annotations in type rules

The strict annotations in a type specification are called global because
they change the reduction order for all applications of a particular func-
tion. Annotations in a type specification of a function are allowed to be
placed before the type specification of an argument on the left-hand side
of the type rule.
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Example of a global strict annotation in type rules:

:: Cond !BOOL x x -> x;
Cond TRUE then else -> then;
Cond FALSE then else -> else;

Note that the strict annotation will force the evaluation of the first argument
before the Cond function is examined as a candidate for rewriting.

In reasoning about programs with global strict annotations it will
always be true that the annotated argument is in root normal form when
the corresponding rule is applied. In the pattern matching phase this
knowledge can be used: one can start by comparing symbols.

Another example of a global strict annotation: the Nfib function calculates the
number of times it is called. Nfib is frequently used to determine the number of
function calls per second for a particular implementation.

:: Nfib !INT -> INT;
Nfib n -> 1, IF < n 2

-> ++ (+ (Nfib (– n 1)) (Nfib (– n 2)));

Strict annotations can also be placed in type rules to indicate that the
corresponding parts of an argument or a result will always be evaluated
when the object as a whole is evaluated.

Example of global strict annotations in tuple types:

:: +C !(!REAL, !REAL) !(!REAL, !REAL) -> (!REAL, !REAL);
+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);

Strict annotations may be used in the same manner in a type syn-
onym definition. The meaning of these annotated synonym types can be
explained with the aid of a simple program transformation with which
all occurrences of these synonym types are replaced by their right-hand
sides (annotations included).

Example of (partially) strict tuple types in a type synonym definition. The def-
inition of +C is equivalent to the definition given above.

TYPE
:: Complex -> (!REAL, !REAL);

RULE
:: +C !Complex !Complex -> Complex;

+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);
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Allowing tuples to be strict makes it possible to define functions that de-
liver multiple results eagerly (i.e. all results already evaluated). This is
in contrast with the general lazy case where the evaluation of the argu-
ments of a tuple is not forced since the tuple constructor that ‘glues’ the
results together induces a lazy context for these arguments. With a strict
annotation it is possible to overrule this laziness. The use of (partially)
strict data types can lead to very efficient code (Nöcker and Smetsers,
1993).

8.3.2 Local strict annotations in rewrite rules

Strict annotations in rewrite rules are called local. They change only the
order of evaluation for a specific function application. Local strict anno-
tations can be placed anywhere on the right-hand side of a rewrite rule,
both on arguments as well as on nodes. If a local strict annotation is put
on a node, this is equivalent to putting the annotation on each reference
to that node. When a rewrite rule is applied, all strict annotated nodes of
the right-hand side of the applied rewrite rule are evaluated before the
evaluation continues.

Example of strict annotations on the right-hand side. For this particular occur-
rence of Cond (as defined in a previous example) it is indicated that a com-
mon part of the then and else part can be reduced safely.

F x y -> Cond x !y (++ !y);

Each node on the right-hand side is considered to be either strict
(appearing in a strict context: it has to be evaluated to root normal
form) or lazy (appearing in a lazy context: not yet to be evaluated to
root normal form). The following rules specify whether or not a particu-
lar node is lazy or strict:

(1) the root node of the right-hand side is strict;
(2) the global annotated arguments of a strict node are strict;
(3) a local annotated node is strict;
(4) all the other nodes are lazy.

Before reducing the root node of the right-hand side all strict nodes
other than the root node are evaluated to root normal form.

Example illustrating states of nodes:

:: F ![INT] INT -> [INT];
F [ ] n -> [ ];
F [ a | b ] n -> [ n | F b (G a n) ];
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G a b -> + a b;

Start w -> r: F a b, a: F e c, e: [ 1 ], c: ++ 5, b: G 1 !d, d: ++ 4;

In the Start rule, the nodes r, a, e and d are strict; the others are lazy.

8.3.3 Strictness analysis

A strictness analyser is incorporated in the Clean system. This analyser
is based on abstract reduction (see Chapter 7). The analyser can often
determine strictness and is quite fast. When a function is found to be
strict in a certain argument, a global strict annotation is generated auto-
matically. Certain strictness information is very difficult to detect. Find-
ing information for tuple types is almost impossible since it would re-
quire an analysis of all the possible uses of the type.

Consider again the following example:

+C (r1, i1) (r2, i2) -> (+R r1 r2, +R i1 i2);

The only information that can be derived for the function +C is that it is strict
in its arguments (because of the pattern matching). The result of the function
is a tuple that is in root normal form. One generally cannot conclude that the
tuple arguments are needed and hence they cannot be reduced in advance.

8.3.4 Strict annotations and gain in efficiency

The following example illustrates the gain in efficiency that is achieved
when strict annotations are added to a Clean program. Consider the fol-
lowing Clean program that calculates the Ackermann function.

:: LazyAcker INT INT -> INT;
LazyAcker 0 j -> ++ j;
LazyAcker i 0 -> LazyAcker (– – i) 1;
LazyAcker i j -> LazyAcker (– – i) (LazyAcker i (– – j));

:: Start -> INT;
Start -> LazyAcker 3 7;

Performing this computation on a MacIIx with a 4Mb heap takes 16.3 s
+ 0.2 s for garbage collection.

:: StrAcker INT INT -> INT;
StrAcker i 0 -> StrAcker !(– – i) 1;
StrAcker i j -> StrAcker !(– – i) !(StrAcker i (– – j));
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The same computation (StrAcker 3 7), but now with local strict annota-
tions added (as shown in the definition of StrAcker) will only cost 9.6 s +
0.1 s for garbage collection. The gain in efficiency is obtained because
fewer nodes have to be made. In general, it is hard to predict how much
gain will be achieved.

:: Acker !INT !INT -> INT;
Acker 0 j -> ++ j;
Acker i 0 -> Acker (– – i) 1;
Acker i j -> Acker (– – i) (Acker i (– – j));

A significant gain in efficiency can be obtained when strict annotations
are placed in global positions (see the (type) definition of Acker above).
The same computation (Acker 3 7) will now only take 1.9 s + 0.0 s
garbage collection. The gain is one order of magnitude compared with
the previous definitions. It is now known that for all applications of the
function the evaluation of the argument is needed, in particular for the
recursive call itself. As will be explained in Chapter 11, no nodes are
made at all (hence no garbage collection is needed) because both argu-
ment and result are of type INT. The calculation is performed on a stack
and registers are used where possible. The speed is comparable with a
recursive call in highly optimized C or with the speed obtainable when
the function is programmed directly in assembler. The example already
reveals the cost of lazy evaluation and pure graph reduction compared
with eager evaluation using stacks and registers. Fortunately, with the
help of strictness analysis, much strictness information can be found
automatically (for instance in the case of the Ackermann function de-
fined above).

8.4 Modules

For a practical useful language separate compilation is a must. A modu-
lar structure enables this with the facility to hide actual implementations
of types and functions. This can also be used to specify abstract data
types (see also Section 8.2). The Clean modular structure very much re-
sembles the Modula2 approach (Wirth, 1982) with one major exception:
Clean’s implicit imports, which simplify the definition of modules that
just collect and pass-through definitions of other modules.

A Clean program consists of definition modules and implementa-
tion modules. In general, each definition module has a corresponding
implementation module. An implementation module and its correspond-
ing definition module bear the same module name. Each module is
stored in a separate file with the same name as the module, with an ap-
propriate extension (e.g. name.icl, name.dcl).
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8.4.1 Implementation modules

An implementation module consists of a sequence of type and rule def-
initions. The types and rules defined in such an implementation module
have in principle only a local scope: they have meaning only in the im-
plementation module in which they are defined.

Example of an implementation module:

IMPLEMENTATION MODULE ListOperations;
FROM deltaM IMPORT ABORT;
RULE
:: Hd [x] -> x;

Hd [ x | y ] -> x;
Hd x -> ABORT "head of empty list ?! ";

:: Tl [x] -> [x];
Tl [ x | y ] -> y;
Tl x -> ABORT "tail of empty list ?! ";

:: IsNil [x] -> BOOL;
IsNil [ ] -> TRUE;
IsNil x -> FALSE;

An executable Clean program should have an implementation module
with a Start rule declared in it. This module is called the start module.

8.4.2 Definition modules

In a definition module one can specify which types and rules (defined in
the corresponding implementation module) are exported, i.e. are made
visible to the outside world. To export a type or a function from an im-
plementation module one has to repeat its type definition in the corre-
sponding definition module. All other definitions in the implementation
module remain hidden.

Example of a definition module:

DEFINITION MODULE ListOperations;
RULE
:: Hd [x] -> x;
:: Tl [x] -> [x];
:: IsNil [x] -> BOOL;

An abstract type can be realized by exporting the name of an algebraic
or synonym type, but not its concrete realization (see also Section
8.2.2). A definition module does not need to have a corresponding im-
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plementation module. This can be useful for defining types on a global
level. Such a definition module can also serve as a ‘pass-through’
module (see Section 8.4.3).

System modules

System modules are special definition modules indicated by the key-
word SYSTEM instead of DEFINITION. This indicates that the correspond-
ing implementation module does not contain ordinary Clean rules, but
abstract ABC machine code instead (the ABC machine is explained in
Chapter 10). This facility makes it possible to program directly in ABC
code. This can be used to increase execution speed of heavily used
functions or complex data structures. On demand, the Clean compiler
will substitute the ABC code of a function in-line at the place in which
the corresponding function is called. In this way execution speed can be
increased even more. An advantage of system modules is that a certain
increase of efficiency can be obtained in a device-independent manner,
since ABC code is device independent. It goes without saying that for
ABC programming advanced knowledge is needed of the code genera-
tion schemes and the run-time behaviour of the ABC machine. Impru-
dent programming of system modules will generally lead to unpre-
dictable errors. Typically, predefined δ-rules are implemented as system
modules (see Appendix B).

8.4.3 Implicit and explicit importing

Via an import statement an exported definition can be used in another
implementation or definition module. Imported types and rules can be
regarded as being predefined. There are two kinds of import statement:
explicit and implicit imports.

Explicit imports

Explicit imports are import statements in which every type or rule that
has to be imported from a particular module is explicitly mentioned. In
this way only these explicitly indicated types and rules are declared
within the importing module.

Example of the use of explicit IMPORT statements: the sieve of Eratosthenes,
which calculates prime numbers.

IMPLEMENTATION MODULE Eratosthenes;
FROM deltaI IMPORT ++, =, % ;
RULE
:: Start -> [INT];

Start -> Sieve (Gen 2);
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:: Sieve [INT] -> [INT];
Sieve [ pr | str ] -> [ pr | Sieve (Filter pr str) ];

:: Filter INT [INT] -> [INT];
Filter pr [ n | str ] -> Filter pr str, IF  = (% n pr) 0

-> [ pr | Filter pr str ];

:: Gen INT -> [INT];
Gen n -> [ n | Gen (++ n) ];

Implicit imports

Implicit imports are import statements in which only the imported mod-
ule name is mentioned. In this case all symbols that are declared (i.e.
defined or imported) in the imported module are imported (and hence
also declared in the module that contains the import statement). So not
only are all symbols exported by the indicated module imported, but
also all symbols which in their turn are imported in that definition
module. In this aspect the Clean modular structure differs from the
Modula2 approach. So with one simple IMPORT statement all related
declarations are imported implicitly. Consequently, definition modules
can serve as a kind of ‘pass-through’.

All delta-rules can be imported easily by importing the module delta via the
implicit import statement: IMPORT delta; . This is due to the fact that all pre-
defined definition modules for arithmetic are in their turn implicitly imported
in the definition module delta .

DEFINITION MODULE delta;
IMPORT deltaB, deltaC, deltaI, deltaR, deltaS, deltaM;

8.5 Unique types and destructive updates

Section 2.6 describes the Miranda method of writing interactive pro-
grams. However, this approach has many disadvantages. To interact
with the operating system the initial expression has to yield special con-
structors which have to be interpreted by the run-time system. To ensure
referential transparency, certain restrictions are imposed on the kind of
I/O that is permitted (e.g. a file cannot be rewritten). Furthermore, the
solution is rather inefficient and the structure of highly interactive pro-
grams can become rather ugly. Generally, there is a direct relation be-
tween input and output which is not always clearly visible in the Mi-
randa approach: input is converted into a list to read from, output has to
be produced by an eager printing of the result yielded by the initial ex-
pression. Since the order in which functions are evaluated is hard to
predict, a frequently occurring error consists of the specification of a
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program that demands input before a prompt for such is given. So the
Miranda solution is not a satisfactory method for writing interactive pro-
grams.

On the other hand, it is not easy to find a good solution. The prob-
lem is that certain kinds of destructive updates, which occur for exam-
ple in traditional file I/O, would be very nice to have. But one cannot
have destructive updates in the functional framework without some
drawbacks. So the questions that arise are:

• How is it possible to perform destructive updates efficiently with-
out violating the functional properties of the program (referential
transparency, Church–Rosser property)?

• Since the evaluation of a functional program is unpredictable, how
can one control the order in which destructive updates are per-
formed?

When are destructive updates safe?

What kind of problems are caused by functions that perform destructive
updates? Such functions are, for example, functions that destructively
update an array, instantaneously write to a file on disk or to a window
on a screen.

Take, for example, file I/O. The most obvious and efficient way to
perform file I/O is by implementing functions that directly read and
write to a file, such as is common in imperative languages. However, a
naïve implementation of such functions in a functional language would
conflict with referential transparency. For instance, assume a function
that upon evaluation directly writes a character to a given file. Assume
that such a function is of type:

:: FWriteC CHAR FILE -> FILE;

This function takes a character and a file as an argument. However, the
character cannot be written into the given file and returned as result be-
cause the original file can be shared and used in other function applica-
tions. Modification of the argument will therefore also affect the out-
come of other computations that share the same argument. The result of
a program will now depend on the evaluation order, and the Church–
Rosser property is lost.

Example of an illegal destructive update:

:: F FILE -> (FILE,FILE);
F file -> (file1, file2),

file1: FWriteC 'a' file,
file2: FWriteC 'b' file;
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Assume that the function FWriteC would actually append the given character
to the file it gets as an argument. Now, since the file is used twice in the func-
tion body of F the result will depend on the evaluation order. It will either be
(file++'a', file++"ab") or (file++"ba", file++'b'). But, if FWriteC does not change
the original file the result would be (file++'a', file++'b'), independent of the
chosen evaluation order.

The destructive update is also in conflict with the standard graph
rewriting semantics of FWriteC (see also Appendix B) that prescribes
construction of a new file (contractum) in the function body with the
contents of the given file and the given character. So each time a
character is written such a data structure has to be constructed. This is of
course very inefficient and it is not the intention either. One really
wants to have the possibility of modifying an existing file instanta-
neously. The problem becomes even more obvious when one wants to
write to a window on a screen: one would like to be able to draw in an
existing window. In the standard semantics one would be obliged to
construct a new window with each drawing command.

However, under certain conditions destructive updates can be al-
lowed. If it can be guaranteed that an argument of a particular function
application is not used by (shared with) other function applications, then
the argument becomes garbage if it is not used in the corresponding
function body. In principle one can destructively update such an argu-
ment to construct the function result. This would make it possible to
construct a function FWriteC that can actually write the character to the
given file, yielding the updated file. But, such a function can only re-
strictively be used. For example, the illegal example above would in-
deed not be allowed.

Controlling the evaluation order

Assume that we can define functions that perform destructive updates in
such a way that the Church–Rosser property of the program is retained.
One certainly would not want destructive updates such as interaction
with the user to occur in arbitrary order. How can one ensure that de-
structive updates are performed in the intended order? A well-known
method is environment passing. The state of the environment one wants
to regard is then coded into an (abstract) object (e.g. a FILE in the case of
file I/O). Each function that modifies the environment needs the current
state of the environment as argument and yields the updated environ-
ment as result. In the case of file I/O this means that all functions that
perform file I/O need a file as argument and return an updated file (see
Section 8.5.2 and Appendix B). So such an object has to be passed from
one function to another. When a function performs an update of an
argument, it must be guaranteed that all previous updates of that argu-
ment by other functions have already taken place. So a function that
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updates an argument must be hyper-strict in this argument, i.e. it must
be guaranteed that the argument is always in normal form before the
function is applied. Passing around unique objects from just one func-
tion to another is called the single-threaded use of objects. For such use
destructive updates are allowed and they take place in a fixed sequential
order (innermost).

Solutions for incorporating destructive updates

Currently, there are two promising ways to incorporate destructive up-
dates as described above in a pure functional language. The first method
is by using monads (Peyton Jones and Wadler, 1993). Monads are ab-
stract data structures on which functions are defined in such a way that a
single threaded use of the monad is guaranteed. However, a disadvan-
tage of the method is that one can only manipulate one monad at a time.
So, for example, destructive file I/O and destructive array manipulation
are hard to combine. In Clean a second method is introduced that does
not have this disadvantage but it does require a special type system. One
can assign a unique type attribute (Smetsers et al., 1993) to an arbitrary
object that can be used to guarantee that such an object can be destruc-
tively updated safely.

8.5.1 The unique type attribute

A node n of a graph G is unique with respect to a node m of G if n is
only reachable from the root of G via m and there exists exactly one
path from m to n (Figure 8.2).

m: F a1 … an

n:

root of G

Figure 8.2 Unique node n with respect to the root m of the redex.

A property of a unique node is the fact that it has a reference count
(in-grade) of one. A shared node which has a larger reference count than
one clearly cannot be unique with respect to any node. A reference
count of one is, however, not sufficient for uniqueness with respect to
any other node: there can still be more paths leading to such a node. As-
sume that a node is passed as argument of a certain function application
in such a way that the node is unique with respect to that function appli-
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cation: if such a node is accessed via a variable in a pattern of the corre-
sponding rewrite rule and that variable is not used on the right-hand side
of that rule, it can be considered as garbage and reused for building the
contractum.

It would be nice if at compile-time the uniqueness of arguments
and results of functions could be determined. Unfortunately, this is un-
decidable. In Clean a decidable approximation has been incorporated
using unique types. Unique types (Smetsers et al., 1993), defined on
graphs, have many similarities with linear types, defined on λ-terms
(Girard, 1987; Wadler, 1990). An important difference is that Clean’s
unique types give information about the way a specific function has to
be applied (e.g. this function has to be called with an argument that is
used in a linear way) while other linear type systems give information
about the way expressions are being used in the function body (e.g. this
argument of the function is used in a linear way in the function body).

Unique type specifications and functions

The type of a graph in a rewrite rule can have the unique type at-
tribute, i.e. the graph can be of type UNQ T. If a graph on a left-hand
side or on the right-hand side of a rewrite rule is of type UNQ T, it is
guaranteed that at run-time the root of the corresponding graph is
unique with respect to the root of, respectively, the function application
or contractum. When no contractum is specified, a result of type UNQ T
means that a redirection is performed to an object that was unique with
respect to the root of the function application. When this cannot lead to
confusion the phrase ‘a unique graph’ will be used instead of ‘a graph
which is unique with respect to the function application/contractum’.

The UNQ type attribute can be added by the programmer to any
type to express the restricted use of an object of that type. To verify the
correctness of the use of UNQ attributes the type system has been ex-
tended. This means that all applications on the right-hand side of a
function are examined to check that when a parameter or a result of a
UNQ type is demanded, a unique graph of the demanded type is offered.
Here, demanded means that either the corresponding formal parameter
of the applied function has a UNQ attribute or the result type of the de-
fined function itself is attributed with UNQ. To get a well-typed pro-
gram, the following general rules have to be obeyed:

• An applied occurrence of a node-id bound to a graph can have the
UNQ type attribute only if there exists at most one path from the
root of the right-hand side of a rule alternative to that applied oc-
currence.

Not well-typed example. The type specification of the function F defined be-
low will be rejected since two paths are leading from the root of the contrac-
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tum to the same node x. The unique argument of the function F is not unique
any more in the resulting pair. So the following types for F would be accepted:
::F UNQ INT -> ([INT], [INT]) or ::F INT -> ([INT], [INT]).

:: F UNQ INT -> ( [UNQ INT], [UNQ INT] );
F x -> ( y, y ),

y: [ x ];

Each function alternative is separately checked for consistency. Although in
the definition of F below the unique node-id n is used twice this does not lead
to a conflict: only one of the guarded expressions is chosen at run-time.

:: F UNQ INT INT -> UNQ INT;
F n m -> n, IF  = m 0

-> F (G n) (– – m);

:: G UNQ INT -> UNQ INT;
…

It is not always wrong to use a UNQ-typed graph more than once in
one and the same function alternative. A unique node-id may be
shared between the guard and the guarded expression belonging to
it. The reason is that a guard is evaluated in advance to determine
which of the function alternatives has to be chosen. A guard will
yield a Boolean result that cannot contain references to UNQ nodes.
To guarantee that no destructive updates occur when a guard is
evaluated, a graph that is being used in both guard and guarded ex-
pression will lose its unique type attribute in the guard. This en-
ables the non-destructive (observing) inspection of such a graph in
a guard. This property for guards can be generalized to a more
general property for uniqueness connected to the order of evalua-
tion (see Smetsers et al., 1993).

Example of sharing of a unique node-id in guard and right-hand side:

:: F UNQ INT -> UNQ INT;
F n -> n, IF  = n 0  ||  = n 1

-> F (G n);

Although the node-id n is shared between the guard and both guarded expres-
sions this will not lead to an erroneous situation. After the evaluation of the
guard still only one non-garbage reference to n exists. The type system will
assign the type INT (and not UNQ INT) to both uses of n in the guard.

• Demanded UNQs have to be obeyed (with an exception for function
types, see below): when a demanded type T and an offered type T'
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are unifiable (in the standard sense, ignoring the UNQ attributes)
then for each position where in T the UNQ attribute occurs, there
has to be a corresponding position in T' with the UNQ attribute.

Not well-typed example. F is recursively called with a graph of type INT,
while in the type specification of F an argument of type UNQ INT is de-
manded. This will yield a type error.

:: F UNQ INT -> INT;
F n -> F (G n);

:: G INT -> INT;
…

For demanded function types with UNQ arguments the offered ar-
gument type need not be unique: a demanded type => UNQ T T' and
an offered type => S S' are unifiable (when in the standard sense, ig-
noring the UNQ attributes, => T T' and => S S' are unifiable).

• When a UNQ type is offered but not demanded, this offered type is
accepted (with an exception for function types, see below). This
can be explained by the fact that a UNQ type imposes an additional
restriction on the way the object is used. If this restriction is not
demanded by the context this is of course fine. It does mean that
type conversions have to take place. An offered object of type UNQ
T is automatically converted to type T if this type is demanded from
the context.

Take the previous example and consider the application of G n. G demands an
argument of type INT while G is applied with a graph of type UNQ INT. The
type system will automatically convert the UNQ INT to an INT and will then
conclude that the type of the application G n is correct.

Offered unique function types are never converted: when a type
UNQ => T T' is offered, the demanded type must be of type UNQ => S
S' and unifiable in the standard sense.

:: F UNQ FILE CHAR -> UNQ FILE;
F f c -> FWriteC c f;

:: G (=> CHAR UNQ FILE) -> (UNQ FILE, UNQ FILE);
G g -> (g ‘a’, g ‘b’);
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With the well-typed rules above the expression G (F StdErr) would be re-
jected. The type of F StdErr is UNQ (=> CHAR UNQ FILE) owing to the left to
right UNQ propagation rule which is explained in the next subsection.

Furthermore, offered function types with UNQ arguments have to be
obeyed: when a demanded type => T T' and an offered type => UNQ
S S' are unifiable (in the standard sense, ignoring the UNQ at-
tributes) then they are not unifiable taking UNQ into account. The
demanded type must be => UNQ T T'.

:: UMap (=> UNQ x UNQ y) [UNQ x] -> [UNQ y];
UMap f [ ] -> [ ];
UMap f [ x | xs ] -> [ f x | UMap f xs ];

:: WriteAll CHAR [UNQ FILE] -> [UNQ FILE];
WriteAll c ufiles -> UMap (FWriteC 'a') ufiles;

This variant of Map is defined on functions that take a graph of type UNQ x
and yield a graph of type UNQ y. UMap applies such a function to a unique list
(see below) with elements of type UNQ x yielding a unique list with elements
of type UNQ y. This function UMap is used in the function WriteAll to map a
function FWriteC that writes a character into a unique file on a list of unique
files. It has to be guaranteed that the offered function FWriteC is always ap-
plied to a unique file. From the type of the standard function Map one cannot
deduce whether this condition is fulfilled. Therefore in this example the use of
Map instead of UMap would have been rejected. Note that there is no distinc-
tion between the definition of the function Map and UMap: there is only a dif-
ference in the specified type.

When functions are allowed to be polymorphic in their UNQ attributes
one can define a generic Map function that can be used both as the stan-
dard Map function and as the UMap function in the example above.

Defining types with UNQ attributes

A programmer can add unique type attributes to any type. List, tuples
and function types, as well as their subtypes, can have the unique at-
tribute. Furthermore, type attributes can be used in the definition of new
types (algebraic, abstract and synonym types). In this section it is ex-
plained what the meaning of such a definition is.

An important aspect of a function application containing a unique
graph is that it cannot be a part of a graph that is not unique with respect
to that function application. In other words, when a graph with type T
contains unique parts (which means that the type T has unique subtypes)
the graph itself must be unique (this is called the UNQ propagation
rule). Otherwise, there can be multiple paths leading to this graph
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which means that its components would not be unique any more. The
propagation rule holds for all types, and also for function types. For
non-function types UNQ attributes propagate from inside-out, for func-
tion types it propagates from left to right. In Clean, it is not necessary
to give the full type specification; the propagation of the UNQ attributes
is done automatically by the compiler.

Example of ‘inside-out’ propagation: consider the type (INT, UNQ CHAR). An
instance of such a type is a pair containing an INT and a unique CHAR. Due to
the propagation rule, the pair itself has to be unique as well, i.e. the full type
specification is UNQ (INT, UNQ CHAR).
Example of ‘left to right’ propagation: take F typed as :: F UNQ INT INT ->
INT; the type of the curried function F is => UNQ INT (=> INT INT). Now con-
sider the curried application F 3. This application has taken a unique integer
value. When there are multiple paths leading to F 3 there are also multiple
paths leading to 3. So F 3 has to be unique as well. Hence, the full type spec-
ification for F is => UNQ INT UNQ (=> INT INT).

Synonym types

Synonym types can be used in the usual way.

TYPE
:: UTUPLE UNQ x -> (UNQ x, UNQ x);

Applying UNQ propagation to achieve the full type specification for this ex-
ample gives UNQ UTUPLE UNQ x -> UNQ (UNQ x, UNQ x).

Algebraic types

The following rules guarantee that when unique substructures are being
used, a consistent (recursive) algebraic data type is defined.

(1) All occurrences in both left- and right-hand sides of a certain type
variable must have the same type attribute.

(2) All occurrences of a recursive algebraic type must be attributed
uniformly.

(3) When the root of a right-hand side of a type alternative is attributed
with UNQ, all other type alternatives will get the UNQ attribute on
their root as well. Moreover, the algebraic type itself (and hence all
occurrences of that type) will get the UNQ attribute.

A list with a unique spine but not necessarily with unique elements:

:: List x -> Cons x UNQ (List x)
-> Nil;
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Due to the UNQ propagation rule the uniqueness of the spine will propagate
over the Cons. As a consequence, Nil will get the UNQ attribute (being the
root of the other type alternative) as well as all occurrences of List x (being the
defined algebraic type). So the full definition deduced by the compiler is:

:: UNQ List x -> UNQ Cons x UNQ (List x)
-> UNQ Nil;

For clarity, we advise specifying the left-hand side completely:

:: UNQ List x -> Cons x (List x)
-> Nil;

A list with unique elements and hence with a unique spine:

:: List UNQ x -> Cons UNQ x (List UNQ x)
-> Nil;

Owing to the UNQ propagation rule the uniqueness of list elements will propa-
gate over the Cons. As in the case above, the root of both alternatives as well
as the algebraic type itself become unique and therefore so does the whole
spine. So the complete list has to be unique (lists elements as well as the
spine). The full definition is:

:: UNQ List UNQ x -> UNQ Cons UNQ x UNQ (List UNQ x)
-> UNQ Nil;

The advised definition is:

:: UNQ List UNQ x -> Cons UNQ x (List UNQ x)
-> Nil;

Unique types can be used as instantiations of polymorphic types. The
meaning of a type T parametrized with a unique type is rather obvious:
the resulting type is deduced from the type obtained by substituting the
parameters (including the UNQ attributes) in the definition of T.

Take for example the following common definition of a list:

:: List x -> Cons x (List x)
-> Nil;

Then for the type List UNQ INT the following full type definition is deduced:

:: UNQ List UNQ INT -> UNQ Cons UNQ INT UNQ (List UNQ INT)
-> UNQ Nil;



UNIQUE TYPES AND DESTRUCTIVE UPDATES  283

The substitution of a UNQ instantiation in a polymorphic type will not
always yield a UNQ type as result.

Take for example the following definition:

:: T x -> C (=> x (=> INT INT));

Left to right propagation deduces for the type T UNQ INT the following:

:: T UNQ INT -> C (=> UNQ INT UNQ (=> INT INT));

Abstract types

Abstract types with UNQ attributes are specified by giving the full type
specification of the left-hand side of the corresponding type definition
in the implementation module.

The previous fully unique List type is turned into an abstract type as follows:

ABSTYPE
:: UNQ List UNQ x;

8.6 Input/output handling

Using the UNQ type attribute, single-threaded use of file I/O and screen
I/O (in Clean called event I/O) can be assured. In this way incremental
updates of persistent data are made possible (see Section 8.6.2). Specifi-
cation of modern I/O that uses modules, windows, menus and the like
can be done on a very high level of abstraction by making use of the
predefined Clean library (Achten et al., 1993) that heavily uses UNQ
types. This library is part of Appendix B.

...

FILES

FILEFILE FILE

WORLD

EVENTS

File Edit

Window

Figure 8.3 The I/O environment hierarchy of Clean.

The I/O constructs of Clean are referentially transparent and hence
‘100% functional’. An abstract object representing the outside world
has been predefined with type UNQ WORLD. From this world the follow-
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ing disjoint abstract objects can be extracted (see Figure 8.3): an object
of type UNQ EVENTS which is used to perform screen I/O and an object
of type UNQ FILES (the file system) from which in its turn objects of type
FILE (concrete files) can be extracted (opened) to perform file I/O. One
can open unique files (if these files have to be modified) or non-unique
ones (for read-only files).

8.6.1 The world

The world contains all the information about the concrete environment
that is relevant to the program. There is no function to create a world.
The world is an abstract object of predefined type UNQ WORLD option-
ally given to a Clean program as an argument of the Start rule:

RULE
:: Start UNQ WORLD -> … == any type

Start w -> … == any computation yielding the indicated type;

Pure computations ignore the world and its subenvironments. Interac-
tive programs need to access and change the world using functions
which require a unique world. When the world becomes garbage it does
not mean that the world has ceased to exist, but it means that the pro-
gram no longer performs operations on the world. If the subenviron-
ments have been retrieved earlier, then they can still be accessed in the
program.

8.6.2 File I/O

FILES is the unique subenvironment of the world containing all the files
that are visible to the program (the file system). The file system is re-
trieved from a unique world by the rule OpenFiles and can be put back
again by the rule CloseFiles. Once the file system has been retrieved from
the world, it cannot be retrieved again without closing it first.

:: OpenFiles UNQ WORLD -> (UNQ FILES, UNQ WORLD);
:: CloseFiles UNQ FILES UNQ WORLD -> UNQ WORLD;

A Clean file has type FILE. To open a file (to read or write) one needs
the file system. Only writable files are opened as UNQ FILE; read-only
files do not require the unique attribute. For example, the following
functions have been predefined (there are many more: see Appendix B).

:: FOpen STRING INT UNQ FILES -> (BOOL, UNQ FILE, UNQ FILES);
:: SFOpen STRING INT UNQ FILES -> (BOOL, FILE, UNQ FILES);
:: FWriteC CHAR UNQ FILE -> UNQ FILE;
:: SFReadC FILE -> (BOOL, CHAR, FILE);
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In the Clean library also an FSeek function is predefined with which the
file pointer can be moved explicitly such that a file can be randomly ac-
cessed. Note that all functions return a (UNQ) FILE on which I/O func-
tions can continue.

The following example illustrates the use of WORLD, FILES and FILEs:

RULE
:: Start UNQ WORLD -> UNQ FILE;

Start w -> CopyF sf df,
(fs, w'): OpenFiles w,
(source_open, sf, fs' ): SFOpen "Source" FReadData fs,
(dest_open, df, fs''): FOpen "Dest" FWriteData fs';

:: CopyF FILE UNQ FILE -> UNQ FILE;
CopyF sf df -> df, IF  NOT read_ok

-> CopyF sf' (FWriteC char df),
(read_ok, char, sf'): SFReadC sf;

This program copies the contents of one file to another. First it retrieves the
file system from the world. This file system is used to open the source and the
destination file. The world and the file system are no further needed and be-
come garbage. The source file is only being read (indicated by FReadData),
so it does not have to be unique. The destination file is being written
(FWriteData) and therefore this file must be unique. After completion of copy-
ing, the source file becomes garbage, and the program yields the written file.
To do the actual copying on the open files CopyF is applied. When the source
file is empty the destination file is yielded, otherwise CopyChars reads a char-
acter from the source file, writes it to the destination file and continues recur-
sively.

It is possible that a UNQ FILE is used in such a way that it loses its
UNQ attribute (e.g. when the file gets shared). Since all destructive op-
erations on files require an object of type UNQ FILE, an ordinary
(possibly shared) file of type FILE cannot be modified any more. But
there are several non-destructive operations defined on an object of type
FILE with which such a file can still be examined.

8.6.3 Event I/O

Event I/O is a different class of I/O than file I/O. In event I/O the ob-
jects that are being manipulated are graphical interface objects such as
windows, menus and dialogs. Graphical interface systems are event
driven: actions performed by the user generate events to the program.
Clean’s event I/O library (written in Clean) offers a way to define these
graphical interface objects on a level that is very close to the way these
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objects actually appear on the screen. The library completely takes care
of all the low-level event handling.

Devices

A device in Clean is an interface object such as a window or a menu.
There are four devices predefined in the Clean library: the menu device,
the window device, the dialog device and the timer device.

Contents

Title Zoom area

Arrow

Thumb

Scrollbar

Grow area

Figure 8.4 Example of a window.

A window device (see Figure 8.4) is an interactive device: it reacts
on key presses and releases and mouse clicks and releases, coupled with
mouse positions. Windows are the only way a program can visualize
output. A window gives a view on a picture (again a UNQ abstract ob-
ject) on which a set of drawing functions is defined.

user-defined control

pop up menustatic text

editable text

check boxes

radio buttons

buttons

user-defined
button

Figure 8.5 Example of a dialog.

The relationship between the visible part of the picture and the window
is defined by the positions of the thumbs of the window’s scroll bars.
One can open several windows dynamically, at most one of them is ac-
tive. Almost all window management is handled automatically by the
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library. The programmer just has to define the update management
which is the redrawing that should be performed if an invisible part of
the window becomes visible again. The programmer can also define
what should be done when a window is closed.

The menu device (see Figure 8.7) conceptualizes choosing from a
distinguished set of available commands. A menu device can contain
pull-down menus each containing commands or submenus.

The dialog device (see Figure 8.5) conceptualizes structured com-
munication between the program and the user via a form that has to be
filled in. One can have modal and modeless dialogs, as well as notices.
Modal and modeless dialogs can contain editable text fields, static text
fields, pop-up menus, radio buttons, check boxes, buttons, final buttons
and user-defined controls.

With the timer device a program can be synchronized (see Section
8.6.4): a function can be evaluated every time a certain time interval has
passed. Several timers can be installed. When a time interval is set to
zero, a timer event is generated whenever no other event is generated.

Interactions

The concept of events and devices can now be used to define interac-
tions. An interaction is a state transition system in which I/O is per-
formed. The state of an interaction is composed of two objects: the pro-
gram state and the I/O state.

The program state is a program-defined data structure. The pro-
gram state can be used by the programmer to maintain the current state
of the program (which is dependent on the kind of program).

Devices EVENTS

IOState

Menu
File

Window
Title

Hello world
Open
Close

Quit

Dialog Timer

Quit now?

OK

Cancel

(70,145)
MouseDown

9:27:32.72
KeyUp 'A'

9:27:33.09
Activate #1

9:27:33.16

Figure 8.6 The contents of the IOState.

 The I/O state is an abstract data type of type IOState that can be
regarded as a hidden state used by the library to maintain the current
state of the I/O interface. All interactions and I/O functions are defined
on this type IOState, rather than on the EVENTS environment. In this way
it is made explicit that all event handling is done by the library. The I/O
state contains (see Figure 8.6):
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• the event stream (modelled by the EVENTS);
• the definition of all the devices that participate in the interaction.

Transitions are triggered by the events in the event stream. Each event
in the event stream is dispatched in the library to the proper device,
which computes the next interaction state by calling the proper event
handler.

The event stream

The event stream can be retrieved from and put back into the WORLD by
means of the following predefined functions from the deltaEventIO mod-
ule:

:: OpenEvents UNQ WORLD -> (UNQ EVENTS, UNQ WORLD);
:: CloseEvents UNQ EVENTS UNQ WORLD -> UNQ WORLD;

The definition of the devices

Devices are specified with the help of a predefined algebraic data type
DeviceSystem. With this type actually a special kind of declarative lan-
guage is introduced in which the programmer can specify the properties
of the devices that are being used (see the example in Section 8.6.4).
The programmer has to specify:

• which of the predefined I/O devices are being used;
• how these devices should be initialized;
• which event handler or call-back routine has to be called when a

certain active device has been triggered (e.g. a particular menu
item that has been chosen). An event handler is a user-defined
higher order state transition function that takes the program state
and I/O state as an argument to yield a pair with the new program
state and the new I/O state as result.

Starting and terminating interactions

Starting and terminating interactions are handled by two special func-
tions: StartIO and QuitIO. StartIO takes the specification of the set-up of
the I/O system as described above, the initial program state s0, a possi-
bly empty list of functions that can be used to change the default set-
tings of the system, and the event stream obtained from the world.
StartIO takes the description of the devices, after which these devices are
activated and drawn on the screen. Then, the device description and the
event queue are stored in the I/O state. Finally, the default settings are
set and an internal function DoIO is called with the initial program state
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s0 and the initial I/O state IOState0. This function DoIO recursively calls
itself. In each call an input event en is taken from the event stream. The
input event is dispatched to the proper device which computes the next
program state sn+1 and the next I/O state IOStaten+1 by applying the
proper event handler. In this way a sequence of pairs of program state
and IOState, starting from the program state s 0 and I/O state IOState0, is
computed. Below the simplified implementation of StartIO is given using
internal library functions InitIO, DoIO, GetEvent, GetEvents and GetHandler.

StartIO device_defs program_state default_settings events
-> DoIO (program_state, io_state),

io_state: InitIO device_defs default_settings events;

DoIO (program_state, io_state: ClosedIO_State)
-> (program_state, GetEvents io_state);
DoIO (program_state, io_state)
-> DoIO (event_handler program_state io_state''),

(event_handler, io_state''): GetHandler event io_state',
(event, io_state' ): GetEvent io_state;

The order of evaluation guarantees that the transition triggered by event
en+1 is only reduced after the transition triggered by en has yielded a
complete IOStaten+1. The interaction obtained in this way can only be
terminated by having any of the device functions apply QuitIO to its IO-
State argument. The function QuitIO produces a special I/O state, Closed-
IO_State, in which all devices are closed. DoIO matches on this special
state producing the final program state and the remaining event stream.

8.6.4 An example: the game of Life

In this section we present an example of a typical interactive Clean pro-
gram that uses the Clean I/O library. The program describes the inter-
face for a system playing the game of Life. This is a ‘game’ consisting
of an infinite two-dimensional space (the universe). A cell is identified
by a Cartesian position in the universe. A cell is either alive or dead.
When an initial generation of living cells is given, each following gen-
eration is computed as follows:

• if a living cell has just two or three living neighbour cells, it sur-
vives to the next generation;

• if a dead cell has exactly three living neighbour cells, it becomes
alive in the next generation.

In this example we concentrate on the specification of the interactive
part of the program, so our prime interest is not, for instance, the func-
tion that calculates a new generation given the current generation.
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Hence, we assume that the specifications of such functions are already
given.

The following functions are assumed to be given: LifeGame computes, given
the current generation of cells, a triplet consisting of the next generation, and,
to make drawing of cells easier, the collection of new-born cells and the cells
that have passed away. RemoveCell deletes a cell from a generation; adding a
cell to a generation is done by AddCell. They are used for the creation of the
initial generation by the user.

:: LifeGame Generation -> (Generation, Generation, Generation);
:: RemoveCell LifeCell Generation -> Generation;
:: AddCell LifeCell Generation -> Generation;
:: InitialGeneration -> Generation;

The initial generation of cells has to be specified by the player. The
player can add or delete a cell at a certain position by clicking with a
mouse in a window. Then the calculation of generations can be started.
There are several options that can be chosen from a menu (Figure 8.7).

Figure 8.7
L i f e

 window, O p t i o n s
 menu and C e l l S i z e

 submenu.

The menu consists of:

• a pull-down menu named , containing:
– a  command to terminate the application.

• a pull-down menu named , containing:
– an  command to clear the contents of the window and to

create a fresh game with an empty generation;
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– a submenu called  to change the size of the cells dis-
played in the window. Because at most one size is valid at a
time, the items are organized as radio items (selection of an
item causes the deselection of all others). The initial cell size
will be set to  pixels.

• a pull-down menu named , containing:
– a  command to start the continuous computation of next

generations.  disables itself such that the command can-
not be chosen again. Furthermore, will be disabled and

 has to be enabled.
– a  command to terminate the computation of generations

and reverse all (dis)abling done by .

When  is chosen from the menu, generations will be computed one
after another. If nothing happens, this computation will go on forever.
To stop it one has to choose  from the menu. To make this possible
one has to ensure that the program inspects its event queue regularly to
see if, for example,  has been chosen. This can be realized by using
the timer device with the time interval set to zero. When no events are
generated by the user, a timer event is generated automatically that is
used to calculate the next generation. If there is a user event, it will get
priority. In this way the calculation of generations can be interrupted.

MODULE LifeGame;
IMPORT delta;
IMPORT deltaEventIO, deltaMenu, deltaWindow, deltaTimer, deltaPicture;
IMPORT Life;

Constants to enhance comprehension and maintenance:
MACRO

FileMenuId -> 1; OptionsMenuId -> 2; CommandsMenuId -> 3;
QuitId -> 11; EraseId -> 21; PlayId -> 31;

CellSizeId -> 22; HaltId -> 32;
Size1Id -> 221;
Size2Id -> 222;
Size4Id -> 223;
Size8Id -> 224;

TimerID -> 1; NullInterval -> 0;
LifeWindowId -> 1; MinimumSizeOfWindow -> (50, 50);
WindowPos -> (0,0); InitialSizeOfWindow -> (1000, 1000);
PictureRange -> ((0,0), (1000,1000));
ScrollBarH&V -> ScrollBar (Thumb 0) (Scroll 8);

The program state State consists of the current generation and the size of the
cells displayed in the window. A synonym for the IOState is defined to pre-
vent type rules from cluttering up.
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TYPE
:: UNQ IO -> IOState State;
:: UNQ State -> (Generation, Size);
:: Size -> INT;

The execution of the program starts here. A window is created, to access a null
device (which is not active yet) and a menu. The parameters have to obey the
algebraic data type defined in the library. The symbols printed in italic are the
user-defined event handlers. To each menu item a different label (an arbitrary
constant number) is attached (an Id) such that one can refer to it later. Observe
the close relation between the definitions of the window and menu device and
their graphical appearance on the screen.

RULE
:: Start UNQ WORLD -> (State, UNQ EVENTS);

Start world ->
StartIO [ menus, timer, window ] initial_program_state [ ] events,
initial_program_state: (InitialGeneration, 8),
(events, world'): OpenEvents world,
menus: MenuSystem [ file, options, cmnds ],
file: PullDownMenu FileMenuId " " Able

 [ MenuItem QuitId " " (Key ' ') Able Quit ],
options: PullDownMenu OptionsMenuId " " Able

[ MenuItem EraseId " " (Key ' ') Able Erase,
SubMenuItem CellSizeId " " Able

[ MenuRadioItems Size8Id
[ MenuRadioItem Size1Id " " NoKey Able (ChangeSize 1),

MenuRadioItem Size2Id " " NoKey Able (ChangeSize 2),
MenuRadioItem Size4Id " " NoKey Able (ChangeSize 4),
MenuRadioItem Size8Id " " NoKey Able (ChangeSize 8)

] ] ],
cmnds: PullDownMenu CommandsMenuId " " Able

[ MenuItem PlayId " " (Key ' ') Able Play,
MenuItem HaltId " " (Key ' ') Unable Halt

],
timer: TimerSystem

[ Timer TimerID Unable NullInterval NextGeneration ],
window: WindowSystem

[ ScrollWindow LifeWindowId WindowPos " "
ScrollBarH&V ScrollBarH&V PictureRange
MinimumSizeOfWindow InitialSizeOfWindow
UpdateWindow [ Mouse Able Track ] ];
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Next we define the user-defined event handlers. All handlers take two addi-
tional arguments of type State and IO and yield a pair of type (State, IO).

:: Quit State IO -> (State, IO);
Quit state iostate -> (state, QuitIO iostate);

:: Erase State IO -> (State, IO);
Erase (g, s) io
-> (([ ], s), DrawInActiveWindow [ EraseRectangle PictureRange ] io);

:: ChangeSize INT State IO -> (State, IO);
ChangeSize ns (g, s) io
-> ((g, ns), DrawInActiveWindow cells io),

cells: [ EraseRectangle PictureRange | Map (DrawCell ns) g ];

:: Play State IO -> (State, IO);
Play state io
-> (state, ChangeIOState [ DisableActiveMouse,

DisableMenuItems [ PlayId, EraseId ],
EnableMenuItems [ HaltId ],
EnableTimer TimerID ] io);

:: Halt State IO -> (State, IO);
Halt state io
-> (state, ChangeIOState [ DisableTimer TimerID,

DisableMenuItems [ HaltId ],
EnableMenuItems [ PlayId, EraseId ],
EnableActiveMouse ] io);

A timer event is generated when no other event is present and this is used to
calculate a new generation of cells:

:: NextGeneration TimerState State IO -> (State, IO);
NextGeneration tstate (g, s) io
-> ((ng, s), ChangeIOState [ DrawInActiveWindow erasecells,

DrawInActiveWindow newcells ] io),
erasecells: Map (EraseCell s) died,
newcells: Map (DrawCell s) new,
(ng, new, died): LifeGame g;

UpdateWindow redraws all cells regardless of their visibility:

:: UpdateWindow UpdateArea State -> (State, [DrawFunction]);
UpdateWindow update_area state:(g, s)
-> (state, [ EraseRectangle PictureRange | Map (DrawCell s) g ]);
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Track evaluates all mouse activities in the window:

:: Track MouseState State IO -> (State, IO);
Track (pos, ButtonUp, modifiers) state io -> (state, io);
Track ((x,y), down, (shift,option,command,control)) (g, s) io
-> ((remove, s), DrawInActiveWindow erase io), IF  command
-> ((add, s), DrawInActiveWindow draw io),

remove: RemoveCell cell g, erase: [EraseCell s cell],
add: AddCell cell g, draw: [DrawCell s cell],
cell: (/ nx s, / ny s), nx: – x (% x s), ny: – y (% y s);

Auxiliary drawing functions have to be defined. DrawCell draws the cells that
have been created and EraseCells draws the cells that have died.

:: DrawCell Size LifeCell -> DrawFunction;
DrawCell s (x, y) -> FillRectangle ((px, py), (+ px s, + py s)),

px: * x s, py: * y s;

:: EraseCell Size LifeCell -> DrawFunction;
EraseCell s (x, y) -> EraseRectangle ((px, py), (+ px s, + py s)),

px: * x s, py: * y s;

Note that the IOState (the parameter of type IO) is used single-threadedly
everywhere in the program (otherwise this program would have been re-
jected by the compiler). In the example above this is generally done im-
plicitly (using the predefined function ChangeIOState). It can also be
done explicitly. Take for example the Play function as defined above.
This function can also be defined as follows:

:: Play State IO -> (State, IO);
Play state io -> (state, play),

play : EnableTimer TimerID
( EnableMenuItems [ HaltId ]

( DisableMenuItems [ PlayId, EraseId ]
( DisableActiveMouse io ) ) );

Or even more explicitly:

:: Play State IO -> (State, IO);
Play state io -> (state, io4),

io1: DisableActiveMouse io,
io2: DisableMenuItems [ PlayId, EraseId ] io1,
io3: EnableMenuItems [ HaltId ] io2,
io4: EnableTimer TimerID io3;
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Summary

• Clean is a lazy, higher order functional programming language
based on FGRSs.

• Clean can also be used as intermediate language in the compilation
path from functional languages to concrete machine architectures.

• Sharing of computation can be expressed explicitly by the pro-
grammer in a general way, including the possibility of specifying
cyclic structures.

• Clean is a strongly typed language (based on Milner–Mycroft typ-
ing extended for the use of patterns) including polymorphic types,
abstract types, algebraic types and synonym types, as well as basic
types; there are predefined type constructors for lists, tuples and
(curried) functions. The type system enhances efficiency, modular-
ity and understandability.

• A Clean program can be decorated with annotations that influence
the evaluation order.

• With strict annotations the evaluation can be made (partially)
eager instead of lazy. Strict annotations are only safe when they
are used in such a way that the termination behaviour of the
program is not changed. Generally, the annotations are placed on
the strict arguments of a function.

• Annotations can be defined by the programmer but they can also
be generated automatically by the built-in strictness analyser of the
Clean system. An annotated program generally runs much faster
and has a much better space behaviour than a program without an-
notations.

• Clean has a modular structure with implementation modules and
definition modules including a facility to import definitions from
other modules implicitly and explicitly; it includes predefined li-
braries for basic operations (δ-rules) on objects of basic types.

• A unique type attribute can be added to the type specification of
any object. The type system ensures that such an object can only be
used single-threadedly. When such an object is passed to a func-
tion it can in principle be reused for the construction of the func-
tion result. In this way functions can be constructed that perform
destructive updates without loosing referential transparency.

• With the help of the unique type attribute and higher order func-
tions a library has been written in Clean that enables a high-level
specification of interactive programs that use windows, dialogs,
menus and the like.
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EXERCISES

8.1 Describe all reduction paths for the initial expression G (H 0) given
the rules below if they are valid (a) Miranda, (b) Clean, (c) TRS,
(d) GRS rules. Ignore small syntactic differences between the sys-
tems.
F (H 0) x = x
F 1 x = x
H x = 1
G x = F x x

In the following exercises a task is given for which a Clean program has
to be written. Specify the type of each rule. Invent appropriate (partially
strict) data structures when necessary. Utilize sharing and cycles to pre-
vent computations being carried out more than once.

8.2 Compute a list of all Fibonacci numbers.

8.3 Compute the powerset of a given set (represent a set as a list, mul-
tiple occurrences of an element in the list are not allowed).

8.4 Given a function f and a set of values X, compute the closure of f
and X: clos(f, X) = { f n(x) | n ∈ Nat, x ∈ X }.

8.5 Compute Pascal’s triangle (to a certain depth) in a neatly formatted
way. This triangle consists of numbers such that each number is
the sum of the numbers just to the right and just to the left of it, on
the line above it. The sides of the triangle consist of 1s. Part of the
triangle is given here:

1
1 1

1 2 1
1 3 3 1

8.6 Read a file, named ‘perm.in’, containing some permutation of the
numbers 1 to n. To determine n ask the user for input. After read-
ing in this file find out which permutation cycles the permutation
in the file consists of. Write these permutation cycles to a file
named ‘cycles.out’.
Suppose the file contains 2 4 3 1, which is a permutation of the numbers 1 to
4; then it consists of the permutation cycles (1 2 4) and (3).
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8.7 Implement the functions LifeGame, RemoveCell, AddCell and Initial-
Generation as applied in Section 8.6.4.

8.8* Refine the CopyF function of Section 8.6.2 such that it asks interac-
tively the names of the files. Open StdIO to get a standard window
to prompt the user for the file names. Open StdErr to display error
messages. Allow StdIO as one of the file names. Make the program
robust such that wrong file names cannot lead to abortion of the
program. Make a more user-friendly version of the program by us-
ing file selector dialogs.

8.9* Program a simple pocket calculator that can be used by pressing
buttons in a dialog definition.

8.10* Write the well-known Tetris game. Define suitable menus and di-
alogs. Add a help file and a high-score list.

8.11* Write a matrix multiplication program using a UNQ ARRAY INT and
using an [ [INT] ]. Measure the time–space behaviour of both repre-
sentations and explain the differences.

8.12* Write in C an imperatively written program (assignments allowed)
that sorts a list using the quicksort algorithm. Write a quicksort
function in Clean. Also write the quicksort algorithm defined on
lists with a unique spine. Measure the differences in time–space
behaviour and explain them.

8.13* Write a non-trivial program (e.g. the λ-reducer of Exercise 3.7) in
Clean, an imperative language, an object oriented language and a
logical language. Which style of programming did you like most?
Why? Measure and compare the efficiency in both time and space.
Also measure the effect of the strictness analyser.
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Chapter 9
Translation into Clean

9.1 About the desugaring of the
language

9.2 Simple transformations
9.3 List comprehensions

9.4 Local function definitions
9.5 Translating the desugared

language into Clean
9.6 The exploitation of sharing

In this chapter the most important advanced language concepts offered
by a lazy functional language such as Miranda are transformed into an
FGRS-based language such as Clean (Figure 9.1). The transformation
schemes take Miranda explicitly as the source language, but they can
also serve as a guideline for the translation of other lazy functional lan-
guages.

As a ‘side-effect’, this chapter gives a better insight in the seman-
tics of the treated language concepts, especially with respect to shar-
ing.

Motorola
code

ABC machine
simulator

Motorola
processor

Miranda
program ABC codeClean

program

Figure 9.1 The first translation step: translating a Miranda script
into an equivalent Clean program.

The goal of the transformation schemes is to obtain Clean code
that is as efficient as possible. The transformation schemes presented
in this chapter are based on the standard transformation techniques
(Peyton Jones, 1987). However, some changes have been made to
generate better code and to employ sharing as much as possible
(Koopman and Nöcker, 1988) to avoid redundant computation.
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During the transformation auxiliary functions are inevitably gener-
ated. The transformation schemes are designed in such a way that
generation of new functions is reduced to a minimum.

A significant increase of execution speed can be obtained when a
function is known to be strict in an argument of basic type (see Section
8.3). The corresponding analysis is not performed during the translation
from Miranda to Clean but it is left to the strictness analyser of the Con-
current Clean System (see Chapter 7).

The transformation is performed in two phases. In the first phase
a Miranda program is desugared by translating it into an equivalent pro-
gram in a Miranda subset that is very Clean-like. This approach has the
advantage that most transformations can be defined by using the se-
mantics of Miranda itself (Section 9.1). As much as possible of Miranda
is desugared in this way: list comprehensions (Section 9.3), local func-
tion definitions (Section 9.4) and various other small syntactical con-
structs (Section 9.2).

Phase two (Section 9.5) is relatively straightforward: an almost
trivial syntactical transformation is needed to convert a program in the
desugared language into an equivalent Clean program. Finally we dis-
cuss how sharing can be exploited in the transformation of Miranda to
Clean (Section 9.6).

9.1 About the desugaring of the language

In the first phase Miranda programs are desugared by transforming
them into a Miranda subset that is syntactically similar to Clean. These
transformations can be split into relatively simple changes such as the
transfer from infix into prefix notation and the more complex transfor-
mation schemes, such as removing list comprehensions. Miranda con-
structs that are more or less part of the programming environment, such
as the module system, I/O facilities and predefined library modules, are
not considered in this chapter.

An important aspect in the transformations concerns a special kind
of local definition: the local constant definition, i.e. a local function
definition with zero arguments or a local tuple definition. In the follow-
ing a strict distinction will be made between local constant definitions
and local function definitions (the other local definitions). Local con-
stants can be defined in Clean as well as in Miranda and therefore they
will not be moved to a global level (see Section 9.4). In the second
phase (see also Section 9.5) the local constant definitions are translated
directly into the equivalent node-id definitions in Clean. In Clean they
will be shared automatically such that duplication of computation is
avoided. In several transformation schemes local constant definitions
are introduced to avoid duplication of work.

Most of the program transformations are easy, others are a bit more
difficult. It is not always evident which transformation scheme will
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yield the most efficient code. In some cases several alternatives for a
particular transformation are given. The following remarks hold for all
transformations:

• The transformation schemes produce standard Miranda expressions
(e.g. infix notation). This is merely done for readability. Actually,
the expressions thus generated in their turn also have to be trans-
formed into the wanted Miranda subset.

• Some transformations require the insertion of new local defini-
tions. In Miranda local definitions are only allowed at particular
places. The transformation schemes do not take this into account,
simply because it would make the description unreadable.

• Often it does not matter very much in which order the transforma-
tions are being performed. But rule lifting, i.e. moving all local
function definitions (including the ones inserted by the transforma-
tions) to a global level, should be done at the end.

• In some transformations (new) names are introduced. It is assumed
that these names do not conflict with already existing names.

Trivial transformations are explained with the help of examples. In
other cases the transformation schemes (called MirSMir) are more for-
mally specified in the usual manner.

9.2 Simple transformations

Since pattern matching is available in Miranda as well as in Clean, pat-
tern matching can generally be translated directly without any changes.
However, some special patterns are allowed in Miranda and not in
Clean. In particular, irrefutable patterns, comparing rules, constructor
definitions and omitted arguments in function definitions have to be
transformed into Clean-like definitions. Furthermore, Miranda allows
infix notation and Clean generally allows only prefix notation.

Infix notation

In Miranda there are many predefined infix operators with various
binding powers. User-defined infix operators are also possible. Further-
more, mathematical expressions like a < b < c can occur. In Clean, the
prefix notation is generally used and all functions have the same binding
power. Infix notations can be removed easily. The general transforma-
tion is (in which i1, i2 stand for infix symbols, and e1, e2 and e3 stand for
arbitrary expressions):

MirSMir [  e1 i1 e2 i2 e3 ] = (&) ((i1) e1 s) MirSMir [ s i2 e3 ] where s = e2
MirSMir [  e1 i1 e2 ] = (i1) e1 e2
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For instance, a < b < c is translated as:

MirSMir [  a < b < c ] → (&) ((<) a s) MirSMir [ s < c ] where s = b
→ (&) ((<) a s) ((<) s c) where s = b

In the transformation new local constant definitions are generated to
achieve sharing in Clean.

The match on syntactic constructs automatically takes care of the
various binding powers, as illustrated in the example below:

MirSMir [  2 < 3 + 1 ] → (<) 2 MirSMir [ 3 + 1 ] → (<) 2 ((+) 3 1)

Comparing rules

In Miranda a variable can occur multiple times on a left-hand side. Such
a function alternative is called a comparing rule, which is only chosen
if the values corresponding to this variable are equal.

The following rule will only be chosen if the two arguments are equal:

f x x = x

Comparing is not allowed in FGRSs and hence it is also prohibited in
Clean. However, a δ-rule is defined that tests the equality of normal
forms. The transformation is therefore the following:

Redefine the rule above by:

f x y = x, if x = y

Since the guard is evaluated after the pattern is matched, in particular
cases (e.g. when the left-hand side of the rule is f x x 2) one has to take
care that the order in which the tests and matches are performed is not
changed by the transformation. This can be realized by generating aux-
iliary function definitions.

Irrefutable patterns

In Miranda no evaluation is forced for an argument corresponding to a
pattern if the type checker guarantees that the evaluated argument will
always match the pattern. Such patterns are called irrefutable patterns.

Consider the following Miranda function definition:

f:: (*, **) -> num
f (x, y) = 3
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In this function a tuple is specified as pattern, but the tuple elements are not
used in the function body. The type system guarantees that the function is al-
ways applied on a tuple. So pattern matching is in this case not necessary.

Clean would force evaluation for these kinds of pattern. This may lead
to unintended non-termination if the function is not strict in its argument
and the argument does not have a root normal form.

The problem is solved by eliminating the pattern match and includ-
ing some way in which the components of the pattern can be accessed in
a lazy manner. This is done by adding local constructor definitions (see
below) or projection functions.

A correct translation of the example above is

f:: (*, **) -> num
f z = 3 where (x, y) = z

Constructor definitions

A constructor definition is a (possibly local) definition in which the
defined symbol is not a function but a constructor. Such a definition is
effectively used to define projection functions yielding the arguments of
the constructor.

C 2 x y = e

C is a Miranda constructor. In this way projection functions x and y are de-
fined and a test on the value of the first argument of C is induced.

A possible translation involves the explicit definition of the correspond-
ing objects using projection functions.

The example above is translated into:

x = f1 z
y = f2 z
z = e
f1 (C 2 a b) = a
f2 (C 2 a b) = b

If the definitions are local, then after the transformations of the second phase e
will be shared in Clean.

A disadvantage of this method is the generation of new projection func-
tions for each occurrence of a constructor definition. In practice the
same projection functions can be used for many different occurrences.
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Omitted arguments in function definitions

In Miranda it is not required to specify the same number of arguments
in all alternatives of a function definition.

In the definition of f some of its arguments are omitted:

f 1 = fac
f a 2 = a * 3
f b = (*) 5, if b < 0

= (–) 2, if b > 5
f = plus

In Clean function definitions have fixed arity so such definitions have to
be transformed. The omitted arguments are added on the left-hand side
as well as to corresponding expressions on the right-hand side.

The example above with added arguments becomes:

f 1 x = fac x
f a 2 = a * 3
f b x = (*) 5 x, if b < 0

= (–) 2 x, if b > 5
f x y = plus x y

9.3 List comprehensions

In this section we shall formally specify how dotdot expressions and
non-diagonalized ZF-expressions can be desugared into function defini-
tions. Diagonalized ZF-expressions are not treated. For non-diagonal-
ized ZF-expressions besides the standard transformation method (Pey-
ton Jones, 1987) a method that generates more efficient code is de-
scribed. This method makes use of patterns and compile-time continua-
tions (Koopman and Nöcker, 1988).

9.3.1 Dotdot expressions

In Section 2.2 the semantics of dotdot expressions was explained with
the help of two auxiliary functions, inbetween and from. The general
translation of such dotdot expressions is as follows (in which a, b and c
stand for arbitrary numeral expressions):

MirSMir [  [a..b] ] = inbetween a b 1
MirSMir [  [a..] ] = from a 1
MirSMir [  [a, b..c] ] = inbetween s c (b – s) where s = a
MirSMir [  [a, b..] ] = from s (b – s) where s = a



LIST COMPREHENSIONS  305

New local constant definitions are generated for the use of sharing.

9.3.2 ZF-expressions

The translation of non-diagonalized ZF-expressions is more difficult.
Two methods are given. The first scheme is primarily given to make the
semantics of non-diagonalized ZF-expressions clear, but it is not very
efficient. At run-time a lot of time is wasted concatenating empty lists.
The second scheme presented is more complex, but it also generates
more efficient code.

Simple transformation of ZF-expressions

The following transformations are essentially the same as the basic
transformation schemes given in Peyton Jones (1987). As with the
transformation of the dotdot expressions, the original expression is not
duplicated during the transformation. Instead new local definitions are
generated in such a way that, after the transformations of the second
phase, the original expression is shared in Clean.

ZF-expressions can be translated as follows (in which e stands for
an arbitrary expression, b for a Boolean-valued filter, q for a list of
qualifiers, p, p1 and pn for patterns, x, y and z for simple variables, and
list and l1 for a list-valued expression):

MirSMir [  [e | b] ] = cond b [e] [ ]
MirSMir [  [e | b;q] ] = cond b MirSMir [  [e | q] ] [ ]
MirSMir [  [e | p <- list] ] = flatmap f list

where f p = [e]
f x = [ ]

MirSMir [  [e | p <- list;q] ] = flatmap f list
where f p = MirSMir [  [e | q] ]

f x = [ ]
MirSMir [  [e | p1, …, pn <- list] ] = MirSMir [  [e | p1 <- l1;…;pn <- l1] ]

where l1 = list
MirSMir [  [e | p1, …, pn <- list;q] ] = MirSMir [  [e | p1 <- l1;…;pn <- l1;q] ]

where l1 = list

The function cond is the conditional with boolean, ‘then’ part and ‘else’ part
arguments. This function is used instead of guards, since guards cannot be
nested easily. It is sensible to replace, at a later stage, the applications of cond
as much as possible by guards.

The local constant definitions for l1 are generated to create sharing in
Clean. The local function definition for f is generated in order to achieve the
proper projection from the pattern p to the expression e. The second alterna-
tive of f is only needed for the case where the pattern p is not just a simple
variable.
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The function flatmap is a variant of map (see Chapter 2). It is defined below:

flatmap:: (* -> [**]) -> [*] -> [**]
flatmap f [ ] = [ ]
flatmap f (x : r) = f x ++ flatmap f r

In spite of the introduced sharing the transformation scheme given
above is not very efficient because at run-time many empty lists are
concatenated.

Take the following Miranda expression computing all Pythagorean triangles
with sides less than or equal to n and a<b<c:

pyth n = [ (a, b, c) | a, b, c <- [1..n]; a<b<c; a^2 + b^2 = c^2 ]

According to the simple transformation scheme given above, this ZF-expres-
sion will be translated into:

pyth n = flatmap f1 list
where
list = [1..n]
f1 a = flatmap f2 list

where
f2 b = flatmap f3 list

where
f3 c = cond (a<b<c)

(cond (a^2+b^2=c^2) [(a, b, c)] [ ])
[ ]

The code yields the concatenation of almost n3 empty lists.

More efficient transformation of ZF-expressions

There are several ways to improve the transformation schemes given
above (see also Peyton Jones, 1987). We will treat here the scheme of
Koopman and Nöcker (1988). It presents an alternative transformation
by using patterns. Furthermore, an additional argument is used in the
transformation scheme to remember where the generation of list ele-
ments has to be continued. The advantage of the scheme is that it does
not generate empty lists nor append functions. The proposed scheme
also contains a slight optimization in the sequence of filters.

MirSMir [  [e | q] ] = MirSMir' [  [e | q] ] [ ]

MirSMir' [  [e | b1;b2] ] r = MirSMir' [  [e | b1&b2] ] r
MirSMir' [  [e | b1;b2;q] ] r = MirSMir' [  [e | (b1&b2);q] ]  r
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MirSMir' [  [e | b] ] r = cond b (e : r) r
MirSMir' [  [e | b;q] ] r = cond b (MirSMir' [  [e | q] ] r) r
MirSMir' [  [e | p <- list] ]  r = f list

where
f [ ] = r
f (p : y) = e : f y
f (x : y) = f y

MirSMir' [  [e | p <- list;q] ] r = f list
where
f [ ] = r
f (p : y) = MirSMir' [  [e | q] ] (f y)
f (x : y) = f y

MirSMir' [  [e | p1, …, pn <- list] ] r = MirSMir' [  [e | p1 <- l1;…;pn <- l1] ] r
where l1 = list

MirSMir' [  [e | p1, …, pn <- list;q] ]  r = MirSMir' [  [e | p1 <- l1;…;pn <- l1;q] ] r
where l1 = list

r is used to remember where the evaluation has to be continued if a generator
has come to the end of the generated list. This is specified in the first alterna-
tive of the locally defined function f in the scheme. The last alternative of this
function f is only needed when p is a pattern that is not just a simple variable.

An empty list is passed as an additional argument to the new transfor-
mation scheme. The previous transformation schemes are only slightly
changed to pass the extra argument. Furthermore, two rules are inserted
to obtain better code in the case that multiple filters are specified. Fi-
nally, the two rules for generators are replaced by two rules that employ
the continuation passed in the extra argument.

With this new scheme the Pythagorean triangles will be translated into:

pyth n = f1 list
where
list = [1..n]
f1 [ ] = [ ]
f1 (a:x) = f2 list

where
f2 [ ] = f1 x
f2 (b:x) = f3 list

where
f3 [ ] = f2 x
f3 (c:x) = cond (a<b<c & a^2+b^2=c^2)

((a, b, c) : f3 x)
(f3 x)
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ZF-expressions are very concise constructs. A disadvantage is that
even with the most efficient transformation scheme they are trans-
formed into many function definitions and applications. So a functional
program with many ZF-expressions might be a beautiful specification,
but it is in many cases an inefficient program.

Recurrent generators

The previous scheme for ZF-expressions is further extended such that it
can also deal with recurrent generators. In Chapter 2 we explained that
the meaning of a recurrent generator can be expressed with the help of
the function iterate. So a recurrent generator can be translated by adding
the following rules:

MirSMir' [  [e | p <- e0, en..] ] r = MirSMir' [  [e | p <- iterate g e0] ] r
where g p = en

MirSMir' [  [e | p <- e0, en..;q] ] r = MirSMir' [  [e | p <- iterate g e0;q] ] r
where g p = en

9.4 Local function definitions

A functional program containing local function definitions has to be
transformed in such a way that all function definitions are on the global
level, such as is the case in Clean. This transformation is called rule lift-
ing. The general idea is to make the local functions self-contained by
adding parameters for certain variables (free variables). The extra ar-
guments have to be added in front of the original parameters, since for
curried applications of functions generally not all original arguments are
available (see also the example below).

Take the definition of a local function p in the following definition of filter:

filter a (b:x) = p a, if b mod a = 0
= g b p a, otherwise

where p y = filter y x
g x y z = x : y z

It will be first transformed into:

filter a (b:x) = p x a, if b mod a = 0
= g b (p x) a, otherwise

where p x y = filter y x
g x y z = x : y z

p is used in a curried way. Therefore it is necessary that the extra argument x
is added in front of the original argument. This extra argument is added both
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to the definition of p as well as to the applications of p. Now the definition of
p is self-contained and it can be lifted:

filter a (b:x) = cond ((b mod a) = 0) (p x a) (g b (p x) a)
p x y = filter y x
g x y z = x : y z

A self-contained local definition can be moved freely to the global
level. Of course, when moving a local definition to a global level,
names have to be changed if the name of the function already occurred
at that level. In this section rule lifting is discussed in general and an ex-
ample is given of a rule lifter for Miranda.

λ-lifters are well-known lifting algorithms (Johnsson, 1985) that
are defined for λ-calculus-based expressions. The lifting process de-
fined in this section basically follows the same algorithm but there are
some differences. In particular, rule lifters are able to handle patterns
and multiple alternatives as well.

Rule lifting is not so easy. First of all, all rule alternatives of one
function definition can be mutually dependent, and therefore they all
have to be lifted together. In Miranda, even functions defined on differ-
ent levels can depend on each other (see the example after the specifi-
cation of the lifting algorithm). Therefore, all local functions of a global
function have to be lifted simultaneously, taking the scope rules of Mi-
randa into account. Furthermore, local constant definitions should not
be lifted to the global level. However, local constant definitions can be
nested (in contrast to node-id definitions in Clean) so they do have to be
lifted to one and the same local level.

A rule lifter for Miranda

First of all, it is assumed that all names are (made) unique. Then, let f be
a function, defined on the global level, and gi be functions (not con-
stants) defined locally at some level of that rule. Furthermore, where in
the following definitions right-hand side is used, it stands for the ex-
pression on the right-hand side of a function definition with its local
constant definitions but without the local function definitions. With
these assumptions define:

V(gi): the set of variables on the right-hand sides of the rule-alterna-
tives of gi: i.e. all identifiers on the right-hand sides that are
neither defining names of global definitions nor of local func-
tion definitions;

LF(gi): the set of names of local functions applied on a right-hand
side of a rule-alternative of gi;

BV(gi): the set of bound variables of the rule-alternatives of gi; bound
variables are the names that occur as (part of the) arguments
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on the left-hand side of a rule-alternative or as a defining
name of a local constant definition that is contained within gi;

FV(gi): the complete set of free variables of a local function gi. This
set is defined by the following equation:
FV (gi) = (V(gi) ∪ All_FV(gj)) – BV(gi)

in which All_FV(gj) is the union of all FV(gj), gj ∈ LF(gi) and – de-
notes set difference.

Due to mutual dependencies in LF, the defining equation
of FV can be recursive. So possibly a collection of recursive
set equations has to be solved. This can be done by repeatedly
substituting approximations in the equations until a fixed
point is reached, i.e. all resulting sets of two subsequent ap-
proximations are the same. When empty sets are used as the
initial approximation, the fixed point will be the least solution.

With these definitions the algorithm for lifting is the following:

(1) for each local function gi determine the sets V, LF, BV and FV by
solving the equations;

(2) add the elements of the set of free variables FV(gi) as extra parame-
ters (in front of the original parameters) to each occurrence of a
function gi and to its definition;

(3) move all local function definitions to the global level;
(4) lift all remaining local constant definitions to one local level in the

rule in which they are defined.

The lifting algorithm is applied in the following function definition:

f x y z = g s s
where
s = r + k r

where
r = y + z

g a b = h a a + k t
where
h 0 c = 10 + t
h d e = g (b + e) (y + 1)
t = a + x

k q = q + z

There are three local functions defined (g, h and k) and three local constants
(s, r and t). All names are already unique.
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Step 1. V (g) = {a, t, x} V (h) = {b, y, e, t} V (k) = {z, q}
LF(g) = {h, k} LF(h) = {g} LF(k) = {}
BV(g) = {a, b, t} BV(h) = {c, d, e} BV(k) = {q}

FV (g) = (V (g) ∪ FV(h) ∪ FV(k)) – BV(g)
FV (h) = (V (h) ∪ FV(g)) – BV(h)
FV (k) = V (k) – BV(k)

So the following recursive set equations have to be solved:

FV (g) = ({a, t, x} ∪ FV(h)∪ FV(k)) – {a, b, t}
FV (h) = ({b, y, e, t} ∪ FV(g)) – {c, d, e}
FV (k) = {z, q} – {q}

Starting with the empty set as initial approximation for the recursive equation:

FV1 (g) = ({a, t, x} ∪ FV0 (h) ∪ {z}) – {a, b, t}
= ({a, t, x} ∪ {z}) – {a, b, t}
= {x, z}

FV1 (h) = ({b, y, e, t} ∪ FV0 (g)) – {c, d, e}
FV1 (h) = ({b, y, e, t}) – {c, d, e}

= {b, y, t}
FV (k) = {z}

The second subsequent approximation will be:

FV2 (g) = ({a, t, x} ∪ FV1(h) ∪ {z}) – {a, b, t}
= ({a, t, x} ∪ {b, y, t} ∪ {z}) – {a, b, t}
= {x, y, z}

FV2 (h) = ({b, y, e, t} ∪ FV1 (g)) – {c, d, e}
= ({b, y, e, t} ∪ {x, z}) – {c, d, e}
= {b, y, t, x, z}

FV (k) = {z}

The result of the third subsequent approximation equals the second:

FV3 (g) = ({a, t, x} ∪ FV2(h) ∪ {z}) – {a, b, t}
= ({a, t, x} ∪ {b, y, t, x, z} ∪ {z}) – {a, b, t}
= {x, y, z}
= FV2 (g)

FV3 (h) = ({b, y, e, t} ∪ FV1 (g)) – {c, d, e}
= ({b, y, e, t} ∪ {x, y, z}) – {c, d, e}
= {b, y, t, x, z}
= FV2 (h)

FV (k) = {z}
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So the fixed point solution is:

FV (g) = {x, y, z}
FV (h) = {b, y, t, x, z}
FV (k) = {z}

Step 2. To all occurrences of g, h and k the variables of the corresponding FV
set are added as parameters in front of the original parameters:

f x y z = g x y z s s
where
s = r + k z r

where
r = y + z

g x y z a b = h b y t x z a a + k z t
where
h b y t x z 0 c = 10 + t
h b y t x z d e = g x y z (b + e) (y + 1)
t = a + x

k z q = q + z

Step 3. All local function definitions are made global; the result will be:

f x y z = g x y z s s
where s = r + k z r

where r = y + z
g x y z a b = h b y t x z a a + k z t

where t = a + x
h b y t x z 0 c = 10 + t
h b y t x z d e = g x y z (b + e) (y + 1)
k z q = q + z

Step 4. Finally, all local constant definitions are lifted to the same local level:

f x y z = g x y z s s
where s = r + k z r

r = y + z
g x y z a b = h b y t x z a a + k z t

where t = a + x
h b y t x z 0 c = 10 + t
h b y t x z d e = g x y z (b + e) (y + 1)
k z q = q + z
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9.5 Translating the desugared language into Clean

The subset of Miranda resulting from the program transformations de-
scribed in the previous sections is chosen in such a way that the transla-
tion of this subset into an equivalent Clean program is relatively
straightforward: it is reduced to merely a syntax transformation. Expres-
sions will be represented by graphs, and function definitions become
rewrite rules. Variables in functions are represented by node identifiers.
So in this way sharing of computation is actually introduced.

Furthermore, local constant definitions are syntactically trans-
formed into node definitions, yielding again sharing of computation. For
each kind of Miranda type there is an equivalent in Clean via a simple
syntactic transformation that is not given here (see Chapter 8).

From function definitions to rewrite rules

The following syntax transformations are needed to change a function
definition in the Miranda subset into a rewrite rule in Clean:

• Rename every function in such a way that it starts with an upper
case character, to make it a proper Clean symbol (be careful to
cause no name conflicts with constructors); also rename the stan-
dard basic functions to their Clean δ-rule equivalent.

• Add a ‘;’  to the end of each function alternative.
• Replace the ‘where’ symbol by a ‘,’, replace the ‘=’ by a ‘->’  where

it separates left- and right-hand sides in a rule definition, but by a
‘ :’ where it is used to separate sides in a local constant definition;;
in guards: replace ‘if’ by ‘ IF’ and remove ‘,’  and ‘otherwise’ where
necessary; let introduced node definitions be preceded with a ‘,’.

• Remove redundant brackets.

The example used in the section on rule lifting transformed into Clean:

F x y z -> G x y z s s,
s: + r (K z r),
r: + y z;

G x y z a b -> + (H b y t x z a a) (K z t),
t: + a x;

H b y t x z 0 c -> + 10 t;
H b y t x z d e -> G x y z (+ b e) (+ y 1);
K z q -> + q z;

Numerals

In Miranda, there is no upper bound to the numerals that can be used in
arithmetic. In Clean however, the standard integer arithmetic available
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on the machine is used. So if the reach of this arithmetic is not sufficient
one can either use Clean reals (floating-point numbers) or one has to
define a suitable module that implements Miranda-like unbounded
arithmetic on numbers.

9.6 The exploitation of sharing

The generation of sharing and of cycles is, in particular, very important,
since it can greatly improve the efficiency of the program, effectively
reducing the computational complexity of the specification. In the pre-
vious sections local constant definitions were introduced when possible
such that expressions are not unnecessarily duplicated and become
shared in Clean. In this section three important transformations are dis-
cussed that carry the exploitation of sharing even further: sharing of
common subexpressions, creating cycles and sharing results of partial
applications.

Find common subexpressions

For subexpressions that occur more than once on a right-hand side an
extra constant definition can be inserted which induces sharing in Clean.

Sharing common subexpressions on the right-hand side:

f x = (x + 1) + (x + 1)

This can be transformed into:

f x = s + s where s = x + 1

This will lead to sharing the expression x + 1 in Clean.

It is also possible to make use of the occurrence of common subexpres-
sions on the left- and right-hand sides. This is the case when a term is
used as a pattern while this same term is also used in the function body.
In Clean, rebuilding of the graph for such a term can be avoided by
explicitly specifying a node-id for the term on the left-hand side and by
using that node-id on the right-hand side instead of duplicating the term
again.

Consider the Miranda definition:

f (Cons 1 (Cons a Nil)) x = Cons 1 (Cons a Nil)
f y x = x
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In Clean, rebuilding the graph Cons 1 (Cons a Nil) can be avoided as follows:

F y : (Cons 1 (Cons a Nil)) x -> y ;
F y x -> x ;

Create cycles

The transformations described in the previous sections generate cycles
in Clean if a local constant definition is recursive.

A recursive local constant definition generating a cycle in Clean:

f g = map g ones where ones = Cons 1 ones

Since the local constant definition is translated directly to a node-id definition
this will create a cycle in Clean:

F g = Map g ones,
ones: Cons 1 ones;

Generating cycles for global constant definitions can be achieved by
generating extra local constant definitions.

A recursive global constant definition in Miranda:

ham = 1 : merge (map (* 2) ham) (map (* 3) ham)

A cycle will be generated in Clean if this definition is transformed into

ham = x where x = 1 : merge (map (* 2) x) (map (* 3) x)

Sharing results of partial applications

When in a lazy evaluation of a computation sharing is applied in such a
way that even every partial application is evaluated at most once, this
evaluation is called fully lazy. In general, computation in Clean is not
fully lazy since the semantics of Clean does not require any special
evaluation behaviour for partial applications.

Take the following Miranda program and its standard transformation to Clean:

g x y = x * x + y
f x = x 3 + x 5
h x = f (g x)

G x y -> + (* x x) y;
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F x -> + (x 3) (x 5);
H x -> F (G x);

Evaluating H 35 the partial application G 35 is constructed. But no special
computation is involved for such a partial application. The two calls G 35 3
and G 35 5 are separately computed and * 35 35 will be computed twice. So in
some sense the computation involved with the partial application G 35 is done
twice. Hence, this evaluation is not fully lazy in Clean.

It is, however, possible to transform Miranda in such a way into Clean
rules that effectively the Miranda computation is performed in a fully
lazy manner. This can be achieved by generating super-combinators
(Hughes, 1982). Super-combinators have the property that evaluation
by standard graph rewriting is fully lazy.

In Clean, all classes of combinatory expressions can be expressed.
Hence it is also possible to specify or generate super-combinators,
which can be done as follows. First, the largest subexpressions that only
depend on one argument of the function, the maximal free expressions,
are determined. Then, for each maximal free expression a new function
is defined of one argument, with as body the maximal free expression.

In the example above x * x is a maximal free expression in the function g. So a
new function is defined:g' x = x * x.

Furthermore, a new function is defined with as body the body of the
original function in which every maximal free expression is replaced by
a fresh variable. In the parameter list of the new function such a fresh
variable replaces the argument on which the corresponding maximal
free expression depends. Finally, the original function body is adjusted,
calling the newly created functions.

After defining the new function g'' and adjusting the definition of g the final
set of function definitions becomes:

g' x = x * x
g'' z y = z + y
g a = g'' (g' a)
f x = x 3 + x 5
h x = f (g x)

The main drawback of super-combinators is the huge number of
combinator rules that are generated in this way. Besides that, they are
only of use if there really are such partially applied shared functions.
Even in that case it is doubtful whether the additional effort needed to
maintain the sharing will be less than the resulting increase of execution
speed. If the choice is made to transform a Miranda program into a
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super-combinator program this transformation has to be done before the
rule lifting, and on local definitions the algorithm for generating super-
combinators has to be slightly adapted. An example is given below.

Consider, for instance, the following definition:

f x = g 3 + g 5 where g y = x * x + y

It can be translated into

f x = g 3 + g 5 where g' = x * x
g'' z y = z + y
g = g'' g'

The definitions of g' and g are local constant definitions to increase sharing.
The definition of g'' will be lifted to the global level afterwards.

Summary

• A Miranda program can be translated into an equivalent Clean
program in the following way: first, a Miranda program is trans-
lated into an equivalent program in a Clean-like Miranda subset,
then the program in this subset is transformed via simple syntacti-
cal rules into an equivalent Clean program.

• Most of these transformations are straightforward. The more diffi-
cult transformations are:
– the translation of ZF-expressions;
– the lifting of local definitions to one global level.

• The transformations give (as a side-effect) a better understanding
of the precise meaning of many constructs in Miranda. One of the
reasons for this is that by defining the transformation into a graph
rewriting language one automatically defines the places where
sharing is used in the computation.

• During the transformations sharing can be introduced in several
ways: by introducing local constant definitions, by sharing com-
mon subexpressions, by creating cycles and by generating super-
combinators. Sharing can greatly improve the efficiency of the
computation.
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EXERCISES

9.1 Use both of the given translation schemes for ZF-expressions to
transform:
(a) f = [ a | a,b <- [0..100]; a = b * b ]
(b) cartprod x y = [ (a,b) | a <- x; b <- y ]

9.2 Apply the given rule lifting algorithm to:
f x = h (a + a)

where a = g x y
where g = h

y = a * a
h p q = p + q + x

9.3* Translate the exercises of Chapter 2 to Clean. Explain which
transformations have been used. Measure the time–space be-
haviour of the original programs and the Clean programs. Explain
the differences.
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Chapter 10
The abstract ABC machine

10.1 About the ABC machine
10.2 Machine components and

micro-instructions

10.3 The machine instructions
10.4 Program execution

This chapter introduces the architecture and instruction set of an ab-
stract machine: the ABC machine (Koopman et al., 1990). The instruc-
tion set of the ABC machine is used as an intermediate language in the
compilation path from functional language to concrete machine instruc-
tions (Figure 10.1). This intermediate language is on a much more con-
crete level of abstraction than Clean. With this abstract machine graph
reduction can be described in terms of low-level, imperative machine in-
structions.

Motorola
code

ABC machine
simulator

Motorola
processor

Miranda
program

Clean
program ABC code

Figure 10.1 Graph rewriting on a more concrete level:
the ABC machine and its instruction set.

First a motivation and global overview of the architecture of the
ABC machine is given (Section 10.1). A, B and C stand for the three
stacks of this abstract machine. The architecture of the ABC machine is
a mixture between an idealized graph rewriting machine and a more
traditional stack-based machine architecture.

The ABC machine is specified in a functional language, so in this
chapter we also show that a very elegant specification of a highly im-
perative system can be given in a functional language. In this way a
prototype implementation of the abstract machine is obtained, almost
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effortlessly, that can actually be used to execute ABC instructions. A
complete specification of the ABC machine is found in Appendix C.

The ABC machine is composed of several kinds of memory stor-
age. The contents of all these storages together define the state of the
machine. Each storage is defined as an abstract data structure in the
description. Access functions defined on these abstract data structures
form the micro-instructions of the machine. The storage components of
the ABC machine and the available micro-instructions are explained in
Section 10.2. The actual ABC machine instructions are defined with the
help of these micro-instructions in Section 10.3. The remaining parts of
the machine (the instruction fetch cycle and a bootstrapper) are defined
in Section 10.4. In order to allow the use of symbolic names one can
add an assembler to convert ABC assembly statements into proper
ABC instructions.

Chapter 11 discusses in detail how Clean programs can be
compiled into ABC code. The translation of ABC code into concrete
machine code is discussed in Chapter 12.

10.1 About the ABC machine

The additional intermediate level created with the abstract ABC ma-
chine is very important since it helps to get a more structured implemen-
tation. By specifying how an FGRS-based language like Clean can be
implemented on an abstract machine, a general blueprint is available for
actual implementations on a large class of concrete target architectures.
When the abstraction is carefully chosen, irrelevant machine aspects can
be left out. For instance, an unbounded amount of memory or an infinite
number of processors can be assumed to be available in the abstract ma-
chine. Furthermore, one can abstract from addressing modes, word
sizes, register use and other particularities. This makes it easier to un-
derstand how FGRSs can conceptually be implemented and what the
trade-offs are.

Another advantage of the additional intermediate level is that a
compiler structured in this way can be ported more easily: one only has
to change the last part of such a compiler that translates ABC machine
code into concrete machine code (see Chapter 12). The loss of effi-
ciency introduced by this additional intermediate level is in most cases
very small.

The definition of an abstract machine also makes it easy to achieve
a machine-independent interpreter for functional languages, e.g. by im-
plementing an ABC machine simulator in a portable high-level lan-
guage. Such a simulator has to interpret ABC machine instructions.

Another well-known abstract machine for functional languages is
the G machine (Johnsson, 1984). The objectives of this abstract ma-
chine are identical to those of the ABC machine: defining an imperative
abstract graph rewriting machine as an intermediate level in the compi-
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lation of functional languages. Basically, the G machine and the ABC
machine have much in common, although they differ in almost all de-
tails. The most important differences on the architecture level are
caused by the different representation of nodes: ABC nodes have vari-
able arity while the nodes in the G-machine are either leaf nodes or
application nodes with two arguments. Furthermore, the ABC machine
is designed to handle arbitrary constructors.

10.1.1 The basic architecture of the ABC machine

The architecture of the abstract ABC machine actually consists of a
mixture of two abstract machines.

One part of the ABC machine consists of an idealized graph
rewriting architecture with a graph storage designed to perform graph
rewriting conveniently. However, it is not easy to map this part of the
abstract machine efficiently on a traditional concrete machine. The pre-
sent-day concrete machine architectures are not at all designed for graph
rewriting. They do not have anything like a graph store. A graph on a
concrete machine has to be represented by some data structure stored in
a linear memory of the machine. The rewriting of the graph will lead to
complex memory management problems at run-time, involving garbage
collection.

When simple calculations are realized on a concrete machine by
building graphs and performing redirections it must be clear that this
will be terribly inefficient compared with the way computations are
commonly performed on such a computer: registers and stacks are nor-
mally used where possible. This observation has triggered the introduc-
tion of the second part of the abstract ABC machine: an abstraction
from a traditional stack-based architecture.

So the architecture of the ABC machine is a mixture between the
idealized graph rewriting machine one would like to have in reality and
an idealized concrete machine.

The most important optimization that results in an efficient imple-
mentation of functional languages is: use the instructions of the tradi-
tional part of the abstract machine where possible. These instructions
have the property that they can relatively easily be mapped on a con-
crete architecture. Avoid the higher level graph rewriting instructions of
the abstract machine because they are generally hard to implement effi-
ciently on a concrete machine.

The ABC machine consists of the following memory components
(Figure 10.2):

• a graph store containing the graph to be rewritten;
• a program store containing the instruction sequence to be exe-

cuted;
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• a program counter containing an identification of the instruction
(instrid) to be executed;

• an A(rgument)-stack to reference nodes in the graph store;
• a B(asic value)-stack to deal with basic values efficiently;
• a C(ontrol)-stack to store and retrieve return addresses;
• a descriptor store containing information about the symbols used;
• an Input)/O(utput) channel to show the result of a function.

Cons _rnf

_cycleMerge

Double

Treble n_Treble

n_Double

INT _rnf Cons _rnf1

INT _rnf 2

Cons _rnf

INT _rnf 3

3

jsr_eval
push_a 1

INT
BOOL
Start
Ham
Cons
Nil0
Merge2

0
0
0
0

2

Graph store A,B,C-stack Program store

program
counter

Descriptor store I/O channel

(Cons 1 (Cons 2

Figure 10.2 A snapshot of a possible state of the ABC machine (see
Section 10.2). Not all pointers are drawn in order to keep the
picture illustrative. The symbol names and labels in the
nodes are actually pointers into the descriptor store and the
program store.

The idealized and inefficient graph rewriting part of the ABC machine
consists of the graph store, A-stack and descriptor store. The more tra-
ditional and efficient part of the abstract machine consists of the B-
stack. The other, also conventional, components of the machine are
shared by both parts: the program store, the program counter, the C-
stack and the I/O channel.

10.1.2 The description method

The ABC machine is described in a functional language. Such a descrip-
tion has a number of advantages over conventional descriptions:

• Using the abstraction mechanisms of the language, like abstract
data types, a hierarchical description can be given. A layered ma-
chine description enables a very clear description: details can be
described without getting an overall view cluttered by too many
details at the top level of the specification.

• The compiler can partially check the specification. This does not
imply that the description is correct, but frequently occurring er-
rors, like forgotten arguments, type conflicts and unbound identi-
fiers, will be spotted by the compiler.
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• The machine specification is its own prototype implementation,
since it is a functional program. This implies that at an early stage
the machine can be run to observe its dynamic behaviour.

A formal description of a representative subset (only Boolean and
integer values are considered) of the ABC machine is given in Ap-
pendix C. The description method used below to define the ABC ma-
chine is also well suited for the description of arbitrary (concrete) ma-
chine architectures (Koopman et al., 1993; Koopman, 1990).

Micro-instructions

The bottom layer of the description consists of the specification of the
different kinds of memory storage that are visible to the programmer.
Each memory component of the ABC machine, the A-stack (as), B-
stack (bs), C-stack (cs), graph store (gs), descriptor store (ds), program
counter (pc), program store (ps) and I/O channel (io), is described by an
abstract data type with corresponding access operations. These access
functions are called micro-instructions (see Section 10.2).

The state of the machine

The state of the machine is defined by the contents of all memory com-
ponents. This state is described by a tuple:

state = = (astack,bstack,cstack,graphstore,descrstore,pc,programstore,io)

Machine instructions

Instructions change the state of the machine, e.g. they update one or
more memory components. Hence, ABC instructions are functions that
take the current machine state as argument and deliver a new state,
changed by the instruction. So all instructions yield a function of the
following type:

instruction = = state -> state.

Memories can only be accessed using the micro-instructions of the ma-
chine. This means that ABC instructions are always described in terms
of these micro-instructions. Each description of an ABC instruction
shows how information flows between the different memory compo-
nents when the instruction is executed (see Section 10.3).
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Execution of the ABC machine

The specification of the ABC instructions and micro-instructions can be
regarded as part of the interpretation circuit of the abstract machine.
When a bootstrapper and a circuit to fetch instructions are added, a
complete executable ABC machine is obtained (see Section 10.4).

10.2 Machine components and micro-instructions

In this section the rationale behind the different machine components
with the available micro-instructions is given. The abstract data types
for the memory storage of the ABC machine are assumed to be suffi-
ciently defined by the specification of the abstract operations that can be
applied to them. For further details the reader is referred to the concrete
operational semantics of the micro-instructions given in Appendix C.

The following type synonyms are used to increase the clarity of the
type definitions. The type nat stands for natural numbers including zero,
and is represented by numbers (num).

arity = = nat || the arity of a symbol
a_dst = = nat || the index of the destination on the A-stack
a_src = = nat || the index of the source on the A-stack
b_dst = = nat || the index of the destination on the B-stack
b_src = = nat || the index of the source on the B-stack
c_src = = nat || the index of the source on the C-stack
nr_args = = nat || the number of arguments involved
arg_nr = = nat || the number of the argument involved

10.2.1 The program store

A Clean program is translated into a sequence of ABC instructions, the
ABC program, which is stored in the program store. Each instruction
has a unique identification. An instruction identification (an instr-id) is
like an ordinary machine address. The instructions will rewrite the ini-
tial graph to its normal form according to the annotated functional strat-
egy. Conceptually there are two algorithms involved, the annotated
functional reduction strategy which indicates the next redex and the
rewriting of that redex according to the Clean rules. These algorithms
are merged in the ABC program to increase efficiency.

Each Clean rule alternative is translated into a sequence of ABC
instructions. Such an instruction sequence controls the reduction order,
checks whether the indicated subgraph matches the rule, and if so,
builds a contractum in the graph store to which references to the root of
the corresponding redex are redirected. If the rule alternative does not
match the subgraph, the instruction sequence corresponding to the next
rule alternative is executed. The execution of an instruction sequence
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corresponding to a Clean rule alternative does not always have to start
with the same instruction. Depending on the circumstances under which
a function is called (e.g. curried or not) a particular instruction entry
(address of the first instruction of an instruction sequence) is chosen.

A program does not change during execution. It is loaded once in
the machine (ps_init) when the machine is booted. Programs to be stored
are denoted by a list of instructions (see Section 10.4). An instruction
that has to be executed is fetched from the program store (ps_get).

ps_get :: instrid -> programstore -> instruction
ps_init :: [instruction] -> programstore

10.2.2 The program counter

Since the ABC machine has an imperative nature it is essential to have a
locus of control: the program counter. The program counter is an ab-
stract data structure containing the instr-id of the next instruction to be
executed. A micro-instruction (pc_init) is provided to initialize the pro-
gram counter such that it points to the first instruction of the program.
The program counter can be incremented: the next instruction in the se-
quence will be executed (pc_next), the counter can be set to indicate that
the program is finished (pc_halt), or it can be checked whether the last
instruction of the program is reached (pc_end). The instr-id can be
fetched from (pc_get) and assigned to (pc_update) the program counter.

pc_init :: pc
pc_next :: pc -> pc
pc_halt :: pc -> pc
pc_end :: pc -> bool
pc_get :: pc -> instrid
pc_update :: instrid -> pc -> pc

10.2.3 The graph store

The ABC machine has, of course, a piece of memory in which the graph
to be rewritten is stored: the graph store. As in Chapter 5, each node in
the graph has a unique identification, the node-id. There are micro-
instructions to generate a new (empty) graph store (gs_init), to create a
new (empty) node in the graph (gs_newnode) and to retrieve information
stored in a node of the graph (gs_get). Finally, a node can be updated by
a function passed as a parameter to the gs_update micro-instruction.

gs_get :: nodeid -> graphstore -> node
gs_init :: graphstore
gs_newnode :: graphstore -> (graphstore, nodeid)
gs_update :: nodeid -> (node -> node) -> graphstore -> graphstore
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The nodes in the graph store

A node in the graph store does not contain a symbol, but instead it con-
tains a descriptor identification (descr-id) which is an entry (address
where the information can be found) in the descriptor store (see Section
10.2.4). The advantage of this is that the (possibly long) symbol name
need not be stored in a node. The actual name of a symbol is only
needed when results have to be printed. During reduction it is only im-
portant that all symbols have a unique (short) representation such that
the equality of symbols can be tested easily. This is accomplished by
having a unique entry for each symbol in the descriptor table.

A node generally also contains a sequence of node-ids representing
the arguments of the symbol. An exception is formed by arguments that
are basic values, such as integers or booleans. For efficiency they are
stored directly in the nodes themselves. This is in contrast with the way
such graphs are structured in Chapter 5.

Each node furthermore contains a code field in which an instruc-
tion entry is stored. By convention, the execution of the corresponding
sequence of ABC instructions will take care of the reduction of the node
to root normal form. The contents of the code field can be changed at
run-time, so it can be used as a kind of flag. Different kinds of code can
be executed under different kinds of circumstances. For instance, it
might be used at run-time to determine that a node is already under re-
duction. This means that there is a cycle of nodes each of which
requires the evaluation of all the others in order to reach a root normal
form: a cycle-in-spine error.

There are several micro-instructions to extract information stored
in a node. The nodes themselves can be extracted from the graph store
by the micro-instruction gs_get defined above.

n_arg :: node -> arg_nr -> arity -> nodeid
n_args :: node -> arity -> nodeid_seq
n_arity :: node -> arity
n_B :: node -> bool
n_descrid :: node -> descrid
n_entry :: node -> instrid
n_I :: node -> int
n_nargs :: node -> nr_args -> arity -> nodeid_seq

There are also micro-instructions to test whether a piece of a node
has a certain value. They are important for pattern matching.

n_eq_arity :: node -> arity -> bool
n_eq_B :: node -> bool -> bool
n_eq_descrid :: node -> descrid -> bool
n_eq_I :: node -> int -> bool
n_eq_symbol :: node -> node -> bool
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The following micro-instructions to change the contents of a node are
passed as argument to gs_update:

n_copy :: node -> node -> node
n_fill :: descrid -> instrid -> nodeid_seq -> node -> node
n_fillB :: descrid -> instrid -> bool -> node -> node
n_fillI :: descrid -> instrid -> int -> node -> node
n_setentry :: instrid -> node -> node

In order to build a contractum new nodes have to be created in the graph
store and redirections have to be performed. Redirections are concep-
tually elegant and explain the semantics of graph rewriting very well.
However, it is very inefficient to examine the whole graph to substitute
every reference to the root of a redex by a reference to the root of the
contractum. Instead, it is actually much more efficient to overwrite the
root node of the redex with the root of the contractum. The result is that
all original references are automatically redirected to the contractum.
The micro-instructions above show that the graph store can deal with
variable sized nodes. So overwriting a node with another value is al-
ways possible. The update instruction is used both for overwriting old
nodes as well as for the creation of new ones. New nodes are built as
follows. First, a new empty node is created in the graph store (using
gs_newnode). Then, the empty node is filled with the update instruction.
To create an empty node first, which is filled later, is in particular con-
venient for the construction of cyclic structures (see Section 10.3).

10.2.4 The descriptor store

The ABC machine contains a piece of memory in which symbol de-
scriptors are stored. This descriptor store contains information about
the symbols used in the rewrite system. For each symbol and each basic
type there is a unique entry in the descriptor store, labelled with the
descr-id. Given a descriptor identification, a descriptor can be taken
from the descriptor store (ds_get). This store can be initialized by
passing a list of descriptors to the ds_init micro-instruction.

ds_get :: descrid -> descrstore -> descr
ds_init :: [descr] -> descrstore

The descriptors

A descriptor contains information of the associated symbol: its arity,
an instruction entry that is called for curried applications (see Section
11.2) and the name of the symbol. The symbol name is used only to
print a representation of the graph in root normal form on the output



328 THE ABSTRACT ABC MACHINE

channel. Information can be retrieved from a descriptor using the fol-
lowing micro-instructions:

d_ap_entry :: descr -> instrid
d_arity :: descr -> arity
d_name :: descr -> string

10.2.5 The A-stack

The A-stack contains node-ids: references to nodes stored in the graph
store. It is used to access the actual arguments and the result of the ap-
plied rewrite rule. As in imperative languages, instead of the data
structure itself, a reference to it is passed to or returned from a function.
The top of the stack has index 0 (as is the case for the other stacks). A
new, empty, A-stack can be created by:

as_init :: astack

An element at any depth, or a sequence of nr_args top elements, can be
retrieved from the A-stack by:

as_get :: a_src -> astack -> nodeid
as_topn :: nr_args -> astack -> nodeid_seq

The type nodeid_seq represents a sequence of node-ids which can be
taken from or pushed onto the A-stack, and it serves also as the argu-
ment sequence for a node. The A-stack can be updated by:

as_popn :: nr_args -> astack -> astack
as_push :: nodeid -> astack -> astack
as_pushn :: nodeid_seq -> astack -> astack
as_update :: a_dst -> nodeid -> astack -> astack

10.2.6 The B-stack

The ABC machine also has a stack to hold basic values (such as inte-
gers, reals and Boolean values). Basic values are stored and computed
on this B-stack instead of in nodes in the graph store whenever this is
possible. Temporary values are also held on this stack. All values are
stored untagged on the stack. The initial, empty, B-stack is created by:

bs_init :: bstack

Information can be obtained from the B-stack with:

bs_get :: b_src -> bstack -> basic
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bs_getB :: b_src -> bstack -> bool
bs_getI :: b_src -> bstack -> int

The B-stack can be changed with:

bs_copy :: b_src -> bstack -> bstack
bs_popn :: nr_args -> bstack -> bstack
bs_push :: basic -> bstack -> bstack
bs_pushB :: bool -> bstack -> bstack
bs_pushI :: int -> bstack -> bstack
bs_update :: b_dst -> basic -> bstack -> bstack

Besides these updating micro-instructions there are micro-instruc-
tions defined to perform computations with the basic values stored on
the B-stack. Usually, the arguments are all on top of the B-stack and are
replaced by the result of the operation. When arguments are not on the
B-stack they are an argument of the micro-instruction. Some
micro-instructions to handle integer values are:

bs_addI :: bstack -> bstack
bs_eqI :: bstack -> bstack
bs_eqIi :: int -> b_src -> bstack -> bstack
bs_gtI :: bstack -> bstack

A further optimization would be to include registers in the ABC
machine to hold these basic values. However, the number of registers
and the operations possible on them vary too much between different
concrete machines. Register allocation is therefore left as a part of the
implementation of the ABC machine (see Chapter 12).

10.2.7 The C-stack

The C-stack (control stack) is used to implement nested reductions in
the abstract machine. It contains return addresses (instr-ids). The pro-
gram counter can be stored and recovered from this stack.

cs_init :: cstack
cs_get :: c_src -> cstack -> instrid
cs_popn :: nr_args -> cstack -> cstack
cs_push :: instrid -> cstack -> cstack

10.2.8 The input/output channel

The abstract machine furthermore contains an input/output channel. In
the description in this chapter only simple output is considered, such
that the result of the reduction can be shown. A string is printed just by
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appending it to the output channel. This corresponds to classical charac-
ter-based output.

io_init :: io
io_print :: string -> io -> io
io_print_symbol :: node -> descr -> io -> io

With respect to more sophisticated input/output using modern facilities
such as windows, menus and dialogs the available interface on the
machine (e.g. Macintosh tool box or X Window System interface) is
assumed to be called directly as a side-effect. This is possible due to the
properties of UNQ types (see Chapter 8).

10.3 The machine instructions

The state of the ABC machine is completely determined by the contents
of its eight stores: the A-stack, B-stack, C-stack, the graph store, de-
scriptor store, program counter, program store and input/output channel.
Each ABC instruction changes the state of the machine by changing the
contents of one or more of these stores. The only way to change the
contents or retrieve information from the stores is via the micro-instruc-
tions introduced in the previous section. So the ABC instructions are
described in terms of micro-instructions and for each instruction we de-
fine how the information flows between these memories. In this way
imaginary data paths are defined between the several stores. One can
imagine that these data paths could actually be present in a concrete
piece of hardware.

Not all ABC instructions are shown in this section. The specifica-
tion in terms of micro-instructions is only given for the most important
ones. For some other instructions, only the type and an informal expla-
nation are given. The instructions shown here are classified according to
their main purpose:

• graph manipulation
• retrieving information from a node
• manipulating the A-stack
• manipulating the B-stack
• changing the flow of control
• generating output.

10.3.1 Instructions for graph manipulation

There are several instructions to manipulate the graph store. With the
instruction create a new empty node is created in the graph store. With
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other instructions the contents of an existing (possibly empty) node can
be changed. Finally, there are also instructions that fetch information
stored in the nodes of the graph. All instructions for graph manipulation
(with the exception of the instruction create) have as operand an offset
into the A-stack to find the node-id of the node to manipulate.

The instruction create creates a new empty node in the graph store,
and the node-id of the new node is pushed on the A-stack. The create in-
struction is defined as:

create:: instruction
create (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs',ds,pc,ps,io)
where as' = as_push nodeid as

(gs', nodeid) = gs_newnode gs

With the fill instruction one can update the contents of an existing node:

fill:: descrid -> nr_args -> instrid -> a_dst -> instruction
fill descr nr_args entry a_dst (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs',ds,pc,ps,io)
where as' = as_popn nr_args as

gs' = gs_update nodeid (n_fill descr entry args) gs
nodeid = as_get a_dst as
args = as_topn nr_args as

As can be seen from this specification the arguments of the node are
taken from the A-stack. The first argument is on top of the A-stack.
Other instructions to change the contents of an existing node are:

fill_a :: a_src -> a_dst -> instruction || the copy node instruction
fillB :: bool -> a_dst -> instruction || fills the node with the given bool
fillB_b :: b_src -> a_dst -> instruction || fills with bool found on B-stack
fillI :: int -> a_dst -> instruction || fills the node with the integer
fillI_b :: b_src -> a_dst -> instruction || fills with integer found on B-stack
set_entry :: instrid -> a_dst -> instruction || changes code entry of node

Building a Clean node in the graph store involves at least two instruc-
tions: a create, which leaves a node-id on the A-stack, and one of the fill
instructions.

To create the graph Cons 1 Nil, the following code fragment is written in the
ABC assembly language introduced in Section 10.4.

[ Create , || node for Cons
Create , || node for Nil; 2nd arg of Cons
Fill "Nil" 0 "_rnf" 0 , || fill node just created
Create , || node for 1; 1st arg of Cons
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FillI 1 0 , || fill node just created
Fill "Cons" 2 "_rnf" 2 ] || fill Cons node

It is assumed that calling the entry stored in the code field of a node will re-
duce the corresponding subgraph to root normal form. For subgraphs already
in root normal form the instruction sequence can be one simple return instruc-
tion (rtn) assumed to be labelled by the entry _rnf. The descriptor-ids of Nil
and Cons are indicated by "Nil" and "Cons".

Retrieving information from a node

The information retrieved from a node is generally stored on one of the
stacks. The node-id of the node to fetch the information from is found at
the indicated depth on the A-stack. There are also instructions to test
whether the content of a node has a certain value.

push_args:: a_src -> arity -> nr_args -> instruction
push_args a_src arity nr_args (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs,ds,pc,ps,io)
where as' = as_pushn args as

args = n_nargs (gs_get nodeid gs) nr_args arity
nodeid = as_get a_src as

pushI_a:: a_src -> instruction
pushI_a a_src (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs',cs,gs,ds,pc,ps,io)
where bs' = bs_pushI int bs

int = n_I (gs_get nodeid gs)
nodeid = as_get a_src as

eqI_a:: int -> a_src -> instruction
eqI_a int a_src (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs',cs,gs,ds,pc,ps,io)
where bs' = bs_pushB equal bs

equal = n_eq_I (gs_get nodeid gs) int
nodeid = as_get a_src as

eq_descr_arity:: descrid -> arity -> a_src -> instruction
eq_descr_arity descrid arity a_src (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs',cs,gs,ds,pc,ps,io)
where bs' = bs_pushB equal bs

equal = n_eq_descrid node descrid & n_eq_arity node arity
node = gs_get nodeid gs
nodeid = as_get a_src as

Appendix C lists some more instructions for retrieving information from
a node, such as extracting the arguments of a node or changing them.
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10.3.2 Instructions to manipulate the A-stack

The A-stack is used to access the nodes involved in a rewriting. Via
push instructions, new node-ids can be pushed on the stack. Further-
more, there are instructions provided to manipulate the A-stack:

pop_a:: nr_args -> instruction
pop_a n (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs,ds,pc,ps,io)
where as' = as_popn n as

push_a:: a_src -> instruction
push_a a_src (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs,ds,pc,ps,io)
where as' = as_push nodeid as

nodeid = as_get a_src as

update_a:: a_src -> a_dst -> instruction
update_a a_src a_dst (as,bs,cs,gs,ds,pc,ps,io)

= (as',bs,cs,gs,ds,pc,ps,io)
where as' = as_update a_dst nodeid as

nodeid = as_get a_src as

The cyclic graph ones: Cons 1 ones is constructed as follows (here the advan-
tages of separate create and fill instructions are seen).

[ Create , || node for Cons
Push_a 0 , || 2nd arg of Cons
Create , || node for 1; 1st arg of Cons
FillI 1 0 , || fill node just created
Fill "Cons" 2 "_rnf" 2 ] || fill Cons node

10.3.3 Instructions to manipulate the B-stack

The B-stack has stack handling instructions similar to the A-stack:

pop_b :: nr_args -> instruction
push_b :: b_src -> instruction
pushI :: int -> instruction
pushB :: bool -> instruction
update_b :: b_src -> b_dst -> instruction

There are many instructions to manipulate the basic values on this stack;
they all follow the same scheme as the add instruction presented below.

addI:: instruction
addI (as,bs,cs,gs,ds,pc,ps,io)



334 THE ABSTRACT ABC MACHINE

= (as,bs',cs,gs,ds,pc,ps,io)
where bs' = bs_addI bs

10.3.4 Instructions to change the flow of control

The desired flow of control has to be realized by manipulating the pro-
gram counter. Jumps can be unconditional but they can also be con-
trolled by the Boolean value on top of the B-stack.

jmp:: instrid -> instruction
jmp address (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc',ps,io)
where pc' = pc_update address pc

jmp_false:: instrid -> instruction
jmp_false address (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs',cs,gs,ds,pc',ps,io)
where pc'  = pc, if bool

= pc_update address pc, otherwise
bool = bs_getB 0 bs
bs' = bs_popn 1 bs

jmp_true:: instrid -> instruction
jmp_true address (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs',cs,gs,ds,pc',ps,io)
where pc' = pc_update address pc, if bool

= pc, otherwise
bool = bs_getB 0 bs
bs' = bs_popn 1 bs

When a jump to subroutine (jsr) instruction is executed, the current
value of the program counter is stored on the C-stack. A return from
subroutine instruction (rtn) will restore the program counter and pop the
return address from the C-stack.

jsr:: instrid -> instruction
jsr address (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs',gs,ds,pc',ps,io)
where pc' = pc_update address pc

cs' = cs_push (pc_get pc) cs

rtn:: instruction
rtn (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs',gs,ds,pc',ps,io)
where pc' = pc_update (cs_get 0 cs) pc

cs' = cs_popn 1 cs
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The jsr_eval instruction is a very important instruction since it starts the
execution at the entry stored in the code field of the node on top of the
A-stack. The return address is saved on the C-stack. In other words, the
jsr_eval performs a jsr to the instr-id stored in the node. By convention,
the execution of the instruction sequence will reduce the corresponding
node to its root normal form.

jsr_eval:: instruction
jsr_eval (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs',gs,ds,pc',ps,io)
where pc' = pc_update (n_entry (gs_get nodeid gs)) pc

nodeid = as_get 0 as
cs' = cs_push (pc_get pc) cs

The program execution stops after the execution of a halt instruction.
The instruction fetch_cycle will spot this instruction and the machine will
stop (see Section 10.4).

halt:: instruction
halt (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc',ps,io)
where pc' = pc_halt pc

10.3.5 Instructions to generate output

To show the result of the reduction there are print instructions. These
instructions append strings to the output channel.

print:: string -> instruction
print string (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc,ps,io')
where io' = io_print string io

print_symbol:: a_src -> instruction
print_symbol a_src (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc,ps,io')
where io' = io_print_symbol node descr io

nodeid = as_get a_src as
node = gs_get nodeid gs
descr = ds_get (n_descrid node) ds

10.4 Program execution

As already explained in Section 10.1 the specification of the ABC in-
structions and micro-instructions can be seen as part of the interpreta-
tion circuit of the abstract machine. In order to obtain an executable
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specification of the ABC machine that can be used to execute ABC pro-
grams one needs an implementation of the abstract data structures
which are discussed in Section 10.2. Such an implementation is given in
Appendix C. Still there are some machine parts missing. An instruction
fetching mechanism has to be defined and one needs a bootstrapper to
initialize the machine. This bootstrapper needs an ABC program with
corresponding descriptor values in a machine-readable format. For this
purpose a small assembler is defined that can convert an ABC assembly
program to the desired format. The ABC assembly language makes it
possible to denote ABC instructions in a user-friendly notation.

10.4.1 The instruction fetch cycle

To run the ABC machine described here, the instructions must be ap-
plied to the state of the machine. In each machine cycle recursively the
current instruction is fetched from the program store and is applied to
the current state. The fetching (and hence the machine) stops when the
program counter indicates that a halt instruction is executed.

fetch_cycle :: state -> state
fetch_cycle (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc,ps,io) , if pc_end pc
= fetch_cycle (currinstr (as,bs,cs,gs,ds,pc',ps,io)) , otherwise

where pc' = pc_next pc
currinstr = ps_get (pc_get pc) ps

10.4.2 Booting the machine

Before it is possible to run the machine, the machine must be loaded
(booted) with the initial state. The program and descriptors must be
supplied as arguments to the boot function. All parts of the machine are
initialized by the corresponding _init micro-instructions.

boot :: ([instruction],[descr]) -> state
boot (program,descriptors)

= (as,bs,cs,gs,ds,pc,ps,io)
where pc = pc_init

as = as_init
bs = bs_init
cs = cs_init
gs = gs_init
ps = ps_init program
io = io_init
ds = ds_init descriptors
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10.4.3 ABC assembly language

For testing the machine specification with actual ABC programs it is
convenient to have an ABC assembly language. For instance, in ABC
instructions addresses (instr-ids) are actually required instead of sym-
bolic labels. This is close to reality, but such abstract machine code is
cumbersome to read and write for human beings. For this reason an as-
sembly language is defined in which symbolic names are used instead
of concrete machine addresses.

The ABC assembly language allows us to write, for example:

example1:: assembly
example1 = [ Label

"Length1", Jsr_eval ,
Eq_descr_arity "Cons" 0 0 ,
Jmp_false "Length2" ,
Push_args 0 2 2 ,
Create ,
Push_a 2 ,
Fill "Length" 1 "n_Length" 1 ]

instead of the ABC instruction sequence that might correspond to it:

example2:: [instructions]
example2 = [ jsr_eval ,

eq_descr_arity 23 0 0 ,
jmp_false 62 ,
push_args 0 2 2 ,
create ,
push_a 2 ,
fill 12 1 613 1 ]

In this particular case, a program in ABC assembly language is repre-
sented by a Miranda data structure. Therefore, every ABC instruction is
represented by a constructor with a similar name: the first character is
changed to an upper case character to make it a constructor. Addresses
are replaced by symbolic labels. Furthermore, there is a denotation for
all objects involved. The use of a Miranda data structure has the advan-
tage over the use of strings that it eliminates the generation and parsing
of ABC assembly. It also enables easy printing and manipulating of
ABC assembly statements (data structures) which is much harder for
ABC machine instructions (functions).

An assembler translates an ABC assembly program into ABC in-
structions with the corresponding descriptors:

assembler:: assembly -> ([instruction], [descr])
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10.4.4 Running a program

The ABC machine starts evaluating an assembly program as follows:

fetch_cycle (boot (assembler (assembly_program)))

Summary

• The ABC machine is an abstract machine in which two different
kinds of architecture are combined:
– one part of the abstract machine is an idealized architecture to

perform graph rewriting;
– the other part is an abstraction of a more or less traditional

stack-based machine architecture.
• The ABC machine consists of the following components:

– a program store, containing a sequence of instructions that
controls the rewriting process;

– a program counter;
– a graph store, containing the graph to be rewritten;
– an argument stack, containing node-ids;
– a basic value stack, containing basic values;
– a control stack, containing return addresses;
– an output channel, to print the string representation of an ob-

tained root normal form;
– a descriptor store, containing the descriptors of function and

constructor symbols.
• The instruction set of the machine offers another machine-inde-

pendent level of abstraction for the implementation of functional
languages.

• The imperative ABC machine can be specified elegantly in a func-
tional language:
– the memory stores are defined as abstract data types;
– the machine has micro-instructions: operations defined on

these abstract types to access the stores;
– the instructions of the ABC machine are defined in terms of

micro-instructions, thus defining the data flow between the
several machine components;

– an assembly language is defined that permits instruction
labels and symbolic names to be used.

• The given specification of the ABC machine is executable. It can
therefore be used as an interpreter of ABC instructions and, for
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example with a Miranda to Clean compiler as an interpreter of
Miranda scripts. In this way the behaviour of the ABC machine
can be observed.

EXERCISES

10.1 Write small ABC assembly routines to accomplish the following
tasks (the routines should remove their arguments and other cre-
ated entries from the stacks with the exception of their result):
(a) A routine that takes two argument nodes containing integers

on the A-stack, and leaves the sum of these integers on the B-
stack.

(b) A routine that takes two integers on the B-stack and leaves
only the greater of them on the B-stack (computes maximum).

(c) A routine that takes a boolean on the B-stack and builds a
node containing the complement of this boolean (logical
NOT).

10.2* Extend the machine with one register br that replaces the top of the
B-stack. Define a suitable abstract data type for br. Give the defini-
tion and implementation of the following micro-instructions:
br_getB, br_putB, br_getI, br_putI, br_init. Give the new definition of
the ABC state. Give the new definition of pushB. Define new in-
structions that take advantage of the new micro-instructions.

10.3* Define the instruction set of a programmable pocket calculator us-
ing the description method introduced in this chapter. Define for
such a machine: a program store and a stack. Define suitable
micro-instructions on these machine components. Define the
following instructions: addI, subI, mulI, divI, eqI, pop, push, label, jsr,
rtn, jmp_false, start, stop. Define two instruction: one to clear the
program store and one to add an instruction into the store. Program
the machine to calculate the factorial function.
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Chapter 11
Translating Clean
into ABC code

11.1 Basic graph rewriting on the
ABC machine

11.2 The run-time system
11.3 Optimizations

This chapter discusses the transformation of Clean programs into ABC
machine instructions (Figure 11.1). The relatively high-level functional
language Clean is transformed into a low-level, imperative machine lan-
guage. Hence, compared with the transformations described so far, the
transformation from Clean into ABC code is the most complex one.

Motorola
code

ABC machine
simulator

Motorola
processor

Miranda
program

Clean
program ABC code

Figure 11.1 The second transformation step: Clean into ABC code.

The goal of the translation is, of course, to transform Clean pro-
grams into equivalent and efficient ABC programs. This ABC code is
then further translated into instructions for the concrete target machine.
The various target machines have quite different instruction sets, which
makes it impossible to develop a compilation scheme to ABC code that
is optimal for all possible concrete architectures. Nevertheless, several
general optimizations can be used. These general optimizations consist
of deviations from the standard operational semantics of Clean that are
deliberately made to increase the performance of the generated code.

An important optimization is the following: although Clean graphs
are mapped directly to graphs in the graph store of the ABC machine,
this graph store is not updated after every rewrite step. During the
rewriting the updating information is stored on the stacks and (implicitly)
in the instruction sequence executed.
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Another important optimization is induced by the fact that the per-
formance of ABC programs heavily manipulating the graph store for
simple computations will be low compared with ABC code that employs
the B-stack whenever appropriate. So to achieve an efficient implemen-
tation of graph rewriting one should avoid the actual rewriting of the
graph in the graph store where possible. For instance, in a straightfor-
ward scheme, subgraphs are constructed in the graph store to pass ar-
guments from one function to another. But, when simple basic values
are passed one does not need to construct these nodes at all: the val-
ues can be passed on the B-stack. The B-stack will be used in all cases
where strict arguments of a basic type are passed to or returned by a
function.

Section 11.1 informally describes graph rewriting on the ABC ma-
chine. Section 11.2 discusses the run-time system. Finally, Section 11.3
treats some high-level optimizations including the use of the B-stack.

11.1 Basic graph rewriting on the ABC machine

There are, in principle, many different ways to realize graph rewriting
on the abstract ABC machine. This section discusses one straightfor-
ward method in an informal way. Only pure graph rewriting is consid-
ered. This means that only the graph rewriting part of the ABC machine
is used. So the B-stack is not used in this section.

When a Clean program is translated into an ABC program, a se-
quence of ABC assembly instructions is generated for each rewrite rule
and, in addition, for each rewrite rule alternative. In this code the func-
tional reduction strategy and the graph rewriting operations are merged.
For each Clean rewrite rule there is a sequence of ABC code to:

• construct a stack frame such that the arguments of the function can
be accessed directly; furthermore, the arguments with global strict
annotations are reduced to root normal form;

• handle the situation that none of the rule alternatives is applicable.

In addition, for each Clean rule alternative there is a sequence of ABC
code to:

• determine whether the rule alternative matches the actual redex; if
this is the case the corresponding rewrite is performed; if not, the
next rule alternative is tried by executing its code.

Furthermore, there is a fixed piece of ABC code, called the run-time
system, that

• initiates the reduction of a Start rule to normal form;
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• prints the result of the computation on the input/output channel;
• converts curried applications into uncurried ones.

Entries (see Chapter 10) are important because they mark pieces of
code that belong together. A sequence labelled with an entry can be ex-
ecuted by jumping to this entry (there are several jump instructions
available). So entries can be called from outside. There are several kinds
of entry generated in the ABC code. For each entry a certain calling
convention is assumed: i.e. an interface between caller and callee. The
different pieces of code, the entries and the calling conventions are
described below.

11.1.1 Entries and calling conventions

One property of the functional strategy is that, once initiated, the reduc-
tion of a (sub)graph continues until it is in root normal form. This is re-
alized as follows on the ABC machine. As was explained in the previ-
ous chapter, entries can be stored in the code field of a node. In general,
the code field of a node will refer to a special entry, the node entry.
When this node entry is called, the corresponding instructions will
eventually reduce the subgraph rooted at that node to its root normal
form (if it exists).

The reduction of a redex can be initiated by a jsr_eval instruction.
This instruction calls the node entry stored in the code field of the root
node of the redex and leaves a reference to this root on the top of the A-
stack (see the definition of jsr_eval). When the node entry is entered, the
root node is marked as being under reduction such that a cycle-in-spine
can be detected. Since the ABC machine contains no tags, this marking
is realized by overwriting the code field with a special entry (_cycle) that
will produce an error message when it is called by a second attempt to
reduce the same node.

Before the actual matching and rewriting can take place a stack
frame is constructed on the A-stack. This stack frame contains:

• a reference to the root of the (sub)graph under reduction. This root
is used as a place-holder node on the bottom of the stack frame. It
will be updated with the root normal form when this is reached.

 • the node-ids of all the arguments of the function that is called. The
reference to the first argument is on top of the stack. The argu-
ments that are marked as strict are in root normal form.

To construct the described stack frame, the arguments of the root
node have to be pushed on the A-stack as well. Those arguments that
are globally annotated as being strict are reduced to root normal form
(again by using jsr_eval instructions). There is a special entry, called the
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eval args entry (evaluate strict arguments), to reduce the corresponding
arguments.

The actual matching and rewriting will take place depending on the
actual rewrite rule alternatives (see Sections 11.1.2 and 11.1.3).

Consider the following rewrite rules:

:: F ![x] ![x] -> INT;
F [ a | [ b | c ] ] [ d | e ] -> G f f , f: [ b | e ];

:: G [x] [x] -> INT;
G a b -> 1;

Throughout this chapter, new parts in the pictures are printed bold. Graphs
with unknown contents are drawn as grey boxes (Figure 11.2).

F F F

ConsCons

(a) (b) (c)

Figure 11.2 (a) The initial A-stack frame and graph just before entering
the node entry. (b) The stack frame is extended with the
node-ids of the arguments. (c) The stack frame as expected
by the rule alternatives; both arguments are strict and hence
both are reduced to root normal form.

For each rewrite rule alternative there is a separate rule alterna-
tive entry. Only the first rewrite alternative will be referenced outside
the code for a particular rewrite rule. The code for each rule alternative
entry consists of a matching phase which determines whether this alter-
native is applicable and a rewriting phase which performs the rewrite.
When an alternative appears to be inapplicable, execution proceeds with
the next one. Furthermore, for each rewrite rule, an additional rule al-
ternative entry is generated that is executed when none of the rewrite
rule alternatives is applicable. This means that a partial function has
been called with a value on which it is not defined, which is generally
considered as a run-time error (see Section 8.2.3). However, for well-
typed partial functions it means the place-holder node can be updated
with the root normal form reached.

A different situation arises when a curried function is used. As
explained in Chapter 8, an automatic conversion has to convert a curried
application into an uncurried one. For this purpose, a special internal
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_AP-rule is defined in the run-time system (see Section 11.2). When suf-
ficient arguments are supplied, the _AP-function will call the special
apply entry of the rewrite rule. In this case, the node-id of the redex,
the node-id of the last argument and a reference to the node containing
the other arguments will be on the stack. To construct the same stack
frame as described above, the last reference has to be replaced by the
other arguments of the rewrite rule. Finally, the strict arguments have to
be reduced to root normal form. So the eval args entry is called.

Summary of entries, calling conventions and their actions

Node entry

Called by: any function that needs the root normal form of the applied function.

Calling conventions:
• node-id of root of redex on top of A-stack.

Actions:
• mark root node redex for cycle-in-spine detection; this node now serves as

place-holder node;
• push the node-ids of all the arguments of the redex on the A-stack; last argu-

ment on top of the stack;
• proceed with eval args entry.

Eval args entry

Called by: node entry as well as apply entry.

Calling conventions:
• node-id of place-holder node on the stack;
• node-ids of all arguments of the function called above it, node-id of first argu-

ment on top of A-stack.

Actions:
• reduce those arguments that are marked as strict to root normal form;
• proceed with first rule alternative entry.

Rule alternative entry

Called by: the first rule alternative can be called by any function; the other rule al-
ternatives are called by the previous one when they do not match.

Calling conventions:
• the stack frame is complete: node-id of place-holder node on the stack, node-

ids of arguments on top of it, strict arguments are in root normal form.

Actions:
• try to match this alternative;
• if no match, proceed with next rule alternative entry;
• if match, evaluate strict nodes of right-hand side and construct contractum;
• when a root normal form is reached, the place-holder node is overwritten with

the contractum; return to caller;
• otherwise: build stack frame for root of right-hand side;
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• proceed with the first rule alternative entry of the root of right-hand side.

Additional rule alternative entry

Called by: last rule alternative entry.

Calling conventions:
• a complete stack frame.

Actions:
• in general: generate an error message and halt the program;
• for well-typed partial functions: fill place-holder node with root normal form.

Apply entry

Called by: built-in _AP-function when a curried application has enough arguments.

Calling conventions:
• node-id of place-holder node on A-stack;
• node-id of node containing n – 1 arguments on top of it;
• node-id of last argument on top of A-stack.

Actions:
• pop the two node-ids on top and push the node-ids of all the arguments of the

function called on the A-stack;
• proceed with eval args entry.

11.1.2 Matching

F

ConsCons

F

ConsCons

Cons

F

ConsCons

Cons

(a) (b) (c)

Figure 11.3 (a) The situation after matching the top level of the first ar-
gument and pushing its subarguments. (b) The second subar-
gument of the first argument is reduced and matched. After
the successful match the node-ids of the subarguments are
pushed on the stack. (c) The second argument also matches.
So this rule alternative is applicable.

In each rewrite rule alternative the arguments are matched from left to
right. If the formal argument in the corresponding rewrite rule is a vari-
able the argument trivially matches. Otherwise, when the actual argu-
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ment is not known to be in root normal form already, it is brought in
root normal form by calling its node entry. Now the symbol in the graph
can be compared with the symbol specified in the redex pattern. When
the symbols match (are equal), its subarguments are pushed on the A-
stack as well (Figure 11.3). Subpatterns are matched in the same way. In
this way all node-ids that appear on the left-hand side of the rewrite rule
alternative are pushed on the A-stack. The advantage of this is that these
node-ids and hence the corresponding nodes become directly accessible
in the rewriting phase.

As soon as an argument is found that does not match the corre-
sponding redex pattern, all subarguments are popped from the stack and
execution proceeds with matching the next rule alternative. When the
matching of all arguments succeeds the rewrite must be performed.

11.1.3 Rewriting

When the redex matches a rewrite rule alternative, the rewriting can
take place. According to the semantics of GRSs, the contractum must be
constructed (if present in the rule) and all references to the root of the
redex must be redirected to the root of the contractum. During the
matching phase all node-ids that appear on the left-hand side of the
rewrite rule alternative have already been pushed on the A-stack such
that they are directly accessible in the rewriting phase.

To increase the performance of the generated code some deviations
of the standard GRS semantics are made.

As explained in Section 8.3.2, before reducing the root node of the
right-hand side all strict nodes other than the root node are evaluated to
root normal form. However, not the whole contractum is built before
these strict nodes are evaluated. Only those parts of the contractum that
are necessary for this evaluation (lazy subgraphs, sharing, cycles) are
built before this evaluation is started.

Furthermore, as already mentioned in Section 10.2, it is very inef-
ficient to examine the whole graph and replace every reference to the
root of a redex by a reference to the contractum root. A more efficient
implementation is achieved by overwriting the root of the redex with
the root of the contractum. In this way all references to the redex are
automatically redirected to the contractum.

Finally, the graph store is not updated after each rewrite step. It is
only updated when a root normal form is reached. During the rewriting
the information is stored on the stacks and (implicitly) in the instruction
sequence executed. Three situations are distinguished: the contractum is
not known to be in root normal form; the specified contractum is a root
normal form; and no contractum is specified in this rule alternative.
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Redirection to a reducible contractum

When the contractum is not known to be in root normal form, the
rewrite rule associated with the symbol in this root must be applied. It
makes no sense to fill the redex with the root of the contractum. The
new rewrite rule would unpack this node immediately since the func-
tional strategy will indicate this redex as the one to rewrite. So it is
possible and more efficient to delay the update of the graph store until a
root normal form is reached.

Hence, when the reduction of a new subgraph is demanded, the
corresponding root of the redex is pushed once on the bottom of the
stack frame. In the case that the reduction continues with the reduction
of the contractum, a new stack frame is constructed for the first rule al-
ternative of the corresponding rewrite rule. Rewriting proceeds imme-
diately with that first alternative.

When the right-hand side root function is called, the current func-
tion does not need its own stack frame any more. So the space occupied
by the old stack frame can be reused for building the new one. The
original redex stays as place-holder on the bottom of the new stack
frame such that it can be overwritten when the root normal form is
reached. The node-ids of the old arguments are removed from the stack
and the new ones are pushed instead. After that, a jump (and not a
jsr_eval) is performed to the first rule alternative of the called function.
In this way tail recursion is removed automatically.

Redirection to a contractum in root normal form

F
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Figure 11.4 (a) The shared node, f, is constructed in the graph store.
(b) The stack frame is ready for matching the first rule alter-
native of G. (c) The reduction according to rule G has been
performed, a root normal form is reached; garbage nodes are
drawn dotted.

The ABC machine has variable-sized nodes. This means that it is al-
ways possible to overwrite a node with arbitrary new contents, even if
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the new node is larger than the old one. So when the contractum is in
root normal form, the place-holder node at the bottom of the stack frame
is overwritten with the root of the contractum. In this way all references
to the redex are automatically redirected to the contractum: a very cheap
and commonly used implementation of redirection.

For a machine without variable-sized nodes the place-holder node
is usually overwritten by an indirection node: a special node that fits in
any node which points to the actual node. A drawback of indirection
nodes is that they make an implementation a bit more complicated and
inefficient because these indirection nodes can appear anywhere in a
graph. So special attention has to be paid to deal with such nodes.

Redirection to an existing graph

When the right-hand side of a rewrite rule only consists of a redirection,
there is a problem. The root of the redex has to be redirected to the root
of an existing graph somewhere in the graph store. Introduction of indi-
rection nodes may seem unavoidable.

However, the following approach is taken. After the redirection to
some existing (sub)graph, the functional strategy will continue with the
reduction of that (sub)graph to root normal form. The idea is now to
postpone the redirection until after the reduction of the indicated sub-
graph (see Figure 11.5).

To illustrate these graph manipulations an example is shown .

:: Tl ![x] -> [x];
Tl [ h | t ] -> t;

:: F -> [INT];
F -> [ 1 | F ];

Tl

F

Tl

F

Cons1

1

Cons

F

Cons1

1

Cons

Cons

(a) (b) (c)

Figure 11.5 (a) Start of the reduction for the graph Tl F. State at the node
entry. The arrows from outside indicate sharing. (b) After
the reduction of the redex t, before the rewriting. (c) After
copying the top node. Both nodes contain the proper root
normal form.
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This means that first the reduction to root normal form of the redex
indicated by the redirection is started. When the root normal form is
reached, the root node of this redex will be overwritten as usual. Next,
the postponed redirection is performed. This is implemented by
overwriting the place-holder node with a copy of the root node of the
root normal form obtained.

This optimization results in a graph that is different from the one
that should be obtained according to standard GRS semantics. The
redirected arcs point to a copy of the root node instead of to the root
node itself. Fortunately, both the graphs remain equal modulo unravel-
ling (see also Chapter 14).

11.1.4 Example of the rewriting process

Consider the following Clean rewrite rule to compute the length of a
list:

:: Length !INT ![x] -> INT;
Length n [ a | b ] -> Length (+ n 1) b;
Length n [ ] -> n;

The corresponding ABC code using the described calling conventions is:

[ Descriptor
"Length" "a_Length" 2 "Length" , || The generated descriptor

Label || The apply entry
"a_Length",Repl_args 1 1 , || Prepare the stack frame

Jmp "e_Length" , || Start reducing strict arguments
Label || The node entry

"n_Length",Set_entry "_cycle" 0 , || Mark node to detect cycle-in-spine
Push_args 0 2 2 , || Push the arguments
Label || The eval args entry

"e_Length",Jsr_eval , || Reduce first argument to rnf
Push_a 1 , || Copy 2nd argument on top stack
Jsr_eval , || Reduce it to rnf
Pop_a 1 , || Pop duplicated second argument
Label || Entry for first rule alternative

"Length1", Eq_desc_arity "Cons" 2 1, || Match second argument
Jmp_false "Length2" , || Goto next alternative if match fails
Push_args 1 2 2 , || Push subarguments
Push_a 1 , || Rewrite according to alternative 1
Jsr_eval , || Reduce b
Create , || Node for result of + n 1
Create , || Node for 1
FillI 1 0 , || Fill this node
Push_a 5 , || Push n; it is known to be a rnf
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Jsr "+1" , || Reduction of + n 1
Update_a 1 5 , || Adapt stack frame to call Length
Update_a 0 4 , ||
Pop_a 4 , || Remove old (sub)arguments
Jmp "Length1" , || Goto alternative 1 of Length
Label || Entry for second rule alternative

"Length2", Eq_desc_arity "Nil" 0 1 , || Match argument
Jmp_false "Length3" , || Goto next alternative if match fails
Fill_a 0 2 , || Rewrite according to alternative 2

|| n known to be a rnf, so it is copied
Pop_a 2 , || Remove arguments from stack
Rtn , || Rnf reached
Label || Entry for additional alternative

 "Length3", Jmp "_mismatch" ] || There is a mismatch

The machine state during reduction of this code for the graph Length 0 [1, 2] is
shown in Figure 11.6:

Length Length

Cons0

Length

Cons0

(a) (b) (c)

Figure 11.6 (a) Initial state at node entry. (b) Initial state at first alterna-
tive entry. (c) After successful match of first rule alternative.
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(d) Reduction according to the first rule alternative. First, the
last strict argument is reduced. The state before calling + 1
to reduce the first strict argument is shown. (e) State re-
turned by + 1. Garbage nodes are displayed dotted. (f) State
before calling Length1 recursively. (continued overleaf)
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Figure 11.6  (g) State before last call of Length1. (h) State of ABC ma-
(continued) chine after reaching the rnf.

11.2 The run-time system

Each Clean rewrite rule is translated into a sequence of ABC instruc-
tions. To let the machine perform graph rewriting properly, some addi-
tional ABC instructions also have to be defined that are independent of
a concrete program. This fixed piece of ABC code is called the run-
time system. The main purpose of the run-time system is to force eval-
uation to normal form, to perform I/O, and to convert curried functions.

Reduction to normal form and printing

The compilation scheme explained above produces code such that a re-
dex is reduced to root normal form. The run-time system contains the
routine init_graph to build the initial redex, the Start node. Then, it initi-
ates the reduction of this Start node to normal form. The reduction to
normal form and the printing of subgraphs in normal form are done by
the routine _driver. The Start node is reduced to normal form as follows:
first the Start node is reduced to root normal form, the symbol in the re-
sulting root node is printed and the driver process recursively continues
with the arguments of the root normal form thus obtained.

[ Label || The initiator of graph reduction
"init_graph", Create , || Create and fill the start node

Fill "Start" 0 "n_Start" 0 ,
Jsr "_driver" , || Print the nf of start node
Print "\n" , || Print a newline
Halt , || The program is finished
Label || The global print driving routine

"_driver", PushI 0 , || Closing bracket count
Label || Label for tail recursion

"_print", Jsr_eval , || Reduce top node to rnf
Get_node_arity 0 , || Get number of args in node
EqI_b 0 0 , || No arguments ?
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Jmp_false "_args" ,
Label || Print last argument

"_print_last", Print_symbol 0 , || Do it
Pop_a 1 , || Remove node
Pop_b 1 , || Remove arity
Label || Print the closing brackets

"_brackets", EqI_b 0 0 , || Bracket count equal 0 ?
Jmp_true "_exit" , || Yes; finished
Print ")" , || No; print bracket
DecI , || Decrement bracket count
Jmp "_brackets" , || Next bracket
Label || Finished with this node

"_exit", Pop_b 1 , || Remove bracket count
Rtn ,
Label || Start the printing of arguments

"_args", Print "(" , || An opening bracket
Print_symbol 0 , || The symbol of the node
Get_desc_arity 0 , || Arity corresponding to symbol
Repl_args_b , || Replace node by its arguments
Pop_b 1 , || Pop descriptor arity
Label || Loop to print arguments

"_arg_loop", Print " " , || Space between elements
EqI_b 1 0 , || Last argument ?
Jmp_false "_next_arg" ,
Pop_b 1 , || Remove arg counter
IncI , || Increment bracket counter
Jmp "_print" , || Optimized tail recursion
Label || Print an arg; not the last one

"_next_arg", Jsr "_driver" , || Recursion to print argument
DecI , || Decr arg cnt; driver removes arg
Jmp "_arg_loop" ] || Next argument

Miscellaneous definitions in the run-time system

The run-time system contains some special entries for general use and
standard descriptors for elements of basic types. As in the previous
chapter, only integer and Boolean values are considered here.

The _rnf entry is used as node entry for graphs in root normal form.
The _cycle entry is stored upon entrance of a node entry when the reduc-
tion of the subgraph rooted with this node is started. In this way a cycle-
in-spine error is detected when such a node is revisited. The _mismatch
entry is used when none of the rule alternatives is applicable.

[ Descriptor
"INT" "_rnf" 0 "integer" , || Reserved first descriptor

Descriptor
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"BOOL" "_rnf" 0 "boolean" , || Reserved second descriptor
Label || Node entry for graphs rnf

"_rnf", Rtn , || Return immediately
Label || Node entry to detect cycles

"_cycle", Print "Cycle-in-spine: Reduction interrupted",
Halt , || Stop the reduction
Label || Exit when no alt. applicable!

"_mismatch", Print "Mismatch: Reduction interrupted",
Halt ] || Stop the reduction

Curried functions

To handle curried function applications, the run-time system contains a
special predefined rule _AP. The generic _AP rule converts a curried
symbol into its uncurried form as soon as all its arguments are available.
To obtain this effect all occurrences of curried symbols in Clean are
transformed into applications of the function _AP. If F is defined with
arity n, say F a1 a2 ... an -> ar, then _AP ( ... (_AP (_AP F a1) a2) … ) an reduces
to F a1 a2 … an (see Section 8.1.6).

So the call of a curried function is actually a call of the function
_AP. This function is strict in its first argument: the function that has to
be applied. Each _AP node provides one additional argument to the
function. If there are too few arguments the expression is in root normal
form. When all arguments are there the indicated function is called.

On the ABC machine the arguments of the curried function are
collected one by one in the corresponding apply node. When the last ar-
gument is supplied and all other required arguments are already col-
lected, a stack frame according to the apply entry is constructed and ex-
ecution continues on that entry of the corresponding function. Other-
wise, the next argument is collected on its turn and a root normal form
is reached. The code for _AP is similar to the code for other functions.

[ Descriptor
"_AP" "n_AP" 2 "_AP"

Label || The node entry for _AP
"n_AP", Set_entry "_cycle" 0 , || Mark node as being reduced

Push_args 0 2 2 , || Push the function and its arg
Jsr_eval , || Reduce curried function to rnf
Label || Entry for rule alternative _AP

"_AP1", Get_node_arity 0 , || Number of args in node
Get_desc_arity 0 , || Number of args for symbol
SubI , || Number of arguments needed
EqI_b 1 0 , || Last argument supplied?
Jmp_false "yet_args_needed", || No; update node and return
Pop_b 1 , || Yes; start reduction of function
Push_ap_entry 0 , || Push apply entry on C-stack
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Rtn , || Jump to that entry
Label || _AP doesn't supply last arg

"yet_args_needed" , || Update apply node and return
Push_a 1 , || Argument supplied here
Add_args 1 1 3 , || Update apply node
Pop_a 2 , || Clean up stacks
Pop_b 1 , ||
Rtn ] || Rnf reached

This is illustrated by the following example (Figure 11.7):

Start -> Inc 2;
Inc -> Plus 1;
Plus -> +;

which is internally transformed into:

Start -> _AP Inc 2;
Inc -> _AP Plus 1;
Plus -> +;

Start Start

2

empty

Start

2

empty

1 empty

(a) (b) (c)

Figure 11.7 (a) Initial state. Reduction starts at the node entry of Start.
(b) Creation of the arguments of _AP. Second argument is
built. First argument is strict. (c) Reduction according to Inc.
Second argument is created. First argument is strict.

Start

2

empty

1 +

Start

2

1 +

+

2

1

3

+

+

(d) (e) (f)

(d) Reduction according to Plus. The redex node is filled
with an rnf. (e) + has not enough arguments to become a
function. So the node is filled with the rnf. (f) After reduc-
tion according to + the top node is replaced by its rnf.
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11.3 Optimizations

The code generated by the compilation scheme presented above can be
improved at many places. The most important improvement is to use the
B-stack instead of the nodes in the graph to pass basic values between
functions. The use of the B-stack will be described informally and illus-
trated with an example. Afterwards some other high-level optimizations
will be discussed.

11.3.1 The extended compilation scheme using the B-stack

Basic values are manipulated on the B-stack of the ABC machine. This
implies that every computation involving basic values requires the
transportation of the values to the B-stack and the shipment of the result
back to a node in the graph store. When the result is used again as ar-
gument in another computation there is too much data transportation. To
reduce the unnecessary movement of data, the compilation scheme must
be changed such that basic values stay on the B-stack as much as possi-
ble. To achieve this, the stack frame expected by the rewrite alternatives
is changed: strict arguments of simple basic type (integers, reals, charac-
ters, booleans, files) are passed on the B-stack and the result of a reduc-
tion is also left on the B-stack when it is of such a basic type.

The calling conventions for the node entry and the apply entry re-
main unchanged, but the code corresponding to the eval args entry has
to be changed since it has to take care of the transport of basic values
between the graph and the B-stack. After the reduction of a strict argu-
ment of a simple basic type, the value contained in the node in the graph
store is copied to the B-stack. When the result of the function is also of
a basic type the first rule alternative entry is called as a subroutine. The
corresponding code will yield the root normal form on the B-stack. Re-
turning from the subroutine call the result is stored in the place-holder
node.

Summary of changed calling conventions and their actions

Eval args entry

Called by: node entry as well as apply entry.

Calling conventions:
• node-id of place-holder node on the stack;
• node-ids of all arguments of the function called above it, node-id of first argu-

ment on top of A-stack.

Actions:
• reduce those arguments that are marked as strict to root normal form;
• when the strict arguments are of a simple basic type, the values are pushed on

the B-stack and the corresponding node-ids are popped;
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• proceed with first rule alternative entry, but do this via a jsr when the result is
of simple basic type in order to come back to copy this result from the B-stack
back to the A-stack.

Rule alternative entry

Called by: the first rule alternative can be called by any function;
• the other rule alternatives are called by the previous one when they do not

match.
Calling conventions:
• the stack frame is complete: node-id of place-holder node on the stack, node-

ids of arguments on top of it, strict arguments are in root normal form, strict
arguments of complex type on A-stack, the others on the B-stack.

Actions:
• try to match this alternative;
• if no match, proceed with next rule alternative entry;
• if match, evaluate strict nodes of right-hand side and construct contractum;
• when a root normal form is reached, the place-holder node is overwritten with

the contractum; return to caller;
• otherwise: build stack frame for root of right-hand side;
• proceed with the first rule alternative entry of the root of right-hand side.

The complexity of the code generation is increased significantly by
this new calling convention. Arguments and results must be moved to
the desired place at every occurrence. This is not difficult, but it in-
volves an elaborated case analysis.

An example of the use of the B-stack

To show the changes resulting from the new calling conventions the
ABC code for the Length example of Section 11.1.4 is shown.

:: Length !INT ![x] -> INT;
Length n [ a | b ] -> Length (+ n 1) b;
Length n [ ] -> n;

Both arguments are strict. Note that the first argument is also a ba-
sic value, so it will be passed on the B-stack to the rule alternatives.
They will also store the result on the B-stack. The integer addition used
on the right-hand side also expects strict basic values as argument and it
delivers a strict basic value as well. So no nodes have to be created
when + is called, and all values are passed directly on the B-stack. The
same holds for the first argument of Length when it calls itself recur-
sively.

[ Descriptor
"Length" "a_Length" 2 "Length" , || The generated descriptor

Label || The apply entry
"a_Length",Repl_args 1 1 , || Prepare the stack frame
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Jmp "e_Length" , || Start reducing strict arguments
Label || The node entry

"n_Length",Set_entry "_cycle" 0 , || Mark node to detect cycle-in-spine
Push_args 0 2 2 , || Push the arguments
Label || The eval args entry

"e_Length",Jsr_eval , || Reduce first argument to rnf
PushI_a 0 , || Copy first argument to the B-stack
Pop_a 1 , || Pop first argument from A-stack
Jsr_eval , || Reduce second argument to rnf
Pop_a 1 , || Pop duplicated second argument
Jsr "Length1" , || Initiate rewriting by alternatives
FillI_b 0 0 , || Fill node with result of reduction
Pop_b 1 , || Pop result of the reduction
Rtn , || Done; node is in rnf
Label || Entry for first rule alternative

"Length1", Eq_desc_arity "Cons" 2 0, || Match argument
Jmp_false "Length2" , || Goto next alternative if match fails
Push_args 0 2 2 , || Push subarguments
Push_a 1 , || Rewrite according to alternative 1
Jsr_eval , || Reduce b
PushI 1 , || Second argument for +
Push_b 1 , || First argument for +
Jsr "+1" , || Reduction of + n 1
Update_a 0 3 , || Adapt A-stack frame to call Length
Update_b 0 1 , || Adapt B-stack frame to call Length
Pop_a 3 , || Remove old args from A-stack
Pop_b 1 , || Remove old args from B-stack
Jmp "Length1" , || Goto alternative 1 of Length
Label || Entry for second rule alternative

"Length2", Eq_desc_arity "Nil" 0 0 , || Match argument
Jmp_false "Length3" , || Goto alternative 3 if match fails
Pop_a 1 , || Remove arg
Rtn , || Rnf reached
Label || Entry for additional alternative

"Length3", Jmp "_mismatch" ] || There is a mismatch

In Figure 11.8 snapshots of the reduction process are shown
(compare them with the pictures in Figure 11.6). The efficiency gained
by this optimized compilation scheme depends on the rules to transform
and the implementation of the ABC machine. The measured efficiency
gain for the length rule given as an example using a reasonable imple-
mentation is about a factor of 2.5 when garbage collection is excluded
(see Chapter 12 for more information on garbage collection). However,
a lot of garbage collection is prevented as well. The efficiency gained
by eliminating the garbage collection depends heavily upon the circum-
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stances. Including the garbage collection the efficiency gain of the length
function is typically about a factor of 6.5.

Length Length

Cons0
0

Length

Cons0
0

(a) (b) (c)

Figure 11.8 (a) Initial state at node entry. (b) State at first rewrite alterna-
tive entry. (c) After successful match of first rule alternative.
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0

Length

Cons0
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Length

Cons0

Cons

1

(d) (e) (f)

(d) Reduction according to the first rule alternative. State be-
fore calling +1. (e) State returned by +1. (f) State before call-
ing Length1 recursively.

Length

Cons

Nil

0

Cons

2
Cons

Nil

0

Cons

2

(g) (h)

(g) State before last call of Length1. (h) State of ABC ma-
chine after the rnf is reached.

The example above shows the successful use of the B-stack. It in-
cluded very little overhead involving the movement of data between the
graph and B-stack. This is not always the case. It is possible to construct
an example such that arguments just happen to be expected on the other
stack. Projection functions, like the identity function, always work on
the A-stack. This induces an overhead when they are called with argu-
ments that live on the B-stack. A solution for this problem will be dis-
cussed in the next section.
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Unnecessary overhead may occur when using the B-stack:

:: I !x -> x;
I x -> x;

:: F !INT !INT -> INT;
F a b -> + (I a) b;

Both arguments and the result of function F will be passed on the B-stack by
the rule alternative entry. But, unfortunately, the identity function expects its
polymorphic typed argument on the A-stack and also leaves its result there. So
a has to be put back in a node to pass it to I and the result must again be
extracted from a node to pass it to +.

11.3.2 Other optimizations

The code generated by the schemes above is generally more efficient
than the scheme in Figure 11.6, but can be improved much further.
Here, we mention some of the other optimizations that are possible.
Many of them are implemented in the Concurrent Clean System
(Smetsers, 1989).

• The elements of strict tuples can also be passed on the stacks in-
stead of via a reference to a node in the graph. In addition, it is
possible in Clean to put strict annotations in a tuple type appearing
in a strict context (see Section 8.3). When these arguments are of a
simple basic type they can also be passed on the B-stack instead of
the A-stack. So in that case there is not much difference in terms of
efficiency between a function with more than one argument and a
function that carries its arguments in a strict tuple. When a function
yields a tuple as result, the tuple arguments are returned via the
stacks as well. Functions that return a tuple of which the basic
typed arguments are marked as being strict can return the corre-
sponding values via the B-stack.

• When a new stack frame is constructed over the old the references
on the stack have to be rearranged in the right order. A simple solu-
tion uses temporary variables to construct the new frame before the
old one is overwritten. A more clever algorithm will try to mini-
mize the number of moves (updates) and additional amount of
space needed for the construction of the new frame.

• As shown above, there are some cases where arguments are
shipped from A-stack to B-stack and backwards frequently. The
calling conventions for such functions can be changed such that
they can handle items on both stacks. This requires, however, a
number of entries that is exponential with respect to the number of
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arguments since all cases have to be covered, so this will only be
practical for functions with a very small number of arguments.

• For projection functions for which the right-hand side consists of a
single node-id, the place-holder node of the function application
can be used, so a new place-holder node need not be created. In
this way one prevents a possible series of place-holder nodes to
which results are copied.

• It is very important to use in-line code substitution for very short
functions. Instead of performing a subroutine jump, the body of the
routine is substituted in place. This makes it possible, for instance,
to generate the AddI instruction instead of a Jsr +1.

• In the present compilation schemes the matching of each rule al-
ternative starts from scratch. However, the use of information from
the previous alternative and type information can speed up the
matching process considerably. So it is better to use a finite state
machine for the matching of the rule alternatives instead of starting
all over again for each alternative.

• Constant graphs which occur on the right-hand side of rewrite rules
need not be built each time the rule is used. These graphs can be
created once. The node-ids of the root of these graphs can be used
instead of building a new one at each occurrence.

• One can use scratch nodes for nodes which will be used once for a
very short time. This occurs when a function delivers its result in
the graph which is required on the B-stack; the result is stored in
the node, moved to the B-stack and the node becomes garbage
immediately.

• It is important that nodes are represented as compactly as possible.
Special compact representations can be chosen for nodes contain-
ing basic values or nodes with few arguments.

• One can improve the performance of predefined functions (δ-rules)
by hand-coding them in assembler.

• One can reuse UNQ-attributed function arguments (see Section 8.5)
for the construction of the function result. This makes it, for exam-
ple, possible to define a traditional sort function on a list with a
unique spine. Sorting then can take place in-situ: no new Cons
nodes have to be constructed (Smetsers et al., 1993).

Besides these optimizations in the area of code generation for the
ABC machine there are also important optimizations possible on the
level of the Clean language itself: Clean program transformations.
Functions can be partially evaluated at compile-time. Clearly, this is
possible for expressions that consist only of constants. One can create
specialized function calls for certain function applications in which it is,
for example, clear that one or more of the alternatives of the original
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function will never match, etc. Of course, the transformations must not
change the termination behaviour of the program.

Another important optimization on the level of Clean itself con-
cerns the analysis of all applications of a function. This can, for in-
stance, greatly improve the strictness analysis of Chapter 7, in which
only the function definition is taken into account.

11.3.3 Efficiency gain of the optimizations

To analyse the effect of a subset of the optimizations mentioned a mea-
surement of the performance of the well known Nfib function is pre-
sented. The integer delivered by the Nfib function is the number of per-
formed function calls. The Nfib-number is obtained by dividing this
number by the execution time. So the Nfib-number is the number of
function calls per second that is executed for the calculation of the result
in this particular example. The Nfib ‘benchmark’ is often used as a mea-
sure for the basic efficiency of an implementation of a functional lan-
guage. Although it gives some indication of the speed offered, it is not
at all a representative benchmark. The Nfib-number is extremely sensi-
tive to the optimizations discussed. It actually gives the maximum num-
ber of function calls per second under ideal circumstances.

:: Nfib !INT -> INT;
Nfib 0 -> 1;
Nfib 1 -> 1;
Nfib n -> ++ (+ (Nfib (– – n)) (Nfib (– n 2)));

The table below gives an idea about the gain in efficiency obtained by
the optimizations mentioned. Unless stated otherwise the measurements
where done on a Sun 3/280 under SunOS 4.0.3 (using a straightforward
code generation for the Sun). Measurements are accurate within 10%.

Nfib-number Conditions

90 000 The basic translation scheme as given in Section 11.1.
280 000 The integers are passed on the B-stack.
415 000 In-line code substitution is also used for the δ-rules.

2 000 Same code interpreted by the PABC interpreter/simula-
tor (Nöcker, 1989).

300 000 The Nfib function in C (Kernighan and Ritchie, 1978).
1 200 The Nfib function in Miranda, executed by the Miranda

interpreter.
6 ABC machine as in Appendix C (Miranda interpreter).

220 ABC machine as in Appendix C, with Miranda con-
verted to the Concurrent Clean System, executed by the
Concurrent Clean System.
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The code for the 415 000 Nfib in ABC assembly using the extended
compilation scheme becomes:

[ Descriptor
 "Nfib" "a_Nfib" 1 "Nfib" , || The generated descriptor

Label || The apply entry
"a_Nfib", Pop_a 1 , || Reference to node containing Nfib

Jmp "e_Nfib" , || Start reducing strict argument
Label || The node entry

"n_Nfib", Set-entry "_cycle" 0 , || Mark node to detect cycle-in-spine
Push_args 0 1 1 , || Push argument on A-stack
Label || The eval args entry

"e_Nfib", Jsr_eval , || Reduce strict argument
PushI_a 0 , || Copy argument to B-stack
Pop_a 1 , || Remove argument from A-stack
Jsr "Nfib1" , || Initiate calculation on B-stack
FillI_b 0 0 , || Copy result from B-stack to node
Pop_b 1 , || Remove result from B-stack
Rtn , || Rnf reached
Label

"Nfib1", EqI_b 0 0 , || Match rule 1; is argument 0?
Jmp_false "Nfib2" , || No; goto second rule alternative
Pop_b 1 , || Yes; remove argument
PushI 1 , || Store result
Rtn , || Done
Label

"Nfib2", EqI_b 1 0 , || Match rule 2; is argument equal 1
Jmp_false "Nfib3" , || No; goto rule alternative 3
Pop_b 1 , || Yes; remove argument
PushI 1 , || Push result
Rtn , || Done
Label || Rule alternative 3

"Nfib3", PushI 2 , || Compute – n 2
Push_b 1 , || Push n
SubI , || In-line code substitution for –
Jsr "Nfib1" , || Compute Nfib (– n 2)
Push_b 1 , || Compute – – n; push argument
DecI , || In-line code substitution for –
Jsr "Nfib1" , || Compute Nfib (– – n)
AddI , || In-line code substitution for +
Update_b 0 1 , || Replace argument by result
Pop_b 1 , || Remove copied result
IncI , || In-line code substitution for ++
Rtn ] || Done
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With better code generation for the concrete machine the perfor-
mance (including the Nfib-number) can be improved even further (see
the next chapter).

Summary

• A Clean program can be translated into ABC code with the basic
translation scheme in which Clean graphs are more or less directly
mapped onto graphs in the graph store of the ABC machine.

• In this basic scheme the graph rewriting process is as follows: redi-
rection is implemented by overwriting the root of the redex with
the root of the contractum. Furthermore, overwriting of such a re-
dex is delayed until the root normal form is reached.

• An important optimization is the use of the B-stack to pass argu-
ments that are both strict and of a basic type. Results that are of a
basic type are again returned on the B-stack. As a consequence,
such basic calculations are actually not performed via graph rewrit-
ing at all but they entirely proceed on the B-stack.

• Many more optimizations are possible resulting in a code with an
efficiency in the same order of magnitude as classical imperative
code. Compiled code typically can be two orders of magnitude
faster than when an interpreter is used.

EXERCISES

11.1* Consider the following Clean rule:
:: Filter INT [INT] -> [INT];

Filter x [ ] -> [ ];
Filter x [ e | es ] -> r, IF = e x

-> [ e | Filter e r ],
r: Filter x es ;

(a) Write the corresponding ABC code obeying the calling con-
ventions.

(b) Add strictness annotations in the Clean rule where possible.
(c) Change the ABC code given above to obtain the most optimal

code as explained in the textbook: use strictness annotations,
in-line code substitution, B-stack parameter passing.

(d) Indicate explicitly which alterations, omissions or additions in
the code are due to each optimization.
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Chapter 12
Realizing the ABC machine

12.1 Representing the ABC machine
components

12.2 Garbage collection
12.3 The Motorola MC68020

processor

12.4 Representing ABC components
on the MC68020

12.5 Generating MC68020 code
12.6 Example of concrete code
12.7 Performance

This chapter treats the last step in the implementation path of functional
languages: the realization of the abstract ABC machine by translation
of ABC machine code to executable code for a concrete machine
(Figure 12.1).

ABC machine
simulator

Motorola
processor

Miranda
program

Clean
program ABC code Motorola

code

Figure 12.1 Realizing the ABC machine on a concrete machine.

In principle, an abstract machine such as the ABC machine can
be realized either in hardware or by a software implementation running
on standard hardware. With tailor-made hardware one should be able
to obtain extremely good performance. However, the design of such a
dedicated piece of hardware would take a lot of time and money. Fur-
thermore, with present day compilation techniques it is possible to
achieve efficient implementations on cheap standard hardware. So in
practice there is no need for special purpose hardware reduction ma-
chines unless ultimate performance is demanded.

A software realization of the ABC machine can be achieved in two
different ways. The first method is to write a program that interprets
ABC machine code. Such an interpreter analyses and executes ABC
code at run-time. In general, this is done instruction by instruction. Ow-
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ing to the run-time analysis that has to be done, the most important dis-
advantage of an interpreter is that it is slow, independent of the lan-
guage in which the interpreter is written. On the other hand, an inter-
preter has the advantage that it is easy to implement. Furthermore, it
can be written in a portable language such as C (Kernighan and
Ritchie, 1978) which makes an implementation available on many dif-
ferent kinds of machine. Tracing and debugging tools can also be en-
capsulated relatively easily into an interpreter. The formal definition of
the ABC machine in Appendix C can be used as such an interpreter for
ABC code.

The second method is to make a code generator that analyses
sequences of ABC code at compile-time and generates executable
code that does the actual work at run-time. In this way much time can
be spent analysing the ABC code such that the code generated is as
efficient as possible. Code generators are therefore generally much
more complicated programs than interpreters. By making good use of
the instructions and registers that are available on the concrete ma-
chine, code generators can produce efficient code that can do the work
typically one order of magnitude faster than an interpreter running on
the same machine. For ABC code sometimes an improvement of even
two orders of magnitude has been measured (see Section 11.3). Con-
crete architectures differ much in detail (the instruction set, the memory
management, number and kind of registers). Implementation tricks
suited for one machine are usually not suited for others. So code gen-
erators that produce fast code are generally not very portable.

In this chapter we explain how to generate good code for stan-
dard hardware. First one has to decide how the logical memory stores
of the ABC machine are mapped onto the available memory storage of
the concrete machine. This is discussed in general terms in Section
12.1. Suitable concrete data structures have to be designed for this pur-
pose. In general this will not cause many problems. The concrete data
structures needed to implement the stores often directly follow the ab-
stract definition in the ABC machine. An important difference between
the ABC machine and a concrete machine is that the latter has a limited
amount of memory. As a consequence, the memory management of
the graph store becomes more complex. Garbage collection is needed
to reclaim unused memory. Several techniques for garbage collection
are discussed in Section 12.2.

Simple code generators (based on macro substitution of ABC in-
structions) are in principle not difficult to implement. But, when the con-
text in which ABC instructions appear is taken into account, many opti-
mizations can be performed. The ABC code generated is certainly not
optimal in terms of efficiency. For example, many ABC instructions re-
quire their arguments on top of the stack whereas on a concrete ma-
chine the arguments of corresponding instructions can be accessed
more directly using the addressing modes of the target machine. This
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implies that the copy actions specified by the ABC instructions are often
not necessary. The ABC machine does not have registers. Registers
have the property that their access time is much less than the access
time of ordinary memory locations. Registers can be used for imple-
menting the ABC stacks and heap, for storing temporary values, and for
passing arguments and return values. To make optimal use of registers
while avoiding unnecessary saving and restoring of information is a dif-
ficult task. Consequently, a good code generator for Clean is rather
complex (Van Groningen, 1990). Some of the techniques that can be
used are general techniques commonly used for the implementation of
other types of languages (for example register allocation algorithms).
Sometimes they have to be adapted because of the specific properties
of both source language and target machine. Other optimizations are
very specific for lazy functional languages, e.g. the implementation of
higher order functions, efficient memory management and optimized
graph reduction.

In the remaining sections of this chapter we describe how ab-
stract ABC machine code can be translated to a specific target ma-
chine: the Motorola MC68020 processor. However, many of the ideas
presented can be generally applied for other architectures as well. A
brief summary of the Motorola architecture and instruction set is given
in Section 12.3. A concrete representation of the ABC memory compo-
nents chosen on the Motorola is presented in Section 12.4. How com-
putations specified in ABC code can be optimized when generating
concrete machine code is described in Section 12.5. A concrete exam-
ple of the code generated is shown in Section 12.6. The measurements
presented in Section 12.7 demonstrate that with all the optimizations
discussed in this part of the book good code can indeed be generated.

12.1 Representing the ABC machine components

The first step in the realization of the ABC machine on concrete hard-
ware is the design of the data structures that represent the several ABC
machine memory components. This involves deciding how to map these
data structures onto the concrete memory storages of the target machine.
As already stated in the introduction, one of the main differences be-
tween the abstract machine and a concrete machine is that the latter has
to deal with a limited amount of memory. So the data structures have to
be chosen such that memory management of the components can be
done efficiently. Furthermore, it is very important to achieve fast access
on the elements of the several stores.

The actual design of the data structures and their mapping to the
memory will be highly dependent on the architecture of the concrete
machine. For some classes of architecture the mapping will be more
difficult than others. One has to bear in mind that the ABC machine is a
mixture between an idealized graph rewriting machine and a stack-
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based architecture. Therefore, it will be easier to find a suitable imple-
mentation for a Motorola-based architecture than for an IBM PC (poor
support for a graph store due to its segmented memory) or transputer-
based architecture (poor support for stacks due to limited number of
registers and lack of suitable addressing modes). For some classes of ar-
chitecture maybe a slightly different type of abstract machine would be
more convenient. However, it is impossible to design an abstract ma-
chine that is equally easy to map to all existing kinds of concrete archi-
tectures. Concrete architectures for which the ABC machine is a suit-
able abstraction have:

• a reasonable amount of memory (a couple of megabytes);
• the possibility of reserving a large proportion of this memory to

implement the graph store;
• support for the implementation of stacks (i.e. lots of registers with

suitable addressing modes).

A concrete memory generally consists of a finite sequence of con-
secutive memory cells. Stacks and stores of the ABC machine are im-
plemented on a consecutive partition of such a memory (see Section
12.4 for a possible partitioning). The registers of the concrete machine
are generally used to store program counter and stack pointers and to
store intermediate arithmetic results. Input and output have to be inter-
faced with the file system and the I/O facilities offered by the underly-
ing operating system.

The program store

The program store contains concrete machine instructions:

• code produced by the code generator by translating rule-dependent
ABC instructions;

• the run-time system including code for memory management like
garbage collection.

The several entries (instr-ids) are represented by addresses in this store.

The program counter

The program counter of the ABC machine can of course be represented
directly by the program counter of the concrete machine.
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The A-stack, B-stack and C-stack

To make the mapping of ABC instructions to concrete instructions con-
venient it is necessary that a memory partition is allocated for each
stack. For each stack a pointer pointing to the top element on the stack
is needed. For reasons of efficiency these pointers are usually kept in
registers.

Stacks on concrete machines cause the following memory man-
agement problems. First of all, concrete stacks have a finite size. So it is
necessary to do a run-time boundary check. Some machines have hard-
ware support for such a boundary check. Otherwise, additional code has
to be generated to do a boundary check when something is pushed on a
stack. This will slow down the performance (typically by 20–30 %).
Another possibility, taken by many implementations of imperative lan-
guages, is simply to leave out the boundary check and take the risk that
the system might crash. Other compilers generate boundary checks op-
tionally. When a boundary check is implemented one can either stop the
program when the limit is reached or try to dump part of the stack to
secondary memory.

Another disadvantage of a stack is that at run-time it may occupy
only a very small part of the partition that is reserved for it. In that case
the other part of the partition is wasted. With three stacks three parts
may be wasted. However, two stacks can be put in one partition in
which they grow in opposite directions. In this way they share the free
space. In Figure 12.10 this solution is chosen for the A- and B-stacks.
Another solution is to allow the programmer, using a trial-and-error
method, to specify the amount of memory that should be reserved for
each stack. In this way the partitions for a specific application can be
tuned by hand such that the stacks are big enough but the amount of
wasted memory is minimal.

Another way to reduce the problems mentioned above is by reduc-
ing the number of stacks. It is not really necessary to implement every
stack separately. It is also possible to merge two or even all three of
them into one stack. The merging of the B- and C-stacks causes no
problems and is certainly advisable when parallel code has to be gener-
ated (see Chapter 17). However, merging the A-stack has to be done in
such a way that it is possible to recognize the elements belonging to the
A-stack, since they are needed for garbage collection (see Section 12.2).
This generally requires additional space for tagging stack elements and
may cause a slightly more complex access or a more complex garbage
collector. If one decides to merge stacks the code generation will get
slightly more difficult, since the offsets of the ABC push and pop in-
structions will not correspond directly to offsets on the concrete stacks.
To make code generation simple again one can incorporate the merging
of stacks at the ABC level. One then obtains an A-B&C machine or an
A&B&C machine. The translation from Clean to such a changed ab-
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stract machine with merged stacks is no more difficult than the code
generation for the current ABC machine.

The graph store

The graph store is represented in a memory partition called the heap. A
graph is composed of nodes. Node-ids are just addresses of memory
cells. In principle there are many different choices possible for the rep-
resentation of ABC nodes in memory. However, the ABC code that is
generated by a Clean program (see Chapter 11) assumes that the node
on the bottom of a stack frame can always be overwritten with another
node. This can be implemented simply in a conventional memory when
all nodes are equal in size. The problem is that Clean nodes have vari-
able arity. To solve this problem without wasting memory one can split
up an abstract node into two separate concrete nodes: a fixed-sized part
and, optionally, a variable-sized part (see Figure 12.2).
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Figure 12.2 Two possible node structures.

The fixed-sized part generally contains:

• an entry in the descriptor store, the descriptor pointer, uniquely
representing the corresponding Clean symbol (see below);

• a code field containing an address in the program store, called the
code pointer (commonly pointing to the corresponding node en-
try);

• a field containing either the address of the variable-sized part or a
basic value. The address is called the argument pointer.

The variable-sized part generally contains pointers. Each pointer
refers to a node representing an argument of the symbol. It can also
contain a basic value (string). In principle, no additional tags are needed
in nodes. The split representation of nodes makes it always possible to
overwrite the fixed-sized part with another fixed-sized part. This repre-
sentation is essentially equivalent to (and developed independently
from) the one chosen by Peyton Jones and Salkild in their spineless
tagless G-machine paper (Peyton Jones and Salkild, 1989).

As is the case with stacks, the graph store in the ABC machine is
unlimited. In a concrete machine that is not the case. When a new node
has to be created in a full concrete graph store one can try to reuse parts
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of the heap filled with nodes that have become garbage because they are
not connected to the data graph any more (see Chapter 5). This well-
known technique is called garbage collection. A piece of code that
takes care of this is called a garbage collector. Solutions for garbage
collection are discussed in Section 12.2.

The descriptor store

Just as in the ABC machine an actual descriptor in the descriptor store
should contain:

• the symbol name (as a string);
• the arity of the symbol;
• the address of the apply entry in the program store.

Furthermore, it is convenient for memory management reasons to store
additional information on the kind of node, such as whether it contains a
basic value and if so, of what type. The type and arity of a symbol can
be used by a garbage collector to determine the structure of a node. The
apply entry is used for curried functions.

The input/output channel

As soon as the reduct of the start rule has reached a root normal form
the root symbol is written to the standard output channel of the concrete
machine.

12.2 Garbage collection

In this section the implementation of garbage collection is discussed in
the context of the realization of the ABC machine. In the literature
many kinds of garbage collection algorithms can be found. It depends
on the available hardware, on the demands of the user and on the prop-
erties of the programs which of these algorithms is suited best. Below
several well-known algorithms are briefly discussed and their suitability
for the collection of variable-sized Clean nodes stored in the heap is ex-
amined. First some terminology is introduced.

Terminology

In this section on garbage collection a node is defined as a number of
contiguous computer cells that can be manipulated by the user program.
For a garbage collector the representation of a Clean node as given in
the previous section can actually consist of two nodes in memory: the
fixed-sized part and the variable-sized part. If a node x contains a
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pointer to a node y, then x is called the parent of y, and y is called a
child of x. Nodes that cannot be reached any more via pointers from the
root(s) of the graph are called garbage.

The storage allocator and garbage collector together manage the
memory. The storage allocator is a program that assigns storage
(nodes) to the user program. For the storage allocator the memory con-
sists of two parts: a part with unallocated nodes, the free space, and a
part with allocated nodes. The storage allocator takes storage from the
free space and makes it available to the user program in the form of
nodes. The garbage collector retrieves allocated nodes that are not be-
ing used any more and reassigns them to the free space.

Garbage collection of nodes that are all of the same fixed size is
generally easier than garbage collection of nodes that vary in size. In the
proposed realization of the ABC machine the nodes in memory can
have different sizes (due to the variable-sized parts). Therefore only
garbage collectors are considered that can deal with variable-sized
nodes.

Management of the free space

The free space generally consists either of a linked list of unused nodes
or it consists of a contiguous part of memory.

free-list pointer

Figure 12.3 Free space management with a free-list. White cells are un-
used, light-grey cells are nodes in use, dark-grey cells are
garbage.

When the free space is a linked list, a pointer to the head of the
free-list is maintained, for instance in a register (see Figure 12.3). Such
a linked list is called a free-list. The main disadvantage of a free-list is
that storage allocation is more complex when one has to deal with vari-
able-sized nodes. In general one has to walk through the linked list to
find an unused node of a certain size. It can even happen that there are
enough nodes available in the free-list, but none of them has the re-
quired size. So although there is space enough in the heap it cannot be
used because of this memory fragmentation.
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When there is no piece of contiguous memory of the right size
available in the free-list one can move the available nodes in the mem-
ory such that they form a contiguous storage area. This process is called
compaction. Compaction is a costly process since all nodes must be
moved and pointers have to be adjusted such that the free-list fills a
contiguous piece of memory. So it is important to avoid or postpone
compaction as much as possible.

Morris (1978) introduces a compaction algorithm for variable-
sized nodes. It does the compaction in linear time with respect to the
number of non-garbage nodes and needs only one additional bit per
pointer. The algorithm requires two scans. The first one only readjusts
forward-pointing references. The second one updates references point-
ing backwards and does the compaction.

One way to postpone compaction is by keeping multiple free-lists
(instead of one): i.e. besides the normal free-list with nodes of miscella-
neous sizes a separate free-list is maintained for each node size com-
monly used in a program. An unused node is returned to the appropriate
free-list. Requests for new nodes are handled according to their size. If
the only node available is larger than needed, it is split into two nodes;
the first is used to satisfy the request, the second is returned to one of
the free-lists.

free space pointer

Figure 12.4 The free space contained in a contiguous part of memory.

When the free space is always a contiguous part of memory, the
storage allocator is very simple: a pointer to the next free word is main-
tained (see Figure 12.4). If a request for a node with a size of n words is
done, this pointer is simply moved n words further on. So having a free
space that consists of a contiguous part of memory is ideal for storage
allocation for variable-sized nodes. Another advantage of using a con-
tiguous part of memory is that no compaction is needed.

The garbage collector

A garbage collector has the following tasks: the identification of the
nodes that are garbage and the collection of these nodes into the free
space. If the free space consists of a free-list it may be necessary to
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compact collected nodes such that they form a contiguous storage area
(after or during the incorporation of the nodes into the free space).

One of the problems of garbage collection is that the garbage col-
lector is invoked at the moment that there is no space available any
more, perhaps not even for the garbage collector itself. So all the space
that the garbage collector needs must be reserved in advance. A practi-
cal algorithm runs in a fixed and reasonable amount of space. Garbage
collectors can be divided in two groups: stop-and-collect garbage collec-
tors and continuous garbage collectors.

Mark–scan and copying garbage collectors belong to the stop-and-
collect category. With stop-and-collect garbage collectors the execu-
tion of the regular user program is suspended when the user program
asks for a new node and the free space contains not enough words to
satisfy the request. The garbage collector is called to retrieve unused
memory in the free space. Systems with a large (virtual) memory spend
a fair amount of their time in garbage collection. The garbage collection
time can be up to 30% of the CPU time.

For interactive systems stop-and-collect collectors may lead to in-
tolerably long interruptions. This drawback can be attenuated by using
continuous garbage collectors that continuously update the free space.
Example of continuous collectors are reference count garbage collectors
or on-the-fly garbage collectors.

With a reference count garbage collector the number of pointers to
a node is administered in the node and updated when this number
changes. In this way the collection is naturally distributed over time. A
disadvantage of reference count garbage collectors is that they cannot
reclaim cyclic graph structures.

On-the-fly garbage collectors are separate processes that can run
interleaved or in parallel with the user program, thus distributing the
pause caused by the garbage collector over time. Both on-the-fly copy-
ing as well as on-the-fly mark–scan garbage collection are possible.

12.2.1 Copying garbage collection

semi-space free space pointer semi-space

Figure 12.5 Semi-space organization for a copying garbage collector.
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Copying garbage collectors generally split the heap into two areas
called semi-spaces. At any given time, the storage allocator allocates
nodes in only one of these semi-spaces. The free space consists of a
contiguous part of memory in the active semi-space (see Figure 12.5).

When this free space gets exhausted, all non-garbage nodes are
copied from one semi-space to the other unused one. From then on the
allocator allocates nodes in the other semi-space until this gets ex-
hausted, and so on. For the actual copying of the nodes there are many
different algorithms that use or do not use a stack and/or markings in the
nodes. Here only one copy algorithm is treated, which uses neither a
stack nor marking bits. A more detailed description of the algorithm can
be found in Minsky (1963).

F pointer L pointer

Figure 12.6 Snapshot: copying the used nodes in the unused semi-space.

The algorithm proceeds as follows when the old semi-space gets ex-
hausted:

• First, all roots of the non-garbage graphs are copied to the new
semi-space (Figure 12.6).

• Then, two pointers are positioned in the new semi-space, one at the
beginning and one at the end of the roots. The pointers are used as
follows: the first one, say F(irst), indicates the node of which the
children are next to be copied to the new semi-space; the last one,
say L(ast), indicates where copied nodes are to be put.

• All children of the node at F are now copied to the new semi-space
L, and F is moved to the next node. This is repeated for the chil-
dren of the next node, and so on. The copying algorithm terminates
when F becomes equal to L. In this copying process, special pre-
cautions have to be taken to maintain sharing of nodes, and to
guarantee termination if there are cycles in the graphs. Therefore, a
node that resided in the old semi-space but which has been copied
to the new semi-space, is overwritten with the address of its copy
in the new semi-space. This address is called a forwarding ad-
dress or forwarding pointer. Before a node is copied to the new
semi-space, it is checked whether it contains a forwarding address.
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If not, it is simply copied; if so, the pointer in its parent is changed
to the new address.

In general, with a copying garbage collector twice as much storage
is needed as the allocator has at its disposal. This is a very large amount,
but it is fixed, so it can be reserved in advance. Furthermore, there is no
other space needed nor any other stack allocation nor extra bits nor a
free-list administration nor compaction, since in the new semi-space the
non-garbage nodes are in a contiguous part of the memory. A copying
garbage collector is very fast when there is a lot of garbage in the semi-
space. But the performance drastically decreases if there is only a little
garbage: the number of copy actions depends on the number of used
nodes.

In the basic copying garbage collection scheme all accessible
nodes are copied to the new semi-space when the old one gets ex-
hausted. This implies that nodes that live very long are copied fre-
quently from one semi-space to another. When such objects occupy
much memory it is useful to optimize a copying garbage collector by
avoiding the copying of older objects. However, generation scavenging
(Liebermann and Hewitt, 1983), which is the best-known optimization
of this kind, cannot be used since it is only of great use when younger
nodes generally point to older nodes. Unfortunately, in graph rewriting
systems older nodes generally point to younger ones.

12.2.2 Mark–scan garbage collection

A mark–scan garbage collector does not split up the heap, but uses a
free-list. Hence, when variable-sized nodes are collected, fragmentation
can occur (see above) and compaction is needed occasionally.

m m

Figure 12.7 Mark–scan garbage collection: phase 1 using a recursive
graph traversal stack.
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The collector does its job in two phases. In the first phase, the mark
phase, the accessible nodes are marked. Starting from all roots, the
complete subgraphs reachable from these roots are traversed recursively
and all encountered nodes are marked (see Figure 12.7). The reachable
nodes can be marked by the following algorithm:

push all roots on a stack;
WHILE the stack is not empty
DO mark the node indicated on top of the stack;

replace it by all unmarked children
OD

In the second phase, the scan phase, the whole storage is scanned,
node by node. Marked nodes are unmarked again, and unmarked nodes,
which are garbage, are added to the free-list (see Figure 12.8).

free-list pointer

Figure 12.8 Mark–scan garbage collection: phase 2.

Mark–scan garbage collection is not as efficient as copying. In the
worst case the complete heap has to be traversed twice: once for the
mark and once for the collect phase. When the heap contains little
garbage the performance decreases considerably. The mark phase has
much more work to do and a large amount of additional space is needed
for the recursion stack. In the worst case the size of the extra recursive
graph traversal stack equals the total number of nodes available in the
memory when there is no garbage and all nodes form a single linked
list. However, there are several optimizations that use only a small,
fixed-size stack or even no stack at all (by using pointer reversal). These
algorithms and many others are discussed in Cohen (1981).

12.2.3 Reference count garbage collection

When garbage collection is done with reference counts, an additional
field, a reference count, is reserved in each node. In this field the num-
ber of pointers to the node is administered. The reference count field
must be large enough to hold the total number of nodes in the heap.
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When nodes are generally small, this is a significant space overhead.
Reference count garbage collectors use a free-list. So compaction may
be needed once in a while.

All node creations and pointer manipulations are done by special
procedures that not only perform the creation of the node and the
pointer manipulation itself, but also maintain the correct reference
count:

• new nodes are created with reference count 1;
• when a pointer to a node is copied, the reference count of the node

is incremented by 1; when a pointer to a node is deleted, the refer-
ence count of the node is decremented by 1;

• when the reference count becomes zero, the node becomes garbage
and can be added to the free-list. The reference count of all the
children of the node can now also be decremented and they may
become garbage too if they are not shared. A recursion stack is
needed to adjust all children of a deleted node.

00001 1 12 2 01

1

free-list pointer

Figure 12.9 Reference count garbage collection. The dark grey cyclic
structure cannot be collected.

The advantage of reference count garbage collection is that
garbage can be collected immediately after it is created. The cost of ref-
erence counting garbage is independent of the proportion of the heap
that is used. However, there are some severe drawbacks. For small
nodes there is a significant space overhead in the form of the reference
count. With each pointer manipulation an update of the counter has to
be done. This means that, even if no garbage collection is needed, ad-
ministrative work must still be done. Another important disadvantage of
reference counting is that it is impossible to recover cyclic structures. In
a cyclic structure all nodes have reference count greater than zero (see
Figure 12.9). When such a cyclic structure becomes garbage it cannot
be detected unless the whole memory is examined again.

An optimization that avoids the deletion recursion stack is called
lazy garbage collection (Glaser and Thompson, 1985): when a node be-
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comes garbage, it is added to the free-list. When the reference count
field is large enough to hold a pointer, it can be used for the linking.
Now, when a node is needed, it is taken from the free-list and its refer-
ence count is set to one. Next, the reference counts of the children of the
node are decremented. The children that become garbage are put in the
free-list in the same manner. In this way lazy garbage collection is ob-
tained with the major advantage that the collection is only done when
needed, while there is no need for a recursion stack.

A solution for the collection of cyclic structures is to combine the
reference count technique with stop-and-collect garbage collection. The
former would be used during most of the processing time. The latter
would be used as a last resort when the storage area is fouled up with
non-recyclable nodes. When reference count is combined with other
methods, the reference count field does not have to be of maximum
size. A smaller size can be used. When the smaller reference count field
overflows, the nodes cannot be reclaimed by the reference count algo-
rithm. Just like cycles, such nodes are reclaimed by the other method.

12.2.4 On-the-fly garbage collection

Another possible solution for continuous garbage collection is to have a
separate garbage collection process (an on-the-fly garbage collector)
that works concurrently (i.e. interleaved or in parallel) with the user
program. Of course, for parallel garbage collection a second dedicated
processor is required. The garbage collection is divided into two con-
current processes: the user program, in this context usually called the
mutator, and the collector, which performs the marking/copying and
the collection of the garbage. Being concurrent processes, some com-
munication between mutator and collector is necessary.

The best-known on-the-fly garbage collection method, introduced
by Dijkstra et al. (1978), is based on the mark–scan method. The muta-
tor colours nodes to be examined by the collector. Therefore, three mark
colours, white, grey and black, are introduced. White corresponds to no
marking, and black to the marking done by the collector. The mutator
only marks nodes grey to indicate to the collector that marking has to be
done from this node on.

Copying garbage collection, which incorporates compaction via
semi-spaces, can also be done on-the-fly (Baker, 1978). In this case the
mutator must know that there are two semi-spaces in which nodes can
reside. Allocation of new nodes is done in the semi-space to which the
collector currently is copying all nodes.

On-the-fly garbage collectors are best suited for interactive pro-
grams. But, as with reference count garbage collection, they are also
inefficient when they are executed in an interleaved manner. This is due
to the communication and synchronization overhead between the muta-
tor and the collector.
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12.2.5 Comparison of the methods

When there is enough memory available and there are no strong re-
quirements on the real-time behaviour of the program, copying garbage
collection is generally the best method because it is a very simple and
fast method (see Table 12.1).

Table 12.1 Summary of the different kinds of garbage collection meth-
ods: ‘+’ means good, ‘–’ means not so good, ‘o’ means
‘neutral’,  ‘+/–’ means good when there is a large amount of
garbage and ‘–/+’ means good when there is little garbage.

Stop-and-collect Continuous collectors

Copying Mark–
scan

Reference
count

On-the-fly
copying

On-the-fly
mark–scan

Time efficiency +/– –/+ o +/– –/+

Space efficiency – + – – +

Free-list not needed yes no no yes no
No time overhead

if space free yes yes no no no
Collects cycles yes yes no yes yes

If the amount of memory is too limited, mark–scan can be used instead
of copying. A good solution is the following: implement both a copying
as well as a mark–scan collector and automatically switch between
them, depending on the actual memory consumption. If the real-time
behaviour is very important one can use an on-the-fly variant of copy-
ing or mark–scan. A pure reference count collector is less desirable, be-
cause it cannot deal with cyclic structures.

When garbage collection has to be performed in a parallel envi-
ronment, other problems can occur and the comparison between the al-
gorithms will be different (see Chapter 17).

12.3 The Motorola MC68020 processor

There are two reasons for choosing the Motorola 680x0 family of pro-
cessors (68010, 68020, 68030, 68040 …) as target machine (Motorola,
1984–1985). First of all, they have been used in several widespread ma-
chines such as the Sun3, Apple Macintosh and Atari ST. Furthermore,
the Motorola processors are very suitable as an actual target machine to
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illustrate how the ABC machine (and therefore functional languages in
general) can be implemented efficiently. It should be no problem to use
the ideas presented when generating actual target code for other register
based processors (such as the Intel 80x86 family).

In this chapter the instruction set of the Motorola MC68020 pro-
cessor is used as example. The MC68020 processor is a 32–bit machine
which makes a large heap possible. Besides a program counter and a
status register it contains two kinds of general purpose registers, namely
data registers and address registers, eight of each kind. The status reg-
ister contains the following condition codes: N (negative), Z (zero), V
(overflow) and C (carry). The data registers, often denoted by d0–d7, are
mainly used in arithmetical operations whilst the address registers
(indicated by a0–a7) can be used to access data structures that are kept
in memory. The address registers can be used in combination with many
different addressing modes such as post-increment and pre-decrement.
So stacks can be implemented very efficiently.

Summary of the addressing modes used in the examples:

(address) take the contents of this address;
offset(address) take the contents at address + offset;
(address)+ take the contents of this address

and then increment the address in the register;
–(address) first decrement the address in the register

and then take the contents of this new address.

For the remaining parts of this chapter no further knowledge is as-
sumed about the specific architecture of the MC68020 processor. Some
general familiarity with assembly language will suffice to understand
the examples of concrete code given in this section.

The following MC68020 machine instructions are used in the examples:

bra branch; same as jmp in ABC machine, address must be nearby;
bcs branch when the carry bit (C) is set in status register;
bmi branch when negative bit (N) is set in status register;
beq branch when equal bit (Z) is set in status register;
bne branch when equal bit (Z) is not set in status register;
bsr branch to subroutine; same as jsr, but address must be nearby;
jsr equivalent to jsr in ABC machine;
rts equivalent to rtn in ABC machine;
add.l integer addition (32 bits);
addq.l addition of small integer values (8 bits);
sub.l integer subtraction;
subq.l subtraction of small integer values;
muls.l integer multiplication;
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move.l move a 32 bit long word from the source to the destination;
lea load a 32 bit memory address in a register;
cmp.l compare two 32 bit long words;
seq set all bits in byte operand when Z is set; otherwise reset all bits;
extb.l extend sign of byte to long word;
tst test, compare with zero.

12.4 Representing ABC components on the MC68020

In this section we present a mapping of the basic ABC machine compo-
nents onto a specific machine, the Motorola MC68020. The mapping of
the different ABC memory storages onto the concrete memory is given
in Figure 12.10.

The representation of the components of the ABC machine (i.e.
ABC stacks, graph store (heap) and descriptors) on the MC68020 does
not cause many difficulties. Stacks can be implemented simply using
some of the address registers. Implementing the heap is somewhat more
complicated. The structure of the descriptors mainly depends on how
higher order functions are implemented.

The program store and program counter

The mapping of the program store and program counter is trivial: their
concrete counterparts on the MC68020 can be used.

program store   descr. st B-stack     A-stack  graph store C-stack

program counter    B-stack pointer  A-stack pointer    C-stack pointer

Figure 12.10 Mapping the ABC memory stores on a concrete linear store.

The A-stack, B-stack and C-stack

For the C-stack the system stack of the MC68020 is taken (i.e. the stack
used by the processor itself when it performs a subroutine call). So the
jmp and rtn instructions of the ABC machine can be mapped directly to
those of the MC68020 (of course, for the jsr_eval instructions more
things have to be done; see below). This implies that address register a7
(normally called sp (stack pointer)) is reserved as usual. The A- and B-
stacks are allocated in one contiguous area of memory in such a way
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that they can grow in opposite directions. In this way a check on stack
overflow of both the A- and B-stacks can be done with a few instruc-
tions (just compare the two stack pointers and check that their dif-
ference is not negative). The pointers to the tops of the stack are held in
registers: for the A-stack register a3 is reserved, for the B-stack register
a4 (from now on these registers will be called asp and bsp).

The graph store

For the graph store a contiguous area of memory is chosen and not a
free-list. The pointer to the free area is stored in register a6 (called hp
(heap)), whereas the number of free long words (i.e. 1 long word = 4
bytes) is stored in register d7 (fh from now on (free heap)). As explained
in Section 12.2, with this representation the allocation of memory be-
comes cheap. Filling newly created nodes can be done very efficiently.

Suppose that a Cons node should be created that has two arguments. The ref-
erences to both arguments are kept in the address registers a1 and a2. At the
end a pointer to the new node is returned in register a0. First we have to check
whether there is enough space in the heap. This is done by:

subq.l #4, fh ; 4 long words needed to store the new node
bcs call_gc ; call the garbage collector if not enough free space

Now the heap pointer (held in register hp) refers to the first free long word in
the heap. Filling the node by using hp is straightforward (for the actual repre-
sentation of nodes see below):

return_from_gc:
move.l hp, d0 ; first the variable part is filled

; a pointer to it is temporarily stored in d0
move.l a1, (hp)+ ; store pointer to the first arg. in variable part
move.l a2, (hp)+ ; store pointer to the second arg. in variable part

; now the fixed part is treated
move.l hp, a0 ; store a pointer to it in a0
move.l #Cons, (hp)+ ; the descriptor field must point to entry of Cons
move.l d0, (hp)+ ; store argument pointer

Representation of nodes

As described earlier, a node in the ABC machine consists of fixed- and
variable-sized parts. A drawback of the ABC node structure as sug-
gested in Section 12.1 is that the size of the nodes is relatively large: the
fixed part consists of 3 long words (12 bytes), one for the pointer to a
descriptor, one for the code pointer and one for the pointer to the vari-
able-sized part. It is important that nodes are as small as possible: creat-
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ing, filling and copying of nodes can be done faster and because less
memory is consumed the garbage collector will be called less often.

One can observe that if a node is in root normal form, its code
pointer always points to the root normal form code. In that case only the
pointer to the descriptor is of interest. On the other hand, if a node con-
tains an (unevaluated) expression, only the code pointer is essential: the
descriptor is not used. This observation makes it possible to combine
the descriptor and code pointer into one field. This reduces the size of
the fixed part of a node by one third. There remains one problem: the
arity of a node, stored in the descriptor table, is needed for garbage col-
lection. This information is not available when a code pointer is stored
in the node. The problem can be solved by storing the arity in the pro-
gram store, just before the node entry.

The space-saving new node structure is illustrated in Figure 12.11.
The disadvantage is that a tag has to be inserted: the highest bit of the
first word of the code/descriptor field (note that this field consists of
two words) indicates whether it contains a descriptor or a code address.
If this bit is set, the second word is an index in the descriptor table.
Otherwise, the code/descriptor field contains a code pointer that is used
to reduce the node to root normal form.

code/descr
arguments

node
arity

descriptor

entry

1
0

descriptor store

program store
a1 an

Figure 12.11 The structure of nodes and descriptors

In the ABC machine nodes can be evaluated to root normal form
by means of the jsr_eval instruction. This instruction fetches the code ad-
dress from the node on top of the A-stack and jumps to it. Owing to the
combined code/descriptor we first have to check whether the node is al-
ready in root normal form before the jump to the evaluation code is
made. The next piece of code shows how this can be achieved (assume
that register a1 refers to the node to be reduced).

move.l (a1), d6 ; get the code/descriptor field
bmi is_in_rnf ; check whether the highest bit is set
save all the registers in use
move.l a1, a0 ; ensure that a pointer to the node that

; is going to be evaluated is in reg. a0
move.l d6, a1 ; move the evaluation address in a1
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jsr (a1) ; call the evaluation code
move.l a0, a1 ; move the result of the evaluation back in a1
restore the previously saved registers
is_in_rnf: …

The loss of efficiency caused by the introduction of the tag is very lim-
ited while a lot of space (and hence time) is saved with this alternative
representation.

When a node is not in root normal form, this alternative represen-
tation leads to slightly less efficient code (an extra move instruction and
a conditional branch are needed). But when the node is already in root
normal form the code becomes much faster. In that case the saving and
restoring of the registers are not needed any more.

Garbage collection

Memory is recycled by a copying garbage collector that uses two semi-
spaces (see Section 12.2). When one semi-space is filled up the garbage
collector copies all the nodes still needed for the execution of the pro-
gram to the other semi-space, leaving all the garbage behind.

The descriptor store

In Section 11.2 the ABC code for the apply function is given (_AP). The
code shows that at run-time two arities are needed (the number of ar-
guments collected in the node so far and the number of arguments
needed). The apply entry of the curried function has to be called when
all arguments are supplied. All this information has to be found via the
descriptor that points to an entry of the descriptor table (Figure 12.12).

A straightforward translation of the ABC apply code will result in
rather inefficient MC68020 code. To increase the efficiency a pointer is
stored in the descriptor table that points to the code to be executed when
the curried function is applied to an additional argument.

F
0

k

ar

Descriptor of 
F with arity k

ar-1

args_needed

ap_entry_of_F

args_needed

Figure 12.12 Lay-out of a descriptor in the descriptor table.

When F is a symbol defined with arity ar its descriptor contains a string
representation of the name and ar+1 entries. The pointer stored in the de-
scriptor field of a node is one of these entries. It indicates with which



386 REALIZING THE ABC MACHINE

arity F is actually applied, which is used by the garbage collector. Fur-
thermore, the entry contains a reference to the code to be reduced when
a partial application of F is applied to an additional argument (with the
(internal) apply function).

With the aid of the previous representation the translation of the
apply code will result in the following ABC instructions (it is assumed
that register a1 refers to the node containing the partial application and
register a5 refers to the beginning of the descriptor table):

move 2(a1), a2 ; get the offset of the descriptor entry
add.l a5 a2 ; add this offset to the beginning of the descriptor table
move.l 2(a2), a2 ; retrieve the reduction code
jsr (a2) ; call the reduction code

12.5 Generating MC68020 code

A straightforward way of generating concrete machine code is by means
of macro expansion: each ABC instruction is considered to be a macro
application that is substituted by a sequence of MC68020 instructions.
The main disadvantage of this method is that the context in which the
instruction appears is not taken into account.

An illustrating example is given by the next piece of ABC code together with
macro expanded MC68020 code. Assume the following macro definitions:

#macro push_b(n) move.l –((n+1)*4)(bsp), (bsp)+
#endmacro
#macro addI move.l –(bsp), d0

add.l d0, –4(bsp)
#endmacro

and the following ABC instructions:

push_b 0
push_b 2
addI

Applying the macro definitions will result in:

move.l –4(bsp), (bsp)+
move.l –12(bsp), (bsp)+
move.l –(bsp), d0
add.l d0, –4(bsp)

However, if the three ABC instructions were considered simultaneously, one
could use the fact that the MC68020 add instruction does not require that the
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arguments are on top of the B-stack. By looking at the context in which in-
structions appear, the movement of data can be reduced. A more efficient code
generator might compile the three ABC instructions into the following three
MC68020 instructions, which are about 30% faster than the ones above:

move.l –4(bsp), d0
add.l –8(bsp), d0
move.l d0, (bsp)+

So before generating code it is useful to group ABC instructions
into blocks. These basic blocks can be considered as kinds of atomic
action. They specify state transitions that convert the state of the ABC
machine (which is determined by the contents of the stacks and the
graph store) at the beginning of these blocks into the final state at the
end of the basic blocks. Now the task of a code generator becomes to
implement such actions as efficiently as possible.

The largest gain will be achieved when these basic blocks are as
large as possible. In the current Clean code generator a basic block
consists of the maximal sequence of ABC instructions that does not
contain any label definitions or instructions that might change the flow
of control (e.g. subroutine calls or conditional branches). Basic blocks
can be made larger by replacing a subroutine call by its code. However,
programs become larger in this way, and therefore code substitution is
only advisable when the substituted code is relatively small.

12.5.1 Compile-time optimizations

With the aid of basic blocks the compile-time analysis of ABC pro-
grams is simplified. A few examples follow.

Flow of control

The original ABC instructions specify an evaluation order. Grouping
these instructions into basic blocks allows us to deviate from this order
as long as the new evaluation has no effect on the final result obtained
at the end of the basic block (i.e. the new code sequence should specify
the same state transition). Changing the evaluation order makes it pos-
sible to improve the generated code.

Suppose that d0+d1 and d0+d2 have to be computed in a register while d1 is
used after these computations, but d0 and d2 not. First computing d0+d1 and
then d0+d2 will give:

move.l d0, d3
add.l d1, d3
add.l d2, d0
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It is better to compute d0+d2 first. It saves one instruction and one register.

add.l d0, d2
add.l d0, d1

In the ideal case the code generator will determine an evaluation
order of instructions such that the execution costs of the generated code
are as low as possible. The execution costs can be found by simply
adding the execution times of all the individual instructions (one should
note that the execution time of an instruction may depend on the preced-
ing instructions). But the problem of finding an evaluation order in such
a way that the total time is minimal is NP-complete, which makes an al-
gorithm based on this strategy useless.

Optimize the use of the registers

A different approach is not to minimize the execution time but to min-
imize the number of registers needed to evaluate a basic block. This is a
reasonable approach because, since the registers of a processor are rela-
tively sparse, the quality of the generated code will strongly depend on
how well they are utilized. Table 12.2 summarizes which of the 8+8
registers of the MC68020 have been reserved for special purposes.

Table 12.2 Summary of reserved registers

Mnemonic Register Function

fh d7 number of free words in heap

asp a3 pointer to the top of the A-stack
bsp a4 pointer to the top of the B-stack
hp a6 pointer to the first free node in the heap
sp a7 pointer to the top of the C-stack

Parameters and results of functions are in principle passed via the
A- and B-stacks. However, the efficiency can be increased a lot when
registers are used instead. So arguments and results are kept in registers
whenever possible. Only when there are not enough free registers are
the values stored on the stacks.

In the ABC machine the conditional jump instructions base their
decision whether or not to jump on the Boolean value that is on top of
the B-stack. If this boolean is the result of some comparison (which is
indeed often the case) then it is not necessary to calculate this value
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explicitly. Instead of that, the conditional jump can use the condition
codes in the status register of the MC68020 that are set implicitly after
performing the comparison.

Take for example the following ABC instructions:

eqI_b +10 0
jmp_false label

The following code would have been generated if the boolean is calculated ex-
plicitly (assuming that the element on top of the B-stack is kept in register d0,
register d1 is used to calculate the boolean and the value –1 and 0 represent
respectively TRUE and FALSE):

cmpi.l #10, d0
seq d1
extb.l d1
tst.l d1
beq label

Much better code is generated using the condition codes of the MC68020:

cmpi.l #10, d0
bne label

Heap allocation

A basic block may contain instructions that reserve space in the heap.
Such an instruction has to check whether the heap contains enough free
cells. If this is not the case the garbage collector has to be called. Since
it is known at compile-time how many cells are actually needed in a
certain basic block, all these checks can be done at once instead of per-
forming separate checks for each instruction.

Stack use optimization

The generation of additional instructions for boundary checks of the
stacks inside a basic block can be combined. For each block we can de-
termine the maximal amount by which the stack will grow and perform
the tests in one place. The same holds for the adjustment of the stack
pointer (due to the various push and pop instructions).

Using alternative instructions

On the MC68020 there are several instructions that, when applied to
certain arguments, can be replaced by other instructions having the
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same effect, but with the advantage that their execution time is less.
This replacement can easily be performed during the last phase of the
MC68020 code generation or even by the assembler.

12.5.2 The code generation process

Global register
assignment Ordering Code

generationConversion

ABC code 680x0 program

Local register
assignment

Figure 12.13 The code generation phases.

The actual code generation is divided into a number of phases (Figure
12.13). During the conversion phase the initial ABC program is divided
into basic blocks and converted into an internal representation using
graphs. The global register assignment phase determines which entries
of the A- and B-stacks are kept in registers at the beginning and at the
end of these basic blocks. The ordering phase determines the order in
which all the subexpressions have to be evaluated. During the code gen-
eration phase (pseudo-) MC68020 code is generated according to the
order specified by the previous phase. The only difference between real
MC68020 code and the generated code is that in the latter an unlimited
number of (virtual) registers are assumed. Finally, the local register as-
signment phase replaces virtual registers by real MC68020 registers.

The conversion phase

The correspondence between the initial stack frame Sb at the beginning
of a basic block and the final stack frame Fb at the end is defined by the
instructions of that basic block. A directed acyclic graph is a useful data
structure for representing basic blocks such that automatic analysis of
these blocks can be done more conveniently. Such a dag gives a picture
of how the value computed by each statement in a basic block is used in
subsequent statements in the block. The dag representation of a basic
block that is used has the following properties:

• The leaves either represent constants or entries of Sb.
• All the other (interior) nodes represent applications of ABC in-

structions. The arguments of these nodes are the representations of
the arguments of the corresponding instructions.
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• If a node represents an instruction whose result appears in Fb, this
node is labelled with an identification of the corresponding entry in
Fb. All the other nodes are not labelled.
The next example illustrates the ABC to MC68020 translation process. Con-
sider the following Clean rewrite rule for F:

:: F !INT !INT -> INT;
F a b -> – (* a b) (+ a 3);

This rule is compiled into the following ABC instructions (only the code for
the rule alternative entry is given):

F1:
pushI +3
push_b 1 || push a on top of the stack
addI || add b and 3
push_b 2 || push b on top of the stack
push_b  2 || push a on top of the stack
mulI || multiply a and b
update_b 1 3 || update the B-stack
update_b 0 2
pop_b 2
subI || subtract the topmost elements
rtn

The strict entry forms one basic block. The dag that is constructed is given in
Figure 12.14. The meaning of the additional information stored in the dag is
explained later.

0
0

-1
1register d0

sub -1
1

mul 0
0

0
0register d0 0

0register d1 const 3

add 1
1

Figure 12.14 The dag of the strict entry.

The global register assignment phase

Global register assignment specifies which values of the initial and final
stack frames of each basic block are kept in registers. The information
that is used to determine this assignment is obtained from the original
Clean program. The Clean compiler uses the type information of the
Clean rules to insert special ABC directives in the corresponding ABC
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program. These directives specify the layouts of both the A- and B-
stacks for both the beginning and the end of a basic block.

With the aid of the stack layout information the code generator re-
serves all the data and address registers that are needed for storing these
elements at the beginning of a basic block if such a basic block starts
with a label that corresponds to an entry point of a function. The direc-
tives describing the layout of the end of a basic block are used to ensure
that, when a basic block is left at run-time, the results are kept in the
right places (i.e. either in one of the registers or one of the final stack
frames itself). The latter may require that the contents of certain regis-
ters in use have to be saved on the stack.

The result of the global register assignment of a basic block is
administered in the corresponding dag with the aid of two kinds of spe-
cial nodes, namely register and store register nodes. A register node,
which refers to an entry of the initial stack frame Sb, indicates that the
value of that entry is kept in a register when entering the basic block
(note that register nodes are always leaves of the dag).

Consider Figure 12.14: owing to the global register assignment, a and b are
kept in, respectively, data registers d1 and d0 and the final result should be
stored in register d0. These register assignments are indicated with the aid of
the register nodes.

A store register node, which refers to an entry of the final stack
frame Fb, indicates that the value of that entry is held in a register when
leaving the basic block. So store register nodes are always labelled.

The ordering phase

Under the assumption that none of the instructions in a basic block, ex-
cept the very last instruction, may produce side-effects, the generation
of code can be done independently of the original order of ABC in-
structions. The only requirement that has to be met is that when generat-
ing code for a certain node of the dag all the other nodes that are reach-
able from this node have already been treated. So we are allowed to
change the original evaluation order as long as the previous requirement
is fulfilled.

If a basic block does not contain any common subexpression
(CSE) (so the corresponding dag is free of sharing), the problem of de-
termining the reduction order such that the number of registers is mini-
mal is simple. An algorithm (which makes some assumptions about the
registers and instructions of the target machine) has been given in Aho
et al. (1986). The problem with common subexpressions is that the re-
sults of these expressions have to be stored somewhere until they are
used for the last time. This implies that after evaluating a certain subex-
pression, the number of registers in use does not always increase by ex-
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actly one (due to the additional register necessary to hold the value of
that subexpression). It is possible that this increase is greater than one
(if the cdag (connected dag; see below) contains CSEs that were not
evaluated yet) or even smaller than one (if registers containing values of
CSEs were used for the last time). Furthermore, the algorithm presented
in Aho et al. (1986) cannot deal with values kept in registers at the be-
ginning and at the end of a basic block. As with CSEs, such registers
can be released as soon as their contents are not needed any more.

Before the modified algorithm (the algorithm and its proof can be
found in Van Groningen (1990) that determines the evaluation order is
explained some notions have to be introduced. A (rooted) connected
dag (abbreviated as cdag) is defined as a dag that has a node r  (the root
of the cdag) such that all the other nodes of this dag are reachable from
r. Further, let n be the number of cdags that have to be evaluated and gi

denote the ith cdag (1 ≤ i ≤ n). The evaluation order can be expressed by
means of a permutation π of 1..n such that the cdag gi is evaluated
before a cdag gj if π −1(i) < π −1(j). Define I(π  , i) and U(π , i) as:

I(π , i) = the increase of the number of used registers due to the eval-
uation of gπ (i) after evaluating gπ (1), …, gπ (i–1).

U(π, i) = the (additional) number of registers required for the eval-
uation of gπ (i) (also after evaluating gπ (1), …, gπ (i–1)).

Note that I(π , i) can be negative but U(π  , i) cannot. Furthermore, note
that U(π , i) ≥ I(π , i).

Given an evaluation order π, the maximum number of registers
used during the evaluation of gπ (i) is

R(π , i) = U(π , i) + ∑
k=1

i–1

 I(π , k)

The number of registers necessary to evaluate all the graphs in an order
specified by π is

Rm(π ) = Maximum { R(π  , i) | 1 ≤ i ≤ n}

Hence, finding an optimal evaluation order is equivalent to determining
a permutation πmin such that for all other permutations π of 1..n  it holds
that Rm(πmin) ≤ Rm(π).

A straightforward algorithm would generate all permutations π of
1..n and choose the one for which Rm(π) is minimal. Unfortunately the
complexity of such an algorithm is Ο (n!) which is, of course, unaccept-
able.

The modified algorithm estimates the values of I(π , i) and U(π  , i)
beforehand (i.e. before determining the evaluation order) by respec-
tively I(i) and U(i). It is required that the estimations are safe which im-
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plies that for all permutations π both I(π , i) ≤  I(i) and U(π  , i) ≤ U(i)
must be valid. After determining I(i) and U(i), the evaluation order of
the cdags is given by the following two rules:

• first, evaluate all the cdags gi with I(i) ≤ 0 from low to high U(i);
• then, evaluate all the other cdags from high to low D(i), where D(i)

is defined as U(i)–I(i).

It will be clear that the cdags gi with I(i) ≤ 0 have to be done first,
for, after the evaluation of a graph with a non-positive I value, some
registers may become free. To minimize the number of registers needed
to evaluate the whole dag the cdags should be treated in ascending U(i)
order.

Why all the other cdags are ordered according to their D value is
more difficult to see. This is illustrated with an example.

Suppose there are three graphs g1, g2, and g3 with I(1)=1, U(1)= 2, I(2)=1,
U(2)=2, I(3)=1 and U(3)=5. Starting with g3 only five registers are needed.
Starting with one of the other two graphs at least six registers are necessary.

The two types of register of the MC68020 processor are not gener-
ally exchangeable. Furthermore, not all registers are freely available.
Both facts make it necessary to adapt the algorithm described above.
This is done in two stages. First, for each node of the dag it is decided
whether this node is computed in an address register or in a data regis-
ter. After that, for each cdag gi two values of I(i) are calculated: one for
each type of register. Now, the total increase It(i) is defined as:

I t(i) = a  *  Id(i) + d  *  Ia(i)

where a, Ia, d, Id are resp. the number of address registers, the increase
of address registers, the number of data registers and the increase of
data registers. In the same Ut(i) is defined as:

Ut(i) = a *  Ud(i) + d * Ua(i)

The evaluation order is obtained by applying the previous algorithm
using the functions I t and Ut instead of I and U.

Consider again Figure 12.14: each node is supplied with two numbers,
whereof the uppermost gives the Id value of this node and the other number
gives the Ud value. Since the Ia and Ua values do not matter they are omitted.
The negative I values (of the sub and the uppermost register nodes) are a con-
sequence of the fact that the contents of the register d1 are not needed any
more after evaluating these nodes. The result of the mul node can be stored in
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register d1 so, in contrast to the add node, no additional registers are needed to
compute the result of this node.

The code generation phase

During the code generation phase, the dags of all the basic blocks are
traversed. The order in which the cdags are treated is specified by the
ordering phase. For each node of a cdag code is generated in a depth-
first way: first, code is generated (recursively) for all of the arguments
of a node (again in an order as specified by the ordering phase). Then
the operation specified by the node is translated into one or more
(pseudo-) MC68020 instructions assuming an unlimited number of
(virtual) data and address registers.

The local register assignment phase

Finally, during the last phase of the translation real registers are as-
signed to the virtual registers allocated by the code generation phase.
The algorithm that determines the evaluation order tries to minimize the
number of data and address registers that are needed to evaluate a basic
block. However, it may be the case that one of these numbers exceeds
the number of registers that are actually available (i.e. the number of
virtual registers exceeds the number of real registers). In that case it will
be necessary to save the contents of one of the registers in memory in
such a way that it can be used again. The problem is which register to
choose. The strategy chosen takes the register of the required type
whose contents will not be used for the longest time.

Consider Figure 12.14. During the last phase code is generated for this dag.
The result is shown below:

F1:
muls.l d1, d0
addq.l #3, d1
sub.l d1, d0
rts

12.6 Example of concrete code

In this section the quality of the code obtained by using the techniques
described in this chapter is illustrated with the help of an example. For
this purpose we take the Length example of Chapter 11.

:: Length !INT ![x] -> INT;
Length n [ a | b ] -> Length (+ n 1) b;
Length n [ ] -> n;
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Consider the following Motorola code (some simplifications are made
for reasons of clarity). When a function is called, the values on the bot-
tom of a stack frame (see Chapter 11) are kept in registers. The registers
a0–a1 are used for the bottom elements of the A-stack pointing to the
root node to be overwritten and the first argument. The registers d0–d7
are used to transfer the bottom elements of the B-stack frame. Although
the example above gives rise to many assembler instructions, the most
important part of the resulting code that performs the recursive call of
Length is a tight loop (between Length1 and Length2) that only takes a
small number of instructions.

a_Length: ; The apply entry
; a0 points to (List x)
; a1 contains a pointer to (Length n)

move.l 4(a1), a1 ; Fetch argument pointer
move.l (a1), a1 ; Fetch first argument n
bsr e_Length ; Jsr to eval args entry
subq.l #2, fh ; Reserve a node in the heap to store the result
bcs i_55 ; Branch to the garbage collector

i_56: ; Returning from the garbage collector
move.l hp, a0 ; Store the pointer to the new node
move.l #INT–DT, (hp)+ ; Store offset integer descriptor in the node
move.l d0, (hp)+ ; Store the integer result in the node
rts ; rtn

n_Length: ; The node entry
; a0 points to root (Length n (List x))

lea _cycle, a1 ; Store entry for cycle detection in a1
move.l a0, –(asp) ; Save root pointer on A-stack
move.l a1, (a0) ; Store cycle-in-spine entry in the root
move.l 4(a0), a0 ; Fetch argument pointer of the root
move.l (a0)+, a1 ; Store first arg. (n) in a1
move.l (a0), a0 ; Store second arg. (List x) in a0
bsr e_Length ; Jsr to eval args entry
move.l (asp)+, a0 ; Fetch root pointer from A-stack
move.l #INT–DT, (a0) ; Store an integer descriptor in the node
move.l d0, 4(a0) ; Store the integer result in the node
rts ; rtn

e_Length: ; The eval args entry
; a0 points to (List x)
; a1 points to n

move.l (a0), d0 ; Fetch code/descriptor field second arg.
bmi e_0 ; Test on root normal form
move.l a1, –(asp) ; Not in rnf, store first arg. on A-stack
move.l a0, –(asp) ; Store second arg. on A-stack
move.l d0, a1 ; Set code pointer in a1
jsr (a1) ; Evaluate second arg. to root normal form
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move.l (asp)+, a0 ; Fetch second arg.
move.l (asp)+, a1 ; Fetch first arg.

e_0: ; Second arg. now in root normal form
move.l (a1), d0 ; Fetch code/descriptor field first arg.
bmi e_1 ; Test on root normal form
move.l a0, –(asp) ; Not in rnf, store second arg. on A-stack
move.l a1, a0 ; Root node always in a0
move.l d0, a1 ; Set code pointer in a1
jsr (a1) ; Evaluate first arg. to root normal form
move.l a0, a1 ; Fetch first arg.
move.l (asp)+, a0 ; Fetch second arg.

e_1: ; First arg. now also in root normal form
move.l 4(a1), d0 ; Store integer value n in d0

Length1: ; Entry for first rule alternative
; a0 points to (List x)
; d0 contains n

cmp.w #Cons+8–DT,2(a0) ; Test whether list arg. is of type Cons a b
bne Length2 ; If not do second rule alternative

m_P1: ; First rule alternative is applicable
move.l a0, –(asp) ; Save second arg. on A-stack
move.l 4(a0), a0 ; Fetch argument pointer second arg.
move.l (a0)+, a1 ; Fetch pointer to a in a1
move.l (a0), a0 ; Fetch pointer to b in a0
move.l (a0), d1 ; Fetch code/descriptor field of b
bmi e_2 ; Test on root normal form
move.l a1, –(asp) ; Not in rnf, store pointer to a on A-stack
move.l a0, –(asp) ; Store pointer to b on A-stack
move.l d0, (bsp)+ ; Store n on B-stack
move.l d1, a1 ; Set code pointer in a1
jsr (a1) ; Evaluate to root normal form
move.l –(bsp), d0 ; Fetch n from B-stack
move.l (asp)+, a0 ; Fetch pointer to b in a0
move.l (asp)+, a1 ; Fetch pointer to a in a1

e_2: ; b in root normal form now
addq.l #1, d0 ; + n 1
addq.l #4, asp ; Remove list argument
bra Length1 ; Recursion via a loop

Length2: ; Entry for second rule alternative
cmp.w #Nil+8–DT,2(a0) ; Test whether list is a Nil
bne Length3 ; If not do additional rule alternative

m_P2: ; Second rule alternative is applicable
rts ; Done, result in d0, rtn

Length3: ; Entry for additional alternative
lea l_1, a0 ; Load address of error message
jsr print ; Print it out
jmp halt ; Halted due to a mismatch
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12.7 Performance

In this section the code generated using the optimization techniques pre-
sented in this chapter is compared with C (for a comparison of the exe-
cution speed offered by modern compilers for lazy functional languages
we refer to Hartel and Langendoen (1993)). The gnu C compiler for the
Sun3 is used, which generally gives faster code than the standard C
compiler. It should be stated that, where possible, C has been used in an
imperative way (i.e. using assignments and iteration instead of recursion
where appropriate). The following test programs were used (see Smet-
sers et al., 1991):

nfib the well-known Nfib function with argument 30.
tak the Takeuchi function, called with tak 24 16 8.
sieve a program which generates the first 10 000 primes, using a

quite optimal version of the sieve of Eratosthenes (outputs
only the last one).

queens counts all solutions for the (10) queens problem.
reverse reverses a list of 3000 elements 3000 times.
twice four times the twice function on the increment function.
rnfib again the Nfib function, but now defined on reals, with ar-

gument 26.
fastfourier the fast Fourier algorithm, on an array of 8K complex num-

bers. In the Concurrent Clean program a complex number is
defined as a strict tuple of two reals.

Table 12.3 shows that recursive programs written in C appear to be
slower than the ones written in Concurrent Clean. However, the itera-
tive versions of the examples written in C are faster.

The test programs have the advantage that they are very small,
such that a comparison can be made quickly. However, the question re-
mains of how large ‘real applications’ written in a functional language
behave compared to their imperative counterparts. Of course, it will de-
pend highly on the kind of application. In general the functional pro-
gram will run slower; not one or two orders of magnitude as was the
case in the past, but some constant factor that depends on the kind of
program. However, the loss of efficiency is already often quite accept-
able. For example, a copy/paste editor written in Clean was, to our sur-
prise, as fast as its imperative look-alike written in object-oriented C. It
says something about both implementations. Anyhow, in comparison
with the past, the difference in execution times between functional lan-
guages on the one hand and imperative languages on the other hand has
significantly decreased.
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Table 12.3 Performance measurements of the Concurrent Clean compiler
version 0.7. The first three columns give the speed figures measured on differ-
ent Macs using a 2Mb heap (with only 1Mb heap for the Mac+). All times are
in seconds. The same programs are also tested on a SUN3/280, with a
MC68020 processor running at 25 MHz, 2 Mb heap and compared with C. In
Clean (!), strictness annotations are added by the programmer.

Program Clean
MacIIfx

Clean
MacIIsi

Clean
Mac+

Clean
Sun3

Clean (!)
Sun3

C
Sun3

nfib 2.6 5.2 53 4.5 4.5 11
tak 2.6 5.3 53 4.9 4.9 11
sieve 4.4 9.4 260 8.1 6.8 4.5
queens 15 41 240 28 14 4.1
reverse 31 63 620 64 50 –
twice 0.86 1.8 Heap full 1.7 0.5 –
rnfib 6.1 13 2000 11 11 19
fastfourier 14 30 Heap full 34 19 9

The most worrying aspect is still the space consumption, which of-
ten is much too high for functional programs. Fortunately there are
many more opportunities for efficiency improvement left: e.g. program
transformations, sharing analysis, special code generation for UNQ-
attributed objects, merging of B- and C-stacks etc. Also, the run-time
system can be further improved. For instance, the current Clean system
automatically switches between copying garbage collection (time-effi-
cient) and mark–scan (space-efficient) to get the best of both worlds.
All this will lead to much better efficiency in both time and space.

Summary

• The ABC machine can be realized in hardware or in software. A
realization in hardware will be fast but such a machine will also be
expensive. A software interpreter is easy to make, portable, but
slow.

• A better performance can be obtained by a code generator that
produces executable code from ABC instructions. To obtain a good
performance one has to generate concrete target machine code.
Such a code generator will probably be harder to port.

• Before code can be generated, concrete data structures have to be
designed to represent the different memory components of the
abstract ABC machine. Furthermore, one has to decide how to map
these data structures onto the actual storages of the concrete archi-
tecture.
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• In general the concrete data structures are quite similar to the ab-
stract data structures. The main problem is caused by the fact that
in the concrete case the available amount of memory is limited, so
special actions are needed for memory management of the stacks
(boundary checks) and the graph store (garbage collection).

• Copying garbage collection is very fast and a suitable method, but
it needs a lot of memory. Mark–scan garbage collection can be
used if there is not enough memory available for a copying collec-
tor. One can also implement both techniques and automatically
switch between them. On-the-fly garbage collectors may be useful
for real-time applications.

• Code generators try to use the available resources of the target ma-
chine as well as possible. Therefore one has to analyse whole se-
quences of ABC instructions (basic blocks). There are several op-
timization techniques possible to manipulate basic blocks: one can
try to change the flow of control to minimize the unnecessary
copying of information and to make an optimal use of the registers,
one can try to combine boundary checks on stacks and on the heap,
or replace any sequence of code by a more efficient one with the
same effect.

• With the optimization techniques described in this part of the book
it is possible to obtain efficient implementations of lazy functional
languages on conventional architectures.

EXERCISES

12.1 Take the Concurrent Clean System and type in the Length function
as defined in Section 12.6.
(a) Use the Clean System to generate ABC code. Compare this
code with the code given in Section 11.3. What do you think is the
purpose of the descriptors? How many stacks are there? What
other kind of differences do you notice? Explain their purpose.
(b) Use the Clean System to generate assembly code. Compare the
code with the code given in Section 12.6. Explain the differences.

12.2* Write the test programs of Section 12.7 in your favourite high-level
functional language. Write the test programs in your favourite im-
perative language using an imperative programming style. Write
the test programs in your favourite logical language. Measure the
performance in both time and space of all programs. Compare the
performance with the figures of Table 12.3. Explain the differ-
ences.
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Functions written in a functional program have the advantage that they
can be evaluated in any order while the outcome of the computation re-
mains the same. This property makes functional programs conceptually
very suited for concurrent (i.e. interleaved or parallel) evaluation.

However, the exploitation of concurrency in functional programs is
still in its infancy. Automatic creation of parallelism such that a signifi-
cant speed-up is obtained is not easy to realize. It is also not clear yet
what kind of primitives should be given to a programmer for a high-
level specification of the required process structure and behaviour. So
this part of the book is of a rather experimental nature, due to the many
open research questions and the rapid developments in this interesting
and promising area. Nevertheless, we hope that we can give a good im-
pression of the conceptual and practical possibilities of the concurrent
evaluation of functional programs.

Transputer
code

PABC machine
simulator

Transputer
processors

Parallel
graph

rewriting

Miranda
with

concurrency

Concurrent
Clean PABC code

Figure P5.1 Implementing concurrent functional programming.

For simplicity we shall assume that concurrency is specified ex-
plicitly by the programmer via special process annotations. The pre-
sented annotations are especially designed to indicate the desired evalu-
ation order for a multi-processor architecture where each processor is
equipped with its own local memory. So functions (work) and construc-
tors (data) have to be shipped from one local memory to another. Hence
graphs have to be copied from one processor to another. This is mod-
elled by the concept of lazy copying which extends the standard graph
rewriting model. The implementation of concurrent functional programs
on parallel architectures will be discussed via the same translation steps
as were used for the sequential implementation (Figure P5.1).
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Chapter 13
Basic language concepts

13.1 Concurrency and functional
programming

13.2 Annotations for concurrency

13.3 Examples of concurrent
functional programs

13.4 Discussion

In a concurrent program the program is split up into parts (tasks) that
are executed concurrently, i.e. interleaved or in parallel with each other.
Each task is evaluated by a separate process. Parallel processes run
on different processors. Interleaved processes run on the same proces-
sor. The result of a functional program is known to be independent of
the chosen evaluation order (although one has to be a bit careful not to
change the termination behaviour of a program). So functional pro-
grams seem to be very suited for concurrent evaluation. Conceptually it
is indeed possible to evaluate functions interleaved or even in parallel
with each other. By using mutual recursion arbitrary dependencies be-
tween these functions can be specified, thus creating a way to define
arbitrary networks of processes (reducers). Communication and syn-
chronization between the processes are realized automatically using
the lazy evaluation principle. Communication takes place when a pro-
cess demands a value that is being calculated by another process. No
additional communication primitives are needed.

When concurrent evaluation is used to gain efficiency one actually
would like to have an analyser that automatically marks expressions
that can safely be executed in parallel. A strictness analyser can be
used for this purpose. But one often also needs to know whether paral-
lel evaluation of expressions is worthwhile. With the creation of each
task a certain amount of overhead is involved, depending on the num-
ber of processes created and the amount of communication that takes
place between them. One can only gain efficiency when a sufficiently
large amount of work is assigned to a process which involves limited
inter-process communication for the exchange of information. The
amount of work performed by a process and the amount of inter-
process communication that is needed to do the work is of course un-
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decidable. The actual overhead will also depend on the concrete ma-
chine architecture the program is running on. How to split up work effi-
ciently is therefore very problem- and machine-dependent and often
difficult to solve, even for a human being. To make things easier, we
assume from now on that the programmer has to define the concurrent
behaviour of the functional program explicitly, either in order to achieve
a certain desired concurrent structure or to achieve a faster program.
Furthermore, we assume that concurrent functional programs at least
have to run conveniently on a widely available class of parallel machine
architectures: multiple instruction–multiple data machines with a
distributed memory architecture. Such a machine can consist of
hundreds or even thousands of more or less conventional processors
that are connected via a communication network.

In spite of the conceptual possibilities, concurrent functional pro-
gramming is still in its infancy. At the moment, none of the commercially
available functional languages supports concurrent programming. How-
ever, in several experimental languages concurrency primitives have
been proposed in the form of annotations or special functions (Kluge,
1983; Goguen et al.,  1986; Hudak and Smith, 1986; Burton, 1987;
Glauert et al., 1987; Vree and Hartel, 1988; Van Eekelen et al., 1991;
Darlington et al., 1991). With these primitives the default evaluation
order of an ordinary functional program can be changed such that a
concurrent functional program is obtained. However, there is not yet a
common view on which kinds of primitives are handy or definitely
needed for concurrent functional programming.

This chapter therefore does not reflect the way to achieve concur-
rency, but it presents one of the methods to define concurrency. In the
presented method the concurrent behaviour of a program is defined by
means of special high-level concurrency annotations with an associated
type system. By combining the use of higher order functions with the
type system it is possible to specify a very large class of process struc-
tures in an elegant manner.

This chapter first gives a brief introduction on concurrency in gen-
eral and concurrency in the context of functional languages (Section
13.1). Then the annotations and the type system are introduced in a Mi-
randa-like syntax (Section 13.2). Section 13.3 shows some more elabo-
rate examples of concurrent functional programs. Section 13.4 dis-
cusses the advantages and the disadvantages of the functional concur-
rency primitives that are used in this chapter.

13.1 Concurrency and functional programming

A concurrent program is a program in which parts of the program
(called processes) are running concurrently, i.e. interleaved or in par-
allel with each other. An algorithm that is to be executed is called a
task. Each task involves a certain amount of work. In a concurrent pro-
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gram the task to be performed is split up into subtasks. Each subtask is
assigned to a process. Parallel processes are processes that perform
their task at the same time. Interleaved processes perform their task
merged in some unknown sequential order on a time-sharing basis.

13.1.1 Why concurrent programming?

Concurrent programming is mainly used for the following reasons:

(1) To obtain efficiency: concurrent programs are used to decrease the
time needed to accomplish the complete program task by assigning
subtasks to parallel executing processes. Of course, one needs a
multi-processor machine architecture for the execution of these
processes to actually gain efficiency.

(2) To structure software: some programs are logically composed of
components that perform subtasks concurrently (take for instance
the components of an operating system). These subtasks can run
interleaved on a single processor machine or in parallel on a multi-
processor machine.

(3) To program parallel hardware such as a system that consists of
autonomous components that interact with each other, e.g. a multi-
processor architecture or a system configuration consisting of a
processor, a printer and a tape unit.

The design and implementation of concurrent programs are a diffi-
cult job for a human being. One not only has to decide which subtasks
are to be assigned to processes, but one also has to decide how and when
the corresponding processes have to communicate with each other. The
interaction between the processes must be programmed in such a way
that at any moment any communication with another process is handled
in the intended manner. In general, special language facilities or system
calls are available that define the creation of processes with their tasks.
Also, primitives are needed to enable the control over communication
and synchronization between the processes.

When concurrent programming is used to structure software or to
program parallel hardware the design of the concurrent program is
substantially determined by the subtasks that need to be performed by
the separate components in the system. Such a program can become
complex when there are many tasks created that heavily depend on each
other. For a human being it is very difficult to think of all the possibili-
ties that can arise in such a complex concurrent environment.

Gaining speed with concurrent programming

When concurrent programming is used to obtain a more efficient pro-
gram the subtasks performed by a program must be assigned to parallel
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executing processes in such a way that they indeed increase the effi-
ciency. But with each process created and each communication that
takes place some overhead is involved. An increase in efficiency can ac-
tually only be obtained when the subtask that has been assigned to a
parallel process represents a sufficiently large amount of work. The ad-
ditional overhead needed for process creation and inter-process com-
munication should be low. The problem is now how to tune the number
of processes and the kind and size of the tasks such that an optimal gain
in efficiency is obtained on a certain concrete architecture.

Fine-grain versus coarse-grain parallelism

One can split up a program into tiny subtasks in which a relatively small
amount of work is performed. In general, a lot of this fine-grain paral-
lelism can be found in a program. It is even often possible to find many
of these fine grains automatically. For example, the strict arguments of a
function can safely be evaluated in parallel. Efficiency gain can only be
achieved with tiny tasks if there is almost no overhead penalty for the
creation of these tasks on the underlying architecture. However, in real-
ity it may well be the case that the additional overhead needed to create
these tiny subtasks becomes larger than the speed gained by evaluating
them in parallel. The reason for this is that the overhead costs are gener-
ally dependent on the number of tasks and the amount of communication
between them, but not on the amount of work performed by a task.

An efficiency gain can be obtained when it is possible to split up a
program into subtasks that consist of a relatively large amount of work
with only limited communication between the tasks. But, in general,
only a limited amount of this coarse-grain parallelism can be found.
Besides the knowledge that it is safe to fork off a task one also has to
take the complexity of a task and the amount of communication be-
tween tasks into account. These last two entities are in general undecid-
able. Furthermore, it is even for a human being often rather difficult to
find a suitable coarse-grain partitioning of a program. It generally
means that one has to redesign the algorithm. When not enough coarse-
grain parallelism can be found or created the capacity of a parallel ma-
chine cannot be used in an optimal manner.

Importance of the underlying concrete parallel architecture

The optimal tuning of a program will not only depend on the problem
one has to solve but will also depend heavily on the concrete architec-
ture of the parallel machine that is actually being used. There are single
instruction–multiple data (SIMD) machines and multiple instruction–
multiple data (MIMD) machines. In an SIMD machine a very large
number (say, thousands) of tiny processors all execute the same instruc-
tion at the same time, albeit on different data. They are especially suited
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to performing the same type of calculation on a large data structure
(array or vector processing). In an MIMD machine there are fewer (say,
hundreds) ‘ordinary’ processors working independently. These architec-
tures are generally more suited for executing concurrent functional pro-
grams. There are MIMD architectures with shared memory and with
distributed memory.

P1 P2 Pi Pn

SHARED MEMORY

COMMUNICATION NETWORK

Figure 13.1 Parallel architecture with shared memory.

In a shared memory architecture (Figure 13.1) all processes
share the same memory via a communication device such as a bus or a
special network switch. Shared memory architectures have the advan-
tage that all processes can communicate with each other via global data.
This makes creation of processes and inter-process communication
cheap. The status of each processor can also be inspected relatively eas-
ily by the operating system of the machine. As a consequence, the dis-
tribution of work between the processors can also be controlled rela-
tively easily. A shared memory architecture is therefore best suited for
automatic creation of parallelism. A disadvantage of such an architec-
ture is that there are two bottlenecks, one formed by the communication
network and one formed by the shared memory: generally only one
memory access is possible at the same time. So only a certain limited
number of processors (say, tens of processors with current technology)
can effectively contribute in a shared memory configuration.

P1 P2 Pi Pn

COMMUNICATION NETWORK

M2 Mi MnM1

Figure 13.2 Parallel architecture with distributed memory.

In a distributed memory architecture (Figure 13.2) each proces-
sor has its own local memory. Processors are (sparsely) connected via
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some special communication network. In a distributed architecture gen-
erally not all processors are directly connected to each other. A fully
connected network would be too complex and too expensive. An impor-
tant property of distributed architectures is that for each processor it is
more efficient to access objects located in its own local memory than to
use the communication medium to access remote objects.

Distributed memory architectures have the disadvantage that all
processors must communicate with each other via a message-passing
mechanism that uses the communication network. Information has to be
copied from one processor memory to another. This makes process cre-
ation and inter-process communication relatively expensive. Generally,
it is also very expensive to get an overall overview of the status of such
a machine. As a consequence, the distribution of work between the pro-
cessors is harder to control. Furthermore, garbage collection is difficult
to realize. However, the advantage of a distributed architecture is that
the network is only used for global memory access but not for local
memory access. So the bottleneck formed by the communication net-
work is not so serious when local memory access happens frequently
compared with global memory access. With a suitable network topology
generally hundreds of processors can be connected to each other in such
a way that they effectively work with each other.

Assumptions

When concurrency is used to speed up execution the actual speed-up
one can obtain is highly dependent on the algorithm being used, the
number and the kind of subtasks that are created and the actual multi-
processor architecture the program is running on. How to split up work
efficiently is an undecidable problem. It is often even difficult for a hu-
man being to find an acceptable solution. Even when concurrency is
used to structure software it is often very hard for a human being to
come up with a good design and specification for the desired structure.

So an automatic partitioning of a program in concurrently exe-
cutable parts seems not to be realistic yet. Therefore, we assume that the
programmer explicitly has to define the concurrent behaviour of the
functional program, either to achieve a certain desired concurrent
structure (which cannot be achieved automatically anyway) or to
achieve a faster program (which can only be achieved automatically un-
der certain conditions). For this purpose one needs special language
constructs for expressing the desired concurrent behaviour. One basic
approach to express concurrence in imperative languages can be found
in Hoare (1978). Furthermore, we assume that concurrent functional
programs at least have to run conveniently on MIMD machines with a
distributed memory architecture. They are widely available and gener-
ally contain more processors than shared memory architectures.
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13.1.2 Why concurrent functional programming?

Imperative programming languages have the disadvantage that one can-
not always assign an arbitrary subtask (such as a procedure call) to a
process. A procedure call can have side-effects via access to global
variables (see Chapter 1). When such a procedure is executed concur-
rently, the correctness of the program is no longer guaranteed. Further-
more, inter-process communication has to be defined explicitly. All pos-
sible communication situations have to be handled. Programs tend to
become very complex.

Advantages of concurrent functional programming

In a concurrent functional program a task assigned to a process consists
of the evaluation of a function. Any function (redex) can be assigned to
a process. Since there are no side-effects, the outcome of the computa-
tion, the normal form, is independent of the chosen evaluation order. In-
terleaved as well as parallel evaluation of redexes is allowed. Commu-
nication between the processes takes place implicitly, simply when one
process (function) needs the result calculated by another. No additional
primitives for process communication are needed. Reasoning about the
concurrent algorithm is for most properties similar to reasoning about
any other functional program.

The fact that the evaluation order cannot influence the outcome of
a computation also gives additional flexibility and reliability for the
evaluation of functional programs on parallel architectures. When a
processor becomes defective or when it is overloaded with work it is in
principle possible to change the evaluation order and the number of
tasks created in optimal response to the actual run-time situation.

Besides the advantages mentioned above, the programmer of con-
current functional programs has the full power of a functional language
at his or her disposal. This means that the general advantages of func-
tional programming are also applicable in a concurrent context.

Disadvantages of concurrent functional programming

Concurrent functional programming means that the programmer explic-
itly defines how the concurrent evaluation of the program must take
place. As a consequence, a program in a functional language can no
longer be regarded as an executable specification. How expressions are
being evaluated is now of importance.

Actually, already for ordinary lazy functional programs there are
situations in which a programmer cannot be totally unaware of the eval-
uation order of his or her program. For instance, patterns specified on a
left-hand side of a function definition force evaluation. Whether or not a
function can be called with an argument representing an infinite compu-
tation will depend on how the function is defined. Furthermore, most
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functional languages have facilities to influence the default evaluation
order: LML (Augustsson, 1984), Miranda (Turner, 1985), Haskell
(Hudak et al., 1992) and Clean (Brus et al., 1987). When these facilities
are used one also has to be aware of how and when certain expressions
are evaluated. So although functional languages focus on a declarative
style of programming there are some points where this goal is not to-
tally met.

In concurrent functional programming the programmer has to be
even more aware of the evaluation order. This actually means that the
evaluation order becomes part of the specification. However, when a
functional program is compiled many transformations are needed to
map the high-level specification efficiently onto the low-level instruc-
tion set of the machine. As a consequence, it is very hard to predict in
which order arbitrary expressions are being evaluated. So the tools
given to a programmer should make it possible to specify the reduction
order in such a way that the desired concurrent behaviour becomes clear
without detailed knowledge of a particular implementation.

13.2 Annotations for concurrency

13.2.1 Creating parallel processes

Suppose that one would like to increase the execution speed of the
following function by introducing parallelism into the computation.

fib:: num -> num
fib 1 = 1
fib 2 = 1
fib n = fib (n – 1) + fib (n – 2), if n > 2

Since both arguments of the addition have to be calculated before the
addition can take place one could try to optimize the performance by
calculating the two recursive calls of fib in parallel, each on a different
processor. This is a typical example of divide-and-conquer parallelism.
We assume that one can create a parallel process for the reduction of a
function application by prefixing the application with a special annota-
tion: {Par}. A process created with a {Par}  has as task to evaluate the an-
notated function in parallel to normal form. With this annotation the de-
sired parallel divide-and-conquer variant of fib is specified as follows:

fib:: num -> num
fib 1 = 1
fib 2 = 1
fib n = {Par} fib (n – 1) + {Par} fib (n – 2), if n > 2
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The use of {Par} in such a recursive function definition creates a new
process for each annotated function application in each call of the func-
tion. In this way a tree of processes is created. The bottom of the tree
consists of processes that execute the non-recursive alternative of the
function definition (Figure 13.3).

+

+

+ 1

+

1 1

11

Figure 13.3 Snapshot of a tree of processes computing fib 5; the arrows
indicate the direction of the flow of information between the
processes.

It will often not be worthwhile to evaluate fib n in parallel in such a way.
To turn the fine-grain parallelism into coarse-grain parallelism, a
threshold is introduced that ensures that the processes at the bottom of
the tree have a substantial amount of work to do (Figure 15.4).

fib 9

fib 9

fib 10

+ fib 10 fib 10

+

+

+

Figure 13.4 Tree of processes with threshold computing fib 13.

Divide-and-conquer Fibonacci with threshold:

fib:: num -> num
fib 1 = 1
fib 2 = 1
fib n = {Par} fib (n – 1) + {Par} fib (n – 2), if n > threshold

= fib (n – 1) + fib (n – 2), if n > 2

threshold:: num
threshold = 10
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The {Par} annotation can be used in the body (the right-hand side) of any
function definition. In order to keep the semantic description of the {Par}
annotation as simple as possible, {Par} is only defined for an argument
that is a function application of the form f a1 a2 … an. The {Par} annota-
tion is not defined on ZF-expressions and the like. This is of course not
a fundamental restriction.

When a function with a {Par} annotation in its body is evaluated by
a process (the parent process) the following action is taken. For each
Par-annotated function application {Par} f a1 a2 … an specified in the
body of the function a new process is created (a child process). This
child process preferably runs in parallel on a different processor, with
as task the evaluation of f a1 a2 ... an to normal form. If the child process
for one reason or another cannot be created on another processor it is al-
lowed to create it on the same processor as the parent process. Parallel
processes are usually created to perform a substantial task. Therefore, a
task performs the reduction of the indicated expression to normal form
and not just to head normal form. When the child processes have been
created the parent process continues as usual with the regular evaluation
of the function body. Consequently, the creation of parallel processes
will not influence the termination behaviour of a program.

13.2.2 Creating interleaved processes

In the solutions presented so far processes have not been used in an op-
timal way. The parent process did not do much useful work because it
had to wait for the results of its child processes.

Consider again the fib example. A better processor utilization may be achieved
when one of the two arguments is reduced by the parent process.

fib:: num -> num
fib 1 = 1
fib 2 = 1
fib n = fib (n – 1) + {Par} fib (n – 2), if n > threshold

= fib (n – 1) + fib (n – 2), if n > 2

The intention in the fib example above is that the first argument is reduced on
the parent processor in parallel with the evaluation of the second argument. As
specified, the first argument will  be calculated by the parent process and the
second one by another parallel process. However, the solution assumes that
the parent process directly continues with the evaluation of the first argument.
In reality, this may not be the case. If the parent process happens to start with
the calculation of the second argument first, it waits until the child process has
communicated the result, after which the parent process can evaluate the first
argument. So although the specification is fulfilled, the desired parallel effect
may not be obtained.
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The problem illustrated in the example arose because the programmer
had made some (possibly wrong) assumptions on the precise evaluation
order of the program (in the case above this concerned in particular the
order of evaluation of the strict arguments of δ-rules). It is generally
very dangerous to make any assumptions on the evaluation order.
Therefore, we have chosen to be very explicit about the evaluation order
when processes are created. A new annotation is introduced that creates
an interleaved executing child process on the same processor as the par-
ent process: the {Self} annotation (Figure 13.5).

Divide-and-conquer Fibonacci with parent processor (not the parent process)
participating in the work:

fib:: num -> num
fib 1 = 1
fib 2 = 1
fib n = {Self} fib (n – 1) + {Par} fib (n – 2), if n > threshold

= fib (n – 1) + fib (n – 2), if n > 2

fib 9

fib 9

fib 10

+

+

+
+

fib 10

fib 10

Figure 13.5 Tree of processes for fib; the left branch is computed on the
same processor by different interleaved running processes.

The {Self} annotation can be used like a {Par}: in the body (the right-
hand side) of any function definition. When a function with {Self} anno-
tations in its body is evaluated by the parent process the following ac-
tion is performed.  For each self-annotated function application  {Self}
f a1 a2 … an a new child process is created as a subprocess. This child
process runs interleaved on the same processor as the parent process
with as task the evaluation of f a1 a2 ... an to normal form.

In many cases a better utilization of the machine capacity can be
achieved when a subprocess is created on the same processor as the par-
ent process. Furthermore, the {Self} annotation is in particular handy to
create channel processes. When several processes demand information
from a particular process, it is useful to create a (channel) subprocess
for each demanding process to serve the communication demands.



414 BASIC LANGUAGE CONCEPTS

13.2.3 Communication and lazy evaluation

In the sequential case, when a value is needed, it is evaluated by the
process itself. In the concurrent case such a value can be evaluated by
another process, possibly on another processor. Clearly, the only sensi-
ble thing to do for a demanding process is to wait until the needed value
becomes available. However, for efficiency it is important that a de-
manding process can continue as soon as possible. Such a process
should not wait until the whole normal form has been calculated. As
soon as part of it is known it can be communicated. This prompt com-
munication of information can be compared with the way the result of
an ordinary program is printed. So communication can take place as
soon as a head normal form is reached. That part of the result which is
still under evaluation will be communicated later when it becomes
needed as well. So communication is defined implicitly by making use
of the lazy evaluation order. This way of communication can be used to
create information streams between processes.

A communication stream between processes (Figure 13.6). The function gen-
erator is also used later on in several other examples in this chapter.

generator:: num -> [num]
generator n = [n..100]

map (* 2) ({Par} generator 3)

map (* 2) generator 73:4:5:6

Figure 13.6 Simple pipeline between the processes map and generator;
in the snapshot the values 3:4:5:6 are being communicated.

When the parent process needs a value of the child process and the child pro-
cess has produced a head normal form, the requested information is communi-
cated to the parent process. That part which is still under evaluation will be
communicated later when there is a demand for it. In this way the generator
and the map process are effectively operating in a (very small) pipeline.

13.2.4 Expressive power of concurrent functional programs

An advantage of functional languages is that it is relatively easy to de-
fine general tools for the creation of parallelism by using annotations
like {Par} in combination with the ordinary expressive power of higher
order functions in these languages.
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Divide-and-conquer parallelism can be expressed in a general way using
higher order functions:

divconq:: (* -> **) -> * -> (* -> bool) -> (** -> ** -> **) -> (* -> (*,*)) -> **
divconq f arg threshold conquer divide

= f arg,   if threshold arg
= conquer ({Self} divconq f left threshold conquer divide)

          ({Par} divconq f right threshold conquer divide),otherwise
where (left, right) = divide arg

pfib:: num -> num
pfib n = divconq fib n threshold (+) divide

where threshold n = n <= 10
divide n = (n – 1, n – 2)

Function composition can be used to create pipelines of processes.

Static pipeline of processes (Figure 13.7):

stat_pipe:: * -> (* -> **) -> (** -> ***) -> (*** -> ****) -> ****
stat_pipe i f1 f2 f3 = f3 ({Par} f2 ({Par} f1 ({Par} i)))

stat_pipe (generator 3) (map fib) (map fac) (map (* 2))

map (* 2) map fib2:6 map fac 5:8 7:8 generator 9

Figure 13.7 Snapshot of a static pipeline of four processes.

With higher order functions general skeletons can be defined to
create frequently occurring process structures (this is essentially differ-
ent from the process skeletons in Darlington et al. (1991), which are in-
herently predefined). Often parallel variants of the basic building blocks
given in Chapter 2 can be used.

A general pipeline defined with the {Self} annotation:

parfoldr:: (* -> ** -> **) -> ** -> [*] -> **
parfoldr f i [ ] = i
parfoldr f i (x : xs) = {Par} f x in where in = {Self} parfoldr f i xs

parfoldr map (generator 3) [(* 2), fac, fib]

A parallel version of map implementing vector-like processing: it creates a
parallel process for each element in a given list.
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parmap:: (* -> **) -> [*] -> [**]
parmap f (x : xs) = {Par} f x : {Self} parmap f xs
parmap f [ ] = [ ]

then

parmap (twice fac) [0, 1, 2, 3]
→ {Par} twice fac 0 : {Self} parmap (twice fac) [1,2,3]
→ {Par} twice fac 0 : {Par} twice fac 1 : {Self} parmap (twice fac) [2,3]
… → [1, 1, 2, 720]

A process can create one or more subprocesses with the {Self} con-
struct. These subprocesses (running interleaved on the same processor)
can be used to serve communication channels with other processes.
Each communication link of a process has to be served by a separate
subprocess that reduces the demanded information to normal form. A
process with its subprocesses in a functional language acts more or less
like a process with its channels in a message-passing language like CSP
(Hoare, 1978). Serving subprocesses is like sending information over a
channel to any process requesting that information.

In the following parallel version of the quicksort algorithm (see also Chapter
2) two child processes are created when the list to be sorted contains more
than threshold elements (this is checked by the predicate too_few_elements
that avoids walking down the complete list). Each child process sorts a sublist.
The parent process will supply the appropriate sublist to each of its child pro-
cesses. The parent process can perform both these tasks ‘simultaneously’ with
the help of two subprocesses running interleaved with each other.

sorter:: [num] -> [num]
sorter list = quick_sort list, if too_few_elements list threshold

= par_quick_sort list, otherwise

threshold:: num
threshold = 7

quick_sort:: [num] -> [num]
quick_sort [ ] = [ ]
quick_sort (x : xs) = quick_sort [b | b <- xs ; b <= x]

++ [x] ++ quick_sort [b | b <- xs ; b > x]

par_quick_sort:: [num] -> [num]
par_quick_sort (x : xs) = {Par} sorter ({Self} smalleq x xs)

++ [x] ++ {Par} sorter ({Self} larger x xs)
where smalleq x xs = [b | b <- xs ; b <= x]

larger x xs = [b | b <- xs ; b > x]
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too_few_elements:: [num] -> num -> bool
too_few_elements [ ] n = True
too_few_elements xs 0 = False
too_few_elements (x : xs) n = too_few_elements xs (n – 1)

sorter [6,3,1,4,2,7,3,12,5,1,4,97,3,2,17,6,93,114]

13.2.5 Specifying process types

In the examples shown so far, processes only locally appeared in the
function body. Complex process topologies can be specified more ele-
gantly if processes can be passed as arguments to functions or returned
as function results. The consistent use of processes can be checked by
the compiler. Furthermore, for code generation it can be important to
know that an expression will be (or has been) evaluated by a process. So
a special type attribute {proc} is introduced. This type attribute indicates
that an expression is known to be in process normal form.

When an expression is in process normal form (PNF) it will,
when its evaluation is demanded, either be in normal form or it will be
reduced to normal form by one or more processes. The PNF property is
in general undecidable. However, it is possible to introduce a type sys-
tem to achieve a decidable approximation of the PNF property (known
to be in PNF). Clearly, an expression annotated with a {Par} annotation
or a {Self} annotation is known to be in PNF since a process is created to
reduce it to normal form. There are more cases in which expressions are
known to be in PNF. A complete survey of these cases is given below.
In the following we shall use in PNF instead of known to be in PNF
when there can be no confusion.

An expression has type {proc} T when it is of type T and in PNF.
This type can be used in the type definition of a function. An expression
is said to have a process type when its type has the type attribute {proc}.

A tool to create a dynamic pipeline of processes of arbitrary length:

pipeline:: * -> [* -> *] -> {proc} *
pipeline gen filters = npipe ({Par} gen) filters

npipe:: {proc} * -> [* -> *] -> {proc} *
npipe in [ ] = in
npipe in (x : xs) = npipe ({Par} x in) xs

pipeline (generator 3) [map fib, map fac, map (* 2)]

In the function npipe the newly created parallel process will be evaluating a
function x applied on an argument evaluated by another process. Due to the
recursive call a pipeline of processes is created.
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A type inferencer can derive that an argument of a function has a
process type. However, in many cases the programmer wants to be more
restrictive, indicating process types explicitly. A type checker can then
check the consistency of the type attributes and assign process types to
subexpressions of function definitions accordingly. For reasons of sim-
plicity it is assumed that these actions are performed after the normal
type inferencing/checking.

The following expressions are known to be in PNF and therefore a
process type can be assigned to them:

• expressions of the form {Par} f e1 … en or {Self} f e1 … en for n ≥ 0;

• an argument of a function if on the corresponding position in the
type definition a process type is specified and a result of a function
if on the corresponding position in the type definition a process
type is specified;

• expressions of the form C a1 a2 … an, where C is a constructor of
which all the arguments ai have a process type (composition);

• arguments ai of an expression that has a process type and that is of
the form C a1 a2 … an, where C is a constructor (decomposition);

• expressions statically known to be in normal form, e.g. expressions
not containing any function applications.

The decomposition case reflects the property that when a process re-
turns a complex value the information that a process is evaluating this
value should not be lost when an object contained in this complex value
is selected. This property is called the decomposition property.

Assume that g is of type [num]; then using the decomposition property x is of
type {proc} num in (for more practical examples see the next section):

x where (x : xs) = {Par} g

With similar reasoning the following type specification is accepted:

phd:: {proc} [num] -> {proc} num
phd (x : xs) = x

With the assigned process types the standard type substitutions and
unifications are performed, with the following two exceptions:

• Where a process type is specified but a process type cannot be as-
signed, a process type error will occur.
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This definition of pipeline will be rejected since on the right-hand side in the
application of npipe for gen no process type is assigned, while in the type def-
inition of npipe a process type is specified:

pipeline:: * -> [* -> *] -> {proc} *
pipeline gen filters = npipe gen filters

npipe:: {proc} * -> [* -> *] -> {proc} *

• Where a non-process type is specified but a process type is as-
signed no error will occur. In that case the specified type is used in
substitutions and for unification (deprocessing). This deprocess-
ing, however, does not exclude the possibility that process types
are substituted for type variables.

With the following definition:

f:: [num] -> num
f (x : xs) = x

f ({Par} generator 3) has type num due to deprocessing. But, with the more
general polymorphic definition:

f:: [*] -> *
f (x : xs) = x

f ({Par} generator 3) has type {proc} num by decomposition and substitution.

The type system is such that in well-typed programs it is guaran-
teed that expressions that have a process type are in PNF.

13.3 Examples of concurrent functional programs

In this section two more elaborate examples of concurrent functional
programs are given: the sieve of Eratosthenes computing prime num-
bers and Warshall’s algorithm solving the shortest path problem. The
purpose of the examples is to show that more complex process topolo-
gies can be expressed elegantly with help of the presented annotations
and type attributes. It is not the intention to show how ultimate speed-
ups can be achieved for the problems in question.

13.3.1 Sieve of Eratosthenes

The sieve of Eratosthenes (see also the sequential Clean version in
Chapter 8) is a classical example generating all prime numbers. In the
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parallel version a pipeline of processes is created. There is a process for
each sieve. Those sieves hold the prime numbers in ascending order, one
in each sieve. Each sieve accepts a stream of numbers as its input. Those
numbers are not divisible by any of the foregoing primes in the pipeline.
If an incoming number is not divisible by the local prime as well, it is
sent to the next sieve in the pipeline. A newly created sieve process ac-
cepts the first incoming number as its own prime and returns this prime
as result such that it can be printed. After that it starts sieving. A genera-
tor process is used to feed the first sieve in the pipeline with a stream
(list) of increasing numbers greater than one (see Figure 13.8).

generator 9 8 sieve 0 sieve 1 sieve 27

2 : 3 :sieving 5 :

Figure 13.8 Snapshot of the process structure of the sieve processes.

In the programs below two concurrent solutions for the sieve of Eratos-
thenes are given. In the first toy example only a fixed number (four) of
sieve processes is created. No more prime numbers can be found than
the number of sieves created. So only four prime numbers will be found.
The program shows very clearly that each sieve process is returning two
results in a tuple: the prime number and a stream of numbers that is
communicated to the next sieving process.

Sieve of Eratosthenes with a fixed number of sieve processes in the pipeline:

static_sieving:: [{proc} num]
static_sieving = [p1, p2, p3, p4] where s0 = {Par} generator 2

(p1, s1) = {Par} sieve s0
(p2, s2) = {Par} sieve s1
(p3, s3) = {Par} sieve s2
(p4, s4) = {Par} sieve s3

sieve:: [num] -> (num, [num])
sieve (prime : stream) = (prime, filter prime stream)

generator:: num -> [num]
generator n = [n..100]

filter:: num -> [num] -> [num]
filter n [ ] = [ ]
filter n (x : xs) = x : filter n xs, if (x mod n) ~= 0

= filter n xs, otherwise
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The local selector function (pi, si) in static_sieving selects objects being evalu-
ated by a (parallel) process. So the argument si of a sieve is already under cal-
culation by the previous sieving process. As explained in Section 13.2.5, a
process type can be assigned to the sieve arguments. In this way the required
communication stream between the sieving processes is accomplished.

In the second more general solution as many sieves are created as
necessary. Each time a new prime number is produced at the end of the
pipeline a fresh sieve is created and the pipeline is extended. Each indi-
vidual sieve works as described above.

Sieve with as many sieve processes as necessary in the pipeline (with the
functions sieve and generator as defined above).

dynamic_sieving:: [{proc} num]
dynamic_sieving = dynpipe ({Par} generator 2)

dynpipe:: {proc} [num] -> [{proc} num]
dynpipe [ ] = [ ]
dynpipe in = p : {Self} dynpipe s where (p, s) = {Par} sieve in

13.3.2 Warshall’s algorithm

The following algorithm is a parallel version of Warshall’s solution for
the shortest path problem:

Given a graph G consisting of N nodes and directed edges with a distance as-
sociated with each edge, the graph can be represented by an N * N matrix in
which the element at the i th row and jth column is equal to the distance from
node i to node j. Warshall’s shortest path algorithm is able to find the shortest
path within this graph between any two nodes.

Warshall’s shortest path algorithm:

A path from node j  to node k is said to contain a node i if it can be split in two
paths, one from node j to node i and one from node i to node k (i≠j and i≠k). Let
SP( j,k,i) denote the length of the shortest path from node j to node k that contains
only nodes less than or equal to i  (0 ≤ i and 1 ≤ j,k and i,j,k ≤ N).

So
SP ( j,k,0) = 0 if j=k

= d if there is an edge from j to k with distance d
= ∞ otherwise

SP ( j,k,i) = minimum (SP ( j,k,i–1), SP ( j,i,i–1) + SP (i ,k,i–1))

Define a matrix M as follows: M[ j ,k] = SP ( j ,k,i) for some i. The final
shortest path matrix can be computed iteratively by varying i  from 0 to N
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using the equations as described above. In the ith iteration it is considered for
each pair of nodes whether a shorter path exists via node i.

The Warshall algorithm is an interesting algorithm to test the ex-
pressiveness of parallel languages (Augusteijn, 1985) since it requires a
special process structure containing a cycle (Figure 13.9).

To illustrate the algorithm it is
applied to the graph on the right
with the corresponding matrixes
given below:

1

2 3

3
1

4

5

M[  j,k]0 0 3 5
1 0 ∞
∞ 4 0

M[  j,k]1 0 3 5
1 0 6 SP(2,3,1) = min (SP(2,3,0),SP(2,1,0)+SP(1,3,0)) = min (∞,1+5)

∞ 4 0

M[  j,k]2 0 3 5
1 0 6
5 4 0 SP(3,1,2) = min (SP(3,1,1),SP(3,2,1)+SP(2,1,1)) = min (∞,4+1)

M[  j,k]3 0 3 5
1 0 6
5 4 0

Observing the algorithm it can be concluded that during the ith it-
eration all updating can be performed in parallel. It seems a good deci-
sion to create N parallel processes: one for each row that updates its row
during each iteration step. In the ith iteration all the parallel processes
need to have access to row i as well as to their own row. This can be
achieved by letting parallel process i distribute its own row as soon as
the ith iteration starts. At the end of the distributed computation the
rows of the solution have to be collected.

Row 1 Row iRow 2 Row i+1 Row N

Collect

Figure 13.9 Snapshot of the process structure of Warshall’s algorithm.
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Initially, a parallel process rowproci is created for each row of the
matrix. Before rowproci performs its ith iteration it distributes its own
row to the other rowprocs. This is done in a cyclic pipeline, i.e. rowproci
sends its own row to rowprocj via rowproci+1, … , rowprocj–1 and rowprocj
(counting modulo N from i to j).

It is rather difficult to express this distributing, updating and iterat-
ing in a parallel functional language. The cyclic process structure is cre-
ated via a recursive local definition of a pair with as first element the fi-
nal solution and as second element the output that will be produced by
the Nth process after it is created.

matrix * = = [ [*] ]

warshall:: matrix num -> matrix num
warshall mat

= solution
where (solution, output_rp_N) = create_procs (#mat) 1 mat output_rp_N

create_procs:: num -> num -> matrix num -> {proc}[[num]]
-> ([{proc}[num]], {proc}[[num]])

create_procs size k [row_N] input_left_rp
= ([row_N_solution], output_rp_N)

where (row_N_solution, output_rp_N)
= {Self} iterate size k 1 row_N input_left_rp

create_procs size k (row_k : restmat) input_left_rp
= (row_k_solution : rest_solutions, output_rp_N)

where (row_k_solution, output_rp_k)
= {Self} iterate size k 1 row_k input_left_rp

(rest_solutions, output_rp_N)
= {Par} create_procs size (k+1) restmat output_rp_k

iterate:: num -> num -> num -> [num] -> [[num]] -> ([num],[[num]])
iterate size k i row_k rows

= (row_k, [ ]), if iterations_finished
= (solution, row_k : rest_output), if start_sending_this_row
= (solution, row_i : rest_output), otherwise

where iterations_finished = i > size
start_sending_this_row = i = k
row_i : xs = rows
(solution, rest_output) = iterate size k (i+1) next_row_k xs
next_row_k = row_k, if i = k

= updaterow row_k row_i dist_k_i, otherwise
dist_k_i = row_k ! (i – 1)

updaterow::[num] -> [num] -> num -> [num]
updaterow [ ] row_i dist_j_i = [ ]
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updaterow (dist_j_k : restrow_j) (dist_i_k : restrow_i) dist_j_i
= min dist_j_k (dist_j_i + dist_i_k) : updaterow restrow_j restrow_i dist_j_i

where min m n = m, if m < n
= n, otherwise

warshall [ [ 0, 100, 100, 13, 100, 100 ] ,
[ 100, 0, 100, 100, 4, 9 ] ,
[ 11, 100, 0, 100, 100, 100 ] ,
[ 100, 3, 100, 0, 100, 7 ] ,
[ 15, 5, 100, 1, 0, 100 ] ,
[ 11, 100, 100, 14, 100, 0 ] ]

13.4 Discussion

Writing concurrent programs is in general a much more difficult task
than writing ordinary sequential programs. Writing concurrent programs
in a functional language instead of in an imperative language has certain
advantages and disadvantages.

With only two annotations, one for the creation of parallel pro-
cesses and one for the creation of interleaved processes, already very
complicated concurrent programs can be specified in an elegant and
readable way using the associated type system. Processes can be created
dynamically. For the communication between processes no additional
primitives are needed. Communication is demand driven: whenever a
process needs information from another process the information is
communicated as soon as it is available. Flexible and powerful tools for
the construction of frequently occurring process topologies can be de-
fined using the expressive power of functional languages. Concurrent
functional programs can be executed on any processor configuration, in
parallel or just sequentially. In principle, the programmer can start with
writing an ordinary sequential program. When this program is finished
he or she can turn this program into a parallel version by creating pro-
cesses for some of the function applications in the program.

Of course, many problems remain that are connected with concur-
rent programming in general. Sometimes it is very difficult to tell which
function application really is worthwhile to be evaluated in parallel. In
the worst case, the program has to be fully rewritten simply because the
chosen algorithm is not suited for parallel evaluation at all. So one can-
not expect a real speed-up when the chosen algorithm is not suited for
parallel evaluation.

It is possible to write complicated concurrent functional programs
with the proposed language extensions, but there are still many things to
be desired. With explicit use of sharing, e.g. in graph rewriting systems,
it would be not only possible to specify cyclic structures explicitly, but
it would also be possible to specify process topologies directly. Besides,
for some applications one would like to have the possibility of creating
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processes that reduce to head normal form or to spine normal form in-
stead of to normal form. Furthermore, it should be possible to assign a
particular process to a specific concrete processor. With such a facility a
concurrent program can be optimally tuned to the available parallel ar-
chitecture. For certain applications one would also like to have better
control of the kind of information that is passed from one process(or) to
another. One would like to ship not only data but also work (redexes).
The control of the amount of information that is communicated and the
moment at which this happens (synchronous, asynchronous, blocked)
can be important as well.

To tackle the problems and desires mentioned above it is necessary
to extend the graph rewriting model (see Chapter 14).

Summary

• A functional program can be turned into a concurrent functional
program with help of a {Par} annotation (for the creation of parallel
processes) and a {Self} annotation (for the creation of interleaved
subprocesses).

• For the communication between processes no special primitives
are needed since due to the lazy evaluation scheme process com-
munication is also lazy.

• A process can communicate with several other processes at the
same time using subprocesses that run interleaved serving demand-
ing processes.

• In the type specifications of the function definitions the program-
mer can explicitly indicate that certain subexpressions of the pro-
gram will be evaluated by a process. In this way complex process
topologies can be specified in a clear way.

• With the proposed primitives and the use of higher order functions
and function composition complex concurrent programs can be ex-
pressed elegantly. Divide-and-conquer parallelism can be speci-
fied, but also more complicated process topologies such as a
pipeline of processes or a cyclic process structure.

• Concurrent functional programming is still in its infancy. Many
other language constructs for special forms of concurrency are
possible.

• For a better understanding of the possibilities, limits and properties
of concurrent functional programming the underlying computa-
tional model of graph rewriting has to be extended to a parallel
context.
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EXERCISES

13.1 Give a sequential definition of fib n that has a linear complexity
with respect to n. Discuss the differences in efficiency compared
with the parallel version of Figure 13.5.

13.2* Write a Miranda function that computes the determinant of a ma-
trix. Use this function to compute the inverse of a matrix using the
method of Cramer. Use {Par} and {Self} to construct a parallel pro-
gram. Let the main process compute the determinant of the matrix.
Each element of the inverse matrix is computed by a parallel pro-
cess.

13.3 Write a function that computes the n queens problem (see Exercise
2.5) in parallel using a divide-and-conquer approach. The function
should take the board size and a threshold as an argument.
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Chapter 14
Parallel graph rewriting

14.1 Annotations to control the
reduction order

14.2 GRSs with lazy copying
14.3 Modelling parallel graph rewriting

This chapter will show that processes and inter-process communication
can be modelled by extending the GRS model presented in Chapter 5.
For reasons of simplicity this extension will be restricted to TGRSs. The
extensions made to the TGRS model are inspired both by the concur-
rency primitives that we would like to have on the language level as
well as by the target architectures we are aiming for (see Chapter 13).

Owing to the absence of global memory on loosely coupled paral-
lel architectures it is no longer realistic to share graphs across proces-
sor boundaries. In a concrete implementation graphs have to be copied
from one local processor memory to another. This copying is so impor-
tant and complex that we do not want to regard it as a minor implemen-
tation issue. So we want to obtain this behaviour as a basic aspect in
the underlying model of computation. In order to be able to copy graphs
in a flexible way TGRSs are extended with the concept of lazy copying.

Furthermore, we want to be able to specify dynamic process
creation explicitly in a TGRS. For this purpose the strict annotations as
introduced in Clean (Chapter 8) are generalized to strategy annotations
that influence a single incarnation of a reduction strategy and process
annotations that create new incarnations of a reduction strategy. How-
ever, it has to be sound to consider a graph rewrite step as an indivisi-
ble step in order to make reasoning about rewriting systems possible.
This implies that with process annotations only interleaved processes
can be created. Still, of course, one would like to be able to create re-
ducers of which the rewrite steps can actually be performed in parallel
instead of interleaved. A special combination of process annotations
and lazy copying does allow such a parallel evaluation.

Section 14.1 introduces strategy annotations and process annota-
tions to control the sequential and the concurrent evaluation order. With
process annotations interleaved, executing reducers can be created. In
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Section 14.2 copying and lazy copying are introduced. Section 14.3
shows that lazy copying and process annotations can be seen as basic
primitives with which higher level annotations such as {Par} and {Self}
(as introduced in Chapter 13) can be created. Similar annotations, {P}
and {I}, are introduced to create processes that reduce to root normal
form. These annotations are more primitive, but they allow finer control
over the distribution of data and work (see also Chapter 15).

14.1 Annotations to control the reduction order

This section introduces strategy annotations and process annotations in
TGRSs as generalizations of the strict annotations used in Section 8.3.

The semantics of strategy and process annotations on a right-hand
side are effected after a rewrite of the corresponding rule alternative but
before the function at the root of the right-hand side is considered for
evaluation. In the case that in a single right-hand side more than one an-
notation is used, the order in which these annotations are dealt with
takes the graph structure into account. The annotations are in principle
effected depth-first. In order to obtain a higher degree of flexibility the
annotations in this section are parametrized with a strategy σ.

14.1.1 Strategy annotations in TGRSs

In TGRSs strategy annotations, denoted by {!σ}, can be placed at argu-
ments on the right-hand side of a rewrite rule.

The semantics of a strategy annotation in a TGRS is as follows.
When the current strategy considers as a candidate for reduction a func-
tion application that has an argument which is annotated in the rewrite
rule with a strategy annotation σ, then the current strategy is temporar-
ily interrupted: instead the strategy σ is applied on the subgraph corre-
sponding to the argument. The interrupted strategy will continue again
(e.g. with another annotated argument or with the application of the
function itself) when no redexes are indicated by σ, i.e. when the sub-
graph is in σ normal form.

Looking at the overall strategy function one can observe that it is
composed of several strategy functions that invoke each other. Each of
them is invoked on the indicated subgraph where an annotation occurs
in the contractum pattern. However, at each moment only one strategy σ
is actively applied; all the others are interrupted.

We distinguish three kinds of strategy annotation:

• The rnf annotation {!} invokes the functional strategy to strong
root normal form (used, for example, in Section 8.3).

• The nf annotation {!!} invokes the functional strategy to normal
form (used for the evaluation of the Start node (see Section 11.2)).
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• The step annotation {*} is used to invoke a zero or one step reduc-
tion strategy function that performs one rewrite on the annotated
function application if it is a redex (used, for example, to force
copying of graphs in Sections 14.3 and 14.4).

14.1.2 Graph rewriting with interleaved semantics

When a parallel reduction strategy is used, several redexes are indicated
as candidates for reduction (see Section 5.7). However, in principle it is
not allowed to rewrite all these redexes simultaneously. Unpredictable
graphs may be constructed if matching, contractum construction, redi-
rection and garbage collection of several rewrites were to take place in
parallel. Therefore, without additional restrictions it is a priori not
sound to rewrite in parallel, even when a so-called parallel reduction
strategy is being used. In order to be able to reason about the result of
reductions indicated by a parallel strategy, it is assumed that ‘parallel’
rewriting has interleaved semantics, i.e. parallelism is simulated by in-
terleaving ordinary, sequential rewrite steps. The rewrite step itself is
considered to be indivisible. So when a parallel reduction strategy is
used, only one of the indicated redexes is chosen in an arbitrary way
and rewritten as usual. Then the parallel reduction strategy will deter-
mine the next candidates. It will always be assumed that the parallel
strategy will at least offer the not-chosen candidates for the next round.
To obtain a proper simulation of parallel reduction it is assumed that the
rewriting will be fair, i.e. a redex repeatedly indicated by the parallel
strategy will eventually be rewritten by the reducer.

Section 14.3 will discuss cases for which the interleaved semantics
is not required, allowing a more realistic truly parallel evaluation.

14.1.3 Process annotations in TGRSs

By using process annotations in the rewrite rules one can indicate on
which part of the graph strategy σ has to be applied in an interleaved
way. As with strategy annotations, several sequential strategy functions
are invoked at several places (subgraphs) in the graph. The difference
with strategy annotations is that for a process annotation a new incarna-
tion of a sequential reduction strategy is created such that multiple strat-
egy incarnations now remain active. These strategies together form a
parallel strategy: each of them delivers one candidate for rewriting.
The parallel strategy thus constructed is completely determined by the
sequential strategies that are activated and by the set of root nodes of the
several subgraphs on which they are applied.

A reducer is a process that repeatedly chooses and rewrites one of
the redexes indicated by the (parallel) reduction strategy. In the case of
a parallel strategy specified by using process annotations one can
equally well assume that there are several interleaved reducers, where
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each reducer is attached to one of the sequential strategies that the paral-
lel strategy is composed of. So TGRSs are extended in the following
way. For each sequential strategy σ on a right-hand side of a rewrite
rule process annotations {pσ} can be specified.

Example of {pσ} annotation on a right-hand side:

Fib 0 → 1
Fib 1 → 1
Fib n → + ({pσ} Fib (– n 1)) ({pσ} Fib (– n 2))

A process annotation changes the default sequential strategy into a
parallel one by applying the sequential strategy σ on the indicated sub-
graph as well. As a result a new sequential reducer is created with the
following properties:

• the new reducer reduces the corresponding subgraph with strategy
σ and dies when no more redexes are indicated;

• the new reducer proceeds interleaved with the parent reducer;
• all rewrites are indivisible actions.

Locking of reducers

A process created with a process annotation may hit on a shared redex
which is already under reduction by another process. We have already
argued in Chapter 13 that in such a situation it would be best for effi-
ciency reasons to wait until the first process is finished, i.e. has deliv-
ered its σ normal form. Therefore we assume that a process that needs
information which is already being calculated by another process is
suspended (locked) until the result becomes available.

Such a locking has to be realized by the overall strategy function.
Each of the incarnations of a sequential strategy delivers a candidate for
rewriting. But when the same redex is indicated by more than one in-
carnation, only one of them is allowed to reduce the redex until the in-
tended σ normal form is reached. The others are not chosen and locked
in that way. From now on we only consider process annotations that in-
voke such locking strategies.

In this chapter two special (locking) process annotations are used
to model higher level process behaviour like, for example, the be-
haviour induced by the {Par} and {Self} annotations of Chapter 13.

• The p-rnf process annotation {p !}  invokes a process with the
functional strategy to strong root normal form.

• The p-nf process annotation {p!!}  invokes a process with the
functional strategy to normal form.
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14.1.4 Deadlock

When processes need information from each other in order to continue a
deadlock situation may be created (i.e. none of the processes involved
can make any progress). This is easily avoided by the programmer
through the following important property. When all process annotations
occur on positions that are needed for the sequential evaluation, the
following holds: if, due to the process annotations, a deadlock situation
occurs, ignoring the process annotations would have led to a sequential
cycle-in-spine error.

Correspondence between deadlocks of processes and cycle-in-spine errors:

Start → x: {p!} F y,
y: {p!} G x

F 0 → 1
G 0 → 1

The processes created will be in deadlock because they need each other’s re-
sult. When the annotations are ignored a cycle-in-spine error occurs.

14.2 GRSs with lazy copying

TGRSs have the advantage over TRSs that by sharing it is possible to
avoid duplication of work. But in order to model the inter-processor
communication on a distributed machine architecture a facility to ex-
press graph copying has to be added to TGRSs. One might expect that it
is already possible to express copying in (T)GRSs. However, this is not
true: only a very limited kind of graph copying can be expressed.

Clearly, the following function does not copy its argument since it creates two
pointers to the argument instead of duplicating the argument itself.

Duplicate x → Pair x x

@1:     Duplicate @2,
@2: Pair @3 @2,
@3: 1

Duplicate

Pair

1

This graph reduces to

@4: Pair @2 @2,
@2: Pair @3 @2,
@3: 1

Pair

Pair

1
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In order to copy a node in a GRS one has to define a rewrite rule in
which the pattern is used to determine the node symbol such that a new
copy of this node containing the same symbol can be created on the
right-hand side. Such a copying rewrite rule is needed for each kind of
node that has to be copied. Since it is not possible to match on an arbi-
trary symbol one cannot define a rewrite rule that can copy an arbitrary
unknown graph structure. In a special case, i.e. when all the possible
symbols of the nodes to copy are known, rules can be defined that can
copy a graph structure composed of these nodes. But even in that case,
copying remains difficult when shared graph structures are involved.
The different sharing structures have to be distinguished. This is only
possible in comparing systems. For this purpose the theory of compar-
ing systems would have to be further developed (see Section 5.6.1).

So for reasons of expressiveness and of efficiency of communica-
tion it is necessary somehow to include the possibility of copying arbi-
trary graph structures in the standard semantics of GRSs. This requires
in some way finding a construct with semantics in between the seman-
tics of TRSs (in which multiple occurrences of variables on the right-
hand side always indicate that duplicates are made) and the semantics of
GRSs (in which multiple occurrences of variables on the right-hand side
always indicate that a structure with sharing has to be made).

14.2.1 Eager copying

Such a construct is created by extending graph rewriting systems with a
function Copy which produces as its result a full copy of its argument
graph. This function is defined by extending the semantics of graph
rewriting. The moment at which this function is executed is, of course,
indicated by the reduction strategy. A node containing an application of
the Copy function is also called a copy node.

The way of copying defined in this section is called eager copying,
in contrast to lazy copying, which will be defined in the next section.

With the following Duplicate rule an arbitrary graph structure can be copied:

Duplicate x → Pair x (Copy x)

The cyclic graph @2: Pair @3 @2, @3: 1 can be copied as follows:

@1:            Duplicate @2,
@2: Pair @3 @2,
@3: 1

Duplicate

Pair

1

which reduces first to:
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@4: Pair @2 @5,
@2: Pair @3 @2,
@3: 1,
@5:            Copy @2

Pair

Pair

1

Copy

and then to:

@4: Pair @2 @12,
@3: 1,
@2: Pair @3 @2,
@12: Pair @13 @12,
@13: 1

Pair

Pair

1

Pair

1

Copy nodes are not treated specially during graph rewriting. Conse-
quently, when the argument of a copy node is a cyclic graph containing
again the very same copy node, this node is copied with the rest of the
cyclic graph. The copy node will occur again in the result of the copy.

Take the following cyclic graph:

@1: Pair @2 @3,
@2: 1,
@3:            Copy @1

Pair

1

Copy

The result after executing the Copy function:

@1: Pair @2 @11,
@2: 1,
@11: Pair @12 @13,
@12: 1,
@13: Copy @11

Pair

1

Copy

Pair

1

Semantics of eager copying

The Copy function uses the internal structure of its argument to create
the result. The copy it makes is a full isomorphic copy of its argument
graph. We saw that possible occurrences of the Copy function itself do
not play a special role: they will also be copied. An application of the
Copy function is treated just as any other function. Also, with respect to
the evaluation order no special treatment is necessary. Evaluating an
application of the Copy function simply yields a copy of its argument
with which evaluation can continue.

Using the terminology of Chapter 5 the operational semantics of
eager copying is defined as follows as an extension of the standard se-
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mantics of graph rewriting defined in that chapter. Suppose there is a
graph γ over a set of symbols F and a set of node-ids N with contents
function Cγ and a set of rules ρ. F is extended with a new symbol: Copy,
the set of rules ρ is extended with a rule with left-hand side r: Copy x.

Then, rewriting a graph in the case of the redex being an applica-
tion of the Copy function takes place according to the following steps
(see also Sections 5.3.3 and 5.6.1):

(1) Suppose an application of the Copy function is chosen as a redex
with matching mapping µ, i.e. Cγ (µ(r)) = Copy µ(x)

(2) Then, the contractum is constructed as follows: using new node-
ids, i.e. node-ids not present in γ, a graph γ ' is constructed which is
equivalent to the subgraph of µ(x) in γ.
(Owing to the equivalence and the use of new node-ids γ ' is in fact
the required copy of the subgraph of µ(x) in γ.)

(3), (4) and (5) In the standard way, the graph γ ' is united with γ, µ(r),
redirected to the root of γ ' and garbage collection takes place.

So the function Copy produces as its result a graph copy of its argument.

14.2.2 Lazy copying

Copying redexes corresponds to copying work. Copying normal forms
(or certain parts of the graph that will not be reduced anymore) corre-
sponds to copying data (in many cases the result of work that has been
performed). However, using eager copying the choice is either to share
a graph to avoid duplication of work or to copy such a graph which will
include a copy of all its redexes. In this section we aim to do something
in between: copying of graphs without duplicating work. Duplication of
work can be avoided by maintaining the sharing with the original graph
as long as the subgraph to copy has not been evaluated. So the intuitive
idea is to defer the copying action as long as the work is not finished.
After the work is done the copy can be made.

Copying with the choice of breaking up the sharing or maintaining
the sharing by deferring the copying is called lazy copying (Van Eeke-
len,1988; Van Eekelen et al.,1991). For this reason a node in the graph
is extended with the ability to have a defer attribute. A node which has
this defer attribute is accordingly called a deferred node.

The defer attribute is generally assigned to and removed from a
node by the reduction strategy. A natural way to do this is to create
nodes with the deferred attribute, if this is indicated, on a right-hand
side of a rule. When such a deferred node is rewritten it seems reason-
able to make the result of the rewrite inherit the deferred attribute, since
the ‘work’ is still going on. Furthermore, it seems sensible to remove
the deferred attribute when a node is in σ normal form, since then the
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‘work’ is done. From now on we shall always assume that every reduc-
tion strategy deals with deferred nodes in this way.

For lazy copying, in the same way as in the previous section, a new
primitive can be defined: a function LCopy, which produces as its result
a partial copy of its argument graph in which the copying is deferred for
those nodes that have the defer attribute. A node containing an applica-
tion of the LCopy function is also called a lazy copy node.

So when the function LCopy hits a deferred node the copying is de-
ferred, i.e. stopped temporarily until this node loses its defer attribute.
This is done as follows: instead of making a copy of the deferred node,
a node is created with an application of the function LCopy with the de-
ferred node as its argument. The semantics of the LCopy function deals
with deferring the copy in that case simply by the fact that an applica-
tion of the LCopy function with, as its argument, a deferred node is not
considered to be a redex. After creating such a node, the original LCopy
function continues as if the deferred node (with its descendants) was
copied.

Semantics of lazy copying

Like the Copy function, the LCopy function uses the internal structure of
its argument to create the result. Again, possible occurrences of the
LCopy function itself do not play a special role: they will also be copied.

Using the terminology of Chapter 5 the operational semantics of
lazy copying is defined as follows as an extension of the standard se-
mantics of graph rewriting defined in that chapter. Suppose there is a
graph γ over a set of symbols F and a set of node-ids N with contents
function Cγ and a set of rules ρ . F  is extended with a new symbol:
LCopy, the set of rules ρ is extended with a rule with left-hand side r:
LCopy x. Furthermore, a predicate P will be defined as a function from N
to {True, False}  indicating for each node whether the node has the de-
ferred attribute or not. The actual concrete definition of P is determined
by the reduction strategy. For this purpose, syntactically on a right-hand
side nodes can be attributed with a subscript d indicating to the reduc-
tion strategy that the corresponding created node has to be deferred. The
non-deferred subgraph of a node-id n in a graph g is defined as the
connected subgraph of g which is rooted at n and contains the node def-
initions of all non-deferred nodes in g that are reachable from n via non-
deferred nodes only.

Then, rewriting a graph in the case of the redex being an applica-
tion of the LCopy function takes place according to the following steps
(see also the previous section and Sections 5.3.3 and 5.6.1):

(1) An application of the LCopy function can only be chosen as a redex
if the corresponding argument does not have the deferred attribute.
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Now suppose this is the case: there is a matching mapping µ, i.e.
Cγ (µ(r)) = LCopy µ(x) and µ(x) does not have the deferred attribute.

(2) Then the contractum is constructed as follows: using for the node
definitions new node-ids, i.e. node-ids not present in γ, a graph γ '
is constructed which is equivalent to the non-deferred subgraph of
µ(x) in γ.

Since γ ' is equivalent to the non-deferred subgraph of µ(x) in
γ and new node-ids are used for the node definitions only, γ ' can
contain nodes n that have arguments that are deferred nodes in γ.
Let δ be the (not connected) graph containing the node definitions
of all such nodes n of γ ' (δ contains precisely those nodes that have
deferred arguments for which copying has to be deferred).

Now, for all nodes n in δ, each deferred argument x of n is
redirected in γ ' to a node with a new node-id y and the following
definition: y: LCopy x. In this case new node-ids are node-ids not
present in γ nor in γ ' (it is easy to check that the order in which this
is done does not influence the result).

This results in a new graph γ ''.
(3), (4) and (5) In the standard way, the graph γ '' is united with γ, µ(r) is

redirected to the root of γ '' and garbage collection takes place.

So the function LCopy produces as its result a (possibly partially de-
ferred) graph copy of its argument.

A lazy copying example reduced with the functional strategy.

Start → Duplicate (Facd 6)

Duplicate x → Pair (LCopy x) x

Fac 0 → 1
Fac n → * n (Fac (– – n))

The following rewrites occur (see also Figure 14.1):

@1:     Start
→ @2:     Duplicate @3, @3: Facd 6
→ @4: Pair @3 @5, @5: LCopy @3, @3:            Facd 6
→* @4: Pair @6 @5, @5: LCopy @6, @6: 720d
= @4: Pair @6 @5, @5:     LCopy @6, @6: 720
→ @4: Pair @6 @16, @6: 720, @16: 720

Note that the d attribute was inherited when the node @3 was redirected to
@6 which corresponded with the reduction of the node. The deferred attribute
of the node @6 is removed when the root normal form is reached.
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Start → Duplicate

6

Facd

→ Pair

6

Facd

LCopy →*

Pair

d720

LCopy = Pair

720

LCopy → Pair

720 720

Figure 14.1 Example of lazy copying.

14.2.3 Properties of TGRSs extended with lazy copying

The semantics of graph rewriting with lazy copying is in some sense in
between the semantics of term rewriting and the semantics of graph
rewriting. The choice can be made either to share or to copy. When no
copying is used a GRS is obtained, when all arguments are copied a
TRS is obtained. But the choice can be made in a very flexible way
since the copying can be demanded and deferred at any node.

An interesting aspect of lazy copying is that normal forms do not
contain defer attributes nor LCopy nodes. In a normal form every sub-
graph is trivially in σ normal form. Evaluation of nodes to σ normal
form eliminates the defer attributes such that all strict applications of the
LCopy rule can be reduced.

The following rules: result in the following normal forms:

Start → x: Pair 1 x @1: Pair 1 @1

Start → x: Paird 1 x @1: Pair 1 @1

Evidently, (lazy) copying influences the normal forms in the graph
world in a trivial way, since copies are made which mean that the result-
ing graphs are not graph equivalent anymore. However, the normal
forms in the graph world can also be influenced in a more subtle way,
since sharing can be broken up when a cycle is copied which contains
LCopy nodes or deferred nodes. The result will be partly unravelled with
respect to a full copy (a similar property holds for eager copying).

Partial unravelling (and in both cases an infinite normal form) due to copying:

Start → x: Pair 1 (LCopy x) @1: Pair 1 @11, || a cycle with a copy in it
@11: Pair 1 @21, || yields a partly unrav-
@21: LCopy @11 || elled cyclic structure.
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Start → x: Paird 1 (LCopy x) @1: Pair 1 @11, || when the node is not
@11: Pair 1 @21, || deferred anymore the
@21: LCopy @11 || result will be yielded.

Furthermore, the obtained normal form in the graph world is influenced
by the order of evaluation (and hence by annotations). If deferred nodes
are not reduced before an attempt to copy them is made, the result will
be partly unravelled.

Normal forms of TGRSs with lazy copying are influenced by the reduction or-
der. Consider the following rules:

Start → r: LCopy (A x z),
x: Id z,
z: B

I x → x

After the Start rule has been applied there are two possible reduction orders
that can be taken by a reduction strategy: First one can do the lazy copy.

@1:            LCopy @2,
@2: A @3 @4,
@3: Id @4,
@4: B

The identity function cannot be copied because it is deferred. This is remem-
bered by the new LCopy node. Now the identity rule is applied. Then, the de-
ferred property can be removed since the result is in σ normal form. Finally
the deferred copying can be completed.

@12: A @13 @14,
@13: LCopy @3,
@14: B,
@3:            Id @4,
@4: B

@12: A @13 @14,
@13: LCopy @4,
@14: B,
@4: Bd

@12: A @13 @14,
@13:        LCopy @4,
@14: B,
@4: B

@12: A @24 @14,
@24: B,
@4: B

The alternative is to do first the identity rule and then the lazy copy. This leads
to another graph normal form (shown below). So depending on the reduction
order chosen by the strategy, we have two different graph normal forms. The
unravellings of the two normal forms are equivalent.
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@1: LCopy @2,
@2: A @3 @4,
@3:     Id @4,
@4: B

@1: LCopy @2,
@2: A @4 @4,
@4: Bd

@1:     LCopy @2,
@2: A @4 @4,
@4: B

@12: A @14 @14,
@14: B

The unravelling of the normal forms of a rule system with lazy copying
will always be the same as the unravelling of the normal forms of the
same rule system without lazy copying (Barendsen and Smetsers, 1992;
Smetsers, 1993). In other words, unravelling is invariant with respect to
lazy copying. This is a very important property for term graph rewriting
and for the implementation of functional languages.

An important property for implementations based on lazy copying
has to do with copying LCopy nodes. It can happen that the evaluation of
the LCopy itself hits on an LCopy node that refers to a deferred node.
Then according to the semantics for that deferred node a new LCopy
node is created as usual. This, however, may lead to chains of LCopy
nodes. An optimized implementation can do the following: if the LCopy
action hits an LCopy node referring to a deferred node, only one new
LCopy node is created referring directly to the deferred node. It can be
proven that this leads to semantically equivalent results.

14.3 Modelling parallel graph rewriting

This section considers FGRSs only. Parallel instead of interleaved re-
duction is possible when it is guaranteed that the parallel rewrite steps
cannot interfere with each other. It will be shown that one can describe
the divide-and-conquer type of parallel graph reduction on distributed
architectures by using a special combination of lazy graph copying and
p-nf process annotations. This idea is extended to a more general
method that can be used to model the {Par} and {Self} annotations intro-
duced in the previous chapter. A variant of this method using p-rnf pro-
cess annotations is shown to have even greater flexibility for modelling
all kinds of process behaviour. Due to the use of lazy copying one can
control when graphs are copied from one processor to another while it is
possible to ship either work (redexes) or data (root normal forms).

14.3.1 Divide-and-conquer parallelism

With the help of strategy annotations, process annotations and lazy
copying we are going to model divide-and-conquer parallelism suited
for parallel evaluation on a distributed architecture. For divide-and-con-
quer evaluation, work (a redex) has to be copied to another processor.
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When the work is finished the result (a normal form) has to be shipped
back to the original processor. So lazy copying has to be performed
twice: one lazy copy is directly made when a parallel process is created
and one lazy copy is made later when the result is demanded by the par-
ent process. The redex gets the defer attribute to ensure that it is not
copied back before the normal form is reached.

When the result is demanded by the parent process it has to wait
until this result has been calculated. This locking can be realized easily:
just create a process on the redex. A demanding process now automati-
cally will have to wait until this process has delivered its normal form
while it is guaranteed that the work is indeed being evaluated.

A subgraph is self-contained when the root of the subgraph is the
only connection between the subgraph and the other parts of the graph.
The rewriting of such a self-contained subgraph cannot be interfered
with by rewriting actions performed elsewhere on other parts. Therefore
it is safe to evaluate the redex in parallel with the other rewriting steps.

A divide-and-conquer example in FGRSs (Figure 14.2):

Fib 0 → 1
Fib 1 → 1
Fib n → + (LCopy left) (LCopy right),

left: {p!!} Fibd (– ({*} LCopy n) 1),
right: {p!!} Fibd (– ({*} LCopy n) 2)

-

5 2

-

5 1

Processor 1

Processor 3Processor 2

+

Fibd Fibd

LCopy LCopy

p!! p!!

Figure 14.2 The process structure after one reduction of Fib 5. Each pro-
cess may be executed in parallel on a different processor.

This particular combination of {p!! } annotations with the LCopy functions and
defer indications makes it possible to evaluate both calls of Fib on another
processor after which the result is copied back to the original demanding pro-
cessor. The two process annotations indicate the reduction of the arguments
with the functional strategy to normal form. The subgraph on which each pro-
cess runs is made self-contained by actively taking copies (say n' and n") of
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the shared argument n. This lazy copy is made via the one step reduction {*}.
So on one processor the graph Fibd (– n' 1) is created, on the other Fibd (– n"
2). Furthermore, the parent process demands a lazy copy of the results to per-
form the addition, but the shipped redex is deferred and a process is created on
it. So the parent process will wait until the shipped redex has been reduced to
normal form, after which the lazy copy can be made.

14.3.2 Modelling loosely coupled evaluation

A method which makes it possible to model process behaviours that are
more general than divide-and-conquer must provide a way to define
arbitrary connections between processes and processors.

A lazy copy of a subgraph is generally not self-contained since it
may contain lazy copy nodes that point to those parts in the graph that
have to be copied later when they are in σ normal form and needed for
the evaluation. So the lazy copy nodes form the border of the copy.
Lazy copy nodes are natural candidates for serving as interconnections
between parallel executing processes because they induce further
copying when they are accessed. Hence, communication between paral-
lel processes can be realized via lazy copy nodes. In this context lazy
copy nodes are also called communication channels, or just channels,
because these nodes will provide the communication between proces-
sors. The semantics of lazy copy nodes implies that the flow of data
through a channel is the reverse of the direction of the node-id in the
graph. Since channels are ordinary nodes, they can be passed as param-
eters or be copied as well.

A subgraph is loosely connected if channels (lazy copy nodes) are
the only connections between the subgraph and the rest of the graph. So
a self-contained subgraph is loosely connected if its root is a channel.
Also, a loosely connected subgraph has the property that its nodes can
be reduced in parallel when they are prohibited from being accessed by
reducers running on other processes. Hence, a problem arises when a re-
ducer demands information from a channel that points to a subgraph lo-
cated on another processor. The root node of such a subgraph is called a
global node. There are two possibilities:

• The demanded subgraph is in σ normal form. The information can
be lazy copied to the demanding process, yielding again a loosely
connected subgraph of which the copied parts can be reduced in
parallel.

• The demanded subgraph is not in σ  normal form. The demanding
processor is not able to reduce the demanded subgraph when it is
located on another processor. Therefore, the demanding process
has to be suspended (locked) until the demanded information has
been reduced to σ normal form by another process (on the corre-
sponding processor). When the σ normal form is reached the sus-
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pended process can be awoken and it can continue as explained in
the previous case.

So processes running on different loosely connected subgraphs can
run in parallel with each other provided that these processes are locked
when they demand information from a channel pointing to a subgraph
which is not in σ normal form. To make safe parallel evaluation
possible this locking condition has to be fulfilled. This can be accom-
plished quite easily: always create a process on those subgraphs which
channels of a loosely connected subgraph refer to. So processes are
created on every deferred global node.

14.3.3 Translating {Par} and {Self}

In this subsection it is shown how annotations like {Par} and {Self} can be
expressed in FGRSs using process annotations {p!!} and lazy copying.

To realize the parallel evaluation of the indicated function, with
lazy copying a loosely connected subgraph is built. On this subgraph a
parallel reducer {p!! } is created which reduces the spawned-off redex to
normal form. The result has to be copied back lazily as well, so the root
of the subgraph has to be created with the deferred attribute such that
the result is not copied before the normal form is reached.

Each occurrence of: will be substituted by:

n : {Par} Sym a1 … am n : LCopy x,
x : {p!!} Id ({*} LCopy y),
y : Sym a1 … am

n : {Self} Sym a1 … am n : {p!!} Symd a1 … am

I is the identity function: I x → x. The lazy copy created for the parallel process
is loosely connected.

The semantics of {Self} just demands an interleaved executing pro-
cess yielding a normal form for which the {p!!} annotation can be used.
To prevent a subgraph being reduced by an interleaved reducer from be-
ing (lazy) copied while it is not yet in normal form, the subgraph is
marked deferred as well. So indeed, all created processes (parallel as
well as interleaved) are created on deferred subgraphs. In this way no
lazy copies can be made of a subgraph under reduction. So {Par} and
{Self} processes act as copy-stoppers. In fact, when this scheme is fol-
lowed the only way to defer copying of a subgraph is by creating such a
process on it. Hence, channels always refer to deferred subgraphs on
which processes are created. The lazy copied subgraph on which a par-
allel process is created can have references to other parts somewhere in
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the original graph (see Figure 14.3). The copying of these parts is post-
poned because they were under reduction by another process at the time
the lazy copy was made. Such a part will be lazy copied later to the
created parallel process in the usual way when it is needed for evalua-
tion and in normal form. Consequently, the process topologies that can
be created with these annotations can become very complex.

Sym

Processor 1

Processor 2

Id

LCopy

LCopyp!!

p!!

Figure 14.3 {Par} in terms of process annotations and lazy copying.

For instance, consider the following example using {Par} and {Self}:

Fib 0 → 1
Fib 1 → 1
Fib n → + left right,

left: {Par} Fib (– n 1),
right: {Self} Fib (– n 2)

This can be translated to:

Fib 0 → 1
Fib 1 → 1
Fib n → + (LCopy left) right,

left: {p!!} Id ({*} LCopy y),
y: Fib (– n 1),
right: {p!!} Fibd (– n 2)

The translation can be further optimized to:

Fib 0 → 1
Fib 1 → 1
Fib n → + (LCopy left) right,

left: {p!!} Fibd (– {*} (LCopy n) 1),
right: {p!!} Fibd (– n 2)
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With the scheme above the semantics of {Par} and {Self} are almost com-
pletely expressed in terms of the primitives introduced in this chapter.
There is one aspect which is different. In the scheme above a demand-
ing reducer has to wait until the result is in normal form. We argued in
Chapter 13 that to achieve optimal performance reducers should deliver
their results as soon as possible. So one should not wait until the whole
result is in normal form. Instead, that part of the graph that is already
being calculated should be shipped. This means in the parallel case for
normal form reducers that the deferred attribute should be taken away as
soon as the root is in root normal form, while the deferred attribute
should be added to the arguments of the node in root normal form to
prevent them being copied as well before they have been reduced to
root normal form.

There is another problem with normal form processes in general
which also has to do with the demand to yield a result as soon as possi-
ble. Suppose that a normal form process yields an n-tuple. The func-
tional strategy will force the evaluation of the elements of this tuple
from left to right. But, in a parallel environment there may be a process
demanding the result of the first element while another process may
demand the result of the last element. It would be nice if this last pro-
cess did not have to wait until all other tuple elements have been calcu-
lated. To make this possible one should create an (interleaved execut-
ing) process on any tuple element there is a demand for. One can also
see that this is conceptually sound due to the decomposition property
(see Chapter 13). If a tuple is known to be in PNF, so are the tuple ele-
ments (which means that it is sound to create a process on each of the
tuple elements as well).

Concluding, {Par} and {Self} can be modelled as described above.
However, an efficient implementation of normal form processes is
rather complicated (see also Chapters 16 and 17).

14.3.4 Basic primitives for modelling process behaviour

The {Par} and {Self} annotations are high-level process annotations yield-
ing a specific process behaviour suited for high-level functional pro-
gramming. Their semantics is based on a strategy that reduces to normal
form. However, in inter-process communication root normal forms play
an essential role. So when process behaviours in general are investi-
gated, it seems to be more natural to consider semantics based on pro-
cesses that reduce to root normal form.

For that purpose in this section two new annotations are intro-
duced: {P} for parallel processes and {I} for interleaved processes. The
only difference with the {Par} and {Self} annotations is that root normal
form processes {p!} are being used instead of normal form processes. The
{P} and {I} annotations have the advantage that they create processes that
deliver a result as soon as a root normal form is reached. Furthermore,



MODELLING PARALLEL GRAPH REWRITING  445

these annotations have the advantage (and disadvantage) that one ex-
plicitly can (has to) specify what has to happen with this root normal
form. Without special actions the whole subgraph in root normal form
(possibly containing redexes) is lazily copied back to the demanding
process. If the intention is only to ship the root in normal form one
should explicitly start new processes (using either {P} or {I} annotations)
on the arguments of this root node.

Each occurrence of: will be substituted by:

n : {P} Sym a1 … am n : LCopy x,
x : {p!} Id ({*} LCopy y),
y : Sym a1 … am

n : {I} Sym a1 … am n : {p!} Symd a1 … am

So in this scheme one has very fine control over what is shipped
(work or data) and when (by creating a root normal form or not). This is
handy when such fine tuning is needed. Take, for example, a function
application that delivers a large structure after relatively few reduction
steps. If a graph containing such a function application is submitted to
another processor then it is preferable for the communication cost not to
reduce this application before the submission. The fine control gets very
annoying when one actually wants to ship a normal form. In that case
the evaluation to normal form has to be programmed in the rewrite rules
using root normal form processes.

The {P} and {I} annotations are interesting to study the behaviour of
concurrent processes in functional languages due to the fine process
tuning they offer (see Chapter 15). Furthermore, they have the advan-
tage that they are relatively easy to implement (see Chapters 16 and 17).

Summary

• Strategy annotations are introduced in TGRSs. They make it possi-
ble to influence a single incarnation of a reduction strategy: the
current strategy function is interrupted and the specified strategy
function is applied on the indicated subgraph. When finally a σ
normal form is reached, the interrupted strategy continues.

• Process annotations are introduced in TGRSs. They make it possi-
ble to change the reduction strategy into a parallel strategy with
multiple incarnations of a reduction strategy: both the current strat-
egy function and the new strategy function deliver candidates for
rewriting. A reducer can be attached to each strategy function. So
reducers are created dynamically and they die when a σ normal
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form is reached. Parallel reduction is allowed under certain condi-
tions only. In general, processes have to be interleaved.

• With eager copying a complete subgraph can be duplicated. Eager
copying implies duplication of work.

• With lazy copying, one can copy a graph without duplicating work.
This is realized by deferring the copy action until the graph that
has to be copied is in σ normal form.

• With the lazy copy, primitive graph rewriting systems can be
specified for which the semantics are in some sense in between the
semantics of term rewriting and of graph rewriting. Subexpres-
sions can be shared as well as copied. For certain redexes copying
can be deferred until these redexes are in σ normal form.

• The use of lazy copying influences the resulting graph normal
forms. The resulting graph normal form can even depend on the
reduction order. But the unravellings of the normal forms will al-
ways be equivalent, which is required for term graph rewriting.

• A subgraph is loosely connected when lazy copy nodes (channels)
are the only connections between the subgraph and the rest of the
graph. Reduction on different loosely connected subgraphs can be
done in parallel. Communication between loosely connected sub-
graphs can be modelled via lazy copying.

• The annotations {Par} and {Self} of the previous chapter can be
modelled by using the proper combination of lazy copying with
process and strategy annotations.

• More basic primitives are the introduced {P} and {I} annotations
with semantics based on root normal form reduction. They can be
used to specify various process behaviours (see the next chapter).

EXERCISES

14.1 Parallel reduction always has to be fair, but it may in practice be
wise to reschedule certain reducers with a very low priority. Why?

14.2 Why is a deadlock in practice much more difficult to detect than a
cycle-in-spine error?

14.3 A graph that has to be lazy copied to another machine will in prac-
tice probably be copied twice. Why?

14.4 Is the following type: LCopy:: * -> UNQ * correct? Would the LCopy
function be useful as a primitive function for a Clean programmer?
How about the Copy function? Which one do you prefer and why?
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Chapter 15
Concurrent Clean

15.1 Extending Clean
to Concurrent Clean

15.2 Specifying process structures

15.3 Translation into Concurrent
Clean

This chapter extends the language Clean (see Chapter 8) with the
possibility to create parallel and interleaved executing processes. The
resulting language Concurrent Clean offers the {P} and {I} annotations
as introduced in Chapter 14. A refined version of the {P} annotation is
introduced as well. It can be used to give a more precise description of
the processor on which a parallel process has to be allocated.

The Concurrent Clean annotations are explained in Section 15.1.
How they can be used for the creation of various process topologies is
explained in Section 15.2. The chapter is concluded with a discussion
on how the {Par} and {Self} annotations of Chapter 13 can be translated
into Clean's {P} and {I} annotations.

15.1 Extending Clean to Concurrent Clean

Concurrent Clean (Nöcker et al., 1991b) incorporates a single extension
with respect to Clean as defined in Chapter 8: process annotations. The
process annotations of Concurrent Clean are precisely the {P} and {I}
annotations presented in Chapter 14. There is an additional option to
control the process allocation, i.e. one can specify with more or less
precision on which concrete processor a new process has to be created.

The process annotations are local annotations (see Section 8.3) that
can be specified on the right-hand side of a rewrite rule. They can be put
on a node (before the symbol) or on a node-id. Just as with local strict
annotations, it holds that if a local process annotation is put on a node,
this is equivalent to putting the annotation on each reference to that
node. Process annotations can have the form {P}, {I} or {P AT location} (see
Appendix B). The semantics of {P} and {I} in Concurrent Clean fully con-
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form with the definitions of {P} and {I} for parallel graph rewriting in
Chapter 14. The effect of the annotations is summarized below. Further-
more, some explicit choices related to the order in which local and
global annotations are effected in Clean are explained. The semantics of
{P AT location} will be a small extension of the semantics of {P}.

15.1.1 Creation of processes on processors

When, in Concurrent Clean, a process annotation occurs in a contractum
pattern, during a rewrite with the corresponding rule a new reducer will
be created with as task the evaluation of the corresponding subgraph.

With the {I} annotation a new interleaved reducer is created on the
same processor that reduces to root normal form (following the func-
tional strategy). Such an interleaved reducer dies when the root normal
form is reached. However, during the evaluation of this result other re-
ducers may have been created.

With the {P} annotation a new parallel reducer is created. This re-
ducer is preferably located on a different processor working on a lazy
copy of the corresponding subgraph, but, when this is somehow not
possible, it may be created on the same processor. Reducers that are lo-
cated on different processors can be executed in parallel with each
other. Reducers that run on the same processor run interleaved.

15.1.2 Locking

As explained before, an interleaved or parallel reducer will be locked if
it wants to reduce a redex that is already being reduced by some other
reducer. A locked reducer can continue when the redex has been re-
duced to root normal form. A reducer can demand the evaluation of a
subgraph located on another processor. Such a demand always takes
place via a communication channel (a lazy copy node). If the channel is
referring to a subgraph in root normal form, a lazy copy of this sub-
graph is made on the processor such that it can be further evaluated by
the demanding reducer. If the subgraph is not yet in root normal form,
the demanding process is locked. In that case, on the other processor a
reducer will always exist that reduces the subgraph to its root normal
form. So all communication channels are always being served by pro-
cesses to ensure that demanding processes are not locked unnecessarily.

15.1.3 Annotations and evaluation order

When there are several local annotations specified in a contractum, the
order in which they have to be effected is, as is defined in the previous
chapter, in principle depth-first with respect to the subgraph structure.
The underlying philosophy here is that in many cases it makes sense to
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deal with the arguments before a function is called. In fact, the defini-
tions of {P} and {I} in Chapter 14 also rely on this philosophy.

Local and global annotations

An extra complication with respect to the semantics of annotations in
Concurrent Clean is the fact that Clean (and hence Concurrent Clean)
also allows strict annotations to appear in the type specification of a
function, the global strict annotations (see Section 8.3.2). Consequently,
it has to be defined in what order local and global annotations are effec-
ted. The general idea here is that local annotations are used by a pro-
grammer to control explicitly the order of evaluation of the right-hand
side of a rewrite rule. Global annotations should not influence this ex-
plicit control. So the choice has been made to give priority to local an-
notations over global annotations. Of course, it still holds that when a
chosen function is actually evaluated, first its globally annotated argu-
ments will be reduced.

Maximizing actual parallelism

When there is not a clear hierarchy between annotations, it would be
nice if the degree of parallelism would be maximized in choosing be-
tween the various possibilities.

So for these cases the choice has been made first to effect {P}s, then
{I}s, and finally {!}s. These priorities also hold for the cyclic case and for
the case in which several annotations are put on the same node. At first
sight it may not seem to make much sense even to allow the latter case
because only one reducer will be able to reduce the indicated subgraph.
All others will be locked until the reduction is finished. However, a user
may want to specify such a behaviour in which, for example, first a
parallel reducer is started on a node (with a {P}) and immediately the
parent process will wait for the result (due to a {!}).

However, parallelism can be even further maximized, as is clari-
fied by the following situation: suppose that a local process annotation
and a global strict annotation are both valid for the same node. Then, as
defined above, the priority lies with creating the child process first in
order to maximize the parallelism. It can, however, be the case that the
parent process has again the choice between waiting for the child pro-
cess to produce its result and, for instance, evaluating another argument
of the corresponding function call. Then the parallel behaviour of the
program is improved when the other argument is chosen first. Other-
wise, the parent process would just be waiting in parallel.

So when arguments are equal in priority (e.g. they are either both
globally strict annotated or both locally strict annotated) the choice is
made to effect first those strict annotations for which it is known that
(owing to an analysis of the right-hand side of the corresponding rule)
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yet another process is not already evaluating the corresponding sub-
graph. In this way unintended waiting is avoided.

Example of maximizing parallelism:

:: Fib INT -> INT;
Fib n -> + ({P} Fib (– n 1)) (Fib (– n 2));

+ is globally strict in both arguments. A child process reduces a lazy copy of
the first argument in parallel. The parent continues with the second argument.

Fib n -> + (Fib (– n 1)) ({P} Fib (– n 2));

But if a child were to be created on the second argument instead, the parent
process would evaluate the first argument. In this way a nice symmetric be-
haviour is obtained, with the maximum amount of actual parallelism.

15.1.4 Controlling process allocation

Processors in a distributed architecture are generally sparsely connected.
When two parallel processes communicate heavily with each other it is
efficient to locate them on processors that are directly connected via a
hardware link. If one is aiming for optimal performance the actual loca-
tion of a process should be definable. For this reason there is a possibil-
ity in Concurrent Clean to specify the processor on which a parallel
process should be created. The use of this possibility might make the
efficiency of the program fully dependent on the actual machine the
program is running on. So the user is advised to refrain from the use of
this feature as much as possible.

The {P} annotation can be extended with a location directive {P AT
location}, where location is an expression of predefined type PROCID indi-
cating the processor on which the parallel process has to be created. In
the library deltaP (see Appendix B) functions are given that yield an ob-
ject of this type. Some of the primitives can be used without detailed
knowledge of the actual processor topology. For instance, with the
function NeighbourP one can create a process n links (hops) away from
another processor (e.g. the current processor CurrentP). With the primi-
tive ITOP one can specify exactly which processor is intended. The
primitive converts an integer value to a value of type PROCID. It is as-
sumed that each processor of a concrete architecture can be uniquely
identified by an integer value. How this mapping is defined is imple-
mentation-dependent. So the programmer must know this mapping and
the actual processor topology to make optimal use of it.

In any case, it holds that whatever the use of process locations is,
the result of the program cannot be influenced. The process locations
influence only the actual process allocation on the machine.
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15.2 Specifying process structures

The fact that Concurrent Clean is a graph rewriting language is clearly
an advantage for the specification of process topologies. The graph
structure can be used to define explicitly the demanded process topol-
ogy. This makes, for instance, the creation of cyclic process structures
much better to understand. To illustrate the use of graph rewriting in
specifying process topologies, several Concurrent Clean examples are
given below.

15.2.1 A hierarchical process topology

Divide-and-conquer parallelism is expressed with hierarchical process
topologies. They have a straightforward process behaviour. This can be
expressed very easily in Concurrent Clean.

Figure 15.1 Trace information shown by the Concurrent Clean simulator.
For each simulated processor the heap usage is displayed,
along with the workload relative to the other processors as
well as the number of inactive (locked) and active reducers.
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Figure 15.2 During simulation all kinds of statistical information can be
written to a file and examined afterwards.
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A hierarchical process topology in Concurrent Clean.

:: Fib INT -> INT;
Fib 0 -> 1;
Fib 1 -> 1;
Fib n -> + {P} left {P} right, IF  > n Threshold

-> + left right, IF  > n 2
-> ABORT "Fib called with negative value",

left: Fib ! (– n 1),
right: Fib ! (– n 2);

Both calls of Fib can be evaluated in parallel on another processor. First (– n
1) and (– n 2) are evaluated, forced by the local strict annotations because
these annotations are put on subgraphs of the graphs on which the process an-
notations are put. Next, two parallel processes are created on lazy copies of
right and left respectively. The parent process continues with the addition, but
it has to wait until the arguments are evaluated and have been lazy copied
back. A more efficient solution would be to create a child process for just one
of the arguments. The parent process then will automatically calculate the
other. This version has been used in Figures 15.1 and 15.2.

The Concurrent Clean system provides tools to simulate the behaviour
of parallel programs, using either the interpreter or the code generator.
In Figure 15.1 a snapshot is given of the trace information displayed by
the interpreter simulating Fib 22 on 9 processors. Also statistical infor-
mation can be produced and examined after execution (see Figure 15.2).

15.2.2 A simple non-hierarchical process topology

In the following example a simple non-hierarchical parallel reducer
topology is demonstrated. It serves the purpose of explaining how more
complicated parallel reducer topologies can be expressed.

-

2

--

Fib

Fib

Process 1 Process 2
Processor 1

+

Processor 2

Process 3

5

Figure 15.3 Intended distribution of the processes across the processors.
A snapshot of the program execution of Fib 5 is given.
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A non-hierarchical parallel reducer structure: the second argument of Fib will
be executed by another parallel reducer, but the argument of that call is re-
duced interleaved on the original processor (see Figure 15.3).

:: Fib INT -> INT;
Fib 0 -> 1;
Fib 1 -> 1;
Fib n -> + (Fib (– – n)) m,

m: {P} Fib o,
o: {I} – n 2;

15.2.3 Asynchronous process communication with streams

The small examples above are very similar to the examples using {Par}
and {Self} since only simple basic values are communicated. For graphs
yielding basic values the root normal form is also the normal form.
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Processor 1

died Filterdied Filter
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| |
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(a) (b)

Figure 15.4 (a) Snapshot of the filtering process working on a list contain-
ing the natural numbers from 1 to 7. (b) The root normal forms yielded by
successive interleaved Filter processes have been shipped with one lazy copy
action. The active interleaved Filter process acts as a copy-stopper and a new
channel has been created to this process. If more results are demanded, the
lazy copy action will be continued as soon as new results become available.

To express a general asynchronous communication stream a se-
quence of interleaved reducers has to be created. Each interleaved re-
ducer computes a partial result that can be sent across a channel. Just
before the reducer delivers its root normal form (and dies) it creates a
new interleaved reducer that delivers the next result in the same way.
When partial results are delivered more frequently than is demanded, all
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partial results (a burst) are sent at the same time. The lazy copy will
copy all partial results at once, but it stops at those nodes that are under
reduction by a reducer. In this way a parallel reducer can have several
streams and all kinds of (cyclic) graphs can be sent to another processor.

Example of an asynchronous communication behaviour with streams:

:: PrintList [INT] -> [CHAR];
PrintList list -> Print ({P} Filter 2 list);

:: Filter INT [INT] -> [INT];
Filter p [ ] -> [ ];
Filter p [ f | r ] -> Filter p r, IF  = (% f p) 0

-> [ f | {I} Filter p r ];

The process reducing PrintList creates a new parallel reducer: Filter. This pro-
cess removes from its second argument, which is a list, all the elements that
are divisible by the number 2. When Filter has computed an element of the re-
sult list it creates a new Filter process to compute the next number, after which
it dies. Several results may be added to the stream before they are communi-
cated on demand. The end of the stream will be a channel referring to the cur-
rent filtering process (see Figure 15.4).

The sieve of Eratosthenes is a classical example in which parallel siev-
ing processes are created dynamically in a pipeline (see also Section
13.3.1). In Concurrent Clean the sieve program is expressed as follows
(Limit is assumed to be defined in a MACRO, Filter is defined above):

:: Start -> [INT];
Start -> Primes;

:: Primes -> [INT];
Primes -> Sieve ({P} Gen 2);

:: Gen INT -> [INT];
Gen Limit -> [ ];
Gen n -> [ n | {I} Gen (++ n) ];

:: Sieve [INT] -> [INT];
Sieve [ ] -> [ ];
Sieve [ p | s ] -> [ p | {P} Sieve ({I} Filter p s) ];

15.2.4 Communicating work or data

When a reducer yields a root normal form it dies and the yielded sub-
graph in root normal form can be lazy copied to a demanding process.
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The copying process will postpone copying on those parts of the graph
that are under reduction by another process. This makes it possible to
decide which part of the graph is lazy copied back. The subgraph in root
normal form will generally contain several redexes (work). When such a
redex is returned in the lazy copy, work is shipped from one processor
to another. One can choose whether or not work should be locally cal-
culated before it is shipped. In that case an interleaved process should
be created on the corresponding redex before the root normal form is
delivered. So for each redex one can choose how it should be handled.

Choosing between data or work:

:: F (=> INT INT) BOOL -> [ INT ];
F g h -> Map g ({P} BigList h);

:: BigList BOOL -> [ INT ];
BigList h -> [ 0 | Gen 2 ], IF  h

-> [ 1 | {I} CompList ];

The function F maps a function g over a list that is computed by a parallel pro-
cess BigList (Map is defined in Section 8.1.6). Depending on the evaluation of
h, either a simple big list is returned or a big list that takes some computing
power. In the first case, work is copied back: the list itself is not returned but
an expression is returned that computes this list when it is evaluated. In the
second case data is copied, computed by an interleaved process CompList that
is created to compute the list before it is shipped.

15.2.5 Cyclic process topologies with location directives

The following example creates a cyclic parallel process structure, i.e. a
number of parallel reducers that are mutually dependent. In a similar
way cyclic process structures can be explicitly specified in more elabo-
rate examples, such as the Warshall example of Chapter 13.

:: Start -> [INT];
Start -> last: CreateProcs NrOfProcs last;

:: NrOfProcs -> INT;
NrOfProcs -> 5;

:: CreateProcs INT [INT] -> [INT];
CreateProcs 1 left -> Process 1 left;
CreateProcs pid left -> CreateProcs (– – pid)

({P} Process pid left);
:: Process INT [INT] -> [INT];

Process n left -> [ n | {I} Process (+ n (Hd left)) (Tl left) ];
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Process 1 Process 2 Process i Process N

Figure 15.5 A cyclic process structure.

CreateProcs is initially called with a reference to itself, thus forming a cyclic
process structure of length one. CreateProcs recursively creates new pro-
cesses Process. Each Process has a process number. CreateProcs will finally
form the first Process in the cycle with process number 1. Each Process is
connected to the next one, i.e. the one with the next pid number, by means of a
channel (see Figure 15.5). During the creation of the processes this channel is
passed as a parameter: left. Hd and Tl take, in a lazy way, respectively the head
and the tail of the channel. Note that the type of left has to be the same as the
result type of CreateProcs and Process. The function Process will in general
produce a lazy stream of values (in the example integer values) that can be
used as input by another Process. Owing to the use of {I} annotations recur-
sively a part of the stream can be produced as a result. In the example an in-
finite list of rapidly increasing numbers is generated ([1, 3, 8, 20, 48, …]).

As explained in Chapter 14, one has to be careful not to introduce
deadlock when cyclic process topologies are specified using recursive
functions. A subtle deadlock example is given by a variant of the func-
tion definition Process of the cyclic process topology example above.

:: Process INT [INT] -> [INT];
Process n [ hd | tl ] -> [ n | {I} Process (+ n hd) tl ];

A deadlock occurs since each process, due to the pattern match, wants the re-
sult of the previous process before it creates a result itself.

Location directives

In the cyclic example given above every process is communicating
heavily with both its neighbours. So it is probably more efficient to
create a new process on a processor to which a direct link exists. This
can be done by replacing the {P} annotations above by the location di-
rective {P AT NeighbourP 1 CurrentP}. However, this only guarantees that
the new process will be located on a direct neighbour: it can happen that
effectively only two processors are used. This can be avoided by mak-
ing use of knowledge about the actual machine topology, e.g. using the
location function ITOP (see also Appendix B).

A cycle of processes assuming that a neighbouring processor has an identifi-
cation one lower than the previous one.

CreateProcs p l -> CreateProcs (– – p) ({P AT ITOP p} Process p l);
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15.3 Translation into Concurrent Clean

In many cases it is possible to translate {Par} and {Self} annotations to a
collection of {P}, {I} and {!} annotations. When root normal forms are
equivalent to normal forms (e.g. for simple basic values) the translation
is trivial. When this is not the case, a sequence of annotations is needed
to achieve the evaluation to normal form. A process reducing to normal
form can be realized by creation of a new interleaved process just be-
fore the current one delivers its root normal form. Compare for instance
the sieve example in this chapter with the sieve example in Chapter 13.
The creation of additional interleaved processes has to be explicitly
specified in the rewrite rules. Consequently, it is not possible to use this
translation scheme to force normal form evaluation of an arbitrary
function passed as an argument to a function.

Limitation of simulating normal form processes via a sequence of root normal
form processes:

:: ParMap (=> x y) [x] -> [y];
ParMap f [ ] -> [ ];
ParMap f [ x | xs ] -> [ {P} f x | {I} ParMap f xs ];

The parallel process that is created in the ParMap example only evaluates the
unknown function application f x to root normal form. It is not possible to
force the evaluation of such an unknown function to normal form.

So the ability to create processes that reduce arbitrary unknown func-
tions to normal form gives more expressive power to the language. As
already stated in Chapter 13, normal form processes are often useful,
but also hard to implement efficiently. Process types (see Chapter
13.2.5) can help to set up efficient communication streams between
normal form processes.

The {P} and {I} annotations have the advantage that they allow a
more precise control over the interaction between processes. So they are
also very useful primitives. They are less suited when evaluation to
normal form is demanded.

In future versions of Concurrent Clean normal form processes with
process types will be added in addition to the current annotations. But it
remains to be seen what kind of annotations in the long term are both
suitable from a programming point of view as well as efficiently im-
plementable on a wide range of architectures. A different approach can
be found in Darlington et al. (1991), who propose a wide range of spe-
cial purpose annotations (called skeletons) for all kinds of architectures
(varying from MIMD to SIMD machines).
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Summary

• Concurrent Clean extends Clean with process annotations {P}, {I}
and {P AT location}. Their semantics conforms fully to the semantics
of parallel graph rewriting as given in Chapter 14.

• With the {I} annotation a new interleaved reducer is created on the
same processor reducing to root normal form following the func-
tional strategy. With the {P} annotation a parallel reducer is created
preferably running on a different processor. Communication takes
place via lazy copying, as explained in the previous chapter.

• A location directive can be added to indicate on which processor a
process should be created. Location directives cannot influence the
result of the program.

• It is not always possible to translate {Par} and {Self} annotations to a
collection of {P}, {I} and {!} annotations. Both kinds of annotation are
useful. {P} and {I} give precise control over the distribution of work
or data and are efficiently implementable because they fit very well
in the default evaluation order (which is root normal form evalua-
tion). {Par} and {Self} are much more difficult to implement effi-
ciently but they are user friendly because processes are in practice
often created to yield a normal form.

EXERCISES

15.1 What other kind of location directives can you imagine as being
useful? Explain why.

15.2 Rewrite Exercises 13.2 and 13.3 in Concurrent Clean. Simulate
parallelism using the simulator on 1, 2, 4, 8 and 16 processors.
Measure the speed-ups. Explain the results.

15.3 Answer the questions of Exercise 15.2 for the sieve example given
in Section 15.2.3.

15.4 Would it not be better for parallel evaluation to have an eager lan-
guage instead of a lazy one?

15.5 Can branch-and-bound parallelism be expressed in a pure func-
tional language?
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Chapter 16
The Parallel ABC machine

16.1 About the PABC machine
16.2 Interleaved reduction
16.3 Parallel reduction

16.4 Program execution
16.5 Translating Concurrent Clean

into PABC code

This chapter presents the PABC machine, a parallel version of the ab-
stract ABC machine (see Chapter 10). This PABC machine serves as
an abstraction of the class of concrete parallel machines we focus on:
MIMD machines with distributed memories. These concrete machine
architectures are much more complex than their sequential counter-
parts. There are many difficult implementation problems that have to be
solved before parallel programs can be executed efficiently on them.
For example, one has to control the distribution of work such that each
processor has enough work to do, one has to take care of the routing of
messages over the communication network, garbage has to be col-
lected that can be spread across several processors, and so on. Many
of these problems are inherent to these MIMD architectures. They have
to be solved for any parallel program, regardless of the language.

The PABC machine level abstracts from most of these implemen-
tation issues. The abstract machine would otherwise become much too
complex. We will focus on the essential aspects of parallel graph
rewriting only, such as process creation, lazy copying and the commu-
nication between arbitrary processes and processors.

For the description of the PABC machine the specification of the
ABC machine presented in Chapter 10 is taken and extended. In this
way again an executable specification is obtained. It is remarkable that
the concurrency aspects of the machine can still be described under-
standably in a sequential functional language.

 First, Section 16.1 discusses some basic ideas behind the archi-
tectural design of the PABC machine. Then, it will be described in detail
how {P} and {I} annotations are handled. The design of the PABC ma-
chine architecture is such that the machine is also capable of dealing
with more sophisticated annotations, such as {Par} and {Self}. In
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Section 16.2 interleaved reduction is described, while parallel reduction
is treated in Section 16.3. How the execution of the different (parallel)
machine components is handled is explained in Section 16.4. Section
16.5 contains a small example showing how Concurrent Clean's pro-
cess annotations are straightforwardly translated into PABC code.

16.1 About the PABC machine

In Section 13.1 we have assumed that concurrent functional programs at
least have to run conveniently on MIMD machines with a distributed
memory architecture. The main goal of the PABC design (Nöcker et al.,
1991a) is to introduce an abstract machine which can be efficiently im-
plemented on those kinds of architecture. The PABC machine is defined
as an extension of the ABC machine such that the sequential optimiza-
tions can still be applied in the parallel case.

The machine components of the PABC machine are more complex
than those of the ABC machine. Instead of having one reducer, there are
now several reducers possible on one single processor, while there are
several processors as well. All processes and processors can communi-
cate with each other. Processes are created dynamically, have to be
scheduled and can be active or suspended (locked). In order to let this
whole machinery work, it is no longer possible to have only passive
machine components. As in real life an operating system is required as
one of the processes on a processor. Furthermore, a communication pro-
cess is provided on each processor to take care of the communication
with the other processors.

16.1.1 The basic architecture of the PABC machine

The PABC machine consists of a number of processors. On each pro-
cessor several processes are running interleaved with each other: zero or
more reducers, an operating system and a communication process.

In principle, each reducer requires a private ABC machine (as in-
troduced in Chapter 10). However, some of the ABC machine compo-
nents can be shared by reducers executing on the same processor. The
contents of the program store and descriptor store do not change during
execution and are identical for each reducer. They can therefore be
shared without problems. Interleaved reducers all have direct access to
the graph, so the graph store has to be shared as well. The contents of
this store can be changed by the reducers running on the processor. So
one has to be careful and make sure that the graph store always remains
in a consistent state.  It will be clear that the A-, B- and C-stacks, as well
as the program counter, cannot be shared between the reducers. Each
reducer gets a private local version of these storages (see Figure 16.1).

Compared with the sequential ABC machine, there are also some
differences. Input/output handling, as well as all interaction with the
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other processors, will now be handled by the operating system in collab-
oration with the communication process. Hence, input/output channels
are no longer needed. There are also two new components needed for
each reducer. One new machine component, the N-queue, is used by a
reducer to store the node-ids of subgraphs that have to be reduced by it
(the Nodes to be reduced). This is convenient for the creation of reduc-
ers that reduce to normal form or that use some other reduction strategy.
Another new component, the waiting list register, is a register used by a
reducer to temporarily store the list of locked reducers that have to be
awakened when the root normal form is reached. Finally, there is a
small administration store located on each processor that, among other
things, is used to identify the current reducer running on it.
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Figure 16.1 The basic architecture of the parallel ABC machine.

The operating system deals with the scheduling of the interleaved
reducers and the communication requests coming from the reducers or
the communication process. All processes can ask assistance from the
operating system by putting a request in a queue (the call queue) of the
operating system. The operating system process handles these requests.
It can ask assistance from the communication process to handle com-
munication between parallel reducers executing on different processors.

16.1.2 The description method

For the description of the PABC machine the specification of the ABC
machine presented in Chapter 10 is taken and extended in the same
spirit. But there are some differences. As explained above, there are
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several kinds of process on each processor: reducers, an operating sys-
tem, and a communication process. Each such process performs differ-
ent kinds of state transitions, and therefore different kinds of instruc-
tions are needed. Of course, it would have been possible to define in-
structions that work on the machine as a whole. But such a design
would have led to a very ugly specification. So in the PABC machine
specification active components are added: processes like the operating
system and the communication process that have their own instruction
set. Hence, besides ordinary PABC instructions (for reducers), there are
operating system instructions (stored in the call queue) and communi-
cation process instructions (a fixed program). Each process uses some
of the components of the machine for its own purpose (local compo-
nents) while other components are shared with other processes (global
components). The shared components are used to interface the different
processes with each other.

The following sections briefly discuss the specifications of the
most interesting parts of the PABC machine. The new instructions are
summarized with a short explanation. The full specification of the
PABC machine (including micro-instructions) is given in Appendix D.

The reducers

The part of the processor that is seen by a reducer, the reducer state,
consists of three parts: the first part contains PABC machine storages
local for the reducer (local_state), the second part contains the global
storages (global_state) it shares with other reducers, and the last part is
the call queue (opsys_callqueue) in which calls to the operating system
can be put.

instruction = = state -> state
state = = (local_state, global_state, opsys_callqueue)
local_state = = (astack, bstack, cstack, nqueue, pc, wlist)
global_state = = (admin, graphstore, descrstore, programstore)

The PABC machine in principle incorporates all sequential ABC ma-
chine instructions. However, owing to the new state structure the de-
scription of each of these ABC instructions has to be slightly adapted.

The PABC specification of the pop_a instruction (see also Section 10.3.2):

pop_a:: nr_args -> instruction
pop_a nr_args ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as',bs,cs,nq,pc,wl),glob,cq)
where as' = as_popn nr_args as
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This actually shows a weakness of a specification in which state transi-
tion functions are being used. Even a small change in the state has as a
consequence that all functions acting on that state have to be changed as
well. A record-like data structure with named fields (as is present in
ML and in many imperative programming languages) solves this prob-
lem. Record structures will be incorporated in a future version of Clean.

Some of the ABC machine instructions have to be changed some-
what further to incorporate context switches (see Section 16.2.2).

There are of course also several new machine instructions added
for the control of process creation and communication. These new in-
structions are listed below (see also Sections 16.2 and 16.3).

new_ext_reducer :: instrid -> a_src -> instruction || create a {P} reducer
new_int_reducer :: instrid -> a_src -> instruction || create a {I} reducer
stop_reducer :: instruction || stop current reducer

newP :: instruction || get processor-id for new process
randomP :: instruction || get a random processor-id
currentP :: instruction || get current processor-id
neighbourP :: instruction || get processor-id of a neighbour
channelP :: a_src -> instruction || get processor-id stored in channel

create_channel :: instruction || create new channel
send_graph :: a_src -> a_src -> instruction || lazy copy graph
send_request :: a_src -> instruction || request for lazy copy

is_empty_n :: instruction || are there node-ids in the N-queue?
get_node :: instruction || fetch node to reduce from N-queue
set_continue :: a_src -> instruction || store node to be reduced in N-queue

set_wait :: a_src -> instruction || administer reducer waiting for rnf
suspend :: instruction || lock current reducer
getWL :: a_src -> instruction || store locked reducers in register wl
release :: instruction || unlock reducers stored in wl

The operating system

The new parallel reducer instructions generally end with a request via
the call queue (opsys_callqueue) to the operating system to do the actual
work. Such an operating system call is an instruction that can be exe-
cuted by the operating system (opsys_instruction). If the operating system
gets control, it executes these calls, removing them from the queue.

As in real life, the operating system can be seen as the software ex-
tension of the machine. So the complete state of the processor is deter-
mined by the state of the operating system itself (opsys_state). The oper-
ating system has complete control over all processes on the processor. It
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therefore manages its own administration (schedule_adm) that gives the
possibility to control (schedule) all the reducers living on the machine.
To control communication the operating system also has access to the
shared global components of the reducers. To communicate with the
communication process it furthermore has access to the input and output
list of messages (in_msgs, out_msgs).

processor = = opsys_state
opsys_state = = (schedule_adm,

in_msgs, out_msgs, global_state, opsys_callqueue)
schedule_adm = = ([ active ], [ passive ])
active = = reducer
passive = = reducer
reducer = = (redid, local_state)

A full list of the operating system instructions is given below.

opsys_instruction = = opsys_state -> opsys_state

os_suspend_reducer :: opsys_instruction
os_schedule :: opsys_instruction
os_reducerprio :: opsys_instruction

os_send_newreducer :: instrid -> nodeid -> opsys_instruction
os_new_reducer :: instrid -> nodeid -> opsys_instruction
os_stop_reducer :: opsys_instruction
os_halt :: opsys_instruction

os_send_newchannel :: procid -> nodeid -> opsys_instruction
os_send_graph :: nodeid -> nodeid -> opsys_instruction
os_send_request :: nodeid -> opsys_instruction
os_setwait :: nodeid -> opsys_instruction
os_release :: wlist -> opsys_instruction

os_print :: string -> opsys_instruction

The communication process

The communication process handles all interaction with other proces-
sors. The communication process is a simple process which repeatedly
performs the same single instruction (cp_accept_msg). This instruction
will see to it that a message is delivered to the intended processor.

comproc_instruction = = comproc_state -> comproc_state
cp_accept_msg:: msg_contents -> comproc_instruction
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The communication process has access to the global structures of
the processor such that it can read from and write to the graph store to
ship lazy copies. A request for an outgoing message is done by the op-
erating system. It puts a message into the output message list (out_msgs)
of the communication processor. The incoming messages are fully dealt
with by the communication process (in_msgs). For this purpose, the
communication process can call the operating system if necessary via
the call queue.

comproc_state = = (in_msgs, out_msgs, global_state, opsys_callqueue)
in_msgs = = [ msg_contents ]
out_msgs = = [ message ]
message = = (proc_src, proc_dst, msg_contents)

The communication network

An outgoing message sent away by a communication process has to be
sent across a communication network such that it can be received as an
incoming message by the communication process of the indicated pro-
cessor. A simple communication network is chosen: all processors are
connected with each other. Another option would have been to model a
sparsely connected network topology as well as the routing of messages
across such a network. This is assumed to be out of the scope of our ab-
stract specification. Of course, if one is interested in modelling these as-
pects, they can be specified in any detail.

network = = [network_element]
network_element :: = P processor

16.2 Interleaved reduction

16.2.1 Creation and abortion of interleaved reducers

The PABC instruction new_int_reducer creates a new interleaved execut-
ing process reducing a graph of which the root is assumed to be on the
A-stack (a_depth). The current reducer executing this instruction asks
the operating system to perform the creation (os_new_reducer is put in
the call queue with the micro-instruction os_call). The operating system
will administer the new reducer as active and initialize the local storages
such as the A-, B- and C-stacks, as usual.

Reducers created by an {I}-annotation reduce the graph to root nor-
mal form. To support other kinds of reducers, new_int_reducer is
parametrized with an entry (instrid) to the code that drives the execution
of the reducer to (root) normal form.
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new_int_reducer:: instrid -> a_src -> instruction
new_int_reducer code a_depth ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where nid = as_get a_depth as

cq' = os_call cq [ os_new_reducer code nid ]

os_new_reducer code nid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs',in,out,(ad',gs,ds,ps),instrs)

where rs' = (act_reds ++ [ new_red ], pass_reds)
(act_reds, pass_reds) = rs
(ad', new_redid) = ad_new_redid ad
new_red = (new_redid,(as,bs,cs,nq,pc,wl))

where as = as_init
bs = bs_init
cs = cs_init
nq = nq_new nid
pc = pc_update code pc_init
wl = wl_init

A reducer can quit with the instruction stop_reducer. This means that the
reducer is stopped and all its stacks frames are released. This is effec-
tively achieved by the operating system instruction os_stop_reducer.

16.2.2 Scheduling

Several reducers can exist on one processor. But only one of them can
be executing: this is called the current reducer. All others have to wait
until it is their turn for execution. At a certain point in time a context
switch takes place: the execution of the current reducer is interrupted
and the execution can proceed with one of the other reducers, which
then becomes the new current reducer. Some kind of scheduling mech-
anism is needed: a mechanism that decides, when a context switch oc-
curs, which of the active reducers on a processor is chosen for execu-
tion. Such a scheduling mechanism has to fulfil several requirements.

• Some kind of fairness should be assured (see Section 14.1). A fair
distribution of the execution power avoids unnecessary locking of
reducers and is furthermore needed because one can create reduc-
ers that do not contribute to the computation of the final result. So
one should switch between interleaved processes regularly.

• The semantics prescribes that a context switch is only allowed after
a rewrite step. And indeed, context switches cannot be allowed at
arbitrary moments. When a process is manipulating globally ac-
cessible information (such as the graph store) it is possible that this
information is temporarily in an inconsistent state. A context
switch at such a moment is prohibited. Since graph rewriting on the
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(P)ABC machine is optimized, there are some places in the code
where it can be shown that a context switch cannot do any harm
(for instance, a node is only rewritten when a root normal form is
reached (see Chapter 11)).

• The sequential parts of the parallel ABC code should be amenable
to the same optimizations as the sequential ABC code. In a basic
block various kinds of optimization are performed (see Chapter
12). These optimizations would no longer be applicable if context
switches within a basic block were allowed.

• A context switch is an expensive operation on a concrete machine
(although the costs may vary from machine to machine). It should
therefore be avoided as much as possible. Furthermore, on some
machines context switches are only possible at specific points (e.g.
transputers generate switches on jump instructions only).

Therefore, in the PABC machine the current reducer will never get in-
terrupted by another reducer unless it executes an instruction in which
explicitly a scheduling request is made to the operating system (using
the instruction os_schedule). This happens in all instructions that end a
sequential basic block (jmp, jsr, print, print_symbol) and furthermore in a
few new instructions added for parallel processing (explained later on).

jsr address ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs',nq,pc',wl),glob,cq')

where pc' = pc_update address pc
cs' = cs_push (pc_get pc) cs
cq' = os_call cq [os_schedule]

print string (loc,glob,cq)
= (loc,glob,cq')

where cq' = os_call cq [ os_print string, os_schedule ]

Given the generated code it can be shown that, when these instructions
are being used and a context switch is requested, all the globally acces-
sible stores on a processor will be in a consistent state.

The abstract operating system uses a very simple scheduling algo-
rithm. The reducers living on a processor are divided into active reduc-
ers (wanting a time slice) and inactive reducers (that are locked or
suspended because they are waiting for information). A context switch
means that the current reducer is put at the end of a queue of active re-
ducers and the next active reducer is fetched from the start of the queue.
This round robin scheduling algorithm is just one method of dividing
processor time fairly between active reducers. Any other algorithm can
also be used as long as it obeys the fairness condition discussed above.
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os_schedule ((act_reds,pass_reds),in,out,glob,instrs)
= ((act_reds,pass_reds),in,out,glob,instrs), if act_reds = [ ]
= (rs',in,out,glob,instrs). otherwise

where rs' = (new_act_reds, pass_reds)
new_act_reds = rest_act_reds ++ [ red ]
red : rest_act_reds = act_reds

16.2.3 Locking of reducers

If a reducer wants to reduce a node that is already under reduction, it
has to be locked until the reduction of that node is finished (see Section
14.3). The first reducer that takes a node under reduction will reserve it
before doing anything else. Of course, such a reservation can be done
by a mark in the node, but it is more elegant and efficient to use the
code field in the root node. In that case no flags nor tests are necessary.
For this purpose, the node entry of the reduction code of each function
has to be changed (see Section 11.1).

[ Label
"n_entry" , || The node entry

Set_entry "_reserve" arity , || Reserve this node
Push_args 0 arity arity , || Proceed as usual with the node entry
…

As a result, another reducer accessing a node with _reserve as code field
(such a node is said to be reserved or locked) will enter the _reserve
code instead of entering its node entry. The reserve code takes care of
the suspension (or locking) of other reducers executing this code.

[ Label
"_reserve" , || Code for locked nodes

Set_wait 0 , || Put this reducer in the waiting list of this node
Suspend , || Lock this reducer
Rtn ] || Return when awake again

By executing the set_wait instruction of the reserve code the current re-
ducer is administered as being waiting for the result of the redex under
reduction, after which the reducer locks itself with the suspend instruc-
tion. The operating system will put the reducer in the list of inactive re-
ducers and perform a context switch to one of the active ones.

Reducers that hit a locked node are collected in a waiting list. A
pointer to this list is stored in the node on which they are waiting. When
such a node is overwritten with its root normal form, the locked reduc-
ers have to be released and made active. This has to be done after the
update because otherwise the node is not in a consistent state yet. How-
ever, when the update takes place, the pointer to the waiting list is lost.
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Therefore, the pointer is temporarily stored (using the getWL instruction)
in a special register (the waiting list register wl) before the update takes
place. After the update the reducers stored in this register are released by
the release instruction.

getWL:: a_src -> instruction
getWL a_depth ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)

= ((as,bs,cs,nq,pc,wl'),(ad,gs,ds,ps),cq)
where wl' = n_wl_get (gs_get nid gs)

nid = as_get a_depth as

release:: instruction
release ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where cq' = os_call cq [ os_release wl ], if ~ wl_empty wl

= cq, otherwise

An example of the use of these instructions for an integer node:

GetWL a_depth , || Get waiting list from node in wl
FillI 3 a_depth , || Update the node with integer value 3
Release , || Release locked reducers
…

16.2.4 N-queue

The N-queue is a special store in the PABC machine containing the
node-ids of the root nodes of subgraphs that have to be reduced to root
normal form by the corresponding reducer. A reducer stops if its queue
is empty. For a root normal form reducer ({P} and {I} annotations) one
node is stored in the N-queue when the reducer is created.

[ Label
"_rnf_reducer" , || Code for a root normal form reducer

Get_node , || Get the node from the N-queue
Jsr_eval , || Reduce that node
Pop_a 1 , || Clean up stack
Stop_reducer ] || Rnf reached: stop

The N-queue store is added to the PABC machine to make the im-
plementation of other kinds of reducer (such as normal form reducers)
possible. The code for a normal form reducer very much resembles a
driver in the sequential case (see Section 11.2) recursively invoking root
normal form reducers. Each node that has to be reduced to normal form
is stored in the queue. When the root normal form is reached the corre-
sponding node is removed from the queue, while its arguments are
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stored. In their turn they will be evaluated in the same way until a nor-
mal form is obtained. The parallel context offers the opportunity to re-
duce the nodes in the N -queue in any order, even interleaved. This
makes it possible to increase the effective parallelism. For instance,
when a normal form reducer is locked it can still continue with any of
the other nodes in the N-queue. Also, when a request from another re-
ducer comes in, a normal form reducer can choose to create a new in-
ternal reducer to reduce the corresponding node in the N-queue such
that the request can be answered swiftly. This requires a special code
generation scheme for normal form processes. For optimal performance
it might be better to create more special PABC machine instructions to
deal with such situations. Accessing the N-queue requires two new in-
structions: get_node, which moves the first node in the N-queue to the A-
stack (and pushes a boolean on the B-stack that indicates this was pos-
sible), and set_continue which appends a node to the N-queue.

get_node:: instruction
get_node ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as',bs,cs,nq',pc,wl),glob,cq)
where as' = as_push n as

n = nq_first nq
nq' = nq_remove nq

set_continue :: a_src -> instruction
set_continue depth ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq',pc,wl),glob,cq)
where n = as_get depth as

nq' = nq_add n nq

16.2.5 Representing deferred nodes

The semantics of the {P} and {I} annotation prescribes that all processes
are created on a deferred node. In the PABC machine a node with a de-
ferred attribute is represented by a special indirection node. So all
pointers to a node with a deferred attribute will actually point to such a
deferred indirection node. The advantage of this representation is that
such a deferred indirection node can easily be treated specially by using
a special descriptor (important for lazy copying). When the indirection
node is overwritten the deferred attribute is automatically removed. Pro-
cesses that are trying to evaluate a deferred node which is already under
reduction have to be locked, as is explained in Section 16.2.3.

[ Label , || Code for evaluating a
"_defer_code" , || deferred indirection node

Set_entry "_reserve" 1 , || Reserve this node
Push_args 0 1 1 , || Get graph to evaluate
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Jsr_eval , || Evaluate graph
GetWL 1 , || Save locked reducers in wl
Fill_a 0 1 , || Update node with result
Release , || Release locked reducers
Pop_a 1 , || Clean up stack
Rtn ] || End of defer code

16.3 Parallel reduction

16.3.1 Creation of parallel reducers

The creation of a parallel reducer is split into several phases to keep the
machine as flexible as possible:

(1) build the graph that has to be reduced in parallel;
(2) find a processor on which the reducer can be created;
(3) create a channel to that processor;
(4) make a lazy copy of the graph to be reduced;
(5) start a new parallel reducer on the remote graph.

A typical PABC instruction sequence resulting from a {P} annotation:

... , || Code for building the graph
NewP , || Destination proc-id on B-stack
Create_channel , || Create channel to that processor
Send_graph 1 0 , || Send lazy copy graph to reduce
New_ext_reducer "_rnf_reducer" 0, || Create external reducer process

Build the graph

When a redex is lazy copied to another processor the corresponding
subgraph has to exist on the shipping processor. Due to the optimiza-
tions this might not always be the case. Then, additional code has to be
generated that constructs a proper subgraph on the local processor be-
fore it is lazy copied to the destination processor. No new instructions
are needed for this graph construction.

Find a processor

In Concurrent Clean processes can be created with a location directive
(see Chapter 15). In the PABC machine each processor has a unique
identification, the processor-id. Special instructions are provided (newP,
randomP, currentP, neighbourP and channelP) that push a processor-id on
top of the B-stack to support these location directives.
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Create a channel

References to nodes on another processor are represented by channel
nodes (a lazy copy node). On the PABC machine level, a special indi-
rection node is used with an argument field containing an identification
of the process on the remote processor. The instruction create_channel
assumes the remote processor-id for the channel to be on top of the B-
stack. To inform the remote processor that a channel has to be created, a
message is sent to it. The remote processor will create a new empty
global node. Its node-id will be returned over the communication net-
work. With the processor-id it is stored in the new channel node.

create_channel:: instruction
create_channel ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)

= ((as',bs',cs,nq,pc,wl),(ad,gs',ds,ps),cq')
where bs' = bs_popn 1 bs

pid = bs_getP 0 bs
(gs',nid) = gs_newchannel pid gs
as' = as_push nid as
cq' = os_call cq [ os_send_newchannel pid nid,

os_setwait nid,
os_suspend_reducer ]

Make a lazy copy of the graph

send_graph sends the graph that has to be reduced in parallel to its desti-
nation. The destination address is fetched from the channel node.

send_graph:: a_src -> a_src -> instruction
send_graph graph_depth chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where chanid = as_get chan_depth as

graphid = as_get graph_depth as
cq' = os_call cq [ os_send_graph graphid chanid ]

The lazy copying algorithm is given in Appendix D. Copying has to
preserve the structure of the graph. The algorithm requires two scans of
the graph: one scan to build the copy and one scan to remove all the for-
warding references and markers that have been created to preserve the
shared structure in the copy.

Start a new parallel reducer

Finally, the new reducer will be started on the remote processor
(remembered in the channel node) using the instruction new_ext_reducer.
A message is sent to the remote processor for creating the new reducer.
The reducer is created with a label code indicating the kind of reduction



PARALLEL REDUCTION  473

code that has to be executed (e.g. to root normal form or to normal
form). The remote processor will create and initialize a new reducer and
put the root node of the remote graph in the N-queue as usual.

new_ext_reducer:: instrid -> a_src -> instruction
new_ext_reducer code chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where chanid = as_get chan_depth as

cq' = os_call cq [ os_send_newreducer code chanid ]

16.3.2 Demanding a lazy copy across a channel

The result of a parallel process is communicated to a demanding reducer
when it is needed, i.e. when a corresponding channel node is evaluated.
A channel node is evaluated as any other node: by executing its code.

[ Label
"_channel_code" , || The code associated with a channel node

Set_entry "_reserve" 0, || Reserve the channel node
Send_request 0 , || Send a demand for the result
Set_wait 0 , || Put reducer in waiting list of this node
Suspend , || Lock the current reducer
Rtn ] || Return when awake again

First, the channel node will be reserved as for any other node: other re-
ducers that need the result just have to wait. Then, the instruction
send_request asks the remote processor for the result of the reduction of
the graph belonging to the channel node.

send_request:: a_src -> instruction
send_request chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where cq' = os_call cq [ os_send_request chanid, os_reducerprio ]

chanid = as_get chan_depth as

After sending the request the demanding reducer is suspended to wait
for the result (with the instructions set_wait and suspend). The instruction
os_reducerprio guarantees that administration and suspension are done
with highest priority, i.e. before the result is already communicated.

The request is answered as soon as the requested node is in root
normal form (regardless of whether the reducer reduces to root normal
form or to normal form). The result can be returned immediately as a
lazy copy if it is available. Otherwise, the request is stored in the wait-
ing list of the remote node under reduction. In that case the request will
be answered when a release instruction is executed for this node. On the
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demanding processor the actual update with the lazy copy of the result
will be performed automatically by the communication process.

16.4 Program execution

In order to obtain an executable specification of the PABC machine one
needs an implementation of the abstract data structures and micro-
instructions, as in Section 10.4. For the PABC machine this includes a
specification of the rather powerful operating system instructions and
the instructions of the communication process. Furthermore, one needs
to define how communication (and lazy copying) takes place.

This section only treats the PABC bootstrapper and instruction
fetch mechanisms (for the other aspects we refer to Appendix D). A
special solution is necessary since real parallelism and non-determinis-
tic interleaving are not directly expressible in a functional language.
The concurrent behaviour has to be simulated in some way.

16.4.1 The instruction fetch cycle

To run the PABC machine one not only has to specify the execution be-
haviour of a single processor (which involves fair interleaving of operat-
ing system, communication process and reducers), but also the be-
haviour of the network of parallel processors (which involves simula-
tion of parallelism and distribution of messages across the network).
Altogether the specification of the behaviour of the machine implies
several instruction fetch cycles that call each other.

The PABC machine cycle

The PABC machine consists of a number of processors connected via a
very simple communication network. In a PABC machine cycle all
messages on outgoing lines from the processors are collected, removed
and distributed to the incoming lines. Outgoing messages that are the
output of the overall reduction process are added to the final output of
the PABC machine. The parallelism is simulated by giving each proces-
sor a time slice by calling the processor cycle for it.

output = = [ msg_contents ]

machine_cycle:: network -> output
machine_cycle nw

= output , if op_halt output
= op_append output (machine_cycle nw') , otherwise

where output = nw_output nw
nw' = nw_exec proc_cycle (nw_distribute_msgs nw)
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The processor cycle

Each processor has to guarantee a fair distribution of CPU time between
the processes running on it. The choice has been made to give the com-
munication process and the current reducer each a time slice in each
processor cycle. In order to handle operating system calls as soon as
possible, the operating system gets a time slice both after the reducer
cycle and after the communication process cycle.

proc_cycle:: processor -> processor
proc_cycle = opsys_cycle . red_cycle . opsys_cycle . comproc_cycle

The communication process cycle

The communication process handles all incoming messages in one cy-
cle. However, it can happen that the current reducer has requested prior-
ity over the communication process (see Section 16.3). In that case
communication will not be handled in the current processor cycle.

comproc_cycle:: processor -> processor
comproc_cycle (rs, in, out, (ad,gs,ds,ps), cq)

= (rs, in, out, (ad',gs,ds,ps), cq), if ad_prio ad = Prio_Reducer
where ad' = ad_new_prio No_Prio ad

comproc_cycle (rs, [ ], out, glob, cq)
= (rs, [ ], out, glob, cq)

comproc_cycle (rs, (msg : msgs), out, glob, cq)
= comproc_cycle (rs, in', out', glob', cq')

where (in', out', glob', cq') = cp_accept_msg msg (msgs,out,glob,cq)

The operating system cycle

The operating system performs all pending calls in one cycle.

opsys_cycle:: processor -> processor
opsys_cycle (rs, in, out, glob, cq)

= (rs, in, out, glob, cq), if os_cq_empty cq
= opsys_cycle (os_first_call cq (rs,in,out,glob, os_rest_calls cq)),otherwise

The reducer cycle

The cycle of the current reducer calls fetch_cycle to execute the current
reducer. The execution of a reducer is driven by a slightly modified ver-
sion of the instruction fetch cycle of Section 10.4.1. fetch_cycle termi-
nates when the current reducer calls the operating system.

red_cycle:: processor -> processor
red_cycle ((act_reds, pass_reds), in, out, glob, cq)
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= ((act_reds, pass_reds), in, out, glob, cq), if act_reds = [ ]
= (rs', in, out, glob', cq'), otherwise

where rs' = ((rid, loc') : reds, pass_reds)
(rid, loc) : reds = act_reds
(loc', glob', cq') = fetch_cycle (loc, glob, cq)

fetch cycle:: state -> state
fetch_cycle ((as,bs,cs,nq,pc,wl), (ad,gs,ds,ps), cq)

= ((as,bs,cs,nq,pc,wl), (ad,gs,ds,ps), cq), if ~ os_cq_empty cq
= fetch_cycle (currinstr ((as,bs,cs,nq,pc',wl) ,(ad,gs,ds,ps), cq)), otherwise

where pc' = pc_next pc
currinstr = ps_get (pc_get pc) ps

16.4.2 Booting the machine

To boot the PABC machine not only do program and descriptors have
to be supplied, but also the number of processors.

boot:: nat -> ([ instruction ], [ descr ]) -> network
boot nr_proc (program, descriptors)

= nw_init nr_proc (program, descriptors)

16.4.3 Running a program

So the PABC machine starts evaluating a program as follows.

machine_cycle (boot nr_of_processors (assembler (program)))

16.5 Translating Concurrent Clean into PABC code

The PABC instructions are on a high level, very close to the process an-
notations available in Concurrent Clean. So the translation is straight-
forward. The important aspects are already covered in the previous sec-
tions. In this section an example is given of code generated accordingly.

Take the second rule alternative of Sieve in an example of Section 15.2.3:

Sieve [ p | s ] -> [ p | {P} Sieve ({I} Filter p s) ] ;

The generated code for the right-hand side of this alternative (extra instruc-
tions needed for the interleaved and parallel evaluation are emphasized):

[ Label
"Sieve2" , || Entry for the second alternative

Push_args 0 2 2 , || Push the arguments
Create , || Node for defer attribute
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Create , || Node for result of Filter
Push_a 2 , || Push second argument of Filter
Push_a 4 , || Push first argument of Filter
Fill "Filter" 2 "n_Filter" 2 , || Fill node for Filter
Fill "_Defer" 1 "_defer_code" 1 , || Fill deferred indirection node
Create , || Node for result of Sieve
Push_a 1 , || Push argument of Sieve
Fill "Sieve" 1 "n_Sieve" 1 , || Fill node for Sieve
NewP , || Destination proc-id on B-stack
Create_channel , || Create channel to that processor
Send_graph 1 0 , || Send lazy copy graph to reduce
Update_a 0 1 , || Update Sieve node with channel
Pop_a 1 , || Remove channel from A-stack
New_int_reducer "_rnf_reducer" 1, || Create internal reducer process
New_ext_reducer "_rnf_reducer" 0, || Create external reducer process
Push_a 0 , || Push second argument of Cons
Push_a 3 , || Push first argument of Cons
GetWL 7 , || Save locked reducers in wl
Fill _Cons 2 "_rnf" 7 , || Update root node of process
Release , || Release the locked reducers
Pop_a 5 , || Clean up stack
Rtn ] || End of alternative

Summary

• The PABC machine is an abstract distributed machine which is an
extension of the sequential ABC machine such that the sequential
optimizations can still be applied.

• The PABC machine consists of the following components:
– a network of processors that communicate messages;
– a communication process on each processor that deals with

outgoing and incoming messages;
– an operating system on each processor which can be called

via a queue of pending operating system instructions. The
operating system deals with lazy copying, scheduling, cre-
ation and locking of reducers etc.;

– a number of reducers on each processor. A single reducer per-
forms sequential reduction like the sequential ABC machine.

• The instruction set of the PABC machine extends the sequential
ABC machine for communication and synchronization with a rela-
tively small number of instructions based on lazy copying and
parallel graph rewriting.

• The PABC machine can be specified elegantly in a functional lan-
guage in very much the same way as the sequential ABC machine.
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• A Concurrent Clean program can be translated to PABC code quite
straightforwardly. Code has to be generated for locking and releas-
ing of reducers. Furthermore, each process annotation gives rise to
a sequence of specific PABC machine instructions.

EXERCISES

16.1 Compile the parallel programs written in the previous exercises to
PABC code. Study the generated code. Some PABC instructions
are different. Which ones? Can you explain what the advantages of
these changes are?

16.2 Refine the PABC machine specification such that processors are
connected via a sparsely connected communication network in-
stead of a fully connected network. Define the simulated topology
in a table such that it can be changed easily. Also define in a table
how messages have to be routed to the intended destination.
Change the communication processor such that it can take care of
the routing of messages. Then, define the instructions newP, ran-
domP, currentP, neighbourP and channelP properly within the PABC
specification.

16.3* Suppose that you had to design an SABC machine to model a
shared memory architecture instead of a distributed memory archi-
tecture.
(a) Is lazy copying still necessary? Is it necessary to make a dis-

tinction between {P} and {I} processes? Which PABC compo-
nents would you still need? Which ones can be shared? Which
of the PABC instructions are not needed any more? Are there
any new instructions needed?

(b) The SABC machine has a different architecture from the
PABC machine. This means that all PABC machine instruc-
tions have to be adapted such that they can be applied on the
new state. Are there also non-trivial changes in instructions
necessary? Hint: remember that parallel evaluation is only al-
lowed when the rewritings cannot interfere with each other.

(c) Give a picture similar to Figure 16.1 depicting the SABC ar-
chitecture.

16.4*  Specify the SABC machine.
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Chapter 17
Realizing the PABC machine

17.1 Representing the PABC
machine components

17.2 Garbage collection on a
distributed machine

17.3 The transputer processor

17.4 Representing PABC components
on transputers

17.5 Generating transputer code and
performance

This chapter discusses the concrete realization of the PABC machine.
For this purpose one at least needs a good sequential code generator.
Such a code generator can be developed using the techniques de-
scribed in Part 4. First, Section 17.1 treats in general terms the many
additional problems one has to solve when 'going parallel’. Suitable
representations of the different new PABC machine components are
given. In particular, attention is given to the rather long list of run-time
support that has to be offered on the concrete target machine in either
hardware or software. Garbage collection on a distributed machine ar-
chitecture is discussed separately (Section 17.2).

The remaining part of this chapter treats the realization of the
PABC machine on a specific machine, a 32 node transputer architec-
ture. The transputer processor is explained in Section 17.3. A concrete
representation of each of the PABC components on this processor is
given (Section 17.4). Finally, the most important concrete aspects of
actual code generation are treated, including a discussion of the ob-
tained performance (Section 17.5).

17.1 Representing the PABC machine components

The PABC machine has been specifically designed to be realized on a
concrete MIMD architecture in which each processor has its private
memory and processors are (sparsely) connected via some special com-
munication network. This section briefly explains how each of the
PABC machine components can be realized on concrete architectures.
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The most complex component of the PABC machine is clearly the ab-
stract operating system. The PABC machine abstracts from a lot of
problems for which a solution has to be found on a concrete architec-
ture. So one not only has to provide facilities like lazy copying and
communication between arbitrary processes and processors: one also
has to take care of the collection of garbage that can now be distributed
over the different processors and of the memory management for the al-
location of the dynamically created stacks. Furthermore, the distribution
of tasks has to be dealt with such that all processors are utilized in the
best possible way. All these activities have to be performed by the run-
time system of the application in combination with the support offered
by the concrete operating system of the machine. The complexity of the
concrete run-time system therefore depends heavily on the facilities of-
fered by the processor and the concrete operating system.

17.1.1 Representing the reducer components

The program store and the program counter

Each processor in a distributed memory machine will need its own copy
of the program in its private memory. The easiest way to accomplish
this is by copying the complete program to a particular location in the
store of each of the processors before the execution starts (static load-
ing). Most concrete machines have instructions to support this. Another
strategy is to load precisely that part of the program into each memory
that is actually being used by the corresponding reducer (dynamic
loading). This saves memory occupation but it may become an ineffi-
cient strategy if process creation occurs very frequently and different
pieces of code have to be (re)loaded often. Also the addressing may be-
come more complex, especially when the architecture has no facility to
support dynamic loading.

The program counter of an abstract PABC reducer can, of course,
be directly represented by the program counter of the concrete processor
the reducer is running on.

The A-stack, B-stack and C-stack

Because several reducers may run on one processor, several stacks have
to be allocated in memory instead of just three stacks as in the sequen-
tial case. Furthermore, stacks are created dynamically when a new re-
ducer is created. Consequently, the stack (frame) management is much
more complicated than in the sequential case. In general, it is not known
in advance how large a stack a reducer needs. If (too) small stack
frames are allocated initially, problems arise when the stacks become
too large. If too big stacks are allocated initially, heap space is wasted.
One solution is to use linked stacks, but then stack addressing becomes
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more complicated. Another solution is to allocate small stacks initially
and to reallocate these when necessary. In that case a new and larger
stack frame is allocated in a contiguous piece of memory to which the
contents of the old one are copied. This copying seems to be a quite in-
efficient solution, but it often works satisfactorily in practice. Normally,
reducers only use small stacks and reallocations are not often needed.

When a reducer dies, its stacks become garbage. They have to be
collected such that the space they occupy can be reused. An obvious so-
lution for this problem is to handle stacks as normal heap objects, such
that their space can be reclaimed by an ordinary garbage collector.
When stacks are incorporated into the heap one has the additional ad-
vantage that no distinction has to be made between the amount of mem-
ory available for stacks and the amount of memory available for graphs.
This division can automatically be tuned at run-time. If stacks are allo-
cated randomly in the heap (just as ordinary nodes) they will always be
copied during a garbage collection when a copying or compacting
garbage collector is activated. To avoid this problem it is better to re-
serve a special part of the heap to accommodate stack frames (which
makes the heap management a bit more complicated).

As discussed in Chapter 12, one can combine the stacks of a re-
ducer in an actual implementation. Merging the B- and C-stacks is cer-
tainly advisable for parallel environments. It makes the management of
stack frames easier and reduces the amount of boundary checks. For
garbage collection it is convenient to keep a separate A-stack such that
pointers to nodes can easily be distinguished from other data.

The N-queue and the waiting list register

The implementation of an N-queue can be realized in the same way as
the implementation of stacks, e.g. as a special relocatable object in the
heap space. For the waiting list register any free machine register or
memory location can be used.

The graph store

A new aspect of the graph store is that one now has to deal with waiting
lists and with defer attributes. Defer attributes can either be represented
by a special indirection node (as suggested in the PABC machine) or by
a tag in the node itself.

Waiting lists are more problematic. The easiest way to represent
them is by inserting an additional field in the fixed part of a node con-
taining a pointer to the actual waiting lists. The waiting list itself can be
represented in the heap. Adding an additional field has the disadvantage
that all nodes become larger. This gives rise to increased memory con-
sumption. However, in practice it is possible to (mis)use one of the ex-
isting fields that is not being used when the waiting list has to be con-
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structed. For instance, it is possible to use one of the argument fields of
a node because a node with a waiting list is certainly being reduced and
for a node being reduced the original arguments have already been
saved on the stack.

Another solution is not to use waiting lists at all. Instead, waiting
reducers can execute a polling loop in which they examine whether the
node they are waiting for is updated or not. With clever scheduling
scheme polling can be cheaper than a waiting list administration with
explicit reactivation of locked reducers (Van Groningen et al., 1992).

The descriptor store

The descriptor store can be treated in the same way as the program
store: a copy of (a part of) the store has to be loaded either statically or
dynamically into each of the processor stores.

17.1.2 Operating system and communication process

The abstract parallel reducer instructions are effectively all handled by
the operating system located on the corresponding abstract processor.
The operating systems communicate with each other via the communi-
cation processes. In practice, the tasks performed by these abstract
components are realized by the run-time system of the program with the
help of the concrete operating system running on top of the concrete
machine. Furthermore, many other tasks which we have abstracted in
the PABC machine have to be performed by these systems.

Process creation, scheduling and context switching

Not all kinds of processor have direct hardware support for process cre-
ation, scheduling and context switching. In most cases additional soft-
ware support is needed. The PABC machine instructions specify when a
context switch between processes is allowed. The scheduling has to be
fair. This means that the generated code must be such that context
switches indeed take place regularly and that all reducers eventually will
get a time slice. Some concrete processors (like, for example, the trans-
puter) support an automatic context switch (consisting of a move of
merely two pointers) on certain instructions (e.g. after each jump in-
struction). This makes switching reasonably efficient. Other systems of-
fer a possibility to raise interrupts at a specified time interval. When the
interrupt occurs it can be used by the interrupt handler to schedule an-
other process. In that case one has to ensure that context switches only
take place when the stores are in a consistent state and no critical ac-
tions are being undertaken (e.g. garbage collection). A context switch
can then also be done rather efficiently, but special code is needed to
prevent switching at unwanted moments. If the individual processors
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are of a more conventional type (like Motorola’s) special code has to be
inserted at certain places that forces a switch on a regular basis. Context
switches are probably a bit more expensive in this way. Anyhow, every
context switch will cause a certain amount of overhead for saving the
old context and restoring a previous one. So on the one hand one should
switch regularly for fairness reasons and on the other hand one should
not switch unnecessarily to avoid wasting of CPU time.

Communication between processors

The PABC instructions require that any two processes located on arbi-
trary processors can directly communicate with each other. In practice,
the processors in a distributed memory architecture are only sparsely
connected in some network topology. Some systems provide the possi-
bility for any two processors to communicate with each other even if
there is no direct hardware link between them. Other systems only pro-
vide communication between processors that have a direct link. In that
case additional communication software (a router) is needed to provide
reliable and fast communications between arbitrary processors.

Load balancing

Parallel reducers can be created on arbitrary processors. The operating
system is free to use any information to select such a processor. In order
to obtain ultimate performance the system should distribute the work
evenly over the available processors. This distribution of work is called
load balancing. In an optimal balanced system all processors have an
equal amount of work to do: they all have enough free memory while
the communication overhead is minimal due to the fact that processes
which communicate heavily with each other are ideally located.

Load balancing is an important task of the operating system. How-
ever, in general it is undecidable to determine an optimally balanced
distribution of tasks. To find a good approximation, ideally all proces-
sors should always be kept completely informed about the status of the
whole machine. This is hard to realize on a distributed memory architec-
ture without introducing an unacceptable amount of communication
overhead. Therefore, in practice a suitable processor has to be chosen
based on only partial knowledge about the workload of other proces-
sors. Neighbouring processors or processors with which communication
is already taking place are good candidates to obtain the above informa-
tion without facing too much communication overhead.

Process migration

It is a waste of machine capacity if the load is not well distributed and
some processors have too little work or even nothing to do at all. Things
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become problematic when processors have so much work to do that
they are running short of memory space (even after garbage collection
has been performed). In that case one either has to stop the whole ma-
chine or one has to try to get the system in balance by transferring work
from overloaded processors to other processors. Moving work effec-
tively means moving a reducer by making a lazy copy of its graph. This
is a delicate task since there is probably not much heap space on the
overloaded processors to prepare the lazy copy.

Channels and global nodes

A channel node refers to a global node located on a remote processor.
Such a reference cannot simply be the address of that node on the re-
mote machine. Global nodes are, like ordinary nodes, sometimes moved
by the garbage collector. An indirection table on the remote machine
can be used to obtain a fixed address location. A channel node then
refers to a fixed location in the table in which the varying address of the
global node is stored. The table can also be used to store a reference
count (representing the number of channels pointing to the graph) used
for global garbage collection (see next section).

When a processor has to answer a request it must know to which
processor it has to send the graph such that the channel node on the re-
questing reducer can be overwritten with the result. Clearly, channel
nodes can be moved around by the garbage collector as well. Therefore,
the address of a requested channel node has to be stored in an indirec-
tion table as well.

Lazy copying

A lazy copy of a graph must preserve the graph structure. One cannot
simply apply an algorithm like those often used by copying garbage
collectors: forwarding pointers (see Section 12.2) violate the original
graph. Furthermore, garbage collection cannot be allowed during a lazy
copy action: the garbage collector should not find the heap in an incon-
sistent state. There are several possible solutions, each with their own
space-time behaviour. An important aspect to keep in mind is that
graphs to be copied are expected to be relatively small, since otherwise
the communication overhead would probably be too large.

One solution uses pointer reversal to traverse the original graph in
advance to compute the size of the graph before copying starts. Next,
the garbage collector is called (if necessary), directly followed by the
(indivisible) copy action itself using forwarding addresses. Finally the
original graph is restored, again using pointer reversal to traverse it. An
advantage of this algorithm is that it does not require more memory than
needed to store the lazy copy itself. A disadvantage is that it requires
three scans of the graph to be copied.
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Another solution uses the end of the heap temporarily as a stack to
keep track of the original nodes. Whenever a node is encountered for
the first time during copying its address is pushed on this stack. After
copying has taken place the stack is traversed and all nodes encountered
are restored. Finally, the stack is removed. If the garbage collector has
to be called during copying the original graph must be restored in ad-
vance (again using the stack at the end of the heap). The copy that has
been built so far has to be considered lost. After the garbage collection
has been performed the copying must start all over again, increasing the
cost of a copy action considerably (in the worst case it takes twice as
long). But this situation is not likely to happen very often.

Sending of graphs

Sending a graph to another processor is usually realized as follows. Lo-
cally a lazy copy of the graph is made, as explained above. This copy is
provided with relocation information. The copy cannot be sent away
immediately. On the destination processor enough heap space must be
available as well. This implies that first enough heap space on the re-
mote processor has to be reserved. Further sending has to be suspended
until an acknowledgement has been received that the amount of mem-
ory indeed could be reserved. Hereafter the graph can be sent away and,
finally, when the graph arrives at the destination, all pointers in the
graph have to be adjusted using the relocation information.

Deadlock detection

It is possible to write functional programs that contain deadlock (see
Chapter 14). It would be nice if deadlock could be detected by the sys-
tem. This is certainly important in a multi-user environment where a
deadlock blocks (a whole) part of the machine. Deadlock that involves
reducers located on one processor is not difficult to detect: one has to
check whether locked reducers are mutually waiting on each other. Of
course, deadlock will be much harder to detect without considerable
communication overhead when the reducers involved are located on dif-
ferent processors.

Input/output

The treatment of I/O highly depends on the kind of I/O (file I/O, screen
I/O) and the architecture of the concrete machine. In most concrete ar-
chitectures only a few of the available processors will have a direct con-
nection to secondary memory (disk) or to a video processor. Most of the
time only one processor offers such facilities, sometimes indirectly via a
connection with a host machine. This means that all I/O actions have to
be realized by sending messages across the communication network to
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this particular processor. I/O is therefore typically a facility offered by
the operating system of the concrete machine.

17.2 Garbage collection on a distributed machine

It is difficult to accomplish efficient garbage collection on a distributed
machine. The possibly cyclic graph is now distributed across the differ-
ent processors. To determine whether or not a node has become garbage
references to that node from other processors have to be taken into ac-
count. One certainly would not like to stop the whole machine because
one of its processors needs a garbage collection. Therefore, generally
the collection process is first split into a local part and a global part
(Kingdon et al., 1991). The global garbage collection tries to determine
which of the global nodes are garbage. The local garbage collection
basically removes garbage locally, knowing which of its global nodes
are garbage or not. Often for local and global garbage collection differ-
ent techniques are combined. To recover all cyclic structures, informa-
tion has to be passed from the local to the global collector and vice
versa. There still does not exist a completely satisfactory solution to re-
cover all distributed garbage efficiently.

Local garbage collection

In principle, local garbage collection can be done by using a standard
copying garbage collector/mark–scan technique (see Chapter 12). Each
of the non-garbage global nodes must now be regarded as a root of a
subgraph that cannot be collected. The global nodes themselves are col-
lected differently (see below).

In a sequential implementation the garbage collector is only in-
voked when a processor runs out of heap memory. In a parallel imple-
mentation garbage collection needs to occur more regularly (for instance
with the help of a timer) even when there is enough local memory avail-
able. Suppose a processor p1 holds a node n1 that contains a reference to
a node n2 on another processor p2 and suppose that n2 is the root of a
large graph. At some point in time n1 may become garbage but p1 will
not discover this until it performs a local garbage collection. Conse-
quently n2 will not be removed before this time either.

In a parallel implementation it is very important that collection
takes place as soon as possible. When a processor cannot reclaim its
heap space because it is unaware of the status of its global nodes, none
of its reducers can continue either and eventually the whole parallel ma-
chine will get blocked. Furthermore, if a process has been created on a
node that has become garbage (a garbage reducer), it has to be stopped
quickly because such a process is actively creating garbage, wasting the
resources of the computer.
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Global garbage collection

For garbage collection of global nodes a reference count garbage collec-
tor has certain advantages over copying/mark–scan. With a reference
count collector a global node (and the possibly large subgraph with this
node as root) can be collected locally as soon as its reference count be-
comes zero. When a channel node containing a reference to a global
node is collected by its local garbage collector, a message is sent to the
corresponding processor to decrement the reference count of the global
node. When a channel node is copied or requested, a message is sent to
increase the global reference count. A disadvantage of reference count-
ing is that it cannot reclaim cyclic structures (see Chapter 12).

The straightforward implementation of global reference counting
may cause severe problems. When a decremental message arrives be-
fore an incremental one it can result in removal of a global node that is
not garbage at all. This problem can be solved by a weighted reference
count algorithm (Bevan, 1987; Watson and Watson, 1987). The advan-
tage of this algorithm is that only decremental messages are needed.
Initially, a huge power of two is stored as reference count in both the
channel node and the corresponding global node. When a channel node
is copied its reference count is divided by two. This new reference count
is stored in the original channel node as well as in its copy. When the
reference count drops down to one (which is not very likely to happen
often in practice) a new indirection node to the channel is created, again
containing a huge power of two. When a channel node is deleted its
reference count is sent to the processor it is referring to, such that the
reference count of the global node can be decremented by that number.
When this reference count drops down to zero the global node has be-
come garbage and it can be collected.

Removal of cyclic structures

Cyclic structures that are distributed over multiple processors cannot be
collected when a reference count collector is being used. An option is to
use a mark–scan collector (for the whole network, for all local and
global nodes) as a secondary collector, solely to remove cyclic struc-
tures when memory gets scarce in spite of local and global collecting at-
tempts. For this purpose either a stop-and-collect or an on-the-fly col-
lector can be used.

Removal of garbage reducers

To check whether a reducer is a garbage reducer it is sufficient to check
whether all the nodes the reducer has reserved have become garbage.
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17.3 The transputer processor

A transputer is a processor with hardware support for concurrent pro-
cessing. It has instructions to start and stop processes at two priorities.
Low-priority processes are automatically time-sliced in a round robin
fashion by means of a hardware scheduler. High-priority processes are
not time-sliced. Each transputer has four hardware links with which it
can be connected to four other transputers (Figure 17.1). Instructions
exist that enable a process to communicate with another process over
such a link or with another process on the same transputer. Each trans-
puter has some on-chip memory (static RAM) and a memory interface
to connect it to at most 4 Gbyte of external memory. The access time of
the static RAM is 3 to 5 times smaller than the access time of the exter-
nal memory.
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Figure 17.1 Architecture of the transputer processor.

Several types of transputer exist (T212, T414, T800 and T9000).
The main differences between these processors can be found in speed,
word size, instruction set and size of on-chip memory. The instruction
set of newer processors is basically a superset of the older ones.

The transputer has only six registers. None of them is a general
purpose register like the ones available in more traditional processors.
The workspace pointer (wsp) is a register containing a pointer to some
piece of memory which is called the workspace of a process. Address-
ing takes place relative to this workspace pointer. The instruction
pointer (iptr) indicates the next instruction to be executed. The operand
register (Operand) is used to construct large operands. Finally, there are
three registers (called Areg, Breg and Creg) that form a tiny evaluation
stack. These registers are the sources and destinations for most arith-
metic and logical operations. Loading a value into this stack pushes B
into C and A into B before the value is loaded into A. The contents of C
are lost. Storing the value of A into memory pops B into A and C into B.
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The value of C is left undefined when this happens. The contents of
these registers are not saved when a context switch occurs. Only a few
instructions exist at which a context switch is possible.

Some important transputer instructions: in the listed instructions
‘ (expression)’ stands for the contents of the address indicated by this expres-
sion. wordlength is the word length of the machine. Only the j instruction can
cause a context switch.

ldl offset ; load (wsp + offset *  wordlength) into Areg
stl offset ; store Areg into (wsp + offset *  wordlength)
ldnl offset ; replace Areg by (Areg + offset *  wordlength)
stnl offset ; store Breg into (Areg + offset *  wordlength)
ldnlp offset ; add offset *  wordlength to Areg
ldpi ; add iptr to Areg
dup ; Creg := Breg, Breg := Areg
rev ; swap Areg and Breg
mint ; load –2(wordlength–1) into Areg
ldc constant ; load constant into Areg
adc constant ; add constant to Areg
add ; Areg := Breg + Areg, Breg := Creg
sub ; Areg := Breg – Areg, Breg := Creg
mul ; Areg := Breg * Areg, Breg := Creg
and ; Areg := Breg & Areg, Breg := Creg
gt ; Areg := Breg > Areg, Breg := Creg
cj label ; jump to label if Areg == 0
j label ; jump to label, context switch possible
gcall ; jump to Areg, Areg := return address
runp ; start process of which Areg contains the wsp
stopp ; stop current process

17.4 Representing PABC components on transputers

This section discusses a concrete realization of the PABC machine on a
ParSyTec transputer architecture (Kesseler, 1991; 1992). The concrete
network being used consisted of 32 T800s, each running at 25 MHz and
having 4 Kbyte of static RAM and 4 Mbyte of external memory. The
discussed implementation describes one of the many ways in which a
concrete implementation can be obtained. A different transputer imple-
mentation of the PABC machine based on the ZAPP design (Burton and
Sleep, 1981) can be found in Goldsmith et al. (1993).

17.4.1 Representing the reducer components

A PABC machine can conveniently be implemented on a concrete ma-
chine that has a reasonable number of general purpose registers.
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Clearly, the transputer is not such a machine. To overcome this prob-
lem, the on-chip static RAM is regarded as a large collection of regis-
ters. Each reducer is implemented as a single low-priority transputer
process with a private ‘register’ set, a fixed amount of memory of the
on-chip static RAM: the workspace frame. The elements of this set are
called the locals of a reducer. The workspace pointer of each reducer
points to the start of these locals and can be used to identify each re-
ducer uniquely (Figure 17.2). There can be locals to cache top values of
the A- and B-/C-stacks, to remember the number of cached values (in-
formation used by the garbage collector) and to store stack pointers.
Furthermore, two locals can be used to refer respectively to data that is
different for each reducer and to data that is shared by all reducers.

local 1
local 2
local 3
local 4
local 5
local 6
local 7

local 9
a-stack top pointer
b/c-stack top pointer
local data pointer
global data pointer

local 8

b-stack parameters

a-stack parameters

number of a-stack parameters

return addressa-register
b-register
c-register
workspace pointer
instruction pointer
operand register

transputer registers on-chip memory

top c-stack

Figure 17.2 Layout of a workspace frame.

The program store and the program counter

The external memory and instruction pointer register are respectively
used to represent the program store and the program counter. Into each
external memory of the transputer a complete copy of the program is
statically loaded when execution is initialized.

The A-stack, B-stack and C-stack

Two of the locals are used as a stack pointer for the A-stack, and the
combined B-/C-stack. So each stack access requires an indirection,
which is not very efficient. However, the locals provide enough spare
registers for each reducer, such that in many cases stack access can be
avoided (see Chapter 12). In practice, this solution gives good results.

All stacks are allocated in the heap and occupy one contiguous area
of memory. The B- and the C-stacks are merged. A- and B-stacks grow
in opposite direction such that their sizes can be checked at the same
time by comparing the two stack pointers.
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Each reducer gets small stacks initially. When necessary, a larger
one (typically 1/8 larger) is allocated and the contents of the old stack
are copied to the new one. The old stack then becomes garbage. Bound-
ary checks cause a noticeable but not too serious overhead (worst case
about 10%).

The N-queue and the waiting list register

The N-queue is stored in the heap. The waiting list register is a local.

The graph store

To store the graph each processor has a heap consisting of a contiguous
piece of its external memory. The free space is a contiguous area within
the heap: each reducer can reserve memory by taking the shared pointer
to the first free word and advancing it the required number of words.

Representation of nodes

The node representation is basically the same as for sequential imple-
mentations, albeit that the waiting list has to be taken into account. For
this purpose an extra field is added into the fixed part of the node in
which a reference to a waiting list can be stored (see Figure 17.3).

C W E C W A C W A A A

D B D R STRINGD

D E D A A AD D A A A

arity 0 arity 1 arity > 1

arity 0 arity 0 arity 0

arity 0 arity 1 arity 2 arity > 2

non-rnf nodes:

rnf nodes:

C: code ptr
D: ptr to descriptor
W: ptr to waiting list

E: empty
A: ptr to argument

B: basic value
R: real

Figure 17.3 Chosen rnf and non-rnf node representations.

A positive field value D indicates that the node is in root normal
form and a pointer to the descriptor can be computed by taking –D. A
negative value C means the node is not in root normal form and C is a
pointer to the code of the node (on the transputer the lowest address
starts at –2wordlength –1). Note that this only works as long as the trans-
puter has no more than 2 Gbyte of memory. A pointer to a waiting list
(Figure 17.4) is stored in a dedicated field of each non-root normal form
node. As a consequence of this node representation a reducer has to
check whether a node is in root normal form each time it tries to evalu-
ate it.
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Code for PABCs Jsr_eval (local 5 is assumed to refer to the node to reduce):

ldl 5 ; get pointer to node
ldnl code ; get code/descriptor of node
mint ; load hex 80000000
and ; 0 if descriptor
cj .is_in_rnf ; jump if descriptor
check_stacks ; macro call, check if enough space on stacks
save_ ; macro call, save all locals in use on stacks
ldl 5 ; get pointer to node
ldnl code ; get evaluation code of node
gcall ; evaluate the node
restore_ ; macro call, restore previously saved locals

.is_in_rnf

C A A A

R I S E R I-

code ptr
ptr to argument
external address (of channel)
internal address (of reducer)
release code ptr (of internal reducer)
send code ptr (to external address)

C: 
A:
E:
I:
R:
S:

Figure 17.4 Representation of a waiting list.

Each element in the waiting list is implemented as an ordinary
graph node with one argument. This argument is either the workspace
pointer or the address of the remote channel node. The next element of
the waiting list is stored in the waiting list field of each waiting list
node, just as is the case for normal nodes. Depending on the argument,
the evaluation code either puts a reducer back in the scheduling list of
the transputer, or it sends the evaluated node to the requesting processor
and updates the remote channel node with it. So all requests stored in a
waiting list can be answered by evaluating each node in it.

The descriptor store

Each processor gets a copy of the representation of the descriptor store
when program execution is initialized. The representation is conceptu-
ally the same as for sequential implementations.

17.4.2 The run-time system

A transputer has primitives for process creation, abortion and context
switching. It has a hardware round robin scheduling mechanism. Re-
ducers are automatically time-sliced by the transputer hardware when
jump and loop end instructions are executed. However, this feature some-
times gets in the way at those places where context switches are not al-
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lowed. On the transputer there are basically two ways to prevent context
switches. A process can run at high priority (high-priority processes are
not time-sliced at all) or the use of those instructions that cause a con-
text switch is totally avoided. One can replace those instructions by
conditional jump instructions. In this way one can prevent other low-
priority processes from getting a time slice. Interrupts from high-prior-
ity processes are still possible. Since it is relatively expensive to change
the priority of a process the second solution is used where possible. In
order to obtain a fair scheduling transputer jump instructions are used
sometimes between adjacent basic blocks to jump across data.

Locally, an ordinary copying garbage collector is used. Globally, a
weighted reference count algorithm is implemented. So cyclic structures
across process boundaries are currently not removed. The program is
aborted when a processor, in spite of garbage collection, runs out of
memory space.

Indirection tables are used to store channel node addresses, global
node addresses and a reference count. A stack is used for graph copying,
since pointer reversal is relatively expensive. Currently, no load balanc-
ing information is taken into account to find a suitable processor for an
arbitrary created parallel process. A simple pseudo-random generator is
used. Running tasks or processes are not migrated to other processors.

17.4.3 Communication between processors

Each of the four transputer links provides two uni-directional links, one
in each direction. So a fully connected network of transputers cannot be
constructed with more than five transputers. However, the transputer
hardware does not support the communication between transputers that
have no direct link. So for the implementation of the parallel instruc-
tions of the PABC machine a complete communication system has to be
provided including support for file I/O. None of the available standard
communication software facilities could be used because they were not
implemented reliably, efficiently or flexibly enough. Therefore, a dedi-
cated communication system (a router) has been implemented directly
on top of the low-level communication primitives of the transputer. The
lowest level of the router is a communication layer that provides dead-
lock-free routing of packets to arbitrary destinations. These packets are
not allowed to be larger than a certain maximum size. Messages larger
than the maximum packet size are broken into a number of packets,
which are sent separately. Each packet gets a number that indicates its
position in the original message. The order in which packets arrive at
the destination is not necessarily the same as the order in which they are
sent. Packets cannot get lost.

The router employs a modified algorithm based upon the algorithm
presented in Annot and Van Twist, (1987). It uses a fixed amount of
buffers and a class-climbing algorithm to prevent deadlock under the
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assumption that each packet that reaches its destination is consumed
within a finite amount of time. Starvation is avoided by a mechanism
that locks out links from accessing buffers of a certain class if they re-
cently used such a buffer and others are trying to access it as well. The
algorithm does not use a fixed path to route packets, so hot spots in the
network are avoided to some extent.

17.5 Generating transputer code and performance

Efficient sequential code generated for a single processor is the basis of
an efficient parallel implementation. Despite the fact that the transputer
architecture is quite different from the M680x0, the code generator pre-
sented in Chapter 12 can successfully be retargeted to transputer code.
There are some small differences because the transputer has only six
registers (but it has an on-chip memory) and a small evaluation stack.
Also some adaptations are needed for dynamic stack allocations. How-
ever, with a reasonable amount of locals assigned to each process most
of the optimizations discussed in Chapter 12 remain applicable.

Example of generated code. Consider again (see also Section 12.5.2):

:: F !INT !INT -> INT;
F a b -> - (* a b) (+ a 3);

The generated Motorola code for this rule alternative:

muls.l d1, d0 ; multiply a and b
addq.l #3, d1 ; add a and 3
sub.l d1, d0 ; subtract both results
rts ; return to caller

The corresponding transputer code:

ldl 1 ; push b on evaluation stack
ldl 2 ; push a on evaluation stack
mul ; multiply a and b
ldl 2 ; push a on evaluation stack
adc 3 ; add a and 3
sub ; subtract both results
stl 1 ; store result on top of B-stack
ldl 0 ; get return address
gcall ; return to caller

This may seem a bit long, but the code actually occupies only 10 bytes of
memory. The top of the B-stack is cached in local 2, the second entry resides
in local 1. The caller expects the result to be returned in local 1. On entry to
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this function the return address is stored in local 0. No stack checks are needed
since only locals are used.

Performance

Table 17.1 shows some performance results (see also Table 12.3).

nfib 30 each task computes nfib 30.
sieve 10 000 primes, one task for every 20 prime numbers.
queens counts all solutions for the (10) queens problem.
rnfib 30 each task computes nfib 30.
fastfourier on an array of 8000 complex numbers.
mandelbrot calculates Mandelbrot fractals, resolution 530 x 320, depth 128.

Table 17.1 Performance in seconds on respectively 1, 2, 4, 8, 16 and 32
T800 processors of some well-known benchmarks on 32
processors connected in a grid topology.

Program Number of processors

1 2 4 8 16 32

nfib 12.2 6.5 3.5 2.2 1.4 1.1
sieve 19.4 31.2 32.1 23.6 16.9 14.5
queens 47.9 28.5 15.1 9.0 6.2 4.7
rnfib 23.7 12.2 7.1 3.9 2.2 1.6
fastfourier 13.8 11.2 8.7 6.3 5.6 5.6
mandelbrot 147.0 91.0 54.3 34.3 18.2 10.6

The main difference from the sequential implementation discussed in
Chapter 12 is that stacks are handled less efficiently in the transputer
version. In the Motorola implementation, stack frames are allocated
once outside the heap. In the transputer implementation programs are
started with an initial stack size of 0 bytes in the heap. The stacks are
automatically reallocated and resized, implying that boundary checks
have to be performed. So the Motorola programs actually use more
memory than their transputer counterpart because their A-, B- and C-
stacks are allocated outside the heap. A disadvantage of a T800 is that
the processor needs quite some time to fetch instructions and data from
off-chip memory. If a program is placed in the 4K on-chip memory
(only the code, while keeping the data in the same place) it runs about
1.6 times faster. But, of course, most useful programs are larger than
4K. A T800 produces good results for computations with reals due to
the speed of the on-chip floating-point processor.
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The parallel results are obtained with medium-sized randomly
distributed tasks. A small task size degrades performance by introduc-
ing a relatively large communication and process management over-
head. Large tasks limit the total number of tasks, thereby increasing the
chance that a bad load distribution will occur.
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Figure 17.5 A graphical representation of the speed-up obtained for the
different test programs.

Figure 17.5 shows that some examples (like sieve and fastfourier) do
not have a lot of inherent parallelism, although a lot of processes are
generated. The communication overhead is inherently too large for
these examples. They serve as an exercise in expressing certain process
topologies, but not as examples of good speed-ups. The other examples
show a reasonable performance considering that a random process dis-
tribution was used.

Further code optimizations

The code as tested (see Table 17.1) can be improved in several ways.
Many small improvements for the sequential code (see Chapter 12) are
not yet implemented. Besides these standard optimizations for sequen-
tial code there are also many possible improvements related to the par-
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allel parts of the machine. Certain PABC instructions that involve com-
munication between processors often appear in a certain order. It is
sometimes possible to combine PABC instructions to reduce the amount
of communication between these processors. Furthermore, the initializa-
tion of a new process can be done more cheaply by reusing the stacks of
a previously stopped process. Processes are created randomly. No
heuristic for workload balancing is being used. A lazy copy sent across
a network can be represented more compactly (Van Groningen, 1992).
Process communication and synchronization as well as scheduling can
be automatically tuned to optimize the communication between a pro-
ducing process and a consuming process. All these optimizations are
subjects of future research.

Summary

• The sequential implementation technique presented in this book
can also successfully be applied on a transputer processor, even
though its architecture is quite different from the more traditional
architectures such as those offered by a Motorola processor.

• The PABC machine abstracts from many implementation prob-
lems. Therefore, the realization of the PABC machine is consider-
ably more work than the realization of the ABC machine. The ac-
tual effort will depend heavily on the facilities offered by the con-
crete MIMD machine hardware and software. Typical features that
have to be solved in one way or another include stack checking,
stack reallocation, local and global garbage collection, removal of
garbage reducers, context switching, deadlock and starvation-free
efficient routing of messages between arbitrary processors, load
balancing, deadlock detection, process migration and I/O support.

• Most of the items on the previous list also have to be addressed
when other kinds of programming languages (imperative, logical,
object oriented) are to be implemented on an MIMD architecture.

• The PABC machine has been realized on a 32 node ParSyTec
transputer system. Although a transputer does not have a large set
of general purpose registers, the actual implementation on one
transputer performs reasonably well.

• MIMD architectures are generally quite expensive. An implemen-
tation of Concurrent Clean (and the PABC machine) is also avail-
able for a, generally less expensive, heterogeneous network
(AppleTalk/Ethernet) of Macintosh and Sun workstations. This
will offer the opportunity to use concurrent functional program-
ming not only for gaining speed but also for writing distributed
interactive multi-user applications (e.g. spreadsheets, databases)
combining Clean’s event I/O with process annotations.
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EXERCISES

17.1 Use the code generator to generate parallel code for the programs
of Exercises 15.2 and 15.3. Generate parallel code for one ma-
chine. Measure the differences between parallel code and pure se-
quential code. If it is possible on your system, measure the speed-
ups on as many distributed processors as are available. Also mea-
sure the communication costs. Compare the actual results with the
results predicted by the simulator. Explain the differences.

17.2 Measure the nfib example using different allocation strategies and
topologies. Does the chosen topology make much difference? Does
the chosen allocation strategy make much difference? Explain the
results.

17.3* Assume that you would have used {Par} and {Self} annotations in-
stead of {P} and {I}. Would the programs of Exercise 17.1 perform
better, worse or the same?

17.4 Assume that you would have used a shared memory architecture
instead of a distributed memory architecture. What would be the
expected performance compared with distributed implementations?
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Appendix A
Syntax
of the example programs

The example functional programs in this textbook are generally written
in a Miranda-based notation. These examples obey the BNF-style con-
text-free syntax rules given in this appendix.

Conventions used in the syntax specification below

[non-term] means that the presence of non-term is optional
[non-term]+ means that non-term occurs at least once
{non-term} means that non-term can occur zero or more times
terminals are enclosed by single quotes
symbols are printed in italic

Script
script = {declaration} ;
declaration = function_decl | type_decl ;

Definition
function_decl = def_lhs def_rhs ;
def_lhs = pattern | function_form ;
pattern = formal | constructor [formal]+

| '(' pattern ')' [formal]+
| pattern '$'constructor pattern ;

formal = variable | constructor | literal
| '(' pattern ')' | tuple_formal | list_formal ;

tuple_formal = '(' ')' | '(' pattern [',' pattern]+')' ;
list_formal = '[' ']' | '(' pattern ':' pattern ')'

| '[' pattern {',' pattern} ']' ;
function_form = variable [formal]+

| pattern '$'variable pattern
| '(' function_form ')' {formal} ;

def_rhs = {def_case} def_lastcase [where_def] terminator ;
def_case = '=' expression ',' guard terminator ;
expression = prefix_operator [expression]

| infix_operator
| [simple_expr]+
| expression infix_operator expression
| expression '$'variable expression
| expression '$'constructor expression ;

simple_expr = variable | constructor | literal
| '(' expression ')'
| '(' infix_operator expression ')'
| '(' expression infix_operator ')' | tuple | list ;
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tuple = '(' ')' | '(' expression [',' expression]+')' ;
list = '[' ']' | '[' expression {',' expression} ']'

| dotdot_expr | zf_expr ;
dotdot_expr = '[' expression [',' expression] '..' [expression] ']' ;
zf_expr = '[' expression  '|' qualifier {';' qualifier} ']'

| '[' expression '//' qualifier {';' qualifier} ']' ;
qualifier = expression | generator ;
generator = pattern {',' pattern} '<-' expression

| pattern '<-' expression ',' expression '..' ;
prefix_operator = '~' | '-' | '#' ;
infix_operator = '++' | ':' | '\/' | '&' | '>' | '>=' | '~='

| '<=' | '<' | '=' | '+' | '*' | '/' | 'div'
| '^' | '.' | '!' | '-' | '--' | 'mod' ;

guard = [ 'if' ] expression ;
def_lastcase = '=' expression ',' guard | '=' expression ',' 'otherwise'

| '=' expression ;
where_def = 'where' [function_decl]+ ;

Type declaration and specification
type_decl = abstype_def | typesyn_def | type_def | type_spec ;
abstype_def = 'abstype' type_form {',' type_form} 'with' signature terminator ;
type_form = type_name {type_variable}

| type_variable '$'type_variable type_variable ;
signature = [type_spec]+ ;
type_spec = type_variable {',' type_variable} '::' type terminator

| type_form {',' type_form} '::' 'type' terminator ;
type = simple_type | type_name [simple_type]+

| type '->' type | type '$'type_variable type ;
simple_type = type_name | type_variable | '(' type ')'

| tuple_type | list_type ;
tuple_type = '(' ')' | '(' type [',' type ]+')' ;
list_type = '[' type ']' ;
typesyn_def = type_form '==' type terminator ;
type_def = type_form '::=' type_construct {',' type_construct} terminator ;
type_construct = '(' type_construct ')' {simple_type}

| constructor {simple_type} | type '$'constructor type ;

Symbols
variable = IDENT ;
type_name = IDENT ;
type_variable = TYPEVAR ;
constructor = CONS ;
literal = NUMERAL | CHAR | STRING ;
terminator = ';' | OFFSIDE ;

Lexical classes used in the syntax specification above

IDENT identifiers starting with a lower case letter, e.g. f, f', longer_name
CONS identifiers starting with an upper case letter, e.g. Cons, Tree
TYPEVAR one or more asterisk, e.g. *, **, ***
NUMERAL numeral denotation, e.g. 1.0, 2, 3.3e7
CHAR character denotation, e.g. 'c', '\n'
STRING string denotation, e.g. "hello world\n"
OFFSIDE not a proper terminal: represents an application of the offside rule
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Appendix B
Concurrent Clean
syntax and library

B.1 Concurrent Clean syntax
B.2 δ-rules

B.3 I/O library

This appendix uses the same conventions as Appendix A.

B.1 Concurrent Clean syntax

Clean program
CleanProgram = {Module} ;
Module = DefModule | ImplModule ;
DefModule = 'DEFINITION' 'MODULE' ModuleId ';' {Def}

| 'SYSTEM' 'MODULE' ModuleId ';' {Def} ;
ImplModule = ['IMPLEMENTATION'] 'MODULE' ModuleId ';' {Impl} ;
Def = Import | Type-Block | AbsType-Block

| DefRule-Block | Macro-Block ;
Impl = Import | Type-Block | ImplRule-Block

| Macro-Block ;
Import = 'IMPORT' ModuleId {',' ModuleId} ';'

| 'FROM' ModuleId 'IMPORT' Symbol {',' Symbol} ';' ;
Type-Block = 'TYPE' [TypeRule]+ ;
AbsType-Block = 'ABSTYPE' [AbsTypeRule]+ ;
DefRule-Block = 'RULE' [TypeRule]+ ;
ImplRule-Block = 'RULE' [StrategyDef] [[TypeRule] Rule]+ ;
Macro-Block = 'MACRO' [Rule]+ ;
StrategyDef = 'STRATEGY' Strategy ';' ;
Strategy = 'FUNCTIONAL' ;

Type definitions
TypeRule = '::' TypeAlt {'|' TypeGraph} ';'

| '::' TypeAlt {'->' TypeGraph} ';' ;
AbsTypeRule = '::' TypeGraph ';' ;
TypeAlt = TypeGraph '->' TypeGraph ;
TypeGraph = Graph ;
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Rule definitions
Rule = [RuleAlt]+ ;
RuleAlt = Graph '->' GuardedRhss {',' NodeDef} ';' ;
GuardedRhss = GuardedRhs ['->' GuardedRhss] | Rhs ;
GuardedRhs = Rhs [','] 'IF' Guards ;
Rhs = NodeId | [NodeId ':'] Node ;
Guards = Guards {'&&' Guards} | Guards {'||' Guards}

| '(' Guards ')' | Rhs ;
Graph = [NodeId ':'] Node {',' NodeDef} ;
NodeDef = NodeId ':' Node | NodeIds ':' ListNode

| NodeIds ':' ApplyNode | NodeIds ':' SimpleNode
| NodeIds ':' [Annot] NodeId ;

NodeIds = '(' NodeId [',' NodeId]+ ')' ;
Node = TupleNode | ListNode | ApplyNode | SimpleNode ;
TupleNode = [AnnOrAttr] '(' UnBrackArg [',' UnBrackArg ]+ ')';
ListNode = [AnnOrAttr] '[ ]'

| [AnnOrAttr] '[' UnBrackArg {',' UnBrackArg } ['|' UnBrackArg ] ']' ;
ApplyNode = [AnnOrAttr] NodeId [Arg]+ ;
SimpleNode = [AnnOrAttr] Symbol {Arg} ;
Arg = [AnnOrAttr] NodeId | [AnnOrAttr] [NodeId ':'] ArgNode ;
ArgNode = Symbol | '(' Node ')' | TupleNode | ListNode ;
UnBrackArg = [AnnOrAttr] NodeId | [AnnOrAttr] [NodeId ':'] Node ;

Annotations and attributes
AnnOrAttr = Annotation Attribute | Annotation | Attribute ;
Annotation = '{' StrictAnnot '}' | '{' ProcessAnnot '}' | StrictShorthand ;
StrictAnnot = '!' ;
ProcessAnnot = 'I ' | 'P' ['AT' Graph] ;
StrictShorthand = '!' ;
Attribute = UniqueAttribute ;
UniqueAttribute = 'UNQ' ;

Symbol and node identifiers
Symbol = SymbolId | BasicType | BasicValue | PredefinedType ;
BasicType = 'INT' | REAL' | 'CHAR' | 'BOOL'

| 'STRING' | 'FILE' | 'PROCID' ;
BasicValue = IntDenot | RealDenot | CharDenot | BoolDenot

| StringDenot ;
PredefinedType = '=>' ;

Identifiers and denotations

A dot (.) is used for concatenation of characters. Reserved words are not
allowed as identifiers.

ModuleId = LowerCaseChar.{RestChar} | UpperCaseChar.{RestChar}
| Class1Char.{RestChar} ;

NodeId = LowerCaseChar.{RestChar} ;
SymbolId = UpperCaseChar.{RestChar} | Class1Char.{RestChar} ;
LowerCaseChar = 'a' | 'b' | ... | 'z' ;
UpperCaseChar = 'A' | 'B' | ... | 'Z' ;
Digit = '0' | '1' | ... | '9' ;
OctDigit = '0' | '1' | ... | '7' ;
RestChar = LowerCaseChar | Class1Char | Digit

| UpperCaseChar | CharDel | StringDel ;
CharDel = ''' ;
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StringDel = '"' ;
IntDenot = [Sign].[Digit]+ ;
RealDenot = [Sign].[Digit]+.'.'.[Digit]+.[Exponent] ;
Exponent = 'E'.[Sign].[Digit]+ ;
CharDenot = CharDel.Char.CharDel ;
Char = LowerCaseChar | Class1Char | Digit

| UpperCaseChar | Class2Char | Special ;
BoolDenot = 'TRUE' | 'FALSE' ;
StringDenot = StringDel.{Char}.StringDel ;
Sign = '+' | '-' ;
Class1Char = '@' | '#' | '$' | '%' | '^' | '&'

| '?' | '*' | '-' | '+' | '/' | '='
| '<' | '>' | '_' | '.' | '`' | ''' ;

Class2Char = '|' | '!' | '(' | ')' | '{' | '}'
| '[' | ']' | ':' | ';' | '~' | ',' ;

Special = '\n' | '\r' | '\f' | '\b' | '\t' | '\\'
| '\'.CharDel | '\'.StringDel | '\'.OctDigit.OctDigit.OctDigit ;

Reserved words
'AT' 'FROM' 'PROCID' 'UNQ'
'ABSTYPE' 'FUNCTIONAL' 'REAL' '->'
'BOOL' 'IF' 'RULE' '=>'
'CHAR' 'IMPLEMENTATION' 'STRATEGY' '&&'
'CODE' 'IMPORT' 'STRING' '||'
'DEFINITION' 'INT' 'SYSTEM' '<<'
'FALSE' 'MACRO' 'TRUE' '>>'
'FILE' 'MODULE' 'TYPE' '=='

B.2 δ-rules

General library entrance (delta)
DEFINITION MODULE delta;
IMPORT deltaB, deltaC, deltaI, deltaR, deltaS, deltaM;

Imports all library operations excluding deltaP and the I/O library.

Operations on booleans (deltaB)
SYSTEM MODULE deltaB;
RULE
:: NOT !BOOL -> BOOL; == Boolean negation
:: AND !BOOL !BOOL -> BOOL; == Boolean AND
:: OR !BOOL !BOOL -> BOOL; == Boolean OR
:: =B !BOOL !BOOL -> BOOL; == Boolean equal
:: <>B !BOOL !BOOL -> BOOL; == Boolean not equal
:: BTOS !BOOL -> STRING; == BOOL to STRING conversion

Operations on characters (deltaC)
SYSTEM MODULE deltaC;
RULE
:: =C !CHAR !CHAR -> BOOL; == character equal
:: <>C !CHAR !CHAR -> BOOL; == character not equal
:: <C !CHAR !CHAR -> BOOL; == character less than



506 APPENDIX B: CONCURRENT CLEAN SYNTAX AND LIBRARY

:: >C !CHAR !CHAR -> BOOL; == character greater than
:: <=C !CHAR !CHAR -> BOOL; == character less than or equal
:: >=C !CHAR !CHAR -> BOOL; == character greater than or equal
:: CTOI !CHAR -> INT; == CHAR to ASCII conversion
:: CTOS !CHAR -> STRING; == CHAR to STRING conversion

Operations on integers (deltaI)
SYSTEM MODULE deltaI;
RULE
:: + !INT !INT -> INT; == integer addition
:: - !INT !INT -> INT; == integer subtraction
:: * !INT !INT -> INT; == integer multiplication
:: / !INT !INT -> INT; == integer division
:: % !INT !INT -> INT; == integer modulus
:: ++ !INT -> INT; == integer increment
:: -- !INT -> INT; == integer decrement
:: = !INT !INT -> BOOL; == integer equal
:: <> !INT !INT -> BOOL; == integer not equal
:: < !INT !INT -> BOOL; == integer less than
:: > !INT !INT -> BOOL; == integer greater than
:: <= !INT !INT -> BOOL; == integer less than or equal
:: >= !INT !INT -> BOOL; == integer greater than or equal
:: AND% !INT !INT -> INT; == integer bitwise AND
:: OR% !INT !INT -> INT; == integer bitwise OR
:: NOT% !INT -> INT; == integer bitwise NOT
:: XOR% !INT !INT -> INT; == integer exclusive OR
:: SHIFTL% !INT !INT -> INT; == integer shift left
:: SHIFTR% !INT !INT -> INT; == integer shift right
:: ITOC !INT -> CHAR; == INT to CHAR conversion
:: ITOR !INT -> REAL; == INT to REAL conversion
:: ITOS !INT -> STRING; == INT to STRING conversion

Operations on reals (deltaR)
SYSTEM MODULE deltaR;
RULE
:: +R !REAL !REAL -> REAL; == real addition
:: -R !REAL !REAL -> REAL; == real subtraction
:: *R !REAL !REAL -> REAL; == real multiplication
:: /R !REAL !REAL -> REAL; == real division
:: =R !REAL !REAL -> BOOL; == real equal
:: <>R !REAL !REAL -> BOOL; == real not equal
:: <R !REAL !REAL -> BOOL; == real less than
:: >R !REAL !REAL -> BOOL; == real greater than
:: <=R !REAL !REAL -> BOOL; == real less than or equal
:: >=R !REAL !REAL -> BOOL; == real greater than or equal
:: SIN !REAL -> REAL; == sine
:: COS !REAL -> REAL; == cosine
:: TAN !REAL -> REAL; == tangent
:: ASIN !REAL -> REAL; == arc sine
:: ACOS !REAL -> REAL; == arc cosine
:: ATAN !REAL -> REAL; == arc tangent
:: LN !REAL -> REAL; == logarithm base e
:: LOG10 !REAL -> REAL; == logarithm base 10
:: EXP !REAL -> REAL; == raise e to power
:: POW !REAL !REAL -> REAL; == raise to power
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:: SQRT !REAL -> REAL; == square root
:: ENTIER !REAL -> INT; == entier
:: RTOI !REAL -> INT; == round REAL to INT
:: RTOS !REAL -> STRING; == REAL to STRING conversion

Operations on strings (deltaS)
SYSTEM MODULE deltaS;
RULE
:: +S !STRING !STRING -> STRING; == concatenate arg2 to arg1
:: =S !STRING !STRING -> BOOL; == string equal
:: <>S !STRING !STRING -> BOOL; == string not equal
:: <S !STRING !STRING -> BOOL; == string less than
:: >S !STRING !STRING -> BOOL; == string greater than
:: <=S !STRING !STRING -> BOOL; == string less than or equal
:: >=S !STRING !STRING -> BOOL; == string greater than or equal
:: INDEX !STRING !INT -> CHAR; == get the arg2nd char from arg1
:: SLICE !STRING !INT !INT -> STRING; == get substring arg2 .. arg3

== from arg1
:: UPDATE !STRING !CHAR !INT -> STRING; == replace arg3rd char in arg1

== with arg2
:: LENGTH !STRING -> INT; == string length

String comparison is based on lexical order. String indices range from 0. Note that
as a consequence LENGTH gives the number of characters in the string and not the
index of the last character.

Miscellaneous operations (deltaM)
SYSTEM MODULE deltaM;
RULE
:: ABORT !STRING -> x ; == stop reduction, print arg1

Processor location operations (deltaP)
SYSTEM MODULE deltaP;
RULE
:: CurrentP -> PROCID; == proc-id of the current processor
:: ITOP !INT -> PROCID; == convert an integer to a proc-id
:: RandomP -> PROCID; == generate a random proc-id
:: NeighbourP !INT !PROCID -> PROCID; == proc-id of nth neighbour
:: ChannelP x -> PROCID; == returns the proc-id of arg1

B.3 I/O library

Operations on files (deltaFile)
SYSTEM MODULE deltaFile;
ABSTYPE
:: UNQ FILES;

MACRO == File modes
FReadText -> 0; == read from a text file
FWriteText -> 1; == write to a text file
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FAppendText -> 2; == append to an existing text file
FReadData -> 3; == read from a data file
FWriteData -> 4; == write to a data file
FAppendData -> 5; == append to an existing data file

== seek modes:
FSeekSet -> 0; == new position is the seek offset
FSeekCur -> 1; == relative to current position
FSeekEnd -> 2; == relative to end of file

RULE
:: OpenFiles !UNQ WORLD -> (!FILES, !UNQ WORLD);

Opens the file system (FILES) containing all accessible files. The file system is
used as argument for the functions that open and close files (deltaFile.dcl). At-
tempts to open a file system that is already open will result in a run-time error.

:: CloseFiles !FILES !UNQ WORLD -> UNQ WORLD;
Closes the file system.

:: FOpen !STRING !INT !FILES -> (!BOOL, !UNQ FILE, !FILES);
Opens a file in a certain mode (read, write or append, text or data). The Boolean
output parameter reports success or failure. An attempt to open a file that is al-
ready open will result in a run-time error.

:: FReOpen !UNQ FILE !INT -> (!BOOL, !UNQ FILE);
Re-opens an open file in a possibly different mode. The boolean indicates
whether the file was successfully closed before reopening.

:: FClose !UNQ FILE !FILES -> (!BOOL, !FILES);
Closes a file such that it can be opened again with FOpen. The boolean indicates
whether the file was successfully closed.

:: FReadC !UNQ FILE -> (!BOOL, !CHAR, !UNQ FILE);
Reads a character from a text file or a byte from a data file. The Boolean parame-
ter reports success or failure of the operation.

:: FReadI !UNQ FILE -> (!BOOL, !INT, !UNQ FILE);
Reads an integer from a text file by skipping spaces, tabs and newlines and then
reading digits, which may be preceded by a plus or minus sign. From a data file
FReadI will just read four bytes (a Clean INT).

:: FReadR !UNQ FILE -> (!BOOL, !REAL, !UNQ FILE);
Reads a real from a text file by skipping spaces, tabs and newlines and then read-
ing a character representation of a real number. From a data file FReadR will just
read eight bytes (a Clean REAL).

:: FReadS !UNQ FILE !INT -> (!STRING, !UNQ FILE);
Reads n characters from a text or data file, which are returned as a STRING. If
the file does not contain n characters the file will be read to the end of the file.
An empty string is returned if no characters can be read.

:: FReadLine !UNQ FILE -> (!STRING, !UNQ FILE);
Reads a line from a text file (including a newline character, except for the last
line). FReadLine cannot be used on data files.

:: FWriteC !CHAR !UNQ FILE -> UNQ FILE;
Writes a character to a text file. To a data file, FWriteC writes one byte (a Clean
CHAR).

:: FWriteI !INT !UNQ FILE -> UNQ FILE;
Writes an integer (its textual representation) to a text file. To a data file, FWriteI
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writes four bytes (a Clean INT).

:: FWriteR !REAL !UNQ FILE -> UNQ FILE;
Writes a real (its textual representation) to a text file. To a data file, FWriteR
writes eight bytes (a Clean REAL).

:: FWriteS !STRING !UNQ FILE -> UNQ FILE;
Writes a string to a text or data file.

:: FEnd !UNQ FILE -> (!BOOL, !UNQ FILE);
Tests for end-of-file.

:: FError !UNQ FILE -> (!BOOL, !UNQ FILE);
Has an error occurred during previous file I/O operations?

:: FPosition !UNQ FILE -> (!INT, !UNQ FILE);
Returns the current position of the file pointer as an integer. This position can be
used later on for the FSeek function.

:: FSeek !UNQ FILE !INT !INT -> (!BOOL, !UNQ FILE);
Move to a different position in the file, first integer argument is the offset, second
argument is a seek mode (see above). True is returned if successful.

:: StdIO !FILES -> (!UNQ FILE, !FILES);
Open the ‘Console’ for reading and writing.

:: StdErr -> !UNQ FILE;
The StdErr file is a write-only file (the ‘Errors’ file) that need not be opened or
closed.

:: SFOpen !STRING !INT !FILES -> (!BOOL, !FILE, !FILES);
:: SFReadC !FILE -> (!BOOL, !CHAR, !FILE);
:: SFReadI !FILE -> (!BOOL, !INT, !FILE);
:: SFReadR !FILE -> (!BOOL, !REAL, !FILE);
:: SFReadS !FILE !INT -> (!STRING, !FILE);
:: SFReadLine !FILE -> (!STRING, !FILE);
:: SFSeek !FILE !INT !INT -> (!BOOL, !FILE);

With SFOpen a file can be opened for reading more than once without closing it
first. On a file opened by SFOpen only the operations beginning with SF can be
used. The SF... operations work just like the corresponding F... operations.

:: FShare !UNQ FILE !FILES -> (!FILE, !FILES);
Change a file so that from now on it can only be used with SF... operations.

:: SFEnd !FILE -> BOOL;
:: SFPosition !FILE -> INT;

The functions SFEnd and SFPosition work like FEnd and FPosition, but do not
return a new file on which other operations can continue. They can be used for
files opened with SFOpen or after FShare, and in guards for files opened with
FOpen or FReOpen.

General operations on the IOState (deltaEventIO)
DEFINITION MODULE deltaEventIO;
IMPORT deltaIOSystem;
ABSTYPE
:: UNQ EVENTS;
= = The event stream.
:: UNQ IOState UNQ s;
= = The environment on which all event I/O functions operate.
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TYPE
:: InitialIO s -> [=> s (=> (IOState s) (s, IOStates))]
= = The I/O functions that will be evaluated before starting the interaction.

RULE
:: OpenEvents !UNQ WORLD -> (!EVENTS, !UNQ WORLD);

Retrieves the event stream from the world. Attempts to retrieve the event stream
from the world more than once without putting it back result in a run-time error.

:: CloseEvents !EVENTS !UNQ WORLD -> UNQ WORLD;
Puts the event stream back into the world.

:: StartIO !(IOSystem s (IOState s)) !s !(InitialIO s) !EVENTS
-> (!s, !EVENTS);

Starts a new interaction. The initial state of this interaction is composed of the
program state (s) and the initial I/O state, which consists of the devices partici-
pating in the interaction (defined in the IOSystem argument) and the event
stream (EVENTS). Of each device in the initial IOSystem only the first occur-
rence is taken into account. The program state must be unique. Before starting
the interaction the InitialIO functions are evaluated. At the end of the interaction
StartIO returns the final program state and the resulting event stream, from which
the events that have been handled during the interaction have been removed.

:: NestIO !(IOSystem s (IOState s)) !s !(InitialIO s) !(IOState t)
-> (!s, !IOState t);

Starts a nested interaction. It replaces the current interaction (as specified by the
IOState argument) with a completely new one (as specified by the IOSystem ar-
gument). It hides the devices of the current interaction (if any) and fills a new
IOState with the devices that are specified in the IOSystem and with the event
stream of the old IOState. The program state argument (s) serves as initial pro-
gram state of the new interaction. Before starting the nested interaction the Ini-
tialIO functions are evaluated. NestIO returns the final program state of the new
interaction and the original IOState, such that the original interaction reappears.

:: QuitIO !(IOState s) -> IOState s;
Closes all devices that are held in the IOState argument. The resulting IOState
will cause StartIO or NestIO to terminate.

:: ChangeIOState ![=> (IOState s) (IOState s)] !(IOState s) -> IOState s;
Applies all functions in its first argument in consecutive order to the second
(IOState) argument.

Definition of the I/O system (deltaIOSystem)
DEFINITION MODULE deltaIOSystem;
FROM deltaPicture IMPORT Picture, Rectangle, DrawFunction;
ABSTYPE
:: UNQ DialogState UNQ s UNQ io;
:: DialogInfo;

TYPE
:: IOSystem UNQ s UNQ io -> [DeviceSystem s io];
:: DeviceSystem UNQ s UNQ io -> TimerSystem [TimerDef s io]

-> MenuSystem [MenuDef s io]
-> WindowSystem [WindowDef s io]
-> DialogSystem [DialogDef s io];

The timer device responds only to timer events. A timer event occurs as soon as a
certain TimerInterval has expired since the last time it was ‘sampled’. A TimerInter-
val is defined as a number of ticks. A macro TicksPerSecond is defined in delta-
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Timer.dcl. The timer event causes one of the programmer-defined TimerFunctions to
be evaluated. The TimerState argument of a TimerFunction indicates how many
times the TimerInterval has passed since the last timer event for that timer. When the
TimerInterval of one of the timers is smaller than 1 the corresponding TimerFunction
is called as often as possible.

:: TimerDef UNQ s UNQ io
-> Timer TimerId SelectState TimerInterval (TimerFunction s io);

:: TimerId -> INT;
:: TimerInterval -> INT;
:: TimerFunction UNQ s UNQ io -> => TimerState (=> s (=> io (s, io)));
:: TimerState -> INT;

The menu device consists of several PullDownMenus. PullDownMenus are logically
grouped into a menu bar, in the same order as they are specified. They are selected
by pressing the mouse on their MenuTitle in the menu bar. Menus contain
MenuElements. The corresponding MenuFunctions are executed when these ele-
ments are selected.

:: MenuDef UNQ s UNQ io
-> PullDownMenu MenuId MenuTitle SelectState [MenuElement s io];

:: MenuElement UNQ s UNQ io
-> MenuItem MenuItemId ItemTitle KeyShortcut SelectState

(MenuFunction s io)
-> CheckMenuItem MenuItemId ItemTitle KeyShortcut SelectState MarkState

(MenuFunction s io)
-> SubMenuItem MenuId ItemTitle SelectState [MenuElement s io]
-> MenuItemGroup MenuItemGroupId [MenuElement s io]
-> MenuRadioItems MenuItemId [RadioElement s io]
-> MenuSeparator;

:: RadioElement UNQ s UNQ io
-> MenuRadioItem MenuItemId ItemTitle KeyShortcut SelectState

(MenuFunction s io);
:: MenuFunction UNQ s UNQ io -> => s (=> io (s, io));
:: MenuId -> INT;
:: MenuTitle -> STRING;
:: MenuItemId -> INT;
:: MenuItemGroupId -> INT;
:: KeyShortcut -> Key KeyCode | NoKey;

The window device consists of several ScrollWindows or FixedWindows. A Scroll-
Window is defined by the following arguments:
• WindowId: the number by which the programmer refers to the window.
• WindowPos: the position of the upper-left corner of the window.
• WindowTitle: the title of the window.
• ScrollBarDefs: the horizontal and vertical scroll bars (in that order).
• PictureDomain: the range of the drawing operations in the window.
• MinimumWindowSize: the smallest dimensions of the window.
• InitialWindowSize: the initial dimensions of the window.
• UpdateFunction: the function to redraw parts (UpdateArea) of the window.
• An attribute list that may contain the following window attributes:

– Activate: the way to respond to activation of the window.
– Deactivate: the way to respond to de-activation of the window.
– GoAway: the way to respond when the window is closed.
– Keyboard: the way the window responds to keyboard input.
– Mouse: the way the window responds to mouse events.
– Cursor: the shape of the cursor (mouse pointer) inside the window.
– StandByWindow: when this attribute is present the window will be a so-called

stand-by window.
A FixedWindow has a fixed size, which is defined by its PictureDomain. Therefore
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it has no scroll bars and no size parameters. When the PictureDomain of a Fixed-
Window is or becomes greater than one of the screen’s dimensions it becomes a
ScrollWindow.

:: WindowDef UNQ s UNQ io
-> ScrollWindow WindowId WindowPos WindowTitle

ScrollBarDef ScrollBarDef PictureDomain
MinimumWindowSize InitialWindowSize
(UpdateFunction s) [WindowAttribute s io]

-> FixedWindow WindowId WindowPos WindowTitle PictureDomain
(UpdateFunction s) [WindowAttribute s io];

:: WindowId -> INT;
:: WindowPos -> (!INT, !INT);
:: WindowTitle -> STRING;
:: ScrollBarDef -> ScrollBar ThumbValue ScrollValue;
:: ThumbValue -> Thumb INT;
:: ScrollValue -> Scroll INT;
:: MinimumWindowSize -> (!INT, !INT);
:: InitialWindowSize -> (!INT, !INT);
:: UpdateFunction UNQ s -> => UpdateArea (=> s (s, [DrawFunction]));
:: UpdateArea -> [Rectangle];

:: WindowAttribute UNQ s UNQ io
-> Activate (WindowFunction s io)
-> Deactivate (WindowFunction s io)
-> GoAway (WindowFunction s io)
-> Mouse SelectState (MouseFunction s io)
-> Keyboard SelectState (KeyboardFunction s io)
-> Cursor CursorShape
-> StandByWindow;

:: WindowFunction UNQ s UNQ io -> => s (=> io (s, io));
:: MouseFunction UNQ s UNQ io -> => MouseState (=> s (=> io (s, io)));
:: KeyboardFunction UNQ s UNQ io -> => KeyboardState (=> s (=> io (s, io)));

:: CursorShape -> StandardCursor | BusyCursor | IBeamCursor |
CrossCursor | FatCrossCursor | ArrowCursor |
HiddenCursor;

The dialog device: dialogs given in the initial I/O system will be opened as mode-
less dialogs. Use the Open(Modal)Dialog function (deltaDialog.icl) to open dialogs
during the interaction. PropertyDialogs are special dialogs that can only be mode-
less. They are used to change certain properties (default values, preferences etc.) of
a program. They have two predefined buttons: the Set and the Reset buttons. A
CommandDialog can be any kind of dialog. A PropertyDialog is defined by the fol-
lowing attributes:
• DialogId: a number by which the programmer can refer to the dialog.
• DialogTitle: the title of the dialog.
• A list of attributes that may contain the following dialog attributes:

– DialogPos: the position of the dialog on the screen.
– DialogSize: the size of the dialog.
– DialogMargin: the horizontal and vertical margins between the borders of the

dialog and the items.
– ItemSpace: the horizontal and vertical space between the items of the dialog.
– StandByDialog: when this attribute is present the dialog will be a so-called

stand-by dialog.
When none of these attributes is specified the dialog is centred on the screen, a
size is chosen such that all items fit in the dialog and save default margins, and
item spaces are chosen.

• SetFunction/ResetFunction: the button function for the set/reset button.
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• A list of DialogItems: other items such as CheckBoxes, Controls etc.
A CommandDialog also has an id, a title, a position, a size and a list of DialogItems.
Furthermore it has the following attribute:
• DialogItemId: the item id of the default button.
In the AboutDialog, information about the application (version, authors etc.) can be
presented. It may also contain a button that should provide a help facility. The first
AboutDialog that is encountered in the initial dialog device becomes the AboutDia-
log of the application. Attempts to open AboutDialogs with Open(Modal)Dialog are
ignored. The AboutDialog will be accessible by the user during the interaction in a
system-dependent way.

:: DialogDef UNQ s UNQ io
-> PropertyDialog DialogId DialogTitle [DialogAttribute] (SetFunction s io)

(ResetFunction s io) [DialogItem s io]
-> CommandDialog DialogId DialogTitle [DialogAttribute] DialogItemId

[DialogItem s io]
-> AboutDialog ApplicationName PictureDomain [DrawFunction]

(AboutHelpDef s io);

:: DialogId -> INT;
:: DialogTitle -> STRING;
:: DialogAttribute -> DialogPos Measure Measure

-> DialogSize Measure Measure
-> DialogMargin Measure Measure
-> ItemSpace Measure Measure
-> StandByDialog;

:: Measure -> MM REAL  |  Inch REAL  |  Pixel INT;
:: ApplicationName -> STRING;
:: AboutHelpDef UNQ s UNQ io

-> AboutHelp ItemTitle (AboutHelpFunction s io)
-> NoHelp;

:: AboutHelpFunction UNQ s UNQ io -> => s (=> io (s, io));

A DialogItem can be a final button (DialogButton), a final button with a user-defined
look (DialogIconButton), an unchangeable piece of text (StaticText), a changeable
piece of text (DynamicText), an editable text field (EditText), a pop-up menu
(DialogPopUp), a group of RadioButtons, a group of CheckBoxes, or a user-defined
Control. The ItemPos specifies the position of the item relative to the other items.
When the ItemPos is Left, Center or Right the item is placed left-aligned, centred or
right-aligned, respectively, beneath all other items.

:: DialogItem UNQ s UNQ io
-> DialogButton DialogItemId ItemPos ItemTitle SelectState

(ButtonFunction s io)
-> DialogIconButton DialogItemId ItemPos PictureDomain IconLook

SelectState (ButtonFunction s io)
-> StaticText DialogItemId ItemPos STRING
-> DynamicText DialogItemId ItemPos TextWidth STRING
-> EditText DialogItemId ItemPos TextWidth NrEditLines STRING
-> DialogPopUp DialogItemId ItemPos SelectState DialogItemId

[RadioItemDef s io]
-> RadioButtons DialogItemId ItemPos RowsOrColumns DialogItemId

[RadioItemDef s io]
-> CheckBoxes DialogItemId ItemPos RowsOrColumns [CheckBoxDef s io]
-> Control DialogItemId ItemPos PictureDomain SelectState ControlState

ControlLook ControlFeel (DialogFunction s io);

:: DialogItemId -> INT;
:: ItemPos -> Left | Center | Right | RightTo DialogItemId |

Below DialogItemId | XOffset DialogItemId Measure |
YOffset DialogItemId Measure | XY Measure Measure |
ItemBox INT INT INT INT;
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:: IconLook -> => SelectState [DrawFunction];
:: TextWidth -> Measure;
:: NrEditLines -> INT;
:: RowsOrColumns -> Rows INT  |  Columns INT;

:: RadioItemDef UNQ s UNQ io
-> RadioItem DialogItemId ItemTitle SelectState (DialogFunction s io);

:: CheckBoxDef UNQ s UNQ io
-> CheckBox DialogItemId ItemTitle SelectState MarkState

(DialogFunction s io);

Attributes of a user-defined Control: the ControlState can be a boolean, an integer, a
real or a string. The look of the control is defined by the DrawFunctions (see
deltaPicture.dcl) returned by the ControlLook function. The ControlFeel defines the
way to respond to mouse clicks inside the control’s picture domain.

:: ControlState -> BoolCS BOOL | IntCS INT |
RealCS REAL | StringCS STRING |
ListCS [ControlState] | PairCS ControlState ControlState;

:: ControlLook -> => SelectState (=> ControlState [DrawFunction]);
:: ControlFeel -> => MouseState (=> ControlState

(ControlState,[DrawFunction]));

Types of the several dialog item functions:

:: SetFunction UNQ s UNQ io -> ButtonFunction s io;
:: ResetFunction UNQ s UNQ io -> ButtonFunction s io;
:: DialogFunction UNQ s UNQ io

-> => DialogInfo (=> (DialogState s io) (DialogState s io));
:: ButtonFunction UNQ s UNQ io

-> => DialogInfo (=> s (=> io (s, io)));

A notice is a simple, modal dialog containing only text and final buttons. It can be
used to inform the user about unusual or dangerous situations. A notice is defined
by the following attributes:
• A list of STRINGs: each string is a line of the message of the notice.
• A NoticeButtonDef: the default button of the notice.
• A list of NoticeButtonDefs: the other buttons of the notice.

:: NoticeDef -> Notice [STRING] NoticeButtonDef [NoticeButtonDef];
:: NoticeButtonDef -> NoticeButton NoticeButtonId ItemTitle;
:: NoticeButtonId -> INT;

Keyboard input: a window may respond to keyboard events. Each such event causes
the KeyboardFunction to be evaluated. For certain special keys constants of type
KeyCode are provided in deltaSystem.dcl.

:: KeyboardState -> (!KeyCode, !KeyState, !Modifiers);
:: KeyCode -> CHAR;
:: KeyState -> KeyUp | KeyDown | KeyStillDown;

Mouse input: windows and controls may respond to mouse events. Each such event
causes the MouseFunction to be evaluated.

:: MouseState -> (!MousePosition, !ButtonState, !Modifiers);
:: MousePosition -> (!INT, !INT);
:: ButtonState -> ButtonUp | ButtonDown | ButtonDoubleDown |

ButtonTripleDown | ButtonStillDown;

For each modifier or meta-key (Shift, Option (Alternate), Command, Control) a
boolean in Modifiers indicates whether it was pressed (TRUE) or not (FALSE). On
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keyboards that have no Command key both the third and the fourth boolean in
Modifiers become TRUE when Control is pressed.

:: Modifiers -> (!BOOL, !BOOL, !BOOL, !BOOL);

Other common types:

:: ItemTitle -> STRING;
:: SelectState -> Able | Unable;
:: MarkState -> Mark | NoMark;
:: PictureDomain -> Rectangle;

Operations on the timer device (deltaTimer)
DEFINITION MODULE deltaTimer;
IMPORT deltaIOSystem, deltaEventIO;
MACRO

TicksPerSecond -> … ; == system dependent

TYPE
:: CurrentTime -> (!INT, !INT, !INT);

(hours (0–23), minutes (0–59), seconds (0–59))
:: CurrentDate -> (!INT, !INT, !INT, !INT);

(year, month (1–12), day (1–31), day of week (1–7, Sunday=1, Saturday=7))

RULE
:: OpenTimer !(TimerDef s io) !(IOState s) -> IOState s;
:: CloseTimer !TimerId !(IOState s) -> IOState s;

Open (install) a new timer, close (remove) an existing timer.

:: EnableTimer !TimerId !(IOState s) -> IOState s;
:: DisableTimer !TimerId !(IOState s) -> IOState s;
:: ChangeTimerFunction !TimerId !(TimerFunction s (IOState s))

!(IOState s) -> IOState s;
:: SetTimerInterval !TimerId !TimerInterval !(IOState s) -> IOState s;
:: GetTimerBlinkInterval !(IOState s) -> (!TimerInterval, !IOState s);

Enable, disable, change the TimerFunction and TimerInterval of a Timer. Get-
TimerBlinkInterval returns the number of ticks that should pass between a blink of
the cursor (also called caret time).

:: Wait !TimerInterval x -> x;
:: UWait !TimerInterval UNQ x -> UNQ x;

Delay the evaluation of the second argument for a certain TimerInterval.

:: GetCurrentTime !(IOState s) -> (!CurrentTime,  !IOState s);
:: GetCurrentDate !(IOState s) -> (!CurrentDate,  !IOState s);

GetCurrentTime / GetCurrentDate return the current time and date.

Operations on menus (deltaMenu)
DEFINITION MODULE deltaMenu;
IMPORT deltaIOSystem, deltaEventIO;

Menu operations on unknown MenuIds/MenuItemIds are ignored.

RULE
:: EnableMenuSystem !(IOState s) -> IOState s;
:: DisableMenuSystem !(IOState s) -> IOState s;

Enable and disable the complete menu system. Enabling the menu system will
make the previously enabled menus and menu items selectable again. Operations
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on a disabled menu system take effect when the menu system is re-enabled.

:: EnableMenus ![MenuId] !(IOState s) -> IOState s;
:: DisableMenus ![MenuId] !(IOState s) -> IOState s;

Enable, disable menus. Disabling a menu causes its contents to be unselectable.
Enabling a disabled menu with partially selectable contents causes the previously
selectable items to become selectable again.

:: InsertMenuItems !MenuItemGroupId !INT ![MenuElement s (IOState s)]
!(IOState s) -> IOState s;

:: AppendMenuItems !MenuItemGroupId !INT ![MenuElement s (IOState s)]
!(IOState s) -> IOState s;

:: RemoveMenuItems ![MenuItemId] !(IOState s) -> IOState s;
:: RemoveMenuGroupItems !MenuItemGroupId ![INT]

!(IOState s) -> IOState s;
Addition, removal of MenuItems in MenuItemGroups. InsertMenuItems inserts
menu items before the item with the specified index, AppendMenuItems inserts
them after that item. Items are numbered starting from one. Indices smaller than
one or greater than the number of elements cause the elements to be inserted, re-
spectively, before the first and after the last item in the group. Only
(Check)MenuItems and MenuSeparators are added to MenuItemGroups. Re-
moveMenuItems only works on items that are in a MenuItemGroup. Remove-
MenuGroupItems removes the items with the specified indices (counting from
one) from the specified MenuItemGroup.

:: SelectMenuRadioItem !MenuItemId !(IOState s) -> IOState s;
Select a MenuRadioItem: the mark will move from the currently selected item in
the group to the item with the specified id.

:: EnableMenuItems ![MenuItemId] !(IOState s) -> IOState s;
:: DisableMenuItems ![MenuItemId] !(IOState s) -> IOState s;
:: MarkMenuItems ![MenuItemId] !(IOState s) -> IOState s;
:: UnmarkMenuItems ![MenuItemId] !(IOState s) -> IOState s;
:: ChangeMenuItemTitles ![(MenuItemId, STRING)] !(IOState s) -> IOState s;
:: ChangeMenuItemFunctions ![(MenuItemId, MenuFunction s (IOState s))]

!(IOState s) -> IOState s;
Enable, disable, mark, unmark, change titles and functions of MenuElements.

Operations on windows (deltaWindow)
DEFINITION MODULE deltaWindow;
IMPORT deltaIOSystem, deltaEventIO, deltaPicture;

Functions applied on non-existing windows or unknown WindowIds are ignored.
Functions that operate on the active (or frontmost) window have the same effect as
those operating on a (list of) WindowId(s) but are (slightly) faster.

RULE
:: OpenWindows ![WindowDef s (IOState s)] !(IOState s) -> IOState s;

The windows are opened in the same order as specified in the list of WindowDef-
initions. If one of these windows has the same WindowId as a window that is al-
ready open, then this window is not opened. Each new window is always the ac-
tive window and is placed in front of all existing windows.

:: CloseWindows ![WindowId] !(IOState s) -> IOState s;
The windows are closed in the same order as specified in the list.

:: CloseActiveWindow !(IOState s) -> IOState s;
The active window is closed.
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:: GetActiveWindow !(IOState s) -> (!BOOL, !WindowId, !IOState s);
Returns the id of the active window. If there is no active window the boolean will
be FALSE.

:: ActivateWindow !WindowId !(IOState s) -> IOState s;
Activates the indicated window. No effect, if the window is already active.

:: ChangeUpdateFunction !WindowId !(UpdateFunction s) !(IOState s)-> IOState s;
:: ChangeActiveUpdateFunction !(UpdateFunction s) !(IOState s) -> IOState s;

Change the update function of the indicated window.

:: ChangeWindowTitle !WindowId !WindowTitle !(IOState s) -> IOState s;
:: ChangeActiveWindowTitle !WindowTitle !(IOState s) -> IOState s;

Change the window title of the indicated window.

:: ChangeWindowCursor !WindowId !CursorShape !(IOState s) -> IOState s;
:: ChangeActiveWindowCursor !CursorShape !(IOState s) -> IOState s;

Change the local cursor shape of a window. When the mouse pointer moves over
the content region of the window the cursor will take the indicated shape.

TYPE
:: ScrollBarChange

-> ChangeThumbs INT INT == set new horizontal and vertical thumb values
| ChangeScrolls INT INT == set new horizontal and vertical scroll values
| ChangeHThumb INT == set new horizontal thumb value
| ChangeVThumb INT == set new vertical thumb value
| ChangeHScroll INT == set new horizontal scroll value
| ChangeVScroll INT == set new vertical scroll value
| ChangeHBar INT INT == set new horizontal thumb and scroll values
| ChangeVBar INT INT; == set new vertical thumb and scroll values

RULE
:: ChangeScrollBar !WindowId !ScrollBarChange !s !(IOState s) -> (!s, !IOState s);
:: ChangeActiveScrollBar !ScrollBarChange !s !(IOState s) -> (!s, !IOState s);

Change the scroll bar(s) of a window according to the ScrollBarChange.

:: ChangePictureDomain !WindowId !PictureDomain !s !(IOState s)
-> (!s, !IOState s);

:: ChangeActivePictureDomain !PictureDomain !s !(IOState s) -> (!s, !IOState s);
Change the PictureDomain of the indicated window. The settings of the scroll
bars are automatically adjusted. Windows will be resized in cases where the size
of the new PictureDomain is smaller than the current size of the window.

:: DrawInWindow !WindowId ![DrawFunction] !(IOState s) -> IOState s;
:: DrawInActiveWindow ![DrawFunction] !(IOState s) -> IOState s;

Apply the list of DrawFunctions (see deltaPicture.dcl) to the Picture of the win-
dow in the given order.

:: DrawInWindowFrame !WindowId !(UpdateFunction s) !s !(IOState s)
-> (!s, !IOState s);

:: DrawInActiveWindowFrame !(UpdateFunction s) !s !(IOState s)-> (!s,!IOState s);
The UpdateFunction has a list of visible rectangles as parameter. Using this list it
is possible to return a list of drawing functions that only draw in the visible part
of the window.

:: WindowGetFrame !WindowId !(IOState s) -> (!PictureDomain, !IOState s);
:: ActiveWindowGetFrame !(IOState s) -> (!PictureDomain, !IOState s);

Return the visible part of the Picture of the indicated window in terms of the
PictureDomain. Returns ((0, 0), (0, 0)), if the indicated window does not exist.



518 APPENDIX B: CONCURRENT CLEAN SYNTAX AND LIBRARY

:: EnableKeyboard !WindowId !(IOState s) -> IOState s;
:: DisableKeyboard !WindowId !(IOState s) -> IOState s;
:: EnableActiveKeyboard !(IOState s) -> IOState s;
:: DisableActiveKeyboard !(IOState s) -> IOState s;
:: ChangeKeyboardFunction !WindowId !(KeyboardFunction s (IOState s))

!(IOState s) -> IOState s;
:: ChangeActiveKeyboardFunction !(KeyboardFunction s (IOState s))

!(IOState s) -> IOState s;
Enable, disable, change KeyboardFunction of a window.

:: EnableMouse !WindowId !(IOState s) -> IOState s;
:: DisableMouse !WindowId !(IOState s) -> IOState s;
:: EnableActiveMouse !(IOState s) -> IOState s;
:: DisableActiveMouse !(IOState s) -> IOState s;
:: ChangeMouseFunction !WindowId !(MouseFunction s (IOState s)) !(IOState s) 

-> IOState s;
:: ChangeActiveMouseFunction !(MouseFunction s (IOState s)) !(IOState s)

-> IOState s;
Enable, disable, change MouseFunction of a window.

Operations on dialogs (deltaDialog)
DEFINITION MODULE deltaDialog;
IMPORT deltaIOSystem, deltaEventIO;

Functions applied on non-existent dialogs or unknown ids are ignored.

TYPE
:: DialogChange s -> => (DialogState s (IOState s)) (DialogState s (IOState s));

RULE
OpenDialog opens a PropertyDialog or CommandDialog as a modeless dialog.

:: OpenDialog !(DialogDef s (IOState s)) !(IOState s) -> IOState s;

OpenModalDialog opens a CommandDialog as a modal dialog. The function termi-
nates when the dialog is closed (by means of Close(Active)Dialog). Attempts to
open property dialogs with this function are ignored.

:: OpenModalDialog !(DialogDef s (IOState s)) !s !(IOState s) -> (!s, !IOState s);

Close(Active)Dialog closes the indicated dialog.

:: CloseDialog !DialogId !(IOState s) -> IOState s;
:: CloseActiveDialog !(IOState s) -> IOState s;

OpenNotice opens a notice and returns the id of the selected notice button.

:: OpenNotice !NoticeDef !(IOState s) -> (!NoticeButtonId, !IOState s);

A Beep is the simplest kind of notice.

:: Beep !(IOState s) -> IOState s;

With the following functions the state of dialog items can be changed. They have no
effect when an id is specified for an item for which the state change is invalid.

:: EnableDialogItems ![DialogItemId] !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: DisableDialogItems ![DialogItemId] !(DialogState s (IOState s))
-> DialogState s (IOState s);
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:: MarkCheckBoxes ![DialogItemId] !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: UnmarkCheckBoxes ![DialogItemId] !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: SelectDialogRadioItem !DialogItemId !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: ChangeEditText !DialogItemId !STRING !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: ChangeDynamicText !DialogItemId !STRING !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: ChangeIconLook !DialogItemId !IconLook !(DialogState s (IOState s))
-> DialogState s (IOState s);

Functions to change state, look and feel (behaviour) of Controls. When the id is not
the id of a Control the functions have no effect.

:: ChangeControlState !DialogItemId !ControlState !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: ChangeControlLook !DialogItemId !ControlLook !(DialogState s (IOState s))
-> DialogState s (IOState s);

:: ChangeControlFeel !DialogItemId !ControlFeel !(DialogState s (IOState s))
-> DialogState s (IOState s);

Functions to change the functions related to dialog items.

:: ChangeDialogFunction !DialogItemId !(DialogFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s);

:: ChangeButtonFunction !DialogItemId !(ButtonFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s);

:: ChangeSetFunction !(SetFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s);

:: ChangeResetFunction !(ResetFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s);

Get(Active)DialogInfo returns the current settings (DialogInfo) of the indicated dia-
log. The boolean indicates whether the indicated dialog is open. When it is FALSE a
dummy DialogInfo is returned.

:: GetDialogInfo  !DialogId !(IOState s) -> (!BOOL, !DialogInfo, !IOState s);
:: GetActiveDialogInfo !(IOState s) -> (!BOOL, !DialogInfo, !IOState s);

DialogStateGetDialogInfo returns the DialogInfo corresponding to a DialogState.

:: DialogStateGetDialogInfo !(DialogState s (IOState s))
-> (!DialogInfo, !DialogState s (IOState s));

The following functions return the current settings of certain dialog items (those that
can be changed by the user). When the corresponding item does not exist a run-time
error occurs. The id passed to GetSelectedRadioItemId must be the id of a Dialog-
PopUp or a group of RadioButtons. The function CheckBoxesMarked returns the
settings of a group of CheckBoxes. The id passed to it must be the id of such a
group.

:: GetEditText !DialogItemId !DialogInfo  ->  STRING;
:: GetSelectedRadioItemId !DialogItemId !DialogInfo  ->  DialogItemId;
:: CheckBoxesMarked !DialogItemId !DialogInfo  ->  [(DialogItemId, BOOL)];
:: CheckBoxMarked !DialogItemId !DialogInfo  ->  BOOL;
:: GetControlState !DialogItemId !DialogInfo  ->  ControlState;

ChangeDialog can be used to modify open dialogs.

:: ChangeDialog !DialogId ![DialogChange s] !(IOState s) -> IOState s;
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The file selector dialogs (deltaFileSelect)
DEFINITION MODULE deltaFileSelect;
IMPORT deltaFile, deltaEventIO;

With the functions defined in this module, standard file selector dialogs can be
opened, which provide a user-friendly way to select input or output files. The lay-
out of these dialogs depends on the operating system.

RULE
:: SelectInputFile !FILES !(IOState s) -> (!BOOL, !STRING, !FILES, !IOState s);

Opens a dialog in which the user can traverse the file system to indicate an exist-
ing file. The Boolean result indicates whether the user has pressed the Open but-
ton (TRUE) or the Cancel button (FALSE). The STRING result is the complete
path name of the selected file. If the Cancel button has been pressed, an empty
string will be returned.

:: SelectOutputFile !STRING !STRING !FILES !(IOState s)
-> (!BOOL, !STRING, !FILES, !IOState s);
Opens a dialog in which the user can specify the name of a file that should be
created in a certain directory. The first parameter is the prompt of the dialog
(default: "Save As:"). The second parameter is the default file name. The
Boolean result indicates whether the user has pressed the Save button (TRUE) or
the Cancel button (FALSE). The STRING result is the complete path name of the
selected file. If the Cancel button has been pressed, an empty string will be re-
turned. When a file with the indicated name already exists in the indicated direc-
tory a confirm dialog will be opened after pressing Save.

Predefined Controls (deltaControls)
DEFINITION MODULE deltaControls;
IMPORT deltaIOSystem, deltaEventIO;

General scrolling list and slider bar definition. These predefined dialog items are
implemented entirely in Concurrent Clean as a user-defined Control.

TYPE
:: NrVisible -> INT;
:: SliderDirection -> Horizontal | Vertical;
:: SliderPos -> INT;
:: SliderMax -> INT;

RULE
A ScrollingList is defined by the following attributes:
• Id, ItemPos and SelectState (like other dialog items).
• The minimum width of the scrolling list (Measure).

This attribute is important only when ChangeScrollingList is used. Use a mini-
mum width of zero when the scrolling list is not changed.

• The number of items that is visible in the list (NrVisible).
• The item that is initially selected (ItemTitle).
• The list of items ([ItemTitle]).
• A DialogFunction that is called whenever a new item is selected.
The function ScrollingList returns a DialogItem (a Control) that can be used in any
dialog definition.

:: ScrollingList !DialogItemId !ItemPos !Measure !SelectState !NrVisible !ItemTitle
![ItemTitle] !(DialogFunction s (IOState s)) -> DialogItem s (IOState s);

With ChangeScrollingList the items in the scrolling list can be changed. Its argu-
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ments are the id of the scrolling list, the newly selected item and the new list of
items. When the id is not the id of a ScrollingList a run-time error is generated.

:: ChangeScrollingList !DialogItemId !ItemTitle ![ItemTitle]
!(DialogState s (IOState s)) -> DialogState s (IOState s);

GetScrollingListItem returns the currently selected item in the scrolling list with the
indicated id from the DialogInfo parameter. When the id is not the id of a Scrolling-
List a run-time error is generated.

:: GetScrollingListItem !DialogItemId !DialogInfo -> ItemTitle;

A SliderBar is defined by the following attributes:
• Id, ItemPos and SelectState, like other DialogItems.
• SliderDirection: Horizontal or Vertical.
• SliderPos: the initial position of the slider. This position is always adjusted be-

tween 0 and SliderMax.
• SliderMax: the slider can take on positions between 0 and SliderMax.
• A DialogFunction that is called whenever the slider moves.

:: SliderBar !DialogItemId !ItemPos !SelectState !SliderDirection !SliderPos
!SliderMax !(DialogFunction s (IOState s)) -> DialogItem s (IOState s);

ChangeSliderBar moves the slider of the indicated slider bar to the new position.
The position is always adjusted between 0 and SliderMax.

:: ChangeSliderBar !DialogItemId !SliderPos !(DialogState s (IOState s))
-> DialogState s (IOState s);

GetSliderPosition returns the current slider position of the slider bar with the indi-
cated id from the DialogInfo parameter. When the id is not the id of a SliderBar a
run-time error is generated.

:: GetSliderPosition !DialogItemId !DialogInfo -> SliderPos;

Miscellaneous operations (deltaIOState)
DEFINITION MODULE deltaIOState;
IMPORT deltaIOSystem, deltaEventIO;
RULE
:: SetGlobalCursor !CursorShape !(IOState s) -> IOState s;

Sets the shape of the cursor (mouse pointer) globally. This shape overrules the
local cursor shapes of windows. Attempts to set the global cursor to HiddenCur-
sor are ignored.

:: ResetCursor !(IOState s) -> IOState s;
Undoes the effect of SetGlobalCursor. It resets the cursor to the standard shape
outside windows with a local cursor shape and to the local shape inside such
windows.

:: ObscureCursor !(IOState s) -> IOState s;
Hides the cursor until the next time that the mouse is moved.

:: SetDoubleDownDistance !INT !(IOState s) -> IOState s;
Set the maximum distance (in pixels) between two mouse clicks such that they
will be treated as a ButtonDoubleDown or ButtonTripleDown.
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Operations on pictures (deltaPicture)
DEFINITION MODULE deltaPicture;
IMPORT deltaFont;
ABSTYPE
:: UNQ Picture;

TYPE
:: DrawFunction -> => Picture Picture;

The predefined figures that can be drawn:

:: Point -> (!INT, !INT);
:: Line -> (!Point, !Point);
:: Curve -> (!Oval, !INT, !INT);
:: Rectangle -> (!Point, !Point);
:: RoundRectangle -> (!Rectangle, !INT, !INT);
:: Oval -> Rectangle;
:: Circle -> (!Point, !INT);
:: Wedge -> (!Oval, !INT, !INT);
:: Polygon -> (!Point, !PolygonShape);
:: PolygonShape -> [Vector];
:: Vector -> (!INT, !INT);

The pen attributes influence the way figures are drawn. The PenMode also influ-
ences the way text is drawn. The Not... modes do not work when text is drawn.
When the PenMode is a Not... mode text is drawn in OrMode.

:: PenSize -> (!INT, !INT);
:: PenMode -> CopyMode | OrMode | XorMode |

ClearMode | NotCopyMode | NotOrMode |
NotXorMode | NotClearMode | HiliteMode;

:: PenPattern -> BlackPattern | DkGreyPattern | GreyPattern |
LtGreyPattern | WhitePattern;

The predefined colours:

:: Colour -> RGB REAL REAL REAL |
BlackColour | WhiteColour | BlueColour | CyanColour |
RedColour | GreenColour | YellowColour | MagentaColour;

MACRO
MinRGB -> 0.0;
MaxRGB -> 1.0;

RULE
Rules setting the attributes of a Picture:

SetPenSize (w, h) sets the PenSize to w pixels wide and h pixels high.
SetPenMode sets the drawing mode of the pen.
SetPenPattern sets the pattern of the pen.
SetPenNormal sets the PenSize to (1,1), the PenMode to CopyMode and the Pen-

Pattern to BlackPattern.

:: SetPenSize !PenSize !Picture -> Picture;
:: SetPenMode !PenMode !Picture -> Picture;
:: SetPenPattern !PenPattern !Picture -> Picture;
:: SetPenNormal !Picture -> Picture;

Colour: there are two types of Colour: RGB colours and basic colours. An RGB
colour defines the amount of red (r), green (g) and blue (b) in a certain colour by the
tuple (r,g,b). These are REAL values and each of them must be between MinRGB
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and MaxRGB (0.0 and 1.0). The colour black is defined by (MinRGB, MinRGB,
MinRGB) and white by (MaxRGB, MaxRGB, MaxRGB). Given an RGB colour, all
amounts are adjusted between MinRGB and MaxRGB.

SetPenColour sets the colour of the pen.
SetBackColour sets the background colour.

:: SetPenColour !Colour !Picture -> Picture;
:: SetBackColour !Colour !Picture -> Picture;

Fonts: the initial font of a Picture is the default font (see deltaFont.dcl).

SetFont sets a new complete Font in the Picture.
SetFontName sets a new font without changing the style or size.
SetFontStyle sets a new style without changing font or size.
SetFontSize sets a new size without changing font or style. The size is always ad-
justed between MinFontSize and MaxFontSize (see deltaFont.dcl).

:: SetFont !Font !Picture -> Picture;
:: SetFontName !FontName !Picture -> Picture;
:: SetFontStyle ![FontStyle] !Picture -> Picture;
:: SetFontSize !FontSize !Picture -> Picture;

PictureCharWidth (PictureStringWidth) yield the width of the given C H A R
(STRING) given the current font of the Picture. PictureFontMetrics yields the
FontInfo of the current font.

:: PictureCharWidth !CHAR !Picture -> (!INT, !Picture);
:: PictureStringWidth !STRING !Picture -> (!INT, !Picture);
:: PictureFontMetrics !Picture -> (!FontInfo, !Picture);

Absolute and relative pen move operations without drawing.

:: MovePenTo !Point !Picture -> Picture;
:: MovePen !Vector !Picture -> Picture;

Absolute and relative pen move operations with drawing.

:: LinePenTo !Point !Picture -> Picture;
:: LinePen !Vector !Picture -> Picture;

DrawChar (DrawString) draws a character (string) in the current font. The baseline
of the characters is the y-coordinate of the pen. The new position of the pen is di-
rectly after the (last) character (of the string).

:: DrawChar !CHAR !Picture -> Picture;
:: DrawString !STRING !Picture -> Picture;

All following rules do not change the position of the pen after drawing.

Draw(C)Point draws the pixel (in the given colour) in the Picture.
Draw(C)Line draws the line (in the given colour) in the Picture.
Draw(C)Curve draws the curve (in the given colour) in the Picture. A Curve is a part
of an Oval o starting from angle a up to angle b (both in degrees modulo 360): (o, a,
b). Angles are always taken anticlockwise, starting from 3 o’clock.

:: DrawPoint !Point !Picture -> Picture;
:: DrawLine !Line !Picture -> Picture;
:: DrawCurve !Curve !Picture -> Picture;
:: DrawCPoint !Point !Colour !Picture -> Picture;
:: DrawCLine !Line !Colour !Picture -> Picture;
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:: DrawCCurve !Curve !Colour !Picture -> Picture;

A Rectangle is defined by two diagonal corner points.
DrawRectangle draws the edges of the rectangle.
FillRectangle draws the edges and interior of the rectangle.
EraseRectangle erases the edges and interior of the rectangle.
InvertRectangle inverts the edges and interior of the rectangle.
MoveRectangleTo moves the contents of the rectangle to a new top-left corner.
MoveRectangle moves the contents of the rectangle over the given vector.
CopyRectangleTo copies the contents of the rectangle to a new top-left corner.
CopyRectangle moves the contents of the rectangle over the given vector, but
leaves the original untouched.

:: DrawRectangle !Rectangle !Picture -> Picture;
:: FillRectangle !Rectangle !Picture -> Picture;
:: EraseRectangle !Rectangle !Picture -> Picture;
:: InvertRectangle !Rectangle !Picture -> Picture;

:: MoveRectangleTo !Rectangle !Point !Picture -> Picture;
:: MoveRectangle !Rectangle !Vector !Picture -> Picture;
:: CopyRectangleTo !Rectangle !Point !Picture -> Picture;
:: CopyRectangle !Rectangle !Vector !Picture -> Picture;

Rounded corner rectangles: a RoundRectangle with enclosing Rectangle r and cor-
ner curvatures x and y is defined by the tuple (r, x, y). x and y define the horizontal
and vertical diameter of the corner curves. They are always adjusted between 0 and
the width (height) of r.

:: DrawRoundRectangle !RoundRectangle !Picture -> Picture;
:: FillRoundRectangle !RoundRectangle !Picture -> Picture;
:: EraseRoundRectangle !RoundRectangle !Picture -> Picture;
:: InvertRoundRectangle !RoundRectangle !Picture -> Picture;

An Oval is defined by its enclosing Rectangle.

:: DrawOval !Oval !Picture -> Picture;
:: FillOval !Oval !Picture -> Picture;
:: EraseOval !Oval !Picture -> Picture;
:: InvertOval !Oval !Picture -> Picture;

A Circle with centre c (a Point) and radius r (an INT) is defined by the tuple (c, r).

:: DrawCircle !Circle !Picture -> Picture;
:: FillCircle !Circle !Picture -> Picture;
:: EraseCircle !Circle !Picture -> Picture;
:: InvertCircle !Circle !Picture -> Picture;

A Wedge is a part of an Oval o starting from angle a up to angle b (both in degrees
modulo 360): (o, a, b). Angles are taken anticlockwise, starting from 3 o’-clock.

:: DrawWedge !Wedge !Picture -> Picture;
:: FillWedge !Wedge !Picture -> Picture;
:: EraseWedge !Wedge !Picture -> Picture;
:: InvertWedge !Wedge !Picture -> Picture;

A Polygon is a figure drawn by a number of lines without taking the pen off the Pic-
ture, starting from and ending at some Point p. The PolygonShape is a list of Vec-
tors ([v1,...,vn]) that defines how the Polygon is drawn: (p, [v1,...,vn]).

ScalePolygon scales the polygon. Non-positive scale factors are allowed.
MovePolygonTo changes the starting point into the given Point and
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MovePolygon moves the starting point by the given Vector.

:: ScalePolygon !INT !Polygon -> Polygon;
:: MovePolygonTo !Point !Polygon -> Polygon;
:: MovePolygon !Vector !Polygon -> Polygon;

:: DrawPolygon !Polygon !Picture -> Picture;
:: FillPolygon !Polygon !Picture -> Picture;
:: ErasePolygon !Polygon !Picture -> Picture;
:: InvertPolygon !Polygon !Picture -> Picture;

Operations on fonts (deltaFont)
DEFINITION MODULE deltaFont;
ABSTYPE
:: Font;

TYPE
:: FontName -> STRING;
:: FontStyle -> STRING;
:: FontSize -> INT;
:: FontInfo -> (!INT, !INT, !INT, !INT);

MACRO
MinFontSize -> … ; == system dependent
MaxFontSize -> … ; == system dependent

RULE
SelectFont creates the font as specified by the name, the stylistic variations and size.
The size is always adjusted between MinFontSize and MaxFontSize. The Boolean
result is TRUE if the font is available and need not be scaled. In cases where the font
is not available, the default font is chosen in the specified style and size.

:: SelectFont !FontName ![FontStyle] !FontSize -> (!BOOL, !Font);

DefaultFont returns the default font, specified by name, style and size.

:: DefaultFont -> (!FontName, ![FontStyle], !FontSize);

FontNames returns the FontNames of all available fonts.
FontStyles returns the available FontStyles for a certain font.
FontSizes returns all FontSizes of a font that are available without scaling.
In cases where the font is not available, the styles or sizes of the default font are
returned.

:: FontNames -> [FontName];
:: FontStyles !FontName -> [FontStyle];
:: FontSizes !FontName -> [FontSize];

FontCharWidth(s) and FontStringWidth(s) return the width(s) in terms of pixels of
given character(s) or string(s) in a certain Font.

:: FontCharWidth !CHAR !Font -> INT;
:: FontCharWidths ![CHAR] !Font -> [INT];
:: FontStringWidth !STRING !Font -> INT;
:: FontStringWidths ![STRING] !Font -> [INT];

FontMetrics yields the FontInfo in terms of pixels of a given Font. The FontInfo is a
4-tuple (ascent, descent, maxwidth, leading), which defines the font metrics:
• ascent is the maximum height of a character measured from the base line.
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• descent is the maximum depth of a character measured from the base line.
• maxwidth is the width of the widest character.
• leading is the vertical distance between two lines of the same font.
The full height of a line is the sum of the ascent, descent and leading.

:: FontMetrics !Font -> FontInfo;

System-dependent constants and functions (deltaSystem)
DEFINITION MODULE deltaSystem;
MACRO
Keyboard constants (of type KeyCode):

UpKey -> ...; BackSpKey -> ...;
DownKey -> ...; DelKey -> ...;
LeftKey -> ...; TabKey -> ...;
RightKey -> ...; ReturnKey -> ...;
PgUpKey -> ...; EnterKey -> ...;
PgDownKey -> ...; EscapeKey -> ...;
BeginKey -> ...; HelpKey -> ...;
EndKey -> ...;

Separator between directory and filenames in a pathname (of type CHAR):

DirSeparator -> ...;

Constants to check which of the meta-keys (modifiers) is down (of type Modifiers):

ShiftOnly -> (TRUE,FALSE,FALSE,FALSE);
OptionOnly -> (FALSE,TRUE,FALSE,FALSE);
CommandOnly -> ...; == depends on whether the keyboard of the system
ControlOnly -> ...; == has a Command key.

The minimum and maximum sizes of a picture domain (of type INT):

MinPictureDomain -> ...; MaxPictureDomain -> ...;

RULE
The function HomePath prefixes the pathname given to it with the full pathname of
the home directory of the user (on single-user systems this is the current working
directory). ApplicationPath prefixes the pathname given to it with the full pathname
of the directory in which the application resides.

:: HomePath !STRING -> STRING;
:: ApplicationPath !STRING -> STRING;

Functions to retrieve the horizontal and vertical screen resolution.

:: MMToHorPixels !REAL -> INT;
:: MMToVerPixels !REAL -> INT;
:: InchToHorPixels !REAL -> INT;
:: InchToVerPixels !REAL -> INT;

The maximum width and height for the indicated type of window such that the
window will fit on the screen. For FixedWindows this is the maximum size of the
PictureDomain such that the window does not become a ScrollWindow.

:: MaxScrollWindowSize -> (!INT, !INT);
:: MaxFixedWindowSize -> (!INT, !INT);
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Appendix C
ABC machine specification

C.1 The ABC instruction set
C.2 Running ABC programs

C.3 The ABC micro-instructions

This appendix summarizes the machine instructions of the ABC ma-
chine. The most representative instructions (marked with •) are formally
specified together with the used micro-instructions. The actual ABC
machine (Koopman et al.,1990) has some facilities (such as directives
and calling external functions) that are not included here.

C.1 The ABC instruction set
state = = (astack,bstack,cstack,graphstore,descrstore,pc,programstore,io)
instruction = = state -> state

a_dst = = nat
a_src = = nat
ap_entry = = instrid
arg_nr = = nat
arity = = nat
b_dst = = nat
b_src = = nat
c_src = = nat
descrid = = num
graph = = [node]

int = = num
instrid = = num
name = = [char]
nat = = num
nodeid = = nat
nodeid_seq = = [nodeid]
nr_args = = nat
real = = num
string = = [char]

Instruction set
• add_args :: a_src -> nr_args -> a_dst -> instruction
• create :: instruction
• del_args :: a_src -> nr_args -> a_dst -> instruction
• eq_descr :: descrid -> a_src -> instruction
• eq_descr_arity :: descrid -> arity -> a_src -> instruction
• eq_symbol :: a_src -> a_src -> instruction
• eqB :: instruction
• eqB_a :: bool -> a_src -> instruction
• eqB_b :: bool -> b_src -> instruction

eqC_a :: char -> a_src -> instruction
eqC_b :: char -> b_src -> instruction
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• eqI :: instruction
• eqI_a :: int -> a_src -> instruction
• eqI_b :: int -> b_src -> instruction

eqR_a :: real -> a_src -> instruction
eqR_b :: real -> b_src -> instruction
eqS_a :: string -> a_src -> instruction

• fill :: descrid -> nr_args -> instrid -> a_dst -> instruction
• fill_a :: a_src -> a_dst -> instruction
• fillB :: bool -> a_dst -> instruction
• fillB_b :: b_src -> a_dst -> instruction

fillC :: char -> a_dst -> instruction
fillC_b :: b_src -> a_dst -> instruction

• fillI :: int -> a_dst -> instruction
• fillI_b :: b_src -> a_dst -> instruction

fillR :: real -> a_dst -> instruction
fillR_b :: b_src -> a_dst -> instruction
fillS :: string -> a_dst -> instruction
fillS_symbol :: a_src -> a_dst -> instruction

• get_descr_arity :: a_src -> instruction
• get_node_arity :: a_src -> instruction
• halt :: instruction
• jmp :: instrid -> instruction
• jmp_eval :: instruction
• jmp_false :: instrid -> instruction
• jmp_true :: instrid -> instruction
• jsr :: instrid -> instruction
• jsr_eval :: instruction
• no_op :: instruction
• pop_a :: nr_args -> instruction
• pop_b :: nr_args -> instruction
• print :: string -> instruction
• print_symbol :: a_src -> instruction
• push_a :: a_src -> instruction
• push_ap_entry :: a_src -> instruction
• push_arg :: a_src -> arity -> arg_nr -> instruction
• push_arg_b :: a_src -> instruction
• push_args :: a_src -> arity -> nr_args -> instruction
• push_args_b :: a_src -> instruction
• push_b :: b_src -> instruction
• pushB :: bool -> instruction
• pushB_a :: a_src -> instruction

pushC :: char -> instruction
pushC_a :: a_src -> instruction

• pushI :: int -> instruction
• pushI_a :: a_src -> instruction

pushF_a :: a_src -> instruction
pushR :: real -> instruction
pushR_a :: a_src -> instruction

• repl_args :: arity -> nr_args -> instruction
• repl_args_b :: instruction
• rtn :: instruction
• set_entry :: instrid -> a_dst -> instruction
• update_a :: a_src -> a_dst -> instruction
• update_b :: b_src -> b_dst -> instruction

• addI :: instruction
• decI :: instruction

divI :: instruction
• gtI :: instruction
• incI :: instruction
• ltI :: instruction
• mulI :: instruction

modI :: instruction
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• subI :: instruction

acosR :: instruction
addR :: instruction
asinR :: instruction
atabR :: instruction
cosR :: instruction
decR :: instruction
divR :: instruction
entierR :: instruction
expR :: instruction
incR :: instruction
gtR :: instruction
lnR :: instruction
log10R :: instruction
ltR :: instruction
mulR :: instruction
powR :: instruction
remR :: instruction
sinR :: instruction
sqrtR :: instruction
subR :: instruction
tanR :: instruction

catS :: instruction
cmpS :: instruction
indexS :: instruction
lenS :: instruction
sliceS :: instruction
updateS :: instruction

andBit :: instruction
notBit :: instruction
orBit :: instruction
xorBit :: instruction
shiftlBit :: instruction
shiftrBit :: instruction

andB :: instruction
notB :: instruction
orB :: instruction

gtC :: instruction
ltC :: instruction

convertCtoI :: instruction
convertItoC :: instruction
convertItoR :: instruction
convertRtoI :: instruction

endF :: instruction
getFC :: instruction
getFS :: a_dst -> instruction
openF :: a_src->a_src->instruction
putFC :: instruction
putFS :: a_src -> instruction
reopenF:: instruction

Specification of representative instructions
int_descr = 0
bool_descr = 1
rnf_entry = 1

add_args a_src nr_args a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs',ds,pc,ps,io)

where as' = as_popn nr_args as
gs' = gs_update dstid (n_fill descrid entry newargs) gs
dstid = as_get a_dst as
srcid  = as_get a_src as
node = gs_get srcid gs
descrid = n_descrid node
entry = n_entry node
newargs = n_args node arity ++ as_topn nr_args as
arity = n_arity node

create (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs',ds,pc,ps,io)

where as' = as_push nodeid as
(gs',nodeid) = gs_newnode gs

del_args a_src nr_args a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update dstid (n_fill descrid entry newargs) gs
dstid = as_get a_dst as
srcid  = as_get a_src as
node = gs_get srcid gs
descrid = n_descrid node
entry = n_entry node
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newargs = n_nargs node (arity – nr_args) arity
arity = n_arity node

eq_descr descrid a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB equal bs
equal = n_eq_descrid node descrid
node = gs_get nodeid gs
nodeid = as_get a_src as

eq_descr_arity descrid arity a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB equal bs
equal = n_eq_descrid node descrid & n_eq_arity node arity
node = gs_get nodeid gs
nodeid = as_get a_src as

eq_symbol a_src1 a_src2 (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB equal bs
equal = n_eq_symbol node1 node2
node1 = gs_get nodeid1 gs
node2 = gs_get nodeid2 gs
nodeid1 = as_get a_src1 as
nodeid2 = as_get a_src2 as

eqB (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_eqB bs

eqB_a bool a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB equal bs
equal = n_eq_B (gs_get nodeid gs) bool
nodeid = as_get a_src as

eqB_b bool b_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_eqBi bool b_src bs

eqI (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_eqI bs

eqI_a int a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB equal bs
equal = n_eq_I (gs_get nodeid gs) int
nodeid = as_get a_src as

eqI_b int b_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_eqIi int b_src bs

fill descr nr_args entry a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs',ds,pc,ps,io)

where as' = as_popn nr_args as
gs' = gs_update nodeid (n_fill descr entry args) gs
nodeid = as_get a_dst as
args  = as_topn nr_args as

fill_a a_src a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)
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where gs' = gs_update nodeid_dst (n_copy node_src) gs
node_src = gs_get nodeid_src gs
nodeid_dst = as_get a_dst as
nodeid_src = as_get a_src as

fillB bool a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update nodeid (n_fillB bool_descr rnf_entry bool) gs
nodeid = as_get a_dst as

fillB_b b_src a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update nodeid (n_fillB bool_descr rnf_entry bool) gs
bool = bs_getB b_src bs
nodeid = as_get a_dst as

fillI int a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update nodeid (n_fillI int_descr rnf_entry int) gs
nodeid = as_get a_dst as

fillI_b b_src a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update nodeid (n_fillI int_descr rnf_entry int) gs
int = bs_getI b_src bs
nodeid = as_get a_dst as

get_descr_arity a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushI arity bs
arity = d_arity (ds_get descrid ds)
descrid = n_descrid (gs_get nodeid gs)
nodeid = as_get a_src as

get_node_arity a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushI arity bs
arity = n_arity (gs_get nodeid gs)
nodeid = as_get a_src as

halt (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs,ds,pc',ps,io)

where pc' = pc_halt pc

jmp address (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs,ds,pc',ps,io)

where pc' = pc_update address pc

jmp_eval (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs,ds,pc',ps,io)

where pc' = pc_update (n_entry (gs_get nodeid gs)) pc
nodeid = as_get 0 as

jmp_false address (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc',ps,io)

where pc'  = pc, if bool
= pc_update address pc, otherwise

bool = bs_getB 0 bs
bs' = bs_popn 1 bs

jmp_true address (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc',ps,io)

where pc' = pc_update address pc, if bool
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= pc, otherwise
bool = bs_getB 0 bs
bs' = bs_popn 1 bs

jsr address (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs',gs,ds,pc',ps,io)

where pc' = pc_update address pc
cs' = cs_push (pc_get pc) cs

jsr_eval (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs',gs,ds,pc',ps,io)

where pc' = pc_update (n_entry (gs_get nodeid gs)) pc
nodeid = as_get 0 as
cs' = cs_push (pc_get pc) cs

no_op state = state

pop_a n (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_popn n as

pop_b n (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_popn n bs

print string (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs,ds,pc,ps,io')

where io' = io_print string io

print_symbol a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs,ds,pc,ps,io')

where io' = io_print_symbol node descr io
nodeid = as_get a_src as
node = gs_get nodeid gs
descr = ds_get (n_descrid node) ds

push_a a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_push nodeid as
nodeid = as_get a_src as

push_ap_entry a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs',gs,ds,pc,ps,io)

where cs' = cs_push (d_ap_entry (ds_get descrid ds)) cs
descrid = n_descrid (gs_get nodeid gs)
nodeid = as_get a_src as

push_arg a_src arity arg_nr (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_push arg as
arg = n_arg (gs_get nodeid gs) arg_nr arity
nodeid = as_get a_src as

push_arg_b a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_push arg as
arg = n_arg (gs_get nodeid gs) arg_nr arity
nodeid = as_get a_src as
arg_nr = bs_getI 0 bs
arity = bs_getI 1 bs

push_args a_src arity nr_args (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)
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where as' = as_pushn args as
args = n_nargs (gs_get nodeid gs) nr_args arity
nodeid = as_get a_src as

push_args_b a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_pushn args as
args = n_nargs (gs_get nodeid gs) nargs arity
nargs = bs_getI 0 bs
nodeid = as_get a_src as
arity = bs_getI 1 bs

push_b b_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_push basic bs
basic = bs_get b_src bs

pushB bool (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB bool bs

pushB_a a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushB bool bs
bool = n_B (gs_get nodeid gs)
nodeid = as_get a_src as

pushI int (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushI int bs

pushI_a a_src (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_pushI int bs
int = n_I (gs_get nodeid gs)
nodeid = as_get a_src as

repl_args arity nr_args (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_pushn args (as_popn 1 as)
args = n_nargs (gs_get nodeid gs) nr_args arity
nodeid = as_get 0 as

repl_args_b (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)

where as' = as_pushn args (as_popn 1 as)
args  = n_nargs (gs_get nodeid gs) nr_args arity
nodeid = as_get 0 as
arity = bs_getI 0 bs
nr_args = bs_getI 1 bs

rtn (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs',gs,ds,pc',ps,io)

where pc' = pc_update (cs_get 0 cs) pc
cs' = cs_popn 1 cs

set_entry entry a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs,cs,gs',ds,pc,ps,io)

where gs' = gs_update nodeid (n_setentry entry) gs
nodeid = as_get a_dst as

update_a a_src a_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as',bs,cs,gs,ds,pc,ps,io)
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where as' = as_update a_dst nodeid as
nodeid = as_get a_src as

update_b b_src b_dst (as,bs,cs,gs,ds,pc,ps,io)
= (as,bs',cs,gs,ds,pc,ps,io)

where bs' = bs_update b_dst basic bs
basic = bs_get b_src bs

addI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_addI bs
decI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_decI bs
gtI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_gtI bs
incI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_incI bs
ltI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_ltI bs
mulI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_mulI bs
subI (as,bs,cs,gs,ds,pc,ps,io) = (as,bs',cs,gs,ds,pc,ps,io) where bs' = bs_subI bs

C.2 Running ABC programs

Booting and instruction fetching
boot:: ([instruction],[descr]) -> state
boot (program,descriptors)

= (as,bs,cs,gs,ds,pc,ps,io)
where pc = pc_init

as = as_init
bs = bs_init
cs = cs_init
gs = gs_init
ps = ps_init program
io = io_init
ds = ds_init descriptors

fetch_cycle:: state -> state
fetch_cycle (as,bs,cs,gs,ds,pc,ps,io)

= (as,bs,cs,gs,ds,pc,ps,io) , if pc_end pc
= fetch_cycle (currinstr (as,bs,cs,gs,ds,pc',ps,io)) , otherwise

where pc' = pc_next pc
currinstr = ps_get (pc_get pc) ps

ABC assembly language
assembler:: assembly -> ([instruction], [descr])
assembler asm_prog

= (translate asm_prog loc_count sym_table, descr_table asm_prog sym_table)
where loc_count = 0

descr_count = 0
sym_table = collect asm_prog loc_count descr_count

The specification of translate, descr_table and collect that translate the
ABC assembly program and produce its ABC instructions with its de-
scription table would require many (rather trivial) lines. For the full
specification the reader is referred to Koopman et al. (1990).

The ABC assembly language is defined by the algebraic data
structure given below. Most assembly statements are equal to their ABC
instruction counterpart, but their names begin with an upper case char-
acter. The statements in italic are slightly different because symbolic
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names are used instead of addresses. In addition, the assembler allows
the definition of labels and descriptors. Furthermore, Branch instructions
are added to allow the specification of relative jumps. The assembler
will convert them to jump instructions. These extra assembly statements
are also shown in italic.

assembly = = [statement]
red_label = = label
descr_label = = label
label = = [char]
nr_instr = = int

statement
:: = Label label | No_op |

Descriptor descr_label red_label arity name | Pop_a nr_args |
Br nr_instr | Pop_b nr_args |
Br_false nr_instr | Print string |
Br_true nr_instr | Print_symbol a_src |
Add_args a_src nr_args a_dst | Push_a a_src |
Create | Push_ap_entry a_src |
Del_args a_src nr_args a_dst | Push_arg a_src arity arg_nr |
Eq_descr descr_label a_src | Push_arg_b a_src |
Eq_descr_arity descr_label arity a_src | Push_args a_src arity arg_nr |
EqB | Push_args_b a_src |
EqB_a bool a_src | Push_b b_src |
EqB_b bool b_src | PushB bool |
EqI | PushB_a a_src |
EqI_a int a_src | PushI int |
EqI_b int b_src | PushI_a a_src |
Fill descr_label nr_args label a_dst | Repl_args arity nr_args |
Fill_a a_src a_dst | Repl_args_b |
FillB bool a_dst | Rtn |
FillB_b b_src a_dst | Set_entry label a_dst |
FillI int a_dst | Update_a a_src a_dst |
FillI_b b_src a_dst | Update_b b_src b_dst |
Get_descr_arity a_src |
Get_node_arity a_src |
Halt | AddI |
Jmp label | DecI |
Jmp_eval | GtI |
Jmp_false label | IncI |
Jmp_true label | LtI |
Jsr label | MulI |
Jsr_eval | SubI

C.3 The ABC micro-instructions
abstype astack, bstack, cstack, graphstore, descrstore, pc, programstore, io

with

ps_get :: instrid -> programstore -> instruction
ps_init :: [instruction] -> programstore

pc_end :: pc -> bool
pc_get :: pc -> instrid
pc_halt :: pc -> pc
pc_init :: pc
pc_next :: pc -> pc
pc_update :: instrid -> pc -> pc
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gs_get :: nodeid -> graphstore -> node
gs_init :: graphstore
gs_newnode :: graphstore -> (graphstore,nodeid)
gs_update :: nodeid -> (node -> node) -> graphstore -> graphstore

n_arg :: node -> arg_nr -> arity -> nodeid
n_args :: node -> arity -> nodeid_seq
n_arity :: node -> arity
n_B :: node -> bool
n_copy :: node -> node -> node
n_descrid :: node -> descrid
n_entry :: node -> instrid
n_eq_arity :: node -> arity -> bool
n_eq_B :: node -> bool -> bool
n_eq_descrid :: node -> descrid -> bool
n_eq_I :: node -> int -> bool
n_eq_symbol :: node -> node -> bool
n_fill :: descrid -> instrid -> nodeid_seq -> node -> node
n_fillB :: descrid -> instrid -> bool -> node -> node
n_fillI :: descrid -> instrid -> int -> node -> node
n_I :: node -> int
n_nargs :: node -> nr_args -> arity -> nodeid_seq
n_setentry :: instrid -> node -> node

ds_get :: descrid -> descrstore -> descr
ds_init :: [descr] -> descrstore

d_ap_entry :: descr -> instrid
d_arity :: descr -> arity
d_name :: descr -> string

as_get :: a_src -> astack -> nodeid
as_init :: astack
as_popn :: nr_args -> astack -> astack
as_push :: nodeid -> astack -> astack
as_pushn :: nodeid_seq -> astack -> astack
as_topn :: nr_args -> astack -> nodeid_seq
as_update :: a_dst -> nodeid -> astack -> astack

bs_get :: b_src -> bstack -> basic
bs_getB :: b_src -> bstack -> bool
bs_getI :: b_src -> bstack -> int
bs_init :: bstack
bs_popn :: nr_args -> bstack -> bstack
bs_push :: basic -> bstack -> bstack
bs_pushB :: bool -> bstack -> bstack
bs_pushI :: int -> bstack -> bstack
bs_update :: b_dst -> basic -> bstack -> bstack

bs_addI :: bstack -> bstack
bs_decI :: bstack -> bstack
bs_eqB :: bstack -> bstack
bs_eqI :: bstack -> bstack
bs_eqBi :: bool -> b_src -> bstack -> bstack
bs_eqIi :: int -> b_src -> bstack -> bstack
bs_gtI :: bstack -> bstack
bs_incI :: bstack -> bstack
bs_ltI :: bstack -> bstack
bs_mulI :: bstack -> bstack
bs_subI :: bstack -> bstack

cs_init :: cstack
cs_get :: c_src -> cstack -> instrid
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cs_popn :: nr_args -> cstack -> cstack
cs_push :: instrid -> cstack -> cstack

io_init :: io
io_print :: string -> io -> io
io_print_symbol :: node -> descr -> io -> io

Program store
programstore = = [location]
location :: = I instruction

ps_get target ps = instr where I instr = ps ! target

ps_init (instruction : rest) = I instruction : ps_init rest
ps_init [ ] = [ ]

Program counter
pc = = instrid

pc_end instrid = instrid < 0
pc_get instrid = instrid
pc_halt instrid = –1
pc_init = 0
pc_next instrid = instrid + 1
pc_update instrid pc = instrid

Graph store
graphstore = = (graph, nat)

gs_get nodeid (nds,free) = nds ! (nodeid – free – 1)
gs_init = ([ ], store_size)

store_size:: nat
store_size = 100 || some natural number indicating the size

gs_newnode (nds,0) = error "graph-store is full"
gs_newnode (nds,free) = ((Empty : nds, free – 1), free)

gs_update nid f (nodes,free) = (upd (nid – free –1) nodes f, free)
where upd 0 (nd : nds) f = f nd : nds

upd n (nd : nds) f = nd : upd (n – 1) nds f

Nodes
node :: = Node descrid instrid nodeid_seq | Basic descrid instrid basic | Empty
basic :: = Int int | Bool bool

n_arg node n arity = args ! (n – 1) where args = n_args node arity
n_args (Node descrid entry args) arity = args || arity can be used for optimizations

n_arity (Basic descrid entry basic) = 0
n_arity (Node descrid entry args) = # args

n_B (Basic descrid entry (Bool b)) = b
n_copy new old = new
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n_descrid (Node descrid entry args) = descrid
n_descrid (Basic descrid entry basic) = descrid

n_entry (Node descrid entry args) = entry
n_entry (Basic descrid entry basic) = entry

n_eq_arity node n = n_arity node = n
n_eq_B node b = n_B node = b
n_eq_descrid node descrid = n_descrid node = descrid
n_eq_I node i = n_I node = i
n_eq_symbol (Node descrid1 entry1 args1) (Node descrid2 entry2 args2)

= descrid1 = descrid2
n_eq_symbol (Basic descrid1 entry1 basic1) (Basic descrid2 entry2 basic2)

= descrid1 = descrid2 & basic1 = basic2
n_eq_symbol node1 node2 = False
n_fill descr entry args node = Node descr entry args
n_fillB descr entry b node = Basic descr entry (Bool b)
n_fillI descr entry i node = Basic descr entry (Int i)
n_I (Basic descrid entry (Int i)) = i
n_nargs node arg_count arity = take arg_count (n_args node arity)

n_setentry newentry (Node descrid entry args) = Node descrid newentry args
n_setentry newentry (Basic descrid entry basic) = Basic descrid newentry basic

Descriptor store
descrstore = = [descr]

ds_get target ds = ds ! target
ds_init descriptors = descriptors

Descriptors
descr :: = Descr ap_entry arity name

d_ap_entry (Descr ap_entry arity name) = ap_entry
d_arity (Descr ap_entry arity name) = arity
d_name (Descr ap_entry arity name) = name

A-stack
astack = = [nodeid]

as_get target as = as ! target
as_init = [ ]
as_popn n as = drop n as
as_push nodeid as = nodeid : as
as_pushn nodeids as = nodeids ++ as
as_topn n as = take n as

as_update 0 nodeid (a : x) = nodeid : x
as_update n nodeid (a : x) = a : as_update (n – 1) nodeid x

B-stack
bstack = = [basic]

bs_get target bs = bs ! target
bs_getB n bs = b where Bool b = bs_get n bs
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bs_getI n bs = i where Int i = bs_get n bs
bs_init = [ ]
bs_popn n bs = drop n bs
bs_push basic bs = basic : bs
bs_pushB b bs = Bool b : bs
bs_pushI i bs = Int i : bs

bs_update 0 basic (b : x) = basic : x
bs_update n basic (b : x) = b : bs_update (n – 1) basic x

bs_addI (Int i1 : Int i2 : r) = Int (i1 + i2) : r
bs_decI (Int i : r) = Int (i – 1) : r
bs_eqB (Bool b1 : Bool b2 : r) = Bool (b1 = b2) : r
bs_eqBi b n bs = bs_push (Bool (b = bs_getB n bs)) bs
bs_eqI (Int i1 : Int i2 : r) = Bool (i1 = i2) : r
bs_eqIi i n bs = bs_push (Bool (i = bs_getI n bs)) bs
bs_gtI (Int i1 : Int i2 : r) = Bool (i1 > i2) : r
bs_incI (Int i : r) = Int (i + 1) : r
bs_ltI (Int i1 : Int i2 : r) = Bool (i1 < i2) : r
bs_mulI (Int i1 : Int i2 : r) = Int (i1 * i2) : r
bs_subI (Int i1 : Int i2 : r) = Int (i1 – i2) : r

C-stack
cstack = = [instrid]

cs_init = [ ]
cs_get target cs = cs ! target
cs_popn n cs = drop n cs
cs_push c cs = c : cs

I/O channel
io = = [char]

io_init = [ ]
io_print string output = output ++ string

io_print_symbol (Basic descrid ap_entry (Int i)) descr output = output ++ show i
io_print_symbol (Basic descrid ap_entry (Bool b)) descr output = output ++ show b
io_print_symbol (Node descrid entry args) (Descr ap_entry arity name) output

= output ++ name
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Appendix D
PABC machine specification

D.1 The PABC instruction set
D.2 Running PABC programs

D.3 The new micro-instructions

The PABC machine is a parallel extension of the ABC machine. This
extension has some consequences for the sequential ABC instructions
presented in Appendix C. For most instructions only the machine state
has to be extended. Together with the extension of the assembly lan-
guage for the new instructions this is left to the reader.

For some sequential instructions a call to the operating system
has to be included. This is fully specified together with the parallel in-
structions that are marked ("•") in the summary below. The instructions
newP, randomP, currentP, neighbourP and channelP require some ex-
tensions of the specification (see Exercise 16.2).

D.1 The PABC instruction set

Sequential and parallel reducer instructions
instruction = = state -> state
state = = (local_state,global_state,opsys_callqueue)
local_state = = (astack,bstack,cstack,nqueue,pc,wlist)
global_state = = (admin,graphstore,descrstore,programstore)

• halt :: instruction
• jmp :: instrid -> instruction
• jsr :: instrid -> instruction
• print :: string -> instruction
• print_symbol :: a_src -> instruction

channelP :: a_src -> instruction
• create_channel :: instruction

currentP :: instruction
• get_node :: instruction
• getWL :: a_src -> instruction
• is_empty_n :: instruction

neighbourP :: instruction
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• new_ext_reducer :: instrid -> a_src -> instruction
• new_int_reducer :: instrid -> a_src -> instruction
• newP :: instruction

randomP :: instruction
• release :: instruction
• send_graph :: a_src -> a_src -> instruction
• send_request :: a_src -> instruction
• set_continue :: a_src -> instruction
• set_wait :: a_src -> instruction
• stop_reducer :: instruction
• suspend :: instruction

Operating system instructions
opsys_instruction = = opsys_state -> opsys_state
opsys_state = = (schedule_adm,in_msgs,out_msgs,global_state,opsys_callqueue)

• os_halt :: opsys_instruction
• os_new_reducer :: instrid -> nodeid -> opsys_instruction
• os_print :: string -> opsys_instruction
• os_reducerprio :: opsys_instruction
• os_release :: wlist -> opsys_instruction
• os_schedule :: opsys_instruction
• os_send_graph :: nodeid -> nodeid -> opsys_instruction
• os_send_newchannel :: procid -> nodeid -> opsys_instruction
• os_send_newreducer :: instrid -> nodeid -> opsys_instruction
• os_send_request :: nodeid -> opsys_instruction
• os_setwait :: nodeid -> opsys_instruction
• os_stop_reducer :: opsys_instruction
• os_suspend_reducer :: opsys_instruction

Communication process instructions
comproc_instruction = = comproc_state -> comproc_state
comproc_state = = (in_msgs,out_msgs,global_state,opsys_callqueue)

• cp_accept_msg :: msg_contents -> comproc_instruction

Specification of sequential reducer instructions
halt ((as,bs,cs,nq,pc,wl),glob,cq)

= ((as,bs,cs,nq,pc,wl),glob,cq')
where cq' = os_call cq [os_stop_reducer, os_halt]

jmp address ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc',wl),glob,cq')

where pc' = pc_update address pc
cq' = os_call cq [os_schedule]

jsr address ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs',nq,pc',wl),glob,cq')

where pc' = pc_update address pc
cs' = cs_push (pc_get pc) cs
cq' = os_call cq [os_schedule]

print string (loc,glob,cq)
= (loc,glob,cq')

where cq' = os_call cq [os_print string, os_schedule]

print_symbol a_src ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)
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= ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq')
where cq' = os_call cq [os_print string, os_schedule]

nodeid = as_get a_src as
node = gs_get nodeid gs
string = ds_get_repr node ds

Specification of parallel reducer instructions
create_channel ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)

= ((as',bs',cs,nq,pc,wl),(ad,gs',ds,ps),cq')
where bs' = bs_popn 1 bs

pid = bs_getP 0 bs
(gs',nid) = gs_newchannel pid gs
as' = as_push nid as
cq' = os_call cq [os_send_newchannel pid nid,

os_setwait nid, os_suspend_reducer]

get_node ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as',bs,cs,nq',pc,wl),glob,cq)

where as' = as_push n as
n = nq_first nq
nq' = nq_remove nq

getWL a_depth ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)
= ((as,bs,cs,nq,pc,wl'),(ad,gs,ds,ps),cq)

where wl' = n_wl_get (gs_get nid gs)
nid = as_get a_depth as

is_empty_n ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs',cs,nq,pc,wl),glob,cq)

where bs' = bs_pushB (nq_empty nq) bs

new_ext_reducer code chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where chanid = as_get chan_depth as
cq' = os_call cq [os_send_newreducer code chanid]

new_int_reducer code a_depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where nid = as_get a_depth as
cq' = os_call cq [os_new_reducer code nid]

newP ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)
= ((as,bs',cs,nq,pc,wl),(ad',gs,ds,ps),cq)

where bs' = bs_pushP pid bs
(ad',pid) = ad_new_procid ad

release ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where cq' = os_call cq [os_release wl] , if ~ wl_empty wl
= cq , otherwise

send_graph graph_depth chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where chanid = as_get chan_depth as
graphid = as_get graph_depth as
cq' = os_call cq [os_send_graph graphid chanid]

send_request chan_depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where cq' = os_call cq [os_send_request chanid,os_reducerprio]
chanid = as_get chan_depth as
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set_continue depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq',pc,wl),glob,cq)

where n = as_get depth as
nq' = nq_add n nq

set_wait a_depth ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where nid = as_get a_depth as
cq' = os_call cq [os_setwait nid,os_reducerprio]

stop_reducer ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where cq' = os_call cq [os_stop_reducer]

suspend ((as,bs,cs,nq,pc,wl),glob,cq)
= ((as,bs,cs,nq,pc,wl),glob,cq')

where cq' = os_call cq [os_suspend_reducer]

Specification of operating system instructions
schedule_adm = = ([active], [passive])
active = = reducer
passive = = reducer
reducer = = (redid, local_state)

os_halt (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where out' = out ++ [(my_pid, 0, Msg_Halt)]
my_pid = ad_pid ad

os_new_reducer code nid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs',in,out,(ad',gs,ds,ps),instrs)

where rs' = (act_reds ++ [new_red], pass_reds)
(act_reds, pass_reds) = rs
new_red = (new_redid,(as,bs,cs,nq,pc,wl))

where as = as_init
bs = bs_init
cs = cs_init
nq = nq_new nid
pc = pc_update code pc_init
wl = wl_init

(ad', new_redid) = ad_new_redid ad

os_print string (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where out' = out ++ [(my_pid, 0, Msg_Print string)]
my_pid = ad_pid ad

os_reducerprio (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out,(ad',gs,ds,ps),instrs)

where ad' = ad_new_prio Prio_Reducer ad

os_release wl (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs',in,out',(ad,gs,ds,ps),instrs)

where (reds,reqs,nid) = (wl_reds wl, wl_reqs wl, wl_nid wl)
(old_acts, old_pass) = rs
graph = gs_copy nid my_pid ds gs
rs' = (new_acts, new_pass)
new_acts = old_acts ++ rel_reds
new_pass = old_pass – – rel_reds
rel_reds = [(rid,loc) | (rid,loc) <- old_pass; rid' <- reds; rid' = rid]
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out' = out ++ [(my_pid, n_pid_of_global dst,
Msg_Graph graph dst) | dst <- reqs]

my_pid = ad_pid ad

os_schedule ((act_reds,pass_reds),in,out,glob,instrs)
= ((act_reds,pass_reds),in,out,glob,instrs) , if act_reds = [ ]
= (rs',in,out,glob,instrs) , otherwise

where rs' = (new_act_reds, pass_reds)
new_act_reds = rest_act_reds ++ [red]
red : rest_act_reds = act_reds

os_send_graph graphid chanid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where out' = out ++ [(my_pid, pid, Msg_Graph graph' dstid)]
graph = gs_copy graphid my_pid ds gs
graph' = gs_root_update (n_setdescr defer_descr) graph
pid = n_pid_of_global dstid
dstid = n_dest (gs_get chanid gs)
my_pid = ad_pid ad

os_send_newchannel pid chanid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where out' = out ++ [(my_pid, pid, Msg_CreateChannel chan_eid)]
chan_eid = n_global my_pid chanid
my_pid = ad_pid ad

os_send_newreducer code chanid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where chan = n_dest (gs_get chanid gs)
out' = out ++ [(my_pid, pid, Msg_NewReducer chan code)]
pid = n_pid_of_global chan
my_pid = ad_pid ad

os_send_request chanid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out',(ad,gs,ds,ps),instrs)

where out' = out ++ [(my_pid, pid, Msg_Request srcid dstid)]
srcid = n_global my_pid chanid
pid = n_pid_of_global dstid
dstid = n_dest (gs_get chanid gs)
my_pid = ad_pid ad

os_setwait nid (rs,in,out,(ad,gs,ds,ps),instrs)
= (rs,in,out,(ad,gs',ds,ps),instrs)

where gs' = gs_update nid (n_wl_add_red rid) gs
(rid, loc) = red
(red : reds, pass_reds) = rs

os_stop_reducer (rs,in,out,glob,instrs)
= (rs',in,out,glob,instrs)

where rs' = (act_reds, pass_reds)
(red : act_reds, pass_reds) = rs

os_suspend_reducer (rs,in,out,glob,instrs)
= (rs',in,out,glob,instrs)

where rs' = (act_reds, red : pass_reds)
(red : act_reds, pass_reds) = rs

Specification of communication process instructions
in_msgs = = [msg_contents]
out_msgs = = [message]
message = = (proc_src, proc_dst, msg_contents)
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msg_contents
 :: = Msg_CreateChannel ext_nid | Msg_Channel ext_nid ext_nid

| Msg_Request ext_nid ext_nid | Msg_Graph graph ext_nid
| Msg_NewReducer ext_nid instrid | Msg_Print string | Msg_Halt

proc_src = = procid
proc_dst = = procid
ext_nid = = (procid, nodeid)

cp_accept_msg (Msg_CreateChannel src_eid) (in,out,(ad,gs,ds,ps),instrs)
= (in,out',(ad,gs',ds,ps),instrs)

where (gs', rqid) = gs_newnode gs
out' = out ++ [(my_pid, pid, Msg_Channel rq_eid src_eid)]
rq_eid = n_global my_pid rqid
pid = n_pid_of_global src_eid
my_pid = ad_pid ad

cp_accept_msg (Msg_Channel rq_eid dst_eid) (in,out,(ad,gs,ds,ps),instrs)
= (in,out,(ad,gs',ds,ps),instrs')

where nid = n_local dst_eid
gs' = gs_update nid (n_putchannel rq_eid) gs
wl = n_wl_get (gs_get nid gs)
instrs' = os_call instrs [os_release wl]

cp_accept_msg (Msg_NewReducer rq_eid code) (in,out,(ad,gs,ds,ps),instrs)
= (in,out,(ad,gs,ds,ps),instrs')

where instrs' = os_call instrs [os_new_reducer code (n_local rq_eid)]
cp_accept_msg (Msg_Request chan_eid rq_eid) (in,out,(ad,gs,ds,ps),instrs)

= (in,out',(ad,gs',ds,ps),instrs)
where rqid = n_local rq_eid

rnf = n_entry (gs_get rqid gs) = rnf_entry
out' = out ++ [(my_pid, pid, Msg_Graph graph chan_eid)] , if rnf

= out , otherwise
where pid = n_pid_of_global chan_eid

graph = gs_copy rqid my_pid ds gs
my_pid = ad_pid ad

gs' = gs_update rqid (n_wl_add_req chan_eid) gs , if ~ rnf
= gs , otherwise

cp_accept_msg (Msg_Graph gr dst_eid) (in,out,(ad,gs,ds,ps),instrs)
= (in,out,(ad,gs',ds,ps),instrs')

where gs' = gs_store nid gr gs
wl = n_wl_get (gs_get nid gs)
nid = n_local dst_eid
instrs' = os_call instrs [os_release wl]

D.2 Running PABC programs

Booting and instruction fetching
boot:: nat -> ([instruction],[descr]) -> network
boot nr_proc (program,descriptors) = nw_init nr_proc (program,descriptors)

machine_cycle:: network -> output
machine_cycle nw

= output , if op_halt output
= op_append output (machine_cycle nw') , otherwise

where output = nw_output nw
nw' = nw_exec proc_cycle (nw_distribute_msgs nw)

proc_cycle:: processor -> processor
proc_cycle = opsys_cycle . red_cycle . opsys_cycle . comproc_cycle

comproc_cycle:: processor -> processor



RUNNING PABC PROGRAMS  547

comproc_cycle (rs,in,out,(ad,gs,ds,ps),cq)
= (rs,in,out,(ad',gs,ds,ps),cq) , if ad_prio ad = Prio_Reducer

where ad' = ad_new_prio No_Prio ad
comproc_cycle (rs,[ ],out,glob,cq)

= (rs,[ ],out,glob,cq)
comproc_cycle (rs,(msg:msgs),out,glob,cq)

= comproc_cycle (rs,in',out',glob',cq')
where (in',out',glob',cq') = cp_accept_msg msg (msgs,out,glob,cq)

opsys_cycle:: processor -> processor
opsys_cycle (rs,in,out,glob,cq)

= (rs,in,out,glob,cq) , if os_cq_empty cq
= opsys_cycle (os_first_call cq (rs,in,out,glob,os_rest_calls cq)), otherwise

red_cycle:: processor -> processor
red_cycle ((act_reds,pass_reds),in,out,glob,cq)

= ((act_reds,pass_reds),in,out,glob,cq) , if act_reds = [ ]
= (rs',in,out,glob',cq') , otherwise

where rs' = ((rid,loc') : reds, pass_reds)
(rid,loc) : reds = act_reds
(loc',glob',cq') = fetch_cycle (loc,glob,cq)

fetch_cycle:: state -> state
fetch_cycle ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq)

= ((as,bs,cs,nq,pc,wl),(ad,gs,ds,ps),cq) , if ~ os_cq_empty cq
= fetch_cycle (currinstr ((as,bs,cs,nq,pc',wl),(ad,gs,ds,ps),cq)), otherwise

where pc' = pc_next pc
currinstr = ps_get (pc_get pc) ps

D.3 The new micro-instructions
abstype astack, bstack, cstack, nqueue, pc , wlist,

admin, graphstore, descrstore, programstore,
opsys_callqueue, network, output

with …
gs_copy :: nodeid -> procid -> descrstore -> graphstore -> graph
gs_newchannel :: procid -> graphstore -> (graphstore,nodeid)
gs_root_update :: (node -> node) -> graph -> graph
gs_store :: nodeid -> graph -> graphstore -> graphstore

n_dest :: node -> dest
n_global :: procid -> nodeid -> ext_nid
n_local :: ext_nid -> nodeid
n_pid_of_global :: ext_nid -> procid
n_putchannel :: ext_nid -> node -> node
n_setdescr :: descrid -> node -> node
n_wl_add_red :: redid -> node -> node
n_wl_add_req :: request -> node -> node
n_wl_clear :: node -> node
n_wl_get :: node -> wlist
n_wl_put :: wlist -> node -> node

ds_get_repr :: node -> descrstore -> string

bs_getP :: b_src -> bstack -> procid
bs_pushP :: procid -> bstack -> bstack

nq_add :: nodeid -> nqueue -> nqueue
nq_first :: nqueue -> nodeid
nq_init :: nqueue
nq_empty :: nqueue -> bool
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nq_new :: nodeid -> nqueue
nq_remove :: nqueue -> nqueue

wl_clear :: wlist -> wlist
wl_empty :: wlist -> bool
wl_init :: wlist
wl_new :: nodeid -> wlist
wl_nid :: wlist -> nodeid
wl_reds :: wlist -> [redid]
wl_reqs :: wlist -> [request]

ad_init :: procid -> procid -> admin
ad_new_redid :: admin -> (admin,redid)
ad_new_procid :: admin -> (admin,procid)
ad_new_prio :: schedule_priority -> admin -> admin
ad_nr_pids :: admin -> procid
ad_pid :: admin -> procid
ad_prio :: admin -> schedule_priority

os_call :: opsys_callqueue -> [opsys_instruction] -> opsys_callqueue
os_clear :: opsys_callqueue
os_first_call :: opsys_callqueue -> opsys_instruction
os_init :: procid -> procid -> [instruction] -> [descr] -> opsys_state
os_cq_empty :: opsys_callqueue -> bool
os_rest_calls :: opsys_callqueue -> opsys_callqueue

nw_distribute_msgs :: network -> network
nw_exec :: (processor -> processor) -> network -> network
nw_init :: procid -> ([instruction],[descr]) -> network
nw_output :: network -> output

op_append :: output -> output -> output
op_halt :: output -> bool

Graph store
gs_copy top pid ds gs

= copy
where (copy,bindings) = copy_nodes [top] pid ds gs 0 empty_bindings

gs_newchannel pid (nds,0)
= error "cannot create new channel; graph-store is full"

gs_newchannel pid (nds,free)
= ((nds++[new_channel],free-1),nid)

where nid = store_size-free
new_channel = Channel (wl_new nid) new_channel_entry (pid,(-1))

gs_root_update f (n : r) = f n : r

gs_store nodeid graph (old_graph,free)
= error "cannot store graph; graph-store is full" , if size_graph > free
= (new_graph,free-size_graph+1) , otherwise

where size_graph = # graph
size_old_graph = # old_graph
offset = size_old_graph – 1
(top:rest) = graph
new_graph = upd nodeid old_graph (n_copy' top) ++

[adjust_nids node | node<-rest]
n_copy' (Node descrid wl entry args) old

= Node descrid (n_wl_get old) entry [arg+offset|arg<-args]
n_copy' (Basic descrid wl entry basic) old

= Basic descrid (n_wl_get old) entry basic
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n_copy' (Channel wl instrid dest) old
= Channel (n_wl_get old) instrid dest

upd 0 (nd : nds) f = f nd : nds
upd n (nd : nds) f = nd : upd (n - 1) nds f
adjust_nids (Node descrid (rd,rq,nid) entry args)

= Node descrid (wl_new (nid+offset)) entry [arg+offset|arg<-args]
adjust_nids (Basic descrid (rd,rq,nid) entry basic)

= Basic descrid (wl_new (nid+offset)) entry basic
adjust_nids (Channel (rd,rq,nid) instrid dest)

= Channel (wl_new (nid+offset)) instrid dest

The lazy copying algorithm
bindings = = nodeid -> nodeid

copy_nodes:: [nodeid] -> procid -> descrstore -> graphstore -> nodeid -> bindings
-> (graph, bindings)

copy_nodes [ ] pid ds gs n bindings
= ([ ],bindings)

copy_nodes (nid : rest) pid ds gs n bindings
= copy_nodes rest pid ds gs n bindings , if ~ bindings_is_empty bindings nid
= (nodes,bindings'') , otherwise

where node = gs_get nid gs
nodes = new_node : nodes'
(new_node,args) = copy_node pid ds n node bindings''
bindings' = bind nid n bindings
(nodes',bindings'')

= copy_nodes (args++rest) pid ds gs (n+1) bindings'

copy_node:: procid -> descrstore -> nodeid -> node -> bindings -> (node, args)
copy_node pid ds nid (Node descrid wl entry args) bindings

= ((Channel (wl_new nid) new_channel_entry rq_eid),[ ])
, if descrid = defer_descr \/ entry = reserved_entry

= ((Node descrid (wl_new nid) new_entry new_args),args) , otherwise
where new_entry = d_node_entry (ds_get descrid ds)

new_args = map bindings args
rq_eid = (pid,wl_nid wl)

copy_node pid ds nid (Basic descrid wl entry basic) bindings
= ((Basic descrid (wl_new nid) entry basic),[ ])

copy_node pid ds nid (Channel wl entry dest) bindings
= ((Channel (wl_new nid) entry dest),[ ])

bind:: nodeid -> nodeid -> bindings -> bindings
bind src dst bindings n = dst , if n = src

= bindings n , otherwise

empty_bindings:: bindings
empty_bindings nodeid = –1

bindings_is_empty::bindings -> nodeid -> bool
bindings_is_empty b n = b n = –1

Nodes
node :: = Node descrid wlist entry nodeid_seq | Channel wlist entry dest |

Basic descrid wlist entry basic | Empty
basic :: = Int int | Bool bool | Pid procid
entry = = instrid
dest = = (procid,nodeid)

reserved_entry = 3
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new_channel_entry = 4
defer_descr = 3

n_dest (Channel wl instrid dest) = dest
n_global pid nid = (pid, nid)
n_local (pid, nid) = nid
n_pid_of_global (pid, nid) = pid
n_putchannel ext_nid (Channel wl entry dest) = Channel (wl_clear wl) entry ext_nid
n_setdescr new_descr (Node descr wl entry args) = Node new_descr wl entry args

n_wl_add_red rid (Node descr (rids,reqs,nid) entry args )
= Node descr (rid:rids,reqs,nid) entry args

n_wl_add_red rid (Basic descr (rids,reqs,nid) entry basic )
= Basic descr (rid:rids,reqs,nid) entry basic

n_wl_add_red rid (Channel (rids,reqs,nid) entry dest)
= Channel (rid:rids,reqs,nid) entry dest

n_wl_add_req req (Node descr (rids,reqs,nid) entry args )
= Node descr (rids,req:reqs,nid) entry args

n_wl_add_req req (Basic descr (rids,reqs,nid) entry basic )
= Basic descr (rids,req:reqs,nid) entry basic

n_wl_add_req req (Channel (rids,reqs,nid) entry dest)
= Channel (rids,req:reqs,nid) entry dest

n_wl_clear (Node descr wl entry args ) = Node descr (wl_clear wl) entry args
n_wl_clear (Basic descr wl entry basic) = Basic descr (wl_clear wl) entry basic
n_wl_clear (Channel wl entry dest) = Channel (wl_clear wl) entry dest

n_wl_get (Node descr wl entry args) = wl
n_wl_get (Basic descr wl entry basic) = wl
n_wl_get (Channel wl entry dest) = wl

n_wl_put (reds,reqs,nid) (Node descr (reds',reqs',nid') entry args )
= (Node descr (reds,reqs,nid') entry args )

n_wl_put (reds,reqs,nid) (Basic descr (reds',reqs',nid') entry basic )
= (Basic descr (reds,reqs,nid') entry basic )

n_wl_put (reds,reqs,nid) (Channel (reds',reqs',nid') entry dest)
= (Channel (reds,reqs,nid') entry dest)

Descriptor store
descr :: = Descr ap_entry node_entry arity name
node_entry = = instrid

d_node_entry (Descr ap_entry node_entry arity name) = node_entry
ds_get_repr (Basic descrid wl entry (Int i)) ds = show i
ds_get_repr (Basic descrid wl entry (Bool b)) ds = show b
ds_get_repr (Node descrid wl entry args) ds = d_name (ds_get descrid ds)

B-stack
bs_getP n bs = p where Pid p = bs_get n bs
bs_pushP p bs = (Pid p):bs

N-queue
nqueue = = [nodeid]

nq_add n nq = nq ++ [ n ]
nq_first (n : nq) = n
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nq_init = [ ]
nq_empty (n : q) = False
nq_empty [ ] = True
nq_new n = [ n ]
nq_remove (n : nq) = nq

Waiting lists
wlist = = ([redid], [request],nodeid)
request = = ext_nid

wl_clear (reds,reqs,nid) = ([ ],[ ],nid)
wl_empty ([ ],[ ],nid) = True
wl_empty wl = False
wl_init = ([ ],[ ], –1)
wl_new nid = ([ ],[ ],nid)
wl_nid (reds,reqs,nid) = nid
wl_reds (reds,reqs,nid) = reds
wl_reqs (reds,reqs,nid) = reqs

Global administration
admin = = (nr_procids,new_procid,this_procid,redid,schedule_priority)
nr_procids = = procid
new_procid = = procid
this_procid = = procid
procid = = num
redid = = num
schedule_priority :: = No_Prio | Prio_Reducer

ad_init nr_pids pid = (nr_pids, 0, pid, 0, No_Prio)
ad_new_redid (nr_pids,new_pid,pid,rid,prio)

= ((nr_pids,new_pid,pid, rid',prio), rid')
where rid' = rid + 1

ad_new_procid (nr_pids,new_pid,pid, rid,prio)
= ((nr_pids,new_pid',pid, rid,prio),new_pid')

where new_pid' = 1 + (new_pid mod nr_pids)
ad_new_prio new_prio (nr_pids,new_pid,pid, rid,prio)

= (nr_pids,new_pid,pid, rid,new_prio)
ad_nr_pids (nr_pids,new_pid,pid, rid,prio) = nr_pids
ad_pid (nr_pids,new_pid,pid, rid,prio) = pid
ad_prio (nr_pids,new_pid,pid, rid,prio) = prio

Operating system interface
opsys_callqueue = = os_cq
os_cq :: = OS_cq [opsys_instruction]

os_call (OS_cq instr) new = OS_cq (instr ++ new)
os_clear = OS_cq [ ]
os_first_call (OS_cq (first : rest)) = first
os_cq_empty (OS_cq (first : rest)) = False
os_cq_empty (OS_cq [ ]) = True
os_rest_calls (OS_cq (first : rest)) = OS_cq rest

os_init nr_pids procid program descriptors
= (rs,in,out,glob,instrs)

where rs = ([(rid_main, (as,bs,cs,nq,pc,wl))], [ ]) , if procid = 1
= ([ ], [ ]) , otherwise

where as = as_init
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bs = bs_init
cs = cs_init
nq = nq_init
wl = wl_init
pc = pc_init

(ad_main,rid_main) = ad_new_redid (ad_init nr_pids 1)
glob = (ad,gs,ds,ps)

where ad = ad_main , if procid = 1
= ad_init nr_pids procid , otherwise

gs = gs_init
ps = ps_init program
ds = ds_init descriptors

in = [ ]
out = [ ]
instrs = os_clear

The communication network
network = = [network_element]
network_element :: = P processor
processor = = opsys_state
output = = [msg_contents]

nw_distribute_msgs processors
= [ P (rs,in ++ select_msgs (ad_pid ad) msgs,out,(ad,gs,ds,ps),instrs) |

P (rs,in,out,(ad,gs,ds,ps),instrs) <- new_procs]
where msgs = [msg |

  P (rs,in,proc_out,glob,instrs)<-processors;msg<-proc_out]
new_procs = [ P (rs,in,[ ],glob,instrs) |

P (rs,in,proc_out,glob,instrs) <- processors]
select_msgs pid msgs = [cts | (src,dst,cts) <- msgs; dst = pid]

nw_exec proc_cycle processors
= [ P (proc_cycle processor) | P processor<-processors]

nw_init nr_procids (program,descriptors)
= [ P (os_init nr_procids procid program descriptors) | procid<-[1..nr_procids]]

nw_output processors
= [ cts | P (rs,in,proc_out,glob,instrs)<-processors;(src,dst,cts)<-proc_out;dst=0]

op_append o1 o2 = o1 ++ o2
op_halt msgs = foldr (\/) False (map (= Msg_Halt) msgs)
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Emboldened terms indicate where a term has been defined in the text.

A

α-conversion  85, 88, 103
α-convertible  85
ABC assembly  336
ABC instruction  323
ABC machine  321
ABC machine state  323
ABC micro-instruction  323
ABC program  324, 336
abstract data type  55, 57
abstract domain  228
abstract interpretation  186, 220, 221,

228
four-point domain on lists  235
safety criterion  225, 229, 230

abstract interpretation function  228
abstract ordering  224
abstract reduction  186, 221, 242, 269

safety criterion  245
abstract signature  56, 57
abstract type  263, 283
abstract type definition  55, 57
abstraction constraint  190
active processor component  462
active reducer  467
actual argument  82
additional rule alternative entry  344
address register  381
administration store  461
algebraic data type  55, 56, 262, 281
Algol  7
alphabetically equivalent  85
annotation  265

global  266
local  268
normal form  428
process  429, 447
process normal form  430
process root normal form  430
root normal form  428

step  429
strategy  428
strict  265
{!}  428
{!σ}  428
{!!}  428
{*}  429
{I}  444, 447
{p!}  430
{p!!}  430
{P}  444, 447
{P AT location}  447, 450
{Par}  410, 412, 442
{Self}  413, 442

anonymous function  80
application constraint  190
applicative expression  94
applicative language  v
applicative order reduction  92, 109
applicative style  118
apply entry  345
apply function  354
apply node  354
apply rule  354
arc  152
argument  115

actual  82
formal  80
needed  220
strict  220

argument pointer  370
arity  115
assembler  336
assignment  7
A-stack  322, 328, 460, 480, 490

B

β-convertible  91
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β-redex  86
β-reduction  86
β-reduction step  86
β-rewrite step  86
basic block  387
Berry’s example  132
black hole error  173
block  40
bootstrapper  324, 336
bottom symbol  172
bound variable  80, 84, 188, 309
boundary check  369
bracket-abstraction  94
B-stack  322, 328, 356, 460, 480, 490
burst  454

C

C  7
call-by-name  109
call-by-need  109
call-by-value  109
calling convention  343
calling mechanism  109
canonical form  151, 153
cdag  393
central processing unit, see CPU
channel  441
channel node  472, 484
channel process  413
child of a node  372
Church numerals  100
Church–Rosser property  90, 125, 164
Church's δ  102
Clean  180, 220, 255
closed graph  149, 153
closed term  115
coarse-grain parallelism  406
code field  326, 370, 468
code generation phase  390
code generator  366
code pointer  370
collector  379
combinator  93
combinatorial system  131
combinatory logic  93
comment  14, 256
communication channel  441, 448
communication network  465
communication process  460, 464, 482
compaction  373
comparing rule  301, 302
complete ordering  225
complete partial ordering,  see cpo
Concurrent Clean  vi, 9, 447
Concurrent Clean software,  see

Concurrent Clean system

Concurrent Clean system  vii
availability  viii
code generator  vii
how to obtain the software  vii
interpreter  vii
programming environment  vii

concurrent evaluation  404
concurrent program  404
condition codes  389
conditional rewriting system  137
confluency  90
confluent GRS  164
confluent TRS  125
connected dag,  see cdag
constant  82
constant symbol  151
constructor  117, 210, 262
constructor definition  301, 303
constructor symbol  154
contents function  155
context switch  466, 482
continuous garbage collector  374
contractum  156
contractum pattern  154
conversion phase  390
copy node  432
copying  168

deferred  435
lazy  434

copying garbage collector  375, 493
correctness proof  29
cpo  225
CPU  5
C-stack  322, 329, 460, 480, 490
current reducer  466
curried function type  260
Curry type  189
Curry type system  188
currying  26, 34, 259
cycle-in-spine  353
cycle-in-spine error  161, 173, 326

D

δ-function  83, 88, 121
δ-redex  88, 121
δ-reduction step  88, 121
δ-rule  83, 88, 121, 160, 230
dag  148, 170, 262, 390
data constructor  21, 34, 55

arguments of  55
data register  381
data structure  21, 34
deadlock  431, 456, 493
declarative programming language  v
decomposition property  418
defer attribute  434
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deferred indirection node  470
deferred node  434
defining occurrence  117
definition

constant  300, 310
constructor  301, 303
function  300, 310
local constant  300

definition module  271
deprocessing  419
descr-id  326, 327
descriptor  327
descriptor pointer  370
descriptor store  322, 327, 460, 482, 492
desharing  108
destructive update  274
diamond property  90
directed acyclic graph,  see dag
directed graph  147, 153
discriminating position  134
discriminating position strategy  133
divide-and-conquer parallelism  410
domain

flat  226
lifted  226
semantic  225

domain theory  225
domain type  189
dotdot expression  43, 304
driver  469
driver process  352
dynamic loading  480

E

eager copying  432
eager evaluation  219, 265
entry  326

additional rule alternative  344, 346
apply  345, 346
_cycle  353
_driver  352
eval args  344, 345, 356
_mismatch  353
node  343
_rnf  353
rule alternative  344, 345, 357

environment  15
equal functions  233
equation  14
error message  19
eval args entry  344
evaluation  15

eager  109
fully lazy  315
lazy  109

event I/O  283

explicit import  272
export statement  271
expression  14
expression in PNF  418

F

factorial  30
fair rewriting  429
fairness  466
FGRS  173, 180, 186
file I/O  283, 284
filter  45, 306
fine-grain parallelism  406
fixed point

least  227
fixed point combinator  99
fixed point construction  200, 227
fixed point theorem  227
flat domain  226
forced evaluation  138
formal argument  80
forwarding address  375
forwarding pointer  375, 484
FPL  9
free-list  372
free space  372
free variable  84, 310
fresh variable  85
FTRS  139
fully lazy evaluation  315
function  9, 11, 117

anonymous  80
co-domain  11
continuous  226
domain  11, 189, 227
effectively computable  10
equal  233
first-order  25
formal parameter  14
global  39
higher order  25
image  11
infix  15
λ-definable  91
local  40
mathematical  11
monotonic  226
partial  12, 19
polymorphic  199
prefix  15
range  11, 189
strict  220
total  12
type of  12
untypable  53
user-defined  15
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function application  14, 81, 188
function argument

actual  14
formal  14

function body  14, 81
function composition  58
function computation  13
function constructor system  264
function definition  14, 33, 188

enumeration  12
equations  12

function name  14
function on a constructor position  264
function result  14
function symbol  154
function type  189, 281
functional graph rewriting system,  see

FGRS
functional languages

advantages  7
disadvantages  10
eager  18, 25, 33
lazy  18, 33
pure  9
strict  18

functional notation  259
functional program  14, 33
functional programming  1, 4
functional programming style  7
functional strategy  139, 174, 348
functional style  117
functional term rewriting system,  see

FTRS

G

garbage  372
garbage collection  157, 366, 371

global  486
local  486

garbage collector  371, 372
continuous  374

mark–scan  377
on-the-fly  379

stop-and-collect  374
copying  375
mark–scan  376

garbage reducer  486
generalized graph rewriting system  176
generator  44

diagonalizing  46
generic type variable  49
global garbage collection  486
global node  441, 484
global register assignment phase  390,

391
global strict annotation  266

globally discriminating system  136
graph  149, 151, 152

circuit  153
closed  149, 153
connected  153
data graph  153
directed  153
directed acyclic  262
equivalent graphs  153
initial  155
open  149, 153
root  153
subgraph of a node-id  153
unique  276

graph reduction  107
graph rewrite rule  149
graph rewriting system, see GRS
graph store  321, 325, 481, 491
GRS  147, 149, 151, 153, 169, 176

ambiguous  164
comparing  164
confluent  164

guard  19, 256
overlapping  19

guarded equation  18, 20

H

Haskell  9, 37, 41, 180
head normal form  105, 122
head redex  105
heap  370
HOPE  9, 37, 180
hot spot  494
Huet–Lévy strategy  136
hyper-strict  276

I

imperative programming language  5
imperative programming style  5
implementation module  271
import

explicit  272
implicit  273

inactive reducer  467
indirection node  349
indirection table  484
induction  30
infinite computation  25
infinite data structures  23, 24
infinite list  25
infinite reduction sequence  89
infix notation  301
initial expression  15, 16, 33, 38
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initial graph  155
innermost redex  129
innermost strategy  92, 129
input/output channel  322, 329, 461
instance of a term  119
instr-id  324
instruction

ABC  323
micro  323

instruction entry  325
instruction fetch  324, 336
interactive program  64, 273
interleaved process  405
interleaved reducer  429, 448
internal polymorphism  206
internal reduction step  137
I/O

event  285
events in  283
file  283, 284
screen  283

I/O call-back routine  288
I/O device  286

dialog  287
menu  287
timer  287
window  286

I/O event handler  288
I/O file system  284
I/O interaction  287
I/O program state  287
I/O state  287
irrefutable pattern  301, 302

K

Klop’s example  126

L

λ-abstraction  80, 188
λ-bar operator  103
λ-calculus  9, 78, 80, 131, 186
λ-definability  10
λ-expression  80

equal  85
tree representation  83, 189

λ-lifters  309
λ-term  80

consistent  190
strongly normalizing  188

lazy context  268
lazy copy node  435, 448, 472
lazy copying  434, 448
lazy evaluation  219, 265

lazy node  268
Lean  255
least element  225
least fixed point  227
least upper bound  225
left normal TRS  130
leftmost redex  92, 129
leftmost reduction  92
leftmost strategy  92, 129
leftmost-innermost redex  92
leftmost-innermost reduction  92
leftmost-innermost strategy  92
leftmost-outermost redex  92
leftmost-outermost reduction  92
leftmost-outermost strategy  92, 130
lifted domain  226
lifter

λ  309
rule  309

lifting  169
LISP  9
list  21, 41, 101, 257

comprehension  43
dotdot expression  43, 304
empty list  21
infinite  23
length of  23
predefined functions on  22
recurrent generator  46, 308
sorting a list  31
ZF-expression  44, 305

list concatenation  23
list constructor  22
list denotation  22
list element  21
list subscription  23
LML   9, 37, 180
load balancing  483
local garbage collection  486
local register assignment phase  390
local strict annotation  268
locally discriminating strategy  135
locals  490
location directive  450
locked node  468
locked reducer  467
locking of processes  430, 448
locking of reducers  468
loosely connected subgraph  441

M

macro  260
macro expansion  386
mark phase  377
match  119, 155

infinite  244
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partial  122, 160, 244
total  244

matching phase  344
maximal free expression  316
MIMD machine  407
Miranda  9, 27, 37, 130, 155, 180
ML  9, 37
model of computation  13
Modula2  7
module

definition  271
implementation  271
pass-through  273
start  271
system  272

monad  276
most general unifier  52
mutator  379

N

nameless dummy  104
narrowing  137
narrowing rewriting system  137
natural numbers  100
needed redex  128
nf annotation  428
nfib-number  362
node  152, 371

argument of a  152
channel  472
constant symbol  152
copy  432
deferred  434
deferred indirection  470
empty  152, 166, 172
global  441
lazy  268
lazy copy  435, 472
locked  468
reachable  153
reducing a  157
reserved  468
rewriting a  157
strict  268
unique  276

node definition  152
node entry  343
node identifier, see node-id
node-id  149, 151, 152, 325

defining occurrence  152
non-deferred subgraph of a  435

node-id constant  149, 152, 153
node-id variable  149, 152, 153
non-deterministic reducer  127, 168
non-deterministic strategy  127
non-rule-based strategy  129

normal form  16, 18, 89, 121, 160
normal order reduction  92, 109, 219
normalizing reduction strategy  91, 127
N-queue  461, 469, 481, 491

O

offside rule  40
on-the-fly garbage collector  374, 379
open graph  149, 153
open term  115
operating system  460, 461, 463, 482
operating system call  463
operating system instruction  463
order of evaluation  17
ordering phase  390, 392
ordering relation  227
orthogonal TRS  127, 128, 170
outermost redex  129
outermost strategy  129

P

{Par} annotation  412
parallel architecture

MIMD   406
distributed memory  407
shared memory  407

SIMD  406
parallel evaluation  17
parallel process  405
parallel reducer  127, 168, 448
parallel reduction strategy  127, 132,

168, 429
parallel-outermost strategy  132
parallelism

coarse-grain  406
divide-and-conquer  410
fine grain  406

parametrized function  28
parent of a node  372
partial match  160
partially ordered set,  see poset
partially overlapping rewrite rules  124
pass-through module  273
path analysis  247
path in a graph  153
pattern  20, 117

irrefutable  301, 302
overlapping  164

pattern match  20, 101, 119
picture  286
place-holder node  343
PNF  417
p-nf process annotation  430
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pointer
argument  370
code  370
descriptor  370

polymorphic algebraic type  57, 282
polymorphic function  199
polymorphism  198
poset  225
powerset  226, 242
predefined functions  15
predefined operators  15
predefined types  15
prefix notation  301
priority rewrite system, see PRS
p-rnf process annotation  430
process  404, 460

channel  413
child  412
deadlock  431
interleaved  405
parallel  405
parent  412

process allocation  447
process annotation  429, 447
process normal form, see PNF
process type  417
processor  460
processor-id  471
product domain  227
program counter  322, 325, 381, 460,

480, 490
program store  321, 324, 460, 480, 490
program transformation  4
programming languages

imperative  177
logical  137, 177

programming style
bottom-up  67
functional  7
logical  7
object oriented  7
step-wise refinement  67
top-down  67

projection function  42, 258
proof techniques  4
proper subterm  115
PRS  137, 139
pure functions  9

Q

qualifier  44

R

range type  189
record  463
recursion  12, 14, 98, 198, 200
redex  16, 33, 86, 88, 119, 155

self-embedding  165
redex pattern  154

instance of  155
redirection  150, 154

multiple  177
reducer  102, 127, 168, 460, 462

active  465, 467
current  466
inactive  467
interleaved  430, 448
locked  467
non-deterministic  168
parallel  168, 448
suspended  467

reducer state  462
reduct  89, 121, 160
reduction  33, 120, 156

element  236
spine  236

reduction order  90, 91
reduction rule  80
reduction sequence  89, 121, 160
reduction step  16, 33, 86, 88, 121, 160
reduction strategy  17, 33, 91, 127, 129,

168
non-deterministic  168
parallel  168, 429

reference count  377
reference count garbage collector  374
referential transparency  29, 34
register  329, 388
register node  392
representation of a node  491
reserved node  468
rewrite  120, 156
rewrite rule  80, 117, 153
rewrite sequence  121, 160
rewrite step  121, 160
rewriting  33

fair  429
rewriting phase  344
right-hand side expression  309
rightmost redex  129
rightmost strategy  129
rnf annotation  428
root normal form  160
root of the cdag  393
round robin scheduling  467
router  483, 493
rule alternative entry  344
rule lifting  308
rule of signs  221
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rule-based strategy  133
run-time system  342, 352, 482, 492

S

SASL  38
scan phase  377
scheduling  466
scope

global  39
local  40

screen I/O  283
script  38
{Self} annotation  413
semi-spaces  375
sharing  167, 168, 313

common subexpressions  314
cycles  314
of computation  148
partial applications  314

shorthand form  151, 161
side-effects  7, 9, 17
σ normal form  428
signature

abstract  57, 263
concrete  57, 263

SIMD machine  406
single-threaded  276
soft term  122
software crisis  4, 7
software engineering  4
stack frame  342, 343
standard interpretation  221
start module  271
starvation  494
state transition system  287
static analysis  186
static loading  480
status register  381
step annotation  429
stop-and-collect garbage collector  374
storage allocator  372
store register node  392
strategy

hypernormalizing  168
innermost  92
leftmost  92
leftmost-innermost  92
leftmost-outermost  92
normalizing  168

strategy annotation  428
stream  64
strict annotation  265
strict context  268
strict node  268
strictness  220
strictness analyser  269

strictness analysis  186, 219, 221
string reduction  107
strong head normal form  123, 174
strong reduction  105
strong root normal form  161, 174
strongly normalizing TRS  130
strongly sequential TRS  136
subgraph  153

loosely connected  441
self-contained  440

subgraph replacement  148
subpattern  117
subterm  115
subterm replacement  148
super-combinator  316
surrounding λ  103
suspended reducer  467
suspending of processes  430
symbol

defining occurrence  211
symbolic substitution  13, 30
synonym type  262, 281
system module  272

T

tail recursion  348
task  404
TDRS  170
term  115, 149
term dag rewriting system, see TDRS
term graph rewriting  169
term graph rewriting system, see TGRS
term rewriting system, see TRS
term … rewriting system  169
term tree rewriting system, see TTRS
TGRS  172
top-down design  67
totally overlapping rewrite rules  124
transputer  488
TRS  117, 149, 151, 155, 168, 169, 173,

176, 186
ambiguous  123
comparing  125
confluent  125
critical pair  124
left-normal  130
non-deterministic  123
non-left-linear  125
orthogonal  127, 172
partially ambiguous  123
safe  214, 265
strongly normalizing  130
strongly sequential  136
tree representation  116

truly lazy  39
TTRS  170
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tuple  41, 257, 300
Turing computability  10, 91
Turing machine  5
type

abstract  263
algebraic  56, 210, 262, 281
arrow elimination  190
arrow introduction  190
basis  190
constant constraint  211
curried function  260
Curry types  189
domain  188
equal  192
equivalent  191
fresh instance  199
function type  188
of a function  48
generic type  199
of a list  48
Milner algorithm  202
Milner–Mycroft algorithm  206
most general unifier  192
Mycroft algorithm  205
pair  190
polymorphic  282
polymorphic algebraic  57
principal pair  197
principal type  197

property  197, 212
process  417
range  188
Robinson’s unification algorithm

192, 215
sound operation  191
subject reduction property  197, 213,

214
synonym  262, 281
of a tuple  42, 48
unifiable  192
unique  277

type abstraction constraint  190
type application constraint  190
type assignment  210
type assignment system  186
type assumption  190
type checking  48, 54, 206
type conclusion  190
type constructor  48, 189
type conversion  279
type deduction  48, 50, 54
type environment  199
type inferencing  206
type instance  191, 262
type statement  190

type substitution  191
type symbol  262
type synonym  55
type system

Milner–Mycroft  47
polymorphic  49

type tree  188, 189
type unification  192
type unifier  192
type variable  262

U

unification  51
unique graph  277
unique node  276
unique normal form property  164
unique propagation

inside-out  281
left to right  281

unique propagation rule  280
unique type  277
unique type attribute  277
unique type definition  280
unique type specification  277
UNQ  277
unravelling  169

V

variable  9, 15
bound  80, 84, 188, 309
free  84, 310
fresh  85
head  105

Von Neumann architecture  5

W

waiting list  492
waiting list register  461, 469, 481, 491
weak head normal form  105
weak reduction  105
weighted reference count  487
workspace frame  490

Z

ZF-expression  44, 305
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ii ERRATA

Errata

1. page 110:

3.1 ...:
(a) (λx.λy. x+y) ((λx. y) 1) ((λy.λz. x z) ((λx. 2*x) z) 5)
(b) ...

where FAC is the abbreviation of the λ-expression for the factorial
function given in Section 3.7.3.
...

should be:

3.1 ...:
(a) (λx.λy.+ x y) ((λx. y) 1) ((λy.λz. x z) ((λx.* 2 x) z) 5)
(b) ...

where FAC is the correct translation of the λ-expression for the
factorial function as given in Section 3.7.3. Take in this translation
θ (also defined in Section 3.7.3) as the Y combinator.
....

 2. page 111:

3.3 …
(a) ...
(b)* (λf.λx. f(f x)) x) ((λf.λx. f(f x)) x)

should be:

3.3 ...
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(a) ...
(b)* (λf.λx. f (f x)) x ((λf.λx. f (f x)) x)

3. page 273:

:: ...
Filter pr [ n | str ] -> ...

-> [ pr | Filter pr str ];

should be:

:: ...
Filter pr [ n | str ] -> ...

-> [ n | Filter pr str ];

4. page 183:

5.3

...
F (G x y) → G (F x y) y
...

should be:
5.3

...
F (G x y) → G (F y) y
...

5. page 183:

5.6 ...
(a) ...
(b) ... → Cons (g a) (F g b)

... → ...

...
should be:
5.6 ...

(a) ...
(b) ... → Cons (Ap g a) (F g b)

... → ...
Ap (+ x) y → + x y
...
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