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 History of Programming Languages Conference: HOPL-III 
Co-Chairs Introduction 

 
 
In 1978, at the first HOPL conference, Jean Sammet wrote: 
 

I'm happy to have this opportunity to open this Conference on the History of 
Programming Languages. It's something that I personally have been thinking 
about for almost seven years although the actual work on this has only been 
going on for the past one-and-a-half years. Most of you have not had the 
opportunity to look at the Preprints, and perhaps you haven't had too much 
time to even look at the program.  For that reason I want to make sure that 
you understand something about what is intended, and frankly what is not 
intended be done in this conference. We view this as a start: perhaps the first 
of a number of conferences which will be held about various aspects of the 
computing field in general, software in particular, and even more specifically, 
programming languages. We hope that this conference and the Preprints and 
the final proceedings will stimulate many older people, many younger people, 
and many of those in the in-between category in the field to do work in 
history. 
 
This conference, I repeat again, is certainly not the last set of words to be 
held on this subject. It's only a beginning. I want to emphasize also that it's 
not a conference on the entire history of programming languages, nor even 
on the entire history of the languages that we selected. As many of you have 
seen from some of the earlier publicity that we put out, we're trying to 
consider and report on the technical factors which influenced the 
development of languages which satisfied a number of criteria. First, they 
were created and in use by 1967; they remain in use in 1977, which is when 
we made the decisions; and they've had considerable influence on the field of 
computing. The criteria for choosing a language include the following factors, 
although not every factor applied to each language: we considered usage, 
influence on language design, overall impact on the environment, novelty, 
and uniqueness. Particularly because of the cut-off date of 1967, some 
languages, which are in common use today, are not included. We definitely 
wanted a perspective of 10 years before we started worrying about the early 
history of the language. 

 
HOPL-I was a start and it did stimulate (some older and younger) people to 
continue the work of documenting the history of computing in general, and 
programming languages, in particular.  HOPL-II followed in 1993.  It extended the 
notion of history from HOPL-I to include the evolution of languages, language 
paradigms, and language constructs.  It preserved the 10-year perspective.  It 
also repeated the HOPL-I multi-year preparation of submissions, reviews, and re-
reviews with teams of reviewers and experts, to come up with the best possible 
history papers from the people who were directly involved with the creation of 
their languages. 
 
Fifteen years later, HOPL-III is another step in the documentation of the history of 

FM-2



  

   

our field.  Work began three years ago in 2004 to create a Program Committee, 
to establish paper solicitation criteria (see appendix to this proceedings), and to 
encourage submissions. As with its predecessors, the goal of HOPL-III was to 
produce an accurate historical record of programming language design and 
development. To achieve this goal, the Program Committee worked closely with 
prospective authors and outside experts to help ensure that all the papers were 
of high quality. As with HOPL-I and II, there were multiple rounds of reviewing to 
ensure that all the selected papers met requirements for both technical accuracy 
and historical completeness. 
 
The criteria for the programming languages considered appropriate for HOPL-III 
were: 

 
1. The programming language came into existence before 1996, that is, it 
was designed and described at least 11 years before HOPL-III (2007). 
 
2. The programming language has been widely used since 1998 either (i) 
commercially or (ii) within a specific domain. In either case, “widely used” 
implies use beyond its creators. 
 
3. There also are some research languages which had great influence on 
widely used languages that followed them. As long as the research 
language was used by more than its own inventors, these will be 
considered to be appropriate for discussion at HOPL-III. 
 

The twelve papers in this proceedings represent original historical perspectives 
on programming languages that span at least five different programming 
paradigms and communities:  object-oriented, functional, reactive, parallel, and 
scripting. At the time of the conference, the programming languages community 
continues to create broader mini-histories of each of those paradigms at 
http://en.wikipedia.org/wiki/HOPL  
 
A conference of this scope and level of preparation could not have happened 
without the time and assistance of many, many people.  First we must thank our 
colleagues on the program committee 
 

Fran Allen, IBM Research (Emerita) 
Thomas J. (Tim) Bergin, American University (Emeritus) 
Andrew Black, Portland State University 
Koen Claessen, Chalmers University of Technology 
Kathleen Fisher, AT&T Research 
Susan L. Graham, University of California, Berkeley 
Julia Lawall, DIKU 
Doug Lea, SUNY Oswego 
Peter Lee, Carnegie Mellon University 
Michael S. Mahoney, Princeton University 
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Guy Steele, Sun Microsystems 
Benjamin Zorn, Microsoft Research 

 
and the authors of all the submitted papers. 
 
We must also thank the language experts who helped with the extensive paper 
reviews:  Chris Espinoza, Gilad Bracha, Herb Sutter, Andrew Watson, Ulf Wiger, 
Vivek Sarkar, Norman Ramsey, Greg Nelson, Craig Chambers, and Kathy 
Yellick.  We also thank the set of experts who helped seed the Wikipedia 
discussions of the language paradigms:  Vijay Saraswat, Bard Bloom, Dipayan 
Gangopadhyay, and Guido van Rossum.  Finally, we would like to thank the staff 
at ACM Headquarters, the SIGPLAN Executive Committee, the SIGSOFT 
Executive Committee, and Diana Priore, all of whom made this complex 
conference possible, and Joshua Hailpern, who designed both the HOPL CACM 
advertisement and the Proceedings and Final Program cover art. 
 
We also wish to acknowledge the generous financial support for HOPL-III that 
has been provided by: 
 

• An anonymous donor for multimedia capture/post-processing 
• Microsoft Research for manuscript copy-editing and proceedings 

preparation 
• IBM Research for subsidizing student registration and in support of 

program committee operations, the final program, and the HOPL-III 
website 

• ACM SIGPLAN Executive Committee 
 
 
   
 
This has been an ambitious and lengthy project for us; we are glad to see it 
successfully completed.  We hope you enjoy both the conference presentations 
and the papers in these proceedings – a (partial) record of the past 15 years of 
our programming languages community.   
 
 
Barbara Ryder, Rutgers University 
Brent Hailpern, IBM Research 
HOPL-III Conference/Program Committee co-Chairs 
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HOPL-III Agenda: Saturday, 9 June 2007 
 

08:45 - 09:00  Introduction 
 
09:00 - 10:00  Keynote by Guy Steele (Sun Microsystems) and Richard P. 

Gabriel (IBM Research) 
 
10:00 - 10:30  Break 
 
10:30 - 12:20  "AppleScript" by William R. Cook (University of Texas at 

Austin) 
 

"The evolution of Lua" by Roberto Ierusalimschy (PUC-Rio), 
Luiz Henrique de Figueiredo (IMPA), and Waldemar Celes 
(PUC-Rio) 
 

12:20 - 13:30  Lunch 
 
13:30 - 15:20  "A history of Modula-2 and Oberon" by Niklaus Wirth (ETH 

Zurich) 
 

"Evolving a language in and for the real world: C++ 1991–
2006" by Bjarne Stroustrup (Texas A&M University and AT&T 
Labs - Research) 
 

15:20 - 16:00  Break 
 
16:00 - 17:50  "Statecharts in the making: a personal account" by David 

Harel (Weizmann Institute of Science) 
 

"A history of Erlang" by Joe Armstrong (Ericsson AB) 
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HOPL-III Agenda: Sunday, 10 June 2007 
 

08:00 - 08:15  Introduction 
 
08:15 - 10:05  "The rise and fall of High Performance Fortran: an 

historical object lesson" by Ken Kennedy (Rice University), 
Charles Koelbel (Rice University), Hans Zima (Institute of 
Scientific Computing, Unversity of Vienna and Jet Propulsion 
Laboratory, California Institute of Technology) 

 
"The design and development of ZPL" by Lawrence Snyder 
(University of Washington) 
 

10:05 - 10:30  Break 
 
10:30 - 12:20  "Self" by David Ungar (IBM Research), Randall B. Smith (Sun 

Microsystems) 
 

"The when, why and why not of the BETA programming 
language" by Bent Bruun Kristensen (University of Southern 
Denmark), Ole Lehrmann Madsen (University of Aarhus), 
Birger Møller-Pedersen (University of Oslo) 
 

12:20 - 13:30  Lunch 
 
13:30 - 15:20  "The development of the Emerald programming language" 

by Andrew P. Black (Portland State University), Norman C. 
Hutchinson (University of British Columbia), Eric Jul (University 
of Copenhagen) and Henry M. Levy (University of Washington) 

 
"A History of Haskell: being lazy with class" by Paul Hudak 
(Yale University), John Hughes (Chalmers University), Simon 
Peyton Jones (Microsoft Research), and Philip Wadler 
(University of Edinburgh) 
 

15:20 - 15:40  Break 
 
15:40 - 17:00  Panel: Programming Language Paradigms: Past, Present, 

and Future 
Kathleen Fisher (AT&T Labs - Research), chair 
Bertrand Meyer (ETH Zurich) 
Olin Shivers (Georgia Institute of Technology) 
Larry Wall 
Kathy Yelick (Universithy of California, Berkeley) 
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AppleScript

William R. Cook

University of Texas at Austin

wcook@cs.utexas.edu

With contributions from Warren Harris, Kurt Piersol, Dave Curbow, Donn Denman,
Edmund Lai, Ron Lichty, Larry Tesler, Donald Olson, Mitchell Gass and Eric House

Abstract
AppleScript is a scripting language and environment for the
Mac OS. Originally conceived in 1989, AppleScript allows
end users toautomatecomplex tasks andcustomizeMac
OS applications. To automate tasks, AppleScript provides
standard programming language features (control flow, vari-
ables, data structures) and sends Apple Events to invoke ap-
plication behavior. Apple Events are a variation on standard
remote procedure calls in which messages can identify their
arguments by queries that are interpreted by the remote ap-
plication. This approach avoids the need for remote object
pointers or proxies, and reduces the number of communi-
cation round trips, which are expensive in high latency en-
vironments like the early Macintosh OS. To customize an
application that uses AppleScript’s Open Scripting Architec-
ture, users attach scripts to application objects; these scripts
can then intercept and modify application behavior.

AppleScript was designed for casual users: AppleScript
syntax resembles natural language, and scripts can be cre-
ated easily by recording manual operations on a graphical
interface. AppleScript also supported internationalization in
allowing script to be presented in multiple dialects, including
English, Japanese, or French. Although the naturalistic syn-
tax is easy to read, it can make scripts much more difficult
to write.

Early adoption was hindered by the difficulty of mod-
ifying applications to support Apple Events and the Open
Scripting Architecture. Yet AppleScript is now widely used
and is an essential differentiator of the Mac OS. Apple-
Script’s communication model is a precursor to web ser-
vices, and the idea of embedded scripting has been widely
adopted.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

Categories and Subject DescriptorsD.3 [Programming
Languages]

General Terms Languages, Design, Human Factors

Keywords AppleScript, Scripting, History

1. Introduction
The development of AppleScript was a long and complex
process that spanned multiple teams, experienced several
false starts and changes of plan, and required coordination
between different projects and companies. It is difficult for
any one person, or even a small group of people, to present a
comprehensive history of such a project, especially without
official support from the company for which the work was
done. The email record of the team’s communications have
been lost, and the author no longer has access to internal
specifications and product plans.

Nevertheless, I believe that the development of Apple-
Script is a story worth telling, and I have been encouraged to
attempt it despite the inherent difficulty of the task. I can of-
fer only my own subjective views on the project, as someone
who was intimately involved with all its aspects. I apologize
in advance for errors and distortions that I will inevitably
introduce into the story, in spite of my best efforts to be ac-
curate.

I first heard the idea of AppleScript over lunch with Kurt
Piersol in February of 1991. The meeting was arranged by
our mutual friend James Redfern. I knew James from Brown,
where he was finishing his undergraduate degree after some
time off, and I was working on my PhD. James and I both
moved to California at about the same time, in 1988. We
spent a lot of time together and I had heard a little about what
he was up to, but he claimed it was secret. James arranged
the meeting because Kurt was looking for someone to lead
the AppleScript effort, and I was looking for something new
to do.

For the previous two and a half years I had been work-
ing at HP Labs. I was a member of the Abel group, which
included Walt Hill, Warren Harris, Peter Canning, and Wal-
ter Olthoff. John Mitchell consulted with us from Stanford.
The group was managed by Alan Snyder, whose formaliza-

Permission to make digital/hard copy of part of this work for personal or 
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the publication, and its date of appear, and notice is given that copying is by 
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, 
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Plaza, New York, NY 11201-0701, USA, fax:+1(212) 869-0481, 
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tion of object concepts [35] was one basis for the develop-
ment of CORBA. At HP Labs I finished writing my PhD the-
sis, A Denotational Semantics of Inheritance [14, 19], which
the Abel group used as the foundation for a number of pa-
pers. We published papers on inheritance and subtyping [18],
object-oriented abstraction [7, 16], mixins [5], F-Bounded
polymorphism [6], and a fundamental flaw in the Eiffel type
system [15]. I continued some of the work, analyzing the
Smalltalk collection hierarchy [17], after I left HP.

Near the end of 1990 HP Labs was undergoing a reorgani-
zation and I was not sure I would fit into the new plan. In ad-
dition, I was interested in making a change. I had developed
several fairly large systems as an undergraduate, including a
text editor and a graphical software design tool [39, 20] that
were used by hundreds of other students for many years. As
a graduate student I had focused on theory, but I wanted to
learn the process of commercial software development. Ap-
ple seemed like a reasonable place to try, so I agreed to talk
with Kurt.

1.1 AppleScript Vision—Over Lunch

Kurt and I hit it off immediately at lunch. Kurt Piersol is a
large, friendly, eloquent man who was looking for people to
work on the AppleScript project. Kurt graduated with a B.S.
from the University of Louisville’s Speed Scientific School.
He then worked at Xerox, building systems in Smalltalk-
80 and productizing research systems from Xerox PARC.
Kurt was hired to work on AppleScript in 1989. He was
originally asked to work on a development environment for
the new language, but eventually took on the role of steering
the project.

Kurt and I discussed the advantages or disadvantages
of command-line versus graphical user interfaces. With
command-line interfaces, commonly used on Unix, users
frequently write scripts that automate repeated sequences of
program executions. The ability to pipe the output of one
program into another program is a simple but powerful form
of inter-application communication that allows small pro-
grams to be integrated to perform larger tasks. For example,
one can write a script that sends a customized version of
a text file to a list of users. Thesed stream editor can cre-
ate the customized text file, which is then piped into the
mail command for delivery. This new script can be saved
as a mail-merge command, so that it is available for manual
execution or invocation from other scripts. One appealing
aspect of this model is its compositionality: users can create
new commands that are invoked in the same way as built-in
commands. This approach works well when atomic com-
mands all operate on a common data structure, in this case
text streams. It was not obvious that it would work for more
complex structured data, like images, databases, or office
documents, or for long-running programs that interact with
users.

With a graphical user interface (GUI) important func-
tions, including the mail-merge command described above,

are usually built into a larger product, e.g. a word processor.
A GUI application offers pre-packaged integrated function-
ality, so users need not combine basic commands to perform
common tasks. Although careful design of graphical inter-
faces eliminates the need for automation for basic use, there
are still many tasks that users perform repeatedly within a
graphical interface. The designers of the graphical interface
cannot include commands to cover all these situations —
if they did, then some users would execute these new com-
mands repeatedly. No finite set of commands can ever satisfy
all situations.

Most users are happy with GUI applications and do not
need a command-line interface or a scripting language. But
there are clearly some limitations to the GUI approach on
which Macintosh OS was based. Power users and system
integrators were frustrated by the inability to build custom
solutions by assembling multiple applications and special-
izing them to particular tasks. Allowing users to automate
the tasks that are relevant to them relieves pressure on the
graphical user interface to include more and more special-
ized features.

The vision for AppleScript was to provide a kind of
command-line interface to augment the power of GUI ap-
plications and to bring this power to casual users.

1.2 Automation and Customization

Kurt and I talked about two ways in which scripts and
GUI applications could interact: for automation and for cus-
tomization.Automationmeans that a script directs an ap-
plication to perform a sequence of actions—the actions are
performed “automatically” rather than manually. With au-
tomation, the script is in control and one or more applica-
tions respond to script requests.Customizationoccurs when
a script is invoked from within an application—the script
can perform “custom” actions that replace or augment the
normal application behavior. With customization, the appli-
cation manages and invokes scripts that users have attached
to application objects. Automation is useful even without
customization, but customization requires automation to be
useful.

We discussed whether there was sufficient benefit in pro-
viding a standard platform for scripting, when custom so-
lutions for each application might be better. Some applica-
tions already had their own macro capability or a proprietary
scripting language. However, this approach requires users to
learn a different scripting language to automate each appli-
cation. These languages typically include some variation on
the basic elements of any programming language, including
variables, loops, conditionals, data types, procedures, and
exceptions. In addition, they may include special forms or
constructs specific to the application in question. For exam-
ple, a spreadsheet language can refer to cells, sheets, equa-
tions and evaluation.

One benefit of a standard scripting platform is that appli-
cations can then beintegratedwith each other. This capa-
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bility is important because users typically work with mul-
tiple applications at the same time. In 1990, the user’s op-
tions for integrating applications on the Macintosh OS were
limited to shared files or copy/paste with the clipboard. If
a repeated task involves multiple applications, there is lit-
tle hope that one application will implement a single com-
mand to perform the action. Integrating graphical applica-
tions can be done at several levels: visual integration, behav-
ioral integration, or data integration.Visual integrationin-
volves embedding one graphical component inside another;
examples include a running Java applet inside a web page, or
a specialized organization chart component displayed inside
a word-processing document.Behavioral integrationoccurs
when two components communicate with each other; exam-
ples include workflow or invocation of a spell-check com-
ponent from within a word processor.Data integrationoc-
curs whenever one application reads a file (or clipboard data)
written by another application. A given system can include
aspects of all three forms of integration.

I agreed with Kurt that the most important need at that
time was for behavioral integration. To compete with custom
application-specific scripting languages, AppleScript would
have to allow application-specific behaviors to be incorpo-
rated into the language in as natural a way as possible, while
preserving the benefits of a common underlying language.
The core of the language should support the standard fea-
tures of a programming language, including variables, pro-
cedures, and basic data types. An application then provides a
vocabulary of specific terminology that apply to the domain:
a photo-processing application would manipulate images,
pixels and colors, while a spreadsheet application would ma-
nipulate cells, sheets, and graphs. The idea of AppleScript
was to implement the “computer science boilerplate” once,
while seamlessly integrating the vocabulary of the applica-
tion domain so that users of the language can manipulate
domain objects naturally. We discussed the vision of Apple-
Script as a pervasive architecture for inter-application com-
munication, so that it is easy to integrate multiple applica-
tions with a script, or invoke the functionality of one appli-
cation from a script in another application. We hoped that
scripting would create a “network effect”, by which each
new scriptable application improves the value of scripting
for all other applications.

1.3 AppleScript Begins

Soon after, Kurt offered me a job and I accepted quickly.
This event illustrates one of the recurring characteristics of
AppleScript: the basic idea is so compelling that it is enthusi-
astically embraced by almost every software developer who
is exposed to it.

What was not immediately obvious was how difficult the
vision was to achieve—not for strictly technical reasons, but
because AppleScript required a fundamental refactoring, or
at least augmentation, of almost the entire Macintosh code
base. The demonstrable benefits of AppleScript’s vision has

led developers to persevere in this massive task for the last
twenty years; yet the work is truly Sisyphean, in that the slow
incremental progress has been interrupted by major steps
backward, first when the hardware was changed from the
Motorola 68000 chip to the IBM PowerPC, and again when
the operating system was reimplemented for Mac OS X.

At this point it is impossible to identify one individual
as the originator of the AppleScript vision. The basic idea
is simple and has probably been independently discovered
many times. The AppleScript team was successful in elab-
orating the original vision into a practical system used by
millions of people around the world.

2. Background
When I started working at Apple in April 1991 I had never
used a Macintosh computer. My first task was to understand
the background and context in which AppleScript had to be
built.

The main influences I studied were the Macintosh op-
erating system, HyperCard, and Apple Events. HyperCard
was a good source of inspiration because it was a flexible
application development environment with a scripting lan-
guage embedded within it. A previous team had designed
and implemented Apple Events to serve as the underlying
mechanism for inter-application communication. The Apple
Events Manager had to be shipped early so that it could be
included in the Macintosh System 7 OS planned for summer
1991. When I started at Apple, the Apple Event Manager
was in final beta testing. The fact that AppleScript and Apple
Events were not designed together proved to be a continuing
source of difficulties.

Macintosh systems at that time had 4 to 8 megabytes of
random-access memory (RAM) and a 40- to 60-megabyte
hard drive. They had 25-50 MHz Motorola 68000 series
processors. The entire company was internally testing Sys-
tem 7.0, a major revision of the Macintosh OS.

Applications on the Macintosh OS were designed around
a main event processing loop, which handled lower-level
keyboard and mouse events from the operating system [12].
The OS allowed an application to post a low-level event
to another application, providing a simple form of inter-
application communication. In this way one application
could drive another application, by sending synthetic mouse
and keyboard events that select menus or data and enter text
into an application. This technique was used in two utility
applications, MacroMaker and QuicKeys, which recorded
and played back low-level user interface events. It was also
used in the Macintosh help system, which could post low-
level events to show the user how to use the system. Scripts
that send low-level events are fragile, because they can fail
if the position or size of user interface elements changes
between the time the script is recorded and when it is run.
They are also limited in the actions they can perform; low-
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level events can be used to change the format of the current
cell in a spreadsheet, but cannot read the contents of a cell.

In the following section I describe these systems as they
were described to me at the start of the AppleScript project,
in April 1991.

2.1 HyperCard

HyperCard [27, 30], originally released in 1987, was the
most direct influence on AppleScript. HyperCard is a com-
bination of a simple database, a collection of user interface
widgets, and an English-like scripting language. These el-
ements are organized around the metaphor of information
on a collection of index cards. A collection of such cards
is called astack. A card could contain text, pictures, but-
tons, and other graphical objects. Each object has many
properties, including location on the card, size, font, style,
etc. Cards with similar structure could use a commonback-
ground; a background defines the structure, but not the con-
tent, of multiple cards. For example, a stack for household
information might contain recipe cards and contact cards.
The recipe cards use a recipe background that includes text
fields for the recipe title, ingredients, and steps. The contact
cards use a contact background with appropriate fields, in-
cluding a photo.

HyperCard scripts are written in HyperTalk, an English-
like scripting language [28]. The language is for the most
part a standard structured, imperative programming lan-
guage. However, it introduced a unique approach to data
structures: the stack, cards, objects and properties are used
to store data. These structures are organized in a contain-
ment hierarchy: stacks contain cards, cards contain objects,
and properties exist on stacks, cards, and objects. This pre-
defined structure makes it easy to build simple stacks, but
more difficult to create custom data structures.

Scripts in a stack can refer to the objects, collections of
objects, and their properties by usingchunk expressions. A
chunk expression is best understood as a kind of query. For
example, the following chunk expression refers to the text
style property of a word element in a field of the current
card:

the textStyle of word 2
of card field ”Description”

A chunk expression can refer to properties and elements of
objects. A property is a single-valued attribute, for example
textStyle . Elements are collections of objects identified by a
type, for exampleword andcard field . Element access may
be followed by a name, index or range to select element(s)
from the collection. Properties access distributes over col-
lections; the following expression represents a a collection
of 10 text style properties:

the textStyle of character 1 to 10
of card field ”Description”

HyperCard has a built-in set of property and collection
names.

Each object has ascriptcontaining procedures defined for
that object. If the procedure name is aneventname, then the
procedure is ahandlerfor that event— it is called when the
event occurs for that object. For example, a button script may
have handlers formouseDown, mouseUp andmouseMove
events. The following handler shows the next card when a
button is released.

on mouseUp
go to next card

end mouseUp

Actions can be performed on chunk expressions to mod-
ify the stack, its cards, the objects, or their properties. For
example, clicking a button may run a script that moves to
the next card, adds/removes cards, or modifies the contents
of one or more cards. HyperCard has a set of predefined ac-
tions, includingset, go, add, close , etc. For example, the
text style can be updated to a predefined constantbold:

set the textStyle of character 1 to 10
of card field ”Description” to bold

HyperCard 2.0 was released in 1990. HyperCard was
very influential and widely used. Developers could easily
create some applications in HyperCard, but to create more
complex applications, they had to switch to more difficult
general-purpose development tools. The need for unification
of these approaches was recognized early at Apple, leading
to the formation of a research and development project to
build a new development platform for the Mac, discussed
in the next section. Looking forward, the rapid develop-
ment capabilities pioneered by HyperCard were added to
more sophisticated general-purpose development environ-
ments. This gradually reduced the need for systems like Hy-
perCard, which was discontinued in 2004.

2.2 Family Farm

Many of the ideas that eventually emerged in AppleScript
were initially explored as part of a research project code-
named Family Farm, which was undertaken in the Advanced
Technology Group (ATG) at Apple, starting in 1989. The re-
search team was led by Larry Tesler and included Mike Farr,
Mitchell Gass, Mike Gough, Jed Harris, Al Hoffman, Ruben
Kleiman, Edmund Lai, and Frank Ludolph. Larry received
a B.S. in Mathematics from Stanford University in 1965. In
1963, he founded and ran IPC, one of the first software de-
velopment firms in Palo Alto, CA. From 1968-73, he did
research at the Stanford A.I. Lab on cognitive modeling and
natural language understanding, where he designed and de-
veloped PUB, one of the first markup languages with embed-
ded tags and scripting. From 1973-80, he was a researcher
at Xerox PARC, working on object-oriented languages, user
interfaces, and desktop publishing. He joined Apple in 1980
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to work on the Lisa. In 1986, he was named director of Ad-
vanced Development, and in 1987, the first VP of Advanced
Technology, a new group focused on research.

The original goal of Family Farm was to create a new
integrated development environment for the Macintosh OS.
Family Farm included work on a new system-level pro-
gramming language, an interprocess communication model,
a user-level scripting language, and object component mod-
els, in addition to other areas.

The first AppleScript specification, which was the foun-
dation for later development, was written by the Family
Farm team. This document defined the basic approach to
generalizing HyperTalk chunk expressions to create Apple-
Script object-specifiers and Apple Events (described in de-
tail below). I believe credit for these ideas must be shared
equally by the Family Farm team, which generated many
ideas, and the teams which turned these ideas into usable
systems.

As a research project that grew quickly, the organization
put in place for Family Farm turned out not to be sufficient
to build and deliver commercial products. The team was
in the research group, not the system software group; No
changes to the Macintosh system could be shipped to cus-
tomers without approval of the system software group. And
if Family Farm did get approval, they would have to follow
the strict software development, scheduling, and quality con-
trol processes enforced by the system software group. Over
time it became clear that the Family Farm team was also too
small to achieve its vision.

After about a year and a half of work, the Family Farm
project was disbanded, and new teams were created to design
and implement some of the concepts investigated by Family
Farm.

One of the main themes to emerge from Family Farm was
a focus on techniques forintegratingapplications. As men-
tioned in Section 1.2, integrating graphical applications can
be done at several levels: visual embedding, behavioral co-
ordination, or data exchange. The spin-off projects were Ap-
ple Events, AppleScript, and OpenDoc. The Apple Events
project, formed in mid-1990 from a subset of the Family
Farm team, developed the underlying communication model
on which later projects were based. Later projects involved
larger teams that pulled key members from outside Fam-
ily Farm. AppleScript was next, then OpenDoc, both within
the Developer Tools Group at Apple. AppleScript focused
on data and behavioral integration. The OpenDoc project,
which is not discussed in detail here, focused on visual inte-
gration by embedding components. Family Farm’s transition
from research to product development was a difficult one; in
the end the primary product transferred from Family Farm
to its descendants was an inspiring vision.

2.3 Apple Event Manager

The Apple Event Manager provides an inter-application
communication platform for the Macintosh. It was designed

with scripting in mind—however, the design was completed
before development of AppleScript began. When I started
at Apple in April 1991, my first job was to do a complete
code review of Apple Events, which was nearing the end of
its beta testing period. I sat in a conference room with Ed
Lai for over a week reading the code line by line and also
jumping around to check assumptions and review interre-
lationships. Ed was the primary developer of Apple Events
code. The system was written in Pascal, as was most of the
Macintosh system software of that era. The Apple Events
team was part of the Developer Tools group and was orig-
inally managed by Larry Tesler (who was also still VP in
ATG), but was later taken over by Kurt Piersol.

In designing Apple Events, Kurt, Ed and the team had
to confront a serious limitation of the Macintosh OS: in
1990, the Macintosh OS could switch processes no more
than 60 times a second. If a process performed only a few
instructions before requesting a switch, the machine would
idle until 1/60th of a second had elapsed. A fine-grained
communication model, at the level of individual procedure
or method calls between remote objects, would be far too
slow: while a script within a single application could easily
call thousands of methods in a fraction of a second, it would
take several seconds to perform the same script if every
method call required a remote message and process switch.
As a result of this limitation of the OS, traditional remote
procedure calls (RPC) could not be used. Fine-grained RPC
was used in CORBA and COM, which were being developed
at the same time.

The Macintosh OS needed a communication model that
allowed objects in remote applications to be manipulated
without requiring many process round-trips. The Apple
Events communication model uses a generalization of Hy-
perCard’s chunk expressions. Just as a HyperCard command
contains a verb and one or more chunk expressions in its
predefined internal language, an Apple Event contains a verb
and a set of chunk expressions that refer to objects and prop-
erties in the target application. The generalized chunk ex-
pressions are calledobject specifiers. Apple Events address
the process-switching bottleneck by making it natural to
pack more behavior into a single message, thereby reducing
the need for communication round-trips between processes.
An Apple Event is in effect a small query/update program
that is formulated in one application and then sent to another
application for interpretation.

Kurt Piersol and Mike Farr debated whether there should
be few commands that could operate on many objects,
or a large number of specific commands as in traditional
command-line interfaces. For example, on Unix there are
different commands to delete print jobs (lprm), directories
(rmdir), and processes (kill). The analogy with verbs and
nouns in English helped Kurt win the argument for few
commands (verbs) that operate on general objects (nouns).
For example, in AppleScript there is a singledelete com-
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Figure 1. The properties and elements in a simple object
model.

mand that can delete paragraphs or characters from a word-
processing document, or files from the file system. Having a
small number of generic verbs, includingset, copy, delete,
insert, open andclose, proved to be more extensible.

2.3.1 Object Specifiers

Object specifiers are symbolic references to objects in an
application. One application can create object specifiers that
refer to objects in another application, called thetarget.
The specifiers can then be included in an Apple Event and
sent to the target application. These symbolic references
are interpreted by the target application to locate the actual
remote objects. The target application then performs the
action specified by the verb in the Apple Event upon the
objects.

For example, a single Apple Event can be used to copy a
paragraph from one location to another in a document; the
source and target location are included in the event as object
specifiers. The content of the paragraph remains local in the
target application. Traditional RPC models would require
the client to retrieve the paragraph contents, and then send
it back to the target as a separate insertion operation.

Object specifiers provide a view of application data that
includeselementsandproperties. An element name repre-
sents a collection of values; a property has a single value.
The value of a property may be either a basic value, for ex-
ample an integer or a string, or another object. Elements are
always objects.

A simple object model is illustrated in Figure 1. A
document has multipleparagraph elements and aname
property. A paragraph hasstyle and size properties and
containsword and character elements.

The distinction between properties and elements is re-
lated to the concept of cardinality in entity-relationship mod-
eling [9] and UML class diagrams [32]. Cardinality indicates
the maximum number of objects that may be involved in
a relationship. The most important distinction is between
single-valued (cardinality of 1) relationships and multi-
valued (cardinality greater than 1). The entity-relationship
model also includes attributes, which identify scalar, prim-

itive data values. An AppleScript property is used for both
attributes and single-valued relationships. Elements are used
to describe multivalued relationships.

The name identifying a set of elements is called aclass
name, identifying a specific kind of contained object and/or
its role. For example, aFamily object might have elements
parents and children , which are elements that refer to
sets ofPerson objects. Object specifiers allow application-
specific names for elements and properties, which generalize
the fixed set of predefined names available in HyperCard.

Object specifiers also generalize HyperCard chunk ex-
pressions in other ways. One extension was the addition of
conditionsto select elements of a collection based on their
properties. This extension made object specifiers a form of
query language with significant expressive power.

Supporting Apple Events was frequently quite difficult.
To create a new scriptable application, the software architect
must design a scripting interface in addition to the traditional
GUI interface. If the existing application architecture sepa-
rates views (graphical presentations) from models (underly-
ing information representation) [34], then adding scripting
is usually possible. In this case the internal methods on the
model may be exposed to scripts. There are two reasons why
direct access to an existing object model may not be suffi-
cient:

1. Users often want to control the user interface of an appli-
cation, not just internal data of the application. Thus the
scripting interface should provide access to both the view
objects and the model objects.

2. The interfaces of the internal object model may not be
suitable as an external scripting interface. In this case
the scripting interface is usually implemented to provide
another abstract view of the internal model.

Even with a good architecture, it can be difficult to retrofit
an existing GUI application to include a second interface
for scripting. If the application does not use a model-view
architecture, then adding scripting is much more difficult.

The Apple Events team created a support library to assist
application writers in interpreting object specifiers. It inter-
prets nesting and conditions in the object specifiers, while
using application callbacks to perform primitive property
and element operations.

2.3.2 Apple Events Implementation

Object specifiers are represented in Apple Events as nested
record structures, calleddescriptors[11]. Descriptors use a
self-describing, tagged tree data structured designed to be
easily transported or stored in a flattened binary format. De-
scriptors can either contain primitive data, a list of descrip-
tors, or a labeled product of descriptors. Primitive data types
include numbers (small and large integers and floats), pic-
tures, styled and unstyled text, process IDs, files, and aliases.
All the structures, types, and record fields are identified by
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four-byte type codes. These codes are chosen to be human-
readable to facilitate low-level debugging.

Each kind of object specifier is a record with fields for the
class, property name, index, and container. The container is
either another object specifier record or null, representing the
default or root container of the application. Events may be
sent synchronously or asynchronously. The default behavior
of Apple Events is stateless—the server does not maintain
state for each client session. However, Apple Events sup-
ports a simple form of transaction: multiple events can be
tagged with a transaction ID, which requires an application
to perform the events atomically or else signal an error.

Apple Events was first released with Macintosh System
7 in 1991. The entire Apple Events system was designed,
implemented, and shipped in the Macintosh OS before any
products using it were built. It was a complex problem: ap-
plications could not be built until the infrastructure existed,
but the infrastructure could not be validated until many ap-
plications had used it. In the end, the Apple Events team
adopted a “build it and they will come” approach. They de-
signed the system as well as they could to meet predicted
needs. Only a few small sample applications were developed
to validate the model. In addition, the operating system team
defined four standard events with a single simple parame-
ter: open application, open documents, print documents, and
quit. These first basic events did not use object specifiers; the
open and print events used a vector of path names as argu-
ments.

Later projects, including AppleScript, had to work around
many of the Apple Events design choices that were made
essentially within a vacuum. For example, Apple Events
included some complex optimized message that were never
used because they were too unwieldy. For example, if an
array of values all has a common prefix, this prefix can be
defined once and omitted in each element of the array. This
was originally motivated by a desire to omit repetitive type
information. This optimization is not used by AppleScript
because it is difficult to detect when it could be used, and the
reduction in message length provided by the optimization
does not significantly affect performance.

3. The AppleScript Language
My primary task was to lead the design and implementation
of the AppleScript language. After I decided to join Apple
I mentioned the opportunity to Warren Harris. I enjoyed
working with Warren at HP and thought he would be a great
addition to the AppleScript effort. Warren has a BS and
MS inree EE from the University of Kansas. At HP Warren
was still working on his “Abel Project Posthumous Report”,
which contained all the ideas we had discussed, but had not
time to complete, while working together at HP Labs [25].
Warren talked to Kurt and eventually decided to join the
AppleScript team as a software engineer. He quickly became
the co-architect and primary implementor of the language.

3.1 Requirements

AppleScript is intended to be used by all users of the Mac-
intosh OS. This does not imply that all users would use Ap-
pleScript to the same degree or in the same way—there is
clearly a wide range of sophistication in users of the Mac-
intosh OS, and many of them have no interest in, or need
for, learning even the simplest form of programming lan-
guage. However, these users couldinvokescripts created by
other users, so there were important issues of packaging of
scripts, in addition to developing them. More sophisticated
users might be able torecordor modifya script even if they
could not write it. Finally, it should be possible for non-
computer specialists towrite scripts after some study.

The language was primarily aimed atcasualprogram-
mers, a group consisting of programmers from all experi-
ence levels. What distinguishes casual programming is that
it is infrequent and in service of some larger goal—the pro-
grammer is trying to get something else done, not create a
program. Even an experienced software developer can be a
casual programmer in AppleScript.

The team recognized that scripting is a form of program-
ming and requires more study and thought than using a
graphical interface. The team felt that the language should
be easy enough to learn and use to make it accessible to
non-programmers, and that such users would learn enough
programming as they went along to do the things that they
needed to do.

Programs were planned to be a few hundred lines long
at most, written by one programmer and maintained by a
series of programmers over widely spaced intervals. Scripts
embedded inside an application were also expected to be
small. In this case, the application provides the structure
to interconnect scripts; one script may send messages to
an application object that contains another script. Because
scripts are small, compilation speed was not a significant
concern. Readability was important because it was one way
to check that scripts did not contain malicious code.

In the early ’90s computer memory was still expensive
enough that code size was a significant issue, so the Ap-
pleScript compiler and execution engine needed to be as
small as possible. Portability was not an issue, since the lan-
guage was specifically designed for the Macintosh OS. Per-
formance of scripts within an application was not a signifi-
cant concern, because complex operations like image filter-
ing or database lookup would be performed by applications
running native code, not by scripts. Due to the high latency
of process switches needed for communication, optimization
of communication costs was the priority.

3.2 Application Terminologies

An application terminologyis a dictionary that defines the
names of all the events, properties, and elements supported
by an application. A terminology can define names as plural
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reference ::=
propertyName

| ‘beginning’
| ‘end’
| ‘before’ term
| ‘after ’ term
| ‘some’ singularClass
| ‘ first ’ singularClass
| ‘ last ’ singularClass
| term (‘ st ’ | ‘nd’ | ‘ rd ’ | ‘ th ’) anyClass
| ‘middle’ anyClass
| plural [‘ from’ term toOrThrough term]
| anyClass term [toOrThrough term]
| singularClass ‘before’ term
| singularClass ‘after ’ term
| term (‘of ’ | ‘ in ’ | ‘’ s ’) term
| term (‘whose’ | ‘where’ | ‘that’) term

plural ::= pluralClass | ‘every’ anyClass
toOrThrough ::= ‘to’ | ‘thru’ | ‘through’

call ::= message ‘(’ expr∗ ‘)’
| message [‘ in ’ | ‘of ’] [term] arguments
| term name arguments

message ::= name | terminologyMessage
arguments ::= ( preposition expression | flag | record)∗
flag ::= (‘with’ | ‘without’) [name]+
record ::= ‘given’ (name ‘:’ expr)∗
preposition ::=

‘to’ | ‘from’ | ‘thru’ | ‘through’
| ‘by’ | ‘on’ | ‘ into ’ | terminologyPreposition

Figure 2. AppleScript grammar for object references and
message sends.

or masculine/feminine, and this information can be used by
the custom parser for a dialect.

One of the main functions of AppleScript is to send and
receive Apple Events (defined in Section 2.3). Sending an
Apple Event is analogous to an object-oriented message
send, while handling an Apple Event is done by defining a
method whose name is an Apple Event. One view of this
arrangement is that each application is an object that re-
sponds to a variety of messages containing complex argu-
ment types. AppleScript encourages a higher-level view in
which each application manages a set of objects to which
messages may be sent.

AppleScript also provides special syntax for manipulat-
ing Apple Event object specifiers, which are called “object
references” in AppleScript documentation. When an oper-
ation is performed on an object reference, an Apple Event
is created containing the appropriate verb and object spec-
ifier. Thus AppleScript needed to provide a concise syntax
for expressing Apple Events. These AppleScript expressions
create object specifiers:

the first word of paragraph 22
name of every figure of document ‘‘taxes ’’
the modification date of every file whose size > 1024

The first example is a reference to a particular word of a
paragraph. The second refers to the collection of names
associated with all figures in a document named “taxes”. The
last one refers to the modification dates of large files.

For example, the object referencename of window 1
identifies the name of the first window in an application.
Object references are like first-class pointers that can be
dereferenced or updated. An object reference is automati-
cally dereferenced when a primitive value is needed:

print the name of window 1

The primitive value associated with an object reference can
be updated:

set the name of window 1 to ‘‘Taxes’’

These examples illustrate that object specifiers can act as
both l-values and r-values.

Figure 2 includes the part of the AppleScript grammar
relating to object specifiers. The grammar makes use of four
nonterminals that represent symbols from the application
terminology: for property, singularClass , pluralClass ,
andanyClass. As mentioned in Section 2.3.1, a terminology
has properties and elements, which are identified by a class
name. Property names are identified by lexical analysis and
passed to the parser. For class names the terminology can in-
clude both plural and singular forms or a generic “any” form.
For example,name is a property,window is a singular class,
and windows is a plural class. The grammar then accepts
windows from 1 to 10 andevery window from 1 to 10,

Figure 2 also summarizes the syntax of messages. Argu-
ments can be given by position or name after thegiven key-
word. In addition, a set of standard prepositions can be used
as argument labels. This allows messages of the form:

copy paragraph 1 to end of document

The first parameter isparagraph 1, and the second argu-
ment is a prepositional argument namedto with value
end of document.

One of the most difficult aspects of the language design
arose from the fundamental ambiguity of object references:
an object reference is itself a first-class value, but it also de-
notes a particular object (or set of objects) within an applica-
tion. In a sense an object reference is like a symbolic pointer,
which can be dereferenced to obtain its value; the referenced
value can also be updated or assigned through the object
reference. The difficulties arose because of a desire to hide
the distinction between a reference and its value. The solu-
tion to this problem was to dereference them automatically
when necessary, and require special syntax to create an ob-
ject reference instead of accessing its value. The expression
a reference to o creates a first-class reference to an object

1-8



described byo. Although the automatic dereferencing han-
dles most cases, a script can explicitly dereferencer using
the expressionvalue of r. The examples above can be ex-
pressed using a reference value:

set x to a reference to the name of window 1

The variablex can then be used in place of the original
reference. The following statements illustrate the effect of
operations involvingx:

print the value of x
print x
set the value of x to ‘‘ Taxes ’’
set x to ‘‘ Taxes ’’

The first and second statements both print the name of the
window. In the first statement the dereference is explicit, but
in the second it happens implicitly becauseprint expects a
string, not a reference. The third statement changes the name
of the window, while the last one changes the values of the
variablex but leaves the window unchanged.

An object reference can be used as a base for further
object specifications.

set x to a reference to window 1
print the name of x

Figure 3 and 4 describe the custom terminology dictio-
nary for iChat, a chat, or instant messaging, program for the
Macintosh. It illustrates the use of classes, elements, proper-
ties, and custom events. Terminologies for large applications
are quite extensive: the Microsoft Word 2004 AppleScript
Reference is 529 pages long, and the Adobe Photoshop CS2
AppleScript Scripting Reference is 251 pages. They each
have dozens of classes and hundreds of properties.

In addition to the terminology interpreted by individ-
ual applications, AppleScript has its own terminology to
identify applications on multiple machines. The expression
application ‘‘ name’’ identifies an application. The expres-
sion application ‘‘ appName’’ of machine ‘‘machineName’’
refers to an application running on a specific machine. A
block of commands can be targeted at an application using
the tell statement:

tell application ‘‘ Excel ’’ on machine x
put 3.14 into cell 1 of row 2 of window 1

end

This is an example of a statictell command, because
the name of the target application is known statically, at
compile time. The target of thetell statement can also be
a dynamic value rather than an application literal. In this
case the terminology is not loaded from the application. To
communicate with a dynamic application using a statically
specified terminology, a dynamictell can be nested inside
a statictell ; the outer one sets the static terminology, while
the inner one defines the dynamic target. This brings up the
possibility that applications may receive messages that they

Class application : iChat application

Plural form: applications
Elements: account, service , window, document
Properties:

idle time integer
Time in seconds that I have been idle.

image picture
My image as it appears in all services.

status message string
My status message, visible to other people
while I am online.

status string
My status on all services:
away/offline/available.

Class service: An instant-messaging service

Plural form: services
Elements: account
Properties:

status string
The status of the service.:
disconnecting/connected/connecting/disconnected.

id string
The unique id of the service.

name string
The name of the service.

image picture
The image for the service.

Classaccount: An account on a service
Plural form: accounts
Properties:

status string
away/offline/available/idle/unknown.

id string
The account’s service and handle. For ex-
ample: AIM:JohnDoe007.

handle string
The account’s online name.

name string
The account’s name as it appears in the
buddy list.

status message
The account’s status message.

capabilities list
The account’s messaging capabilities.

image picture
The account’s custom image.

idle time integer
The time in seconds the account has been
idle.

Figure 3. iChat Suite: Classes in the iChat scripting termi-
nology [13].
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Events

log in service
Log in a service with an account. If the account password
is not in the keychain the user will be prompted to enter
one.

log out service
Logs out of a service, or all services if none is specified.

sendmessageto account
Send account a text message or video invitation.

Figure 4. iChat Suite: Events in the iChat scripting termi-
nology [13].

do not understand. In such situations, the application should
return an error.

Integration of multiple applications opens the possibility
that a single command may involve object references from
multiple applications. The target of a message is determined
by examining the arguments of the message. If all the argu-
ments are references to the same application, then that appli-
cation is the target. But if the arguments contain references
to different applications, one of the applications must be cho-
sen as the target. Since applications can interpret only their
own object specifiers, the other object references must be
evaluated to primitive values, which can then be sent to the
target application.

copy the name of the first window
of application ”Excel”

to the end of the first paragraph
of app ”Scriptable Text Editor”

This example illustrates copying between applications
without using the global clipboard. AppleScript picks the
target for an event by examining the first object reference in
the argument list. If the argument list contains references to
other applications, the values of the references are retrieved
and passed in place of the references in the argument list.

Standard events and reference structures are defined in
theApple Event Registry. The Registry is divided into suites
that apply to domains of application. Suites contain spec-
ifications for classes and their properties, and events. Cur-
rently there are suites for core operations, text manipulation,
databases, graphics, collaboration, and word services (spell-
checking, etc.).

Jon Pugh, with a BSCS from Western Washington Uni-
versity in 1983, was in charge of the Apple Events registry.
He also helped out with quality assurance and evangelism.
Since then he has worked on numerous scriptable applica-
tions, and created “Jon’s Commands,” a shareware library of
AppleScript extensions.

Terminologies also provide natural-language names for
the four-letter codes used within an Apple Event. This meta-
data is stored in an application as a resource. As discussed in

Section 3.4 below, the terminology resources in an applica-
tion are used when parsing scripts targeting that application.

3.3 Programming Language Features

AppleScript’s programming language features include vari-
ables and assignment, control flow, and basic data struc-
tures. Control flow constructs include conditionals, a vari-
ety of looping constructs, subroutines, and exceptions. Sub-
routines allow positional, prepositional, and keyword para-
meters. Data structures include records, lists, and objects.
Destructuring bind, also known as pattern matching, can be
used to break apart basic data structures. Lists and records
are mutable. AppleScript also supports objects and a simple
transaction mechanism.

AppleScript has a simple object model. Ascript object
containspropertiesandmethods. Methods are dynamically
dispatched, so script objects support a simple form of object-
oriented programming. The following simple script declara-
tion binds the nameCounter to a new script object represent-
ing a counter:

script Counter
property count : 0
to increment

set count to count + 1
return count

end increment
end script

A script declaration can be placed inside a method to
create multiple instances. Such a method is called a factory
method, and is similar to a constructor method in Java.
Since script can access any lexically enclosing variables, all
the objects created by a factory have access to the state of
the object that constructed them. The resulting pattern of
object references resembles the class/metaclass system in
Smalltalk [23], although in much simpler form.

AppleScript’s object model is a prototype model similar
to that employed by Self [37], as opposed to the container-
based inheritance model of HyperTalk. Script objects sup-
port single inheritance by delegating unhandled commands
to the value in theirparent property [36]. JavaScript later
adopted a model similar to AppleScript.

The top level of every script is an implicit object decla-
ration. Top-level properties arepersistent, in that changes to
properties are saved when the application running the script
quits. A standalone script can be stored in a script file and
executed by opening it in the Finder. Such a script can di-
rect other applications to perform useful functions, but may
also call other script files. Thus, script files provide a simple
mechanism for modularity.

AppleScript provides no explicit support for threading or
synchronization. However, the application hosting a script
can invoke scripts from multiple threads: the execution
engine was thread-safe when run by the non-preemptive
scheduling in the original Macintosh OS. It is not safe when
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English the first character of every word whose style is bold
Japanese
French le premier caractère de tous les mots dont style est gras
Professional { words | style == bold }.character[1]

Figure 5. Illustration of dialects.

run on multiple preemptive threads on Mac OS X. Script
objects can also be sent to another machine, making mobile
code possible.

3.4 Parsing and Internationalization

The AppleScript parser integrates the terminology of ap-
plications with its built-in language constructs. For ex-
ample, when targeting the Microsoft ExcelTM application,
spreadsheet terms are known by the parser—nouns likecell
and formula, and verbs like recalculate . The statement
tell application ‘‘ Excel ’’ introduces a block in which
the Excel terminology is available. The terminology can
contain names that are formed from multiple words; this
means that the lexical analyzer must be able to recognize
multiple words as a single logical identifier. As a result,
lexical analysis depends upon the state of the parser: on en-
tering a tell block, the lexical analysis tables are modified
with new token definitions. The tables are reset when the
parser reaches the end of the block. This approach increases
flexibility but makes parsing more difficult. I believe the
added complexity in lexing/parsing makes it more difficult
for users to write scripts.

Apple also required that AppleScript, like most of its
other products, support localization, so that scripts could be
read and written in languages other than English. Scripts are
stored in a language-independent internal representation. A
dialect defines a presentation for the internal language. Di-
alects contain lexing and parsing tables, and printing rou-
tines. A script can be presented using any dialect—so a script
written using the English dialect can be viewed in Japanese.
Examples are given in Figure 5. For complete localization,
the application terminologies must also include entries for
multiple languages. Apple developed dialects for Japanese
and French. A “professional” dialect, which resembles Java,
was created but not released.

There are numerous difficulties in parsing a programming
language that resembles a natural language. For example,
Japanese does not have explicit separation between words.
This is not a problem for language keywords and names
from the terminology, but special conventions were required
to recognize user-defined identifiers. Other languages have
complex conjugation and agreement rules that are difficult to
implement. Nonetheless, the internal representation of Ap-
pleScript and the terminology resources contain information
to support these features.

The AppleScript parser was created using Yacc [29], a
popular LALR parser generator. Poor error messages are a

common problem with LALR parsing [1]. I wrote a tool
that produces somewhat better error messages by including
a simplified version of the follow set at the point where the
error occurred. The follow set was simplified by replacing
some common sets of symbols (like binary operators) with
a generic name, so that the error message would be “ex-
pected binary operator” instead of a list of every binary op-
erator symbol. Despite these improvements, obscure error
messages continue to be one of the biggest impediments to
using AppleScript.

3.5 AppleScript Implementation

During the design of AppleScript in mid-1991, we consid-
ered building AppleScript on top of an existing language
or runtime. We evaluated Macintosh Common Lisp (MCL),
Franz Lisp, and Smalltalk systems from ParcPlace and Dig-
italk. These were all good systems, but were not suitable as
a foundation for AppleScript for the same reason: there was
not sufficient separation between the development environ-
ment and the runtime environment. Separating development
from execution is useful because it a allows compiled script
to be executed in a limited runtime environment with low
overhead. The full environment would be needed only when
compiling or debugging a script.

Instead, we developed our own runtime and compiler. The
runtime includes a garbage collector and byte-code inter-
preter. The compiler and runtime were loaded separately to
minimize memory footprint.

One AppleScript T-shirt had the slogan “We don’t patch
out the universe”. Many projects at Apple were implemented
by “patching”: installing new functions in place of kernel
operating system functions. The operating system had no
protection mechanisms, so any function could be patched.
Patches typically had to be installed in a particular order, or
else they would not function. In addition, a bug in a patch
could cause havoc for a wide range of applications.

AppleScript did not patch any operating system func-
tions. Instead the system was carefully packaged as a thread-
safe QuickTime component. QuickTime components are a
lightweight dynamic library mechanism introduced by the
QuickTime team. Only one copy of the AppleScript com-
piler and runtime was loaded and shared by all applica-
tions on a machine. The careful packaging is one of the rea-
sons AppleScript was able to continue running unchanged
through numerous operating system upgrades, and even onto
the PowerPC.
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Figure 6. Overview of the Open Scripting API.

The AppleScript runtime is implemented in C++. The en-
tire system, including dialects, is 118K lines of code, includ-
ing comments and header files. Compiling the entire Apple-
Script runtime took over an hour on the machines used by
the development team. After the alpha milestone, the devel-
opment team was not allowed to produce official builds for
the testing team. Instead, the code had to be checked in and
built by a separate group on a clean development environ-
ment. This process typically took 8 to 12 hours, because the
process was not fully automated, so there was sometimes a
significant lag between identifying a bug and delivering a fix
to the quality assurance team. This was a significant source
of frustration for the overall team.

4. Script Management
Open Scripting Architecture (OSA) allows any application
to manipulate and execute scripts [11]. The Open Scripting
API is centered around the notion of ascript, as shown in
Figure 6. A script is either a data value or a program. Many
of the routines in the API are for translating between scripts
and various external formats.Compile parses script text and
creates a script object, whileGetSource translates a script
object back into human-readable script text.Display trans-
lates a value into a printed representation. When applied to
a string, e.g.‘‘ Gustav’’ , GetSource returns a program lit-
eral ‘‘ Gustav’’ , while Display just returns the textGustav.
CoerceFromDesc and CoerceToDesc convert AppleScript
values to and from Apple Event descriptors.Load andStore
convert to/from compact binary byte-streams that can be in-
cluded in a file.

TheExecute function runs a script in a context. A context
is a script that contains bindings for global variables.

At its simplest, the script management API supports the
construction of a basic script editor that can save scripts as
stand-alone script applications.

The OSA API does not include support for debugging,
although this was frequently discussed by the team. How-
ever, other companies have worked around this problem and
created effective debugging tools (Section 6.3).

4.1 Embedding

The script management API also supports attaching scripts
to objects in an existing application. Such scripts can be trig-
gered during normal use of the application. This usage is
supported by theExecuteEvent function, which takes as in-
put a script and an Apple Event. The event is interpreted as a
method call to the script. The corresponding method decla-
ration in the script is invoked. In this way an application can
pass Apple Events to scripts that are attached to application
objects.

Embedded scripts allow default application behavior to
be customized, extended, or even replaced. For example, the
Finder can run a script whenever a file is added to a folder,
or an email package can run a script when new mail is re-
ceived. Scripts can also be attached to new or existing menu
items to add new functionality to an application. By em-
bedding a universal scripting languages, application devel-
opers do not need to build proprietary scripting languages,
and users do not need to learn multiple languages. Users
can also access multiple applications from a single script.
AppleScript demonstrated the idea that a single scripting
language could be used for all applications, while allowing
application-specific behaviors to be incorporated so that the
language was specialized for use in each application.

Embedding can also be used to create entire applications.
In this case there is no predefined application structure to
which scripts are attached. Instead, the user builds the ap-
plication objects — for data and user interfaces, and then at-
taches scripts to them. Several application development tools
based on AppleScript are described in Section 6.

4.2 Multiple Scripting Languages

Halfway through the development of AppleScript, Apple
management decided to allow third-party scripting lan-
guages to be used in addition to AppleScript. A new API
for managing scripts and scripting language runtime engines
had to be designed and implemented. These changes con-
tributed to delays in shipping AppleScript. However, they
also led to a more robust architecture for embedding.

In February of 1992, just before the first AppleScript al-
pha release, Dave Winer convinced Apple management that
having one scripting language would not be good for the
Macintosh. At that time, Dave Winer was an experienced
Macintosh developer, having created one of the first outliner
applications, ThinkTank. In the early 1990s, Dave created an
alternative scripting system, called Frontier. Before I joined
the project, Apple had discussed the possibility of buying
Frontier and using it instead of creating its own language.
For some reason the deal fell through, but Dave continued
developing Frontier. Apple does not like to take business
away from developers, so when Dave complained that the
impending release of AppleScript was interfering with his
product, Apple decided the AppleScript should be opened up
to multiple scripting languages. The AppleScript team mod-
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ified the OSA APIs so that they could be implemented by
multiple scripting systems, not just AppleScript. As a result,
OSA is a generic interface between clients of scripting ser-
vices and scripting systems that support a scripting language.
Each script is tagged with the scripting system that created it,
so clients can handle multiple kinds of script without know-
ing which scripting system they belong to.

Dave Winer’s Frontier is a complete scripting and ap-
plication development environment that eventually became
available as an Open Scripting component. Dave went on
to participate in the design of web services and SOAP [4].
Tcl, JavaScript, Python and Perl have also been packaged as
Open Scripting components.

4.3 Recording Events as Scripts

The AppleScript infrastructure supports recording of events
in recordableapplications, which publish events in response
to user actions. Donn Denman, a senior software engineer
on the AppleScript team with a BS in Computer Science
and Math from Antioch College, designed and implemented
much of the infrastructure for recording. At Apple he worked
on Basic interpreters. He was involved in some of the early
discussions of AppleScript, worked on Apple Events and ap-
plication terminologies in AppleScript. In addition, Donn
created MacroMaker, a low-level event record and play-
back system for Macintosh OS System 5. Working on Mar-
coMaker gave Donn a lot of experience in how recording
should work.

Recording allows automatic generation of scripts for re-
peated playback of what would otherwise be repetitive tasks.
Recorded scripts can be subsequently generalized by users
for more flexibility. This approach to scripting alleviates the
“staring at a blank page” syndrome that can be so crippling
to new scripters. Recording is also useful for learning the
terminology of basic operations of an application, because it
helps users to connect actions in the graphical interface with
their symbolic expression in script.

Recording high-level events is different from recording
low-level events of the graphical user interface. Low-level
events include mouse and keyboard events. Low-level events
can also express user interface actions, e.g. “perform Open
menu item in the File menu”, although the response to this
event is usually to display a dialog box, not to open a par-
ticular file. Additional low-level events are required to ma-
nipulate dialog boxes by clicking on interface elements and
buttons. Low-level events do not necessarily have the same
effect if played back on a different machine, or when dif-
ferent windows are open. High-level events are more robust
because they express the intent of an action more directly.
For example, a high-level event can indicate which file to
open.

Recording is supported by a special mode in the Apple
Event manager, based on the idea that a user’s actions in
manipulating a GUI interface can be described by a corre-
sponding Apple Event. For example, if the user selects the

File Open menu, then finds and selects a file named “Re-
suḿe” in a folder named “Personal”, the corresponding Ap-
ple Event would be a FileOpen event containing the path
“Personal:Resuḿe”. To be recordable, an application must
post Apple Events that describe the actions a user performs
with the GUI.

Recordable applications can be difficult to build, since
they must post an Apple Event describing each operation
performed by a user. The AppleScript team promoted an ar-
chitecture that turned this difficulty into a feature. We advo-
cated that applications should be factored into two parts, a
GUI and a back end, where the only communication from
the GUI to the back end is via Apple Events. With this ar-
chitecture, all the core functionality of the application must
be exposed via Apple Events, so the application is inher-
ently scriptable. The GUI’s job becomes one of translating
low-level user input events (keystrokes and mouse move-
ments) into high-level Apple Events. An application built in
this way is inherently recordable; the Apple Event manager
simply records the Apple Events that pass from the GUI to
the back end. If an application is already scriptable, it can
be made recordable by arranging for the user interface to
communicate with the application model only through Ap-
ple Events.

The reality of recording is more complex, however. If
there is atype Apple Event to add characters into a docu-
ment, the GUI must forward each character immediately to
the back end so that the user will see the result of typing.
During recording, if the user types “Hello” the actions will
record an undesirable script:

type ‘‘ H”
type ‘‘ e”
type ‘‘ l”
type ‘‘ l”
type ‘‘ o”

It would be better to recordtype ‘‘ Hello”. To get this
effect, the GUI developer could buffer the typing and send
a single event. But then the user will not see the effect of
typing immediately. AppleEvents has the ability to specify
certain events asrecord-only, meaning that it is a summary
of a user’s actions and should not be executed. Creating such
summaries makes developing a recordable application quite
difficult.

In 2006 twenty-five recordable applications were listed
on Apple’s website and in the AppleScript Sourcebook [8],
one of several repositories of information about AppleScript.
Some, but fewer than half, of the major productivity appli-
cations are recordable. Recordable applications include Mi-
crosoft Word and Excel, Netscape Navigator, Quark Express
(via a plugin) and CorelDRAW.

One of the inherent difficulties of recording is the am-
biguity of object specification. As the language of events
becomes more rich, there may be many ways to describe a
given user action. Each version might be appropriate for a
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given situation, but the system cannot pick the correct action
without knowing the intent of the user. For example, when
closing a window, is the user closing the front window or
the window specifically named “Example”? This is a well-
known problem in research on programming by example,
where multiple examples of a given action can be used to dis-
ambiguate the user’s intent. Allen Cypher did fundamental
research on this problem while at Apple. He built a prototype
system called Eager that anticipated user actions by watch-
ing previous actions [21, 22]. AppleScript does not have
built-in support for analyzing multiple examples. There are
also ambiguities when recording and embedding are com-
bined: if a recorded event causes a script to execute, should
the original event or the events generated by the script be
recorded? Application designers must decide what is most
appropriate for a given situation. Cypher worked with Dave
Curbow in writing guidelines to help developers make these
difficult choices [26].

Recording can also be used for other purposes. For ex-
ample, a help system can include step-by-step instructions
defined by a script. The steps can be played as normal
scripts, or the user can be given the option of performing
the steps manually under the supervision of the help system.
By recording the user’s actions, the help system can pro-
vide feedback or warnings when the user’s actions do not
correspond to the script.

5. Development Process
Unlike most programming languages, AppleScript was de-
signed within a commercial software development project.
The team members are listed in Figure 7. AppleScript was
designed by neither an individual nor a committee; the
team used a collaborative design process, with significant
user testing and evaluation. The project leaders guided the
process and made final decisions: there was lively debate
within the group about how things should work. The ex-
tended team included project management, user interface
design and testing, documentation, and product marketing.

The AppleScript project had a strong quality assurance
(QA) team. They created a large test suite which was run
against nightly builds. From a management viewpoint, the
QA group also had significant control over the project, be-
cause they were required to give final approval of a release.

The project was code-named “Gustav” after Donn’s mas-
sive Rottweiler dog. The dog slimed everything it came in
contact with, and was the impetus behind a T-shirt that read
“Script Happens”. The project tag line was “Pure Guava”
because Gary Bond was designing a t-shirt that said “Apple-
Script: Pure Gold” and Warren Harris got him to change it
to Pure Guava after the Ween album he was in love with at
the time.

AppleScript and the associated tools were designed and
implemented between 1990 and 1993. Figure 8 gives a time-
line of the development process. The line labeled “changes”
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Figure 7. AppleScript and related project team members.
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Figure 8. Development statistics: number of file changes and candidate builds.

shows the cumulative number of files changed during de-
velopment (the scale is on the left). The second line shows
the cumulative number of candidate release builds. The fi-
nal candidate builds were created by Apple source control
group from a clean set of sources and then given to the test-
ing team. By placing source code control between develop-
ment and testing, Apple ensured that each build could be
recreated on a clean development environment with archived
sources. Note that the number of file changes in the alpha or
beta phases starts off slowly, then increases until just before
the next milestone, when changes are no longer allowed un-
less absolutely necessary.

The AppleScript Beta was delivered in September 1992.
In April 1993 the AppleScript 1.0 Developer’s Toolkit
shipped, including interface declaration files (header files),
sample code, sample applications and the Scripting Lan-
guage Guide.

The first end-user version, AppleScript 1.1, was released
in September 1993 and included with System 7 Pro. In De-
cember 1993, the 1.1 Developer’s Toolkit and Scripting Kit
versions both released. In 1994, AppleScript was included
as part of System 7.5.

In January 1993, Apple management decided that the
next version of AppleScript had to have more features than
AppleScript 1.1, but that the development must be done
with half the number of people. Since this was not likely

to lead to a successful development process, Warren and I
decided to leave Apple. Without leadership, the AppleScript
group was disbanded. Many of the team members, including
Jens Alfke, Donn Denman, and Donald Olson, joined Kurt
Piersol on the OpenDoc team, which was working on visual
integration of applications. AppleScript was integrated into
the OpenDoc framework.

5.1 Documentation

Internal documentation was ad hoc. The team made exten-
sive use of an early collaborative document managemen-
t/writing tool called Instant Update, that was used in a wiki-
like fashion, a living document constantly updated with the
current design. Instant Update provides a shared space of
multiple documents that were viewed and edited simultane-
ously by any number of users. Each user’s text was color-
coded and time-stamped. I have not been able to recover a
copy of this collection of documents.

No formal semantics was created for the language, de-
spite the fact that my PhD research and work at HP Labs
was focused entirely on formal semantics of programming
languages. One reason was that only one person on the team
was familiar with formal semantics techniques, so writing a
formal semantics would not be an effective means of com-
munication. In addition, there wasn’t much point in develop-
ing a formal semantics for the well-known features (objects,
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inheritance, lexical closures, etc.), because the goal for this
aspect of the language was to apply well-known constructs,
not define new ones. There was no standard formal seman-
tic framework for the novel aspects of AppleScript, espe-
cially the notion of references for access to external objects
residing in an application. The project did not have the lux-
ury of undertaking extensive research into semantic founda-
tions; its charter was to develop and ship a practical language
in a short amount of time. Sketches of a formal semantics
were developed, but the primary guidance for language de-
sign came from solving practical problems and from user
studies, rather than from a priori formal analysis.

The public documentation was developed by professional
writers who worked closely with the team throughout the
project. The primary document isInside Macintosh: Inter-
application Communication, which includes details on the
Apple Event Manager and Scripting Components [11]. The
AppleScript language is also thoroughly documented [2],
and numerous third-party books have been written about
it, for examples see [31, 24]. Mitch Gass and Sean Cotter
documented Apple Events and AppleScript for external use.
Mitch has a bachelor’s degrees in comparative literature and
computer science, and worked at Tandem and Amiga before
joining Apple. Mitch worked during the entire project to
provide that documentation, and in the process managed to
be a significant communication point for the entire team.

5.2 User Testing

Following Apple’s standard practice, we user-tested the lan-
guage in a variety of ways. We identified novice users and
asked them, “What do you think this script does?” The fol-
lowing questions illustrate the kinds of questions asked dur-
ing user testing.

Part I. Please answer the following multiple choice ques-
tions about AppleScript.

3. Given the handler:

on doit from x to y with z
return (x ∗ y) + z

end doit

What does the following statement evaluate to?

doit with 3 from 8 to 5

a) 29

b) 43

c) error

d) other:

Part II. Please state which of the following AppleScript
statements you prefer.

8. a) put ‘‘ a ’’, {‘‘ b ’’, ‘‘ c ’’} into x
b) put {‘‘ a ’’, {‘‘ b ’’, ‘‘ c ’’}} into x

9. a) window named ‘‘fred’’
b) window ‘‘ fred ’’

10. a) window 1
b) window #1

11. a) word 34
b) word #34

12. a) ‘‘ apple ’’ < ‘‘betty ’’
b) ‘‘ apple ’’ comes before ‘‘betty ’’

Part III. This section shows sequences of commands and
then asks questions about various variables after they are
executed.

15. Given the commands:

put {1, 2, 3} into x
put x into y
put 4 into item 1 of x

What is x?

a) {1, 2, 3}
b) {4, 2, 3}
c) error

d) other:

What is y?

a) {1, 2, 3}
b) {4, 2, 3}
c) error

d) other:

Part IV. In this section, assume that all AppleScript state-
ments refer towindow 1, which contains the following
text:

this is a test
of the emergency broadcast system

18. What does the following statement evaluate to?

count every line of window 1

a) 2

b) 4, 5

c) 9

d) 14, 33

e) 47

f) error

g) other:
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What does the following statement evaluate to?

count each line of window 1

a) 2

b) 4, 5

c) 9

d) 14, 33

e) 47

f) error

g) other:

21. What does the following statement evaluate to?

every line of window 1
whose first character = ‘‘x ’’

a) {}
b) error

c) other:

One result of user testing concerned the choice of verb
for assignment commands. The average user thought that
after the commandput x into y the variablex no longer
retained its old value. The language was changed to use
copy x into y instead. We also conducted interviews and
a round-table discussion about what kind of functionality
users would like to see in the system. In the summer of 1992,
Apple briefed 50 key developers and collected reactions. The
user interface team conducted controlled experiments of the
usability of the language in early 1993, but since these took
place during the beta-testing period, they were too late in the
product development cycle to have fundamental impact.

6. AppleScript Applications and Tools
Much of the practical power of AppleScript comes from
the applications and tools that work with scripts and han-
dle events. From the viewpoint of AppleScript, applications
are large, well-designed and internally consistent libraries
of specialized functionality and algorithms. So, when used
with a database application, AppleScript can perform data-
oriented operations. When used with a text layout applica-
tion, AppleScript can automate typesetting processes. When
used with a photo editing application, AppleScript can per-
form complex image manipulation.

Since new libraries can be created to cover any applica-
tion domain, only the most basic data types were supported
in AppleScript directly. For example, string handling was
minimal in AppleScript. AppleScript’s capabilities were ini-
tially limited by the availability of scriptable applications.
Success of the project required that many applications and
diverse parts of the operating system be updated to support
scripting.

A second benefit of pervasive scripting is that it can be
used to provide a uniform interface to the operating sys-
tem. With Unix, access to information in a machine is idio-
syncratic, in the sense that one program was used to list
print jobs, another to list users, another for files, and another
for hardware configuration. I envisioned a way in which all
these different kinds of information could be referenced uni-
formly.

A uniform naming modelallows every piece of infor-
mation anywhere in the system, be it an application or the
operating system, to be accessed and updated uniformly.
Application-specific terminologies allow applications to be
accessed uniformly; an operating system terminology would
provide access to printer queues, processor attributes, or net-
work configurations. Thus, the language must support mul-
tiple terminologies simultaneously so that a single script can
access objects from multiple applications and the operating
system at the same time.

6.1 Scriptable Finder

Having a scriptable Finder was a critical requirement for
AppleScript, since the Finder provides access to most system
resources. However, it was difficult to coordinate schedules
and priorities because the Finder and AppleScript teams
were in different divisions within Apple. The Finder team
was also pulled in many directions at once.

As a result, Finder was not fully scriptable when Apple-
Script shipped in 1992. The Finder team created a separate
library, called the “Finder scripting extension”, to provide
some additional Finder script commands. The Finder had
been rewritten in C++ from the ground up for System 7 to
be extensible. But extensions relied on internal C++ dispatch
tables, so the Finder was not dynamically extensible: it had
to be recompiled for each extension. The Finder extension
mechanism had been designed so that Finder functionality
could grow incrementally. It was the mechanism for adding
large quantities of new functionality to support a specific
project.

It was not until 1997 that a scriptable Finder was released.
A year later the Finder supported embedding, which greatly
increased its power. Embedding allowed scripts to be trig-
gered from within the Finder in response to events, for ex-
ample opening a folder or emptying the trash.

6.2 Publishing Workflow

Automation of publishing workflows is a good illustration
of AppleScript and scriptable applications. Consider the au-
tomation of a catalog publishing system. An office-products
company keeps all its product information in a FileMaker
ProTM database that includes descriptions, prices, special of-
fer information, and a product code. The product code iden-
tifies a picture of the product in a KudosTM image database.
The final catalog is a QuarkXPressTM document that is ready
for printing. Previously, the catalog was produced manually,
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a task that took a team of twenty up to a month for a single
catalog.

An AppleScript script automates the entire process. The
script reads the price and descriptive text from the FileMaker
Pro database and inserts it into appropriate QuarkXPress
fields. The script applies special formatting: it deletes the
decimal point in the prices and superscripts the cents (e.g.
3499). To make the text fit precisely in the width of the en-
closing box, the script computes a fractional expansion fac-
tor for the text by dividing the width of the box by the width
of the text (this task was previously done with a calculator).
It adjusts colors and sets the first line of the description in
boldface type. Finally, it adds special markers like “Buy 2
get 1 free” and “Sale price $1799” where specified by the
database.

Once this process is automated, one person can produce
the entire catalog in under a day, a tiny fraction of the time
taken by the manual process. It also reduced errors during
copying and formatting. Of course, creating and maintaining
the scripts takes time, but the overall time is significantly
reduced over the long run.

6.3 Scripting Tools

AppleScript included a simple and elegant script editor cre-
ated by Jens Alfke, who had graduated from Caltech and
worked with Kurt Piersol at Xerox Parc on Smallktalk-80
applications. Jens was one of the key developers on the Ap-
pleScript team; he focused on tools, consistency of the APIs
and usability of the overall system.

Soon after AppleScript was released, more powerful
script development environments were created outside Ap-
ple. They addressed one of the major weaknesses of Apple-
Script: lack of support for debugging. One developer outside
Apple who took on this challenge is Cal Simone, who has
also been an unofficial evangelist for AppleScript since its
inception. Cal createdScripter, which allows users to single-
step through a script. It works by breaking a script up into
individual lines that are compiled and executed separately.
The enclosingtell statements are preserved around each
line as it is executed. Scripter also allows inspection of local
variables and execution of immediate commands within the
context of the suspended script.Script Debuggeruses a dif-
ferent technique: it adds a special Apple Event between each
line of a script. The Apple Event is caught by the debugger
and the processing of the script is suspended. The current
values of variables can then be inspected. To continue the
script, the debugger simply returns from the event.

AppleScript also enables creation of sophisticated inter-
face builders. The interface elements post messages when
a user interacts with them. The user arranges the elements
into windows, menus, and dialogs. Scripts may be attached
to any object in the interface to intercept the messages be-
ing sent by the interface elements and provide sophisticated
behavior and linking between the elements. Early applica-
tion builders included FrontmostTM , a window and dialog

builder, and AgentBuilderTM , which specialized in commu-
nication front-ends. Version 2.2 of HyperCard, released in
1992, included support for OSA, so that AppleScript or any
OSA language could be used in place of HyperTalk.

Two major application builders have emerged recently.
FaceSpan, originally released in 1994, has grown into a full-
featured application development tool. FaceSpan includes
an integrated script debugger. Apple released AppleScript
Studio in 2002 as part of its XCode development platform.
A complete application can be developed with a wide range
of standard user interface elements to which scripts can be
attached. AppleScript Studio won Macworld Best of Show
Awards at the 2001 Seybold Conference in San Francisco.

In 2005 Apple released Automator, a tool for creating
sequences of actions that define workflows. Automator se-
quences are not stored or executed as AppleScripts, but can
contain AppleScripts as primitive actions. The most inter-
esting thing about Automator is that each action has an input
and an output, much like a command in a Unix pipe. The
resulting model is quite intuitive and easy to use for simple
automation tasks.

Although Apple Events are normally handled by appli-
cations, it is also possible to installsystem event handlers.
When an Apple Event is delivered to an application, the ap-
plication may handle the event or indicate that it was not han-
dled. When an application does not handle an event, the Ap-
ple Event manager searches for a system event handler. Sys-
tem event handlers are packaged inscript extensions(also
known as OSAX) and are installed on the system via Script-
ing Additions that are loaded when the system starts up.

6.4 Scriptable Applications

Eventually, a wide range of scriptable applications became
available: there are currently 160 scriptable applications
listed on the Apple web site and the AppleScript source-
book [8]. Every kind of application is present, including
word processors, databases, file compression utilities, and
development tools. Many of the most popular applications
are scriptable, including Microsoft Office, Adobe Photo-
shop, Quark Expression, FileMaker, and Illustrator. In ad-
dition, most components of the Mac OS are scriptable,
including the Finder, QuickTime Player, Address Book,
iTunes, Mail, Safari Browser, AppleWorks, DVD Player,
Help Viewer, iCal, iChat, iSync, iPhoto, and control panels.

Other systems also benefitted from the infrastructure cre-
ated by AppleScript. The Macintosh AVTM speech recogni-
tion system uses AppleScript, so any scriptable application
can be driven using speech.

7. Evolution
After version 1.1, the evolution of AppleScript was driven
primarily by changes in the Macintosh OS. Since Apple-
Script was first released, the operating system has undergone
two major shifts, first when Apple moved from the Motorola
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68000 to the PowerPC chip, and then when it moved from
the Classic Macintosh OS to the Unix-based OS X. Few
changes were made to the language itself, while scriptable
applications and operating system components experienced
rapid expansion and evolution. A detailed history with dis-
cussion of new features, bugs, and fixes can be found in the
AppleScript Sourcebook [8], which we summarize here.

The first upgrade to AppleScript, version 1.1.2, was cre-
ated for Macintosh OS 8.0, introduced in July 1997. De-
spite the rigorous source code configuration process (see
Section 5), Apple could not figure out how to compile the
system and contracted with Warren Harris to help with the
job. A number of bugs were fixed and some small enhance-
ments were made to conform to Macintosh OS 8.0 standards.
At the same time several system applications and extensions
were changed in ways that could break old scripts. The most
important improvement was a new scriptable Finder, which
eliminated the need for a Finder scripting extension.

In 1997 AppleScript was at the top of the list of features
to eliminate in order to save money. Cal Simone, mentioned
in Section 6.3, successfully rallied customers to rescue Ap-
pleScript.

In October 1998 Apple released AppleScript 1.3 with
UNICODE support recompiled as a native PowerPC exten-
sion; however, the Apple Events Manager was still emulated
as Motorola 68000 code. The dialect feature was no longer
supported; English became the single standard dialect. This
version came much closer to realizing the vision of uni-
form access to all system resources from scripts. At least
30 different system components, including File Sharing, Ap-
ple Video Player and Users & Groups, were now scriptable.
New scriptable applications appeared as well, including Mi-
crosoft Internet Explorer and Outlook Express.

The PowerPC version of AppleScript received an Eddy
Award from MacWorld as “Technology of the Year” for
1998 and was also demonstrated in Steve Jobs’ Seybold
1998 address. In 2006, MacWorld placed AppleScript as
#17 on its list of the 30 most significant Mac products ever.
AppleScript was a long-term investment in fundamental in-
frastructure that took many years to pay dividends.

The most significant language changes involved thetell
statement. For example, themachine class used to identify
remote applications was extended to accept URLs (see Sec-
tion 3.2), allowing AppleScript control of remote applica-
tions via TCP/IP.

When Mac OS X was released in March 2001, it included
AppleScript 1.6. In porting applications and system compo-
nents to OS X, Apple sometimes sacrificed scripting support.
As a result, there was a significant reduction in the number of
scriptable applications after the release of OS X. Full script-
ability is being restored slowly in later releases.

In October 2006, Google reported an estimated 8,570,000
hits for the word “AppleScript”.

8. Evaluation
AppleScript was developed by a small group with a short
schedule, a tight budget and a big job. There was neither
time nor money to fully research design choices.

AppleScript and Apple Events introduced a new approach
to remote communication in high-latency environments [33].
Object references are symbolic paths, or queries, that iden-
tify one or more objects in an application. When a command
is applied to an object reference, both the command and the
object reference are sent (as an Apple Event containing an
object specifier) to the application hosting the target object.
The application interprets the object specifier and then per-
forms the action on the specified objects.

In summary, AppleScript views an application as a form
of object-oriented database. The application publishes a
specialized terminology containing verbs and nouns that
describe the logical structure and behavior of its objects.
Names in the terminology are composed using a standard
query language to create programs that are executed by the
remote application. The execution model does not involve
remote object references and proxies as in CORBA. Rather
than send each field access and method individually to the
remote application and creating proxies to represent inter-
mediate values, AppleScript sends the entire command to
the remote application for execution. From a pure object-
oriented viewpoint, the entire application is the only real ob-
ject; the “objects” within it are identified only by symbolic
references, or queries.

After completing AppleScript, I learned about COM
and was impressed with its approach to distributed object-
oriented programming. Its consistent use of interfaces en-
ables interoperability between different systems and lan-
guages. Although interface negotiation is complex, invoking
a method through an interface is highly optimized. This ap-
proach allows fine-grained objects that are tightly coupled
through shared binary interfaces. For many years I believed
that COM and CORBA would beat the AppleScript com-
munication model in the long run. However, recent develop-
ments have made me realize that this may not be the case.

AppleScript uses a large-granularity messaging model
that has many similarities to the web service standards that
began to emerge in 1999 [10]. Both are loosely coupled and
support large-granularity communication. Apple Events data
descriptors are similar to XML in that they describe arbi-
trary labeled tree structures without fixed semantics. Apple-
Script terminologies are similar to web service description
language (WSDL) files. It is perhaps not an accident that
Dave Winer, who worked extensively with AppleScript and
Apple Events, is also one of the original developers of web
service models. There may be useful lessons to be learned
for web services, given that AppleScript represents a sig-
nificant body of experience with large-granularity messag-
ing. One difference is that AppleScript includes a standard
query model for identifying remote objects. A similar ap-
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proach could be useful for web services. As I write in 2006,
I suspect that COM and CORBA will be overwhelmed by
web services, although the outcome is far from certain now.

AppleScript is also similar to traditional database inter-
faces like ODBC [38]. In AppleScript the query model is
integrated directly into the language, rather than being exe-
cuted as strings as in ODBC. A similar approach has been
adopted by Microsoft for describing queries in .NET lan-
guages [3].

User tests revealed that casual users don’t easily under-
stand the idea of references, or having multiple references to
the same value. It is easier to understand a model in which
values are copied or moved, rather than assigning references.
The feedback from user tests in early 1993 was too late in the
development cycle to address this issue with anything more
than a cosmetic change, to usecopy instead ofset for as-
signment.

Writing scriptable applications is difficult. Just as user
interface design requires judgment and training, creating a
good scripting interface requires a lot of knowledge and
careful design. It is too difficult for application developers
to create terminologies that work well in the naturalistic
grammar. They must pay careful attention to the linguistic
properties of the names they choose.

The experiment in designing a language that resembled
natural languages (English and Japanese) was not success-
ful. It was assumed that scripts should be presented in “nat-
ural language” so that average people could read and write
them. This lead to the invention of multi-token keywords
and the ability to disambiguate tokens without spaces for
Japanese Kanji. In the end the syntactic variations and flex-
ibility did more to confuse programmers than to help them
out. It is not clear whether it is easier for novice users to
work with a scripting language that resembles natural lan-
guage, with all its special cases and idiosyncrasies. The main
problem is that AppleScript only appears to be a natural
language: in fact, it is an artificial language, like any other
programming language. Recording was successful, but even
small changes to the script may introduce subtle syntactic er-
rors that baffle users. It is easy to read AppleScript, but quite
hard to write it.

When writing programs or scripts, users prefer a more
conventional programming language structure. Later ver-
sions of AppleScript dropped support for dialects. In hind-
sight, we believe that AppleScript should have adopted the
Professional Dialect that was developed but never shipped.

Finally, readability was no substitute for an effective se-
curity mechanism. Most people just run scripts—they don’t
read or write them.

9. Conclusion
AppleScript is widely used today and is a core technol-
ogy of Mac OS X. Many applications, including Quark Ex-
press, Microsoft Office, and FileMaker, support scripting.

Small scripts are used to automate repetitive tasks. Larger
scripts have been developed for database publishing, docu-
ment preparation, and even web applications.

There are many interesting lessons to be learned from
AppleScript. On a technical level, its model of pluggable
embedded scripting languages has become commonplace.
The communication mechanism of Apple Events, which is
certainly inferior to RPC mechanisms for single-machine or
in-process interactions, may turn out to be a good model
for large-granularity communication models such as web
services. Many of the current problems in AppleScript can
be traced to the use of syntax based on natural language;
however, the ability to create pluggable dialects may provide
a solution in the future, by creating a new syntax based on
conventional programming languages.
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Abstract
We report on the birth and evolution of Lua and discuss how
it moved from a simple configuration language to a versatile,
widely used language that supports extensible semantics,
anonymous functions, full lexical scoping, proper tail calls,
and coroutines.

Categories and Subject Descriptors K.2 [HISTORY OF
COMPUTING]: Software; D.3 [PROGRAMMING LAN-
GUAGES]

1. Introduction
Lua is a scripting language born in 1993 at PUC-Rio, the
Pontifical Catholic University of Rio de Janeiro in Brazil.
Since then, Lua has evolved to become widely used in all
kinds of industrial applications, such as robotics, literate
programming, distributed business, image processing, exten-
sible text editors, Ethernet switches, bioinformatics, finite-
element packages, web development, and more [2]. In par-
ticular, Lua is one of the leading scripting languages in game
development.

Lua has gone far beyond our most optimistic expecta-
tions. Indeed, while almost all programming languages come
from North America and Western Europe (with the notable
exception of Ruby, from Japan) [4], Lua is the only language
created in a developing country to have achieved global rel-
evance.

From the start, Lua was designed to be simple, small,
portable, fast, and easily embedded into applications. These
design principles are still in force, and we believe that they
account for Lua’s success in industry. The main characteris-
tic of Lua, and a vivid expression of its simplicity, is that it
offers a single kind of data structure, the table, which is the
Lua term for an associative array [9]. Although most script-

ing languages offer associative arrays, in no other language
do associative arrays play such a central role. Lua tables
provide simple and efficient implementations for modules,
prototype-based objects, class-based objects, records, arrays,
sets, bags, lists, and many other data structures [28].

In this paper, we report on the birth and evolution of Lua.
We discuss how Lua moved from a simple configuration
language to a powerful (but still simple) language that sup-
ports extensible semantics, anonymous functions, full lexical
scoping, proper tail calls, and coroutines. In §2 we give an
overview of the main concepts in Lua, which we use in the
other sections to discuss how Lua has evolved. In §3 we re-
late the prehistory of Lua, that is, the setting that led to its
creation. In §4 we relate how Lua was born, what its original
design goals were, and what features its first version had. A
discussion of how and why Lua has evolved is given in §5.
A detailed discussion of the evolution of selected features
is given in §6. The paper ends in §7 with a retrospective of
the evolution of Lua and in §8 with a brief discussion of the
reasons for Lua’s success, especially in games.

2. Overview
In this section we give a brief overview of the Lua language
and introduce the concepts discussed in §5 and §6. For a
complete definition of Lua, see its reference manual [32].
For a detailed introduction to Lua, see Roberto’s book [28].
For concreteness, we shall describe Lua 5.1, which is the
current version at the time of this writing (April 2007), but
most of this section applies unchanged to previous versions.

Syntactically, Lua is reminiscent of Modula and uses
familiar keywords. To give a taste of Lua’s syntax, the code
below shows two implementations of the factorial function,
one recursive and another iterative. Anyone with a basic
knowledge of programming can probably understand these
examples without explanation.

function factorial(n) function factorial(n)

if n == 0 then local a = 1

return 1 for i = 1,n do

else a = a*i

return n*factorial(n-1) end

end return a

end end
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Semantically, Lua has many similarities with Scheme,
even though these similarities are not immediately clear be-
cause the two languages are syntactically very different. The
influence of Scheme on Lua has gradually increased during
Lua’s evolution: initially, Scheme was just a language in the
background, but later it became increasingly important as
a source of inspiration, especially with the introduction of
anonymous functions and full lexical scoping.

Like Scheme, Lua is dynamically typed: variables do not
have types; only values have types. As in Scheme, a variable
in Lua never contains a structured value, only a reference to
one. As in Scheme, a function name has no special status in
Lua: it is just a regular variable that happens to refer to a
function value. Actually, the syntax for function definition
‘function foo() · · · end’ used above is just syntactic
sugar for the assignment of an anonymous function to a
variable: ‘foo = function () · · · end’. Like Scheme, Lua
has first-class functions with lexical scoping. Actually, all
values in Lua are first-class values: they can be assigned
to global and local variables, stored in tables, passed as
arguments to functions, and returned from functions.

One important semantic difference between Lua and
Scheme — and probably the main distinguishing feature of
Lua — is that Lua offers tables as its sole data-structuring
mechanism. Lua tables are associative arrays [9], but with
some important features. Like all values in Lua, tables are
first-class values: they are not bound to specific variable
names, as they are in Awk and Perl. A table can have any
value as key and can store any value. Tables allow sim-
ple and efficient implementation of records (by using field
names as keys), sets (by using set elements as keys), generic
linked structures, and many other data structures. Moreover,
we can use a table to implement an array by using natural
numbers as indices. A careful implementation [31] ensures
that such a table uses the same amount of memory that an
array would (because it is represented internally as an actual
array) and performs better than arrays in similar languages,
as independent benchmarks show [1].

Lua offers an expressive syntax for creating tables in
the form of constructors. The simplest constructor is the
expression ‘{}’, which creates a new, empty table. There are
also constructors to create lists (or arrays), such as

{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

and to create records, such as

{lat= -22.90, long= -43.23, city= "Rio de Janeiro"}

These two forms can be freely mixed. Tables are indexed
using square brackets, as in ‘t[2]’, with ‘t.x’ as sugar for
‘t["x"]’.

The combination of table constructors and functions
turns Lua into a powerful general-purpose procedural data-
description language. For instance, a bibliographic database
in a format similar to the one used in BibTEX [34] can be
written as a series of table constructors such as this:

article{"spe96",

authors = {"Roberto Ierusalimschy",

"Luiz Henrique de Figueiredo",

"Waldemar Celes"},

title = "Lua: an Extensible Extension Language",

journal = "Software: Practice & Experience",

year = 1996,

}

Although such a database seems to be an inert data file,
it is actually a valid Lua program: when the database is
loaded into Lua, each item in it invokes a function, because
‘article{· · ·}’ is syntactic sugar for ‘article({· · ·})’,
that is, a function call with a table as its single argument.
It is in this sense that such files are called procedural data
files.

We say that Lua is an extensible extension language [30].
It is an extension language because it helps to extend ap-
plications through configuration, macros, and other end-user
customizations. Lua is designed to be embedded into a host
application so that users can control how the application be-
haves by writing Lua programs that access application ser-
vices and manipulate application data. It is extensible be-
cause it offers userdata values to hold application data and
extensible semantics mechanisms to manipulate these values
in natural ways. Lua is provided as a small core that can be
extended with user functions written in both Lua and C. In
particular, input and output, string manipulation, mathema-
tical functions, and interfaces to the operating system are all
provided as external libraries.

Other distinguishing features of Lua come from its im-
plementation:

Portability: Lua is easy to build because it is implemented
in strict ANSI C.1 It compiles out-of-the-box on most
platforms (Linux, Unix, Windows, Mac OS X, etc.), and
runs with at most a few small adjustments in virtually
all platforms we know of, including mobile devices (e.g.,
handheld computers and cell phones) and embedded mi-
croprocessors (e.g., ARM and Rabbit). To ensure porta-
bility, we strive for warning-free compilations under as
many compilers as possible.

Ease of embedding: Lua has been designed to be easily
embedded into applications. An important part of Lua is
a well-defined application programming interface (API)
that allows full communication between Lua code and
external code. In particular, it is easy to extend Lua by
exporting C functions from the host application. The API
allows Lua to interface not only with C and C++, but also
with other languages, such as Fortran, Java, Smalltalk,
Ada, C# (.Net), and even with other scripting languages
(e.g., Perl and Ruby).

1 Actually, Lua is implemented in “clean C”, that is, the intersection of C
and C++. Lua compiles unmodified as a C++ library.
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Small size: Adding Lua to an application does not bloat it.
The whole Lua distribution, including source code, doc-
umentation, and binaries for some platforms, has always
fit comfortably on a floppy disk. The tarball for Lua 5.1,
which contains source code, documentation, and exam-
ples, takes 208K compressed and 835K uncompressed.
The source contains around 17,000 lines of C. Under
Linux, the Lua interpreter built with all standard Lua li-
braries takes 143K. The corresponding numbers for most
other scripting languages are more than an order of mag-
nitude larger, partially because Lua is primarily meant to
be embedded into applications and so its official distri-
bution includes only a few libraries. Other scripting lan-
guages are meant to be used standalone and include many
libraries.

Efficiency: Independent benchmarks [1] show Lua to be
one of the fastest languages in the realm of interpreted
scripting languages. This allows application developers
to write a substantial fraction of the whole application
in Lua. For instance, over 40% of Adobe Lightroom is
written in Lua (that represents around 100,000 lines of
Lua code).

Although these are features of a specific implementation,
they are possible only due to the design of Lua. In particular,
Lua’s simplicity is a key factor in allowing a small, efficient
implementation [31].

3. Prehistory
Lua was born in 1993 inside Tecgraf, the Computer Graph-
ics Technology Group of PUC-Rio in Brazil. The cre-
ators of Lua were Roberto Ierusalimschy, Luiz Henrique
de Figueiredo, and Waldemar Celes. Roberto was an assis-
tant professor at the Department of Computer Science of
PUC-Rio. Luiz Henrique was a post-doctoral fellow, first at
IMPA and later at Tecgraf. Waldemar was a Ph.D. student in
Computer Science at PUC-Rio. All three were members of
Tecgraf, working on different projects there before getting
together to work on Lua. They had different, but related,
backgrounds: Roberto was a computer scientist interested
mainly in programming languages; Luiz Henrique was a
mathematician interested in software tools and computer
graphics; Waldemar was an engineer interested in appli-
cations of computer graphics. (In 2001, Waldemar joined
Roberto as faculty at PUC-Rio and Luiz Henrique became a
researcher at IMPA.)

Tecgraf is a large research and development laboratory
with several industrial partners. During the first ten years
after its creation in May 1987, Tecgraf focused mainly on
building basic software tools to enable it to produce the inter-
active graphical programs needed by its clients. Accordingly,
the first Tecgraf products were drivers for graphical termi-
nals, plotters, and printers; graphical libraries; and graphical
interface toolkits. From 1977 until 1992, Brazil had a pol-

icy of strong trade barriers (called a “market reserve”) for
computer hardware and software motivated by a national-
istic feeling that Brazil could and should produce its own
hardware and software. In that atmosphere, Tecgraf’s clients
could not afford, either politically or financially, to buy cus-
tomized software from abroad: by the market reserve rules,
they would have to go through a complicated bureaucratic
process to prove that their needs could not be met by Brazil-
ian companies. Added to the natural geographical isolation
of Brazil from other research and development centers, those
reasons led Tecgraf to implement from scratch the basic
tools it needed.

One of Tecgraf’s largest partners was (and still is) Petro-
bras, the Brazilian oil company. Several Tecgraf products
were interactive graphical programs for engineering appli-
cations at Petrobras. By 1993, Tecgraf had developed little
languages for two of those applications: a data-entry appli-
cation and a configurable report generator for lithology pro-
files. These languages, called DEL and SOL, were the an-
cestors of Lua. We describe them briefly here to show where
Lua came from.

3.1 DEL
The engineers at Petrobras needed to prepare input data files
for numerical simulators several times a day. This process
was boring and error-prone because the simulation programs
were legacy code that needed strictly formatted input files —
typically bare columns of numbers, with no indication of
what each number meant, a format inherited from the days
of punched cards. In early 1992, Petrobras asked Tecgraf to
create at least a dozen graphical front-ends for this kind of
data entry. The numbers would be input interactively, just
by clicking on the relevant parts of a diagram describing
the simulation — a much easier and more meaningful task
for the engineers than editing columns of numbers. The
data file, in the correct format for the simulator, would be
generated automatically. Besides simplifying the creation of
data files, such front-ends provided the opportunity to add
data validation and also to compute derived quantities from
the input data, thus reducing the amount of data needed from
the user and increasing the reliability of the whole process.

To simplify the development of those front-ends, a team
led by Luiz Henrique de Figueiredo and Luiz Cristovão
Gomes Coelho decided to code all front-ends in a uni-
form way, and so designed DEL (“data-entry language”),
a simple declarative language to describe each data-entry
task [17]. DEL was what is now called a domain-specific lan-
guage [43], but was then simply called a little language [10].

A typical DEL program defined several “entities”. Each
entity could have several fields, which were named and
typed. For implementing data validation, DEL had predi-
cate statements that imposed restrictions on the values of
entities. DEL also included statements to specify how data
was to be input and output. An entity in DEL was essen-
tially what is called a structure or record in conventional
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programming languages. The important difference — and
what made DEL suitable for the data-entry problem — is that
entity names also appeared in a separate graphics metafile,
which contained the associated diagram over which the en-
gineer did the data entry. A single interactive graphical inter-
preter called ED (an acronym for ‘entrada de dados’, which
means ‘data entry’ in Portuguese) was written to interpret
DEL programs. All those data-entry front-ends requested
by Petrobras were implemented as DEL programs that ran
under this single graphical application.

DEL was a success both among the developers at Tec-
graf and among the users at Petrobras. At Tecgraf, DEL
simplified the development of those front-ends, as originally
intended. At Petrobras, DEL allowed users to tailor data-
entry applications to their needs. Soon users began to de-
mand more power from DEL, such as boolean expressions
for controlling whether an entity was active for input or not,
and DEL became heavier. When users began to ask for con-
trol flow, with conditionals and loops, it was clear that ED
needed a real programming language instead of DEL.

3.2 SOL
At about the same time that DEL was created, a team lead by
Roberto Ierusalimschy and Waldemar Celes started working
on PGM, a configurable report generator for lithology pro-
files, also for Petrobras. The reports generated by PGM con-
sisted of several columns (called “tracks”) and were highly
configurable: users could create and position the tracks, and
could choose colors, fonts, and labels; each track could have
a grid, which also had its set of options (log/linear, verti-
cal and horizontal ticks, etc.); each curve had its own scale,
which had to be changed automatically in case of overflow;
etc. All this configuration was to be done by the end-users,
typically geologists and engineers from Petrobras working
in oil plants and off-shore platforms. The configurations had
to be stored in files, for reuse. The team decided that the best
way to configure PGM was through a specialized description
language called SOL, an acronym for Simple Object Lan-
guage.

Because PGM had to deal with many different objects,
each with many different attributes, the SOL team decided
not to fix those objects and attributes into the language. In-
stead, SOL allowed type declarations, as in the code below:

type @track{ x:number, y:number=23, id=0 }

type @line{ t:@track=@track{x=8}, z:number* }

T = @track{ y=9, x=10, id="1992-34" }

L = @line{ t=@track{x=T.y, y=T.x}, z=[2,3,4] }

This code defines two types, track and line, and creates
two objects, a track T and a line L. The track type contains
two numeric attributes, x and y, and an untyped attribute, id;
attributes y and id have default values. The line type con-
tains a track t and a list of numbers z. The track t has as
default value a track with x=8, y=23, and id=0. The syntax

of SOL was strongly influenced by BibTEX [34] and UIL, a
language for describing user interfaces in Motif [39].

The main task of the SOL interpreter was to read a report
description, check whether the given objects and attributes
were correctly typed, and then present the information to the
main program (PGM). To allow the communication between
the main program and the SOL interpreter, the latter was
implemented as a C library that was linked to the main
program. The main program could access all configuration
information through an API in this library. In particular, the
main program could register a callback function for each
type, which the SOL interpreter would call to create an
object of that type.

4. Birth
The SOL team finished an initial implementation of SOL
in March 1993, but they never delivered it. PGM would
soon require support for procedural programming to allow
the creation of more sophisticated layouts, and SOL would
have to be extended. At the same time, as mentioned before,
ED users had requested more power from DEL. ED also
needed further descriptive facilities for programming its user
interface. Around mid-1993, Roberto, Luiz Henrique, and
Waldemar got together to discuss DEL and SOL, and con-
cluded that the two languages could be replaced by a single,
more powerful language, which they decided to design and
implement. Thus the Lua team was born; it has not changed
since.

Given the requirements of ED and PGM, we decided that
we needed a real programming language, with assignments,
control structures, subroutines, etc. The language should
also offer data-description facilities, such as those offered
by SOL. Moreover, because many potential users of the
language were not professional programmers, the language
should avoid cryptic syntax and semantics. The implemen-
tation of the new language should be highly portable, be-
cause Tecgraf’s clients had a very diverse collection of com-
puter platforms. Finally, since we expected that other Tec-
graf products would also need to embed a scripting lan-
guage, the new language should follow the example of SOL
and be provided as a library with a C API.

At that point, we could have adopted an existing scripting
language instead of creating a new one. In 1993, the only real
contender was Tcl [40], which had been explicitly designed
to be embedded into applications. However, Tcl had unfa-
miliar syntax, did not offer good support for data description,
and ran only on Unix platforms. We did not consider LISP
or Scheme because of their unfriendly syntax. Python was
still in its infancy. In the free, do-it-yourself atmosphere that
then reigned in Tecgraf, it was quite natural that we should
try to develop our own scripting language. So, we started
working on a new language that we hoped would be simpler
to use than existing languages. Our original design decisions
were: keep the language simple and small, and keep the im-
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plementation simple and portable. Because the new language
was partially inspired by SOL (sun in Portuguese), a friend
at Tecgraf (Carlos Henrique Levy) suggested the name ‘Lua’
(moon in Portuguese), and Lua was born. (DEL did not in-
fluence Lua as a language. The main influence of DEL on
the birth of Lua was rather the realization that large parts
of complex applications could be written using embeddable
scripting languages.)

We wanted a light full language with data-description fa-
cilities. So we took SOL’s syntax for record and list con-
struction (but not type declaration), and unified their imple-
mentation using tables: records use strings (the field names)
as indices; lists use natural numbers. An assignment such as

T = @track{ y=9, x=10, id="1992-34" }

which was valid in SOL, remained valid in Lua, but with
a different meaning: it created an object (that is, a table)
with the given fields, and then called the function track on
this table to validate the object or perhaps to provide default
values to some of its fields. The final value of the expression
was that table.

Except for its procedural data-description constructs, Lua
introduced no new concepts: Lua was created for production
use, not as an academic language designed to support re-
search in programming languages. So, we simply borrowed
(even unconsciously) things that we had seen or read about
in other languages. We did not reread old papers to remem-
ber details of existing languages. We just started from what
we knew about other languages and reshaped that according
to our tastes and needs.

We quickly settled on a small set of control structures,
with syntax mostly borrowed from Modula (while, if, and
repeat until). From CLU we took multiple assignment
and multiple returns from function calls. We regarded mul-
tiple returns as a simpler alternative to reference parameters
used in Pascal and Modula and to in-out parameters used in
Ada; we also wanted to avoid explicit pointers (used in C).
From C++ we took the neat idea of allowing a local vari-
able to be declared only where we need it. From SNOBOL
and Awk we took associative arrays, which we called tables;
however, tables were to be objects in Lua, not attached to
variables as in Awk.

One of the few (and rather minor) innovations in Lua was
the syntax for string concatenation. The natural ‘+’ operator
would be ambiguous, because we wanted automatic coer-
cion of strings to numbers in arithmetic operations. So, we
invented the syntax ‘..’ (two dots) for string concatenation.

A polemic point was the use of semicolons. We thought
that requiring semicolons could be a little confusing for en-
gineers with a Fortran background, but not allowing them
could confuse those with a C or Pascal background. In typi-
cal committee fashion, we settled on optional semicolons.

Initially, Lua had seven types: numbers (implemented
solely as reals), strings, tables, nil, userdata (pointers to
C objects), Lua functions, and C functions. To keep the lan-
guage small, we did not initially include a boolean type:
as in Lisp, nil represented false and any other value repre-
sented true. Over 13 years of continuous evolution, the only
changes in Lua types were the unification of Lua functions
and C functions into a single function type in Lua 3.0 (1997)
and the introduction of booleans and threads in Lua 5.0
(2003) (see §6.1). For simplicity, we chose to use dynamic
typing instead of static typing. For applications that needed
type checking, we provided basic reflective facilities, such
as run-time type information and traversal of the global en-
vironment, as built-in functions (see §6.11).

By July 1993, Waldemar had finished the first implemen-
tation of Lua as a course project supervised by Roberto.
The implementation followed a tenet that is now central to
Extreme Programming: “the simplest thing that could pos-
sibly work” [7]. The lexical scanner was written with lex
and the parser with yacc, the classic Unix tools for imple-
menting languages. The parser translated Lua programs into
instructions for a stack-based virtual machine, which were
then executed by a simple interpreter. The C API made it
easy to add new functions to Lua, and so this first version
provided only a tiny library of five built-in functions (next,
nextvar, print, tonumber, type) and three small exter-
nal libraries (input and output, mathematical functions, and
string manipulation).

Despite this simple implementation — or possibly be-
cause of it — Lua surpassed our expectations. Both PGM
and ED used Lua successfully (PGM is still in use today;
ED was replaced by EDG [12], which was mostly written
in Lua). Lua was an immediate success in Tecgraf and soon
other projects started using it. This initial use of Lua at Tec-
graf was reported in a brief talk at the VII Brazilian Sympo-
sium on Software Engineering, in October 1993 [29].

The remainder of this paper relates our journey in im-
proving Lua.

5. History
Figure 1 shows a timeline of the releases of Lua. As can be
seen, the time interval between versions has been gradually
increasing since Lua 3.0. This reflects our perception that

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1

Figure 1. The releases of Lua.
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1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1
constructors • • • • • • • • • • • •
garbage collection • • • • • • • • • • • •
extensible semantics ◦ ◦ • • • • • • • • • •
support for OOP ◦ ◦ • • • • • • • • • •
long strings ◦ ◦ ◦ • • • • • • • • •
debug API ◦ ◦ ◦ • • • • • • • • •
external compiler ◦ ◦ ◦ ◦ • • • • • • • •
vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • •
pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • •
conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦
anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • •
debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1
libraries 4 4 4 4 4 4 4 4 5 6 8 9
built-in functions 5 7 11 11 13 14 25 27 35 0 0 0
API functions 30 30 30 30 32 32 33 47 41 60 76 79
vm type (stack × register) S S S S S S S S S S R R
vm instructions 64 65 69 67 67 68 69 128 64 49 35 38
keywords 16 16 16 16 16 16 16 16 16 18 21 21
other tokens 21 21 23 23 23 23 24 25 25 25 24 26

Table 1. The evolution of features in Lua.

Lua was becoming a mature product and needed stability for
the benefit of its growing community. Nevertheless, the need
for stability has not hindered progress. Major new versions
of Lua, such as Lua 4.0 and Lua 5.0, have been released since
then.

The long times between versions also reflects our release
model. Unlike other open-source projects, our alpha versions
are quite stable and beta versions are essentially final, except
for uncovered bugs.2 This release model has proved to be
good for Lua stability. Several products have been shipped
with alpha or beta versions of Lua and worked fine. How-
ever, this release model did not give users much chance to
experiment with new versions; it also deprived us of timely
feedback on proposed changes. So, during the development
of Lua 5.0 we started to release “work” versions, which are
just snapshots of the current development of Lua. This move
brought our current release model closer to the “Release
Early, Release Often” motto of the open-source community.

2 The number of bugs found after final versions were released has been
consistently small: only 10 in Lua 4.0, 17 in Lua 5.0, and 10 in Lua 5.1
so far, none of them critical bugs.

In the remainder of this section we discuss some mile-
stones in the evolution of Lua. Details on the evolution of
several specific features are given in §6. Table 1 summarizes
this evolution. It also contains statistics about the size of Lua,
which we now discuss briefly.

The number of standard libraries has been kept small be-
cause we expect that most Lua functions will be provided by
the host application or by third-party libraries. Until Lua 3.1,
the only standard libraries were for input and output, string
manipulation, mathematical functions, and a special library
of built-in functions, which did not use the C API but directly
accessed the internal data structures. Since then, we have
added libraries for debugging (Lua 3.2), interfacing with the
operating system (Lua 4.0), tables and coroutines (Lua 5.0),
and modules (Lua 5.1).

The size of C API changed significantly when it was re-
designed in Lua 4.0. Since then, it has moved slowly toward
completeness. As a consequence, there are no longer any
built-in functions: all standard libraries are implemented on
top the C API, without accessing the internals of Lua.

The virtual machine, which executes Lua programs, was
stack-based until Lua 4.0. In Lua 3.1 we added variants
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for many instructions, to try to improve performance. How-
ever, this turned out to be too complicated for little per-
formance gain and we removed those variants in Lua 3.2.
Since Lua 5.0, the virtual machine is register-based [31].
This change gave the code generator more opportunities for
optimization and reduced the number of instructions of typi-
cal Lua programs. (Instruction dispatch is a significant frac-
tion of the time spent in the virtual machine [13].) As far
as we know, the virtual machine of Lua 5.0 was the first
register-based virtual machine to have wide use.

5.1 Lua 1
The initial implementation of Lua was a success in Tec-
graf and Lua attracted users from other Tecgraf projects.
New users create new demands. Several users wanted to use
Lua as the support language for graphics metafiles, which
abounded in Tecgraf. Compared with other programmable
metafiles, Lua metafiles have the advantage of being based
on a truly procedural language: it is natural to model com-
plex objects by combining procedural code fragments with
declarative statements. In contrast, for instance, VRML [8]
must use another language (Javascript) to model procedural
objects.

The use of Lua for this kind of data description, especially
large graphics metafiles, posed challenges that were unusual
for typical scripting languages. For instance, it was not un-
common for a diagram used in the data-entry program ED
to have several thousand parts described by a single Lua ta-
ble constructor with several thousand items. That meant that
Lua had to cope with huge programs and huge expressions.
Because Lua precompiled all programs to bytecode for a vir-
tual machine on the fly, it also meant that the Lua compiler
had to run fast, even for large programs.

By replacing the lex-generated scanner used in the first
version by a hand-written one, we almost doubled the speed
of the Lua compiler on typical metafiles. We also modified
Lua’s virtual machine to handle a long constructor by adding
key-value pairs to the table in batches, not individually as in
the original virtual machine. These changes solved the initial
demands for better performance. Since then, we have always
tried to reduce the time spent on precompilation.

In July 1994, we released a new version of Lua with those
optimizations. This release coincided with the publication of
the first paper describing Lua, its design, and its implementa-
tion [15]. We named the new version ‘Lua 1.1’. The previous
version, which was never publicly released, was then named
‘Lua 1.0’. (A snapshot of Lua 1.0 taken in July 1993 was
released in October 2003 to celebrate 10 years of Lua.)

Lua 1.1 was publicly released as software available in
source code by ftp, before the open-source movement got its
current momentum. Lua 1.1 had a restrictive user license: it
was freely available for academic purposes but commercial
uses had to be negotiated. That part of the license did not
work: although we had a few initial contacts, no commer-
cial uses were ever negotiated. This and the fact that other

scripting languages (e.g, Tcl) were free made us realize that
restrictions on commercial uses might even discourage aca-
demic uses, since some academic projects plan to go to mar-
ket eventually. So, when the time came to release the next
version (Lua 2.1), we chose to release it as unrestricted free
software. Naively, we wrote our own license text as a slight
collage and rewording of existing licenses. We thought it
was clear that the new license was quite liberal. Later, how-
ever, with the spread of open-source licenses, our license text
became a source of noise among some users; in particular,
it was not clear whether our license was compatible with
GPL. In May 2002, after a long discussion in the mailing
list, we decided to release future versions of Lua (starting
with Lua 5.0) under the well-known and very liberal MIT
license [3]. In July 2002, the Free Software Foundation con-
firmed that our previous license was compatible with GPL,
but we were already committed to adopting the MIT license.
Questions about our license have all but vanished since then.

5.2 Lua 2
Despite all the hype surrounding object-oriented program-
ming (which in the early 1990s had reached its peak) and
the consequent user pressure to add object-oriented features
to Lua, we did not want to turn Lua into an object-oriented
language because we did not want to fix a programming
paradigm for Lua. In particular, we did not think that Lua
needed objects and classes as primitive language concepts,
especially because they could be implemented with tables if
needed (a table can hold both object data and methods, since
functions are first-class values). Despite recurring user pres-
sure, we have not changed our minds to this day: Lua does
not force any object or class model onto the programmer.
Several object models have been proposed and implemented
by users; it is a frequent topic of discussion in our mailing
list. We think this is healthy.

On the other hand, we wanted to allow object-oriented
programming with Lua. Instead of fixing a model, we de-
cided to provide flexible mechanisms that would allow the
programmer to build whatever model was suitable to the ap-
plication. Lua 2.1, released in February 1995, marked the in-
troduction of these extensible semantics mechanisms, which
have greatly increased the expressiveness of Lua. Extensible
semantics has become a hallmark of Lua.

One of the goals of extensible semantics was to allow ta-
bles to be used as a basis for objects and classes. For that,
we needed to implement inheritance for tables. Another goal
was to turn userdata into natural proxies for application data,
not merely handles meant to be used solely as arguments to
functions. We wanted to be able to index userdata as if they
were tables and to call methods on them. This would allow
Lua to fulfill one of its main design goals more naturally:
to extend applications by providing scriptable access to ap-
plication services and data. Instead of adding mechanisms
to support all these features directly in the language, we de-
cided that it would be conceptually simpler to define a more
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general fallback mechanism to let the programmer intervene
whenever Lua did not know how to proceed.

We introduced fallbacks in Lua 2.1 and defined them for
the following operations: table indexing, arithmetic oper-
ations, string concatenation, order comparisons, and func-
tion calls.3 When one of these operations was applied to
the “wrong” kind of values, the corresponding fallback
was called, allowing the programmer to determine how
Lua would proceed. The table indexing fallbacks allowed
userdata (and other values) to behave as tables, which was
one of our motivations. We also defined a fallback to be
called when a key was absent from a table, so that we
could support many forms of inheritance (through dele-
gation). To complete the support for object-oriented pro-
gramming, we added two pieces of syntactic sugar: method
definitions of the form ‘function a:foo(· · ·)’ as sugar
for ‘function a.foo(self,· · ·)’ and method calls of the
form ‘a:foo(· · ·)’ as sugar for ‘a.foo(a,· · ·)’. In §6.8 we
discuss fallbacks in detail and how they evolved into their
later incarnations: tag methods and metamethods.

Since Lua 1.0, we have provided introspective functions
for values: type, which queries the type of a Lua value;
next, which traverses a table; and nextvar, which traverses
the global environment. (As mentioned in §4, this was par-
tially motivated by the need to implement SOL-like type
checking.) In response to user pressure for full debug fa-
cilities, Lua 2.2 (November 1995) introduced a debug API
to provide information about running functions. This API
gave users the means to write in C their own introspective
tools, such as debuggers and profilers. The debug API was
initially quite simple: it allowed access to the Lua call stack,
to the currently executing line, and provided a function to
find the name of a variable holding a given value. Following
the M.Sc. work of Tomás Gorham [22], the debug API was
improved in Lua 2.4 (May 1996) by functions to access local
variables and hooks to be called at line changes and function
calls.

With the widespread use of Lua at Tecgraf, many large
graphics metafiles were being written in Lua as the output
of graphical editors. Loading such metafiles was taking in-
creasingly longer as they became larger and more complex.4

Since its first version, Lua precompiled all programs to byte-
code just before running them. The load time of a large pro-
gram could be substantially reduced by saving this bytecode
to a file. This would be especially relevant for procedural
data files such as graphics metafiles. So, in Lua 2.4, we in-
troduced an external compiler, called luac, which precom-
piled a Lua program and saved the generated bytecode to a
binary file. (Our first paper about Lua [15] had already an-

3 We also introduced fallbacks for handling fatal errors and for monitoring
garbage collection, even though they were not part of extensible semantics.
4 Surprisingly, a substantial fraction of the load time was taken in the lexer
for converting real numbers from text form to floating-point representation.
Real numbers abound in graphics metafiles.

ticipated the possibility of an external compiler.) The format
of this file was chosen to be easily loaded and reasonably
portable. With luac, programmers could avoid parsing and
code generation at run time, which in the early days were
costly. Besides faster loading, luac also allowed off-line
syntax checking and protection from casual user changes.
Many products (e.g., The Sims and Adobe Lightroom) dis-
tribute Lua scripts in precompiled form.

During the implementation of luac, we started to restruc-
ture Lua’s core into clearly separated modules. As a conse-
quence, it is now quite easy to remove the parsing modules
(lexer, parser, and code generator), which currently repre-
sent 35% of the core code, leaving just the module that loads
precompiled Lua programs, which is merely 3% of the core
code. This reduction can be significant when embedding Lua
in small devices such as mobile devices, robots and sensors.5

Since its first version, Lua has included a library for
string-processing. The facilities provided by this library
were minimal until Lua 2.4. However, as Lua matured, it
became desirable to do heavier text processing in Lua. We
thought that a natural addition to Lua would be pattern
matching, in the tradition of Snobol, Icon, Awk, and Perl.
However, we did not want to include a third-party pattern-
matching engine in Lua because such engines tend to be very
large; we also wanted to avoid copyright issues that could be
raised by including third-party code in Lua.

As a student project supervised by Roberto in the second
semester of 1995, Milton Jonathan, Pedro Miller
Rabinovitch, Pedro Willemsens, and Vinicius Almendra pro-
duced a pattern-matching library for Lua. Experience with
that design led us to write our own pattern-matching en-
gine for Lua, which we added to Lua 2.5 (November 1996)
in two functions: strfind (which originally only found
plain substrings) and the new gsub function (a name taken
from Awk). The gsub function globally replaced substrings
matching a given pattern in a larger string. It accepted either
a replacement string or a function that was called each time
a match was found and was intended to return the replace-
ment string for that match. (That was an innovation at the
time.) Aiming at a small implementation, we did not include
full regular expressions. Instead, the patterns understood by
our engine were based on character classes, repetitions, and
captures (but not alternation or grouping). Despite its sim-
plicity, this kind of pattern matching is quite powerful and
was an important addition to Lua.

That year was a turning point in the history of Lua be-
cause it gained international exposure. In June 1996 we pub-
lished a paper about Lua in Software: Practice & Experi-
ence [30] that brought external attention to Lua, at least in

5 Crazy Ivan, a robot that won RoboCup in 2000 and 2001 in Denmark,
had a “brain” implemented in Lua. It ran directly on a Motorola Coldfire
5206e processor without any operating system (in other words, Lua was the
operating system). Lua was stored on a system ROM and loaded programs
at startup from the serial port.
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academic circles.6 In December 1996, shortly after Lua 2.5
was released, the magazine Dr. Dobb’s Journal featured
an article about Lua [16]. Dr. Dobb’s Journal is a popular
publication aimed directly at programmers, and that article
brought Lua to the attention of the software industry. Among
several messages that we received right after that publication
was one sent in January 1997 by Bret Mogilefsky, who was
the lead programmer of Grim Fandango, an adventure game
then under development by LucasArts. Bret told us that he
had read about Lua in Dr. Dobb’s and that they planned to re-
place their home-brewed scripting language with Lua. Grim
Fandango was released in October 1998 and in May 1999
Bret told us that “a tremendous amount of the game was
written in Lua” (his emphasis) [38].7 Around that time, Bret
attended a roundtable about game scripting at the Game De-
velopers’ Conference (GDC, the main event for game pro-
grammers) and at the end he related his experience with the
successful use of Lua in Grim Fandango. We know of several
developers who first learned about Lua at that event. After
that, Lua spread by word of mouth among game developers
to become a definitely marketable skill in the game industry
(see §8).

As a consequence of Lua’s international exposure, the
number of messages sent to us asking questions about Lua
increased substantially. To handle this traffic more effi-
ciently, and also to start building a Lua community, so that
other people could answer Lua questions, in February 1997
we created a mailing list for discussing Lua. Over 38,000
messages have been posted to this list since then. The use
of Lua in many popular games has attracted many people to
the list, which now has over 1200 subscribers. We have been
fortunate that the Lua list is very friendly and at the same
time very technical. The list has become the focal point of
the Lua community and has been a source of motivation
for improving Lua. All important events occur first in the
mailing list: release announcements, feature requests, bug
reports, etc.

The creation of a comp.lang.lua Usenet newsgroup
was discussed twice in the list over all these years, in
April 1998 and in July 1999. The conclusion both times
was that the traffic in the list did not warrant the creation
of a newsgroup. Moreover, most people preferred a mailing
list. The creation of a newsgroup seems no longer relevant
because there are several web interfaces for reading and
searching the complete list archives.

6 In November 1997, that article won the First Prize (technological cate-
gory) in the II Compaq Award for Research and Development in Computer
Science, a joint venture of Compaq Computer in Brazil, the Brazilian Min-
istry of Science and Technology, and the Brazilian Academy of Sciences.
7 Grim Fandango mentioned Lua and PUC-Rio in its final credits. Several
people at PUC-Rio first learned about Lua from that credit screen, and
were surprised to learn that Brazilian software was part of a hit game. It
has always bothered us that Lua is widely known abroad but has remained
relatively unknown in Brazil until quite recently.

5.3 Lua 3
The fallback mechanism introduced in Lua 2.1 to support
extensible semantics worked quite well but it was a global
mechanism: there was only one hook for each event. This
made it difficult to share or reuse code because modules that
defined fallbacks for the same event could not co-exist eas-
ily. Following a suggestion by Stephan Herrmann in Decem-
ber 1996, in Lua 3.0 (July 1997) we solved the fallback clash
problem by replacing fallbacks with tag methods: the hooks
were attached to pairs (event, tag) instead of just to events.
Tags had been introduced in Lua 2.1 as integer labels that
could be attached to userdata (see §6.10); the intention was
that C objects of the same type would be represented in Lua
by userdata having the same tag. (However, Lua did not force
any interpretation on tags.) In Lua 3.0 we extended tags to
all values to support tag methods. The evolution of fallbacks
is discussed in §6.8.

Lua 3.1 (July 1998) brought functional programming to
Lua by introducing anonymous functions and function clo-
sures via “upvalues”. (Full lexical scoping had to wait until
Lua 5.0; see §6.6.) The introduction of closures was mainly
motivated by the existence of higher-order functions, such as
gsub, which took functions as arguments. During the work
on Lua 3.1, there were discussions in the mailing list about
multithreading and cooperative multitasking, mainly moti-
vated by the changes Bret Mogilefsky had made to Lua 2.5
and 3.1 alpha for Grim Fandango. No conclusions were
reached, but the topic remained popular. Cooperative multi-
tasking in Lua was finally provided in Lua 5.0 (April 2003);
see §6.7.

The C API remained largely unchanged from Lua 1.0
to Lua 3.2; it worked over an implicit Lua state. However,
newer applications, such as web services, needed multiple
states. To mitigate this problem, Lua 3.1 introduced multiple
independent Lua states that could be switched at run time.
A fully reentrant API would have to wait until Lua 4.0. In
the meantime, two unofficial versions of Lua 3.2 with ex-
plicit Lua states appeared: one written in 1998 by Roberto
Ierusalimschy and Anna Hester based on Lua 3.2 alpha for
CGILua [26], and one written in 1999 by Erik Hougaard
based on Lua 3.2 final. Erik’s version was publicly avail-
able and was used in the Crazy Ivan robot. The version for
CGILua was released only as part of the CGILua distribu-
tion; it never existed as an independent package.

Lua 3.2 (July 1999) itself was mainly a maintenance re-
lease; it brought no novelties except for a debug library that
allowed tools to be written in Lua instead of C. Neverthe-
less, Lua was quite stable by then and Lua 3.2 had a long
life. Because the next version (Lua 4.0) introduced a new,
incompatible API, many users just stayed with Lua 3.2 and
never migrated to Lua 4.0. For instance, Tecgraf never mi-
grated to Lua 4.0, opting to move directly to Lua 5.0; many
products at Tecgraf still use Lua 3.2.
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5.4 Lua 4
Lua 4.0 was released in November 2000. As mentioned
above, the main change in Lua 4.0 was a fully reentrant API,
motivated by applications that needed multiple Lua states.
Since making the API fully reentrant was already a major
change, we took the opportunity and completely redesigned
the API around a clear stack metaphor for exchanging val-
ues with C (see §6.9). This was first suggested by Reuben
Thomas in July 2000.

Lua 4.0 also introduced a ‘for’ statement, then a top
item in the wish-list of most Lua users and a frequent topic
in the mailing list. We had not included a ‘for’ statement
earlier because ‘while’ loops were more general. However,
users complained that they kept forgetting to update the
control variable at the end of ‘while’ loops, thus leading to
infinite loops. Also, we could not agree on a good syntax.
We considered the Modula ‘for’ too restrictive because
it did not cover iterations over the elements of a table or
over the lines of a file. A ‘for’ loop in the C tradition
did not fit with the rest of Lua. With the introduction of
closures and anonymous functions in Lua 3.1, we decided
to use higher-order functions for implementing iterations.
So, Lua 3.1 provided a higher-order function that iterated
over a table by calling a user-supplied function over all pairs
in the table. To print all pairs in a table t, one simply said
‘foreach(t,print)’.

In Lua 4.0 we finally designed a ‘for’ loop, in two vari-
ants: a numeric loop and a table-traversal loop (first sug-
gested by Michael Spalinski in October 1997). These two
variants covered most common loops; for a really generic
loop, there was still the ‘while’ loop. Printing all pairs in a
table t could then be done as follows:8

for k,v in t do

print(k,v)

end

The addition of a ‘for’ statement was a simple one but it
did change the look of Lua programs. In particular, Roberto
had to rewrite many examples in his draft book on Lua
programming. Roberto had been writing this book since
1998, but he could never finish it because Lua was a moving
target. With the release of Lua 4.0, large parts of the book
and almost all its code snippets had to be rewritten.

Soon after the release of Lua 4.0, we started working
on Lua 4.1. Probably the main issue we faced for Lua 4.1
was whether and how to support multithreading, a big is-
sue at that time. With the growing popularity of Java and
Pthreads, many programmers began to consider support for
multithreading as an essential feature in any programming
language. However, for us, supporting multithreading in Lua
posed serious questions. First, to implement multithread-
ing in C requires primitives that are not part of ANSI C —

8 With the introduction of ‘for’ iterators in Lua 5.0, this syntax was marked
as obsolete and later removed in Lua 5.1.

although Pthreads was popular, there were (and still there
are) many platforms without this library. Second, and more
important, we did not (and still do not) believe in the stan-
dard multithreading model, which is preemptive concur-
rency with shared memory: we still think that no one can
write correct programs in a language where ‘a=a+1’ is not
deterministic.

For Lua 4.1, we tried to solve those difficulties in a typi-
cal Lua fashion: we implemented only a basic mechanism of
multiple stacks, which we called threads. External libraries
could use those Lua threads to implement multithreading,
based on a support library such as Pthreads. The same mech-
anism could be used to implement coroutines, in the form of
non-preemptive, collaborative multithreading. Lua 4.1 alpha
was released in July 2001 with support for external multi-
threading and coroutines; it also introduced support for weak
tables and featured a register-based virtual machine, with
which we wanted to experiment.

The day after Lua 4.1 alpha was released, John D. Rams-
dell started a big discussion in the mailing list about lexi-
cal scoping. After several dozen messages, it became clear
that Lua needed full lexical scoping, instead of the upvalue
mechanism adopted since Lua 3.1. By October 2001 we
had come up with an efficient implementation of full lexi-
cal scoping, which we released as a work version in Novem-
ber 2001. (See §6.6 for a detailed discussion of lexical scop-
ing.) That version also introduced a new hybrid representa-
tion for tables that let them be implemented as arrays when
appropriate (see §6.2 for further details). Because that ver-
sion implemented new basic algorithms, we decided to re-
lease it as a work version, even though we had already re-
leased an alpha version for Lua 4.1.

In February 2002 we released a new work version for
Lua 4.1, with three relevant novelties: a generic ‘for’ loop
based on iterator functions, metatables and metamethods
as a replacement for tags and fallbacks9 (see §6.8), and
coroutines (see §6.7). After that release, we realized that
Lua 4.1 would bring too many major changes — perhaps
‘Lua 5.0’ would be a better name for the next version.

5.5 Lua 5
The final blow to the name ‘Lua 4.1’ came a few days
later, during the Lua Library Design Workshop organized
by Christian Lindig and Norman Ramsey at Harvard. One of
the main conclusions of the workshop was that Lua needed
some kind of module system. Although we had always con-
sidered that modules could be implemented using tables, not
even the standard Lua libraries followed this path. We then
decided to take that step for the next version.

9 The use of ordinary Lua tables for implementing extensible semantics had
already been suggested by Stephan Herrmann in December 1996, but we
forgot all about it until it was suggested again by Edgar Toernig in Octo-
ber 2000, as part of a larger proposal, which he called ‘unified methods’.
The term ‘metatable’ was suggested by Rici Lake in November 2001.
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Packaging library functions inside tables had a big practi-
cal impact, because it affected any program that used at least
one library function. For instance, the old strfind function
was now called string.find (field ‘find’ in string library
stored in the ‘string’ table); openfile became io.open;
sin became math.sin; and so on. To make the transition
easier, we provided a compatibility script that defined the
old functions in terms of the new ones:

strfind = string.find

openfile = io.open

sin = math.sin

...

Nevertheless, packaging libraries in tables was a major
change. In June 2002, when we released the next work
version incorporating this change, we dropped the name
‘Lua 4.1’ and named it ‘Lua 5.0 work0’. Progress to the
final version was steady from then on and Lua 5.0 was re-
leased in April 2003. This release froze Lua enough to allow
Roberto to finish his book, which was published in Decem-
ber 2003 [27].

Soon after the release of Lua 5.0 we started working
on Lua 5.1. The initial motivation was the implementation
of incremental garbage collection in response to requests
from game developers. Lua uses a traditional mark-and-
sweep garbage collector, and, until Lua 5.0, garbage col-
lection was performed atomically. As a consequence, some
applications might experience potentially long pauses dur-
ing garbage collection.10 At that time, our main concern was
that adding the write barriers needed to implement an incre-
mental garbage collector would have a negative impact on
Lua performance. To compensate for that we tried to make
the collector generational as well. We also wanted to keep
the adaptive behavior of the old collector, which adjusted the
frequency of collection cycles according to the total memory
in use. Moreover, we wanted to keep the collector simple,
like the rest of Lua.

We worked on the incremental generational garbage col-
lector for over a year. But since we did not have access to
applications with strong memory requirements (like games),
it was difficult for us to test the collector in real scenarios.
From March to December 2004 we released several work
versions trying to get concrete feedback on the performance
of the collector in real applications. We finally received re-
ports of bizarre memory-allocation behavior, which we later
managed to reproduce but not explain. In January 2005,
Mike Pall, an active member of the Lua community, came
up with memory-allocation graphs that explained the prob-
lem: in some scenarios, there were subtle interactions be-
tween the incremental behavior, the generational behavior,
and the adaptive behavior, such that the collector “adapted”

10 Erik Hougaard reported that the Crazy Ivan robot would initially drive
off course when Lua performed garbage collection (which could take a half
second, but that was enough). To stay in course, they had to stop both motors
and pause the robot during garbage collection.

for less and less frequent collections. Because it was getting
too complicated and unpredictable, we gave up the genera-
tional aspect and implemented a simpler incremental collec-
tor in Lua 5.1.

During that time, programmers had been experimenting
with the module system introduced in Lua 5.0. New pack-
ages started to be produced, and old packages migrated to the
new system. Package writers wanted to know the best way
to build modules. In July 2005, during the development of
Lua 5.1, an international Lua workshop organized by Mark
Hamburg was held at Adobe in San Jose. (A similar work-
shop organized by Wim Couwenberg and Daniel Silverstone
was held in September 2006 at Océ in Venlo.) One of the
presentations was about the novelties of Lua 5.1, and there
were long discussions about modules and packages. As a re-
sult, we made a few small but significant changes in the mod-
ule system. Despite our “mechanisms, not policy” guideline
for Lua, we defined a set of policies for writing modules
and loading packages, and made small changes to support
these policies better. Lua 5.1 was released in February 2006.
Although the original motivation for Lua 5.1 was incremen-
tal garbage collection, the improvement in the module sys-
tem was probably the most visible change. On the other
hand, that incremental garbage collection remained invisible
shows that it succeeded in avoiding long pauses.

6. Feature evolution
In this section, we discuss in detail the evolution of some of
the features of Lua.

6.1 Types
Types in Lua have been fairly stable. For a long time, Lua
had only six basic types: nil, number, string, table, function,
and userdata. (Actually, until Lua 3.0, C functions and Lua
functions had different types internally, but that difference
was transparent to callers.) The only real change happened
in Lua 5.0, which introduced two new types: threads and
booleans.

The type thread was introduced to represent coroutines.
Like all other Lua values, threads are first-class values.
To avoid creating new syntax, all primitive operations on
threads are provided by a library.

For a long time we resisted introducing boolean values in
Lua: nil was false and anything else was true. This state of
affairs was simple and seemed sufficient for our purposes.
However, nil was also used for absent fields in tables and
for undefined variables. In some applications, it is important
to allow table fields to be marked as false but still be seen
as present; an explicit false value can be used for this. In
Lua 5.0 we finally introduced boolean values true and false.
Nil is still treated as false. In retrospect, it would probably
have been better if nil raised an error in boolean expres-
sions, as it does in other expressions. This would be more
consistent with its role as proxy for undefined values. How-
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ever, such a change would probably break many existing
programs. LISP has similar problems, with the empty list
representing both nil and false. Scheme explicitly represents
false and treats the empty list as true, but some implementa-
tions of Scheme still treat the empty list as false.

6.2 Tables
Lua 1.1 had three syntactical constructs to create tables:
‘@()’, ‘@[]’, and ‘@{}’. The simplest form was ‘@()’,
which created an empty table. An optional size could be
given at creation time, as an efficiency hint. The form ‘@[]’
was used to create arrays, as in ‘@[2,4,9,16,25]’. In
such tables, the keys were implicit natural numbers start-
ing at 1. The form ‘@{}’ was used to create records, as in
‘@{name="John",age=35}’. Such tables were sets of key-
value pairs in which the keys were explicit strings. A table
created with any of those forms could be modified dynam-
ically after creation, regardless of how it had been created.
Moreover, it was possible to provide user functions when
creating lists and records, as in ‘@foo[]’ or ‘@foo{}’. This
syntax was inherited from SOL and was the expression of
procedural data description, a major feature of Lua (see §2).
The semantics was that a table was created and then the
function was called with that table as its single argument.
The function was allowed to check and modify the table at
will, but its return values were ignored: the table was the
final value of the expression.

In Lua 2.1, the syntax for table creation was unified and
simplified: the leading ‘@’ was removed and the only con-
structor became ‘{· · ·}’. Lua 2.1 also allowed mixed con-
structors, such as

grades{8.5, 6.0, 9.2; name="John", major="math"}

in which the array part was separated from the record
part by a semicolon. Finally, ‘foo{· · ·}’ became sugar for
‘foo({· · ·})’. In other words, table constructors with func-
tions became ordinary function calls. As a consequence, the
function had to explicitly return the table (or whatever value
it chose). Dropping the ‘@’ from constructors was a trivial
change, but it actually changed the feel of the language, not
merely its looks. Trivial changes that improve the feel of a
language are not to be overlooked.

This simplification in the syntax and semantics of ta-
ble constructors had a side-effect, however. In Lua 1.1, the
equality operator was ‘=’. With the unification of table con-
structors in Lua 2.1, an expression like ‘{a=3}’ became am-
biguous, because it could mean a table with either a pair
("a", 3) or a pair (1, b), where b is the value of the equal-
ity ‘a=3’. To solve this ambiguity, in Lua 2.1 we changed the
equality operator from ‘=’ to ‘==’. With this change, ‘{a=3}’
meant a table with the pair ("a", 3), while ‘{a==3}’ meant
a table with the pair (1, b).

These changes made Lua 2.1 incompatible with Lua 1.1
(hence the change in the major version number). Neverthe-
less, since at that time virtually all Lua users were from Tec-

graf, this was not a fatal move: existing programs were easily
converted with the aid of ad-hoc tools that we wrote for this
task.

The syntax for table constructors has since remained
mostly unchanged, except for an addition introduced in
Lua 3.1: keys in the record part could be given by any ex-
pression, by enclosing the expression inside brackets, as in
‘{[10*x+f(y)]=47}’. In particular, this allowed keys to
be arbitrary strings, including reserved words and strings
with spaces. Thus, ‘{function=1}’ is not valid (because
‘function’ is a reserved word), but ‘{["function"]=1}’
is valid. Since Lua 5.0, it is also possible to freely intermix
the array part and the record part, and there is no need to use
semicolons in table constructors.

While the syntax of tables has evolved, the semantics of
tables in Lua has not changed at all: tables are still asso-
ciative arrays and can store arbitrary pairs of values. How-
ever, frequently in practice tables are used solely as arrays
(that is, with consecutive integer keys) or solely as records
(that is, with string keys). Because tables are the only data-
structuring mechanism in Lua, we have invested much ef-
fort in implementing them efficiently inside Lua’s core. Un-
til Lua 4.0, tables were implemented as pure hash tables,
with all pairs stored explicitly. In Lua 5.0 we introduced a
hybrid representation for tables: every table contains a hash
part and an array part, and both parts can be empty. Lua de-
tects whether a table is being used as an array and automat-
ically stores the values associated to integer indices in the
array part, instead of adding them to the hash part [31]. This
division occurs only at a low implementation level; access
to table fields is transparent, even to the virtual machine. Ta-
bles automatically adapt their two parts according to their
contents.

This hybrid scheme has two advantages. First, access
to values with integer keys is faster because no hashing is
needed. Second, and more important, the array part takes
roughly half the memory it would take if it were stored in
the hash part, because the keys are implicit in the array part
but explicit in the hash part. As a consequence, if a table is
being used as an array, it performs as an array, as long as
its integer keys are densely distributed. Moreover, no mem-
ory or time penalty is paid for the hash part, because it
does not even exist. Conversely, if the table is being used
as a record and not as an array, then the array part is likely
to be empty. These memory savings are important because
it is common for a Lua program to create many small ta-
bles (e.g., when tables are used to represent objects). Lua
tables also handle sparse arrays gracefully: the statement
‘a={[1000000000]=1}’ creates a table with a single entry
in its hash part, not an array with one billion elements.

Another reason for investing effort into an efficient im-
plementation of tables is that we can use tables for all kinds
of tasks. For instance, in Lua 5.0 the standard library func-
tions, which had existed since Lua 1.1 as global variables,
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were moved to fields inside tables (see §5.5). More recently,
Lua 5.1 brought a complete package and module system
based on tables.

Tables play a prominent role in Lua’s core. On two oc-
casions we have been able to replace special data structures
inside the core with ordinary Lua tables: in Lua 4.0 for repre-
senting the global environment (which keeps all global vari-
ables) and in Lua 5.0 for implementing extensible seman-
tics (see §6.8). Starting with Lua 4.0, global variables are
stored in an ordinary Lua table, called the table of globals,
a simplification suggested by John Belmonte in April 2000.
In Lua 5.0 we replaced tags and tag methods (introduced
in Lua 3.0) by metatables and metamethods. Metatables are
ordinary Lua tables and metamethods are stored as fields
in metatables. Lua 5.0 also introduced environment tables
that can be attached to Lua functions; they are the tables
where global names in Lua functions are resolved at run
time. Lua 5.1 extended environment tables to C functions,
userdata, and threads, thus replacing the notion of global en-
vironment. These changes simplified both the implementa-
tion of Lua and the API for Lua and C programmers, be-
cause globals and metamethods can be manipulated within
Lua without the need for special functions.

6.3 Strings
Strings play a major role in scripting languages and so the
facilities to create and manipulate strings are an important
part of the usability of such languages.

The syntax for literal strings in Lua has had an interesting
evolution. Since Lua 1.1, a literal string can be delimited
by matching single or double quotes, and can contain C-like
escape sequences. The use of both single and double quotes
to delimit strings with the same semantics was a bit unusual
at the time. (For instance, in the tradition of shell languages,
Perl expands variables inside double-quoted strings, but not
inside single-quoted strings.) While these dual quotes allow
strings to contain one kind of quote without having to escape
it, escape sequences are still needed for arbitrary text.

Lua 2.2 introduced long strings, a feature not present in
classical programming languages, but present in most script-
ing languages.11 Long strings can run for several lines and
do not interpret escape sequences; they provide a convenient
way to include arbitrary text as a string, without having to
worry about its contents. However, it is not trivial to de-
sign a good syntax for long strings, especially because it
is common to use them to include arbitrary program text
(which may contain other long strings). This raises the ques-
tion of how long strings end and whether they may nest.
Until Lua 5.0, long strings were wrapped inside matching
‘[[· · ·]]’ and could contain nested long strings. Unfortu-
nately, the closing delimiter ‘]]’ could easily be part of a
valid Lua program in an unbalanced way, as in ‘a[b[i]]’,

11 ‘Long string’ is a Lua term. Other languages use terms such as ‘verbatim
text’ or ‘heredoc’.

or in other contexts, such as ‘<[!CDATA[· · ·]]>’ from XML.
So, it was hard to reliably wrap arbitrary text as a long string.

Lua 5.1 introduced a new form for long strings: text de-
limited by matching ‘[===[· · ·]===]’, where the number of
‘=’ characters is arbitrary (including zero). These new long
strings do not nest: a long string ends as soon as a closing de-
limiter with the right number of ‘=’ is seen. Nevertheless, it
is now easy to wrap arbitrary text, even text containing other
long strings or unbalanced ‘]= · · · =]’ sequences: simply use
an adequate number of ‘=’ characters.

6.4 Block comments
Comments in Lua are signaled by ‘--’ and continue to the
end of the line. This is the simplest kind of comment, and
is very effective. Several other languages use single-line
comments, with different marks. Languages that use ‘--’ for
comments include Ada and Haskell.

We never felt the need for multi-line comments, or block
comments, except as a quick way to disable code. There
was always the question of which syntax to use: the famil-
iar ‘/* · · · */’ syntax used in C and several other languages
does not mesh well with Lua’s single-line comments. There
was also the question of whether block comments could nest
or not, always a source of noise for users and of complexity
for the lexer. Nested block comments happen when program-
mers want to ‘comment out’ some block of code, to disable
it. Naturally, they expect that comments inside the block of
code are handled correctly, which can only happen if block
comments can be nested.

ANSI C supports block comments but does not allow
nesting. C programmers typically disable code by using the
C preprocessor idiom ‘#if 0 · · · #endif’. This scheme has
the clear advantage that it interacts gracefully with existing
comments in the disabled code. With this motivation and in-
spiration, we addressed the need for disabling blocks of code
in Lua — not the need for block comments — by introducing
conditional compilation in Lua 3.0 via pragmas inspired in
the C preprocessor. Although conditional compilation could
be used for block comments, we do not think that it ever
was. During work on Lua 4.0, we decided that the support
for conditional compilation was not worth the complexity in
the lexer and in its semantics for the user, especially after
not having reached any consensus about a full macro facil-
ity (see §7). So, in Lua 4.0 we removed support for con-
ditional compilation and Lua remained without support for
block comments.12

Block comments were finally introduced in Lua 5.0, in
the form ‘--[[· · ·]]’. Because they intentionally mimicked
the syntax of long strings (see §6.3), it was easy to modify
the lexer to support block comments. This similarity also
helped users to grasp both concepts and their syntax. Block

12 A further motivation was that by that time we had found a better way to
generate and use debug information, and so the pragmas that controlled this
were no longer needed. Removing conditional compilation allowed us to
get rid of all pragmas.
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comments can also be used to disable code: the idiom is to
surround the code between two lines containing ‘--[[’ and
‘--]]’. The code inside those lines can be re-enabled by
simply adding a single ‘-’ at the start of the first line: both
lines then become harmless single-line comments.

Like long strings, block comments could nest, but they
had the same problems as long strings. In particular, valid
Lua code containing unbalanced ‘]]’s, such as ‘a[b[i]]’,
could not be reliably commented out in Lua 5.0. The new
scheme for long strings in Lua 5.1 also applies to block com-
ments, in the form of matching ‘--[===[· · ·]===]’, and so
provides a simple and robust solution for this problem.

6.5 Functions
Functions in Lua have always been first-class values. A func-
tion can be created at run time by compiling and executing
a string containing its definition.13 Since the introduction of
anonymous functions and upvalues in Lua 3.1, programmers
are able to create functions at run time without resorting to
compilation from text.

Functions in Lua, whether written in C or in Lua, have
no declaration. At call time they accept a variable number
of arguments: excess arguments are discarded and missing
arguments are given the value nil. (This coincides with the
semantics of multiple assignment.) C functions have always
been able to handle a variable number of arguments. Lua 2.5
introduced vararg Lua functions, marked by a parameter
list ending in ‘...’ (an experimental feature that became
official only in Lua 3.0). When a vararg function was called,
the arguments corresponding to the dots were collected into
a table named ‘arg’. While this was simple and mostly
convenient, there was no way to pass those arguments to
another function, except by unpacking this table. Because
programmers frequently want to just pass the arguments
along to other functions, Lua 5.1 allows ‘...’ to be used
in argument lists and on the right-hand side of assignments.
This avoids the creation of the ‘arg’ table if it is not needed.

The unit of execution of Lua is called a chunk; it is
simply a sequence of statements. A chunk in Lua is like
the main program in other languages: it can contain both
function definitions and executable code. (Actually, a func-
tion definition is executable code: an assignment.) At the
same time, a chunk closely resembles an ordinary Lua func-
tion. For instance, chunks have always had exactly the same
kind of bytecode as ordinary Lua functions. However, before
Lua 5.0, chunks needed some internal magic to start execut-
ing. Chunks began to look like ordinary functions in Lua 2.2,
when local variables outside functions were allowed as an
undocumented feature (that became official only in Lua 3.1).
Lua 2.5 allowed chunks to return values. In Lua 3.0 chunks
became functions internally, except that they were executed

13 Some people maintain that the ability to evaluate code from text at run
time and within the environment of the running program is what character-
izes scripting languages.

right after being compiled; they did not exist as functions at
the user level. This final step was taken in Lua 5.0, which
broke the loading and execution of chunks into two steps,
to provide host programmers better control for handling and
reporting errors. As a consequence, in Lua 5.0 chunks be-
came ordinary anonymous functions with no arguments. In
Lua 5.1 chunks became anonymous vararg functions and
thus can be passed values at execution time. Those values
are accessed via the new ‘...’ mechanism.

From a different point of view, chunks are like modules
in other languages: they usually provide functions and vari-
ables to the global environment. Originally, we did not in-
tend Lua to be used for large-scale programming and so we
did not feel the need to add an explicit notion of modules
to Lua. Moreover, we felt that tables would be sufficient for
building modules, if necessary. In Lua 5.0 we made that feel-
ing explicit by packaging all standard libraries into tables.
This encouraged other people to do the same and made it
easier to share libraries. We now feel that Lua can be used for
large-scale programming, especially after Lua 5.1 brought a
package system and a module system, both based on tables.

6.6 Lexical scoping
From an early stage in the development of Lua we started
thinking about first-class functions with full lexical scoping.
This is an elegant construct that fits well within Lua’s philos-
ophy of providing few but powerful constructs. It also makes
Lua apt for functional programming. However, we could not
figure out a reasonable implementation for full lexical scop-
ing. Since the beginning Lua has used a simple array stack
to keep activation records (where all local variables and tem-
poraries live). This implementation had proved simple and
efficient, and we saw no reason to change it. When we allow
nested functions with full lexical scoping, a variable used by
an inner function may outlive the function that created it, and
so we cannot use a stack discipline for such variables.

Simple Scheme implementations allocate frames in the
heap. Already in 1987, Dybvig [20] described how to use
a stack to allocate frames, provided that those frames did
not contain variables used by nested functions. His method
requires that the compiler know beforehand whether a vari-
able appears as a free variable in a nested function. This does
not suit the Lua compiler because it generates code to ma-
nipulate variables as soon as it parses an expression; at that
moment, it cannot know whether any variable is later used
free in a nested function. We wanted to keep this design for
implementing Lua, because of its simplicity and efficiency,
and so could not use Dybvig’s method. For the same rea-
son, we could not use advanced compiler techniques, such
as data-flow analysis.

Currently there are several optimization strategies to
avoid using the heap for frames (e.g., [21]), but they all
need compilers with intermediate representations, which the
Lua compiler does not use. McDermott’s proposal for stack
frame allocation [36], which is explicitly addressed to inter-
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preters, is the only one we know of that does not require in-
termediate representation for code generation. Like our cur-
rent implementation [31], his proposal puts variables in the
stack and moves them to the heap on demand, if they go out
of scope while being used by a nested closure. However, his
proposal assumes that environments are represented by as-
sociation lists. So, after moving an environment to the heap,
the interpreter has to correct only the list header, and all ac-
cesses to local variables automatically go to the heap. Lua
uses real records as activation records, with local-variable
access being translated to direct accesses to the stack plus an
offset, and so cannot use McDermott’s method.

For a long time those difficulties kept us from introducing
nested first-class functions with full lexical scoping in Lua.
Finally, in Lua 3.1 we settled on a compromise that we called
upvalues. In this scheme, an inner function cannot access
and modify external variables when it runs, but it can access
the values those variables had when the function was cre-
ated. Those values are called upvalues. The main advantage
of upvalues is that they can be implemented with a simple
scheme: all local variables live in the stack; when a function
is created, it is wrapped in a closure containing copies of
the values of the external variables used by the function. In
other words, upvalues are the frozen values of external vari-
ables.14 To avoid misunderstandings, we created a new syn-
tax for accessing upvalues: ‘%varname’. This syntax made
it clear that the code was accessing the frozen value of that
variable, not the variable itself. Upvalues proved to be very
useful, despite being immutable. When necessary, we could
simulate mutable external variables by using a table as the
upvalue: although we could not change the table itself, we
could change its fields. This feature was especially useful for
anonymous functions passed to higher-order functions used
for table traversal and pattern matching.

In December 2000, Roberto wrote in the first draft of
his book [27] that “Lua has a form of proper lexical scop-
ing through upvalues.” In July 2001 John D. Ramsdell ar-
gued in the mailing list that “a language is either lexically
scoped or it is not; adding the adjective ‘proper’ to the phrase
‘lexical scoping’ is meaningless.” That message stirred us
to search for a better solution and a way to implement full
lexical scoping. By October 2001 we had an initial imple-
mentation of full lexical scoping and described it to the list.
The idea was to access each upvalue through an indirection
that pointed to the stack while the variable was in scope;
at the end of the scope a special virtual machine instruc-
tion “closed” the upvalue, moving the variable’s value to a
heap-allocated space and correcting the indirection to point
there. Open closures (those with upvalues still pointing to
the stack) were kept in a list to allow their correction and

14 A year later Java adopted a similar solution to allow inner classes. Instead
of freezing the value of an external variable, Java insists that you can only
access final variables in inner classes, and so ensures that the variable is
frozen.

the reuse of open upvalues. Reuse is essential to get the cor-
rect semantics. If two closures, sharing an external variable,
have their own upvalues, then at the end of the scope each
closure will have its own copy of the variable, but the cor-
rect semantics dictates that they should share the variable.
To ensure reuse, the algorithm that created closures worked
as follows: for each external variable used by the closure, it
first searched the list of open closures. If it found an upvalue
pointing to that external variable, it reused that upvalue; oth-
erwise, it created a new upvalue.

Edgar Toering, an active member of the Lua community,
misunderstood our description of lexical scoping. It turned
out that the way he understood it was better than our orig-
inal idea: instead of keeping a list of open closures, keep a
list of open upvalues. Because the number of local variables
used by closures is usually smaller than the number of clo-
sures using them (the first is statically limited by the program
text), his solution was more efficient than ours. It was also
easier to adapt to coroutines (which were being implemented
at around the same time), because we could keep a separate
list of upvalues for each stack. We added full lexical scoping
to Lua 5.0 using this algorithm because it met all our require-
ments: it could be implemented with a one-pass compiler; it
imposed no burden on functions that did not access exter-
nal local variables, because they continued to manipulate all
their local variables in the stack; and the cost to access an
external local variable was only one extra indirection [31].

6.7 Coroutines
For a long time we searched for some kind of first-class
continuations for Lua. This search was motivated by the
existence of first-class continuations in Scheme (always a
source of inspiration to us) and by demands from game
programmers for some mechanism for “soft” multithreading
(usually described as “some way to suspend a character and
continue it later”).

In 2000, Maria Julia de Lima implemented full first-class
continuations on top of Lua 4.0 alpha, as part of her Ph.D.
work [35]. She used a simple approach because, like lexi-
cal scoping, smarter techniques to implement continuations
were too complex compared to the overall simplicity of Lua.
The result was satisfactory for her experiments, but too slow
to be incorporated in a final product. Nevertheless, her im-
plementation uncovered a problem peculiar to Lua. Since
Lua is an extensible extension language, it is possible (and
common) to call Lua from C and C from Lua. Therefore, at
any given point in the execution of a Lua program, the cur-
rent continuation usually has parts in Lua mixed with parts
in C. Although it is possible to manipulate a Lua continu-
ation (essentially by manipulating the Lua call stack), it is
impossible to manipulate a C continuation within ANSI C.
At that time, we did not understand this problem deeply
enough. In particular, we could not figure out what the ex-
act restrictions related to C calls were. Lima simply forbade
any C calls in her implementation. Again, that solution was
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satisfactory for her experiments, but unacceptable for an of-
ficial Lua version because the ease of mixing Lua code with
C code is one of Lua’s hallmarks.

Unaware of this difficulty, in December 2001 Thatcher
Ulrich announced in the mailing list:

I’ve created a patch for Lua 4.0 that makes calls from
Lua to Lua non-recursive (i.e., ‘stackless’). This al-
lows the implementation of a ‘sleep()’ call, which ex-
its from the host program [. . . ], and leaves the Lua
state in a condition where the script can be resumed
later via a call to a new API function, lua_resume.

In other words, he proposed an asymmetric coroutine mech-
anism, based on two primitives: yield (which he called sleep)
and resume. His patch followed the high-level description
given in the mailing list by Bret Mogilefsky on the changes
made to Lua 2.5 and 3.1 to add cooperative multitasking in
Grim Fandango. (Bret could not provide details, which were
proprietary.)

Shortly after this announcement, during the Lua Library
Design Workshop held at Harvard in February 2002, there
was some discussion about first-class continuations in Lua.
Some people claimed that, if first-class continuations were
deemed too complex, we could implement one-shot contin-
uations. Others argued that it would be better to implement
symmetric coroutines. But we could not find a proper imple-
mentation of any of these mechanisms that could solve the
difficulty related to C calls.

It took us some time to realize why it was hard to im-
plement symmetric coroutines in Lua, and also to under-
stand how Ulrich’s proposal, based on asymmetric corou-
tines, avoided our difficulties. Both one-shot continuations
and symmetric coroutines involve the manipulation of full
continuations. So, as long as these continuations include any
C part, it is impossible to capture them (except by using fa-
cilities outside ANSI C). In contrast, an asymmetric corou-
tine mechanism based on yield and resume manipulates par-
tial continuations: yield captures the continuation up to the
corresponding resume [19]. With asymmetric coroutines, the
current continuation can include C parts, as long as they
are outside the partial continuation being captured. In other
words, the only restriction is that we cannot yield across a
C call.

After that realization, and based on Ulrich’s proof-of-
concept implementation, we were able to implement asym-
metrical coroutines in Lua 5.0. The main change was that the
interpreter loop, which executes the instructions for the vir-
tual machine, ceased to be recursive. In previous versions,
when the interpreter loop executed a CALL instruction, it
called itself recursively to execute the called function. Since
Lua 5.0, the interpreter behaves more like a real CPU: when
it executes a CALL instruction, it pushes some context infor-
mation onto a call stack and proceeds to execute the called
function, restoring the context when that function returns.

After that change, the implementation of coroutines became
straightforward.

Unlike most implementations of asymmetrical corou-
tines, in Lua coroutines are what we call stackfull [19]. With
them, we can implement symmetrical coroutines and even
the call/1cc operator (call with current one-shot continua-
tion) proposed for Scheme [11]. However, the use of C func-
tions is severely restricted within these implementations.

We hope that the introduction of coroutines in Lua 5.0
marks a revival of coroutines as powerful control struc-
tures [18].

6.8 Extensible semantics
As mentioned in §5.2, we introduced extensible semantics
in Lua 2.1 in the form of fallbacks as a general mechanism
to allow the programmer to intervene whenever Lua did not
know how to proceed. Fallbacks thus provided a restricted
form of resumable exception handling. In particular, by us-
ing fallbacks, we could make a value respond to operations
not originally meant for it or make a value of one type be-
have like a value of another type. For instance, we could
make userdata and tables respond to arithmetic operations,
userdata behave as tables, strings behave as functions, etc.
Moreover, we could make a table respond to keys that were
absent in it, which is fundamental for implementing inheri-
tance. With fallbacks for table indexing and a little syntactic
sugar for defining and calling methods, object-oriented pro-
gramming with inheritance became possible in Lua.

Although objects, classes, and inheritance were not core
concepts in Lua, they could be implemented directly in Lua,
in many flavors, according to the needs of the application. In
other words, Lua provided mechanisms, not policy — a tenet
that we have tried to follow closely ever since.

The simplest kind of inheritance is inheritance by del-
egation, which was introduced by Self and adopted in
other prototype-based languages such as NewtonScript and
JavaScript. The code below shows an implementation of in-
heritance by delegation in Lua 2.1.

function Index(a,i)

if i == "parent" then

return nil

end

local p = a.parent

if type(p) == "table" then

return p[i]

else

return nil

end

end

setfallback("index", Index)

When a table was accessed for an absent field (be it an
attribute or a method), the index fallback was triggered.
Inheritance was implemented by setting the index fallback
to follow a chain of “parents” upwards, possibly triggering
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the index fallback again, until a table had the required field
or the chain ended.

After setting that index fallback, the code below printed
‘red’ even though ‘b’ did not have a ‘color’ field:

a=Window{x=100, y=200, color="red"}

b=Window{x=300, y=400, parent=a}

print(b.color)

There was nothing magical or hard-coded about delega-
tion through a “parent” field. Programmers had complete
freedom: they could use a different name for the field con-
taining the parent, they could implement multiple inheri-
tance by trying a list of parents, etc. Our decision not to
hard-code any of those possible behaviors led to one of the
main design concepts of Lua: meta-mechanisms. Instead of
littering the language with lots of features, we provided ways
for users to program the features themselves, in the way they
wanted them, and only for those features they needed.

Fallbacks greatly increased the expressiveness of Lua.
However, fallbacks were global handlers: there was only one
function for each event that could occur. As a consequence,
it was difficult to mix different inheritance mechanisms in
the same program, because there was only one hook for
implementing inheritance (the index fallback). While this
might not be a problem for a program written by a single
group on top of its own object system, it became a problem
when one group tried to use code from other groups, because
their visions of the object system might not be consistent
with each other. Hooks for different mechanisms could be
chained, but chaining was slow, complicated, error-prone,
and not very polite. Fallback chaining did not encourage
code sharing and reuse; in practice almost nobody did it.
This made it very hard to use third-party libraries.

Lua 2.1 allowed userdata to be tagged. In Lua 3.0 we
extended tags to all values and replaced fallbacks with tag
methods. Tag methods were fallbacks that operated only on
values with a given tag. This made it possible to implement
independent notions of inheritance, for instance. No chain-
ing was needed because tag methods for one tag did not af-
fect tag methods for another tag.

The tag method scheme worked very well and lasted
until Lua 5.0, when we replaced tags and tag methods by
metatables and metamethods. Metatables are just ordinary
Lua tables and so can be manipulated within Lua without
the need for special functions. Like tags, metatables can
be used to represent user-defined types with userdata and
tables: all objects of the same “type” should share the same
metatable. Unlike tags, metatables and their contents are
naturally collected when no references remain to them. (In
contrast, tags and their tag methods had to live until the
end of the program.) The introduction of metatables also
simplified the implementation: while tag methods had their
own private representation inside Lua’s core, metatables use
mainly the standard table machinery.

The code below shows the implementation of inheritance
in Lua 5.0. The index metamethod replaces the index tag
method and is represented by the ‘__index’ field in the
metatable. The code makes ‘b’ inherit from ‘a’ by setting
a metatable for ‘b’ whose ‘__index’ field points to ‘a’.
(In general, index metamethods are functions, but we have
allowed them to be tables to support simple inheritance by
delegation directly.)

a=Window{x=100, y=200, color="red"}

b=Window{x=300, y=400}

setmetatable(b,{ __index = a })

print(b.color) --> red

6.9 C API
Lua is provided as a library of C functions and macros that
allow the host program to communicate with Lua. This API
between Lua and C is one of the main components of Lua; it
is what makes Lua an embeddable language.

Like the rest of the language, the API has gone through
many changes during Lua’s evolution. Unlike the rest of the
language, however, the API design received little outside in-
fluence, mainly because there has been little research activity
in this area.

The API has always been bi-directional because, since
Lua 1.0, we have considered calling Lua from C and call-
ing C from Lua equally important. Being able to call Lua
from C is what makes Lua an extension language, that is, a
language for extending applications through configuration,
macros, and other end-user customizations. Being able to
call C from Lua makes Lua an extensible language, because
we can use C functions to extend Lua with new facilities.
(That is why we say that Lua is an extensible extension lan-
guage [30].) Common to both these aspects are two mis-
matches between C and Lua to which the API must adjust:
static typing in C versus dynamic typing in Lua and manual
memory management in C versus automatic garbage collec-
tion in Lua.

Currently, the C API solves both difficulties by using an
abstract stack15 to exchange data between Lua and C. Every
C function called by Lua gets a new stack frame that initially
contains the function arguments. If the C function wants to
return values to Lua, it pushes those values onto the stack
just before returning.

Each stack slot can hold a Lua value of any type. For each
Lua type that has a corresponding representation in C (e.g.,
strings and numbers), there are two API functions: an injec-
tion function, which pushes onto the stack a Lua value cor-
responding to the given C value; and a projection function,
which returns a C value corresponding to the Lua value at
a given stack position. Lua values that have no correspond-
ing representation in C (e.g., tables and functions) can be
manipulated via the API by using their stack positions.

15 Throughout this section, ‘stack’ always means this abstract stack. Lua
never accesses the C stack.
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Practically all API functions get their operands from the
stack and push their results onto the stack. Since the stack
can hold values of any Lua type, these API functions operate
with any Lua type, thus solving the typing mismatch. To
prevent the collection of Lua values in use by C code, the
values in the stack are never collected. When a C function
returns, its Lua stack frame vanishes, automatically releasing
all Lua values that the C function was using. These values
will eventually be collected if no further references to them
exist. This solves the memory management mismatch.

It took us a long time to arrive at the current API. To
discuss how the API evolved, we use as illustration the
C equivalent of the following Lua function:

function foo(t)

return t.x

end

In words, this function receives a single parameter, which
should be a table, and returns the value stored at the ‘x’ field
in that table. Despite its simplicity, this example illustrates
three important issues in the API: how to get parameters,
how to index tables, and how to return results.

In Lua 1.0, we would write foo in C as follows:

void foo_l (void) {

lua_Object t = lua_getparam(1);

lua_Object r = lua_getfield(t, "x");

lua_pushobject(r);

}

Note that the required value is stored at the string index "x"
because ‘t.x’ is syntactic sugar for ‘t["x"]’. Note also that
all components of the API start with ‘lua_’ (or ‘LUA_’) to
avoid name clashes with other C libraries.

To export this C function to Lua with the name ‘foo’ we
would do

lua_register("foo", foo_l);

After that, foo could be called from Lua code just like any
other Lua function:

t = {x = 200}

print(foo(t)) --> 200

A key component of the API was the type lua_Object,
defined as follows:

typedef struct Object *lua_Object;

In words, lua_Object was an abstract type that represented
Lua values in C opaquely. Arguments given to C functions
were accessed by calling lua_getparam, which returned a
lua_Object. In the example, we call lua_getparam once
to get the table, which is supposed to be the first argument to
foo. (Extra arguments are silently ignored.) Once the table
is available in C (as a lua_Object), we get the value of
its "x" field by calling lua_getfield. This value is also
represented in C as a lua_Object, which is finally sent back
to Lua by pushing it onto the stack with lua_pushobject.

The stack was another key component of the API. It
was used to pass values from C to Lua. There was one
push function for each Lua type with a direct representation
in C: lua_pushnumber for numbers, lua_pushstring for
strings, and lua_pushnil, for the special value nil. There
was also lua_pushobject, which allowed C to pass back
to Lua an arbitrary Lua value. When a C function returned,
all values in the stack were returned to Lua as the results of
the C function (functions in Lua can return multiple values).

Conceptually, a lua_Object was a union type, since it
could refer to any Lua value. Several scripting languages,
including Perl, Python, and Ruby, still use a union type
to represent their values in C. The main drawback of this
representation is that it is hard to design a garbage collector
for the language. Without extra information, the garbage
collector cannot know whether a value has a reference to it
stored as a union in the C code. Without this knowledge,
the collector may collect the value, making the union a
dangling pointer. Even when this union is a local variable in
a C function, this C function can call Lua again and trigger
garbage collection.

Ruby solves this problem by inspecting the C stack, a task
that cannot be done in a portable way. Perl and Python solve
this problem by providing explicit reference-count functions
for these union values. Once you increment the reference
count of a value, the garbage collector will not collect that
value until you decrement the count to zero. However, it is
not easy for the programmer to keep these reference counts
right. Not only is it easy to make a mistake, but it is dif-
ficult to find the error later (as anyone who has ever de-
bugged memory leaks and dangling pointers can attest). Fur-
thermore, reference counting cannot deal with cyclic data
structures that become garbage.

Lua never provided such reference-count functions. Be-
fore Lua 2.1, the best you could do to ensure that an unan-
chored lua_Object was not collected was to avoid calling
Lua whenever you had a reference to such a lua_Object.
(As long as you could ensure that the value referred to by
the union was also stored in a Lua variable, you were safe.)
Lua 2.1 brought an important change: it kept track of all
lua_Object values passed to C, ensuring that they were not
collected while the C function was active. When the C func-
tion returned to Lua, then (and only then) all references to
these lua_Object values were released, so that they could
be collected.16

More specifically, in Lua 2.1 a lua_Object ceased to
be a pointer to Lua’s internal data structures and became an
index into an internal array that stored all values that had to
be given to C:

typedef unsigned int lua_Object;

This change made the use of lua_Object reliable: while a
value was in that array, it would not be collected by Lua.

16 A similar method is used by JNI to handle “local references”.
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When the C function returned, its whole array was erased,
and the values used by the function could be collected if pos-
sible. (This change also gave more freedom for implement-
ing the garbage collector, because it could move objects if
necessary; however, we did not followed this path.)

For simple uses, the Lua 2.1 behavior was very practi-
cal: it was safe and the C programmer did not have to worry
about reference counts. Each lua_Object behaved like a
local variable in C: the corresponding Lua value was guar-
anteed to be alive during the lifetime of the C function that
produced it. For more complex uses, however, this simple
scheme had two shortcomings that demanded extra mecha-
nisms: sometimes a lua_Object value had to be locked for
longer than the lifetime of the C function that produced it;
sometimes it had to be locked for a shorter time.

The first of those shortcomings had a simple solution:
Lua 2.1 introduced a system of references. The function
lua_lock got a Lua value from the stack and returned a
reference to it. This reference was an integer that could
be used any time later to retrieve that value, using the
lua_getlocked function. (There was also a lua_unlock
function, which destroyed a reference.) With such refer-
ences, it was easy to keep Lua values in non-local C vari-
ables.

The second shortcoming was more subtle. Objects stored
in the internal array were released only when the function
returned. If a function used too many values, it could over-
flow the array or cause an out-of-memory error. For instance,
consider the following higher-order iterator function, which
repeatedly calls a function and prints the result until the call
returns nil:

void l_loop (void) {

lua_Object f = lua_getparam(1);

for (;;) {

lua_Object res;

lua_callfunction(f);

res = lua_getresult(1);

if (lua_isnil(res)) break;

printf("%s\n", lua_getstring(res));

}

}

The problem with this code was that the string returned by
each call could not be collected until the end of the loop (that
is, of the whole C function), thus opening the possibility
of array overflow or memory exhaustion. This kind of error
can be very difficult to track, and so the implementation of
Lua 2.1 set a hard limit on the size of the internal array
that kept lua_Object values alive. That made the error
easier to track because Lua could say “too many objects in a
C function” instead of a generic out-of-memory error, but it
did not avoid the problem.

To address the problem, the API in Lua 2.1 offered two
functions, lua_beginblock and lua_endblock, that cre-
ated dynamic scopes (“blocks”) for lua_Object values;

all values created after a lua_beginblock were removed
from the internal array at the corresponding lua_endblock.
However, since a block discipline could not be forced onto
C programmers, it was all too common to forget to use these
blocks. Moreover, such explicit scope control was a little
tricky to use. For instance, a naive attempt to correct our
previous example by enclosing the for body within a block
would fail: we had to call lua_endblock just before the
break, too. This difficulty with the scope of Lua objects
persisted through several versions and was solved only in
Lua 4.0, when we redesigned the whole API. Nevertheless,
as we said before, for typical uses the API was very easy to
use, and most programmers never faced the kind of situation
described here. More important, the API was safe. Erroneous
use could produce well-defined errors, but not dangling ref-
erences or memory leaks.

Lua 2.1 brought other changes to the API. One was the
introduction of lua_getsubscript, which allowed the use
of any value to index a table. This function had no explicit
arguments: it got both the table and the key from the stack.
The old lua_getfield was redefined as a macro, for com-
patibility:

#define lua_getfield(o,f) \

(lua_pushobject(o), lua_pushstring(f), \

lua_getsubscript())

(Backward compatibility of the C API is usually imple-
mented using macros, whenever feasible.)

Despite all those changes, syntactically the API changed
little from Lua 1 to Lua 2. For instance, our illustrative func-
tion foo could be written in Lua 2 exactly as we wrote it for
Lua 1.0. The meaning of lua_Object was quite different,
and lua_getfield was implemented on top of new primi-
tive operations, but for the average user it was as if nothing
had changed. Thereafter, the API remained fairly stable until
Lua 4.0.

Lua 2.4 expanded the reference mechanism to support
weak references. A common design in Lua programs is to
have a Lua object (typically a table) acting as a proxy for a
C object. Frequently the C object must know who its proxy
is and so keeps a reference to the proxy. However, that
reference prevents the collection of the proxy object, even
when the object becomes inaccessible from Lua. In Lua 2.4,
the program could create a weak reference to the proxy; that
reference did not prevent the collection of the proxy object.
Any attempt to retrieve a collected reference resulted in a
special value LUA_NOOBJECT.

Lua 4.0 brought two main novelties in the C API: support
for multiple Lua states and a virtual stack for exchanging
values between C and Lua. Support for multiple, indepen-
dent Lua states was achieved by eliminating all global state.
Until Lua 3.0, only one Lua state existed and it was imple-
mented using many static variables scattered throughout the
code. Lua 3.1 introduced multiple independent Lua states;
all static variables were collected into a single C struct. An
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API function was added to allow switching states, but only
one Lua state could be active at any moment. All other API
functions operated over the active Lua state, which remained
implicit and did not appear in the calls. Lua 4.0 introduced
explicit Lua states in the API. This created a big incompat-
ibility with previous versions.17 All C code that communi-
cated with Lua (in particular, all C functions registered to
Lua) had to be changed to include an explicit state argument
in calls to the C API. Since all C functions had to be rewrit-
ten anyway, we took this opportunity and made another ma-
jor change in the C – Lua communication in Lua 4.0: we
replaced the concept of lua_Object by an explicit virtual
stack used for all communication between Lua and C in both
directions. The stack could also be used to store temporary
values.

In Lua 4.0, our foo example could be written as follows:

int foo_l (lua_State *L) {

lua_pushstring(L, "x");

lua_gettable(L, 1);

return 1;

}

The first difference is the function signature: foo_l now re-
ceives a Lua state on which to operate and returns the num-
ber of values returned by the function in the stack. In pre-
vious versions, all values left in the stack when the func-
tion ended were returned to Lua. Now, because the stack is
used for all operations, it can contain intermediate values
that are not to be returned, and so the function needs to tell
Lua how many values in the stack to consider as return val-
ues. Another difference is that lua_getparam is no longer
needed, because function arguments come in the stack when
the function starts and can be directly accessed by their in-
dex, like any other stack value.

The last difference is the use of lua_gettable, which
replaced lua_getsubscript as the means to access table
fields. lua_gettable receives the table to be indexed as
a stack position (instead of as a Lua object), pops the key
from the top of the stack, and pushes the result. Moreover, it
leaves the table in the same stack position, because tables are
frequently indexed repeatedly. In foo_l, the table used by
lua_gettable is at stack position 1, because it is the first
argument to that function, and the key is the string "x",
which needs to be pushed onto the stack before calling
lua_gettable. That call replaces the key in the stack with
the corresponding table value. So, after lua_gettable,
there are two values in the stack: the table at position 1
and the result of the indexing at position 2, which is the top
of the stack. The C function returns 1 to tell Lua to use that
top value as the single result returned by the function.

To further illustrate the new API, here is an implementa-
tion of our loop example in Lua 4.0:

17 We provided a module that emulated the 3.2 API on top of the 4.0 API,
but we do not think it was used much.

int l_loop (lua_State *L) {

for (;;) {

lua_pushvalue(L, 1);

lua_call(L, 0, 1);

if (lua_isnil(L, -1)) break;

printf("%s\n", lua_tostring(L, -1));

lua_pop(L, 1);

}

return 0;

}

To call a Lua function, we push it onto the stack and then
push its arguments, if any (none in the example). Then we
call lua_call, telling how many arguments to get from
the stack (and therefore implicitly also telling where the
function is in the stack) and how many results we want from
the call. In the example, we have no arguments and expect
one result. The lua_call function removes the function and
its arguments from the stack and pushes back exactly the
requested number of results. The call to lua_pop removes
the single result from the stack, leaving the stack at the same
level as at the beginning of the loop. For convenience, we
can index the stack from the bottom, with positive indices,
or from the top, with negative indices. In the example, we
use index -1 in lua_isnil and lua_tostring to refer to
the top of the stack, which contains the function result.

With hindsight, the use of a single stack in the API seems
an obvious simplification, but when Lua 4.0 was released
many users complained about the complexity of the new
API. Although Lua 4.0 had a much cleaner conceptual model
for its API, the direct manipulation of the stack requires
some thought to get right. Many users were content to use
the previous API without any clear conceptual model of
what was going on behind the scenes. Simple tasks did
not require a conceptual model at all and the previous API
worked quite well for them. More complex tasks often broke
whatever private models users had, but most users never
programmed complex tasks in C. So, the new API was seen
as too complex at first. However, such skepticism gradually
vanished, as users came to understand and value the new
model, which proved to be simpler and much less error-
prone.

The possibility of multiple states in Lua 4.0 created an un-
expected problem for the reference mechanism. Previously,
a C library that needed to keep some object fixed could cre-
ate a reference to the object and store that reference in a
global C variable. In Lua 4.0, if a C library was to work with
several states, it had to keep an individual reference for each
state and so could not keep the reference in a global C vari-
able. To solve this difficulty, Lua 4.0 introduced the registry,
which is simply a regular Lua table available to C only. With
the registry, a C library that wants to keep a Lua object can
choose a unique key and associate the object with this key in
the registry. Because each independent Lua state has its own
registry, the C library can use the same key in each state to
manipulate the corresponding object.
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We could quite easily implement the original reference
mechanism on top of the registry by using integer keys to
represent references. To create a new reference, we just find
an unused integer key and store the value at that key. Retriev-
ing a reference becomes a simple table access. However, we
could not implement weak references using the registry. So,
Lua 4.0 kept the previous reference mechanism. In Lua 5.0,
with the introduction of weak tables in the language, we
were finally able to eliminate the reference mechanism from
the core and move it to a library.

The C API has slowly evolved toward completeness.
Since Lua 4.0, all standard library functions can be written
using only the C API. Until then, Lua had a number of built-
in functions (from 7 in Lua 1.1 to 35 in Lua 3.2), most of
which could have been written using the C API but were not
because of a perceived need for speed. A few built-in func-
tions could not have been written using the C API because
the C API was not complete. For instance, until Lua 3.2 it
was not possible to iterate over the contents of a table using
the C API, although it was possible to do it in Lua using the
built-in function next. The C API is not yet complete and
not everything that can be done in Lua can be done in C;
for instance, the C API lacks functions for performing arith-
metic operations on Lua values. We plan to address this issue
in the next version.

6.10 Userdata
Since its first version, an important feature of Lua has been
its ability to manipulate C data, which is provided by a
special Lua data type called userdata. This ability is an
essential component in the extensibility of Lua.

For Lua programs, the userdata type has undergone no
changes at all throughout Lua’s evolution: although userdata
are first-class values, userdata is an opaque type and its only
valid operation in Lua is equality test. Any other operation
over userdata (creation, inspection, modification) must be
provided by C functions.

For C functions, the userdata type has undergone several
changes in Lua’s evolution. In Lua 1.0, a userdata value was
a simple void* pointer. The main drawback of this simplic-
ity was that a C library had no way to check whether a user-
data was valid. Although Lua code cannot create userdata
values, it can pass userdata created by one library to another
library that expects pointers to a different structure. Because
C functions had no mechanisms to check this mismatch, the
result of this pointer mismatch was usually fatal to the appli-
cation. We have always considered it unacceptable for a Lua
program to be able to crash the host application. Lua should
be a safe language.

To overcome the pointer mismatch problem, Lua 2.1 in-
troduced the concept of tags (which would become the seed
for tag methods in Lua 3.0). A tag was simply an arbitrary in-
teger value associated with a userdata. A userdata’s tag could
only be set once, when the userdata was created. Provided
that each C library used its own exclusive tag, C code could

easily ensure that a userdata had the expected type by check-
ing its tag. (The problem of how a library writer chose a tag
that did not clash with tags from other libraries remained
open. It was only solved in Lua 3.0, which provided tag man-
agement via lua_newtag.)

A bigger problem with Lua 2.1 was the management
of C resources. More often than not, a userdata pointed
to a dynamically allocated structure in C, which had to be
freed when its corresponding userdata was collected in Lua.
However, userdata were values, not objects. As such, they
were not collected (in the same way that numbers are not
collected). To overcome this restriction, a typical design was
to use a table as a proxy for the C structure in Lua, storing
the actual userdata in a predefined field of the proxy table.
When the table was collected, its finalizer would free the
corresponding C structure.

This simple solution created a subtle problem. Because
the userdata was stored in a regular field of the proxy table, a
malicious user could tamper with it from within Lua. Specif-
ically, a user could make a copy of the userdata and use the
copy after the table was collected. By that time, the corre-
sponding C structure had been destroyed, making the user-
data a dangling pointer, with disastrous results. To improve
the control of the life cycle of userdata, Lua 3.0 changed
userdata from values to objects, subject to garbage collec-
tion. Users could use the userdata finalizer (the garbage-
collection tag method) to free the corresponding C structure.
The correctness of Lua’s garbage collector ensured that a
userdata could not be used after being collected.

However, userdata as objects created an identity problem.
Given a userdata, it is trivial to get its corresponding pointer,
but frequently we need to do the reverse: given a C pointer,
we need to get its corresponding userdata.18 In Lua 2, two
userdata with the same pointer and the same tag would be
equal; equality was based on their values. So, given the
pointer and the tag, we had the userdata. In Lua 3, with
userdata being objects, equality was based on identity: two
userdata were equal only when they were the same userdata
(that is, the same object). Each userdata created was different
from all others. Therefore, a pointer and a tag would not be
enough to get the corresponding userdata.

To solve this difficulty, and also to reduce incompatibili-
ties with Lua 2, Lua 3 adopted the following semantics for
the operation of pushing a userdata onto the stack: if Lua
already had a userdata with the given pointer and tag, then
that userdata was pushed on the stack; otherwise, a new user-
data was created and pushed on the stack. So, it was easy for
C code to translate a C pointer to its corresponding userdata
in Lua. (Actually, the C code could be the same as it was in
Lua 2.)

18 A typical scenario for this need is the handling of callbacks in a GUI
toolkit. The C callback associated with a widget gets only a pointer to the
widget, but to pass this callback to Lua we need the userdata that represents
that widget in Lua.
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However, Lua 3 behavior had a major drawback: it com-
bined into a single primitive (lua_pushuserdata) two ba-
sic operations: userdata searching and userdata creation.
For instance, it was impossible to check whether a given
C pointer had a corresponding userdata without creating that
userdata. Also, it was impossible to create a new userdata re-
gardless of its C pointer. If Lua already had a userdata with
that value, no new userdata would be created.

Lua 4 mitigated that drawback by introducing a new func-
tion, lua_newuserdata. Unlike lua_pushuserdata, this
function always created a new userdata. Moreover, what was
more important at that time, those userdata were able to store
arbitrary C data, instead of pointers only. The user would tell
lua_newuserdata the amount memory to be allocated and
lua_newuserdata returned a pointer to the allocated area.
By having Lua allocate memory for the user, several com-
mon tasks related to userdata were simplified. For instance,
C code did not need to handle memory-allocation errors, be-
cause they were handled by Lua. More important, C code
did not need to handle memory deallocation: memory used
by such userdata was released by Lua automatically, when
the userdata was collected.

However, Lua 4 still did not offer a nice solution to the
search problem (i.e., finding a userdata given its C pointer).
So, it kept the lua_pushuserdata operation with its old be-
havior, resulting in a hybrid system. It was only in Lua 5 that
we removed lua_pushuserdata and dissociated userdata
creation and searching. Actually, Lua 5 removed the search-
ing facility altogether. Lua 5 also introduced light userdata,
which store plain C pointer values, exactly like regular user-
data in Lua 1. A program can use a weak table to associate
C pointers (represented as light userdata) to its correspond-
ing “heavy” userdata in Lua.

As is usual in the evolution of Lua, userdata in Lua 5
is more flexible than it was in Lua 4; it is also simpler to
explain and simpler to implement. For simple uses, which
only require storing a C structure, userdata in Lua 5 is trivial
to use. For more complex needs, such as those that require
mapping a C pointer back to a Lua userdata, Lua 5 offers
the mechanisms (light userdata and weak tables) for users to
implement strategies suited to their applications.

6.11 Reflectivity
Since its very first version Lua has supported some reflective
facilities. A major reason for this support was the proposed
use of Lua as a configuration language to replace SOL. As
described in §4, our idea was that the programmer could
use the language itself to write type-checking routines, if
needed.

For instance, if a user wrote something like

T = @track{ y=9, x=10, id="1992-34" }

we wanted to be able to check that the track did have a y
field and that this field was a number. We also wanted to be
able to check that the track did not have extraneous fields

(possibly to catch typing mistakes). For these two tasks, we
needed access to the type of a Lua value and a mechanism to
traverse a table and visit all its pairs.

Lua 1.0 provided the needed functionality with only two
functions, which still exist: type and next. The type func-
tion returns a string describing the type of any given value
("number", "nil", "table", etc.). The next function re-
ceives a table and a key and returns a “next” key in the ta-
ble (in an arbitrary order). The call next(t,nil) returns a
“first” key. With next we can traverse a table and process all
its pairs. For instance, the following code prints all pairs in a
table t:19

k = next(t,nil)

while k do

print(k,t[k])

k = next(t,k)

end

Both these functions have a simple implementation: type
checks the internal tag of the given value and returns the
corresponding string; next finds the given key in the table
and then goes to the next key, following the internal table
representation.

In languages like Java and Smalltalk, reflection must
reify concepts like classes, methods, and instance variables.
Moreover, that reification demands new concepts like meta-
classes (the class of a reified class). Lua needs nothing like
that. In Lua, most facilities provided by the Java reflective
package come for free: classes and modules are tables, meth-
ods are functions. So, Lua does not need any special mech-
anism to reify them; they are plain program values. Simi-
larly, Lua does not need special mechanisms to build method
calls at run time (because functions are first-class values and
Lua’s parameter-passing mechanism naturally supports call-
ing a function with a variable number of arguments), and it
does not need special mechanisms to access a global vari-
able or an instance variable given its name (because they are
regular table fields).20

7. Retrospect
In this section we give a brief critique of Lua’s evolutionary
process, discussing what has worked well, what we regret,
and what we do not really regret but could have done differ-
ently.

One thing that has worked really well was the early de-
cision (made in Lua 1.0) to have tables as the sole data-
structuring mechanism in Lua. Tables have proved to be
powerful and efficient. The central role of tables in the lan-
guage and in its implementation is one of the main character-

19 Although this code still works, the current idiom is ‘for k,v in

pairs(t) do print(k,v) end’.
20 Before Lua 4.0, global variables were stored in a special data structure
inside the core, and we provided a nextvar function to traverse it. Since
Lua 4.0, global variables are stored in a regular Lua table and nextvar is
no longer needed.
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istics of Lua. We have resisted user pressure to include other
data structures, mainly “real” arrays and tuples, first by be-
ing stubborn, but also by providing tables with an efficient
implementation and a flexible design. For instance, we can
represent a set in Lua by storing its elements as indices of
a table. This is possible only because Lua tables accept any
value as index.

Another thing that has worked well was our insistence on
portability, which was initially motivated by the diverse plat-
forms of Tecgraf’s clients. This allowed Lua to be compiled
for platforms we had never dreamed of supporting. In par-
ticular, Lua’s portability is one of the reasons that Lua has
been widely adopted for developing games. Restricted en-
vironments, such as game consoles, tend not to support the
complete semantics of the full standard C library. By gradu-
ally reducing the dependency of Lua’s core on the standard
C library, we are moving towards a Lua core that requires
only a free-standing ANSI C implementation. This move
aims mainly at embedding flexibility, but it also increases
portability. For instance, since Lua 3.1 it is easy to change
a few macros in the code to make Lua use an application-
specific memory allocator, instead of relying on malloc and
friends. Starting with Lua 5.1, the memory allocator can be
provided dynamically when creating a Lua state.

With hindsight, we consider that being raised by a small
committee has been very positive for the evolution of Lua.
Languages designed by large committees tend to be too
complicated and never quite fulfill the expectations of their
sponsors. Most successful languages are raised rather than
designed. They follow a slow bottom-up process, starting as
a small language with modest goals. The language evolves
as a consequence of actual feedback from real users, from
which design flaws surface and new features that are actually
useful are identified. This describes the evolution of Lua
quite well. We listen to users and their suggestions, but
we include a new feature in Lua only when all three of us
agree; otherwise, it is left for the future. It is much easier
to add features later than to remove them. This development
process has been essential to keep the language simple, and
simplicity is our most important asset. Most other qualities
of Lua — speed, small size, and portability — derive from its
simplicity.

Since its first version Lua has had real users, that is, users
others than ourselves, who care not about the language itself
but only about how to use it productively. Users have al-
ways given important contributions to the language, through
suggestions, complaints, use reports, and questions. Again,
our small committee plays an important role in managing
this feedback: its structure gives us enough inertia to listen
closely to users without having to follow all their sugges-
tions.

Lua is best described as a closed-development, open-
source project. This means that, even though the source
code is freely available for scrutiny and adaption, Lua is

not developed in a collaborative way. We do accept user
suggestions, but never their code verbatim. We always try
to do our own implementation.

Another unusual aspect of Lua’s evolution has been our
handling of incompatible changes. For a long time we con-
sidered simplicity and elegance more important than com-
patibility with previous versions. Whenever an old feature
was superseded by a new one, we simply removed the old
feature. Frequently (but not always), we provided some sort
of compatibility aid, such as a compatibility library, a con-
version script, or (more recently) compile-time options to
preserve the old feature. In any case, the user had to take
some measures when moving to a new version.

Some upgrades were a little traumatic. For instance, Tec-
graf, Lua’s birthplace, never upgraded from Lua 3.2 to
Lua 4.0 because of the big changes in the API. Currently,
a few Tecgraf programs have been updated to Lua 5.0, and
new programs are written in this version, too. But Tecgraf
still has a large body of code in Lua 3.2. The small size
and simplicity of Lua alleviates this problem: it is easy for a
project to keep to an old version of Lua, because the project
group can do its own maintenance of the code, when neces-
sary.

We do not really regret this evolution style. Gradually,
however, we have become more conservative. Not only is
our user and code base much larger than it once was, but
also we feel that Lua as a language is much more mature.

We should have introduced booleans from the start, but
we wanted to start with the simplest possible language. Not
introducing booleans from the start had a few unfortunate
side-effects. One is that we now have two false values: nil
and false. Another is that a common protocol used by Lua
functions to signal errors to their callers is to return nil
followed by an error message. It would have been better if
false had been used instead of nil in that case, with nil being
reserved for its primary role of signaling the absence of any
useful value.

Automatic coercion of strings to numbers in arithmetic
operations, which we took from Awk, could have been omit-
ted. (Coercion of numbers to strings in string operations is
convenient and less troublesome.)

Despite our “mechanisms, not policy” rule — which we
have found valuable in guiding the evolution of Lua — we
should have provided a precise set of policies for mod-
ules and packages earlier. The lack of a common policy for
building modules and installing packages prevents different
groups from sharing code and discourages the development
of a community code base. Lua 5.1 provides a set of policies
for modules and packages that we hope will remedy this sit-
uation.

As mentioned in §6.4, Lua 3.0 introduced support for con-
ditional compilation, mainly motivated to provide a means
to disable code. We received many requests for enhancing
conditional compilation in Lua, even by people who did not
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use it! By far the most popular request was for a full macro
processor like the C preprocessor. Providing such a macro
processor in Lua would be consistent with our general phi-
losophy of providing extensible mechanisms. However, we
would like it to be programmable in Lua, not in some other
specialized language. We did not want to add a macro facil-
ity directly into the lexer, to avoid bloating it and slowing
compilation. Moreover, at that time the Lua parser was not
fully reentrant, and so there was no way to call Lua from
within the lexer. (This restriction was removed in Lua 5.1.)
So endless discussions ensued in the mailing list and within
the Lua team. But no consensus was ever reached and no so-
lution emerged. We still have not completely dismissed the
idea of providing Lua with a macro system: it would give
Lua extensible syntax to go with extensible semantics.

8. Conclusion
Lua has been used successfully in many large companies,
such as Adobe, Bombardier, Disney, Electronic Arts, Intel,
LucasArts, Microsoft, Nasa, Olivetti, and Philips. Many of
these companies have shipped Lua embedded into commer-
cial products, often exposing Lua scripts to end users.

Lua has been especially successful in games. It was said
recently that “Lua is rapidly becoming the de facto stan-
dard for game scripting” [37]. Two informal polls [5, 6] con-
ducted by gamedev.net (an important site for game program-
mers) in September 2003 and in June 2006 showed Lua as
the most popular scripting language for game development.
Roundtables dedicated to Lua in game development were
held at GDC in 2004 and 2006. Many famous games use
Lua: Baldur’s Gate, Escape from Monkey Island, FarCry,
Grim Fandango, Homeworld 2, Illarion, Impossible Crea-
tures, Psychonauts, The Sims, World of Warcraft. There are
two books on game development with Lua [42, 25], and sev-
eral other books on game development devote chapters to
Lua [23, 44, 41, 24].

The wide adoption of Lua in games came as a surprise to
us. We did not have game development as a target for Lua.
(Tecgraf is mostly concerned with scientific software.) With
hindsight, however, that success is understandable because
all the features that make Lua special are important in game
development:

Portability: Many games run on non-conventional plat-
forms, such as game consoles, that need special devel-
opment tools. An ANSI C compiler is all that is needed
to build Lua.

Ease of embedding: Games are demanding applications.
They need both performance, for its graphics and simula-
tions, and flexibility, for the creative staff. Not by chance,
many games are coded in (at least) two languages, one
for scripting and the other for coding the engine. Within
that framework, the ease of integrating Lua with another

language (mainly C++, in the case of games) is a big ad-
vantage.

Simplicity: Most game designers, scripters and level writers
are not professional programmers. For them, a language
with simple syntax and simple semantics is particularly
important.

Efficiency and small size: Games are demanding applica-
tions; the time alloted to running scripts is usually quite
small. Lua is one of the fastest scripting languages [1].
Game consoles are restricted environments. The script in-
terpreter should be parsimonious with resources. The Lua
core takes about 100K.

Control over code: Unlike most other software enterprises,
game production involves little evolution. In many cases,
once a game has been released, there are no updates or
new versions, only new games. So, it is easier to risk
using a new scripting language in a game. Whether the
scripting language will evolve or how it will evolve is not
a crucial point for game developers. All they need is the
version they used in the game. Since they have complete
access to the source code of Lua, they can simply keep
the same Lua version forever, if they so choose.

Liberal license: Most commercial games are not open
source. Some game companies even refuse to use any
kind of open-source code. The competition is hard, and
game companies tend to be secretive about their tech-
nologies. For them, a liberal license like the Lua license
is quite convenient.

Coroutines: It is easier to script games if the scripting lan-
guage supports multitasking because a character or ac-
tivity can be suspended and resumed later. Lua supports
cooperative multitasking in the form of coroutines [14].

Procedural data files: Lua’s original design goal of provid-
ing powerful data-description facilities allows games to
use Lua for data files, replacing special-format textual
data files with many benefits, especially homogeneity and
expressiveness.
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Abstract  
This is an account of the development of the languages Modula-2 
and Oberon. Together with their ancestors ALGOL 60 and Pascal 
they form a family called Algol-like languages. Pascal (1970) 
reflected the ideas of structured programming, Modula-2 (1979) 
added those of modular system design, and Oberon (1988) catered 
to the object-oriented style. Thus they mirror the essential 
programming paradigms of the past decades. Here the major 
language properties are outlined, followed by an account of the 
respective implementation efforts. The conditions and the 
environments in which the languages were created are elucidated. 
We point out that simplicity of design was the most essential 
guiding principle. Clarity of concepts, economy of features, 
efficiency and reliability of implementations were its 
consequences. 

Categories and Subject Descriptors D.3.3 [Programming 
Languages]: Language Constructs and Features – abstract data 
types, classes and objects, modules. 

General Terms Design, Reliability, Languages. 

1. Background 
In the middle of the 1970s, the computing scene evolved around 
large computers. Programmers predominantly used time-shared 
"main frames" remotely via low-bandwidth (1200 b/s) lines and 
simple ("dumb") terminals displaying 24 lines of up to 80 
characters. Accordingly, interactivity was severely limited, and 
program development and testing was a time-consuming process. 
Yet, the power of computers – albeit tiny in comparison with 
modern devices – had grown considerably over the previous 
decade. Therefore the complexity of tasks, and thus that of 
programs, had grown likewise. The notion of parallel processes 
had become a concern and made programming even more 
difficult. The limit of our intellectual capability seemed to be 
reached, and a noteworthy conference in 1968 gave birth to the 
term software crisis [1, p.120]. 

Small wonder, then, that hopes rested on the advent of better 
tools. They were seen in new programming languages, symbolic 
debuggers, and team management. Dijkstra put the emphasis on 
better education. Already in the mid-1960s he had outlined his 
discipline of structured programming [3], and the language Pascal 
followed his ideas and represented an incarnation of a structured 
language [2]. But the dominating languages were FORTRAN in 

scientific circles and COBOL in business data processing. IBM’s 
PL/I was slowly gaining acceptance. It tried to unite the disparate 
worlds of scientific and business applications. Some further, 
"esoteric" languages were popular in academia, for example Lisp 
and its extensions, which dominated the AI culture with its list-
processing facilities. 

However, none of the available languages was truly suitable 
for handling the ever-growing complexity of computing tasks. 
FORTRAN and COBOL lacked a pervasive concept of data types 
like that of Pascal; and Pascal lacked a facility for piecewise 
compilation, and thus for program libraries. PL/1 offered 
everything to a certain degree. Therefore it was bulky and hard to 
master. The fact remained that none of the available languages 
was truly satisfactory. 

I was fortunate to be able to spend a sabbatical year at the new 
Xerox Research Laboratory in Palo Alto during this time. There, 
on the personal workstation Alto, I encountered the language 
Mesa, which appeared to be the appropriate language for 
programming large systems. It stemmed from Pascal [2, 38], and 
hence had adopted a strictly static typing scheme. But one was 
also allowed to develop parts of a system – called modules – 
independently, and to bind them through the linking loader into a 
consistent whole. This alone was nothing new. It was new, 
however, for strongly typed languages, guaranteeing type 
consistency between the linked modules. Therefore, compilation 
of modules was not called independent, but separate compilation. 
We will return to this topic later. 

As Pascal had been Mesa’s ancestor, Mesa served as Modula-
2’s guideline. Mesa had not only adopted Pascal’s style and 
concepts, but also most of its facilities, to which were added 
many more, as they all seemed either necessary or convenient for 
system programming. The result was a large language, difficult to 
fully master, and more so to implement. Making a virtue out of 
necessity, I simplified Mesa, retaining what seemed essential and 
preserving the appearance of Pascal. The guiding idea was to 
construct a genuine successor of Pascal meeting the requirements 
of system engineering, yet also to satisfy my teacher’s urge to 
present a systematic, consistent, appealing, and teachable 
framework for professional programming. 

In later years, I was often asked whether indeed I had designed 
Pascal and Modula-2 as languages for teaching. The answer is 
"Yes, but not only". I wanted to teach programming rather than a 
language. A language, however, is needed to express programs. 
Thus, the language must be an appropriate tool, both for 
formulating programs and for expressing the basic concepts. It 
must be supportive, rather than a burden! But I also hasten to add 
that Pascal and Modula-2 were not intended to remain confined to 
the academic classroom. They were expected to be useful in 
practice. Further comments can be found in [44]. 

To be accurate, I had designed and implemented the 
predecessor language Modula [7 - 9] in 1975. It had been 
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conceived not as a general-purpose language, but rather as a 
small, custom-tailored language for experimenting with 
concurrent processes and primitives for their synchronization. Its 
features were essentially confined to this topic, such as process, 
signal, and monitor [6]. The monitor, representing critical regions 
with mutual exclusion, mutated into modules in Modula-2. 
Modula-2 was planned to be a full-scale language for 
implementing the entire software for the planned personal 
workstation Lilith [12, 19]. This had to include device drivers and 
storage allocator, as well as applications like document 
preparation and e-mail systems. 

As it turned out later, Modula-2 was rather too complex. The 
result of an effort at simplification ten years later was Oberon. 

2. The Language Modula-2 
The defining report of Modula-2 appeared in 1979, and a textbook 
on it in 1982 [13]. A tutorial was published, following the 
growing popularity of the language [17, 18]. In planning Modula-
2, I saw it as a new version of Pascal updated to the requirements 
of the time, and I seized the opportunity to correct various 
mistakes in Pascal’s design, such as, for example, the syntactic 
anomaly of the dangling "else", the incomplete specification of 
procedure parameters, and others. Apart from relatively minor 
corrections and additions, the primary innovation was that of 
modules. 

2.1 Modules 

ALGOL had introduced the important notions of limited scopes of 
identifiers and of the temporary existence of objects. The limited 
visibility of an identifier and the limited lifetime of an object 
(variable, procedure), however, were tightly coupled: All existing 
objects were visible, and the ones that were not visible did not 
exist (were not allocated). This tight coupling was an obstacle in 
some situations. We refer to the well-known function to generate 
the next pseudo-random number, where the last one must be 
stored to compute the next, while remaining invisible. ALGOL’s 
designers noticed this and quickly remedied the shortcoming by 
introducing the own property, an unlucky idea. An example is the 
following procedure for generating pseudo-random numbers (c1, 
c2, c3 stand for constants): 

 
real procedure random; 
begin own real x; 
    x := (c1*x + c2) mod c3; random := x 
end 
 

Here x is invisible outside the procedure. However, its computed 
value is retained and available the next time the procedure is 
called. Hence x cannot be allocated on a stack like ordinary local 
variables. The inadequacy of the own concept becomes apparent 
if one considers how to give an initial value to x. 

Modula’s solution was found in a second facility for 
establishing a scope, the module. In the first facility, the 
procedure (block in ALGOL), locally declared objects are allocated 
(on a stack) when control reaches the procedure, and deallocated 
when the procedure terminates. With the second, the module, no 
allocation is associated; only visibility is affected. The module 
merely constitutes a wall around the local objects, through which 
only those objects are visible that are explicitly specified in an 
"export" or an "import" list. In other words, the wall makes every 
identifier declared within a module invisible outside, unless it 
occurs in the export list, and it makes every identifier declared in 
a surrounding module - possibly the universe - invisible inside, 

unless it occurs in the module’s import list. This definition makes 
sense if modules are considered as nestable, and it represents the 
concept of information hiding as first postulated by Parnas in 
1972 [4]. 

Visibility being controlled by modules and existence by 
procedures, the example of the pseudo-random number generator 
now turns out as follows in Modula-2. Local variables of modules 
are allocated when the module is loaded, and remain allocated 
until the module is explicitly discarded: 

 
module RandomNumbers; 
    export random; 
    var x: real; 
    procedure random(): real; 
    begin x := (c1*x +c2) mod c3; return x 
    end random; 
begin x := c0  (*seed*) 
end RandomNumbers 
 

The notation for a module was chosen identical to that of a 
monitor proposed by Hoare in 1974 [6], but lacks connotation of 
mutual exclusion of concurrent processes (as it was in Modula-1 
[7]).  
Modula-2’s module can also be regarded as a representation of 
the concept of abstract data type postulated by Liskov in 1974 
[5]. A module representing an abstract type exports the type, 
typically a record structured type, and the set of procedures and 
functions applicable to it. The type’s structure remains invisible 
and inaccessible from the outside of the module. Such a type is 
called opaque. This makes it possible to postulate module 
invariants. Probably the most popular example is the stack. (For 
simplicity, we refrain from providing the guards s.n < N for push 
and s.n > 0 for pop). 

 
module Stacks; 
    export Stack, push, pop, init; 
    type Stack = record n: integer; (*0 ≤ n < N*) 
                             a: array N of real 
                          end ; 
    procedure push(var s: Stack; x: real); 
    begin s.a[s.n] := x; inc(s.n) end push; 
    procedure pop(var s: Stack): real; 
    begin dec(s.n); return s.a[s.n] end pop; 
    procedure init(var s: Stack); 
    begin s.n := 0 end init 
end Stacks 
 

Here, for example, it would be desirable to parameterize the type 
definition with respect to the stack’s size and element type (here 
N and real). The impossibility to parametrize shows the 
limitations of Modula-2’s module construct. As an aside, we note 
that in object-oriented languages the concept of data type is 
merged with the module concept and is called a class. The fact 
remains that the two notions have different purposes, namely data 
structuring and information hiding, and they should not be 
confused, particularly in languages used for teaching 
programming. 

The basic idea behind Mesa’s module concept was also 
information hiding, as communicated by Geschke, Morris and 
Mitchell in various discussions [10, 11]. But its emphasis was on 
decomposing very large systems into relatively large components, 
called modules. Hence, Mesa’s modules were not nestable, but 
formed separate units of programs. Clearly, the key issue was to 
interface, to connect such modules. However, it was enticing to 
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unify the concepts of information hiding, nested modules, 
monitors, abstract data types, and Mesa system units into a single 
construct. In order to consider a (global) module as a program, we 
simply need to imagine a universe into which global modules are 
exported and from which they are imported. 

A slight distinction between inner, nested modules and global 
modules seemed nevertheless advisable from both the conceptual 
and implementation aspects. After all, global modules appear as 
the parts of a large system that are typically implemented by 
different people or teams. The key idea is that such teams design 
the interfaces of their parts together, and then can proceed with 
the implementations of the individual modules in relative 
isolation. To support this paradigm, Mesa’s module texts were 
split in two parts; the implementation part corresponds to the 
conventional "program". The definition part is the summary of 
information about the exported objects, the module’s interface, 
and hence replaces the export list. 

If we reformulate the example of module Stacks under this 
aspect, its definition part is 

 
definition Stacks; 
    type Stack; 
    procedure push(var s: Stack; x: real); 
    procedure pop(var s: Stack): real; 
    procedure init(var s: Stack); 
end Stacks 
 

This, in fact, is exactly the information a user (client) of module 
Stacks needs to know. He must not be aware of the actual 
representation of stacks, which implementers may change even 
without notifying clients. Twenty-five years ago, this watertight 
and efficiently implemented way of type and version consistency 
checking put Mesa and Modula-2 way ahead of their successors, 
including the popular Java and C++. 

Modula-2 allowed two forms of specifying imports. In the 
simple form, the module’s identifier is included in the import list: 

 
import M 
 

In this case all objects exported by M become visible. For 
example, identifiers push and pop declared in Stacks are denoted 
by Stacks.push and Stacks.pop respectively. When using the 
second form 

 
from M import x, P 
 
the unqualified identifiers x and P denote the respective 

objects declared in M. This second form became most frequently 
used, but in retrospect proved rather misguided. First, it could 
lead to clashes if the same identifier was exported by two 
different (imported) modules. And second, it was not immediately 
visible in a program text where an imported identifier was 
declared. 

A further point perhaps worth mentioning in this connection is 
the handling of exported enumeration types. The desire to avoid 
long export lists led to the (exceptional) rule that the export of an 
enumeration type identifier implies the export of all constant 
identifiers of that type. As nice as this may sound to the 
abbreviation enthusiast, it also has negative consequences, again 
in the form of identifier clashes. This occurs if two enumeration 
types are imported that happen to have a common constant 
identifier. Furthermore, identifiers may now appear that are 
neither locally declared, nor qualified by a module name, nor 

visible in an import list, an entirely undesirable situation in a 
structured language. 

Whereas the notation for the module concept is a matter of 
language design, the paradigm of system development by teams 
influenced the implementation technique, the way modules are 
compiled and linked. Actually, the idea of compiling parts of a 
program, such as subroutines, independently was not new; it 
existed since the time of FORTRAN. However, strongly typed 
languages add a new aspect: Type compatibility of variables and 
operators must be guaranteed not only among statements within a 
module, but also, and in particular, between modules. Hence, the 
term separate compilation was used in contrast to independent 
compilation without consistency checks between modules. With 
the new technique the definition (interface) of a module is 
compiled first, thereby generating a symbol file. This file is 
inspected not only upon compilation of the module itself, but also 
each time a client module is compiled. The specification of a 
module name in the import list causes the compiler to load the 
respective symbol file, providing the necessary information about 
the imported objects. A most beneficial consequence is that the 
inter-module checking occurs at the time of compilation rather 
than each time a module is linked. 

One might object that this method is too complicated, and that 
the same effect is achieved by simply providing the service 
module’s definition (interface) in source form whenever a client is 
compiled. Indeed, this solution was adopted, for example in 
Turbo Pascal with its include files, and in virtually all successors 
up to Java. But it misses the whole point. In system development, 
modules undergo changes, and they grow. In short, new versions 
emerge. This bears the danger of linking a client with wrong, old 
versions of servers - with disastrous consequences. A linker must 
guarantee the correct versions are linked, namely the same as 
were referenced upon compilation. This is achieved by letting the 
compiler provide every symbol file and every object file with a 
version key, and to make compilers and linkers check the 
compatibility of versions by inspecting their keys. This idea went 
back to Mesa; it quickly proved to be an immense benefit and 
soon became indispensable. 

2.2 Procedure Types 

An uncontroversial, fairly straightforward, and most essential 
innovation was the procedure type, also adopted from Mesa. In a 
restricted form it had been present also in Pascal, even ALGOL, 
namely in the form of parametric procedures. Hence, the concept 
needed only to be generalized, i.e. made applicable to parameters 
and variables. In respect to Pascal (and ALGOL), the mistake of 
incomplete parameter specification was amended, making the use 
of procedure types type-safe. This is an apparently minor, but in 
reality most essential point, because a type-consistency checking 
system is worthless if it contains loopholes. 

2.3 The Type CARDINAL 

The 1970s were the time of the 16-bit minicomputers. Their word 
length offered an address range from 0 to 216-1, and thus a 
memory size of 64K. Whereas around 1970, this was still 
considered adequate, it later became a severe limitation, as 
memories became larger and cheaper. Unfortunately, computer 
architects insisted on byte addressing, thus covering only 32K 
words. 

In any case, address arithmetic required unsigned arithmetic. 
Consequently, signed as well as unsigned arithmetic was offered, 
which effectively differed only in the interpretation of the sign bit 
in comparisons and in multiplication and division. We therefore 
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introduced the type CARDINAL (0 ... 216-1) to the set of basic 
data types, in addition to INTEGER (-215 … 215-1). This 
necessity caused several surprises. As a subtle example, the 
following statement, using a CARDINAL variable x, became 
unacceptable. 

 
x := N-1;  while x ≥ 0 do S(x); x := x-1 end 
 

The correct solution, avoiding a negative value of x, is of course 
 
x := N;  while x > 0 do x := x-1; S(x) end 
 

Also, the definitions of division and remainder raised problems. 
Whereas mathematically correct definitions of quotient q and 
remainder r of integer division x by y satisfy the equation 

 
q×y + r = x,    0 ≤ r < y 
 

which yields, for example (7 div 3) = 2 and (-7 div 3) = -3, and 
thus corresponds to the definitions postulated in Modula, although 
most available computers  provided a division,  where (-x) div y = 
-(x div y), that is, (-7 div 3) = -2. 

2.4 Low-level Facilities 

Facilities that make it possible to express situations that do not 
properly fit into the set of abstractions constituting the language, 
but rather mirror properties of the computer are called low-level 
facilities. Although necessary at the time – for example, to 
program device drivers and storage managers - I believe that they 
were introduced too lightheartedly, in the naive assumption that 
programmers would use them only sparingly and as a last resort. 
In particular, the concept of type transfer function was a major 
mistake. It allows the type identifier T to be used in expressions 
as a function identifier: The value of T(x) is equal to x, whereby x 
is interpreted as being of type T, i.e. x is cast into a T. This 
interpretation inherently depends on the underlying (binary) 
representation of data types. Therefore, every program making 
use of this facility is inherently implementation-dependent, a clear 
contradiction of the fundamental goal of high-level languages. 

In the same category of easily misused features is the variant 
record, a feature inherited from Pascal (see [13, Chap. 20]). The 
real stumbling block is the variant without tag field. The tag 
field’s value is supposed to indicate the structure currently 
assumed by the record. If a tag is missing, it is impossible to 
determine the current variant. It is exactly this lack that can be 
misused to access record fields with intentionally "wrong" types. 

2.5 What Was Left Out 

Hoare used to remark that a language is indeed defined by the 
features it includes, but more so even by those that it excludes. 
My own guideline was to omit features whose correct semantics 
and best form were still unknown. Therefore it is worth while 
mentioning what was left out. 

Concurrency was a hot topic, and still is. There was no clear 
favorite way to express and control concurrency, and hence no set 
of language constructs that clearly offered themselves for 
inclusion. One basic concept was seen in concurrent processes 
synchronized by signals (or conditions) and involving critical 
regions of mutual exclusion in the form of monitors [6]. Yet, it 
was decided that only the very basic notion of coroutines would 
be included in Modula-2, and that higher abstractions should be 
programmed as modules based on coroutines. This decision was 
even more plausible because the primitives could well be 

classified as low-level facilities, and their realization encapsulated 
in a module (see [13, Chaps. 30 and 31]). 

We also abandoned the belief that interrupt handling should 
be treated by the same mechanism as programmed process 
switching. Interrupts are typically subject to specific real-time 
conditions. Real-time response is impaired beyond acceptable 
limits if interrupts are handled by very general, complicated 
switching and scheduling routines. 

Exception handling was widely considered a must for any 
language suitable for system programming. The concept 
originated from the need to react in special ways to rare 
situations, such as arithmetic overflow, index values being 
beyond a declared range, access via nil-pointer, etc., generally 
conditions of "unforeseen" error. Then the concept was extended 
to let any condition be declarable as an exception requiring 
special treatment. What lent this trend some weight was the fact 
that the code handling the exception might lie in a procedure 
different from the one in which the exception occurred (was 
raised), or even in a different module. This precluded the 
programming of exception handling by conventional conditional 
statements. Nevertheless, we decided not to include exception 
handling (with the exception of the ultimate exception called 
Halt). 

Modula-2 features pointers and thereby implies dynamic 
storage allocation. Allocation of a variable x↑ is expressed by the 
standard procedure Allocate(x), typically taking storage from a 
pool area (heap). A return of storage to the pool is signaled by the 
standard procedure Deallocate(x). This was known to be a highly 
unsatisfactory solution, because it allows a program to return 
records to free storage that are still reachable from other, valid 
pointer variables, and therefore constitutes a rich source of 
disastrous errors. 

The alternative is to postulate a global storage management 
that retrieves unused storage automatically, that is, a garbage 
collector. We rejected this for several reasons. 
1. I believed it was better for programmers to devise their own 

storage managers, thus obtaining the most effective use of 
storage for the case at hand. This was of great importance at 
the time, considering the small memory size, such as 64k 
bytes for the PDP-11, on which Modula-2 was first 
implemented. 

2. Garbage collectors could activate themselves at unpredictable 
times and hence preclude dependable real-time performance, 
which was considered an important domain of applications of 
Modula-2. 

3. Garbage collectors must rely on incorruptible metadata about 
all variables in use. Given the many loopholes for breaching 
the typing system, it was considered impossible to devise 
secure garbage collection with reasonable effort. The 
flexibility of the language had become its own impediment. 
Even today, providing a garbage collector with an unsafe 
language is a sure guarantee of occasional crashes. 

3. Implementations 
Although a preliminary technical memorandum stating certain 
goals and concepts of the new language was written in 1977, the 
effective language design took place in 1978-79. Concurrently, a 
compiler implementation project was launched. The available 
machinery was a single DEC PDP-11 with a 64K-byte store. The 
single-pass strategy of our Pascal compilers could not be adopted; 
a multipass approach was unavoidable in view of the small 
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memory. It had actually been the Mesa implementation at Xerox’s 
Palo Alto Research Center (PARC) that had proved possible what 
I had believed impracticable, namely to build a complete compiler 
operating on a small computer. The first Modula-2 compiler, 
written by van Le in 1977, consisted of seven passes, each 
generating sequential output written onto the 2M-byte disk. This 
number was reduced to five passes in a second design by 
Ammann in 1979. The first pass, the scanner, generated a token 
string and a hash table of identifiers. The second pass (parser) 
performed syntax analysis, and the third pass handled type 
checking. Passes 4 and 5 were devoted to code generation. This 
compiler was operational in early 1979. 

In the meantime, a new Modula-2 compiler was designed in 
1979-80 by Geissmann and Jacobi with the PDP-11 compiler as a 
guide, but taking advantage of the features of the new Lilith 
computer. Lilith was designed by the author and Ohran along the 
guidelines of the Xerox Alto [12, 19, 21]. It was based on the 
excellent Am2901 bit-slice processor of AMD and was 
microprogrammed. The new Modula-2 compiler consisted of only 
four passes, code generation being simplified due to the new 
architecture. Development took place on the PDP-11. 
Concurrently, the operating system Medos was implemented by 
Knudsen, a system essentially following in the footsteps of batch 
systems with program load and execute commands entered from 
the keyboard. At the same time, display and window software was 
designed by Jacobi. It served as the basis of the first application 
programs, such as a text editor - mostly used for program editing - 
featuring the well-known techniques of multiple windows, a 
cursor/mouse interface, and pop-up menus. 

By 1981, Modula-2 was in daily use and quickly proved its 
worth as a powerful, efficiently implemented language. In 
December 1980, a pilot series of 20 Liliths, manufactured in Utah 
under Ohran’s supervision, had been delivered to ETH Zürich. 
Further software development proceeded with a more than 20-fold 
hardware power at our disposal. A genuine personal workstation 
environment had successfully been established. 

During 1984, the author designed and implemented yet 
another compiler for Modula-2. It was felt that compilation could 
be handled more simply and more efficiently if full use were 
made of the now available larger store which, by today’s 
measures, was still very small. Lilith's 64K-word memory and its 
high code density allowed the realization of a single-pass 
compiler. This resulted in a dramatic reduction in disk operations. 
Indeed, compilation time of the compiler itself was reduced from 
some four minutes to a scant 45 seconds. 

The new, much more compact compiler retained the 
partitioning of tasks. Instead of each task constituting a pass with 
sequential input from and output to disk, it constituted a module 
with a procedural interface. Common data structures, such as the 
symbol table, were defined in a data-definition module imported 
by (almost) all other modules. These modules represented a 
scanner, a parser, a code generator, and a handler of symbol files. 
During all these reimplementations, the language remained 
practically unchanged. The only significant change was the 
deletion of the explicit export lists in the definition parts of 
modules. The list is redundant because all identifiers declared in a 
definition text are exported. The compilation of imports and 
exports constituted a remarkable challenge for the objective of 
economy of linking data and with the absence of automatic 
storage management [24]. 

Over the years, it became clear that designers of control and 
data acquisition systems found Modula-2 particularly attractive. 
This was due to the presence of both low-level facilities to control 
interfaces and of modules to encapsulate critical, device-specific 

parts. A Modula-2 compiler was offered by two British 
companies, but Modula-2 never experienced the same success as 
Pascal and never became as widely known. The primary reason 
was probably that Pascal had been riding on the back of the 
micro-computer wave invading homes and schools, reaching a 
class of people not infected by earlier programming languages 
and habits. Modula-2, on the other hand, was perceived as merely 
an upgrade on Pascal, hardly worth the effort of a language 
transition. The author, however, naively believed that everyone 
familiar with Pascal would happily welcome the additions and 
improvements of Modula-2. 

Nevertheless, numerous implementation efforts proceeded at 
various universities for various computers [15, 16, 23]. 
Significant industrial projects adopted Modula-2. Among them 
was the control system for a new line of the Paris Metro and the 
entire software for a new Russian satellite navigation system. 
User’s groups were established and conferences held, with 
structured programming in general and Pascal and Modula-2 in 
particular, as their themes. A series of tri-annual Joint Modular 
Languages Conferences (JMLC) started in 1987 in Bled 
(Slovenia), followed by events in Loughborough (England, 1990), 
Ulm (Germany, 1994), Linz (Austria, 1997), Zürich (Switzerland, 
2000), Klagenfurt (Austria, 2003) and Oxford (England, 2006). 
Unavoidably, suggestions for extensions began to appear in the 
literature [25]. Even a direct successor was designed, called 
Modula-3 [33], in cooperation between DEC’s Systems Research 
Center (SRC) and Olivetti’s Research Laboratory in Palo Alto. 
Both had adopted Modula-2 as their principal system 
implementation language. 

Closer to home, the Modula/Lilith project had a significant 
impact on our own future research and teaching activities. With 
20 personal workstations available in late 1980, featuring a 
genuine high-level language, a very fast compiler, an excellent 
text editor, a high-resolution display, a mouse, an Ethernet 
connecting the workstations, a laser printer, and a central file 
server, we had in 1981 the first modern computing environment 
outside America. This gave us the opportunity to develop modern 
software for future computers fully five years before of the first 
such system became commercially available, the Apple 
Macintosh, which was a scaled-down version of the Alto of 10 
years before. Of particular value were our projects in modern 
document preparation and font design [20, 22]. 

4. From Modula to Oberon 
As my sabbatical year at Xerox in 1976/77 had inspired me to 
design the personal workstation Lilith in conjunction with 
Modula-2, my second stay in 1984/85 provided the necessary 
inspiration and motivation for the language and operating system 
Oberon [29, 30]. Xerox PARC’s Cedar system for its extremely 
powerful Dorado computer was based on the windows concept 
developed also at PARC for Smalltalk.  

The Cedar system [14] was – to this author’s knowledge – the 
first operating system that featured a mode of operation 
completely different from the then-conventional batch processing 
mode. In a batch system, a permanent loop accepts command 
lines from a standard input source. Each command causes the 
loading, execution, and release of a program. Cedar, in contrast, 
allowed many programs to remain allocated at the same time. It 
did not imply (storage) release after execution. Switching the 
processor from one program to another was done through the 
invocation of a program’s commands, typically represented by 
buttons or icons in windows (called viewers) belonging to the 
program. This scheme had become feasible through the advent of 
large main stores (up to several hundred kilobytes), high-
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resolution displays (up to 1000 by 800 pixels), and powerful 
processors (with clock rate up to 25 Megahertz). 

Because I was supposed to teach the main course on system 
software and operating system design after my return from 
sabbatical leave, my encounter with the novel Cedar experiment 
appeared as a lucky coincidence. But how could I possibly teach 
the subject in good conscience without truly understanding it? 
Thus the idea was born of gaining first-hand experience by 
designing such a modern operating system on my own, with 
Cedar as the primary source of ideas. 

Fortunately, my colleague Jürg Gutknecht concurrently spent a 
sabbatical semester at PARC in the summer of 1985. We both 
were intrigued by this new style of working with a computer, but 
at the same time also appalled by the system’s complexity and 
lack of a clear, conceptual basis. This lack was probably due to 
the merging of several innovative ideas, and partly also due to the 
pioneers’ contagious enthusiasm encouraged by the apparently 
unbounded future reservoir of hardware resources. 

But how could the two of us possibly undertake and 
successfully complete such a large task? Were we not victims of 
an exuberant overestimation of our capabilities, made possible 
only by a naïve ignorance of the subject? We felt the strong urge 
to try and risk failure. We believed that a turnaround from the 
world-wide trend to more and more unmanageable complexity 
was long overdue. We felt that the topic was worthy of academic 
pursuit, and that ultimately teachers, students, and practitioners of 
computing would benefit from it. 

We both felt challenged to mold the new concepts embodied 
by Cedar into a scheme that was clearly defined and therefore 
easy to teach and understand. Concentration on the essentials, 
omission of "nice-to-have" features, and careful planning before 
coding were no well-meaning guidelines heard in a classroom, but 
an absolute necessity considering the size of the task. The 
influence of the Xerox Lab was thus – the reader will excuse 
some oversimplification – twofold: We were inspired by what 
could be done, and shown how not to do it. The essential, 
conceptual ingredients of our intentions are summarized as 
follows: 

1. Clear separation of the notion of program into the two 
independent notions of (1) the module as the unit of 
compilable text and of code and data to be loaded into the 
store (and discarded from it), and (2) the procedure as the 
unit of action invoked by a command. 

2. The elimination of the concept of command lines written 
from the keyboard into a special command viewer. Actions 
would now be invoked by mouse-button clicking (middle 
button = command button) on the command name 
appearing in any arbitrary text in any viewer. The form of 
a command name, M.P, P denoting the procedure and M 
the module of which P is a part, would allow a simple 
search in the lists of loaded modules and M’s commands. 

3. The core of execution being a tight loop located at the 
bottom of the system. In this loop the common sources of 
input (keyboard, mouse, net) are continuously sampled. 
Any input forming a command causes the dispatch of 
control to the appropriate procedure (by an upcall) if 
needed after the prior loading of the entire module 
containing it (load on demand). Note that this scheme 
excludes the preemption of program execution at arbitrary 
points. 

4. Storage retrieval by a single, global garbage collector. 
This is possible only under the presence of a watertight, 
preferably static type-checking concept. Deallocation of 
entire modules (code, global variables) occurs only 
through commands explicitly issued by the user. 

5. Postulation of a simple syntax for (command) texts, paired 
with an input scanner parsing this syntax. 

These five items describe the essence of our transition from batch 
mode operation to a modern, interactive multiviewer operating 
environment, manifest by the transition from the Modula-2 to the 
Oberon world [30, 35]. The clearly postulated conceptual basis 
made it possible for two programmers (J. Gutknecht and me) 
alone to implement the entire system, including the compiler and 
text processing machinery, in our spare time during only two 
years (1987-89). The tiny size of this team had a major influence 
on the conceptual consistency and integrity of the resulting 
system, and certainly also on its economy. 

We emphasize that the aspects mentioned concern the system 
rather than the language Oberon. A language is an abstraction, a 
formal notation; notions such as command line, tight control loop, 
and garbage collector do not and must not occur in a language 
definition because they concern the implementation only. 
Therefore, let us now turn our attention to the language proper. As 
for the system, our intention was also for the language to strive 
for conceptual economy, to simplify Modula-2 where possible. As 
a consequence, our strategy was first to decide what should be 
omitted from Modula-2, and thereafter to decide which additions 
were necessary. 

5. The Language Oberon 
The programming language Oberon was the result of a 
concentrated effort to increase the power of Modula-2 and 
simultaneously to reduce its complexity. Oberon is the last 
member of a family of "ALGOL-like" languages that started with 
ALGOL 60, followed by ALGOL-W, Pascal, Modula-2, and ended 
with Oberon [27, 28]. By "ALGOL-like" is meant the procedural 
paradigm, a rigorously defined syntax, traditional mathematical 
notation for expressions (without esoteric ++, ==, /= symbols), 
block structure providing scopes of identifiers and the concept of 
locality, the availability of recursion for procedures and functions, 
and a strict, static data typing scheme. 

The principal guideline was to concentrate on features that are 
basic and essential and to omit ephemeral issues. This was 
certainly sensible in view of the very limited manpower available. 
But it was also driven by the recognition of the cancerous growth 
of complexity in languages that had recently emerged, such as C, 
C++ and Ada, which appeared even less suitable for teaching than 
for engineering in industry. Even Modula-2 now appeared overly 
bulky, containing features that we had rarely used. Their 
elimination would not cause a sacrifice. To try to crystallize the 
essential - not only the convenient and conventional - features 
into a small language seemed like a worthwhile (academic) 
exercise [28, 43]. 

5.1 Features Omitted from Oberon 

A large number of standard data types not only complicates 
compilers but also makes it more difficult to teach and master a 
language. Hence, data types were a primary target of our 
simplification zeal. 

An undisputed candidate for elimination was Modula’s variant 
record. Introduced with the laudable intent of providing 
flexibility in data structuring, it ended up mostly being misused to 
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breach the typing concept. The feature allows interpretation of a 
data record in various ways according to various overlaid field 
templates, where one of them is marked as valid by the current 
value of a tag field. The true sin was that this tag could be 
omitted. For more details, the reader is referred to [13, Chap. 20]. 

Enumeration types would appear to be an attractive and  
innocent enough concept to be retained. However, a problem 
appeared in connection with import and export: Would the export 
of an enumeration type automatically also export the constants’ 
identifiers, which would have to be prefixed with the module’s 
name? Or, as in Modula-2, could these constant identifiers be 
used unqualified? The first option was unattractive because it 
produced unduly long names for constants, and the second 
because identifiers would appear without any declaration. As a 
consequence, the enumeration feature was dropped. 

Subrange types were also eliminated. Experience had shown 
that they were used almost exclusively for indexing arrays. 
Hence, range checks were necessary for indexing rather than for 
assignment to a variable of subrange type. Lower array bounds 
were fixed to 0, making index checks more efficient and subrange 
types even less useful. 

Set types had proved to be of limited usefulness in Pascal and 
Modula-2. Sets implemented as bit strings of the length of a 
"word" were rarely used, even though union and intersection 
could be computed by a single logical operation. In Oberon, we 
replaced general set types by the single, predefined type set, with 
elements 0 – 31. 

After lengthy discussion, it was decided (in 1988) to merge the 
definition text of a module with its implementation text. This may 
have been a mistake from the pedagogical point of view. The 
definitions should clearly be designed first as contracts between 
its designer and the module’s clients. Instead, now all exported 
identifiers were simply to be marked in their declaration (by an 
asterisk). The advantages of this solution were that a separate 
definition text became superfluous and that the compiler was 
relieved of consistency checking (of procedure signatures) 
between the two texts. An influential argument for the merger was 
that a separate definition text could be generated automatically 
from the module text. 

The qualified import option of Modula-2 was dropped. Now 
every occurrence of an imported identifier must be preceded by 
its defining module’s name. This actually turned out to be of great 
benefit when reading programs. The import list now contains 
module names only. This we believe to be a good example of the 
art of simplification: A simplified version of Mesa’s module 
machinery was further simplified without compromising the 
essential ideas behind the facility: information hiding and type-
safe separate compilation. 

The number of low-level facilities was sharply reduced, and in 
particular type-transfer functions were eliminated. The few 
remaining low-level functions were encapsulated in a pseudo-
module whose name would appear in the prominently visible 
import list of every module making use of such low-level 
facilities. 

By eliminating all potentially unsafe facilities, the most 
essential step was finally made to a truly high-level language. 
Watertight type checking, also across modules, strict index 
checking at runtime, nil-pointer checking, and the safe type-
extension concept let the programmer rely on the language rules 
alone. There was no longer a need to know about the underlying 
computer or how the language is translated and data are 
represented. The old goal, that a language must be defined 
without mentioning an executing mechanism, had finally been 
reached. Clean abstraction from machines and genuine portability 

had become a reality. Apart from this, absolute type safety is (an 
often ignored truth) also an undisputable prerequisite for an 
underlying automatic storage management (garbage collector). 

One feature must be mentioned that in hindsight should have 
been added: finalization, implying the automatic execution of a 
specified routine when a module is unloaded or a record (object) 
is collected. Inclusion of finalization had been discussed, but its 
cost and implementation effort had been judged too high relative 
to its benefit. However, its importance was underestimated, 
particularly that of a module being unloaded. 

5.2 New Features Introduced in Oberon 

Only two new features were introduced in Oberon: Type 
extension and type inclusion. This is surprising, considering the 
large number of eliminations.  

The concept of type inclusion binds all arithmetic types 
together. Every one of them defines a range of values that 
variables of that type can assume. Oberon features five arithmetic 
types: 

 
longreal  ⊇  real  ⊇  longint  ⊇  integer  ⊇  shortint 
 

The concept implies that values of the included type can be 
assigned to variables of the including type. Hence, given 

 
var i: integer; k: longint; x: real 
 

assignments k := i and x := i are legal, whereas i := k and k := x 
are not. In hindsight, the fairly large number of arithmetic types 
looks like a mistake. The two types integer and real might have 
been sufficient. The decision was taken in view of the high 
importance of storage economy at the time, and because the target 
processor featured instruction sets for all five types. Of course, 
the language definition did not forbid implementations to treat 
integer, longint, and shortint, or real and longreal as the same. 

The vastly more important new feature was type extension [26, 
39]. Together with procedure-typed fields of record variables, it 
constitutes the technical foundation of the object-oriented 
programming style. The concept is better known under the 
anthropomorphic term inheritance. Consider a record type (class) 
Window (T0) with coordinates x, y, width w and height h. It would 
be declared as 

 
T0  =  record x, y, w, h: integer end 
 

T0 may serve as the basis of an extension (subclass) TextWindow 
(T1), declared as 

 
T1  =  record (T0) t: Text end 
 

implying that T1 retains (inherits) all properties, (x, y, w and h) 
from its base type T0, and in addition features a text field t. It also 
implies that all T1s are also T0s, thereby letting us to form 
heterogeneous data structures. For example, the elements of a tree 
may be defined as of type T0. However, individually assigned 
elements may be of any type that is an extension of T0, such as a 
T1. 

The only new operation required is the type test. Given a 
variable v of type T0, the Boolean expression v is T is used to 
determine the effective, current type assigned to v. This is a run-
time test. 

Type extension alone, in addition to procedure types, is 
necessary for programming in object-oriented style. An object 
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type (class) is declared as a record containing procedure-typed 
fields, also called methods. For example: 

type viewer = pointer to record x, y, w, h: integer; 
move: procedure (v: viewer; dx, dy: integer); 

            draw: procedure (v: viewer; mode: integer); 
   end 
 

The operation of drawing a certain viewer v is then expressed by 
the call v.draw(v, 0). The first v serves to qualify the method draw 
as belonging to the type viewer, the second v designates the 
specific object to be drawn. 

This reveals that object-oriented programming is effectively a 
style based on (inheriting) conventional procedural programming. 
Surprisingly, most people did not see Oberon as supporting 
object-orientation, simply because it did not use the new 
terminology. In 1990, Mössenböck spearheaded an effort to 
amend this apparent shortcoming and to implement a slight 
extension called Oberon-2 [34]. In Oberon-2 methods, i.e. 
procedures bound to a record type, were clearly marked as 
belonging to a record, and they implied a special parameter 
designating the object to which the method was to be applied. As 
a consequence, such methods were considered constants and 
therefore required an additional feature for replacing methods 
called overriding. 

6. Implementations 
The first ideas leading to Oberon were drafted in 1985, and the 
language was fully defined in early 1986 in close cooperation 
with J. Gutknecht. The report was only 16 pages long [28]. 

The first compiler was programmed by this author, deriving it 
from the single-pass Modula-2 compiler. It was written in (a 
subset of) Modula-2 for Lilith with the clear intention to translate 
it into Oberon, and it generated code for our Ceres workstation, 
equipped with the first commercial 32-bit microprocessor 
NS32032 of National Semiconductor Corporation. The compiled 
code was downloaded over a 2400 bit/s serial data line. As 
expected, the compiler was considerably simpler than its Modula-
2 counterpart, although code generation for the NS processor was 
more complex than for Lilith’s bytecode. 

With the porting of the compiler completed, the development 
of the operating environment could begin. This system, 
(regrettably) also called Oberon, consisted of a file system, a 
display management system for windows (called viewers), a text 
system using multiple fonts, and backup to diskettes [30]. The 
entire system was programmed by Gutknecht and the author as a 
spare time activity over more than two years as described in [31]. 
The system was released in 1989, and then a larger number of 
developers began to generate applications. These included a 
network based on a low-cost RS-485 connection operating at 230 
Kb/s [32], a laser printer, color displays (black and white was still 
the standard at the time), a laser printer, a mail and a file server, 
and more sophisticated document and graphics editors. 

With the availability of a large number of Ceres workstations, 
Oberon was introduced in 1990 as the language for introductory 
courses at ETH Zürich [35, 36, 42], and also for courses in system 
software and compiler design. Having ourselves designed and 
implemented a complete system down to the last details, we were 
in a good position to teach software design. For many years, it 
had been our goal to publish a textbook not only sketching 
abstract principles, but also showing concrete examples. Our 
efforts resulted in a single book containing the complete source 
text of this compact yet real, useful, and convenient system. It 
was published in 1992 [37]. 

Following Hoare’s earlier suggestion to write texts describing 
master sample programs to be studied and followed by students, 
we had published a text on widely useful algorithms and data 
structures, and now extended the idea to an entire operating 
system. Hoare had claimed that every other branch of engineering 
is taught by its underlying theoretical framework and by 
textbooks featuring concrete practical examples. However, 
interest in our demanding text remained disappointingly small. 
This may be explained in part by the custom in computer science 
of learning to write programs before reading any. Consequently, 
literature containing programs worth reading is rather scarce. A 
second reason for the low interest was that languages and 
operating systems were no longer popular topics of research. 
Also, among leading educational institutions the widespread 
feeling prevailed that the current commercial systems and 
languages were the end of the topic and here to stay. Their 
enormous size was taken as evidence that there was no chance for 
small research groups to contribute; arguing was considered as 
providing an irrelevant alternative with no chance of practical 
acceptance. 

Nevertheless, we believe that the Oberon project was worth 
the effort and that its educational aspect was considerable. It may 
still serve as an example of how to strive for simplicity and 
perspicuity in complex situations. Gigantic commercial systems 
are highly inappropriate for studying principles and their 
economical realization. However, Oberon should not be 
considered merely "a teaching language". While it is suitable for 
teaching because it allows starting with a subset without 
mentioning the rest, it is powerful enough for large engineering 
projects. 

During the years 1990 – 1995, Oberon received much 
attention, not the least because of our efforts to port it to the 
majority of commercial platforms. Compilers (code generators) 
were developed for the Intel xx86, the Motorola 680x0 (M. 
Franz), the Sun Sparc (J. Templ), the MIPS (R. Crelier) and the 
IBM Power (M. Brandis) processors [40]. The remarkable result 
of this concerted effort was that Oberon became a truly portable 
platform, allowing programs developed on one processor to 
compile and run on any other processor without adaptation. 

Let us conclude this report with a peculiar story. In 1994 the 
author wrote yet another code generator, not for a different 
processor but rather for the same NS32000. This may seem 
strange and needs further explanation. 

The NS processor had been chosen for Ceres because of its 
HLL-oriented instruction set, like that of Lilith. Among other 
features, it contained a large number of addressing modes, among 
which was the external mode. It corresponded to what was needed 
to address variables and call procedures of imported modules, and 
it allowed a fast linking process through the use of link tables. 
This sophisticated scheme made it possible to quickly load and 
link modules without any modification of the code. Only a simple 
link table had to be constructed, again similar to the case of Lilith. 

The implementers of Oberon for other platforms had no such 
feature available. Nevertheless, they managed to find an 
acceptable solution. At the end, it turned out less complicated 
than feared, and I started to wonder how an analogous scheme 
used in the National Semiconductor processor would perform. To 
find out, I wrote a code generator using regular branch 
instructions (BSR) in place of the sophisticated external calls 
(CXP) and developed a linking loader adapted to the new scheme. 

The new linker turned out to be not much more complicated, 
and hardly any slower. But execution of the new programs was 
considerably faster (up to 50%). This totally unexpected factor is 
explained by the development of the NS processor over various 
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versions and many years. In place of the 32032 in 1985, we used 
in 1988 the 32532 and in 1990 the 32GX32, which had the same 
instruction set, but were internally very different. The new 
versions were internally organized rather like RISC architectures, 
with the effect that simple, frequent instructions would execute 
very fast, while complex, rarely used instructions, such as our 
external calls, would perform poorly. Simple operations had 
become extremely fast (due to rising clock rates), whereas 
memory accesses remained relatively slow. On the other hand, 
memory capacity had grown tremendously. The relative 
importance of speed and code size had been changed. Hence, the 
old goal of high code density had become almost irrelevant. 

The same phenomenon caused us to abandon the use of other 
"high-level" instructions, such as index bound checks and 
multiply-adds for computing matrix indices. This is a striking 
example of how hardware technology can very profoundly 
influence software design considerations. 

7. Conclusions and Reflections 
My long-term goal had been to demonstrate that a systematic 
design using a supportive language leads to lean, efficient, and 
economical software, requiring a fraction of the resources that is 
usually claimed. This goal has been reached successfully. I firmly 
believe, from many experiences over many years, that a 
structured language is instrumental in achieving a structured 
design. In addition, it was demonstrated that the clean, compact 
design of an entire software system can be described and 
explained in a single book [37]. The entire Oberon system, 
including its compiler, text editor and window system, occupied 
less than 200K bytes of main memory, and compiled itself in less 
than 40 seconds on a computer with a clock frequency of 25 
MHz. 

In the current year, however, such figures seem to have little 
significance. When the capacity of main memory is measured in 
hundreds of megabytes and disk space is available in dozens of 
gigabytes, 200K bytes do not count. When clock frequencies are 
of the order of gigahertz, the speed of compilation is irrelevant. 
Or, expressed the other way round, for a computer user to 
recognize a process as being slow, the software must be lousy 
indeed. The incredible advances in hardware technology have 
exerted a profound influence on software development. Whereas 
they allowed systems to reach phenomenal performance, their 
influence on the discipline of programming have been as a whole 
rather detrimental. They have permitted software quality and 
performance to drop disastrously, because poor performance is 
easily hidden behind faster hardware. In teaching, the notions of 
economizing memory space and processor cycles have become a 
thing apart. In fact, programming is hardly considered as a serious 
topic; it can be learnt by osmosis or, worse, by relying on extant 
program "libraries". 

This stands in stark contrast to the times of ALGOL and 
FORTRAN. Languages were to be precisely defined, their 
unambiguity to be proven; they were to be the foundation of a 
logical, consistent framework for proving programs correct, not 
merely syntactically well-formed. Such an ambitious goal can be 
reached only if the framework is sufficiently small and simple. By 
contrast, modern languages are constantly growing. Their size and 
complexity is simply beyond anything that might serve as a 
logical foundation. In fact, they elude human grasp. Manuals have 
reached dimensions that effectively discourage any search for 
enlightenment. As a consequence, programming is not learnt from 
rules and logical derivations, but rather by trial and error. The 
glory of interactivity helps. 

The world at large seems to tolerate this development. Given 
the staggering hardware power, one can usually afford to be 
wasteful of space and time. The boundaries will be hit in other 
dimensions: usability and reliability. The enormous size of 
current commercial systems limits understanding and fosters 
mistakes, leading to product unreliability. Signs that the limits of 
tolerance are being reached have begun to appear. Over the past 
few years I heard of a growing number of companies that had 
adopted Oberon as their exclusive programming tool. Their 
common characteristic was the small size and a small number of 
trusting and faithful clients requesting software of high quality, 
reliability and ease of use. Creating such software requires that its 
designers understand their products thoroughly. Naturally, this 
understanding must include the underlying operating system and 
the libraries on which the designs rest and rely. But the perpetual 
complexification of commercial software has made such 
understanding impossible. These companies have found Oberon 
the viable alternative. 

Not surprisingly, these companies consist of small teams of 
expert programmers having the competence to make courageous 
decisions and enjoying the trust and confidence of a limited group 
of satisfied customers. It is not surprising that small systems like 
Oberon are finding acceptance primarily in the field of embedded 
systems for data acquisition and real-time control. Here, not only 
is economy a foremost concern, but even more so are reliability 
and robustness [45]. 

Still, these clients and applications are the exception. The 
market favors languages of commercial origin, regardless of their 
technical merits or defects. The market’s inertia is enormous, as it 
is driven by a multitude of vicious circles that reinforce 
themselves. Hence, the value and role of creating new 
programming languages in research is a legitimate question that 
must be posed. 

New ideas for improving the discipline of programming stem 
from practice. They are to be expressed in a notation, eventually 
forming a concrete language that is to be implemented and tested 
in the field. Insights thus gained find their way into new versions 
of widely used commercial languages slowly, very slowly over 
decades. It is fair to claim that Pascal, Modula-2, and Oberon 
have been successful in making such contributions over time. 

The most essential of their messages, however, is expressed in 
the heading of the Oberon Report: "Make it as simple as possible, 
but not simpler". This advice has not yet been widely understood 
[41, 46]. It seems that currently commercial interests point in 
another direction. Time will tell. 
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Abstract
This paper outlines the history of the C++ programming lan-
guage from the early days of its ISO standardization (1991),
through the 1998 ISO standard, to the later stages of the
C++0x revision of that standard (2006). The emphasis is on
the ideals, constraints, programming techniques, and people
that shaped the language, rather than the minutiae of lan-
guage features. Among the major themes are the emergence
of generic programming and the STL (the C++ standard li-
brary’s algorithms and containers). Specific topics include
separate compilation of templates, exception handling, and
support for embedded systems programming. During most
of the period covered here, C++ was a mature language with
millions of users. Consequently, this paper discusses various
uses of C++ and the technical and commercial pressures that
provided the background for its continuing evolution.

Categories and Subject Descriptors K.2 [History of Com-
puting]: systems

General Terms Design, Programming Language, History

Keywords C++, language use, evolution, libraries, stan-
dardization, ISO, STL, multi-paradigm programming

1. Introduction
In October 1991, the estimated number of C++ users was
400,000 [121]. The corresponding number in October 2004
was 3,270,000 [61]. Somewhere in the early ’90s C++ left its
initial decade of exponential growth and settled into a decade
of steady growth. The key efforts over that time were to

1. use the language (obviously)

2. provide better compilers, tools, and libraries

3. keep the language from fragmenting into dialects

4. keep the language and its community from stagnating

[Copyright notice will appear here once ’preprint’ option is removed.]

Obviously, the C++ community spent the most time and
money on the first of those items. The ISO C++ standards
committee tends to focus on the second with some concern
for the third. My main effort was on the third and the fourth.
The ISO committee is the focus for people who aim to
improve the C++ language and standard library. Through
such change they (we) hope to improve the state of the
art in real-world C++ programming. The work of the C++
standards committee is the primary focus of the evolution of
C++ and of this paper.

Thinking of C++ as a platform for applications, many
have wondered why — after its initial success — C++ didn’t
shed its C heritage to “move up the food chain” and be-
come a “truly object-oriented” applications programming
language with a “complete” standard library. Any tendencies
in that direction were squelched by a dedication to systems
programming, C compatibility, and compatibility with early
versions of C++ in most of the community associated with
the standards committee. Also, there were never sufficient
resources for massive projects in that community. Another
important factor was the vigorous commercial opportunism
by the major software and hardware vendors who each saw
support for application building as their opportunity to dis-
tinguish themselves from their competition and to lock in
their users. Minor players saw things in much the same light
as they aimed to grow and prosper. However, there was no
lack of support for the committee’s activities within its cho-
sen domain. Vendors rely on C++ for their systems and for
highly demanding applications. Therefore, they have pro-
vided steady and most valuable support for the standards ef-
fort in the form of hosting and — more importantly — of
key technical people attending.

For good and bad, ISO C++ [66] remains a general-
purpose programming language with a bias towards systems
programming that

• is a better C

• supports data abstraction

• supports object-oriented programming

• supports generic programming

An explanation of the first three items from a historical
perspective can be found in [120, 121]; the explanation of
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“supports generic programming” is a major theme of this
paper. Bringing aspects of generic programming into the
mainstream is most likely C++’s greatest contribution to the
software development community during this period.

The paper is organized in loose chronological order:

§1 Introduction

§2 Background: C++ 1979-1991 — early history, design
criteria, language features.

§3 The C++ world in 1991 — the C++ standards process,
chronology.

§4 Standard library facilities 1991-1998 — the C++ stan-
dard library with a heavy emphasis on its most impor-
tant and innovative component: the STL (containers, al-
gorithms, and iterators).

§5 Language features 1991-1998 — focusing on separate
compilation of templates, exception safety, run-time type
information and namespaces.

§6 Standards maintenance 1997-2003 — for stability, no
additions were made to the C++ standard. However, the
committee wasn’t idle.

§7 C++ in real-world use — application areas; applications
programming vs. systems programming; programming
styles; libraries, Application Binary Interfaces (ABIs),
and environments; tools and research; Java, C#, and C;
dialects.

§8 C++0x — aims, constraints, language features, and li-
brary facilities.

§9 Retrospective — influences and impact; beyond C++.

The emphasis is on the early and later years: The early years
shaped current C++ (C++98). The later ones reflect the re-
sponse to experience with C++98 as represented by C++0x.
It is impossible to discuss how to express ideas in code with-
out code examples. Consequently, code examples are used to
illustrate key ideas, techniques, and language facilities. The
examples are explained to make them accessible to non-C++
programmers. However, the focus of the presentation is the
people, ideas, ideals, techniques, and constraints that shape
C++ rather than on language-technical details. For a descrip-
tion of what ISO C++ is today, see [66, 126]. The emphasis
is on straightforward questions: What happened? When did
it happen? Who were there? What were their reasons? What
were the implications of what was done (or not done)?

C++ is a living language. The main aim of this paper
is to describe its evolution. However, it is also a language
with a great emphasis on backwards compatibility. The code
that I describe in this paper still compiles and runs today.
Consequently, I tend to use the present tense to describe it.
Given the emphasis on compatibility, the code will probably
also run as described 15 years from now. Thus, my use of
the present tense emphasizes an important point about the
evolution of C++.

2. Background: C++ 1979-1991
The early history of C++ (up until 1991) is covered by my
HOPL-II paper [120]. The standard reference for the first 15
years of C++ is my book The Design and Evolution of C++,
usually referred to as D&E [121]. It tells the story from the
pre-history of C++ until 1994. However, to set the scene for
the next years of C++, here is a brief summary of C++’s early
history.

C++ was designed to provide Simula’s facilities for pro-
gram organization together with C’s efficiency and flexibility
for systems programming. It was intended to deliver that to
real projects within half a year of the idea. It succeeded.

At the time, I realized neither the modesty nor the pre-
posterousness of that goal. The goal was modest in that it
did not involve innovation, and preposterous in both its time
scale and its Draconian demands on efficiency and flexibil-
ity. While a modest amount of innovation did emerge over
the early years, efficiency and flexibility have been main-
tained without compromise. While the goals for C++ have
been refined, elaborated, and made more explicit over the
years, C++ as used today directly reflects its original aims.

Starting in 1979, while in the Computer Science Research
Center of Bell Labs, I first designed a dialect of C called “C
with Classes”. The work and experience with C with Classes
from 1979 to 1983 determined the shape of C++. In turn, C
with Classes was based on my experiences using BCPL and
Simula as part of my PhD studies (in distributed systems)
in the University of Cambridge, England. For challenging
systems programming tasks I felt the need for a “tool” with
the following properties:

• A good tool would have Simula’s support for program
organization – that is, classes, some form of class hi-
erarchies, some form of support for concurrency, and
compile-time checking of a type system based on classes.
This I saw as support for the process of inventing pro-
grams; that is, as support for design rather than just sup-
port for implementation.

• A good tool would produce programs that ran as fast as
BCPL programs and share BCPL’s ability to combine
separately compiled units into a program. A simple link-
age convention is essential for combining units written
in languages such as C, Algol68, Fortran, BCPL, assem-
bler, etc., into a single program and thus not to suffer the
handicap of inherent limitations in a single language.

• A good tool should allow highly portable implementa-
tions. My experience was that the “good” implementa-
tion I needed would typically not be available until “next
year” and only on a machine I couldn’t afford. This im-
plied that a tool must have multiple sources of implemen-
tations (no monopoly would be sufficiently responsive to
users of “unusual” machines and to poor graduate stu-
dents), that there should be no complicated run-time sup-
port system to port, and that there should be only very
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limited integration between the tool and its host operat-
ing system.

During my early years at Bell Labs, these ideals grew into a
set of “rules of thumb” for the design of C++.

• General rules:

C++’s evolution must be driven by real problems.

Don’t get involved in a sterile quest for perfection.

C++ must be useful now.

Every feature must have a reasonably obvious imple-
mentation.

Always provide a transition path.

C++ is a language, not a complete system.

Provide comprehensive support for each supported
style.

Don’t try to force people to use a specific program-
ming style.

• Design support rules:

Support sound design notions.

Provide facilities for program organization.

Say what you mean.

All features must be affordable.

It is more important to allow a useful feature than to
prevent every misuse.

Support composition of software from separately de-
veloped parts.

• Language-technical rules:

No implicit violations of the static type system.

Provide as good support for user-defined types as for
built-in types.

Locality is good.

Avoid order dependencies.

If in doubt, pick the variant of a feature that is easiest
to teach.

Syntax matters (often in perverse ways).

Preprocessor usage should be eliminated.

• Low-level programming support rules:

Use traditional (dumb) linkers.

No gratuitous incompatibilities with C.

Leave no room for a lower-level language below C++
(except assembler).

What you don’t use, you don’t pay for (zero-overhead
rule).

If in doubt, provide means for manual control.

These criteria are explored in detail in Chapter 4 of D&E
[121]. C++ as defined at the time of release 2.0 in 1989
strictly fulfilled these criteria; the fundamental tensions in
the effort to design templates and exception-handling mech-
anisms for C++ arose from the need to depart from some
aspects of these criteria. I think the most important property
of these criteria is that they are only loosely connected with
specific programming language features. Rather, they spec-
ify constraints on solutions to design problems.

Reviewing this list in 2006, I’m struck by two design
criteria (ideals) that are not explicitly stated:

• There is a direct mapping of C++ language constructs to
hardware

• The standard library is specified and implemented in C++

Coming from a C background and being deep in the devel-
opment of the C++98 standard (§3.1), these points (at the
time, and earlier) seemed so obvious that I often failed to
emphasize them. Other languages, such as Lisp, Smalltalk,
Python, Ruby, Java, and C#, do not share these ideals. Most
languages that provide abstraction mechanisms still have to
provide the most useful data structures, such as strings, lists,
trees, associative arrays, vectors, matrices, and sets, as built-
in facilities, relying on other languages (such as assembler,
C, and C++) for their implementation. Of major languages,
only C++ provides general, flexible, extensible, and efficient
containers implemented in the language itself. To a large ex-
tent, these ideals came from C. C has those two properties,
but not the abstraction mechanisms needed to define nontriv-
ial new types.

The C++ ideal – from day one of C with Classes (§2.1)
– was that the language should allow optimal implementa-
tion of arbitrary data structures and operations on them. This
constrained the design of abstraction mechanisms in many
useful ways [121] and led to new and interesting implemen-
tation techniques (for example, see §4.1). In turn, this ideal
would have been unattainable without the “direct mapping
of C++ language constructs to hardware” criterion. The key
idea (from C) was that the operators directly reflected hard-
ware operations (arithmetic and logical) and that access to
memory was what the hardware directly offered (pointers
and arrays). The combination of these two ideals is also what
makes C++ effective for embedded systems programming
[131] (§6.1).

2.1 The Birth of C with Classes

The work on what eventually became C++ started with an
attempt to analyze the UNIX kernel to determine to what
extent it could be distributed over a network of computers
connected by a local area network. This work started in April
of 1979 in the Computing Science Research Center of Bell
Laboratories in Murray Hill, New Jersey. Two subproblems
soon emerged: how to analyze the network traffic that would
result from the kernel distribution and how to modularize the
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kernel. Both required a way to express the module structure
of a complex system and the communication pattern of the
modules. This was exactly the kind of problem that I had
become determined never to attack again without proper
tools. Consequently, I set about developing a proper tool
according to the criteria I had formed in Cambridge.

In October of 1979, I had the initial version of a pre-
processor, called Cpre, that added Simula-like classes to
C. By March of 1980, this pre-processor had been refined
to the point where it supported one real project and sev-
eral experiments. My records show the pre-processor in use
on 16 systems by then. The first key C++ library, called
“the task system”, supported a coroutine style of program-
ming [108, 115]. It was crucial to the usefulness of “C with
Classes,” as the language accepted by the pre-processor was
called, in most early projects.

During the April to October period the transition from
thinking about a “tool” to thinking about a “language” had
occurred, but C with Classes was still thought of primar-
ily as an extension to C for expressing modularity and con-
currency. A crucial decision had been made, though. Even
though support of concurrency and Simula-style simulations
was a primary aim of C with Classes, the language contained
no primitives for expressing concurrency; rather, a combina-
tion of inheritance (class hierarchies) and the ability to de-
fine class member functions with special meanings recog-
nized by the pre-processor was used to write the library that
supported the desired styles of concurrency. Please note that
“styles” is plural. I considered it crucial — as I still do —
that more than one notion of concurrency should be express-
ible in the language.

Thus, the language provided general mechanisms for or-
ganizing programs rather than support for specific applica-
tion areas. This was what made C with Classes and later
C++ a general-purpose language rather than a C variant
with extensions to support specialized applications. Later,
the choice between providing support for specialized appli-
cations or general abstraction mechanisms has come up re-
peatedly. Each time, the decision has been to improve the
abstraction mechanisms.

2.2 Feature Overview

The earliest features included classes, derived classes, pub-
lic/private access control, type checking and implicit conver-
sion of function arguments. In 1981, inline functions, default
arguments, and the overloading of the assignment operator
were added based on perceived need.

Since a pre-processor was used for the implementation
of C with Classes, only new features, that is features not
present in C, needed to be described and the full power
of C was directly available to users. Both of these aspects
were appreciated at the time. In particular, having C as a
subset dramatically reduced the support and documentation
work needed. C with Classes was still seen as a dialect of C.
Furthermore, classes were referred to as “An Abstract Data

Type Facility for the C Language” [108]. Support for object-
oriented programming was not claimed until the provision
of virtual functions in C++ in 1983 [110].

A common question about “C with Classes” and later
about C++ was “Why use C? Why didn’t you build on, say,
Pascal?” One version of my answer can be found in [114]:

C is clearly not the cleanest language ever designed
nor the easiest to use, so why do so many people use
it?

• C is flexible: It is possible to apply C to most every
application area, and to use most every program-
ming technique with C. The language has no in-
herent limitations that preclude particular kinds of
programs from being written.

• C is efficient: The semantics of C are ‘low level’;
that is, the fundamental concepts of C mirror the
fundamental concepts of a traditional computer.
Consequently, it is relatively easy for a compiler
and/or a programmer to efficiently utilize hardware
resources for a C program.

• C is available: Given a computer, whether the tini-
est micro or the largest super-computer, the chance
is that there is an acceptable-quality C compiler
available and that that C compiler supports an ac-
ceptably complete and standard C language and
library. There are also libraries and support tools
available, so that a programmer rarely needs to de-
sign a new system from scratch.

• C is portable: A C program is not automatically
portable from one machine (and operating system)
to another nor is such a port necessarily easy to
do. It is, however, usually possible and the level
of difficulty is such that porting even major pieces
of software with inherent machine dependences is
typically technically and economically feasible.

Compared with these ‘first-order’ advantages, the
‘second-order’ drawbacks like the curious C declara-
tor syntax and the lack of safety of some language
constructs become less important.

Pascal was considered a toy language [78], so it seemed
easier and safer to add type checking to C than to add
the features considered necessary for systems programming
to Pascal. At the time, I had a positive dread of making
mistakes of the sort where the designer, out of misguided
paternalism or plain ignorance, makes the language unusable
for real work in important areas. The ten years that followed
clearly showed that choosing C as a base left me in the
mainstream of systems programming where I intended to
be. The cost in language complexity has been considerable,
but (just barely) manageable. The problem of maintaining
compatibility with an evolving C language and standard
library is a serious one to this day (see §7.6).
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In addition to C and Simula, I considered Modula-2, Ada,
Smalltalk, Mesa, and Clu as sources for ideas for C++ [111],
so there was no shortage of inspiration.

2.3 Work Environment

C with Classes was designed and implemented by me as a re-
search project in the Computing Science Research Center of
Bell Labs. This center provided a possibly unique environ-
ment for such work. When I joined in 1979, I was basically
told to “do something interesting,” given suitable computer
resources, encouraged to talk to interesting and competent
people, and given a year before having to formally present
my work for evaluation.

There was a cultural bias against “grand projects” requir-
ing many people, against “grand plans” like untested paper
designs for others to implement, and against a class distinc-
tion between designers and implementers. If you liked such
things, Bell Labs and other organizations had many places
where you could indulge such preferences. However, in the
Computing Science Research Center it was almost a require-
ment that you — if you were not into theory — personally
implemented something embodying your ideas and found
users who could benefit from what you built. The environ-
ment was very supportive for such work and the Labs pro-
vided a large pool of people with ideas and problems to chal-
lenge and test anything built. Thus I could write in [114]:
“There never was a C++ paper design; design, documenta-
tion, and implementation went on simultaneously. Naturally,
the C++ front-end is written in C++. There never was a “C++
project” either, or a “C++ design committee”. Throughout,
C++ evolved, and continues to evolve, to cope with problems
encountered by users, and through discussions between the
author and his friends and colleagues”.

2.4 From C with Classes to C++

During 1982, it became clear to me that C with Classes was
a “medium success” and would remain so until it died. The
success of C with Classes was, I think, a simple consequence
of meeting its design aim: C with Classes helped organize
a large class of programs significantly better than C. Cru-
cially, this was achieved without the loss of run-time effi-
ciency and without requiring unacceptable cultural changes
in development organizations. The factors limiting its suc-
cess were partly the limited set of new facilities offered over
C and partly the pre-processor technology used to implement
C with Classes. C with Classes simply didn’t provide sup-
port for people who were willing to invest significant effort
to reap matching benefits: C with Classes was an important
step in the right direction, but only one small step. As a result
of this analysis, I began designing a cleaned-up and extended
successor to C with Classes and implementing it using tradi-
tional compiler technology.

In the move from C with Classes to C++, the type check-
ing was generally improved in ways that are possible only
using a proper compiler front-end with full understanding of

all syntax and semantics. This addressed a major problem
with C with Classes. In addition, virtual functions, func-
tion name and operator overloading, references, constants
(const), and many minor facilities were added. To many,
virtual functions were the major addition, as they enable
object-oriented programming. I had been unable to convince
my colleagues of their utility, but saw them as essential for
the support of a key programming style (“paradigm”).

After a couple of years of use, release 2.0 was a major re-
lease providing a significantly expanded set of features, such
as type-safe linkage, abstract classes, and multiple inheri-
tance. Most of these extensions and refinements represented
experience gained with C++ and could not have been added
earlier without more foresight than I possessed.

2.5 Chronology

The chronology of the early years can be summarized:

1979 Work on C with Classes starts; first C with Classes use

1983 1st C++ implementation in use

1984 C++ named

1985 Cfront Release 1.0 (first commercial release); The
C++ Programming Language (TC++PL) [112]

1986 1st commercial Cfront PC port (Cfront 1.1, Glocken-
spiel)

1987 1st GNU C++ release

1988 1st Oregon Software C++ release; 1st Zortech C++
release;

1989 Cfront Release 2.0; The Annotated C++ Reference
Manual [35]; ANSI C++ committee (J16) founded
(Washington, D.C.)

1990 1st ANSI X3J16 technical meeting (Somerset, New
Jersey); templates accepted (Seattle, WA); exceptions ac-
cepted (Palo Alto, CA); 1st Borland C++ release

1991 1st ISO WG21 meeting (Lund, Sweden); Cfront Re-
lease 3.0 (including templates); The C++ Programming
Language (2nd edition) [118]

On average, the number of C++ users doubled every 7.5
months from 1 in October 1979 to 400,000 in October of
1991 [121]. It is of course very hard to count users, but dur-
ing the early years I had contacts with everyone who shipped
compilers, libraries, books, etc., so I’m pretty confident of
these numbers. They are also consistent with later numbers
from IDC [61].

3. The C++ World in 1991
In 1991, the second edition of my The C++ Programming
Language [118] was published to complement the 1989
language definition The Annotated C++ Reference Manual
(“the ARM”) [35]. Those two books set the standard for C++
implementation and to some extent for programming tech-
niques for years to come. Thus, 1991 can be seen as the
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end of C++’s preparations for entry into the mainstream.
From then on, consolidation was a major issue. That year,
there were five C++ compilers to choose from (AT&T, Bor-
land, GNU, Oregon, and Zortech) and three more were to
appear in 1992 (IBM, DEC, and Microsoft). The October
1991 AT&T release 3.0 of Cfront (my original C++ compiler
[121]) was the first to support templates. The DEC and IBM
compilers both implemented templates and exceptions, but
Microsoft’s did not, thus seriously setting back efforts to en-
courage programmers to use a more modern style. The effort
to standardize C++, which had begun in 1989, was officially
converted into an international effort under the auspices of
ISO. However, this made no practical difference as even the
organizational meeting in 1989 had large non-US participa-
tion. The main difference is that we refer to ISO C++ rather
than ANSI C++. The C++ programmer — and would-be
C++ programmer — could now choose from among about
100 books of greatly varying aim, scope, and quality.

Basically, 1991 was an ordinary, successful year for the
C++ community. It didn’t particularly stand out from the
years before or after. The reason to start our story here is
that my HOPL-II paper [120] left off in 1991.

3.1 The ISO C++ Standards Process

For the C++ community, the ISO standards process is cen-
tral: The C++ community has no other formal center, no
other forum for driving language evolution, no other orga-
nization that cares for the language itself and for the com-
munity as a whole. C++ has no owner corporation that de-
termines a path for the language, finances its development,
and provides marketing. Therefore, the C++ standards com-
mittee became the place where language and standard library
evolution is seriously considered. To a large extent, the 1991-
2006 evolution of C++ was determined by what could be
done by the volunteer individuals in the committee and how
far the dreaded “design by committee” could be avoided.

The American National Standards Institute committee for
C++ (ANSI J16) was founded in 1989; it now works under
the auspices of INCITS (InterNational Committee for Infor-
mation Technology Standards, a US organization). In 1991,
it became part of an international effort under the auspices of
ISO. Several other countries (such as France, Japan, and the
UK) have their own national committees that hold their own
meetings (in person or electronically) and send representa-
tives to the ANSI/ISO meetings. Up until the final vote on
the C++98 standard [63] in 1997, the committee met three
times a year for week-long meetings. Now, it meets twice
a year, but depends far more on electronic communications
in between meetings. The committee tries to alternate meet-
ings between the North American continent and elsewhere,
mostly Europe.

The members of the J16 committee are volunteers who
have to pay (about $800 a year) for the privilege of doing
all the work. Consequently, most members represent com-
panies that are willing to pay fees and travel expenses, but

there is always a small number of people who pay their own
way. Each company participating has one vote, just like each
individual, so a company cannot stuff the committee with
employees. People who represent their nations in the ISO
(WG21) and participate in the national C++ panels pay or
not according to their national standards organization rules.
The J16 convener runs the technical sessions and does for-
mal votes. The voting procedures are very democratic. First
come one or more “straw votes” in a working group as part
of the process to improve the proposal and gain consen-
sus. Then come the more formal J16 votes in full committee
where only accredited members vote. The final (ISO) votes
are done on a per-nation basis. The aim is for consensus, de-
fined as a massive majority, so that the resulting standard is
good enough for everybody, if not necessarily exactly what
any one member would have preferred. For the 1997/1998
final standards ballot, the ANSI vote was 43-0 and the ISO
vote 22-0. We really did reach consensus, and even unanim-
ity. I’m told that such clear votes are unusual.

The meetings tend to be quite collegial, though obviously
there can be very tense moments when critical and contro-
versial decisions must be made. For example, the debate
leading up to the export vote strained the committee (§5.2).
The collegiality has been essential for C++. The committee
is the only really open forum where implementers and users
from different — and often vigorously competing — organi-
zations can meet and exchange views. Without a committee
with a dense web of professional, personal, and organiza-
tional connections, C++ would have broken into a mess of
feuding dialects. The number of people attending a meet-
ing varies between 40 and 120. Obviously, the attendance
increases when the meeting is in a location with many C++
programmers (e.g., Silicon Valley) or something major is be-
ing decided (e.g., should we adopt the STL?). At the Santa
Cruz meeting in 1996, I counted 105 people in the room at
the same time.

Most technical work is done by individuals between
meetings or in working groups. These working groups are
officially “ad hoc” and have no formal standing. However,
some lasts for many years and serve as a focus for work
and as the institutional memory of the committee. The main
long-lived working groups are:

• Core — chairs: Andrew Kornig, Jose Lajorie, Bill Gib-
bons, Mike Miller, Steve Adamczyk.

• Evolution (formerly extensions) — chair: Bjarne Strous-
trup.

• Library — chairs: Mike Vilot, Beman Dawes, Matt
Austern, Howard Hinnant.

When work is particularly hectic, these groups split into sub-
working-groups focussed on specific topics. The aim is to
increase the degree of parallelism in the process and to better
use the skills of the many people present.
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The official “chair” of the whole committee whose pri-
mary job is the ensure that all formal rules are obeyed and
to report back to SC22 is called the convener. The original
convener was Steve Carter (BellCore). Later Sam Harbin-
son (Tartan Labs and Texas Instruments), Tom Plum (Plum
Hall), and Herb Sutter (Microsoft) served.

The J16 chairman conducts the meeting when the whole
committee is gathered. Dmitri Lenkov (Hewlett-Packard)
was the original J16 chair and Steve Clamage (Sun) took
over after him.

The draft standard text is maintained by the project editor.
The original project editor was Jonathan Shopiro (AT&T).
He was followed by Andrew Koenig (AT&T) whose served
1992-2004, after which Pete Becker (Dinkumware) took
over “the pen”.

The committee consists of individuals of diverse interests,
concerns, and backgrounds. Some represent themselves,
some represent giant corporations. Some use PCs, some use
UNIX boxes, some use mainframes, etc. Some would like
C++ to become more of an object-oriented language (ac-
cording to a variety of definitions of “object-oriented”), oth-
ers would have been more comfortable had ANSI C been
the end point of C’s evolution. Many have a background
in C, some do not. Some have a background in standards
work, many do not. Some have a computer science back-
ground, some do not. Most are programmers, some are not.
Some are language lawyers, some are not. Some serve end-
users, some are tools suppliers. Some are interested in large
projects, some are not. Some are interested in C compati-
bility, some are not. It is hard to find a generalization that
covers them all.

This diversity of backgrounds has been good for C++;
only a very diverse group could represent the diverse in-
terests of the C++ community. The end results — such as
the 1998 standard and the Technical Reports (§6.1, §6.2) —
are something that is good enough for everyone represented,
rather than something that is ideal for any one subcommu-
nity. However, the diversity and size of the membership do
make constructive discussion difficult and slow at times. In
particular, this very open process is vulnerable to disruption
by individuals whose technical or personal level of maturity
doesn’t encourage them to understand or respect the views of
others. Part of the consideration of a proposal is a process of
education of the committee members. Some members have
claimed — only partly in jest — that they attend to get that
education. I also worry that the voice of C++ users (that
is, programmers and designers of C++ applications) can be
drowned by the voices of language lawyers, would-be lan-
guage designers, standards bureaucrats, implementers, tool
builders, etc.

To get an idea about what organizations are represented,
here are some names from the 1991-2005 membership
lists: Apple, AT&T, Bellcore, Borland, DEC, Dinkumware,
Edison Design Group (EDG), Ericsson, Fujitsu, Hewlett-

Packard, IBM, Indiana University, Los Alamos National
Labs, Mentor Graphics, Microsoft, NEC, Object Design,
Plum Hall, Siemens Nixdorf, Silicon Graphics, Sun Mi-
crosystems, Texas Instruments, and Zortech.

Changing the definition of a widely used language is very
different from simple design from first principles. Whenever
we have a “good idea”, however major or minor, we must
remember that

• there are hundreds of millions of lines of code “out there”
— most will not be rewritten however much gain might
result from a rewrite

• there are millions of programmers “out there” — most
won’t take out time to learn something new unless they
consider it essential

• there are decade-old compilers still in use — many pro-
grammers can’t use a language feature that doesn’t com-
pile on every platform they support

• there are many millions of outdated textbooks out there
— many will still be in use in five years’ time

The committee considers these factors and obviously that
gives a somewhat conservative bias. Among other things,
the members of the committee are indirectly responsible for
well over 100 million lines of code (as representatives of
their organizations). Many of the members are on the com-
mittee to promote change, but almost all do so with a great
sense of caution and responsibility. Other members feel that
their role is more along the lines of avoiding unnecessary
and dangerous instability. Compatibility with previous ver-
sions of C++ (back to ARM C++ [35]), previous versions of
C (back to K&R C [76]), and generations of corporate di-
alects is a serious issue for most members. We (the members
of the committee) try to face future challenges, such as con-
currency, but we do so remembering that C++ is at the base
of many tool chains. Break C++ and the major implementa-
tions of Java and C# would also break. Obviously, the com-
mittee couldn’t “break C++” by incompatibilities even if it
wanted to. The industry would simply ignore a seriously in-
compatible standard and probably also start migrating away
from C++.

3.2 Chronology

Looking forward beyond 1991, we can get some idea of the
process by listing some significant decisions (votes):

1993 Run-time type identification accepted (Portland, Ore-
gon) §5.1.2; namespaces accepted (Munich, Germany)
§5.1.1

1994 string (templatized by character type) (San Diego,
California)

1994 The STL (San Diego, California) §4.1

1996 export (Stockholm, Sweden) §5.2
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1997 Final committee vote on the complete standard (Mor-
ristown, New Jersey)

1998 ISO C++ standard [63] ratified

2003 Technical Corrigendum (“mid-term bug-fix release”)
[66]; work on C++0x starts

2004 Performance technical report [67] §6.1; Library Tech-
nical Report (hash tables, regular expressions, smart
pointers, etc.) [68] §6.2

2005 1st votes on features for C++0x (Lillehammer, Nor-
way); auto, static_assert, and rvalue references ac-
cepted in principle; §8.3.2

2006 1st full committee (official) votes on features for
C++0x (Berlin, Germany)

The city names reflect the location of the meeting where the
decision was taken. They give a flavor of the participation.
When the committee meets in a city, there are usually a
dozen or more extra participants from nearby cities and
countries. It is also common for the host to take advantage of
the influx of C++ experts — many internationally known —
to arrange talks to increase the understanding of C++ and its
standard in the community. The first such arrangement was
in Lund in 1991 when the Swedish delegation collaborated
with Lund University to put on a two-day C++ symposium.

This list gives a hint of the main problem about the pro-
cess from the point of view of someone trying to produce a
coherent language and library, rather than a set of unrelated
“neat features”. At any time, the work focused on a number
of weakly related specific topics, such as the definition of
“undefined”, whether it is possible to resume from an excep-
tion (it isn’t), what functions should be provided for string,
etc. It is extremely hard to get the committee to agree on an
overall direction.

3.3 Why Change?

Looking at the list of decisions and remembering the com-
mittee’s built-in conservative bias, the obvious question is:
“Why change anything?” There are people who take the
position that “standardization is to document existing prac-
tice”. They were never more than a tiny fraction of the com-
mittee membership and represent an even smaller proportion
of the vocal members of the C++ committee. Even people
who say that they want “no change” ask for “just one or two
improvements”. In this, the C++ committee strongly resem-
bles other language standardization groups.

Basically, we (the members of the committee) desire
change because we hold the optimistic view that better lan-
guage features and better libraries lead to better code. Here,
“better” means something like “more maintainable”, “easier
to read”, “catches more errors”, “faster”, “smaller”, “more
portable”, etc. People’s criteria differ, sometimes drastically.
This view is optimistic because there is ample evidence that
people can — and do — write really poor code in every lan-

guage. However, most groups of programmers — including
the C++ committee — are dominated by optimists. In partic-
ular, the conviction of a large majority of the C++ commit-
tee has consistently been that the quality of C++ code can
be improved over the long haul by providing better language
features and standard-library facilities. Doing so takes time:
in some cases we may have to wait for a new generation
of programmers to get educated. However, the committee is
primarily driven by optimism and idealism — moderated by
vast experience — rather than the cynical view of just giving
people what they ask for or providing what “might sell”.

An alternative view is that the world changes and a living
language will change — whatever any committee says. So,
we can work on improvements — or let others do it for us.
As the world changes, C++ must evolve to meet new chal-
lenges. The most obvious alternative would not be “death”
but capture by a corporation, as happened with Pascal and
Objective C, which became Borland and Apple corporate
languages, respectively.

After the Lund (Sweden) meeting in 1991, the following
cautionary tale became popular in the C++ community:

We often remind ourselves of the good ship Vasa. It
was to be the pride of the Swedish navy and was
built to be the biggest and most beautiful battleship
ever. Unfortunately, to accommodate enough statues
and guns, it underwent major redesigns and extension
during construction. The result was that it only made
it halfway across Stockholm harbor before a gust of
wind blew it over and it sank, killing about 50 people.
It has been raised and you can now see it in a museum
in Stockholm. It is a beauty to behold — far more
beautiful at the time than its unextended first design
and far more beautiful today than if it had suffered the
usual fate of a 17th century battleship — but that is
no consolation to its designer, builders, and intended
users.

This story is often recalled as a warning against adding fea-
tures (that was the sense in which I told it to the committee).
However, to complicate matters, there is another side to the
story: Had the Vasa been completed as originally designed,
it would have been sent to the bottom full of holes the first
time it encountered a “modern two-deck” battleship. Ignor-
ing changes in the world isn’t an option (either).

4. The Standard Library: 1991-1998
After 1991, most major changes to the draft C++ standard
were in the standard library. Compared to that, the language
features were little changed even though we made an ap-
parently infinite number of improvements to the text of the
standard. To gain a perspective, note that the standard is 718
pages: 310 define the language and 366 define the standard
library. The rest are appendices, etc. In addition, the C++
standard library includes the C standard library by reference;
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that’s another 81 pages. To compare, the base document
for the standardization, the reference manual of TC++PL2
[118], contained 154 pages on the language and just one on
the standard library.

By far the most innovative component of the standard
library is “the STL” — the containers, iterators, and algo-
rithms part of the library. The STL influenced and contin-
ues to influence not only programming and design tech-
niques but also the direction of new language features. Con-
sequently, this is treated first here and in far greater detail
than other standard library components.

4.1 The STL

The STL was the major innovation to become part of the
standard and the starting point for much of the new thinking
about programming techniques that have occurred since.
Basically, the STL was a revolutionary departure from the
way the C++ community had been thinking about containers
and their use.

4.1.1 Pre-STL containers

From the earliest days of Simula, containers (such as lists)
had been intrusive: An object could be put into a container
if and only if its class had been (explicitly or implicitly) de-
rived from a specific Link and/or Object class. This class
contains the link information needed for management of ob-
jects in a container and provides a common type for ele-
ments. Basically, such a container is a container of refer-
ences (pointers) to links/objects. We can graphically repre-
sent such a list like this:

list

link���
��

��
��

��
��

�

link�� link�� ��

The links come from a base class Link.
Similarly, an “object-oriented” vector is a basically an

array of references to objects. We can graphically represent
such a vector like this:

vector
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The references to objects in the vector data structure point
to objects of an Object base class. This implies that objects
of a fundamental type, such as int and double, can’t be
put directly into containers and that the array type, which
directly supports fundamental types, must be different from
other containers:

array

int��������

int int

Furthermore, objects of really simple classes, such as
complex and Point, can’t remain optimal in time and space
if we want to put them into a container. In other words,
Simula-style containers are intrusive, relying on data fields
inserted into their element types, and provide indirect ac-
cess to objects through pointers (references). Furthermore,
Simula-style containers are not statically type safe. For ex-
ample, a Circle may be added to a list, but when it is ex-
tracted we know only that it is an Object and need to apply
a cast (explicit type conversion) to regain the static type.

Thus, Simula containers provide dissimilar treatment of
built-in and user-defined types (only some of the latter can
be in containers). Similarly, arrays are treated differently
from user-defined containers (only arrays can hold funda-
mental types). This is in direct contrast to two of the clearest
language-technical ideals for C++:

• Provide the same support for built-in and user-defined
types

• What you don’t use, you don’t pay for (zero-overhead
rule).

Smalltalk has the same fundamental approach to containers
as Simula, though it makes the base class universal and thus
implicit. The problems also appear later languages, such as
Java and C# (though they – like Smalltalk – make use of a
universal class and C# 2.0 applies C++-like specialization to
optimize containers of integers). Many early C++ libraries
(e.g. the NIHCL [50], early AT&T libraries [5]) also fol-
lowed this model. It does have significant utility and many
designers were familiar with it. However, I considered this
double irregularity and the inefficiency (in time and space)
that goes with it unacceptable for a truly general-purpose li-
brary (you can find a summary of my analysis in §16.2 of
TC++PL3 [126]).

The lack of a solution to these logical and performance
problems was the fundamental reason behind my “biggest
mistake” of not providing a suitable standard library for
C++ in 1985 (see D&E [121] §9.2.3): I didn’t want to ship
anything that couldn’t directly handle built-in types as el-
ements and wasn’t statically type safe. Even the first “C
with Classes” paper [108] struggled with that problem, un-
successfully trying to solve it using macros. Furthermore, I
specifically didn’t want to provide something with covariant
containers. Consider a Vector of some “universal” Object
class:

void f(Vector& p)
{

p[2] = new Pear;
}

void g()
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{
Vector apples(10); // container of apples
for(int i=0; i<10; ++i)

apples[i] = new Apple;
f(apples);
// now apples contains a pear

}

The author of g pretends that apples is a Vector of Apples.
However, Vector is a perfectly ordinary object-oriented
container, so it really contains (pointers to) Objects. Since
Pear is also an Object, f can without any problems put a
Pear into it. It takes a run-time check (implicit or explicit)
to catch the error/misconception. I remember how shocked I
was when this problem was first explained to me (sometime
in the early 1980s). It was just too shoddy. I was determined
that no container written by me should give users such nasty
surprises and significant run-time checking costs. In mod-
ern (i.e. post-1988) C++ the problem is solved using a con-
tainer parameterized by the element type. In particular, Stan-
dard C++ offers vector<Apple> as a solution. Note that a
vector<Apple> does not convert to a vector<Fruit> even
when Apple implicitly converts to Fruit.

4.1.2 The STL emerges

In late 1993, I became aware of a new approach to contain-
ers and their use that had been developed by Alex Stepanov.
The library he was building was called “The STL”. Alex
then worked at HP Labs but he had earlier worked for a
couple of years at Bell Labs, where he had been close to
Andrew Koenig and where I had discussed library design
and template mechanisms with him. He had inspired me
to work harder on generality and efficiency of some of the
template mechanisms, but fortunately he failed to convince
me to make templates more like Ada generics. Had he suc-
ceeded, he wouldn’t have been able to design and implement
the STL!

Alex showed the latest development in his decades-long
research into generic programming techniques aiming for
“the most general and most efficient code” based on a rigor-
ous mathematical foundation. It was a framework of contain-
ers and algorithms. He first explained his ideas to Andrew,
who after playing with the STL for a couple of days showed
it to me. My first reaction was puzzlement. I found the STL
style of containers and container use very odd, even ugly and
verbose. For example, you sort a vector of doubles, vd, ac-
cording to their absolute value like this:

sort(vd.begin(), vd.end(), Absolute<double>());

Here, vd.begin() and vd.end() specify the beginning
and end of the vector’s sequence of elements and
Absolute<double>() compares absolute values.

The STL separates algorithms from storage in a way
that’s classical (as in math) but not object oriented. Further-
more, it separates policy decisions of algorithms, such as
sorting criteria and search criteria, from the algorithm, the

container, and the element class. The result is unsurpassed
flexibility and — surprisingly — performance.

Like many programmers acquainted with object-oriented
programming, I thought I knew roughly how code using con-
tainers had to look. I imagined something like Simula-style
containers augmented by templates for static type safety and
maybe abstract classes for iterator interfaces. The STL code
looked very different. However, over the years I had devel-
oped a checklist of properties that I considered important for
containers:

1. Individual containers are simple and efficient.

2. A container supplies its “natural” operations (e.g., list
provides put and get and vector provides subscripting).

3. Simple operators, such as member access operations, do
not require a function call for their implementation.

4. Common functionality can be provided (maybe through
iterators or in a base class)

5. Containers are by default statically type-safe and homo-
geneous (that is, all elements in a container are of the
same type).

6. A heterogeneous container can be provided as a homoge-
neous container of pointers to a common base.

7. Containers are non-intrusive (i.e., an object need not have
a special base class or link field to be a member of a
container).

8. A container can contain elements of built-in types

9. A container can contain structs with externally im-
posed layouts.

10. A container can be fitted into a general framework (of
containers and operations on containers).

11. A container can be sorted without it having a sort mem-
ber function.

12. “Common services” (such as persistence) can be pro-
vided in a single place for a set of containers (in a base
class?).

A slightly differently phrased version can be found in [124].
To my amazement the STL met all but one of the cri-

teria on that list! The missing criterion was the last. I had
been thinking of using a common base class to provide ser-
vices (such as persistence) for all derived classes (e.g., all
objects or all containers). However, I didn’t (and don’t) con-
sider such services intrinsic to the notion of a container. In-
terestingly, some “common services” can be expressed us-
ing “concepts” (§8.3.3) that specifically address the issue of
what can be required of a set of types, so C++0x (§8) is
likely to bring the STL containers even closer to the ideals
expressed in that list.

It took me some time — weeks — to get comfortable with
the STL. After that, I worried that it was too late to introduce
a completely new style of library into the C++ community.
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Considering the odds to get the standards committee to ac-
cept something new and revolutionary at such a late stage of
the standards process, I decided (correctly) that those odds
were very low. Even at best, the standard would be delayed
by a year — and the C++ community urgently needed that
standard. Also, the committee is fundamentally a conserva-
tive body and the STL was revolutionary.

So, the odds were poor, but I plodded on hoping. After
all, I really did feel very bad about C++ not having a suf-
ficiently large and sufficiently good standard library [120]
(D&E [121] §9.2.3). Andrew Koenig did his best to build
up my courage and Alex Stepanov lobbied Andy and me
as best he knew how to. Fortunately, Alex didn’t quite ap-
preciate the difficulties of getting something major through
the committee, so he was less daunted and worked on the
technical aspects and on teaching Andrew and me. I began
to explain the ideas behind the STL to others; for example,
the examples in D&E §15.6.3.1 came from the STL and I
quoted Alex Stepanov: “C++ is a powerful enough language
— the first such language in our experience — to allow the
construction of generic programming components that com-
bine mathematical precision, beauty, and abstractness with
the efficiency of non-generic hand-crafted code”. That quote
is about generic programming in general (§7.2.1) and the
STL in particular.

Andrew Koenig and I invited Alex to give an evening pre-
sentation at the October 1993 standards committee meeting
in San Jose, California: “It was entitled The Science of C++
Programming and dealt mostly with axioms of regular types
— connecting construction, assignment and equality. I also
described axioms of what is now called Forward Iterators. I
did not at all mention any containers and only one algorithm:
find”. [105]. That talk was an audacious piece of rabble
rousing that to my amazement and great pleasure basically
swung the committee away from the attitude of “it’s impos-
sible to do something major at this stage” to “well, let’s have
a look”.

That was the break we needed! Over the next four
months, we (Alex, his colleague Meng Lee, Andrew, and
I) experimented, argued, lobbied, taught, programmed, re-
designed, and documented so that Alex was able to present
a complete description of the STL to the committee at the
March 1994 meeting in San Diego, California. Alex ar-
ranged a meeting for C++ library implementers at HP later in
1994. The participants were Meng Lee (HP), Larry Podmo-
lik, Tom Keffer (Rogue Wave), Nathan Myers, Mike Vilot,
Alex, and I. We agreed on many principles and details, but
the size of the STL emerged as the major obstacle. There
was no consensus about the need for large parts of the STL,
there was a (realistic) worry that the committee wouldn’t
have the time to properly review and more formally specify
something that large, and people were simply daunted by the
sheer number of things to understand, implement, document,
teach, etc. Finally, at Alex’s urging, I took a pen and literally

crossed out something like two thirds of all the text. For each
facility, I challenged Alex and the other library experts to
explain — very briefly — why it couldn’t be cut and why it
would benefit most C++ programmers. It was a horrendous
exercise. Alex later claimed that it broke his heart. However,
what emerged from that slashing is what is now known as
the STL [103] and it made it into the ISO C++ standard
at the October 1994 meeting in Waterloo, Canada — some-
thing that the original and complete STL would never have
done. Even the necessary revisions of the “reduced STL” de-
layed the standard by more than a year. The worries about
size and complexity (even after my cuts) were particularly
acute among library implementers concerned about the cost
of providing a quality implementation. For example, I re-
member Roland Hartinger (representing Siemens and Ger-
many) worrying that acceptance of the STL would cost his
department one million marks. In retrospect, I think that I
did less damage than we had any right to hope for.

Among all the discussions about the possible adoption of
the STL one memory stands out: Beman Dawes calmly ex-
plaining to the committee that he had thought the STL too
complex for ordinary programmers, but as an exercise he had
implemented about 10% of it himself so he no longer con-
sidered it beyond the standard. Beman was (and is) one of
the all too rare application builders in the committee. Unfor-
tunately, the committee tends to be dominated by compiler,
library, and tools builders.

I credit Alex Stepanov with the STL. He worked with the
fundamental ideals and techniques for well over a decade
before the STL, unsuccessfully using languages such as
Scheme and Ada [101]. However, Alex is always the first
to insist that others took part in that quest. David Musser
(a professor at Rensselaer Polytechnic Institute) has been
working with Alex on generic programming for almost two
decades and Meng Lee worked closely with him at HP help-
ing to program the original STL. Email discussions between
Alex and Andrew Koenig also helped. Apart from the slash-
ing exercise, my technical contributions were minor. I sug-
gested that various information related to memory be col-
lected into a single object — what became the allocators. I
also drew up the initial requirement tables on Alex’s black-
board, thus creating the form in which the standard spec-
ifies the requirements that STL templates place on their ar-
guments. These requirements tables are actually an indicator
that the language is insufficiently expressive — such require-
ments should be part of the code; see §8.3.3.

Alex named his containers, iterators, and algorithm li-
brary “the STL”. Usually, that’s considered an acronym for
“Standard Template Library”. However, the library existed
— with that name — long before it was any kind of standard
and most parts of the standard library rely on templates. Wits
have suggested “STepanov and Lee” as an alternative expla-
nation, but let’s give Alex the final word: “ ‘STL’ stands for
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‘STL’ ”. As in many other cases, an acronym has taken on a
life of its own.

4.1.3 STL ideals and concepts

So what is the STL? It comes from an attempt to apply the
mathematical ideal of generality to the problem of data and
algorithms. Consider the problem of storing objects in con-
tainers and writing algorithms to manipulate such objects.
Consider this problem in the light of the ideals of direct, in-
dependent, and composable representation of concepts:

• express concepts directly in code

• express relations among concepts directly in code

• express independent concepts in independent code

• compose code representing concepts freely wherever the
composition makes sense

We want to be able to

• store objects of a variety of types (e.g. ints, Points, and
pointers to Shapes)

• store those objects in a variety of containers (e.g. list,
vector, and map),

• apply a variety of algorithms (e.g. sort, find, and
accumulate) to the objects in the containers, and

• use a variety of criteria (comparisons, predicates, etc.) for
those algorithms

Furthermore, we want the use of these objects, containers,
and algorithms to be statically type safe, as fast as possible,
as compact as possible, not verbose, and readable. Achieving
all of this simultaneously is not easy. In fact, I spent more
than ten years unsuccessfully looking for a solution to this
puzzle (§4.1.2).

The STL solution is based on parameterizing containers
with their element types and on completely separating the
algorithms from the containers. Each type of container pro-
vides an iterator type and all access to the elements of the
container can be done using only iterators of that type. The
iterator defines the interface between the algorithm and the
data on which it operates. That way, an algorithm can be
written to use iterators without having to know about the
container that supplied them. Each type of iterator is com-
pletely independent of all others except for supplying the
same semantics to required operations, such as * and ++.

Algorithms use iterators and container implementers im-
plement iterators for their containers:

algorithms: find() sort() accumulate()

iterators: * ++ !=

containers: vector list array

Let’s consider a fairly well-known example, the one that
Alex Stepanov initially showed to the committee (San Jose,
California, 1993). We want to find elements of various types
in various containers. First, here are a couple of containers:

vector<int> vi; // vector of ints
list<string> ls; // list of strings

The vector and list are the standard library versions of the
notions of vector and list implemented as templates. An STL
container is a non-intrusive data structure into which you can
copy elements of any type. We can graphically represent a
(doubly linked) list<string> like this:

list

link���
��

��
��

��
��

�

link

string

link��

link��

string

link��

link��

string

��

Note that the link information is not part of the element type.
An STL container (here, list) manages the memory for its
elements (here, strings) and supplies the link information.

Similarly, we can represent a vector<int> like this:

vector

int����
���

��

int int

Note that the elements are stored in memory managed by the
vector and list. This differs from the Simula-style con-
tainers in §4.1.1 in that it minimizes allocation operations,
minimizes per-object memory, and saves an indirection on
each access to an element. The corresponding cost is a copy
operation when an object is first entered into a container; if
a copy is expensive, programmers tend to use pointers as el-
ements.

Assume that the containers vi and ls have been suit-
ably initialized with values of their respective element types.
It then makes sense to try to find the first element with
the value 777 in vi and the first element with the value
"Stepanov" in ls:

vector<int>::iterator p
= find(vi.begin(),vi.end(),777);

list<string>::iterator q
= find(ls.begin(),ls.end(),"Stepanov");
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The basic idea is that you can consider the elements of any
container as a sequence of elements. A container “knows”
where its first element is and where its last element is. We
call an object that points to an element “an iterator”. We
can then represent the elements of a container by a pair of
iterators, begin() and end(), where begin() points to the
first element and end() to one-beyond-the-last element. We
can represent this general model graphically:

begin() end()

The end() iterator points to one-past-the-last element rather
than to the last element to allow the empty sequence not to
be a special case:

begin() end()

What can you do with an iterator? You can get the value of
the element pointed to (using * just as with a pointer), make
the iterator point to the next element (using ++ just as with a
pointer) and compare two iterators to see if they point to the
same element (using == or != of course). Surprisingly, this
is sufficient for implementing find():

template<class Iter, class T>
Iter find(Iter first, Iter last, const T& val)
{

while (first!=last && *first!=val)
++first;

return first;
}

This is a simple — very simple, really — function tem-
plate. People familiar with C and C++ pointers should find
the code easy the read: first!=last checks whether we
reached the end and *first!=val checks whether we found
the value that we were looking for (val). If not, we incre-
ment the iterator first to make it point to the next ele-
ment and try again. Thus, when find() returns, its value
will point to either the first element with the value val or
one-past-the-last element (end()). So we can write:

vector<int>::iterator p =
find(vi.begin(),vi.end(),7);

if (p != vi.end()) { // we found 7
// ...

}
else { // no 7 in vi

// ...
}

This is very, very simple. It is simple like the first couple
of pages in a math book and simple enough to be really
fast. However, I know that I wasn’t the only person to take
significant time figuring out what really is going on here and
longer to figure out why this is actually a good idea. Like
simple math, the first STL rules and principles generalize
beyond belief.

Consider first the implementa-
tion: In the call find(vi.begin(),vi.end(),7), the iter-
ators vi.begin() and vi.end() become first and last,
respectively, inside. To find(), first is simply “some-
thing that points to an int”. The obvious implementation of
vector<int>::iterator is therefore a pointer to int, an
int*. With that implementation, * becomes pointer derefer-
ence, ++ becomes pointer increment, and != becomes pointer
comparison. That is, the implementation of find() is obvi-
ous and optimal.

Please note that the STL does not use function calls to ac-
cess the operations (such as * and !=) that are effectively ar-
guments to the algorithm because they depend on a template
argument. In this, templates differ radically from most mech-
anisms for “generics”, relying on indirect function calls (like
virtual functions), as provided by Java and C#. Given a good
optimizer, vector<int>::iterator can without overhead
be a class with * and ++ provided as inline functions. Such
optimizers are now not uncommon and using a iterator class
rather than a pointer improves type checking by catching
unwarranted assumptions, such as that the iterator for a
vector is a pointer:

int* p = find(vi.begin(),vi.end(),7); // error

// verbose, but correct:
vector<int>::iterator q =

find(vi.begin(),vi.end(),7);

C++0x will provide ways of dealing with the verbosity; see
§8.3.2.

In addition, not defining the interface between an algo-
rithm and its type arguments as a set of functions with unique
types provides a degree of flexibility that proved very impor-
tant [130] (§8.3.3). For example, the standard library algo-
rithm copy can copy between different container types:

void f(list<int>& lst, vector<int>& v)
{

copy(lst.begin(), lst.end(), v.begin());
// ...
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copy(v.begin(), v.end(), lst.end());
}

So why didn’t we just dispense with all that “it-
erator stuff” and use pointers? One reason is that
vector<int>::iterator could have been a class provid-
ing range checked access. For a less subtle explanation, have
a look at another call of find():

list<string>::iterator q =
find(ls.begin(),ls.end(),"McIlroy");

if (q != ls.end()) { // we found "McIlroy"
// ...

}
else { // no "McIlroy" in ls

// ...
}

Here, list<string>::iterator isn’t going to be a
string*. In fact, assuming the most common implementa-
tion of a linked list, list<string>::iterator is going to
be a Link<string>* where Link is a link node type, such
as:

template<class T> struct Link {
T value;
Link* suc;
Link* pre;

};

That implies that * means p->value (“return the value
field”), ++ means p->suc (“return a pointer to the next
link”), and != pointer comparison (comparing Link*s).
Again the implementation is obvious and optimal. How-
ever, it is completely different from what we saw for
vector<int>::iterator.

We used a combination of templates and overload resolu-
tion to pick radically different, yet optimal, implementations
of operations used in the definition of find() for each use
of find(). Note that there is no run-time dispatch, no virtual
function calls. In fact, there are only calls of trivially inlined
functions and fundamental operations, such as * and ++ for
a pointer. In terms of execution time and code size, we have
hit the absolute minimum!

Why not use “sequence” or “container” as the fundamen-
tal notion rather than “pair of iterators”? Part of the rea-
son is that “pair of iterators” is simply a more general con-
cept than “container”. For example, given iterators, we can
sort the first half of a container only: sort(vi.begin(),
vi.begin()+vi.size()/2). Another reason is that the
STL follows the C++ design rules that we must provide tran-
sition paths and support built-in and user-defined types uni-
formly. What if someone kept data in an ordinary array? We
can still use the STL algorithms. For example:

int buf[max];
// ... fill buf ...
int* p = find(buf,buf+max,7);

if (p != buf+max) { // we found 7
// ...

}
else { // no 7 in buf

// ...
}

Here, the *, ++, and != in find() really are pointer oper-
ations! Like C++ itself, the STL is compatible with older
notions such as C arrays. Thus, the STL meets the C++ ideal
of always providing a transition path (§2). It also meets the
ideal of providing uniform treatment to user-defined types
(such as vector) and built-in types (in this case, array) (§2).

Another reason for basing algorithms on iterators, rather
than on containers or an explicit sequence abstraction, was
the desire for optimal performance: using iterators directly
rather than retrieving a pointer or an index from another
abstraction eliminates a level of indirection.

As adopted as the containers and algorithms framework
of the ISO C++ standard library, the STL consists of a
dozen containers (such as vector, list, and map) and data
structures (such as arrays) that can be used as sequences.
In addition, there are about 60 algorithms (such as find,
sort, accumulate, and merge). It would not be reasonable
to present all of those here. For details, see [6, 126].

So, we can use simple arithmetic to see how the STL
technique of separating algorithms from containers reduces
the amount of source code we have to write and maintain.
There are 60*12 (that is, 720) combinations of algorithm and
container in the standard but just 60+12 (that is, 72) defini-
tions. The separation reduces the combinatorial explosion to
a simple addition. If we consider element types and policy
parameters (function objects, see §4.1.4) for algorithms we
see an even more impressive gain: Assume that we have N
algorithms with M alternative criteria (policies) and X con-
tainers with Y element types. Then, the STL approach gives
us N+M+X+Y definitions whereas “hand-crafted code” re-
quires N*M*X*Y definitions. In real designs, the difference
isn’t quite that dramatic because typically designers attack
that huge N*M*X*Y figure with a combination of conver-
sions (one container to another, one data type to another),
class derivations, function parameters, etc., but the STL ap-
proach is far cleaner and more systematic than earlier alter-
natives.

The key to both the elegance and the performance of the
STL is that it — like C++ itself — is based directly on the
hardware model of memory and computation. The STL no-
tion of a sequence is basically that of the hardware’s view of
memory as a set of sequences of objects. The basic semantics
of the STL map directly into hardware instructions allowing
algorithms to be implemented optimally. The compile-time
resolution of templates and the perfect inlining they support
is then key to the efficient mapping of the high-level expres-
sion using the STL to the hardware level.
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4.1.4 Function objects

The STL and generic programming in general owes a —
freely and often acknowledged (e.g., [124]) — debt to func-
tional programming. So where are the lambdas and higher-
order functions? C++ doesn’t directly support anything like
that (though there are always proposals for nested functions,
closures, lambdas, etc.; see §8.2). Instead, classes that de-
fine the application operator, called function objects (or even
“functors”), take that role and have become the main mech-
anism of parameterization in modern C++. Function objects
build on general C++ mechanisms to provide unprecedented
flexibility and performance.

The STL framework, as described so far, is somewhat
rigid. Each algorithm does exactly one thing in exactly the
way the standard specifies it to. For example, using find(),
we find an element that is equal to the value we give as
the argument. It is actually more common to look for an
element that has some desired property, such as matching
strings without case sensitivity or matching floating-point
values allowing for very slight differences.

As an example, instead of finding a value 7, let’s look for
a value that meets some predicate, say, being less than 7:

vector<int>::iterator p =
find_if(v.begin(),v.end(),Less_than<int>(7));

if (p != vi.end()) { // element < 7
// ...

}
else { // no such element

// ...
}

What is Less_than<int>(7)? It is a function object; that
is, it is an object of a class that has the application operator,
(), defined to perform an action:

template<class T> struct Less_than {
T value;
Less_than(const T& v) :value(v) { }
bool operator()(const T& v) const

{ return v<value; }
};

For example:

Less_than<double> f(3.14); // f holds 3.14
bool b1 = f(3); // true: 3<3.14 is true
bool b2 = f(4); // false: 4<3.14 is false

From the vantage point of 2005, it seems odd that function
objects are not mentioned in D&E or TC++PL1. They de-
serve a whole section. Even the use of a user-defined appli-
cation operator, (), isn’t mentioned even though it has had
a long and distinguished career. For example, it was among
the initial set of operators (after =; see D&E §3.6) that I al-
lowed to be overloaded and was among many other things
used to mimic Fortran subscript notation [112].

We used the STL algorithm find_if to apply
Less_than<int>(7) to the elements of the vector. The
definition of find_if differs from find()’s definition in us-
ing a user-supplied predicate rather than equality:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while (first!=last && !pred(*first))
++first;

return first;
}

We simply replaced *first!=val with !pred(*first).
The function template find_if() will accept any object
that can be called given an element value as its argument.
In particular, we could call find_if() with an ordinary
function as its third argument:

bool less_than_7(int a)
{

return a<7;
}

vector<int>::iterator p =
find_if(v.begin(),v.end(),less_than_7);

However, this example shows why we often prefer a function
object over a function: The function object can be initialized
with one (or more) arguments and carry information along
for later use. A function object can carry a state. That makes
for more general and more elegant code. If needed, we can
also examine that state later. For example:

template<class T>
struct Accumulator { // keep the sum of n values

T value;
int count;
Accumulator() :value(), count(0) { }
Accumulator(const T& v) :value(v), count(0) { }
void operator()(const T& v)

{ ++count; value+=v; }
};

An Accumulator object can be passed to an algorithm that
calls it repeatedly. The partial result is carried along in the
object. For example:

int main()
{

vector<double> v;
double d;
while (cin>>d) v.push_back(d);

Accumulator<double> ad;
ad = for_each(v.begin(),v.end(), ad);
cout << "sum==" << ad.value

<< ", mean==" << ad.value/ad.count
<< ’\n’;

return 0;
}
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The standard library algorithm for_each simply applies its
third argument to each element of its sequence and returns
that argument as its return value. The alternative to using
a function object would be a messy use of global variables
to hold value and count. In a multithreaded system, such
use of global variables is not just messy, but gives incorrect
results.

Interestingly, simple function objects tend to perform bet-
ter than their function equivalents. The reason is that they
tend to be simple classes without virtual functions, so that
when we call a member function the compiler knows ex-
actly which function we are calling. That way, even a simple-
minded compiler has all the information needed to inline. On
the other hand, a function used as a parameter is passed as
a pointer, and optimizers have traditionally been incapable
of performing optimizations involving pointers. This can be
very significant (e.g. a factor of 50 in speed) when we pass
an object or function that performs a really simple operation,
such as the comparison criteria for a sort. In particular, inlin-
ing of function objects is the reason that the STL (C++ stan-
dard library) sort() outperforms the conventional qsort()
by several factors when sorting arrays of types with sim-
ple comparison operators (such as int and double) [125].
Spurred on by the success of function objects, some com-
pilers now can do inlining for pointers to functions as long
as a constant is used in the call. For example, today, some
compilers can inline calls to compare from within qsort:

bool compare(double* a, double* b) { /* ... */ }
// ...
qsort(p,max,sizeof(double),compare);

In 1994, no production C or C++ compiler could do that.
Function objects are the C++ mechanism for higher-order

constructs. It is not the most elegant expression of high-order
ideas, but it is surprisingly expressive and inherently effi-
cient in the context of a general purpose language. To get the
same efficiency of code (in time and space) from a general
implementation of conventional functional programming fa-
cilities requires significant maturity from an optimizer. As
an example of expressiveness, Jaakko Järvi and Gary Powell
showed how to provide and use a lambda class that made the
following example legal with its obvious meaning [72]:

list<int> lst;
// ...
Lambda x;
list<int>::iterator p =

find_if(lst.begin(),lst.end(),x<7);

Note how overload resolution enables us to make the ele-
ment type, int, implicit (deduced). If you want just < to
work, rather than building a general library, you can add def-
initions for Lambda and < in less than a dozen lines of code.
Using Less_than from the example above, we can simply
write:

class Lambda {};

template<class T>
Less_than<T> operator<(Lambda,const T& v)
{

return Less_than<T>(v);
}

So, the argument x<7 in the call of find_if becomes a
call of operator<(Lambda,const int&), which generates
a Less_than<int> object. That’s exactly what we used
explicitly in the first example in this section. The difference
here is just that we have achieved a much simpler and more
intuitive syntax. This is a good example of the expressive
power of C++ and of how the interface to a library can be
simpler than its implementation. Naturally, there is no run-
time or space overhead compared to a laboriously written
loop to look for an element with a value less than 7.

The closest that C++ comes to higher-order functions is
a function template that returns a function object, such as
operator< returning a Less_than of the appropriate type
and value. Several libraries have expanded that idea into
quite comprehensive support for functional programming
(e.g., Boost’s Function objects and higher-order program-
ming libraries [16] and FC++ [99]).

4.1.5 Traits

C++ doesn’t offer a general compile-time way of asking for
properties of a type. In the STL, and in many other libraries
using templates to provide generic type-safe facilities for di-
verse types, this became a problem. Initially, the STL used
overloading to deal with this (e.g., note the way the type
int is deduced and used in x<7; §4.1.4). However, that use
of overloading was unsystematic and therefore unduly dif-
ficult and error prone. The basic solution was discovered
by Nathan Myers during the effort to templatize iostream
and string [88]. The basic idea is to provide an auxiliary
template, “a trait”, to contain the desired information about
a set of types. Consider how to find the type of the ele-
ments pointed to by an iterator. For a list_iterator<T>
it is list_iterator<T>::value_type and for an ordinary
pointer T* it is T. We can express that like this:

template<class Iter>
struct iterator_trait {

typedef Iter::value_type value_type;
};

template<class T>
struct iterator_trait<T*> {

typedef T value_type;
};

That is, the value_type of an iterator is its member type
value_type. However, pointers are a common form of iter-
ators and they don’t have any member types. So, for point-
ers we use the type pointed to as value_type. The language
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construct involved is called partial specialization (added to
C++ in 1995; §5). Traits can lead to somewhat bloated
source code (though they have no object code or run-time
cost) and even though the technique is very extensible it
often requires explicit programmer attention when a new
type is added. Traits are now ubiquitous in template-based
C++ libraries. However, the “concepts” mechanism (§8.3.3)
promises to make many traits redundant by providing di-
rect language support for the idea of expressing properties
of types.

4.1.6 Iterator categories

The result of the STL model as described so far could easily
have become a mess with each algorithm depending on the
peculiarities of the iterators offered by specific containers.
To achieve interoperability, iterator interfaces have to be
standardized. It would have been simplest to define a single
set of operators for every iterator. However, to do so would
have been doing violence to reality: From an algorithmic
point of view lists, vectors, and output streams really do
have different essential properties. For example, you can
efficiently subscript a vector, you can add an element to a
list without disturbing neighboring elements, and you can
read from an input stream but not from an output stream.
Consequently the STL provides a classification of iterators:

• input iterator (ideal for homogeneous stream input)

• output iterator (ideal for homogeneous stream output)

• forward iterator (we can read and write an element re-
peatedly, ideal for singly-linked lists)

• bidirectional iterator (ideal for doubly-linked lists)

• random access iterator (ideal for vectors and arrays)

This classification acts as a guide to programmers who care
about interoperability of algorithms and containers. It allows
us to minimize the coupling of algorithms and containers.
Where different algorithms exist for different iterator cate-
gories, the most suitable algorithm is automatically chosen
through overloading (at compile time).

4.1.7 Complexity requirements

The STL included complexity measures (using the big-O
notation) for every standard library operation and algorithm.
This was novel in the context of a foundation library for a
language in major industrial use. The hope was and still is
that this would set a precedent for better specification of
libraries. Another — less innovative — aspect of this is a
fairly systematic use of preconditions and postconditions in
the specification of the library.

4.1.8 Stepanov’s view

The description of the STL here is (naturally) focused on
language and library issues in the context of C++. To get
a complementary view, I asked Alexander Stepanov for his
perspective [106]:

In October of 1976 I observed that a certain algorithm
— parallel reduction — was associated with monoids:
collections of elements with an associative operation.
That observation led me to believe that it is possi-
ble to associate every useful algorithm with a math-
ematical theory and that such association allows for
both widest possible use and meaningful taxonomy.
As mathematicians learned to lift theorems into their
most general settings, so I wanted to lift algorithms
and data structures. One seldom needs to know the
exact type of data on which an algorithm works since
most algorithms work on many similar types. In or-
der to write an algorithm one needs only to know the
properties of operations on data. I call a collection of
types with similar properties on which an algorithm
makes sense the underlying concept of the algorithm.
Also, in order to pick an efficient algorithm one needs
to know the complexity of these operations. In other
words, complexity is an essential part of the interface
to a concept.

In the late ’70s I became aware of John Backus’s work
on FP [7]. While his idea of programming with func-
tional forms struck me as essential, I realized that his
attempt to permanently fix the number of functional
forms was fundamentally wrong. The number of func-
tional forms — or, as I call them now, generic al-
gorithms — is always growing as we discover new
algorithms. In 1980 together with Dave Musser and
Deepak Kapur I started working on a language Tecton
to describe algorithms defined on algebraic theories.
The language was functional since I did not realize at
the time that memory and pointers were a fundamen-
tal part of programming. I also spent time studying
Aristotle and his successors which led me to better un-
derstanding of fundamental operations on objects like
equality and copying and the relation between whole
and part.

In 1984 I started collaborating with Aaron Kershen-
baum who was an expert on graph algorithms. He was
able to convince me to take arrays seriously. I viewed
sequences as recursively definable since it was com-
monly perceived to be the “theoretically sound” ap-
proach. Aaron showed me that many fundamental al-
gorithms depended on random access. We produced a
large set of components in Scheme and were able to
implement generically some complicated graph algo-
rithms.

The Scheme work led to a grant to produce a generic
library in Ada. Dave Musser and I produced a generic
library that dealt with linked structures. My attempts
to implement algorithms that work on any sequential
structure (both lists and arrays) failed because of the
state of Ada compilers at the time. I had equivalences
to many STL algorithms, but could not compile them.
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Based on this work, Dave Musser and I published
a paper where we introduced the notion of generic
programming insisting on deriving abstraction from
useful efficient algorithms. The most important thing
I learned from Ada was the value of static typing as
a design tool. Bjarne Stroustrup had learned the same
lesson from Simula.

In 1987 at Bell Labs Andy Koenig taught me seman-
tics of C. The abstract machine behind C was a reve-
lation. I also read lots of UNIX and Plan 9 code: Ken
Thompson’s and Rob Pike’s code certainly influenced
STL. In any case, in 1987 C++ was not ready for STL
and I had to move on.

At that time I discovered the works of Euler and my
perception of the nature of mathematics underwent
a dramatic transformation. I was de-Bourbakized,
stopped believing in sets, and was expelled from the
Cantorian paradise. I still believe in abstraction, but
now I know that one ends with abstraction, not starts
with it. I learned that one has to adapt abstractions
to reality and not the other way around. Mathematics
stopped being a science of theories but reappeared to
me as a science of numbers and shapes.

In 1993, after five years working on unrelated
projects, I returned to generic programming. Andy
Koenig suggested that I write a proposal for includ-
ing my library into the C++ standard, Bjarne Strous-
trup enthusiastically endorsed the proposal and in less
than a year STL was accepted into the standard. STL
is the result of 20 years of thinking but of less than
two years of funding.

STL is only a limited success. While it became a
widely used library, its central intuition did not get
across. People confuse generic programming with us-
ing (and abusing) C++ templates. Generic program-
ming is about abstracting and classifying algorithms
and data structures. It gets its inspiration from Knuth
and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient
and abstract algorithms and data structures. Such an
undertaking is still a dream.

You can find references to the work leading to STL at
www.stepanovpapers.com.

I am more optimistic about the long-term impact of Alex’s
ideas than he is. However, we agree that the STL is just the
first step of a long journey.

4.1.9 The impact of the STL

The impact of the STL on the thinking on C++ has been im-
mense. Before the STL, I consistently listed three fundamen-
tal programming styles (“paradigms”) as being supported by
C++ [113]:

• Procedural programming

• Data abstraction

• Object-oriented programming

I saw templates as support for data abstraction. After playing
with the STL for a while, I factored out a fourth style:

• Generic programming

The techniques based on the use of templates and largely in-
spired by techniques from functional programming are qual-
itatively different from traditional data abstraction. People
simply think differently about types, objects, and resources.
New C++ libraries are written — using templates — to be
statically type safe and efficient. Templates are the key to
embedded systems programming and high-performance nu-
meric programming where resource management and cor-
rectness are key [67]. The STL itself is not always ideal in
those areas. For example, it doesn’t provide direct support
for linear algebra and it can be tricky to use in hard-real-time
systems where free store use is banned. However, the STL
demonstrates what can be done with templates and gives ex-
amples of effective techniques. For example, the use of itera-
tors (and allocators) to separate logical memory access from
actual memory access is key to many high-performance nu-
meric techniques [86, 96] and the use of small, easily in-
lined, objects is key to examples of optimal use of hardware
in embedded systems programming. Some of these tech-
niques are documented in the standards committee’s tech-
nical report on performance (§6.1). The emphasis on the
STL and on generic programming in the C++ community
in the late 1990s and early 2000s is to a large extent a re-
action — and a constructive alternative — to a trend in the
larger software-development community towards overuse of
“object-oriented” techniques relying excessively on class hi-
erarchies and virtual functions.

Obviously, the STL isn’t perfect. There is no one “thing”
to be perfect relative to. However, it broke new ground
and has had impact even beyond the huge C++ community
(§9.3). It also inspired many to use templates both in more
disciplined and more adventurous ways. People talk about
“template meta-programming” (§7.2.2) and generative pro-
gramming [31] and try to push the techniques pioneered by
the STL beyond the STL. Another line of attack is to con-
sider how C++ could better support effective uses of tem-
plates (concepts, auto, etc.; see §8).

Inevitably, the success of STL brought its own prob-
lems. People wanted to write all kinds of code in the STL
style. However, like any other style or technique, the STL
style or even generic programming in general isn’t ideal
for every kind of problem. For example, generic program-
ming relying on templates and overloading completely re-
solves all name bindings at compile time. It does not pro-
vide a mechanism for bindings that are resolved at run time;
that’s what class hierarchies and their associated object-
oriented design techniques are for. Like all successful lan-
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guage mechanisms and programming techniques, templates
and generic programming became fashionable and severely
overused. Programmers built truly baroque and brittle con-
structs based on the fact that template instantiation and de-
duction is Turing complete. As I earlier observed for C++’s
object-oriented facilities and techniques: “Just because you
can do it, doesn’t mean that you have to”. Developing a
comprehensive and simple framework for using the differ-
ent programming styles supported by C++ is a major chal-
lenge for the next few years. As a style of programming,
“multi-paradigm programming” [121] is underdeveloped. It
often provides solutions that are more elegant and outper-
forms alternatives [28], but we don’t (yet) have a simple and
systematic way of combining the programming styles. Even
its name gives away its fundamental weakness.

Another problem with the STL is that its containers are
non-intrusive. From the point of view of code clarity and
independence of concepts, being non-intrusive is a huge ad-
vantage. However, it does mean that we need to copy el-
ements into containers or insert objects with default values
into containers and later give them the desired values. Some-
times that’s inefficient or inconvenient. For example, people
tend not to insert large objects into a vector for that reason;
instead, they insert pointers to such large objects. Similarly,
the implicit memory management that the standard contain-
ers provide for their elements is a major convenience, but
there are applications (e.g., in some embedded and high-
performance systems) where such implicit memory manage-
ment must be avoided. The standard containers provide fea-
tures for ensuring that (e.g., reserve), but they have to be
understood and used to avoid problems.

4.2 Other Parts of the Standard Library

From 1994 onwards, the STL dominated the work on the
standard library and provided its major area of innovation.
However, it was not the only area of work. In fact, the
standard library provides several components:

• basic language run-time support (memory management,
run-time type information (RTTI), exceptions, etc.)

• the C standard library

• the STL (containers, algorithms, iterators, function ob-
jects)

• iostreams (templatized on character type and implicitly
on locale)

• locales (objects characterizing cultural preferences in
I/O)

• string (templatized on character type)

• bitset (a set of bits with logical operations)

• complex (templatized on scalar type)

• valarray (templatized on scalar type)

• auto_ptr (a resource handle for objects templatized on
type)

For a variety of reasons, the stories of the other library com-
ponents are less interesting and less edifying than the story
of the STL. Most of the time, work on each of these com-
ponents progressed in isolation from work on the others.
There was no overall design or design philosophy. For ex-
ample, bitset is range checked whereas string isn’t. Fur-
thermore, the design of several components (such as string,
complex, and iostream) was constrained by compatibility
concerns. Several (notably iostream and locale) suffered
from the “second-system effect” as their designers tried to
cope with all kinds of demands, constraints, and existing
practice. Basically, the committee failed to contain “design
by committee” so whereas the STL reflects a clear philoso-
phy and coherent style, most of the other components suf-
fered. Each represents its own style and philosophy, and
some (such as string) manage simultaneously to present
several. I think complex is the exception here. It is basically
my original design [91] templatized to allow for a variety of
scalar types:

complex<double> z; // double-precision
complex<float> x; // single-precision
complex<short> point; // integer grid

It is hard to seriously mess up math.
The committee did have some serious discussions about

the scope of the standard library. The context for this discus-
sion was the small and universally accepted C standard li-
brary (which the C++ standard adopted with only the tiniest
of modification) and the huge corporate foundation libraries.
During the early years of the standards process, I articulated
a set of guidelines for the scope of the C++ standard library:

First of all, the key libraries now in almost universal
use must be standardized. This means that the exact
interface between C++ and the C standard libraries
must be specified and the iostreams library must be
specified. In addition, the basic language support must
be specified. ...

Next, the committee must see if it can respond to
the common demand for “more useful and standard
classes,” such as string, without getting into a mess
of design by committee and without competing with
the C++ library industry. Any libraries beyond the
C libraries and iostreams accepted by the committee
must be in the nature of building blocks rather than
more ambitious frameworks. The key role of a stan-
dard library is to ease communication between sepa-
rately developed, more ambitious libraries.

The last sentence delineated the scope of the committee’s
efforts. The elaboration of the requirement for the standard
library to consist of building blocks for more ambitious li-
braries and frameworks emphasized absolute efficiency and
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extreme generality. One example I frequently used to illus-
trate the seriousness of those demands was that a container
where element access involved a virtual function call could
not be sufficiently efficient and that a container that couldn’t
hold an arbitrary type could not be sufficiently general (see
also §4.1.1). The committee felt that the role of the standard
library was to support rather than supplant other libraries.

Towards the end of the work on the 1998 standard, there
was a general feeling in the committee that we hadn’t done
enough about libraries, and also that there had been insuffi-
cient experimentation and too little attention to performance
measurement for the libraries we did approve. The question
was how to address those issues in the future. One — classi-
cal standards process — approach was to work on technical
reports (see §6.2). Another was initiated by Beman Dawes
in 1998, called Boost [16]. To quote from boost.org (August
2006):

“Boost provides free peer-reviewed portable C++
source libraries. We emphasize libraries that work
well with the C++ Standard Library. Boost libraries
are intended to be widely useful, and usable across a
broad spectrum of applications. The Boost license en-
courages both commercial and non-commercial use.
We aim to establish “existing practice” and provide
reference implementations so that Boost libraries are
suitable for eventual standardization. Ten Boost li-
braries are already included in the C++ Standards
Committee’s Library Technical Report (TR1) as a step
toward becoming part of a future C++ Standard. More
Boost libraries are proposed for the upcoming TR2”.

Boost thrived and became a significant source of libraries
and ideas for the standards committee and the C++ commu-
nity in general.

5. Language Features: 1991-1998
By 1991, the most significant C++ language features for
C++98 had been accepted: templates and exceptions as spec-
ified in the ARM were officially part of the language. How-
ever, work on their detailed specification went on for another
several years. In addition, the committee worked on many
new features, such as

1992 Covariant return types — the first extension beyond
the features described in the ARM

1993 Run-time type identification (RTTI: dynamic_cast,
typeid, and type_info); §5.1.2

1993 Declarations in conditions; §5.1.3

1993 Overloading based on enumerations

1993 Namespaces; §5.1.1

1993 mutable

1993 New casts (static_cast, reinterpret_cast, and
const_cast)

1993 A Boolean type (bool); §5.1.4

1993 Explicit template instantiation

1993 Explicit template argument specification in function
template calls

1994 Member templates (“nested templates”)

1994 Class templates as template arguments

1996 In-class member initializers

1996 Separate compilation of templates (export); §5.2

1996 Template partial specialization

1996 Partial ordering of overloaded function templates

I won’t go into detail here; the history of these features can
be found in D&E [121] and TC++PL3 [126] describes their
use. Obviously, most of these features were proposed and
discussed long before they were voted into the standard.

Did the committee have overall criteria for acceptance
of new features? Not really. The introduction of classes,
class hierarchies, templates, and exceptions each (and in
combination) represented a deliberate attempt to change the
way people think about programming and write code. Such a
major change was part of my aims for C++. However, as far
as a committee can be said to think, that doesn’t seem to be
the way it does it. Individuals bring forward proposals, and
the ones that make progress through the committee and reach
a vote tend to be of limited scope. The committee members
are busy and primarily practical people with little patience
for abstract goals and a liking of concrete details that are
amenable to exhaustive examination.

It is my opinion that the sum of the facilities added gives
a more complete and effective support of the programming
styles supported by C++, so we could say that the overall
aim of these proposals is to “provide better support for pro-
cedural, object-oriented, and generic programming and for
data abstraction”. That’s true, but it is not a concrete crite-
rion that can be used to select proposals to work on from a
long list. To the extent that the process has been successful in
selecting new “minor features”, it has been the result of deci-
sions by individuals on a proposal-by-proposal basis. That’s
not my ideal, but the result could have been much worse. ISO
C++ (C++98) is a better approximation to my ideals than the
previous versions of C++ were. C++98 is a far more flexible
(powerful) programming language than “ARM C++” (§3).
The main reason for that is the cumulative effect of the re-
finements, such as member templates.

Not every feature accepted is in my opinion an improve-
ment, though. For example, “in-class initialization of static
const members of integral type with a constant expression”
(proposed by John "Max" Skaller representing Australia
and New Zealand) and the rule that void f(T) and void
f(const T) denote the same function (proposed by Tom
Plum for C compatibility reasons) share the dubious distinc-
tion of having been voted into C++ “over my dead body”.
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5.1 Some “Minor Features”

The “minor features” didn’t feel minor when the committee
worked on them, and may very well not look minor to a
programmer using them. For example, I refer to namespaces
and RTTI as “major” in D&E [121]. However, they don’t
significantly change the way we think about programs, so
I will only briefly discuss a few of the features that many
would deem “not minor”.

5.1.1 Namespaces

C provides a single global namespace for all names that
don’t conveniently fit into a single function, a single struct,
or a single translation unit. This causes problems with name
clashes. I first grappled with this problem in the original
design of C++ by defaulting all names to be local to a
translation unit and requiring an explicit extern declaration
to make them visible to other translation units. This idea
was neither sufficient to solve the problem nor sufficiently
compatible to be acceptable, so it failed.

When I devised the type-safe linkage mechanism [121], I
reconsidered the problem. I observed that a slight change to
the

extern "C" { /* ... */ }

syntax, semantics, and implementation technique would al-
low us to have

extern XXX { /* ... */ }

mean that names declared in XXX were in a separate scope
XXX and accessible from other scopes only when qualified
by XXX:: in exactly the same way static class members are
accessed from outside their class.

For various reasons, mostly related to lack of time, this
idea lay dormant until it resurfaced in the ANSI/ISO com-
mittee discussions early in 1991. First, Keith Rowe from Mi-
crosoft presented a proposal that suggested the notation

bundle XXX { /* ... */ };

as a mechanism for defining a named scope and an opera-
tor use for bringing all names from a bundle into another
scope. This led to a — not very vigorous — discussion
among a few members of the extensions group including
Steve Dovich, Dag Brück, Martin O’Riordan, and me. Even-
tually, Volker Bauche, Roland Hartinger, and Erwin Unruh
from Siemens refined the ideas discussed into a proposal that
didn’t use new keywords:

:: XXX :: { /* ... */ };

This led to a serious discussion in the extensions group.
In particular, Martin O’Riordan demonstrated that this ::
notation led to ambiguities with :: used for class members
and for global names.

By early 1993, I had — with the help of multi-megabyte
email exchanges and discussions at the standards meetings

— synthesized a coherent proposal. I recall technical con-
tributions on namespaces from Dag Brück, John Bruns,
Steve Dovich, Bill Gibbons, Philippe Gautron, Tony Hansen,
Peter Juhl, Andrew Koenig, Eric Krohn, Doug McIlroy,
Richard Minner, Martin O’Riordan, John “Max” Skaller,
Jerry Schwarz, Mark Terribile, Mike Vilot, and me. In ad-
dition, Mike Vilot argued for immediate development of the
ideas into a definite proposal so that the facilities would be
available for addressing the inevitable naming problems in
the ISO C++ library. In addition to various common C and
C++ techniques for limiting the damage of name clashes,
the facilities offered by Modula-2 and Ada were discussed.
Namespaces were voted into C++ at the Munich meeting in
July 1993. So, we can write:

namespace XXX {
// ...
int f(int);

}

int f(int);
int x = f(1); // call global f
int y = XXX::f(1); // call XXX’s f

At the San Jose meeting in November 1993, it was decided
to use namespaces to control names in the standard C and
C++ libraries.

The original namespace design included a few more fa-
cilities, such as namespace aliases to allow abbreviations for
long names, using declarations to bring individual names
into a namespace, using directives to make all names
from a namespace available with a single directive. Three
years later, argument-dependent lookup (ADL or “Koenig
lookup”) was added to make namespaces of argument type
names implicit.

The result was a facility that is useful and used but rarely
loved. Namespaces do what they are supposed to do, some-
times elegantly, sometimes clumsily, and sometimes they do
more than some people would prefer (especially argument-
dependent lookup during template instantiation). The fact
that the C++ standard library uses only a single namespace
for all of its major facilities is an indication of a failure to
establish namespaces as a primary tool of C++ program-
mers. Using sub-namespaces for the standard library would
have implied a standardization of parts of the library imple-
mentation (to say which facilities were in which namespaces
and which parts depended on other parts). Some library ven-
dors strongly objected to such constraints on their traditional
freedom as implementers — traditionally the internal orga-
nization of C and C++ libraries have been essentially un-
constrained. Using sub-namespaces would also have been
a source of verbosity. Argument-dependent lookup would
have helped, but it was only introduced later in the standard-
ization process. Also, ADL suffers from a bad interaction
with templates that in some cases make it prefer a surpris-

Evolving C++ 1991-2006 21 2007/4/23

4-21



ing template over an obvious non-template. Here "surpris-
ing" and "obvious" are polite renderings of user comments.

This has led to proposals for C++0x to strengthen name-
spaces, to restrict their use, and most interestingly a proposal
from David Vandevoorde from EDG to make some name-
spaces into modules [146] — that is, to provide separately
compiled namespaces that load as modules. Obviously, that
facility looks a bit like the equivalent features of Java and
C#.

5.1.2 Run-time type information

When designing C++, I had left out facilities for determining
the type of an object (Simula’s QUA and INSPECT similar to
Smalltalk’s isKindOf and isA). The reason was that I had
observed frequent and serious misuse to the great detriment
of program organization: people were using these facilities
to implement (slow and ugly) versions of a switch statement.

The original impetus for adding facilities for determining
the type of an object at run time to C++ came from Dmitry
Lenkov from Hewlett-Packard. Dmitry in turn built on ex-
perience from major C++ libraries such as Interviews [81],
the NIH library [50], and ET++ [152]. The RTTI mecha-
nisms provided by these libraries (and others) were mutu-
ally incompatible, so they became a barrier to the use of
more than one library. Also, all require considerable fore-
sight from base class designers. Consequently, a language-
supported mechanism was needed.

I got involved in the detailed design for such mechanisms
as the coauthor with Dmitry of the original proposal to the
committee and as the main person responsible for the refine-
ment of the proposal in the committee [119]. The proposal
was first presented to the committee at the London meeting
in July 1991 and accepted at the Portland, Oregon meeting
in March 1993.

The run-time type information mechanism consists of
three parts:

• An operator, dynamic_cast, for obtaining a pointer to
an object of a derived class given a pointer to a base
class of that object. The operator dynamic_cast delivers
that pointer only if the object pointed to really is of the
specified derived class; otherwise it returns 0.

• An operator, typeid, for identifying the exact type of an
object given a pointer to a base class.

• A structure, type_info, acting as a hook for further run-
time information associated with a type.

Assume that a library supplies class dialog_box and that
its interfaces are expressed in terms of dialog_boxes. I,
however, use both dialog_boxes and my own Sboxs:

class dialog_box : public window {
// library class known to ‘‘the system’’

public:
virtual int ask();
// ...

};

class Sbox : public dialog_box {
// can be used to communicate a string

public:
int ask();
virtual char* get_string();
// ...

};

So, when the system/library hands me a pointer to a
dialog_box, how can I know whether it is one of my Sboxs?
Note that I can’t modify the library to know my Sbox class.
Even if I could, I wouldn’t, because then I would have to
modify every new version of the library forever after. So,
when the system passes an object to my code, I sometimes
need to ask it if was “one of mine”. This question can be
asked directly using the dynamic_cast operator:

void my_fct(dialog_box* bp)
{

if (Sbox* sbp = dynamic_cast<Sbox*>(bp)) {
// use sbp

}
else {

// treat *pb as a ‘‘plain’’ dialog box
}

}

The dynamic_cast<T*>(p) converts p to the desired type
T* if *p really is a T or a class derived from T; other-
wise, the value of dynamic_cast<T*>(p) is 0. This use of
dynamic_cast is the essential operation of a GUI callback.
Thus, C++’s RTTI can be seen as the minimal facility for
supporting a GUI.

If you don’t want to test explicitly, you can use references
instead of pointers:

void my_fct(dialog_box& br)
{

Sbox& sbr = dynamic_cast<Sbox&>(br);
// use sbr

}

Now, if the dialog_box isn’t of the expected type, an excep-
tion is thrown. Error handling can then be elsewhere (§5.3).

Obviously, this run-time type information is minimal.
This has led to requests for the maximal facility: a full
meta-data facility (reflection). So far, this has been deemed
unsuitable for a programming language that among other
things is supposed to leave its applications with a minimal
memory footprint.

5.1.3 Declarations in conditions

Note the way the cast, the declaration, and the test were
combined in the “box example”:

if (Sbox* sbp = dynamic_cast<Sbox*>(bp)) {
// use sbp

}
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This makes a neat logical entity that minimizes the chance
of forgetting to test, minimizes the chance of forgetting to
initialize, and limits the scope of the variable to its minimum.
For example, the scope of dbp is the if-statement.

The facility is called “declaration in condition” and mir-
rors the “declaration as for-statement initializer”, and “dec-
laration as statement”. The whole idea of allowing decla-
rations everywhere was inspired by the elegant statements-
as-expressions definition of Algol68 [154]. I was therefore
most amazed when Charles Lindsey explained to me at the
HOPL-II conference that Algol68 for technical reasons had
not allowed declarations in conditions.

5.1.4 Booleans

Some extensions really are minor, but the discussions about
them in the C++ community are not. Consider one of the
most common enumerations:

enum bool { false, true };

Every major program has that one or one of its cousins:

#define bool char
#define Bool int
typedef unsigned int BOOL;
typedef enum { F, T } Boolean;
const true = 1;
#define TRUE 1
#define False (!True)

The variations are apparently endless. Worse, most varia-
tions imply slight variations in semantics, and most clash
with other variations when used together.

Naturally, this problem has been well known for years.
Dag Brück (representing Ericsson and Sweden) and Andrew
Koenig (AT&T) decided to do something about it: “The idea
of a Boolean data type in C++ is a religious issue. Some peo-
ple, particularly those coming from Pascal or Algol, consider
it absurd that C should lack such a type, let alone C++. Oth-
ers, particularly those coming from C, consider it absurd that
anyone would bother to add such a type to C++”

Naturally, the first idea was to define an enum. However,
Dag Brück and Sean Corfield (UK) examined hundreds of
thousands of lines of C++ and found that most Boolean types
were used in ways that required implicit conversion of bool
to and from int. C++ does not provide implicit conversion
of ints to enumerations, so defining a standard bool as an
enumeration would break too much existing code. So why
bother with a Boolean type?

• The Boolean data type is a fact of life whether it is a part
of a C++ standard or not.

• The many clashing definitions make it hard to use any
Boolean type conveniently and safely.

• Many people want to overload based on a Boolean type.

Somewhat to my surprise, the committee accepted this ar-
gument, so bool is now a distinct integral type in C++ with

literals true and false. Non-zero values can be implicitly
converted to true, and true can be implicitly converted to
1. Zero can be implicitly converted to false, and false can
be implicitly converted to 0. This ensures a high degree of
compatibility.

Over the years, bool proved popular. Unexpectedly, I
found it useful in teaching C++ to people without previous
programming experience. After bool’s success in C++, the
C standards committee decided to also add it to C. Unfortu-
nately, they decided to do so in a different and incompatible
way, so in C99 [64], bool is a macro for the keyword _Bool
defined in the header <stdbool.h> together with macros
true and false.

5.2 The Export Controversy

From the earliest designs, templates were intended to allow
a template to be used after specifying just a declaration in a
translation unit [117, 35]. For example:

template<class In, class T>
In find(In, In, const T&); // no function body

vector<int>::iterator p =
find(vi.begin(), vi.end(),42);

It is then the job of the compiler and linker to find and use
the definition of the find template (D&E §15.10.4). That’s
the way it is for other language constructs, such as functions,
but for templates that’s easily said but extremely hard to do.

The first implementation of templates, Cfront 3.0 (Octo-
ber 1991), implemented this, but in a way that was very ex-
pensive in both compile time and link time. However, when
Taumetric and Borland implemented templates, they intro-
duced the “include everything” model: Just place all tem-
plate definitions in header files and the compiler plus linker
will eliminate the multiple definitions you get when you in-
clude a file multiple times in separately compiled transla-
tion units. The First Borland compiler with “rudimentary
template support” shipped November 20, 1991, quickly fol-
lowed by version 3.1 and the much more robust version 4.0
in November 1993 [27]. Microsoft, Sun, and others followed
along with (mutually incompatible) variations of the “in-
clude everything” approach. Obviously, this approach vio-
lates the usual separation between an implementation (using
definitions) and an interface (presenting only declarations)
and makes definitions vulnerable to macros, unintentional
overload resolution, etc. Consider a slightly contrived exam-
ple:

// printer.h:
template<class Destination>
class Printer {

locale loc;
Destination des;

public:
template<class T> void out(const T& x)

{ print(des,x,loc); }
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// ...
};

We might use Printer in two translation units like this:

//user1.c:
typedef int locale; // represent locale by int
#define print(a,b,c) a(c)<<x
#include "printer.h"
// ...

and this

//user2.c:
#include<locale> // use standard locale
using namespace std;
#include "printer.h"
// ...

This is obviously illegal because differences in the contexts
in which printer.h are seen in user1.c and user2.c lead
to inconsistent definitions of Printer. However, such errors
are hard for a compiler to detect. Unfortunately, the prob-
ability of this kind of error is far higher in C++ than in C
and even higher in C++ using templates than in C++ that
doesn’t use templates. The reason is that when we use tem-
plates there is so much more text in header files for typedefs,
overloads, and macros to interfere with. This leads to defen-
sive programming practices (such as naming all local names
in template definitions in a cryptic style unlikely to clash,
e.g., _L2) and a desire to reduce the amount of code in the
header files through separate compilation.

In 1996, a vigorous debate erupted in the committee over
whether we should not just accept the “include everything”
model for template definitions, but actually outlaw the orig-
inal model of separation of template declarations and defi-
nitions into separate translation units. The arguments of the
two sides were basically

• Separate translation of templates is too hard (if not im-
possible) and such a burden should not be imposed on
implementers

• Separate translation of templates is necessary for proper
code organization (according to data-hiding principles)

Many subsidiary arguments supported both sides. Mike Ball
(Sun) and John Spicer (EDG) led the “ban separate compila-
tion of templates” group and Dag Bruck (Ericcson and Swe-
den) usually spoke for the “preserve separate compilation of
templates” group. I was on the side that insisted on sepa-
rate compilation of templates. As ever in really nasty discus-
sions, both sides were mostly correct on their key points. In
the end, people from SGI — notably John Wilkinson — pro-
posed a new model that was accepted as a compromise. The
compromise was named after the keyword used to indicate
that a template could be separately translated: export.

The separate compilation of templates issue festers to this
day: The “export” feature remains disabled even in some
compilers that do support it because enabling it would break

ABIs. As late as 2003, Herb Sutter (representing Microsoft)
and Tom Plum (of Plum Hall) proposed a change to the
standard so that an implementation that didn’t implement
separate compilation of templates would still be conform-
ing; that is, export would be an optional language feature.
The reason given was again implementation complexity plus
the fact that even five years after the standard was ratified
only one implementation existed. That motion was defeated
by an 80% majority, partly because an implementation of
export now existed. Independently of the technical argu-
ments, many committee members considered it unfair to
deem a feature optional after some, but not all, implementers
had spent significant time and effort implementing it.

The real heroes of this sad tale are the implementers of
the EDG compiler: Steve Adamczyk, John Spicer, and David
Vandevoorde. They strongly opposed separate compilation
of templates, finally voted for the standard as the best com-
promise attainable, and then proceeded to spend more than
a year implementing what they had opposed. That’s pro-
fessionalism! The implementation was every bit as difficult
as its opponents had predicted, but it worked and provided
some (though not all) of the benefits that its proponents had
promised. Unfortunately, some of the restrictions on sepa-
rately compiled templates that proved essential for the com-
promise ended up not providing their expected benefits and
complicated the implementation. As ever, political compro-
mises on technical issues led to “warts”.

I suspect that one major component of a better solution
to the separate compilation of templates is concepts (§8.3.3)
and another is David Vandevoorde’s modules [146].

5.3 Exception Safety

During the effort to specify the STL we encountered a cu-
rious phenomenon: We didn’t quite know how to talk about
the interaction between templates and exceptions. Quite a
few people were placing blame for this problem on tem-
plates and others began to consider exceptions fundamen-
tally flawed (e.g., [20]) or at least fundamentally flawed in
the absence of automatic garbage collection. However, when
a group of “library people” (notably Nathan Myers, Greg
Colvin, and Dave Abrahams) looked into this problem, they
found that we basically had a language feature — excep-
tions — that we didn’t know how to use well. The problem
was in the interaction between resources and exceptions. If
throwing an exception renders resources inaccessible there
is no hope of recovering gracefully. I had of course con-
sidered this when I designed the exception-handling mech-
anisms and come up with the rules for exceptions thrown
from constructors (correctly handling partially constructed
composite objects) and the “resource acquisition is initializa-
tion” technique (§5.3.1). However, that was only a good start
and an essential foundation. What we needed was a concep-
tual framework — a more systematic way of thinking about
resource management. Together with many other people, no-
tably Matt Austern, such a framework was developed.
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Dave Abrahams condensed the result of work over a
couple of years into three guarantees [1]:

• The basic guarantee: that the invariants of the component
are preserved, and no resources are leaked.

• The strong guarantee: that the operation has either com-
pleted successfully or thrown an exception, leaving the
program state exactly as it was before the operation
started.

• The no-throw guarantee: that the operation will not throw
an exception.

Note that the strong guarantee basically is the database
“commit or rollback” rule. Using these fundamental con-
cepts, the library working group described the standard li-
brary and implementers produced efficient and robust im-
plementations. The standard library provides the basic guar-
antee for all operations with the caveat that we may not exit a
destructor by throwing an exception. In addition, the library
provides the strong guarantee and the no-throw guarantee for
key operations. I found this result important enough to add
an appendix to TC++PL [124], yielding [126]. For details
of the standard library exception guarantees and program-
ming techniques for using exceptions, see Appendix E of
TC++PL.

The first implementations of the STL using these con-
cepts to achieve exception safety were Matt Austern’s SGI
STL and Boris Fomitch’s STLPort [42] augmented with
Dave Abrahams’ exception-safe implementations of stan-
dard containers and algorithms. They appeared in the spring
of 1997.

I think the key lesson here is that it is not sufficient just
to know how a language feature behaves. To write good
software, we must have a clearly articulated design strategy
for problems that require the use of the feature.

5.3.1 Resource management

Exceptions are typically — and correctly — seen as a con-
trol structure: a throw transfers control to some catch-
clause. However, sequencing of operations is only part of
the picture: error handling using exceptions is mostly about
resource management and invariants. This view is actually
built into the C++ class and exception primitives in a way
that provides a necessary foundation for the guarantees and
the standard library design.

When an exception is thrown, every constructed object in
the path from the throw to the catch is destroyed. The de-
structors for partially constructed objects (and unconstructed
objects) are not invoked. Without those two rules, exception
handling would be unmanageable (in the absence of other
support). I (clumsily) named the basic technique “resource
acquisition is initialization” — commonly abbreviated to
“RAII”. The classical example [118] is

// naive and unsafe code:
void use_file(const char* fn)

{
FILE* f = fopen(fn,"w"); // open file fn
// use f
fclose(f); // close file fn

}

This looks plausible. However, if something goes wrong
after the call of fopen and before the call of fclose, an
exception may cause use_file to be exited without calling
fclose. Please note that exactly the same problem can occur
in languages that do not support exception handling. For
example, a call of the standard C library function longjmp
would have the same bad effects. Even a misguided return
among the code using f would cause the program to leak
a file handle. If we want to support writing fault-tolerant
systems, we must solve this problem.

The general solution is to represent a resource (here the
file handle) as an object of some class. The class’ constructor
acquires the resource and the class’ destructor gives it back.
For example, we can define a class File_ptr that acts like a
FILE*:

class File_ptr {
FILE* p;

public:
File_ptr(const char* n, const char* a)
{

p = fopen(n,a);
if (p==0) throw Failed_to_open(n);

}
~File_ptr() { fclose(p); }
// copy, etc.
operator FILE*() { return p; }

};

We can construct a File_ptr given the arguments required
for fopen. The File_ptr will be destroyed at the end of
its scope and its destructor closes the file. Our program now
shrinks to this minimum

void use_file(const char* fn)
{

File_ptr f(fn,"r"); // open file fn
// use f

} // file fn implicitly closed

The destructor will be called independently of whether
the function is exited normally or because an exception is
thrown.

The general form of the problem looks like this:

void use()
{

// acquire resource 1
// ...
// acquire resource n

// use resources

// release resource n
// ...
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// release resource 1
}

This applies to any “resource” where a resource is anything
you acquire and have to release (hand back) for a system
to work correctly. Examples include files, locks, memory,
iostream states, and network connections. Please note that
automatic garbage collection is not a substitute for this: the
point in time of the release of a resource is often important
logically and/or performance-wise.

This is a systematic approach to resource management
with the important property that correct code is shorter and
less complex than faulty and primitive approaches. The pro-
grammer does not have to remember to do anything to re-
lease a resource. This contrasts with the older and ever-
popular finally approach where a programmer provides a
try-block with code to release the resource. The C++ vari-
ant of that solution looks like this:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"r"); // open file fn
try {

// use f
}
catch (...) { // catch all

fclose(f); // close file fn
throw; // re-throw

}
fclose(f); // close file fn

}

The problem with this solution is that it is verbose, tedious,
and potentially expensive. It can be made less verbose and
tedious by providing a finally clause in languages such as
Java, C#, and earlier languages [92]. However, shortening
such code doesn’t address the fundamental problem that the
programmer has to remember to write release code for each
acquisition of a resource rather just once for each resource,
as in the RAII approach. The introduction of exceptions into
the ARM and their presentation as a conference paper [79]
was delayed for about half a year until I found “resource
acquisition is initialization” as a systematic and less error-
prone alternative to the finally approach.

5.4 Automatic Garbage Collection

Sometime in 1995, it dawned on me that a majority of
the committee was of the opinion that plugging a garbage
collector into a C++ program was not standard-conforming
because the collector would inevitably perform some action
that violated a standard rule. Worse, they were obviously
right about the broken rules. For example:

void f()
{

int* p = new int[100];
// fill *p with valuable data
file << p; // write the pointer to a file
p = 0; // remove the pointer to the ints

// work on something else for a week
file >> p;
if (p[37] == 5) { // now use the ints

// ...
}

}

My opinion — as expressed orally and in print — was
roughly: “such programs deserve to be broken” and “it is
perfectly good C++ to use a conservative garbage collector”.
However, that wasn’t what the draft standard said. A garbage
collector would undoubtedly have recycled that memory be-
fore we read the pointer back from the file and started using
the integer array again. However, in standard C and standard
C++, there is absolutely nothing that allows a piece of mem-
ory to be recycled without some explicit programmer action.

To fix this problem, I made a proposal to explicitly allow
“optional automatic garbage collection” [123]. This would
bring C++ back to what I had thought I had defined it to
be and make the garbage collectors already in actual use
[11, 47] standard conforming. Explicitly mentioning this in
the standard would also encourage use of GC where appro-
priate. Unfortunately, I seriously underestimated the dislike
of garbage collection in a large section of the committee and
also mishandled the proposal.

My fatal mistake with the GC proposal was to get thor-
oughly confused about the meaning of “optional”. Did “op-
tional” mean that an implementation didn’t have to provide
a garbage collector? Did it mean that the programmer could
decide whether the garbage collector was turned on or not?
Was the choice made at compile time or run time? What
should happen if I required the garbage collector to be ac-
tivated and the implementation didn’t supply one? Can I ask
if the garbage collector is running? How? How can I make
sure that the garbage collector isn’t running during a critical
operation? By the time a confused discussion of such ques-
tions had broken out and different people had found conflict-
ing answers attractive, the proposal was effectively dead.

Realistically, garbage collection wouldn’t have passed in
1995, even if I hadn’t gotten confused. Parts of the commit-
tee

• strongly distrusted GC for performance reasons

• disliked GC because it was seen as a C incompatibility

• didn’t feel they understood the implications of accepting
GC (we didn’t)

• didn’t want to build a garbage collector

• didn’t want to pay for a garbage collector (in terms of
money, space, or time)

• wanted alternative styles of GC

• didn’t want to spend precious committee time on GC

Basically, it was too late in the standards process to introduce
something that major. To get anything involving garbage
collection accepted, I should have started a year earlier.
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My proposal for garbage collection reflected the then ma-
jor use of garbage collection in C++ — that is, conservative
collectors that don’t make assumptions about which memory
locations contain pointers and never move objects around
in memory [11]. Alternative approaches included creating a
type-safe subset of C++ so that it is possible to know exactly
where every pointer is, using smart pointers [34] and provid-
ing a separate operator (gcnew or new(gc)) for allocating
objects on a “garbage-collected heap”. All three approaches
are feasible, provide distinct benefits, and have proponents.
This further complicates any effort to standardize garbage
collection for C++.

A common question over the years has been: Why don’t
you add GC to C++? Often, the implication (or follow-up
comment) is that the C++ committee must be a bunch of ig-
norant dinosaurs not to have done so already. First, I observe
that in my considered opinion, C++ would have been still-
born had it relied on garbage collection when it was first de-
signed. The overheads of garbage collection at the time, on
the hardware available, precluded the use of garbage collec-
tion in the hardware-near and performance-critical areas that
were C++’s bread and butter. There were garbage-collected
languages then, such as Lisp and Smalltalk, and people were
reasonably happy with those for the applications for which
they were suitable. It was not my aim to replace those lan-
guages in their established application areas. The aim of C++
was to make object-oriented and data-abstraction techniques
affordable in areas where these techniques at the time were
“known” to be impractical. The core areas of C++ usage in-
volved tasks, such as device drivers, high-performance com-
putation, and hard-real-time tasks, where garbage collection
was (and is) either infeasible or not of much use.

Once C++ was established without garbage collection
and with a set of language features that made garbage col-
lection difficult (pointers, casts, unions, etc.), it was hard
to retrofit it without doing major damage. Also, C++ pro-
vides features that make garbage collection unnecessary in
many areas (scoped objects, destructors, facilities for defin-
ing containers and smart pointers, etc.). That makes the case
for garbage collection less compelling.

So, why would I like to see garbage collection supported
in C++? The practical reason is that many people write soft-
ware that uses the free store in an undisciplined manner. In
a program with hundreds of thousands of lines of code with
news and deletes all over the place, I see no hope for avoid-
ing memory leaks and access through invalid pointers. My
main advice to people who are starting a project is simply:
“don’t do that!”. It is fairly easy to write correct and effi-
cient C++ code that avoids those problems through the use
of containers (STL or others; §4.1), resource handles (§5.3.1,
and (if needed) smart pointers (§6.2). However, many of us
have to deal with older code that does deal with memory in
an undisciplined way, and for such code plugging in a con-
servative garbage collector is often the best option. I expect

C++0x to require every C++ implementation to be shipped
with a garbage collector that, somehow, can be either active
or not.

The other reason that I suspect a garbage collector will
eventually become necessary is that I don’t see how to
achieve perfect type safety without one — at least not with-
out pervasive testing of pointer validity or damaging compat-
ibility (e.g. by using two-word non-local pointers). And im-
proving type safety (e.g., “eliminate every implicit type vio-
lation” [121]) has always been a fundamental long-term aim
of C++. Obviously, this is a very different argument from
the usual “when you have a garbage collector, programming
is easy because you don’t have to think about deallocation”.
To contrast, my view can be summarized as “C++ is such
a good garbage-collected language because it creates so lit-
tle garbage that needs to be collected”. Much of the thinking
about C++ has been focused on resources in general (such as
locks, file handles, thread handles, and free store memory).
As noted in §5.3, this focus has left traces in the language it-
self, in the standard library, and in programming techniques.
For large systems, for embedded systems, and for safety-
critical systems a systematic treatment of resources seems
to me much more promising than a focus on garbage collec-
tion.

5.5 What Wasn’t Done

Choosing what to work on is probably more significant than
how that work is done. If someone — in this case the C++
standards committee — decides to work on the wrong prob-
lem, the quality of the work done is largely irrelevant. Given
the limited time and resources, the committee could cope
with only a few topics and choose to work hard on those few
rather than take on more topics. By and large, I think that the
committee chose well and the proof of that is that C++98 is a
significantly better language than ARM C++. Naturally, we
could have done better still, but even in retrospect it is hard
to know how. The decisions made at the time were taken
with as much information (about problems, resources, possi-
ble solutions, commercial realities, etc.) as we had available
then and who are we to second guess today?

Some questions are obvious, though:

• Why didn’t we add support for concurrency?

• Why didn’t we provide a much more useful library?

• Why didn’t we provide a GUI?

All three questions were seriously considered and in the
first two cases settled by explicit vote. The votes were close
to unanimous. Given that we had decided not to pursue
concurrency or to provide a significantly larger library, the
question about a GUI library was moot.

Many of us — probably most of the committee members
— would have liked some sort of concurrency support. Con-
currency is fundamental and important. Among other sug-
gestions, we even had a pretty solid proposal for concur-
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rency support in the form of micro-C++ from the University
of Toronto [18]. Some of us, notably Dag Brück relying on
data from Ericssson, looked at the issue and presented the
case for not dealing with concurrency in the committee:

• We found the set of alternative ways of supporting con-
currency large and bewildering.

• Different application areas apparently had different needs
and definitely had different traditions.

• The experience with Ada’s direct language support for
concurrency was discouraging.

• Much (though of course not all) could be done with
libraries.

• The committee lacked sufficient experience to do a solid
design.

• We didn’t want a set of primitives that favored one ap-
proach to concurrency over others.

• We estimated that the work — if feasible at all — would
take years given our scarce resources.

• We wouldn’t be able to decide what other ideas for im-
provements to drop to make room for the concurrency
work.

My estimate at the time was that “concurrency is as big
a topic as all of the other extensions we are considering
put together”. I do not recall hearing what I in retrospect
think would have been “the killer argument”: Any sufficient
concurrency support will involve the operating system; since
C++ is a systems programming language, we need to be
able to map the C++ concurrency facilities to the primitives
offered. But for each platform the owners insist that C++
programmers can use every facility offered. In addition, as
a fundamental part of a multi-language environment, C++
cannot rely on a concurrency model that is dramatically
different from what other languages support. The resulting
design problem is so constrained that it has no solution.

The reason the lack of concurrency support didn’t hurt the
C++ community more than it did is that much of what people
actually do with concurrency is pretty mundane and can be
done through library support and/or minor (non-standard)
language extensions. The various threads libraries (§8.6) and
MPI [94] [49] offer examples.

Today, the tradeoffs appear to be different: The continu-
ing increase in gate counts paired with the lack of increase of
hardware clock speeds is a strong incentive to exploit low-
level concurrency. In addition, the growth of multiprocessors
and clusters requires other styles of concurrency support and
the growth of wide-area networking and the web makes yet
other styles of concurrent systems essential. The challenge
of supporting concurrency is more urgent than ever and the
major players in the C++ world seem far more open to the
need for changes to accommodate it. The work on C++0x
reflects that (§8.2).

The answer to “Why didn’t we provide a much more use-
ful library?” is simpler: We didn’t have the resources (time
and people) to do significantly more than we did. Even the
STL caused a year’s delay and gaining consensus on other
components, such as iostreams, strained the committee.
The obvious shortcut — adopting a commercial foundation
library — was considered. In 1992, Texas Instruments of-
fered their very nice library for consideration and within an
hour five representatives of major corporations made it per-
fectly clear that if this offer was seriously considered they
would propose their own corporate foundation libraries. This
wasn’t a way that the committee could go. Another com-
mittee with a less consensus-based culture might have made
progress by choosing one commercial library over half-a-
dozen others in major use, but not this C++ committee.

It should also be remembered that in 1994, many already
considered the C++ standard library monstrously large. Java
had not yet changed programmers’ perspective of what they
could expect “for free” from a language. Instead, many in the
C++ community used the tiny C standard library as the mea-
sure of size. Some national bodies (notably the Netherlands
and France) repeatedly expressed worry that C++ standard
library was seriously bloated. Like many in the committee,
I also hoped that the standard would help rather than try to
supplant the C++ libraries industry.

Given those general concerns about libraries, the answer
to “Why didn’t we provide a GUI?” is obvious: The com-
mittee couldn’t do it. Even before tackling the GUI-specific
design issues, the committee would have had to tackle con-
currency and settle on a container design. In addition, many
of the members were simply blindsided. GUI was seen as
just another large and complex library that people — given
dynamic_cast (§5.1.2) — could write themselves (in par-
ticular, that was my view). They did. The problem today is
not that there is no C++ GUI library, but that there are on the
order of 25 such libraries in use (e.g., Gtkmm [161], FLTK
[156], SmartWin++ [159], MFC [158], WTL [160], vxWid-
gets (formerly wxWindows) [162], Qt [10]). The committee
could have worked on a GUI library, worked on library fa-
cilities that could be used as a basis for GUI libraries, or
worked on standard library interfaces to common GUI func-
tionality. The latter two approaches might have yielded im-
portant results, but those paths weren’t taken and I don’t
think that the committee then had the talents necessary for
success in that direction. Instead, the committee worked hard
on more elaborate interfaces to stream I/O. That was prob-
ably a dead end because the facilities for multiple character
sets and locale dependencies were not primarily useful in the
context of traditional data streams.

6. Standards Maintenance: 1997-2005
After a standard is passed, the ISO process can go into a
“maintenance mode” for up to five years. The C++ commit-
tee decided to do that because:
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• the members were tired (after ten years’ work for some
members) and wanted to do something else,

• the community was way behind in understanding the new
features,

• many implemeters were way behind with the new fea-
tures, libraries, and support tools,

• no great new ideas were creating a feeling of urgency
among the members or in the community,

• for many members, resources (time and money) for stan-
dardization were low, and

• many members (including me) thought that the ISO pro-
cess required a “cooling-off period”.

In “maintenance mode,” the committee primarily responded
to defect reports. Most defects were resolved by clarifying
the text or resolving contradictions. Only very rarely were
new rules introduced and real innovation was avoided. Sta-
bility was the aim. In 2003, all these minor corrections were
published under the name “Technical Corrigendum 1”. At
the same time, members of the British national committee
took the opportunity to remedy a long-standing problem:
they convinced Wiley to publish a printed version of the
(revised) standard [66]. The initiative and much of the hard
work came from Francis Glassborow and Lois Goldthwaite
with technical support from the committee’s project editor,
Andrew Koenig, who produced the actual text.

Until the publication of the revised standard in 2003, the
only copies of the standard available to the public were a
very expensive (about $200) paper copy from ISO or a cheap
($18) pdf version from INCITS (formerly ANSI X3). The
pdf version was a complete novelty at the time. Standards
bodies are partially financed through the sales of standards,
so they are most reluctant to make them available free of
charge or cheaply. In addition, they don’t have retail sales
channels, so you can’t find a national or international stan-
dard in your local book store — except the C++ standard, of
course. Following the C++ initiative, the C standard is now
also available.

Much of the best standards work is invisible to the aver-
age programmer and appears quite esoteric and often boring
when presented. The reason is that a lot of effort is expended
in finding ways of expressing clearly and completely “what
everyone already knows, but just happens not to be spelled
out in the manual” and in resolving obscure issues that — at
least in theory — don’t affect most programmers. The main-
tenance is mostly such “boring and esoteric” issues. Further-
more, the committee necessarily focuses on issues where the
standard contradicts itself — or appears to do so. However,
these issues are essential to implementers trying to ensure
that a given language use is correctly handled. In turn, these
issues become essential to programmers because even the
most carefully written large program will deliberately or ac-
cidentally depend on some feature that would appear ob-

scure or esoteric to some. Unless implementers agree, the
programmer has a hard time achieving portability and easily
becomes the hostage of a single compiler purveyor — and
that would be contrary to my view of what C++ is supposed
to be.

To give an idea of the magnitude of this maintenance task
(which carries on indefinitely): Since the 1998 standard until
2006, the core and library working groups has each handled
on the order of 600 “defect reports”. Fortunately, not all
were real defects, but even determining that there really is
no problem, or that the problem is just lack of clarity in the
standard’s text, takes time and care.

Maintenance wasn’t all that the committee did from 1997
to 2003. There was a modest amount of planning for the
future (thinking about C++0x), but the main activities were
writing a technical report on performance issues [67] and
one on libraries [68].

6.1 The Performance TR

The performance technical report (“TR”) [67] was prompted
by a suggestion to standardize a subset of C++ for embed-
ded systems programming. The proposal, called Embedded
C++ [40] or simply EC++, originated from a consortium
of Japanese embedded systems tool developers (including
Toshiba, Hitachi, Fujitsu, and NEC) and had two main con-
cerns: removal of language features that potentially hurt per-
formance and removal of language features perceived to be
too complicated for programmers (and thus seen as poten-
tial productivity or correctness hazards). A less clearly stated
aim was to define something that in the short term was easier
to implement than full standard C++.

The features banned in this (almost) subset included: mul-
tiple inheritance, templates, exceptions, run-time type infor-
mation (§5.1.2), new-style casts, and name spaces. From the
standard library, the STL and locales were banned and an al-
ternative version of iostreams provided. I considered the
proposal misguided and backwards looking. In particular,
the performance costs were largely imaginary, or worse. For
example, the use of templates has repeatedly been shown to
be key to both performance (time and space) and correctness
of embedded systems. However, there wasn’t much hard data
in this area in 1996 when EC++ was first proposed. Ironi-
cally, it appears that most of the few people who use EC++
today use it in the form of “Extended EC++” [36], which
is EC++ plus templates. Similarly, namespaces (§5.1.1) and
new style casts (§5) are features that are primarily there
to clarify code and can be used to ease maintenance and
verification of correctness. The best documented (and most
frequently quoted) overhead of “full C++” as compared to
EC++ was iostreams. The primary reason for that is that
the C++98 iostreams support locales whereas that older
iostreams do not. This is somewhat ironic because the lo-
cales were added to support languages different from En-
glish (most notably Japanese) and can be optimized away in
environments where they are not used (see [67]).
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After serious consideration and discussion, the ISO com-
mittee decided to stick to the long-standing tradition of not
endorsing dialects — even dialects that are (almost) subsets.
Every dialect leads to a split in the user community, and so
does even a formally defined subset when its users start to
develop a separate culture of techniques, libraries, and tools.
Inevitably, myths about failings of the full language rela-
tive to the “subset” will start to emerge. Thus, I recommend
against the use of EC++ in favor of using what is appropriate
from (full) ISO Standard C++.

Obviously, the people who proposed EC++ were right in
wanting an efficient, well-implemented, and relatively easy-
to-use language. It was up to the committee to demonstrate
that ISO Standard C++ was that language. In particular, it
seemed a proper task for the committee to document the
utility of the features rejected by EC++ in the context of
performance-critical, resource-constrained, or safety-critical
tasks. It was therefore decided to write a technical report on
“performance”. Its executive summary reads:

‘The aim of this report is:

• to give the reader a model of time and space over-
heads implied by use of various C++ language and
library features,

• to debunk widespread myths about performance
problems,

• to present techniques for use of C++ in applica-
tions where performance matters, and

• to present techniques for implementing C++ Stan-
dard language and library facilities to yield effi-
cient code.

As far as run-time and space performance is con-
cerned, if you can afford to use C for an application,
you can afford to use C++ in a style that uses C++’s
facilities appropriately for that application.

Not every feature of C++ is efficient and predictable to the
extent that we need for some high-performance and embed-
ded applications. A feature is predictable if we can in ad-
vance easily and precisely determine the time needed for
each use. In the context of an embedded system, we must
consider if we can use

• free store (new and delete)

• run-time type identification (dynamic_cast and typeid)

• exceptions (throw and catch)

The time needed to perform one of these operations can
depend on the context of the code (e.g. how much stack un-
winding a throw must perform to reach its matching catch)
or on the state of the program (e.g. the sequence of news and
deletes before a new).

Implementations aimed at embedded or high perfor-
mance applications all have compiler options for disabling

run-time type identification and exceptions. Free store us-
age is easily avoided. All other C++ language features are
predictable and can be implemented optimally (according
to the zero-overhead principle; §2). Even exceptions can be
(and tend to be) efficient compared to alternatives [93] and
should be considered for all but the most stringent hard-real-
time systems. The TR discusses these issues and also defines
an interface to the lowest accessible levels of hardware (such
as registers). The performance TR was written by a working
group primarily consisting of people who cared about em-
bedded systems, including members of the EC++ technical
committee. I was active in the performance working group
and drafted significant portions of the TR, but the chairman
and editor was first Martin O’Riordan and later Lois Goldth-
waite. The acknowledgments list 28 people, including Jan
Kristofferson, Dietmar Kühl, Tom Plum, and Detlef Voll-
mann. In 2004, that TR was approved by unanimous vote.

In 2004, after the TR had been finalized, Mike Gibbs
from Lockheed-Martin Aero found an algorithm that allows
dynamic_cast to be implemented in constant time, and fast
[48]. This offers hope that dynamic_cast will eventually be
usable for hard-real-time programming.

The performance TR is one of the few places where the
immense amount of C++ usage in embedded systems sur-
faces in publicly accessible writing. This usage ranges from
high-end systems such as found in telecommunications sys-
tems to really low-level systems where complete and di-
rect access to specific hardware features is essential (§7).
To serve the latter, the performance TR contains a “hard-
ware addressing interface” together with guidelines for its
usage. This interface is primarily the work of Jan Kristof-
ferson (representing Ramtex International and Denmark)
and Detlef Vollmann (representing Vollmann Engineering
GmbH and Switzerland). To give a flavor, here is code copy-
ing a register buffer specified by a port called PortA2_T:

unsigned char mybuf[10];
register_buffer<PortA2_T, Platform> p2;
for (int i = 0; i != 10; ++i)
{

mybuf[i] = p2[i];
}

Essentially the same operation can be done as a block read:

register_access<PortA3_T, Platform> p3;
UCharBuf myBlock;
myBlock = p3;

Note the use of templates and the use of integers as template
arguments; it’s essential for a library that needs to main-
tain optimal performance in time and space. This comes as
a surprise to many who have been regaled with stories of
memory bloat caused by templates. Templates are usually
implemented by generating a copy of the code used for each
specialization; that is, for each combination of template ar-
guments. Thus, obviously, if your code generated by a tem-
plate takes up a lot of memory, you can use a lot of memory.
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However, many modern templates are written based on the
observation that an inline function may shrink to something
that’s as small as the function preamble or smaller still. That
way you can simultaneously save both time and space. In
addition to good inlining, there are two more bases for good
performance from template code: dead code elimination and
avoidance of spurious pointers.

The standard requires that no code is generated for a
member function of a class template unless that mem-
ber function is called for a specific set of template argu-
ments. This automatically eliminates what could have be-
come “dead code”. For example:

template<class T> class X {
public:

void f() { /* ... */ }
void g() { /* ... */ }
// ...

};

int main()
{

X<int> xi;
xi.f();
X<double> xd;
xd.g();
return 0;

}

For this program, the compiler must generate code for
X<int>::f() and X<double>::g() but may not generate
code for X<int>::g() and X<double>::f(). This rule was
added to the standard in 1993, at my insistence, specifically
to reduce code bloat, as observed in early uses of templates.
I have seen this used in embedded systems in the form of
the rule “all classes must be templates, even if only a single
instantiation is used”. That way, dead code is automatically
eliminated.

The other simple rule to follow to get good memory per-
formance from templates is: “don’t use pointers if you don’t
need them”. This rule preserves complete type information
and allows the optimizer to perform really well (especially
when inline functions are used). This implies that function
templates that take simple objects (such as function objects)
as arguments should do so by value rather than by reference.
Note that pointers to functions and virtual functions break
this rule, causing problems for optimizers.

It follows that to get massive code bloat, say megabytes,
what you need is to

1. use large function templates (so that the code generated
is large)

2. use lots of pointers to objects, virtual functions, and
pointers to functions (to neuter the optimizer)

3. use “feature rich” hierarchies (to generate a lot of poten-
tially dead code)

4. use a poor compiler and a poor optimizer

I designed templates specifically to make it easy for the pro-
grammer to avoid (1) and (2). Based on experience, the stan-
dard deals with (3), except when you violate (1) or (2). In the
early 1990s, (4) became a problem. Alex Stepanov named it
“the abstraction penalty” problem. He defined “the abstrac-
tion penalty” as the ratio of runtime between a templated
operation (say, find on a vector<int> and the trivial non-
templated equivalent (say a loop over an array of int). An
implementation that does all of the easy and obvious opti-
mizations gets a ratio of 1. Poor compilers had an abstrac-
tion penalty of 3, though even then good implementations
did significantly better. In October 1995, to encourage im-
plementers to do better, Alex wrote the “abstraction penalty
benchmark”, which simply measured the abstraction penalty
[102]. Compiler and optimizer writers didn’t like their im-
plementations to be obviously poor, so today ratios of 1.02
or so are common.

The other — and equally important — aspect of C++’s
support for embedded systems programming is simply that
its model of computation and memory is that of real-world
hardware: the built-in types map directly to memory and reg-
isters, the built-in operations map directly to machine opera-
tions, and the composition mechanisms for data structures do
not impose spurious indirections or memory overhead [131].
In this, C++ equals C. See also §2.

The views of C++ as a close-to-machine language with
abstraction facilities that can be used to express predica-
ble type-safe low-level facilities has been turned into a
coding standard for safety-critical hard-real-time code by
Lockheed-Martin Aero [157]. I helped draft that standard.
Generally, C and assembly language programmers under-
stand the direct mapping of language facilities to hardware,
but often not the the need for abstraction mechanisms and
strong type checking. Conversely, programmers brought up
with higher-level “object-oriented” languages often fail to
see the need for closeness to hardware and expect some
unspecified technology to deliver their desired abstractions
without unacceptable overheads.

6.2 The Library TR

When we finished the standard in 1997, we were fully aware
that the set of standard libraries was simply the set that we
had considered the most urgently needed and also ready to
ship. Several much-wanted libraries, such as hash tables,
regular expression matching, directory manipulation, and
threads, were missing. Work on such libraries started im-
mediately in the Libraries Working Group chaired by Matt
Austern (originally working at SGI with Alex Stepanov, then
at AT&T Labs with me, and currently at Google). In 2001,
the committee started work on a technical report on libraries.
In 2004 that TR [68] specifying libraries that people consid-
ered most urgently needed was approved by unanimous vote.
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Despite the immense importance of the standard library
and its extensions, I will only briefly list the new libraries
here:

• Polymorphic function object wrapper

• Tuple types

• Mathematical special functions

• Type traits

• Regular expressions

• Enhanced member pointer adaptor

• General-purpose smart pointers

• Extensible random number facility

• Reference wrapper

• Uniform method for computing function-object return
types

• Enhanced binder

• Hash tables

Prototypes or industrial-strength implementations of each of
these existed at the time of the vote; they are expected to ship
with every new C++ implementation from 2006 onwards.
Many of these new library facilities are obviously “techni-
cal”; that is, they exist primarily to support library builders.
In particular, they exist to support builders of standard li-
brary facilities in the tradition of the STL. Here, I will just
emphasize three libraries that are of direct interest to large
numbers of application builders:

• Regular expressions

• General-purpose smart pointers

• Hash tables

Regular expression matching is one of the backbones of
scripting languages and of much text processing. Finally,
C++ has a standard library for that. The central class
is regex, providing regular expression matching of pat-
terns compatible with ECMAscript (formerly JavaScript or
Jscript) and with other popular notations.

The main “smart pointer” is a reference-counted pointer,
shared_ptr, intended for code where shared ownership is
needed. When the last shared_ptr to an object is destroyed,
the object pointed to is deleted. Smart pointers are pop-
ular, but not universally so and concerns about their per-
formance and likely overuse kept smart_ptr’s “ancestor”,
counted_ptr, out of C++98. Smart pointers are not the
panacea they are sometimes presented to be. In particular,
they can be far more expensive to use than ordinary point-
ers, destructors for objects “owned” by a set of shared_ptrs
will run at unpredictable times, and if a lot of objects are
deleted at once because the last shared_ptr to them is
deleted you can incur “garbage-collection delays” exactly as
if you were running a general collector. The costs primarily
relate to free-store allocation of use-count objects and espe-

cially to locking during access to the use counts in threaded
systems (“lock-free” implementations appear to help here).
If it is garbage collection you want, you might be better off
simply using one of the available garbage collectors [11, 47]
or waiting for C++0x (§5.4).

No such worries affected hash tables; they would have
been in C++98 had we had the time to do a proper de-
tailed design and specification job. There was no doubt
that a hash_map was needed as an alternative to map for
large tables where the key was a character string and we
could design a good hash function. In 1995, Javier Bar-
reirro, Robert Fraley and David Musser tried to get a pro-
posal ready in time for the standard and their work be-
came the basis for many of the later hash_maps [8]. The
committee didn’t have the time, though, and consequently
the Library TR’s unordered_map (and unordered_set) are
the result of about eight years of experiment and industrial
use. A new name, “unordered_map”, was chosen because
now there are half a dozen incompatible hash_maps in use.
The unordered_map is the result of a consensus among the
hash_map implementers and their key users in the commit-
tee. An unordered_map is “unordered” in the sense that an
iteration over its elements are not guaranteed to be in any
particular order: a hash function doesn’t define an ordering
in the way a map’s < does.

The most common reaction to these extensions among
developers is “that was about time; why did it take you so
long?” and “I want much more right now”. That’s under-
standable (I too want much more right now — I just know
that I can’t get it), but such statements reflect a lack of un-
derstanding what an ISO committee is and can do. The com-
mittee is run by volunteers and requires both a consensus
and an unusual degree of precision in our specifications (see
D&E §6.2). The committee doesn’t have the millions of dol-
lars that commercial vendors can and do spend on “free”,
“standard” libraries for their customers.

7. C++ in Real-World Use
Discussions about programming languages typically focus
on language features: which does the language have? how
efficient are they? More enlightened discussions focus on
more difficult questions: how is the language used? how
can it be used? who can use it? For example, in an early
OOPSLA keynote, Kristen Nygaard (of Simula and OOP
fame) observed: “if we build languages that require a PhD
from MIT to use, we have failed”. In industrial contexts,
the first — and often only — questions are: Who uses the
language? What for? Who supports it? What are the alter-
natives? This section presents C++ and its history from the
perspective of its use.

Where is C++ used? Given the number of users (§1),
it is obviously used in a huge number of places, but since
most of the use is commercial it is difficult to document.
This is one of the many areas where the lack of a central
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organization for C++ hurts the C++ community — nobody
systematically gathers information about its use and nobody
has anywhere near complete information. To give an idea
of the range of application areas, here are a few examples
where C++ is used for crucial components of major systems
and applications:

• Adobe — Acrobat, Photoshop, Illustrator, ...

• Amadeus — airline reservations

• Amazon — e-commerce

• Apple — iPod interface, applications, device drivers,
finder, ...

• AT&T — 1-800 service, provisioning, recovery after net-
work failure, ...

• eBay — online auctions

• Games — Doom3, StarCraft, Halo, ...

• Google — search engines, Google Earth, ...

• IBM — K42 (very high-end operating system), AS/400,
...

• Intel — chip design and manufacturing, ...

• KLA-Tencor — semiconductor manufacturing

• Lockheed-Martin Aero — airplane control (F16, JSF), ...

• Maeslant Barrier — Dutch surge barrier control

• MAN B&W — marine diesel engine monitoring and fuel
injection control

• Maya — professional 3D animation

• Microsoft — Windows XP, Office, Internet explorer, Vi-
sual Studio, .Net, C# compiler, SQL, Money, ...

• Mozilla Firefox — browser

• NASA/JPL — Mars Rover scene analysis and au-
tonomous driving, ...

• Southwest Airlines — customer web site, flight reserva-
tions, flight status, frequent flyer program, ...

• Sun — compilers, OpenOffice, HotSpot Java Virtual Ma-
chine, ...

• Symbian — OS for hand-held devices (especially cellular
phones)

• Vodaphone — mobile phone infrastructure (including
billing and provisioning)

For more examples, see [137]. Some of the most widely
used and most profitable software products ever are on this
list. Whatever C++’s theoretical importance and impact, it
certainly met its most critical design aim: it became an
immensely useful practical tool. It brought object-oriented
programming and more recently also generic programming
into the mainstream. In terms of numbers of applications
and the range of application areas, C++ is used beyond any

individual’s range of expertise. That vindicates my emphasis
on generality in D&E [121] (Chapter 4).

It is a most unfortunate fact that applications are not
documented in a way that reaches the consciousness of re-
searchers, teachers, students, and other application builders.
There is a huge amount of experience “out there” that isn’t
documented or made accessible. This inevitably warps peo-
ple’s sense of reality — typically in the direction of what is
new (or perceived as new) and described in trade press ar-
ticles, academic papers, and textbooks. Much of the visible
information is very open to fads and commercial manipula-
tion. This leads to much “reinvention of the wheel”, subop-
timal practice, and myths.

One common myth is that “most C++ code is just C code
compiled with a C++ compiler”. There is nothing wrong
with such code — after all, the C++ compiler will find more
bugs than a C compiler — and such code is not uncommon.
However, from seeing a lot of commercial C++ code and
talking with innumerable developers and from talking with
developers, I know that for many major applications, such
as the ones mentioned here, the use of C++ is far more
“adventurous”. It is common for developers to mention use
of major locally designed class hierarchies, STL use, and use
of “ideas from STL” in local code. See also §7.2.

Can we classify the application areas in which C++ is
used? Here is one way of looking at it:

• Applications with systems components

• Banking and financial (funds transfer, financial model-
ing, customer interaction, teller machines, ...)

• Classical systems programming (compilers, operating
systems, editors, database systems, ...)

• Conventional small business applications (inventory sys-
tems, customer service, ...)

• Embedded systems (instruments, cameras, cell phones,
disc controllers, airplanes, rice cookers, medical systems,
...)

• Games

• GUI — iPod, CDE desktop, KDE desktop, Windows, ...

• Graphics

• Hardware design and verification [87]

• Low-level system components (device drivers, network
layers, ...)

• Scientific and numeric computation (physics, engineer-
ing, simulations, data analysis, ...)

• Servers (web servers, large application backbones, billing
systems, ...)

• Symbolic manipulation (geometric modeling, vision,
speech recognition, ...)

• Telecommunication systems (phones, networking, moni-
toring, billing, operations systems, ...)
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Again, this is more a list than a classification. The world of
programming resists useful classification. However, looking
at these lists, one thing should be obvious: C++ cannot be
ideal for all of that. In fact, from the earliest days of C++,
I have maintained that a general-purpose language can at
most be second best in a well-defined application area and
that C++ is “a general-purpose programming language with
a bias towards systems programming”.

7.1 Applications Programming vs. Systems
Programming

Consider an apparent paradox: C++ has a bias towards sys-
tems programming but “most programmers” write applica-
tions. Obviously millions of programmers are writing appli-
cations and many of those write their applications in C++.
Why? Why don’t they write them in an applications pro-
gramming language? For some definition of “applications
programming language”, many do. We might define an “ap-
plications programming language” as one in which we can’t
directly access hardware and that provides direct and spe-
cialized support for an important applications concept (such
as data base access, user interaction, or numerical computa-
tion). Then, we can deem most languages “applications lan-
guages”: Excel, SQL, RPG, COBOL, Fortran, Java, C#, Perl,
Python, etc. For good and bad, C++ is used as a general-
purpose programming language in many areas where a more
specialized (safer, easier to use, easier to optimize, etc.) lan-
guage would seem applicable.

The reason is not just inertia or ignorance. I don’t claim
that C++ is anywhere near perfect (that would be absurd)
nor that it can’t be improved (we are working on C++0x,
after all and see §9.4). However, C++ does have a niche — a
very large niche — where other current languages fall short:

• applications with a significant systems programming
component; often with resource constraints

• applications with components that fall into different ap-
plication areas so that no single specialized applications
language could support all

Application languages gain their advantages through spe-
cialization, through added conveniences, and through elimi-
nating difficult to use or potentially dangerous features. Of-
ten, there is a run-time or space cost. Often, simplifications
are based on strong assumptions about the execution envi-
ronment. If you happen to need something fundamental that
was deemed unnecessary in the design (such as direct ac-
cess to memory or fully general abstraction mechanisms) or
don’t need the “added conveniences” (and can’t afford the
overhead they impose), C++ becomes a candidate. The basic
conjecture on which C++ is built is that many applications
have components for which that is the case: “Most of us do
unusual things some of the time”.

The positive way of stating this is that general mecha-
nisms beat special-purpose features for the majority of appli-

cations that does not completely fit into a particular classifi-
cation, have to collaborate with other applications, or signif-
icantly evolve from their original narrow niche. This is one
reason that every language seems to grow general-purpose
features, whatever its original aims were and whatever its
stated philosophy is.

If it was easy and cheap to switch back and forth among
applications languages and general-purpose languages, we’d
have more of a choice. However, that is rarely the case, espe-
cially where performance or machine-level access is needed.
In particular, using C++ you can (but don’t have to) break
some fundamental assumption on which an application lan-
guage is built. The practical result is that if you need a sys-
tems programming or performance-critical facility of C++
somewhere in an application, it becomes convenient to use
C++ for a large part of the application — and then C++’s
higher-level (abstraction) facilities come to the rescue. C++
provides hardly any high-level features that are directly ap-
plicable in an application. What it offers are mechanisms for
defining such facilities as libraries.

Please note that from a historical point of view this analy-
sis need not be correct or the only possible explanation of the
facts. Many prefer alternative ways of looking at the prob-
lem. Successful languages and companies have been built on
alternative views. However, it is a fact that C++ was designed
based on this view and that this view guided the evolution
of C++; for example, see Chapter 9 of [121]. I consider it
the reason that C++ initially succeeded in the mainstream
and the reason that its use continued to grow steadily during
the time period covered by this paper, despite the continuing
presence of well-designed and better-financed alternatives in
the marketplace. See also §9.4.

7.2 Programming Styles

C++ supports several programming styles or, as they are
sometimes somewhat pretentiously called, “programming
paradigms”. Despite that, C++ is often referred to as “an
object-oriented programming language”. This is only true
for some really warped definition of “object-oriented” and I
never say just “C++ is an object-oriented language” [122].
Instead, I prefer “C++ supports object-oriented program-
ming and other programming styles” or “C++ is a multi-
paradigm programming language”. Programming style mat-
ters. Consequently, the way people refer to a language mat-
ters because it sets expectations and influences what people
see as ideals.

C++ has C (C89) as an “almost subset” and supports
the styles of programming commonly used for C [127]. Ar-
guably, C++ supports those styles better than C does by
providing more type checking and more notational support.
Consequently, a lot of C++ code has been written in the style
of C or — more commonly — in the style of C with a number
of classes and class hierarchies thrown in without affecting
the overall design. Such code is basically procedural, using
classes to provide a richer set of types. That’s sometimes re-
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ferred to as “C with Classes style”. That style can be signif-
icantly better (for understanding, debugging, maintenance,
etc.) than pure C. However, it is less interesting from a his-
torical perspective than code that also uses the C++ facili-
ties to express more advanced programming techniques, and
very often less effective than such alternatives. The fraction
of C++ code written purely in “C style” appears to have been
decreasing over the last 15 years (or more).

The abstract data type and object-oriented styles of C++
usage have been discussed often enough not to require ex-
planation here (e.g., see [126]). They are the backbone of
many C++ applications. However, there are limits to their
utility. For example, object-oriented programming can lead
to overly rigid hierarchies and overreliance on virtual func-
tions. Also, a virtual function call is fundamentally efficient
for cases where you need to select an action at run time, but it
is still an indirect function call and thus expensive compared
to an individual machine instruction. This has led to generic
programming becoming the norm for C++ where high per-
formance is essential (§6.1).

7.2.1 Generic programming

Sometimes, generic programming in C++ is defined as sim-
ply “using templates”. That’s at best an oversimplification.
A better description from a programming language feature
point of view is “parametric polymorphism” [107] plus over-
loading, which is selecting actions and constructing types
based on parameters. A template is basically a compile-
time mechanism for generating definitions (of classes and
functions) based on type arguments, integer arguments, etc.
[144].

Before templates, generic programming in C++ was done
using macros [108], void*, and casts, or abstract classes.
Naturally, some of that still persists in current use and occa-
sionally these techniques have advantages (especially when
combined with templatized interfaces). However, the current
dominant form of generic programming relies on class tem-
plates for defining types and function templates for defining
operations (algorithms).

Being based on parameterization, generic programming
is inherently more regular than object-oriented program-
ming. One major conclusion from the years of use of major
generic libraries, such as the STL, is that the current support
for generic programming in C++ is insufficient. C++0x is
taking care of at least part of that problem (§8).

Following Stepanov (§4.1.8), we can define generic pro-
gramming without mentioning language features: Lift algo-
rithms and data structures from concrete examples to their
most general and abstract form. This typically implies repre-
senting the algorithms and their access to data as templates,
as shown in the descripton of the STL (§4.1).

7.2.2 Template metaprogramming

The C++ template instantiation mechanism is (when com-
piler limits are ignored, as they usually can be) Turing com-

plete (e.g., see [150]). In the design of the template mech-
anism, I had aimed at full generality and flexibility. That
generality was dramatically illustrated by Erwin Unruh in
the early days of the standardization of templates. At an
extensions working group meeting in 1994, he presented a
program that calculated prime numbers at compile time (us-
ing error messages as the output mechanism) [143] and ap-
peared surprised that I (and others) thought that marvelous
rather than scary. Template instantiation is actually a small
compile-time functional programming language. As early as
1995, Todd Veldhuizen showed how to define a compile-
time if-statement using templates and how to use such if-
statements (and switch-statements) to select among alterna-
tive data structures and algorithms [148]. Here is a compile-
time if-statement with a simple use:

template<bool b, class X, class Y>
struct if_ {

typedef X type; // use X if b is true
};

template<class X, class Y>
struct if_<false,X,Y> {

typedef Y type; // use Y if b is false
};

void f()
{

if_<sizeof(Foobar)<40, Foo, Bar>::type xy;
// ...

}

If the size of type Foobar is less than 40, the type of the
variable xy is Foo; otherwise it is Bar. The second definition
of if_ is a partial specialization used when the template
arguments match the <false,X,Y> pattern specified. It’s
really quite simple, but very ingenious and I remember being
amazed when Jeremy Siek first showed it to me. In a variety
of guises, it has proven useful for producing portable high-
performance libraries (e.g., most of the Boost libraries [16]
rely on it).

Todd Veldhuizen also contributed the technique of ex-
pression templates [147], initially as part of the implementa-
tion of his high-performance numeric library Blitz++ [149].
The key idea is to achieve compile-time resolution and de-
layed evaluation by having an operator return a function ob-
ject containing the arguments and operation to be (eventu-
ally) evaluated. The < operator generating a Less_than ob-
ject in §4.1.4 is a trivial example. David Vandevoorde inde-
pendently discovered this technique.

These techniques and others that exploit the computa-
tional power of template instantiation provide the foundation
for techniques based on the idea of generating source code
that exactly matches the needs of a given situation. It can
lead to horrors of obscurity and long compile times, but also
to elegant and very efficient solutions to hard problems; see
[3, 2, 31]. Basically, template instantiation relies on over-
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loading and specialization to provide a reasonably complete
functional compile-time programming language.

There is no universally agreed-upon definition of the
distinction between generic programming and template
metaprogramming. However, generic programming tends
to emphasize that each template argument type must have
an enumerated well-specified set of properties; that is, it
must be able to define a concept for each argument (§4.1.8,
§8.3.3). Template metaprogramming doesn’t always do that.
For example, as in the if_ example, template definitions can
be chosen based on very limited aspects of an argument type,
such as its size. Thus, the two styles of programming are
not completely distinct. Template metaprogramming blends
into generic programming as more and more requirements
are placed on arguments. Often, the two styles are used in
combination. For example, template metaprogramming can
be used to select template definitions used in a generic part
of a program.

When the focus of template use is very strongly on com-
position and selection among alternatives, the style of pro-
gramming is sometimes called “generative programming”
[31].

7.2.3 Multi-paradigm programming

It is important for programmers that the various program-
ming styles supported by C++ are part of a single language.
Often, the best code requires the use of more than one of the
four basic “paradigms”. For example, we can write the clas-
sical “draw all shapes in a container” example from SIM-
ULA BEGIN [9] like this:

void draw_all(vector<Shape*>& v)
{

for_each(v.begin(), v.end(), // sequence
mem_fun(&Shape::draw)); // operation

}

Here, we use object-oriented programming to get the run-
time polymorphism from the Shape class hierarchy. We
use generic programming for the parameterized (standard
library) container vector and the parameterized (standard
library) algorithm for_each. We use ordinary procedural
programming for the two functions draw_all and mem_fun.
Finally, the result of the call of mem_fun is a function ob-
ject, a class that is not part of a hierarchy and has no virtual
functions, so that can be classified as abstract data type pro-
gramming. Note that vector, for_each, begin, end, and
mem_fun are templates, each of which will generate the most
appropriate definition for its actual use.

We can generalize that to any sequence defined by a
pair of ForwardIterators, rather than just vectors and
improve type checking using C++0x concepts (§8.3.3):

template<ForwardIterator For>
void draw_all(For first, For last)

requires SameType<For::value_type,Shape*>
{

for_each(first, last, mem_fun(&Shape::draw));
}

I consider it a challenge to properly characterize multi-
paradigm programming so that it can be easy enough to use
for most mainstream programmers. This will involve finding
a more descriptive name for it. Maybe it could even benefit
from added language support, but that would be a task for
C++1x.

7.3 Libraries, Toolkits, and Frameworks

So, what do we do when we hit an area in which the C++
language is obviously inadequate? The standard answer is:
Build a library that supports the application concepts. C++
isn’t an application language; it is a language with facilities
supporting the design and implementation of elegant and ef-
ficient libraries. Much of the talk about object-oriented pro-
gramming and generic programming comes down to build-
ing and using libraries. In addition to the standard library
(§4) and the components from the library TR (§6.2), exam-
ples of widely used C++ libraries include

• ACE [95] — distributed computing

• Anti-Grain Geometry — 2D graphics

• Borland Builder (GUI builder)

• Blitz++[149] — vectors “The library that thinks it is a
compiler”

• Boost[16] — foundation libraries building on the STL,
graph algorithms, regular expression matching, thread-
ing, ...

• CGAL[23] — computational geometry

• Maya — 3D animation

• MacApp and PowerPlant — Apple foundation frame-
works

• MFC — Microsoft Windows foundation framework

• Money++ — banking

• RogueWave library (pre-STL foundation library)

• STAPL[4], POOMA[86] — parallel computation

• Qt [10], FLTK [156], gtkmm [161], wxWigets [162] —
GUI libraries and builders

• TAO [95], MICO, omniORB — CORBA ORBs

• VTK [155] — visualization

In this context, we use the word “toolkit” to describe a
library supported by programming tools. In this sense, VTK
is a toolkit because it contains tools for generating interfaces
in Java and Python and Qt and FLTK are toolkits because
they provide GUI builders. The combination of libraries
and tools is an important alternative to dialects and special-
purpose languages [133, 151].

A library (toolkit, framework) can support a huge user
community. Such user communities can be larger than the
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user communities of many programming languages and a li-
brary can completely dominate the world-view of their users.
For example, Qt [10] is a commercial product with about
7,500 paying customers in 2006 plus about 150,000 users
of its open-source version [141]. Two Norwegian program-
mers, Eirik Chambe-Eng and Haavard Nord, started what be-
came Qt in 1991-92 and the first commercial release was
in 1995. It is the basis of the popular desktop KDE (for
Linux, Solaris, and FreBSD) and well known commercial
products, such as Adobe Photoshop Elements, Google Earth,
and Skype (Voice over IP service).

Unfortunately for C++’s reputation, a good library can-
not be seen; it just does its job invisibly to its users. This
often leads people to underestimate the use of C++. How-
ever, “there are of course the Windows Foundation Classes
(MFC), MacApp, and PowerPlant — most Mac and Win-
dows commercial software is built with one of these frame-
works” [85].

In addition to these general and domain-specific libraries,
there are many much more specialized libraries. These have
their function limited to a specific organization or applica-
tion. That is, they apply libraries as an application design
philosophy: “first extend the language by a library, then
write the application in the resulting extended language”.
The “string library” (part of a larger system called “Pan-
ther”) used by Celera Genomics as the base for their work to
sequence the human genome [70] is a spectacular example
of this approach. Panther is just one of many C++ libraries
and applications in the general area of biology and biological
engineering.

7.4 ABIs and Environments

Using libraries on a large scale isn’t without problems. C++
supports source-level compatibility (but provides only weak
link-time compatibility guarantees). That’s fine if

• you have (all) the source

• your code compiles with your compiler

• the various parts of your source code are compatible (e.g.,
with respect to resource usage and error handling)

• your code is all in C++

For a large system, typically none of these conditions hold.
In other words, linking is a can of worms. The root of
this problem is the fundamental C++ design decision: Use
existing linkers (D&E §4.5).

It is not guaranteed that two C translation units that match
according to the language definition will link correctly when
compiled with different compilers. However, for every plat-
form, agreement has been reached for an ABI (Application
Binary Interface) so that the register usage, calling conven-
tions, and object layout match for all compilers so that C
programs will correctly link. C++ compilers use these con-
ventions for function call and simple structure layout. How-
ever, traditionally C++ compiler vendors have resisted link-

age standards for layout of class hierarchies, virtual function
calls, and standard library components. The result is that
to be sure that a legal C++ program actually works, every
part (including all libraries) has to be compiled by the same
compiler. On some platforms, notably Sun’s and also Ita-
nium (IA64) [60], C++ ABI standards exist but historically
the rule “use a single compiler or communicate exclusively
through C functions and structs” is the only really viable
rule.

Sticking with one compiler can ensure link compatibility
on a platform, but it can also be a valuable tool in providing
portability across many platforms. By sticking to a single
implementer, you gain “bug compatibility” and can target all
platforms supported by that vendor. For Microsoft platforms,
Microsoft C++ provides that opportunity; for a huge range
of platforms, GNU C++ is portable; and for a diverse set of
platforms, users get a pleasant surprise when they notice that
many of their local implementations use an EDG (Edison
Design Group) front-end making their source code portable.
This only (sic!) leaves the problems of version skew. During
this time period every C++ compiler went through a series of
upgrades, partly to increase standard conformance, to adjust
to platform ABIs, and to improve performance, debugging,
integration with IDEs, etc.

Link compatibility with C caused a lot of problems, but
also yielded significant advantages. Sean Parent (Adobe)
observes: “one reason I see for C++’s success is that it
is ‘close enough’ to C that platform vendors are able to
provide a single C interface (such as the Win32 API or the
Mac Carbon API) which is C++ compatible. Many libraries
provide a C interface which is C++ compatible because the
effort to do so is low — where providing an interface to a
language such as Eiffel or Java would be a significant effort.
This goes beyond just keeping the linking model the same as
C but to the actual language compatibility”.

Obviously, people have tried many solutions to the linker
problem. The platform ABIs are one solution. CORBA is a
platform- and language-independent (or almost so) solution
that has found widespread use. However, it seems that C++
and Java are the only languages heavily used with CORBA.
COM was Microsoft’s platform-dependent and language-
independent solution (or almost so). One of the origins of
Java was a perceived need to gain platform independence
and compiler independence; the JVM solved that problem
by eliminating language independence and completely spec-
ifying linkage. The Microsoft CLI (Common Language In-
frastructure) solves the problem in a language-independent
manner (sort of) by requiring all languages to support a Java-
like linkage, metadata, and execution model. Basically all of
these solutions provide platform independence by becoming
a platform: To use a new machine or operating system, you
port a JVM, an ORB, etc.

The C++ standard doesn’t directly address the problem
of platform incompatibilities. Using C++, platform indepen-
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dence is provided through platform-specific code (typically
relying on conditional compilation — #ifdef). This is often
messy and ad hoc, but a high degree of platform indepen-
dence can be provided by localizing dependencies in the im-
plementation of a relatively simple platform layer — maybe
just a single header file [16]. In any case, to implement the
platform-independent services effectively, you need a lan-
guage that can take advantage of the peculiarities of the vari-
ous hardware and operating systems environments. More of-
ten than not, that language is C++.

Java, C#, and many other languages rely on metadata
(that is, data that defines types and services associated with
them) and provide services that depend on such metadata
(such as marshalling of objects for transfer to other comput-
ers). Again, C++ takes a minimalist view. The only “meta-
data” available is the RTTI (§5.1.2), which provides just the
name of the class and the list of its base classes. When RTTI
was discussed, some of us dreamed of tools that would pro-
vide more data for systems that needed it, but such tools did
not become common, general-purpose, or standard.

7.5 Tools and Research

Since the late 1980s, C++ developers have been supported
by a host of analysis tools, development tools, and devel-
opment environments available in the C++ world. Examples
are:

• Visual Studio (IDE; Microsoft)

• KDE (Desktop Environment; Free Software)

• Xcode (IDE; Apple)

• lint++ (static analysis tool; Gimpel Software)

• Vtune (multi-level performance tuning; Intel)

• Shark (performance optimization; Apple)

• PreFAST (static source code analysis; Microsoft)

• Klocwork (static code analysis; Klocwork)

• LDRA (testing; LDRA Ltd.)

• QA.C++ (static analysis; Programming Research)

• Purify (memory leak finder; IBM Rational)

• Great Circle (garbage collector and memory usage ana-
lyzer; Geodesic, later Symantec)

However, tools and environments have always been a rela-
tive weakness of C++. The root of that problem is the dif-
ficulty of parsing C++. The grammar is not LR(N) for any
N. That’s obviously absurd. The problem arose because C++
was based directly on C (I borrowed a YACC-based C parser
from Steve Johnson), which was “known” not to be express-
ible as a LR(1) grammar until Tom Pennello discovered how
to write one in 1985. Unfortunately, by then I had defined
C++ in such a way that Pennello’s techniques could not be
applied to C++ and there was already too much code depen-
dent on the non-LR grammar to change C++. Another aspect

of the parsing problem is the macros in the C preprocessor.
They ensure that what the programmer sees when looking at
a line of code can — and often does — dramatically differ
from what the compiler sees when parsing and type checking
that same line of code. Finally, the builder of advanced tools
must also face the complexities of name lookup, template
instantiation, and overload resolution.

In combination, these complexities have confounded
many attempts to build tools and programming environments
for C++. The result was that far too few software develop-
ment and source code analysis tools have become widely
used. Also, the tools that were built tended to be expensive.
This led to relatively fewer academic experiments than are
conducted with languages that were easier to analyze. Un-
fortunately, many take the attitude that “if it isn’t standard,
it doesn’t exist” or alternatively “if it costs money, it doesn’t
exist”. This has led to lack of knowledge of and underuse of
existing tools, leading to much frustration and waste of time.

Indirectly, this parsing problem has caused weaknesses
in areas that rely on run-time information, such as GUI-
builders. Since the language doesn’t require it, compilers
generally don’t produce any form of metadata (beyond the
minimum required by RTTI; §5.1.2). My view (as stated in
the original RTTI papers and in D&E) was that tools could
be used to produce the type information needed by a specific
application or application area. Unfortunately, the parsing
problem then gets in the way. The tool-to-generate-metadata
approach has been successfully used for database access
systems and GUI, but cost and complexity have kept this
approach from becoming more widely used. In particular,
academic research again suffered because a typical student
(or professor) doesn’t have the time for serious infrastructure
building.

A focus on performance also plays a part in lowering the
number and range of tools. Like C, C++ is designed to en-
sure minimal run-time and space overheads. For example,
the standard library vector is not by default range checked
because you can build an optimal range-checked vector on
top of an unchecked vector, but you cannot build an opti-
mally fast vector on top of a range-checked one (at least not
portably). However, many tools rely on additional actions
(such as range-checking array access or validating pointers)
or additional data (such as meta-data describing the layout
of a data structure). A subculture of strong concern about
performance came into the C++ community with much else
from C. Often that has been a good thing, but it did have
a limiting effect on tool building by emphasizing minimal-
ism even where there were no serious performance issues. In
particular, there is no reason why a C++ compiler couldn’t
supply superb type information to tool builders [134].

Finally, C++ was a victim of its own success. Researchers
had to compete with corporations that (sometimes correctly)
thought that there was money to be made in the kind of tools
researchers would like to build. There was also a curious
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problem with performance: C++ was too efficient for any
really significant gains to come easily from research. This
led many researchers to migrate to languages with glaring
inefficiencies for them to eliminate. Elimination of virtual
function calls is an example: You can gain much better
improvements for just about any object-oriented language
than for C++. The reason is that C++ virtual function calls
are very fast and that colloquial C++ already uses non-virtual
functions for time-critical operations. Another example is
garbage collection. Here the problem was that colloquial
C++ programs don’t generate much garbage and that the
basic operations are fast. That makes the fixed overhead of a
garbage collector looks far less impressive when expressed
as a percentage of run time than it does for a language with
less efficient basic operations and more garbage. Again, the
net effect was to leave C++ poorer in terms of research and
tools.

7.6 C/C++ Compatibility

C is C++’s closest relative and a high degree of C compatibil-
ity has always been a design aim for C++. In the early years,
the primary reasons for compatibility were to share infras-
tructure and to guarantee completeness (§2.2). Later, com-
patibility remained important because of the huge overlap
in applications areas and programmer communities. Many
little changes were made to C++ during the ’80s and ’90s
to bring C++ closer to ISO C [62] (C89). However, during
1995-2004,C also evolved. Unfortunately, C99 [64] is in sig-
nificant ways less compatible with C++ than C89 [62] and
harder to coexist with. See [127] for a detailed discussion
of the C/C++ relationship. Here is a diagram of the relation-
ships among the various generations of C and C++:
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“Classic C” is what most people think of as K&R C, but
C as defined in [76] lacks structure copy and enumerations.
ARM C++ is C++ as defined by the ARM [35] and the basis
for most pre-standard C++. The basic observation is that by
now C (i.e., C89 or C99) and C++ (i.e., C++98) are siblings
(with “Classic C” as their common ancestor), rather than the
more conventional view that C++ is a dialect of C that some-
how failed to be compatible. This is an important issue be-
cause people commonly proclaim the right of each language
to evolve separately, yet just about everybody expects ISO
C++ to adopt the features adopted by ISO C — despite the
separate evolution of C and a tendency of the C committee to
adopt features that are similar to but incompatible with what
C++ already offers. Examples selected from a long list [127]
are bool, inline functions, and complex numbers.

7.7 Java and Sun

I prefer not to compare C++ to other programming lan-
guages. For example, in the “Notes to the Reader” section
of D&E [121], I write:

Several reviewers asked me to compare C++ to other
languages. This I have decided against doing. ... Lan-
guage comparisons are rarely meaningful and even
less often fair. A good comparison of major program-
ming languages requires more effort than most people
are willing to spend, experience in a wide range of
application areas, a rigid maintenance of a detached
and impartial point of view, and a sense of fairness. I
do not have the time, and as the designer of C++, my
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impartiality would never be fully credible. ... Worse,
when one language is significantly better known than
others, a subtle shift in perspective occurs: Flaws in
the well-known language are deemed minor and sim-
ple workarounds are presented, whereas similar flaws
in other languages are deemed fundamental. Often,
the workarounds commonly used in the less-well-
known languages are simply unknown to the people
doing the comparison or deemed unsatisfactory be-
cause they would be unworkable in the more famil-
iar language. ... Thus, I restrict my comments about
languages other than C++ to generalities and to very
specific comments.

However, many claims about the C++/Java relationship have
been made and the presence of Java in the marketplace has
affected the C++ community. Consequently, a few comments
are unavoidable even though a proper language comparison
is far beyond the scope of this paper and even though Java
has left no traces in the C++ definition.

Why not? From the earliest days of Java, the C++ com-
mittee has always included people with significant Java ex-
perience: users, implementers, tool builders, and JVM im-
plementers. I think at a fundamental level Java and C++ are
too different for easy transfer of ideas. In particular,

• C++ relies on direct access to hardware resources to
achieve many of its goals whereas Java relies on a virtual
machine to keep it away from the hardware.

• C++ is deliberately frugal with run-time support whereas
Java relies on a significant amount of metadata

• C++ emphasizes interoperability with code written in
other languages and sharing of system tools (such as
linkers) whereas Java aims for simplicity by isolating
Java code from other code.

The “genes” of C++ and Java are quite dissimilar. The syn-
tactic similarities between Java and C++ have often been de-
ceptive. As an analogy, I note that it is far easier for En-
glish to adopt “structural elements” from closely related lan-
guages, such as French or German, than from more different
languages, such as Japanese or Thai.

Java burst onto the programming scene with an unprece-
dented amount of corporate backing and marketing (much
aimed at non-programmers). According to key Sun people
(such as Bill Joy), Java was an improved and simplified C++.
“What Bjarne would have designed if he hadn’t had to be
compatible with C” was — and amazingly still is — a fre-
quently heard statement. Java is not that; for example, in
D&E §9.2.2, I outlined fundamental design criteria for C++:

What would be a better language than C++ for the
things C++ is meant for? Consider the first-order de-
cisions:

• Use of static type checking and Simula-like
classes.

• Clean separation between language and environ-
ment.

• C source compatibility (“as close as possible”).

• C link and layout compatibility (“genuine local
variables”).

• No reliance on garbage collection.

I still consider static type checking essential for good
design and run-time efficiency. Were I to design a new
language for the kind of work done in C++ today, I
would again follow the Simula model of type check-
ing and inheritance, not the Smalltalk or Lisp models.
As I have said many times, ‘Had I wanted an imitation
Smalltalk, I would have built a much better imitation.
Smalltalk is the best Smalltalk around. If you want
Smalltalk, use it’.

I think I could express that more clearly today, but the
essence would be the same; these criteria are what define
C++ as a systems programming language and what I would
be unwilling to give up. In the light of Java, that section
seems more relevant today than when I wrote it in 1993 (pre-
Java). Having the built-in data types and operators mapped
directly to hardware facilities and being able to exploit es-
sentially every machine resource is implicit in “C compati-
bility”.

C++ does not meet Java’s design criteria; it wasn’t meant
to. Similarly, Java doesn’t meet C++’s design criteria. For
example, consider a couple of language-technical criteria:

• Provide as good support for user-defined types as for
built-in types

• Leave no room for a lower-level language below C++
(except assembler)

Many of the differences can be ascribed to the aim of keep-
ing C++ a systems programming language with the ability to
deal with hardware and systems at the lowest level and with
the least overhead. Java’s stated aims seem more directed
towards becoming an applications language (for some defi-
nition of “application”).

Unfortunately, the Java proponents and their marketing
machines did not limit themselves to praising the virtues
of Java, but stooped to bogus comparisons (e.g., [51]) and
to name calling of languages seen as competitors (most
notably C and C++). As late as 2001, I heard Bill Joy claim
(orally with a slide to back it up in a supposedly technical
presentation) that “reliable code cannot be written in C/C++
because they don’t have exceptions” (see §5, §5.3). I see Java
as a Sun commercial weapon aimed at Microsoft that missed
and hit an innocent bystander: the C++ community. It hurt
many smaller language communities even more; consider
Smalltalk, Lisp, Eiffel, etc.

Despite many promises, Java didn’t replace C++ (“Java
will completely kill C++ within two years” was a graphic
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expression I repeatedly heard in 1996). In fact, the C++ com-
munity has trebled in size since the first appearance of Java.
The Java hype did, however, harm the C++ community by
diverting energy and funding away from much-needed tools,
library and techniques work. Another problem was that Java
encouraged a limited “pure object-oriented” view of pro-
gramming with a heavy emphasis on run-time resolution and
a de-emphasis of the static type system (only in 2005 did
Java introduce “generics”). This led many C++ programmers
to write unnecessarily inelegant, unsafe, and poorly perform-
ing code in imitation. This problem gets especially serious
when the limited view infects education and creates a fear of
the unfamiliar in students.

As I predicted [136] when I first heard the boasts about
Java’s simplicity and performance, Java rapidly accreted
new features — in some cases paralleling C++’s earlier
growth. New languages are always claimed to be “simple”
and to become useful in a wider range of real-world applica-
tions they increase in size and complexity. Neither Java nor
C++ was (or is) immune to that effect. Obviously, Java has
made great strides in performance — given its initial slow-
ness it couldn’t fail to — but the Java object model inhibits
performance where abstraction is seriously used (§4.1.1,
§4.1.4). Basically, C++ and Java are far more different in
aims, language structure, and implementation model than
most people seem to think. One way of viewing Java is as
a somewhat restricted version of Smalltalk’s run-time model
hidden behind a C++-like syntax and statically type-checked
interfaces.

My guess is that Java’s real strength compared to C++
is the binary compatibility gained from Sun having de
facto control of the linker as expressed through the defini-
tion of the Java virtual machine. This gives Java the link-
compatibility that has eluded the C++ community because
of the decision to use the basic system linkers and the lack
of agreement among C++ vendors on key platforms (§7.4).

In the early 1990s, Sun developed a nice C++ compiler
based on Mike Ball and Steve Clamage’s Taumetric com-
piler. With the release of Java and Sun’s loudly proclaimed
pro-Java policy where C++ code was referred to (in advertis-
ing “literature” and elsewhere) as “legacy code” that needed
rewriting and as “contamination”, the C++ group suffered
some lean years. However, Sun never wavered in its sup-
port of the C++ standards efforts and Mike, Steve and oth-
ers made significant contributions. Technical people have to
live with technical realities — such as the fact that many Sun
customers and many Sun projects rely on C++ (in total or in
part). In particular, Sun’s Java implementation, HotSpot, is a
C++ program.

7.8 Microsoft and .Net

Microsoft is currently the 800-pound gorilla of software de-
velopment and it has had a somewhat varied relationship
with C++. Their first attempt at an object-oriented C in the
late 1980s wasn’t C++ and I have the impression that a cer-

tain ambivalence about standard conformance lingers. Mi-
crosoft is better known for setting de facto standards than for
strictly sticking to formal ones. However, they did produce
a C++ compiler fairly early. Its main designer was Martin
O’Riordan, who came from the Irish company Glockenspiel
where he had been a Cfront expert and produced and main-
tained many ports. He once amused himself and his friends
by producing a Cfront that spoke its error messages through
a voice synthesizer in (what he believed to be) a thick Dan-
ish accent. To this day there are ex-Glockenspiel Irishmen
on the Microsoft C++ team.

Unfortunately, that first release didn’t support templates
or exceptions. Eventually, those key features were supported
and supported well, but that took years. The first Microsoft
compiler to provide a close-to-complete set of ISO C++ fea-
tures was VC++ 6.0, released in July 1998; its predecessor,
VC++ 5.0 from February 1997, already had many of the key
features. Before that, some Microsoft managers used highly
visible platforms, such as conference keynotes, for some
defensive bashing of these features (as provided only by
their competitors, notably Borland) as “expensive and use-
less”. Worse, internal Microsoft projects (which set widely
followed standards) couldn’t use templates and exceptions
because their compiler didn’t support those features. This
established bad programming practices and did long-term
harm.

Apart from that, Microsoft was a responsible and atten-
tive member of the community. Microsoft sent and sends
members to the committee meetings and by now — some-
what belatedly — provides an excellent C++ compiler with
good standard conformance.

To effectively use the .Net framework, which Microsoft
presents as the future of Windows, a language has to support
a Java-like set of facilities. This implies support for a large
number of language features including a massive metadata
mechanism and inheritance — complete with covariant ar-
rays (§4.1.1). In particular, a language used to produce com-
ponents for consumption by other languages must produce
complete metadata and a language that wants to consume
components produced by other languages must be able to ac-
cept the metadata they produce. The Microsoft C++ dialect
that supports all that, ISO C++ plus “The CLI extensions
to ISO C++”, colloquially referred to as C++/CLI [41], will
obviously play a major role in the future of the C++ world.
Interestingly, C++ with the C++/CLI extensions is the only
language that provides access to every feature of .Net. Basi-
cally, C++/CLI is a massive set of extensions to ISO C++ and
provides a degree of integration with Windows that makes it
unlikely that a program that relies on C++/CLI features in
any significant way will be portable beyond the Microsoft
platforms that provide the massive infrastructure on which
C++/CLI depends. As ever, systems interfaces can be en-
capsulated, and must be encapsulated to preserve portabil-
ity. In addition to ISO C++, C++/CLI provides its own loop
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construct, overloading mechanisms (indexers), “properties”,
event mechanism, garbage-collected heap, a different class
object initialization semantics, a new form of references, a
new form of pointers, generics, a new set of standard con-
tainers (the .Net ones), and more.

In the early years of .Net (around 2000 onwards), Mi-
crosoft provided a dialect called “managed C++” [24]. It
was generally considered “pretty lame” (if essential to some
Microsoft users) and appears to have been mostly a stop-
gap measure — without any clear indication what the future
might bring for its users. It has now been superseded by the
much more comprehensive and carefully designed C++/CLI.

One of my major goals in working in the standards com-
mittee was to prevent C++ from fracturing into dialects.
Clearly, in the case of C++/CLI, I and the committee failed.
C++/CLI has been standardized by ECMA [41] as a bind-
ing to C++. However, Microsoft’s main products, and those
of their major customers, are and will remain in C++. This
ensures good compiler and tool support for C++ — that
is ISO C++ — under Windows for the foreseeable fu-
ture. People who care about portability can program around
the Microsoft extensions to ensure platform independence
(§7.4). By default the Microsoft compiler warns about use
of C++/CLI extensions.

The members of the C++ standards committee were
happy to see C++/CLI as an ECMA standard. However, an
attempt to promote that standard to an ISO standard caused a
flood of dissent. Some national standards bodies — notably
the UK’s C++ Panel — publicly expressed serious concern
[142]. This caused people at Microsoft to better document
their design rationale [140] and to be more careful about not
confusing ISO C++ and C++/CLI in Microsoft documenta-
tion.

7.9 Dialects

Obviously, not everyone who thought C++ to be basically a
good idea wanted to go though the long and often frustrat-
ing ISO standards process to get their ideas into the main-
stream. Similarly, some people consider compatibility over-
rated or even a very bad idea. In either case, people felt they
could make faster progress and/or better by simply defining
and implementing their own dialect. Some hoped that their
dialect would eventually become part of the mainstream;
others thought that life outside the mainstream was good
enough for their purposes, and a few genuinely aimed at pro-
ducing a short-lived language for experimental purposes.

There have been too many C++ dialects (many dozens)
for me to mention more than a tiny fraction. This is not
ill will — though I am no great fan of dialects because
they fracture the user community [127, 133] — but a re-
flection that they have had very little impact outside limited
communities. So far, no major language feature has been
brought into the mainstream of C++ from a dialect. How-
ever, C++0x will get something that looks like C++/CLI’s
properly scoped enums [138], a C++/CLI-like for-statement

[84], and the keyword nullptr [139] (which curiously
enough was suggested by me for C++/CLI).

Concurrency seems to be an extremely popular area of
language extension. Here are a few C++ dialects supporting
some form of concurrency with language features:

• Concurrent C++[46]

• micro C++[18]

• ABC++ [83]

• Charm++ [75]

• POOMA [86]

• C++// [21]

Basically, every trend and fad in the computer science world
spawned a couple of C++ dialects, such as Aspect C++
[100], R++ [82], Compositional C++ [25], Objective C++
[90], Open C++ [26], and dozens more. The main problem
with these dialects is their number. Dialects tend to split up
a sub-user community to the point where none reach a large
enough user community to afford a sustainable infrastructure
[133].

Another kind of dialect appears when a vendor adds some
(typically minor) “neat features” to their compiler to help
their users with some specific tasks (e.g. OS access and
optimization). These become barriers to portability even if
they are often beloved by some users. They are also appre-
ciated by some managers and platform fanatics as a lock-
in mechanism. Examples exist for essentially every imple-
mentation supplier; for example Borland (Delphi-style prop-
erties),GNU (variable and type attributes), and Microsoft
(C++/CLI; §7.8). Such dialect features are nasty when they
appear in header files, setting off a competitive scramble
among vendors keen on being able to cope with their com-
petitors’ code. They also significantly complicate compiler,
library, and tool building.

It is not obvious when a dialect becomes a completely
separate language and many languages borrowed heavily
from C++ (with or without acknowledgments) without aim-
ing for any degree of compatibility. A recent example is
the “D” language (the currently most recent language with
that popular name): “D was conceived in December 1999 by
Walter Bright as a reengineering of C and C++” [17].

Even Java started out (very briefly) as a C++ dialect
[164], but its designers soon decided that maintaining com-
patibility with C++ would be too constraining for their
needs. Since their aims included 100% portability of Java
code and a restriction of code styles to a version of object-
oriented programming, they were almost certainly correct in
that. Achieving any degree of useful compatibility is very
hard, as the C/C++ experience shows.

8. C++0x
From late 1997 until 2002, the standards committee deliber-
ately avoided serious discussion of language extension. This
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allowed compiler, tool, and library implementers to catch up
and users to absorb the programming techniques supported
by Standard C++. I first used the term “C++0x” in 2000 and
started a discussion of “directions for C++0x” through pre-
sentations in the committee and elsewhere from 2001 on-
wards. By 2003, the committee again considered language
extensions. The “extensions working group” was reconsti-
tuted as the “evolution working group”. The name change
(suggested by Tom Plum) is meant to reflect a greater em-
phasis on the integration of language features and standard
library facilities. As ever, I am the chairman of that working
group, hoping to help ensure a continuity of vision for C++
and a coherence of the final result. Similarly, the committee
membership shows continuous participation of a large num-
ber of people and organizations. Fortunately, there are also
many new faces bringing new interests and new expertise to
the committee.

Obviously, C++0x is still work in progress, but years of
work are behind us and and many votes have been taken.
These votes are important in that they represent the response
of an experienced part of the C++ community to the prob-
lems with C++98 and the current challenges facing C++ pro-
grammers. The committee intended to be cautious and con-
servative about changes to the language itself, and strongly
emphasize compatibility. The stated aim was to channel the
major effort into an expansion of the standard library. In
the standard library, the aim was to be aggressive and op-
portunistic. It is proving difficult to deliver on that aim,
though. As usual, the committee just doesn’t have sufficient
resources. Also, people seem to get more excited over lan-
guage extensions and are willing to spend more time lobby-
ing for and against those.

The rate of progress is roughly proportional to the number
of meetings. Since the completion of the 1998 standard,
there has been two meetings a year, supplemented by a
large amount of web traffic. As the deadlines for C++0x
approach, these large meetings are being supplemented by
several “extra” meetings focused on pressing topics, such as
concepts (§8.3.3) and concurrency (§5.5).

8.1 Technical Challenges

What technical challenges faced the C++ community at the
time when C++0x was beginning to be conceived? At a high
level an answer could be:

• GUI-based application building

• Distributed computing (especially the web)

• Security

The big question is how to translate that into language fea-
tures, libraries (ISO standard or not), programming envi-
ronment, and tools. In 2000-2002, I tried unsuccessfully to
get the standards committee’s attention on the topic of dis-
tributed computing and Microsoft representatives regularly
try to raise the topic of security. However, the committee

simply doesn’t think like that. To make progress, issues have
to be expressed as concrete proposals for change, such as
to add a (specific) language feature to support callbacks or
to replace the notoriously unsafe C standard library func-
tion gets() with a (specific) alternative. Also, the C++ tra-
dition is to approach challenges obliquely though improved
abstraction mechanisms and libraries rather than providing a
solution for a specific problem.

After I had given a couple of talks on principles and direc-
tions, the first concrete action in the committee was a brain-
storming session at the 2001 meeting in Redmond, Washing-
ton. Here we made a “wish list” for features for C++0x. The
first suggestion was for a portable way of expressing align-
ment constraints (by P. J. Plauger supported by several other
members). Despite my strongly expressed urge to focus on
libraries, about 90 out of about 100 suggestions were for lan-
guage features. The saving grace was that many of those
were for features that would ease the design, implementa-
tion, and use of more elegant, more portable, and efficient li-
braries. This brainstorming provided the seeds of maintained
“wish lists” for C++0x language features and standard li-
brary facilities [136].

From many discussions and presentations, I have come
with a brief summary of general aims and design rules for
C++0x that appear to be widely accepted. Aims:

• Make C++ a better language for systems programming
and library building — rather than providing specialized
facilities for a particular sub-community (e.g. numeric
computation or Windows-style application development)

• Make C++ easier to teach and learn — through increased
uniformity, stronger guarantees, and facilities supportive
of novices (there will always be more novices than ex-
perts)

Rules of thumb:

• Provide stability and compatibility

• Prefer libraries to language extensions

• Make only changes that change the way people think

• Prefer generality to specialization

• Support both experts and novices

• Increase type safety

• Improve performance and ability to work directly with
hardware

• Fit into the real world

These lists have been useful as a framework for rationales for
proposed extensions. Dozens of committee technical papers
have used them. However, they provide only a weak set of di-
rections and are only a weak counterweight to a widespread
tendency to focus on details. The GUI and distributed com-
puting challenges are not directly represented here, but fea-
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ture prominently under “libraries” and “work directly with
hardware” (§8.6).

8.2 Suggested Language Extensions

To give a flavor of the committee work around 2005, con-
sider a (short!) incomplete list of proposed extensions:

1. decltype and auto — type deduction from expressions
(§8.3.2)

2. Template aliases — a way of binding some but not
all template parameters and naming the resulting partial
template specialization

3. Extern templates — a way of suppressing implicit instan-
tiation in a translation unit

4. Move semantics (rvalue references) — a general mecha-
nism for eliminating redundant copying of values

5. Static assertions (static_assert)

6. long long and many other C99 features

7. >> (without a space) to terminate two template special-
izations

8. Unicode data types

9. Variadic templates (§8.3.1)

10. Concepts — a type system for C++ types and integer
values (§8.3.3)

11. Generalized constant expressions [39]

12. Initializer lists as expressions (§8.3.1)

13. Scoped and strongly typed enumerations [138]

14. Control of alignment

15. nullptr — Null pointer constant [139]

16. A for-statement for ranges

17. Delegating constructors

18. Inherited constuctors

19. Atomic operations

20. Thread-local storage

21. Defaulting and inhibiting common operations

22. Lambda functions

23. Programmer-controlled garbage collection [12] (§5.4)

24. In-class member initializers

25. Allow local classes as template parameters

26. Modules

27. Dynamic library support

28. Integer sub-ranges

29. Multi-methods

30. Class namespaces

31. Continuations

32. Contract programming — direct support for precondi-
tions, postconditions, and more

33. User-defined operator. (dot)

34. switch on string

35. Simple compile-time reflection

36. #nomacro — a kind of scope to protect code from unin-
tended macro expansion

37. GUI support (e.g., slots and signals)

38. Reflection (i.e., data structures describing types for run-
time use)

39. concurrency primitives in the language (not in a library)

As ever, there are far more proposals than the committee
could handle or the language could absorb. As ever, even
accepting all the good proposals is infeasible. As ever, there
seems to be as many people claiming that the committee is
spoiling the language by gratuitous complicated features as
there are people who complain that the committee is killing
the language by refusing to accept essential features. If you
take away consistent overstatement of arguments, both sides
have a fair degree of reason behind them. The balancing act
facing the committee is distinctly nontrivial.

As of October 2008, Items 1-7 have been approved.
Based on the state of proposals and preliminary working
group votes, my guess is that items 10-21 will also be ac-
cepted. Beyond that, it’s hard to guess. Proosals 22-25 are
being developed aiming for votes in July 2007 and proposal
26 (modules) has been postponed to a technical report.

Most of these are being worked upon under one or more
of the “rules of thumb” listed above. That list is less than
half of the suggestions that the committee has received in
a form that compels it to (at least briefly) consider them.
My collection of suggestions from emails and meetings with
users is several times that size. At my urging, the committee
at the spring 2005 meeting in Lillehammer, Norway decided
(by vote) to stop accepting new proposals. In October of
2006, this vote was followed up by a vote to submit a draft
standard in late 2007 so as to make C++0x into C++09.
However, even with the stream of new proposals stemmed,
it is obvious that making a coherent whole of a selection of
features will be a practical challenge as well as a technical
one.

To give an idea of the magnitude of the technical chal-
lenge, consider that a paper on part of the concepts prob-
lem was accepted for the premier academic conference in the
field, POPL, in 2006 [38] and other papers analyzing prob-
lems related to concepts were presented at OOPSLA [44, 52]
and PLDI [74]. I personally consider the technical problems
related to the support of concurrency (including the memory
model) harder still — and essential. The C++0x facilities for
dealing with concurrency are briefly discussed in §8.6.

The practical challenge is to provide correct and consis-
tent detailed specifications of all these features (and stan-
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dard library facilities). This involves producing and checking
hundreds of pages of highly technical standards text. More
often than not, implementation and experimentation are part
of the effort to ensure that a feature is properly specified and
interacts well with other features in the language and the
standard library. The standard specifies not just an imple-
mentation (like a vendor’s documentation), but a whole set
of possible implementations (different vendors will provide
different implementations of a feature, each with the same
semantics, but with different engineering tradeoffs). This im-
plies an element of risk in accepting any new feature — even
in accepting a feature that has already been implemented and
used. Committee members differ in their perception of risk,
in their views of what risks are worth taking, and in their
views of how risk is best handled. Naturally, this is a source
of many difficult discussions.

All proposals and all the meeting minutes of the com-
mittee are available on the committee’s website [69]. That’s
more than 2000 documents — some long. A few of the pre-
1995 papers are not yet (August 2006) available online be-
cause the committee relied on paper until about 1994.

8.3 Support for Generic Programming

For the language itself, we see an emphasis on features to
support generic programming because generic programming
is the area where use of C++ has progressed the furthest
relative to the support offered by the language.

The overall aim of the language extensions supporting
generic programming is to provide greater uniformity of
facilities so as to make it possible to express a larger class
of problems directly in a generic form. The potentially most
significant extensions of this kind are:

• general initializer lists (§8.3.1)

• auto (§8.3.2)

• concepts (§8.3.3)

Of these proposals, only auto has been formally voted in.
The others are mature proposals and initial “straw votes”
have been taken in their support.

8.3.1 General initializer lists

“Provide as good support for user-defined types as for built-
in types” is prominent among the language-technical design
principles of C++ (§2). C++98 left a major violation of that
principle untouched: C++98 provides notational support for
initializing a (built-in) array with a list of values, but there is
no such support for a (user-defined) vector. For example,
we can easily define an array initialized to the three ints 1,
2, and 3:

int a[] = { 1,2,3 };

Defining an equivalent vector is awkward and may require
the introduction of an array:

// one way:
vector v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);

// another way
int a[] = { 1,2,3 };
vector v2(a,a+sizeof(a)/sizeof(int));

In C++0x, this problem will be remedied by allowing a
user to define a “sequence constructor” for a type to define
what initialization with an initializer list means. By adding a
sequence constructor to vector, we would allow:

vector<int> v = { 1,2,3 };

Because the semantics of initialization defines the seman-
tics of argument passing, this will also allow:

int f(const vector<int>&);
// ...
int x = f({ 1,2,3 });
int y = f({ 3,4,5,6,7,8, 9, 10 });

That is, C++0x gets a type-safe mechanism for variable-
length homogeneous argument lists [135].

In addition, C++0x will support type-safe variadic tem-
plate arguments [54] [55]. For example:

template<class ... T> void print(const T& ...);
// ...
string name = "World"’
print("Hello, ",name,’!’);
int x = 7;
print("x = ",x);

At the cost of generating a unique instantiation (from a
single template function) for each call with a given set
of argument types, variadic templates allow arbitrary non-
homogenous argument lists to be handled. This is especially
useful for tuple types and similar abstractions that inherently
deal with heterogeneous lists.

I was the main proponent of the homogenous initializer
list mechanism. Doug Gregor and Jaakko Järvi and Doug
Gregor designed the variadic template mechanism, which
conceptually has its roots in Jakko Järvi and Gary Powell’s
lambda library [72] and the tuple library [71].

8.3.2 Auto

C++0x will support the notion of a variable being given
a type deduced from the type of its initializer [73]. For
example, we could write the verbose example from §4.1.3
like this:

auto q = find(vi.begin(),vi.end(),7); // ok

Here, we deduce the type of q to be the return type of
the value returned by find, which in turn is the type of
vi.begin(); that is, vector<int>::iterator. I first im-
plemented that use of auto in 1982, but was forced to back
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it out of “C with Classes” because of a C compatibility prob-
lem. In K&R C [76] (and later in C89 and ARM C++), we
can omit the type in a declaration. For example:

static x; // means static int x
auto y; // means stack allocated int y

After a proposal by Dag Bruc̈k, both C99 and C++98 banned
this “implicit int”. Since there is now no legal code for
“auto q” to be incompatible with, we allowed it. That in-
compatibility was always more theoretical than real (reviews
of huge amounts of code confirm that), but using the (un-
used) keyword auto saved us from introducting a new key-
word. The obvious choice (from many languages, including
BCPL) is let, but every short meaningful word has already
been used in many programs and long and cryptic keywords
are widely disliked.

If the committee — as planned — accepts overloading
based on concepts (§8.3.3) and adjusts the standard library
to take advantage, we can even write:

auto q = find(vi,7); // ok

in addition to the more general, but wordier:

auto q = find(vi.begin(),vi.end(),7); // ok

Unsurprisingly, given its exceptionally long history, I was
the main designer of the auto mechanism. As with every
C++0x proposal, many people contributed, notably Gabriel
Dos Reis, Jaakko Järvi, and Walter Brown.

8.3.3 Concepts

The D&E [121] discussion of templates contains three whole
pages (§15.4) on constraints on template arguments. Clearly,
I felt the need for a better solution — and so did many others.
The error messages that come from slight errors in the use
of a template, such as a standard library algorithm, can be
spectacularly long and unhelpful. The problem is that the
template code’s expectations of its template arguments are
implicit. Consider again find_if:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while (first!=last && !pred(*first))
++first;

return first;
}

Here, we make a lot of assumptions about the In and Pred
types. From the code, we see that In must somehow sup-
port !=, *, and ++ with suitable semantics and that we must
be able to copy In objects as arguments and return values.
Similarly, we see that we can call a Pred with an argument
of whichever type * returns from an In and apply ! to the
result to get something that can be treated as a bool. How-
ever, that’s all implicit in the code. Note that a lot of the
flexibility of this style of generic programming comes from
implicit conversions used to make template argument types

meet those requirements. The standard library carefully doc-
uments these requirements for input iterators (our In) and
predicates (our Pred), but compilers don’t read manuals. Try
this error and see what your compiler says:

find_if(1,5,3.14); // errors

On 2000-vintage C++ compilers, the resulting error mes-
sages were uniformly spectacularly bad.

Constraints classes A partial, but often quite effective,
solution based on my old idea of letting a constructor check
assumptions about template arguments (D&E §15.4.2) is
now finding widespread use. For example:

template<class T> struct Forward_iterator {
static void constraints(T a) {

++a; a++; // can increment
T b = a; b = a; // can copy
*b = *a; // can dereference

// and copy result
}

Forward_iterator()
{ void (*p)(T) = constraints; }

};

This defines a class that will compile if and only if T is
a forward iterator [128]. However, a Forward_iterator
object doesn’t really do anything, so that a compiler can
(and all do) trivially optimize away such objects. We can
use Forward_iterator in a definition like this:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)

{
Forward_iterator<In>(); // check
while (first!=last && !pred(*first))

++first;
return first;

}

Alex Stepanov and Jeremy Siek did a lot to develop and
popularize such techniques. One place where they are used
prominently is in the Boost library [16]. The difference in
the quality of error messages can be spectacular. However, it
is not easy to write constraints classes that consistently give
good error messages on all compilers.

Concepts as a language feature Constraints classes are
at best a partial solution. In particular, the type checking is
done in the template definition. For proper separation of con-
cerns, checking should rely only on information presented in
a declaration. That way, we would obey the usual rules for
interfaces and could start considering the possibility of gen-
uine separate compilation of templates.

So, let’s tell the compiler what we expect from a template
argument:

template<ForwardIterator In, Predicate Pred>
In find_if(In first, In last, Pred pred);
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Assuming that we can express what a ForwardIterator
and a Predicate are, the compiler can now check a call
of find_if in isolation from its definition. What we are do-
ing here is to build a type system for template arguments. In
the context of modern C++, such “types of types” are called
concepts (see §4.1.8). There are various ways of specifying
such concepts; for now, think of them as a kind of constraints
classes with direct language support and a nicer syntax. A
concept says what facilities a type must provide, but nothing
about how it provides those facilities. The use of a concept
as the type of a template argument (e.g. <ForwardIterator
In>) is very close to a mathematical specification “for all
types In such that an In can be incremented, dereferenced,
and copied”, just as the original <class T> is the mathemat-
ical “for all types T”.

Given only that declaration (and not the definition) of
find_if, we can write

int x = find_if(1,2,Less_than<int>(7));

This call will fail because int doesn’t support unary *
(dereference). In other words, the call will fail to compile
because an int isn’t a ForwardIterator. Importantly, that
makes it easy for a compiler to report the error in the lan-
guage of the user and at the point in the compilation where
the call is first seen.

Unfortunately, knowing that the iterator arguments are
ForwardIterators and that the predicate argument is a
Predicate isn’t enough to guarantee successful compila-
tion of a call of find_if. The two argument types interact.
In particular, the predicate takes an argument that is an it-
erator dereferenced by *: pred(*first). Our aim is com-
plete checking of a template in isolation from the calls and
complete checking of each call without looking at the tem-
plate definition. So, “concepts” must be made sufficiently
expressive to deal with such interactions among template ar-
guments. One way is to parameterize the concepts in parallel
to the way the templates themselves are parameterized. For
example:

template<Value_type T,
ForwardIterator<T> In, // sequence of Ts
Predicate<bool,T> Pred> // takes a T;

// returns a bool
In find_if(In first, In last, Pred pred);

Here, we require that the ForwardIterator must point
to elements of a type T, which is the same type as the
Predicate’s argument type. However, that leads to overly
rigid interactions among template argument types and very
complex patterns and redundant of parameterization [74].
The current concept proposal [129, 130, 132, 97, 53] focuses
on expressing relationships among arguments directly:

template<ForwardIterator In, // a sequence
Predicate Pred> // returns a bool

requires Callable<Pred,In::value_type>
In find_if(In first, In last, Pred pred);

Here, we require that the In must be a ForwardIterator
with a value_type that is acceptable as an argument to Pred
which must be a Predicate.

A concept is a compile-time predicate on a set of types
and integer values. The concepts of a single type argument
provide a type system for C++ types (both built-in and user-
defined types) [132].

Specifying template’s requirements on its argument using
concepts also allows the compiler to catch errors in the tem-
plate definition itself. Consider this plausible pre-concept
definition:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{

while(first!=last && !pred(*first))
first = first+1;

return first;
}

Test this with a vector or an array, and it will work.
However, we specified that find_if should work for a
ForwardIterator. That is, find_if should be usable for
the kind of iterator that we can supply for a list or an in-
put stream. Such iterators cannot simply move N elements
forward (by saying p=p+N) — not even for N==1. We should
have said ++first, which is not just simpler, but correct. Ex-
perience shows that this kind of error is very hard to catch,
but concepts make it trivial for the compiler to detect it:

template<ForwardIterator In, Predicate Pred>
requires Callable<Pred,In::value_type>

In find_if(In first, In last, Pred pred)
{

while(first!=last && !pred(*first))
first = first+1;

return first;
}

The + operator simply isn’t among the operators specified
for a ForwardIterator. The compiler has no problems
detecting that and reporting it succinctly.

One important effect of giving the compiler informa-
tion about template arguments is that overloading based on
the properties of argument types becomes easy. Consider
again find_if. Programmers often complain about having
to specify the beginning and the end of a sequence when all
they want to do is to find something in a container. On the
other hand, for generality, we need to be able to express al-
gorithms in terms of sequences delimited by iterators. The
obvious solution is to provide both versions:

template<ForwardIterator In, Predicate Pred>
requires Callable<Pred,In::value_type>

In find_if(In first, In last, Pred pred);

template<Container C, Predicate Pred>
requires Callable<Pred,C::value_type>

In find_if(C& c, Pred pred);
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Given that, we can handle examples like the one in §8.3.2 as
well as examples that rely on more subtle differences in the
argument types.

This is not the place to present the details of the concept
design. However, as presented above, the design appears to
have a fatal rigidity: The expression of required properties of
a type is often in terms of required member types. However,
built-in types do not have members. For example, how can
an int* be a ForwardIterator when a ForwardIterator
as used above is supposed to have a member value_type?
In general, how can we write algorithms with precise and
detailed requirements on argument types and expect that au-
thors of types will define their types with the required prop-
erties? We can’t. Nor can we expect programmers to alter old
types whenever they find a new use for them. Real-world
types are often defined in ignorance of their full range of
uses. Therefore, they often fail to meet the detailed require-
ments even when they possess all the fundamental properties
needed by a user. In particular, int* was defined 30 years
ago without any thought of C++ or the STL notion of an it-
erator. The solution to such problems is to (non-intrusively)
map the properties of a type into the requirements of a con-
cept. In particular, we need to say “when we use a pointer
as a forward iterator we should consider the type of the ob-
ject pointed to its value_type”. In the C++0x syntax, that
is expressed like this:

template<class T>
concept_map ForwardIterator<T*> {

typedef T value_type;
}

A concept_map provides a map from a type (or a set of
types; here, T*) to a concept (here, ForwardIterator) so
that users of the concept for an argument will see not the
actual type, but the mapped type. Now, if we use int* as
a ForwardIterator that ForwardIterator’s value_type
will be int. In addition to providing the appearance of mem-
bers, a concept_map can be used to provide new names for
functions, and even to provide new operations on objects of
a type.

Alex Stepanov was probably the first to call for “con-
cepts” as a C++ language feature [104] (in 2002) — I don’t
count the numerous vague and nonspecific wishes for “bet-
ter type checking of templates”. Initially, I was not keen on
the language approach because I feared it would lead in the
direction of rigid interfaces (inhibiting composition of sepa-
rately developed code and seriously hurting performance), as
in earlier ideas for language-supported “constrained gener-
icity”. In the summer of 2003, Gabriel Dos Reis and I an-
alyzed the problem, outlined the design ideals, and docu-
mented the basic approaches to a solution [129] [130]. So,
the current design avoids those ill effects (e.g., see [38]) and
there are now many people involved in the design of con-
cepts for C++0x, notably Doug Gregor, Jaakko Järvi, Gabriel
Dos Reis, Jeremy Siek, and me. An experimental implemen-

tation of concepts has been written by Doug Gregor, together
with a version of the STL using concepts [52].

I expect concepts to become central to all generic pro-
gramming in C++. They are already central to much design
using templates. However, existing code — not using con-
cepts — will of course continue to work.

8.4 Embarrassments

My other priority (together with better support for generic
programming) is better support for beginners. There is a re-
markable tendency for proposals to favor the expert users
who propose and evaluate them. Something simple that helps
only novices for a few months until they become experts
is often ignored. I think that’s a potentially fatal design
bias. Unless novices are sufficiently supported, only few will
become experts. Bootstrapping is most important! Further,
many — quite reasonably — don’t want to become experts;
they are and want to remain “occasional C++ users”. For
example, a physicist using C++ for physics calculations or
the control of experimental equipment is usually quite happy
being a physicist and has only limited time for learning pro-
gramming techniques. As computer scientists we might wish
for people to spend more time on programming techniques,
but rather than just hoping, we should work on removing un-
necessary barriers to adoption of good techniques. Naturally,
most of the changes needed to remove “embarrassments” are
trivial. However, their solution is typically constrained by
compatibility concerns and concerns for the uniformity of
language rules.

A very simple example is

vector<vector<double>> v;

In C++98, this is a syntax error because >> is a single lexical
token, rather than two >s each closing a template argument
list. A correct declaration of v would be:

vector< vector<double> > v;

I consider that an embarrassment. There are perfectly good
language-technical reasons for the current rule and the ex-
tensions working group twice rejected my suggestions that
this was a problem worth solving. However, such reasons
are language technical and of no interest to novices (of all
backgrounds — including experts in other languages). Not
accepting the first and most obvious declaration of v wastes
time for users and teachers. A simple solution of the “>>
problem” was proposed by David Vandevoorde [145] and
voted in at the 2005 Lillehammer meeting, and I expect
many small “embarrassments” to be absent from C++0x.
However, my attempt together with Francis Glassborow
and others, to try to systematically eliminate the most fre-
quently occurring such “embarrassments” seems to be going
nowhere.

Another example of an “embarrassment” is that it is legal
to copy an object of a class with a user-defined destructor
using a default copy operation (constructor or assignment).
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Requiring user-defined copy operations in that case would
eliminate a lot of nasty errors related to resource manage-
ment. For example, consider an oversimplified string class:

class String {
public:

String(char* pp); // constructor
~String() { delete[] pp; } // destructor
char& operator[](int i);

private:
int sz;
char* p;

};

void f(char* x)
{

String s1(x);
String s2 = s1;

}

After the construction of s2, s1.p and s2.p point to the
same memory. This memory (allocated by the constructor)
will be deleted twice by the destructor, probably with dis-
astrous results. This problem is obvious to the experienced
C++ programmer, who will provide proper copy operations
or prohibit copying. The problem has also been well docu-
mented from the earliest days of C++: The two obvious so-
lutions can be found in TC++PL1 and D&E. However, the
problem can seriously baffle a novice and undermine trust
in the language. Language solutions have been proposed by
Lois Goldtwaith, Francis Glassborow, Lawrence Crowl, and
I [30]; some version may make it into C++0x.

I chose this example to illustrate the constraints imposed
by compatibility. The problem could be eliminated by not
providing default copy of objects of a class with pointer
members; if people wanted to copy, they could supply a copy
operator. However, that would break an unbelievable amount
of code. In general, remedying long-standing problems is
harder than it looks, especially if C compatibility enters
into the picture. However, in this case, the existence of a
destructor is a strong indicator that default copying would be
wrong, so examples such as String could be reliably caught
by the compiler.

8.5 Standard libraries

For the C++0x standard library, the stated aim was to make a
much broader platform for systems programming. The June
2006 version “Standard Libraries Wish List” maintained by
Matt Austern lists 68 suggested libraries including

• Container-based algorithms

• Random access to files

• Safe STL (completely range checked)

• File system access

• Linear algebra (vectors, matrices, etc.)

• Date and time

• Graphics library

• Data compression

• Unicode file names

• Infinite-precision integer arithmetic

• Uniform use of std::string in the library

• Threads

• Sockets

• Comprehensive support for unicode

• XML parser and generator library

• Graphical user interface

• Graph algorithms

• Web services (SOAP and XML bindings)

• Database support

• Lexical analysis and parsing

There has been work on many of these libraries, but most
are postponed to post-C++0x library TRs. Sadly, this leaves
many widely desired and widely used library components
unstandardized. In addition, from observing people strug-
gling with C++98, I also had high hopes that the commit-
tee would take pity on the many new C++ programmers and
provide library facilities to support novices from a variety of
backgrounds (not just beginning programmers and refugees
from C). I have low expectations for the most frequently
requested addition to the standard library: a standard GUI
(Graphical User Interface; see §1 and §5.5).

The first new components of the C++0x standard library
are those from the library TR (§6.2). All but one of the
components were voted in at the spring 2006 meeting in
Berlin. The special mathematical functions were considered
to specialized for the vast majority of C++ programmers and
were spun off to become a separate ISO standard.

In addition to the more visible work on adding new li-
brary components, much work in the library working group
focuses on minor improvements to existing components,
based on experience, and on improved specification of ex-
isting components. The accumulative effect of these minor
improvements is significant.

The plan for 2007 includes going over the standard li-
brary to take advantage of new C++0x features. The first
and most obvious example is to add rvalue initializers [57]
(primarily the work of Howard Hinnant, Peter Dimov, and
Dave Abrahams) to significantly improve the performance
of heavily used components, such as vector, that occasion-
ally have to move objects around. Assuming that concepts
(§8.3.3) make it into C++0x, their use will revolutionize the
specification of the STL part of the library (and other tem-
plated components). Similarly, the standard containers, such
as vector should be augmented with sequence construc-
tors to allow then to accept initializer lists (§8.3.1). Gener-
alized constant expressions (constexpr, primarily the work
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of Gabriel Dos Reis and I [39]) will allow us to define simple
functions, such as the ones defining properties of types in the
numeric_limits and the bitset operators, so that they are
usable at compile time. The variadic template mechanism
(§8.3.1) dramatically simplifies interfaces to standard com-
punents, such as tuple, that can take a wide variety of tem-
plate arguments. This has significant implications on the us-
ability of these standard library components in performance-
critical areas.

Beyond that, only a threads library seems to have gath-
ered enough support to become part of C++0x. Other com-
ponents that are likely to become part of another library TR
(TR2) are:

• File system library — platform-independent file system
manipulation [32]

• Date and time library [45]

• Networking — sockets, TCP, UDP, multicast, iostreams
over TCP, and more [80]

• numeric_cast — checked conversions [22]

The initial work leading up to the proposals and likely votes
mentioned here has been the main effort of the library work-
ing group 2003-06. The networking library has been used
commercially for applications on multiple continents for
some time. At the outset, Matt Austern (initially AT&T,
later Apple) was the chair; now Howard Hinnant (initially
Metrowerks, later Apple) has that difficult job.

In addition, the C committee is adopting a steady stream
of technical reports, which must be considered and (despite
the official ISO policy that C and C++ are distinct languages)
will probably have to be adopted into the C++ library even
though they — being C-style — haven’t benefited from sup-
port from C++ language features (such as user-defined types,
overloading, and templates). Examples are decimal floating-
point and unicode built-in types with associated operations
and functions.

All in all, this is a massive amount of work for the couple
of dozen volunteers in the library working group, but it is
not quite the “ambitious and opportunistic” policy that I
had hoped for in 2001 (§8). However, people who scream
for more (such as me) should note that even what’s listed
above will roughly double the size of the standard library.
The process of library TRs is a hope for the future.

8.6 Concurrency

Concurrency cannot be perfectly supported by a library
alone. On the other hand, the committee still considers
language-based approaches to concurrency, such as is found
in Ada and Java, insufficiently flexible (§5.5). In particular,
C++0x must support current operating-system thread library
approaches, such as POSIX threads and Windows threads.

Consequently, the work on concurrency is done by an
ad hoc working group stradding the library-language divide.
The approach taken is to carefully specify a machine model

for C++ that takes into account modern hardware architec-
tures [14] and to provide minimal language primitives:

• thread local storage [29]

• atomic types and operations [13]

The rest is left to a threads library. The current threads library
draft is written by Howard Hinnant [58].

This “concurrency effort” is led by Hans Boehm
(Hewlett-Packard) and Lawrence Crowl (formerly Sun, cur-
rently Google). Naturally, compiler writers and hardware
vendors are most interested and supportive in this. For ex-
ample, Clark Nelson from Intel redesigned the notion of se-
quencing that C++ inherited from C to better fit C++ on
modern hardware [89]. The threads library will follow the
traditions of Posix threads [19], Windows threads [163], and
libraries based on those, such as boost::thread [16]. In par-
ticular, the C++0x threads library will not try to settle every
issue with threading; instead it will provide a portable set of
core facilities but leave some tricky issues system dependent.
This is necessary to maintain compatibility both with earlier
libraries and with the underlying operating systems. In addi-
tion to the typical thread library facilities (such as lock and
mutex), the library will provide thread pools and a version
of “futures” [56] as a higher-level and easier-to-use commu-
nications facility: A future can be described as a placeholder
for a value to be computed by another thread; synchroniza-
tion potentially happens when the future is read. Prototype
implementations exist and are being evaluated [58].

Unfortunately, I had to accept that my hopes of direct
support for distributed programming are beyond what we
can do for C++0x.

9. Retrospective
This retrospective looks back with the hope of extracting
lessons that might be useful in the future:

• Why did C++ succeed?

• How did the standards process serve the C++ commu-
nity?

• What were the influences on C++ and what has been its
impact?

• Is there a future for the ideals that underlie C++?

9.1 Why Did C++ Succeed?

That’s a question thoughtful people ask me a few times every
year. Less thoughtful people volunteer imaginative answers
to it on the web and elsewhere most weeks. Thus, it is worth
while to both briefly answer the question and to contradict
the more popular myths. Longer versions of the answer can
be found in D&E [121], in my first HOPL paper [120], and
in sections of this paper (e.g., §1, §7, and §9.4). This section
is basically a summary.

C++ succeeded because
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• Low-level access plus abstraction: The original con-
ception of C++, “C-like for systems programming plus
Simula-like for abstraction,” is a most powerful and use-
ful idea (§7.1, §9.4).

• A useful tool: To be useful a language has to be complete
and fit into the work environments of its users. It is
neither necessary nor sufficient to be the best in the world
at one or two things (§7.1).

• Timing: C++ was not the first language to support object-
oriented programming, but from day one it was available
as a useful tool for people to try for real-world problems.

• Non-proprietary: AT&T did not try to monopolize C++.
Early on, implementations were relatively cheap (e.g.,
$750 for educational institutions) and in 1989 all rights
to the language were transferred to the standard bod-
ies (ANSI and later ISO). I and others from Bell Labs
actively helped non-AT&T C++ implementers to get
started.

• Stable: A high degree (but not 100%) of C compatibility
was considered essential from day one. A higher degree
of compatibility (but still not 100%) with earlier imple-
mentations and definitions was maintained throughout.
The standards process was important here (§3.1, §6).

• Evolving: New ideas have been absorbed into C++
throughout (e.g., exceptions, templates, the STL). The
world evolves, and so must a living language. C++ didn’t
just follow fashion; occationally, it led (e.g., genric pro-
gramming and the STL). The standards process was im-
portant here (§4.1, §5, §8).

Personally, I particularly like that the C++ design never
aimed as solving a clearly enumerated set of problems with a
clearly enumerated set of specific solutions: I’d never design
a tool that could only do what I wanted [116]. Developers
tend not to appreciate this open-endedness and emphasis on
abstraction until their needs change.

Despite frequent claims, the reason for C++’s success was
not:

• Just luck: I am amazed at how often I hear that claimed.
I fail to understand how people can imagine that I and
others involved with C++ could — by pure luck — re-
peatedly have provided services preferred by millions of
systems builders. Obviously an element of luck is needed
in any endeavor, but to believe that mere bumbling luck
can account for the use of C++ 1.0, C++ 2.0, ARM C++,
and C++98 is stretching probabilities quite a bit. Stay-
ing lucky for 25 years can’t be easy. No, I didn’t imagine
every use of templates or of the STL, but I aimed for gen-
erality (§4.1.2).

• AT&T’s marketing might: That’s funny! All other lan-
guages that have ever competed commercially with C++
were better financed. AT&T’s C++ marketing budget
for 1985-1988 (inclusive) was $5,000 (out of which we

only managed to spend $3,000; see D&E). At the first
OOPSLA, we couldn’t afford to bring a computer, we
had no flyers, and not a single marketer (we used a
chalkboard, a signup sheet for research papers, and re-
searchers). In later years, things got worse.

• It was first: Well, Ada, Eiffel, Objective C, Smalltalk
and various Lisp dialects were all available commer-
cially before C++. For many programmers, C, Pascal, and
Modula-2 were serious contenders.

• Just C compatibility: C compatibility helped — as it
should because it was a design aim. However, C++ was
never just C and it earned the hostility from many C
devotees early on for that. To meet C++’s design aims,
some incompatibilities were introduced. C later adopted
several C++ features, but the time lag ensured that C++
got more criticism than praise for that (§7.6). C++ was
never an “anointed successor to C”.

• It was cheap: In the early years, a C++ implementation
was relatively cheap for academic institutions, but about
as expensive as competitive languages for commercial
use (e.g., about $40,000 for a commercial source license).
Later, vendors (notably Sun and Microsoft) tended to
charge more for C++ than for their own proprietary lan-
guages and systems.

Obviously, the reasons for success are as complex and varied
as the individuals and organizations that adopted C++.

9.2 Effects of the Standards Process

Looking back on the ’90s and the first years of the 21st cen-
tury, what questions can we ask about C++ and the standards
committee’s stewardship of the language?

• Is C++98 better than ARM C++?

• What was the biggest mistake?

• What did C++ get right?

• Can C++ be improved? and if so, how?

• Can the ISO standards process be improved? and if so,
how?

Yes, C++98 is a better language (with a much better library)
than ARM C++ for the kinds of problems that C++ was de-
signed to address. Thus, the efforts of the committee must be
deemed successful. In addition, the population of C++ pro-
grammers has grown by more than an order of magnitude
(from about 150,000 in 1990 to over 3 million in 2004; §1)
during the stewardship of the committee. Could the commit-
tee have done better? Undoubtedly, but exactly how is hard
to say. The exact conditions at the time where decisions are
made are hard to recall (to refresh your memory, see D&E
[121]).

So what was the biggest mistake? For the early years
of C++, the answer was easy (“not shipping a larger/better
foundation library with the early AT&T releases” [120]).
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However, for the 1991-1998 period, nothing really stands out
— at least if we have to be realistic. If we don’t have to be
realistic, we can dream of great support for distributed sys-
tems programming, a major library including great GUI sup-
port (§5.5), standard platform ABIs, elimination of overe-
laborate design warts that exist only for backward compat-
ibility, etc. To get a serious candidate for regret, I think
we have to leave the technical domain of language features
and library facilities and consider social factors. The C++
community has no real center. Despite the major and sus-
tained efforts of its members, the ISO C++ committee is un-
known or incredibly remote to huge numbers of C++ users.
Other programming language communities have been bet-
ter at maintaining conferences, websites, collaborative de-
velopment forums, FAQs, distribution sites, journals, indus-
try consortiums, academic venues, teaching establishments,
accreditation bodies, etc. I have been involved in several at-
tempts to foster a more effective C++ community, but I must
conclude that neither I nor anyone else have been sufficiently
successful in this. The centrifugal forces in the C++ world
have been too strong: Each implementation, library, and tool
supplier has their own effort that usually does a good job for
their users, but also isolates those users. Conferences and
journals have fallen victim to economic problems and to a
curious (but pleasant) lack of dogmatism among the leading
people in the C++ community.

What did C++ get right? First of all, the ISO standard was
completed in reasonable time and was the result of a genuine
consensus. That’s the base of all current C++ use. The stan-
dard strengthened C++ as a multi-paradigm language with
uncompromising support for systems programming, includ-
ing embedded systems programming.

Secondly, generic programming was developed and ef-
fective ways of using the language facilities for generic pro-
gramming emerged. This not only involved work on tem-
plates (e.g., concepts) but also required a better understand-
ing of resource management (§5.3) and of generic pro-
gramming techniques. Bringing generic programming to the
mainstream will probably be the main long-term technical
contribution of C++ in this time period.

Can C++ be improved? and if so, how? Obviously, C++
can be improved technically, and I also think that it can
be improved in the context of its real-world use. The lat-
ter is much harder, of course, because that imposes Dra-
conian compatibility constraints and cultural requirements.
The C++0x effort is the major attempt in that direction (§8).
In the longer term (C++1x?), I hope for perfect type safety
and a general high-level model for concurrency.

The question about improving the standards process is
hard to answer. On the one hand, the ISO process is slow, bu-
reaucratic, democratic, consensus-driven, subject to objec-
tions from very small communities (sometimes a single per-
son), lacking of focus (“vision”), and cannot respond rapidly
to changes in the industry or academic fashions. On the other

hand, that process has been successful. I have sometimes
summed up my position by paraphrasing Churchill: “the ISO
standards process is the worst, except for all the rest”. What
the standards committee seems to lack is a “secretariat” of
a handful of technical people who could spend full time
examining needs, do comparative studies of solutions, ex-
periment with language and library features, and work out
detailed formulation of proposals. Unfortunately, long-time
service in such a “secretariat” could easily be career death
for a first-rate academic or industrial researcher. On the other
hand, such a secretariat staffed by second-raters would lead
to massive disaster. Maybe a secretariat of technical peo-
ple serving for a couple of years supporting a fundamentally
democratic body such as the ISO C++ committee would be
a solution. That would require stable funding, though, and
standards organizations do not have spare cash.

Commercial vendors have accustomed users to massive
“standard libraries”. The ISO standards process — at least
as practiced by the C and C++ committees — has no way of
meeting user expectations of a many hundred thousands of
lines of free standard-library code. The Boost effort (§4.2) is
an attempt to address this. However, standard libraries have
to present a reasonably coherent view of computation and
storage. Developers of such libraries also have to spend a
huge amount of effort on important utility libraries of no
significant intellectual interest: just providing “what every-
body expects”. There are also a host of mundane specifica-
tion issues that even the commercial suppliers usually skimp
on — but a standard must address because it aims to sup-
port multiple implementations. A loosely connected group
of volunteers (working nights) is ill equipped to deal with
that. A multi-year mechanism for guidance is necessary for
coherence (and for integrating novel ideas) as well as ways
of getting “ordinary development work” done.

9.3 Influences and impact

We can look at C++ in many ways. One is to consider
influences:

1. What were the major influences on C++?

2. What languages, systems, and techniques were influ-
enced by C++?

Recognizing the influences on the C++ language features
is relatively easy. Recognizing the influences on C++ pro-
gramming techniques, libraries, and tools is far harder be-
cause there is so much more going on in those areas and
the decisions are not channeled through the single point of
the standards committee. Recognizing C++’s influences on
other languages, libraries, tools, and techniques is almost
impossible. This task is made harder by a tendency of intel-
lectual and commercial rivalries to lead to a lack of empha-
sis on documenting sources and influences. The competition
for market share and mind share does not follow the ideal
rules of academic publishing. In particular, most major ideas
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have multiple variants and sources, and people tend to refer
to sources that are not seen as competitors — and for many
new languages C++ is “the one to beat”.

9.3.1 Influences on C++

The major influences on early C++ were the programming
languages C and Simula. Along the way further influences
came from Algol68, BCPL, Clu, Ada, ML, and Modula-
2+ [121]. The language-technical borrowings tend to be ac-
companied by programming techniques related to those fea-
tures. Many of the design ideas and programming techniques
came from classical systems programming and from UNIX.
Simula contributed not just language features, but ideas of
programming technique relating to object-oriented program-
ming and data abstraction. My emphasis on strong static
type checking as a tool for design, early error detection, and
run-time performance (in that order) reflected in the design
of C++ came primarily from there. With generic program-
ming and the STL, mainstream C++ programming received
a solid dose of functional programming techniques and de-
sign ideas.

9.3.2 Impact of C++

C++’s main contribution was and is through the many sys-
tems built using it (§7 [137]). The primary purpose of a pro-
gramming language is to help build good systems. C++ has
become an essential ingredient in the infrastructure on which
our civilization relies (e.g. telecommunications systems, per-
sonal computers, entertainment, medicine, and electronic
commerce) and has been part of some of the most inspir-
ing achievements of this time period (e.g., the Mars Rovers
and the sequencing of the human genome).

C++ was preeminent in bringing object-oriented pro-
gramming into the mainstream. To do so, the C++ commu-
nity had to overcome two almost universal objections:

• Object-oriented programming is inherently inefficient

• Object-oriented programming is too complicated to be
used by “ordinary programmers”

C++’s particular variant of OO was (deliberately) derived
from Simula, rather than from Smalltalk or Lisp, and em-
phasized the role of static type checking and its associated
design techniques. Less well recognized is that C++ also
brought with it some non-OO data abstraction techniques
and an emphasis on statically typed interfaces to non-OO
facilities (e.g., proper type checking for plain old C func-
tions; §7.6). When that was recognized, it was often criti-
cized as “hybrid”, “transitory”, or “static”. I consider it a
valuable and often necessary complement to the view of
object-oriented programming focused on class hierarchies
and dynamic typing.

C++ brought generic programming into the mainstream.
This was a natural evolution of the early C++ emphasis on
statically typed interfaces and brought with it a number of
functional programming techniques “translated” from lists

and recursion to general sequences and iteration. Function
templates plus function objects often take the role of higher-
order functions. The STL was a crucial trendsetter. In addi-
tion, the use of templates and function objects led to an em-
phasis on static type safety in high-performance computing
(§7.3) that hitherto had been missing in real-world applica-
tions.

C++’s influence on specific language features is most
obvious in C, which has now “borrowed”:

• function prototypes

• const

• inline

• bool

• complex

• declarations as statements

• declarations in for-statement initializers

• // comments

Sadly, with the exception of the // comments (which I in
turn borrowed from BCPL), these features were introduced
into C in incompatible forms. So was void*, which was a
joint effort between Larry Rosler, Steve Johnson, and me at
Bell Labs in mid-1982 (see D&E [121]).

Generic programming, the STL, and templates have also
been very influential on the design of other languages. In the
1980s and 1990s templates and the programming techniques
associated with them were frequently scorned as “not object-
oriented”, too complicated, and too expensive; workarounds
were praised as “simple”. The comments had an interest-
ing similarity to the early community comments on object-
oriented programming and classes. However, by 2005, both
Java and C# have acquired “generics” and statically typed
containers. These generics look a lot like templates, but
Java’s are primarily syntactic sugar for abstract classes and
far more rigid than templates. Though still not as flexible
or efficient as templates, the C# 2.0 generics are better in-
tegrated into the type system and even (as templates always
did) offer a form of specialization.

C++’s success in real-world use also led to influences that
are less beneficial. The frequent use of the ugly and irregular
C/C++ style of syntax in modern languages is not something
I’m proud of. It is, however, an excellent indicator of C++
influence — nobody would come up with such syntax from
first principles.

There is obvious C++ influence in Java, C#, and various
scripting languages. The influence on Ada95, COBOL, and
Fortran is less obvious, but definite. For example, having
an Ada version of the Booch components [15] that could
compare in code size and performance with the C++ version
was a commonly cited goal. C++ has even managed to in-
fluence the functional programming community (e.g. [59]).
However, I consider those influences less significant.
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One of the key areas of influence has been on systems for
intercommunication and components, such as CORBA and
COM, both of which have a fundamental model of interfaces
derived from C++’s abstract classes.

9.4 Beyond C++

C++ will be the mainstay of much systems development
for years to come. After C++0x, I expect to see C++1x as
the language and its community adapts to new challenges.
However, where does C++ fit philosophically among current
languages; in other words, ignoring compatibility, what is
the essence of C++? C++ is an approximation to ideals, but
obviously not itself the ideal. What key properties, ideas,
and ideals might become the seeds of new languages and
programming techniques? C++ is

• a set of low-level language mechanisms (dealing directly
with hardware)

• combined with powerful compositional abstraction
mechanisms

• relying on a minimal run-time environment.

In this, it is close to unique and much of its strength comes
from this combination of features. C is by far the most suc-
cessful traditional systems programming language; the dom-
inant survivor of a large class of popular and useful lan-
guages. C is close to the machine in exactly the way C++
is (§2, §6.1), but C doesn’t provide significant abstraction
mechanisms. To contrast, most “modern languages” (such
as Java, C#, Python, Ruby, Haskell, and ML) provide ab-
straction mechanisms, but deliberately put barriers between
themselves and the machine. The most popular rely on a
virtual machine plus a huge run-time support system. This
is a great advantage when you are building an application
that requires the services offered, but a major limitation on
the range of application areas (§7.1). It also ensures that ev-
ery application is a part of a huge system, making it hard to
understand completely and impossible to make correct and
well performing in isolation.

In contrast, C++ and its standard library can be imple-
mented in itself (the few minor exceptions to this are the re-
sults of compatibility requirements and minor specification
mistakes). C++ is complete both as a mechanism for dealing
with hardware and for efficient abstraction from the close-
to-hardware levels of programming. Occasionally, optimal
use of a hardware feature requires a compiler intrinsic or an
inline assembler insert, but that does not break the funda-
mental model; in fact, it can be seen as an integral part of
that model. C++’s model of computation is that of hardware,
rather than a mathematical or ad hoc abstraction.

Can such a model be applied to future hardware, future
systems requirements, and future application requirements?
I consider it reasonably obvious that in the absence of com-
patibility requirements, a new language on this model can be
much smaller, simpler, more expressive, and more amenable

to tool use than C++, without loss of performance or restric-
tion of application domains. How much smaller? Say 10% of
the size of C++ in definition and similar in front-end com-
piler size. In the “Retrospective” chapter of D&E [121], I
expressed that idea as “Inside C++, there is a much smaller
and cleaner language struggling to get out”. Most of the sim-
plification would come from generalization — eliminating
the mess of special cases that makes C++ so hard to handle
— rather than restriction or moving work from compile time
to run time. But could a machine-near plus zero-overhead
abstraction language meet “modern requirements”? In par-
ticular, it must be

• completely type safe

• capable of effectively using concurrent hardware

This is not the place to give a technical argument, but I’m
confident that it could be done. Such a language would re-
quire a realistic (relative to real hardware) machine model
(including a memory model) and a simple object model. The
object model would be similar to C++’s: direct mapping of
basic types to machine objects and simple composition as
the basis for abstraction. This implies a form of pointers and
arrays to support a “sequence of objects” basic model (sim-
ilar to what the STL offers). Getting that type safe — that
is, eliminating the possibility of invalid pointer use, range
errors, etc. — with a minimum of run-time checks is a chal-
lenge, but there is plenty of research in software, hardware,
and static analysis to give cause for optimism. The model
would include true local variables (for user-defined types as
well as built-in ones), implying support for “resource acqui-
sition is initialization”-style resource management. It would
not be a “garbage collection for everything” model, even
though there undoubtedly would be a place for garbage col-
lection in most such languages.

What kind of programming would this sort of language
support? What kind of programming would it support bet-
ter than obvious and popular alternatives? This kind of lan-
guage would be a systems programming language suitable
for hard real-time applications, device drivers, embedded de-
vices, etc. I think the ideal systems programming language
belongs to this general model — you need machine-near fea-
tures, predictable performance, (type) safety, and powerful
abstraction features. Secondly, this kind of language would
be ideal for all kinds of resource-constrained applications
and applications with large parts that fitted these two criteria.
This is a huge and growing class of applications. Obviously,
this argument is a variant of the analysis of C++’s strengths
from §7.1.

What would be different from current C++? Size, type
safety, and integral support for concurrency would be the
most obvious differences. More importantly, such a language
would be more amenable to reasoning and to tool use than
C++ and languages relying on lots of run-time support. Be-
yond that, there is ample scope for improvement over C++
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in both design details and specification techniques. For ex-
ample, the integration between core language and standard
library features can be much smoother; the C++ ideal of
identical support for built-in and user-defined types could
be completely achieved so that a user couldn’t (without ex-
amining the implementation) tell which was which. It is also
obvious that essentially all of such a language could be de-
fined relative to an abstract machine (thus eliminating all in-
cidental “implementation defined” behavior) without com-
promising the close-to-machine ideal: machine architectures
have huge similarities in operations and memory models that
can be exploited.

The real-world challenge to be met is to specify and im-
plement correct systems (often under resource constraints
and often in the presence of the possibility of hardware fail-
ure). Our civilization critically depends on software and the
amount and complexity of that software is steadily increas-
ing. So far, we (the builders of large systems) have mostly
addressed that challenge by patch upon patch and incredi-
ble numbers of run-time tests. I don’t see that approach con-
tinuing to scale. For starters, apart from concurrent execu-
tion, our computers are not getting faster to compensate for
software bloat as they did for the last decades. The way to
deal that I’m most optimistic about is a more principled ap-
proach to software, relying on more mathematical reason-
ing, more declarative properties, and more static verification
of program properties. The STL is an example of a move in
that direction (constrained by the limitations of C++). Func-
tional languages are examples of moves in that direction
(constrained by a fundamental model of memory that dif-
fers from the hardware’s and underutilization of static prop-
erties). A more significant move in that direction requires
a language that supports specification of desired properties
and reasoning about them (concepts are a step in that direc-
tion). For this kind of reasoning, run-time resolution, run-
time tests, and multiple layers of run-time mapping from
code to hardware are at best wasteful and at worst serious ob-
stacles. The ultimate strength of a machine-near, type-safe,
and compositional abstraction model is that it provides the
fewest obstacles to reasoning.
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Abstract 

This paper is a highly personal and subjective account of 
how the language of statecharts came into being. The main 
novelty of the language is in being a fully executable visual 
formalism intended for capturing the behavior of complex 
real-world systems, and an interesting aspect of its history 
is that it illustrates the advantages of theoreticians 
venturing out into the trenches of the real world, "dirtying 
their hands" and working closely with the system's 
engineers.  The story is told in a way that puts statecharts 
into perspective and discusses the role of the language in 
the emergence of broader concepts, such as visual 
formalisms in general, reactive systems, model-driven 
development, model executability and code generation.  
 

 

1. Introduction 
The invitation to write a paper on statecharts for this 

conference on the history of programming languages 
produces mixed feelings of pleasant apprehension. Pleasant 
because being invited to write this paper means that 
statecharts are considered to be a programming language. 
They are executable, compilable and analyzable, just like 
programs in any “real” programming language, so that 
what we have here is not "merely" a specification language 
or a medium for requirements documentation.  The 
apprehension stems from the fact that writing a historical 
paper about something you yourself were heavily involved 
in is hard; the result is bound to be very personal and 
idiosyncratic, and might sound presumptuous. In addition 
to accuracy, the paper must also try to be of interest to 
people other than its author and his friends... 

The decision was to take the opportunity to put the 
language into a broader perspective and, in addition to 
telling its "story", to discuss some of the issues that arose 
around it. An implicit claim here is that whatever specific 
vices and virtues statecharts possess, their emergence 
served to identify and solidify a number of ideas that are of 
greater significance than one particular language.  

Some of these ideas are the general notion of a visual 
formalism, the identification of the class of reactive 
systems and the arguments for its significance and special 
character, the notion of model-based development, of 
which the UML is one of the best-known products, the 
concept of model executability and evidence of its 
feasibility, whereby high-level behavioral models 
(especially graphical ones) can and should be executed just 
like conventional computer programs, and the related 
concept of full code generation, whereby these high-level 
models are translated ― actually, compiled down ― into 
running code in a conventional language. The claim is not 
that none of these concepts was ever contemplated before 
statecharts, but rather that they became identified and 
pinpointed as part and parcel of the work on statecharts, 
and were given convincing support and evidence as a result 
thereof. 

2. Pre-1982 
I am not a programming languages person. In fact, the 

reader might be surprised to learn that the only 
programming languages I know reasonably well are PL/I 
and Basic…. I also enjoyed APL quite a bit at the time. 
However, even in classical languages like Fortran, 
PASCAL or C, not to mention more modern languages like 
C++ and Java, I haven't really done enough programming 
to be considered any kind of expert. Actually, nothing 
really qualifies me as a programming language researcher 
or developer. Prior to statecharts I had published in 
programming language venues, such as POPL, the ACM 
Symposium on Principles of Programming Languages, but 
the papers were about principles and theory, not about 
languages…. They mostly had to do with the logics of 
programs, their expressive power and axiomatics, and their 
relevance to correctness and verification.  

In 1977, while at MIT working on my PhD, I had the 
opportunity to take a summer job at a small company in 
Cambridge, MA, called Higher Order Software (HOS), 
owned and run by Margaret Hamilton and Saydean Zeldin. 
They had a method for specifying software that took the 
form of trees of functions ― a sort of functional 
decomposition if you will ― that had to adhere to a set of 
six well-formedness axioms [HZ76]. We had several 
interesting discussions, sometimes arguments, one of which 
had to do with verification. When asked how they 
recommend that one verify the correctness of a system 
described using their method, the answers usually related to 
validating the appropriateness of the syntax. When it came 
to true verification, i.e., making sure that the system does 
what you expect it to, what they were saying in a nutshell 
was, "Oh, that's not a problem at all in our method because 
we don’t allow programs that do not satisfy their 
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requirements."  In other words, they were claiming to have 
"solved" the issue of verification by virtue of disallowing 
incorrect programs in the language. Of course, this only 
passes the buck:  The burden of verifying correctness now 
lies with the syntax checker...  

This attitude towards correctness probably had to do 
with the declarative nature of the HOS approach, whereas 
had they constructed their method as an executable 
language the verification issue could not have been side-
tracked in this way and would have had to be squarely 
confronted. Still, the basic tree-like approach of the HOS 
method was quite appealing, and was almost visual in 
nature. As a result, I decided to see if the technical essence 
of this basic idea could be properly defined, hopefully 
resulting in a semantically sound, and executable, language 
for functions, based on an and/or functional decomposition. 
The "and" was intended as a common generalization of 
concurrency and sequentiality (you must do all these 
things) and the "or" a generalization of choice and 
branching (you must do at least one of these things). This 
was very similar to the then newly introduced notion of 
alternation, which had been added to classical models of 
computation in the theory community by Chandra, Kozen 
and Stockmeyer [CKS81] and about which I recall having 
gotten very excited at the time. Anyway, the result of this 
effort was a paper titled And/Or Programs: A New 
Approach to Structured Programming, presented in 1979 at 
an IEEE conference on reliable software (it later appeared 
in final form in ACM TOPLAS) [H79&80].  

After the presentation at the conference, Dr. Jonah 
Lavi (Loeb) from the Israel Aircraft Industries (IAI) 
wanted to know if I was planning to return to Israel (at the 
time I was in the midst of a postdoctoral position ― doing 
theory ― at IBM's Yorktown Heights Research Center), 
and asked if I'd consider coming to work for the IAI. My 
response was to politely decline, since the intention was 
indeed to return within a year or so, but to academia to do 
research and teaching. This short conversation turned out to 
be crucial to the statechart story, as will become clear 
shortly. 

3. December 1982 to mid 1983: The Avionics 
Motivation 
We cut now to December 1982. At this point I had 

already been on the faculty of the Weizmann Institute of 
Science in Israel for two years. One day, the same Jonah 
Lavi called, asking if we could meet. In the meeting, he 
described briefly some severe problems that the engineers 
at IAI seemed to have, particularly mentioning the effort 
underway at IAI to build a home-made fighter aircraft, 
which was to be called the Lavi (no connection with 
Jonah's surname). The most difficult issues came up, he 
said, within the Lavi's avionics team. Jonah himself was a 
methodologist who did not work on a particular project; 
rather, he was responsible within the IAI for evaluating and 
bringing in software engineering tools and methods. He 
asked whether I would be willing to consult on a one-day-
per-week basis, to see whether the problems they were 
having could be solved. 

In retrospect, that visit turned out to be a real turning 
point for me. Moreover, luck played an important part too, 

since I feel that Jonah Lavi had no particular reason to 
prefer me to any other computer scientist, except for the 
coincidence of his happening to have heard that lecture on 
and/or programs a few years earlier. Whatever the case, I 
agreed to do the consulting, having for a long time 
harbored a never-consummated dream, or "weakness", for 
piloting, especially fighter aircraft.  

And so, starting in December 1982, for several 
months, Thursday became my consulting day at the IAI. 
The first few weeks of this were devoted to sitting down 
with Jonah, in his office, trying to understand from him 
what the issues were. After a few such weeks, having learnt 
a lot from Jonah, whose broad insights into systems and 
software were extremely illuminating, I figured it was time 
to become exposed to the real project and the specific 
difficulties there. In fact, at that point I hadn't yet met the 
project's engineers at all. An opportunity for doing so 
arrived, curiously enough, as a result of a health problem 
that prevented Jonah from being in the office for a few 
weeks, so that our thinking and talking had to be put on 
hold. The consulting days of that period were spent, 
accompanied by Jonah's able assistant Yitzhak Shai, 
working with a select group of experts from the Lavi 
avionics team, among whom were Akiva Kaspi and Yigal 
Livne.  

These turned out to be an extremely fruitful few 
weeks, during which I was able to get a more detailed first-
hand idea about the problem and to take the first steps in 
proposing a solution. We shall get to that shortly, but first 
some words about avionics.  

An avionics system is a great example of what Amir 
Pnueli and I later identified as a reactive system [HP85]. 
The aspect that dominates such a system is its reactivity; its 
event-driven, control-driven, event-response nature, often 
including strict time constraints, and often exhibiting a 
great deal of parallelism. A typical reactive system is not 
particularly data intensive or calculation-intensive. So what 
is/was the problem with such systems?  In a nutshell, it is 
the need to provide a clear yet precise description of what 
the system does, or should do. Specifying its behavior is 
the real issue. 

Here is how the problem showed up in the Lavi. The 
avionics team had many amazingly talented experts. There 
were radar experts, flight control experts, electronic 
warfare experts, hardware experts, communication experts, 
software experts, etc. When the radar people were asked to 
talk about radar, they would provide the exact algorithm 
the radar used in order to measure the distance to the target. 
The flight control people would talk about the 
synchronization between the controls in the cockpit and the 
flaps on the wings. The communications people would talk 
about the formatting of information traveling through the 
MuxBus communication line that runs lengthwise along the 
aircraft. And on and on. Each group had their own 
idiosyncratic way of thinking about the system, their own 
way of talking, their own diagrams, and their own 
emphases.  

Then I would ask them what seemed like very simple 
specific questions, such as: "What happens when this 
button on the stick is pressed?" In way of responding, they 
would take out a two-volume document, written in 
structured natural language, each volume containing 
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something like 900 or 1000 pages. In answer to the 
question above, they would open volume B on page 389, at 
clause 19.11.6.10, where it says that if you press this 
button, such and such a thing occurs. At which point 
(having learned a few of the system's buzzwords during 
this day-a-week consulting period) I would say: "Yes, but 
is that true even if there is an infra-red missile locked on a 
ground target?" To which they would respond: "Oh no, in 
volume A, on page 895, clause 6.12.3.7, it says that in such 
a case this other thing happens." This to-and-fro Q&A 
session often continued for a while, and by question 
number 5 or 6 they were often not sure of the answer and 
would call the customer for a response (in this case some 
part of the Israeli Air Force team working with the IAI on 
the aircraft's desired specification). By the time we got to 
question number 8 or 9 even those people often did not 
have an answer! And, by the way, one of Jonah Lavi’s 
motivations for getting an outside consultant was the 
bothersome fact that some of the IAI's subcontractors 
refused to work from these enormous documents, claiming 
that they couldn't understand them and were in any case not 
certain that they were consistent or complete. 

In my naïve eyes, this looked like a bizarre situation, 
because it was obvious that someone, eventually, would 
make a decision about what happens when you press a 
certain button under a certain set of circumstances. 
However, that person might very well turn out to be a low-
level programmer whose task it was to write some code for 
some procedure, and who inadvertently was making 
decisions that influenced crucial behavior on a much higher 
level. Coming, as I did, from a clean-slate background in 
terms of avionics (which is a polite way of saying that I 
knew nothing about the subject matter…), this was 
shocking. It seemed extraordinary that this talented and 
professional team did have answers to questions such as 
"What algorithm is used by the radar to measure the 
distance to a target?", but in many cases did not have the 
answers to questions that seemed more basic, such as 
"What happens when you press this button on the stick 
under all possible circumstances?".  

In retrospect, the two only real advantages I had over 
the avionics people were these: (i) having had no prior 
expertise or knowledge about this kind of system, which 
enabled me to approach it with a completely blank state of 
mind and think of it any which way; and (ii) having come 
from a slightly more mathematically rigorous background, 
making it somewhat more difficult for them to convince me 
that a two-volume, 2000 page document, written in 
structured natural language, was a complete, 
comprehensive and consistent specification of the system's 
behavior. 

In order to make this second point a little more 
responsibly, let us take a look at an example taken from the 
specification of a certain chemical plant. It involves a tiny 
slice of behavior that I searched for tediously in this 
document (which was about 700 pages long). I found this 
particular piece of behavior mentioned in three different 
places in the document. The first is from an early part, on 
security, and appeared around page 10 of the document: 

 
 

Section 2.7.6: Security 
“If the system sends a signal hot then send a 
message to the operator.” 

Later on, in a section on temperatures, which was around 
page 150 of the document, it says: 

Section 9.3.4: Temperatures
“If the system sends a signal hot and T >600, 
then send a message to the operator.” 

The real gem was in the third quote, which occurred 
somewhere around page 650 of the document, towards the 
end, in a section devoted to summarizing some critical 
aspects of the system. There it says the following: 

Summary of critical aspects
“When the temperature is maximum, the system 
should display a message on the screen, unless no 
operator is on the site except when T <600.” 

Despite being educated as a logician, I've never really 
been able to figure out whether the third of these is 
equivalent to, or implies, any of the previous two… But 
that, of course, is not the point. The point is that these 
excerpts were obviously written by three different people 
for three different reasons, and that such large documents 
get handed over to programmers, some more experienced 
than others, to write the code. It is almost certain that the 
person writing the code for this critical aspect of the 
chemical plant will produce something that will turn out to 
be problematic in the best case ― catastrophic in the worst. 
In addition, keep in mind that these excerpts were found by 
an extensive search through the entire document to try find 
where this little piece of behavior was actually mentioned.  
Imagine our programmer having to do that repeatedly for 
whatever parts of the system he/she is responsible for, and 
then to make sense of it all. 

The specification documents that the Lavi avionics 
group had produced at the Israel Aircraft Industries were 
no better; if anything, they were longer and more complex, 
and hence worse, which leads to the question of how such 
an engineering team should specify behavior of such a 
system in a intuitively clear and mathematically rigorous 
fashion. These two characteristics, clarity and rigor, will 
take on special importance as our story unfolds.  

4. 1983: Statecharts Emerging  
Working with the avionics experts every Thursday for 

several weeks was a true eye-opener. At the time there was 
no issue of inventing a new programming language. The 
goal was to try to find, or to invent for these experts, a 
means for simply saying what they seemed to have had in 
their minds anyway. Despite the fact that the simple "what 
happens" questions get increasingly more complicated to 
answer, it became very clear that these engineers knew a 
tremendous amount about the intended behavior of the 
system. They understood it, and they had answers to many 
of the questions about behavior. Other questions they 
hadn't had the opportunity to think about properly because 
the information wasn't well organized in their documents, 
or even, for that matter, in their minds. The goal was to 
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find a way to help take the information that was present 
collectively in their heads and put it on paper, so to speak, 
in a fashion that was both well organized and accurate.  

Accordingly, the work progressed in the following 
way. A lot of time was spent getting them to talk; I kept 
asking questions, prodding them to state clearly how the 
aircraft behaves under certain sets of circumstances. 
Example: "What are the radar's main activities in air-
ground mode when the automatic pilot is on?"   They 
would talk and we would have discussions, trying to make 
some coherent sense of the information that piled up. 

I became convinced from the start that the notion of a 
state and a transition to a new state was fundamental to 
their thinking about the system. (This insight was 
consistent with some of the influential work David Parnas 
had been doing for a few years on the A-7 avionics 
[HKSP78].) They would repeatedly say things like, "When 
the aircraft is in air-ground mode and you press this button, 
it goes into air-air mode, but only if there is no radar locked 
on a ground target at the time". Of course, for anyone 
coming from computer science this is very familiar: what 
we really have here is a finite-state automaton, with its state 
transition table or state transition diagram.  Still, it was 
pretty easy to see that just having one big state machine 
describing what is going on would be fruitless, and not 
only because of the number of states, which, of course, 
grows exponentially in the size of the system. Even more 
important seemed to be the pragmatic point of view, 
whereby a formalism in which you simply list all possible 
states and specify all the transitions between them is 
unstructured and non-intuitive; it has no means for 
modularity, hiding of information, clustering, and 
separation of concerns, and was not going to work for the 
kind of complex behavior in the avionics system. And if 
you tried to draw it visually you’d get spaghetti of the 
worst kind. It became obvious pretty quickly that it could 
be beneficial to come up with some kind of structured and 
hierarchical extension of the conventional state machine 
formalism.  

So following an initial attempt at formalizing parts of 
the system using a sort of  temporal logic-like notation (see 
Fig. 1)1, I resorted to writing down the state-based 
behavior textually, in a kind of structured dialect made up 
on the fly that talked about states and their structure and the 
transitions between them. However, this dialect was 
hierarchical: inside a state there could be other states, and if 
you were in this state, and that event occurred, you would 
leave the current state and anything inside it and enter that 
other state, and so on. Fig. 2 shows an early example, from 
somewhere in early 1983, of one of these structured state 
protocols, or statocols, taken from my messy, scribbled 
IAI notebook.  

As this was going on, things got increasingly 
complicated. The engineers would bring up additional 
pieces of the avionics behavior, and after figuring out how 
the new stuff related to the old, I would respond by 
extending the state-based structured description, often 
having to enrich the syntax in real time... When things got 
                                                                 
1 Because of the special nature and size of some of the figures, I 

have placed them all at the end of the text, before the 
references. 

a little more complicated, I would doodle on the side of the 
page to explain visually what was meant; some of this is 
visible on the right-hand side of Fig. 2.  I clearly recall the 
first time I used visual encapsulation to illustrate to them 
the state hierarchy, and an arrow emanating from the higher 
level to show a compound "leave-any-state-inside" 
transition; see the doodling in Fig. 2 and the more orderly 
attempts in Fig. 3.  And I also remember the first time I 
used side-by-side adjacency for orthogonal (concurrent) 
state components, denoted ― after playing with two or 
three possible line styles ― by a dashed line; see Fig. 4. 
However, it is important to realize that, at the time, these 
informal diagrams were drawn in order to explain what the 
nongraphical state protocols meant. The text was still the 
real thing and the diagrams were merely an aid.  

After a few of these meetings with the avionics 
experts, it suddenly dawned on me that everyone around 
the table seemed to understand the back-of-napkin style 
diagrams a lot better and related to them far more naturally. 
The pictures were simply doing a much better job of setting 
down on paper the system's behavior, as understood by the 
engineers, and we found ourselves discussing the avionics 
and arguing about them over the diagrams, not the 
statocols. Still, the mathematician in me argued thus: "How 
could these doodled diagrams be better than the real 
mathematical-looking artifact?" (Observe Fig. 2 again, to 
see the two options side by side.) So it really took a leap of 
faith to be able to think: "Hmmm… couldn't the pictures be 
turned into the real thing, replacing, rather than 
supplementing, the textual structured programming-like 
formalism?" And so, over a period of a few weeks the 
scales tipped in favor of the diagrams. I gradually stopped 
using the text, or used it only to capture supplementary 
information inside the states or along transitions, and the 
diagrams became the actual specification we were 
constructing; see Figs. 5–9.  

Of course, this had to be done in a responsible way, 
making sure that the emerging pictures were not just 
pictures; that they were not just doodling. They had to be 
rigorous, based on precise mathematical meaning. You 
couldn't just throw in features because they looked good 
and because the avionics team seemed to understand them. 
Unless the exact meaning of an intended feature was given, 
in any allowed context and under any allowed set of 
circumstances, it simply couldn't be considered.  

This was how the basics of the language emerged. I 
chose to use the term statecharts for the resulting 
creatures, which was as of 1983 the only unused 
combination of "state" or "flow" with "chart" or "diagram". 

5. On the Language Itself  
Besides a host of other constructs, the two main ideas 

in statecharts are hierarchy and orthogonality, and these 
can be intermixed on all levels: You start out with classical 
finite-state machines (FSMs) and their state transition 
diagrams, and you extend them by a semantically 
meaningful hierarchical substating mechanism and by a 
notion of orthogonal simultaneity. Both of these are 
reflected in the graphics themselves, the hierarchy by 
encapsulation and the orthogonality by adjacent portions 
separated by a dashed line. Orthogonal components can 
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cooperate and know about each other by several means, 
including direct sensing of the state status in another 
component or by actions. The cooperation mechanism ― 
within a single statechart I should add ― has a 
broadcasting flavor.  

Transitions become far more elaborate and rich than 
in conventional FSMs. They can start or stop at any level 
of the hierarchy, can cross levels thereof, and in general 
can be hyperedges, since both sources and targets of 
transitions can contain sets of states. In fact, at any given 
point in time a statechart will be in a vector, or 
combination, of states, whose length is not fixed. Exiting 
and entering orthogonal components on the various levels 
of the hierarchy continuously changes the size of the state 
vector.  Default states generalize start states, and they too 
can be level-crossing and of hyperedge nature. And the 
language has history connectors, conditions, selection 
connectors, and more. A transition can be labeled with an 
event and optionally also with a parenthesized condition, as 
well as with Mealy-like outputs, or actions. (Actions can 
also occur within states, in the Moore style.) 

The fact that the technical part of the statecharts story 
started out with and/or programs is in fact very relevant. 
Encapsulated substates represent OR (actually this is XOR; 
exclusive or), and orthogonality is AND. Thus, a 
minimalist might view statecharts as a state-based language 
whose underlying structuring mechanism is simply that of 
classical alternation [CKS81]. Figs. 9 and 10 exemplify this 
connection by showing a state hierarchy for a part of the 
Lavi avionics statecharts and then the and/or tree I used to 
explain to the engineers in a different way what was 
actually going on. 

In order to make this paper a little more technically 
informative, I will now carry out some self-plagiarism, 
stealing and then modifying some of the figures and 
explanations of the basic features of the language from the 
original statechart paper [H84&87].  However, the reader 
should not take the rest of this section as a tutorial on the 
language, or as a language manual. It is extremely 
informal, and extremely partial. I am also setting it in 
smaller font, and slightly indented, so that you can skip it 
completely if you want.   For more complete accounts, 
please refer to [H84&87, HN89&96, HP91, HK04]. 

 

 In way of introducing the state hierarchy, consider Fig. 
11(i). It shows a very simple four-state chart. Notice, 
however, that event β takes the system to state B from either 
A or C, and also that δ takes the system to D from either of 
these. Thus, we can cluster A and C into a new superstate, 
E, and replace the two β transitions and the two δ ones by a 
single transition for each, as in Fig. 11(ii). The semantics of 
E is then the XOR of A and C; i.e., to be in state E one must 
be either in A or in C, but not in both. Thus E is really an 
abstraction of A and C, and its outgoing β and δ arrows 
capture two common properties of A and C; namely, that β 
leads from them to B and δ to D. The decision to have 
transitions that leave a superstate denote transitions leaving 
all substates turns out to be highly important, and is one of 
the main ways statecharts economize in the number of 
arrows.  

Fig. 11 might also be approached from a different angle: 
first we might have decided upon the simple situation of Fig. 

11(iii) and then state E could have been refined to consist of 
A and C, yielding Fig. 11(ii). Having decided to make this 
refinement, however, the transitions entering E in Fig. 
11(iii), namely, α, δ and γ, become underspecified, as they 
do not say which of A or C is to be entered. This can be 
remedied in a number of ways. One is to simply extend them 
to point directly to A or C, as with the α-arrow entering A 
directly in Fig. 11(ii). Another is to use multi-level default 
entrances, as we now explain. 

Fig. 11(i) has a start arrow pointing to state A. In finite 
automata this means simply that the automaton starts in state 
A.  In statecharts this notion is generalized to that of a 
default state, which, in the context of Fig. 11 is taken to 
mean that as far as the 'outside' world is concerned A is the 
default state among A, B, C and D: if we are asked to enter 
one of these states but are not told which one to enter, the 
system is to enter A. In Fig. 11(i) this is captured in the 
obvious way, but in Fig. 11(ii) it is more subtle. The default 
arrow starts on the (topological) outside of the superstate E 
and enters A directly. This does not contradict the other 
default arrow in Fig. 11(ii), which is (topologically) wholly 
contained inside E and which leads to C. Its semantics is that 
if we somehow already entered E, but inside E we are not 
told where to go, the inner default is C, not A. This takes 
care of the two otherwise-underspecified transitions entering 
(and stopping at the borderline of) state E, those labeled δ 
and γ, emanating from B and D, respectively, and which 
indeed by Fig. 11(i) are to end up in C, not in A. Thus, Figs. 
11(i) and 11(ii) are totally equivalent in their information, 
whereas Fig. 11(iii) contains less information and is thus an 
abstraction. 

Besides the default entrance, there are other special ways 
to enter states, including conditional entries, specified by a 
circled C, and history entrances, specified by a circled H. 
The latter is particularly interesting, as it allows one to 
specify entrance to the substate most recently visited within 
the state in question, and thus caters for a (theoretically very 
limited, but in practice useful) kind of memory. In both of 
these, the connector's location within the state hierarchy has 
semantic significance.  

So much for the hierarchical XOR decomposition of 
states. The second notion is the AND decomposition, 
capturing the property that, being in a state, the system must 
be in all of its components. The notation used in statecharts 
is the physical partitioning of a state box (called blob in 
[H88]) into components, using dashed lines. 

Figure 12(i) shows a state Y consisting of AND 
components A and D, with the property that being in Y 
entails being in some combination of B or C with E, F or G. 
We say that Y is the orthogonal product of A and D. The 
components A and D are no different conceptually from any 
other superstates; they can have defaults, substates, internal 
transitions, etc.  Entering Y from the outside, in the absence 
of any additional information (like the τ entrance on the 
right hand side of Fig. 12(ii)), is actually entering the 
combination (B,F), as a result of the default arrows that lead 
to B and F. If event α then occurs, it transfers B to C and F 
to G simultaneously, resulting in the new combined state 
(C,G). This illustrates a certain kind of synchronicity: a 
single event causing two simultaneous happenings. If, on the 
other hand, μ occurs at (B, F) it affects the D component 
only, resulting in (B,E). This, in turn, illustrates a certain 
kind of independence, since the transition is the same 
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whether, in component A, the system happens to be in B or 
in C. Both behaviors are part of the orthogonality of A and 
D, which is the term used in statecharts to describe the AND 
decomposition. Later we shall discuss the difference 
between orthogonality and concurrency, or parallelism. 

Fig. 12(ii) shows the same orthogonal state Y, but with 
some transitions to and from it. As mentioned, the τ entrance 
on the right enters (B,F), but the λ entrance, on the other 
hand, overrides D's default by entering G directly. But since 
one cannot be in G alone, the system actually enters the 
combination (B,G), using A's default. The split ξ entrance on 
the top of Fig. 12(ii) illustrates an explicit indication as to 
which combination is to be entered, (B, E) in this case. The 
γ-event enters a history connector in the area of D, and 
hence causes entrance to the combination of B (A's default) 
with the most recently visited state in D. As to the exits in 
Fig. 12(ii), the ω-event causes an exit from C combined with 
any of the three substates of D ─ again a sort of 
independence property. Had the ω arrow been a merging 
hyper-edge (like the ξ one, but with the direction reversed) 
with C and, say, G, as its sources, it would have been a 
direct specification of an exit from (C,G) only. The most 
general kind of exit is the one labeled χ on the left hand side 
of the figure, which causes control to leave A×D 
unconditionally.  

Fig. 13(i) is the conventional AND-free equivalent of 
Fig. 12(i), and has six states because the components of Fig. 
12(i) contain two and three. Clearly, if these had a thousand 
states each, the resulting "flat" product version would have a 
million states. This, of course, is the root of the exponential 
blow-up in the number of states, which occurs when 
classical finite state automata or state diagrams are used, and 
orthogonality is our way of avoiding it. (This last comment 
assumes, of course, that we are specifying using the state-
based language alone, not embedded in objects or tasks, etc.)  
Note that the "in G" condition attached to the β-transition 
from C in Fig. 12(i) has the obvious consequence in Fig. 
13(i): the absence of a β-transition from (C,E). Fig 13(ii) 
adds to this the ω and χ exiting transitions of Fig. 12(ii), 
which now show up as rather messy sets of three and six 
transitions, respectively.   

Fig. 14 illustrates the broadcast nature of inter-statechart 
communication. If after entering the default (B,F,J) event φ 
occurs, the statechart moves to (C,G,I), since the φ in 
component H triggered the event α, which causes the 
simultaneous moves from B to C in component A and from 
F to G in D. Now, if at the next stage a ψ occurs, I moves 
back to J, triggering β, which causes a move from C to B, 
triggering γ, which in turn causes a move from G to F. Thus, 
ideally in zero time (see Section 10), the statechart goes in 
this second step from (C,G,I) back to (B,F,J). 

As mentioned above, the language has several additional 
features, though the notions of hierarchy and orthogonality 
are perhaps its two most significant ones. Besides language 
features, there are also several interesting semantic issues 
that arise, such as how to deal with nondeterminism, which 
hasn't been illustrated here at all, and synchronicity.  
References [HN89&96, HP91, HK04] have lots of 
information on these, and Sections 6 and 10 of this paper 
discuss some of them too.   

So much for the basics of the language. 

6. Comments on the Underlying Philosophy 
When it comes to visuality, encapsulation and side-

by-side adjacency are topological notions, just like edge 
connectivity, and are therefore worthy companions to 
edges in hierarchical extensions of graphs. Indeed, I 
believe that topology should be used first when designing a 
graphical language and only then one should move on to 
geometry. Topological features are a lot more fundamental 
than geometric ones, in that topology is a more basic 
branch of mathematics than geometry in terms of 
symmetries and mappings. One thing being inside another 
is more basic than it being smaller or larger than the other, 
or than one being a rectangle and the other a circle. Being 
connected to something is more basic than being green or 
yellow or being drawn with a thick line or with a thin line. 
I think the brain understands topological features given 
visually much better than it grasps geometrical ones. The 
mind can see easily and immediately whether things are 
connected or not, whether one thing encompasses another, 
or intersects it, etc. See the discussion on higraphs [H88] 
in Section 8.   

Why this emphasis on topology, you may ask?  Well, 
I’ve always had a (positive) weakness for this beautiful 
branch of mathematics.  I love the idea of an “elastic 
geometry”, if one is allowed a rather crude definition of it; 
the fact that two things are the same if the one can be 
stretched and squeezed to become the other. I remember 
being awed by Brouwer’s fixed-point theorem, for 
example, and the Four-Color problem (in 1976 becoming 
the Four-Color Theorem). In fact, I started my MSc work 
in algebraic topology before moving over to theoretical 
computer science. This early love definitely had an 
influence on the choices made in designing statecharts. 

Statecharts are not exclusively visual/diagrammatic. 
Their non-visual parts include, for example, the events that 
cause transitions, the conditions that guard against taking 
transitions and actions that are to be carried out when a 
transition is taken. For these, as mentioned earlier, 
statecharts borrow from both the Moore and the Mealy 
variants of state machines (see [HU79], in allowing actions 
on transitions between states or on entrances to or exits 
from states, as well as conditions that are to hold 
throughout the time the system is in a state. Which 
language should be used for these nongraphical elements is 
an issue we will discuss later.  

Of course, the hierarchy and orthogonality constructs 
are but abbreviations and in principle can be eliminated: 
Encapsulation can be done away with simply by flattening 
the hierarchy and writing everything out explicitly on the 
low level, and orthogonality (as Figs. 12 and 13 show) can 
be done away with by taking the Cartesian product of the 
components of the orthogonal parts of the system. This 
means that these features do not strictly add expressive 
power to FSMs, so that their value must be assessed by 
"softer" criteria, such as naturalness and convenience, and 
also by the size of the description: Orthogonality provides a 
means for achieving an exponential improvement in 
succinctness, in both upper- and lower-bound senses 
[DH88, DH94]. 

A few words are in line here regarding the essence of 
orthogonality. Orthogonal state-components in statecharts 
are not the same as concurrent or parallel components of 
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the system being specified. The intention in having 
orthogonality in a statechart is not necessarily to represent 
the different parts of the system, but simply to help 
structure its state space, to help arrange the behavior in 
portions that are conceptually separate, or independent, or 
orthogonal. The word 'conceptually' is emphasized here 
because what counts is whatever is in the mind of the 
"statifier" ― the person carrying out the statechart 
specification.  

This motivation has many ramifications. Some people 
have complained about the broadcast communication 
mechanism of statecharts because it's quite obvious that 
you do not always want to broadcast things to an entire 
system. One response to this is that we are talking about the 
mechanism for communication between the orthogonal 
parts of the statechart, between its "chunks" of state-space, 
if you will, not between the components ― physical or 
software components ― of the actual system. The 
broadcasting is one of the means for sensing in one part of 
the state space what is going on in another part. It does not 
necessarily reflect an actual communication in the real 
implementation of the system. So, for example, if you want 
to say on a specification level that the system will only 
move from state A to state B if the radar is locked on a 
target, then that is exactly what you'll say, without having 
to worry about how state A will get to know what the radar 
is doing. This is true whether or not the other state 
component actually represents a real thing, such as the 
radar, or whether it is a non-tangible state chunk, such as 
whether the aircraft is in air-air mode or in air-ground 
mode. On this kind of level of abstraction you often really 
want to be able to sense information about one part of the 
specification in another, without having to constantly deal 
with implementation details.  

A related response to the broadcasting issue is that no 
one is encouraged to specify a single statechart for an 
entire system.2  Instead, as discussed in Sections 7 and 9, 
one is expected to have specified some breakup of the 
system itself, into functions, tasks, objects, etc., and to have 
a statechart (or code) for each of these. In this way, the real 
concurrency, the real separate pieces of the system, occur 
on a level higher than the statecharts, which in turn are 
used to specify the behavior of each of these pieces. If 
within a statechart the behavior is sufficiently complex to 
warrant orthogonal components, then so be it. In any case, 
the broadcast mechanism is intended to take effect only 
within a single statechart, and has nothing to do with the 
real communication mechanism used for the system itself.  

By the way, some of the people who have built tools 
to support statecharts have chosen to leave orthogonality 
out of the language altogether, claiming that statecharts 
don't need concurrency since concurrency is present 
anyway between the objects of the system... Notable 
among these is the ObjectTime tool, which later evolved 
into RoseRT.  My own opinion is that orthogonality is 
probably the most significant and powerful feature of the 
language, but also the most complex aspect of statecharts to 
                                                                 
2  This is said despite the fact that in the basic paper on statecharts 

[H84&87], to be discussed later, I used a single statechart to 
describe an entire system, the Citizen digital-watch. That was 
done mainly for presentational reasons. 

deal with. So, the decision to leave it out is often made 
simply to render the task of building a tool that much 
easier… 

Let us return briefly to the two key adjectives used 
earlier, namely "clear" and "precise", which underlie the 
choice of the term visual formalism [H84&87,H88]. 
Concerning clarity, the aphorism that a picture is worth a 
thousand words is something many people would agree 
with, but it requires caution. Not everything can be 
visualized; not everything can be depicted visually in a way 
that is clear and fitting for the brain. (This is related to the 
discussion above about topology versus geometry.) For 
some mysterious reason, the basic graphics of statecharts 
seemed from the very start to vibe well with the avionics 
engineers at the IAI. They were very fast in grasping the 
hierarchy and the orthogonality, the high- and low-level 
transitions and default entries, and so forth.  

Interestingly, the same seemed to apply to people 
from outside our small group. I recall an anecdote from 
somewhere in late 1983, in which in the midst of one of the 
sessions at the IAI the blackboard contained a rather 
complicated statechart that specified the intricate behavior 
of some portion of the Lavi avionics system. I don't quite 
remember now, but it was considerably more complicated 
than the statecharts in Figs. 7–9. There was a knock on the 
door and in came one of the air force pilots from the 
headquarters of the project. He was a member of the 
"customer" requirements team, so he knew all about the 
intended aircraft (and eventually he would probably be able 
to fly one pretty easily too…), was smart and intelligent, 
but he had never seen a state machine or a state diagram 
before, not to mention a statechart. He stared for a moment 
at this picture on the blackboard, with its complicated mess 
of blobs, blobs inside other blobs, colored arrows splitting 
and merging, etc., and asked "What's that?" One of the 
members of the team said "Oh, that's the behavior of the 
so-and-so part of the system, and, by the way, these 
rounded rectangles are states, and the arrows are transitions 
between states". And that was all that was said. The pilot 
stood there studying the blackboard for a minute or two, 
and then said, "I think you have a mistake down here, this 
arrow should go over here and not over there"; and he was 
right.   

For me, this little event was significant, as it really 
seemed to indicate that perhaps what was happening was 
"right", that maybe this was a good and useful way of 
doing things. If an outsider could come in, just like that, 
and be able to grasp something that was pretty complicated 
but without being exposed to the technical details of the 
language or the approach, then maybe we are on the right 
track. Very encouraging.  

So much for clarity and visuality.  As to precision and 
formality, later sections discuss semantics and supporting 
tools in some detail, but for now it suffices to say that one 
crucial aspect that was central to the development of the 
language from day one was executability. Being able to 
actually execute the specification of the Lavi's behavior 
was paramount in my mind, regardless of the form this 
specification ended up taking. I found it hard to imagine 
the usefulness of a method for capturing behavior that 
makes it possible merely to say some things about 
behavior, to give snippets of the dynamics, observations 
about what happens or what could happen, or to provide 
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some disconnected or partially connected pieces of 
behavior. The whole idea was that if you build a statechart, 
or a collection of statecharts, everything has to be rigorous 
enough to be run, to be executable, just like software 
written in any old (or new…) programming language. 
Whether the execution is carried out in an interpreter mode 
or in a compiler mode is a separate issue, one to which 
we'll return later on. The main thing is that executability 
was a basic, not-to-be-compromised, underlying concern 
during the process of designing the language.  

This might sound strange to the reader from his/her 
present vantage point, but back in 1983 system-
development tools did not execute models at all, something 
else we shall return to later. Thus, turning the doodling into 
a language and then adding features to it had to be done 
with great care. You had to have a full conception of what 
each syntactically allowed combination of features in the 
language means, in terms of how it is to be executed under 
any set of circumstances. 

7. 1984–1986: Building a Tool 
Once the basics of the language were there, it seemed 

natural to want to build a tool that would have the ability 
not only to draw, or prepare, statecharts but also to execute 
them. Besides having to deal with the operational semantics 
of graphical constructs, such a tool would have to deal with 
the added complication of statecharts over and above 
classical finite-state machines: A typical snapshot of a 
statechart in operation contains not just a single state, but 
rather a vector, or an array, of states, depending on which 
orthogonal components the chart is in at the moment. Thus, 
this vector is flexible, given the basic maxim of the 
language, which is that states can be structured with a 
mixture of hierarchy and orthogonality and that transitions 
can go between levels. The very length of the vector of 
states changes as behavior progresses.  

In a discussion with Amir Pnueli in late 1983, we 
decided to take on a joint PhD student and build a tool to 
support statecharts and their execution. Amir was, and still 
is, a dear colleague at the Weizmann Institute and  had also 
been my MSc thesis supervisor 8-9 years earlier. Then, at 
some point, a friend of ours said something like, "Oh fine, 
you guys will build your tool in your academic setting, and 
you'll probably write some nice academic papers about it." 
And then he added, "You see, if this statechart stuff is just 
another idea, then whatever you do will not make much 
difference anyway, but if it has the potential of becoming 
useful in the real world then someone else is going to build 
a commercial tool around it; they will be the ones who get 
the credit, they will make the money and the impact, and 
you guys will be left behind". This caused us to rethink our 
options, a process that resulted in the founding of a 
company in Israel in April 1984, by the name of AdCad, 
Ltd. The two main founders were the brothers Ido and Hagi 
Lachover, and Amir Pnueli and I joined in too. The other 
three had previously owned a software company involved 
in totally different kinds of systems, but in doing so had 
acquired the needed industrial experience. The company 
was re-formed in 1987 as a USA entity, called I-Logix, 

Inc., and AdCad became its R&D branch, renamed as I-
Logix Israel, Ltd.3

By 1986 we had built a tool for statecharts called 
Statemate. At the heart of a Statemate model was a 
functional decomposition controlled by statecharts. The 
user could draw the statecharts and the model's other 
artifacts, could check and analyze them, could produce 
documents from them, and could manage their 
configurations and versions. However, most importantly, 
Statemate could fully execute them. It could also generate 
from them, automatically, executable code; first in Ada and 
later also in C.  

Among the other central figures during that period 
were Rivi Sherman and Michal Politi. In fact, it was in 
extensive discussions with Rivi, Michal and Amir that we 
were able to figure out how to embed statecharts into the 
broader framework that would capture the structure and 
functionality of a large complex system. To this end, we 
came up with the diagrammatic language that was used in 
Statemate for the hierarchical functional structuring of the 
model, which we called activity-charts. An activity-chart 
is an enriched kind of hierarchical data-flow diagram, 
where the semantics of arrows is the possible flow of 
information between the incident functions (which are 
called activities). Each activity could be associated with a 
controlling statechart (or with code), which would also be 
responsible for inter-function communication and 
cooperation. Statemate also enabled you to specify the 
actual structure of the system, using module-charts, which 
specify the real components in the implementation of the 
system and their connections.  In this way, the tool 
supported a three-way model-based development 
framework for systems: structure, functionality and 
behavior.   

Statemate is considered by many to be the first real-
world tool to carry out true model executability and full 
code generation. I think it is not a great exaggeration to 
claim that the ideas underlying Statemate were really the 
first serious proposal for model-driven system 
development. These ideas were perhaps somewhat before 
their time, but were of significance in bringing about the 
eventual change in attitude that I think permeates modern-
day software engineering. The recent UML effort and its 
standardization by the OMG (see Section 10) can be 
viewed a subsequent important step in steering software 
and systems engineering towards model-driven 
development. 

Setting up the links between the statecharts and the 
activity-charts turned out to be very challenging, requiring 
among other things that we enrich the events, conditions 
and actions in the statecharts so that they could relate to the 
starting and stopping of activities, the use of variables and 
data types, time-related notions, and much more.  After 
working all this out and completing the first version of 
Statemate in early 1986, we came across the independent 

                                                                 
3 I-Logix survived as a private stand-alone company for 22 long 

years, amid the many dips in high-tech. In recent years I 
maintained a very inactive and low-profile connection with the 
company, until it was acquired by Telelogic in March 2006. As 
of the time of writing I have no connection with either. 
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work of Ward and Mellor [WM85] and Hatley and Pirbhai 
[HP87], who also linked a functional decomposition with a 
state-based language (theirs was essentially conventional 
FSMs). It was very satisfying to see that many of the 
decisions about linking up the two were common to all 
three approaches. Several years later, Michal Politi and I 
sat down to write up a detailed report about the entire 
Statemate language set, which appeared as a lengthy 
technical report from I-Logix [HP91]. It took several years 
more for us to turn this into a fully fledged book [HP96]. 

Statemate had the ability to link the model to a GUI 
mockup of the system under development (or even to the 
real system hardware). Executability of the model could be 
done directly or by using the generated code, and could be 
carried out in many ways with increasing sophistication. 
You could execute the model interactively (with the user 
playing the role of the system's environment), in batch 
mode (reading in external events from files), or in 
programmed mode. Just as one example, you could use 
breakpoints and random events to help set up and control a 
complex execution from which you could gather the results 
of interest. In principle, you could thus set Statemate up to 
"fly the aircraft" for you, and then come in the following 
day and find out what had happened. See [H92] for a more 
detailed discussion of model execution possibilities.  

During the two years of the development of 
Statemate, Jonah Lavi from the IAI and his team were also 
very instrumental. They served as a highly useful beta site 
for the tool and also participated in making some of the 
decisions around its development. Jonah's ideas were 
particularly influential in the decision to have module-
charts be part of Statemate.  

Over the years, I-Logix built a number of additional 
tools, notable among which was a version of Statemate for 
hardware design, in which the statecharts were translated 
into a high-level hardware-description language. Much 
later, in the mid-1990's, we built the Rhapsody tool, based 
on object-oriented statecharts, about which we will have 
more to say in Section 9.  

In the early years of I-Logix, I tried hard ― but failed 
― to convince the company's management to produce a 
cheap (or free) version of Statemate for use by students. 
My feeling was that students of programming and software 
engineering should have at their disposal a simple tool for 
drawing and executing statecharts, connected to a GUI, so 
that they could build running applications easily using 
visual formalisms. This could have possibly expedited the 
acceptance of statecharts in industry. Instead, since 
Statemate was the only serious statechart tool around but 
was so very expensive, many small companies, university 
teachers and students simply couldn't afford it. Things have 
changed, however, and companies building such tools, 
including I-Logix, typically have special educational deals 
and/or simplified versions that can be downloaded free 
from the internet. 

8. The Woes of Publication 
In November 1983, I wrote an internal document at 

the IAI (in Hebrew), titled "Foundations of the State-Based 
Approach to The Description of System Operation (see 
Figs. 15-16), which contained an initial account of 

statecharts. At the time, my take was that this was but a 
nice visual way to describe states and transitions of more 
complex behavior than could be done conveniently with 
finite-state diagrams. I felt that the consulting job at IAI 
had indeed been successful, resulting, as it were, in 
something of use to the engineers of the Lavi avionics 
project. I had given no thought to whether this was indeed 
particularly new or novel, believing that anyone seriously 
working with state machines for real-world systems was 
probably doing something very similar. It seemed too 
natural to be new. After all, hierarchy, modularity and 
separation of concerns were engrained in nearly everything 
people were writing about and developing for the 
engineering of large systems.   

Then one day, in a routine conversation with Amir 
Pnueli (this preceded the conversation reported above that 
resulted in our co-founding AdCad/I-Logix), he asked me, 
out of curiosity, what exactly I was doing at the Aircraft 
Industries on Thursdays. So I told him a little about the 
avionics project and the problem of specifying behavior, 
and then added something about proposing what seemed to 
be a rather natural extension of finite-state diagrams. He 
said that it sounded interesting and asked to see what the 
diagrams looked like. So I went to the blackboard (actually, 
a whiteboard; see the photo in Fig.17, taken a few months 
later) and spent some time showing him statecharts. He 
said something to the effect that he thought this was nice 
and interesting, to which I said, "Maybe, but I'm certain 
that this is how everyone works". He responded by saying 
that he didn't think so at all and proceeded to elaborate 
some more. Now, although we were both theoreticians, he 
had many more years of experience in industry (e.g., as 
part of the company he was involved in with the Lachover 
brothers), and what he said seemed convincing. After that 
meeting it made sense to try to tell the story to a broader 
audience, so I decided to write a "real" paper and try to get 
it published in the computer science literature.  

The first handwritten version was completed in mid-
December of 1983 (see Fig. 18). In this early version the 
word statification was used to denote the process of 
preparing a statechart description of a system. The paper 
was typed up, then revised somewhat (including the title) 
and was distributed as Technical Report CS84-05 of our 
Department at the Weizmann Institute in February of 1984 
[H84&87]; see Fig. 19. 

The process leading to the eventual publication of this 
paper is interesting in its own right. For almost two years, 
from early 1984 until late 1985, I repeatedly submitted it to 
what seemed to be the most appropriate widely read venues 
for such a topic. These were, in order, Communications of 
the ACM, IEEE Computer and IEEE Software. The paper 
was rejected from all three of these journals. In fact, from 
IEEE Computer it was rejected twice ― once when 
submitted to a special issue on visual languages and once 
when submitted as a regular paper. My files contain quite 
an interesting collection of referee reports and editors' 
rejection letters. Here are some of the comments therein: 

 

"I find the concept of statecharts to be quite interesting, but 
unfortunately only to a small segment of our readership. I 
find the information presented to be somewhat innovative, 
but not wholly new. I feel that the use of the digital watch 
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example to be useful, but somewhat simple in light of what 
our readership would be looking for." 

"The basic problem […] is that […] the paper does not 
make a specific contribution in any area." 

"A research contribution must contain 'new, novel, basic 
results'. A reviewer must certify its 'originality, significance, 
and accuracy'. It must contain 'all technical information 
required to convince other researchers in the area that the 
results are valid, verifiable and reproducible'. I believe that 
you have not satisfied these requirements." 

"I think your contribution is similar to earlier 
contributions." 

 "The paper is excellent in technical content; however, it is 
too long and the topic is good only for a very narrow 
audience." 

 "I doubt if anyone is going to print something this long." 
Indeed, the paper was quite long; it contained almost 

50 figures. The main running example was my Citizen 
Quartz Multi-Alarm digital wristwatch (see Fig. 20), which 
was claimed in the rejection material by some to be too 
simple an example for illustrating the concepts and by 
others to be far too detailed for a scientific article… Some 
claimed that since the paper was about the much studied 
finite-state machine formalism it could not contain 
anything new or interesting… 

One must understand that in the mid-1980s there was 
only scant support for visual languages.  Visual 
programming in the classical sense had not really 
succeeded; it was very hard to find ways to visualize 
nontrivial algorithmic systems (as opposed to visualizing 
the dynamic running of certain algorithms on a particular 
data structure), and the only visual languages that seemed 
to be successful in system design were those intended to 
specify structure rather than behavior. Flowcharts, of 
course, were a failure in that most people used them to help 
explain the real thing, which was the computer program. 
There was precious little real use of flowcharts as a 
language that people programmed in and then actually 
executed. In terms of languages for structure, there were 
structure diagrams and structure charts, hierarchical tree-
like diagrams, and so on. The issue of a visual language 
with precise semantics for specifying behavior was not 
adequately addressed at all.  Petri nets were an exception 
[R85], but except for some telecommunication applications 
they did not seem to have caught on widely in the real 
world. My feeling was that this had mainly to do with the 
lack of adequate support in Petri nets for hierarchical 
specification of behavior.  

The state of the art on diagrammatic languages at the 
time can be gleaned from the book by Martin and McClure 
titled Diagramming Techniques for Analysts and 
Programmers [MM85]. This book discussed many visual 
techniques, but little attention was given to the need for 
solid semantics and/or executability. Curiously, this book 
could have helped convince people that visual languages 
should not be taken seriously as means to actually program 
a system the way a standard programming language can.  

Coming back to the statecharts paper, the inability to 
get it published was extremely frustrating. Interestingly, 
during the two years of repeated rejections, new printings 
of the 1984 technical report had to be prepared, to address 
the multitude of requests for reprints. This was before the 
era of the internet and before papers were sent around 
electronically. So here was a paper that no one wanted to 
publish but that so many seemed to want to read... I revised 
the paper twice during that period, and the title changed 
again, to the final "Statecharts: A Visual Formalism for 
Complex Systems". Eventually, two and half years later, in 
July 1987, the paper was published in the theoretical 
journal Science of Computer Programming [H84&87]. 
That happened as a result of Amir Pnueli, who was one of 
its editors, seeing the difficulties I was having and 
soliciting the paper for the journal.4  

In the revisions of the paper carried out between 1984 
and 1987, some small sections and discussions that 
appeared in earlier versions were removed. One topic that 
appeared prominently in the original versions and was later 
toned down, appearing only in a very minimalistic way in 
the final paper, was the idea of having states contain state 
protocols, or statocols. These were to include information 
about the behavior that was not present in the charts 
themselves. The modern term for this kind of information 
behavior is the action language, i.e., the medium in which 
you write your events, conditions, actions, etc. The 
question of whether the action language should be part of 
the specification language itself or should be taken to be a 
subset of a conventional programming language is the 
subject of a rather heated debate that we will return to later.   

A few additional papers on statecharts were written 
between 1984 and 1987. One was the paper written jointly 
with Pnueli on reactive systems [HP85]. It was born 
during a plane trip that we took together, flying to or from 
some conference. We were discussing the special nature of 
the kinds of systems for which languages like statecharts 
seemed particularly appropriate. At some point I 
complained about the lack of a special term to denote them, 
to which he responded by saying he thought such systems 
should be termed reactive. "Bingo", I said, "we have a new 
term”! Interestingly, this paper (which also contained a few 
sections describing statecharts) was written about two years 
after the original statecharts paper, but was published (in a 
NATO conference proceedings) a year earlier…  

Another paper written during that period was actually 
published without any trouble at all, in the 
Communications of the ACM [H88]. It concentrates on the 
graphical properties of the statecharts language, 
disregarding the intended semantics of nodes as dynamic 
                                                                 
4 A note on the title page of the published version states that the 
paper was "Received December 1984, Revised July 1986". The 
first of these is an error – probably made in the typesetting stage – 
since submission to Pnueli was made in December 1985.  By the 
way, this story of the repeated rejections of the paper would not 
be as interesting were it not for the fact that in the 20 years or so 
since its publication it has become quite popular. According to 
Citeseer, it has been for several years among the top handful of 
most widely quoted papers in computer science, measured by 
accumulated citations since publication (in late 2002 it was in the 
second place on the list). 
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states and edges as transitions. The paper defined a 
higraph to be the graphical artifact that relates to a directed 
graph just as a statechart relates to a finite-state diagram.5 
The idea was to capture the notions of hierarchy, 
orthogonality, multilevel and multinode transitions, 
hyperedges, and so on, in a pure set-theoretic framework. It 
too contains material on statecharts (and a simplified 
version of the digital-watch example) and since it appeared 
in a journal with a far broader readership than Science of 
Computer Programming it is often used as the de facto 
reference to statecharts. 

The third paper that should be mentioned here was on 
the semantics of statecharts [HPSR87]. It was written 
jointly with the "semantics group" ― the people involved 
in devising the best way to implement statecharts in 
Statemate ― and provided the first formal semantics of the 
language. However, some of the basic decisions we made 
in that paper were later changed in the design of the tool, as 
discussed in Section 10.  

Another paper was the one written on the Statemate 
tool itself [H+88&90], co-authored by the entire Statemate 
team at Ad-Cad/I-Logix.  Its appeal, I think, goes beyond 
the technical issue of showing how statecharts can be 
implemented (the lack of which several of the referees of 
the basic statecharts paper complained about). In 
retrospect, as mentioned earlier, it set the stage for and 
showed the feasibility of the far broader concepts of 
model-driven development, true model executability and 
full code generation. These are elaborated upon in a later, 
more philosophical paper, "Biting the Silver Bullet" [H92], 
which also contained a rebuttal of Fred Brooks' famous 
"No Silver Bullet" paper [B87]. 

 
To close this section, an unfortunate miscalculation 

with regards to publication should be admitted. This was 
my failure to write a book about the language early on. As 
mentioned in the previous section, it was only in 1996 that 
the book with Michal Politi on Statemate was published 
[HP96]. This was definitely a mistake. I did not realize that 
most engineers out there in the real world rarely have the 
time or inclination to read papers, and even if they do they 
very rarely take something in a paper seriously enough to 
become part of the their day-to-day practice. One has to 
write a book, a popular book. I should have written a 
technical book on statecharts, discussing the language in 
detail, using many examples, describing the tool we already 
had that supported it, and carefully working out and 
describing the semantics too. This could have helped 
expose the language to a broader audience a lot earlier. 

9. 1994–1996:  The Object-Oriented Version 
In the early 1990s Eran Gery, who at the time was 

(and still is) one of the key technical people at I-Logix, 
became very interested in object-oriented modeling. As it 
turned out, several people, including Jim Rumbaugh and 
                                                                 
5 A sub-formalism of higraphs, which contains hierarchy and 

multi-level transitions has been called compound graphs 
[MS88,SM91]. 

 

Grady Booch, had written about the use of statecharts in 
object-oriented analysis and design; see, e.g., [B94, 
RBPEL91, SGW94]. It was Eran's opinion that their work 
left some issues that still had to be dealt with in more 
detail; for example, the semantics of statecharts were not 
worked out properly, as were the details of some of the 
dynamic connections with the objects. Also, they had not 
built a tool such as Statemate for this particular, more 
modern, OO approach. In the terminology of the present 
paper, their version of the language was not (yet) 
executable. 

Despite being well aware of object-oriented 
programming and the OO programming languages that 
existed at the time, I was not as interested in or as familiar 
with this work on OO modeling as was Eran. Once 
Statemate had been designed and its initial versions built, 
the implementational issues that arose were being dealt 
with adequately by the I-Logix people, and I was spending 
most of my time on other topics of research. Eran did some 
gentle prodding to get me involved, and we ended up 
taking a much closer look at the work of Booch, Rumbaugh 
and others. This culminated in a 1996 paper, "Executable 
Object Modeling with Statecharts", in which we defined 
object-oriented statecharts, an OO version of the 
language, and worked out the way we felt the statecharts 
should be linked up with objects and executed [HG96&97]. 
One particular issue was the need for two modes of 
communication between objects, direct synchronous 
invocation of methods and asynchronous queued events. 
There were also many other aspects to be carefully thought 
out that were special to the world of objects, such as the 
creation and destroying of objects and multithreaded 
execution. The main structuring mechanism is that of a 
class in a class diagram (or an object instance in an object 
model diagram), each of which can be associated with a 
statechart. A new copy of the statechart is spawned 
whenever a new instance of the class is created. See Fig. 21 
for two examples of statecharts taken from that paper.  

In the paper we also outlined a new tool for 
supporting all of this, which I-Logix promptly started to 
build, called Rhapsody. Eran championed and led the 
entire Rhapsody development effort at I-Logix, and he still 
does.  

 
And so we now have two basic tools for statecharts ― 

Statemate, which is not object-oriented and is intended 
more for systems people and for mixed hardware/software 
systems, and Rhapsody, which is intended more for 
software systems and is object-oriented in nature. One 
important difference between the tools, which we shall 
elaborate upon in Section 10, is that the semantics of 
statecharts in Statemate is synchronous and in Rhapsody it 
is, by and large, asynchronous. Another subtle but 
significant difference is reflected in the fact that Statemate 
was set up to execute statecharts directly, in an interpreter 
mode that is separate from the code generator. In contrast, 
the model execution in Rhapsody is carried out solely by 
running the code generated from the model. Thus, 
Rhapsody could be thought of as representing a high-level 
programming language that is compiled down into 
runnable code. Except, of course, that the statechart 
language is a level higher than classical programming 
languages, in that the translation from it was made into 
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C++, Java or C, etc.  Another important difference is that a 
decision was made to make the action language of 
Rhapsody be a subset of the target programming language. 
So you would draw statecharts in Rhapsody and the events 
and actions specified along transitions and in states, etc., 
are fragments of, say, C++ or Java. (The action language in 
Fig. 21, for example, is C++.) These differences really turn 
Rhapsody into more of a high-level programming tool than 
a system-development tool. See also the discussion on the 
UML in Section 10. 

There are now several companies that build tools that 
support statecharts. There are also many variants of the 
language. One of the most notable early tools is 
ObjecTime, built by Bran Selic and Paul Ward and others. 
This tool later became RoseRT, from Rational Corp. 
StateRover is another statechart tool, built by my former 
student, Doron Drusinsky. Finally, Stateflow is a statechart 
tool embedded in Matlab (which is used widely by people 
interested in control systems); its statecharts can be 
effortlessly linked to Matlab's other modeling and analysis 
tools. 

It is worth viewing the implementation issue in a 
slightly broader perspective. In the early 1980s, essentially 
none of the tools offered for system development using 
graphical languages were able to execute models or 
generate running code. If one wants to be a bit sarcastic 
about it, these so-called CASE tools (the acronym standing 
for computer-aided software engineering) were not much 
more than good graphic editors, document generators, 
configuration managers, etc. It would not be much of an 
exaggeration to say that pre-1986 modeling tools were 
reminiscent of support tools for a programming language 
with lot of nice features but with no compiler (or 
interpreter). You could write programs, you could look at 
them, you could print them out, you could ask all kind of 
queries such as "list all the integer variables starting with 
D", you could produce documents, you could do automatic 
indentation, and many other niceties; everything except run 
the programs!  

Of course, in the world of complex systems, tools that 
do these kinds of things − checking for the consistency of 
levels and other issues related to the validity of the syntax, 
offering nice graphic abilities for drawing and viewing the 
diagrams, automatically generating documents according to 
pre-conceived standards, and so on − are very important. 
Although these features are crucial for the process of 
building a large complex system, I was opposed to the hype 
and excitement that in pre-1986 years tended to surround 
such tools. My take was that the basic requirement of a tool 
for developing systems that are dynamic in nature is the 
ability not only to describe the behavior, but also to analyze 
it and execute it dynamically. This philosophy underlies the 
notion of a visual formalism, where the language is to be 
both diagrammatic and intuitive in nature, but also 
mathematically rigorous, with a well-defined semantics 
sufficient to enable tools to be built around it that can carry 
out dynamic analysis, full model execution and the 
automatic generation of running code; see [H92]. 

10. On Semantics 
It is worth dwelling on the issue of semantics of 

statecharts. In a letter from Tony Hoare after he read the 
1984 technical report on statecharts, he said very simply 
that the language "badly needs a semantics". He was right. 
I was overly naïve at the time, figuring that writing a paper 
that explained the basics of the language's operation and 
then building a tool that executes statecharts and generates 
code from them would be enough. This approach took its 
cue from programming language research, of course, where 
people invent languages, describe them in the literature and 
then build compilers for them. That this was naïve is a 
consequence of the fact that there are several very subtle 
and slippery issues around the semantics of any concurrent 
language − statecharts included. These not only have to be 
decided upon when one builds a tool, something we 
actually took great pains to do properly when designing 
Statemate, but they also have to be written up properly for 
the scientific community involved in the semantics of 
languages.  

In retrospect, what we didn't fully realize in those 
early years was how different statecharts were from 
previous specification languages for real-time embedded 
systems − for better or for worse. We knew that the 
language had to be both executable and easily 
understandable by many different kinds of people who 
hadn't received any training in formal semantics. But at the 
same time, as a team wanting to build a tool, we also had to 
demonstrate quickly to our sponsors, the first being IAI, 
that ours was an economically viable idea; so we were 
under rather great time pressure. Due to the high level of 
abstraction of statecharts, we had to resolve several rather 
deep semantical problems that apparently hadn't been 
considered before in the literature, at least not in the 
context of building a real-world tool intended for large and 
complex systems. What we didn't know was that some of 
these very issues were being investigated independently, 
around the same time, by various leading French 
researchers, including Gérard Berry, Nicholas Halbwachs 
and Paul le Guernic (who later coined the French phrase 
L'approche synchrone, "the synchronous approach", for 
their kind of work). 

In actuality, during the 1984-6 period of designing 
Statemate, we did not do such a clean and swift job of 
deciding on the semantics. We had dilemmas regarding 
several semantic issues, a couple of which were 
particularly crucial and central. One had to do with whether 
a step of the system should take zero time or more, and 
another had to do with whether the effects of a step are 
calculated and applied in a fixpoint-like manner in the 
same step, or are to take effect only in the following one.  
The two issues are essentially independent; one can adopt 
any of the four combinations. Here is not the proper place 
to explain the subtlety of the differences, but the first issue, 
for example, has to do with whether or not you adopt the 
pure synchrony hypothesis, generally attributed to Berry, 
whereby steps take zero time [BG92]. Of course, these 
questions have many consequences in terms of how the 
language operates, whether events can interfere with chain 
reactions triggered by other events, how time itself is 
modeled, and how time interleaves with the discrete event 
dynamics of the system.  
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During that period the main people who were sitting 
around the table discussing this were Amir Pnueli, Rivi 
Sherman, Janette Schmidt, Michal Politi and myself, and 
for some time we used the code names Semantics A and B 
for the two main approaches we were seriously 
considering. Both semantics were synchronous in the sense 
of [BG92] and differed mainly in the second issue above. 
The paper we published in 1987 was based on Semantics B 
[HPSR87], but we later adopted semantics A for the 
Statemate tool itself, which was rather confusing to people 
coming from outside of our group.  In 1989, Amnon 
Naamad and I wrote a technical report that described the 
semantics adopted in Statemate [HN89&96], i.e., 
Semantics A, where the effects of a step are accumulated 
and are then carried out in the following step. At the time, 
we did not think that this report was worth publishing ― 
naiveté again ― so for several years it remained an internal 
I-Logix document.  

In any case, the statecharts of Statemate really 
constitute a synchronous language [B+03], and in that 
respect they are similar to other, non visual languages in 
this family, such as Berry's Esterel [BG92], Lustre 
[CPHP87] and Signal [BG90].  

At that time, a number of other researchers started to 
look at statechart semantics, some being motivated by our 
own ambivalence about the issue and by the fact that the 
implemented semantics was not published and hence not 
known outside the Statemate circle. For example, in an 
attempt to evaluate the different semantics for statecharts, 
Huizing, Gerth and de Roever proved one of them to have 
the desirable property of being fully abstract [HGdR88]. As 
the years went by, many people defined variants of the 
statechart language, sometimes dropping orthogonality, 
which they deemed complicated, and often adding some 
features or making certain modifications. There were also 
several papers published that attempted to provide formal, 
machine-readable semantics for the language, and others 
that described other tools built around variants thereof.  

An attempt to summarize the situation was carried out 
by von der Beeck, who tried to put some order into the 
multitude of semantics of statecharts that were being 
published. The resulting paper [vB94] claimed implicitly 
that statecharts is not really a well-defined language 
because of these many different semantics (it listed about 
twenty such). Interestingly, while [vB94] reported on the 
many variants of the language with the many varying 
semantics, it did not report on what should probably have 
been considered at the time the "official" semantics of the 
language. This is the semantics we defined and adopted in 
1986-7 when building Statemate [HN89&96]; the one I 
talked about and demonstrated in countless lectures and 
presentations in the preceding 8 years, but, unfortunately, 
the only one not published at the time in the widely-
accessible open literature…  

Around the same time another paper was published, 
by Nancy Leveson and her team [LHHR94], in which they 
took a close look at yet another statecharts semantics paper, 
written by Pnueli and Shalev [PS91]. The Pnueli/Shalev 
paper provided a denotational fixpoint semantics for 
statecharts and elegantly showed its equivalence to a 
certain operational semantics of the language. Leveson and 
her group did not look at the Statemate tool either and, like 
von der Beeck, had not seen our then-unpublished 

technical report [HN89&96]. The Leveson et al paper was 
very critical of statecharts, going so far as to hint that the 
language is unsafe and should not be used, the criticism 
being based to a large extent on anomalies that they 
claimed could surface in systems based on the semantics of 
[PS91].  

It seems clear that had a good book about statecharts 
been available early on, including its semantics and its 
Statemate implementation, some of this could have been 
avoided. At the very least we should have published the 
report on the Statemate semantics. It was only after seeing 
[vB94, LHHR94] and becoming rather alarmed by the 
results of our procrastination that we did just that, and the 
paper was finally published in 1996 [HN89&96].   

As to the semantic issues themselves, far more 
important than the differences between the variants of pre-
OO statecharts themselves, as reported upon in [vB94], is 
the difference between the non-object-oriented and the 
object-oriented versions of the language, as discussed 
above. The main semantic difference is in synchronicity.  
Statemate statecharts, i.e., the version of the language 
based on functional decomposition, is a synchronous 
language, whereas Rhapsody statecharts, i.e., the object-
oriented version thereof, is an asynchronous one. There are 
other substantial differences in modes of communication 
between objects, and there are the issues that arise from the 
presence of dynamic objects and their creation and 
destruction, inheritance, object composition, 
multithreading, and on and on. All these have to be dealt 
with when one devises an object-oriented version of such a 
language and builds a tool like Rhapsody, which supports 
both the objects and their structure and the statecharts and 
code that drive their behavior.  

In the object-oriented realm, a similar publication sin 
was committed, waiting far too long to publish the 
semantics of statecharts in Rhapsody. Only very recently, 
together with Hillel Kugler, did we finally publish a paper 
(analogous to [HN89&96]) that gives the semantics of 
statecharts as adopted in Rhapsody and describes the 
differences between these two subtly different versions of 
the language [HK04]. 

This section on semantics cannot be completed 
without mentioning the unified modeling language, the 
UML; see [RJB99,UML]. As the reader probably well 
knows, Rumbaugh and Booch, together with Ivar Jacobson, 
got together to form the technical core team of the 
impressive UML effort, which was later standardized by 
the object management group (OMG). Although the UML 
features many graphical languages, many of them have not 
been endowed with satisfactorily rigorous semantics. The 
heart of the UML − what many people refer to as its 
driving behavioral kernel − is the (object-oriented variant 
of the) statecharts language; see Section 9. In the late 1990s 
Eran Gery and I took part in helping this team define the 
intended meaning of statecharts in the UML. This had the 
effect of making UML statecharts very similar to what we 
had already implemented in Rhapsody.  

In fact, currently the two main executable tools for 
UML-based languages are Rhapsody and RoseRT; the 
latter, as mentioned above, is a derivative of the earlier 
ObjecTime tool, and implements a sublanguage of 
statecharts: for example, it does not support orthogonal 
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state components.6 There are other differences between 
these two tools that the present paper cannot cover. Also, 
the issue of whether the action language should be the 
target programming language, as in Rhapsody, or whether 
there should be an autonomous action language is still 
raging in full force and the UML jury is not yet in on this 
issue.  

See the recent [HR04], with its whimsical title 
"What's the Semantics of 'Semantics'?", for a manifesto 
about the subtle issues involved in defining the semantics 
of languages for reactive systems, with special emphasis 
put on the UML. 

11. Biological Modeling with Statecharts 
In terms of usage of statecharts, the language appears 

to be used very widely in computer embedded and 
interactive systems, e.g., in the aerospace and automotive 
industries, in telecommunication and medical 
instrumentation, in control systems, and so on. However, 
one of the more interesting developments involves 
statecharts also being used in non-conventional areas, such 
as modeling biological systems and health-care processes.  

Starting in the mid-1980s I had often claimed that 
biological systems should be viewed as systems the way we 
know them in the world of computing, and biological 
modeling should be attempted using languages and tools 
constructed for reactive systems, such as statecharts. One 
modest attempt to do so was made by a student in our 
department, Billie Sandak, around 1989. This work was not 
carried out to completion, and the topic was picked up 
about ten years later by another student, Naaman Kam, co-
supervised by Irun Cohen, a colleague of mine from the 
Weizmann Institute's Immunology department. The 
resulting work (written up in [KCH01]) started a flurry of 
activity, and by now several serious efforts have been made 
on using statecharts to model biological systems. This 
includes one particularly extensive effort of modeling T 
cell development in the thymus gland, done with our 
student Sol Efroni [EHC03], and others involving, e.g., the 
pancreas [SeCH06] and the lymph node [SwCH06]. The 
thymus model, for example, contains many thousands of 
complex objects, each controlled by a very large and 
complicated statechart, and has resulted in the discovery of 
several properties of the system in question; see the recent 
[EHC07]. Figs. 22 and 23 show, respectively, the front-end 
of this model and a schematic rendition of parts of the 
statechart of a single cell. Figs. 24 and 25 show more 
detailed parts of some of the statecharts from the thymus 
model during execution. 

One of the notions that we came up with during our 
work on the thymus model is reactive animation 
[EHC05]. The idea is to be able to specify systems for 
which the front end requires something more than a GUI 
― specifically, systems that require true animation. A good 
example would be a traffic or radar system with many 

                                                                 
6 By the way, Rational's most popular tool, Rational Rose, cannot 

execute models or produce executable code. In that respect it 
suffers from the same central weakness afflicting the pre-1986 
CASE tools. 

elements and targets, such as cars or aircraft, being created, 
moving in and out of the scene, traveling around, growing 
and shrinking in size, changing and getting destroyed, etc. 
Under normal circumstances, this kind of system would 
have to be programmed using the script language supported 
by an animation system. Reactive animation allows one to 
use a state-of-the-art reactive system tool, such as 
Statemate or Rhapsody, linked up directly and smoothly 
with an animation tool.  The T cell model of [EHC03, 
EHC07] was built using statecharts in Rhapsody, linked up 
with the Flash animation tool, and the two work together 
very nicely. Reactive animation is used extensively also in 
the pancreas and lymph node models [SeCH06, SwCH06]. 

12. Miscellaneous 
This section discusses some related topics that came 

up over the years. One is the notion of overlapping states, 
whereby you want the and/or state hierarchy in statecharts 
to be a directed graph, not a tree. This possibility, and the 
motivation for it, was already mentioned in the earliest 
documents on statecharts; see Fig. 26. In work with an 
MSc student, H.-A. Kahana, the details of how overlapping 
could be defined were worked out [HK92].  We found that 
the issue was pretty complicated since, e.g., overlapping 
can be intermixed not only with the substate facet of the 
hierarchy but also with orthogonal components. We 
actually concluded that the complications might outweigh 
the benefits of implementing the feature.  

Although the basic idea is very natural, it appears that 
such an extension is not yet supported in any of the 
statechart tools. Incidentally, this does not prevent people 
from thinking that overlapping is a simple matter, since it is 
tempting to think only of simple cases, like that of Fig. 26. 
Some people have approached me and asked "Why doesn't 
your tool allow me to draw one state overlapping the other? 
Why don't you simply tell it not to give me the error 
message when I try to do this in the graphic editor?"  Of 
course, underlying such questions is the naïve assumption 
that if you can draw a picture of something, and it seems to 
make sense to you, then there is no problem making it part 
of the language… I often use this exchange to illustrate the 
difference between what many people expect of a visual 
language and what a real visual formalism is all about; see 
the discussion on "the doodling phenomenon" in [HR04].  

An additional topic is that of hybrid systems. It is 
very natural to want to model systems that have both 
discrete and continuous aspects to them. In discussions and 
presentations on statecharts in the 1980s, I often talked 
about the possibility of using techniques from control 
theory and differential equations to model the activities 
occurring within states in a statechart, but never actually 
did any work on the idea. Many years later the notion of a 
hybrid (discrete and continuous) system was put forward 
by several people, and today there is an active community 
doing deep research in the area.  Many models of hybrid 
systems are essentially finite-state machines, often rendered 
using statecharts that are intermixed with techniques for 
specifying continuous aspects of a system, such as various 
kinds of differential equations.  

The other idea I have been trying to peddle for years 
but have done nothing much about is to exploit the 
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structure of the behavior given in statecharts to aid in the 
verification of the modeled system. The philosophy behind 
this is as follows. We all know that verification is hard, yet 
there are techniques that work pretty well in practice, such 
as those based on model checking. However, common 
verification techniques do not exploit the hierarchical 
structure or modularity that such models very often have. 
Now, assume that someone has already made the effort of 
preparing a statechart-based description of a complex 
system, and has gone to great pains in order to structure the 
statecharts nicely to form a hierarchy with multilevel 
orthogonal components. There should probably be a way to 
exploit the reasons for the decisions made in this 
structuring process in carrying out the verification. Perhaps 
the way to do it is to try to get more information from the 
"statifier", i.e., the person preparing the statecharts, about 
the knowledge he or she used in the structuring. For 
example, just as we expect someone writing a program 
with a loop to be able to say more about the invariant and 
convergent properties of that loop, so should we expect 
someone breaking a system's state space into orthogonal 
components, or deciding to have a high-level state 
encompass several low-level states, to be able to say 
something about the independent or common properties of 
these pieces of the behavior.  

There has actually been quite a lot of work on the 
verification (especially model checking) of hierarchical 
state machines, and the availability of various theoretical 
results on the possibility (or lack thereof) of obtaining 
significant savings in the complexity of verifying 
concurrent state machines. There are also some tools that 
can model-check statecharts. However, my feeling is that 
the jury is not in yet regarding whether one can adequately 
formalize this user-provided information and use it 
beneficially in the verification process.  

Finally, I should mention briefly the more recent work 
with colleagues and students, which can be viewed as 
another approach, to visual formalisms for complex 
systems. It has to do with scenario-based specification. 
The statechart approach is intra-object, in that ultimately 
the recommendation is to prepare a statechart for each 
object of the system (or for each task, function, component, 
etc., whatever artifacts your system will be composed of). 
Of course, the statecharts are to also contain information 
about the communication between the objects, and one 
could build special controlling statecharts to concentrate on 
these aspects; however, by and large, the idea of finite-state 
machines in general, and statecharts in particular, is to 
provide a way for specifying the behavior of the system per 
object in an intra-object fashion. The more recent work has 
to do with scenario-based, inter-object specification. The 
idea is to concentrate on specifying the behavior between 
and among the objects (or tasks, functions, components, 
etc.). The main lingua franca for describing the behavior of 
the system would have to be a language for specifying 
communication and collaboration between the objects. This 
became feasible with the advent of live sequence charts 
(or LSCs, for short) in work joint with Werner Damm in 
1999; see [DH99&01]. Later, with my student Rami 
Marelly, a means for specifying such behavior directly 
from a GUI was worked out, called play-in, as well as a 

means for executing the behavior, called play-out, and the 
entire setup and associated methods have been 
implemented in a tool called the Play-Engine; see [HM03].  

We have also built mechanisms to bridge between the 
two approaches, so that one can connect one or more Play-
Engines with other tools, such as Rhapsody (see 
[BHM04]).  In this way, one can specify part of the 
behavior of the system by sequence charts in a scenario-
based, inter-object, fashion, and other objects can be 
specified using statecharts, or even code, in an intra-object 
fashion. 

13. Conclusions 
In summary, it would seem that one of the most 

interesting aspects of this story of statecharts in the making 
is in the fact that the work was not done by an academic 
researcher sitting in his/her ivory tower, inventing 
something and trying to push it down the engineers' throats. 
Rather, it was done by going into the lion's den, so to 
speak, working in industry and with the people in industry. 
This is consistent with the saying that "the proof of the 
pudding is in the eating".  

Other things crucial to the success of a language and 
an approach to system-development are good supporting 
tools and excellent colleagues. In my own personal case, 
both the IAI engineers and the teams at AdCad/I-Logix 
who implemented the Statemate tool and then the 
Rhapsody tool were an essential and crucial part of the 
work.  And, of course, a tremendous amount of luck is 
necessary, especially, as in this case, when the ideas 
themselves are not that deep and not that technically 
difficult.  

I still believe that almost anyone could have come up 
with statecharts, given the right background, being exposed 
to the right kinds of problems and being surrounded by the 
right kinds of people. 
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Figure 1.  Page from the IAI notes (early 1983; with some Hebrew) showing the first attempt at helping 
specify the Lavi avionics, using a temporal logic-like formalization.  
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Figure 2.  Page from the IAI notes (early 1983; with some Hebrew) showing parts of the Lavi avionics 
behavior using "statocols", the second attempt ― a kind of structured state-transition protocol language. 
Note the graphical "doodling" on the right hand side, which was done to help clarify things to the 
engineers, and which quickly evolved into statecharts. 
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Figure 3.  Page from the IAI notes (mid-1983; in Hebrew) showing a first attempt at deciding on 
graphical/topological elements to be used in the hierarchy of states. Note the use of the term default as a 
generalization to hierarchical states of the notion of a start state from automata theory.  
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Figure 4.  Page from the IAI notes (mid-1983) showing the first rendition of orthogonal state 
components. Note the hesitation about what style of separation lines to use. 
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Figure 5.  Page from the IAI notes (mid-1983). Constructs shown include hyper-edges, nested 
orthogonality, transitions that reset a collection of states (chart on right). Note the use of Cartesian 
products of sets of states (top) to capture the meaning of orthogonality, and the straightforward algebraic 
notation for transitions between state vectors (bottom third of page, on right).  
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Figure 6.  Page from the IAI notes (mid-1983) showing some initial statechart attempts for the Lavi 
avionics. Note the nested orthogonality (top left) and the inter-level transitions (bottom). 
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Figure 7.  Page from the IAI notes (mid-1983; events in Hebrew) showing a relatively "clean" draft of 
the top levels of behavior for the main flight modes of the Lavi avionics. These are A/A (air-air), A/G 
(air-ground), NAV (automatic navigation) and ON GRD (on ground). Note the early use of a history 
connector in the A/G mode. 
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Figure 8.  Page from the IAI notes (mid-1983) showing the inner statechart specification of the A/A 
(air-air) mode for the Lavi avionics. 
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Figure 9.  Page from the IAI notes (late 1983) showing multiple-level orthogonality in a complex 
portion of the Lavi avionics. Most of the orthogonal components on all levels here are not tangible 
components of the system, but rather exhibit a natural way of conceptually breaking up the state space. 
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Figure 10.  Page from the IAI notes (late 1983) showing an and/or tree rendition of (part of) the state 
hierarchy in Fig. 9. 
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Figure 11.  Illustrating hierarchy in statecharts: multi-level states, transitions, default entrances, 
refinement and abstraction. 
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Figure 12.  Orthogonality in statecharts, with and without out exits from and entrances to other states. 
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Figure 13.   "Flattened" orthogonality-free versions of the two parts of Fig. 12, minus the external 
entrances in 12(ii). (These are really the Cartesian products.) 
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Figure 14.  Broadcasting within a single statechart. 
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Figure 15.  Page from the IAI notes (late 1983; in Hebrew) showing part of the draft of the internal IAI 
document reporting on the results of the consulting. Note the first use of the term statecharts (top line). 
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Figure 16.  Page 10 of the internal IAI document (December 1983; in Hebrew). The bottom figure 
shows some of the high-level states of the Lavi avionics, including on the left (in Hebrew…) A/A, A/G, 
NAV and GRD. 
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Figure 17.  Explaining statecharts (early 1984). Note the temporal logic on the bottom right. 
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Figure 18.  Front page of the first draft of the basic statecharts paper (Dec. 14, 1983). Note the "TEχ 
please" instruction to the typist/secretary; the original title (later changed twice), the use of the word 
“stratification” for the act of specifying with statecharts (later dropped), and the assertion that the 
language "is being implemented at the Weizmann Institute" (later changed). 
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Figure 19.  Front page of the technical report version of the basic statecharts paper (February 1984). 
Note the revised title (later changed again…). 
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Figure 20.  Hand-drawn draft of the Citizen watch statechart  (late 1984), as sent to our graphics 
draftsman for professional drawing. 
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Figure 21.  Two object-oriented statecharts for a railcar example, taken from [HG96&97]. Note the C++ 
action language. 
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Figure 22.  Front end (in Flash) of a model of T cell development in the thymus (from [EHC03]). 
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Figure 23.  Schematics of parts of the statechart of a single cell from the T cell model shown in Fig. 21 
(from [EHC03]). 
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Figure 24.  Snapshot of the first few levels of the statechart of a single cell from the T cell model of 
[EHC03], shown during execution on Rhapsody. The purple states (thick-lined, if you are viewing this 
in B&W) are the ones the system is in at the moment. 
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Figure 25.  Snapshot of the statechart of the object dealing with the interaction between a potential T 
cell and an epithelial cell in the model of [EHC03], shown during execution on Rhapsody. The purple 
states (thick-lined, if you are viewing this in B&W) are the ones the system is in at the moment. 
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Figure 26.  Page from the IAI notebook (late 1983) showing the use of overlapping states, which were 
never implemented. 
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Abstract
Erlang was designed for writing concurrent programs that “run
forever.” Erlang uses concurrent processes to structure the program.
These processes have no shared memory and communicate by
asynchronous message passing. Erlang processes are lightweight
and belong to the language, not the operating system. Erlang has
mechanisms to allow programs to change code “on the fly” so that
programs can evolve and change as they run. These mechanisms
simplify the construction of software for implementing non-stop
systems.

This paper describes the history of Erlang. Material for the pa-
per comes from a number of different sources. These include per-
sonal recollections, discussions with colleagues, old newspaper ar-
ticles and scanned copies of Erlang manuals, photos and computer
listings and articles posted to Usenet mailing lists.

1. A History of Erlang
1.1 Introduction
Erlang was designed for writing concurrent programs that “run
forever.” Erlang uses concurrent processes to structure the program.
These processes have no shared memory and communicate by
asynchronous message passing. Erlang processes are lightweight
and belong to the language and not the operating system. Erlang has
mechanisms to allow programs to change code “on the fly” so that
programs can evolve and change as they run. These mechanisms
simplify the construction of software for implementing non-stop
systems.

The initial development of Erlang took place in 1986 at the Eric-
sson Computer Science Laboratory (the Lab). Erlang was designed
with a specific objective in mind: “to provide a better way of pro-
gramming telephony applications.” At the time telephony applica-
tions were atypical of the kind of problems that conventional pro-
gramming languages were designed to solve. Telephony applica-
tions are by their nature highly concurrent: a single switch must
handle tens or hundreds of thousands of simultaneous transactions.
Such transactions are intrinsically distributed and the software is
expected to be highly fault-tolerant. When the software that con-
trols telephones fails, newspapers write about it, something which
does not happen when a typical desktop application fails. Tele-
phony software must also be changed “on the fly,” that is, with-
out loss of service occurring in the application as code upgrade
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operations occur. Telephony software must also operate in the “soft
real-time” domain, with stringent timing requirements for some op-
erations, but with a more relaxed view of timing for other classes
of operation.

When Erlang started in 1986, requirements for virtually zero
down-time and for in-service upgrade were limited to rather small
and obscure problem domains. The rise in popularity of the Inter-
net and the need for non-interrupted availability of services has ex-
tended the class of problems that Erlang can solve. For example,
building a non-stop web server, with dynamic code upgrade, han-
dling millions of requests per day is very similar to building the
software to control a telephone exchange. So similar, that Erlang
and its environment provide a very attractive set of tools and li-
braries for building non-stop interactive distributed services.

From the start, Erlang was designed as a practical tool for
getting the job done—this job being to program basic telephony
services on a small telephone exchange in the Lab. Programming
this exchange drove the development of the language. Often new
features were introduced specifically to solve a particular problem
that I encountered when programming the exchange. Language
features that were not used were removed. This was such a rapid
process that many of the additions and removals from the language
were never recorded. Appendix A gives some idea of the rate at
which changes were made to the language. Today, things are much
more difficult to change; even the smallest of changes must be
discussed for months and millions of lines of code re-tested after
each change is made to the system.

This history is pieced together from a number of different
sources. Much of the broad details of the history are well doc-
umented in the thesis Concurrent Functional Programming for
Telecommunications: A Case Study for Technology Introduction
[12], written by the head of the Computer Science Lab, Bjarne
Däcker. This thesis describes the developments at the lab from
1984 to 2000, and I have taken several lengthy quotes from the
thesis. In 1994, Bjarne also wrote a more light-hearted paper [11]
to celebrate the tenth anniversary of the lab. Both these papers have
much useful information on dates, times and places that otherwise
would have been forgotten.

Many of the original documents describing Erlang were lost
years ago, but fortunately some have survived and parts of them
are reproduced here. Many things we take for granted today were
not self-evident to us twenty years ago, so I have tried to expose the
flow of ideas in the order they occurred and from the perspective of
the time at which they occurred. For comparison, I will also give
a modern interpretation or explanation of the language feature or
concept involved.

This history spans a twenty-year period during which a large
number of people have contributed to the Erlang system. I have
done my best to record accurately who did what and when. This is
not an easy task since often the people concerned didn’t write any
comments in their programs or otherwise record what they were
doing, so I hope I haven’t missed anybody out.
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2. Part I : Pre-1985. Conception
2.1 Setting the scene
Erlang started in the Computer Science Laboratory at Ericsson
Telecom AB in 1986. In 1988, the Lab moved to a different com-
pany called Ellemtel in a south-west suburb of Stockholm. Ellemtel
was jointly owned by LM Ericsson and Televerket, the Swedish
PTT, and was the primary centre for the development of new
switching systems.

Ellemtel was also the place where Ericsson and Televerket
had jointly developed the AXE telephone exchange. The AXE,
which was first produced in 1974 and programmed in PLEX, was
a second-generation SPC1 exchange which by the mid-1980s gen-
erated a large proportion of Ericsson’s profits.

Developing a new telephone exchange is a complex process
which involves the efforts of hundreds, even thousands of engi-
neers. Ellemtel was a huge melting pot of ideas that was supposed
to come up with new brilliant products that would repeat the suc-
cess of the AXE and generate profits for Ericsson and Televerket in
the years to come.

Initially, when the computer science lab moved to Ellemtel in
1988 it was to become part of a exciting new project to make a new
switch called AXE-N. For various reasons, this plan never really
worked out, so the Lab worked on a number of projects that were
not directly related to AXE-N. Throughout our time at Ellemtel,
there was a feeling of competition between the various projects
as they vied with each other on different technical solutions to
what was essentially the same problem. The competition between
the two groups almost certainly stimulated the development of
Erlang, but it also led to a number of technical “wars”—and the
consequences of these wars was probably to slow the acceptance of
Erlang in other parts of the company.

The earliest motivation for Erlang was “to make something like
PLEX, to run on ordinary hardware, only better.”

Erlang was heavily influenced by PLEX and the AXE design.
The AXE in turn was influenced by the earlier AKE exchange.
PLEX is a programming language developed by Göran Hemdahl at
Ericsson that was used to program AXE exchanges. The PLEX lan-
guage was intimately related to the AXE hardware, and cannot be
sensibly used for applications that do not run on AXE exchanges.
PLEX had a number of language features that corrected shortcom-
ings in the earlier AKE exchange.

In particular, some of the properties of the AXE/PLEX system
were viewed as mandatory. Firstly, it should be possible to change
code “on the fly;” in other words, code change operations should be
possible without stopping the system. The AKE was plagued with
“pointer” problems. The AKE system manipulated large numbers
of telephone calls in parallel. The memory requirements for each
call were variable and memory was allocated using linked lists and
pointer manipulation. This led to many errors. The design of the
AXE and PLEX used a mixture of hardware protection and data
copying that eliminated the use of pointers and corrected many of
the errors in the AKE. This in its turn was the inspiration of the
process and garbage-collected memory strategy used in Erlang.

At this stage it might be helpful to describe some of the charac-
teristics of the concurrency problems encountered in programming
a modern switching system. A switching system is made from a
number of individual switches. Individual switches typically handle
tens to hundreds of thousands of simultaneous calls. The switch-
ing system must be capable of handling millions of calls and must
tolerate the failure of individual switches, providing uninterrupted
services to the user. Usually the hardware and software is divided

1 Stored program control—an ancient telecoms term meaning “computer
controlled.”

into two planes called the control and media planes. The control
plane is responsible for controlling the calls, the media plane is re-
sponsible for data transmission. When we talk in loose terms about
“telephony software” we mean the control-plane software.

Typically, the software for call control is modeled using finite
state machines that undergo state transitions in response to protocol
messages. From the software point of view, the system behaves
as a very large collection of parallel processes. At any point in
time, most of the processes are waiting for an event caused by the
reception of a message or the triggering of a timer. When an event
occurs, the process does a small amount of computation, changes
state, possibly sends messages to other processes and then waits for
the next event. The amount of computation involved is very small.

Any switching system must therefore handle hundreds of thou-
sands of very lightweight processes where each process performs
very little computation. In addition, software errors in one pro-
cess should not be able to crash the system or damage any other
processes in the system. One problem to be solved in any sys-
tem having very large numbers of processes is how to protect the
processes from memory corruption problems. In a language with
pointers, processes are protected from each other using memory-
management hardware and the granularity of the page tables sets a
lower limit to the memory size of a process. Erlang has no point-
ers and uses a garbage collectible memory, which means that it is
impossible for any process to corrupt the memory of another pro-
cess. It also means that the memory requirements for an individual
process can be very small and that all memory for all processes can
be in the same address space without needing memory protection
hardware.

It is important to note that in the AXE/PLEX system and in
Erlang, explicit processes are part of the programming language
itself and not part of the underlying operating system. There is a
sense in which both Erlang and PLEX do not need most of the
services of the underlying operating system since the language
itself provides both memory management and protection between
parallel processes. Other operating system services, like resource
allocation and device drivers needed to access the hardware, can
easily be written in C and dynamically linked into the Erlang run-
time system.

At the time Erlang was first implemented, the view that pro-
cesses were part of the language rather than the operating system
was not widely held (even today, it is a minority view). The only
languages having this view of the world that we were aware of at
that time were Ada (with tasks), EriPascal (an Ericsson dialect of
Pascal with concurrent processes), Chill (with processes), PLEX
(with its own special form of processes implemented in hardware)
and Euclid. When I first started working at Ericsson, I was intro-
duced to the Ericsson software culture by Mike Williams, who also
worked in the Lab. Mike had worked with concurrent systems for
many years, mostly in PL163, and it was he who hammered into my
brain the notion that three properties of a programming language
were central to the efficient operation of a concurrent language or
operating system. These were: 1) the time to create a process. 2) the
time to perform a context switch between two different processes
and 3) the time to copy a message between two processes. The per-
formance of any highly-concurrent system is dominated by these
three times.

The final key idea inherited from the AXE/PLEX culture was
that the failure of a process or of hardware should only influence the
immediate transaction involved and that all other operations in the
machine should progress as if no failures had occurred. An imme-
diate consequence of this on the Erlang design was to forbid dan-
gling pointers between different processes. Message passing had to
be implemented by copying message buffers between the memory
spaces of the different processes involved and not by passing point-
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1 Handling a very large number of concurrent activities
2 Actions to be performed at a certain point of time or within

a certain time
3 Systems distributed over several computers
4 Interaction with hardware
5 Very large software systems
6 Complex functionality such as feature interaction
7 Continuous operation over several years
8 Software maintenance (reconfiguration, etc.) without

stopping the system
9 Stringent quality and reliability requirements
10 Fault tolerance both to hardware failures and software errors

Table 1. Requirements of a programming language for telecom-
munication switching systems (from [12]).

ers to a common memory pool. At an early stage we rejected any
ideas of sharing resources between processes because of the diffi-
culties of error handling. In many circumstances, error recovery is
impossible if part of the data needed to perform the error recov-
ery is located on a remote machine and if that remote machine has
crashed. To avoid this situation and to simplify the process, we de-
cided that all processes must always have enough local information
to carry on running if something fails in another part of the sys-
tem. Programming with mutexes and shared resources was just too
difficult to get right in a distributed system when errors occurred.

In cases where consistency is required in distributed systems,
we do not encourage the programmer to use the low-level Erlang
language primitives but rather the library modules written in Er-
lang. The Erlang libraries provide components for building dis-
tributed systems. Such components include mnesia, which is a dis-
tributed real-time transaction database, and various libraries for
things like leadership election and transaction memories. Our ap-
proach was always not to hard-wire mechanisms into the language,
but rather to provide language primitives with which one could con-
struct the desired mechanisms. An example is the remote procedure
call. There is no remote procedure call primitive in Erlang, but a re-
mote procedure call can be easily made from the Erlang send and
receive primitives.

We rapidly adopted a philosophy of message passing by copy-
ing and no sharing of data resources. Again, this was counter to
the mood of the time, where threads and shared resources protected
by semaphores were the dominant way of programming concurrent
systems. Robert Virding and I always argued strongly against this
method of programming. I clearly remember attending several con-
ferences on distributed programming techniques where Robert and
I would take turns at asking the question “What happens if one of
the nodes crashes?” The usual answer was that “the system won’t
work” or “our model assumes that there are no failures.” Since we
were interested in building highly reliable distributed systems that
should never stop, these were not very good answers.

In order to make systems reliable, we have to accept the extra
cost of copying data between processes and always making sure
that the processes have enough data to continue by themselves if
other processes crash.

2.2 Requirements, requirements, requirements ...
The AXE/PLEX heritage provided a set of requirements that any
new programming language for programming telecommunications
applications must have, as shown in Table 1.

These requirements were pretty typical. Existing systems solved
these problems in a number of ways, sometimes in the program-
ming language, sometimes in the operating systems and sometimes

in application libraries. The goal of the Lab was to find better ways
of programming telecoms systems subject to such requirements.

Our method of solving these problems was to program POTS2

over and over again in a large number of different programming
languages and compare the results. This was done in a project
called SPOTS, (SPOTS stood for SPC for POTS). Later the project
changed name to DOTS (Distributed SPOTS) and then to LOTS,
“Lots of DOTS.” The results of the SPOTS project were published
in [10].

2.3 SPOTS, DOTS, LOTS
In 1985, when I joined the Lab, SPOTS had finished and DOTS
was starting. I asked my boss Bjarne Däcker what I should do. He
just said “solve Ericsson’s software problem.” This seemed to me
at the time a quite reasonable request—though I now realise that it
was far more difficult than I had imagined. My first job was to join
the ongoing DOTS experiment.

Our lab was fortunate in possessing a telephone exchange (an
Ericsson MD110 PABX) that Per Hedeland had modified so that
it could be controlled from a VAX11/750. We were also lucky in
being the first group of people in the company to get our hands
on a UNIX operating system, which we ran on the VAX. What we
were supposed to do was “to find better ways of programming tele-
phony” (a laudable aim for the members of the computer science
lab of a telecommunications company). This we interpreted rather
liberally as “program basic telephony in every language that will
run on our Unix system and compare the results.” This gave us am-
ple opportunities to a) learn new programming languages, b) play
with Unix and c) make the phones ring.

In our experiments, we programmed POTS in a number of
different languages, the only requirement being that the language
had to run on 4.2 BSD UNIX on the Vax 11/750. The languages
tried in the SPOTS project were Ada, Concurrent Euclid, PFL,
LPL0, Frames and CLU.

Much of what took place in the POTS project set the scene for
what would become Erlang, so it is interesting to recall some of the
conclusions from the SPOTS paper. This paper did not come down
heavily in favour of any particular style of programming, though it
did have certain preferences:

• “small languages” were thought desirable:
“Large languages present many problems (in implementation,
training etc) and if a small language can describe the application
succinctly it will be preferable.”

• Functional programming was liked, but with the comment:
“The absence of variables which are updated means that the ex-
change database has to be passed around as function arguments
which is a bit awkward.”

• Logic programming was best in terms of elegance:
“Logic programming and the rule-based system gave the most
unusual new approach to the problem with elegant solutions to
some aspects of the problem.”

• Concurrency was viewed as essential for this type of problem,
but:
“Adding concurrency to declarative languages, rule-based sys-
tems and the object based system is an open field for research.”

At this time, our experience with declarative languages was lim-
ited to PFL and LPL0, both developed in Sweden. PFL [17] came
from the Programming Methodology Group at Chalmers Technical
University in Gothenburg and was a version of ML extended with

2 Plain Ordinary Telephone Service.
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primitives borrowed from CCS. LPL0 [28] came from the Swedish
Institute of Computer Science and was a logic language based on
Haridi’s natural deduction [15].

Looking back at the SPOTS paper, it is interesting to note
what we weren’t interested in—there is no mention in the paper
of dealing with failure or providing fault-tolerance, there is no
mention of changing the system as it is running or of how to make
systems that scale dynamically. My own contribution to LOTS was
to program POTS. This I did first in Smalltalk and then in Prolog.
This was fairly sensible at the time, since I liberally interpreted
Bjarne’s directive to “solve all of Ericsson’s software problems” as
“program POTS in Smalltalk.”

3. Part II: 1985 – 1988. The birth of Erlang
3.1 Early experiments
My first attempts to make the phones ring was programmed in
Smalltalk. I made a model with phone objects and an exchange
object. If I sent a ring message to a phone it was supposed to ring.
If the phone A went off-hook it was supposed to send an (offHook,
A) message to the exchange. If the user of phone A dialled some
digit D, then a (digit, A, D) message would be sent to the exchange.

Alongside the Smalltalk implementation, I developed a simple
graphic notation that could be used to describe basic telephony.
The notation describing telephony was then hand-translated into
Smalltalk. By now the lab had acquired a SUN workstation with
Smalltalk on it. But the Smalltalk was very slow—so slow that
I used to take a coffee break while it was garbage collecting. To
speed things up, in 1986 we ordered a Tektronix Smalltalk machine,
but it had a long delivery time. While waiting for it to be delivered, I
continued fiddling with my telephony notation. One day I happened
to show Roger Skagervall my algebra—his response was “but that’s
a Prolog program.” I didn’t know what he meant, but he sat me
down in front of his Prolog system and rapidly turned my little
system of equations into a running Prolog program. I was amazed.
This was, although I didn’t know it at the time, the first step towards
Erlang.

My graphic notation could now be expressed in Prolog syntax
and I wrote a report [1] about it. The algebra had predicates:

idle(N) means the subscriber N is idle
on(N) means subscribed N in on hook
...

And operators:

+t(A, dial_tone) means add a dial tone to A

Finally rules:

process(A, f) :- on(A), idle(A), +t(A,dial-tone),
+d(A, []), -idle(A), +of(A)

This had the following declarative reading:

process(A, f) To process an off hook signal from
a subscriber A

:- then
on(A) If subscriber A is on-hook
, and
idle(A) If subscriber A is idle
, and
+t(A, dial_tone) send a dial tone to A
, and
+d(A, []) set the set of dialled digits to []
, and
-idle(A) retract the idle state
, and

+of(A) assert that we are off hook

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only de-
scribed how one telephone call should proceed. How could we do
this for thousands of simultaneous calls?

3.2 Erlang conceived
Time passed and my Smalltalk machine was delivered, but by the
time it arrived I was no longer interested in Smalltalk. I had dis-
covered Prolog and had found out how to write a meta-interpreter
in Prolog. This meta-interpreter was easy to change so I soon fig-
ured out how to add parallel processes to Prolog. Then I could run
several versions of my little telephony algebra in parallel.

The standard way of describing Prolog in itself is to use a simple
meta-interpreter:

solve((A,B)) :- solve(A), solve(B).
solve(A) :- builtin(A), call(A).
solve(A,B) :- rule(A, B), solve(B).

The problem with this meta-interpreter is that the set of remaining
goals that is not yet solved is not available for program manipula-
tion. What we would like is a way to explicitly manage the set of
remaining goals so that we could suspend or resume the computa-
tion at any time.

To see how this works, we can imagine a set of equations like
this:

x -> a,b,c
a -> p,{q},r
r -> g,h
p -> {z}

This notation means that the symbol x is to be replaced by the
sequence of symbols a, b and c. That a is to be replaced by p, {q}
and r. Symbols enclosed in curly brackets are considered primitives
that cannot be further reduced.

To compute the value of the symbol x we first create a stack of
symbols. Our reduction machine works by successively replacing
the top of the stack by its definition, or if it is a primitive by
evaluating the primitive.

To reduce the initial goal x we proceed as follows:

x replace x by its definition
a,b,c replace a by its definition
p,{q},r,b,c replace p by its definition
{z},{q},r,b,c evaluate z
{q},r,b,c evaluate q
r,b,c replace r by its definition
g,h,b,c ...
...

The point of the reduction cycle is that at any time we can
suspend the computation. So, for example, after three iterations,
the state of the computation is represented by a stack containing:

{z},{q},r,b,c

If we want several parallel reduction engines, we arrange to
save and store the states of each reduction engine after some fixed
number of reductions. If we now express our equations as Prolog
terms:

eqn(x,[a,b,c]).
eqn(a,[p,{q},r]).
eqn(r,[g,h]).
eqn(p,[{z}]).
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Then we can describe our reduction engine with a predicate reduce
as follows:

reduce([]).
reduce([{H}|T]) :-

call(H),!,
reduce(T).

reduce([Lhs|More]) :-
eqn(Lhs, Rhs),
append(Rhs,More,More1),!,
reduce(More1).

With a few more clauses, we can arrange to count the number of
reduction steps we have made and to save the list of pending goals
for later evaluation. This is exactly how the first Erlang interpreter
worked. The interested reader can consult [4] for more details.

Time passed and my small interpreter grew more and more fea-
tures, the choice of which was driven by a number of forces. First, I
was using the emerging language to program a small telephone ex-
change, so problems naturally arose when I found that interacting
with the exchange was clumsy or even impossible. Second, changes
suggested themselves as we thought up more beautiful ways of do-
ing things. Many of the language changes were motivated by purely
aesthetic concerns of simplicity and generality.

I wanted to support not only simple concurrent processes, but
also mechanisms for sending message between processes, and
mechanism for handling errors, etc. My interpreter grew and some
of the other lab members became interested in what I was doing.
What started as an experiment in “adding concurrency to Prolog”
became more of a language in its own right and this language ac-
quired a name “Erlang,” which was probably coined by Bjarne
Däcker. What did the name Erlang mean? Some said it meant “Er-
icsson Language,” while others claimed it was named after Agner
Krarup Erlang (1878 – 1929), while we deliberately encouraged
this ambiguity.

While I had been fiddling with my meta-interpreter, Robert
Virding had been implementing variants of parallel logic program-
ming languages. One day Robert came to me and said he’d been
looking at my interpreter and was thinking about making a few
small minor changes, did I mind? Now Robert is incapable of mak-
ing small changes to anything, so pretty soon we had two different
Erlang implementations, both in Prolog. We would take turns in
rewriting each other’s code and improving the efficiency of the im-
plementation.

As we developed the language, we also developed a philosophy
around the language, ways of thinking about the world and ways
of explaining to our colleagues what we were doing. Today we call
this philosophy Concurrency-Oriented Programming. At the time
our philosophy had no particular name, but was more just a set of
rules explaining how we did things.

One of the earliest ways of explaining what Erlang was all about
was to present it as a kind of hybrid language between concurrent
languages and functional languages. We made a poster showing this
which was reproduced in [12] and shown here in Figure 1.

3.3 Bollmora, ACS/Dunder
By 1987, Erlang was regarded as a new programming language
that we had prototyped in Prolog. Although it was implemented in
Prolog, Erlang’s error-handling and concurrency semantics differed
significantly from Prolog. There were now two people (Robert
Virding and I) working on the implementation and it was ready to
be tried out on external users. By the end of the year, Mike Williams
managed to find a group of users willing to try the language on a
real problem, a group at Ericsson Business Communications AB,
which was based in Bollmora. The group was headed by Kerstin
Ödling and the other members of the team were Åke Rosberg,

Concurrent system
programming languages like
Ada, Modula or Chill

Functional programming
language like ML or
Miranda

Concurrent functional
programming language 
Erlang

Figure 1. Relation of Erlang to existing languages.

Håkan Karlsson and Håkan Larsson. These were the first ever
Erlang users.

The team wanted to prototype a new software architecture called
ACS3 designed for programming telephony services on the Erics-
son MD110 PABX4 and were looking for a suitable language for
the project, which is how they got to hear about Erlang. A project
called ACS/Dunder was started to build the prototype.

The fact that somebody was actually interested in what we were
doing came as a great stimulus to the development and we entered
a period of rapid development where we could actually try out our
language ideas on real users.

3.4 Frenzied activity
Erlang began to change rapidly. We now had two people working
on the implementation (Robert and myself) and a large user com-
munity (three people). We would add features to the language and
then try them out on our users. If the users or implementors liked
the changes, they stayed in. If the users disliked the changes or if the
implementation was ugly, the changes were removed. Amazingly,
the fact that the language was changing under their feet almost ev-
ery day didn’t particularly bother our users. We met our Bollmora
users once or twice a week for about six months. We taught them
programming, they taught us telephony and both sides learned a lot.

Hardly anything remains from this period—most of the day-
to-day changes to the language were not recorded and there is no
lasting evidence of what those changes were. But fortunately, a
few documents do remain: Figure 2 shows the entire Erlang 1.05
manual and Appendix A contains the comments at the start of
the file erlang.pro (which was the main program for the Prolog
interpreter). This is a change log documenting the changes made
to the language in the nine-month period from 24 March 1988 to
14 December 1988. Like a child, Erlang took about nine months
to develop. By the end of 1988, most of the ideas in Erlang had
stabilized. While Robert and I implemented the system, the ideas
behind the mechanism that we implemented often came from our
users, or from the other members of the Lab. I always considered
the morning coffee break to be the key forum where the brilliant
ideas you had on the way to work were trashed and where all the
real work was done. It was in these daily brainstormings that many
a good idea was created. It’s also why nobody can quite remember
who thought of what, since everybody involved in the discussions
seems to remember that it was they who had the key idea.

It was during this period that most of the main ideas in Erlang
emerged. In the following sections I will describe Erlang as it was
in 1988. Appendix B has a set of examples illustrating the language
as it is today.

3 Audio Communication System.
4 Private Automatic Branch Exchange.
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Figure 2. The Erlang 1.05 manual.

3.5 Buffered message reception
One of the earliest design decisions in Erlang was to use a form
of buffering selective receive. The syntax for message reception in
modern Erlang follows a basic pattern:

receive
Pattern1 ->

Actions1;
Pattern2 ->

Actions2;
...

end

This means wait for a message. If the message matches Pattern1
then evaluate the code Actions1. If the message matches Pattern2
then evaluate the code Actions2, etc.

But what happens if some other message that matches neither
Pattern1 or Pattern2 arrives at the processes? Answer—ignore
the message and queue it for later. The message is put in a “save
queue” and processed later and the receive statement carries on
waiting for the messages it is interested in.

The motivation for automatically buffering out-of-order mes-
sages came from two observations. Firstly we observed that in the
CCITT Specification and Description Language5 (SDL), one of the
most commonly used specification idioms involved queuing and
later replaying out-of-order messages. Secondly we observed that
handling out-of-order messages in a finite state machine led to an
explosion in the state space of the finite state machine. This hap-
pens more often than you think, in particular when processing re-
mote procedure calls. Most of the telecommunications programs
we write deal with message-oriented protocols. In implementing
the protocols we have to handle the messages contained in the pro-
tocol itself together with a large number of messages that are not

5 SDL is widely used in the telecoms industry to specify communications
protocols.

part of the protocol but come from remote procedure calls made
internally in the system. Our queuing strategy allows us to make
an internal remote procedure call within the system and block un-
til that call has returned. Any messages arriving during the remote
procedure call are merely queued and served after the remote pro-
cedure call has completed. The alternative would be to allow the
possibility of handling protocol messages in the middle of a remote
procedure call, something which greatly increases the complexity
of the code.

This was a great improvement over PLEX, where every message
must be handled when it arrives. If a messages arrives “too early”
the program has to save it for later. Later, when it expects the
message, it has to check to see if the message has already arrived.

This mechanism is also extremely useful for programming sets
of parallel processes when you don’t know in which order the
message between the processes will arrive. Suppose you want to
send three messages M1, M2 and M3 to three different processes
and receive replies R1, R2 and R3 from these three processes. The
problem is that the reply messages can arrive in any order. Using
our receive statement, we could write:

A ! M1,
B ! M2,
C ! M3,
receive
A ? R1 ->
receive
B ? R2 ->
receive
C ? R3 ->
... now R1 R2 and R3

have been received ...

Here A!M means send the message M to the process A and A?X means
receive the message X from the process A.

It doesn’t matter now in which order the messages are received.
The code is written as if A replies first—but if the message from B
replies first, the message will be queued and the system will carry
on waiting for a message from A. Without using a buffer, there are
six different orderings of the message to be accounted for.

3.6 Error handling
Error handling in Erlang is very different from error handling in
conventional programming languages. The key observation here
is to note that the error-handling mechanisms were designed for
building fault-tolerant systems, and not merely for protecting from
program exceptions. You cannot build a fault-tolerant system if you
only have one computer. The minimal configuration for a fault-
tolerant system has two computers. These must be configured so
that both observe each other. If one of the computers crashes, then
the other computer must take over whatever the first computer was
doing.

This means that the model for error handling is based on the
idea of two computers that observe each other. Error detection
and recovery is performed on the remote computer and not on
the local computer. This is because in the worst possible case, the
computer where the error has occurred has crashed and thus no
further computations can be performed on the crashed computer.

In designing Erlang, we wanted to abstract all hardware as re-
active objects. Objects should have “process semantics;” in other
words, as far as the software was concerned, the only way to inter-
act with hardware was through message passing. When you send
a message to a process, there should be no way of knowing if the
process was really some hardware device or just another software
process. The reason for this was that in order to simplify our pro-
gramming model, we wanted to model everything as processes and
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we wanted to communicate with all processes in a uniform manner.
From this point of view we wanted software errors to be handled
in exactly the same manner as hardware errors. So, for example, if
a process died because of a divide by zero it would propagate an
{’EXIT’,Pid,divideByZero} signal to all the processes in its
link set. If it died because of a hardware error it might propagate an
{’EXIT’,Pid,machineFailure} signal to its neighbors. From a
programmer’s point of view, there would no difference in how these
signals were handled.

3.7 Links
Links in Erlang are provided to control error propagation paths for
errors between processes. An Erlang process will die if it evaluates
illegal code, so, for example, if a process tries to divide by zero it
will die. The basic model of error handling is to assume that some
other process in the system will observe the death of the process
and take appropriate corrective actions. But which process in the
system should do this? If there are several thousand processes in
the system then how do we know which process to inform when an
error occurs? The answer is the linked process. If some process A
evaluates the primitive link(B) then it becomes linked to A . If A
dies then B is informed. If B dies then A is informed.

Using links, we can create sets of processes that are linked
together. If these are normal6 processes, they will die immediately
if they are linked to a process that dies with an error. The idea here
is to create sets of processes such that if any process in the set
dies, then they will all die. This mechanism provides the invariant
that either all the processes in the set are alive or none of them
are. This is very useful for programming error-recovery strategies
in complex situations. As far as I know, no other programming
language has anything remotely like this.

The idea of links and of the mechanism by which all processes
in a set die was due to Mike Williams. Mike’s idea was inspired
by the design of the release mechanism used in old analogue tele-
phones and exchanges. In the analogue telephones and in the early
electromechanical exchanges, three wires called A, B and C were
connected to the phones. The C wire went back to the exchange
and through all the electromechanical relays involved in setting up
a call. If anything went wrong, or if either partner terminated the
call, then the C wire was grounded. Grounding the C wire caused a
knock-on effect in the exchange that freed all resources connected
to the C line.

3.8 Buffers
Buffers and the receive statement fit together in a rather non-
obvious way. Messages sent between Erlang processes are always
delivered as soon as possible. Each process has a “mailbox” where
all incoming messages are stored. When a message arrives it is put
in the mailbox and the process is scheduled for execution. When the
process is next scheduled it tries to pattern match the message. If
the match succeeds, message reception occurs and the message is
removed from the mailbox and the data from the message works
its way into the program. Otherwise the message is put into a
“save” queue. When any message matches, the entire save queue
is merged back into the mailbox. All buffering that takes place is
then performed implicitly in either the mailbox or the save queue.
In about 1988, this mechanism was the subject of intense debate.
I remember something like a four-day meeting being devoted to
the single topic of how interprocess communication should actually
work.

The outcome of this meeting was that we all thought that pro-
cesses should communicate through pipes and that the pipes should

6 Process are either normal or system processes. System process can trap
and process non-normal exit signals. Normal process just die.

be first-class objects. They should have infinite7 buffering capacity,
they should be named and it should be possible to connect and dis-
connect them to and from processes. It should be possible to bend
them and split them and join them, and I even created an algebra of
pipes.

Then I tried to implement the pipe algebra but this turned out
to be very difficult. In particular, pipe joining and coalescing8

operations were terribly difficult to program. The implementation
needed two types of message in the pipes: regular messages and
small tracer messages that had to be sent up and down the pipes to
check that they were empty. Sometimes the pipes had to be locked
for short periods of time and what would happen if the processes
at the end of the pipes failed was extremely difficult to work
out. The problems all stem from the fact that the pipes introduce
dependencies between the end points so that the processes at either
end are no longer independent—which makes life difficult.

After two weeks of programming, I declared that the pipe mech-
anism now worked. The next day I threw it all away—the complex-
ity of the implementation convinced me that the mechanism was
wrong. I then implemented a point-to-point communication mech-
anism with mailboxes; this took a couple of hours to implement
and suffered from none of the kind of problems that plagued the
pipes implementation. This seems to be a rather common pattern:
first I spend a week implementing something, then, when is is com-
plete I throw everything away and reimplement something slightly
different in a very short time.

At this point, pipes were rejected and mailboxes accepted.

3.9 Compilation to Strand
While the Prolog implementations of Erlang were being used to
develop the language and experiment with new features, another
avenue of research opened, work aimed at creating an efficient im-
plementation of Erlang. Robert had not only implemented Erlang in
Prolog but had also been experimenting with a Parlog compiler of
his own invention. Since Erlang was a concurrent language based
on Prolog it seemed natural to study how a number of concurrent
logical programming languages had been implemented. We started
looking at languages like Parlog, KL/1 and Strand for possible in-
spiration. This actually turned out to be a mistake. The problem
here has to do with the nature of the concurrency. In the concur-
rent logic programming languages, concurrency is implicit and ex-
tremely fine-grained. By comparison Erlang has explicit concur-
rency (via processes) and the processes are coarse-grained. The
study of Strand and Parlog led to an informal collaboration with
Keith Clarke and Ian Foster at Imperial College London.

Eventually, in 1988, we decided to experiment with cross com-
pilation of Erlang to Strand. Here we made a major error—we con-
fidently told everybody the results of the experiment before we
had done it. Cross compilation to Strand would speed up Erlang
by some embarrassingly large factor. The results were lacklustre;
the system was about five times faster but very unstable and large
programs with large numbers of processes just would not run. The
problem turned out to be that Strand was just too parallel and cre-
ated far too many parallel processes. Even though we might only
have had a few hundred Erlang processes, several tens of millions
of parallel operations were scheduled within the Strand system.

Strand also had a completely different model of error handling
and message passing. The Erlang-to-Strand compiler turned an Er-
lang function of arity N to a Strand process definition of arity N+8.
The eight additional arguments were needed to implement Erlang’s

7 In theory.
8 For example, if pipe X has endpoints A and B, and pipe Y has end-
points C and D, then coalescing X and Y was performed with an operation
muff pipes(B, C).
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error-handling and message-passing semantics. More details of this
can be found in chapter 13 of [14]. The problem with the imple-
mentation boiled down to the semantic mismatch between the con-
currency models used in Strand and Erlang, which are completely
different.

4. Part III: 1989 – 1997. Erlang grows
The eight years from 1989 to 1997 were the main period during
which Erlang underwent a period of organic growth. At the start of
the period, Erlang was a two-man project, by the end hundreds of
people were involved.

The development that occurred during this period was a mixture
of frantic activity and long periods where nothing appeared to hap-
pen. Sometimes ideas and changes to the language came quickly
and there were bursts of frenetic activity. At other times, things
seem to stagnate and there was no visible progress for months or
even years. The focus of interest shifted in an unpredictable man-
ner from technology to projects, to training, to starting companies.
The dates of particular events relating to the organization, like, for
example, the start of a particular project or the formation of Erlang
Systems AB, are wellknown. But when a particular idea or feature
was introduced into the language is not so wellknown. This has to
do with the nature of software development. Often a new software
feature starts as a vague idea in the back of implementors’ minds,
and the exact date when they had the idea is undocumented. They
might work on the idea for a while, then run into a problem and
stop working on it. The idea can live in the back of their brain for
several years and then suddenly pop out with all the details worked
out.

The remainder of this section documents in roughly chronolog-
ical order the events and projects that shaped the Erlang develop-
ment.

4.1 The ACS/Dunder results
In December 1989, the ACS/Dunder project produced its final re-
port. For commercial reasons, this report was never made pub-
lic. The report was authored by the members of the prototyping
team who had made the ACS/Dunder prototype, in which about 25
telephony features were implemented. These features represented
about one tenth of the total functionality of the MD 110. They
were chosen to be representative of the kind of features found in
the MD110, so they included both hard and extremely simple func-
tions. The report compared the effort (in man hours) of developing
these features in Erlang with the predicted effort of developing the
same features in PLEX. The ACS/Dunder report found that the time
to implement the feature in Erlang divided by the time to implement
the feature in PLEX (measured in man hours) was a factor of 3 to
25, depending upon the feature concerned. The average increase in
productivity was a factor of 8.

This factor and the conclusion of the report were highly con-
troversial and many theories were advanced to explain away the
results. It seemed at the time that people disliked the idea that the
effect could be due to having a better programming language, pre-
ferring to believe that it was due to some “smart programmer ef-
fect.” Eventually we downgraded the factor to a mere 3 because is
sounded more credible than 8. The factor 3 was totally arbitrary,
chosen to be sufficiently high to be impressive and sufficiently low
to be believable. In any case, it was significantly greater than one,
no matter how you measured and no matter how you explained the
facts away.

The report had another conclusion, namely that Erlang was far
too slow for product development. In order to use Erlang to make
a real product, it would need to be at least 40 times faster. The
fact that it was too slow came from a comparison of the execution
times of the Erlang and PLEX programs. At this stage, CPU per-

formance represented the only significant problem. Memory per-
formance was not a problem. The run-time memory requirements
were modest and the total size of the compiled code did not pose
any problems.

After a lot of arguing, this report eventually led the way to the
next stage of development, though the start of the project was to be
delayed for a couple of years. Ericsson decided to build a product
called the Mobility Server based on the ACS/Dunder architecture,
and we to started work on a more efficient implementation of
Erlang.

4.2 The word starts spreading
1989 also provided us with one of our first opportunities to present
Erlang to the world outside Ericsson. This was when we presented
a paper at the SETSS conference in Bournemouth. This conference
was interesting not so much for the paper but for the discussions
we had in the meetings and for the contacts we made with people
from Bellcore. It was during this conference that we realised that
the work we were doing on Erlang was very different from a
lot of mainstream work in telecommunications programming. Our
major concern at the time was with detecting and recovering from
errors. I remember Mike, Robert and I having great fun asking the
same question over and over again: “what happens if it fails?”—
the answer we got was almost always a variant on “our model
assumes no failures.” We seemed to be the only people in the world
designing a system that could recover from software failures.

It was about this time that we realized very clearly that shared
data structures in a distributed system have terrible properties in
the presence of failures. If a data structure is shared by two phys-
ical nodes and if one node fails, then failure recovery is often im-
possible. The reason why Erlang shares no data structures and uses
pure copying message passing is to sidestep all the nasty problems
of figuring out what to replicate and how to cope with failures in a
distributed system. At the Bournemouth conference everybody told
us we were wrong and that data must be shared for efficiency—but
we left the conference feeling happy that the rest of the world was
wrong and that we were right. After all, better a slow system that
can recover from errors than a fast system that cannot handle fail-
ures. Where people were concerned with failure, it was to protect
themselves from hardware failures, which they could do by repli-
cating the hardware. In our world, we were worried by software
failures where replication does not help.

In Bournemouth, we met a group of researchers headed by Gary
Herman from Bellcore who were interested in what we were doing.
Later in the year, in December 1989, this resulted in Bjarne, Mike,
Robert and me visiting Bellcore, where we gave our first ever
external Erlang lecture. Erlang was well received by the researchers
at Bellcore, and we were soon involved in discussing how they
could get a copy of the Erlang system. When we got back from
Bellcore, we started planning how to release Erlang. This took a
while since company lawyers were involved, but by the middle of
1990 we delivered a copy of Erlang to Bellcore. So now we had our
first external user, John Unger from Bellcore.

4.3 Efficiency needed – the JAM
Following the ACS/Dunder report in December 1989, we started
work on an efficient version of Erlang. Our goal was to make a ver-
sion of Erlang that was at least 40 times faster than the prototype.

At this point we were stuck. We knew what we wanted to do
but not how to do it. Our experiments with Strand and Parlog had
led to a deadend. Since we were familiar with Prolog, the next
step appeared to follow the design of an efficient Prolog machine.
Something like the WAM [29] seemed the natural way to proceed.
There were two problems with this. First, the WAM didn’t support
concurrency and the kind of error handling that we were interested
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in, and second, we couldn’t understand how the WAM worked. We
read all the papers but the explanations seemed to be written only
for people who already understood how the thing worked.

The breakthrough came in early 1990. Robert Virding had col-
lected a large number of the descriptions of abstract machines for
implementing parallel logic machines. One weekend I borrowed his
file and took all the papers home. I started reading them, which was
pretty quick since I didn’t really understand them, then suddenly af-
ter I’d read through them all I began to see the similarities. A clue
here, and hint there, yes they were all the same. Different on the sur-
face, but very similar underneath. I understood—then I read them
again, this time slowly. What nobody had bothered to mention, pre-
sumably because it was self-evident, was that each of the instruc-
tions in one of these abstract machines simultaneously manipulated
several registers and pointers. The papers often didn’t mention the
stack and heap pointers and all the things that got changed when an
instruction was evaluated because this was obvious.

Then I came across a book by David Maier and David Scott
Warren [19] that confirmed this; now I could understand how the
WAM worked. Having understood this, it was time to design my
own machine, the JAM.9 Several details were missing from the
Warren paper and from other papers describing various abstract
machines. How was the code represented? How was the compiler
written? Once you understood them, the papers seems to describe
the easy parts; the details of the implementation appeared more to
be “trade secrets” and were not described.

Several additional sources influenced the final design. These
included the following:

• A portable Prolog Compiler [9], that described how virtual
machine instructions were evaluated.

• A Lisp machine with very compact programs [13], that de-
scribed a Lisp machine with an extremely compact represen-
tation.

• BrouHaHa – A portable Smalltalk interpreter [22], that de-
scribed some smart tricks for speeding up the dispatching in-
structions in a threaded interpreter.

When I designed the JAM, I was worried about the expected
size of the resulting object for the programs. Telephony control
programs were huge, numbering tens of millions of lines of source
code. The object code must therefore be highly compact, otherwise
the entire program would never fit into memory. When I designed
the JAM, I sat down with my notepad, invented different instruc-
tion sets, then wrote down how some simple functions could be
compiled into these instruction sets. I worked out how the instruc-
tions would be represented in a byte-coded machine and then how
many instructions would be evaluated in a top-level evaluation of
the function. Then I changed the instruction set and tried again. My
benchmark was always for the “append” function and I remember
the winning instruction set compiled append into 19 bytes of mem-
ory. Once I had decided on an instruction set, compilation to the
JAM was pretty easy and an early version of the JAM is described
in [5]. Figure 3 shows how the factorial function was compiled to
JAM code.

Being able to design our own virtual machines resulted in highly
compact code for the things we cared most about. We wanted
message passing to be efficient, which was easy. The JAM was a
stack-based machine so to compile A ! B, the compiler emitted
code to compile A , then code to compile B , then a single byte send
instruction. To compile spawn(Function), the compiler emitted
code to build a function closure on the stack, followed by a single
byte spawn instruction.

9 Modesty prevents me from revealing what this stands for.

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
{try_me_else, label1}

{arg, 0}
{getInt, 0}
{pushInt, 1}
ret

label1: try_me_else_fail
{arg, 0}
dup
{pushInt, 1}
minus
{callLocal, fac, 1}
times
ret

Figure 3. Compilation of sequential Erlang to JAM code.

File Lines Purpose
sys sys.erl 18 dummy
sys parse.erl 783 erlang parser
sys ari parser.erl 147 parse arithmetic expressions
sys build.erl 272 build function call arguments
sys match.erl 253 match function head arguments
sys compile.erl 708 compiler main program
sys lists.erl 85 list handling
sys dictionary.erl 82 dictionary handler
sys utils.erl 71 utilities
sys asm.erl 419 assembler
sys tokenise.erl 413 tokeniser
sys parser tools.erl 96 parser utilities
sys load.erl 326 loader
sys opcodes.erl 128 opcode definitions
sys pp.erl 418 pretty printer
sys scan.erl 252 scanner
sys boot.erl 59 bootstrap
sys kernel.erl 9 kernel calls
18 files 4544

Table 2. Statistics from an early Erlang compiler.

The compiler was, of course, written in Erlang and run through
the Prolog Erlang emulator. To test the abstract machine I wrote
an emulator, this time in Prolog so I could now test the compiler
by getting it to compile itself. It was not fast—it ran at about 4
Erlang reductions10 per second, but it was fast enough to test itself.
Compiling the compiler took a long time and could only be done
twice a day, either at lunch or overnight.

The compiler itself was a rather small and simple program. It
was small because most of the primitives in Erlang could be com-
piled into a single opcode in the virtual machine. So all the compiler
had to do was to generate code for efficient pattern matching and
for building and reconstructing terms. Most of the complexity is in
the run-time system, which implements the opcodes of the virtual
machine. The earliest compiler I have that has survived is the erl89
compiler, which had 18 modules containing 2544 lines of code. The
modules in the compiler were as in Table 2.

It was now time to implement the JAM virtual machine emula-
tor, this time not in Prolog but in C. This is where Mike Williams

10 One reduction corresponds to a single function call.
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came in. I started writing the emulator myself in C but soon Mike
interfered and started making rude comments about my code. I
hadn’t written much C before and my idea of writing C was to close
my eyes and pretend it was FORTRAN. Mike soon took over the
emulator, threw away all my code and started again. Now the Er-
lang implementor group had expanded to three, Mike, Robert and
myself. Mike wrote the inner loop of the emulator very carefully,
since he cared about the efficiency of the critical opcodes used for
concurrent operations. He would compile the emulator, then stare at
the generated assembler code, then change the code compile again,
and stare at the code until he was happy. I remember him work-
ing for several days to get message sending just right. When the
generated code got down to six instructions he gave up.

Mike’s emulator soon worked. We measured how fast it was.
After some initial tweaking, it ran 70 times faster than the original
Prolog emulator. We we delighted—we had passed our goal of 40
by a clear margin. Now we could make some real products.

Meanwhile, the news from the Bollmora group was not good:
“We miscalculated, our factor of 40 was wrong, it needs to be 280
times faster.”

One of the reviewers of this paper asked whether memory effi-
ciency was ever a problem. At this stage the answer was no. CPU
efficiency was always a problem, but never memory efficiency.

4.4 Language changes
Now that we have come to 1990 and have a reasonably fast Erlang,
our attention turned to other areas. Efficiency was still a problem,
but spurred by our first success we weren’t particularly worried
about this. One of the things that happened when writing Erlang in
Erlang was that we had to write our own parser. Before we had just
used infix operators in Prolog. At this point the language acquired
its own syntax and this in its turn caused the language to change. In
particular, receive was changed.

Having its own syntax marked a significant change in the lan-
guage. The new version of Erlang behaved pretty much like the old
Prolog interpreter, but somehow it felt different. Also our under-
standing of the system deepened as we grappled with tricky im-
plementation issues that Prolog had shielded us from. In the Pro-
log system, for example, we did not have to bother about garbage
collection, but in our new Erlang engine we had to implement a
garbage collector from scratch.

Since our applications ran in the so-called soft real-time do-
main, the performance of the garbage collector was crucial, so
we had to design and implement garbage-collection strategies that
would not pause the system for too long. We wanted frequent small
garbage collections rather than infrequent garbage collections that
take a long time.

The final strategy we adopted after experimenting with many
different strategies was to use per-process stop-and-copy GC. The
idea was that if we have many thousands of small processes then the
time taken to garbage collect any individual process will be small.
This strategy also encouraged copying all the data involved in mes-
sage passing between processes, so as to leave no dangling point-
ers between processes that would complicate garbage collection.
An additional benefit of this, which we didn’t realise at the time,
was that copying data between processes increases process isola-
tion, increases concurrency and simplifies the construction of dis-
tributed systems. It wasn’t until we ran Erlang on multicore CPUs
that the full benefit of non-shared memory became apparent. On a
multicore CPU, message passing is extremely quick and the lack of
locking between CPUs allows each CPU to run without waiting for
the other CPUs.

Our approach to GC seemed a little bit reckless: would this
method work in practice? We were concerned about a number of
problems. Would large numbers of processes decide to garbage col-

# wait_first_digit(A) ->
receive 10 {

A ? digit(D) =>
stop_tone(A),
received_digit(A,[],D);

A ? on_hook =>
stop_tone(A),
idle(A);

timeout =>
stop_tone(A),
wait_clear(A);

Other =>
wait_first_digit(A)

}.

Erlang in 1988

wait_first_digit(A) ->
receive

{A, {digit, D}} ->
stop_tone(A),
received_digit(A,[],D);

{A, on_hook} ->
stop_tone(A),
idle(A);

Other ->
wait_first_digit(A)

after 10 ->
stop_tone(A),
wait_clear(A)

end.

Erlang today

Figure 4. Erlang in 1988 and today.

lect all at the same time? Would programmers be able to structure
their applications using many small processes, or would they use
one large process? If they did use one large process, what would
happen when it performed a garbage collection? Would the system
stop? In practice our fears were unfounded. Process garbage col-
lections seem to occur at random and programmers very rarely use
a single large process to do everything. Current systems run with
tens to hundreds of thousands of processes and it seems that when
you have such large numbers of processes, the effects of GC in an
individual process are insignificant.

4.5 How receive changed and why
The early syntax of Erlang came straight from Prolog. Erlang was
implemented directly in Prolog using a careful choice of infix
operators. Figure 4 adapted from [2] shows a section of a telephony
program from 1988 and the corresponding program as it would be
written today. Notice there are two main changes:

First, in the 1988 example, patterns were represented by Prolog
terms, thus digit(D) represents a pattern. In modern Erlang, the
same syntax represents a function call and the pattern is written
{digit,D}.

The second change has to do with how message reception pat-
terns were written. The syntax:

Proc ! Message

means send a message, while:

receive {
Proc1 ? Mess1 =>

Actions1;
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rpc(Pid, Query) ->
Pid ! {self(), Query},
receive
{Pid, Reply} ->

Reply
end.

Client code

server(Data) ->
receive
{From, Query} ->

{Reply,Data1} = F(Query,Data),
From ! {self(), Reply},
server(Data1)

end.

Server Code

Figure 5. Client and server code for a remote procedure call.

Proc2 ? Mess2 =>
Actions2;
...

}

means try to receive a message Mess1 from Proc1, in which case
perform Actions1; otherwise try to receive Mess2 from Proc2,
etc. The syntax Proc?Message seemed at first the obvious choice
to denote message reception and was mainly chosen for reasons of
symmetry. After all if A!B means send a message then surely A?B
should mean receive a message.

The problem with this is that there is no way to hide the identity
of the sender of a message. If a process A sends a message to B, then
receiving the message with a pattern of the form P?M where P and
M are unbound variables always results in the identity of A being
bound to P. Later we decided that this was a bad idea and that the
sender should be able to choose whether or not it reveals its identity
to the process that it sends a message to. Thus if A wants to send
a message M to a process B and reveal its identity, we could write
the code which sends a message as B!{self(),M} or, if it did not
wish to reveal its identity, we could write simply B!M. The choice
is not automatic but is decided by the programmer.

This leads to the common programming idiom for writing a
remote procedure call whereby the sender must alway include its
own Pid11 (the Pid to reply to) in the message sent to a server. The
way we do this today is shown in Figure 9.

Note that we can also use the fact that processes do not reveal
their identity to write secure code and to fake the identity of a
process. If a message is sent to a process and that message contains
no information about the sender, then there is no way the receiver
of the message can know from whom the message was sent. This
can be used as the basis for writing secure code in Erlang.

Finally, faked message Pids can be used for delegation of re-
sponsibilities. For example, much of the code in the IO subsystem
is written with {Request,ReplyTo,ReplyAs} messages, where
Request is a term requesting some kind of IO service. ReplyTo
and ReplyAs are Pids. When the final process to perform the
operation has finished its job, it sends a message by evaluating
ReplyTo!{ReplyAs,Result}. If this is then used in code in the
RPC programming idiom in Figure 5, the code essentially fakes the
Pid of the responding process.

Now the point of all this argument, which might seem rather
obscure, is that a seemingly insignificant change to the surface

11 Process Identifier.

syntax, i.e. breaking the symmetry between A!B and A?B, has
profound consequences on security and how we program. And it
also explains the hour-long discussions over the exact placement of
commas and more importantly what they mean.12

4.6 Years pass ...
The next change was the addition of distribution to the language.
Distribution was always planned but never implemented. It seemed
to us that adding distribution to the language would be easy since
all we had to do was add message passing to remote processes and
then everything should work as before.

At this time, we were only interested in connecting conventional
sequential computers with no shared memory. Our idea was to
connect stock hardware through TCP/IP sockets and run a cluster
of machines behind a corporate firewall. We were not interested in
security since we imagined all our computers running on a private
network with no external access. This architecture led to a form of
all-or-nothing security that makes distributed Erlang suitable for
programming cluster applications running on a private network,
but unsuitable for running distributed applications where various
degrees of trust are involved.

1990
In 1990 Claes (Klacke) Wikström joined the Lab—Klacke had been
working in another group at Ellemtel and once he became curious
about what we were doing we couldn’t keep him away. Klacke
joined and the Erlang group expanded to four.

ISS’90
One of the high points of 1990 was ISS’90 (International Switching
Symposium), held in Stockholm. ISS’90 was the first occasion
where we actively tried to market Erlang. We produced a load of
brochures and hired a stall at the trade fair and ran round-the clock
demonstrations of the Erlang system. Marketing material from this
period is shown in Figures 6 and 7.

At this time, our goal was to try and spread Erlang to a number
of companies in the telecoms sector. This was viewed as strate-
gically important—management had the view that if we worked
together with our competitors on research problems of mutual in-
terest, this would lead to successful commercial alliances. Ericsson
never really had the goal of making large amounts of money by
selling Erlang and did not have an organisation to support this goal,
but it was interested in maintaining a high technical profile and in-
teracting with like-minded engineers in other companies.

1991
In 1991, Klacke started work on adding distribution to Erlang,
something that had been waiting to be done for a long time. By
now, Erlang had spread to 30 sites. The mechanisms for this spread
are unclear, but mostly it seems to have been by word-of-mouth.
Often we would get letters requesting information about the system
and had no idea where they had heard about it. One likely mech-
anism was through the usenet mailing lists where we often posted
to comp.lang.functional. Once we had established a precedent of
releasing the system to Bellcore, getting the system to subsequent
users was much easier. We just repeated what we’d done for Bell-
core. Eventually after we had released the system to a dozen or so
users, our managers and lawyers got fed up with our pestering and
let us release the system to whomever we felt like, provided they
signed a non-disclosure agreement.

12 All language designers are doubtless familiar with the phenomenon that
users will happily discuss syntax for hours but mysteriously disappear when
the language designer wants to talk about what the new syntax actually
means.
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Figure 6. Early internal marketing – the relationship between Er-
lang and PLEX.

Figure 7. Erlang marketing – the relation of Erlang to other lan-
guages.

Also, Ericsson Business Communications ported Erlang to the
FORCE computer and real-time OS VxWorks; these were our first
steps towards an embedded system. This port was driven by product
requirements since the mobility server at the time ran on VxWorks.
We also ported Erlang to virtually all operating systems we had
access to. The purpose of these ports was to make the language
accessible to a large set of users and also to improve the quality
of the Erlang system itself. Every time we ported the system to a
new OS we found new bugs that emerged in mysterious ways, so
porting to a large number of different OSs significantly improved
the quality of the run-time system itself.

1992
In 1992, we got permission to publish a book and it was decided
to commercialize Erlang. A contract was signed with Prentice Hall
and the first Erlang book appeared in the bookshops in May 1993.

Even this decision required no small measure of management
persuasion—this was definitely not how Ericsson had done things
in the past; earlier languages like PLEX had been clothed in se-

crecy. Management’s first reaction at the time was “if we’ve done
something good, we should keep quiet about it”, quite the opposite
to today’s reaction to the open-source movement.

The decision to publish a book about Erlang marked a change in
attitude inside Ericsson. The last language developed by Ericsson
for programming switches was PLEX. PLEX was proprietary: very
few people outside Ericsson knew anything about PLEX and there
were no PLEX courses in the universities and no external market
for PLEX programs or programmers. This situation had advantages
and disadvantages. The major advantage was that PLEX gave Eric-
sson a commercial advantage over its competitors, who were pre-
sumed to have inferior technologies. The disadvantages had to do
with isolation. Because nobody else used PLEX, Ericsson had to
maintain everything to do with PLEX: write the compilers, hold
courses, everything.

AT&T, however, had taken a different approach with C and
C++. Here, the burden of supporting these languages was shared
by an entire community and isolation was avoided. The decision to
publish an Erlang book and to be fairly open about what we did
was therefore to avoid isolation and follow the AT&T/C path rather
than the Ericsson/PLEX path. Also in 1992 we ported Erlang to
MS-DOS windows, the Mac, QNX and VxWorks.

The Mobility Server project, which was based upon the suc-
cessful ACS/Dunder study, was started about two years after the
ACS/Dunder project finished. Exactly why the mobility server
project lost momentum is unclear. But this is often the way it hap-
pens: periods of rapid growth are followed by unexplained periods
when nothing much seems to happen. I suspect that these are the
consolidation periods. During rapid growth, corners get cut and
things are not done properly. In the periods between the growth,
the system gets polished. The bad bits of code are removed and
reworked. On the surface not much is happening, but under the
surface the system is being re-engineered.

1993
In May, the Erlang book was published.

4.7 Turbo Erlang
In 1993, the Turbo Erlang system started working. Turbo Erlang
was the creation of Bogumil (Bogdan) Hausman who joined the
Lab from SICS.13 For bizarre legal reasons the name Turbo Erlang
was changed to BEAM.14 The BEAM compiler compiled Erlang
programs to BEAM instructions.

The BEAM instructions could either be macro expanded into C
and subsequently compiled or transformed into instructions for a
32-bit threaded code interpreter. BEAM programs compiled to C
ran about ten times faster than JAM interpreted programs, and the
BEAM interpreted code ran more than three times faster than the
JAM programs.

Unfortunately, BEAM-to-C compiled programs increased code
volumes, so it was not possible to completely compile large appli-
cations into C code. For a while we resolved this by recommending
a hybrid approach. A small number of performance-critical mod-
ules would be compiled to C code while others would be inter-
preted.

The BEAM instruction set used fixed-length 32-bit instructions
and a threaded interpreter, as compared to the JAM, which had
variable length instructions and was a byte-coded interpreter. The
threaded BEAM code interpreter was much more efficient than the
JAM interpreter and did not suffer from the code expansion that
compilation to C involved. Eventually the BEAM instruction set
and threaded interpreter was adopted and the JAM phased out.

13 Swedish Institute of Computer Science.
14 Bogdan’s Erlang Abstract Machine.
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I should say a little more about code size here. One of the main
problems in many products was the sheer volume of object code.
Telephone switches have millions of lines of code. The current
software for the AXD301, for example, has a couple of millions
lines of Erlang and large amounts of sourced C code. In the mid-
’90s when these products were developed, on-board memory sizes
were around 256 Mbytes. Today we have Gbyte memories so the
problem of object code volume has virtually disappeared, but it was
a significant concern in the mid-’90s. Concerns about object-code
memory size lay behind many of the decisions made in the JAM
and BEAM instruction sets and compilers.

4.8 Distributed Erlang
The other major technical event in 1993 involved Distributed Er-
lang. Distribution has always been planned but we never had time to
implement it. At the time all our products ran on single processors
and so there was no pressing need to implement distribution. Dis-
tribution was added as part of our series of ongoing experiments,
and wasn’t until 1995 and the AXD301 that distribution was used
in a product.

In adding distribution, Klacke hit upon several novel imple-
mentation tricks. One particularly worthy of mention was the atom
communication cache described in [30], which worked as follows:

Imagine we have a distributed system where nodes on different
hosts wish to send Erlang atoms to each other. Ideally we could
imagine some global hash table, and instead of sending the textual
representation of the atom, we would just send the atom’s hashed
value. Unfortunately, keeping such a hash table consistent is a hard
problem. Instead, we maintain two synchronised hash tables, each
containing 256 entries. To send an atom we hashed the atom to a
single byte and then looked this up in the local hash table. If the
value was in the hash table, then all we needed to do was to send to
the remote machine a single byte hash index, so sending an atom
between machines involved sending a single byte. If the value was
not in the hash table, we invalidated the value in the cache and sent
the textual representation of the atom.

Using this strategy, Klacke found that 45% of all objects sent
between nodes in a distributed Erlang system were atoms and
that the hit rate in the atom cache was around 95%. This simple
trick makes Erlang remote procedure calls run somewhat faster
for complex data structures than, for example, the SunOS RPC
mechanism.

In building distributed Erlang, we now had to consider prob-
lems like dropped messages and remote failures. Erlang does not
guarantee that messages are delivered but it does provide weaker
guarantees on message ordering and on failure notification.

The Erlang view of the world is that message passing is un-
reliable, so sending a message provides no guarantee that it will
be received. Even if the message were to be received, there is no
guarantee that the message will be acted upon as you intended. We
therefore take the view that if you want confirmation that a message
has been received, then the receiver must send a reply message and
you will have to wait for this message. If you don’t get this reply
message, you won’t know what happened. In addition to this there
is a link mechanism, which allows one process to link to another.
The purpose of the link is to provide an error monitoring mecha-
nism. If a process that you are linked to dies, you will be sent an
error signal that can be converted to an error message.

If you are linked to a process and send a stream of messages
to that process, it is valid to assume that no messages will be
dropped, that the messages are not corrupted and that the messages
will arrive at that process in the order they were sent or that an
error has occurred and you will be sent an error signal. All of
this presumes that TCP/IP is itself reliable, so if you believe that

Figure 8. Robert Virding hard at work in the lab (1993).

TCP/IP is reliable then message passing between linked processes
is reliable.

4.9 Spreading Erlang
In April 1993, a new company called Erlang Systems AB was
formed, which was owned by Ericsson Programatic. The goal was
to market and sell Erlang to external companies. In addition, Erlang
Systems was to take over responsibility for training and consulting
and the production of high-quality documentation.

Erlang Systems also provided the main source of employment
for the “Uppsala boys”. These were former computer science stu-
dents from the University of Uppsala who had completed their
Master’s thesis studies with an Erlang project. Many of these stu-
dents started their careers in Erlang Systems and were subsequently
hired out to Ericsson projects as internal consultants. This proved a
valuable way of “kick-starting” a project with young and enthusi-
astic graduate students who were skilled in Erlang.

Another memorable event of 1993 was the Erlang display at the
trade fair held in October in Stockholm. The main demonstrator at
the display was a program which simultaneously controlled a small
telephone exchange15 and a model train. Figure 8 shows Robert
Virding hard at work in the Lab programming the model train.
To the immediate right of the computer behind the train set is the
MD100 LIM. Following the trade fair, for several years, we used
the train set for programming exercises in Erlang courses, until the
points wore out through excessive use. While the control software
was fault-tolerant, the hardware was far less reliable and we were
plagued with small mechanical problems.

4.10 The collapse of AXE-N
In December 1995, a large project at Ellemtel, called AXE-N, col-
lapsed. This was the single most important event in the history of
Erlang. Without the collapse of AXE-N, Erlang would have still re-
mained a Lab experiment and the effort to turn it into a commercial-
quality product would not have happened. The difference is the
many thousands of hours of work that must be done to produce
high-quality documentation and to produce and test extensive li-
braries. AXE-N was a project aimed at developing a new generation
of switching products ultimately to replace the AXE10 system. The
AXE-N project had developed a new hardware platform and system
software that was developed in C++.

Following a series of crisis meetings the project was reorgan-
ised and re-started. This time the programming language would be

15 MD110 LIM (Line Interface Module).
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Erlang and hardware from the AXE-N project was salvaged to start
the production of a new ATM16 switch, to be called the AXD. This
new project was to be the largest-ever Erlang project so far, with
over 60 Erlang programmers. At the start of the AXD project, the
entire Erlang system was the responsibility of half a dozen peo-
ple in the Lab. This number was viewed as inadequate to support
the needs of a large development project and so plans were im-
mediately enacted to build a product unit, called OTP, to officially
support the Erlang system. At this time all external marketing of Er-
lang was stopped, since all available “resources” should now focus
on internal product development.

OTP stands for the “Open Telecom Platform” and is both the
name of the Erlang software distribution and the name of an Erics-
son product unit, which can be somewhat confusing. The OTP unit
started in the Lab but in 1997 was formed as a new product unit
outside the Lab. Since 1997, the OTP unit has been responsible for
the distribution of Erlang.

4.11 BOS – OTP and behaviors
Alongside the Erlang language development, the question of li-
braries and middleware has always been important. Erlang is just
a programming language, and to build a complete system some-
thing more than just a programming language is needed. To build
any significant body of software you need not only a programming
language but a significant set of libraries and some kind of oper-
ating system to run everything on. You also need a philosophy of
programming—since you cannot build a large body of software in
an ad-hoc manner without some guiding principles.

The collective name for Erlang, all the Erlang libraries, the
Erlang run-time system and descriptions of the Erlang way of doing
things is the OTP system. The OTP system contains:

• Libraries of Erlang code.
• Design patterns for building common applications.
• Documentation.
• Courses.
• How to’s.

The libraries are organised and described in a conventional man-
ner. They also have pretty conventional semantics. One reviewer of
this paper asked how we integrated side effects with our language,
for example what happens if a open file handle is sent in a mes-
sage to two different processes. The answer is that side effects like
this are allowed. Erlang is not a strict side-effect-free functional
language but a concurrent language where what happens inside a
process is described by a simple functional language. If two differ-
ent processes receive a Pid representing a file, both are free to send
messages to the file process in any way they like. It is up to the
logic of the application to prevent this from happening.

Some processes are programmed so that they only accept mes-
sages from a particular process (which we call the owning process).
In this case problems due to sharing a reference can be avoided, but
code libraries do not necessarily have to follow such a convention.

In practice this type of problem rarely presents problems. Most
programmers are aware of the problems that would arise from
shared access to a resource and therefore use mnesia transactions
or functions in the OTP libraries if they need shared access to a
resource.

What is more interesting is the set of design patterns included
in the OTP system. These design patterns (called behaviors) are
the result of many years’ experience in building fault-tolerant sys-
tems. They are typically used to build things like client-server mod-

16 Asynchronous Transfer Mode.

-module(server).
-export([start/2, call/2, change_code/2]).

start(Fun, Data) ->
spawn(fun() -> server(Fun, Data) end).

call(Server, Args) ->
rpc(Server, {query, Args}}

change_code(Server, NewFunction) ->
rpc(Server, {new_code, NewFunction}).

rpc(Server, Query) ->
Server ! {self(), Query},
receive

{Server, Reply} -> Reply
end.

server(Fun, Data) ->
receive

{From, {query, Query}} ->
{Reply, NewData} = Fun(Query, Data),
From ! {self(), Reply},
server(Fun, NewData);

{from, {swap_code, NewFunction} ->
From ! {self(), ack},
server(Data, NewFunction)

end.

Figure 9. A generic client-server model with hot-code replace-
ment.

els, event-handling systems etc. Behaviors in Erlang can be thought
of as parameterizable higher-order parallel processes. They repre-
sent an extension of conventional higher-order functions (like map
,fold etc) into a concurrent domain.

The design of the OTP behaviors was heavily influenced by
two earlier efforts. The first was a system called BOS.17 BOS
was an application operating system written at Bollmora in Erlang
specifically for the Mobility Server project. The BOS had solved a
number of problems in a generic manner, in particular how to build
a generic server and how to build a generic kind of error supervisor.
Most of this had been done by Peter Högfeldt. The second source
of inspiration was a generic server implemented by Klacke.

When the OTP project started, I was responsible for the overall
technology in the project and for developing a new set of behav-
iors that could be used for building fault-tolerant systems. This in
turn led to the development of a dozen or so behaviors, all of which
simplify the process of building a fault-tolerant system. The behav-
iors abstract out things like failure so that client-server models can
be written using simple functional code in such a manner that the
programmer need only be concerned with the functionality of the
server and not what will happen in the event of failure or distribu-
tion. This part of the problem is handled by the generic component
of the behavior.

The other two people who were heavily involved in the develop-
ment of the behaviors were Martin Björklund and Magnus Fröberg.
Unfortunately space limitations preclude a more extensive treat-
ment of behaviors. Figure 9 has a greatly simplified sketch of a
client-server behavior. Note that this model provides the normal
functionality of a client-server and the ability to hot-swap the code.
The rationale behind behaviors and a complete set of examples can
be found in [7].

17 Basic Operating System.
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4.12 More language changes
During the period 1989 to 1998, i.e. from the existence of a stable
JAM-based system and up to the release of Open Source Erlang,
a number of changes crept into the language. These can be cate-
gorised as major or minor changes. In this context, minor means
that the change could be categorised as a simple incremental im-
provement to the language. Minor changes suggest themselves all
the time and are gradually added to the language without much dis-
cussion. Minor changes make the programmer’s life a lot easier, but
do not affect how we think about the programming process itself.
They are often derived from ideas in conventional programming
languages that are assimilated into Erlang.

The minor changes which were added included:

• Records.
• Macros.
• Include files.
• Infix notation for list append and subtract (”++” and ”–”).

The major changes are covered in the following sections.

4.13 Influence from functional programming
By now the influence of functional programming on Erlang was
clear. What started as the addition of concurrency to a logic lan-
guage ended with us removing virtually all traces of Prolog from
the language and adding many well-known features from functional
languages.

Higher-order functions and list comprehensions were added to
the language. The only remaining signs of the Prolog heritage lie in
the syntax for atoms and variables, the scoping rules for variables
and the dynamic type system.

4.14 Binaries and the bit syntax
A binary is a chunk of untyped data, a simple memory buffer with
no internal structure. Binaries are essential for storing untyped data
such as the contents of a file or of a data packet in a data commu-
nication protocol. Typical operations on a binary often include di-
viding it into two, according to some criteria, or combining several
small binaries to form a larger binary. Often binaries are passed un-
modified between processes and are used to carry input/output data.
Handling binary data efficiently is an extremely difficult problem
and one which Klacke and Tony Rogvall spent several years imple-
menting.

Internally binaries are represented in several different ways, de-
pending upon how and when they were created and what has hap-
pened to them since their creation. Sending messages containing
binaries between two processes in the same node does not involve
any copying of the binaries, since binaries are kept in a separate
reference-counted storage area that is not part of the stack and heap
memory which each process has.

The bit syntax [27] is one of those unplanned things that was
added in response to a common programming problem. Klacke and
Tony had spent a long time implementing various low-level com-
munication protocols in Erlang. In so doing, the problem of pack-
ing and unpacking bit fields in binary data occurred over and over
again. To unpack or pack such a data structure, Tony and Klacke
invented the bit syntax and enhanced Erlang pattern matching to
express patterns over bit fields.

As an example, suppose we have a sixteen-bit data structure
representing a ten-bit counter, three one-bit flags and a three-bit
status indicator. The Erlang code to unpack such a structure is:

<<N:10,Flag1:1,Flag2:1,Flag3:1,Status:3>> = B
This is one of those simple ideas which after you have seen it

makes you wonder how any language could be without it. Using

the bit syntax yields highly optimised code that is extremely easy
to write and fits beautifully with the way most low-level protocols
are specified.

4.15 Mnesia ETS tables and databases
In developing large-scale telecommunications applications it soon
became apparent that the “pure” approach of storing data could not
cope with the demands of a large project and that some kind of
real-time database was needed. This realization resulted in a DBMS
called Mnesia18 [24, 25, 21]. This work was started by Klacke but
soon involved Hans Nilsson, Törbjörn Törnkvist, Håkan Matsson
and Tony Rogvall. Mnesia had both high- and low-level compo-
nents. At the highest level of abstract was a new query language
called Mnemosyne (developed by Hans Nilsson) and at the lowest
level were a set of primitives in Erlang with which Mnesia could be
written. Mnesia satisfied the following requirements (from [21]):

1. Fast Key/Value lookup.

2. Complicated non real-time queries, mainly for operation and
maintenance.

3. Distributed data due to distributed applications.

4. High fault tolerance.

5. Dynamic reconfiguration.

6. Complex objects.

In order to implement Mnesia in Erlang, one additional Erlang
module had to be developed. This was the Erlang module ets ,
short for Erlang term storage. Ets provided low-level destructive
term storage based on extensible hash tables. Although ets looks
as if it had been implemented in Erlang (i.e. it is an Erlang mod-
ule), most of its implementation is contained in the Erlang virtual
machine implementation.

4.16 High-performance Erlang
The HiPE (High-Performance Erlang) project is a research project
at the Department of Information Technology at the University of
Uppsala. The HiPE team have concentrated on efficient implemen-
tation of Erlang and type checking systems for Erlang. This project
runs in close collaboration with members of the OTP group. Since
2001, the HiPE native code compiler has been an integral part of
the Open Source Erlang distribution.

4.17 Type inference of Erlang programs
Erlang started life as a Prolog interpreter and has always had a
dynamic type system, and for a long time various heroic attempts
have been made to add a type system to Erlang. Adding a type
system to Erlang seems at first a moderately difficult endeavour,
which on reflection becomes impossibly difficult.

The first attempt at a type system was due to an initiative taken
by Phil Wadler. One day Phil phoned me up and announced that a)
Erlang needed a type system, b) he had written a small prototype of
a type system and c) he had a one year’s sabbatical and was going to
write a type system for Erlang and “were we interested?” Answer
—“Yes.”

Phil Wadler and Simon Marlow worked on a type system for
over a year and the results were published in [20]. The results of
the project were somewhat disappointing. To start with, only a sub-
set of the language was type-checkable, the major omission being
the lack of process types and of type checking inter-process mes-
sages. Although their type system was never put into production,

18 The original name was Amnesia until a senior Ericsson manager noticed
the name. “It can’t possible be called Amnesia,” he said, “the name must be
changed” — and so we dropped the “a.”
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it did result in a notation for types which is still in use today for
informally annotating types.

Several other projects to type check Erlang also failed to pro-
duce results that could be put into production. It was not until the
advent of the Dialyzer19 [18] that realistic type analysis of Erlang
programs became possible. The Dialyzer came about as a side-
effect of the HiPE project mentioned earlier. In order to efficiently
compile Erlang, a type analysis of Erlang programs is performed.
If one has precise information about the type of a function, spe-
cialised code can be emitted to compile that function, otherwise
generic code is produced. The HiPE team took the view that com-
plete information about all the types of all the variables in all the
statements of an Erlang program was unnecessary and that any def-
inite statements about types, even of a very small subsection of a
program, provided useful information that could guide the compiler
into generating more efficient code.

The Dialyzer does not attempt to infer all types in a program, but
any types it does infer are guaranteed to be correct, and in particular
any type errors it finds are guaranteed to be errors. The Dialyzer is
now regularly used to check large amounts of production code.

5. Part IV: 1998 – 2001. Puberty problems — the
turbulent years

1998 was an exciting year in which the following events occurred:

• The first demo of GPRS20 developed in Erlang was demon-
strated at the GSM World Congress in February and at CeBIT
in March.

• In February, Erlang was banned inside Ericsson Radio Systems.
• In March, the AXD301 was announced. This was possibly the

largest ever program in a functional language.
• In December, Open Source Erlang was released.
• In December, most of the group that created Erlang resigned

from Ericsson and started a new company called Bluetail AB.

5.1 Projects Succeed
In 1998, the first prototype of a GPRS system was demonstrated
and the Ericsson AXD301 was announced. Both these systems
were written in a mixture of languages, but the main language for
control in both systems was Erlang.

The largest ever system built in Erlang was the AXD301. At the
time of writing, this system has 2.6 millions lines of Erlang code.
The success of this project demonstrates that Erlang is suitable
for large-scale industrial software projects. Not only is the system
large in terms of code volume, it is also highly reliable and runs in
realtime. Code changes in the system have to be performed without
stopping the system. In the space available it is difficult to describe
this system adequately so I shall only give a brief description of
some of the characteristics.

The AXD301 is written using distributed Erlang. It runs on a
cluster using pairs of processors and is scalable up to 16 pairs
of processors. Each pair is “self contained,” which means that if
one processor in the pair fails, the other takes over. The take-
over mechanisms and call control are all programmed in Erlang.
Configuration data and call control data are stored in a Mnesia
database that can be accessed from any node and is replicated
on several nodes. Individual nodes can be taken out of service
for repair, and additional nodes can be added without interrupting
services.

19 DIscrepancy AnaLYZer of ERlang programs.
20 General Packet Radio Service.

The software for the system is programmed using the behaviors
from the OTP libraries. At the highest level of abstraction are a
number of so-called “supervision trees”—the job of a node in the
supervision tree is to monitor its children and restart them in the
event of failure. The nodes in a decision tree are either supervision
trees or primitive OTP behaviors. The primitive behaviors are used
to model client-servers, event-loggers and finite-state machines.
In the analysis of the AXD reported in [7], the AXD used 20
supervision trees, 122 client-server models, 36 event loggers and
10 finite-state machines.

All of this was programmed by a team of 60 programmers. The
vast majority of these programmers had an industrial background
and no prior knowledge of functional or concurrent programming
languages. Most of them were taught Erlang by the author and his
colleagues. During this project the OTP group actively supported
the project and provided tool support where necessary. Many in-
house tools were developed to support the project. Examples in-
clude an ASN.1 compiler and in-built support for SNMP in Mne-
sia.

The OTP behaviors themselves were designed to be used by
large groups of programmers. The idea was that there should be
one way to program a client-server and that all programmers who
needed to implement a client server would write plug-in code
that slotted into a generic client-server framework. The generic
server framework provided code for all the tricky parts of a client-
server, taking care of things like code change, name registration,
debugging, etc. When you write a client-server using the OTP
behaviors you need only write simple sequential functions: all the
concurrency is hidden inside the behavior.

The intention in the AXD was to write the code in as clear a
manner as possible and to mirror the specifications exactly. This
turned out to be impossible for the call control since we ran into
memory problems. Each call needed six processes and processing
hundreds of thousands of calls proved impossible. The solution
to this was to use six processes per call only when creating and
destroying a call. Once a call had been established, all the processes
responsible for the call were killed and data describing the call was
inserted into the real-time database. If anything happened to the
call, the database entry was retrieved and the call control processes
recreated.

The AXD301 [8] was a spectacular success. As of 2001, it
had 1.13 million lines of Erlang code contained in 2248 modules
[7]. If we conservatively estimate that one line of Erlang would
correspond to say five lines of C, this corresponds to a C system
with over six million lines of code.

As regards reliability, the AXD301 has an observed nine-nines
reliability [7]—and a four-fold increase in productivity was ob-
served for the development process [31].

5.2 Erlang is banned
Just when we thought everything was going well, in 1998, Erlang
was banned within Ericsson Radio AB (ERA) for new product
development. This ban was the second most significant event in
the history of Erlang: It led indirectly to Open Source Erlang and
was the main reason why Erlang started spreading outside Ericsson.
The reason given for the ban was as follows:

The selection of an implementation language implies a more
long-term commitment than the selection of a processor and
OS, due to the longer life cycle of implemented products.
Use of a proprietary language implies a continued effort to
maintain and further develop the support and the develop-
ment environment. It further implies that we cannot easily
benefit from, and find synergy with, the evolution following
the large scale deployment of globally used languages. [26]
quoted in [12].
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In addition, projects that were already using Erlang were al-
lowed to continue but had to make a plan as to how dependence
upon Erlang could be eliminated. Although the ban was only within
ERA, the damage was done. The ban was supported by the Erics-
son technical directorate and flying the Erlang flag was thereafter
not favored by middle management.

5.3 Open Source Erlang
Following the Erlang ban, interest shifted to the use of Erlang
outside Ericsson.

For some time, we had been distributing Erlang to interested
parties outside Ericsson, although in the form of a free evaluation
system subject to a non-disclosure agreement. By 1998, about 40
evaluation systems had been distributed to external users and by
now the idea of releasing Erlang subject to an open source license
was formed. Recall that at the start of the Erlang era, in 1986,
“open source” was unheard of, so in 1986 everything we did was
secret. By the end of the era, a significant proportion of the software
industry was freely distributing what they would have tried to sell
ten years earlier—as was the case with Erlang.

In 1998, Jane Walerud started working with us. Jane had the job
of marketing Erlang to external users but soon came to the conclu-
sion that this was not possible. There was by now so much free
software available that nobody was interested in buying Erlang.
We agreed with Jane that selling Erlang was not viable and that
we would try to get approval to release Erlang subject to an open
source license. Jane started lobbying the management committee
that was responsible for Erlang development to persuade it to ap-
prove an open source release. The principal objection to releasing
Erlang as Open Source was concerned with patents, but eventually
approval was obtained to release the system subject to a patent re-
view. On 2 December 1998, Open Source Erlang was announced.

5.4 Bluetail formed
Shortly after the open source release, the majority of the original
Erlang development team resigned from Ericsson and started a new
company called Bluetail AB with Jane as the chief executive. In
retrospect the Erlang ban had the opposite effect and stimulated the
long-term growth of Erlang. The ban led indirectly to Open Source
Erlang and to the formation of Bluetail. Bluetail led in its turn to the
introduction of Erlang into Nortel Networks and to the formation
of a small number of Erlang companies in the Stockholm region.

When we formed Bluetail, our first decision was to use Erlang
as a language for product development. We were not interested
in further developing the language nor in selling any services re-
lated to the language. Erlang gave us a commercial advantage and
we reasoned that by using Erlang we could develop products far
faster than companies using conventional techniques. This intuition
proved to be correct. Since we had spent the last ten years designing
and building fault-tolerant telecoms devices, we turned our atten-
tion to Internet devices, and our first product was a fault-tolerant
e-mail server called the mail robustifier.

Architecturally this device has all the characteristics of a switch-
ing system: large numbers of connections, fault-tolerant service,
ability to remove and add nodes with no loss of service. Given that
the Bluetail system was programmed by most of the people who
had designed and implemented the Erlang and OTP systems, the
project was rapidly completed and had sold its first system within
six months of the formation of the company. This was one of the
first products built using the OTP technology for a non-telecoms
application.

5.5 The IT boom – the collapse and beyond
From 1998 to 2000 there were few significant changes to Erlang.
The language was stable and any changes that did occur were

under the surface and not visible to external users. The HiPE team
produced faster and faster native code compilers and the Erlang
run-time system was subject to continual improvement and revision
in the capable hands of the OTP group.

Things went well for Bluetail and in 2000, the company was
acquired by Alteon Web systems and six days later Alteon was
acquired by Nortel Networks. Jane Walerud was voted Swedish
IT person of the year. Thus is was that Erlang came to Nortel
Networks. The euphoric period following the Bluetail acquisition
was short-lived. About six months after the purchase, the IT crash
came and Nortel Networks fired about half of the original Bluetail
gang. The remainder continued with product development within
Nortel.

6. Part V: 2002 – 2005. Coming of age
By 2002, the IT boom was over and things had begun to calm down
again. I had moved to SICS21 and had started thinking about Erlang
again. In 2002, I was fortunate in being asked to hold the opening
session at the second Lightweight Languages Symposium (held at
MIT).

6.1 Concurrency oriented programming and the future
In preparing my talk for LL2 I tried to think of a way of explaining
what we had been doing with Erlang for the last 15 years. In so
doing, I coined the phrase “concurrency oriented programming”
—at the time I was thinking of a analogy with object oriented
programming. As regards OO programming I held the view that:

• An OO language is characterised by a vague set of rules.
• Nobody agrees as to what these rules are.
• Everybody knows an OO language when they see one.

Despite the fact that exactly what constitutes an OO language
varies from language to language, there is a broad understanding of
the principles of OO programming and software development. OO
software development is based first upon the identification of a set
of objects and thereafter by the sets of functions that manipulate
these objects.

The central notion in concurrency oriented programming (COP)
is to base the design on the concurrency patterns inherent in the
problem. For modelling and programming real-world objects this
approach has many advantages—to start with, things in the real
world happen concurrently. Trying to model real-world activities
without concurrency is extremely difficult.

The main ideas in COP are:

• Systems are built from processes.
• Process share nothing.
• Processes interact by asynchronous message passing.
• Processes are isolated.

By these criteria both PLEX and Erlang can be described as
concurrency oriented languages.

This is then what we have been doing all along. The original
languages started as a sequential language to which I added pro-
cesses, but the goal of this was to produce lightweight concurrency
with fast message passing.

The explanations of what Erlang was have changed with time:

1. 1986 – Erlang is a declarative language with added concurrency.

2. 1995 – Erlang is a functional language with added concurrency.

21 Swedish Institute of Computer Science.
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3. 2005 – Erlang is a concurrent language consisting of communi-
cating components where the components are written in a func-
tional language. Interestingly, this mirrors earlier work in Eri-
Pascal where components were written in Pascal.

Now 3) is a much better match to reality than ever 1) or 2) was.
Although the functional community was always happy to point
to Erlang as a good example of a functional language, the status
of Erlang as a fully fledged member of the functional family is
dubious. Erlang programs are not referentially transparent and there
is no system for static type analysis of Erlang programs. Nor is it a
relational language. Sequential Erlang has a pure functional subset,
but nobody can force the programmer to use this subset; indeed,
there are often good reasons for not using it.

Today we emphasize the concurrency. An Erlang system can be
thought of as a communicating network of black boxes. If two black
boxes obey the principle of observational equivalence, then for all
practical purposes they are equivalent. From this point of view, the
language used inside the black box is totally irrelevant. It might
be a functional language or a relational language or an imperative
language—in understanding the system this is an irrelevant detail.

In the Erlang case, the language inside the black box just hap-
pens to be a small and rather easy to use functional language, which
is more or less a historical accident caused by the implementation
techniques used.

If the language inside the black boxes is of secondary impor-
tance, then what is of primary importance? I suspect that the impor-
tant factor is the interconnection paths between the black boxes and
the protocols observed on the channels between the black boxes.

As for the future development of Erlang, I can only speculate.
A fruitful area of research must be to formalise the interprocess
protocols that are used and observed. This can be done using syn-
chronous calculi, such as CSP, but I am more attracted to the idea
of protocol checking, subject to an agreed contract. A system such
as UBF [6] allows components to exchange messages according to
an agreed contract. The contract is checked dynamically, though I
suspect that an approach similar to that used in the Dialyzer could
be used to remove some of the checks.

I also hope that the Erlang concurrency model and some of the
implementation tricks22 will find their way into other programming
languages. I also suspect that the advent of true parallel CPU
cores will make programming parallel systems using conventional
mutexes and shared data structures almost impossibly difficult, and
that the pure message-passing systems will become the dominant
way to program parallel systems.

I find that I am not alone in this belief. Paul Morrison [23] wrote
a book in 1992 suggesting that flow-based programming was the
ideal way to construct software systems. In his system, which in
many ways is very similar to Erlang, interprocess pipes between
processes are first-class objects with infinite storage capacity. The
pipes can be turned on and off and the ends connected to different
processes. This view of the world concentrates on the flow of data
between processes and is much more reminiscent of programming
in the process control industry than of conventional algorithmic
programming. The stress is on data and how it flows through the
system.

6.2 Erlang in recent times
In the aftermath of the IT boom, several small companies formed
during the boom have survived, and Erlang has successfully re-
rooted itself outside Ericsson. The ban at Ericsson has not suc-
ceeded in completely killing the language, but it has limited its
growth into new product areas.

22 Like the bit pattern matching syntax.

The plans within Ericsson to wean existing projects off Erlang
did not materialise and Erlang is slowly winning ground due to a
form of software Darwinism. Erlang projects are being delivered on
time and within budget, and the managers of the Erlang projects are
reluctant to make any changes to functioning and tested software.

The usual survival strategy within Ericsson during this time
period was to call Erlang something else. Erlang had been banned
but OTP hadn’t. So for a while no new projects using Erlang were
started, but it was OK to use OTP. Then questions about OTP
were asked: “Isn’t OTP just a load of Erlang libraries?”—and so
it became “Engine,” and so on.

After 2002 some of the surviving Bluetail members who moved
to Nortel left and started a number of 2nd-generation companies,
including Tail-F, Kreditor and Synapse. All are based in the Stock-
holm region and are thriving.

Outside Sweden the spread of Erlang has been equally excit-
ing. In the UK, an ex-student of mine started Erlang Consulting,
which hires out Erlang consultants to industry. In France, Process-
one makes web stress-testing equipment and instant-messaging so-
lutions. In South Africa, Erlang Financial Systems makes banking
software. All these external developments were spontaneous. Inter-
ested users had discovered Erlang, installed the open-source release
and started programming. Most of this community is held together
by the Erlang mailing list, which has thousands of members and
is very active. There is a yearly conference in Stockholm that is
always well attended.

Recently, Erlang servers have begun to find their way into high-
volume Internet applications. Jabber.org has adopted the ejabberd
instant messaging server, which is written in Erlang and supported
by Process-one.

Perhaps the most exciting modern development is Erlang for
multicore CPUs. In August 2006 the OTP group released Erlang for
an SMP. In most other programming communities, the challenge of
the multicore CPU is to answer the question, “How can I parallelize
my program?” Erlang programmers do not ask such questions; their
programs are already parallel. They ask other questions, like “How
can I increase the parallelism in an already parallel program?” or
“How can I find the bottlenecks in my parallel program?” but the
problem of parallelization has already been solved.

The “share nothing pure message passing” decisions we took
in the 1980s produce code which runs beautifully on a multicore
CPU. Most of our programs just go faster when we run them on a
multicore CPU. In an attempt to further increase parallelism in an
already parallel program, I recently wrote a parallel version of map
(pmap) that maps a function over a list in parallel. Running this on
a Sun Fire T2000 Server, an eight core CPU with four threads per
core, made my program go 18 times faster.

6.3 Mistakes made and lessons learnt
If we are not to make the same mistakes over and over again then
we must learn from history. Since this is the history of Erlang, we
can ask, “What are the lessons learnt? the mistakes made? what
was good? what was bad?” Here I will discuss some of what I
believe are the generic lessons to be learned from our experience
in developing Erlang, then I will talk about some of the specific
mistakes.

First the generic lessons:
The Erlang development was driven by the prototype
Erlang started as a prototype and during the early years the de-

velopment was driven by the prototype; the language grew slowly
in response to what we and the users wanted. This is how we
worked.

First we wrote the code, then we wrote the documentation.
Often the users would point out that the code did not do what
the documentation said. At this phase in the development we told
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them, “If the code and the documentation disagree then the code is
correct and the documentation wrong.” We added new things to the
language and improved the code and when things had stabilized,
we updated the documentation to agree with the code.

After a couple of years of this way of working, we had a pretty
good user’s manual [3]. At this point we changed our way of work-
ing and said that from now on the manuals would only describe
what the language was supposed to do and if the implementation
did something else then it was a bug and should be reported to us.
Once again, situations would be found when the code and the doc-
umentation did not agree, but now it was the code that was wrong
and not the documentation.

In retrospect this seems to be the right way of going about
things. In the early days it would have been totally impossible to
write a sensible specification of the language. If we had sat down
and carefully thought out what we had wanted to do before doing
it, we would have got most of the details wrong and would have
had to throw our specifications away.

In the early days of a project, it is extremely difficult to write a
specification of what the code is supposed to do. The idea that you
can specify something without having the knowledge to implement
it is a dangerous approximation to the truth. Language specifica-
tions performed without knowledge of how the implementation is
to be performed are often disastrously bad. The way we worked
here appears to be optimal. In the beginning we let our experiments
guide our progress, Then, when we knew what we were doing, we
could attempt to write a specification.

Concurrent processes are easy to compose
Although Erlang started as a language for programming switches,

we soon realized that it was ideal for programming many general-
purpose applications, in particular, any application that interacted
with the real world. The pure message-passing paradigm makes
connecting Erlang processes together extremely easy, as is inter-
facing with external applications. Erlang views the world as com-
municating black boxes, exchanging streams of message that obey
defined protocols. This make it easy to isolate and compose com-
ponents. Connecting Erlang processes together is rather like Unix
shell programming. In the Unix shell we merely pipe the output
of one program into the input of another. This is exactly how we
connect Erlang processes together: we connect the output of one
process to the input of another. In a sense this is even easier than
connecting Unix processes with a pipe, as in the Erlang case the
messages are Erlang terms that can contain arbitrary complex data
structures requiring no parsing. In distributed Erlang the output of
one program can be sent to the input of another process on another
machine, just as easily as if it had been on the same machine. This
greatly simplifies the code.

Programmers were heavily biased by what the language does
and not by what it should do

Erlang programmers often seem to be unduly influenced by the
properties of the current implementation. Throughout the develop-
ment of Erlang we have found that programming styles reflected
the characteristics of the implementation. So, for example, when
the implementation limited the maximum number of processes to a
few tens of thousands of processes, programmers were overly con-
servative in their use of processes. Another example can be found
in how programmers use atoms. The current Erlang implementa-
tion places restrictions on the maximum number of atoms allowed
in the system. This is a hard limit defined when the system is built.
The atom table is also not subject to garbage collection. This has re-
sulted in lengthy discussion on the Erlang mailing lists and a reluc-
tance to use dynamically recreated atoms in application programs.
From the implementor’s point of view, it would be better to encour-
age programmers to use atoms when appropriate and then fix the
implementation when it was not appropriate.

In extreme cases, programmers have carefully measured the
most efficient way to write a particular piece of code and then
adopted this programming style for writing large volumes of code.
A better approach would be to try to write the code as beautifully
and clearly as possible and then, if the code is not fast enough, ask
for the implementor’s help in speeding up the implementation.

People are not convinced by theory, only by practice
We have often said that things could be done (that they were

theoretically possible) but did not actually do them. Often our es-
timates of how quickly we could do something were a lot shorter
than was generally believed possible. This created a kind of cred-
itability gap where we did not implement something because we
thought it was really easy, and the management thought we did not
know what we were talking about because we had not actually im-
plemented something. In fact, both parties were probably incorrect;
we often underestimated the difficulty of an implementation and the
management overestimated the difficulty.

The language was not planned for change from the beginning
We never really imagined that the language itself would evolve

and spread outside the Lab. So there are no provisions for evolving
the syntax of the language itself. There are no introspection facil-
ities so that code can describe itself in terms of its interfaces and
versions, etc.

The language has fixed limits and boundaries
Just about every decision to use a fixed size data structure

was wrong. Originally Pids (process identifiers) were 32-bit stack
objects—this was done for “efficiency reasons.” Eventually we
couldn’t fit everything we wanted to describe a process into 32 bits,
so we moved to larger heap objects and pointers. References were
supposed to be globally unique but we knew they were not. There
was a very small possibility that two identical references might be
generated, which, of course, happened.

Now for the specific lessons:
There are still a number of areas where Erlang should be im-

proved. Here is a brief list:

We should have atom GC Erlang does not garbage collect atoms.
This means that some programs that should be written using
atoms are forced to use lists or binaries (because the atom table
might overflow).

We should have better ways interfacing foreign code Interfacing
non-Erlang code to Erlang code is difficult, because the foreign
code is not linked to the Erlang code for safety reasons. A better
way of doing this would be to run the foreign code in distributed
Erlang nodes, and allow foreign language code to be linked into
these “unsafe” nodes.

We should improve the isolation between processes Process iso-
lation is not perfect. One process can essentially perform a “de-
nial of service attack” on another process by flooding it with
messages or by going into an infinite loop to steal CPU cy-
cles from the other processes. We need safety mechanisms to
prevent this from happening.

Safe Erlang Security in distributed Erlang is “all or nothing,”
meaning that, once authenticated, a distributed Erlang node
can perform any operation on any other node in the system. We
need a security module that allows distributed nodes to process
remote code with varying degrees of trust.

We need notations to specify protocols and systems Protocols
themselves are not entities in Erlang, they are not named and
they can be inferred only by reading the code in a program. We
need more formal ways of specifying protocols and run-time
methods for ensuring that the agents involved in implementing
a protocol actually obey that protocol.
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Code should be first class Functions in Erlang are first-class, but
the modules themselves are not first-class Erlang objects. Mod-
ules should also be first-class objects: we should allow multiple
versions of module code23 and use the garbage collector to re-
move old code that can no longer be evaluated.

6.4 Finally
It is perhaps interesting to note that the two most significant factors
that led to the spread of Erlang were:

• The collapse of the AXE-N project.
• The Erlang ban.

Both of these factors were outside our control and were un-
planned. These factors were far more significant than all the things
we did plan for and were within our control. We were fortuitously
able to take advantage of the collapse of the AXE-N project by
rushing in when the project failed. That we were able to do so was
more a matter of luck than planning. Had the collapse occurred at
a different site then this would not have happened. We were able
to step in only because the collapse of the project happened in the
building where we worked so we knew all about it.

Eventually Ericsson did the right thing (using the right tech-
nology for the job) for the wrong reasons (competing technologies
failed). One day I hope they will do the right things for the right
reasons.

23 Erlang allows two versions of the same module to exist at any one time,
this is to allow dynamic code-upgrade operations.
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A. Change log of erlang.pro
24 March 1988 to 14 December 1988

/* $HOME/erlang.pro
* Copyright (c) 1988 Ericsson Telecom
* Author: Joe Armstrong
* Creation Date: 1988-03-24
* Purpose:
* main reduction engine
*
*
* Revision History:
* 88-03-24 Started work on multi processor version of erlang
* 88-03-28 First version completed (Without timeouts)
* 88-03-29 Correct small errors
* 88-03-29 Changed ’receive’ to make it return the pair
* msg(From,Mess)
* 88-03-29 Generate error message when out of goals
* i.e. program doesn’t end with terminate
* 88-03-29 added trace(on), trace(off) facilities
* 88-03-29 Removed Var :_ {....} , this can be achieved
* with {..}
* 88-05-27 Changed name of file to erlang.pro
* First major revision started - main changes
* Complete change from process to channel
* based communication here we (virtually) throw away all the
* old stuff and make a bloody great data base
* 88-05-31 The above statements were incorrect much better
* to go back to the PROPER way of doing things
* long live difference lists
* 88-06-02 Reds on run([et5]) = 245
* Changing the representation to separate the
* environment and the process - should improve things
* It did .... reds = 283 - and the program is nicer!
* 88-06-08 All pipe stuff working (pipes.pro)
* added code so that undefined functions can return
* values
* 88-06-10 moved all stuff to /dunder/sys3
* decided to remove all pipes !!!!!! why?
* mussy semantics - difficult to implement
* This version now 3.01
* Changes case, and reduce Rhs’s after =>
* to allow single elements not in list brackets
* 88-06-13 added link(Proc), unlink(Proc) to control
* error recovery.
* a processes that executes error-exit will send
* a kill signal to all currently linked processes
* the receiving processes will be killed and will
* send kill’s to all their linked processes etc.
* 88-06-14 corrected small error in kill processing
* changed name of spy communications(onloff)
* to trace comms(onloff)
* 88-06-16 added load(File) as an erlang command
* added function new_ref - retruns
* a unique reference
* 88-06-22 added structure parameter io_env
* to hold the io_environment for LIM communication
* changes required to add communication with lim ...
* no change to send or receive the hw will just appear
* as a process name (eg send(tsu(16),...)
* note have to do link(...) before doing a send
* change to top scheduler(msg(From,To,...))
* such that message is sent to Hw if To represents Hw
* following prims have been added to prims.tel
* link _hw(Hw,Proc) - send all msgs from Hw to Proc
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* unlink _hw(Hw) - stop it
* unlink _all hw -- used when initialising
* added new primitive
* init hw causes lim to be initialised
* load-magic ... links the c stuff
* simulate(onloff) -- really send to HW
* 88-06-27 Bug is bind _var ..
* foo(A,B) := zap,...
* failed when zap returned foo(aa,bb)
* 88-07-04 port to quintus --- chage $$ varaibles
* change the internal form of erlang clauses
* i.e. remove clause(...)
* 88-07-07 changed order in receive so that first entry is
* in queu is pulled out if at all possible
* 88-07-08 exit(X) X <> normal causes trace printout
* 88-09-14 ported to SICSTUS -
* changed load to eload to avoid name clash with
* SICSTUS
* 88-10-18 changed the return variable strategy.
* don’t have to say void := Func to throw away the
* return value of a function
* 88-10-18 If we hit a variable on the top of the reduction
* stack, then the last called function did not return
* a value, we bind the variable to undefined
* (this means that write,nl,... etc) now all return
* undefined unless explicitly overridden
* <<< does case etc return values correctly ?>
* [[[ I hope so ]]]
* 88-10-18 send just sends doesn’t check for a link
* 88-10-19 reworked the code for link and unlink
* multiple link or unlink doesn’t bugger things
* make link by-directional. This is done by linking
* locally and sending an link/unlink messages to
* the other side
* 88-10-19 add command trap exit(Arg) .. Arg = yes I no
* Implies extra parameter in facts/4
* 88-10-19 Changed the semantics of exit as follows:
* error_exit is removed
* exit(Why) has the following semantics
* when exit(Anything) is encountered an exit(Why)
* message is sent to all linked processes the action
* taken at ther receiving end is as follows:
* 1) if trap exit(no) & exit(normal)
* message is scrapped
* 2) if trap exit(no) & exit(X) & X <> normal
* exit(continue) is send to all linked processes
* EXCEPT the originating process
* 3) if trap_exit(yes) then the exit message
* is queued for reception with a
* receive([
* exit(From,Why) =>
* ...
* statement
* 88-10-19 send_sys(Term) implemented .. used for faking
* up a internal message
* 88-10-24 can now do run(Mod:Goal) ..
* 88-10-25 fixed spawn(Mod:Goal,Pri) to build function name
* at run time
* 88-10-27 All flags changes to yes I no
* i.e. no more on,off true, false etc.
* 88-11-03 help command moved to top.pl
* 88-11-03 changed top scheduler to carry on
* reducing until an empty queu is reached and then stop
* 88-11-08 changed 1111 to ’sys$$call
* 88-11-08 added lots of primitives (read the code!)
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* 88-11-08 removed simulate(on) ... etc.
* must be done from the top loop
* 88-11-17 added link/2, unlink/2
* 88-11-17 added structure manipulating primitives
* atom_2_list(Atom),list_2_atom(List),
* struct_name(Struct), struct_args(AStruct),
* struct_arity(Struct), make struct(Name,Args)
* get arg(Argno,Struct), set arg(Argno,Struct,Value)
* 88-11-17 run out of goals simulates exit(normal)
* 88-11-17 and timeout messages
* 88-12-14 added two extra parameters to facts
* Save-messages(yeslno) and alias
*/
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B. Erlang examples
B.1 Sequential Erlang examples
Factorial
All code is contained in modules. Only exported functions can be
called from outside the modules.

Function clauses are selected by pattern matching.

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

We can run this in the Erlang shell.24

> math:fac(25).
15511210043330985984000000

Binary Trees
Searching in a binary tree. Nodes in the tree are either nil or
{Key,Val,S,B} where S is a tree of all nodes less than Key and G
is a tree of all nodes greater than Key.

Variables in Erlang start with an uppercase letter. Atoms start
with a lowercase letter.

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,G}) when Key < Key1 ->
lookup(Key, S);

lookup(Key, {Key1,Val,S,G}) ->
lookup(Key, G);

lookup(Key, nil) ->
not_found.

Append
Lists are written [H|T]25 where H is any Erlang term and T is a list.
[X1,X2,..,Xn] is shorthand for [X1|[X2|...|[Xn|[]]]].

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

Sort
This makes use of list comprehensions:

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

[X || X <- T, X < Pivot] means the list of X where X is taken
from T and X is less than Pivot.

Adder
Higher order functions can be written as follows:

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

24 The Erlang shell is an infinite read-eval-print loop.
25 Similar to a LISP cons cell.

B.2 Primitives for concurrency
Spawn
Pid = spawn(fun() -> loop(0) end).

Send and receive
Pid ! Message,
.....

receive
Message1 ->

Actions1;
Message2 ->

Actions2;
...

after Time ->
TimeOutActions

end

B.3 Concurrent Erlang examples
“Area” server
-module(area).
-export([loop/1]).

loop(Tot) ->
receive

{Pid, {square, X}} ->
Pid ! X*X,
loop(Tot + X*X);

{Pid, {rectangle,[X,Y]}} ->
Pid ! X*Y,
loop(Tot + X*Y);

{Pid, areas} ->
Pid ! Tot,
loop(Tot)

end.

“Area” client
Pid = spawn(fun() -> area:loop(0) end),
Pid ! {self(), {square, 10}},
receive

Area ->
...

end

Global server
We can register a Pid so that we can refer to the process by a name:

...
Pid = spawn(Fun),
register(bank, Pid),
...
bank ! ...

B.4 Distributed Erlang
We can spawn a process on a remote node as follows:

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)
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B.5 Fault tolerant Erlang
catch
> X = 1/0.
** exited: {badarith, divide_by_zero} **
> X = (catch 1/0).
{’EXIT’,{badarith, divide_by_zero}}
> b().
X = {’EXIT’,{badarith, divide_by_zero}}

Catch and throw
case catch f(X) ->

{exception1, Why} ->
Actions;

NormalReturn ->
Actions;

end,

f(X) ->
...
Normal_return_value;

f(X) ->
...
throw({exception1, ...}).

Links and trapping exits
process_flag(trap_exits, true),
P = spawn_link(Node, Mod, Func, Args),
receive

{’EXIT’, P, Why} ->
Actions;

...
end

B.6 Hot code replacement
Here’s the inner loop of a server:

loop(Data, F) ->
receive

{request, Pid, Q} ->
{Reply, Data1} = F(Q, Data),
Pid ! Reply,
loop(Data1, F);

{change_code, F1} ->
loop(Data, F1)

end

To do a code replacement operation do something like:

Server ! {change_code, fun(I, J) ->
do_something(...)

end}

B.7 Generic client-server
The module cs is a simple generic client-server:

-module(cs).
-export([start/3, rpc/2]).

start(Name, Data, Fun) ->
register(Name,

spawn(fun() ->
loop(Data, Fun)

end)).

rpc(Name, Q) ->
Tag = make_ref(),
Name ! {request, self(), Tag, Q},
receive

{Tag, Reply} -> Reply
end.

loop(Data, F) ->
receive

{request, Pid, Tag, Q} ->
{Reply, Data1} = F(Q, Data),
Pid ! {Tag, Reply},
loop(Data1, F)

end.

Parameterizing the server
We can parameterize the server like this:

-module(test).
-export([start/0, add/2, lookup/1]).

start() -> cs:start(keydb, [], fun handler/2).

add(Key, Val) -> cs:rpc(keydb, {add, Key, Val}).
lookup(Key) -> cs:rpc(keydb, {lookup, Key}).

handler({add, Key, Val}, Data) ->
{ok, add(Key,Val,Data)};

handler({lookup, Key}, Data) ->
{find(Key, Data), Data}.

add(Key,Val,[{Key, _}|T]) -> [{Key,Val}|T];
add(Key,Val,[H|T]) -> [H|add(Key,Val,T)];
add(Key,Val,[]) -> [{Key,Val}].

find(Key,[{Key,Val}|_]) -> {found, Val};
find(Key,[H|T]) -> find(Key, T);
find(Key,[]) -> error.

Here’s a test run:

> test:start().
true
> test:add(xx, 1).
ok
> test:add(yy, 2).
ok
> test:lookup(xx).
{found,1}
> test:lookup(zz).
error

The client code (in test.erl) is purely sequential. Every-
thing to do with concurrency (spawn, send, receive) is contained
within cs.erl.

cs.erl is a simple behavior that hides the concurrency from
the application program. In a similar manner we can encapsulate
(and hide) error detection and recovery, code upgrades, etc. This is
the basis of the OTP libraries.
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Lystig Fritchie, Dilian Gurov, Sean Hinde, Håkan Karlsson, Roland
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[21] Håkan Mattsson, Hans Nilsson and Claes Wikström: Mnesia – A
distributed bobust DBMS for telecommunications applications. PADL
1999.

[22] Eliot Miranda. BrouHaHa – A portable Smalltalk interpreter.
SIGPLAN Notices 22 (12), December 1987 (OOPSLA ’87).

[23] Paul Morrison. Flow-Based Programming: A New Approach to
Application Development. Van Nostrand Reinhold, 1994.

[24] Hans Nilsson, Torbjörn Törnkvist and Claes Wikström: Amnesia –
A distributed real-time primary memory DBMS with a deductive query
language. ICLP 1995.

[25] Hans Nilsson and Claes Wikström: Mnesia – An industrial DBMS
with transactions, distribution and a logical query language. CODAS
1996.

[26] Tommy Ringqvist. BR Policy concerning the use of Erlang.
ERA/BR/TV-98:007. March 12, 1998. Ericsson Internal paper.

[27] Tony Rogvall and Claes Wikström. Protocol programming in Erlang
using binaries. Fifth International Erlang/OTP User Conference. 1999.
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Abstract
High Performance Fortran (HPF) is a high-level data-parallel
programming system based on Fortran. The effort to stan-
dardize HPF began in 1991, at the Supercomputing Con-
ference in Albuquerque, where a group of industry leaders
asked Ken Kennedy to lead an effort to produce a common
programming language for the emerging class of distributed-
memory parallel computers. The proposed language would
focus on data-parallel operations in a single thread of con-
trol, a strategy which was pioneered by some earlier com-
mercial and research systems, including Thinking Machines’
CM Fortran, Fortran D, and Vienna Fortran.

The standardization group, called the High Performance
Fortran Forum (HPFF), took a little over a year to produce
a language definition that was published in January 1993 as
a Rice technical report [50] and, later that same year, as an
article in Scientific Programming [49].

The HPF project had created a great deal of excitement
while it was underway and the release was initially well
received in the community. However, over a period of several
years, enthusiasm for the language waned in the United
States, although it has continued to be used in Japan.

This paper traces the origins of HPF through the program-
ming languages on which it was based, leading up to the
standardization effort. It reviews the motivation underlying
technical decisions that led to the set of features incorpo-
rated into the original language and its two follow-ons: HPF
2 (extensions defined by a new series of HPFF meetings) and
HPF/JA (the dialect that was used by Japanese manufactur-
ers and runs on the Earth Simulator).
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A unique feature of this paper is its discussion and analy-
sis of the technical and sociological mistakes made by both
the language designers and the user community:, mistakes
that led to the premature abandonment of the very promis-
ing approach employed in HPF. It concludes with some
lessons for the future and an exploration of the influence
of ideas from HPF on new languages emerging from the
High Productivity Computing Systems program sponsored
by DARPA.

Categories and Subject Descriptors K.2 History of Com-
puting [Software]

General Terms Languages and Compilers, Parallel Com-
puting

Keywords High Performance Fortran (HPF)

1. Background
Parallelism—doing multiple tasks at the same time—is fun-
damental in computer design. Even very early computer sys-
tems employed parallelism, overlapping input-output with
computing and fetching the next instruction while still exe-
cuting the current one. Some computers, like the CDC 6600,
used multiple instruction execution units so that several long
instructions could be in process at one time. Others used
pipelining to overlap multiple instructions in the same exe-
cution unit, permitting them to produce one result every cy-
cle even though any single operation would take multiple cy-
cles. The idea of pipelining led to the first vector computers,
exemplified by the Cray-1 [31], in which a single instruction
could be used to apply the same operation to arrays of input
elements with each input pair occupying a single stage of
the operation pipeline. Vector machines dominated the su-
percomputer market from the late 1970s through the early
1980s.

By the mid-1980s, it was becoming clear that parallel
computing, the use of multiple processors to speed up a sin-
gle application, would eventually replace, or at least aug-
ment, vector computing as the way to construct leading-
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edge supercomputing systems. However, it was not clear
what the right high-level programming model for such ma-
chines would be. In this paper we trace the history of High
Performance Fortran (HPF), a representative of one of the
competing models, the data-parallel programming model.
Although HPF was important because of its open and pub-
lic standardization process, it was only one of many efforts
to develop parallel programming languages and models that
were active in the same general time period. In writing this
paper, we are not attempting comprehensively to treat all
this work, which would be far too broad a topic; instead we
include only enough material to illustrate relationships be-
tween the ideas underlying HPF and early trends in parallel
programming.

We begin with a narrative discussion of parallel com-
puter architectures and how they influenced the design of
programming models. This leads to the motivating ideas be-
hind HPF. From there, we cover the standardization pro-
cess, the features of the language, and experience with early
implementations. The paper concludes with a discussion of
the reasons for HPF’s ultimate failure and the lessons to be
learned from the language and its history.

1.1 Parallel Computer Systems
Several different types of parallel computer designs were de-
veloped during the formative years of parallel processing.
Although we present these architectures in a sequential nar-
rative, the reader should bear in mind that a variety of com-
puters of all the classes were always available or in devel-
opment at any given time. Thus, these designs should be
viewed as both contemporaries and competitors.

Data-Parallel Computers The data-parallel computation
model is characterized by the property that sequences of
operations or statements can be performed in parallel on
each element of a collection of data. Some of the earli-
est parallel machines developed in the 1960s, such as the
Solomon [87] and Illiac IV [9] architectures, implemented
this model in hardware. A single control unit executed a se-
quence of instructions, broadcasting each instruction to an
array of simple processing elements arranged in a regular
grid. The processing elements operated in lockstep, apply-
ing the same instruction to their local data and registers.
Flynn [37] classifies these machines as Single-Instruction
Multiple-Data (SIMD) architectures. Once you have a grid
of processors, each with a separate local memory, data val-
ues residing on one processor and needed by another have
to be copied across the interconnection network, a process
called communication. Interprocessor communication of this
sort causes long delays, or latency, for cross-processor data
access.

The vector computers emerging in the 1970s, such as the
Cray-1, introduced an architecture paradigm supporting a
simple form of data parallelism in hardware. As with the
original SIMD architectures, vector computers execute a sin-

gle thread of control; a key difference is the increased flexi-
bility provided to the programmer by abandoning the need to
arrange data according to a hardware-defined processor lay-
out. Furthermore, a vector processor does not experience the
problems of communication latency exhibited by more gen-
eral SIMD processors because it has a single shared memory.

In the 1980s, advances in VLSI design led to another gen-
eration of SIMD architectures characterized by thousands of
1-bit processing elements, with hardware support for arbi-
trary communication patterns. Individual arithmetic opera-
tions on these machines were very slow because they were
performed in “bit serial” fashion, that is, one bit a time.
Thus any performance improvement came entirely from the
high degrees of parallelism. Important representatives of this
class of machines include the Connection Machines CM-2
and CM-200 [52] as well as the MasPar MP-1 [27].

The programming models for SIMD machines empha-
sized vector and matrix operations on large arrays. This was
attractive for certain algorithms and domains (e.g., linear al-
gebra solvers, operations on regular meshes) but confining
in other contexts (e.g. complex Monte Carlo simulations).
In particular, this model was seen as intuitive because it had
a single thread of control, making it similar to the sequen-
tial programming model As we will see, this model strongly
influenced the design of data-parallel languages.

The principal strength of data-parallel computing—fully
synchronous operation—was also its greatest weakness. The
only way to perform conditional computations was to selec-
tively turn off computing by some processors in the machine,
which made data-parallel computers ill suited to problems
that lacked regularity, such as sparse matrix processing and
calculations on irregular meshes. An additional drawback
was the framework for communicating data between proces-
sors. In most cases, the processors were connected only to
nearest neighbors in a two- or three-dimensional grid. 1 Be-
cause all operations were synchronous, it could take quite
a long time to move data to distant processors on a grid,
making these machines slow for any calculation requiring
long-distance communication. These drawbacks led to the
ascendance of asynchronous parallel computers with more
flexible interconnection structures.

Shared-Memory Asynchronous Parallel Computers A
key step in the emergence of today’s machines was the de-
velopment of architectures consisting of a number of full-
fledged processors, each capable of independently executing
a stream of instructions. At first, the parallel programming
community believed that the best design for such Multiple-
Instruction Multiple-Data (MIMD) multiprocessing systems
(in the Flynn classification) should employ some form of
hardware shared memory, because it would make it easy
to implement a shared-memory programming model, which

1 Important exceptions include STARAN [10] with its “flip” network, the
CM-1, CM-2 and CM-200 [52] with their hypercube connections, and the
MasPar MP-1 [27] with its Global Router.
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was generally viewed as the most natural from the program-
mer’s perspective. In this model, the independent processors
could each access the entire memory on the machine. A large
number of shared-memory multiprocessors, which are today
referred to as symmetric multiprocessors (SMPs), appeared
as commercial products. Examples of such systems include
the Alliant FX series, CDC Cyber 205, Convex C series,
Cray XMP and YMP, Digital VAX 8800, Encore Multimax,
ETA-10, FLEX/32, IBM 3090, Kendall Square KSR1 and
KSR2, Myrias SPS-1 and SPS-2, and the Sequent Balance
series [5, 30, 97, 56, 59, 62, 71, 74, 48, 32]. It should be
noted that several of the machines in this list (e.g., the Con-
vex, Cray, ETA, and IBM systems) were hybrids in the sense
that each processor could perform vector operations. Many
of today’s multi-core architectures can be considered de-
scendents of SMPs.

In the late 1980s, the conventional view was that shared-
memory multiprocessors would be easy to program while
providing a big performance advantage over vector comput-
ers. Indeed, many thought that shared memory multiprocess-
ing would yield computing power that was limited only by
how much the user was willing to pay. However, there were
two problems that needed to be resolved before this vision
could be realized.

The first problem was scalability: how such systems
could be scaled to include hundreds or even thousands of
processors. Because most of the early SMPs used a bus—a
single multi-bit data channel that could be multiplexed on
different time steps to provide communication between pro-
cessors and memory—the total bandwidth to memory was
limited by the aggregate number of bits that could be moved
over the bus in a given time interval. For memory-intensive
high-performance computing applications, the bus typically
became saturated when the number of processors exceeded
16. Later systems would address this issue through the use of
crossbar switches, but there was always a substantive cost,
either in the expense of the interconnect or in loss of perfor-
mance of the memory system.

The second problem was presented by the programming
model itself. Most vendors introduced parallel constructs,
such as the parallel loop, that, when used incorrectly, could
introduce a particularly nasty form of bug called a data race.
A data race occurs whenever two parallel tasks, such as the
iterations of a parallel loop, access the same memory loca-
tion, with at least one of the tasks writing to that location. In
that case, different answers can result from different paral-
lel schedules. These bugs were difficult to locate and elimi-
nate because they were not repeatable; as a result debuggers
would need to try every schedule if they were to establish the
absence of a race. Vector computers did not suffer from data
races because the input languages all had a single thread of
control: it was up to the compiler to determine when the op-
erations in a program could be correctly expressed as vector
instructions.

Distributed-Memory Computers The scalability problems
of shared memory led to a major change in direction in
parallel computation. A new paradigm, called distributed-
memory parallelism (or more elegantly, multicomputing),
emerged from academic (the Caltech Cosmic Cube [85] and
Suprenum [41]) and commercial research projects (Trans-
puter networks [92]). In distributed-memory computers,
each processor was packaged with its own memory and the
processors were interconnected with networks, such as two-
dimensional and three-dimensional meshes or hypercubes,
that were more scalable than the bus architectures employed
on shared-memory machines.

Distributed memory had two major advantages. First, the
use of scalable networks made large systems much more
cost-effective (at the expense of introducing additional la-
tency for data access). Second, systems with much larger
aggregate memories could be assembled. At the time, almost
every microprocessor used 32-bit (or smaller) addresses.
Thus a shared-memory system could only address 232 dif-
ferent data elements. In a distributed-memory system, on the
other hand, each processor could address that much mem-
ory. Therefore, distributed memory permitted the solution of
problems requiring much larger memory sizes.

Unsurprisingly, the advantages of distributed memory
came at a cost in programming complexity. In order for
one processor to access a data element in another processor,
the processor in whose local memory the data element was
stored would need to send it to the processor requesting it;
in turn, that processor would need to receive the data before
using it. Sends and receives had to be carefully synchronized
to ensure that the right data was communicated, as it would
be relatively easy to match a receive with the wrong send.
This approach, which was eventually standardized as Mes-
sage Passing Interface (MPI) [70, 88, 42], requires that the
programmer take complete responsibility for managing and
synchronizing communication. Thus, the move to distributed
memory sacrificed the convenience of shared memory while
retaining the complexity of the multiple threads of control
introduced by SMPs.

As a minor simplification, the standard programming
model for such systems came to be the Single-Program Mul-
tiple Data (SPMD) model [58, 34], in which each processor
executed the same program on different portions of the data
space, typically that portion of the data space owned by the
executing processor. This model, which is an obvious gener-
alization of the SIMD data-parallel model, required the im-
plementation to explicitly synchronize the processors before
communication because they might be working on different
parts of the program at any given time. However, it allows
the effective use of control structures on a per-processor ba-
sis to handle processor-local data in between communication
steps and permits the programmer to focus more narrowly
on communications at the boundaries of each processor’s
data space. Although this is a major improvement, it does
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not completely eliminate the burden of managing communi-
cation by hand.

1.2 Software Support for Parallel Programming
In general, there were three software strategies for sup-
porting parallel computing: (1) automatic parallelization
of sequential languages, (2) explicitly parallel program-
ming models and languages, and (3) data-parallel languages,
which represented a mixture of strategies from the first two.
In the paragraphs that follow we review some of the most
important ideas in these three strategies with a particular em-
phasis on how they were used to support data parallelism, the
most common approach to achieving scalability in scientific
applications.

Automatic Parallelization The original idea for program-
ming shared-memory machines was to adapt the work on
automatic vectorization which had proven quite successful
for producing vectorized programs from sequential Fortran2

specifications [3, 99]. This work used the theory of depen-
dence [65, 63, 4], which permitted reasoning about whether
two distinct array accesses could reference the same mem-
ory location, to determine whether a particular loop could
be converted to a sequence of vector assignments. This con-
version involved distributing the loop around each of the
statements and then rewriting each loop as a series of vector-
register assignments. The key notion was that any statement
that depended on itself, either directly or indirectly, could
not be rewritten in this manner.

Vectorization was an extremely successful technology be-
cause it focused on inner loops, which were easier for pro-
grammers to understand. Even though the so-called “dusty-
deck Fortran” programs did not always vectorize well, the
user could usually rewrite those codes into “vectorizable
loop” form, which produced good behavior across a wide
variety of machines. It seemed very reasonable to assume
that similar success could be achieved for shared-memory
parallelization.

Unfortunately, SMP parallelism exhibited additional com-
plexities. While vector execution was essentially synchronous,
providing a synchronization on each operation, multiproces-
sor parallelism required explicit synchronization operations
(e.g. barriers or event posting and waiting), in addition to
the costs of task startup and the overhead of data sharing
across multiple caches. To compensate for these costs, the
compiler either needed to find very large loops that could be
subdivided into large chunks, or it needed to parallelize outer
loops. Dependence analysis, which worked well for vector-
ization, now needed to be applied over much larger loops,
which often contained subprogram invocations. This led re-
searchers to focus on interprocedural analysis as a strategy

2 Although the official standards changed the capitalization from “FOR-
TRAN” to “Fortran” beginning with Fortran 90, we use the latter form for
all versions of the language.

for determining whether such loops could be run in paral-
lel [93, 16, 29].

By using increasingly complex analyses and transforma-
tions, research compilers have been able to parallelize a
number of interesting applications, and commercial compil-
ers are routinely able to parallelize programs automatically
for small numbers of processors. However, for symmetric
multiprocessors of sufficient scale, it is generally agreed that
some form of user input is required to do a good job of par-
allelization.

The problems of automatic parallelization are compounded
when dealing with distributed memory and message-passing
systems. In addition to the issues of discovery of parallelism
and granularity control, the compiler must determine how
to lay out data to minimize the cost of communication. A
number of research projects have attacked the problem of
automatic data layout [67, 60, 6, 23, 44], but there has been
little commercial application of these strategies, aside from
always using a standard data layout for all arrays (usually
block or block-cyclic).

Explicitly Parallel Programming: PCF and OpenMP Given
the problems of automatic parallelization, a faction of the
community looked for simple ways to specify parallelism
explicitly in an application. For Fortran, the first examples
appeared on various commercial shared-memory multipro-
cessors in the form of parallel loops, parallel cases, and
parallel tasks. The problem with these efforts was lack of
consistency across computing platforms. To overcome this,
a group convened by David J. Kuck of the University of
Illinois and consisting of researchers and developers from
academia, industry, and government laboratories began to
develop a standard set of extensions to Fortran 77 that would
permit the specification of both loop and task parallelism.
This effort came to be known as the Parallel Computing
Forum (PCF). Ken Kennedy attended all of the meetings
of this group and was deeply involved in drafting the final
document that defined PCF Fortran [66], a single-threaded
language that permitted SPMD parallelism within certain
constructs, such as parallel loops, parallel case statements,
and “parallel regions.” A “parallel region” created an SPMD
execution environment in which a number of explicitly par-
allel loops could be embedded. PCF Fortran also included
mechanisms for explicit synchronization and rules for stor-
age allocation within parallel constructs.

The basic constructs in PCF Fortran were later standard-
ized by ANSI Committee X3H5 (Parallel Extensions for
Programming Languages) and eventually found their way
into the informal standard for OpenMP [73, 33].

The main limitation of the PCF and OpenMP extensions
is that they target platforms—shared-memory multiproces-
sors with uniform memory access times—that have been
eclipsed at the high end by distributed-memory systems. Al-
though it is possible to generate code for message-passing
systems from OpenMP or PCF Fortran, the user has no way
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of managing communication or data placement at the source
level, which can result in serious performance problems.

Data-parallel Languages One way to address the short-
comings of the PCF/OpenMP model is explicit message
passing. In this approach, a standard language (such as
Fortran or C/C++) is extended with a message-passing li-
brary (such as MPI), providing the programmer with full
control over the partitioning of data domains, their distri-
bution across processors, and the required communication.
However, it was soon understood that this programming
paradigm can result in complex and error-prone programs
due to the way in which algorithms and communication are
inextricably interwoven.

This led to the question of whether the advantages of
shared memory, and even a single thread of control, could
be simulated on a distributed-memory system. A second
important question was how parallelism could be made to
scale to hundreds or thousands of processors. It was clear
that addressing the second question would require exploit-
ing the data-parallel programming model: by subdividing the
data domain in some manner and assigning the subdomains
to different processors, the degree of parallelism in a pro-
gram execution is limited only by the number of processors,
assuming the algorithm provides enough parallelism. With
more available processors, a larger problem can be solved.

These issues led researchers to explore the new class of
data-parallel languages, which were strongly influenced by
the SIMD programming paradigm and its closeness to the
dominating sequential programming model. In data-parallel
languages, the large data structures in an application would
be laid out across the memories of a distributed-memory par-
allel machine. The subcomponents of these distributed data
structures could then be operated on in parallel on all the pro-
cessors. Key properties of these languages include a global
name space and a single thread of control through statements
at the source level, with individual parallel statements being
executed on all processors in a (loosely) synchronous man-
ner.3 Communication is not explicitly programmed, but au-
tomatically generated by the compiler/runtime system, based
on a declarative specification of the data layout.

Any discussion of data-parallel languages should include
a discussion of Fortran 90, because it was the first version
of Fortran to include array assignment statements. A Fortran
90 array assignment was defined to behave as if the arrays
used on the right-hand side were all copied into unbounded-
length vector registers and operated upon before any stores
occurred on the left. If one considers the elements of an
infinite-length vector register as a distributed memory, then
in a very real sense, a Fortran 90 array assignment is a data-
parallel operation. In addition, if you had a large SIMD ma-
chine, such as the Thinking Machines CM-2, multidimen-
sional array assignments could be also be executed in paral-

3 A computation is said to be loosely synchronous if it consists of alternating
phases of computation and interprocessor communication.

lel. It is for this reason that Fortran 90 was so influential on
the data-parallel languages to follow. However, with the ad-
vent of more complex distributed-memory systems, achiev-
ing good Fortran 90 performance became more challenging,
as the data distributions needed to take both load balance and
communication costs into account, along with the limitations
of available storage on each processor.

A number of new data-parallel languages were developed
for distributed-memory parallel machines in the late 1980s
and early 1990s, including Fortran D [38, 53], Vienna For-
tran [102, 21], CM Fortran [91], C* [45], Data-Parallel C,
pC++ [14] and ZPL [89, 19]. Several other academic as well
as commercial projects also contributed to the understanding
necessary for the development of HPF and the required com-
pilation technology [7, 47, 79, 68, 69, 77, 78, 80, 81, 95, 57,
51, 75].

To be sure, the data-parallel language approach was not
universally embraced by either the compiler research or the
application community. Each of the three strategies for soft-
ware support described in this section had their passionate
adherents. In retrospect, none of them has prevailed in prac-
tice: explicit message-passing using MPI remains the dom-
inant programming system for scalable applications to this
day. The main reason is the complexity of compiler-based
solutions to the parallelization, data layout, and communica-
tion optimization problems inherent, to varying degrees, in
each of the three strategies. In the rest of this paper, we nar-
row our focus to the data-parallel approach as embodied in
the HPF extensions to Fortran. In the discussion that follows,
we explore the reasons for the failure of HPF in particular.
However, many of the impediments to the success of HPF
are impediments to the other approaches as well.

2. HPF and Its Precursors
In the late 1980s and early 1990s, Fortran was still the
dominant language for technical computing, which in turn
was the largest market for scalable machines. Therefore, it
was natural to assume that a data-parallel version of Fortran
would be well received by the user community, because it
could leverage the enormous base of software written in that
language. Two research languages, Fortran D and Vienna
Fortran, and one commercial product, CM Fortran, were
among the most influential data-parallel languages based on
Fortran and deeply influenced the development of HPF. In
this section we review the salient issues in each of these
languages. The section then concludes with a description of
the activities leading to the HPF standardization effort, along
with an overview of the effort itself.

Fortran D In 1987, the research group led by Ken Kennedy
at Rice began collaborating with Geoffrey Fox on how
to support high-level programming for distributed-memory
computers. Fox had observed that the key problem in writ-
ing an application for a distributed-memory system was to
choose the right data distribution, because once that was
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done, the actual parallelism was determined by the need
to minimize communications. Thus, computations would
be done in parallel on the processors that owned the data
involved in that computation. This led to the idea that a
language with shared memory and a single thread of con-
trol could be compiled into efficient code for a distributed-
memory system if the programmer would provide informa-
tion on how to distribute data across the processors. Fox and
the Rice group produced a specification for a new language
called Fortran D that provided a two-level distribution spec-
ification similar to that later adopted into HPF. The basic
idea was that groups of arrays would be aligned with an ab-
stract object called a template, then all of these arrays would
be mapped to processors by a single distribution statement
that mapped the template to those processors. Fortran D
supported block, cyclic, and block-cyclic (sometimes called
cyclic(k)) distribution of templates onto processors in mul-
tiple dimensions. For each distinct distribution, a different
template needed to be specified. However, this mechanism
could be used to ensure that arrays of different sizes, such as
different meshes in multigrid calculations, would be mapped
to the right processors.

Of course, a data-parallel language like Fortran D would
not be useful unless it could be compiled to code with rea-
sonable performance on each parallel target platform. The
challenge was to determine how to decompose the compu-
tations and map them to the processors in a way that would
minimize the cost of communication. In addition, the com-
piler would need to generate communication when it was
necessary and optimize that communication so that data was
moved between pairs of processors in large blocks rather
than sequences of single words. This was critical because,
at the time, most of the cost of any interprocessor communi-
cation operation was the time to deliver the first byte (laten-
cies were very large but bandwidth was quite reasonable).
Fortran D was targeted to communication libraries that sup-
ported two-sided protocols: to get data from one processor to
another, the owning processor had to send it, while the pro-
cessor needing the data had to receive it. This made commu-
nication generation complicated because the compiler had
to determine where both sends and receives were to be exe-
cuted on each processor.

To address the issue of computation partitioning, the Rice
project defined a strategy called “owner-computes”, which
locates computations on processors near the data where it
is stored. In particular, the first Rice compiler prototypes4

used “left-hand-side owner-computes”, which compiles each
statement so that all computations are performed on the
processors owning the computation outputs.

4 Strictly speaking the Fortran D compilers, and most research implementa-
tions of data-parallel languages were source-to-source translators that gen-
erated SPMD implementation, such as Fortran plus message-passing calls
as the “object code.” In fact, one (minor) motivation for initiating the MPI
standardization effort was to provide a machine-independent target for data-
parallel compilers.

The first compilation paper, by Callahan and Kennedy,
describing the Rice strategy appeared in the 1988 LCPC
conference at Cornell and was included in a collection from
that conference in the Journal of Supercomputing [18]. (Ear-
lier in the same year, Zima, Bast and Gerndt published their
paper on the SUPERB parallelization tool [100], which also
used a distribution-based approach.) Although Callahan and
Kennedy described the owner-computes strategy in rudimen-
tary form, the optimizations of communication and compu-
tation were performed locally, using transformations adapted
from traditional code optimization. When this approach
proved ineffective, the Rice group switched to a strategy that
compiled whole loop nests, one at a time. This work was de-
scribed in a series of papers that also covered the prototype
implementation of this new approach [54, 53, 94]. Although
they presented results on fairly small programs, these papers
demonstrated substantive performance improvements that
established the viability of distribution-based compilation.
At the heart of the compilation process is a conversion from
the global array index space provided in Fortran D to a local
index space on each processor. To perform this conversion
the compiler would discover, for each loop, which itera-
tions required no communication, which required that data
be sent to another processor, and which required that data
be received before any computation could be performed. A
summary of this approach appears in Chapter 14 of the book
by Allen and Kennedy [4].

One important issue had to be dealt with in order to gen-
erate correct code for Fortran D over an entire program:
how to determine, at each point in the program, what dis-
tribution was associated with each data array. Since distribu-
tions were not themselves data objects, they could not be ex-
plicitly passed to subprograms; instead they were implicitly
associated with data arrays passed as parameters. To gen-
erate code for a subprogram, the compiler would have to
follow one of three approaches: (1) perform some kind of
whole program analysis of distribution propagation, (2) rely
on declarations by the programmer at each subroutine inter-
face, or (3) dynamically determine the distributions at run-
time by inspecting a descriptor for each distributed array.
The Fortran D group decided that dynamic determination
would be too slow and relying on the programmer would
be impractical, particularly when libraries might be written
in the absence of the calling program. As a result, the For-
tran D compiler performed an interprocedural analysis of the
propagation of data distributions, making it a whole-program
compiler from the outset. This simplified the issues at proce-
dure boundaries, but complicated the compiler structure in a
way that would later prove unpalatable to the HPF standard-
ization group.

Vienna Fortran In 1985, a group at Bonn University in
Germany, led by Hans Zima, started the development of
a new compilation system, called SUPERB, for a data-
parallel language in the context of the German Suprenum
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supercomputing project [41]. SUPERB [100] took as in-
put a Fortran 77 program and a specification of a gener-
alized block data distribution, producing an equivalent ex-
plicitly parallel message-passing program for the Suprenum
distributed-memory architecture using the owner-computes
strategy. This approach, which originally was interpreted as
performing a computation on the processor owning the left-
hand side of an assignment statement (or, more generally,
the target of the computation), was later generalized to the
selection of any processor that would maximize the locality
of the computation. This turned out to be one of the most
important ideas of HPF. Gerndt’s Ph.D. dissertation [40],
completed in 1989, is the first work describing in full detail
the program transformations required for such a translation;
an overview of the compilation technology is presented by
Zima and Chapman in [101].

SUPERB was not a language design project: it focused
on compiler transformations, using an ad-hoc notation for
data distribution. However, after Zima’s group relocated to
University of Vienna, they began working, in collaboration
with Piyush Mehrotra of NASA ICASE, on a full specifica-
tion of a high-level data distribution language in the context
of Fortran.

This new language, called Vienna Fortran, provided the
programmer with a facility to define arrays of virtual pro-
cessors, and introduced distributions as mappings from mul-
tidimensional array index spaces to (sub)sets of processor
spaces. Special emphasis was placed on support for irregu-
lar and adaptive programs: in addition to the regular block
and block-cyclic distribution classes the language provided
general block and indirect distributions. General block dis-
tributions, inherited from SUPERB, partition an array di-
mension into contiguous portions of arbitrary lengths that
may be computed at run time. Such distributions, when used
in conjunction with reordering, can efficiently represent par-
titioned irregular meshes. Indirect distributions present an-
other mechanism for the support of irregular problems by
allowing the specification of arbitrary mappings between ar-
ray index sets and processors. Both the general block and
indirect distributions were later incorporated in the HPF 2.0
specification, described in Section 5. Implementing either of
these distributions is difficult because the actual mappings
are not known until run time. Therefore, the compiler must
generate a preprocessing step, sometimes called an inspec-
tor [26, 96], that determines at run time a communication
schedule and balances the loads across the different proces-
sors.

A key component of the Vienna Fortran language spec-
ification was a proposal for user-defined distributions and
alignments. Although this feature was only partially imple-
mented, it motivated research in the area of distributed sparse
matrix representations [96] and provided important ideas for
a recent implementation of such concepts in the Chapel high
productivity language [17]. The Vienna Fortran Compilation

System extended the functionality of the SUPERB compiler
to cover most of the language, while placing strong emphasis
on the optimization of irregular algorithms. An overview of
the compilation technology used in this system is presented
in Benkner and Zima [12].

CM Fortran CM Fortran was the premier commercial im-
plementation of a data-parallel language. The language was
developed by a team led by Guy Steele at Thinking Ma-
chines Corporation (makers of the Connection Machines)
and a group of implementers led by David Loveman and
Robert Morgan of COMPASS, Inc., a small software com-
pany. The goal of CM Fortran was to support development
of technical applications for the CM-2, a SIMD architecture
introduced in 1987. The original programming model for the
CM-2 and its forerunner, the CM-1, had been *Lisp because
the initial market had focused on applications in artificial
intelligence. However, a Fortran compiler was released in
1991 [91], with the goal of attracting science and engineer-
ing users.

CM Fortran adopted the array assignment and array arith-
metic extensions that had been incorporated into Fortran 90,
but it also included a feature that was deleted from the For-
tran 90 standard at the last minute: the FORALL statement,
which permitted a particularly simple loop-like specification
for array assignments. Arrays that were used in these state-
ments were classified as CM arrays and mapped to virtual
processor (VP) sets, one array element per processor. VPs
were in turn mapped to the actual processors of the CM-2
in regular patterns. Optional ALIGN and LAYOUT directives
could modify this mapping. Unlike Fortran D, CM Fortran
used compiler directives, entered as comments, to specify
data layouts for the data arrays in the CM-2 SIMD processor
array. Each array assignment was compiled into a sequence
of SIMD instructions to compute execution masks, move
data, and invoke the actual computation. This was a sim-
ple and effective strategy that was extended in the Thinking
Machines “slicewise” compiler strategy to reduce redundant
data movement and masks.

Programmability in CM Fortran was enhanced by the
availability of a rich library of global computation and com-
munication primitives known as CMSSL, which was devel-
oped under the leadership of Lennart Johnsson. In addition
to powerful computational primitives, it included a num-
ber of global operations, such as sum reduction, and scat-
ter/gather operations, that are used to convert data in irregu-
lar memory patterns to compact arrays and vice versa. Many
of these routines were later incorporated into the HPF Li-
brary specification.

When Thinking Machines introduced a MIMD architec-
ture, the CM-5, in 1993, it retained the CM Fortran language
for the new architecture, showing the popularity and porta-
bility of the model.

The HPF Standardization Process In November of 1991
at Supercomputing ’91 in Albuquerque, New Mexico, Kennedy
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and Fox were approached about the possibility of standard-
izing the syntax of data-parallel versions of Fortran. The
driving forces behind this effort were the commercial ven-
dors, particularly Thinking Machines, who were produc-
ing distributed-memory scalable parallel machines. Digital
Equipment Corporation (DEC) was also interested in pro-
ducing a cross-platform for Fortran that included many of
the special features included in DEC Fortran.

In response to the initial discussions, Kennedy and Fox
met with a number of academic and industrial representa-
tives in a birds-of-a-feather session. The participants agreed
to explore a more formal process through a group that
came to be known as the High Performance Fortran Fo-
rum (HPFF). Kennedy agreed to serve as the HPFF chair
and Charles Koelbel assumed the role of Executive Direc-
tor. With support from the Center for Parallel Computation
Research (CRPC) at Rice University, a meeting was hur-
riedly organized in Houston, Texas, in January 1992. Inter-
est in the process was evident from the overflow attendance
(nearly 100 people) and active discussions during presen-
tations. The meeting concluded with a business session in
which more than 20 companies committed to a process of
drafting the new standard.

Because the interest level was high and the need press-
ing, it was agreed that the process should try to produce a
result in approximately one year. Although we did not fully
realize it at the time, this “management” agreement would
affect the features of the language. The timeline forced us
to use the informal rule that HPF would adopt only fea-
tures that had been demonstrated in at least one language
and compiler (including research projects’ compilers). This
of course limited some of the features considered, particu-
larly in the realm of advanced data distributions. We have to
admit, however, that the “at least one compiler” rule was, as
Shakespeare might have said, oft honored in the breach. In
particular, the committee felt that no fully satisfactory mech-
anism for subroutine interfaces had been demonstrated, and
therefore fashioned a number of complementary features.

The active HPFF participants (30-40 people) met for two
days every six weeks or so, most often in a hotel in Dal-
las, Texas, chosen because of convenience to airline con-
nections.5 There was a remarkable collection of talented
individuals among the regular attendees. Besides Kennedy
and Koelbel, those participants who were editors of the
standard document included Marina Chen, Bob Knighten,
David Loveman, Rob Schreiber, Marc Snir, Guy Steele, Joel
Williamson, and Mary Zosel. Table 1 contains a more com-
plete list of HFFF attendees, ordered by their affiliations at
the time. We include the affiliations for two reasons: each
organization (that had been represented at two of the past

5 In part by design, the same hotel was also used for meetings of the
Message Passing Interface Forum (MPIF) which took place a bit later. One
participant in both forums from England later joked that it was the only
hotel in the world where he could order “the usual” and get the right drink.

three meetings) had one vote, and the affiliations illustrate
the breadth of the group. There are representatives from
hardware and software vendors, university computer sci-
ence researchers, and government and industrial application
users. HPFF was a consensus-building process, not a single-
organization project.

This group dealt with numerous difficult technical and
political issues. Many of these arose because of the tension
between a need for high language functionality and the de-
sire for implementation simplicity. It was clear from the out-
set that HPF would need to be flexible and powerful enough
to implement a broad range of applications with good perfor-
mance. However, real applications differ significantly in the
way they deal with data and in their patterns of computation,
so different data distributions would be needed to accom-
modate them. Each data distribution built in to the language
required a lot of effort from the compiler developers. So how
many data distributions would be enough? As a case in point,
consider the the block-cyclic distribution in which groups of
k rows or columns of an array are assigned in round-robin
fashion to the processors in a processor array. From the ex-
perience with the research compilers, the implementation of
this distribution was unquestionably going to be challenging.
Some members of the HPF Forum argued against it. In the
end, however, it was included because it was needed to bal-
ance the computational load across processors on triangular
calculations such as those done in dense linear algebra (e.g.,
LU Decomposition). In general, the need for load balanc-
ing, which attempts to assign equal amounts of computation
to each processor for maximum speedup, motivated the need
for a rich set of distribution patterns.

The problems of power versus complexity were com-
pounded by limited experience with compilation of data-
parallel languages. The research compilers were mostly aca-
demic prototypes that had been applied to few applications
of any size. CM Fortran, on the other hand, was relatively
new and was not as feature-rich as either Fortran D or Vienna
Fortran. Therefore many decisions had to be made without
full understanding of their impact on the complexity of the
compilers.

Another difficult decision was whether to base the lan-
guage on Fortran 77 or Fortran 90, the new standard as of the
beginning of the HPF process. The problem was that most of
the companies making parallel machines had compilers that
handled Fortran 77 only. They were reluctant to commit to
implementing the full Fortran 90 standard as a first step to-
ward HPF. On the other hand, the companies that had already
based their compilers on Fortran 90, such as Thinking Ma-
chines, wanted to take advantage of the language advances.

In the end, the users participating in the process tipped
the balance toward Fortran 90. There were many reasons for
this. Primary among them was that Fortran 90 included fea-
tures that would make the HPF language definition cleaner,
particularly at subprogram interfaces. In addition, Fortran 90

7-8



Table 1. Attendees (and institutions at the time) in HPFF process, 1992-1993
David Reese (Alliant) Jerrold Wagener (Amoco)
Rex Page (Amoco) John Levesque (APR)
Rony Sawdayi (APR) Gene Wagenbreth (APR)
Jean-Laurent Philippe (Archipel) Joel Williamson (Convex Computer)
David Presberg (Cornell Theory Center) Tom MacDonald (Cray Research)
Andy Meltzer (Cray Research) David Loveman (Digital)
Siamak Hassanzadeh (Fujitsu America) Ken Muira (Fujitsu America)
Hidetoshi Iwashita (Fujitsu Laboratories) Clemens-August Thole (GMD)
Maureen Hoffert (Hewlett Packard) Tin-Fook Ngai (Hewlett Packard)
Richard Schooler (Hewlett Packard) Alan Adamson (IBM)
Randy Scarborough (IBM) Marc Snir (IBM)
Kate Stewart (IBM) Piyush Mehrotra (ICASE)
Bob Knighten (Intel) Lev Dyadkin (Lahey Computer)
Richard Fuhler (Lahey Computer) Thomas Lahey (Lahey Computer)
Matt Snyder (Lahey Computer) Mary Zosel (Lawrence Livermore)
Ralph Brickner (Los Alamos) Margaret Simmons (Los Alamos)
J. Ramanujam (Louisiana State) Richard Swift (MasPar Computer)
James Cownie (Meiko) Barry Keane (nCUBE)
Venkata Konda (nCUBE) P. Sadayappan (Ohio State)
Robert Babb II (OGI) Vince Schuster (Portland Group)
Robert Schreiber (RIACS) Ken Kennedy (Rice)
Charles Koelbel (Rice) Peter Highnam (Schlumberger)
Don Heller (Shell) Min-You Wu (SUNY Buffalo)
Prakash Narayan (Sun) Douglas Walls (Sun)
Alok Choudhary (Syracuse) Tom Haupt (Syracuse)
Edwin Paalvast (TNO-TU Delft) Henk Sips (TNO-TU Delft)
Jim Bailey (Thinking Machines) Richard Shapiro (Thinking Machines)
Guy Steele (Thinking Machines) Richard Shapiro (United Technologies)
Uwe Geuder (Stuttgart) Bernhard Woerner (Stuttgart)
Roland Zink (Stuttgart) John Merlin (Southampton)
Barbara Chapman (Vienna) Hans Zima (Vienna)
Marina Chen (Yale) Aloke Majumdar (Yale)

included an array operation syntax that was consistent with
the concept of global arrays. Such operations would make
it easier to identify global operations that could be carried
out in parallel. In retrospect, this decision may have been
a mistake, because the implementation of Fortran 90 added
too much complexity to the task of producing a compiler in
a reasonable time frame. As we point out in Section 4, this
may have contributed to the slow development of HPF com-
pilers and, hence, to the limited acceptance of the language.

Another major technical issue was how to handle dis-
tribution information in subroutines. Developers of techni-
cal applications in Fortran had come to rely on the ability
to build on libraries of subroutines that were widely dis-
tributed by academic institutions and sold by commercial en-
terprises such as IMSL and NAG. If HPF was to be success-
ful, it should be possible to develop libraries that worked cor-
rectly on array parameters with different distributions. Thus,
it should be possible to determine within a subroutine what
data distributions were associated with the arrays passed into
that subroutine.

Fortran D had dealt with this issue by mandating an in-
terprocedural compiler. The vendors in the HPF Forum were
understandably unwilling to follow this route because most
commercial compilers included no interprocedural analysis
capabilities (leaving aside the question of whether library
vendors would be willing to provide source in the first place).
Thus the language design needed a way to declare distribu-
tions of parameters so that HPF subroutine libraries could
be used with different distributions, without suffering enor-
mous performance penalties. A key issue here was whether
to redistribute arrays at subroutine boundaries or somehow
“inherit” the distribution from the calling program. Redistri-
bution adds data movement costs on entry and exit to a sub-
routine, but allows the routine to employ a distribution that is
optimized to the underlying algorithm. Inheriting the caller’s
distribution avoids redistribution costs, but may have perfor-
mance penalties due to a distribution that is inappropriate for
the algorithm or the cost of dynamically interpreting the dis-
tribution that is passed in. This discussion involved the most
complex technical issues in the standardization process and
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the parts of the standard dealing with these issues are the
most obscure in the entire document.

This example illustrates one of the problems with the
HPF standardization process and the tight schedule that was
adopted. Although the members agreed at the outset only to
include features that had been tried in some prototype re-
search or commercial implementation, the group sometimes
ignored this guideline, substituting intuition for experience.

The result of this work was a new language that was final-
ized in early 1993 [50, 49] and presented at the Supercom-
puting Conference in the fall of the same year. The specifics
of the language are discussed in the next section.

An additional set of HPFF meetings were held during
1994 with the goals of (1) addressing needed corrections,
clarifications, and interpretations of the existing standard
and (2) considering new features required in extending HPF
to additional functions. The organization (including place
and frequency) of the meetings was as in the first series. Ken
Kennedy again served as Chair, while Mary Zosel took on
the role of Executive Director. The attendees were mostly
the same as in the 1992-1993 meetings, with the notable ad-
ditions of Ian Foster (Argonne National Laboratory) and Joel
Saltz (then at the University of Maryland), who each led
subgroups considering future issues. The corrections were
incorporated in the High Performance Fortran 1.1 standard,
a slight revision of the 1993 document presented at the Su-
percomputing ’94 conference in Washington, DC in Novem-
ber 1994. The HPF 1.1 document itself refers to some of
the issues needing clarification as “dark corners” of the lan-
guage (those issues do not affect the examples in the next
section). The new features and clarifications discussed but
not included in HPF 1.1 were collected in the HPF Journal
of Development and served as a starting point for the HPF 2
standardization effort, discussed in Section 5.

3. The HPF Language
The goals established for HPF were fairly straightforward:

• To provide convenient programming support for scalable
parallel computer systems, with a particular emphasis on
data parallelism

• To present an accessible, machine-independent program-
ming model with three main qualities: (1) The applica-
tion developer should be able to view memory as a single
shared address space, even on distributed-memory ma-
chines; in other words, arrays should be globally acces-
sible but distributed across the memories of the proces-
sors participating in a computation. (2) Programs writ-
ten in the language should appear to have a single thread
of control, so that the program could be executed cor-
rectly on a single processor; thus, all parallelism should
derive from the parallel application of operations to dis-
tributed data structures. (3) Communication should be
implicitly generated, so that the programmer need not be

concerned with the details of specifying and managing
inter-processor message passing.

• To produce code with performance comparable to the
best hand-coded MPI for the same application.

To achieve these goals the HPF 1.0 Standard defined a
language with a number of novel characteristics.

First, the language was based on Fortran 90, with the ex-
tensions defined as a set of “directives” in the form of Fortran
90 comments. These directives could be interpreted by HPF
compilers as advice on how to produce a parallel program.
On a scalar machine, an HPF program could be executed
without change by simply ignoring the directives, assum-
ing the machine had sufficient memory. This device, which
was later copied by the OpenMP standards group, permit-
ted the HPF parallelism extensions to be separated cleanly
from the underlying Fortran 90 program: the program still
needed to embody a data-parallel algorithm, but the same
program should work on both sequential and parallel sys-
tems. Compilers for the sequential systems would not be re-
quired to recognize any HPF directives. It should be noted
that the ability to run essentially the same program on both a
sequential and parallel machine is a huge advantage for the
application programmer in debugging an algorithm.

The principal additions to the language were a set of
distribution directives, that specified how arrays were to
be laid out across the memories of the machine. Sets of
arrays could be aligned with one another and then distributed
across the processors using built-in distributions, such as
block, cyclic, and block-cyclic. These directives could be
used to assign the individual rows or columns to processors
in large blocks, or smaller blocks in round-robin fashion. We
illustrate this by showing the application of directives to a
simple relaxation loop:

REAL A(1000,1000), B(1000,1000)
DO J = 2, N
DO I = 2, N
A(I,J)=(A(I,J+1)+2*A(I,J)+A(I,J-1))*0.25 &

& + (B(I+1,J)+2*B(I,J)+B(I-1,J))*0.25
ENDDO

ENDDO

The DISTRIBUTE directive specifies how to partition a data
array onto the memories of a real parallel machine. In this
case, it is most natural to distribute the first dimension, since
iterations over it can be performed in parallel. For example,
the programmer can distribute data in contiguous chunks
across the available processors by inserting the directive

!HPF$ DISTRIBUTE A(BLOCK,*)

after the declaration of A. HPF also provides other stan-
dard distribution patterns, including CYCLIC in which ele-
ments are assigned to processors in round-robin fashion, or
CYCLIC(K) by which blocks of K elements are assigned
round-robin to processors. Generally speaking, BLOCK is
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the preferred distribution for computations with nearest-
neighbor elementwise communication, while the CYCLIC
variants allow finer load balancing of some computations.
Also, in many computations (including the example above),
different data arrays should use the same or related data lay-
outs. The ALIGN directive specifies an elementwise matching
between arrays in these cases. For example, to give array B
the same distribution as A, the programmer would use the
directive

!HPF$ ALIGN B(I,J) WITH A(I,J)

Integer linear functions of the subscripts are also allowed in
ALIGN and are useful for matching arrays of different shapes.

Using these directives, the HPF version of the example
code is:

REAL A(1000,1000), B(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK,*)
!HPF$ ALIGN B(I,J) WITH A(I,J)
DO J = 2, N
DO I = 2, N
A(I,J)=(A(I,J+1)+2*A(I,J)+A(I,J-1))*0.25 &

& + (B(I+1,J)+2*B(I,J)+B(I-1,J))*0.25
ENDDO

ENDDO

Once the data layouts have been defined, implicit paral-
lelism is provided by the owner-computes rule, which speci-
fies that calculations on distributed arrays should be assigned
in such a way that each calculation is carried out on the pro-
cessors that own the array elements involved in that calcula-
tion. Communication would be implicitly generated when a
calculation involved elements from two different processors.

As the Fortran D project and Vienna Fortran projects
showed, data distribution of subroutine arguments was a par-
ticularly complex area. To summarize the mechanism that
HPF eventually adopted, formal subroutine arguments (i.e.
the variables as declared in the subroutine) could have asso-
ciated ALIGN and DISTRIBUTE directives. If those directives
fully specified a data distribution, then the actual arguments
(i.e. the objects passed by the subroutine caller) would be
redistributed to this new layout when the call was made, and
redistributed back to the original distribution on return. Of
course, if the caller and callee distributions matched, it was
expected that the compiler or runtime system would forego
the copying needed in the redistribution. HPF also defined a
system of “inherited” distributions by which the distribution
of the formal arguments would be identical to the actual ar-
guments. This declaration required an explicit subroutine in-
terface, such as a Fortran 90 INTERFACE block. In this case,
no copying would be necessary, but code generation for the
subroutine would be much more complex to handle all pos-
sible incoming distributions. This complexity was so great,
in fact, that to our knowledge no compiler fully implemented
it.

In addition to the distribution directives, HPF has spe-
cial directives that can be used to assist in the identification
of parallelism. Because HPF is based on Fortran 90, it also
has array operations to express elementwise parallelism di-
rectly. These operations are particularly appropriate when
applied to a distributed dimension, in which case the com-
piler can (relatively) easily manage the synchronization and
data movement together. Using array notation in this exam-
ple produces the following:

REAL A(1000,1000), B(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK,*)
!HPF$ ALIGN B(I,J) WITH A(I,J)
DO J = 2, N

A(2:N,J) = &
& (A(2:N,J+1)+2*A(2:N,J)+A(I,J-1))*0.25 &
& + (B(3:N+1,J)+2*B(2:N,J)+B(1:N-1,J))*0.25
ENDDO

In addition to these features, HPF included the ability to
specify that the iterations of a loop should be executed in
parallel. Specifically, the INDEPENDENT directive says that
the loop that follows is safe to execute in parallel. This can
be illustrated with the code from the example above.

REAL A(1000,1000), B(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK,*)
!HPF$ ALIGN B(I,J) WITH A(I,J)
DO J = 2, N
!HPF$ INDEPENDENT
DO I = 2, N
A(I,J)=(A(I,J+1)+2*A(I,J)+A(I,J-1))*0.25 &

& + (B(I+1,J)+2*B(I,J)+B(I-1,J))*0.25
ENDDO

ENDDO

Use of the directive ensures that a parallel loop will be gener-
ated by any HPF compiler to which the program is presented.
Many compilers can detect this fact for themselves when an-
alyzing programs with subscript expressions that are linear
in the loop variables (as in the above example), based on de-
pendence analysis along with the distribution information.
However, the INDEPENDENT directive is essential for loops
that are theoretically unanalyzable—for example, loops it-
erating over the edges of an unstructured mesh, which con-
tain subscripted subscripts. Often the programmer will have
application-specific knowledge that allows such loops to be
executed in parallel.

Although the INDEPENDENT directive violates the goal
of presenting a single thread of control, the issue was
sidestepped in the standard by defining the directive as an as-
sertion that the loop had no inter-iteration dependencies that
would lead to data races; if this assertion was incorrect, the
program was declared to be not standard-conforming. Thus,
a standard-conforming HPF program would always produce
the same answers on a scalar machine as a parallel one. Un-
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fortunately, this feature made it impossible to determine at
compile time whether a program was standard-conforming.

HPF also provided the FORALL statement, taken from
CM Fortran and early drafts of Fortran 90, as an alternative
means of expressing array assignment. The nested DO loop
in our relaxation example could be written as

FORALL (J = 2:N, I=2:N) &
& A(I,J)=(A(I,J+1)+2*A(I,J)+A(I,J-1))*0.25 &
& + (B(I+1,J)+2*B(I,J)+B(I-1,J))*0.25

Semantically, the FORALL was identical to an array assign-
ment; it computed the values on the right-hand side for all
index values before storing the results into any left-hand side
location. (There was also a multi-statement FORALL that ap-
plied this semantic rule to all assignments in the body in
turn.) The explicit indexing allowed FORALL to conveniently
express a wider range of array shapes and computations than
the standard array assignment, as in the following example.

! Assignment to a diagonal, computed its index
FORALL (I=1:N) A(I,I) = I*I

High Performance Fortran was one of the first languages
to include the specification for an associated library, the HPF
Library, as a part of the defined language. Special global
operations, such as sum reduction, gather and scatter, and
partial prefix operations were provided by the HPF Library,
which incorporated many parallel operations on global ar-
rays that proved to be useful in other data-parallel languages,
such as CM Fortran. This library added enormous power to
the language. Specification of an associated library is now
standard practice in C, C++, and Java.

Finally, HPF included a number of features that were de-
signed to improve compatibility and facilitate interoperation
with other programming languages and models. In particu-
lar, the EXTRINSIC interface made it possible to invoke sub-
programs that were written in other languages such as scalar
Fortran and C. Of particular importance was the ability to
call subroutines written in MPI in a way that made it possi-
ble to recode HPF subprograms for more efficiency.

4. Experience with the Language
The initial response to HPF could be characterized as cau-
tious enthusiasm. A large part of the user community,
those who had not already recoded using explicit message-
passing, was hopeful that the language would permit a
high-level programming interface for parallel machines that
would make parallel programs portable and efficient without
the need for extensive coding in MPI or its equivalent. The
vendors, on the other hand, were hoping that HPF would
expand the market for scalable parallel computing enough
to increase profitability. Several vendors initiated indepen-
dent compiler efforts, including Digital [46], IBM [43], and
Thinking Machines. A number of other hardware vendors
offered OEM versions of compilers produced by indepen-
dent software vendors such as the Portland Group, Inc.

(PGI) [15] and Applied Parallel Research [8]. At its peak,
there were 17 vendors offering HPF products and over 35
major applications written in HPF, at least one of which was
over 100,000 lines of code.

Nevertheless, as experience with the language increased,
so did frustration on the part of the users. It became clear that
it was not as easy as had been hoped to achieve high perfor-
mance and portability in the language and many application
developers gave up and switched to MPI. By the late 1990s
usage of HPF in the United States had slowed to a trickle,
although interest in Japan remained high, as we discuss be-
low.

Given that HPF embodied a set of reasonable ideas on
how to extend an existing language to incorporate data par-
allelism, why did it not achieve more success? In our view
there were four main reasons: (1) inadequate compiler tech-
nology, combined with a lack of patience in the HPC com-
munity; (2) insufficient support for important features that
would make the language suitable for a broad range of prob-
lems; (3) the inconsistency of implementations, which made
it hard for a user to achieve portable performance; and (4)
the complex relationship between program and performance,
which made performance problems difficult to identify and
eliminate. In the paragraphs that follow, we explore each of
these issues in more detail.

Immature Compiler Technology When HPF was first re-
leased, Kennedy gave numerous addresses to technical au-
diences cautioning them to have limited expectations for the
first HPF compiler releases. There were many reasons why
caution was appropriate.

First, HPF was defined on top of Fortran 90, the first
major upgrade to the Fortran standard since 1977. Further-
more, the Fortran 90 extensions were not simple: implement-
ing them would require an enormous effort for the compiler
writers. Among the new features added to Fortran 90 were
(1) mechanisms for whole and partial array handling that
required the use of descriptor-based implementations and
“scalarization” of array assignments, (2) modules and in-
terface blocks (which HPF depended on for specification of
the distributions of arrays passed to subprograms), (3) recur-
sion, and (4) dynamic storage allocation and pointer-based
data structures. Since none of these features were present in
Fortran 77, building a Fortran 90 compiler required a sub-
stantive reimplementation to introduce stack frames for re-
cursion, heap storage, and array descriptors. Moving from
Fortran 77 to Fortran 90 involved an effort comparable to
building a compiler from scratch (except for the low-level
code generation). At the time of the first HPF specification
in 1993, most companies had not yet released their first For-
tran 90 compilers. Thus, to produce an implementation of
HPF, those companies would first need to implement almost
all of Fortran 90, putting a huge obstacle in the way of get-
ting to HPF.
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Second, the entire collection of features in HPF, includ-
ing the HPF library, was quite extensive and required new
compilation strategies that, at the time of the release of HPF
1.0, had only been implemented in research compilers and
the CM Fortran compiler. Proper compilation of HPF re-
quires extensive global analysis of distributions, partition-
ing of computation, generation of communication, and opti-
mizations such as overlapping communication and computa-
tion. Implementing all of these well would require compilers
to mature over a number of years, even if implementing For-
tran 90 were not a precondition.

Finally, efficient implementation of HPF programs re-
quired that the compiler pay special attention to locality on
individual processors. Since most of the processors used in
distributed-memory systems were uniprocessors with com-
plex cache hierarchies, generating efficient code required
that advanced transformation strategies, such as tiling for
cache reuse, be employed. At the time of the release of the
initial HPF specification, these techniques were beginning to
be understood [39, 98, 64], but most commercial compilers
had not yet incorporated them [84, 28].

In spite of this, the HPC community was impatient for a
high-level programming model, so there was heavy pressure
on the compiler vendors to release some implementation of
HPF. As a result the first compilers were premature, and the
performance improvements they provided were disappoint-
ing in all but the simplest cases.

Meanwhile, the developers of parallel applications had
deadlines to meet: they could not afford to wait for HPF
to mature. Instead they turned to Fortran with explicit MPI
calls, a programming model that was complex but was, at
least, ready to use. The migration to MPI significantly re-
duced the demand for HPF, leading compiler vendors to re-
duce, or even abandon, the development effort. The end re-
sult was that HPF never achieved a sufficient level of ac-
ceptance within the leading-edge parallel computing users
to make it a success. In a very real sense, HPF missed the
first wave of application developers and was basically dead
(or at least considered a failure) before there was a second
wave.

Missing Features To achieve high performance on a vari-
ety of applications and algorithms, a parallel programming
model must support a variety of different kinds of data distri-
butions. This is particularly critical for sparse data structures
or adaptive algorithms. The original specification of HPF in-
cluded only three main distributions: BLOCK, CYCLIC, and
CYCLIC(K). These distributions are effective for dense array
computations and, in the case of CYCLIC(K), even linear al-
gebra. However, many important algorithmic strategies were
difficult, or even impossible, to express within HPF without
a big sacrifice of performance. This deficiency unnecessarily
narrowed the space of applications that could be effectively
expressed in HPF. As a result, the developers of applications
requiring distributions that were not supported went directly

to MPI. Although this problem was partially corrected in
HPF 2.0 (discussed later), the damage was already done. In
the final section of this paper, we suggest a strategy for ad-
dressing this problem in future data-parallel languages.

A second issue with HPF was its limited support for
task parallelism. The parallel loop feature helped a little, but
users wanted more powerful strategies for task parallelism.
Once again, this was corrected in HPF 2.0, but it was too
late. What should have happened was a merger between the
features in HPF and OpenMP, discussed below.

Barriers to Achieving Portable Performance One of the
key goals of HPF was to make it possible for an end user to
have one version of a parallel program that would then pro-
duce implementations on different architectures that would
achieve a significant fraction of the performance possible on
each architecture. This was not possible for two main rea-
sons.

First, different vendors focused on different optimizations
in their HPF implementations. This caused a single HPF
application to achieve dramatically different performance
on the machines from different vendors. In turn, this led
users to recode the application for each new machine to take
advantage of the strengths (and avoid the weaknesses) of
each vendor’s implementation, thwarting the original goal
of absolute portability.

Second, the HPF Library could have been used to address
some of the usability and performance problems described
in previous sections. For example, the “gather” and “scat-
ter” primitives could have been used to implement sparse
array calculations. However, there was no open-source ref-
erence implementation for the library, so it was left to each
compiler project to implement its own version. Because of
the number and complexity of the library components, this
was a significant implementation burden. The end result was
that too little attention was paid to the library and the imple-
mentations were inconsistent and exhibited generally poor
performance. Thus, users were once again forced to code
differently for different target machines, using those library
routines that provided the best performance.

Difficulty of Performance Tuning Every HPF compiler
we are aware of translated the HPF source to Fortran plus
MPI. In the process, many dramatic transformations were
carried out, making the relationship between what the de-
veloper wrote and what the parallel machine executed some-
what murky. This made it difficult for the user to identify and
correct performance problems.

To address the identification problem, the implementa-
tion group at Rice collaborated with Dan Reed’s group at the
University of Illinois to map the Pablo Performance Analy-
sis Systems diagnostics, which were based on a message-
passing architecture, back to HPF source [2]. This effort
was extremely effective and was implemented in at least one
commercial compiler, but it did little to address the tuning
problem. That is, the user could well understand what was
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causing his or her performance problem, but have no idea
how to change the HPF source to overcome the issue. Of
course, he or she could use the EXTRINSIC interface to drop
into MPI, but that voided the advantages of using HPF in the
first place.

The identification problem in the context of performance
tuning was also addressed in a cooperation between the Vi-
enna Fortran group and Maria Calzarossa’s research group
at the University of Pavia, Italy. This project developed a
graphical interface in which the explicitly parallel MPI-
based target code, with performance information delivered
by the MEDEA tool, could be linked back to the associ-
ated source statements. For example, a programmer using
this tool and familiar with the code generated for an in-
dependent loop in the framework of the inspector/executor
paradigm [83] was able to analyze whether the source of a
performance problem was the time required for the distribu-
tion of work, the (automatic) generation of the communica-
tion schedule by the inspector, or the actual communication
generated for the loop.

5. The HPF 2 Standardization Effort
In an attempt to correct some of the deficiencies in HPF 1.0
and 1.1, the HPF Forum undertook a second standardization
effort from 1995 to 1996. This effort led to the HPF 2.0
standard which incorporated a number of new features:

1. The REDUCTION clause for INDEPENDENT loops, substan-
tially expanding the cases where INDEPENDENT could be
used. (HPF 1.0 had the NEW clause for INDEPENDENT
to allow “local” variables to each loop iteration, but no
straightforward way to allow simple accumulations.)

2. The new HPF LIBRARY procedures SORT DOWN, SORT UP,
to perform sorting. (HPF 1.0 had already introduced
the GRADE UP and GRADE DOWN functions, which pro-
duced permutation vectors rather than sorting elements
directly.)

3. Extended data mapping capabilities, including map-
ping of objects to processor subsets; mapping of point-
ers and components of derived types; the GEN BLOCK
and INDIRECT distribution patterns and the RANGE and
SHADOW modifiers to distributions. (HPF 1.0, as noted
above, was limited to very regular distribution patterns
on array variables.)

4. Extended parallel execution control, including the ON di-
rective to specify the processor to execute a computa-
tion, the RESIDENT directive to mark communication-
free computations, and the TASK REGION directive pro-
viding coarse-grain parallel tasks. (HPF 1.0 left all com-
putation mapping to the compiler and runtime system.)

5. A variety of additional intrinsic and HPF LIBRARY pro-
cedures, mostly concerned with querying and managing

data distributions. (HPF 1.0 had some support, but more
was found necessary.)

6. Support for asynchronous I/O with a new statement
WAIT, and an additional I/O control parameter in the For-
tran READ/WRITE statement. (HPF 1.0 had ignored I/O
facilities.)

Except for the first two items above, these new features were
“Approved Extensions” rather than the “Core Language”.
HPFF had intended that vendors would implement all of the
core language features (e.g. the REDUCTION clause) imme-
diately, and prioritize the extensions based on customer de-
mand. Not surprisingly, this created confusion as the feature
sets offered by different vendors diverged. To our knowl-
edge, no commercial vendor or research project ever at-
tempted an implementation of the full set of approved ex-
tensions.

6. The Impact and Influence of HPF
Although HPF has not been an unqualified success, its has
been enormously influential in the development of high-level
parallel languages. The current CiteSeer database lists 827
citations for the original 1993 technical report, which was
later published in Scientific Programming [50], making it
the 21st most cited document in the computer science field
(as covered by CiteSeer). In addition, over 1500 publications
in CiteSeer refer to the phrase “High Performance Fortran”.
Many of these papers present various approaches to imple-
menting the language or improving upon it, indicating that it
generated a great deal of intellectual activity in the academic
community.

6.1 Impact on Fortran and its Variants
Fortran 95 While the meetings that led to HPF 1.1 were
underway, the X3J3 committee of ANSI was also meeting
to develop the Fortran 95 standard [1]. That group had long
watched developments in HPF with an eye toward adopt-
ing successful features, with Jerry Wagener serving as an
informal liaison between the groups. Ken Kennedy gave a
presentation to X3J3 on HPF’s parallel features, and en-
sured that no copyright issues would hamper incorporation
of HPF features into the official Fortran standard. When the
Fortran 95 standard [1] was officially adopted in 1996, it
included the HPF FORALL and PURE features nearly verba-
tim. The new standard also included minor extensions to
MAXLOC and MINLOC that had been adopted into the HPF Li-
brary from CM Fortran. Both HPFF and X3J3 considered
this sharing a positive development.

HPF/JA In 1999, the Japan Association for High Perfor-
mance Fortran, a consortium of Japanese companies includ-
ing Fujitsu, Hitachi, and NEC, released HPF/JA [86], which
included a number of features found in previous program-
ming languages on parallel-vector machines from Hitachi
and NEC. An important source contributing to HPF/JA was
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the HPF+ language [11] developed and implemented in a
European project led by the Vienna group, with NEC as one
of the project partners. HPF+, resulting from an analysis of
advanced industrial codes, provided a REUSE clause for inde-
pendent loops that asserted reusability of the communication
schedule computed during the first execution of the loop. In
the same context, the HALO construct of HPF+ allowed the
functional specification of nonlocal data accesses in proces-
sors and user control of the copying of such data to region
boundaries.

These and other features allowed for better control over
locality in HPF/JA programs. For example, the LOCAL di-
rective could be used to specify that communication was
not needed for data access in some situations where a com-
piler would find this fact difficult to discern. In addition,
the REFLECT directive included in HPF/JA corresponds to
HPF+’s HALO feature. HPF/JA was implemented on the
Japanese Earth Simulator [86], discussed below.

OpenMP Finally, we comment on the relationship be-
tween HPF and OpenMP [73, 33]. OpenMP was proposed as
an extension of Fortran, C, and C++, providing a set of direc-
tives that support a well-established portable shared memory
programming interface for SMPs based on a fork/join model
of parallel computation. It extends earlier work performed
by the Parallel Computing Forum (PCF) as part of the X3H5
standardization committee [66] and the SGI directives for
shared memory programming. OpenMP followed the HPF
model of specifying all features in the form of directives,
which could be ignored by uniprocessor compilers. Most
of the OpenMP features were completely compatible with
HPF: in fact, the parallel loop constructs were basically ex-
tensions of the HPF parallel loop construct.

OpenMP is an explicitly parallel programming model in
which the user is able to generate threads to utilize the pro-
cessors of a shared memory machine and is also able to con-
trol accesses to shared data in an efficient manner. Yet, the
OpenMP model does not provide features for expressing the
mapping of data to processors in a distributed-memory sys-
tem, nor does it permit the specification of processor/thread
affinity. Such a paradigm will work effectively as long as
locality is of no concern.

This shortcoming was recognized early, and a number
of attempts have been made to integrate OpenMP with lan-
guage features that allow locality-aware programming [72,
13]. However, the current language standard does not sup-
port any of these proposals. In fact, the recent development
of High Productivity Languages (see Section 6.2) may ren-
der such attempts obsolete, since all these languages inte-
grate multithreading and locality awareness in a clean way.

As a final remark, it is interesting to note that the OpenMP
design group, which started its work after the release of HPF
1.0, defined syntax for its directives that was incompatible
with HPF syntax. (From the OpenMP side, it was proba-
bly equally puzzling that HPF had defined its own syntax

rather than adopt the existing PCF constructs.) The language
leaders of both efforts met on several occasions to explore
the possibility of unifying the languages, as this would have
provided needed functionality to each, but a combined stan-
dardization project never got started.

HPF Usage After the initial release of High Performance
Fortran, there were three meetings of the HPF Users Group:
one in Santa Fe, NM (February 24-26, 1997), the second
in Porto, Portugal (June 25-26, 1998) and most recently
in Tokyo, Japan (October 18-20, 2000). At these meet-
ings surveys were taken to determine usage and product
development. The papers presented at the Tokyo meeting
were collected into a special double issue of Concurrency,
Practice and Experience (Volume 14, Number 8-9, August
2002). The Tokyo meeting was remarkable in demonstrat-
ing the continuing high interest in HPF within Japan. This
was reemphasized later when the Japanese Earth Simula-
tor [86] was installed and began running applications. The
Earth Simulator featured a high-functionality HPF imple-
mentation, initially based on the Portland Group compiler,
that supported the HPF/JA extensions. Two applications de-
scribed in the CPE special issue were brought up on the
Earth Simulator and achieved performance in the range of
10 Teraflops and above. The application Impact3D ran at
nearly 15 Teraflops, or roughly 40 percent of the peak speed
of the machine [82]; it was awarded a Gordon Bell Prize at
SC2002 for this achievement. Neither of these applications
included any MPI.

6.2 HPCS Languages
Although HPF missed the leading edge of parallel applica-
tion developers, its ideas are finding their way into newer
programming languages. Recently, DARPA has funded three
commercial vendors to develop prototype hardware and soft-
ware systems for the High Productivity Computing Sys-
tems (HPCS) projects. A principal goal of this effort is to
ease the burden of programming leading-edge systems that
are based on innovative new architectures. The three ven-
dors have produced three new language proposals: Chapel
(Cray) [17, 20, 36], Fortress (Sun) [90], and X10 (IBM) [22].
All of these include data parallelism in some form.

Chapel, Fortress, and X10 are new object-oriented lan-
guages supporting a wide range of features for programma-
bility, parallelism, and safety. They all provide a global name
space, explicit multithreading, and explicit mechanisms for
dealing with locality. This includes features for distributing
arrays across the computing nodes of a system, and estab-
lishing affinity between threads and the data they are operat-
ing upon. Finally, these languages support both data and task
parallelism. Because the HPCS language designers were fa-
miliar with the HPF experience, they have constructed data-
parallel features that address many of the shortcomings de-
scribed in Section 4.
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In contrast to the directive-oriented approach of HPF
or the library-based specification of MPI, Chapel, X10,
and Fortress are new memory-managed object-oriented lan-
guages supporting a wide range of safety features. They
build upon the experiences with object-oriented languages
and their implementation technology over the past decade,
but try to eliminate well-known shortcomings, in particular
with respect to performance. At the same time, they inte-
grate key ideas from many parallel languages and systems,
including HPF.

X10 is based on Java; however, Java’s support for con-
currency and arrays has been replaced with features more
appropriate for high performance computing such as a parti-
tioned global address space. In contrast, Chapel is a com-
pletely new language based on what are perceived as the
most promising ideas in a variety of current object-oriented
approaches.

Locality Management All three languages provide the
user with access to virtual units of locality, called respec-
tively locales in Chapel, regions in Fortress, or places in
X10. Each execution of a program is bound to a set of such
locality units, which are mapped by the operating system to
physical entities, such as computational nodes. This provides
the user with a mechanism to (1) distribute data collections
across locality units, (2) align different collections of data,
and (3) establish affinity between computational threads and
the data they operate upon. This approach represents an ob-
vious generalization of key elements in HPF.

Fortress and X10 provide extensive libraries of built-in
distributions, with the ability to produce new user-specified
data distributions by decomposing the index space or com-
bining distributions in different dimensions. In Fortress,
all arrays are distributed by default; if no distribution is
specified, then an array is assigned the default distribution.
Chapel, on the other hand, has no built-in distributions but
provides an extensive framework supporting the specifica-
tion of arbitrary user-defined distributions that is powerful
enough to deal with sparse data representations [36]. X10
has a Locality Rule that disallows the direct read/write of
a remote reference in an activity. Chapel and Fortress do
not distinguish in the source code between local and remote
references.

Multithreading HPF specifies parallel loops using the in-
dependent attribute, which asserts that the loop does not
contain any loop-carried dependences, thus excluding data
races. Chapel distinguishes between a sequential for loop
and a parallel forall loop, which iterates over the elements of
an index domain, without a restriction similar to HPF’s inde-
pendent attribute. Thus the user is responsible for avoiding
dependences that lead to data races.

The Fortress for-loop is parallel by default, so if a loop
iterates over a distributed dimension of an array the itera-
tions will be grouped onto processors according to the dis-
tributions. A special “sequential” distribution can be used

to serialize a for-loop. The Fortress compiler and run-time
system are free to rearrange the execution to improve per-
formance so long as the meaning of the program under the
distribution-based looping semantics is preserved. In partic-
ular, the subdivision into distributions essentially overparti-
tions the index space so that operations can be dynamically
moved to free processors to optimize load balance.

X10 distinguishes two kinds of parallel loops: the foreach
loop, which is restricted to a single locality unit, and the
ateach loop that allows iteration over multiple locality units.
As with the Locality Rule discussed above, X10 pursues a
more conservative strategy than Chapel or Fortress, forcing
the programmer to distinguish between these two cases.

6.3 Parallel Scripting Languages
Although the Fortran and C communities were willing to
tolerate the difficulties of writing MPI code for scalable
parallel machines, it seems unlikely that the large group of
users of high-level scripting languages such as Matlab, R,
and Python will be willing to do the same. Part of the reason
for the popularity of these languages is their simplicity.

Nevertheless, there is substantive interest in being able to
write parallel code in these languages. As a result, a number
of research projects and commercial endeavors, including
The MathWorks, have been exploring strategies for parallel
programming, particularly in Matlab [76, 35, 55, 61]. Most
of these projects replace the standard Matlab array represen-
tation with a global distributed array and provide replace-
ments for all standard operators that perform distributed op-
erations on these arrays. Although this is in the spirit of HPF,
the overhead of producing operation and communication li-
braries by hand limits the number of different distributions
that can be supported by such systems. Most of the current
implementations are therefore restricted to the distributions
that are supported by ScaLAPACK, the parallel version of
LAPACK, which is used to implement array operations in
the Matlab product.

A recently initiated project at Rice, led by Kennedy, is
seeking to build on the Rice HPF compiler technology, de-
scribed in Section 7 below, to provide a much richer collec-
tion of array distributions. The basic idea behind this effort
is to produce the distributed array operations in HPF and al-
low the HPF compiler to specialize these library routines to
all the different supported distributions. Currently, this list
includes sequential(*), block, block-cyclic, and block(k), in
each dimension, plus a new, two-dimensional distribution
called “multipartitioning” that is useful for achieving the
best possible performance on the NAS Parallel Benchmarks.
However, a number of new distributions are being contem-
plated for the near future.

The goal of these efforts is to provide the scripting lan-
guage community, and especially Matlab users, with a sim-
ple way to get reasonably scalable parallelism with only
minimal change to their programs. If they are successful,
they will not only vindicate the vision behind HPF, but will
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also dramatically increase the community of application de-
velopers for scalable parallel machines.

7. Lessons Learned
For the future, there are some important lessons to be learned
from the HPF experience: in particular, what should be done
differently in future languages with similar features. In this
section, we discuss a few of these issues.

First, we have learned a great deal about compiler tech-
nology in the twelve years since HPF 1.0 was released. It
is clear that, on the first compilers, high performance was
difficult to achieve in HPF. In fact, it became common prac-
tice to recode application benchmarks to exploit strengths of
the HPF compiler for a particular target machine. In other
words, application developers would rewrite the application
for each new language platform. A case in point was the
NAS parallel benchmark suite. A set of HPF programs that
were coded by engineers at the Portland group was included
as the HPF version of the NAS benchmarks. These versions
were designed to get the highest possible performance on
the Portland Group compiler, avoiding pitfalls that would
compromise the efficiency of the generated code. Unfortu-
nately, this compromised the HPF goal of making it possible
to code the application in a machine-independent form and
compile it without change to different platforms. In other
words, the practice of coding to the language processor un-
dermined HPF’s ease of use, making it time consuming to
port from one platform to another.

Over the past decade a research project at Rice University
led by John Mellor-Crummey has been focused on the goal
of achieving high performance on HPF programs that are
minimally changed from the underlying Fortran 90. In the
case of the NAS Parallel Benchmarks, this would mean that
the sequential Fortran 90 program (embodying a potential
parallel algorithm) would be changed only by the addition
of appropriate distribution directives: the compiler should do
the rest. The ultimate goal would be to produce code that
was competitive with the hand-coded MPI versions of the
programs that were developed for the NAS suite.

The HPF compiler produced by the Rice project, dHPF,
was not able to achieve this goal because the MPI ver-
sions used a distribution, called multipartitioning, that was
not supported in either HPF 1.0 or 2.0. When the Rice re-
searchers added multipartitioning to the distributions sup-
ported by dHPF, they were able to achieve performance that
was within a few percentage points of the hand-coded MPI
versions for both the NAS SP and BT applications [25]. This
result is confirmed by experience with HPF on the Earth
Simulator and a subsequent experiment in which the dHFP
compiler translated Impact3D to run on the Pittsburgh Su-
percomputer Center’s Lemieux system (based on the Alpha
processor plus a Quadrics switch) and achieved over 17 per-
cent efficiency on processor counts from 128 to 1024 (the

latter translated to 352 Gigaflops, likely a U.S. land speed
record for HPF programs) [24].

The experience with multipartitioning illustrates another
important aspect of making data-parallel languages more
broadly applicable: there needs to be some way to expand
the number of distributions available to the end user. Unfor-
tunately, multipartitioning is but one of many possible dis-
tributions that one might want to add to an HPF compiler;
the HPF 2.0 generalized block and indirect distributions are
two others. There may be many other distributions that could
be used to achieve high performance with a particular ap-
plication on a particular parallel system. The base system
cannot possibly include every useful distribution. This sug-
gests the need for some mechanism for adding user-defined
distributions. If we were able to define an interface for dis-
tributions and then define compiler optimizations in terms
of that interface, we would have succeeded in separating
data structure from data distribution. The end result would
be a marked increase in the flexibility of the language. Re-
search in this area is currently performed in the context of
the Chapel programming language developed in the Cascade
project. Chapel [17] provides no built-in distributions but of-
fers a distribution class interface allowing the explicit speci-
fication of mappings, the definition of sequential and parallel
iterators, and, if necessary, the control of the representation
of distributions and local data structures.

As we indicated earlier, the differences in implementation
strengths of the base language, combined with the paucity of
good implementations of the HPF Library, were another rea-
son for the limited success of the language. There were two
dimensions to this problem. First, some companies never im-
plemented the library at all. Others chose to spend their re-
sources on specific routines that were needed by their cus-
tomers and provide less than optimally efficient versions of
the rest. The result was that the end user could not rely on
the HPF Library if efficiency were a concern, which reduced
the usability of the language overall.

One of the reasons for the success of MPI was the ex-
istence of a pretty good portable reference implementation
called MPICH. A similar portable reference implementa-
tion for both the HPF compiler and the HPF Library would
have given a significant boost to the language. The Port-
land Group compiler came pretty close to a reference imple-
mentation for the languages, but there was no corresponding
standardized implementation for the library. Several leaders
of the HPF implementer community discussed the possibil-
ity of securing Federal support for a project to provide a ref-
erence implementation of the HPF library but the funding
was never found. This was particularly frustrating because
there existed a very good implementation of most of the
needed functionality in CMSSL (Connection Machine Sci-
entific Subroutine Library), part of the Thinking Machines
CMFortran run-time system. When Thinking Machines went
out of business and was sold to Sun Microsystems, it might
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have been possible to spin out the needed library functional-
ity had there been government support, but this second op-
portunity was also missed.

Performance tuning tools for HPF presented another set
of problems. As indicated in our earlier discussion, a collab-
oration between compiler and tool developers could succeed
in mapping performance information back to HPF source:
the Pablo system did this with the Rice dHPF compiler and
the Portland group compiler [2]. The difficulty was that there
were only limited ways for a user to exercise fine-grained
control over the code generated once the source of per-
formance bottlenecks was identified, other than using the
EXTRINSIC interface to drop into MPI. The HPF/JA ex-
tensions ameliorated this a bit by providing more control
over locality. However, it is clear that additional features are
needed in the language design to override the compiler ac-
tions where that is necessary. Otherwise, the user is relegated
to solving a complicated inverse problem in which he or she
makes small changes to the distribution and loop structure in
hopes of tricking the compiler into doing what is needed.

As a final note, we should comment on the lack of pa-
tience of the user community. It is true that High Perfor-
mance Fortran was rushed into production prematurely, but
had people been willing to keep the pressure up for improve-
ment rather than simply bolting to MPI, we could have per-
severed in providing at least one higher-level programming
model for parallel computing. As the work at Rice and in
Japan has shown, HPF can deliver high performance with
the right compiler technology, particularly when features are
provided that give the end user more control over perfor-
mance. Unfortunately, the community in the United States
was unwilling to wait. The United States federal government
could have helped stimulate more patience by funding one or
more of the grand-challenge application projects to use new
tools like HPF, rather than just getting the application to run
as fast as possible on a parallel platform. Because of this lack
of patience and support, the second wave of parallel comput-
ing customers is unable to benefit from the experiences of the
first. This is a lost opportunity for the HPC community.

8. Conclusion
High Performance Fortran failed to achieve the success we
all hoped for it. The reasons for this were several: immature
compiler technology leading to poor performance, lack of
flexible distributions, inconsistent implementations, missing
tools, and lack of patience by the community. Nevertheless,
HPF incorporated a number of important ideas that will be a
part of the next generation of high performance computing
languages. These include a single-threaded execution model
with a global address space, interoperability with other lan-
guage models, and an extensive library of primitive oper-
ations for parallel computing. In addition, a decade of re-
search and development has overcome many of the imple-
mentation impediments. Perhaps the time is right for the

HPC community to once again embrace new data-parallel
programming models similar to the one supported by HPF.
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Abstract  
ZPL is an implicitly parallel programming language, which 
means all instructions to implement and manage the paral-
lelism are inserted by the compiler. It is the first implicitly 
parallel language to achieve performance portability, that 
is, consistent high performance across all (MIMD) parallel 
platforms. ZPL has been designed from first principles, and 
is founded on the CTA abstract parallel machine. A key 
enabler of ZPL’s performance portability is its What You 
See Is What You Get (WYSIWYG) performance model. 
The paper describes the antecedent research on which ZPL 
was founded, the design principles used to build it incre-
mentally, and the technical basis for its performance port-
ability. Comparisons with other parallel programming 
approaches are included.  

Categories and Subject Descriptors D.3.2 [Programming 
Languages]: Language Classifications – Concurrent, dis-
tributed and parallel languages; D.3.3 Languages, Con-
structs and Features – Concurrent programming structures, 
Control structures, Data types and structures; D.3.4 Proces-
sors – Compilers, Retargetable compilers, Optimization, 
Run-time Environments; C.1.2 Multiple Data Stream Ar-
chitectures – Multiple-instruction-stream, multiple-data-
stream architectures (MIMD), Interconnection architec-
tures; C.4 Performance of Systems – Design studies, Mod-
eling studies, Performance attributes; E.1 Data Structures – 
Distributed data structures; F.1.2 Modes of Computation – 
Parallelism and concurrency.  

General Terms: Performance, Design, Experimentation, 
Languages. 

Keywords: performance portability; type architecture; par-
allel language design; regions; WYSIWYG performance 
model; CTA; problem space promotion. 

1. Starting Out  
On October 7, 1992 Calvin Lin clicked on an overhead 

projector in a Sieg Hall classroom on the University of 
Washington campus in Seattle, and began to defend his 
doctoral dissertation, The Portability of Parallel Programs 
Across MIMD Computers. The dissertation, which was a 
feasibility study for a different approach to parallel pro-
gramming, reported very promising results. At the celebra-
tory lunch at the UW Faculty Club we agreed that it was 
time to apply those results to create a new language. We 
had studied the critical issues long enough; it was time to 
act. At 9:00 AM the following morning he and I met to 
discuss the nature of the new language, and with that dis-
cussion the ZPL parallel programming language was born. 

It would be satisfying to report that that morning meet-
ing was the first of a coherent series of events, each a logi-
cal descendant of its predecessors derived through a 
process of careful research and innovative design, culmi-
nating in an effective parallel language. But it is not to be. 
ZPL is effective, being a concise array language for fast, 
portable parallel programs, but the path to the goal was 
anything but direct. That we took a meandering route to the 
destination is hardly unique to the ZPL Project. We zig-
zagged for the same reason other projects have: language 
design is as much art as it is science. 

What was unique to our experience was designing ZPL 
while most of the parallel language community was work-
ing cooperatively on High Performance Fortran (HPF), a 
different language with similar goals. On the one side was 
our small, coherent team of faculty and grad students, 
never more than ten, designing a language from scratch. On 
the other side was a distributed, community-wide effort 
with hundreds of participants, generous federal funding, 
and corporate buy-in dedicated to parallelizing Fortran 90. 
It had all of the features of a David and Goliath battle. 
Language design is much more complex and subtle than 
combat, however, so “battle”  mischaracterizes the nature of 
the competition, as I will explain. 

In the following I describe the design and development 
of ZPL. One objective is to explain the important technical 
decisions we made and why. Their importance derives both 
from their contributions to ZPL’s success and their poten-
tial application in new (parallel) languages. The other ob-
jective is to convey the organic process by which ZPL was 
created, the excitement, the frustrations, the missteps, the 
epiphanies. Language design for us was a social activity, 
and just as a software system’s structure often reflects the 
organization of the group that created it, the ZPL team 
pressed its unique profile into the resulting language. 
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To follow the winding path, it is necessary to know the 
intended destination. 

2. Goals 
By the morning of that first meeting the goals were well 
established. They were even established before Lin started 
his dissertation, because the whole ZPL effort was pre-
ceded by a decade of parallel programming research. Our 
earlier projects had created two other parallel languages 
and a parallel programming environment, tested them and 
found them wanting. Though they failed to achieve the 
design goals, each effort let us explore the design space 
and test the efficacy of different approaches. Lin’s disserta-
tion was the transitional research moving us from exploring 
the problem to solving it. All of these attempts shared the 
same objective: To be a practical language that delivers 
performance, portability and convenience for programming 
large scientific and engineering computations for parallel 
computers. 

2.1 Performance 

The performance goal is self-evident because the main rea-
son to program a parallel computer is to complete a compu-
tation faster than with a sequential solution. A parallel 
programming language that cannot consistently deliver 
performance will not be used. Consistency is essential be-
cause programmers will not spend effort programming on 
the chance that the code runs fast. It must be a certainty. 
Further, the degree to which the parallel solution outper-
forms the sequential solution is also important, since it is a 
measure of the programmer’s success. Because of the naïve 
assumption that P processors should speed up a computa-
tion by a factor of P, users expect their programs to ap-
proach that performance. In consequence language 
designers must repress any temptation to “spend” portions 
of that factor-of-P potential for language facilities. A 
common example is to introduce log P overhead to imple-
ment the shared memory abstraction [1]. Our performance 
goal was to deliver the whole potential to the programmer. 

2.2 Portability 

Program portability, meaning that programs “perform 
equivalently well across all platforms,” was the second 
property we wanted to achieve.1 Portability, once a matter 
of serious concern, had not been a significant issue in pro-
gramming language design for sequential computers since 
the development of instruction set architectures (ISAs) in 
the 1960s. Sequential computer implementations are ex-
tremely similar in their operational behavior and any pro-
gramming language more abstract than assembly language 
could be effectively compiled to 3-address code with a 
stack/heap memory model, and then translated to the ISA 
of any sequential computer. 

By contrast, parallel computer architecture had not (has 
not) converged to a single machine model. Indeed, when 
the ZPL effort began, large SIMD  (single instruction 
stream, multiple data stream) computers were still on the 

                                                 
 
 
1 “Portability” has a range of meanings from “binary compatible” to “ex-
ecutable after source recompilation;” the latter applies here. 

market. As it was obvious from the beginning that SIMD 
machines are too limited to support general purpose com-
puting, our focus has always been on MIMD  (multiple 
instruction stream, multiple data stream) machines. Among 
MIMD computers, though, dozens of different architec-
tures have been built and many more proposed during the 
period of our programming language research [2]. Compil-
ing efficient code for all of them is a challenge. 

Portability was an issue because, as one researcher from 
Lawrence Livermore National Laboratory (LLNL) la-
mented at a Salishan meeting2 at the time, “Before we get 
the program written they roll in a new computer, and we 
have to start from scratch.” The problem, as in the 1950s, 
was that programmers tried to achieve performance by ex-
ploiting specific features peculiar to the architecture, and 
computer vendors encouraged them to do so to secure their 
market advantage. For example, the popular-at-the-time 
hypercube communication network was often explicitly 
used in programs [3]. Once the topology was embedded 
into the code, the program either had to be rewritten or 
considerable software overhead had to be accepted to emu-
late a hypercube when the next machine “rolled in” with a 
different topology. This problem was extremely serious for 
the national labs, accustomed as they were to running pro-
grams for years, the so-called “dusty decks.” 

Achieving portability in parallel language design entails 
resolving a tension: Raising the level of abstraction tends to 
improve portability, while programming at a lower level, 
closer to the machine, tends to improve performance. Rais-
ing the level high enough to overtop all architectural fea-
tures, however, may penalize performance to an 
unacceptable degree if layers of software are needed to 
map the abstractions to the hardware. The purpose of Lin’s 
dissertation research was to validate the portability solution 
we intended to use in ZPL (the CTA approach, see below). 

As a postscript, portability as used here, meaning port-
ability with (parallel) performance, was not much discussed 
in the literature as the Lin work was being published. I 
think we were the only group worried about it. Soon, it 
became widely mentioned. It was never clear to me that the 
researchers who claimed portability for their languages 
understood the tension just described. Rather, I believe 
they interpreted portability in what I began thinking of as 
the “computability sense.” Computability’s universality 
theorem says any program can run on any modern com-
puter by (some amount of) emulation. This fact applies to 
parallel programs on parallel computers. All parallel lan-
guages produce portable programs in this sense. Our port-
ability goal required a program in language X, which 
delivered good performance on platform A, quantified, say, 
as 80% of the performance of a custom, hand-coded pro-
gram for A, to deliver roughly the same good performance 
when compiled and run on platform B. This is the sort of 
portability sequential programs enjoy, and users expect it 
of parallel programs, too. Portability in the “computability 
sense” says nothing about maintaining performance. 

                                                 
 
 
2 The national labs have regularly held a meeting of parallel computation 
experts at the Salishan Conference Center on the Oregon Coast. 
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2.3 Convenience 

Convenience, meaning ease of use, was the third goal. In-
venting a language that is easy to use is a delicate matter. 
To aid programmers, it is important to match the lan-
guage’s abstractions to the primitive operations they use to 
formulate their computations. When we began (and it re-
mains true) there were few “standard” parallel language 
constructs. What statement form do we use to express a 
pipelined data structure traversal? What is standard syntax 
for writing a (custom) parallel prefix computation? It is 
necessary to create new statement forms, but doing so is 
subtle. They must be abstract, but still give programmers 
effective control. Of course, picking syntax for them is 
guaranteed to create controversy. 

On the other side of the convenience equation, the prob-
lem domain influences the choice of language facilities. 
Because high-end applications tend to be engineering and 
scientific computations, good support for arrays, floating-
point computations and libraries was essential. Addition-
ally, keeping the memory footprint contained was also es-
sential, because high-end computations are as often 
memory bound than computation bound. 

2.4 Additional Constraints 

Our plan was to build ZPL from scratch rather than extend-
ing an existing (sequential) language. Our two previous 
language designs included an instance of each approach. 
Many benefits have been cited for extending an existing 
language, such as a body of extant programs, knowledge-
able programmers, libraries, etc. It is an odd argument, 
since these resources are all sequential. To exploit them 
implies either that users are content to run sequential pro-
grams on a parallel computer, or that there is some tech-
nique to transform existing sequential programs into 
parallel programs; if that is possible, why extend the lan-
guage at all? 

While on the topic of techniques to transform sequential 
programs, notice that the  “parallelizing compiler” ap-
proach is the ultimate solution to the practical parallel pro-
gramming problem: It produces—effortlessly from the 
programmer’s viewpoint—a parallel program from a se-
quential program. It seems miraculous, but then compilers 
are pretty amazing anyhow, so it is easy to see why the 
approach is so often pursued. I first argued in 1980 [4] that 
this technique would not work based on two facts: (1) com-
pilers, for all their apparent magic, simply transform a 
computation from a higher to a lower level of abstraction 
without changing the computational steps significantly; (2) 
solving a problem in parallel generally requires a paradigm 
shift from the sequential solution, i.e. the algorithm 
changes. Despite considerably more progress than I might 
have expected, the prospects of turning the task over to a 
compiler remain extremely remote. ZPL was focused on 
writing parallel programs (as were all of its ancestors). 

Our experience extending an existing language (Orca C, 
discussed below) demonstrated the all-too-obvious flaw in 
trying extend a sequential language: With an existing lan-
guage, programmers familiar with it expect its statements 
and expressions to work in the usual way. How can this 
expectation be managed? Preserving the sequential seman-
tics while mapping to a parallel context is difficult to im-
possible, especially considering that performance is the 
goal. Changing the semantics to morph them into a parallel 

context is annoying to infuriating for programmers, espe-
cially considering the potential for introducing subtle bugs; 
further, it renders the existing program base useless. Hav-
ing done it once, I was not about to repeat the mistake. So, 
we started from scratch—we called it designing from first 
principles. This also has the advantage that the needs of the 
programmer and the compiler can be integrated into the 
new language structures. 

Finally, we decided to let parallelism drive the design 
effort, avoiding object orientation and other useful or fash-
ionable, but orthogonal, language features. If we got the 
parallelism right, they could be added. Before that point 
they would be distracting. 

3. Overview of the ZPL Project 
To build a superstructure around ZPL to allow direct access 
to the interesting parts of the research, we take a rapid tour 
through nearly a dozen years of the project. 

3.1 The Time Line 

Prior to the October 1992 meeting, several efforts in addi-
tion to Lin’s dissertation produced foundations on which 
we built. One of these, the CTA Type Architecture, is es-
pecially critical to the language’s success and will be de-
scribed in detail in a later section. 

Beginning in October, Lin and I worked daily sketching 
a language based on his dissertation work. By March, 
1993, the language was far enough along that he could pre-
sent it at the final meeting of the Winter Quarter’s 
CSE590-O, Parallel Programming Environments Seminar. 
His hour-long lecture was intended to attract students to the 
Spring Quarter CSE590-O, which we planned to make into 
a language design seminar. (The language was not yet 
named.) We would program using the language’s features, 
as well as try to extend its capabilities. The advertisement 
was successful. The project began that March with seminar 
students Ruth Anderson, Brad Chamberlain, Sung-Eun 
Choi, George Foreman, Ton Ngo, Kurt Partridge and Der-
rick Weathersby. A few terms later, E Chris Lewis joined 
to be the final project founder. See Figure 1. 

As the seminar students learned the base language and 
began contributing to the design in Spring 1993, names 
were frequently suggested, usually humorously. Lin had 
called it Stipple in his presentation, because he had used 
stipple patterns liberally in his diagrams. I had called it 
Zippy, suggesting it produced fast programs, but that was 
too informal. Eventually, we gravitated to ZPL, short for Z-
level Programming Language, as explained below. 

With performance as the first goal, we adopted Project 
Policy #1: Only include in the language those features that 
we know how to compile into efficient code. At this point 
our main guidance on what could be done efficiently was 
Lin’s dissertation. So, the language contained very little at 
the start. Indeed, when the design was first described in 
1993 [5], ZPL was called “an array sublanguage” because 
so many features were missing. There was enough expres-
siveness, however, to cover common inner loop computa-
tions. For example, the 4-nearest neighbor stencil iteration 
could be expressed with these lines (plus declarations), 
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The new programming abstractions introduced by ZPL at 
this point were regions (the indices in brackets), directions 
(the �-constructs), and the global-view distributed memory 
model, as explained below. 

As we designed we applied the general heuristic of op-
timizing for the common case. This would often have a 
profound effect on the language. Most frequently it caused 
us to decide not to adopt a too-general approach; we would 
table the final decision pending further inspiration. 

Compiler construction began by summer 1993. Project 
Policy #2: The compiler must always create fast and port-
able code, starting at the beginning. The next year, the per-
formance and portability results reported for ZPL [6] 
showed that our research goals could be achieved, at least 
for the sublanguage. The policy had, at least, been instanti-
ated properly. Nearly all of the ZPL papers show perform-
ance results on several different parallel architectures. 

Project meetings and implementation started out in the 
Blue CHiP Lab in Sieg Hall, but with the Computer Sci-
ence and Engineering department critically short on space, 
we gave up the lab after the summer of 1994. The team 
never had another lab, despite the tremendous benefits of 
having a focal point for a research project. The grad stu-
dents were distributed across several offices, most of them 
in a temporary manufactured building next to Sieg Hall 
known to the team as Le Chateau. With everyone scattered, 
implementation was coordinated by network, and the de-

sign discussions were conducted in conference rooms. In 
my opinion the absence of lab space slowed progress to a 
noticeable degree. 

During 1995-6 the team extended ZPL’s expressiveness 
substantially, and our few users gave us feedback on the 
design. Indeed, in accordance with Project Policy #3: Lan-
guage design proceeded with a handful of representative 
operations or computations drawn from user applications. 
By this we hoped to match the needs of the problem do-
mains. By 1996 a succinct, high-level stand-alone language 
had been designed and implemented —dubbed ZPL Classic 
by the designers. 

Comparisons with standard benchmarks, for example, 
the SPLASH and xHPF suites, showed that the ZPL com-
piler was doing well on such parallel-specific aspects as 
communication performance, but that its scalar perform-
ance was only average. For these well-worked benchmark 
codes, programmers could incorporate hand optimizations 
into their low-level message passing programs to make 
them extremely efficient. In high-level languages like ZPL 
it is the compiler that is responsible for such optimizations 
because programmers do not write the low-level code like 
array-traversal loops. So, after an additional year devoted 
mostly to improving ZPL’s scalar performance, the com-
piler was officially released in July 1997. 

The team changed slowly over time. Jason Secosky 
joined in 1994. Lin joined the faculty at UT Austin in 
1996. Ruth Anderson, George Forman and Kurt Partridge 
moved on to other dissertation topics. Taylor van Vleet, 
Wayne Wong and Vassily Litvinov joined the project, con-

Figure 1. Snapshot from a ZPL Design Meeting, 1995. Standing, from left, Jason Secosky, E Chris Lewis, Larry Snyder, Ton Ngo, 
Derrick Weathersby and Judy Watson; seated, Sung-Eun Choi, Brad Chamberlain, Calvin Lin 
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tributed and moved on. Ton Ngo returned to IBM in 1996. 
In 1997 Maria Gulickson, Douglas Low and Steven Deitz 
joined as project members. Periodically, researchers from 
client fields, such as chemistry, astronomy and mechanical 
engineering, would join our group meetings. 

One effect of Policy #1, the “add no feature until it 
compiles to fast code” policy, was to make ZPL Classic a 
rather static language that emphasized creating structures 
through declarations rather than building them on the fly. 
But creating ZPL Classic had also given us sufficient in-
sight to be more dynamic. So, following the completion of 
ZPL Classic we began work on Advanced ZPL (A-ZPL) to 
enhance programmer flexibility. New features included 
built-in sparse arrays, upgrading regions and directions to 
first-class status, and introducing facilities for dynamically 
controlling data distributions and processor assignments. 
The resulting language was much more flexible. 

Users have programmed in ZPL since 1995. ZPL pro-
grams are much more succinct than programs written in 
other general approaches. Experiments show that ZPL pro-
grams consistently perform well and scale well. On the 
NAS Parallel Benchmarks ZPL nearly matches perform-
ance against the hand-optimized MPI with Fortran or C; on 
user-written programs, ZPL is generally significantly faster 
than MPI programs. (See below.) Our ZPL-to-C compiler 
emits code that can be compiled for any parallel machine 
and typically requires little tuning. The ZPL compiler has 
been available open source since 2004. Concepts and ap-
proaches from ZPL have been incorporated into Cray’s 
Chapel, IBM’s X10 and other parallel languages. 

4. Contributions 
Though they are described in detail below, it may be help-
ful to list the main contributions of the ZPL project now as 
a link among various threads of the story. 

I believe the principal contributions are 
• Basing a parallel language and its compiler on the 

CTA machine model (type architecture). 
• Creating a global view program language for MIMD 

parallel computers in which parallelism is inherent in 
the operations’ semantics. 

• Developing the first parallel language whose pro-
grams are fast on all MIMD parallel computers. 

• Designing from first principles parallel abstractions 
to replace shared memory. 

• Creating new parallel language facilities including 
regions, flooding, remap, mscan and others, all de-
scribed below. 

• Applying various design methodologies, including 
an always fast and portable implementation, design-
ing from user problems, evolutionary design, etc. 

• Creating the problem space promotion parallel pro-
gramming technique. 

• Inventing numerous compilation techniques and 
compiler optimization approaches including the 
Ironman communication layer, loop-fusion and array 
contraction algorithms, the factor-join technique, and 
others. 

There are many other smaller contributions, but these 
successes most accurately characterize the advances em-
bodied in ZPL. 

5. The Programmer’s View of ZPL 
To illustrate ZPL programming style in preparation for a 
careful explanation of its technical details, consider writing 
a program for Conway’s Game of Life. Over the years we 
used various introductory examples, but we eventually 
adopted the widely known Game of Life and joked that it 
solved biologically inspired simulation computations. 
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�
��$��'"%�$���������"��	%	�����0�� � The world is n × 

�
n; default to 16; change on command line.�

���	%"���1����������������� � � Index set of computation; n2 elements.�
��*"�	$�"��� � � � � Reference vectors for 8 nearest neighbors ...�
����������!���!����������!���2����	����!�������Vectors "point" in index space not Euclidean space�
�����������2��!������������������	������2�������� � � ���
��������������!��������������2����	������������
��/��� � � � � � Declarations for two array variables both n × 

�
n.�

����3����1�� ��#	������ � � Problem state, The World�
����44����1�� +�	������� � � Work array, Number of Neighbors�
�

��$	*��	�&"'	���� � � � Entry point procedure; same name as program.�
�� 	%"��
����!!�)�"�"�#",	���	����#*��	�	� � �
���1���	
	��� � ������� � � Region R means all operations apply to all indices.�
�����44����3�5�����3�5�����3�5�	�� � Add eight nearest neighbor bits (type coercion follows C)�
�����������3�5��������������3�5	������ Caret(^) means neighbor is a toroidal reference at array edge.�
�����������3�5�����3�5�����3�5�	���� � ��
�����3�����3�6�44���-��7��44���.��� � Update world with next generation.�
�������"#�8�7���3��� � � � Continue till all die out; use an OR reduction.�
	�*��
�

 
Figure 2. Conway’s Game of Life in ZPL. The problem state is represented by the n×n Boolean array 3. On each itera-
tion of the repeat loop a generation is computed: the first statement counts for each grid position the number of nearest 
neighbors, and the second statement applies the “rules”; the iteration ends when no more cells are alive. 
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5.1 Life As A ZPL Program 

Recall that the Game of Life models birth and death proc-
esses on a two dimensional grid. The grid is toroidally con-
nected, meaning that the right neighbors of the right edge 
positions are the corresponding positions on the left edge; 
similarly for the top and bottom edges. The game begins 
with an initial configuration, the 0th generation, in which 
some grid positions are occupied by cells. The i+1st gen-
eration is found from the ith generation by eliminating all 
cells with fewer than two neighbors or more than three; 
additionally, any vacant cell with exactly three neighbors 
has a cell in the i+1st generation. See Figure 2 for the ZPL 
program simulating Life. 

The following ZPL concepts are illustrated by the Life 
program. 

The $��'"%� $���� is a declaration setting �, the 
length of the edge of the world, to 16. Configuration con-
stants and variables are given default values in their decla-
rations that can be changed on the command line later 
when the program runs. 

Regions, which are new to ZPL, are like arrays without 
data. A region is an index set, and can take several forms. 
The index range form used in Life, 

�	%"���1���������������� 

declares the lower and upper index limits (and an optional 
stride) for each dimension. (Any number of dimensions is 
allowed.) In this example, 1 is the set of n2 indices {(1,1), 
(1,2), (1,3), ..., (n,n)}. 

The next declaration statements in the Life program de-
fine a set of eight directions pointing in the cardinal direc-
tions. A direction is a vector pointing in index space. For 
example, ������!���2� is a direction that for any index 
(i,j) refers to the index to its north (above), i.e. (i-1, j). Di-
rections, another concept introduced in ZPL, provide a 
symbolic way to refer to near neighbors. 

Regions are used in two ways. In 

/��� �

����3����1�� ��#	������

����44����1�� +�	��

the region (�1�) provides the indices for declaring arrays. 
So, the world (3) is an n2 array of Boolean values. 

The other use of regions is to control the extent of array 
computations. For example, by prefixing the �	
	��-
statement with �1� we specify that all array computations 
in the statement are to be performed on indices from 1. 
That is, the operations of the two assignment statements in 
the body of the �	
	�� and the loop condition test, all of 
which involve expressions whose operands are arrays, will 
be performed on the n2 values whose indices are given in 
the region 1. In this way programmers have global (de-
clarative) control over which parts of arrays are operated 
upon. 

The computation starts by generating or inputting the 
initial configuration. Within the �	
	��-loop the first 
statement 

44����3�5�����3�5�����3�5�	��

������3�5��������������3�5	������

������3�5�����3�5�����3�5�	� 

counts the number of neighbors by type-casting Booleans 
to integers. This is an array operation applying to all ele-
ments in the region 1. Therefore 3�5��, for example, 

refers to the array of elements north of the elements in 1; 
�5 is verbalized wrap at. The indices for these north 
neighbors are found by adding the direction vector to the 
elements of 1, i.e. 1��!��2�. The translated indices (with 
wraparound) reference an n × n array of “north neighbors,” 
and similarly, for the other direction-modified addition 
operands. The additions are performed element-wise, pro-
ducing an n × n result array whose indices are in 1. The 
result, the count of neighbors, is assigned to 44. 

The next statement 

3�����3�6�44���-��7��44���.�� 

applies the Game of Life rules to create the 3 Boolean 
array for the next generation. Thus, any position where a 
cell exists in the current generation and has two neighbors, 
or the position has three neighbors, becomes true in the 
next generation. As before, these are array operations ap-
plying to all elements of 1 as specified by the enclosing 
region scope. 

Finally, the loop control 

���"#�8�7���3���

performs an OR-reduction (7��) over the new generation; 
that is, it combines the elements of 3 using the OR-
operation. If the outcome is not true, no cells exist and the 
repetition stops. 

It is a small computation and only requires a small ZPL 
program to specify. 

5.2 Parallelism in Life 

Although the Life program contains some unfamiliar syn-
tax and several new concepts, it is composed mostly of 
routine programming constructs: declarations, standard 
types, assignment statements, expressions, control struc-
tures, etc. Indeed, it doesn’t look to be parallel at all, since 
the familiar concepts retain their standard meanings: decla-
rations state properties without specifying computation, 
statements are executed one at a time in sequence, etc. 

The Life program is data parallel, meaning that the 
concurrency is embodied in the array operations. For ex-
ample, when the eight operand-arrays are added element-
wise to create the value to be assigned to 44, the order of 
evaluation for the implementing scalar operations is not 
specified, and can be executed in parallel. 

ZPL programmers know much more about the pro-
gram’s parallelism than that. Using ZPL’s WYSIWYG 
Performance Model (explained below), programmers have 
complete information about how the program is executed in 
parallel: They know how the compiler will allocate the data 
to the processors, they know a small amount of point-to-
point communication will be performed at the start of each 
loop iteration, they know that operations of each statement 
will be fully concurrent, and that the termination test will 
require a combination of local parallel computation fol-
lowed by tournament tree and broadcast communication. 
(Details are given below.) Though programmers do not 
write the code, they know what the compiler will produce. 

6. Antecedents 
To set the context for the ZPL development, recall that in 
the 1980s and early 1990s views on how to program paral-
lel machines partitioned into two categories that can be 
dubbed: No Work and Much Work. The No Work commu-
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nity expected compilers to do all of the parallelization. 
Most adherents of this view believed a sequential (Fortran) 
program was sufficient specification of the computation, 
although a sizeable minority believed one of the more 
“modern” functional or logic or other languages was pref-
erable. The Much Work community believed in program-
ming to a specific machine, exploiting its unique features. 
Their papers were titled “The c Computation on the d 
Computer,” for various values of c and d, much as techni-
cal papers had been in the early days of computing. And 
conference series such as the Hypercube Conference were 
devoted to computations on parallel computers defined by 
their communication topology (binary n-cube). Given the 
state of the art, the No Work community could have port-
ability but little prospect for performance, while the Much 
Work community could have performance but little pros-
pect of portability. One without the other is useless in prac-
tice. We thought we knew how we might get both, but we 
were exploring new territory. 

6.1 The Importance of Machines 

I take as a fundamental principle that programming lan-
guages designed to deliver performance should be founded 
on a realistic machine model [1]. Since the main point of 
parallel programming is performance, it follows that the 
principle applies to all parallel languages. I didn’t always 
know or believe the principle; it emerged in work on ZPL’s 
language antecedents. The first of these was the Poker Par-
allel Programming Environment, a product of the Blue 
CHiP Project and my first real attempt at supporting paral-
lel programming [7]. 

The Blue CHiP Research Project designed and devel-
oped the Configurable, Highly Parallel (CHiP) computer 
[8], a MIMD parallel machine with programmable inter-
connect like FPGAs of today. That is, the processors are 
not permanently connected to each other in a fixed topol-
ogy; the programmer specifies how the processors are to 
connect. The programmer designing a “mesh algorithm” 
connects the processors into a mesh topology, and when 
the next phase requires a tree interconnect the processors 
are reconfigured into a tree. The CHiP machine was my 
answer to the question, “How might VLSI technology 
change computers?” 

While in the throes of machine design in January 1982, I 
organized a team of a dozen grad students and faculty to 
begin work on its programming support. Poker was a first 
attempt at an Interactive Development Environment (IDE) 
for parallel programming; it was intended to support every 
aspect of CHiP computer programming.3 Because the CHiP 

                                                 
 
 
3 Of course, there were no IDEs to build on at the time, but the Alto work 
at Xerox PARC [65] illustrated a powerful interactive graphic approach, 
which we did try to borrow from with Poker. We designed Poker around a 
bit-mapped display attached to a VAX 11/780, our proto-workstation. 
Since another VAX 11/780 supported the entire Purdue CS department, 
our profligate use of computer power to service a single user was deemed 
ludicrous by my faculty colleagues. It is quaint today to think that dedicat-
ing a 0.6 MIPS computer with 256K RAM is wasteful; the surprising 
aspect of it was how quickly (perhaps 3-4 years) it became completely 
reasonable. Our Poker system used windows and interactive graphics, but 
we didn’t understand the windows technology well enough. The resulting 

computer is MIMD, Poker provided the ability to write 
code for each processor; because the CHiP computer is 
configurable, it provided the ability to program how the 
processors should be interconnected; because parallel pro-
gramming was seen as occurring in phases, it provided the 
ability to orchestrate the whole computation, globally. 

Though we thought of it as a general-purpose program-
ming facility, Poker was actually tightly bound to the un-
derlying CHiP architecture, a 2D planar structure designed 
more to exploit VLSI than to provide a general-purpose 
parallel computing facility. Poker was perfectly matched to 
computations that could run efficiently on the CHiP plat-
form, that is, VLSI-friendly computations such as systolic 
algorithms and signal processing computations. But the 
language became more difficult to use in proportion to how 
misaligned the computation was with the CHiP architec-
ture. The tight binding between the CHiP machine and the 
programming language limited Poker’s generality, but the 
successful cases clearly illustrated the value of knowing the 
target machine while programming. This was an enduring 
contribution of the Poker research: Programmers produce 
efficient code when they know the target computer, but 
directly exploiting machine features embeds assumptions 
about how the machine works and can impose unnecessary 
requirements on the solution. 

If not the CHiP architecture, then what? At the other end 
of the spectrum from specific architectures are the abstract 
concurrent execution environments used for functional 
languages, logic languages, PRAM computations, etc., all 
of which were extremely popular in the 1980s [9-11]. 
These very abstract “machines” are powerful and flexible; 
they do not constrain the programmer and are easy to use. 
But how are they implemented efficiently? They did not 
(and do not) correspond to any physical machine, and emu-
lating them requires considerable overhead. It was evident 
that fundamental issues concerning memory reference limit 
the feasibility of all of these approaches. A solution might 
one day be found, but in the meantime the practical conclu-
sion I came to was: It is just as easy to be too general about 
the execution engine as it is to be too specific. 

6.2 Type Architecture 

The sum of what I thought I knew in the summer of 1985 
could be expressed in two apparently contradictory state-
ments:  

 
• A tight binding between a programming facility and a 

machine leads to efficient programs, but by using it 
programmers embed unnecessary assumptions into the 
solution. 

• A weak or non-existent binding between a program-
ming facility and a physical machine leads to easy-to-
write computations that cannot be efficiently imple-
mented. 

                                                                                 
 
 
system was very cumbersome and fragile. Trying and failing to make a 
technology work gives one a deep appreciation and respect for those who 
do get it right [66]. 
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I decided to explain these two “facts” in an invited paper 
that eventually appeared under the title Type Architecture, 
Shared Memory and the Corollary of Modest Potential [1]. 
The paper was purposely provocative at the request of the 
Annual Reviews editors. Accordingly, rather than present-
ing the two “facts” directly, it argued that parallel models 
based on a flat, shared memory—the usual abstraction 
when implementation is ignored and the assumption in the 
functional/logic/PRAM world—are best avoided on the 
grounds of poor practical parallel performance. (The point 
was made more rigorously sometime later [12].) The paper 
went on to present an alternative, the CTA Type Architec-
ture. 

A type architecture is a machine model abstracting the 
performance-critical behavior of a family of physical ma-
chines. The term “type” was motivated by the idea of a 
“type species” in biology, the representative species that 
exhibits the characteristics of a family, as in the frog Rana 
rana characterizing the family Ranidae. Alas, given how 
overused the word “type” is in computer science, it was an 
easily misinterpreted name. 

Machine models have been common since Turing intro-
duced his machine in 1936 [13]. But type architectures are 
not just machine models. They are further constrained to 
describe accurately the key performance-critical features of 
the machines, usually in an operational way. For example, 
in the familiar Random Access Machine Model (a.k.a. the 
von Neumann machine), there is a processor, capable of 
executing one instruction at a time, and a flat memory, ca-
pable of having a randomly chosen, fixed-size unit of its 
storage referenced by the processor in unit time; moreover, 
instructions are executed in sequence one per unit time. 
These characteristics impose performance constraints on 
how the RAM model can work that inform how we pro-
gram sequential computers for performance. (Backus de-
scribed some of these features as the von Neumann 
Bottleneck [14], and used them to motivate functional lan-
guages.) Notice that most features of physical machines are 
ignored —instruction set, registers, etc.—because they af-
fect performance negligibly. 

The idea of a type architecture derived from several 
months’ reflection on how we write efficient sequential 
programs to be used as an analogy for how we should write 
efficient portable parallel programs. The result of this 
thought-experiment was essentially making explicit what 
we all understand implicitly: Usually, programmers don’t 
know what their target machine will be and it changes fre-
quently, yet they are perfectly effective writing fast pro-
grams in languages like C. Why? Because 

 
• they understand the performance constraints of the 

RAM model,  
• they understand generally how C maps their code to the 

model, and 
• when the program runs on real hardware it performs as 

the model predicts.  
 

What is essential about the RAM model is that it gives a 
true and accurate statement of what matters and what 
doesn’t for performance. For example, programmers prefer 
binary search to sequential search because random access is 
allowed, and 1-per-unit-time data reference and 1-per-unit-

time instruction execution implies sequential search is 
slower when the list is longer than several elements. It’s 
not enough to give a machine model; Turing gave a ma-
chine model. It’s essential that the model accurately de-
scribe the performance that the implementing family of 
machines can deliver. A type architecture does that. 

Notice that Schwartz’s idealistic but otherwise brilliant 
“Ultracomputer” paper [15] had tried to ensure some de-
gree of realism in a parallel model of computation. His 
work influenced my thinking, though he was more con-
cerned with algorithmic bounds than production parallel 
programs, and he was prescriptive rather than descriptive. 

So, in the same way that the RAM model abstracts se-
quential machines and is the basis for programming lan-
guages like C, enabling programmers to know the 
performance implications of their decisions and to produce 
portable and efficient sequential programs, a type architec-
ture abstracting the class of MIMD parallel machines could 
be used to define a language enabling programmers to 
write code that runs well on all machines of that type. 
MIMD parallel machines, unlike sequential computers, 
exhibit tremendous variability. What is their type architec-
ture like? 

6.3 CTA – Candidate Type Architecture 

Abstracting the key characteristics of MIMD parallel ma-
chines was somewhat easier than one might have expected 
given the wide variability of real or proposed architectures. 
Clearly, it has some number, P, of processors. What’s a 
processor? Because the parallel machines are MIMD, the 
processors each have a program counter, program and data 
memory, and the ability to execute basic instructions; so 
the RAM type architecture is a convenient (and accurate) 
definition of a processor. This gives the CTA the attractive 
property that a degenerate parallel computer, that is, P = 1, 
is a sequential computer, establishing a natural relationship 
between the two. 

Besides processors, the other dominant characteristic of 
parallel machines is the communication structure connect-
ing the processors. Because connecting every pair of proc-
essors with a crossbar is prohibitively expensive, parallel 
architectures give up on a complete graph interconnection 
and opt for a sparser topology. I had expected that the par-
allel type architecture would specify some standard topol-

… 

vN 

Interconnection Network 

vN vN vN vN vN 

Figure 3. CTA Type Architecture Schematic. The CTA is 
composed of P von Neumann processors each with its own 
(program and data) memory, program counter and d-way con-
nection to the communication network; the dashed processor is 
the “global controller” (often only logical) with a thin connec-
tion to all machines; not shown is the key constraint that on-
processor memory reference is unit time; off-processor mem-
ory reference is λ time. 
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ogy [16] such as the shuffle-exchange graph or perhaps a 
3D torus, but with so many complex issues surrounding 
interprocessor communication, I was uncertain as to which 
topology to pick. So, I decided to leave the topology un-
specified, and call the machine the Candidate Type Archi-
tecture, pending a final decision on topology and possibly 
other features. In retrospect this was an extremely lucky 
decision, because I eventually decided topology is not any 
more important to parallel programmers than bus arbitra-
tion protocols are to sequential computer programmers. 
(Also, leaving topology unspecified prevents programmers 
from embedding topological assumptions in their code, as 
was criticized under the Antecedents discussion above.) 
What does matter to programmers, and what was specified 
with the CTA, is the performance implications of whatever 
topology the architect ultimately chooses. 

The key performance implication of the communication 
structure is that there is a large latency for communicating 
between any pair of processors. Though there is also a 
modest bandwidth limit, it is latency that affects perform-
ance—and therefore programming—the most. Latency, 
eventually quantified as λλλλ, cannot be explicitly given as a 
number for a long list of obvious reasons even for a spe-
cific topology: Costs grow with P; the paths connecting 
different pairs of processors have different lengths in most 
topologies; certain routing strategies have no worst-case 
delivery time [17]; there is network congestion and other 
conflicts; costs are greatly affected by technology and en-
gineering, etc. But, it is a fact that compared to a local 
memory reference—taken to be the unit of measurement—
the latency of a reference to another processor’s memory is 
very large, typically 2-5 orders of magnitude. The λ value 
has a profound effect on parallel programming languages 
and the parallel programming enterprise. The number is so 
significant that the actual details of the communication 
network don’t matter that much: If a program is well writ-
ten to accommodate λ in this range, then it will be well 
written for a value 10 times as large or one tenth as large. 

There are a few other conditions on the CTA: The inter-
connection network must be a low-degree, sparse topology 
if it is to be practical to build machines of interesting sizes. 
A distinguished processor known as the controller has a 
narrow connection to all processors, suitable for such 
things as eurekas in which one processor announces to all 
others. Though largely deprecated in many programmers’ 
minds because processor 0 can act as the controller, various 
parallel computers have had controllers, and I think it cap-
tures an important capability. Notice also that the CTA 
does not specify whether a parallel machine has hardware 
support for shared memory. Not specifying shared memory 
support is consistent with the family of computers being 
abstracted: some have it and some don’t. Overall, the CTA 
is a simple machine, as shown in Figure 3. 

 The CTA, despite its designation as a candidate type 
architecture, has remained unchanged since its original 
specification 20 years ago, and it has been useful. It pro-
vided the basis for demonstrating the inherent weakness in 
shared memory programming abstractions [12]. It is the 
machine model used for ZPL. It is the machine model mes-
sage passing programmers use. It is the machine of the 
LogP model [18]. Further, the type architecture approach—
but not the CTA—has been used for sequential computers 
with FPGA attached processors [19]. 

6.4 Preparatory Experiments 

From 1982, the genesis of Poker, to 1992, the genesis of 
ZPL, the Blue CHiP project expended considerable effort 
trying to solve the parallel programming problem. We tried 
to enhanced Poker. We designed and implemented a lan-
guage (SPOT) based on the lessons of Poker, but it was 
unsatisfactory. After creating the CTA, we designed and 
implemented a language (Orca-C) based on it, but it too 
was unsatisfactory. Realizing how difficult the problem is, 
we decided to run a series of experiments (Lin’s feasibility 
studies) to test out the next language (ZPL) before imple-
menting it. This section skips all of the details, focusing 
only on the work leading up to Lin’s dissertation. 

One derivative from the Poker work was a classification 
of parallel programming levels. Recall a description from 
three sections back: 

Because the CHiP computer is MIMD, Poker provided 
the ability to write code for each processor; because the 
CHiP computer is configurable, it provided the ability 
to program how the processors should be intercon-
nected; because parallel programming was seen as oc-
curring in phases, it provided the ability to orchestrate 
the whole computation, globally. 

These three aspects of Poker programming were eventually 
labeled X, Y, Z, where X referred to programming proces-
sors, Y referred to programming the communication, and Z 
referred to programming the overall orchestration of the 
computation. (These were temporary labels pending better 
names, which were never chosen.) The classification influ-
enced our thinking about programming, and the top level, 
Z, was particularly important, being the global view of the 
computation. Z gave ZPL its name: Z-level Programming 
Language. 

Two language efforts contributed to a maturing of our 
ideas. The first was SPOT [20], an effort to raise the level 
of abstraction of Poker while remaining tightly bound to a 
CHiP-like architecture. SPOT introduced array abstrac-
tions, but mostly it contributed to the recognition, ex-
plained above, that coupling too tightly to a specific 
machine is too constraining. The second effort, known as 
Orca-C, was an attempt to extend C to a CTA-based model 
of computation.4 The programming was processor-centric, 
i.e. very much X-level. A prototype was produced, and 
several application programs, including the Simple bench-
mark, were written and run on parallel hardware [21]. Be-
ing astonished to discover that more than half of the Simple 
code was devoted to handling boundary conditions, we 
committed ourselves to attending to the “edges” of a com-
putation in future abstractions. Though Orca-C gave us 
experience designing and implementing a CTA language 
and helping users apply it, the low programming level im-
plied we badly needed higher-level abstractions. 

Finally, there was the question of whether programming 
in a language built on the CTA resulted in fast and portable 
parallel programs. In principle it should, as argued above. 
But our line of reasoning had been based on only a single 
success—imperative languages like C and the RAM model. 

                                                 
 
 
4 We expected to generalize Fortran to produce Orca-F, and had the idea 
been successful, we might be discussing Orca-J! 
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That seemed like the only way to program, and was so fa-
miliar that perhaps we’d missed something. Before creating 
a new language, we needed experience programming with 
the CTA as the machine model. So, we ran a series of 
Orca-C experiments examining whether performance and 
portability could both be achieved. 

These were the experiments reported in Calvin Lin’s 
dissertation, The Portability of Parallel Programs Across 
MIMD Computers [22]. He used Orca-C and the CTA to 
write several parallel programs and measured their per-
formance across five of the popular parallel architectures of 
the day: three shared memory (Sequent Symmetry, BBN 
Butterfly GP1000, BBN Butterfly TC2000), and two dis-
tributed memory (Intel iPSC-2, nCUBE/7). Though the 
space of results was complicated, they suggested to us that 
it was possible to write one generic program based on the 
behavior of the CTA and produce reasonable performance 
consistently across vastly different parallel machines. 

A further issue concerned the memory model for a new 
language. The CTA says, in essence, that parallel pro-
gramming should be attentive to exploiting locality, but the 
undifferentiated global shared memory that is the logical 
extension of the von Neumann model’s memory ignores 
locality, and the convenience of ignoring it is the rationale 
for including hardware support for shared memory. Lin’s 
results said that respecting locality was good for perform-
ance and portability, that is, CTA-based programs run well 
on machines with or without shared memory hardware. But 
there is the subtle case of shared memory programs written 
for shared memory hardware computers. It might be that 
programs developed assuming global shared memory run-
ning on shared memory hardware are superior to generic 
programs focusing on locality on that same hardware. If so, 
CTA-focused programming might be penalized on such 
machines. Lin’s experiments suggested CTA-based pro-
grams were actually better, but not definitively. Ton Ngo 
[23, 24] addressed the question more deeply and found that 
for the cases analyzed the CTA was a better guide to effi-
cient parallel programming than global shared memory for 
shared memory hardware computers. Though it is almost 
always possible to find an application that uses a hardware 
feature so heavily that it beats all comers, the opposite 
question—can the applications of interest exploit the 
shared memory hardware better using the shared memory 
abstraction?—was answered to our satisfaction in the nega-
tive. 

Thus, with the knowledge that performance and port-
ability could be achieved at once and the knowledge that 
respecting locality produces good results, we began to de-
sign ZPL. 

7. Initial Design Decisions 
Following the celebratory lunch in October 1992, we 
launched the language design, which allowed us to apply 
the results of several years’ worth of experiments. It was a 
great relief to me to finally be designing a language. For 
several years I’d been attending contractors’ meetings, 
workshops and conferences, and listening to my colleagues 
present their ideas for ways to program parallel computers. 
Their proposals, though well intended and creative, were 

just that: proposals. They were generally unimplemented 
and unproved. More to the point, they appeared totally 
oblivious to the issues that were worrying us, making the 
lack of verifying data even more frustrating.5 Now, the 
preparation was behind us. Our formulation of a high-level 
language would soon emerge. 

7.1 Global View versus Shared Memory 

With the results of the Lin and Ngo experiments in mind, 
we adopted a global view of computation. That is, the pro-
grammer would “see” the whole data structures and write 
code to transform entire arrays rather than programming 
the local operations and data needed by the processors to 
implement them. The compiler would handle the imple-
mentation. By “seeing” arrays globally and transforming 
them as whole units, programmers would have power and 
convenience without relying on difficult-to-implement 
global shared memory. 

To be clear, in shared memory, operands can reference 
any element or subset of elements of the data space, 
whereas in the global view operations are applied to entire 
data aggregates, though perhaps selectively on individual 
elements using regions. 

The problem with shared memory is the “random ac-
cess,” that is, the arbitrary relationship between the proces-
sor making the access and the physical location of the 
memory referenced. The Lin/Ngo results emphasized the 
importance of locality. When a processor makes an access 
to a random memory location, odds are that it is off-
processor, requiring λ time to complete according to the 
CTA. Global shared memory gives no structure to memory 
accesses, and therefore, no way6 to maximize the use of the 
cheaper local memory references. 

Some years earlier we had tested the idea of using APL 
as a parallel programming language. The results of those 
experiments [25] showed that although most of APL’s fa-
cilities admitted efficient parallel implementations, the no-
table exception was indexing. APL permits arrays to be 
indexed by arrays, A[V], which provides capabilities more 
powerful than general permutation. Based on usage counts, 
indexing is heavily used, and although its full power is 
rarely needed, it would be very difficult to apply special-
case implementations to improve performance. We decided 
at the time that APL’s indexing operator was its Achilles’ 
heel. We wanted more control over array reference. 

Another indexing technique is “array slices,” ��-��!
��-�, as used in, say Fortran 90 [26] and, therefore, in 
High Performance Fortran [27]. These references are much 
more structured with their lower bound, upper bound, 
stride triple. Slices give a simple specification of the data 
being referenced for a single operand. An effective com-
piler needs that information, but it also needs to know the 
relative distribution between the referenced items for (pairs 
of) operands because it must assign the work on some 

                                                 
 
 
5 At one point Lin and I tried to engage the community in testing the 
shared-memory question mentioned above, but it was noticed by only a 
few researchers [67]. 
6 Many, many proposals have been offered over the years to provide scal-
able, efficient shared memory, both hardware and software. In 1992 none 
of these seemed credible.  
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processor(s), and if the data is not local to the processors 
doing the work, it must be fetched. So, for example, in the 
Fortran 90 expression 

������9����������:������9��� ����������(1)�

corresponding elements are added; because of the usual 
conventions of data placement, this typically would be im-
plemented efficiently without communication. But, the 
similar expression 

�����9�����������:�����!���9� �-��

sums elements with opposite indices from the sequence. 
This likely has serious communication implications, proba-
bly requiring most of one operand to reference non-local 
data. 

ZPL solved this problem with regions, which give a set 
of indices for statement evaluation that applies to all array 
operands; any variation from common specification is ex-
plicit. So, in ZPL the computation of expression (1) would 
be written 

��������9������:�9�

since the operands reference corresponding elements. If the 
relationship is offset, say by one position, as in ���������
��:�	���, then ZPL simply uses 

�����!���9�����:��"%���9�

where the ��"%�� effectively adds 1 to each index, as-
suming the direction �"%�� has the value ���. This im-
plies (a small amount of) communication, as explained later 
in the WYSIWYG performance model. With regions, ex-
pression (2) requires first that one of the operands be re-
mapped to new indices. Accordingly, the equivalent ZPL is 

��������9�����:;��!)�*	������9�

We explicitly reorder using the remap (
) operator and a 
description of the � indices in reverse order (��
)�*	����), because the memory model does not permit 
arbitrary operand references.7 Programmers must explicitly 
move the data to give it new indices. 

A mistaken criticism of regions asserts that they are only 
an alternate way to name array slices, that is, reference ar-
ray elements. But as this discussion shows, the difference is 
not embodied in naming, though that is important. Rather, 
the main difference is in controlling the index relationships 
among an expression’s operands: Regions specify one in-
dex set per statement that applies to all operands, modulo 
the effects of array operators like �; slices specify one in-
dex set per operand. 

It may appear that this is a small difference since both 
approaches achieve the same result, and indeed, it may 
appear that ZPL’s global reference is inferior because it 
requires special attention. But, as argued below in the dis-
cussion of the WYSIWYG performance model, ZPL’s pol-
icy is to make all nonlocal (λ-cost) data references explicit 
so programmers can know for certain when their data ref-
erences are fast or slow and what its big-O communication 
complexity is. 

                                                 
 
 
7 Indexi is a compiler generated array of indices for dimension i; here it is 
1, …, n. 

We eliminated general subscripting because we couldn’t 
figure out how to include it and still generate efficient code 
relative to the performance constraints of the CTA. Be-
cause all operands use the same reference base, regions 
make possible a variety of simplifications that we wanted: 

 
• The compiler could know the relationship among the 

operands’ indices without depending on complex 
analysis or the firing of a compiler optimization, and 
could therefore consistently avoid generating unnec-
essarily general code 

• The common case of applying operations to corre-
sponding array elements allows local, 100% com-
munication-free code 

• When operands are not corresponding array ele-
ments, programmers specify transformations such as 
the � or # operators that embody the communication 
needed to move the elements “into line” 

• “Array-wide” index transformations such as remap 
often admit optimizations like batching, schedule re-
use, etc. that use communication more efficiently 

• Understanding the performance model and compiler 
behavior is much more straightforward and, we rec-
ognized later, expressing it to programmers is easier 
(see WYSIWYG model below) 

 
Finally, one happy convenience of regions is that they 

avoid the repetitious typing of subscripts that occurs with 
array slices in the common case when subscripts of each 
operand correspond.8 

Unquestionably, adopting the global view rather than 
shared memory drove almost all of the language design. It 
made the work fun and very interesting. And as we pro-
gressed, we liked what we created. Our programs were 
clear and succinct and errors were rare. It was easy not to 
miss subscripts. 

7.2 Early Language Decisions 

Beginning in March 1993 we taught the base language to 
the Parallel Programming Environments seminar (CSE590-
O) students. (The type architecture and CTA had been cov-
ered during fall term.) Soon, we worked as a group to ex-
tend the language. 

As language design proceeded, the question of syntax 
arose continually. Syntax, with its ability to elicit heated 
(verging on violent) debate carries an additional complica-
tion in the context of parallel languages. When syntax is 
familiar, which usually means that it’s recognizable from 
some sequential language, it should have the familiar 
meaning. A '��-loop should work as a '��-loop usually 
works. Accordingly, parallel constructs will require new or 

                                                 
 
 
8 Once, to make the point that repeating identical or similar index refer-
ences using slices is potentially error prone, we found a 3D Red/Black 
SOR program in Fortran-90, filled with operands of the form 
��#�<����"<���	��#�=����"=���	��#�>����">���	�, and 
then purposely messed up one index expression. Our plan was to ask read-
ers which operand is wrong. It was nearly impossible to recognize the 
correct from the incorrect code, proving the point but making the example 
almost useless once we had forgotten which program was messed up. 
Which was which? In frustration, I eventually dumped the example.    
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distinctive syntax, motivating such structures as 
��� 	!
%"�/
���	�*. The new semantics have a syntax all their 
own, but this further raises the barrier to learning the new 
language. In our design discussions we tended to use a mix 
of simplified Pascal/Modula-based syntax with C operators 
and types. It was an advantage, we thought, that Pascal was 
by then passé, and was thus less likely to be confused with 
familiar programming syntax. With only a little discussion, 
we adopted that syntax. 

Perhaps the two most frequently remarked upon features 
of ZPL’s syntax are the use of �� for assignment and the 
heavy use of  	%"�/	�* rather than curly braces. Of 
course, the use of �� rather than � was intended to respect 
the difference between assignment and equality, but it was 
a mistake. ZPL’s constituency is the scientific program-
ming community. For those programmers such distinctions 
are unimportant and �� is unfamiliar. Programmers switch-
ing between ZPL and another language—including the 
implementers—regularly forget and use the wrong symbol 
in both cases. It’s an unnecessary annoyance. 

The grouping keywords  	%"�/	�* were adopted with 
the thought that they were more descriptive and curly 
braces would be used for some other syntactic purpose in 
the language. Over the years of development curly braces 
were used for a number of purposes and then subsequently 
removed on further thought. In the current definition of the 
language, curly braces are used only for the unimportant 
purpose of array initialization. In retrospect, their best use 
probably would have been for compound statements. 

7.3 Early Compiler Decisions 

Language design continued during the summer of 1993 in 
parallel with the initial compiler implementation. To solve 
the instruction set portability problem we decided to com-
pile ZPL to C, which could then be compiled using the 
parallel platform’s native C compiler to create the object 
code for the processor elements. Making the interprocessor 
communication portable requires calls to a library of (po-
tentially) machine-specific transport routines. Though this 
problem would ultimately be solved by the Ironman Inter-
face [28], it was handled in 1993 by emitting ad hoc mes-
sage passing calls. 

To get started quickly, we began with a copy of the 
Parafrase compiler from the University of Illinois [29]. 
This gave us instant access to a symbol table, AST and all 
the support routines required to manipulate them. With a 
small language and borrowed code, the compiler came up 
quickly. The compiler’s runtime model followed the dic-
tates of the CTA, of course, and benefited greatly from the 
Orca-C experience. 

One measure of success was to demonstrate perform-
ance and portability from our high-level language. Though 
there is a natural tendency in software development to “get 
something running” and worry about improving perform-
ance (or portability) later, we took as a principle that we 
would deliver performance and portability from the start, 
Policy #2. We reasoned that this would ensure that the lan-
guage and compiler would always have those properties: 
Preserving them would be a continual test on the new fea-
tures added to the language; any proposed feature harming 
performance or limiting portability wouldn’t be included. 

In September, 1993, the basic set of features was re-
ported in “ZPL: An Array Sublanguage” at the Workshop 
on Languages and Compilers for Parallel Computers 

(LCPC) [5]. The idea of building an array sublanguage—
contained, say, in Orca-C or other general parallel facili-
ties—was crucial initially because it meant that we could 
focus on the part of parallel computation we understood 
and could do well, such as the inner loops of Simple and 
other benchmarks. We didn’t have to solve all the problems 
at once.  Because we had dumped shared memory and 
adopted the demanding CTA requirements, there was 
plenty to do. Over time, the language got more general, but 
by late fall of 1993—a year after Lin’s dissertation de-
fense—we were generating code, and by the next summer, 
when 1994 LCPC came around, we were demonstrating 
both performance and portability on small parallel bench-
marks [6]. 

7.4 Other Languages 

As noted above, we had already determined some years 
earlier [25] that APL was an unlikely candidate as a paral-
lel programming language. Nevertheless, because it is such 
an elegant array language we often considered how our 
sample computations might be expressed in APL. On hear-
ing that ZPL is an array language, people often asked, 
“Like APL?” “No,” we would say, “ZPL is at the other end 
of the alphabet.” The quip was a short way to emphasize 
that parallelism had caused us to do most things quite dif-
ferently. (A related quip was to describe ZPL as the “last 
word in parallel programming.”) 

C*, however, was a contemporary array language tar-
geted to parallel computers, and therefore had to deal with 
similar issues [30]. A key difference concerned the view of 
a “processor.” Being originally designed for the Connec-
tion Machine family, C* took the virtual processor view: 
that is, in considering the parallel execution of a computa-
tion programmers should imagine a “processor per point.” 
The physical machine may not have so much parallelism, 
but by multiplexing, the available parallelism would be 
applied to implement the idealization. The idea is silent on 
locality. The CTA implies that a different processor ab-
straction would be preferable, namely, one in which a set 
of related data values all reside on the same processor. The 
CTA emphasizes the benefits of locality since nonlocal 
references are expensive. 

Of course, the processor-per-point (1ppp) view and the 
multiple points per processor (mppp) view are identical 
when the number of data values and the number of proces-
sors are the same (n=P), which never happens in practice. 
Still, because implementations of 1ppp models bundle m 
values on each processor for n = mP and multiplex the 
1ppp logic on each value, it has been claimed the 1ppp 
models are equivalent to ZPL’s mppp model. They are not. 
As one contradicting example, consider the array � de-
clared over the region ���� and consider the statement 

�����!����������	�����

which shifts the values of � one index position to the left, 
except for the last. The 1ppp model abstracts this operation 
as a transmission of every value from one virtual processor 
to its neighbor, while ZPL’s mppp model abstracts it as a 
transmission of a few “edge elements” followed by a local 
copy of the data values. (See the WYSIWYG model dis-
cussion below for more detail.) All communications in both 
models conceptually take place simultaneously and are 
therefore equivalent. But the data copy is not captured by 
the 1ppp model, though it is probably required by the im-
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plementation; the data copy is captured by the mppp model. 
This repositioning of the data may seem like a small detail, 
especially considering our emphasis on communication, 
but it can affect the choice of preferred solutions. In the 
Cannon v. SUMMA matrix multiplication comparison [31] 
described below, repositioning has a significant effect on 
the analysis. This distinction between the virtual processor 
and the CTA’s multiple points per processor kept us from 
using C* as a significant source of inspiration. 

The High Performance Fortran (HPF) effort was con-
temporaneous with ZPL, but it had no technical influence. 
HPF was not a language design,9 but a sequential-to-
parallel compilation project for Fortran 90. Because we 
were trying to express parallelism and compile for it, that is 
parallel-to-parallel compilation, we shared few technical 
problems. And we were building on the CTA and they 
were not: On the first page of the initial HPF design docu-
ment [27] the HPF Forum expressed its unwillingness to 
pick a machine model—“Goal (2) Top performance on 
MIMD and SIMD computers with non-uniform memory 
access costs (while not impeding performance on other 
machines).” At the time I assumed that the Goal had more 
to do with the need to design by consensus than any ne-
glect of the literature. Either way, attempting to parallelize 
a sequential language and doing so without targeting the 
CTA were blunders, preventing us from having much in-
terest in its technical details. But, with most of the research 
community apparently signed on, we came to see ourselves 
as competitors because of the divergent approaches. We 
compared performance whenever that made sense. We 
were proud to do better nearly always, especially consider-
ing the huge resource disparities. 

Finally, ZPL is apparently a great name for a language. 
In the summer of 1995 we received a letter from attorneys 
for Zebra Technologies Inc. alleging trademark infringe-
ment for our use of “ZPL” for a programming language, 
and threatening legal action. Zebra is a Midwest-based 
company making devices for UPC barcoding including 
printers, and they had trademarked their printer control 
language, Zebra Programming Language, ZPL. We had 
never heard of them, and we guessed they had never heard 
of us until MetaCrawler made Web searches possible and 
they found us via our Web page. Our response pointed out 
that theirs is a control language for printers and ours was a 
supercomputer language, and that the potential audiences 
do not overlap. Nothing ever came of the matter, but every 
once in a while we get a panic question from some harried 
barcode printer programmer. 

8. Creating ZPL’s Language Abstractions 
In this section we recap the high points of the initial design 
discussions and the important decisions that emerged dur-
ing the first 18 months of project design. 

                                                 
 
 
9 The statement may be unexpected, but consider: Beginning with Fortran 
90 and preserving its semantics, HPF focused on optional performance 
directives. Thus, all existing F-90 programs compute the same result using 
either an F-90 or HPF compiler, and all new programming in HPF had the 
same property, implying no change in language, and so no language de-
sign. 

8.1 Generalizing Regions 

Regions as a means of controlling array computation were 
a new idea, and working out their semantics percolated 
through the early design discussions. It was clear that scop-
ing was the right mechanism for binding the region to the 
arrays. That is, the region applying to a d-dimensional ar-
ray is the d-dimensional region prefixing the statement or 
the closest enclosing statement. So in 

�1	%?��	��� 	%"��

��������������Statement 1��
��1	%)��	�����Statement 2��
��������������Statement 3��
�����������	�*��

d-dimensional arrays in Statement 2 are controlled by re-
gion �1	%)��	��, while d-dimensional arrays in state-
ments 1 and 3 are controlled by region �1	%?��	��.  
This region is known as the applicable region for the d-
dimensional arrays of the statement. Regions had been 
strongly motivated by scientific programming style, where 
it is common to define a problem space of a fixed rank, e.g. 
2D fluid flow, and perform all operations on that state 
space. With large blocks of computation applying to arrays 
with the same dimensionality, scoped regions were ideal. 

Because regions define a set of indices of a specific di-
mensionality, arrays of different dimensionalities require 
different regions. ZPL’s semantics state that the region 
defines the elements to be updated in the statement’s as-
signment, so initially it seemed that only one region was 
needed per statement. (Flooding and partial reduction soon 
adjusted this view, as explained below.) But, because 
statements within a scope may require different regions, the 
original language permitted regions of different ranks to 
prefix a single statement, usually a grouping statement, as 
in 

�������������������� 	%"������	�*��

Though this feature seemed like an obvious necessity, it 
was rarely if ever used during ZPL’s first decade and was 
eventually removed. 

Because the team’s modus operandi was to use a few 
specific example computations to explore language facili-
ties and compiler issues, we showed the language to cam-
pus users from an early stage as a means of finding useful 
examples. This engendered a surprising (to me) modifica-
tion to the language. Specifically, we had defined a region 
to be a list of index ranges enclosed in brackets, as in the 
declaration 

�	%"���1�����������������

and required that to control the execution of a statement the 
name appear in brackets at the start of the line, as in 

�1�������������

It seemed obvious to us as computer scientists that when a 
region was specified literally on a statement that it should 
have double brackets, as in 

��������������������������

Users were mystified why this should be and were not per-
suaded by the explanation. We removed the extra brackets. 
Curiously, computer scientists have since wondered why 
ZPL doesn’t require double brackets for literal regions! 
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8.2 Directions 

The original use of directions as illustrated in Figure 2 was 
to translate a region to refer to nearby neighbors, as in 
���	��. It is a natural mechanism to refer to a whole ar-
ray of adjacencies, i.e. the array of western neighbors, and 
contrasts with single-point alternatives such as ����
��. Generally, directions were a straightforward concept at 
the semantic level. 

The compiler level was another matter. Directions refer 
to elements some of which will necessarily be off-
processor. (A complete description of the runtime model is 
given in the WYSIWYG section below.) This presents sev-
eral problems for a compiler. First, communication with the 
processor storing the data is required, and the compiler 
must generate code to access that data, as illustrated in Fig-
ure 4. Obviously, the direction is used to determine which 
is the relevant processor to communicate with. Second, in 
order to maximize the amount of uninterrupted computa-
tion performed locally, buffer space—called fluff  in ZPL 
and known elsewhere as shadow buffers, ghost regions or 
halo regions—was included in position in the array alloca-
tion. Again, it is obvious that the direction indicates where 
and how much fluff is required. So, for example, with 
������ �� ������, the (direction) vector has length 1 
and so only a single row can be referenced on a neighbor-
ing processor. When the direction is �	��	�����	��� 
the compiler introduces a double row of fluff. 

Unlike regions, however, directions were not originally 
allowed to be expressed literally, as in ��������. Fur-
thermore, not allowing literal directions prevented the 
temptation to allow variables in a direction, as in 
�����+�. The problem with �����+� is that we don’t 
know how much fluff to allocate, and we don’t know how 
much communication code to generate. For example, 
������� requires fluff on the east, southeast and south 
edges of the array and three communications (generally) to 
fill them, while ������� requires only an east column of 
fluff and one communication. Effectively, ZPL’s �-
translations were only statically specified constant transla-
tions. By knowing the off-processor references exactly, 
fluff could be allocated at initialization, avoiding array re-
sizing, and the exact communication calls could be gener-
ated. Though these restrictions were (not unreasonably) 
criticized by programming language specialists, they were 
only rarely a limitation on using the language. One such 
example was the user whose fast multipole method stencil 
required 216 neighbor references. 

As indicated in Figure 4, the � operator will reference 
whole blocks of data, e.g. columns, and these can be 
transmitted as a unit. Batching data values is a serious win 
in parallel communication, because of the overhead to set 
up the transfer and the advantages of the pipelining of the 
transmission itself. ZPL gets this batching for free.10 But 
we could do even better knowing at compile time what 
communication is necessary. For example, we move com-
munication operations earlier in the control flow to pre-

                                                 
 
 
10 There was a flutter of compiler research at one point focused on tech-
niques to determine when coalescing communications is possible [68]; 
raising the semantic level of the language eliminates the problem.  

fetch data; we also determine when data for several vari-
ables is moving between the same processors, allowing the 
two transmissions to be bundled, as described below. These 
scheduling adjustments to the default communication lead 
to significant performance improvements [32] (see Iron-
man, below). In essence, the language enforced restrictions 
on � to give a fast common case. 

Having been conservative with directions originally al-
lowed us to work out fully the compilation issues. Confi-
dent that we knew what we were doing, we added literal 
directions. 

8.3 Region Operators 

A key question is whether a procedure must specify its own 
region, or whether it can inherit its region from the calling 
context. That is, are regions supplied to procedures stati-
cally or dynamically? Inheriting was chosen because it is 
more general and provides a significant practical advantage 
to programmers in terms of reuse. Since portions of the 
inherited region will be used in parts of the computation, it 
is obviously necessary to define regions from other regions. 

Specifically, let region 1������������and di-
rection �	�����������. Then to refer to boundary val-
ues of the region beyond 1’s west edge, i.e. a 0th column, 
is specified ��	��� �'� 1� (see Figure 5). The region 
operators—informally known as the prepositional opera-
tors because they include �', "�, ��,  + and �"��—

Processor p2 
 3333:9..16, 1..8 
 

Processor p0 
 3333:1..8, 1..8 
 

Processor p3 
 3333:9..16, 9..16 
 

Processor p1 
 3333:1..8, 9..16 
 

Figure 4. Schematic of the block allocation of array TW 
from Figure 2,  where �=16 and the P = 4 processors have a 2 × 
2 arrangement. The array is shown as a grid. The fluff buffers, 
shown shaded, completely surround the local portion of the array 
because there are @-references in all eight directions. In the dia-
gram, local portion of the (operand) array 3���� for processor 
p0 is shown in heavy black; because the north neighbors of the 
top row wrap to reference the bottom row on processor p2, com-
munication from p2 to p0 is required to fill the fluff buffer. 
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generally take a direction and a region of the same rank and 
produce a new region, which can be used with other region 
operators for region expressions, as in �	���� "��
������"��1� for the upper right corner element of a 2D 
region 1. The operator �� translates regions just as � trans-
lates indices for operands;  + strides indices, as in ����
 +�	�, which selects odd indices in this example. Such 
operators allow regions to be defined in terms of other re-
gions without the need to know the actual limits of the in-
dex range. Similarly, we included the ditto region, as in ��
���, meaning to inherit the dynamically enclosing region, 
and empty dimensions,  as in ������, meaning to in-
herit the index range of that dimension from the enclosing 
region. Defining the prepositional operators and consider-
ing regions in general led to a 4-tuple descriptor for index 
ranges that probably has applicability beyond ZPL [33]. 

The �"�� operator, as in �1��"������@�, uses a 
Boolean array expression (���@) rather than a direction 
with a region as the other prepositional operators do. The 
variable is a Boolean array of the same rank as 1 specify-
ing which indices to include, and making it similar to the 
��	�	 of languages like Fortran 90. Though there are 
ample cases where masking is useful and sensible, the ZPL 
team, especially Brad Chamberlain, was always bothered 
by the fact that the execution of a masked region would be 
proportional to the size of 1 rather than the number of the 
true values in the mask. This ultimately motivated him to 
develop a general sparse array facility;  + was also a moti-
vation to develop multiregions (see below). 

8.4 Reduce and Flood 

Since APL, reduce—the application of an associative op-
erator to combine the elements of an array—has been stan-
dard in array programming languages. (Scan is also 

common and is discussed below.) The key property from 
our language design standpoint is the fact that reduce takes 
an array as an operand but produces a scalar as a result. 
This is significant because ZPL has been designed to com-
bine like-ranked arrays to produce another array of that 
rank. (The reasons concern the runtime representation and 
the WYSIWYG  model, as explained below.) The original 
ZPL design only included a “full” reduction (op <<) that 
combined all elements into a scalar, where op is �, �, �, �, 
�"�, ���. We had plans to include a partial reduction, but 
had not gotten to that part of the design. Thus, initially, the 
fact that reduce reduces the rank of its operand was simply 
treated as an exception to the like-ranked-arrays rule. (Sca-
lars were exceptional anyway, because they are replicated 
on all processors whereas arrays are distributed.) When it 
came time to add partial reduction, the issue of an “input 
shape” and an “output shape” had to be addressed. 

Partial Reduce A partial reduction  applies an associa-
tive operator (�, �, �, �, ���, �"�) to reduce a subset of 
its operand’s dimensions. The original ZPL solution, moti-
vated by APL’s +/[2]A, was to specify the reducing dimen-
sion(s) by number. This is a satisfactory solution for APL 
because the reduced dimensions are removed. In ZPL they 
remain and are assigned a specific index to produce a col-
lapsed dimension; a dimension is collapsed if the index 
ranges over a single value, as in �������, which is 
accepted shorthand for ��������. 

The consequence of these semantics is that a region is 
needed to specify the indices of the operand array and an-
other region is needed to specify the indices of the result 
array. Thus, we write 

����������:������������������������

to add the elements of �’s rows and store the results in :’s 

���	����'�1���������	���"��1������	���"��������"��1����1�����	��� 

�1� +����	���������1� +��	����������1� +��	�	��������1��"���*"�%� 

Figure 5. Schematic diagram of various region operators. Referenced elements are shaded; 1 is a region, 
�	�����������,  ��������������, *"�% is a Boolean array with trues on the diagonal. 
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first column. The compiler knows this by comparing the 
two regions, noting that the first dimension is unchanged 
and the second is collapsed and so must be combined; the 
reduction operator (���) provides the addition specifica-
tion. 

The reason to depart from standard practice by keeping 
the reduced dimensions as collapsed dimensions rather than 
removing them and thereby lowering the dimensionality of 
the result array relative to the operand array was to manage 
allocation and communication efficiently. When, for exam-
ple, a 2D array collapses to a 1D array by a partial reduc-
tion, how do we align the result relative to the operand 
array? Both the compiler writer and the user need to know. 
Normally, the result will interact in subsequent computa-
tions with other arrays having the operand shape. So align-
ing our 1D result with 2D arrays is rational. But how? 

Aligning the result with columns is possible; aligning it 
with rows is possible; treating it as a 1D array is also pos-
sible, though because ZPL uses different allocations for 1D 
and 2D arrays (in its default allocations), the operand and 
result arrays would misalign. The decision matters because 
in addition to the time required to compute the partial re-
duction, each choice entails different amounts of communi-
cation to move it to its allocated position, ranging from 
none, to an additional transpose, to the very expensive gen-
eral remap. 

By adopting collapsed dimensions, however, the result 
aligns with the operand arrays in the most efficient and 
natural way: it aligns with the “remaining” shape; further, 
the user specifies (by the index(es)) exactly how. Most 
importantly, collapsed dimensions allow us to bound the 
communications requirements to O(log Pi) where Pi is the 
number of processors spanning the reduced dimension i. 
Because of such analysis, the powerful partial reduction 
operator is also an efficient operator.  (This type of analy-
sis—worry about communication, worry about how the 
user controls the computation—characterized most of our 
design discussions about most language features.) 

This “two region” solution is elegant, but we didn’t fig-
ure it out immediately. 

Creating Flood   Indeed, we came to understand partial 
reduction by trying to implement its inverse, flood. Flood 
replicates elements to fill array dimensions. Flood is essen-
tial to producing efficient computations when arrays of 
different rank are combined, e.g. when all columns of an 
array (2D) are multiplied by some other column (1D). In 
the case of flood the need for two regions is probably more 
obvious because there must be a region to specify the 
source data and another region to specify the target range 
of indices for the result. Thus, to fill � with copies of :’s 
first column, write 

������������������AA�����������:��

The duality with partial reduction is obvious. 
The use of two regions—one on the statement to control 

the assignment and the overall behavior of the computa-
tion, and one on the source operand specifying its indi-
ces—was a difficult concept to develop. Flooding was a 
new operation that I more or less sprung on the team at a 
ZPL retreat in 1994; it was introduced as a new operator 
and engendered spirited debate. The duality with partial 
reduction was not immediately recognized because partial 
reduction still had its “APL form.” Flooding was not 
adopted at the retreat, and Brad Chamberlain and I contin-

ued to kick it around for a couple of weeks more after the 
rest of the team had tired of the debate. In our conversa-
tions the solution emerged, the duality emerged, the elimi-
nation of partial reduction’s dimensions-in-brackets 
definition was adopted, and the idea of recognizing which 
dimensions participate in the operations by comparing the 
two regions and finding which dimensions are col-
lapsed/expanded was invented. 

This experience with flood represented in my view the 
first time we had attacked a problem “caused” by trying to 
build a global view language for the CTA, and had pro-
duced a creative solution that advanced the state of the art 
in unexpected ways. Regions, directions, etc. were new 
ideas, too, but they “fell out” of our approach. Flooding 
posed significant language and compiler challenges, and 
we’d solved them with creativity and hard work. Flooding, 
which motivated a new algorithmic technique (problem 
space promotion [34], discussed below), continues to be a 
source of satisfaction. 

Flood Dimensions Shortly after inventing the two re-
gion solution, we invented the concept of the flood dimen-
sion. To appreciate its importance, consider why parallel 
programmers are interested in the flooding operation in the 
first place. Imagine wanting to scale the values in the rows 
of a 2D array to the range [-1,1]. This is accomplished if 
for each row the largest magnitude is found and all ele-
ments of the row divided by that value. ZPL programmers 
write 

����������������������

���������AA����������������������������� �������

which says, use as the denominator the flooded values of 
the maximum reduction of each row. That is, find the 
maxima, replicate those values across their rows, and per-
form an element-wise division of the replicated values into 
the row. The statement allows the ZPL compiler 

 
• to treat the row maxima as a column and transmit it 

to the processors as a unit, achieving the benefits of 
batched communication rather than repeated trans-
mission of single values, 

• to multicast rather than redundantly transmit point-
to-point, and 

• to cache, since each processor will store its section 
of the column and repeatedly use the values for the 
multiple references local to it. 

 
In effect, the programmer’s use of flood described the 
computation in a way that admitted extremely efficient 
code. 

The odd feature of the last statement is the use of “1” in 
the flood, 

�AA����������������������������� ������

����������5�

specifying that the result of the max reduction is to be 
aligned with column 1 before flooding. Why column 1? In 
fact there is no reason to assign the result of the reduction 
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to any specific column.11 What we want to say is that a 
dimension is being used for flooded data, and so no spe-
cific index position is needed—or wanted. This is the flood 
dimension concept, and is expressed by an asterisk in the 
dimension position, as in ������. In such regions any 
column index conforms with the flood dimension. 

The flood dimension extends regions with an intellectu-
ally clean abstraction, but there is a greater advantage than 
that. The compiler can implement a flood dimension ex-
tremely efficiently by allocating a single copy of that por-
tion of the replicated data needed by a processor. So, for 
example, if B	##B����C	�1�� is declared as the flood 
array ������� for the allocation shown in Figure 4, 
the assignment 

�������(��B	##B����C	�1�����������������������3��

adds up the number of cells in each row and stores the 
relevant part of B	##B����C	�1�� on each processor. 
That is, referring to Figure 4, both processors p0 and p1 
would store only the first eight elements of B	##B����!
C	�1��, and p2 and p3 would store the last eight. These 
“logically populated” arrays are an extremely efficient type 
of storage, and do not require a reduction or flood to assign 
them. The next section gives an elegant example. 

8.5 Flooding the SUMMA Algorithm 

The power and beauty of flooding became clear in 1995 
when we applied it to matrix multiplication. We had writ-
ten several row-times-column matrix product programs in 
ZPL to test out language features, when Lin reported a 
conversation with Robert van de Geijn of UT Austin about 
his new algorithm with Jerrel Watts, which they called 
SUMMA—scalable, universal matrix multiplication algo-
rithm [35]. Their idea was to switch from computing dot-
products as a basic unit of a parallel algorithm to comput-
ing successive terms of all dot-products at once. They 
claimed that it was the best machine independent matrix 
multiplication algorithm known. 

To see the key idea of SUMMA and why flooding is so 
fundamental to it, recall that in the computation C = AB for 
3x3 matrices A and B, the result is 

�%!%	*	"%!%�%!%	+	"%!���!%	+	"%!���!%			�%!�	*	"%!%�%!�	+	"%!���!�	+	"%!���!�			

�%!�	*	"%!%�%!�	+	"%!���!�	+	"%!���!�	

��!%	*	"�!%�%!%	+	"�!���!%	+	"�!���!%			��!�	*	"�!%�%!�	+	"�!���!�	+	"�!���!�			

��!�	*	"�!%�%!�	+	"�!���!�	+	"�!���!�	

��!%	*	"�!%�%!%	+	"�!���!%	+	"�!���!%			��!�	*	"�!%�%!�	+	"�!���!�	+	"�!���!�			

��!�	*	"�!%�%!�	+	"�!���!�	+	"�!���!�	

Notice that the first term of all of these equations can be 
computed by replicating the first column of A across a 3x3 
array, and replicating the first row of B down a 3x3 array, 
that is, flooding A’s first column and B’s first row, and 
then multiplying corresponding elements; the second term 
results from replicating A’s second column and B’s second 
row and multiplying, and similarly for the third term. 

The ZPL program for SUMMA (Figure 6) applies 
flooding to compute these terms. It begins with declara-

                                                 
 
 
11 ZPL recognizes the reduction-followed-by-flood as an idiom and per-
mits ���op��� with no dimension specified, but that doesn’t solve the 
general problem.  

tions, including B�#� and 1��, flood dimension arrays. 
These two arrays can be assigned a column and a row, re-
spectively, which is replicated in the � dimension. After 
initializing B, a '��-loop steps through the columns and 
rows of the common dimension, flooding each and then 
accumulating their element-wise product, implementing 
SUMMA. 
We were delighted by the van de Geijn and Watts algo-
rithm, because it was not only the best machine-
independent parallel matrix product algorithm according to 
their data, it was the shortest matrix multiplication program 
in ZPL. (The three statements in the '��-loop can be com-
bined, 

���������
��'���@�����������*����

���������B�����AA���@�����(��AA�@����:���

�����	�*��

eliminating the need for the B�# and 1�� arrays.) When 
the best algorithm is also the easiest to write, the lan-
guage’s abstractions match the problem domain well.12 

8.6 Epic Battle: Left-hand Side �s 

At the 1994 ZPL retreat mentioned above, the issues sur-
rounding flood were not resolved, first because they were 
deep and complex, requiring thought and reflection, and 
second because we spent most of our time arguing over 
left-hand side �s. All (early) project members agree that 
this was our most contentious subject, and the magnitude 
of the disagreement has now grown to mythic proportions. 
Here’s what was at issue. 

ZPL uses �-references to specify operands in expres-
sions, as in 

�-���!��-���!���:�����������������	�����

��������������������������	�����������������

where directions translate the region’s indices to a new 
region to reference the operand. Programming language 
design principles encourage the consistent use of con-
structs, and so because �-translations are allowed on the 
right-hand side of an assignment, they should be allowed 

                                                 
 
 
12 The original SUMMA is blocked. ZPL’s is not, and blocking compli-
cates the ZPL significantly. 

/��������������������*�� #	��Left operand�
�����:������������
��*�� #	��Right operand�
�����B������������
��*�� #	��Result array�
���B�#���������(�����*�� #	��Col flood array�
���1������(����
�����*�� #	��Row flood array�
9�

�����������
���B����2�2��������Initialize�B�
��������'���@�����������*��

��������(����B�#����AA���@�����Flood kth col of���
���(����
����1������AA�@����:��Flood kth row of�:�
�����������
���B����B�#(1������Multiply & accumulate 
�����������	�*��

�

Figure 6. ZPL matrix multiplication program using the 
SUMMA algorithm. 
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on the left-hand side as well. The semantics of left-hand 
side � are intuitive and are natural for programmers, as in 

�-����-�����:���������������6���6����	����

which flows information into the corner of an array when 
used iteratively, for example, in a connected components 
algorithm [36]. Of course, left-hand side �s are not re-
quired, since the programmer could have written 

�����!������!���:������������6����	�����	�����

But he or she may think of the computation from the other 
point of view. Another principle of language design says to 
avoid placing barriers in the programmer’s way. 

The compiler writer’s viewpoint noted that ZPL’s se-
mantics use the region to specify which indices are updated 
in the assignment. Processors are responsible for updating 
the values of the region that they store. By using a left-
hand side � the indices that a processor is to update are 
offset. Which processor is responsible for updating which 
elements—only those it owns or those it has the data for? 
Should the value for a location be computed on another 
processor and then shipped to the processor that stores it; 
or should every processor simply handle the values it 
stores? The presence of such a construct in the language 
complicates the compiler and has serious optimization im-
plications. 

Like many issues that engender epic design battles, left-
hand side �s are an extremely small matter. How and why 
they excited so much controversy is unclear. It may simply 
be that the particular circumstances of the situation pro-
vided the accelerant to heat up the discussion, and that on 
another day the issue would have hardly raised comment.13 
Whatever the reason, left-hand side �s were ZPL’s biggest 
controversy. In this case, however, everyone won: The 
language includes left-hand side �s and the compiler at that 
time automatically rewrote any use of left-hand side �s to 
remove them, leaving the remainder of the compiler unaf-
fected. In the years since a direct implementation has been 
developed. 

8.7 A Bad Idea From Good Intentions 

As mentioned above, the Simple benchmark written in 
Orca-C devoted more than half its lines to computing 
boundary values [21]. This represents a huge amount of 
work for programmers. A high-level language should help. 
ZPL’s regions, directions and wrap-� constructs do help 
significantly, and almost eliminate concern about bounda-
ries. But we added one more feature, automatic allocation 
of boundary memory. Automatic allocation was a mistake. 

Recall that the �' prepositional operator refers to a re-
gion beyond the base region, that is, 

��	����'�1�������2�2����!!�Initialize west boundary��

Programmers were confused by this unfamiliar idea, not 
knowing when it did or didn’t apply to an �'-region. De-
fining when auto-allocation made sense was complicated 

                                                 
 
 
13  Perhaps not. An early project member reviewing this manuscript com-
plained that my characterization of it as a “small matter” revealed my 
biases, and then went on to emphasize its depth by reiterating all of the 
“other side’s” arguments … a dozen years later! 

because it applied only to �'-regions extending regions 
used in array allocation, though �'-regions are used in 
many other circumstances. This produced a hard-to-follow 
set of definitional conditions. Even when users understood 
them, auto-allocation seemed not to be used. Basically, it 
violates what should be a fundamental principle of lan-
guage design: Make the operations clear and direct with no 
subtle side effects. Automatic allocation was a side effect to 
an array expression. It was deprecated and eventually re-
moved. 

8.8 Working With Users 

Throughout the ZPL development we had the pleasure of 
working with a group of very patient and thoughtful users, 
mostly from UW. Often their comments and insights were 
amazing, and they definitely had impact on the final form 
of the language. 

Adding Features Direct complaints about the language 
were the least likely input from users, though that may 
have reflected their discretion. The most direct comments 
concerned facilities that ZPL didn’t have. “ZPL needs a 
complex data type,” was a common sentiment among users 
and, like good computer scientists, we replied that users 
could implement their own complex arithmetic using exist-
ing facilities. But such responses revealed the difference 
between tool builders and tool users, and being the build-
ers, we added $��
#	�$��
#	�$��
#	�$��
#	�. Quad-precision was another ex-
ample.  Also, Donna Calhoun, along with others from UW 
Applied Math, strongly encouraged our plans to add sparse 
arrays; when Brad Chamberlain implemented them, she 
was the first user. 

Shattered control flow is an example of a language 
construct that emerged by working with a user, George 
Turkiyyah of UW Civil Engineering. Shattered control 
flow refers to the semantics of using an array operand in a 
control flow expression. Normally, when a control state-
ment predicate is a scalar, say �, ZPL executes one state-
ment at a time, as in 

"'������2222���	�� ��	B��	��������

but if the control predicate evaluates to an array of values, 
as it would if � is an array in 

�1��"'�����2���	�������!���

the control flow is said to shatter into a set of independent 
threads evaluating the statement(s) in parallel for each in-
dex in 1. In the example, the conditional is applied sepa-
rately for each index in the region; for those elements less 
than 0, the ��	�-clause is executed; for the others it is 
skipped. Turkiyyah and I were having coffee, discussing 
how his student might solve a problem in ZPL and making 
notes on a napkin. In the discussion I had used several such 
constructs without initially realizing that they didn’t actu-
ally match current ZPL semantics, which didn’t allow non-
scalar control expressions. But they were what was re-
quired for his problem, and knowing a solution [30, 37], 
I’d used it. When I thought about it later, it was clear that 
this was an elegant way to include a weak 
��� 	!
%"�/
���	�* construct in ZPL’s semantics. By the time 
the student’s program was written, shattered control flow 
was in the language. 

The Power of Abstraction The best user experiences 
were of the “satisfied customer” type, and two stand out as 
more notable for their elegance. The first was a graduate 
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student in biostatistics, Greg Warnes, who came by one day 
with a statistics book containing a figure with a half dozen 
equations describing his computation. He said that his se-
quential C program required 77 lines to implement the 
equations, while his ZPL program required only 11 lines. 
Moreover, he emphasized, the ZPL was effectively a direct 
translation from the math syntax of the book to the syntax 
of ZPL. He may have been even more delighted with his 
observation that day than we were.  

In the second case, I’d given a lecture about ZPL to an 
audience in Marine Sciences on Thursday, and by the next 
Monday one of the faculty emailed a ZPL program for a 
shallow water model of tidal flow. Reading over the sev-
eral pages of the program, I was astonished to notice that 
he’d used several named regions, all containing the same 
set of indices. Most programs use multiple regions, of 
course, but one name per index set is sufficient. What the 
shallow-water program revealed was the programmer’s use 
of regions as abstractions in the computation—different 
region names referred to different phenomena. The appro-
priate assignment of indices made them work, and the fact 
that they might name the same set of indices was irrelevant. 

Tool Developers It was a surprise to realize that a pro-
gramming language is an input to other projects. At the 
University of Massachusetts, Lowell, ZPL was revised for 
use in a signal processing system. At the University of 
Oregon, ZPL was instrumented by Jan Cuny’s group to 
study program analysis and debugging. At Los Alamos 
National Laboratory, ZPL was customized to support 
automatic check-pointing, an important concern for long 
running programs and a challenge for decentralized parallel 
machines. 

David Abramson and Greg Watson of Monash Univer-
sity in Melbourne, Australia applied the interesting concept 
of relative debugging to ZPL programs [38]. Relative de-
bugging uses a working program to specify correct behav-
ior for finding errors in a buggy program. Relative 
debugging is a powerful tool in parallel programming be-
cause parallel programs often implement the computation 
of a working sequential program. Errors in the parallel pro-
gram execution can be tracked down relative to the sequen-
tial program’s execution by running both simultaneously 
and asserting where and how their behaviors should match. 
The tool is very convenient. 

The demonstrations of relative debugging were impres-
sive. Watson found a bug in the ZPL version of Simple, 
one in the sequential C version and one in both! The error 
in ZPL was an extra delta term in computing the heat equa-
tion; this problem had been in every parallel version of 
Simple we had ever written. (The only effect fixing the bug 
would have had on published timing results would have 
been to improve them trivially.) The bug in the C program 
was to leave out the last column in one array computation. 
Watson said, “Whoever wrote the ZPL code obviously 
noticed this and corrected for it (or the ZPL syntax cor-
rected it automatically).” But such “off-by-1” errors are 
hard to make once the named regions are set up correctly. 
Finally, the programs disagreed on how they computed the 
error term controlling convergence, and in this regard they 
were both wrong! Referring to the original Simple paper 
[39] allowed Watson to fix both. 

9. WYSIWYG Performance Model 
Though the CTA was always the underlying “target” com-
puter for ZPL, the idea of explicitly handing programmers 
a performance model was not originally envisioned. In ret-
rospect, it may be ZPL’s best contribution. Notice that as 
the compiler writers, we had had the performance model in 
our heads the whole time. The achievement was that we 
recognized that it could be conveyed to programmers. 

9.1 The Idea 

How the idea emerged has been lost, but I believe it was an 
outgrowth of a seminar, Scientific Computation in ZPL, 
which we ran every winter quarter beginning in 1996. 
These seminars were a chance for us to present parallel 
programming to scientists and engineers “properly,” i.e. in 
ZPL. The format was for project members to teach ZPL 
and for students to write a program of personal interest to 
be presented at the end of the term. The students, unlike 
researchers and seasoned users who grabbed our software 
off the Web, needed to be told how to assess the quality of 
a ZPL program. Conveying the execution environment 
motivated our interest in a model. 

The champion of WYSIWYG was E Chris Lewis, who 
had joined the project a year after the initial team and saw 
ZPL with fresh eyes. He spoke of a concept “manifest cost” 
for an operation, which seemed pretty obvious to the im-
plementers. But he persisted and as we worked the idea 
over, it became clear how valuable specifying costs could 
be for users.  The model was documented in Chapter 8 of A 
Programmer’s Guide to ZPL [40], which was the main 
language documentation at the time and was eventually 
published in 1999. 

The What You See Is What You Get (WYSIWYG ) 
performance model is a CTA-based description of the per-
formance behavior of ZPL language constructs expressed 
with syntactically visible cues [31]. The WYSIWYG 
model specifies what the parallelism will be and how the 
scalar computation and communication will be performed, 
telling programmers how ZPL runs on the CTA and by 
extension on the machines the CTA models. This perform-
ance specification cannot be given in terms of time or in-
struction counts because the programs are portable and 
every platform is different; rather, it gives relative per-
formance. 

To illustrate how it works, consider the two assignment 
statements from the Life program (Figure 2): 

44����3�5�����3�5�����3�5�	��

������3�5��������������3�5	������

������3�5�����3�5�����3�5�	�����

�

3�����3�6�44���-��7��44���.���

How do they perform? They look similar, and the seman-
tics say that element-wise arithmetic operations on arrays 
are performed atomically in a single step. But, we know 
that “step” will be implemented using many scalar opera-
tions on a CTA. How will this be done? 

Programmers know from the WYSIWYG model that al-
though both statements will be performed fully in parallel, 
and that the n2 scalar operations implementing each of them 
are only negligibly different in time cost (seven binary ops 
versus four), the two statements actually have noticeably 
different performance. This is because the assignment to 
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44 requires point-to-point communication, thereby incur-
ring at least λ additional cost, while the assignment to 3 
uses no communication at all. 

How is this known? Every use of � entails point-to-
point communication according to the WYSIWYG model, 
and the absence of � (and other designated array opera-
tors) guarantees the absence of communication. By look-
ing for these cues, programmers know the characteristics of 
the statements: The first statement requires communication, 
the second does not. Further, the amount of communica-
tion—total number of values transferred and where—is 
also described to the programmer based on other program 
characteristics. Knowing when and how much communica-
tion a statement requires is crucial, because although it 
cannot be avoided, alternative solutions can use vastly dif-
ferent amounts of it. ZPL programmers can analyze per-
formance as they write their code, judge the alternatives 
accurately and pick the best algorithm. This is the key to 
writing efficient parallel programs. 

Notice that this ability to know when and what commu-
nication is incurred is not a property of High Performance 
Fortran. Recall our earlier discussion of array slices, in 
which we asserted that it would be reasonable for expres-
sion (1) above 

9����������:������9�

not to require communication, but we cannot for several 
reasons be sure. By contrast, we can be sure that the 
equivalent ZPL expression 

���������9�����:�9�

does not. 

9.2 Specifics of the Model 

To describe the WYSIWYG model, we start on the com-
mand line as we invoke a compiled ZPL program. The user 
specifies along with the computation’s configuration values 
the number of processors available and their arrangement; 
for our running example, P=4, in 2 rows of 2. This is the 
processor grid, and though in the early years it was thus set 
for the entire computation, it has since come under pro-
grammer control. See Figure 7 for the allocation of a 16 × 
16 problem on the four processors. 

During initialization, the regions, and by extension the 
arrays, are allocated in blocks (by default) to processors, as 
shown in Figure 7. A key invariant of this allocation is that 
every element with index [i, j, …, k] of every array is al-
ways allocated to the same processor (though programmers 
can override it). So, 44’s allocation will match that of 3. 
This allows all “element-wise” computations to be per-
formed entirely locally. Thus, seeing 

3�����3�6�44���-��7��44���.���

users know that each processor computes its portion of 3 
using only the locally stored values of 44 and 3. Pro-
grammers know they are getting the best performance the 
CTA has to offer, and the available parallelism (P=4) is 
fully utilized. Such element-wise computation is the sweet 
spot of parallel computation. 

As mentioned, �-communication requires nonlocal data 
reference. Thus, prior to executing 

�

44����3�5�����3�5�����3�5�	��

������3�5��������������3�5	������

������3�5�����3�5�����3�5�	��

Figure 7. Allocation of the Life program to a 2 ×××× 2 (logical) processor grid. Notice that 
array elements having the same index are allocated to the same processors. 3 has fluff allo-
cated because some of its references are modified by �-translations; 44 does not require 
fluff. 

Processor p0 
 3333:1..8, 1..8 

 
44444444:1..8, 1..8 
 

Processor p1 
 3333:1..8, 9..16 

 
44444444:1..8, 9..16 
 

Processor p2 
 3333:9..16, 1..8 

 
44444444:9..16, 1..8 
 

Processor p3 
 3333:9..16, 9..16 

 
44444444:9..16, 9..16 
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communication is required to fill the fluff buffers with val-
ues from the appropriate neighbors. For example, to refer-
ence 3����, the array of north neighbors illustrated in 
Figure 4, the fluff along the top of the local allocation must 
contain values from the appropriate neighbor. Figure 8 
shows the source of all fluff values required by processor 
p0. Notice from the figure that �-communication does not 
transmit all values, only those on the “surface” of the allo-
cation—edges and corners—and that d direction references 
will typically require communication with d other proces-
sors. (This example looks especially busy because the in-
stance is so small.) Once a processor has the necessary 
data, it executes at a speed comparable to the statement 
without any �-communication. 

To conclude the analysis of the Life program, notice that 
the iteration uses an OR-reduce in the loop control, 
�����3�. Reduce is another operation that according to 
the WYSIWYG model entails communication to compute a 
global result from values allocated over the entire proces-
sor grid. The local part of the reduction performs an OR of 
the locally stored values. The nonlocal part percolates these 
intermediate values up a combining tree to produce a final 
result. Because that global result controls the loops execut-
ing on each processor, it is broadcast to all processors. 
These two operations—combine and broadcast—are speci-
fied as taking log P communication steps in the 
WYSIWYG model, because the combining tree can be 
implemented on any CTA machine. However, some ma-
chines may have hardware for the combining operation as 
the CM-5 did; alternatively, all processors could fan into a 
single one if the hardware favored that type of implementa-
tion. 

The WYSIWYG performance model specifies the char-
acteristics of ZPL’s constructs. Table 1 shows a simplified 
specification. 

The specification of the table is simplified in the sense 
that true program behavior interacts with allocation, which 
programmers are fully aware of and control. For example, 
the programmer might have allocated whole columns of an 
array to the processors, implying there will be no commu-
nication in the north/south direction for � or >> operations. 
So in the case, when analyzing, say, the SUMMA algo-
rithm in this context, the flood of �’s columns requires a 
broadcast to all processors, but the flood of :’s rows re-
quires no communication at all. Programmers know all of 

this information (they specify it), and so can accurately 
estimate how their programs will behave. 

Because the remap (
) operator can restructure an array 
into virtually any form, it requires two all-to-all communi-
cations, one to set up where the data moves among the 
processors and one to transmit the data. Remap is (typi-
cally) the most expensive operator and the target of aggres-
sive optimizations [41]. Returning to the example above 
where the elements of a vector were added to their opposite 
in sequential order, 

��������9�����:;��!)�*	�������9�

the presence of remap implies by the WYSIWYG model 
that data motion is necessary to reorder the values relative 
to their indices. Though two all-to-all communications are 
specified, the complier-generated specification for “reverse 
indices” (��)�*	����) allows the first of the two to be 
optimized away; the remaining communication is still po-
tentially expensive. Of course, the actual addition is fully 
parallel. 

The key point is that the WYSIWYG performance 
properties are a contract between the compiler and pro-
grammers. They can depend on it. Implementations may be 
better because of special hardware or aggressive optimiza-
tions by the compiler, but they will not be worse. Any sur-
prises in the implementation will be good ones. 

9.3 The Contract 

To illustrate how the contract between the compiler and the 
programmer can lead to better programming, return to the 
topic of slices versus regions, and consider an operation on 
index sequences of unknown origin, namely 

�������� ����:�$�*������

Such a situation might apply where there are “leading val-
ues” that must be ignored (in :). Because the values of �, 
 , $ and * are unknown, programmers in Fortran 90 will 
likely use this general solution. 

If absolutely nothing is known about the range limits, 
the ZPL programmer will write 

���� �����������:;�$��*������

But using the WYSIWYG model, and knowing that remap 
is expensive, the programmer might further consider 
whether there are special cases to exploit. If ��$ and  �*, 
then the ZPL 

Table 1.  Sample WYSIWYG Model Information . Work is the amount of computation for the operator measured as im-
plemented in C; P is number of processors. The model is more refined than suggested here. 

Syntactic Cue Example Parallelism (P) Communication Cost Remarks 

�1� array ops �1� ... ��: ... full; work/P   

� array transl. ... ��	��� ...  1 point-to-point xmit “surface” only 

�� reduction ... ���� ... work/P + log P 2log P point-to-point fan-in/out trees 

�� partial red … �������� … work/P + log P log P point-to-point  

���scan … ��� … work/P + log P 2log P point-to-point  parallel prefix trees 

�� flood … ��������…  multicast in dimension data not replicated 


�remap ... �
�)��)	� ...  2 all-to-all, potentially general data reorg. 
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���� �����������:�����

will be an entirely local computation with full parallelism 
and a great enough “win” that it is worth applying, even 
occasionally. Further, if the limits are occasionally only 
“off by 1”, that is, if $���� and *� ��, then the ZPL 
statement 

���� �����������:��"%�������

where �"%�������� is equivalent and also more effi-
cient, despite requiring some communication. 

The ZPL compiler generates the exact code required in 
each case, guaranteed, and because the λ penalty is so large 
for general communication, it may pay to special-case the 
situation even if the cases apply in only a fraction of the 
situations. 

9.4 Verifying The Predictions 

Creating the WYSIWYG model was easy enough, because 
it simply describes how the compiler maps source code to 
the run-time environment coupled with the properties of 
the CTA. However, its predictive qualities had to be dem-
onstrated. We chose to illustrate the analysis on two well 
known and highly regarded parallel matrix multiplication 
algorithms, the SUMMA algorithm [35] and Cannon’s al-
gorithm [42], because they take quite different approaches. 
(Though we had programmed them often, we hadn’t ever 
compared them.) 

The methodology was to write the “obvious” programs 
for the two algorithms and then analyze them according to 

the dictates of the WYSIWYG model; see Figure 6 for 
SUMMA and Figure 9 for Cannon. Both computation and 
communication figure into the analysis. 

The analysis divides into two parts: setup and iteration. 
Only Cannon’s algorithm requires setup: The argument 
arrays are restructured by incremental rotation to align the 
elements for the iteration phase. This would seem to handi-
cap Cannon and favor SUMMA, but the situation is not 
that simple. Ignoring the actual product computation, 
which is the same for both algorithms, SUMMA’s iteration 
is more complex because it uses flood rather than �-
communication. Floods are implemented with multicast 
communication, which is generally more expensive than 
the �-communication. On the other hand, flood arrays have 
much better caching behavior and the rotation operations of 
Cannon’s require considerable in-place data motion. So, 
which is better? 

We predicted that SUMMA would be better based on 
the WYSIWYG model, though completing the analysis 
here requires a bit more detail about the model than is ap-
propriate [31]. Then we tested the two algorithms on vari-
ous platforms and confirmed that SUMMA is the consistent 
winner. Not only was this a satisfying result, but with it we 
began to realize its value in achieving our goals. One way 
to make a language and compiler look good is to empower 
programmers to write intelligent programs! 

Once we discovered the importance of the WYSIWYG 
performance model, all subsequent language design was 
influenced by the goal of keeping the model clear and easy 
to apply. 

Processor p0 
 3333:1..8, 1..8 

 
44444444:1..8, 1..8 
 

Processor p1 
 3333:1..8, 9..16 

 
44444444:1..8, 9..16 
 

Processor p2 
 3333:9..16, 1..8 

 
44444444:9..16, 1..8 
 

Processor p3 
 3333:9..16, 9..16 

 
44444444:9..16, 9..16 
 

Figure 8. Communication required to load the fluff for 3333 on processor p0 to support wrap 
�-translations. Internal array adjacencies are shown by direct arrows from the source values to 
the appropriate fluff; in all other cases, the reference wraps around the array edge, and the trans-
mission is shown leaving on a dotted arrow and arriving at a solid arrow of the same angle. 
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10. Compiler Milestones 
The ZPL compiler uses a custom scanner with YACC as its 
front end, and we initially relied on symbol table and AST 
facilities from the Parafrase compiler. (As the compiler 
matured the Parafrase code was steadily eliminated in favor 
of custom ZPL features; it is not known how much Para-
frase code remains, if any.) As new language features were 
added to ZPL, the corresponding new compiler technology 
was usually implemented by additional passes over the 
AST. A final code generation pass emitted ANSI C to 
compete the compilation process.14 The overall structure is 
shown in Figure 10. 

Several aspects of the compiler are significant. 

10.1 Ironman – The Compiler Writer’s 
Communication Interface 

A compiler that seeks to generate machine-independent 
parallel code must decide how to handle interprocessor 
communication, which is as particular to a computer as its 
instruction set. Standard compiler theory suggests solving 
the problem by targeting machine independent libraries or 
producing a separate backend for each platform. The latter 
is time consuming (and platforms come and go with aston-
ishing rapidity), so writers of parallel language compilers 
target the lowest common denominator: the machine inde-
pendent message-passing library. All parallel computer 
communication can be reduced to message passing. Two 

                                                 
 
 
14 One of our first and most patient users was an MIT physicist, Alexander 
Wagner, who used ZPL for electromagnetic modeling [69]. His was a 
complex 3D simulation with large blocks of very similar code. Ironically, 
he wrote a C program to generate the ZPL for the blocks, which we then 
compiled back to C! 

libraries are in wide use: Parallel Virtual Machine (PVM) 
[42] and Message Passing Interface (MPI) [43]. But, in our 
view compiling to the message passing level introduces too 
much “distance” between compiled code and the computer. 

Specifically, message passing is a communication pro-
tocol with a variety of forms, ranging from a heavyweight 
synchronous form with multiple copying steps, to lighter-
weight asynchronous forms. Without delving into details, 
all schemes have a sender that initiates the communication 
(�	�*) and must wait until the data is “gone,” and a re-
ceiver that explicitly receives it (�	$/) when it “arrives” 
to complete the transmission; further, when noncontiguous 
data addresses are sent—think of a column of data for an 
���	�� transmission in a row-major-order allocation—
data must be marshaled into a message, i.e. brought to-
gether into a separate buffer. But there are other kinds of 
communication: In shared-memory computers data is 
transmitted by the standard load/store instructions; other 
machines have “one-sided” get/put communication. Both 
schemes are extremely lightweight compared to message 
passing, e.g. neither requires marshalling. Message passing 
is too thick a layer as the one-size-fits-all solution. 

The ZPL commitment to targeting all parallel computers 
made us aware of these differences early. We had origi-
nally generated ad hoc message passing calls, but then real-
ized that we needed a way to generate generic code that 
could map to the idiosyncrasies of any target machine. 
Brad Chamberlain with Sung-Eun Choi developed the 
Ironman interface, a compiler-friendly set of communica-
tion calls that were mechanism independent [44]. Unlike 
message-passing commands, the Ironman operations are 
designed for compilers rather than people. 

Ironman conceptualizes interprocessor communication 
as an assignment from the source to the target memory, and 
the four Ironman calls are the def/use protocol bounding 
the interval of transmission (see Figure 11): 

 
• *	��"���"����	�*+�� marks the place where 

the buffer space (fluff) that will be written into has 
had its last use 

• ����$	��	�*+��marks the place where the data 
to be transmitted has been defined 

• *	��"���"����		*	*��marks the place where 
computations involving the transmitted data are 
about to be performed – impending use 

/��������������������*�� #	���Left operand�
�����:������������
��*�� #	���Right operand�
�����B������������
��*�� #	���Result array�
*"�	$�"�����"%������2���������Ref  higher row elements�
����������� 	#��������2�������Ref  lower col elements�

����
��'���"����-������*��� �������Skew���cyclically rotate�
�"������������������5�"%����� �successive rows�
��	�*��
��'���"����-����
�*��� �������Skew :, cyclically rotate��
�������"��
��:����:�5 	#����� �successive columns�
��	�*��
����������
��B����2�2�������� Initialize�B�
��'���"�����������*��� �������For common dimension�
����������
��B�����(:���� Accumulate product terms�
��������������������5�"%������Rotate���
����������
��:����:�5 	#������Rotate�:�
��	�*��

 
Figure 9. Cannon’s matrix multiplication algorithm in 
ZPL . To begin, the argument arrays are skewed so rows of � 
are cyclically offset one index position to the right of the row 
above, and the columns of : are cyclically offset one index 
position below the column to its left; in the body both argu-
ment arrays are rotated one position in the same directions to 
realign the elements. 
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Figure 10. Principal components of the ZPL compiler. 
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• ����$	�/�#��"#	�� marks the place where the 
data is about to be overwritten – impending def 

 
The procedures’ parameters say what data is involved and 
name the destination/source memory. Pairs of calls are 
placed inline wherever communication is needed. 

This compiler-friendly mechanism specifies the interval 
during which transmission must take place, but it subordi-
nates all of the details of the transmission to whatever im-
plementation is appropriate for the underlying machine. 
The appropriate Ironman library is included at link time to 
give a custom communication implementation for the target 
machine. 

Table 2 shows bindings for various communication 
methods. Notice that the four Ironman routines serve dif-
ferent functions for different methods. For example, in 
message-passing protocols that copy their data, the D1���
and EF�� functions are no-ops, because when the data is 
ready to be sent it is copied from the source, allowing the 
source to be immediately overwritten; when the receive 
operation is performed, it must wait if the data has not ar-
rived. 

One-sided and shared-memory implementations of 
Ironman can transfer the data immediately after it is avail-
able, that is, in E1��, or just before it is needed in D4��. 
The former is preferred because if the optimizer is able to 
find instructions to perform on the destination processor, 
that is, k > 0 in Figure 11, then communication will overlap 
with computation. Such cases are ideal because they hide 
the time to communicate beneath the time to compute, 
eliminating (some portion of) the time cost for that com-
munication. 

Developing these optimizations was the dissertation re-
search of Sung-Eun Choi [45]. Although there are numer-

ous variations, one underlying principle is to spread the 
interval over which communication could take place; that 
is, move *	��"���"����	�*+��and 
����$	��	�*+���earlier in the code, and *	��"��!
�"����		*	*�� and ����$	�/�#��"#	��� later, 
causing k to increase. This usually improves the chances 
that communication will overlap in time with computation, 
hiding its communication overhead. (She also implemented 
a series of other optimizations including combining, pre-
fetching and pipelining [45].) 

The proof that the message passing abstraction is “too 
distant” was nicely demonstrated on the Cray T3E, a com-
puter with one-sided (Shmem) communication. A ZPL 
program was written and compiled. That single compiled 
program was loaded and run with ZPL’s Ironman library 
implemented with Shmem (get/put) primitives and with the 
Ironman library implemented with Cray’s own (optimized) 
version of MPI (send/recv) functions. The one-sided ver-
sion was significantly faster [44], implying that a compiler 
that reduces communication to the lowest common de-
nominator of message passing potentially gives up per-
formance. 

10.2 The Power of Testing 

The ZPL compiler development was conducted like other 
academic software development efforts. All programmers 
were graduate students who were smart, well schooled 
compiler writers; we used available tools like RCS and 
CVS, and we adopted high coding standards. But, like all 
research software, the goal changed every week as the lan-
guage design proceeded. The emphasis was less on produc-
ing robust software and more on keeping up with the 
language changes. This meant that the compiler was an 
extremely dynamic piece of software, and as it changed it 

Portion of 
� on Pi+1 

Portion of 
� on Pi 

Source Location Volatile  
 

Destination Data Needed  
 

Source Data Ready  
 

Destination Location Ready  
 

�

B��������
D1D1D1D1��������
  k compute steps 
D4D4D4D4��������
D�������
�

�

�����:��
E1E1E1E1��������
  l compute steps 
EFEFEFEF��������
�����B��
�

Data Transmitted 
 

Figure 11. Schematic of Ironman call usage for a single transmission. As a result of an ��	��� 
operand reference, a column of � is transmitted from Pi+1, the source, to Pi, the destination.  (Because 
ZPL generates SPMD code, Pi will also be a source, i.e. include E1�� and EF�� at this point, and Pi+1 
will also be a destination, i.e. include D1�� and D4�� at this point, to other transmissions.) The four 
Ironman calls are inserted by the compiler into the program text. 
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accreted: Features were added, then eliminated, leaving 
dead code, or worse, nearly dead code; implementers, un-
certain of all interactions among routines, would clone 
code to support a new feature, leaving two very similar 
routines performing separate tasks, etc. And the compiler 
was fragile for a variety of reasons, mostly having to do 
with incomplete testing. 

Eventually, perhaps in late 1995 or early 1996, Jason 
Secosky, who was taking the software engineering class, 
decided ZPL needed a testing system, and he built one. The 
facility woke up every night and ran the entire suite of ZPL 
test programs, reporting the next morning to the team on 
which of these regression tests failed. 

Immediately, the testing system resulted in two signifi-
cant changes to the compiler. First, the programmers be-
came bolder in their modifications to the compiler. It was 
possible to make changes to the code and if something 
broke, it would be announced the next morning in complete 
detail. Second, the compiler began to shrink. Procedures 
with common logic were removed and replaced by a more 
general and more robust routines. Very quickly, the com-
piler tightened up. 

Though the worth of continual testing is well known, it 
is easy to put off applying the tool too long. So significant 
was the improvement in the ZPL compiler that we all be-
came evangelists for regression testing. 

10.3 Scalar Performance 

ZPL is a parallel language, the beneficiary of a long list of 
failed attempts to create an effective parallel programming 
system. As described above, our focus was on generating 
high-quality parallel code. By 1996 we were generating 
quality code and had been demonstrating performance with 
portability for some time. We were not, however, doing 
well enough (in our opinion) against Fortran + MPI bench-
marks, and the problem was not with the parallel part of 
our generated code, but with the scalar portion. We were 
not generating naïve code, but we were not pulling out all 
stops either. Though we had knocked off the parallel com-
pilation problem, it is a fact that virtually all of the “parallel 
part” is (necessary) overhead relative to the scalar part that 
actually does the work. We spent a year improving pro-
grams, especially for scalar performance. 

One simple example was the Bumpers and Walkers op-
timization, a mechanism for walking an array using pointer 
arithmetic rather than direct index calculations. Bumpers 
move through successive elements, walkers advance 
through higher dimensions. Though it was somewhat subtle 

to get the logic fully general considering that ZPL has fluff 
buffers embedded in arrays used in � references, the im-
provement was significant given how common array index-
ing is in ZPL. 

A large list of optimizations focused on applying stan-
dard compiler techniques in the ZPL setting. For example, 
eliminating temporaries is a tiny optimization in the scalar 
world, but in the ZPL world temporaries are arrays; remov-
ing them can be significant. Temporaries are introduced 
automatically whenever the compiler sees the left-hand 
side operand on the right-hand side in an �-translation, as 
in 

�1����������	����

This specific example, performed in place, would overwrite 
itself using the standard row traversal indexing from 1 to n, 
forcing the temporary. However, no temporary is needed if 
the references proceed in the opposite direction, n to 1. A 
compiler pass can analyze the directions to determine when 
temporaries can be eliminated. Because the compiler does 
not distinguish between whether the temporary was placed 
by the user or the compiler, it usually finds user temporar-
ies to eliminate. 

Another very effective improvement for ZPL’s scalar 
code is loop-fusion. Compilers recognize when two con-
secutive loops have the same bounds and stride, and com-
bine them into a single loop in an optimization known as 
loop-fusion. Fusing not only reduces loop control overhead 
and produces longer sequences of straight line code in the 
loop body, but it can, if the loops are referencing similar 
sets of variables, improve data reuse in the cache. (The 
reason is that in the double-loop case a value referenced in 
the first loop may have been evicted from the cache by the 
time it is referenced in the second loop, though the situa-
tion is quite complex [46].) ZPL’s loop fusion research, 
chiefly by E Chris Lewis, advanced the state of the art on 
the general subject and improved ZPL code substantially. 
His work also advanced array contraction, an optimiza-
tion in which an array that cannot be eliminated is reduced 
in size, usually to a scalar. Replacing an array with a scalar 
reduces the memory footprint of the computation, leading 
both to better cache performance and to the opportunity to 
solve larger problems [47]. 

Yet another class of improvements, the dissertation re-
search of Derrick Weathersby [48], involved optimizing 
reductions and scans. Reduction operations (op <<) are 
often used on the same data and in tight proximity, as in 

Table 2. Sample bindings to the four Ironman procedures. Standard communication facilities are used to implement 
the four Ironman routines. 

 Copying message 
passing  
(nCUBE, iPSC) 

Asynchronous 
message passing 
MPI Asynch 

Put-based 1-sided 
communication 
(Cray T3D, T3E) 

Shared memory 
with coherency, 
SMPs 

Destination Loc Ready  mpi_irecv() post_ready post_ready 

Source Data Ready csend() mpi_isend() wait_ready 
shmem_put 
post_done 

wait_ready 
fluff:= A 
post_done 

Destination Data Needed crecf() mpi_wait() wait_done wait_done 

Source Volatile   mpi_wait()   
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�1�����%	��������������G���"��������

Such cases are ideal cases for merging. A reduction usually 
involves three parts: combining local data on each proces-
sor in parallel, a fan-in tree to combine the P intermediate 
results, and a broadcast tree notifying all P processors of 
the final result. The last two steps involve point-to-point 
communications of single values to implement a tourna-
ment tree. Since two or a small number of values fit in the 
payload of most communication facilities, that is, a few 
values can be transmitted together at the cost of transmit-
ting a single one, it makes sense to merge the fan-in/fan-out 
parts of reductions to amortize the cost over several opera-
tions [48]. 

One other group of important optimizations included 
Maria Gulickson’s array blocking optimization to improve 
cache performance, Steven Deitz’s stencil optimizations 
[49] to eliminate redundant computation in the context of 
�-references, and Douglas Low’s partial contraction op-
timizations to reduce the size of array temporaries when 
they cannot be removed or reduced to a scalar. 

The efforts were essential and rewarding—it’s always 
satisfying to watch execution time fall—but it also seemed 
to be slightly orthogonal to our main mission of studying 
parallel computing.15 

10.4 Factor-Join Compilation 

In the same way that the WYSIWYG model called the 
user’s attention to communication in the parallel program, 
it called our attention to the interactions of communication 
and local computation, too. For example, recognizing adja-
cent uses of the same communication structure usually of-
fered an opportunity to combine them at a substantial 
savings, and “straight-line” computation between commu-
nication operations defined basic blocks that were prime 
opportunities for scalar optimization. This motivated us to 
abstract the compilation process in terms we described as 
Factor-Join [50]. 

In brief the idea is to represent the computation as a se-
quence of factors—elements with common communication 
patterns—and then join adjacent factors as an optimization. 
The approach was not a canonical form like Abrams’ APL 
optimizations (Beating and Drag-along [51]); ZPL proba-
bly doesn’t admit a canonical form because of the distrib-
uted nature of the evaluation. But Factor-Join regularized 
certain communication optimizations in such a way that 
they could in principle be largely automated. Exploiting 
these ideas would be wise when building the next ZPL 

                                                 
 
 
15 The effort was vindicated several years later by George Forman, a 
founding ZPL project member who had graduated years earlier and was 
working on clustering algorithms at Hewlett-Packard. While gathering 
numbers for a paper on performance improvement through parallelism, he 
wanted to compare their ZPL program to a sequential C program they had 
written during algorithm creation. Their measurements showed that ZPL’s 
C “object code” was running significantly faster than their C program on 
one processor. George called to complain about our timer routines, but in 
the end, the numbers were right. The aggressive scalar optimizations were 
the reason. ZPL simply produces tighter, lower-level (uglier?) C code than 
humans are willing to write, perhaps making ZPL a decent sequential 
programming language.  

compiler, but our compiler was never retooled to incorpo-
rate these ideas cleanly. 

10.5 Going Public 

Finally, in July 1997 ZPL was released. Though there was 
much more we wanted to do, the release was a significant 
milestone for the team. Users had worked with the lan-
guage for years, so we were confident that it was a useful 
tool for an interesting set of applications. It might not be 
finalized, but it was useful. 

There was a ripple of interest in ZPL, but not a lot. We 
had anticipated that the release would draw only modest 
interest for a set of obvious reasons: First, users are notori-
ously reluctant to adopt a new language; they are even less 
likely to adopt a university-produced language; and we 
were unabashedly a research language, which users had to 
expect would change and have bugs. Second, we were re-
leasing binaries, not the sources, and they were targeted to 
the popular but not all extant parallel machines. Third, the 
software came as is, with no promises of user support or 
800 number.16 Finally, the entire community was focused 
on High Performance Fortran. 

I don’t know if the team was disappointed in the re-
sponse or not—it never came up. But I was happy for the 
interest we got and relieved it was no greater. We didn’t 
have the funding to provide user support, and I could not 
use the team for that purpose beyond our current level of 
expecting team members to be responsible for fixing their 
own bugs. Further, much more remained to do, and I 
wanted to preserve the option of changing the language. 
For the moment, we only needed enough users to keep us 
honest, and no more. We had that many. Over the next few 
years while we worked on the language, we made no effort 
to popularize ZPL, though users regularly found us and 
grabbed a copy. Periodically, we would upgrade the public 
software, but that was all. 

11. After Classic ZPL 
The language released has become known as ZPL Classic, 
but at the time we saw ourselves moving on to Advanced 
ZPL, which we abbreviated A-ZPL to suggest its general-
ity. Indeed, we were sensitive to the fact that although ZPL 
Classic performed extremely well for the applications that 
exploited its abstractions, these abstractions needed to be 
more flexible and more dynamic. We’d tamed regular data 
parallelism; now it was time to be more expressive. 

Though I’m not aware of any study proving the effect, I 
believe that during the five years of ZPL development 
1992-1997, there was a significant advancement in parallel 
algorithms for scientific computation: They became much 
more sophisticated. If true, it was likely the result of sub-
stantial funding increases (High Performance Computing 
Initiative) and collaboration between the scientific comput-
ing community and computer scientists. The bottom line 
for us was that although ZPL Classic was expressive 
enough for 1992-vintage algorithms, 1997 algorithms 
wanted more flexibility. We were eager to add it. 

                                                 
 
 
16 Nevertheless, the team took it as a matter of pride to respond rapidly to 
users’ email. 
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This section enumerates important additions to the lan-
guage. 

11.1 Hierarchical Arrays 

Multigrid techniques are an excellent example of a numeri-
cal method that became widely popular in the 1992-97 pe-
riod, though it was known before then [52]. A typical 
multigrid program uses a hierarchy of arrays, the lowest 
level being the problem state; each level above has 1/4 as 
many elements in the 2D case as the array below it; a single 
iteration “goes up the hierarchy” projecting the computa-
tion on the coarser grids, and then it “goes down the hierar-
chy” interpolating the results; convergence rates are 
improved. For ZPL, hierarchical arrays greatly complicated 
regions, directions and their interactions. 

Renumbering In an array programming language, mul-
tigrid computations require manipulating arrays with dif-
ferent, but related, index sets. The significant aspect of 
supporting multigrid is whether the indices are renumbered 
with each level. Figure 12 shows a 2D example illustrating 
the two obvious cases: not to renumber (12(a)), ZPL’s 
choice, and to renumber (12(b)). That is, assuming the 
lower array has dense indices �������, not renum-
bering implies that the level above has sparse indices 
���� +�	����� +�	�, making the second ele-
ment in its first row (1,3); renumbering implies that the 
level above has dense indices �������, making the 
second element in its first row (1,2). 

We struggled with the decision of whether to renumber 
for some time. Our colleagues in applied math who were 
eager to use the abstraction were initially stunned when we 
asked about renumbering indices. They never thought 
about it, and simply assumed the indices were dense at 
every level. For us, it seemed natural to express projecting 
up to the next level by the intuitive (to ZPL programmers) 
statement 

������������ +��-�-�����HC�������

����������������������	�������	��������	��������

which would imply no index renumbering. Though the 
“more intuitive” argument was strong, it was nowhere near 
as compelling as the WYSIWYG argument. 

In ZPL an index position describes the allocation of its 
value completely, allowing the WYSIWYG model to de-
scribe when and how much communication takes place. 
For example, in Figure 12 the WYSIWYG model tells us 
the communication required for each scheme: In Figure 
12(a) no communication is required to project up the hier-
archy; in Figure 12(b) there is communication between the 
bottom level and the level above, though not for the next 
level; exact details depend on the stencil, sizes and proces-
sor assignment. In general, renumbering will force consid-
erable communication at every level until the entire 
renumbered array fits on one processor. Further, the 
WYSIWYG model tells us that the load is balanced in Fig-
ure 12(a) but unbalanced in 12(b). The issues are somewhat 
more complicated “going down,” but the point is clear: 
better performance can be expected with no renumbering. 

The decision to not to renumber has stood the test of 
time: I remain convinced that it is the only rational way to 
formulate multigrid in a region-based language. We 
pointed out to our colleagues from Applied Math that our 
decision hardly mattered to them, because indices are so 
rarely used once the regions are set up correctly: They 

could continue to think of arrays as being renumbered as 
they programmed the computation. The actual indices mat-
ter only when analyzing performance, and if for some rea-
son it would be better to make the arrays dense, a remap 
solves the problem. 

Curly Braces Multigrid was on the cusp between ZPL 
and A-ZPL. Reviewing what we’d created as we moved on 
to A-ZPL, we were pleased that we’d figured out how to 
incorporate array abstractions for multigrid computations 
into an array language; it was surely a first. Further, the 
abstraction was compatible with WYSIWYG, also a major 
accomplishment. We were getting good performance on 
the NAS MG benchmark with many fewer lines of code; 
see Figure 13. And our first user, Joe Nichols, a UW me-
chanical engineering graduate student, got his combustion 
program to work without massive amounts of help from us; 
it was also faster and shorter than the C + MPI equivalent. 

But there was much to criticize.  ZPL programs had al-
ways tended to be clean, but multigrid computations were 
not. Our approach for specifying multi-regions, arrays and 
directions, which must get progressively sparser, was to 
parameterize them by sequences in curly braces. Without 
going into the details, the arrays for Figure 12(a) and 12(b) 
would have the form 

����	%"����

�����I"%�-�J2��-K����

���������������L����L�� +��-MJK�-5JK����strides 1, 2, 4�
�����I"%�-:J2��-K����

���������������L��-MJK�����L��-5JK������renumbered�
���/��������JK���I"%�-�JK��'#������

Figure 12. Multigrid.  Three levels of a hierarchical array 
are used to express a multigrid computation; the index posi-
tions are preserved and the (logical) size remains constant in 
(a); the index positions are renumbered and the footprint of 
the array shrinks in (b). 
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�����������:JK���I"%�-:JK��'#�����

which was decidedly not beautiful. Curly braces were epi-
demic in all expressions involving hierarchical arrays, as 
this (3D) projection code: 


��$	*��	��
�N.�/���E�1�������*�� #	����

� 	%"���

��E��2�O222�(��1����

�����2�-O22(�1�M*"��22JK�1�M*"�2�2JK�1�M*"�22�JK���

�������������1�M*"�422JK�1�M*"�242JK�1�M*"�224JK���

�����2��-O2(�1�M*"���2JK�1�M*"��2�JK�1�M*"�2��JK���

�������������1�M*"��42JK�1�M*"��24JK�1�M*"�2�4JK���

�������������1�M*"�4�2JK�1�M*"�42�JK�1�M*"�24�JK���

�������������1�M*"�442JK�1�M*"�424JK�1�M*"�244JK���

�����2�20-O(�1�M*"����JK�1�M*"���4JK��

�������������1�M*"��4�JK�1�M*"��44JK��

�������������1�M*"�4��JK�1�M*"�4�4JK���

�������������1�M*"�44�JK�1�M*"�444JK���

�	�*��

from the NAS MG illustrates. Further, as discussions with 
Nichols and users from Applied Math indicated, parameter-
ized regions and directions were not intuitive. 

Over time, we came to this conclusion [33]: The com-
plications of this hierarchical array formulation with its 
parameterization were inevitable because ZPL’s regions 
and directions were not first class. To be first class means 
they should be treated like any other value. (The fact that 
ZPL’s regions and directions were not first class was an 
oft-criticized aspect of ZPL Classic.) We had generalized 
them to support hierarchical structures, but this was too 
situation-specific. If we made regions and directions first 
class—thereby permitting arrays of regions and arrays of 
directions—then a clear, orthogonal formulation of hierar-
chical arrays with all the desirable WYSIWYG properties 
would fall out. And the cumbersome direction references 

(also evident in the foregoing code) would be fixed. Cham-
berlain presented this analysis in his dissertation [33], and 
that is how multigrid is now computed in A-ZPL. 

11.2 User-defined Scans and Reduces 

Scan is a parallel prefix operator, which, like reduce, uses 
the base list of associative operators (�, �, �, �, ���, 
�"�); unlike reduce, scan returns all intermediate results. 
ZPL always included scan, but few numerical programmers 
use it.17 Nevertheless, researchers like Blelloch [53] have 
argued that scanning is a powerful parallel problem solving 
technique. We agree and were motivated to make it a pow-
erful tool in ZPL. 

The idea of user-defined reductions and scans was first 
discussed in the early days of APL. They have been im-
plemented sequentially, and on shared-memory parallel 
machines, but the full application of the parallel prefix al-
gorithm [54] on the CTA architecture remained unsolved. 
The problem was that in the standard sequential implemen-
tation the reduce/scan proceeds through the elements first 
to last, processing one result at a time directly. In the ZPL 
formulation of the parallel prefix algorithm each processor 
performs a local reduce/scan, and then these local interme-
diate results are combined; finally, for the scan the local 
values must be updated based on intermediate results com-
puted on other processors. Steven Deitz worked out the 
logic for generalized reduction and scan [55, 56]. Our algo-

                                                 
 
 
17 The exception proving the rule was a solar system simulation testing 
planetary stability written with UW Astronomers by Sung-Eun Choi; the 
inner loop was a scan over records each of which was a descriptor of the 
orbits of the planets for an (Earth) year. 

Figure 13. Line Counts for the NAS Multigrid Benchmark [63]. Lines after removing comments and white space are classified 
into user-specified communication, declarations or computation; published data for Fortran-90 using the Message Passing Interface, 
Co-Array Fortran (restricted at the time to Cray Shmem machines) [70], High Performance Fortran, Single Assignment C (restricted 
to shared memory computers) [59] and ZPL. 
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rithm must be broken into five parts: initialize, local, com-
bine, update (for scan only) and output. 

Further, the input and output data types processed by 
these routines are potentially different. For example, the 
�"�*�&��%	���F�#�	 reduce of a numeric array is 
an example of a user-defined reduction; it returns the input 
array’s third largest value. The base input data type is nu-
meric, but the intermediate routines pass around records of 
numeric triples, and the output is again numeric. The four 
components for this reduction have the following charac-
teristics: 

 
• Initialize starts the local reduction on each processor, 

emitting a record triple containing identity values. 
• Local takes a numeric value and a triple and returns 

a new updated next triple. 
• Combine takes two numeric triples and returns the 

triple of their three largest numbers. 
• Output takes the global triple and returns the final 

numeric result. 
 

User defined reductions and scans enjoy the same benefits 
(mentioned earlier) as their built-in counterparts, such as 
participating in combining optimizations. 

As a postscript, notice two curious properties of scan. 
 
• As mentioned earlier, ZPL started out following 

APL by specifying that partial reduce and scan use 
dimension numbers in brackets, as in the APL, 
+/[2]A. Partial reduction was changed to use the 
“two regions” solution as a result of formulating 
flood, but partial scan continues to specify the di-
mensions by number, as in 

�1��	�
�����77�!-�����

where negative numbers indicate that the scan is to 
be performed from high indices to low. The key rea-
son for the apparently inconsistent syntax for appar-
ently similar operations is that scan doesn’t change 
rank.18 

• A moment’s thought reveals that the compiled code 
for the procedure calls and interprocessor communi-
cation for higher-dimensional scans is potentially 
very complex. But as several researchers have noted, 
higher-dimensional scans can be expressed in terms 
of a composition of lower-dimensional scans that 
can be implemented in a source-to-source transla-
tion. Deitz [55] observed that the key to this tech-
nique in the context of user-defined scans is to 
choose exclusive rather than inclusive scans. The 
difference is whether each element is included in its 
replacement value or not, as in 

�77�-���0��⇔��-��0��-������Inclusive�
�77�-���0��⇔��2��-��0������Exclusive�

where the first element in the exclusive scan is the 
identity for the operation. The inclusive form can be 

                                                 
 
 
18 Notice the three related operators reduce (op ��), scan (op ��) and 
flood (��) have the properties that the result is smaller than, the same as, 
or larger than the operand, motivating the choice of operator syntax. 

found from the exclusive by element-wise combin-
ing with the operand.  Though APL and most lan-
guages use the Inclusive form, A-ZPL ultimately 
adopted the more general exclusive scan, because 
generating code for high-dimension user defined 
scans is extremely difficult otherwise. 
 

Scan is an operation worthy of much wider application. 

11.3 Pipelines and Wavefronts 

It is not uncommon in scientific computation to compute 
values that depend on just computed values elsewhere in 
the array. For example, the new value of Ai+1,j+1   may de-
pend on Ai,j, Ai+1,j  and Ai,j+1. This looks more like a scan in 
two dimensions (simultaneously) than it looks like the 
other whole-array operations of ZPL. But it is a bigger and 
more complex scan. Our solution quickly took on the name 
mighty scan. 

Whereas standard scan and its user-defined generaliza-
tions apply to array elements in one dimension (at a time) 
with a single update per element, wavefront computations 
must proceed in multiple dimensions at once (three is most 
typical) and perform much more complex computations. 
The solution, developed by E Chris Lewis [47], involved 
two additions to the language: Prime ats and scan blocks. 

The �-translations were extended to add a prime, as in 

�������-���������������P��	����

The prime at indicates that the referenced elements refer to 
the updated values from earlier iterations in the evaluation 
of this statement. Thus, in the illustrated statement, the first 
column of � would be unchanged (note region), the second 
column would be the sum of the first two, the third would 
be the sum of the first three, because it combines the third 
column (�) and the newly updated second column 
����	��, etc. (Of course, this simple one-dimension ex-
ample can also be expressed as a partial scan.) 

Production applications perform complex calculations in 
wavefront sweeps, updating several variables at once. 
Sweep3D, a standard wavefront benchmark, updates five 
3D arrays, four as wavefronts, in its inner loop. In order to 
permit such complex wavefronts, the scan block was added 
as a statement grouping construct 

�1���$���

������������(:������(:���������(:���������(:����

������:�����(:������(:���������(:���������(:����

����	�*��

Essentially, the scan block fuses the loop nests of all the 
array assignments into a single loop nest, allowing the up-
dates to be propagated quickly [57]. Notice that because 
these operations are performed in parallel on values resi-
dent on other processors, only a subset of the processors 
can start computing at first. Once edge data can be sent, 
adjacent processors can begin computation. This raises 
interesting scheduling questions relative to releasing 
blocked processors quickly. 
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The prime at and scan block were extremely successful 
in the parallel benchmark Sweep3D.19 The core of the 
Sweep3D Fortran code is 115 lines, while it is only 24 in 
ZPL. Further, ZPL’s performance is competitive (+/- 15%) 
with the Fortran + MPI on the measured platforms [47]. 

11.4 Sparse Regions and Arrays 

ZPL Classic has dense regions, strided regions, and regions 
with flood dimensions. Arrays can be defined for all of 
them. Further, it has a �"�� region operator for masking. 
But, as our numerical computation friends kept reminding 
us, most huge problems are not dense. Brad Chamberlain 
was especially concerned about the matter, and ultimately 
cracked the problem. There were several issues, and since 
MATLAB was the only language offering sparse arrays—
but interpreted sequentially rather than compiled in paral-
lel—he had a lot of details to work out. 

The first concerned orthogonality, meaning that be-
cause exploiting sparseness is simply an optimization, the 
use of sparse arrays and regions should match the use of 
ZPL’s other forms of arrays and regions, differing possibly 
only by the sparse modifier on the declarations. Chamber-
lain’s formulation achieved that, but there is a wrinkle to be 
explained momentarily. 

The second concerned performance. Computer scientists 
and users have created a multitude of sparse array represen-
tations, and each has its advantages. We wanted a solution 
that worked well—defined to mean that the overhead per 
element was a (small) constant for all sparse configura-
tions. Further, the representation must work well in ZPL, 
meaning that it fits within the specifications of the 
WYSIWYG model. Since there is no universal sparse rep-
resentation, the internal representation was a difficult task; 
our one advantage was that the operators and data-
reference patterns of the rest of the language were known, 
and they were the only ones that could manipulate sparse 
arrays. 

The third issue was, what does “sparse” mean? Numeri-
cal analysts think of a sparse array as containing a small 
number of nonzero elements, where “small” is in the eye of 
the beholder, but is surely a value substantially less than 
half. “Zero” means a double precision floating-point 0. But 
couldn’t a galaxy photo be a sparse pixel array where 
“zero” means “black pixel”, i.e. an RGB triple of zeroes? 
We agreed that a sparse array was any array in which more 
than half of the elements were implicitly represented values 
(IRV), and the user can define the IRV. 

The unexpectedly difficult aspect of sparse arrays, the 
wrinkle, concerned initialization. The issue is that, given a 
dense array, it is easy to produce a sparse region from it 
efficiently, say by masking (�"��). And given a sparse 
region, it is easy to produce another sparse region from it. 
But how to create a huge sparse region in the first place 
without creating a huge dense region to cover it? It could 
be read in, but in ZPL I/O must be executed in some region 
context, which will either be a dense region or lead to a 
circular solution. Another approach is to create the initial 

                                                 
 
 
19 Indeed �$���	�* are sufficiently powerful that they have been gener-
alized and renamed as "��	�#	�/	�	�*. 

sparse region by parallel computation, say with a random 
number generator, but how is this computation specified if 
the region does not yet exist? In the end the general prob-
lem was never solved. ZPL has full support for sparse re-
gions, but they are either created from dense regions or set 
up with tools external to the language. This latter is not 
wholly unsatisfactory, because sparsity patterns often have 
odd sources that require external support to use. 

Chamberlain advanced the state of the art dramatically, 
producing the first array language abstraction and first 
comprehensive compiler support for sparse arrays. It is 
unquestionably one of the premiere accomplishments of the 
ZPL research. More remains to be done: the sparse array 
initialization problem is a deep and challenging topic wor-
thy of further research. 

11.5 Data Parallelism and Task Parallelism 

ZPL Classic is a data-parallel language, and A-ZPL adds 
features that go well beyond data parallelism. But it is 
widely believed that task parallelism is also an essential 
programming tool, and we were eager to include such fa-
cilities in A-ZPL. Several data-parallel languages have 
been generalized to include task parallelism, and vice 
versa. Steven Deitz investigated which of these was the 
most successful, and concluded that none had been. Essen-
tially, his analysis seemed to imply that once a language 
acquires its “character”—data parallelism or task parallel-
ism—fitting facilities for the other paradigm into it cleanly 
and parsimoniously is difficult, we guessed impossible. 
This result was not good news. 

Nevertheless, Deitz continued to investigate how to add 
more flexibility and dynamism in ZPL’s assignment of 
work and data to processors. Of several driving applica-
tions, the adaptive mesh refinement (AMR) computation 
was one he considered closely. 

To appreciate the solution, recall that the parallel execu-
tion environment of ZPL is (by default) initially defined in 
an extra-language way. That is, the number of processors 
and their arrangement are specified on the command line. 
Parameters (configuration constants and variables) are also 
defined on the command line, and are used to set up re-
gions and arrays when the computation starts. These inputs 
define the default allocation of arrays to processors, which 
is the basis of understanding the WYSIWYG performance 
model. ZPL is always initialized this way, and previously, 
none of it could be changed in the program. 

New Features To add flexibility two new abstractions 
were added to the language, grids and distributions [55]. 
They are both first class, and with regions elevated to first-
class status, programmers can completely control all the 
features originally provided by default. 

Grids are a language mechanism for defining the ar-
rangement of processors. The values of grid names are 
dense arrays of distinct processor numbers 0 to P-1 of any 
rank. The assignment of numbers to positions is under user 
control, giving considerable flexibility in arranging logical 
processor adjacencies. In concept, the initial (command 
line) setup defines P and sets the first arrangement. 

Distributions  are a mechanism for mapping regions to 
grids. The user specifies the range of indices to be assigned 
in each dimension. Further, the type of allocation scheme—
block, cyclic, etc.—is also specified for each dimension. 
Users can default to compiler-provided implementation 
routines for the allocation, or program their own. Again, 
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the initial setup defines the initial (block) assignment of the 
regions. 

The typical use of these facilities to redefine the runtime 
environment is as follows. Within the current parallel con-
text, determine how the data should be reallocated. Then 

� Restructure the processors into a new grid, if nec-
essary,  

� Specify how the data should be allocated in the 
new arrangement, if necessary,  

� Define a new region to assign appropriate indices 
to the problem, if necessary, and  

� Say whether the array reallocation is to preserve 
or destroy the data contained therein.  

If these operations are specified in consecutive statements, 
they are bundled together and performed as one “instanta-
neous” change in environment. This strategy minimizes 
data motion and the use of temporaries. The statements can 
realize a complete restructuring of the computational set-
ting. 

Notice that although there is considerable flexibility, 
one feature—that all arrays with the same distribution and 
a given index, say i, j, …, k, will have that element allo-
cated to the same processor—is maintained by these ZPL 
facilities. This is a property of the base WYSIWYG model, 
and preserving it is key to preserving the programmer’s 
sanity. After all, once grid-distribution-region-array opera-
tions set up a new parallel context, the user must morph his 
or her understanding of the WYSIWYG model to accord 
with it. This isn’t really difficult, because the WYSIWYG 
ideas were probably used to create the new context in the 
first place. Nevertheless, treating the indices consistently 
helps. 

In Place Restructuring The distribution facilities are 
extremely interesting and worthy of much greater study. 
However, there are two curious aspects worth mentioning. 

When a distribution binds a region to a grid, there is a 
question of what happens to the data stored in the arrays 
when that region had a different structure. It could be lost, 
or it could be preserved as far as possible, i.e. if an index in 
the old region is also in the new region, then the array val-
ues with that index could be preserved in the arrays. It 
seemed initially that preserving the values was essential, 
but as the facilities were used in sample programs, it be-
came clear that both schemes—destroy or preserve—were 
useful. Though preserve subsumes destroy—the preserved 
values can be overwritten—it is a waste to spend commu-
nication resources moving the data when it is not needed. 
So, ZPL has both a destructive assignment (���) and a 
preserving assignment (��
) to support region change 
[41]. 

The ability to reallocate the data to the processors so 
conveniently has motivated new algorithms. For example, 
the standard solution for a 3D FFT specifies that a 1D FFT 
be performed along each of the three dimensions. The 
standard way to program this is to set up an allocation of 
the 3D array over a 2D arrangement of processors, keeping 
the dimension along which the 1D FFT is performed local 
to the processors. (This saves shipping data around in the 
complex butterfly pattern.) The array is then transposed to 
localize a different dimension, the 1D FFT is applied to 
that dimension, and another transpose is performed to lo-
calize the last dimension. The alternate way to program this 
in ZPL is to avoid the transposes and simply redistribute 

the region across the processors.  That is, the 3D region is 
mapped differently to the 2D processor grid. The details 
are complex, but result in better performance chiefly be-
cause the data is not repacked into the local portions of the 
array. That is, it saves local computation. 

We continue to develop a better understanding of these 
facilities. 

12. Problem Space Promotion 
One aspect of ZPL not yet mentioned is that it has contrib-
uted to new parallel computation techniques, analogous to 
serial techniques like divide-and-conquer. One interesting 
example is Problem Space Promotion (PSP) [58]. Problem 
Space Promotion sets up a solution in which data of d 
dimensions is processed in a higher dimensionality that 
only logically exists in the same way the “tree” is only 
logical in the divide-and-conquer paradigm. The advantage 
of the PSP strategy is that it dramatically increases the 
amount of parallelism available to the compiler. 

To explain PSP, consider the task of rank sorting n dis-
tinct values by making all n2 comparisons, counting the 
number of elements less than each value, and then storing 
the item in the position specified by the count. (This is il-
lustrative of an all-pairs type computation, and is not the 
recommended sorting algorithm, which is Sample Sort 
[58].) All-pairs computations, though common, would not 
normally be solved using n2 intermediate storage for n in-
puts. Such a large intermediate array, even composed of 
one-bit values, would likely not fit in memory, and being 
lightly used has very poor cache performance. 

Because of the flood operator and flood dimensions of 
ZPL, it is possible to perform this algorithm logically with-
out actually creating the n2 intermediate storage. The solu-
tion promotes the problem to a logical 2D space, by 
adopting the declarations 

�	%"���1����������������������A “row” region�
/���F��E����1��"��	%	���������Input (F) and Output (E)�
�����I)1����(�������"��	%	����Flood array�
�����I)B���������(��"��	%	����Flood array 

V and S are the input and output, respectively, and FIR—
mnemonic for flood in rows—and FIC are helper arrays. 
They are logically 2D, but physically only contain (a por-
tion of) the row or column. 

The logic begins by initializing the two helper arrays us-
ing flood 

������(��I)B����AA���������F;����)�*	�����

where to set the FIC array, the input must first be trans-
posed using remap (
) to change dimensions. If the input 
(in F) were 2 6 7 1 5, we would have these arrays: 

I)1����-��0��Q�����O�����I)B����-��-��-��-��-�

�������-��0��Q�����O������������0��0��0��0��0�

�������-��0��Q�����O������������Q��Q��Q��Q��Q�

�������-��0��Q�����O��������������������������

�������-��0��Q�����O������������O��O��O��O��O�

The sorting—actually the construction of the permutation 
that specifies where the input must go to produce a sorted 
order—is a “one-liner”: 

�1��E�������������������I)B��I)1���
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which can be deconstructed as follows. The (logical) Boo-
lean array showing which elements are smaller than an-
other element, 

I)B��I)1����������������2����

���������������2��������2��2�

���������������2��2�����2��2�

�����������������������������

���������������2��������2����

is reduced to the vector to reorder the data by adding up the 
columns: 

���������������I)B��I)1������-�����O�����.�

The columns are reduced because a comparison of the ap-
plicable region R=[1,1..n] and the expression region in 
the partial reduction [1..n,1..n] reveals that the first, 
i.e. columnar, dimension collapses. 

A remap, 

�1��E����F;���E���

produces the reordered data. A stable sort, i.e. a sort pre-
serving the position of non-distinct input, only requires the 
addition of two subexpressions in the “one-liner”. 

The key point about the PSP is that the processors are 
logically allocated in a 2D grid, so that the logical work is 
assigned to them all. With full parallelism and with the 
logically flooded arrays “banging” on the portion of the 
single row and column assigned to their processor, the per-
formance is quite satisfactory [58] and the apparently im-
practical solution becomes practical for many n2 and higher 
computations, including 3D matrix multiplication,  n2 n-
body solutions, Fock matrix computations and more. 

13. ZPL And HPF Comparisons 
ZPL and HPF shared the same goal: Provide a global-view 
programming language for parallel computers and rely on 
the compiler to generate the right (communication, syn-
chronization, etc.) code. 

From that common goal the two efforts diverged, ZPL 
creating a new language and HPF parallelizing Fortran 90. 
Because these are such dissimilar approaches, there is little 
basis for comparison. The features in ZPL are the result of 
a from-first-principles design responding to the dictates of 
the CTA type architecture. The features in HPF came with 
Fortran 90, which is based on the RAM type architecture. 
Though we have observed, for example, that regions are 
better than array slices for data-parallel computation, the 
observation gives little insight about the two efforts be-
cause slices were given; HPF researchers studied different 
issues. 

Though attempting such comparisons is not productive, 
I can say what benefits I think we got by our approach. Our 
type architecture approach and the CTA specifically gave 
the ZPL language designers and compiler writers the key 
parameters of the computers they were targeting: scalable 
P, unit time local memory reference, λ >> 1 nonlocal 
memory references, etc. We could formulate programming 
abstractions to accommodate those properties. As compiler 
writers we could target the generic CTA, confident that the 
object code would run well (with comparably good per-
formance) on any MIMD parallel computer. Further, ZPL 
programmers could analyze their code using the 
WYSIWYG model as a means of predicting program per-

formance and then observe that performance in fact. None 
of this was available to HPF. 

One curious similarity is that neither language had a 
significant installed base of programs. ZPL was new, but in 
1992 so was Fortran 90. In the early years it was difficult 
to find benchmark HPF programs to compare against. 

Of course, it was not an advantage to the ZPL effort that 
most of the research community, nearly all of the funding, 
and most of the obvious corporate players were actively 
directed towards a different approach. The “group think” 
was pervasive.  One difficult problem, common in reviews 
of papers and proposals, was for ZPL work to be dismissed 
because it didn’t address problems faced by HPF, that is, 
parallelizing sequential programs.  A typical remark was 
“Of course you get outstanding performance; you changed 
the language to make it easy.” The result was that many 
referee reports did not speak to the merits (or lack thereof) 
of our papers. 

Incidentally, the most foolish of the new-language criti-
cisms was, “Design of new programming languages, in-
cluding parallel programming, ceased to be even slightly 
interesting many, many years ago (circa 1980).” This was 
so narrow-minded (and wrong as Java, C#, Perl, Python, 
etc. prove) that the phrase “ceased to be interesting circa 
1980” became a joke put-down among the team members. 
It always got a laugh. 

We knew that ZPL was on the right track based on the 
performance numbers we were getting, but with so much of 
the community invested in HPF, ZPL’s success wasn’t 
welcome news. One paper—“ZPL vs HPF: A Comparison 
of Performance and Programming Style” [59]—
demonstrated experimentally in 1995 that the ZPL ap-
proach was more effective than HPF. But the paper was not 
accepted for partisan reasons, as the conference program 
committee chairman admitted to me, and has never been 
published. It is interesting to speculate how a public debate 
in 1995 on the merits of the two approaches might have 
changed subsequent history. 

The most serious consequence for ZPL of so much of 
the field being focused on one approach occurred towards 
the end of the 1990s, when we were extending A-ZPL and 
pushing on its flexibility: Essentially all funding for paral-
lel programming research dried up, making it extremely 
difficult for us to complete our work. Speculating as to why 
this might have occurred, we can acknowledge unrelated 
events such as changes at funding agencies, the distraction 
of the “dot com boom,” etc. But, based on discussions at 
the time, the most likely explanation was the dawning re-
alization by many in the field—researchers, funders, us-
ers—as to what the expenditure of so much talent and 
treasure on HPF was likely to produce. Parallel program-
ming research quickly became technologia non grata. 

Despite the difficulties there is today, for a “David-size” 
fraction of the people and money, a publicly available open 
source ZPL compiler, which seems to be used for class-
room and research purposes. Further, ZPL concepts have 
significantly influenced the next generation of parallel lan-
guages, Cray’s Chapel [60] and IBM’s X10 [61]. 

14. Assessment 
The ZPL Project started with three goals: performance, 
portability and convenience, and it is essential to ask: how 
did we do? Though readers can consult the literature for 
detailed evaluations and judge for themselves, I am ex-
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tremely pleased. As evidence consider data from a detailed 
analysis of the NAS MG benchmark [62, 63]. Our paper 
focuses on languages with implemented compilers as of 
2000 with published results for the MG benchmark over 
the standard range of datasets. It contains evidence sup-
porting all three goals. 

Figure 13 gave the convenience data from the paper, as 
measured by lines of code. ZPL is nearly the most succinct 
of the programs. As explained earlier, this version of ZPL 
did not have first-class regions or directions, resulting in 
code less elegant than it should be; with the revisions to 
hierarchical arrays [33], however, the program would be 

more readable, and perhaps slightly shorter. The key point 
to notice is that the computation portion of the Fortran 90 + 
MPI and CAF programs are not only much longer, but that 
the main constituent of the difference is communication 
code that is extremely difficult to write and debug. So, al-
though these programs can give good performance, only 
ZPL, HPF and SAC truly simplify the programmer’s task. 
(SAC is a functional language targeting only shared-
memory machines.) 

Figure 14 reproduces two pages of performance graphs 
from the analysis of the MG benchmark programs [63]. 
These tables reveal data about the performance the pro-

Figure 14. Performance Graphs from “A comparative study of the NAS MG benchmark across parallel languages and architectures” 
[63]. Speedup is shown; the dashed line is linear speedup. 
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grams can achieve across a series of machines, i.e. their 
portability. 

Regarding portability, the figures show data for six dif-
ferent MIMD machines: two shared memory machines (En-
terprise, SGI Origin), two distributed memory machines 
(Cray T3E, IBM SP-2), and two Linux clusters (Myrinet, 
Ethernet. These computers represent all the major architec-
tures at the time except the Tera MTA [64], for which no 
MG program was available. (Performance numbers are 
missing in many cases, usually because the language does 
not target the machine or, for some HPF cases, because 
there was not enough memory.) 

The performance numbers show that ZPL produces code 
that is competitive with the handwritten message passing 
code of F90 + MPI; further experiments and more detailed 

analyses are found in the Chamberlain [33], Lewis [47] and 
Deitz [55] dissertations. Not only is the performance port-
able across the machines, ZPL scales well, generally doing 
better on larger problems. This is gratifying considering the 
programming effort required to write message-passing 
code compared to ZPL. It seems that for this sampling of 
computers, ZPL is comparable to the hand-coded bench-
mark, which was the performance-with-portability goal. 

In closing, notice that the results are not given for the 
F90+MPI message passing program for processor values P 
that are not a power of 2. This is due to the fact that the 
programmers had to set up the problem by hand without 
the benefit of any parallel abstractions, and in doing so, 
they embedded the processor count in the program; making 
it a power of 2 was a simplifying assumption. In ZPL P is 

Figure 14  (continued).    Performance Graphs from “A comparative study of the NAS MG benchmark across parallel languages 
and architectures” [63]. 
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assigned on the command line and the compiler sets up the 
problem anew for each run. This flexibility seems like a 
small thing. But it is symptomatic of a deeper problem: 
Building the parallel abstractions manually, as is necessary 
in message passing, is error prone. A year after the Figure 
14 results were published, while running the ZPL Conju-
gant Gradient (CG) program on a 2000 processor cluster at 
Los Alamos, we discovered that for P � 500, the F90+MPI 
program didn’t pass verification, though the ZPL did. What 
was wrong? The NAS researchers located the problem 
quickly; it was an error in the set-up code that was only 
revealed on very large processor configurations. This re-
minded us that one advantage to a compiler generating the 
code for an abstraction is that it only has to be made “right” 
once. 

15. Summary 
Though the ZPL project achieved its goals of perform-

ance, portability and convenience—making it the first par-
allel programming language to do so—the 
accomplishments of greatest long-term value may be the 
methodological results. The type architecture approach, 
used implicitly in sequential languages like Fortran, C and 
Pascal, has been applied explicitly to another family of 
computers for the first time. With silicon technology cross-
ing the “multiple processors per chip” threshold at the 
dawn of the 21st century, there may be tremendous oppor-
tunities for architectural diversity; the type architecture 
methodology, we are beginning to see [19], allows a 
straight path to producing languages for new families of 
machines.  Further, the WYSIWYG performance model 
transfers the compiler writer’s know-how to the program-
mer in a way that has direct, visible and practical impact on 
program performance. As long as faster programs are better 
programs, models like WYSIWYG will be important. 

Acknowledgments  
It is with sincere thanks and with deepest appreciation that 
I acknowledge the contributions of my colleagues on the 
ZPL project: Ruth Anderson, Bradford Chamberlain, Sung-
Eun Choi, Steven Deitz, Marios Dikaiakos, George For-
man, Maria Gulickson, E Chris Lewis, Calvin Lin, Douglas 
Low, Ton Ngo, Jason Secosky, and Derrick Weathersby. 
There could not have been a research group with more en-
ergy, more smarts, more creativity or a higher “giggle in-
dex” than this ZPL team. Other grad student contributors 
included Kevin Gates, Jing-ling Lee, Taylor van Vleet and 
Wayne Wong. Judy Watson, project administrator, was a 
steady contributor to ZPL without ever writing a single line 
of code. There is a very long list of others to whom I’m 
also indebted, including grad students on my other parallel 
computation projects, faculty colleagues, research col-
leagues at other institutions, and scientists both at UW and 
elsewhere in the world. It has been a great pleasure to work 
with you all. Finally, for this paper I must again thank Cal-
vin, Brad, E and Sung for their help, thank the tireless 
HoPL3 editors, Brent Hailpern and Barbara Ryder, for their 
patience, and the dedicated anonymous referees, who have 
so generously contributed to improving this paper. 

References  
[1] Lawrence Snyder. Type architecture, shared memory and the corollary 

of modest potential. Annual Review of Computer Science, 1:289-317, 
1986. 

[2] Gil Lerman and Larry Rudolph. Parallel Evolution of Parallel Proces-
sors, Plenum Press, 1993. 

[3] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon 
and D. W. Walker. Solving Problems on Concurrent Processors, 
Prentice-Hall, 1988.  

[4] Lawrence Snyder, The Blue CHiP Project Description. Department of 
Computer Science Technical Report, Purdue University, 1980. 

[5] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In 
Proceedings of the Workshop on Languages and Compilers for Par-
allel Computing, 1993. 

[6] Calvin Lin and Lawrence Snyder. SIMPLE performance results in 
ZPL. In Proceedings of the Workshop on Languages and Compilers 
for Parallel Computing, 1994.  

[7] Lawrence Snyder. Parallel programming and the poker programming 
environment. Computer, 17(7):27-36, July 1984. 

[8] Lawrence Snyder. Introduction to the configurable, highly parallel 
computer. Computer, 15(1):47-56, January 1982.  

[9] Richard O’Keefe, The Craft of Prolog, MIT Press, 1994. 

[10] Simon Peyton Jones and P.L. Wadler. A static semantics for Haskell. 
University of Glasgow, 1992. 

[11] Jorg Keller, Christoph W. Kessler and Jesper Larsson Traff. Practical 
PRAM Programming, John Wiley, 2000. 

[12] Richard J. Anderson and Lawrence Snyder. A comparison of shared 
and nonshared memory models of parallel computation. Proceedings 
of the IEEE, 79(4):480-487, April 1991. 

[13] Alan M.Turing. On computable numbers, with an application to the 
Entscheidungsproblem, Proc. London Math. Soc., 2(42):230-265, 
1936. 

[14] John Backus. Can programming be liberated from the von Neumann 
style? Communications of the ACM 21(8):613-641, 1978. 

[15] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming 
Languages and Systems, 2(4):484-521, 1980.  

[16] .I.D. Scherson and A.S. Youssef. Interconnection Networks for High-
Performance Parallel Computers. IEEE Computer Society Press, 
1994 

[17] K. Bolding, M. L. Fulgham and L. Snyder. The case for Chaotic 
adaptive routing. IEEE Trans. Computers 46(12): 1281-1291, 1997. 

[18] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus 
Erik Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten 
von Eicken. LogP: towards a realistic model of parallel computation, 
ACM Symposium on Principles and Practice of Parallel Program-
ming, 1993. 

[19] Benjamin Ylvisaker, Brian Van Essen and Carl Ebeling. A Type 
Architecture for Hybrid Micro-Parallel Computers. In IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, 2006. 

[20] David G. Socha. Supporting Fine-Grain Computation on Distributed 
memory Parallel Computers. PhD Dissertation, University of Wash-
ington, 1991. 

[21] Calvin Lin, Jin-ling Lee and Lawrence Snyder. Programming SIM-
PLE for parallel portability, In U. Banerjee, D. Gelernter, A. Nicolau 
and D. Padua (eds.), Languages and Compilers for Parallel Comput-
ing, Springer-Verlag, pp. 84-98, 1992.  

[22] Calvin Lin. The Portability of Parallel Programs Across MIMD 
Computers. PhD Dissertation, University of Washington, 1992. 

[23] Ton Ahn Ngo and Lawrence Snyder. On the influence of program-
ming models on shared memory computer performance. In Proceed-

8-35



ings of the Scalable High Performance Computing Conference, 
1992. 

[24] Ton Anh Ngo. The Role of Performance Models in Parallel Pro-
gramming and Languages. PhD Dissertation, University of Washing-
ton, 1997.  

[25] Raymond Greenlaw and Lawrence Snyder. Achieving speedups for 
APL on an SIMD distributed memory machine. International Jour-
nal of Parallel Programming, 19(2):111—127, April 1990. 

[26] Walter S. Brainerd, Charles H. Goldberg and Jeanne C. Adams. Pro-
grammer’s Guide to Fortran 90, 3rd Ed. Springer, 1996. 

[27] High Performance Fortran Language Specification Version 1.0 (1992) 
High Performance Fortran Forum, May 3, 1993. [34] Bradford L. 
Chamberlain. The Design and Implementation of a Region-Based 
Parallel Language. PhD Dissertation, University of Washington, 
2001. 

[28] Bradford L. Chamberlain, Sung-Eun Choi, and Lawrence Snyder. A 
compiler abstraction for machine independent parallel communica-
tion generation. In Proceedings of the Workshop on Languages and 
Compilers for Parallel Computing, 1997. 

[29] M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for 
parallelizing compilers. ACM Transactions on Programming Lan-
guages and Systems, 18(4):477—518, 1996. 

[30] J. R. Rose and G. L. Steele Jr. C*: An extended C language for data 
parallel programming. In Proceedings Second International Confer-
ence on Supercomputing, 1987. 

[31] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, 
Calvin Lin, Lawrence Snyder, and W. Derrick Weathersby. ZPL’s 
WYSIWYG performance model. In Proceedings of the IEEE Work-
shop on High-Level Parallel Programming Models and Supportive 
Environments, 1998. 

[32] Sung-Eun Choi. Machine Independent Communication Optimization. 
PhD Dissertation, University of Washington, March 1999. 

[33] Bradford L. Chamberlain. The Design and Implementation of a Re-
gion-based Parallel Programming Language. PhD Dissertation, 
University of Washington, 2001. 

[34] Bradford L. Chamberlain, E Christopher Lewis, and Lawrence Sny-
der. Problem space promotion and its evaluation as a technique for 
efficient parallel computation. In Proceedings of the ACM Interna-
tional Conference on Supercomputing, 1999. 

[35] Robert van de Geijn and Jerrell Watts.  SUMMA: Scalable Universal 
Matrix Multiplication Algorithm. Concurrency: Practice and Experi-
ence, 1998. 

[36] R.E. Cypher. J.L.C. Sanz and L. Snyder. Algorithms for image com-
ponent labeling on SIMD mesh connected computers. IEEE Transac-
tions on Computers, 39(2):276-281, 1990. 

[37] MasPar Programming Language (ANSI C-compatible MPL) Refer-
ence Manual Document Part Number: 9302-0001 Revision: A3 July 
1992. 

[38] Gregory R. Watson. The Design and Implementation of a Parallel 
Relative Debugger. PhD Dissertation, Monash University, 2000. 

[39] W. P. Crowley et al. The SIMPLE code. Technical Report UCID 
17715, Lawrence Livermore Laboratory, February 1978. 

[40] Lawrence Snyder. A Programmer’s Guide to ZPL. MIT Press, Cam-
bridge, MA, 1999. (The language changed in small ways and has 
been extended; it is now most accurately described in Chapter 2 of 
Chamberlain [33].) 

[41] Steven J. Deitz, Bradford L. Chamberlain, Sung-Eun Choi, and Law-
rence Snyder. The design and implementation of a parallel array op-
erator for the arbitrary remapping of data. In Proceedings of the ACM 
Conference on Principles and Practice of Parallel Programming, 
2003. 

[42] Adam Beguelin, Jack Dongara, Al Geist, Robert Manchek , and 
Vaidy Sunderam.  User guide to PVM. Oak Ridge National Labora-
tory, Oak Ridge TN 378 316367, 1993. 

[43] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Don-
garra. MPI: the Complete Reference. MIT Press, Cambridge, MA, 
USA, 1996. 

[44] Bradford L. Chamberlain, Sung-Eun Choi, and Lawrence Snyder. A 
compiler abstraction for machine-independent parallel communica-
tion generation. In Proceedings of the Workshop on Languages and 
Compilers for Parallel Computing, 1997. 

[45] Sung-Eun Choi. Machine Independent Communication Optimization. 
PhD Dissertation, University of Washington, March 1999. 

[46] E Christopher Lewis, Calvin Lin, and Lawrence Snyder. The imple-
mentation and evaluation of fusion and contraction in array lan-
guages. In Proceedings of the ACM Conference on Programming 
Language Design and Implementation, 1998. 

[47] E Christopher Lewis. Achieving Robust Performance in Parallel 
Programming Languages. PhD Dissertation, University of Washing-
ton, February 2001. 

[48] W. Derrick Weathersby. Machine-Independent Compiler Optimiza-
tions for Collective Communication. PhD Dissertation, University of 
Washington, August 1999. 

[49] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. 
Eliminating redundancies in sum-of-product array computations. In 
Proceedings of the ACM International Conference on Supercomput-
ing, 2001.  

[50] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, 
Calvin Lin, Lawrence Snyder, and W. Derrick Weathersby. Factor-
join: A unique approach to compiling array languages for parallel 
machines. In Proceedings of the Workshop on Languages and Com-
pilers for Parallel Computing, 1996. 

[51] Philip S. Abrams. An APL Machine, PhD Dissertation. Stanford Uni-
versity, SLAC Report 114, 1970.  

[52] Ulrich Ruede. Mathematical and computational techniques for multi-
level adaptive methods, Frontiers in Applied Mathematics, 13, 
SIAM, 1993. 

[53] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT 
Press, 1990. 

[54] R. E. Ladner and M. J. Fischer. Parallel prefix computation. In Pro-
ceedings of the IEEE International Conference on Parallel Process-
ing, 1977. 

[55] Steven J. Deitz. High-Level Programming Language Abstractions for 
Advanced and Dynamic Parallel Computations. PhD Dissertation, 
University of Washington, February 2005. 

[56] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. 
High-level language support for user-defined reductions. Journal of 
Supercomputing, 23(1), 2002. 

[57] E Christopher Lewis and Lawrence Snyder. Pipelining wavefront 
computations: Experiences and performance. In Proceedings of the 
IEEE Workshop on High-Level Parallel Programming Models and 
Supportive Environments, May 2000. 

[58] Bradford L. Chamberlain, E Christopher Lewis, and Lawrence Sny-
der. Problem space promotion and its evaluation as a technique for 
efficient parallel computation. In Proceedings of the ACM Interna-
tional Conference on Supercomputing, 1999. 

[59] Calvin Lin, Lawrence Snyder, Ruth Anderson, Brad Chamberlain, 
Sung-Eun Choi, George Forman, E. Christopher Lewis, and W. Der-
rick Weathersby. ZPL vs. HPF: A Comparison of Performance and 
Programming Style, TR # 95-11-05 (available online from the Uni-
versity of Washington CSE technical report archive). 

[60] David Callahan, Bradford L. Chamberlain, and Hans P. Zima. The 
Cascade High Productivity Language. In 9th International Workshop 

8-36



on High-Level Parallel Programming Models and Supportive Envi-
ronments (HIPS 2004), pp 52-60, April 2004. 

[61] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher 
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and 
Vivek Sarkar. X10: An object-oriented approach to non-uniform 
cluster computing. In 20th OOPSLA, pp. 519-538, 2005. 

[62] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, 
AlexWoo, and Maurice Yarrow. The NAS parallel benchmarks 2.0. 
Technical Report NAS–95–020, Nasa Ames Research Center, Moffet 
Field, CA, December 1995. 

[63] Bradford L. Chamberlain, Steven J. Deitz, and Lawrence Snyder. A 
comparative study of the NAS MG benchmark across parallel lan-
guages and architectures. In Proceedings of the ACM Conference on 
Supercomputing, 2000. 

[64] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, 
and B. Smith. The Tera Computer System. ACM SIGARCH Com-
puter Architecture News, 18(3):1 - 6, 1990. 

[65] Michael A. Hiltzik. Dealers in Lightning: Xerox PARC and the Dawn 
of the Computer Age, Harper Collins, 1999. 

[66] Eric Steven Raymond and Rob W. Landley. The Art of Unix Usabil-
ity, Creative Commons, 2004�����
�������$�� ���%�R	���
���"�"�%�����������#�$�2-����#. 

[67] Calvin Lin and Lawrence Snyder. A comparison of programming 
models for shared memory multiprocessors. In Proceedings of the 
IEEE International Conference on Parallel Processing, 1990. 

[68] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam and N. 
Shenoy. A global communication optimization technique based on 
data-flow analysis and linear algebra. ACM Transactions on Pro-
gramming Languages and Systems 21(6):1251-1297, 1999. 

[69] A. J. Wagner, L. Giraud and C. E. Scott. Simulation of a cusped bub-
ble rising in a viscoelastic fluid with a new numerical method, Com-
puter Physics Communications, 129(3):227-232, 2000. 

[70] Robert W. Numrich, John Reid, and Kieun Kim. Writing a multigrid 
solver using Co-array Fortran. In Proceedings of the Fourth Interna-
tional Workshop on Applied Parallel Computing, 1998. 

[71] S. B. Scholz. A case study: Effects of WITH-loop-folding on the 
NAS benchmark MG in SAC. In Proceedings of IFL ‘98, Springer-
Verlag, 1998. 

 

8-37



Self

David Ungar
IBM Corporation
ungar@mac.com

Randall B. Smith
Sun Microsystems Laboratories

randall.smith@sun.com
Abstract
The years 1985 through 1995 saw the birth and development of
the language Self, starting from its design by the authors at
Xerox PARC, through first implementations by Ungar and his
graduate students at Stanford University, and then with a larger
team formed when the authors joined Sun Microsystems Labo-
ratories in 1991. Self was designed to help programmers become
more productive and creative by giving them a simple, pure, and
powerful language, an implementation that combined ease of
use with high performance, a user interface that off-loaded cog-
nitive burden, and a programming environment that captured the
malleability of a physical world of live objects. Accomplishing
these goals required innovation in several areas: a simple yet
powerful prototype-based object model for mainstream pro-
gramming, many compilation techniques including customiza-
tion, splitting, type prediction, polymorphic inline caches,
adaptive optimization, and dynamic deoptimization, the applica-
tion of cartoon animation to enhance the legibility of a dynamic
graphical interface, an object-centered programming environ-
ment, and a user-interface construction framework that embod-
ied a uniform use-mention distinction. Over the years, the
project has published many papers and released four major ver-
sions of Self.

Although the Self project ended in 1995, its implementation,
animation, user interface toolkit architecture, and even its proto-
type object model impact computer science today (2006). Java
virtual machines for desktop and laptop computers have adopted
Self’s implementation techniques, many user interfaces incorpo-
rate cartoon animation, several popular systems have adopted
similar interface frameworks, and the prototype object model
can be found in some of today’s languages, including JavaS-
cript. Nevertheless, the vision we tried to capture in the unified
whole has yet to be achieved. 

Categories and Subject Descriptors: K.2 [History of Comput-
ing] Software – programming language design, programming
environments, virtual machines; D.3.2 [Programming Lan-
guages] Object-Oriented Languages; D.3.3 [Programming
Languages] Language Constructs and Features – data types and
structures, polymorphism, inheritance; D.1.5 [Object-oriented
Programming]; D.1.7 [Visual Programming]; D.2.6 [Pro-
gramming Environments] Graphical environments, Integrated
environments, Interactive environments; D2.2 [Design Tools
and Techniques] User Interfaces, Evolutionary prototyping;
D2.3 [Coding Tools and Techniques] Object-oriented pro-
gramming; I.3.6 [Computing Methodologies] Computer
Graphics – Interaction techniques

General Terms. Performance, Human Factors, Languages

Keywords: dynamic language; object-oriented language; Self;
Morphic; dynamic optimization; virtual machine; adaptive opti-
mization; cartoon animation; programming environment;
exploratory programming; history of programming languages;
prototype-based programming language

1. Introduction
In 1986, Randall Smith and David Ungar at Xerox PARC began
to design a pure object-oriented, dynamic programming lan-
guage based on prototypes called Self [US87, SU95]. Inspired
by Smith’s Alternate Reality Kit [Smi87] and their years of
working with Smalltalk [GR83], they wanted to improve upon
Smalltalk by increasing both expressive power and simplicity,
while obtaining a more concrete feel. A Self implementation
team was formed, first by the addition of Ungar’s graduate stu-
dents at Stanford, and then by the addition of research staff
when the group moved to Sun Labs in 1991. By 1995, Self had
been through four major system releases. 

Self’s simplicity and uniformity, particularly in its use of mes-
sage passing for all computation, meant that a new approach to
virtual machine design would be required for reasonable perfor-
mance. The Self group made several advances in VM technol-
ogy that could be applied to many if not most object-oriented
languages. The group also created an innovative programming
environment that could host multiple distributed users, and pio-
neered novel graphical user interface techniques, many of which
are only now seeing commercial adoption.

Although the present paper has just two authors, the Self project
was a group effort. The other members’ dedication, hard work
and brilliance made Self what it is. Those people are: Ole Age-
sen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölzle,
Elgin Lee, John Maloney, and Mario Wolczko. In addition, our
experience was deeply enriched by Ole Lehrmann Madsen, who
spent a year with us as a visiting professor. We also appreciate
the efforts of Jecel Assumpcao who, over the years, has main-
tained a web site and discussion list for Self. We are indebted to
the institutions that supported and hosted the Self project: Sun
Microsystems, Stanford University, and Xerox PARC. While at
Stanford, the Self project was generously supported by the
National Science Foundation Presidential Young Investigator
Grant #CCR-8657631, and by IBM, Texas Instruments, NCR,
Tandem Computers, and Apple Computer.

Work on the project officially ceased in June 1995, although the
language can still be downloaded and used by anyone with the
requisite computing environment. But the ideas in Self can
readily be found elsewhere: ironically, the implementation tech-
niques developed for Self thrive today in almost every desktop
virtual machine for JavaTM, a language much more conservative
in design. We feel deeply rewarded that some researchers have
understood and even cherished the Self vision, and we dedicate
this paper to them.

This paper has four general parts: history, a description of Self
and its evolution, a summary of its impact, and a retrospective.
We begin with our personal and professional histories before we
met in 1986, and summarize the state of object-oriented lan-
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guages at that time with special emphasis on Smalltalk, as it was
an enormous influence. We also discuss the context at Xerox
PARC during the period leading up to the design of Self, and
describe Smith’s Alternate Reality Kit, which served as inspira-
tion for some of Self’s key ideas. This is followed by a descrip-
tion of Self that emphasizes our thoughts at the time. Moving
our viewpoint into the present, we assess the impact of the sys-
tem and reflect upon what we might have done differently.
Finally, we sum up our thoughts on Self and examine what has
become of each of the participants (as of 2006).

2. Before Self
Nothing comes from nothing; to understand Self’s roots, it helps
to look at what PARC and Smith and Ungar were doing earlier.

2.1. Smith Before Self

Perhaps because his father was a liberal-minded minister, or per-
haps because he was also the son of a teacher, Smith has always
been fascinated by questions at the boundaries of human knowl-
edge, such as “What is going on to make the universe like this?”
Thus it was perhaps natural for him to enter the University of
California at Davis as a physics major. But along the way, he
discovered computers: he so looked forward to his first pro-
gramming course that on the opening day he gave his instructor
a completed program and begged him to enable student accounts
so that this excited student could submit his deck of cards
(which calculated the friction in yo-yo strings). Computing felt
more open and creative than physics: unlike the physical uni-
verse, which is a particular way, the computer is a blank canvas
upon which programmers write their own laws of physics. There
really was no major in computing in those days; the computer
was perceived as a big, expensive tool, and Smith happily stuck
with his physics curriculum, getting his PhD at UCSD in 1981.
He then returned to his undergraduate alma mater as a lecturer in
the UC Davis Physics Department.

One of the mysteries of physics is that a few simple laws can
explain a wide range of phenomena. Smith enjoyed teaching,
and was always impressed that he could derive six months of
basic physics lectures from F=ma. Much progress in physics
seems to be about finding theories with increasing explanatory
power that at the same time simplify the underlying model. The
notion that simplicity equated to explanatory power would later
manifest itself in his work designing Self.

The draw of computing inevitably won him over, and Smith
stopped chasing tenure in Physics, taking his young family to
Silicon Valley in 1983 so he could work at Atari Research Labs,
then directed by Alan Kay. During that year a rather spectacular
financial implosion took out much of Atari. Smith was one of
only a few remaining research staff members when the company
was sold in 1984 to interests who felt no need for research. Atari
Labs were closed and Smith joined the Smalltalk group at Xerox
PARC. 

2.2. Ungar Before Self

When Ungar was about six and struggling to tighten a horse’s
saddle girth, his father would say “Think about the physics of
it.” What stuck was the significance of how one chose how to
think about a problem. Sometime in his early teens, Ungar was
inspired by the simultaneously paradoxical and logical power of
Special Relativity. Still later, experience with APL in high
school and college kindled his enthusiasm for dynamic lan-
guages. Then, as an undergraduate at Washington University, St.
Louis, he designed a simple programming language. 

In 1980, Ungar went to Berkeley to pursue a Ph.D in VLSI
design. Eventually, he got a research assistantship working on
VLSI design tools for Prof. John Ousterhout, and was also tak-
ing a class on the same topic. At that time, the only way for a
Berkeley student to use Smalltalk was to make the hour-plus
drive down to Xerox PARC. Dan Halbert, also in the VLSI
class, was making that trip regularly (in Butler Lampson’s car)
to use Smalltalk for his doctoral research on programming by
demonstration. Halbert gave a talk in the VLSI class on how
well Smalltalk would support VLSI design by facilitating
mixed-mode simulation. In a mixed-mode system, some blocks
would be simulated at a high level, others at a low level, and
Smalltalk’s dynamic type system and message-passing seman-
tics would make it easy to mix and match. This chain of events
kindled Ungar’s interest in Smalltalk.

Dan Halbert took Ungar down to PARC several times in late
1980 and demonstrated Smalltalk. After seeing Smalltalk’s reac-
tive graphical environment and powerful, dynamic language,
Ungar was hooked. He yearned to solve real problems in Small-
talk without the long drive. He obtained an experimental Small-
talk interpreter, written at HP, but it ran too slowly on Berkeley’s
VAX 11/780. This frustration would completely change the
focus of Ungar’s dissertation work, redirecting him from VLSI
to virtual machines (see section 2.4.4). In the summer of 1985,
Ungar left Berkeley and began teaching at Stanford as an assis-
tant professor. He completed his dissertation that academic year,
and received his PhD in the spring of 1986.

2.3. Object-Oriented (and Other) Programming Languages 
Before Self

The design of Self was strongly influenced by what we knew of
existing languages and systems. Here are a few languages that
were in Ungar’s mind as a result of his lectures at Stanford.

Simula was the first object-oriented language per se. In its first
published description, Dahl and Nygaard stated that its most
important new concept was quasi-parallel processing [DN66].
Its designers were trying to use computers to simulate systems
with discrete events. A key insight was the realization that the
same description could be used both for modeling and for simu-
lation. They extended Algol 60 by adding “processes” (what
would now be called coroutines) and an ordered set feature. A
Simula process grouped related data and code together, and this
grouping came to be thought of as object-oriented programming.
Multiple instances of a process could be created, and “elements”
were references to processes. Simula’s designers felt it was
important to keep the number of constructs small by unifying
related concepts. Although Simula’s influence on Self was pro-
found, it was indirect: Simula famously inspired Alan Kay, who
in the 1970s led the Smalltalk group at the Learning Research
Laboratory in Xerox PARC. 

Parnas [Parn72] explained key principles of object-oriented pro-
gramming without ever using the work “object.” He convinc-
ingly showed that invariants could be better isolated by
grouping related code and data together, than by a pure subrou-
tine-based factoring.

Hoare argued convincingly for simplicity in language design
[Hoar73]. This paper was one of Ungar’s favorites and influ-
enced him to keep the Self language small. It is interesting in
view of Self’s lack of widespread adoption that this aesthetic
can also be found in APL, LISP, and Smalltalk, but not in the
very popular object-oriented programming languages C++ and
Java.
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C++ [Strou86] was created by Bjarne Stroustroup, who had
studied with the Simula group in Scandinavia but had then
joined the Unix group at Bell Laboratories. Stroustroup wanted
to bring the benefits of object-orientation and data abstraction to
a community accustomed to programming in C, a language fre-
quently considered a high-level assembler. Consequently, C++
was designed as a superset of C, adding (among other things)
classes, inheritance, and methods. (C++ nomenclature uses
“derived class” for subclass and “virtual function” for method.)
To avoid incompatibility with C at the source or linker levels,
and to avoid adding overhead to programs that did not use the
new features, C++ initially omitted garbage collection, generic
types, exceptions, multiple inheritance, support for concurrency,
and an integrated programming environment (some of these fea-
tures made it into later versions of the language). As we
designed and built Self in 1987, C++’s complicated and non-
interpretive nature prevented us from being influenced by its
language design. However, its efficiency and support for some
object orientation led Ungar and the students to adopt it later as
an implementation language and performance benchmark for
Self; we built the Self virtual machine in C++, and aimed to
have applications written in Self match the performance of those
written in (optimized) C++.

APL [Iver79] was an interactive time-shared system that let its
users write programs very quickly. Although not object-ori-
ented, it exerted a strong influence on both Smalltalk and Self.
Ingalls has reported its influence on Smalltalk [Inga81], and
APL profoundly affected Ungar’s experience of computing. In
1969, Ungar had entered the Albert Einstein Senior High School
in Kensington, Maryland, one of only three in the country with
an experimental IBM/1130 time-sharing system. Every Friday
afternoon, students were allowed to program it in APL, and this
was Ungar’s first programming experience. Though Ungar
didn’t know it at the time, APL differed from most of its con-
temporaries: it was dynamically typed in that any variable could
hold a scalar, vector, or matrix of numbers or characters. APL’s
built-in (and user-defined) functions were polymorphic over this
range of types. It even had operators: higher-order functions that
were parameterized by functions. The APL user experienced a
live workspace of data and program and could try things out and
get immediate feedback. Ungar sorely missed this combination
of dynamic typing, polymorphism, and interpretive feel when he
went on to learn such mainstream languages as FORTRAN and
PL/I.

Ungar’s affection for APL led to a college experience that had a
profound impact. As a freshman at Washington University, St.
Louis, in 1972, Ungar was given an assignment to write an
assembler and emulator for a simple, zero-address computer.
The input was to consist of instructions such as:

push 1
push 2

add 

The output was to be the state of the simulated machine after
running the given assembly program. His classmates went
upstairs and, in the keypunch room (which Ungar recalls as
always baking in the St. Louis heat) began punching what even-
tually became thick card decks containing PL/I programs to be
run on the school’s IBM System/360. His classmates built lex-
ers, parsers, assemblers, and emulators in programs about 1000
lines long; many of his classmates could not complete their
work in the time allowed. 

Meanwhile, Ungar’s fascination with APL had led to an
arrangement permitting him to use the Scientific Time Sharing
Corporation’s APL system gratis after hours. He realized that

with a few syntactic transformations (such as inserting a colon
after every label), the assembler program to be executed became
a valid APL program. Reveling in APL’s expressiveness, he
wrote each transformation as a single, concise line of code. Then
he wrote one-line APL functions for each opcode to be simu-
lated, such as:

∇ADD X 
PUSH POP + X
∇ 

Finally came the line of APL that told the system to run the
transformed input program as an APL program. The whole pro-
gram only took 23 lines of APL! This seemed too easy, but
Ungar was unwilling to put in the hours of painstaking work in
the keypunch sweatbox, so he turned in his page of APL and
hoped he would not flunk. When the professor rewarded this
unorthodox approach with an A, Ungar learned a lesson about
the power of dynamic languages that stayed with him forever.

In retrospect, any student could have done something similar in
PL/I by using JCL (IBM System/360 Job Control Language) to
transform the program to PL/I and then running it through the
compiler. But none did, perhaps because PL/I’s non-interpretive
nature blinkered its users. Ungar always missed the productivity
of APL and was drawn to Smalltalk not only for its conceptual
elegance, but also because it was the only other language he
knew that let him build working programs as quickly as in the
good old days of APL. The design of Self was also influenced
by APL; after all, APL had no such thing as classes: arrays were
created either ab initio or by copying other arrays, just as objects
are in Self.

2.4. Smalltalk

Smalltalk [Inga81] was the most immediate linguistic influence
on Self. Smalltalk’s synthesis of language design, implementa-
tion technology, user interface innovation and programming
environment produced a highly productive system for explor-
atory programming. Unlike some programming systems, Small-
talk had a principled design. Ingalls enumerated the principles in
[Inga81], and many of them had made a strong impression on
Ungar at UC Berkeley. We embraced these values as we worked
on Self. Table 2 on page 39 enumerates these principles and
compares their realizations in Smalltalk, the Alternate Reality
Kit (described in section 2.6), and Self.

2.4.1. Smalltalk Language

It is truly humbling to read in HOPL II about Alan Kay’s
approach to the invention of Smalltalk [Kay93]. Starting from
notions of computation that were miles away from objects, Kay
tells of years of work that produced a pure object-oriented envi-
ronment including an interactive, reactive user interface and
programming environment. Smalltalk introduced the concept
(and reality) of a world of interacting objects, and we sometimes
feel that Self merely distilled Smalltalk to its essentials
(although we hope that Self made contributions of its own).

Smalltalk-76 introduced the concept of a purely dynamically
typed object-oriented language. A Smalltalk computation con-
sists solely of objects sending messages to other objects. To use
an object, one sends a message containing the name of the
desired operation and zero or more arguments, which are also
objects. The object finds a method whose name matches the
message, runs the method’s code, and returns an object as a
result. Thus, the process that the reader may know as “method
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invocation” in Java is called “message sending” in Smalltalk.
The “class” is central to this story: every object is an “instance”
of some class and must have been created by that class. A win-
dow on the screen is an instance of class Window, 17 is an
instance of class Integer, and so on. Classes are themselves
objects, and classes are special in that they hold the methods
with which possessed by each of its instances (the instance vari-
ables). Also, a class typically specifies a superclass, and objects
created from the class also possess any variables and methods
defined in the superclass, the super-superclass, etc. Thus, all
objects belonging to a given class possess the same set of vari-
ables and methods. Variables are dynamically typed, in that any
variable can refer to any object, but that object had better
respond to all the messages sent to it, or there will be a runtime
error. Methods are selected at run time based on the class of the
receiver.

In addition to the two pseudo-variables “self,” denoting the cur-
rent receiver, and “super,” denoting the current receiver but
bypassing method lookup in its class, there are six kinds of gen-
uine variables: global variables, pool variables which pertain to
every instance of a class in a set of classes, class variables which
pertain to every instance of and to a given class, instance vari-
ables which pertain to a single instance, temporary variables of a
method, and arguments. An instance variable can be accessed
only by a method invocation on its holder, while temporaries
and arguments pertain only to the current method invocation.
(Arguments differ from the other kinds of variables in being
read-only.)

By the time we had started working with Smalltalk, it had
evolved from Smalltalk-76 to Smalltalk-80. This new version
cleaned up several aspects of the language but also introduced a
complicating generalization that would later motivate us to
eliminate classes entirely. In Smalltalk-72, classes were not
objects, but, according to Dan Ingalls, as the Smalltalk group
“experienced the liveliness” of that system, they realized it
would be better to make classes be objects. So, in Smalltalk-76,
all classes were objects and each class was an instance of class
Class, including class Class itself. That meant each class had the
same behavior, because class Class held the common behavior
for all classes. In Smalltalk-80, each class was free to have its
own behavior, a design decision that brought a certain utility and
also seemed in keeping with the first-class representation of
classes as objects. However, it also meant that a class had to be
an instance of some unique class to hold that behavior. The class
of the class was called the metaclass. Of course, if the metaclass
were to have its own behavior, it would require a meta-meta-
class to hold it, and thus Smalltalk-80 presented the programmer
with a somewhat complex and potentially infinite world of
objects that resulted from elaborating the “instance of” dimen-
sion in the language. Smalltalk-80 makes this meta-regress finite
by using a loop structure at the top of the meta-hierarchy, but
many users had a lot of trouble understanding this. Although
this could be seen as a poor design decision in going from
Smalltalk-76 to Smalltalk-80, it might be argued that this is a
problem one is forced to confront whenever classes are fully
promoted to object status. Either way, this conceptually infinite
meta-regress and the bafflement it caused new Smalltalk-80 pro-
grammers gave us a strong push to eliminate classes when we
designed Self. As we look back at Smalltalk-80 in 2006, it
seems to us that, given the desire for a live and uniform system,
the instance-class separation sprouted into a tangle of conceptu-
ally infinite metaclasses that would seem inevitable if an entity
cannot contain its own description.

2.4.2. Smalltalk Programming Environment

In addition to learning the Smalltalk language, the user also had
to master a programming environment that came with its own
organizational concepts. The Smalltalk programming environ-
ment was astounding for its time—it introduced overlapping
windows and pop-up menus, for example—and exerted a strong
influence on the Self project.

The programming environment used by Smalltalk programmers
centers on the browser, inspector, and debugger. There are a few
other tools (e.g., a method-by-method change management
tool), but these three deliver much of what the programmer
needs, and even these three share common sub-components.
Hence, even in the Smalltalk programming environment, there
was a sense of simplicity. Ironically, even though simple, the
environment delivered features we miss when using some mod-
ern IDEs for languages such as Java. For example, one Java IDE
in common use contains several times the number of menu items
available in the Smalltalk tools, yet there is no way to browse a
complete class hierarchy.

The “learnability” aspect of the Smalltalk programming envi-
ronment was a key concern of the Smalltalk group when Smith
joined it in 1984. The PARC Smalltalk group had descended
from the Learning Research Group, which focused on the educa-
tional value of programming systems. Many in the group were
aware that the Smalltalk-80 system was somewhat more diffi-
cult to pick up than they had hoped in the earlier days, and saw
that the programming environment, being what the user sees,
must have been largely responsible. Alan Kay had envisioned
the Dynabook as a medium in which children could explore and
create, and had conceived of Smalltalk as the language of the
Dynabook. Hence one sensed a kind of subtext floating in the
halls like a plaintive, small voice: “What about the children?”
Although Smalltalk had started off as part of this vision, that
vision had somehow become supplanted by another: creating the
ultimate programmer’s toolkit.

The browser, the central tool for the Smalltalk programmer, was
the result of years of enhancement and redesign. It is fair to say
it does an excellent job of enabling users to write their Smalltalk
code, and it has served as a model for many of today’s IDEs
(though some bear a closer resemblance than others). The
browsers feature small titled panes for selecting classes from
within a category and methods within a class, plus a larger, cen-
tral text pane for editing code. However, by the time it was
released in Smalltalk-80, the browser had come to present a sys-
tem view significantly removed from the underlying execution
story of objects with references to one another, sending mes-
sages to each other. The standard Smalltalk-80 browser presents
the user with notions such as categories (groups of classes), and
protocols (bundles of methods), neither of which has a direct,
first-class role in the Smalltalk runtime semantics of the pro-
gram. For example, before a programmer can try creating even
the simplest class, she must not only give the class a name,
which may seem logical, but also decide on a System Category
for the class, even though that category has nothing to do with
the class’s behavior. Furthermore, the standard Smalltalk-80
browser features a prominent and important “instance/class”
switch that selects either methods in the selected class or meth-
ods in the selected class’s class (the metaclass). Recall that a
class, since it is an object, is itself an instance of some class,
which would hold methods for how the class behaves, such as
instantiation, access to variables shared amongst all instances,
and the like. But what about the class’s class’s class? And the
class’s class’s class’s class, and so on? One finds no extra switch
positions for presenting those methods. Furthermore, if the pur-
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pose of the browser is to show the methods in any class, why is
the switch even needed?

At a deeper level, it was obvious to us that the use of tools, as
great as they were, tended to pull one away from the sense of
object. That is, the inspector on a Smalltalk hash table was
clearly not itself the hash table. This was a natural outgrowth of
the now famous Model View Controller (MVC) paradigm,
invented by the PARC Smalltalk group as the framework for
user interfaces. Under the MVC scheme, the view and controller
were explicitly separate objects that let the user see and interact
with the model. This was an elegant framework, but we ques-
tioned it. If the metaphor was direct manipulation of objects,
then we thought s that the UI and programming environment
should give a sense that what one saw on looking at a hashtable
actually was the hashtable. In section 2.6 on the Alternate Real-
ity Kit and in sections 4.3 and 5.3 on user interface designs for
Self, we discuss our approaches to providing a greater sense of
direct object experience.

2.4.3. Smalltalk User Interface

To set the stage for the Smalltalk user interface, we first describe
the state of user interface work when we met Smalltalk. Over-
lapping windows were first used in Smalltalk, and the early
Smalltalk screens would look familiar even today. In those days
at PARC and Stanford it was not uncommon to argue over a
tiled-windows versus messy-desktop paradigm, though the latter
ultimately came to dominate. HCI classes would discuss direct
manipulation as though it were a somewhat novel concept, and
everyday computer users were not clear whether the mouse-
pointer window paradigm had real staying power, as it seemed
to pander to the novice. In fact, the acronym Window Icon
Mouse Pointer (WIMP) was often used derisively by those who
preferred the glass teletype. Smith recalls that in some of his
user studies it would take subjects roughly 30 minutes to get
used to the mouse.

At the time Smalltalk was being designed, each application had
its user interface hard-wired so that its implementation was inac-
cessible to the user; the interface could neither be dissected nor
modified. Smalltalk was a breed apart: its user interface was
itself just another Smalltalk program that ran in the same virtual
machine as the programmer’s own applications. Thus, by point-
ing the mouse at window W and hitting “control-C” to invoke
the Smalltalk debugger, one could find oneself browsing the
stack of an interrupted thread that handled UI tasks related to
window W. One could then use this debugger to modify the code
and resume execution to see the effects of the changes. Most of
us hoped that something like that would eventually take over the
world of desktop computing, but today that dream seems all but
dead. There is no way to get into your word processor and mod-
ify it as it runs, though in those days, that would have been rou-
tine for the curious Smalltalk user.

At PARC in the early 1980s, researchers could sense how user
interface innovations created down the hall were sweeping
through the entire world. Silicon Valley researchers just
assumed that the computer desktop UI was still fertile ground
for innovation, feeling that the basic notions of direct manipula-
tion would probably stick, so that invention would most fruit-
fully occur within that broad paradigm. We were smitten with
direct manipulation and wanted to push it to an extreme. In par-
ticular, we were fascinated by the notion that the computer pre-
sents the user with a synthetic world of objects. It felt to us that
the screens we saw in those days hosted flat, 2D, static pictures
of objects. We wanted to feel that those were real objects, not
pictures of them. This desire for “really direct manipulation”

consciously motivated much of our work and would show up
first in the Alternate Reality Kit, as described in section 2.6, and
ultimately in Self.

2.4.4. Implementation Technology for Smalltalk and Other 
Interpreted Languages

Although much work had been done to optimize LISP systems
that ran on stock hardware, Ungar was not very aware of that
work when the Self system was built. The contexts are so differ-
ent and the problems differ enough that it is hard to say what
would have been changed had he known more about LISP
implementations. Ungar was familiar with the LISP machine
[SS79], but as it was a special-purpose CISC machine for LISP,
he felt it would not be relevant to efficient implementation of
Self on a RISC.

In contrast, it is quite likely that Ungar, although not consciously
aware of it at the time, was inspired by APL when he came up
with the technique of customization for Self (section 4.1.1). As
mentioned above, any variable in APL can hold a scalar, a vec-
tor or a matrix at any time, and the APL operations (such as
addition) perform computation that is determined upon each
invocation. For example, the APL expression A + B executed
three times in a loop could: add two scalars on its first evalua-
tion, add a scalar to each element of a matrix on its second eval-
uation, and add two matrices element-by-element on its third.
Although the computation done for a given operation could
vary, the designers of the APL\3000 system [John79] observed
that it was often the same as before. They exploited this con-
stancy by using the runtime information to compile specialized
code for expressions that would be reused if possible, thus sav-
ing execution time. If the data changed and invalidated code, it
was thrown away and regenerated. Ungar had read about this
technique years before implementing Self, and it probably
inspired the idea that the system could use different compiled
versions of the same source code, as long as the tricks remained
invisible to the user.

When Smalltalk was developed in the early to mid 1970s, com-
mercially available personal computers lacked the horsepower
to run it. Smalltalk relied on microcode interpreters running on
expensive, custom-built research machines. Developed in house
at Xerox PARC, these machines (called Altos [Tha86], later sup-
planted by Dolphins, and then Dorados) were the precursors of
1990s personal computers. The Dorado was the gold standard: it
was fast for its time (70ns cycle time), but had to be housed in a
separate air-conditioned room; a long cable supplied video to
the user’s office. These expensive and exotic machines allowed
the PARC researchers to live in a world of relatively abundant
cycles, personal computers, and bitmapped displays years
before the rest of us.

Even with this exotic hardware, Smalltalk’s implementers at
PARC had to resort to compromises that increased performance
at the cost of flexibility. For example: arithmetic, identity com-
parison, and some control structures were compiled to dedicated
bytecodes whose semantics were hard-wired into the virtual
machine. Thus, the source-level definitions of these messages
were ignored. A programmer, seeing the definitions, might think
that these operations were malleable, edit the definition and
accept it, yet nothing would change. For example, Smith once
changed the definition of the if-then-else message to accept
“maybe” as the result of comparisons involving infinity. He was
surprised when, though the system displayed his new definition,
it kept behaving in accordance with the old one. And Mario
Wolczko, who taught Smalltalk before joining the Self group,
once had a student create a subclass of Boolean, only to discover
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that it did not work. The Self system was built later and enjoyed
the luxury of more powerful hardware. Thus, it could exploit
dynamic compilation to get performance without sacrificing this
type of generality (section 5.1).

In 1981, Ungar built his own Smalltalk system, Berkeley Small-
talk (BS). Its first incarnation followed the “blue book” [GR83],
which used 16-bit object pointers, an object table, and reference
counting.1 This kind of object pointer is known as an indirect
pointer, because instead of pointing directly to the referenced
object, it points to an object table entry that in turn points to the
referenced object. This indirection doubles the number of mem-
ory accesses required to follow the pointer and therefore slows
the system. L. Peter Deutsch, an expert on dynamic language
implementations who had worked on the Dorado Smalltalk vir-
tual machine [Deu83] at Xerox PARC, began a series of weekly
tutoring sessions on Smalltalk virtual machines with Ungar.
Deutsch had just returned from a visit to MIT, where he was
probably inspired by David Moon to suggest that Ungar build a
system that handled new objects differently from old ones. After
obtaining promising results from trace-driven simulations,
Ungar rewrote Berkeley Smalltalk to use a simple, two-genera-
tion collection algorithm that he called Generation Scavenging
[Ung84]. Ungar realized that, in addition to directly increasing
performance by reducing the time spent on reclamation, this col-
lector would indirectly increase performance by making it possi-
ble to eliminate the object table. This optimization was possible
because Generation Scavenging moved all the new objects in
the same pass that found all pointers to new objects and could
thus use forwarding pointers. In addition, since most objects
were reclaimed when new, old objects were allocated so rarely
that it was reasonable to stop the mutator for an old-space recla-
mation and compaction and thus again use forwarding pointers.
The resulting system was the first Smalltalk virtual machine
with 32-bit pointers and the first with generational garbage col-
lection. Ungar told Deutsch about his excitement at removing
the overhead of pointer indirection involved with the object
table. Deutsch didn’t share the excitement; he estimated the
speedup would be less than 1.7. Ungar disagreed, and talked
Deutsch into betting a dinner on it. So, when the new algorithm
was running, Ungar tuned and tuned till it was 1.73 times faster
than the previous tuned version of Berkeley Smalltalk: Deutsch
treated Ungar to a very fine dinner in a Berkeley restaurant. As
of this writing (2006), almost all desktop- and server-based
object-oriented virtual machines use direct pointers, thanks per-
haps in part to Deutsch’s willingness to make a bet and graduate
student Ungar’s desire to prove himself to Deutsch and claim a
free meal.

At Berkeley, Deutsch and Ungar continued their discussions.
When the Sun-1 came out, Deutsch decided to build a system
based on dynamic compilation to native code and inline caching
that would let him run Smalltalk at home [DS84]. Deutsch and
Schiffman’s PS (“Peter’s Smalltalk”) system was in many ways
the precursor of all dynamically compiling object-oriented vir-
tual machines today. After Ungar spent a few months trying to
optimize his interpreter and receiving only diminishing returns,
he realized that only a compilation-based virtual machine (such
as PS) could yield good performance. It was this experience that
led Ungar to rely on compilation techniques for the Self system.

Meanwhile, during the 1980-1981 academic year, Berkeley pro-
fessor David Patterson was finishing up his Berkeley RISC
project, demonstrating that a simple instruction-set architecture
with register windows could run C programs very effectively.
By eliminating the time spent to save and restore registers on
most subroutine calls, the RISC architecture could execute the
calls very quickly. Ungar and others at Berkeley saw a match
between RISC’s strengths and the demands of a Smalltalk
implementation. Patterson saw this too, and in collaboration
with Prof. David Hodges started the Smalltalk on a RISC
(SOAR) [PKB86, Ung87] project. Based on a simple RISC
machine, SOAR added some features to support Smalltalk and
relied on a simple ahead-of-time compiler [BSUH87] to attain
70ns-Dorado-level performance on a (simulated) 330ns micro-
processor. The rack-sized Dorado ran at a clock speed of 14
MHz, while the (simulated) chip-sized SOAR microprocessor
ran Smalltalk just as fast with a mere 3 MHz clock. (Today, in
2006, commercial microprocessors run at clock speeds about a
thousand times faster than SOAR’s, and have no trouble at all
with interpreted Smalltalk.) This system was another proof that
compilation could hold the key to dynamic object-oriented per-
formance.

For his doctoral research, Ungar helped design the instruction
set, wrote the runtime system (in SOAR assembler) and ran
benchmarks. Then he removed one architectural feature at a
time and substituted a software solution so as to isolate the con-
tribution of each feature. One of the most important lessons
Ungar learned from the project was that almost all the system’s
“clever” ideas had negligible benefit. In fact, the vast bulk of
speed improvements accrued from only a few ideas, such as
compilation and register windows. In his dissertation, he called
the temptation to add ineffective complexity “The Architect’s
Trap.” A few years later, in 1988 and 1989, Ungar had to relearn
this lesson in the evolution of the Self language, as described in
section 4.2.

In 1988, after PS had been completed and Ungar had graduated,
the Smalltalk group at Xerox PARC spun off a startup company
called ParcPlace Systems to commercialize Smalltalk. For their
ObjectWorks product, they built a Smalltalk virtual machine
called HPS. Extending the ideas in PS, HPS used Deutsch’s
dynamic translation technique and a clever multiple-representa-
tion scheme for activation records. Unlike PS, it was written in
C, not assembler, and employed a hybrid system for automatic
storage reclamation. The latter, on which Ungar consulted, com-
prised a generation scavenger for new objects and an incremen-
tal, interruptible mark-sweep collector for the old objects. An
object table permitted incremental compaction of the old
objects. When it was built, around 1988, it was probably the
fastest Smalltalk virtual machine, and its success with dynamic
translation served as an inspiration.

2.5. Xerox PARC in the 1980s

By the early 1980s Xerox PARC had established itself as the
inventor of much of the modern desktop computer. At a time
when most of us in the outside world were just becoming com-
fortable with time-shared screen editors running on character-
mapped displays that showed 25 lines of 80 fixed-width charac-
ters, each PARC engineer had his own personal networked com-
puter with keyboard, mouse, and a bit-mapped display showing
multiple windows with menus and icons. They authored WYSI-
WYG documents, sent them to laser printers, e-mailed them to
each other, and stored them on file servers. All this has now, of
course, become commonplace.

1. The “blue book” (our affectionate name for the first book on Small-
talk) was the authoritative guide (since it was the only one) and con-
tained the code (in Smalltalk) for a reference implementation. Ungar
recalls that Dave Robson used to call this Smalltalk-in-Smalltalk as
“the slowest Smalltalk virtual machine in the world.”
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But another part of the vision held by many at PARC was slower
to materialize in the outside world, and in many ways never did.
That dream depicted users as masters of their own computers,
able to modify applications in arbitrary ways and even to evolve
them into entirely new software. This vision of “everyman as
programmer” was part of Alan Kay’s story that motivated the
work of the PARC Smalltalk group [Kay93]. This group looked
to the idea of dynamic, object-oriented programming as the
underlying mechanism that would make the elements of the
computer most sensibly manifest. Kay’s group had a tradition of
attending to the user interface (the Smalltalk group had intro-
duced the idea of overlapping windows) and of focusing on edu-
cation. Kay and his group felt that students should be creators in
a powerful and flexible medium and that a dynamic object-ori-
ented language was the key enabler. Kay’s group had developed
several versions of the Smalltalk language: Smalltalk-72, Small-
talk-76, and finally Smalltalk-80.

Alan Kay left PARC in 1982 but his group carried on under the
leadership of Adele Goldberg. It had hosted a few researchers
who created more visual programming environments such as
Pygmalion [FG93], Rehearsal World [Smi93], and ThingLab
[BD81]. These environments were written in Smalltalk but were
themselves essentially visual programming languages, with
somewhat different semantics from Smalltalk itself. For exam-
ple, ThingLab took the user’s graphically specified constraints
to generate code that maintained those constraints. Perhaps
because it was a graphical environment, or perhaps because of
SketchPad’s inspiration [Suth63], ThingLab’s designer, Alan
Borning, presented users with a set of “prototype” objects to
copy and modify in their work. The copying of a prototype
became recognized as being a little deeper than it might seem at
first glance; it offered an alternative to instantiating a class that
felt much more concrete. This distinction may not seem very
compelling in a compile-first/run-later environment such as Java
or C, but in Smalltalk, where one is always immersed in a sea of
running objects even while writing new code, the advantages of
working with concrete instances was more apparent. Perhaps
from similar intuitions, others had been exploring the idea of
adding “exemplars” to Smalltalk [LTP86], instances that accom-
pany the class hierarchy and serve as tangible representatives of
the classes. 

When Smith joined PARC in 1984, he would add to this list of
visual programming systems written in Smalltalk by creating the
Alternate Reality Kit, or ARK. Like ThingLab and SketchPad,
ARK would be a construction environment based on prototypes.

2.6. ARK, The Alternate Reality Kit

Smith had always loved teaching physics. When he was lectur-
ing in the UC Davis Physics Department, he felt the students
became somewhat disconnected from the material when he cov-
ered topics such as relativity and quantum mechanics, because
few if any demonstrations were available to provide a tangible
connection to relevant physical experience. When he left aca-
demia for Silicon Valley research life at Atari Corporate
Research in 1983, Smith started to investigate how a simulation
environment might provide a tangible experience for learning
relativity by letting students see what the world would be like if
the speed of light were, say, 5 mph. He hoped that someday stu-
dents playing in such a simulated world would obtain such an
automatic and intuitive understanding of relativity that they
would laugh off mental puzzlers such as the twin paradox as a
trivial misunderstanding. When he joined PARC, Smith began to
think about generalizing on his previous work. Smith began to
realize that changing the speed of light to 5 mph was just an
instance of a more powerful idea: a simulation can provide a

way for students to experience how the world is not, as well as
how it is. In the real world, we are stuck with the laws of physics
we have been given. In a simulation, we can see what role a law
plays by watching what happens when we change it. Smith set
to work to create an environment making it possible to create
such simulations; because of this emphasis on changing the
nature of reality, Smith called the system the Alternate Reality
Kit. Smalltalk’s ability to change a program as it ran was the key
to granting the ARK user the power to change physical law in an
active universe. 

The Alternate Reality Kit, implemented in Smalltalk-80,
emerged as an open-feeling kit of parts, featuring lots of motion
and subtly animated icons (see Figure 1). A user could grab
objects, throw them around, and modify them in arbitrary ways
through messages sent by buttons. For its time, the system had
unusual, “realistically” rendered objects. The lighting model
implied a third dimension, and most objects were intentionally
drawn without an outline to remind the viewer of real-world
objects, which also do not generally have outlines. A drop
shadow for objects lifted “out of the plane” also provided a
sense of a third dimension. Having only one-bit-deep displays
meant all this had to be achieved with stipple patterns, requiring
careful rendering and a little more screen real estate than might
otherwise be required. This look would later be carried into the
Self user interface. Today, drop shadows and pseudo-3D user
interface elements with highlights and beveled edges are com-
monplace, and we are seeing more animation as well. ARK may
have been the first system to include many of these ideas.
 

ARK also foreshadowed Self’s elimination of the class concept
by sweeping Smalltalk’s classes under the rug. For example, it
featured a “message menu” that the user could “pop up” directly
on any display object and contained a list of every Smalltalk
message to which the display object could respond. Selecting
from the menu created a button that was attached to the object
that could be pressed to send the message, then discarded if not
needed, dropped onto other objects for use there, set aside, or
simply left in place for future use. If the message required
parameters, the button had retractable plugs that could be drawn
out and dropped on the parameter objects. If the message
returned a result, that object was made into a display object and
popped up onto the screen. To create the menu of available mes-
sages, the underlying Smalltalk system started with the class of
the display object and simply scanned up the class hierarchy,
collecting the methods from each class as it went. As a result,
the presence of a class was effectively hidden from the ARK
user, even though classes were of course being used under the
covers.

Furthermore, in ARK, any object could be modified and new
kinds of state and behavior introduced within the simulation
while everything was running. Unlike Smalltalk, ARK enabled
the user to add an instance variable directly to an object, simul-
taneously specifying the name of the variable and its value.
Because ARK was a Smalltalk program, making a new kind of
object was implemented at the Smalltalk level as three steps: 1]
make a new subclass specifying the new instance variable, 2]
instantiate that class to make a new object O, and 3] replace the
on-screen instance with O. In other words, the role of the Small-
talk class was again being hidden. The class was implementing
something that in ARK felt not only more tangible but more to
the point: working directly with instances.

Thus, even though ARK users worked directly with instances,
they had full access to sending Smalltalk messages and making
new kinds of objects. The notion of making a new kind of object
simply by modifying an existing instance foreshadowed the pro-
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totype-based approach that was to be the basis of the Self object
model. In ARK, it seemed unnecessary to even think about a
class, and Self would have none. 

A final aspect of ARK influenced the later design of Self (sec-
tion 3). When a new instance variable was created for an object
in ARK, it seemed natural to have the system automatically cre-
ate “setter” and “getter” methods that would then show up in the
message menu used for creating buttons. Thus the message
menu presented a story based on the object’s behavior, hiding
the underlying state. It was clear that with setter and getter
methods, the full semantics of an object was available through
message passing alone: any notion of state was hidden at a
deeper implementation level.

A downside to automatically exposing instance variables
through getters and setters is that it broadens the public interface
to an object, and so might make it more difficult to change an
object since other parts of a system might come to rely on the
existence of these methods. Note that automatic getters and set-
ters do not really violate the design principle of encapsulation,
as the sender of a set or get message has no idea what kind of
internal state (if any) is employed.

ARK also brought together some of the personalities who would
later create Self. It was a demonstration of Smith’s ARK in late
1985 or early 1986 that made Ungar realize that he wanted to
collaborate with Smith: Smith showed Ungar an ARK graphical
simulation of load-balancing in which processes could migrate
from CPU to CPU. Ungar suggested attaching a CPU to one
process so that when the process migrated, it would take the
(simulated) CPU with it. When Smith was able to do this by just
sticking a CPU widget to a process, Ungar realized that there
was something special here; ARK was the kind of system that
appeared simple but let its users easily do the unanticipated.
Ungar was so taken with ARK that he later used a video of it for
the final exam in his Stanford graduate course on programming
language design. When Bay-Wei Chang took this exam, he was
inspired to join the Self project. The spirit that shone through
ARK illuminated the path for Self.

3. Self is Born at PARC 
In 1985, as Smith was working on the Alternate Reality Kit,
Ungar joined the faculty at Stanford. Stanford was just “down
the hill” from PARC, and the Smalltalk group decided to bring
Ungar in to collaborate with the group a few days per week. In
1981 the Smalltalk group had released Smalltalk-80 [GR83], the
latest and perhaps most complete and commercially viable in the
string of Smalltalk releases. The group considered it their natu-
ral charter to invent Smalltalk-next, and a follow-on to Small-
talk-80 was perhaps overdue. To tackle this design problem, the
Smalltalk group decided to break into teams, each of which
would propose a next language. Smith and Ungar paired up to
create their own proposal for a language that would eventually
become Self.

At the time we felt that Smalltalk was striving to realize a Pla-
tonic ideal, an apotheosis, of object-oriented programming.
Smalltalk seemed to be heading toward a model in which com-
putation proceeds by sending messages (containing objects as
arguments) to objects and receiving objects in return. That’s all.
There is nothing about bits. Once in a while, one of these mes-
sages might turn on a pixel on a display. But, really, the notion
of computation rests on a higher plane than bits in memory and
is more abstract. Ungar likened this model of computation to
Rutherford’s experiments to learn about the atomic nucleus.
Rutherford could not look inside an atom; he had to shoot sub-
atomic particles at atoms and record how they bounced off. The
pattern led him to deduce the existence of the nucleus. Similarly,
we felt that there should be no way to look inside of an object;
an object should be known only by its behavior, and that behav-
ior could be measured only by the measurements on the behav-
ior of objects returned in response to messages.

3.1. The Basic Ideas

When we started to design Self, we were partly inspired by
ARK: we wanted the programming environment’s graphical dis-
play of an object to be the object for the programmer. We

Figure 1. The Alternate Reality
Kit (ARK), an interactive simu-
lation environment that was also
a visual programming system.
Some ideas in ARK influenced
the design of Self. The screen
shows several buttons, some
attached to objects. New objects
could be made by a copy-and-
modify process, and any new
state in the new object was
accessed through new buttons.
This foreshadowed Self’s use of
prototypes and the way Self
entirely encapsulates state
behind a message-passing mech-
anism. ARK also had a feel of
being a live world of moving,
active objects that was unusual
for its time and influenced the
programming environment, as
well as in some sense the deeper
semantics and overall goals, of
Self.
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noticed that whenever we drew an object on the whiteboard, our
pictures were different from Smalltalk’s; our objects always
looked like small tables (see Figure 2) with no classes in sight.

As mentioned above, we employed a minimalist strategy in
designing Self, striving to distill the essence of object and mes-
sage. A computation in Self consists solely of objects which in
turn consists of slots. A slot has a name and a value. A slot name
is always a string, but a slot value can be any Self object. A slot
can be asterisked to show that it designates a parent.
 

Figure 3 illustrates a Self object representing a two-dimensional
point with x and y slots, a parent slot called myParent, and two
special assignment slots, x: and y:, that are used to assign to
the x and y slots. The object’s parent has a single slot called
print (containing a method object to print the point).

We found the resulting instance-oriented feel of the environment
appealing because it lent more clarity and concreteness to a pro-
gram design, with no loss of generality from Smalltalk-80.
Additionally, Self’s design eliminated metaclasses, which were
one of the hardest parts of Smalltalk for novices to understand,

and avoided Smalltalk’s long-standing schism between instance
attributes and class attributes.2 (The latter are also called “static
methods and variables” in Java and C++.)

Recall that the novice Smalltalk-80 programmer had to learn
about the scoping rules for each of Smalltalk’s six classes of
variables (see Figure 4). Smith recalls thinking this was some-
how an odd story for an object-oriented language, in which get-
ting and setting state could be done with message passing to
objects. Sometime soon after joining the Smalltalk group at
PARC (possibly in 1982 or 1983), Smith mentioned this vari-
able-vs.-message dichotomy to Dave Robson, a senior member
of the Smalltalk group and co-author of the Smalltalk “blue
book” [GR83]. Smith recalls Robson replying in a somewhat
resigned tone, “Yeah, once you’re inside an object, it’s pretty
much like Pascal.” 

Ungar independently stumbled on the same question during a
lunch in which Deutsch offhandedly suggested that these six
types of variable accesses could be unified. We started to think
of trying to use message sending as the only way to access stor-
ing and retrieval of state, and came up with a design that could
merge all variable accesses with message passing (see Figure 5).
We presented the design in an informal talk to the Smalltalk
group in 1986, and in 1987 wrote the paper “Self: The Power of
Simplicity” [US87].

We implemented inheritance with a variation on what Henry
Lieberman called a “delegation” model [Lieb86]: when sending
a message, if no slot name was matched within the receiving
object, its parent’s slots were searched for an object with a
matching slot, then slots in the parent’s parent, and so on. Thus
our point object could respond to the messages x, y, x:, y:,
and myParent, plus the message rho, because it inherited the
rho slot from its parent. In Self, any object could potentially be
a parent for any number of children and could be a child of any
object. This uniform ability of any object to participate in any
role of inheritance contributes to the consistency and malleabil-
ity of Self and, we hope, to the programmer’s comfort, confi-
dence, and satisfaction.

To accomplish this unification, we decided to represent compu-
tation by allowing a Self object optionally to include code in
addition to slots. An object with code is called a method, since it
does what methods in other languages do. For example, the
object in the rho slot above includes code and thus serves as a
method. However, in Self, any object can be seen as a method;
we regard a “data” object (such as 17) as containing code that
merely returns itself. This viewpoint unifies computation with
data access: when an object is found in a slot as a result of a
message send it gets run; a datum returns itself, while a method
invokes its code. Thus, when the rho message is sent to our
point object, the code in the object in the rho slot is found and
that object’s method runs. This unification reinforces the inter-
pretation that it is the experience of the client that matters, not
the inner details of the object used to create that experience.

Self’s unification of variable access and message passing relied
on the fact that a method would run whenever it was referenced.

sqrt(x2+y2)

Figure 2. When we pictured a simple point object, we imagined
it differently from in Smalltalk. In particular, the state and
behavior of the object itself drew our attention, but the class did
not. Since we wanted the language and environment level to
mimic a hypothetical physical embodiment, we left classes out
of Self. A Self object contains slots, such as rho and x in the fig-
ure, and a slot may function either as a holder of state (such as
x) or as a holder of behavior (such as rho). (For simplicity of
illustration, assume that the computed object is returned by the
message send.) 

rho sqrt(x2+y2)

x 3

y 5

class Point

x 3

y 5

rho

Point

Our picture Smalltalk’s picture

myParent*

x

y

print ...

...

x:

y:

←

Figure 3. A Self point has x and y slots, with x: and y: slots con-
taining the assignment primitive for changing x and y. The slot
myParent carries a “parent” marker (shown as an asterisk).
Parent slots are an inheritance link, indicating how message
lookup continues beyond the object’s slots. For example, this
point object will respond to a print message because it inherits
a print slot from the parent.

←

2. Later, to support a programming environment, mirrors were added to
Self. A mirror on an object contains information about that object,
and may seem somewhat like a class that contains information about
its instances. However, as discussed in section 4.4, an object may
exist with no mirrors, unlike instances, classes, and metaclasses. Fur-
thermore, had we been willing to guarantee that every object would
transitively inherit from a root, we could have put reflective func-
tionality in that root with no need for mirrors. 
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Figure 4. Smalltalk uses dictionary objects to hold the variables accessible from different scopes, though instance variables
such as x and y for a point are directly available within the object. Class variables and global variables such as Point and
List are held in such special dictionary objects with string objects (in quotes) as keys. Methods are also held in a special
dictionary. All these dictionaries must exist in this way, as the entire language semantics relies on their existence. Not shown
here are “Pool” variables, temporaries and arguments within a method context, or temporaries within a block closure object.
In Figure 5 we show how Self achieves this scoping using objects and inheritance.

class Point

a point

System Dictionary

“rho”methodDictionary

classVariables

“aClassVariable”

“Point”

“List”

a Dictionary

a Dictionary

sqrt(x2 + y2)

a Method

class Point

x 3

y 5

Figure 5. Self’s object design gets many different scopes of variables for free. In Self, shared variables can be realized as
slots in an ancestor object. Here, aSharedVariable is shared by all points, and the global variables point and nil are shared
by all objects. This contrasts with Smalltalk, which needs a different linguistic mechanism for class variables and globals.

a point

globals

shared point traits

sqrt(x2 + y2)

a Method

parent*

x 3

y 5

parent*

rho

aSharedVariable . . .

nil

point
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Consequently, there was no way (until the later development of
reflection in Self; see section 4.4) to refer to a method. Many
languages exploit references to functions, but Ungar felt that
such a facility weakened the object orientation of a language. He
felt that since a function always behaves in the same way, unlike
an object which can “choose” how to respond to a message,
functions-as-first-class entities would be too concrete. In other
words, a function called by a function always runs the same
code, whereas a method called by a method runs code that is
chosen by the receiver. Smith understood Ungar’s reservations
about functions but was bothered by the complexity of introduc-
ing new fundamental language-level constructs (such as a new
kind of slot with special rules for holding methods, or new kind
of reference for pointing to a method without firing it).

The reader may wonder how one could ever get a method into a
slot in the first place. In the first implementation of Self, the pro-
grammer just used a textual syntax to create objects with slots
containing data and code. Later, we had to have some way for a
program to make new objects and manipulate old ones. The
invention of mirrors (section 4.4) added more elegant primitive
operations to manipulate slots.

In contrast to many other object-oriented languages including
C++ and Java, a number is an object in Self, just as in Smalltalk,
and arithmetic is performed by sending messages, which can
have arguments in addition to the receiver. For example, 3 + 4
sends the message + to the object 3, with 4 as argument. This
realization of numbers and arithmetic makes it easy for a pro-
grammer to add a new numeric data type that can inherit and
reuse all the existing numeric code. However, this model of
arithmetic can also bring a huge performance penalty, so imple-
mentation tricks became especially critical. Self’s juxtaposition
of a simple and uniform language (objects for numbers and mes-
sages for arithmetic in this case) with a sophisticated implemen-
tation let the programmer to live in a more consistent and
malleable computational universe.

3.2. Syntax

In settling on a syntax for Self, we automatically borrowed from
Smalltalk, as the two languages already had so much in common
already. But Self’s use of message sending to replace Small-
talk’s variable access mechanisms would force some differ-
ences. Where Smalltalk referenced the class Point by having a
global variable by that name, Self would reference the prototyp-
ical point with a slot named “point” and one would have to send
a message, presumably to “self,” to get a reference. So the Self
programmer would write

self point.

which was verbose, but seemed acceptable. It raised the uncom-
fortable issue of what the token “self” meant. Could an object
send “self” to itself to get a reference to itself? Smith recalls pro-
posing that every object have a slot called “self” that pointed to
itself. But Ungar pointed out that Smith’s proposal only put off
the problem one level, as even with the slot named “self,” one
would have to send the message “self” to something to get that
reference! Smith counterproposed that perhaps there could be an
implied infinity of self’s in front of every expression, just as in
spoken language, one can say “X” or one can say “I say: ‘X’,” or
even “I say ‘I say “X”’,” and so on. In spoken language we don’t
bother with this addition of “I say...” as it goes without saying.
One could imagine an infinite number of them in front of any
spoken utterance, and that they are just dropped to make spoken
language tractable. However, Smith could never formalize this
into a working scheme. So, as in Smalltalk, “self” would be a
built-in token, providing the self-reference reference ex nihilo.

But that wasn’t the end of it. In a method to double a point,3 the
Smalltalk programmer would assign to the two instance vari-
ables

x ← x * 2.

y ← y * 2.

whereas the Self programmer would perhaps write:
self x: (self x * 2).

self y: (self y * 2).4

This was getting a bit verbose. One day at PARC, in one of the
early syntax discussions, Ungar suggested to Smith that the term
“self” be elided. Smith remembers this because he was embar-
rassed that he had to ask Ungar for the definition of the word
“elide.” Ungar explained that it meant the programmer could
simply leave out “self.” Under the new proposal, our example
became:

x: (x * 2).

y: (y * 2).5

At first hesitant, Smith came to like this as dropping the “self”
was like dropping the utterance “I say” in natural language. Fur-
thermore, eliding “self” neatly solved the infinite recursion
problem of an object’s having to send “self” to self to create a
self-reference. In retrospect we feel that was a brilliant solution
to a deep problem; at that time, it just seemed weirdly cool.

At this point, readers familiar with C++ will be wondering what
the fuss was all about. It is true that C++ unifies the syntax for
calling a member function of the receiver with that of calling a
global function. Moreover, it unifies the syntax for reading a
variable in the receiver with that of reading a global variable,
and it unifies the syntax for assigning to a variable in the
receiver with that of assigning to a global variable. In summary,
C++ has six separate operations that mean six separate things
but are boiled down to three syntactic forms: aFunc-

tion(arg1, arg2-----..), aVariable, and aVariable
=. What we had in Self after eliding “self” was just a single syn-
tax and unified semantics for all six.

3.3. More Semantics

Ungar realized that, having removed variables, he and Smith
had stumbled into enshrining message sending as the conceptual
foundation of computation. Rather than each expression starting
with a variable to serve as some reference, in Self the “program-
ming atom” became a message send. Ungar in particular felt that
the syntax could shift people’s thinking about programs so that
they would—unconsciously—tend to write better encapsulated
and more reusable code. Smith was less interested in syntax, as
he felt that whatever reasonable syntax was provided, the under-
lying semantics would shine through. So, any syntactic realiza-
tion of the Self computational model would suffice for shifting
people’s thinking. Smith therefore felt that since we could
choose any reasonable syntax, we should stick with the familiar
and thus choose Smalltalk, as it was gaining popularity at the
time. Looking back from 2006, Self might have become more
popular had we devised a C-style syntax instead.

At this point we still had no good way to deal with temporary
variables and arguments, whose scope was limited to a method
context. (A method context in Smalltalk or Self is essentially a
stack frame, a.k.a. an activation record.) Smith came up with the

3. One has to wonder how the language would have turned out without
Cartesian point objects as fodder for our examples.

4. Parentheses added for clarity.
5. Parentheses added for clarity.
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idea that rather than retaining Smalltalk’s temporaries and
method arguments as variables, they too should be slots in an
object whose parent was the message receiver. This formulation
implied that slot name lookup would start in the local method
context and then pass on to the message receiver, and so on up
the inheritance hierarchy. Consequently, lookup would not
really start at “self,” but rather at something like Smalltalk’s
“thisContext,” a pseudo-variable that serves as a reference to the
local method activation. Smith explained this to Ungar in
Smith’s office at Xerox PARC and sensed that though Ungar felt
this was a wild idea, he also felt it was somehow right. (Figure 6
illustrates this point.) 

Although this tap dance removed the last vestige of variables
from the execution story, it left a complexity that bothers us to
this day. In Self, everything is a message send that starts looking
for matching slots in the current method context, then continues
up through the receiver (self) and on up from there (see
Figure 6). But any method found in the lookup process creates a
new method context inheriting from self, not from the current
context. It’s as though the virtual machine has to keep track of
two special objects to do its job: the current context to start the
lookup, and “self,” to be the inheritance parent of new activa-
tions. Smith wondered how bad it would be to install new acti-
vations as children of the current activation, so “self” would no
longer be such a special object, but Ungar convinced him that
the resulting interactions between activations would amount to
dynamic scoping and would be likely to create accidental over-
rides, with confusing and destructive side effects.

Block closures within a method can be represented as objects as
well, as also illustrated in Figure 6. When invoked, a block clo-
sure is lexically able to refer to temporaries and arguments in its

enclosing method, but is itself an object that can be passed
around without evaluation if desired. In Self or Smalltalk, a
block closure can be sent the value message to run its code.
The value method in a block context differs from other meth-
ods: when such a method runs its parent slot is set, not to the
current receiver, but rather to the enclosing context in which the
block originates.

Although the Self model enabled inheritance and slot lookup to
explain what many other languages didn’t even bother to
explain with the language’s fundamental semantics, the appear-
ance of special cases (such as the value method in a block) both-
ered us. We had several discussions at the whiteboards at PARC,
trying to figure out a unifying scheme, but none was satisfac-
tory. 

As we strove for more and more simplicity and purity, we came
up against other limits we simply could not wrestle into a pris-
tine framework. We wanted every expression in Self to be com-
posed of message sends. In particular, we wanted every
expression to start off by sending one or more messages to the
current context and on up through self. Literals, though, fail to
conform: a literal is an object (usually one of just a few kinds,
such as numbers and strings) that is created in place in the code
just where it is mentioned. For example, the Self expression

x sqrt

sends the message x to self, then sends sqrt to the result. For
a few weeks during our design phase we puzzled over how to
support the expression

3 sqrt

within a pure message-sending framework. Most languages
would treat the 3 as a “literal” (something that is not the result of

x

y

parent*

self*

temp1

methodContext

<method code>

<block code>

temp2

Figure 6. Lexical scoping of method activations and
block closures via inheritance. We were pleased that the
lexical scoping rules of methods and block closures could
be explained through inheritance. But doing so made us
realize there is a fundamental distinction between self
(which is essentially a parent of the current method acti-
vation) and the point at which method lookup starts
(which is the activation itself, so that temporaries and
arguments in that activation are accessed). In this exam-
ple, the method code can mention temp1 as well as x and
y, as message sends start with the current activation and
follow up the inheritance chain. But new method sends to
self will have their self parent slot set to the point object.

As detailed in the text, when a block closure is invoked,
the closure’s activation is cloned, and the implicit parent
is set to the enclosing method activation. This link is bro-
ken when the enclosing method activation returns.

Thus in the case illustrated here, the code in the block can
access temp2, temp1, self, x, y, parent, and any other
slots further up the inheritance chain.

value
*

a point
object

a method
activation

a block closure
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computation but rather “literally” interpreted directly in place).
As an example, in Smalltalk this code fragment would be com-
piled so as to place the object 3 directly in the expression, fol-
lowed by the send of sqrt to that object. We wondered if Self
could treat the textual token 3 not as a literal, but rather as a
message send to self. That way, 3 would be on the same foot-
ing as other widely referenced objects, such as list, the proto-
typical list. The idea was that somewhere in the stratosphere of
the inheritance hierarchy would be an object with a slot whose
name would be “3” and that would contain a reference to the
actual object 3. Send “3” to an object, and the result of the
lookup mechanism would be a reference to the object that, in the
receiver’s context, meant 3. This result would normally be the
regular 3, but it might, for example, be a 1 in the context of
some object that could only understand mod 2 arithmetic. In the
end we gave up on this, as it seemed to hold too much potential
for mischief and obfuscation. For instance, 2 + 2 could evaluate
to 5! It seemed to both of us like more expressive freedom than
was really needed, and supporting those objects with such a con-
ceptually infinite number of slots seemed a heavy burden to
place on the virtual machine. We decided to give up on pushing
uniformity this far.

Our design for the unification of assignment with message send-
ing also troubled us a bit. An object containing a slot named “x”
that is to be assignable must also contain a slot named “x:” con-
taining a special object known as the assignment primitive. This
slot is called an assignment slot, and it uses the name of the slot
(very odd) to find a correspondingly named data slot in the same
object (also odd). This treatment leads to all sorts of special
rules; for instance, it is illegal to have an object contain an
assignment slot without a corresponding data slot, so conse-
quently the code that removes slots is riddled with extra checks.
Also, we were troubled that it took a pair of slots to implement a
single container. Other prototype-based languages addressed
this issue by making a slot-pair an entity in the language and
casting an assignable slot as such a slot pair. Another alternative
might have been to make the assignment object have a slot iden-
tifying its target, so that in principle any slot could have served
as an assignment slot for any other.

Both authors strove for simplicity, but each had his own focus.
Smith’s pure vision grounded in the uniformity of the physical
world led him to advocate such interesting features as parent
slots for methods and message-passing for local variable access.
In contrast, Ungar couldn’t wait to actually use the language,
and so he was thinking about the interaction between language
features and possible implementation techniques. For example,
unlike Lieberman’s prototypes [Lieb86, SLU88], a Self object
does not add an instance variable on first assignment, but rather
must already contain a data- and assignment-slot pair if the
assignment is to be local. Otherwise, it delegates the assignment
(which is just a one-argument message send) to its parent(s) (if
any). Ungar also was thinking about customization (section 4.1)
at that point; to make instance variable access and assignment
efficient when a sibling might implement them as methods,
Ungar realized that one could compile multiple versions of the
same inherited method for each “clone-family.” The require-
ment that an assignable slot be accompanied by a corresponding
assignment slot created a clear distinction at object creation time
between a constant slot and a mutable slot that was intended
from the start to aid the implementer. Ungar knew that an effi-
cient implementation would have to put information shared
across all clones of the same prototype in a separate structure,
which was eventually called a map [CUL89]. (See section 4.1
for details.)

When Ungar came up to PARC as a consultant, he had to sign in
by writing his name on an adhesive name tag and wearing it
while on the premises, yet no one ever paid any attention to it.
So Ungar took to writing more and more absurd names on his
tag, such as “nil,” “super,” and even “name tag.” One day, he
came into the common area outside Smith’s office at PARC, and
upon seeing Smith immediately exclaimed, “I have a name for
the language! Self!” He had moments earlier signed his name
tag “self” when inspiration had struck. Smith commented that
all those selfs missing from the syntax could maybe be inherited
from the title of the language. The name appealed to us immedi-
ately, and from that day forward we had no doubt that the lan-
guage would be called “Self.”

4. Self Takes Hold at Stanford and Evolves
In June 1986, Ungar (at Stanford) asked Sun for some equip-
ment: an upgrade to 4Mb of main memory for 14 machines
($28K), a Sun 3/160S-4 workstation with 4MB for ($15K)—this
was a diskless machine—a 400MB disc drive ($14K), a tape
drive ($3K), and an Ethernet transceiver ($500). When we
started the effort to build a Self system, hardware was primitive
and expensive!

Ungar recalls spending his first year at Stanford (1985-1986)
casting about for a research topic. His first PhD student, Joseph
Pallas, was working on a multiprocessor implementation of Ber-
keley Smalltalk [Pal90] for the Digital Equipment Corporation
Systems Research Laboratory Firefly [TSS88], an early coher-
ent-memory multiprocessor. As far as we know, this system was
the first multiprocessor implementation of Smalltalk. 

In Ungar’s June 1986 summary of his first year’s research at
Stanford, Self was not mentioned at all. But nine months later,
he had found his topic: in a March 1987 funding proposal,
Ungar wrote: “Self promises to be both simpler and more
expressive than conventional object-oriented languages.” He
also wrote about “developing programming environments that
harness the power of fast and simple computers to help a person
create software,” of “transforming computing power into prob-
lem-solving power,” of “shortening the debug, edit, and test
cycle,” and how “dynamic typing eases the task of writing and
changing programs.” He explained the potential advantages of
Self: its unification of variable access and message passing, that
any Self object could include code and function as a closure, its
better program-structuring mechanisms, including prototypes.
Finally, he noted that obtaining performance for Self would pose
a challenge.

In 1988, Smith went to England for a year, and Ungar’s consult-
ing assignment at PARC changed from designing languages to
implementing automatic storage reclamation for what was to
become the HPS Smalltalk system. This was the end of Self at
PARC.

Ungar had decided that Self’s replacement of variable access by
message passing made it so impractical that devising an efficient
implementation of Self would make a good research topic. He
was also eager to see if the language design would hold up for
nontrivial programs. Ungar’s May 1988 report, “SELF: Turning
Hardware Power into Programming Power,” proposed a com-
plete, efficient Self virtual machine, a Self programming envi-
ronment with a graphical interface based upon artificial reality,
and a high-bandwidth, low-fatigue total immersion workstation.
(We never got around to the last one.) He discussed the benefits
of the language and the special implementation challenges it
posed. To tackle the implementation issues, we proposed custom
compilation and inlining of primitive operations and messages
sent to constants. (These were the first optimizations we tried.)
9-13



We proposed to investigate dynamic inheritance and to explore
mirror-based reflection, the latter as a means to inspect a method
as well as objects intended only to provide methods for inherit-
ance by other objects. Ungar christened the latter sort of object a
“traits” object. Years later, others would formulate a framework
for combining bundles of methods in a class-based framework,
reusing the word “traits” with a slightly different meaning
[SDNB03].6

The report went on to outline proposed work on a graphical pro-
gramming environment designed to present objects as physical
hunks of matter—objects, not windows. Ungar proposed to use
well-defined lighting for reality and substance, and to manage
screen updates so as to avoid distraction. (This seems to fore-
shadow our work in cartoon animation.) He also proposed to
implement a graphical debugger for Self.

In January 1989, Ungar asked Sun for more equipment: SPARC
machines, a server, a workstation for his home, and three disk-
less machines, each with 24Mb of memory. He also asked for a
fast 68030 machine. As the Stanford Self project progressed in
1989 and 1990, it was able to start work on the programming
environment and user interface, later known as UI1 or Seity. The
goal (far from realized) was eventually to replace most uses of C
and C++ (and, of course, Smalltalk) for general-purpose pro-
gramming. We wanted to harness the ever-increasing raw com-
putational power of contemporary workstations to help
programmers become more productive.

4.1. Implementation Innovations

Faced with designing an interpreter or compiler to implement a
language, one often takes a mathematical, mechanistic view and
focuses on getting correct programs to execute correctly.
Inspired by Smith’s Alternate Reality Kit [Smi87], Ungar took a
different tack: he concentrated on getting the user to buy into the
reality of the language. Even though Self objects had no physi-
cal existence and no machine was capable of executing Self
methods, the implementation’s job was to present a convincing
illusion that these things did exist. That is why, despite all the
convoluted optimizations we finally implemented, the program-
mer could still debug at the source level, seeing all variables
while single- stepping through methods, and could always
change any method, even an inlined one, with no interference
from the implementation.

To structure complexity and provide the freest environment pos-
sible, we layered the design so that the Self language proper
included only the information needed to execute the program,
leaving the declarative information to the environment. In other
words, in Smalltalk and Java, classes served as both structural
templates (i.e., concrete types) and were visible to the program-
mer, but in Self the structural templates (embodied by maps)
were hidden inside the virtual machine and thus invisible to the
programmer. Abstract types were regarded as programmer-visi-
ble declarative information, and Self left those to the environ-
ment. For example, one language-level notion of abstract type,
the clone family, was used in the work of Agesen et al. [Age96]
in their Self type-inference work. There is no clone family
object in the Self language, but such objects could be created
and used by the programming environment. This design kept the
language small, simplified the pedagogy, and allowed users to
extend the domain of discourse.

The Stanford Self team believed that performance would be crit-
ical for acceptance, yet our design philosophy placed a large

burden on the compiler. Deutsch and Schiffman’s PS system had
simply translated Smalltalk’s bytecodes to machine code, with
only peephole optimization [DS84]. But unlike Smalltalk, the
Self bytecodes contained no information about what is a vari-
able access or assignment vs. a message send, and there are no
special bytecodes for simple arithmetic, nor special bytecodes
for commonly used control structures. Simple translation would
not suffice. Obtaining performance without sacrificing the pro-
gramming experience would be our challenge.

The problem in this area was a magnification of one faced by a
Smalltalk implementation: a style of programming in which
methods are short, typically one to five lines of code, resulting
in frequent message sends. Frequent sends hurt performance
because each method invocation in Smalltalk (and Self) is
dynamically dispatched. In other words, every few operations a
Smalltalk program called a subroutine that depended on the
runtime type of the value of the first argument (a.k.a. the
receiver). In Self, the situation was even worse, because every
variable access or assignment also required a message send.
Other, more static languages, such as C++ (and later Java),
incorporated static type-checking, and this added information
facilitated use of dispatch tables (a.k.a. vtables) to optimize vir-
tual calls. This technique was not suited for Self or Smalltalk
because without static types every dispatch table needs an entry
for every method name. This requirement would result in pro-
hibitive time and space requirements to update and maintain dis-
patch tables. Thus, to make Self work well, we would not only
have to implement prototypes effectively, but would also have to
find new techniques to eliminate the overhead of virtual func-
tion calls by inline expansion of methods whose bodies could
not be known before the program runs.

4.1.1. The First Self Virtual Machine, a.k.a. Self-89

Back when the language had been designed, Ungar had deviated
from Lieberman’s prototype model for implementation consid-
erations. In Lieberman’s system, an object initially inherited all
of its attributes and gained private attributes whenever an
assignment occurred. From the beginning, Ungar tried to keep
an object’s layout constant to reduce run-time overhead. He
therefore incorporated the distinction between variable and con-
stant slots into Self. Assignment could only change a variable
slot, not create a new slot. Furthermore, to represent an object,
space would be required for only its variable slots and one
pointer to shared information about its constant slots and its lay-
out. This shared information was called a map (Figure 7). Dur-
ing 1986-87, graduate students Elgin Lee and Craig Chambers
joined the project. Lee wrote the first memory system and
implemented maps to achieve space usage that was competitive
with Smalltalk [Lee88]. Later, Chambers reimplemented the
memory system [CUL89]. We achieved our goal: the per-object
space overhead of Self was only two words.
 

In 1988, Chambers wrote the first Self compiler [CU89,
CUL89]. This compiler represented Self programs using expres-
sion trees and introduced three techniques: customization, type
prediction, and message splitting. Each of these ideas was
inspired by our desire to run no more slowly than Smalltalk.
Wherever we thought that Self’s object model would hinder its
performance, we tried to devise a technique to recoup the loss, at
least in the common cases. To maintain the interactive feel of an
interpreter, we also introduced dependency lists (described
below).

Customization. A Smalltalk object belongs to a specific class,
and its instance variables occur at fixed offsets specified by the
class. Even an inherited instance variable has the same offset as

6. According to an email exchange with Black and Schärli, Self’s traits
played into their thinking but were not the primary inspiration.
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it would in an instance of the class from which it is inherited. As
a result, the Smalltalk bytecodes for instance variable access and
assignment can refer to instance variables by their offsets, and
these bytecodes can be executed quite efficiently. In Self, there
is no language-level inheritance of instance variables, and so the
same inherited method might contain an access to an instance
variable occurring at different offsets in objects cloned from dif-
ferent prototypes. (All objects cloned from the same prototype
have the same offsets, and are said to comprise a clone family.)
In some invocations of the inherited method, the bytecode might
even result in a method invocation. To compile accesses as effi-
cient, fixed-offset load operations, Ungar had realized—back at
PARC—that the virtual machine could compile multiple copies
of the same inherited method, one per clone family. This trick
would not compromise the semantics of the language because it
could be done completely transparently. This technique, known
as customization, was implemented in Chambers’ first Self com-
piler (see Figure 8).

Type Prediction. In Smalltalk and Self, even the simplest arith-
metic operations and control structures were written as mes-
sages. In the case of control structures, blocks are used to denote
code whose execution is to be deferred. Thus, even frequently
occurring operations that need not take much time must be
expressed in terms of general and relatively time-consuming
operations. For example, the code a = b ifTrue: [...]
sends a message called “=” to a, then creates a block, and finally
sends “ifTrue:” to the result of “=” with a block argument. The
Smalltalk system uses special bytecodes for arithmetic and sim-
ple control structures to reduce this overhead. For Self, we kept
the bytecode set uniform, but built heuristics into the compiler
to expect that, for instance, the receiver of “=” would probably
be a (small) integer and that the receiver for “ifTrue:” would

likely be a Boolean. This information allowed the compiler to
generate code to test for the common case and optimize it as
described below, without loss of generality. For example, in Self
but not Smalltalk, the programmer can redefine what is meant
by integer addition. This idea was called “type prediction.”

Message Splitting. As mentioned above, Smalltalk imple-
mented if-then constructs such as ifTrue: with specialized
bytecodes, including branch bytecodes. Since in Smalltalk (and
Self) the “true” and “false” objects belong to different classes
(clone-families in Self), the branch bytecodes conceptually test
the class of the receiver to decide whether to branch or not. To
achieve similar performance in compiled Self code without spe-
cial bytecodes, we had allowed the compiler to predict that the
receiver of such a message was likely to have the same map as
either the “true” or the “false” object, but could be anything. The
Self compiler was built around inlining as its basic optimization,
so to optimize ifTrue: for the common case without losing the
ability for the user to change the definition of ifTrue:, the
compiler had to insert a type-case (a sequence of tests that try to
match the type (represented in Self by the map) of the receiver
against a number of alternatives) and then inline different ver-
sions of the called method in each arm of the type-case con-
struct. In the “true” arm, it could inline the evaluation of the
“then” block, in the “false” arm, it could inline “nil,” and in the
uncommon case, it could not inline at all but just compile a mes-
sage-send. In other words, one message-send of “ifTrue:” was
split into three sends of “ifTrue:” to three different types of
receiver (true, false, and unknown). We dubbed this technique
“message splitting.” 

Dependency Lists. For this compiler Chambers also created
Self’s dependency system, a network of linked lists that allowed
the virtual machine to quickly invalidate inline caches and com-

Figure 7. An example of the representations for two Cartesian points and their parent, also known as their “traits” object. With-
out maps, each slot would require at least two words: one for its name and another for its contents. This means that each point
would occupy at least 10 words. With maps, each point object needs to store only the contents of its assignable slots, plus one
more word to point to the map. All constant slots and all format information are factored out into the map. Maps reduce the 10
words per point to 3 words. (A Self object also has an additional word per object containing a hash code and other miscellany.)
Since the Cartesian point traits object has no assignable slots, all of its data are kept in its map. 
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piled methods when the programmer made changes to objects
[Cham92]. In addition to these techniques, the compiler also
supported source-level debugging so that the system could be as
easy to understand as an interpreter.

When this compiler was completed in 1988, the Self virtual
machine comprised 33,000 lines of C++ and 1,000 lines of
assembly code. It ran on both a Motorola 68020-based Sun-3
workstation and a SPARC-based Sun-4 workstation. The latter
was a RISC microprocessor with a 60ns cycle time, and an aver-
age of 1.6 cycles per instruction. We had written about 9,000
lines of Self code, including data structures, a simple parser, and
the beginnings of a graphical user interface. The largest bench-
mark we used at that time was the Richards operating system
simulation [Deu88], and the compiler produced Self code that
ran about three times faster than Smalltalk, but about four times
slower than optimized C++ [CU89]. There was an issue with
compilation speed: on a Sun 4-260 workstation, the compiler
took seven seconds to compile the 900-line Stanford integer
benchmarks, and three seconds to compile the 400-line Richards
benchmark. This was deemed too slow for interactive use; we
wanted compile times to be imperceptible.

Ungar recalls that Chambers articulated an important lesson
about types: the information a human needs to understand a pro-
gram, or to reason about its correctness, is not necessarily the
same information a compiler needs to make a program run effi-
ciently. Thereafter, we spoke of abstract types as those that help
the programmer to understand a program and of concrete types
as those that help an implementation work well. In many lan-
guages, the same type declaration (e.g., 32-bit integer) specifies
both semantics and implementation. As we implemented Self,
we came to believe that this common conflation inevitably com-
promised a language’s effectiveness.7 Accordingly, we hoped to

show that type declarations for the sake of performance were a
bad idea, and we made the point that Self’s performance—with-
out explicit declarations—had already pulled even with
Johnson’s Typed Smalltalk system [John88, CU89]. 

4.1.2. The Second-Generation Self Virtual Machine, a.k.a. 
Self-90

We weren’t satisfied with the performance of our first Self com-
piler and in 1989 proceeded to improve the Self system. In early
1989, Chambers rewrote the memory system and then imple-
mented a far more ambitious compiler [CU90]. This compiler
was based on a control flow graph and included many optimiza-
tion techniques that had been invented for static languages, such
as more extensive inlining, interprocedural flow-sensitive type
analysis, common subexpression elimination, code motion, glo-
bal register allocation, instruction scheduling, and a new tech-
nique called extended splitting. 

Extended Splitting. Recall that the first Self compiler had been
based on expression trees. As a consequence, the only message
sends that it could split were those whose receivers were the
results of the immediately preceding sends. With the addition of
flow-sensitive type analysis, the new compiler could split a mes-
sage based on the type of a value previously stored in a local
variable. We observed that it was common for the same local to
be the receiver for several message sends, although the sends
might not be contiguous, so Chambers extended the new com-
piler to split paths rather than individual sends. This technique
was called “extended splitting” and the ultimate goal was to split
off entire loops, so that, for example, an iterative calculation

Figure 8. Customization: At left are three objects
implementing Cartesian and polar points. Below
left is an expression tree for uncustomized code
for the x method. Since rho may be either a vari-
able or method, to use the same code for both
kinds of points, nothing more can be compiled
but message sends for rho and theta. But if the
system can compile a specialized version of x for
polar points, it can replace these with load
instructions, as in the code below right. Custom-
ization speeds sends to self at the expense of
space and complexity. In Smalltalk and other
contemporary object-oriented languages, a meth-
od like x could include instance variable load
operations at its source level. Ungar devised cus-
tomization to regain the speed lost by expressing
an instance variable access as a send to self.

7. The creators of the Emerald system had the same insight [BHJ86]
and had probably discussed it with Ungar during a visit to the Uni-
versity of Washington.
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involving (small) integers could be completely inlined with only
overflow tests required. Many of the benchmarks we were using
then consisted of iterative integer calculations because we were
trying to dethrone performance champion C, and those sorts of
programs catered to C’s strengths.

The new compiler yielded decidedly mixed results. The perfor-
mance of the generated code was reasonable: the Richards
benchmark shrank to three-fourths of its previous size and
slowed by just a bit, small benchmarks sped up by 25% - 30%,
and tiny benchmarks doubled in speed. The problem was that
compiler ran an order of magnitude slower. For example, it took
a majestic 35 seconds to compile the Richards benchmark, a
wait completely unsuitable for an interactive system. Perhaps
we had fallen prey to the second-system syndrome [Broo]. In
day-to-day use, we stuck with the original compiler.

This second-generation system did introduce other improve-
ments, including faster primitive failure, faster cloning, faster
indirect message passing (for messages whose selectors are not
static), blocks that would not crash the system when entered
after the enclosing scope had returned, and a dynamic graphical
view of the virtual machine (the “spy”), written by Urs Hölzle,
who had joined the Self project in the 1987-1988 academic year. 

4.1.3. The Third-Generation Self Virtual Machine, a.k.a. 
Self-91

By mid-1990, Hölzle had made many small but significant
improvements to the Self virtual machine: he had improved the
performance of its garbage collector by implementing a card-
marking store barrier; he had redone the system for managing
compiled machine code by breaking it up into separate areas for
code, dependencies, and debugging information; he had added
an LRU (least-recently used) machine-code cache replacement
discipline; he had started on a profiler; and he had improved the
method lookup cache. The Self virtual machine comprised
approximately 50K lines of C++.

Hölzle had devised a new technique that would turn out to be
crucial: polymorphic inline caches (PICs) [HCU91]. Self was
already using inline caching [DS84], a technique that optimized
virtual calls by backpatching the call instruction. Deutsch and
Schiffman had noticed that most virtual calls dispatched to the
same function as before, so rather than spending time on a
lookup each time, if the call went to the same method as before,
the method could just verify the receiver’s map in the prologue
and continue. This technique worked, but we discovered that
some fairly frequent calls didn’t follow this pattern. Instead,
they would dispatch to a small number of alternatives. To opti-
mize this case, when a method prologue detected an incorrect
receiver type, Hölzle’s new system to create a new code stub
containing a type-case and redirect the call instruction to this
stub. This type-case stub, called a polymorphic inline cache
(PIC), would be extended with new cases as required. This opti-
mization sped up the Richards benchmark, which relied heavily
on one call that followed this pattern, by 37%. We realized that,
after a program had run for a while, the PICs could be viewed as
a call-site-specific type database. If a call site was bound to the
lookup routine, it had never been executed; if it was bound to a
method, it had been executed with only one type; and if it was
bound to a PIC, that PIC contained the types that had been used
at that site. Hölzle modified Chambers’ compiler to exploit the
information recorded in the PICs after a prior run and sped up
Richards by an additional 11%.

In 1990, Chambers worked to improve the compilation speed
without sacrificing run-time performance [CU91]. We had
learned that much published compiler literature neglected the

compilation speed issue that was so critical to the interactive
feel we wanted for Self. Striving for the best of both worlds,
Chambers devised a more efficient implementation of splitting
and enhanced the compiler to defer the compilation of uncom-
mon cases. The latter idea was suggested to us by then-student
John Maloney at an OOPSLA conference (Maloney would later
join the Self project). Deferred compilation avoided spending
time on the cases that were expected to be rare, such as integer
overflow and out-of-bounds array accesses. The compiler still
generated a test for the condition, but instead of compiling the
rarely executed code, would compile a trap to make the system
go back and transparently recompile a version with the code
included for the uncommon case. The new version would be
carefully crafted to use the same stack frame as the old, and exe-
cution would resume in the new version. The whole process was
(naturally, given our proclivities) transparent to the user.

In addition to hastening compilation, this optimization sped up
execution because the generated methods were smaller and
could use registers more effectively. However, in subsequent
years, it turned out to be a source of complexity and bugs. As of
this writing (2006), Ungar, who has only his spare time available
to maintain Self, has disabled deferred compilation. Back in
1990, though, we were excited: the system compiled the Rich-
ards benchmark 7 times faster than previously, the compiled
code was about three-fourths the size, and it ran 1.5 times faster.
This brought Richards performance to one third that of opti-
mized C++. We released this system as Self 1.1 in January 1991.

With all the improvements, compilation speed on our Sun 4-260
was still too slow; compiling Richards took 5.5 seconds. In addi-
tion, this third compiler suffered from brittle performance;
because it used heuristics to throttle its inlining, it was sensitive
to the program’s exact form, and small changes to a program
could result in large changes to its performance, as method sizes
crossed inlining thresholds. However, after three compilers, it
was time for Chambers to stop programming and start his doc-
toral dissertation. He did so and graduated in 1992.

It was then Hölzle’s turn to take on the challenge of combining
interactivity with performance. Building on Chambers’ compil-
ers and his own work with polymorphic inline caches, he started
to experiment with “progressive compilation” and would even-
tually achieve the best of both worlds (section 5.1).

4.2. Language Elaborations

In 1988 and 1989, the students and Ungar writing Self code at
Stanford ran into situations that seemed to need better support
for multiple inheritance and encapsulation than were covered by
the language outlines as sketched out at Xerox PARC. Self’s
simple object model was a good base for exploring these topics
since there were few interactions with other language features.
Smith was following other research interests at this point, and so
Chambers, Ungar, Chang, and Hölzle set about enhancing the
language with some clever ideas: prioritized multiple inherit-
ance, the sender-path tiebreaker rule, and parents-as-shared-
parts privacy [CUCH91]. 

Prioritized Multiple Inheritance. Back in the late 1980s, multi-
ple inheritance was a popular research area, especially rules for
dealing with collisions arising from inheriting two attributes
with the same name [Card88]. Class-based languages suffered
from the need to deal with structural collisions arising from
inheriting different instance variables with the same name, as
well as behavioral collisions arising from inheriting different
methods with the same name, and we thought that this area
would be easier in classless Self. There were two popular search
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strategies for multiple inheritance: unordered for safety, and
ordered for expressiveness. In the unordered case, all parents
were equal and any clashes were errors. In the ordered case, par-
ents were searched in order, and the first match won. Seeking
the best of both worlds, the Stanford students and Ungar devised
a priority scheme: each parent was assigned an integer priority
by the programmer, and the lookup algorithm searched parents
in numeric order. Equal-numbered parents were searched simul-
taneously, and multiple matches in equal-numbered parents gen-
erated an “ambiguous message” run-time error.

Sender-path Tiebreaker. Having devised and implemented a
powerful multiple inheritance scheme, we set about using multi-
ple inheritance wherever we could. As a result, we struggled
with many “ambiguous message” errors in our code. Since most
of these errors seemed unjustified, we came up with a new rule
that we thought would automatically resolve many of the con-
flicts. This rule stemmed from our belief that parent objects in
Self were best considered to be shared parts of their children.
When combined with the typical case of a method residing in an
ancestor of its receiver, we believed that a matching slot found
on the same inheritance path as the object holding the calling
method ought to have precedence. This was called the “sender-
path tiebreaker rule” (see Figure 9).

Shared-part Privacy. Smalltalk provides encapsulation for vari-
ables but not methods; in Smalltalk, instance variables are pri-
vate to the enclosing object, but all methods are public. Since we
believed that a Self variable should be thought of as just a partic-

ular implementation of two methods, the original design for Self
omitted encapsulation for all variables (as well as methods).
Influenced by Smalltalk and, to a lesser extent, by C++, the Self
group (then at Stanford) sought to fix this by adding privacy to
the language. At this time we had yet to build a graphical user
interface, and so we started with a discussion of syntax in
Ungar’s office that lasted for hours. Eventually, Chambers face-
tiously proposed an underscore prefix (“_”) for private slots and
a circumflex prefix (“^”) for public slots. When Ungar agreed,
Chambers tried to unpropose them but failed, and so those pre-
fixes became Self’s privacy syntax. After agreeing on syntax,
we then had to devise a semantics for privacy. Consider a slot a
containing a method that sends the message b. If b is private,
how should we decide whether to allow the attempted access to
b found in slot a’s code? Reasoning that in Self, parents are
shared parts of their children, we decided that slot b should be
accessible to a given message from code in a if both the object
holding the a slot and the object holding the b slot were either
the same as or ancestors of the receiver of the message. This
concept was called “shared-part privacy” (see Figure 10).

Chambers deftly made these changes to the virtual machine. He
did it so easily that back then, Ungar felt that there was no lan-
guage feature too intricate for Chambers to put into the system
in a day or so. Of course, having invented a powerful new pri-
vacy scheme, we set about writing programs that put it to work
whenever possible.

sender
path

object with
matching slot
on sender path

receiver of b

object with
matching slot
not on path

a

bb

Method in slot a sends message b, but
there are two inherited b slots. Which
one should be used?

Figure 9. Sender path tiebreaker rule. For a while, multiple inheritance conflicts were resolved according to
the inheritance path of the sending method. In this situation there is a “tie” with two inherited ‘b’ slots. The
‘b’ slot on the left is selected because it is on the path to the slot whose code sent the ‘b’ message.

receiver of b

a

bb

This rule would select
the slot on the path to
the a slot.

sending
method holder

receiver

object with
private slot

sending
method holder

receiver

object with
private slot

Figure 10. Privacy based on parents-as-shared-parts. Inherited method a sends message b to self, labeled as the receiv-
er. In each case b is a private slot. Since both the sending method holder and the private slot holder are parents of the
receiver on the left, that access would be allowed. On the right, the access would be denied.

aa aab b
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In a July 1989 report, “SELF: Turning Hardware Power into
Programming Power,” the multiple inheritance with send-path
tiebreaking idea appeared. Ungar was enthusiastic about this
idea at the time: “SELF’s multiple inheritance innovations have
improved the level of factoring and reuse of code in our SELF
programs.” The first version of the privacy (a.k.a. encapsula-
tion) idea also appeared as a proposal. By the end of March
1990, we had added our new privacy semantics, had changed
“super” to “resend” to accommodate “directed resends,” and had
changed the associativity rules for binary messages to require
parentheses.

Something unexpected occurred after we started using our mul-
tiple inheritance and privacy schemes. Over the following year,
we spent many months chasing down compiler bugs, only to
discover that Chambers’ compiler was correct and it was our
understanding of the effects of the rules that was flawed. For
example, a “resend” could invoke a method far away from the
call site, running up a completely different branch of the inherit-
ance graph from what the programmer had anticipated. In addi-
tion, the interactions with dynamic inheritance turned out to be
mind-boggling. Eventually, Ungar realized that he had goofed.
Prioritized multiple inheritance, the sender-path tiebreaker rule,
and shared-part privacy were removed from Self by June 1992.
We found that we could once again understand our programs.
Self’s syntax still permitted programmer to specify whether a
slot was public, private, or unspecified, but there was no effect
on the program’s execution. This structured comment on a slot’s
visibility proved to be useful documentation.

In the process of revisiting Self’s semantics for multiple inherit-
ance, Chambers suggested that we adopt an “unordered up to
join” conflict resolution rule (see Figure 11). Although it might
have worked well, we never tried this idea; once bitten twice
shy. 

To this day, many object-oriented language designers shy away
from multiple inheritance as a tar pit, and others are still trying
to slay this dragon by finding the “right” concepts. Our final
design for Self implemented simple, unordered multiple inherit-
ance and has proven quite workable. Although many language
designers (including Ungar) have used examples to motivate the
addition of facilities, at least for prioritized multiple inheritance,
the sender path tiebreaker rule, and shared-part privacy, it would
have been better to let the example be more difficult to express
and keep the language simpler. Ironically, in his dissertation,

Ungar had written about this danger for CPU designers, chris-
tening it “The Architect’s Trap” (section 2.4). On the one hand,
some lessons seem to require repetition. On the other hand,
maybe we just gave up too soon.

4.3. UI1: Manifesting Objects on the Screen

In the spring of 1988, Bay-Wei Chang, then a graduate student
at Stanford, took Ungar’s programming languages class. He
became interested in Self and was impressed when, during the
final exam for the class, a video tape on the Alternate Reality
Kit was shown. This was, in Chang’s own words, “a cruel trick
to play, as after the video I sat with my mouth agape for precious
minutes.” In the fall of 1988 Chang undertook an independent
project working on version 1 of the Self UI, and officially joined
the Self project in early 1989. Inspired by the Alternate Reality
Kit, Ungar encouraged Chang to craft a user experience that
would be more like the consistent illusion of a Disneyland ride
than the formal system of a programming language. We wanted
to construct the illusion that objects were real (see Figure 12). In
May 1989, with the incorporation of Interviews/X and Pixrect
primitives into Self, Chang was able to write a mock-up of a
direct-manipulation Self user interface. By the end of 1989, this
environment was further improved with fast arrowheads, better
object labeling, and optimizations that included our own low-
level routines to copy data and draw lines. As a result perfor-
mance improved from 10 to 30 frames/sec. on a monochrome
SPARCstation-1.

The original version of UI1 (written by Chang at Stanford in
1988-1989) had run on machines with monochrome frame buff-
ers. By 1990, we had eight-bit frame buffers, although (as Ungar
recalls) we had grayscale monitors and there was no hardware
acceleration. Ungar realized that, by reducing our palette of col-
ors (actually, grays), we could use colormap tricks to get
smooth, double-buffered animation on the screen. We achieved
30 frames/sec. on a color SPARCstation with a graphics acceler-
ator. By the end of one year (May 1990) this version of UI1 was
working (see Figure 13).
 

As of 2006, colormaps have disappeared from most computers,
so the reader may not know this term. A “colormap” is simply
an array of colors. An image composed of pixels that use a col-
ormap doesn’t store the color information directly in the pixel,
but rather stores the colormap array index for that color in the
pixel. The key advantage of the colormap for animation effects
arises from the simple reality that a window on the screen typi-
cally has about a million pixels, whereas a colormap has only
256 entries. Thus, a computer can run through this very short
color map, changing the colors stored in various indices, to
obtain a nearly instantaneous visual effect on millions of pixels.
Consider a colormap with the color white stored at both index 0
and index 128. A screen image with pixel data that is all 0
except for a region with 128 appears to the user as entirely
white. But when a program stores the color black at colormap
index 128, a black region suddenly appears on the white back-
ground. 

Suppose that a 256-color colormap is split into four identical
parts, so that every entry from 0 through 63 is replicated three
more times through the colormap indices. This limits the range
of available colors to 64, but it frees up two “bit planes” for
drawing: setting bit 7 in a pixel’s value (effectively adding 128
to the data for that pixel) has no visual effect. Nor does setting
bit 6. Suppose the colormap is suddenly modified so that all
indices with bit 7 set to 1 are black. Black regions will instanta-
neously appear on the screen wherever pixels have values with

receiver

object with
matching slot

object with
matching slot

matching slot
object without

Figure 11. Unordered up to join: Under Chambers’ proposed
scheme, there would be no conflict in this case, since the first
match precedes a join looking up the parent links. Under our
old sender-path tiebreaker, there still could be a conflict if the
sending method were held by any but the leftmost object.
There is also a conflict under the current rules for Self.

x

x

self x
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that bit set. Suppose then that the color map is restored except
that now bit 6 is set to black. The first set of black regions disap-
pears but a new set of black regions appear. Clearing bit 7 in the
image data, drawing with bit 7, then changing the colormap
appropriately makes yet another change appear on the screen.
Alternately clearing and drawing with first bit 7, then bit 6, ani-
mated images can be made to appear over the background. The
two bit planes are being used to achieve an animation drawn
with one color. Because one plane remains visible while another,
invisible plane is used for drawing, this scheme is an instance of
what is termed a “double buffering” animation technique.

In UI1, Chang and Ungar carried this technique further by divid-
ing up the frame buffer into two sets of one-bit planes and two
sets of three-bit planes. The one-bit planes double-buffered the
arrows, and the three-bit planes double-buffered the boxes. (The
boxes needed three bits so they could have highlight and shadow
colors.) The arrows were separated from the boxes to make it
easier to depict the arrows as being in front of the boxes. At any
given time, the colormap would be set so that one arrow and one
box plane was visible. UI1 would then compute the next frame
of arrows and boxes into the invisible planes, then switch the
colormaps. Later at Sun, when we added dissolves8, we would
put each key frame into a separate plane and update the color-

x

y nil

x

y nil

Figure 12. Visions of a Self user interface taken from a May 1988 grant proposal. Above, two possibilities for objects; below,
two possibilities for a syntax tree. From the proposal: “We are interested in pursuing a style of interaction that can exploit what
the user already knows about physical objects in the real world. For this reason, we call this paradigm artificial reality. For
example, instead of windows that overlay without any depth or substance, we will represent objects as material objects, with
depth, lighting, mass, and perhaps even gravity.” 
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map for each frame. This trickery enabled UI1 to display 20 to
30 frames/sec. smooth-looking animation on the hardware of
1991.

At this time, we were writing Self code with a text editor, and
feeding the files to a read-eval-print loop. We even built a text-
based source-level debugger with commands resembling those
of the Gnu debugger, gdb. But we knew that eventually we
wanted to live in a world of live objects—after all, we were
inspired by Smalltalk! However, it was not until UI2
(section 5.3) and the Self transporter (section 5.5) that we could
make the change, and even then at least one of the team mem-
bers, Ole Agesen, still sticks to text editing. At this writing, we
asked Agesen to recall why he kept using the older approach: he
responded that he was in a rush to complete his thesis, partly in
fear that the project would be canceled, so he didn’t want to take
the time to learn how to transition, nor take the risk of relying on
as yet unproven technologies for his thesis work.

For UI1, we pushed hard on being object-centered; there would
be nothing on the screen (except for pop-up menus) that was not
an object. No browsers, no inspectors, just objects. It was the
Self language that made this a reasonable approach. For exam-
ple, to understand a Smalltalk program, one must understand the
behavior as manifested by the inheritance hierarchy, as well as
the state of all the variables in the current scope. The Smalltalk
browser could show the inheritance story, but the variable values
were held in several objects scattered at conceptually remote
places in the system, and viewing them required other tools,
such as the “inspector,” unrelated to the Smalltalk inheritance
hierarchy. But Self’s use of message passing for variable access
meant that the inheritance hierarchy of actual objects was all the
programmer needed to see both behavior and state. And, as pre-
viously mentioned, to use the Smalltalk-80 browser, one had to
learn the role of categories, method protocols, and the instance/
class switch as well. But for a Self environment, Chang and
Ungar needed only to build a good representation of a Self
object, and that would serve most of the programmer’s needs.

Unlike Smalltalk, in which one could have multiple inspectors
on the same object, Self’s UI1 allowed only one representation
of the object on the screen. We were trying to preserve the illu-

8. A “dissolve” is a transition in which one frame smoothly changes
into the next. Each pixel slowly changes from its value in the first
frame to its value in the new frame.

Figure 13. The original Self programming environment, the first version of UI1, was designed to be object-centered. Each box
represented a Self object, and a pseudo-3D style attempted to convey a sense of physical reality. (Picture copied from [CU90a].)
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sion that the picture on the screen was the object. An object was
rendered using a pseudo-3D representation and had a context-
dependent pop-up menu. Clicking on a slot would sprout an
arrow to its contents. If the referenced object was not already on
the screen it would be summoned. If it was already there, the
arrow would just point to it. UI1’s object-centrism was success-
ful in helping us ignore the artifice behind the objects. About ten
years later, we finally decided to compromise this principle
because it was so handy to have a collection of slots from dis-
parate objects. For example, one might want to look at all imple-
menters of “display.” We called such things slices, and included
them in our later environment, UI2.

4.4. Reflecting with Mirrors

By unifying state and behavior and eliminating classes, the
design of Self encapsulated the structure of an object. No other
object could tell what slots some object possessed, or whether a
slot stored or computed a result. This behavior is well-suited for
running programs, but not for writing programs, which requires
working with how an object is implemented. To build a pro-
gramming environment, we needed some programmatic way to
“look inside” of an object so that its slots could be displayed.

Ungar’s first thought was to follow Smalltalk’s practice and add
special messages to an object to reveal this information. This
would also have fit with Smith’s idea of emulating physical real-
ity, in which every object is fully self-contained. This architec-
ture proved to be unworkable, since one could not even utter the
name of a method object without running it. Ungar reasoned that
Self needed a kind of ten-foot pole that would look at a method
without setting it off. He used the word “mirror” for the ten-foot
pole, both to connote smoke-and-mirrors magic and also to pun
on the optical meaning of “reflection.”

The mirror behaves like a dictionary whose keys are the names
of the object’s slots and whose contents are objects representing
the slots. To display an object, the environment first asks the vir-
tual machine for a mirror on the object. Following an object’s
slot through a mirror yields another mirror that reflects the
object contained in the slot. In this fashion, once a mirror has
been obtained, all of the information encapsulated in the mir-
ror’s reflectee can be obtained from the mirror. A method is
always examined via its mirror, and is thus prevented from fir-
ing. By May 1990, we had read-only reflection (a.k.a. introspec-
tion) via mirrors.

Once we started thinking about mirrors, other advantages of this
architecture became apparent. For example, since only one oper-
ation in the system creates a mirror, and since, to the virtual
machine, a mirror looks slightly different than an ordinary
object, introspection can be disabled by shutting off the mirror
creation operation and ensuring there are no existing mirrors.
Much later (ca. 2004), we exploited the mirror architecture to
implement remote reflection for the Klein project, by imple-
menting an object that behaved like a mirror but described a
remote object [USA05].

Also, mirrors were a natural place to support the kinds of
changes to objects that a programmer would effect with a pro-
gramming environment. To minimize the extra complexity in
the virtual machine, Ungar borrowed a page from functional
programming. With the sole exception of the side-effecting
define operation, all of the primitive-level reflective mutation
operations created altered copies instead of modifying existing
objects. For example, when the user changed a method on the
screen, the programming environment would have to alter the
contents of a constant slot, and this was a reflective operation.
However there was no reflective operation that altered a con-

stant slot in place; instead there was a functional operation that
produced a new object with an altered slot. After obtaining this
new object, the environment would invoke define, which
would redirect all references from the original object to (a copy
of) the new one. This design ensured that only the define oper-
ation9 needed to invalidate any compiled code, since none of the
others altered existing objects. The “copy of” was part of the
define operation’s semantics to optimize this operation when the
old and new objects were the same physical size in memory. (In
that case, the system could just overwrite the old object with the
contents of the new.)

At the time, mirrors seemed merely a good design but not signif-
icant enough to publish. This system was working by the end of
June 1991, and was used by UI1 to allow the user to change the
objects on the screen. The VM was even able to update code that
had been inlined, thanks to trapping returns and lazily recompi-
lation. This was a milestone: the graphical programming envi-
ronment was finally usable for real programming. Years later,
Gilad Bracha, who was working at Sun and knew of the Self
project work, thought it would be important to generalize and
explain this design, and he and Ungar published a paper about
the architectural benefits of mirrors [BU04]. 

After the project moved to Sun (in 1991) and Smith rejoined us,
he pointed out that the benefits of mirrors came at the cost of
uniformity. In thinking about models for systems, Smith always
turned to the physical world, which does not support a distinc-
tion between direct and reflective operations. There is no differ-
ence between a physical object used directly or reflectively: it is
the same physical object either way. Furthermore, Smith noted
that there are many different types of reflective operations, and
any attempt to distinguish between reflective and non-reflective
operations was therefore certain to get it wrong in some cases or
from some points of view. In fact, we sometimes do find it
unclear whether a method should take a mirror as argument or
the object itself.

Smalltalk, in contrast, placed many reflective operations in the
root of the inheritance hierarchy, to provide reflection for every
object. Something similar might have been done for Self, to
avoid the dichotomy that was bothering Smith. However, by this
point we were reveling in Self’s support for lightweight objects
that needed no place in the inheritance hierarchy, and it would
have been impossible to reflect upon such objects without mir-
rors. Ungar still feels that reflective operations are of a different
breed, while Smith still wishes they could be unified with ordi-
nary operations.

Another approach to unifying invocation and access would have
been to add a bit to a slot to record whether the slot was a
method or data slot. Then, a special operation could have
extracted a method from a method slot and put it into a data slot.
This approach would have had its own problems: what would it
mean to put 17 into a method slot? In our opinion, we never
fully resolved whether a method should fire because it is a
method or because it is in a special kind of slot. We also con-
tinue to wrestle with writing code in which it is unclear whether
we should pass around objects or mirrors on them. There was
also the efficiency loss in creating an extra object to do reflec-
tion. The performance penalty went unnoticed when we were
using mirrors for a programming environment, but became
problematic in the Klein system [USA05], which mirrors to con-
vert a hundred thousand objects to a different representation. In
this application the efficiency loss was so critical that a switch

9. This operation was inspired by, but not quite the same as, Smalltalk’s
“become:” operation.
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was added to the virtual machine to support a model in which a
method could be stored and retrieved from a variable slot.
Although Ungar feels that the preponderance of evidence
weighs on the mirror and methods-firing-by-themselves side of
the debate, Smith acknowledges clear advantages for mirrors but
still harbors doubts, and this issue is not completely resolved.

Recall that, when we first saw Self objects on the screen at Stan-
ford in 1988-1989, we realized that some objects had too many
slots to view all at once: we needed some way to subdivide
them, much like Smalltalk’s method categories. To support this
non-semantic grouping, annotations were added to the lan-
guage. Via reflection, the system could annotate any object or
any slot with a reference to an object. The virtual machine sup-
ported the annotation facility but ignored the annotation con-
tents. It optimized the space required when all objects cloned
from the same prototype contained the same annotations by
actually storing the annotations in the maps. The programming
environment (written in Self) used the annotations to organize
an object’s slots in (potentially nested) categories.

5. Self Moves to Sun and Becomes a Complete 
Environment
As Ungar and his students worked on mirrors in California,
Smith was in Cambridge, England at Rank-Xerox EuroPARC
where he had been working on a multi-user version of the Alter-
nate Reality Kit. But his interest in Self and prototype-based
languages persisted, and while in Cambridge he was able to
work with Alan Borning and Tim O’Shea, who had connections
with the PARC Smalltalk group. With these two plus Thomas
Green and Moira Minoughan, also working at EuroPARC, he
explored a few other language ideas [GBO99].

On his return to Xerox PARC at the end of 1989, Smith was
amazed to find Self running so well, though a little concerned
that it had acquired complexities such as multiple inheritance,
mirrors, and annotations (which he felt were too much like
Smalltalk’s method protocols, having no runtime semantics). He
decided to join Ungar and carry Self forward into a larger imple-
mentation effort. Smith had been thinking about subjectivity in
programming languages, but further language work was becom-
ing a harder sell to PARC management. The authors decided to
take the Self ideas to other research labs. (We later returned to
subjectivity in [SU96].) By of the end of June 1990, the Self
team had given talks on the developing Self system at U.C. Ber-
keley, PLDI’90, and IBM Hawthorne Laboratories. In the fall of
1990, we considered moving to the Apple Advanced Technol-
ogy Group, but—encouraged by Emil Sarpa, Bill Joy, and
Wayne Rosing—decided to join Sun Microsystems’ research
labs. Self already ran on the SPARC processor and thus there
was a chance to get a leg up in adoption. The labs were just
being formed, and the Self project would be one of Sun Labs’
first groups. In January 1991, the Self project joined Sun Micro-
systems Laboratories. Ungar’s students (Craig Chambers, Bay-
Wei Chang, Urs Hölzle, and Ole Agesen, the last graduate stu-

dent to join the project) became consultants and over the years
more researchers were hired to work on the project: John Mal-
oney, Lars Bak, and Mario Wolczko.

5.1. More Implementation Work

As 1991 ended, the virtual machine encompassed 75,000 lines
of code; in 1992, our first Apple laptop computers arrived and
we started work on our first Macintosh port. By the end of 1992,
Lars Bak had obtained a 5x speedup on the Sun computers for
Self’s browsing primitives (implementers, etc.) by rewriting the
low-level heap-scanning code. He had also trimmed Self’s
memory footprint by 18%. The Macintosh port went slowly at
first; it was not until January 1996 that Self ran (with an inter-
preter) on a PowerPC Macintosh. 

Recall from section 4.1 that the third Self compiler ran the
benchmarks pretty well but still compiled too slowly, and suf-
fered from brittle performance. Hölzle took up the challenge. He
had built polymorphic inline caches (PICs) [HCU91], and then
proposed a new direction: laziness. He suggested that we build
two compilers: a fast-and-dumb compiler that would also
include instrumentation (such as counters in PICs), and a slow-
and-smart compiler that would reoptimize time-consuming
methods based on the instrumentation results (see Figure 14).
The first time a method was run, the system used a fast-but-
unsophisticated compiler that inserted an invocation counter in
the method’s prologue. As the method ran, its count increased
and its call sites became populated with inline caches. Periodi-
cally, another thread zeroed out the counters. If a method was
called frequently, its counter would overflow and the virtual
machine would recompile and optimize it. However, because the
method with the overflowing counter might have been called
from a loop, the system would walk up the stack to find the root
method for recompilation. After selecting the root, that method
would be compiled with a slow-but-clever optimizing compiler
that would exploit the information in the inline caches to inline
callees. Finally, the set of stack frames for the recompiled meth-
ods would be replaced by a stack frame for the optimized meth-
ods (called “on-stack replacement”), and execution would
resume in the middle of the optimized method.10

By the time Hölzle was through, his system, Self-93, ran well
indeed, with almost no pauses for compilation [Höl94, HU94,
HU94a, HU95, HU96]: in a 50-minute interactive graphical ses-
sion, using a new metric that lumped together successive pauses,
we found that, on a 28.5 MIPs, 40 MHz SPARCstation-2, two-
thirds of the lumped pauses were less than 100ms, and 97%
were less than a second [HU94a]. This system reduced the time
to start the graphical user interface from 92 to 26 seconds. Not
only were pauses reduced, but benchmarks sped up. This system
ran a suite of six large and three medium-sized programs 1.5
times faster than the third-generation Self system.

10.In later years, when Ungar had to maintain and port the virtual
machine single-handed, he would disable on-stack replacement to
simplify the system and eliminate hard-to-reproduce bugs.
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Figure 14. Compilation in the Self-93 system.
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As Hölzle was performing this feat of legerdemain, Ungar was
worried about preserving the system’s transparency. He wanted
the system to feel like a fast interpreter, and that meant that if the
user changed a method, any subsequent call to the changed
method had to reflect the change. However, if the method had
been inlined and if execution were suspended in the caller, when
execution resumed the calling code would proceed to run the
obsolete, inlined version of the callee. To remedy this problem,
Ungar suggested on-stack replacement in reverse: replacing the
one, optimized stack frame for many methods with multiple
stack frames for unoptimized methods (see Figure 15). Hölzle
brought this idea to life [HCU92], and Self’s sophisticated opti-
mizations became invisible to the programmer. We had finally
realized our vision for the virtual machine: high performance for
Self, a pure and dynamic language, combined with high respon-
siveness and full source-level debugging. However, Self’s vir-
tual machine required many more lines of C++ code
(approximately 100,000), more complexity, and more memory
than contemporary (but slower) Smalltalk virtual machines.

In August 1993, Mario Wolczko left the University of Manches-
ter where he had been working on a Smalltalk multiprocessor,
and joined our project and performed some space engineering,
cleaned up the representation of debugging information, refac-
tored the implementation of maps, and fixed a large number of
bugs. He also implemented a feedback-mediated control system
that managed old-space collection and heap expansion. The pol-
icy was implemented in Self, with only the bare bones mecha-
nism in the virtual machine. This work was ahead of its time,
and we are unaware of its match in current systems.

Ole Agesen was the last PhD student in the Self project, gradu-
ating in 1996. He worked on many portions of the Self system,
including an interface to the dynamic linker for calling library
routines, and for his dissertation built a system that could infer
the types of variables in Self programs, despite Self’s lack of
type declarations. Agesen’s work showed how to prune unused
methods and data slots from a Self application [APS93, AU94,
Age95, AH95, Age96].

5.2. Cartoon Animation for UI1

With the Alternate Reality Kit, Smith wanted to deliver a feeling
of being in a separate world by having lots of independent things
happening in a physically realistic and often subtle way. He tried
for realistic graphics, including shadows and avoiding outlines,
but never even thought about cartoon animation techniques, in
which fidelity to physics is less important than emphasizing cer-
tain motions through physically implausible accelerations and
deformations. In building the UI1, however, the Stanford group
believed that a physical feel would be a help to the programmer,

and after seeing ARK, were convinced that animation should
feature heavily in any Self user interface.

When he moved Sun in 1991, Ungar had been watching a lot of
Road-Runner and Popeye cartoons with his five-year-old son,
Leo. It occurred to Ungar that the animation techniques he saw
in the cartoons could be applied to dynamic user interfaces.
Since he also had a VCR with an exceptionally agile jog-shuttle
feature, he was able to review many scenes one frame at a time.
Smith and neuroscientist Chuck Clanton (who was then consult-
ing at Sun) were also fascinated by animation. 

Coincidentally, in 1990 Steven Spielberg and Warner Brothers
put Tiny Toon Adventures on the air, a show that strove to recre-
ate the style and quality of the classic Warner Brothers cartoons
in the late 1930s through early 1950s. In our first year at Sun,
Smith and Ungar would stop work every day at 4:30 to watch
these cartoons and then dissect them. The cartoons inspired us to
read Thomas and Johnson’s book Disney Animation: The Illu-
sion of Life [TJ84] and Road-Runner, director Chuck Jones’
autobiography [Jone89]. We would stare in fascination at each
frame of the Road-Runner zooming across the screen. We were
struck by the clarity with which Jones could show a scrawny
bird and an emaciated coyote crossing the entire width of a
movie screen in only a handful of frames by using motion blur
and slowly dissipating clouds of dust. This combination of
speed and legibility stood in stark contrast to the leisurely pace
of many animated computer interfaces of the time in which each
small change of position was painstakingly redrawn. Even some
of the best interface research at the time used uniform, unblurred
motion [RMC91]. We starting thinking about the role motion
blur could play in graphical computer interfaces. Smith asked
the key question: “If you could update the screen a thousand or a
million times a second, would you still need motion blur?”
These explorations led us to an understanding of how to bridge
the gap between cartoons and interfaces, and how to make
changes more legible without slowing things down.

There is an interesting difference between Smith’s use of anima-
tion in the Alternate Reality Kit and cartoon animation. In any
animation, the incoming light creates patterns on the viewer’s
retina that trickle up the nervous system and reach the higher
levels of cognition after considerable processing. In ARK,
Smith’s goal was to create a sense of realism by replicating the
retinal patterns caused by real-world objects. In contrast, car-
toon animation is more concerned with getting the viewer’s
higher cognitive levels to perceive objects and motion. In
depicting a bouncing billiard ball, a cartoonist might use a
“squash and stretch” around the moment of impact, thereby
making the bounce clearly legible to viewers. A literal moment
by moment capture of the human retina watching an actual bil-
liard ball bounce would reveal a blur that only somewhat resem-
bles cartoon-style stretch. Although both kinds of animation

Figure 15. Transforming an optimized stack frame into unoptimized form.
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have the same goal, cartooning trades the literal replication of
sensory inputs for better legibility at higher levels of cognition.

Recall that colormap trickery enabled UI1 to display 20 to 30
frame-per-second smooth-looking animation on 1991 hardware
(section 4.3). Once the basic techniques were implemented, we
set about using cartoon animation everywhere we could to
improve UI1’s feel and legibility. (A popular phrase at the time
was: “moving the cognitive burden from the user to the com-
puter.”) In those days, windows, menus, and dialog boxes would
just appear in a single frame and vanish just as abruptly. (As of
2006, they still do in many window systems.) But, we believed
that every abrupt change startled the user, and forced him or her
to involuntarily shift his or her gaze. So, we strove to avoid
bombarding the user with abruptly changing pixels. Just as the
Road Runner would enter the frame from some edge, every new
Self object appearing on the screen would drop in from the top,
slowing down as it did, and wiggling for an instant as it stopped.
Every pop-up menu would smoothly zoom out, then the text
would fade in. We became excited about the user experience that
was emerging. Ungar came in every day over one Christmas
break (probably 1991) to get good-looking motion blur into the
system. 

Figure 16, taken from [CU93], illustrates motion blur. Chang
realized that objects should move in arcs, not straight lines, and
also suggested that an object wiggle when hit by a sprouted
arrow (see Figures 17 through 19). Ungar played with the algo-
rithm and its parameters until he got the wiggle to look just
right. It would have been much more difficult to break this new
ground with any other system: he needed both Self’s instant
turnaround time to try ideas freely, and also its dynamic optimi-
zations so that the animation code would run fast enough.

Table 1 summarizes UI1’s cartoon animation techniques. By
June 1992, we had implemented all of our cartoon animation,
including motion blur, menu animation, and contrast-enhancing
highlighting of menu selection. Chang had also started video
taping users to evaluate UI1, taping eight subjects before com-
pleting his dissertation. His work on cartoon animation and its
effect on users’ productivity became a part of his dissertation
and was presented in several conferences [CU93, CUS95,
Chan95]. Although Ungar also wanted to measure the effect of
animation on the number of smiles on users’ faces, we never
did. Now, in 2006, many of these techniques can be seen in com-
mercial systems and web sites.

5.3. UI2 and the Morphic Framework

When Smith rejoined the group on the move to Sun, he was
thinking of ways to push the UI1 framework in additional direc-
tions. He felt the analogy to physical objects was not taken far
enough in most user interfaces. For programming purposes, he
felt that the analogy meant that every object should be able to be
taken apart, even as it is running. This physicality was after all
the goal of the language-level objects, and with a tight corre-
spondence between on-screen object and language-level object,
the deconstruction of live on-screen objects seemed to complete
the paradigm. 

In working with physical objects, one is free to take them apart
and rearrange parts even while the universe continues to run:
there is no need to jump to a special set of tools in a different
universe. Physical objects do not support a use/mention distinc-
tion: the hammer in use is the same as the hammer examined for
improvement, repair, or other modifications. So Smith wanted
to be able to pick up a scroll bar from a running word processor
and reattach it to some other application.

Figure 16. When objects are moved suddenly from one position to another, it can seem as if there are two instances of it on
the screen at the same time. The eye sees something like the middle frame of the “no-motion-blur” figure, even though such a
frame doesn’t actually ever appear on the screen. Motion blur reduces this effect and gives a visual indication of the object’s
travel, so that it is easy to see which object moved where. 
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The UI1 interface contained only representations of objects:
there was no special support for building conventional GUIs
with elements such as scroll bars, text fields, buttons and sliders.
Mainly for this reason, Smith started an effort within the group
to build UI2, a new framework that would retain the basic object
representation idea and animation techniques of UI1, but add the
ability to create general GUIs [MS95, SMU95]. In keeping with
the language concepts of malleability and concreteness, within
UI2 it would be possible to take objects apart directly: thus a
direct copy-deconstruct-reconstruct method would be an impor-
tant part of building new GUIs based on recognizable GUI wid-
gets. 

John Maloney, hired at this time, began creating much of the
UI2 framework, which came to be called the Morphic frame-
work. The Morphic framework enhanced the sense of direct

manipulation by employing two principles we called structural
reification and live editing. 

Structural Reification. We decided to call the fundamental kind
of display object in UI2 a “morph,” a Greek root meaning essen-
tially “physical form.” Self provides a hierarchy of morphs. The
root of the hierarchy is embodied in the prototypical morph, a
kind of golden-colored rectangle. Other object systems might
choose to make the root of the graphical hierarchy an abstract
class with no instances, but prototype systems usually provide
generic examples of abstractions. This is an important part of
the structural reification principle: there are no invisible display
objects. The root morph and its descendants are guaranteed to be
fully functional graphical entities. Any morph inherits methods
for displaying and responding to input events that enable it to be
directly manipulated.

Figure 17. On a click, a menu button
transforms itself from a button into the
full menu. After a selection has been
made, it shrinks back down to a button.
(In this and other figures, only a few
frames of the actual animation are
shown. These figures taken from
[CU93].)

Figure 18. Arrows grow from their tail
to hit their target. The target reacts to the
contact with a small wiggling jolt (here
suggested by a few lines). Arrows also
shrink back down into their tail.

Figure 19. Objects grow from a point to
the full-size object; any connecting
arrow grows smoothly along with the
object. Currently, text does not grow
along with the object, instead fading in
smoothly on the fully grown object.
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In keeping with the principle of structural reification, any morph
can have “submorphs” attached to it. A submorph acts as if it
were glued to the surface of its hosting morph. Composite
graphical structure typical of direct-manipulation interfaces
arises through the morph-submorph hierarchy. Many systems
implement composition using special “group” objects, which are
normally invisible. But because we wanted things to feel very
solid and direct, we chose to follow a simple metaphor of stick-
ing morphs together as if with glue.

A final part of structural reification arose from our approach to
laying out submorphs. Graphical user interfaces often require
subparts to be lined up in a column or row: Self’s graphical ele-
ments are organized in space by “layout” morphs that force their
submorphs to line up as rows or columns. John Maloney was
able to create efficient “row and column morphs” as children of
the generic morph that were first-class, tangible elements in the
interface. A row morph holding four buttons aligned in a row is
at the bottom of the ideal gas simulation frame in Figure 22.
Row or column morphs embody their layout policy as visible
parts of the submorph hierarchy, so the user need only access the
submorphs in a structure to inspect or change the layout in some
way. The user who did not care about the layout mechanism paid
a price for this uniformity, and was confronted with it anyway
while diving into the visual on-screen structures.

Live Editing.  Live editing simply means that at any time the
user can change any object by manipulating it directly. Any
interactive system that allows arbitrary runtime changes to its
objects has some support for live editing, but we wanted to push
that to apply to the user interface objects directly. The key to live
editing is UI2’s “meta menu,” a menu that pops up when the
user holds down the third mouse button while pointing to a
morph. The meta menu contains items such as “resize,” dis-
miss,” and “change color” that let the user edit the object
directly. Other menu elements enable the user to “embed” the
morph into the submorph structure of a morph behind it, and
give access to the submorph hierarchy at any point on the
screen.

Lars Bak did a lot of work to create the central tool for program-
ming within UI2, the object “outliner,” analogous to the Small-
talk object inspector. (We were in part inspired by “MORE,” an
outlining program we had recently started using.) The outliner
shows all of the slots in an object and provides a full set of edit-
ing facilities. With an outliner you can add or remove slots,
rename them, or edit their contents. Code for a method in a slot
can be edited. Access to the outliner through the meta menu
makes it possible to investigate the language-level object behind
any graphical object on the screen. The outliner supports the
live-editing principle by letting the user manipulate and edit

Table 1: Summary of UI1 Cartoon Animation Techniques (from [CU93])

Technique Principle Examples from Cartoons Examples from the Self Interface

Solidity solid
drawing

• Parts of Snow White’s dwarves 
may squash and stretch, but they 
always maintain their connected-
ness and weight

• Objects move solidly
• Objects enter screen by traveling from off screen 

or growing from a point
• Menus transform smoothly from a button to an 

open menu
• Arrows grow and shrink smoothly
• Transfer of momentum as objects respond to 

being hit by an arrow

motion
blur

• Road Runner is a blue and red 
streak

• Stippled region connects old and new locations 
of a moving object

dissolves • n/a • Objects dissolve through one another when 
changing layering

Exaggeration anticipation • Coyote rears back onto back leg 
before chasing after Road Runner

• Objects preface forward movement with small, 
quick contrary movement

follow
through

• Road Runner vibrates for an 
instant after a quick stop

• Objects come to a stop and vibrate into place
• Objects wiggle when hit by an arrow

Reinforcement slow in and
slow out

• Coyote springs up from ground, 
with fastest movement at center of 
the arc

• Objects move with slow in and slow out
• Objects and arrows grow and shrink with slow in 

and slow out
• Objects dissolve through other object with slow 

in and slow out
• Text fades in onto an object with slow in and 

slow out

arcs • Objects travel along gentle curves when they are 
moving non-interactively

follow
through

• Objects do not come to a sudden standstill, but 
vibrate at end of motion
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slots, even while an object is “in use.” Figure 20 shows an out-
liner being fetched onto the screen for an ideal gas simulation.

Recall that popping up the meta menu is the prototypical
morph’s response to clicking the third mouse button. All morphs
inherited this behavior, even elements of the interface like out-
liners and pop-up menus themselves. But our Self pop-up menus
were impossible to click on: one found them under the mouse
only when a mouse button was already down. Releasing the but-
ton in preparation for the third button click caused a frustrating
disappearance of the pop-up. Consequently, we provided a “pin
down” button that, when selected, caused the menu to become a
normal, more permanent display object. The mechanism was not
new, but providing it in Self enabled the menu to be interactively
pulled apart or otherwise modified by the user or programmer. It
is interesting to compare this instance of the use-mention prob-
lem and solution with the analogous use-mention issue that
faced us at the language level: that of accessing a method object
in a slot without running the method. There, the solution was to
introduce a special mentioner object, the mirror (see section
4.4).

Live editing is partly a result of having an interactive system,
but it is enhanced by user interface features that reinforce the
feel that the programmer is working directly with concrete
objects. The example running through the rest of this section
will clarify how this principle and the structural reification prin-
ciple help give the programmer a feeling of working in a uni-
form world of accessible, tangible objects.

Suppose the programmer (or motivated user) wishes to improve
an ideal gas simulation by extending the functionality and add-
ing user interface controls. The simulation starts simply as a box
containing “atoms” that bounce around inside. Using the third
mouse button, the user invokes the meta menu to select “out-
liner” to get the Self-level representation of the object
(Figure 20). The outliner makes possible arbitrary language-
level changes to the ideal gas simulation.
 

Now the user can start to create some controls right away. The
outliner has slots labeled “start” and “stop” that can be con-
verted into user interface buttons by selecting from the middle-
mouse-button pop-up menu on the slot. Pressing these buttons
starts and stops the bouncing atoms in the simulation. In just a
few gestures the user has gone through the outliner to create
interface elements while the simulation continues to run. 

The uniformity of having “morphs all the way down” further
reinforces the feel of working with concrete objects. For exam-
ple, the user might wish to replace a textual label with an icon.
The user begins by pointing to the label and invoking the meta
menu. The menu item labeled “submorphs” lets the user select
which morph in the collection under the mouse to denote (see
Figure 21). The user the can remove the label directly from the
button’s surface. In a similar way, the user can select one of the
atoms in the gas tank and duplicate it; the new atom can serve as
the icon replacing the textual label. Structural reification is at
play here, making display objects accessible for direct and
immediate modification.

As mentioned above, all the elements of the interface such as
pop-up menus and dialog boxes are available for reuse. Say the
user wants the gas tank in the simulation to be “resizable” by the
simulation user. The user can create a resize button for the gas
tank simply by “pinning down” the meta menu and removing
the resize button from it. This button could then be embedded
into the row of controls along with the other buttons (see
Figure 22).

During this whole process, the simulation can be left running:
there is no need to enter an “edit” mode or even to stop the
atoms from bouncing around. The live editing principle makes
the system feel responsive, and is reminiscent of the physical
world’s concrete presence. 

5.4. From UI2 to Kansas

Smith was fascinated by shared spaces (we might now call them
“shared virtual realities”) and had explored with a shared ver-
sion of his Alternate Reality Kit during his year at Rank-Xerox
EuroPARC (1988-1989) [GSO91, SOSL97, Setal93, Setal90,
Smi91]. After he and Ungar joined Sun and the UI2 framework
was underway, Smith decided to make UI2 into a shared world
in which the team could work together simultaneously. The
transformation took only a day or two of diligent work, thanks
in part to the fact that the system was built on top of the X win-
dowing system, and of course in part to the fact that Self was
intended to be a flexible system allowing deep, system-wide
changes. The idea was to transform a single Self world with a
single display into a single Self world with potentially many dis-
plays that could be anywhere on the network. Thus, whenever a
morph displayed itself, rather than merely use the local X dis-
play window, the code would iterate over a list of several display
windows, some of them remote. Moreover, the entire list of win-
dows was queried for events to be dispatched to appropriate
objects in the central Self world. 

In addition, each remote window had an associated offset so
that, although several users could be in the space at once, they
could be shifted to individual locations. Because the resulting

Figure 20. In UI2 the user pops up the meta menu on the ideal
gas simulation (a). Selecting “outliner” displays the Self-level
representation, which can be carried and placed as needed (b).
(The italic items at the bottom of the outliner are slot categories
that may be expanded to view the slots. Unlike slots, categories
have no language level semantics and are essentially a user
interface convenience.)

(a)

(b)
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effect was to put many people in a single, vast flat space, we
named the system “Kansas.”
 

When Kansas was running, an error in the display code could
cause all the windows to hang: the other threads of the underly-
ing Self virtual machine would continue to run, though the dis-
play thread was suspended. We decided the right thing to do
here was to open up a new shared space, “Oz,” that would be
created by the same virtual machine that created Kansas, but
would be a new (mainly empty) world containing only a debug-
ger on the suspended thread. The users, finding themselves sud-
denly “sucked up” into the new overlaying world of Oz, could

collaboratively debug and fix the problem in Kansas, then, as a
final act in Oz, resume the suspended thread so that normal Kan-
sas life might resume. Much of the work for this was done by
Mario Wolczko; Smith, Wolczko, and Ungar wrote a description
for a special issue of the Communications of the ACM on debug-
ging [SWU97]. 

UI1 was beautiful; its use of cartoon animation techniques gave
a smooth and legible appearance. However, it gave no help to
the user who wanted to either dissect or create a graphical
object. We wanted to remedy this shortcoming in Morphic, and
replicating UI1’s beauty took a back seat to architectural innova-

1

Figure 21. The user wishes to
remove the label from a button.
The user starts by pointing to
the label, selects “submorphs”
from the meta menu, and
selects the label from the result-
ing menu list. A menu of
options is presented, from
which the user selects “yank it
out”. The button, which wraps
tightly around its submorphs,
shrinks down to a minimum
size when it has no submorphs.

2

3

4

5
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Figure 22. The environment itself is available for reuse. Here the user has created the menu
of operations for the gas tank, which is now a submorph of the surrounding frame. The user
has “pinned down” this menu by pressing the button at the top of the menu, and can then take
the menu apart into constituent buttons: here the user chooses the resize button for incorpo-
ration into the simulation.

1

2

3

Figure 23. The Kansas shared space version of UI2. Here three users are shown, two of whose screens largely over-
lap so they can see each other and work on a common set of objects; the third user to the right is by himself. Video
images from desktop cameras are sent over the network to appear on special objects near the top of each user’s screen
boundary. Users can be aware that other users are nearby thanks to audio from each user that diminishes in volume
with distance, and to the miniature “radar view” tools that give an overview of the nearby extended space (a radar
view can be seen in the upper left corner of the rightmost user’s screen). The radar view can be used to navigate
through the larger space as well.
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tion. With the exception of slow-in and slow-out, cartoon anima-
tion techniques such as smooth dissolves, motion blur,
anticipation, follow-through, and “squash and stretch” were
never incorporated into the Morphic framework.

After the Self project ended in 1995, Smith became interested in
distance learning. By 1998, he had added desktop video and
desktop audio to the system, as depicted in Figure 23. In 1998
and 1999, Smith used this audio- and video-link-enabled Kansas
in a series of experiments comparing small co-present study
groups with small study groups in Kansas who communicated
using the audio and video links. In these studies, groups of five
to seven students in the same course would not attend lectures at
all, but rather gather (either in the same room or in Kansas) to
discuss a video tape of the classroom lectures. The experiments
were carried out at California State University at Chico, approx-
imately 200 miles north of the Sun Labs campus. A special Kan-
sas world of Self objects was installed in a network at Chico,
and the Sun researchers could “drop in” remotely, and even
reprogram the system while a study session was in progress. The
results of these experiments were that there were no significant
difference between student grades, although there were some
behavioral differences [SSP99, Setal99].

The audio- and video-link technologies were specific to Sun
workstations; since we wanted Self to run on a wider set of plat-
forms, they were never part of the mainstream Self system. But
users of Self today can share their screens to work together. In
normal use, Self programmers seem to prefer having their own
private world of Self objects, which discourages routine use of
the Kansas features, though they are still often useful for remote
demos and collaborative debugging or development sessions.
(In fact, Ungar has been recently using it to work with a collabo-
rator 3,000 miles away.) 

5.5. The Transporter

Inspired by Smalltalk and then ARK, we wanted to submerge
the Self programmer in a world of live objects as opposed to
some text editor. In fact, from the start of Self in 1986, we hoped
that Self’s prototypes would feel even more alive than Small-
talk’s classes. Once we had a decent virtual machine and UI1,
we could experiment with this idea: we could create objects,
interactively add slots and methods, try them out, and instantly
change them. 

Although the idea of programming in a sea of live objects was
inspired by Smalltalk, Self was not Smalltalk, and the differ-
ences caused problems. In Smalltalk, the programmer creates
classes, instantiates them, changes methods, and inspects
objects. A Smalltalk method is always part of a class, a class is a
special kind of object, and every class (by convention) resides in
the same spot: the System Dictionary. So, a Smalltalk program
can usually be considered a collection of class definitions,
including any methods. Since a Smalltalk object is created by
instantiation, all initialization had to be done programmatically,
and initialization is not much of a special problem. But in Self,
there are no “class” objects. There is no one System Dictionary.
Any object may serve as a namespace, and any object may hold
methods. Objects are typically created by copying prototypes,
and initialization code is frowned upon, as the prototype is
already supposed to be initialized, functional, and prototypical.
In fact, the prototype ideal (as Smith used to say) is to always
have everything initialized so that every prototype can be func-
tional as is. But this view means that the state of objects is an
integral part of a “program.” Consider the following example:
Suppose Alice, using her own object heap, writes a program that
she wishes to give to Bob. Bob will typically be using his own

object heap, and so needs to incorporate Alice’s additions and
changes. In Smalltalk, the additions and changes that were typi-
cally a part of a program were restricted, but in Self, the problem
amounted to recreating arbitrary changes to objects. 

Up to around 1992, whenever we wanted to “get serious” so as
to share our work with the group, we wrote Self programs in a
text editor, then read them in and debugged them. As we
debugged, we had to either change the file and reread it, or
change both the file and the running environment. This was
painful. We needed a system that would turn arbitrary sets of
objects and slots into a text file that could then be read in to
another world of objects. To meet this need, Ungar started his
last major effort in the Self project, the transporter [Ung95].

Ungar realized that Self “programs” involved adding slots to or
modifying slots in existing objects and thus the transporter
would have to operate at the level of individual slots. Slot a
might be part of one “program” and slot b another, even though
both were in the same object. Since extra information was
needed that was not part of the execution model, that informa-
tion was added to the system around 1994 by extending Self’s
existing annotations. Each slot was annotated with the name of
the source file to which it would be written. At first, Ungar tried
to write a system that would infer other data, such as the proper
initialization for a slot when it was subsequently read in. After
many unsuccessful attempts, it became clear that inference
would not work, and more information would be needed in the
annotations. For example, each slot had to be annotated with ini-
tialization instructions: should it be initialized to whatever it
originally contained or to the results of some expression? At the
end, Ungar came to a fundamental realization: what was later
dubbed “orthogonal persistence” [AM95] was, at least in this
context, a flawed concept. Simply making a set of slots persis-
tent is easy. But installing those slots into another arbitrary
world of objects so that they function as they did in their original
home is difficult, and probably even impossible in the general
case. The task at least requires more information than what is
needed for the slots merely to function in a live image. The pro-
grammer has to provide information that will enable the slots to
function as the programmer intends (see Figure 24). To keep the
burden of specifying the extra information for the transporter as
light as possible, Ungar integrated it into the programming envi-
ronment in such a way that it would be easy for a programmer to
“push a button” and save a program as a source file that could
then be read in to another user’s heap of objects.

In June of 1994 the transporter was finished and the program-
ming environment was augmented with affordances for the extra
information. The Self team had moved its 40K lines of Self
code, comprising data and control structures, the user interface,
and the programming environment, to the Self transporter; in
other words, we were all (but Agesen) doing our Self program-
ming inside the graphical programming environment. The Self
team made a leap from programming in text editors to program-
ming in a live world, and then transporting the results to text
files for sharing with others. 

5.6. Significant Events While at Sun

The first Self release, 1.0, had occurred at the end of September
1990 and went to over 100 sites. The next release, 1.1, came at
the end of June 1991 and went to over 150 sites. It featured a
choice of compilers, and support for lightweight processes.
Released in August 1992, Self 2.0 featured the sender-path tie-
breaker and shared-part privacy rules. It also introduced full
source-level debugging of optimized code, adaptive optimiza-
tion to shorten compile pauses, lightweight threads within Self,
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support for dynamically linking foreign functions, support for
changing programs within Self, and the ability to run the experi-
mental Self graphical browser under OpenWindows. Self
Release 2.0 ran on Sun-3s and Sun-4s, but no longer had an opti-
mizing compiler for the Motorola 68000-based Sun-3 (and
therefore ran slower on the Sun-3 than previous releases). Self
3.0, featuring Hölzle’s adaptive optimization and the simplified
multiple inheritance and privacy rules, was released January 1,
1994. In 1995, we felt we had achieved a fully self-contained
system: we had an elegant language with a clever implementa-
tion unified with a novel user interface construction / program-
ming world. Having made the final determination of which
features to implement for the release by voting with hard candy
(see Figure 25), we released Self 4.0 into the larger world as a
beta in February 1995, and in final form July 1995. (See appen-
dix 11 for the actual release announcements.)

During this 1991-1995 period at Sun, we felt that Self was gain-
ing a following, especially within the academic community.
Craig Chambers and Ungar gave a tutorial at the 1992 OOPSLA
conference describing the various Self implementation tech-
niques that sold out. At the 1993 OOPSLA conference, a demo
of the Morphic framework and Self programming environment
proved so popular that we had to schedule a second, then a third
showing due to overflowing crowds. That same year, we pre-
sented the project to Sun CEO Scott McNealy, who enthused
about Self being “a spreadsheet for objects” but cautioned us
about “fighting a two-front war.”11

At one of the OOPSLA conferences in the late 1980’s, Ungar
had met Ole Lehrmann Madsen. Madsen, a former student of
Kristen Nygaard, was one of the designers of the Beta language
[MMN93], a professor at Århus University and the advisor of
Ole Agesen, Lars Bak, and Erik Ernst. Ungar recalls Madsen
proudly explaining how Beta supported virtual classes, and
Ungar pointing out that the same idiom just fell out of Self’s
semantics with no special support required. This may have been

the moment that kindled Madsen’s interest in Self. He later sent
us Agesen, Bak, and (intern) Ernst, and also spent a sabbatical
year with the project in 1994-1995. During his stay, he built a
structured editor for Self, and we all enjoyed many rewarding
discussions about the various approaches to object-oriented pro-
gramming. In 1995, Madsen invited the authors to present a
paper at the ECOOP conference, giving an overview of the sys-
tem, emphasizing the common motivational design threads run-
ning through Self’s language semantics, virtual machine, and
user interface [SU95]. 

We felt that Self might make a good medium for teaching and
learning about object-oriented programming, and in 1994-1995
we sponsored work with Brown University and the University
of Manchester to develop courses based on Self. In addition to
the paper publications, we felt that a videotape might be a good
way to present the Self story and in October of 1996 released
Self: the Video, a 21-minute tape describing the language seman-
tics and shows the user interface, including its shared space
aspect [StV96].

Also in 1996, Self alumnus Ole Agesen, who was working at
Sun Laboratories, built a system called Pep that ran Java atop
the Self virtual machine. It seemed, for a time, to be the world’s
fastest Java system, demonstrating the potential of Self’s imple-
mentation techniques for Java programs with a high frequency
of message sends [Age97].

When the Self project had joined Sun back in January of 1991,
we told the company that we expected to build a fully functional
programming environment in three to five years, with six to
eight people. Our manager, Jim Mitchell, had us draw up a
detailed project schedule. Three years later, we had delivered a
fully functional programming environment, user interface,
graphical construction kit, and virtual machine. Then, in Sep-
tember 1994, the project was cancelled, possibly in part as a
consequence of the company’s decision to go with Java. Self
was officially wrapped up by July 1995.

Ungar remained at Sun through the summer of 2006 and, aided
by Michael Abd-El-Malek and Adam Spitz, kept the Self system
alive, including ports to first the PowerPC and then the Intel x86

11. McNealy never explained what he meant about the two fronts. We
suspect he was thinking about asking users to learn both a new lan-
guage and a new user interface.

Figure 24. Annotations for transporting slots.The ovoid outlines have been added to show the module
and initialization information for two slots (named fileTable and infinity) in a Self object. 
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Macintoshes. It remains his vehicle of choice for condensing
ideas into artifacts. As of this writing, Self 4.3 is available from
http://research.sun.com/self.

6. Impact of the Self Project

6.1. The Language

We have always been enthusiastic about the cognitive benefits
of unifying state and behavior and of working with prototypes
instead of classes. At the 2006 OOPSLA conference, the origi-
nal Self paper [US87] received an award for being among the
three most influential papers published in the conference’s first
11 years (from 1985 through 1996). But, for most of the twenty
years since Self’s design, it was discouraging to see the lack of
adoption of our ideas. However, with help from our reviewers
(Kathleen Fisher in particular) and from Google (which owes
some of its success to Hölzle, a Self alumnus), we delightedly
discovered that some researchers and engineers working on por-
table digital assistants (PDAs), programming language research,
scripting languages, programming language theory, and auto-
matic program refactoring had been inspired by the linguistic
aspects of Self.

Before continuing, we must express our gratitude for all who
have put up informative web sites about prototype-based lan-
guages, including Ranier Blome [Blom] and Group F [GroF].

6.1.1. Programming Language Research

After he graduated and left the Self project in 1991, Craig
Chambers took a faculty position at the University of Washing-
ton, Seattle, where he created Cecil, a purely object-oriented
language intended to support rapid construction of high-quality,
extensible software [Cham92a, Cham]. Cecil combined multi-

methods with a classless object model and optional static type
checking. As in Self, Cecil’s instance variables were accessed
solely through messages, allowing instance variables to be
replaced or overridden by methods and vice versa. Cecil’s predi-
cate objects mechanism allowed an object to be classified auto-
matically based on its run-time (mutable) state. Cecil’s static
type system relied on types that specify the operations that an
object must support, while its dynamic dispatch system was
based on runtime inheritance links. For example, any object
copied from a “Set” prototype would inherit implementations of
“Set” operations such as union and intersection. But there might
also be a “Set” type, which promises that any object known at
compile time to be that type will implement union and intersec-
tion. In private conversations, Chambers has reported to Ungar
that his students often struggled with the distinction: when to
say “Set (type)” vs. “Set (prototype).” In Ungar’s opinion, this
illustration of the too-often-overlooked tension between a type
system’s expressiveness and its comprehensibility is an impor-
tant result.

The designer of Omega [Blas91] wanted to have an object
model similar to Self’s but did not want to lose the benefits of
static type checking. This language managed to unite the two, a
surprising feat at the time. 

The Self language even influenced a researcher who was deeply
embedded in another object-oriented culture, the Scandinavian
Beta language. Beta is a lineal descendant of Simula, the very
first object-oriented language, that features simple, unified
semantics based on a generalization of classes and methods
called patterns. Like classes, patterns function as templates and
must be instantiated before use. Beta allows a designer to model
a physical system and then just execute the model, a Beta pro-
gram [MMM90, MMN93]. In Ungar’s opinion, it is one of the
cleanest and most unfairly overlooked object-oriented program-

Figure 25. The Self group decides which features to implement in Self 4.0 by voting with candy (late 1994). Each member
distributed a pound of candy among various containers according to which features he desired most. We weighed the results
and ate the winners (and the losers, too). Left to right: Randall Smith, Robert Duvall (student intern), Bay-Wei Chang, Lars
Bak, John Maloney (seated), Ole Lehrmann Madsen (visiting professor), Urs Hölzle, Mario Wolczko, and David Ungar. Not
shown: Craig Chambers (who had graduated) and Ole Agesen.
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ming languages. Erik Ernst, then a graduate student in the Beta
group, spent part of a year interning with the Self project at Sun
Labs. After his return to Denmark, he invented gbeta, a superset
of Beta that, while still very much in the Beta spirit, added fea-
tures inspired by Self such as object metamorphosis and
dynamic inheritance that straddle the gap between compile- and
run-time [Ernst]:

In gbeta, object metamorphosis coexists with strict,
static type-checking: It is possible to take an existing
object and modify its structure until it is an instance of
a given class, which is possibly only known or even
constructed at run-time. Still, the static analysis
ensures that message-not-understood errors can never
occur at run-time...Like BETA, gbeta supports inherit-
ance hierarchies not only for classes but also for meth-
ods. This can be used together with dynamic
inheritance to build dynamic control structures...
[Erns99].

The authors designed but never built US, a language that incor-
porated subjectivity into Self’s computational model [SU94,
SU96]. An US message-send consisted of several implicit
receivers and dispatched on the Cartesian product, using rules
similar to Self’s existing multiple-inheritance resolution ones.
The extra implicit receivers could be used to represent versions,
preferences, or human agents on whose behalf an operation was
being performed. Ungar and Smith posited that subjectivity was
to object-oriented programming as object-oriented program-
ming was to procedural programming. In procedural program-
ming, the same function call always runs the same code; in
object-oriented programming there is one object’s worth of con-
text (the receiver) and this object determines which code will
run in response to a given message. In the US style of subjectiv-
ity, there are many objects’ worth of context that determine what
happens. Later on, others would coin the term “subject-oriented
programming” to describe systems that were somewhat similar
[HKKH96].

Slate combined prototypes with multiple dispatch [RS, SA05].
It strove to support a more dynamic object system than Cecil,
and thus could support subjectivity as in US without compro-
mising Self’s dynamism. Slate put different ideas together in
search of expressive power.

In contrast, Self inspired Antero Taivalsaari to simplify things
even further. His Kevo language eschewed Self-style inherit-
ance. Instead of sharing common state and behavior via special
parent links, each Kevo object (at the linguistic level) contained
all the state and behavior it could possibly exhibit [Tai93a,
Tai92, Tai93]. Kevo’s simplification of the runtime semantics of
inheritance (i.e., no inheritance!) cast the dual problem of pro-
gramming-time inheritance into sharp relief: Suppose a pro-
grammer needs to add a “union” method to every Set object. In
Self, one can add it to a common parent. In Kevo, there were
special operations to affect every object cloned from the same
prototype. But these seemed to be too sensitive to the past; the
operations relied on the cloning history, rather than whether an
object was supposed to be a Set. For us, the Kevo language clar-
ified the difference between the essential behavior needed to
compute with an object and the cognitive structures needed to
program (i.e., reflect upon) an object.

Getting back to something closer to Self, Jecel Assumpcao Jr.’s
Self/R (a.k.a. Merlin) combined a Self-style language with a
facility for low-level reflection in an effort to push the high-
level language down into the operating system [Assu].

Moostrap was another language that adopted a Self-style object
model as part of research into minimal languages based on
reflection. Its name stood for Mini Object-Oriented System
Towards Reflective Architectures for Programming [MC93,
Mule95]. 

Lisaac combined operating system research with programming
language research [SC02]. The authors designed a language
resembling Self with prototypes and dynamic inheritance and
added some ideas from Eiffel. This language used static compi-
lation and implemented an operating system; that is, it ran on
bare metal. Dynamic inheritance was used in the video drivers
and the file system.

SelfSync exploited the malleability of Self’s object model to
provide an interactive, bidirectional connection between an
graphical diagram editor and a world of live, running, objects
[PMH05]. It can be thought of as a visual programming lan-
guage perched atop the Self system:

SelfSync is a Round-Trip Engineering (RTE) environ-
ment built on top of the object-oriented prototype-
based language Self that integrates a graphical draw-
ing editor for EER12 diagrams. SelfSync realizes co-
evolution between ‘entities’ in an EER diagram and
Self ‘implementation objects.’ This is achieved by
adding an extra EER ‘view’ to the default view on
implementation objects in the model-view-controller
[sic] architecture of Self’s user interface. Both views
are connected and synchronized onto the level of
attributes and operations. [D’Hont]

Moving even further from the language design center of Self’s
creators, Self—though having no static type system whatso-
ever—inspired work on type systems for object-oriented lan-
guages. According to Stanford University professor John
Mitchell: “The paper [FHM94] develops a calculus of objects
and a type system for it. The paper uses a delegation-based
approach and refers to your work on Self. This paper first
appeared at the 1993 IEEE Symposium on Logic in Computer
Science, and came before many other papers on type systems
and object calculi. Abadi and Cardelli and many others also got
involved in the topic at various times.” 

6.1.2. Distributed Programming Research

When Self was designed in 1986, computers were far less inter-
connected than they are today, and consequently the challenges
of getting separate computers to work together have become far
more important than they were in the ‘80s. When researchers
tried to combine class-based objects and distributed program-
ming, they discovered a problem: if two Point objects are to
reside on separate computers, on which one should the Point
class reside? On the one hand, since an object relies on its class
to supply its behavior and interpretation, an object separated
from its class is going to run very slowly. On the other hand, if
the class data are replicated, then great effort must be expended
to reconcile the conceptual chasm between a single, malleable
class, and the reality of widespread replication of the class’s
contents. Along with the classless distributed system Emerald
[BHJ86], Self’s classless object model helped inspire research-
ers to consider such a model for a distributed system.

The closest such model to Self is probably dSelf [TK02], which
adopted Self’s syntax and object model, but let clones to reside
on different machines and allowed an object to delegate to (i.e.,
be a child of) a parent object on a different machine.

12.EER: extended entity-relationship.
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AmbientTalk was a classless distributed programming lan-
guage designed for ad-hoc networks [DB04, Deid] that does not
appear to have been directly influenced by Self.

Obliq, based on a prototype object model and dynamic typing,
exploited the key concept of lexical scoping to provide secure,
distributed, mobile computation [Card95].

6.1.3. Prototype Object Models for User Interface Lan-
guages and Toolkits

Self’s legacy from ARK included the desire to bridge the gap
between programming-level and graphical-level objects. In par-
ticular, prototypes seemed to be more concrete and easier to pic-
ture than classes. Perhaps that is why there have been some
notable efforts to use a prototype-based object model for GUI
languages and toolkits, including Amulet, which placed a proto-
type-based object model atop C++ to make it easier to build
graphical interfaces [MMM97]:

Amulet includes many features specifically designed
to make the creation of highly interactive, graphical,
direct manipulation user interfaces significantly eas-
ier, including a prototype-instance object model, con-
straints, high-level input handling including automatic
undo, built-in support for animation and gesture-rec-
ognition, and a full set of widgets. [Myer97] 

Amulet was a follow-on to Garnet, which also used a proto-
type-instance object system [MGD90]. Although the authors do
not tell us, this system may have been influenced by Self in that
there is no distinction between instances and classes, data and
methods are stored in “slots,” and slots that are not overridden
by a particular instance inherit their values.

6.1.4. Other Impacts of the Self Language

In the late 1980s, a team at Apple Computer created one of the
first commercial PDAs, the Apple Newton. Although the first
products were marred by unreliable handwriting recognition—
yes, the Newton aimed to recognize words the way one natu-
rally wrote them—soon the Newton became an amazing device.
It featured a simple intuitive interface with functionality that
could be easily extended. What made it easy to build new New-
ton applications was its programming language, NewtonScript,
a pure, object-oriented, dynamically typed language based on
prototypes [Smi95] whose designer, Walter Smith, has cited Self
as “one of the primary influences” [Smi94]. Like Self, Newton-
Script created objects by cloning and had prioritized, object-
based multiple inheritance. Unlike Self, slots were added to an
object when assigned to, and each object had exactly two par-
ents. Although the Newton was supplanted by the much smaller
and lighter (but less flexible) Palm Pilot, it seems likely that the
Newton was a key inspiration, so that Self was at least an indi-
rect inspiration in the rise of PDAs.

Scripting Languages. Back when we designed Self, computers
seemed to offer limitless power to those who could program
them; we wanted to make this power available to the largest
number of people, and thus we strove to lower programming’s
cognitive barrier. Since then, computers have become ever faster
and more widely used, trends that have created a niche for
scripting languages. These notations were designed to be easy to
learn and easy to use to customize systems such as web pages
and browsers, but were not intended for large tasks in which per-
formance was critical. In retrospect, it is not too surprising that
many scripting languages were devised with object models like
Self’s. The most popular of these by far seems to be JavaScript
[FS02], which from the start was built into a popular Web

browser and has since become a standard for adding behavior to
a Web page. JavaScript was based on a prototype model with
object-based inheritance. Unlike Self, slots were added to an
object upon assignment, reflective operations were not sepa-
rated, and many more facilities were built into the language.

In addition to JavaScript, other prototype-based scripting lan-
guages have sprung up:

• OScheme is a small embeddable Scheme-like interpreter
“that provides a prototype-based object model à la Self”
[Bair].

• Io is a small, prototype-based programming language
[Dek06]. More like Actors [Lieb86] than Self, its clones
start out empty and gain slots upon assignment.

• Glyphic Script was a small, portable, and practical develop-
ment environment and language that used both classes and
prototypes [SL93, SLST94]. An object could be created by
either instantiating a class or cloning an instance. 

• After GlypicScript, Lentczner developed Wheat, a proto-
type-based programming system for creating of internet pro-
grams [Len05]: “Wheat strives to make programming
dynamic web sites easy. It makes writing programs that span
machines on the internet easy. It makes collaborative pro-
gramming easy.” Wheat uses a tree object system instead of
a heap, and each object has a URL. Its programming envi-
ronment is a collaborative web site. Wheat’s design imagina-
tively melds object-oriented programming with distributed
web-based objects.

Refactoring. Self’s simplicity can be a boon to automatic pro-
gram manipulation tools. This simplicity may have encouraged
Ivan Moore, a University of Manchester student working for
Trevor Hopkins, to create Guru, a system that may well have
been the first to automatically reorganize inheritance hierarchies
to refactor programs while preserving their behavior [Moor,
Moo95, Moo96, Moo96a, MC96]. Subsequent refactoring tools
included the Refactoring Browser [RBJ97] for Smalltalk.
Although a refactoring tool for Self would be even easier than
for Smalltalk or Java, by the time refactoring tools became pop-
ular, the Self project was over.

6.1.5. Summary: Impact of Self Language

Self is still used by the authors, and Ungar has based his recent
research on metacircular virtual machines on it. In addition, it is
also in use by curious students from around the world and by a
few other dedicated souls. Jecel Assumpcao in Brazil maintains
an e-mail discussion list and a web site (there is one at Sun as
well) from which the latest release can be downloaded. Volun-
teers have ported it to various platforms, and several language
variants of Self have been designed. Still, the language cannot
be said to be in widespread use; as of 2006 we estimate perhaps
a dozen users on this planet.

Several pragmatic issues interfered with Self’s adoption in the
early 1990s: the system was perceived as being too memory-
hungry for its time, and too few people could afford the mem-
ory. Perhaps the worst problem was the challenge of delivering a
small application instead of a large snapshot. The Self group
was working on this when the project was cancelled in 1994:
Ole Agesen’s work on type inferencing [AU94] showed promise
in this area. Wolczko produced a standalone diff viewer that was
half the speed of C, started in 1 second, and was correct (as
opposed to the C version, which, according to Wolczko, was
not). Finally, Self did not run on the most popular personal oper-
ating system of the time, Windows, and the complexity of the
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virtual machine made a port seem like a daunting task for an
outsider.

Self demonstrated that an object-oriented programming lan-
guage need not rely on classes, that large programs could be
built in such a fashion, and that it was possible to achieve high
performance. These results helped free researchers to consider
prototype-based linguistic structures [Blas94, DMC92,
SLST94]. Of course, the languages in this section vary in their
treatment of semantic issues like privacy, copying, and the role
of inheritance. Yet all these languages have a model in which an
object is in an important sense self-contained.

6.2. Implementation Techniques

The optimization techniques introduced by the Self virtual
machine have served as a starting point for just about every
desktop- and server-based object-oriented virtual machine
today; for a nice survey, see [AFGH04]. The authors note that
“the industry has invested heavily in adaptive optimization tech-
nology” and state that the Self implementation’s “technical
highlights include polymorphic inline caches, on-stack-replace-
ment, dynamic deoptimization, selective compilation with mul-
tiple compilers, type prediction and splitting, and profile-
directed inlining integrated with adaptive recompilation.” Many
subsequent virtual machines rely on these techniques. The sur-
vey’s authors also mention Self’s invocation count mechanism
for triggering recompilation, and mention that the HotSpot
Server VM, the initial IBM mixed-mode interpreter system, and
the Intel Microprocessor Research Labs VM all used similar
techniques. They point out that Self’s technique of deferring
compilation of uncommon code has been adopted by the
HotSpot server VM and the Jikes RVM, and that Self’s dynamic
deoptimization technique that automatically reverts to deopti-
mized code for debugging “has been adopted by today’s leading
production Java virtual machines.”

In a slightly more exuberant tone, Doederlein comments about
the effect of (among other ideas) Self-style optimizations on
Java performance: “The advents of Java2 (JDK1.2.0+), Sun
HotSpot and IBM JDK, raised Java to previously undreamed-of
performance, and has caught many hackers by surprise...Profile-
based and Speculative JITs like HotSpot and IBM JDK are often
seen as the Holy Grail of Java performance. [Höl94] (Hölzle’s
dissertation on the Self VM) is the root of dynamic optimiza-
tion” [Doe03]. (Italicized text added by present authors.)

The most direct influence of Self’s VM technology was on
Sun’s HotSpot JVM, which is Sun’s Java desktop and server vir-
tual machine and is used by other computer manufacturers
including Apple Computer and Hewlett-Packard. It is an ironic
story: In the fall of 1994, when the Self project was cancelled,
two of Self’s people, Urs Hölzle and Lars Bak, left Sun to join a
startup, Animorphic Systems. (Hölzle took a faculty position at
UCSB and consulted at the startup; Bak was there full time.)
The startup built Strongtalk, an impressive Smalltalk system that
eventually included a virtual machine based on the Self virtual
machine code base (with many improvements) and featuring an
optional type system already designed by Animorphic’s Gilad
Bracha and David Griswold [BG93]. Meanwhile, another Self
alumnus, Ole Agesen at Sun Labs East, rewrote portions of
Sun’s original JVM to support exact garbage collection.13 On
the West Coast this project was nurtured by Mario Wolczko,
another Self alumnus, who had written the clever feedback-
mediated code to manage the Self garbage collector (see
section 5.1). For a while, the Exact VM, as it was called, was
Sun’s official JVM for Solaris. As Java became popular, Ani-
morphic also retargeted its Smalltalk virtual machine to run

Java. Around this time, Bak and Hölzle’s startup was acquired
by Sun for its Java implementation and their Strongtalk system
was left to languish. After the acquisition, Ungar (who had
stayed at Sun all this time) loaned himself to the newly acquired
group where he contributed the portability framework and the
SPARC interpreter for Java. This virtual machine became
HotSpot; HotSpot improved on Self by using an interpreter
instead of a simple compiler for initial code execution, but
retained the key techniques of adaptive optimization and
dynamic deoptimization. HotSpot eventually became Sun’s pri-
mary virtual machine, supplanting the Exact VM. So the Self
virtual machine essentially left the company, mutated some-
what, got reacquired, and now runs Java. 

A bit later, there was talk within Sun of pushing on the debug-
ging framework for Java. Smith, Wolczko, and others had the
thought that surely the underlying code that allowed runtime
method redefinition in the face of all those optimizations was
laying there dormant in Sun’s HotSpot VM. (Recall that the
HotSpot VM was originally created by modifying the Self VM.)
Wolczko put Mikhail Dmitriev, then a Sun Laboratories intern
(and later an employee) to work implementing method redefini-
tion. With a working prototype in hand, Smith and Wolczko
convinced the Sun Lab’s management to start the HotSwap
project to allow fix-and-continue debugging changes. This facil-
ity is now part of the standard Sun Java VM, where it is used
extensively for interactive profiling. According to Wolczko, this
feature remains one key advantage of the NetBeans environment
over its competition in 2006.

Other Java virtual machines have been inspired by the adaptive
optimization and on-stack replacement in Self, including IBM’s
Jalapeno (a.k.a. Jikes RVM) [BCFG99], [FQ03]. The JOEQ
JVM has also been inspired by some techniques from Self,
including what we called “deferred compilation of uncommon
cases” [Wha01]. Adaptive optimization has even been combined
with off-line profile information for Java [Krin03]. Although we
have not been able to find any published literature confirming
this, many believe that implementations of the .NET Common
Language Runtime exploit some of these techniques.

Dynamic optimization and deoptimization also found applica-
tions removed from language implementation: Dynamo
exploited adaptive optimization to automatically improve the
performance of a native instruction stream [BDB00], and Trans-
meta used dynamic code translation and optimization to host
x86 ISA programs on a lower-power microprocessor with a dif-
ferent architecture. Their code-morphing software may have
been partially inspired by HotSpot [DGBJ03]. In addition to the
Transmeta system, Apple computer’s Rosetta technology uses
similar techniques to run PowerPC programs on Intel x86-based
Macintosh computers [RRS99]. Moreover, as Ungar types these
very letters, he is running a PowerPC word processor,
FrameMaker, on an Intel-based MacBook Pro by using Sheep-
Shaver, a PowerPC emulator that exploits dynamic optimization
[Beau06].

6.3. Cartoon Animation in the User Interface

Eleven years after their key paper on cartoon animation for user
interfaces [CU93], Chang and Ungar won the second annual

13.Sun’s original “classic” JVM was not especially efficient, and relied
on a garbage collection scheme that could not collect all garbage; it
could be fooled into retaining vast amounts of space that were actu-
ally free. Such a scheme is called “conservative garbage collection”
and was developed as a compromise for C-like systems that lack full
runtime type information. This compromise was never essential for
Java.
9-36



“Most Influential Paper” award for this work from the 2004
ACM Symposium on User Interface Software and Technology.
Some of the influenced work includes the following:

• When researchers started working on immersive, 3D user
interfaces, they built rapid prototyping environments. One
such was Alice [CPGB94], whose creators found that the
“same kind of ‘slow in/slow out’ animation techniques dem-
onstrated in the Self programming system... (were)
extremely useful in providing smooth state transitions of all
kinds (position, color, opacity).”

• InterViews was a user interface toolkit for X-11 in C++. As
part of the Prosodic Interfaces project, Thomas and Calder
[TC95] took the notion of cartoon animation of graphical
objects further, imbuing InterViews objects with elasticity
and inertia. They stressed that such techniques meshed natu-
rally with the goal of direct manipulation. In a subsequent
paper [TC01], they went further and actually measured the
effects of their animation techniques, showing them to be
“effective and enjoyable for users.” Thomas and Demczuk
used some of the same techniques to improve indirect
manipulation, showing that animation could help users do
alignment operations but that color and other effects were
even better. Thomas has even applied cartoon animation
techniques to a 3D collaborative virtual environment.

• Amulet [MMM97] incorporated an animation constraint
solver that automatically animated the effects of changes to
variables that denoted such things as positions and visibili-
ties.

• Microsoft has studied the benefits of motion blur on the leg-
ibility of fast-moving cursors [BCR03]. They settled on tem-
poral over-sampling. (We had seen this used in cartoons as
well; Smith had christened it “stutter motion blur” as
opposed to “streak motion blur.”)

Nowadays, although many aspects of cartoon animation can be
found on commercial desktops—just click on the yellow button
on your Macintosh OS X window to see squash and stretch—
other aspects such as anticipation and followthrough remain to
be exploited. OS X, though, does seem to have embraced the
idea of smooth transitions, and some Microsoft systems also
incorporate menus and text that fades in and out.

6.4. User Interface Frameworks

The principles of the Morphic UI have also been carried on into
other interface frameworks, including one for Ruby [Ling04].
After Self ended, Maloney carried the Morphic GUI system into
the Squeak version of Smalltalk [Mal01]. He followed the lay-
out-as-morph approach with the AlignmentMorph class and its
dozens of subclasses. Squeak’s current (2006) version of Mor-
phic has diverged from Smith’s original architecture in that each
morph includes a particular layout policy that is not a morph.
However, because the policy is associated with a visible object
rather than an often invisible AlignmentMorph, the newer
design might be considered closer to Morphic principles. The
AlignmentMorph class and its subclasses are used in the latest
version of Squeak, and informal discussions with Squeak users
give us a sense that the proper way to treat the GUI visual struc-
turing problem is still debated.

7. Looking Back
Now that the world has seen Self and we have received the ben-
efit of hindsight, we can comment on lessons learned and inter-
esting issues. 

7.1. Language

Minimalism. Ungar confesses, with some feelings of guilt, that
the pure vision of Self suffered at his own hands, as he yielded
to temptation and tried adding a few extra features here and
there. But how could the temptation to feature creep seduce
members of the Self team, who so vocally extol the principles of
uniformity and simplicity? Looking back, we think it arose from
the siren song of the well-stated example. Ungar had to learn the
hard way that smaller was better and that examples could be
deceptive. Early in the evolution of Self he made three such mis-
takes: prioritized multiple inheritance, the sender-path tie-
breaker rule, and method-holder-based privacy semantics.14

Each was motivated by a compelling example [CUCH91]. We
prioritized multiple parent slots to support a mix-in style of pro-
gramming. The sender-path tiebreaker rule allowed two disjoint
objects to be used as parents, for example a rectangle parent and
a tree-node parent for a VLSI cell object. The method-holder-
based privacy semantics allowed objects with the same parents
to be part of the same encapsulation domain, thereby supporting
binary operations in a way that Smalltalk could not [CUCH91].

But each feature also caused no end of confusion. The prioritiza-
tion of multiple parents implied that Self’s “resend” (call-next-
method) lookup had to be prepared to back up along parent links
to follow lower-priority paths. The resultant semantics took five
pages to write down, but we persevered. As mentioned in
section 4.2, after a year’s experience with the features, we found
that each of the members of the Self group had wasted no small
amount of time chasing “compiler bugs” that were merely their
unforeseen consequences. It became clear that the language had
strayed from its original path. Ironically, Ungar, who had once
coined the term “architect’s trap” for something similar in com-
puter architecture, fell right into what might be called “the lan-
guage designer’s trap.” He is waiting for the next one. At least in
computer architecture and language design, when features,
rules, or elaborations are motivated by particular examples, it is
a good bet that their addition will be a mistake. 

Prototypes and Classes. Prototypes are often presented as an
alternative to class-based language designs, so the subject of

14.In all fairness, recall that Smith was across the Atlantic at the time
and so, on the one hand, had nothing to do with these mistakes. On
the other hand, Ungar chides him that if he had not wandered off,
maybe such mistakes could have been avoided.

No. of examples with direct solutions
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Figure 26. As more features are embedded in the language, the
programmer gets to do more things immediately. But complex-
ity grows with each feature: how the fundamental language ele-
ments interact with one another must be defined, so complexity
growth can be combinatorial. Such complexity makes the basic
language harder to learn, and can make it harder to use by forc-
ing the programmer to make a choice among implementation
options that may have to be revisited later.
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prototypes vs. classes can serve as point of (usually good
natured) debate.

In a class-based system, any change (such as a new instance
variable) to a class affects new instances of a subclass. In Self, a
change to a prototype (such as a new slot) affects nothing other
than the prototype itself (and its subsequent direct copies).15 So
we implemented a “copy-down” mechanism in the environment
to share implementation information. It allowed the programmer
to add and remove slots to and from an entire hierarchy of proto-
types in a single operation. Functionality provided at the lan-
guage level in class-based systems rose to the programming
environment level in Self. In general, the simple object model in
Self meant that some functionality omitted from the language
went into the environment. Because the environment is built out
of Self objects, the copy-down policy can be changed by the
programmer. But such flexibility incurred a cost: there were two
interfaces for adding slots to objects, the simple language level
and the copying-down Self-object level. This loss of uniformity
could be confusing when writing a program that needs to add
slots to objects. Although we managed fine in Self, if Ungar
were to design a new language, he might be tempted to include
inheritance of structure in the language, although it would still
be based on prototypes. Smith remains unconvinced.

A brief examination of the emulation of classes in Self illumi-
nates both the nature of a prototype-based object model and the
tradeoff between implementing concepts in the language and in
the environment. To make a Self shared parent look more like a
class, one could create a “new” method in the shared parent.
This method could make a copy of some internal reference to a
prototype, and so would appear to be an instantiation device.

Figure 27 suggests how to make a Smalltalk class out of Self
objects. Mario Wolczko built a more complete implementation
of this, and showed [WAU96, Wol96] that it worked quite well:
he could read in Smalltalk source code and execute it as a Self
program. There are certain restrictions on the Smalltalk source
but, thanks to Self’s implementation technology, once the code
adaptively optimizes, the Self version of Smalltalk code gener-
ally ran faster than the Smalltalk version! General meta-object
issues in prototype-based languages were tackled by the Moos-
trap system [Mule95]. 

The world of Self objects and how they inherit from one another
results in a roughly hierarchal organization, with objects in the
middle of the hierarchy tending to act as repositories of shared
behavior. Such behavior repositories came to be called “traits”
objects.16 The use of traits is perhaps only one of many ways of
organizing the system, and may in fact have been a carryover
from the Self group’s Smalltalk experience. Interestingly, it is
likely that our old habits may not have done Self justice (as
observed in [DMC92]). Some alternative organizational
schemes might have avoided a problem with the traits: a traits
object cannot respond to many of the messages it defines in its
own slots! For example, the point traits object lacked x and y
slots and so could not respond to printString, since its
printString slot contained a method that in turn sent x and y
messages. We probably would have done better to put more
effort into exploring other organizations. When investigating a
new language, one’s old habits can lead one astray.

Another problem plaguing many prototype-based systems is that
of the corrupted prototype. Imagine copying the prototypical

15.Self prototypes are not really special objects, but are distinguished
only by the fact that, by convention, they are copied. Any copy of the
prototype would serve as a prototype equally well. Some other proto-
type-based systems took a different approach.

16.Do not confuse these traits objects with the construction written
about in the past few years [SDNB03]. These had nothing to do with
and predated by many years the more recent use of the word “traits”
in object-oriented language design.

parent*

class

instVar1

instVar2

superclass

classVariables*

instVarNames

methodDictionary

new

parent1*
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method1

method2

proto

^ proto copy
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class

parent*
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instVar1

instVar2

Figure 27. This figure suggests how Self objects might be composed to form Smalltalk-like class structures (demonstrated
more completely by Wolczko [Wol96]). He shows that, with some caveats, Smalltalk code can be read into a Self system,
parsed into Self objects, then executed with significant performance benefits, thanks to Self’s dynamically optimizing virtual
machine.

instantiation 
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classVar1

classVar2
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list, asking it to print, then finding it not empty as expected, but
already containing 18 objects left there by some previous pro-
gram! Self’s syntax makes the previous program’s mistake
somewhat easy: the difference between

list copy add: someObject.

and
list add: someObject.

is that the latter puts some object in the system’s prototypical
list. 

Addressing this problem led to some spirited debate within the
Self group. Should the programmer have the right to assume
anything about the prototypical list? It is, after all, just another
object. To the VM, yes, but to the programmer, it is quite a dis-
tinguished object. Our solution, though disturbing at some level,
was to introduce a copyRemoveAll method for our collections.
Use of this method guaranteed an empty list, yet it was clearly
only a partial solution. What if some program, now long gone,
accidentally uttered the expression:

Date currentYear: 1850

This would create trouble for any program that subsequently
assumed the current year was properly initialized in copies of
the Date object (unless it was running inside a time machine). 

As we have said many times by now, when designing Self we
sought to unify assignment and computation. This desire for
access/assignment symmetry could be interpreted as arising
from the sensory-motor level of experience. Lakoff and Johnson
put it very well [LJ87], although we had not read their work at
the time we designed Self: from the time we are children, expe-
rience and manipulation are inextricably intertwined; we best
experience an object when we can touch it, pick it up, turn it
over, push its buttons, even taste it. We believe that the notion of
a container is a fundamental intuition that humans share and that
by unifying assignment and computation in the same way as
access and computation, Self allows abstraction over container-
hood. Since all containers are inspected or filled by sending
messages, any object can pretend to be a container while
employing a different implementation.

Retrospective Thoughts on the Influence of Smalltalk. In writ-
ing this paper and looking over the principles of Smalltalk enu-
merated by Ingalls [Inga81], we realize that in most cases we
tried to take them even further than Smalltalk did. Table 2
shows, for each of Ingalls’ principles, the progression from
Smalltalk through ARK to Self.
 

Table 2: Ingalls’ Principles of Programming System Design

Principle Smalltalk ARK Self

Personal
Mastery

If a system is to serve the creative 
spirit, it must be entirely compre-
hensible to a single individual.

A primary goal of ARK was to 
make possible personal construc-
tion of alternate realities, increas-
ing comprehension by tangibly 
manifesting objects in the UI.

Concepts such as classes were 
removed to get a simpler lan-
guage.

Good 
Design

A system should be built with a 
minimum set of unchangeable 
parts; those parts should be as gen-
eral as possible; and all parts of 
the system should be held in a uni-
form framework.

ARK contains the world of Small-
talk objects, any of which could 
appear as a simulated tangible 
object with mass and velocity 
(e.g., it was possible to grab the 
number 17 and throw it into orbit 
around a simulated planet).

Even the few operations that
were hard-wired in Smalltalk,
such as integer addition, iden-
tity comparison, and basic con-
trol structures such as
“ifTrue:” are user-definable in
Self.

Objects A computer language should sup-
port the concept of “object” and 
provide a uniform means for refer-
ring to the objects in its universe.

In ARK, the uniform means for 
referring to the objects mentioned 
in this principle included object 
references used in Smalltalk, but 
ARK added something with its 
ability to represent any object 
inside an alternate reality. In other 
words, uniformity of object access 
was passed up into the UI as well.

 A Self object is self-sufficient; no 
class is needed to specify an 
object’s structure or behavior.

Storage
Manage-
ment

To be truly object-oriented, a com-
puter system must provide auto-
matic storage management.

Generational, nondisruptive gar-
bage collection for young objects 
and feedback-mediated mark-
sweep for old objects.
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Messages Computing should be viewed as 
an intrinsic capability of objects 
that can be uniformly invoked by 
sending messages.

ARK, as Self would later, replaced 
the notion of variable access with 
message sends. Hence it might be 
seen as taking this principle even 
further.

Smalltalk includes both message 
passing and variable access/
assignment in its expressions. Self 
expressions includes only message 
passing; “variables” are realized 
by pairs of accessor/assignment 
methods.

Uniform
Metaphor

A language should be designed 
around a powerful metaphor that 
can be uniformly applied in all 
areas.

ARK took the metaphor of object 
and message inherited from the 
underlying Smalltalk level and 
pushed it up into the UI, in that 
every object could be manipulated 
as a tangible object on the screen 
with physical attributes such as 
mass and velocity, suitable for a 
simulated world. 

Self includes no separate scoping 
rules, and reuses objects and 
inheritance instead of Smalltalk’s 
special-purpose system and 
method dictionaries.

Modularity No component in a complex sys-
tem should depend on the internal 
details of any other component.

Self followed Smalltalk in restrict-
ing base-level access to other 
objects to only message-passing. 
However, Smalltalk includes mes-
sages, inherited by every class, 
that allow one object to inspect the 
internals of another (e.g., 
“instanceVarableAt:”). Self 
improves on Smalltalk’s modular-
ity by separating this facility into a 
separate reflection protocol, 
implemented by mirror objects. 
This facility can be disabled by 
turning off the one virtual machine 
primitive that creates mirror 
objects. 

Classifica-
tion

A language must provide a means 
for classifying similar objects, and 
for adding new classes of objects 
on equal footing with the system’s 
kernel classes.

ARK did not pay much attention 
to classification issues. New kinds 
of objects could be made by add-
ing new state to some existing 
instance, but they were anony-
mous, so the user did not even 
have a name to go on. 
The Smalltalk categories used in 
the browser were also used in the 
Alternate Reality Kit’s “ware-
house” icon, which strove to make 
an instance of any class selected 
from the warehouse’s pop-up hier-
archical menu. 

Self has no classes. We did not 
find them essential, opting to sup-
ply such structure at higher levels 
in the system.

Polymor-
phism

A program should specify only the 
behavior of objects, not their rep-
resentation.

In Self, even the code “within” an 
object is isolated from the object’s 
representation.

Factoring Each independent component in a 
system should appear in only one 
place.

Self’s prototype model, which did 
not build inheritance of structure 
into the language, simplifies the 
specification of multiple inherit-
ance.

Table 2: Ingalls’ Principles of Programming System Design (Continued)

Principle Smalltalk ARK Self
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7.2. Implementation techniques

The efficacy of the Self VM in obtaining good performance for
a dynamic, purely object-oriented language came at a high price
in complexity and maintainability. One issue that has arisen
since the original optimization work has been the difficulty of
finding intermittent bugs in a system that adaptively optimizes
and replaces stack frames behind the user’s back. Since 1995,
the Self virtual machine has been maintained primarily by
Ungar in his spare time, so the priorities have shifted from prob-
ing the limits of performance to reducing maintenance time.
Consequently, when we run Self today, we disable on-stack
replacement.

Looking back, it’s clear that the optimizations devised for Self
were both the hardest part of the project, spanning many years
and several researchers, and also—despite their complexity—its
most widely adopted part of the project. This experience argues
for stubborn persistence on the part of researchers and a large
dose of patience on the part of research sponsors.

7.3. UI2 and Morphic

On the whole we were satisfied with much of UI2. While the
principles of live editing and structural reification helped create
the sense of working within a world of tangible yet malleable
objects, we could imagine going further. Several things inter-
fered with full realization of those goals.

Multiple views.  The very existence of the outliner as a separate
view of a morph object weakened the sense of directness we
were after. After all, when one wanted to add a slot to an object,
one had to work on a different display object, the object’s out-
liner. We never had the courage or time to go after some of the
wild ideas that would have made possible the unification of any
morph with its outliner. Ironically, Self’s first interface, UI1,
probably did better in this respect because it limited itself to pre-
senting only outliners.

Text and object. There is a fundamental clash between the use
of text and the use of direct manipulation. A word inherently
denotes something, an object does not necessarily denote any-
thing. That is, when you see the word “cow,” an image comes to
mind, an image totally different from the word “cow” itself. It is
in fact difficult to avoid the image: that is the way that words are
supposed to work. Words stand for things, but a physical object
does not necessarily stand for anything. Textual notation and
object manipulation are fundamentally from two different reali-
ties.

Text is used quite a bit in Self, and its denotational character
weakens the sense of direct encounter with objects. For exam-
ple, many tools in the user interface employed a “printString” to
denote an object. The programmer working with one of these
tools might encounter the text “list (3, 7, 9).” The programmer
might know that this denoted an object which could be viewed
“directly” with an outliner. But why bother? The textual string
often says all one needs to know. The programmer moves on,
satisfied perhaps, yet not particularly feeling as if they encoun-
tered the list itself. The mind-set in a denotational world is dif-
ferent from that in a direct object world, and use of text created a
different kind of experience. Issues of use and mention in direct
manipulation interfaces were discussed further [SUC92].

8. Conclusion
Shall machines serve humanity, or shall humanity serve
machines? People create artifacts that then turn around and
reshape their creators. These artifacts include thought systems
that can have profound effects, such as quantum mechanics, cal-
culus, and the scientific method. In our own field thought sys-
tems with somewhat less profound effects might include
FORTRAN and Excel. Some thought systems are themselves
meta-thought systems; that is, they are ways of thinking fol-
lowed when building other thought systems. Since they guide
the construction of other thought systems, their impact can be
especially great, and one must be especially careful when
designing such meta-thought systems.

We viewed Self as a meta-thought system that represented our
best effort to create a system for computer programming. The
story of its creation reveals our own ways of thinking and how
other meta-thought systems shaped us [US87, SU95]. We kept
the language simple, built a complicated virtual machine that
would run programs efficiently even if they were well-factored,
and built a user interface that harnessed people’s experience in
dealing with the real word to off load conscious tasks to precog-
nitive mental facilities. We did all of this in the hope that the
experience of building software with the Self system would help
people to unleash their own creative powers.

However, we found ourselves trying to do this in a commercial
environment. Free markets tend to favor giving customers what
they want, and few customers could then (or even now) under-
stand that they might want the sort of experience we were creat-
ing. 

Years later, the Self project remains the authors’ proudest pro-
fessional accomplishment. We feel that Self brought new ideas
to language, implementation, programming environment, and

Virtual 
Machine

A virtual machine specification 
establishes a framework for the 
application of technology.

Reactive
Principle

Every component accessible to the 
user should be able to present 
itself in a meaningful way for 
observation and manipulation.

One of the main goals of ARK 
was to make objects feel more 
real, more directly present. This 
can be seen as an attempt to (as in 
the original articulation of this 
principle) “show the object in a 
more meaningful way for observa-
tion and manipulation.”

The Morphic User Interface 
improved upon the Smalltalk-80 
UI. In Smalltalk, scroll bars and 
menus could not be graphically 
selected, only used. In Self’s Mor-
phic they can. (Of course, Self has 
the luxury of a more powerful 
platform.)

Table 2: Ingalls’ Principles of Programming System Design (Continued)

Principle Smalltalk ARK Self
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graphical interface design. The original paper [US87] has been
cited over 500 times, and (as previously mentioned) received an
award at the OOSPLA 2006 conference for among the three
most influential conference papers published during OOPSLA’s
first 11 years (1985 through 1996). Self shows how related prin-
ciples can be combined to create a pure, productive, and fun
experience for programmers and users.

So, what happened? Why isn’t your word processor written in
Self? While we have discussed the struggle of ideas that gave
birth to Self, we have not addressed the complex of forces that
lead to adoption (or not) of new technology. The implementation
techniques were readily adopted, whereas semantic notions such
as using prototypes, and many of the user interface ideas behind
Morphic, were not so widely adopted. We believe that, despite
the pragmatic reasons mentioned in section 6.1.5, this discrep-
ancy can better be explained by the relative invisibility of the
virtual machine. If there are dynamic compilation techniques
going on underneath their program, most users are unlikely to
know or care. But the user interface framework and the language
semantics demand that our users think a certain way, and we
failed to convince the world that our way to think might be bet-
ter. Did our fault lie in trying to enable a creative spirit that we
mistakenly thought lay nascent within everybody? Or are there
economic implications to the use of dynamic languages that
make them unrealistic? Many of us in the programming lan-
guage research community secretly wonder if language research
has become irrelevant to most of the world’s programmers,
despite the obvious truth that in many ways, computers remain
painful, opaque black boxes that at times seem intent on spread-
ing new kinds of digital pestilence. 

Almost two decades after the conception of Self, the imbalance
of power between man and machine seems little better. We are
still waiting for computers to begin to live up to their full prom-
ise of being a truly malleable and creative medium. We earnestly
hope that Self may inspire those who still seek to simplify pro-
gramming and to bring it into coherence with the way most peo-
ple think about the real world.

9. Epilogue: Where Are They Now?
After the Self project, the people involved followed disparate
paths. Smith, Ungar, and Wolczko stayed at Sun Laboratories.
Randy Smith used Morphic’s shared space aspects to start a
project studying distance learning. He also worked on realtime
collaboration support for Java, then researched user interfaces
techniques for information visualization. Randy now works on
trying to make it easier to understand and use sensor networks.
He continues to use Self for an occasional quick prototype,
especially when a live shared-space demo would be useful.

David Ungar has used Self in much of his research. With help
from Michael Abd-El Malek, the complex Self virtual machine
was ported to the Macintosh computer system. David also
worked on Sun’s HotSpot Java virtual machine, and until
recently was researching Klein, a meta-circular VM architecture
in Self for Self [USA05].

After a brief flirtation with binary translation, Mario Wolczko
worked on Sun’s ExactVM (a.k.a. Solaris Production Release of
Java 1.2 JVM), then managed the group that developed the
research prototype for Sun’s KVM, a Java VM for small
devices. Since then he has been working on architecture support
for Java, automatic storage reclamation, and objects, as well as
performance monitoring hardware for various SPARC micro-
processors at Sun Microsystems Laboratories.

Elgin Lee went to ParcPlace Systems, and now does legal con-
sulting.

Lars Bak left Sun to build a high performance virtual machine
for Smalltalk at the startup Animorphic Systems. The technol-
ogy was adapted to Java, and the Java HotSpot system was born.
Sun acquired the startup and Bak ended up leading the HotSpot
project until it successfully shipped in 1997. Next, Bak designed
a lean and mean Java virtual machine for mobile phones, com-
mercialized by Sun as CLDC HI. Bak left Sun again to pursue
even smaller virtual machines. The startup OOVM was founded
to create an always running Smalltalk platform for small embed-
ded devices. The platform had powerful reflective features
despite a memory footprint of 128KB. OOVM was acquired by
Esmertec AG.

After the Self project, Ole Agesen implemented a Java-to-Self
translator that, for a time, seemed to be the world’s fastest Java
system. Then he spearheaded a project at Sun incorporating
exact garbage collection into Sun’s original JVM; after that, he
went to VMware, working on efficient software implementa-
tions of x86 CPUs. Many of the implementation techniques suc-
cessful in dynamic languages can be reused for x86: it is really
just a different kind of bytecode (x86) that is translated. More
specifically, Ole has been on the team that designed and imple-
mented the SMP version of VMware; more recently, he has
worked on supporting 64-bit ISAs (x86-64).

Since graduating from Stanford, Craig Chambers has been a
professor at the University of Washington, where he worked on
language designs including Cecil, MultiJava, ArchJava, and
EML, and on optimizing compiler techniques primarily target-
ing object-oriented languages. The language designs were
inspired by Self’s high level of simplicity and uniformity, while
also incorporating features such as multiple dispatching and
polymorphic, modular static type checking. The optimizing
compiler research directly followed the Self optimizing dynamic
compiler research, in some cases exploring alternative tech-
niques such as link-time whole-program compilation as in the
Vortex compiler, and in other cases applying (staged) dynamic
compilation to languages such as C, as in the DyC project.

After Self, Bay-Wei Chang was at PARC for four years working
on document editing, annotating, and reading interfaces for web,
desktop, and mobile devices. For the past six years, Chang has
been at the research group at Google working on bits of every-
thing, including web characterization, mobile interfaces, e-mail
interfaces, web search interfaces and tools, and advertising
tools.

After Self, Urs Hölzle was at UCSB from 1994-99 as Assistant/
Associate Professor. During that time, he also worked part-time
with Lars Bak, first at Animorphic and then at Sun’s Java orga-
nization on what became Sun’s HotSpot JVM. Since 1999 Höl-
zle has been at Google in various roles (none involving dynamic
compilation to date!), first as search engine mechanic and later
as VP Engineering for search quality, hardware platforms, and
as VP of Operations.

From the Self group, John Maloney went to work for Alan Kay
for about six years, first at Apple’s Advanced Technology Group
and then at Walt Disney Imagineering R&D. (Alan Kay moved
the entire group from Apple to Disney.) While there, John
helped implement the Squeak Virtual Machine, notable because
the VM itself was written (and debugged) in Smalltalk, then
automatically translated into C code for faster execution. This
technique resulted in an extremely portable, stable, and plat-
form-independent virtual machine. Once they had the VM, John
re-implemented Morphic in Smalltalk with very few design
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changes from the Self version. The Morphic design has stood
the test of time and has enabled a rich set of applications in
Squeak, including the EToys programming system for children.
In October 2002, John moved to the Lifelong Kindergarten
Group at the MIT Media Lab, where he became the lead pro-
grammer for Scratch, a media-rich programming system for
kids. Scratch is built on top of Squeak and Morphic. Is it cur-
rently in beta testing at sites around the world and will become
publicly available in the summer of 2006.
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11. Appendix: Self Release Announcements

11.1. Self 2.0

What: Self 2.0 Release
From: hoelzle@Xenon.Stanford.EDU (Urs Hoelzle)
Date: 10 Aug 92 21:08:25 GMT

Announcing Self Release 2.0

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University is pleased to announce Release 2.0 of the
experimental object-oriented exploratory programming lan-
guage Self.

Release 2.0 introduces full source-level debugging of optimized
code, adaptive optimization to shorten compile pauses, light-
weight threads within Self, support for dynamically linking for-
eign functions, changing programs within Self, and the ability to
run the experimental Self graphical browser under OpenWin-
dows.

Designed for expressive power and malleability, Self combines
a pure, prototype-based object model with uniform access to
state and behavior. Unlike other languages, Self allows objects
to inherit state and to change their patterns of inheritance
dynamically. Self’s customizing compiler can generate very
efficient code compared to other dynamically-typed object-ori-
ented languages.

Self Release 2.0 runs on Sun-3’s and Sun-4’s, but no longer has
an optimizing compiler for the Sun-3 (and therefore runs slower
on the Sun-3 than previous releases).

This release is available free of charge and can be obtained via
anonymous ftp from self.stanford.edu. Unlike previous releases,
Release 2.0 includes all source code and is legally unencum-
bered (see the LICENSE file for legal information.) Also avail-
able for ftp are a number of papers published about Self.

Finally, there is a mail group for those interested in random ram-
blings about Self, self-interest@self.stanford.edu. Send mail to
self-request@self.stanford.edu to be added to it (please do not
send such requests to the mailing list itself!).

The Self Group at Sun Microsystems Laboratories, Inc. and
Stanford University

11.2. Self 3.0

From: hoelzle@Xenon.Stanford.EDU (Urs Hoelzle)
Subject: Announcing Self 3.0
Date: 28 Dec 93 22:19:34 GMT

ANNOUNCING Self 3.0

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University is pleased to announce Release 3.0 of the
experimental object-oriented programming language Self. This
release provides simple installation, and starts up with an inter-
active, animated tutorial. 

Designed for expressive power and malleability, Self combines
a pure, prototype-based object model with uniform access to
state and behavior. Unlike other languages, Self allows objects
to inherit state and to change their patterns of inheritance
dynamically. Self’s customizing compiler can generate very
efficient code compared to other dynamically-typed object-ori-
ented languages.

The latest release is more mature than the earlier releases: more
Self code has been written, debugging is easier, multiprocessing
is more robust, and more has been added to the experimental
graphical user interface which can now be used to develop code.
There is now a mechanism (still under development) for saving
objects in modules, and a source-level profiler.

The Self system is the result of an ongoing research project and
therefore is an experimental system. We believe, however, that
the system is stable enough to be used by a larger community,
giving people outside of the project a chance to explore Self.

2 This Release

This release is available free of charge and can be obtained via
anonymous ftp from Self.stanford.edu. Also available for ftp are
a number of published papers about Self. There is a mail group
for those interested in random ramblings about Self, Self-inter-
est@Self.stanford.edu. Send mail to self-request@self.stan-
ford.edu to be added to it (please do not send such requests to
the mailing list itself!). 

2.1 Implementation Status

Self currently runs on SPARC-based Sun workstations running
SunOS 4.1.x or Solaris 2.3. The Sun-3 implementation is no
longer provided.

2.2 Major Changes 

Below is a list of changes and enhancements that have been
made since the last release (2.0.1). Only the major changes are
included.

• The graphical browser has been extended to include editing
capabilities. All programming tasks may now be performed
through the graphical user interface (the “ui”). Type-ins
allow for expression evaluation, menus support slot editing,
and methods can be entered and edited. If you are familiar
with a previous version of the Self system, Section 14.1 of
the manual entitled “How to Use Self 3.0” contains a quick
introduction to the graphical user interface. The impatient
might want to read that first.

• A mechanism - the transporter - has been added to allow
arbitrary object graphs to be saved into files as Self source.
The system has been completely modularized to use the
transporter; every item of source now resides in a trans-
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porter-generated module. Transport-generated files have the
suffix .sm to distinguish them from “handwritten” files
(.Self), though this may change as we move away from
handwritten source. The transporter is usable but rough, we
are still working on it. 

• Every slot or object may now have an annotation describing
the purpose of the slot. In the current system, annotations are
strings used to categorize slots. We no longer categorize
slots using explicit category parent objects. Extra syntax is
provided to annotate objects and slots.

• A new profiler has been added, which can properly account
for the time spent in different processes and the run-time
system, and which presents a source-level profile including
type information (i.e., methods inherited by different objects
are not amalgamated in the profile, nor are calls to the same
method from different sites). It also presents a consistent
source-level view, abstracting from the various compiler
optimizations (such as inlining) which may confuse the pro-
grammer. 

• Privacy is not enforced, although the privacy syntax is still
accepted. The previous scheme was at once too restrictive
(in that there was no notion of “friend” objects) and too lax
(too many object had access to a private slot). We hope to
include a better scheme in the next release.

• The “new” compiler has been supplanted by the SIC (“sim-
ple inlining compiler”), and the standard configuration of the
system is to compile first with a fast non-optimizing com-
piler and to recompile later with the SIC. Pauses due to com-
pilation or recompilation are much smaller, and applications
usually run faster. 

• Characters are now single-byte strings. There is no separate
character traits. 

• Prioritized inheritance has been removed; the programmer
must now manually resolve conflicts. We found the priority
mechanism of limited use, and had the potential for obscure
errors.

2.4 Bug Reports 

Bug reports can be sent to self-bugs@self.stanford.edu. Please
include an exact description of the problem and a short Self pro-
gram reproducing the bug. 

2.5 Documentation 

This release comes with two manuals: 
How to Use Self 3.0 (SelfUserMan.ps) 
The Self Programmer’s Reference Manual (progRef.ps) 

Happy Holidays!

-- The Self Group

11.3. Self 4.0

Below is a redacted form of the Self 4.0 release announcement
made on July 10, 1995. The text we do include has not been
edited.

The Self Group at Sun Microsystems Laboratories, Inc., and
Stanford University has made available Release 4.0 of the
experimental object-oriented programming language Self.

This release of Self 4.0 provides simple installation, and starts
up with an interactive, animated tutorial (a small piece of which
is shown below).

Self 4.0 is, in some sense, the culmination of the Self project,
which no longer officially exists at Sun. It allows novices to start
by running applications, smoothly progress to building user
interfaces by directly manipulating buttons, frames and the like,
progress further to altering scripts, and finally to ascend to the
heights of complete collaborative application development, all
without ever stumbling over high cognitive hurdles.

Its user interface framework features automatic continuous lay-
out, support for ubiquitous animation, direct-manipulation-
based construction, the ability to dissect any widget you can see,
and large, shared, two-dimensional spaces.

Its programming environment is based on an outliner metaphor,
and features rapid turnaround of programming changes. It
includes a plethora of tools for searching the system. Its debug-
ger supports in-place editing. A structure editor supports some
static type checking and helps visualize complex expressions.
Finally, the programming environment features the new trans-
porter, which eases the task of saving programs as source files.

Self 4.0 includes two applications: an experimental web
browser, and an experimental Smalltalk system.

Major Changes in Self 4.0. 

Below is a list of changes and enhancements that have been
made since the last release (4.0). Only the major changes are
included.

• This release contains an entirely new user interface and pro-
gramming environment which enables the programmer to
create and modify objects entirely within the environment,
then save the objects into files. You no longer have to edit
source files using an external editor. The environment
includes a graphical debugger, and tools for navigation
through the system.
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• Any Self window can be shared with other users on the net:
users each have their own cursor, and can act independently
to grab and manipulate objects simultaneously. A Self win-
dow is actually a framed view onto a vast two-dimensional
plane: users can move their frames across this surface, bring-
ing them together to work on the same set of objects, or
moving apart to work independently.

• A new version of the transporter, a facility for saving objects
structure into files, has been used to modularize the system.
The programming environment presents an interface to the
module system which allows for straightforward categoriza-
tion of objects and slots into modules, and the mostly-auto-
matic saving of modules into files. Handwritten source files
have almost completely disappeared.

• The environment has been constructed using a new, flexible
and extensible user interface construction kit, based on
“morphs.” Morphs are general-purpose user interface com-
ponents. An extensive collection of ready-built morphs is
provided in the system, together with facilities to inspect,
modify, and save them to files. We believe the morph-based
substrate provides an unprecedented degree of directness
and flexibility in user interface construction.

• An experimental Web browser has been written in Self and
is included in the release. This browser supports collabora-
tive net-surfing, and the buttons and pictures from Web
pages can easily be removed and embedded into applica-
tions.

• A Smalltalk system is included in Self 4.0. This system is
based on the GNU system classes, a translator that reads
Smalltalk files and translates them to Self, and a Smalltalk
user interface. The geometric mean of four medium-sized
benchmarks we have tried suggests that this system runs
Smalltalk programs 1.7 times faster than commercially
available Smalltalk on a SPARCstation.

• Significant engineering has been done on the Virtual
Machine to reduce the memory footprint and enhance mem-
ory management. For example, a 4.0 system containing a
comparable collection of objects to that in the 3.0 release
requires 40% less heap space. A SELF-level interface to the
memory system is now available that enables SELF code to
be notified when heap space is running low, and to expand
the heap.

• The privacy syntax has been removed; in the previous
release it was accepted but privacy was not enforced. The
concept of privacy still exists, and is visible in the user inter-
face, but is supported entirely through the annotation sys-
tem.

SELF currently runs on SPARC-based Sun workstations using
Solaris 2.3 or later, or SunOS 4.1.x. The compiler is an
improved version of the one used in 3.0.

System requirements. To run SELF you will need a SPARC-
based Sun computer or clone running SunOS 4.1.X or Solaris
2.3 or 2.4.

To use the programming environment you will need to run X
Windows version 11 or OpenWindows on an 8-bit or deeper
color display. The X server need not reside on the same host as
SELF.

The SELF system as distributed, with on-line tutorial, Web
browser and Smalltalk emulator, requires a machine with 48Mb
of RAM or more to run well.

The user interface makes substantial demands of the X server. A
graphics accelerator (such as a GX card) improves the respon-
siveness of the user interface significantly, and therefore we rec-
ommend that you use one if possible.

We hope that you enjoy using Self as much as we do.

-- The Self Group July 10, 1995

11.4. Self 4.3 (The latest release as of 2006)

The Power of Simplicity
Release 4.3

Adam Spitz, Alex Ausch, and David Ungar
Sun Microsystems Laboratories

June 30, 2006
Late-breaking news. Self now runs under Intel-based Macin-
toshes (as well as PowerPC-based and SPARC™-based sys-
tems), though it does not yet run on Windows or Linux.
Additionally, the original Self user interface (UI1) has been res-
urrected, although its cartoon-animation techniques have not yet
been incorporated into the default Self user interface (UI2). See
the included release notes for a full list of changes.

Downloading. If you want to run Self 4.3, download and unpack
one of the following:

• Self 4.3 for Mac OS X in compressed disk image format, or

• Self 4.3 for SPARC™ workstations from Sun Microsystems
running the Solaris™ operating system in tar/gzip format

See the release notes for directions on how to run Self. (We’re
hoping that the procedure is fairly self-explanatory, though. If
it’s not, please contact us!)

If you also want to work on the Self virtual machine (most users
will not want to do this), you will need to download one of the
above packages, and you will also need one of the following:

• Virtual machine and Self sources in compressed disk image
format, or

• Virtual machine and Self sources in tar/gzip format
What Self is. Self is a prototype-based dynamic object-oriented
programming language, environment, and virtual machine cen-
tered around the principles of simplicity, uniformity, concrete-
ness, and liveness. It was developed by the Self Group at Sun
Microsystems Laboratories, Inc. and Stanford University.

Although Self is no longer an official project at Sun Microsys-
tems Laboratories, we have seen many of Self’s innovations
adopted. The Morphic GUI framework has been incorporated
into Squeak, and the virtual machine ideas provided the initial
inspiration for the Java™ HotSpot™ performance engine. How-
ever, the language and especially the programming environment
still provide a unique experience.

We have decided to do a new release because we have ported the
virtual machine to the x86 architecture, so that it can run on the
new Intel-based Macintosh computers (Mac Mini, MacBook,
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iMac). The system is far from polished, but we have used Self
on Mac OS X to do many hours of work on G4 Powerbooks and
on the new Intel-based Macs.

Although our code is completely independent of theirs, we
would be remiss if we did not mention Gordon Cichon and
Harald Gliebe, who have also done an x86 port of Self. Their
port runs on both Linux and Windows (which ours does not, yet
- we would be thrilled if some kind soul were to port this latest
version of Self to either of those platforms).

We hope that you will enjoy the chance to experience a different
form of object-oriented programming.

Support. If you want to discuss Self with other interested peo-
ple, there is a mailing list at self-interest@egroups.com. We
would like to thank Jecel Assumpcao Jr. for investing the time
and effort to deeply understand the Self system, and furthermore
for his help in explaining Self to many folks on the Self mailing
list. Jecel also hosts the Self Swiki.

For information on the programming environment (essentially
unchanged for Self 4.3), please refer to the Web page on Self
4.0.

Supplemental Information. 

• An HTML version of the Self tutorial, `Prototype-Based
Application Construction Using Self 4.0’, courtesy of Steve
Dekorte. Thanks, Steve!

• In addition, see the Self bibliography for a listing of Self
papers with on-line abstract

Acknowledgments. 
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Abstract 
This paper tells the story of the development of BETA: a 
programming language with just one abstraction 
mechanism, instead of one abstraction mechanism for each 
kind of program element (classes, types, procedures, 
functions, etc.). The paper explains how this single 
abstraction mechanism, the pattern, came about and how it 
was designed to be so powerful that it covered the other 
mechanisms. 

In addition to describing the technical challenge of 
capturing all programming elements with just one 
abstraction mechanism, the paper also explains how the 
language was based upon a modeling approach, so that it 
could be used for analysis, design and implementation. It 
also illustrates how this modeling approach guided and 
settled the design of specific language concepts. 

The paper compares the BETA programming language with 
other languages and explains how such a minimal language 
can still support modeling, even though it does not have 
some of the language mechanisms found in other object-
oriented languages. 

Finally, the paper tries to convey the organization, working 
conditions and social life around the BETA project, which 
turned out to be a lifelong activity for Kristen Nygaard, the 
authors of this paper, and many others. 

Categories and subject descriptors: D.3.2 
[PROGRAMMING LANGUAGES]: Language 
Classifications – BETA; D.3.3 [PROGRAMMING 
LANGUAGES]: Language Constructs and Features; K.2 
[HISTORY OF COMPUTING] Software; D.1.5 
[PROGRAMMING TECHNIQUES]: Object-oriented 
Programming; General Terms: Languages; Keywords: 
programming languages, object-oriented programming, 
object-oriented analysis, object-oriented design, object-
oriented modeling, history of programming. 

 
 

1. Introduction 
This paper is a description of what BETA is, why it became 
what it is and why it lacks some of the language constructs 
found in other languages. In addition, it is a history of the 
design and implementation of BETA, its main uses and its 
main influences on later research and language efforts. 

BETA is a programming language that has only one 
abstraction mechanism, the pattern, covering abstractions 
like record types, classes with methods, types with 
operations, methods, and functions. Specialization applies 
to patterns in general, thus providing a class/subclass 
mechanism for class patterns, a subtype mechanism for type 
patterns, and a specialization mechanism for methods and 
functions. The latter implies that inheritance is supported 
for methods – another novel characteristic of BETA. A 
pattern may be virtual, providing virtual methods as in 
other object-oriented languages. Since a pattern may be 
used as a class, virtuality also supports virtual classes (and 
types). 

This paper is also a contribution to the story of the late 
Kristen Nygaard, one the pioneers of computer science, or 
informatics as he preferred to call it. Nygaard started the 
BETA project as a continuation of his work on SIMULA 
and system description. This was the start of a 25-year 
period of working with the authors, not only on the design 
of the BETA language, but also on many other aspects of 
informatics. 

The BETA project was started in 1976 and was originally 
supposed to be completed in a year or two. For many 
reasons, it evolved into an almost lifelong activity 
involving Nygaard, the authors of this paper and many 
others. The BETA project became an endeavor for 
discussing issues related to programming languages, 
programming and informatics in general. 

The BETA project covers many different kinds of activities 
from 1976 until today. We originally tried to write this 
paper in historic sequence, and so that it can be read with 
little or no prior knowledge of BETA. We have not, 
however, organized the paper according to time periods, 
since the result included a messy mix of distinct types of 
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events and aspects, too much overlap, and too little focus 
on important aspects. The resulting paper is organized as 
follows: 

� Section 2 describes the background of the project. 
� Section 3 describes the course of the BETA project, 

including people, initial research ideas, project 
organization and the process as well as personal 
interactions.  
� Section 4 describes the motivation and development of 

the modeling aspects and the conceptual framework of 
BETA.  
� Section 5 describes parts of the rationale for the BETA 

language, the development of the language, and essential 
elements of BETA.  
� Section 6 describes the implementation of BETA.  
� Section 7 describes the impact and further development 

of BETA. 
Sections 3-6 form the actual story of BETA enclosed by 
background (section 2) and impact (section 7). Sections 3-6 
describe distinct aspects of BETA. The story of the overall 
BETA project in section 3 forms the foundation/context for 
the following aspects. This is how it all happened. 
Modeling is essential for the design of BETA. This 
perspective on design of and programming in object-
oriented languages is presented in section 4. Throughout 
the presentation of the various language elements in the 
following section the choices are discussed and motivated 
by the conceptual framework in section 4. Section 5 
presents the major elements of BETA. Because BETA may 
be less known, a more comprehensive presentation is 
necessary in order to describe its characteristics. However, 
the presentation is still, and should be, far from a complete 
definition of the language. Finally, the implementation of 
BETA, historically mainly following after the language 
design, is outlined in section 6.  

In order to give a sequential ordering of the various events 
and activities, a timeline for the whole project is shown in 
the appendix. In the text events shown in the timeline are 
printed in Tunga font. For example, text like: “… BETA 
Project start …” means that this is an event shown in the 
time line. 

2. Background 
This section describes the background and setting for the 
early history of BETA. It includes personal backgrounds 
and a description of the important projects leading to the 
BETA project. 

2.1 People 
The BETA project was started in 1976 at the Computer 
Science Department, Aarhus University (DAIMI). Bent 
Bruun Kristensen and Ole Lehrmann Madsen had been 

students at DAIMI since 1969 – Birger Møller-Pedersen 
originally started at the University of Copenhagen, but 
moved to DAIMI in 1974. Nygaard was Research Director 
at the Norwegian Computing Centre (NCC), Oslo, where 
the SIMULA languages [32-34, 130] were developed in the 
sixties. 

In the early seventies, the programming language scene was 
strongly influenced by Pascal [161] and structured 
programming. SIMULA was a respected language, but not 
in widespread use. Algol 60 [129] was used for teaching 
introductory programming at DAIMI. Kristensen and 
Madsen were supposed to be introduced to SIMULA as the 
second programming language in their studies. However, 
before that happened Pascal arrived on the scene in 1971, 
and most people were fascinated by its elegance and 
simplicity as compared to Algol. Pascal immediately 
replaced SIMULA as the second language and a few years 
later Pascal also replaced Algol as the introductory 
language for teaching at DAIMI. A few people, however, 
found SIMULA superior to Pascal: the Pascal record and 
variant record were poor substitutes for the SIMULA class 
and subclass. 

Although SIMULA was not in widespread use, it had a 
strong influence on the notion of structured programming 
and abstract data types. The main features of SIMULA 
were described in the famous book by Dahl, Dijkstra and 
Hoare on structured programming [29]. Hoare’s 
groundbreaking paper Proof of Correctness of Data 
Representation [56] introduced the idea of defining abstract 
data types using the SIMULA class construct and the 
notion of class invariant. 

Kristen Nygaard visiting professor at DAIMI. Nygaard 
became a guest lecturer at DAIMI in 1973; in 1974/75 he 
was a full-time visiting professor, and after that he 
continued as a guest lecturer for several years. Among 
other things, Nygaard worked with trade unions in Norway 
to build up expertise in informatics. At that time there was a 
strong interest among many students at DAIMI and other 
places in the social impact of computers. Nygaard’s work 
with trade unions was very inspiring for these students. 
During the ’70s and ’80s a number of similar projects were 
carried out in Scandinavia that eventually led to the 
formation of the research discipline of system development 
with users, later called participatory design. The current 
research groups at DAIMI in object-oriented software 
systems and human computer interaction are a direct result 
of the cooperation with Nygaard. This is, however, another 
story that will not be told here. The design of BETA has 
been heavily influenced by Nygaard's overall perspective 
on informatics including social impact, system description 
with users, philosophy, and programming languages. For 
this reason the story of BETA cannot be told without 
relating it to Nygaard’s other activities. 
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Morten Kyng was one of the students at DAIMI who was 
interested in social aspects of computing. In 1973 he 
listened to a talk by Nygaard at the Institute of Psychology 
at Aarhus University. After the talk he told Nygaard that he 
was at the wrong place and invited him to repeat his talk at 
DAIMI. Kyng suggested to DAIMI that Nygaard be invited 
as a guest lecturer. The board of DAIMI decided to do so, 
since he was considered a good supplement to the many 
theoretical disciplines in the curriculum at DAIMI at that 
time. Madsen was a student representative on the board; he 
was mainly interested in compilers and was thrilled about 
Nygaard being a guest lecturer. He thought that DAIMI 
would then get a person that knew about the SIMULA 
compiler. This turned out not to be the case: compiler 
technology was not his field. This was our first indication 
that Nygaard had a quite different approach to informatics 
and language design from most other researchers. 

2.2 The SIMULA languages 
Since SIMULA had a major influence on BETA we briefly 
mention some of the highlights of SIMULA. A 
comprehensive history of the SIMULA languages may be 
found in the HOPL-I proceedings [35] and in [107]. 
SIMULA and object-oriented programming were 
developed by Ole-Johan Dahl and Nygaard. Nygaard’s 
original field was operations research and he realized early 
on that computer simulations would be a useful tool in this 
field. He then made an alliance with Dahl, who – as 
Nygaard writes in an obituary for Dahl [132] – had an 
exceptional talent for programming. This unique 
collaboration led to the first SIMULA language, SIMULA 
I, which was a simulation language. Dahl and Nygaard 
quickly realized that the concepts in SIMULA I could be 
applied to programming in general and as a result they 
designed SIMULA 67 – later on just called SIMULA. 
SIMULA is a general-purpose programming language that 
contains Algol as a subset. 

Users of today’s object-oriented programming languages 
are often surprised that SIMULA contains many of the 
concepts that are now available in mainstream object-
oriented languages: 

� Class and object: A class defines a template for creating 
objects. 
� Subclass: Classes may be organized in a classification 

hierarchy by means of subclasses. 
� Virtual methods: A class may define virtual methods that 

can be redefined  (sometimes called overridden) in 
subclasses. 
� Active objects: An object in SIMULA is a coroutine and 

corresponds to a thread. 
� Action combination: SIMULA has an “inner” construct 

for combining the statement-parts of a class and a 
subclass. 

� Processes and schedulers: It is straightforward in 
SIMULA to write new concurrency abstractions 
including schedulers.  
� Frameworks: SIMULA provided the first object-oriented 

framework in form of class Simulation, which provided 
SIMULA I’s simulation features. 
� Automatic memory management, including garbage 

collection. 
Most of the above concepts are now available in object-
oriented languages such as C++ [148], Eiffel [125], Java 
[46], and C# [51]. An exception is the SIMULA notion of 
an active object with its own action sequence, which 
strangely enough has not been adopted by many other 
languages (one exception is UML). For Dahl and Nygaard 
it was essential to be able to model concurrent processes 
from the real world.  

The ideas of SIMULA have been adopted over a long 
period. Before object orientation caught on, SIMULA was 
very influential on the development of abstract data types. 
Conversely, ideas from abstract data types later led to an 
extension of SIMULA with constructs like public, private 
and protected – originally proposed by Jakob Palme [137]. 

2.3 The DELTA system description language 
When Nygaard came to DAIMI, he was working on system 
description and the design of a new language for system 
description based on experience from SIMULA. It turned 
out that many users of SIMULA seemed to get more 
understanding of their problem domain by having to 
develop a model using SIMULA than from the actual 
simulation results. Nygaard together with Erik Holbæk-
Hanssen and Petter Håndlykken had thus started a project 
on developing a successor to SIMULA with main focus on 
system description, rather than programming. This led to a 
language called DELTA [60].   

DELTA means ‘participate’ in command form in 
Norwegian. The name indicates another main goal of the 
DELTA language. As mentioned, Nygaard had started to 
include users in the design of systems and DELTA was 
meant as a language that could also be used to 
communicate with users – DELTA (participate!) was meant 
as an encouragement for users to participate in the design 
process. 

The goal of DELTA was to improve the SIMULA 
mechanisms for describing real-world systems. In the real 
world, activities take place concurrently, but real 
concurrency is not supported by SIMULA. To model 
concurrency SIMULA had support for so-called quasi-
parallel systems. A simulation program is a so-called 
discrete event system where a simulation is driven by 
discrete events generated by the objects of the simulation. 
All state changes had to be described in a standard 
imperative way by remote procedure calls (message calls), 
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assignments and control structures. DELTA supports the 
description of true concurrent objects and uses predicates to 
express state changes and continuous changes over time. 
The use of predicates and continuous state changes implied 
that DELTA could not be executed, but as mentioned the 
emphasis was on system description. 

DELTA may be characterized as a specification language, 
but the emphasis was quite different from most other 
specification languages at that time such as algebraic data 
types, VDL, etc. These other approaches had a 
mathematical focus in contrast to the system description 
(modeling) focus of DELTA. 

DELTA had a goal similar to that of the object-oriented 
analysis and design (OOA/OOD) methodologies (like that 
of Coad and Yourdon [25]) that appeared subsequently in 
the mid-’80s. The intention was to develop languages and 
methodologies for modeling real-world phenomena and 
concepts based on object-oriented concepts. Since 
SIMULA, modeling has always been an inherent part of 
language design in the Scandinavian school of object 
orientation. The work on DELTA may be seen as an 
attempt to further develop the modeling capabilities of 
object-orientation. 

The report describing DELTA is a comprehensive 
description of the language and issues related to system 
description. DELTA has been used in a few projects, but it 
is no longer being used or developed.  

The system concept developed as part of the DELTA 
project had major influence on the modeling perspective of 
BETA – in Section 4.1 we describe the DELTA system 
concept as interpreted for BETA. 

2.4 The Joint Language Project 
BETA project start. The BETA project was started in 1976 
as part of what was then called the Joint Language Project 
(JLP). The JLP was a joint project between researchers at 
DAIMI, The Regional Computing Center at the University 
of Aarhus (RECAU), the NCC and the University of 
Aalborg.  

Joint Language Project start. The initiative for the JLP was 
taken in the autumn of 1975 by the late Bjarner Svejgaard, 
director of RECAU. Svejgaard suggested to Nygaard that it 
would be a good idea to define a new programming 
language based on the best ideas from SIMULA and 
Pascal. Nygaard immediately liked the idea, but he was 
more interested in a successor to SIMULA based on the 
ideas from DELTA. In the BETA Language Development 
report from November 1976 [89] the initial purpose of the 
JLP was formulated as twofold: 

1. To develop and implement a high-level programming 
language as a projection of the DELTA system 

description language into the environment of 
computing equipment. 

2. To provide a common central activity to which a 
number of research efforts in various fields of 
informatics and at various institutions could be related. 

The name GAMMA was used for this programming 
language. 

JLP was a strange project: on the one hand there were many 
interesting discussions of language issues and problems, 
while on the other hand there was no direct outcome. At 
times we students on the project found it quite frustrating 
that there was no apparent progress. We imagine that this 
may have been frustrating for the other members of the 
project as well. In hindsight we believe that the reason for 
this may have been a combination of the very different 
backgrounds and interests of people in the team combined 
with Nygaard’s lack of interest in project management. 
Nygaard’s strengths were his ability to formulate and 
pursue ambitious research goals, and his approach to 
language design with emphasis on modeling was unique. 

Many issues were discussed within the JLP, mainly related 
to language implementation and some unresolved questions 
about the DELTA language. As a result six subprojects 
were defined: 

� Distribution and maintenance. This project was to 
discuss issues regarding software being deployed to a 
large number of computer installations of many different 
types. This included questions such as distribution 
formats, standardized updating procedures, 
documentation, interfaces to operating systems, etc.  
� Value types. The distinction between object and value 

was important in SIMULA and remained important in 
DELTA and BETA. For Nygaard classes were for 
defining objects and types for defining values. He found 
the use of the class concept for defining abstract data 
types a ‘doubtful approach, easily leading to conceptual 
confusion’ with regard to objects and values. In this 
paper we use the term value type1 when we refer to types 
defining values. The purpose of this subproject was to 
discuss the definition of value types. We return to value 
types in Sections 5.1.1 and 5.8.2. 
� Control structures within objects. The purpose of this 

subproject was to develop the control structures for 
GAMMA.  
� Contexts. The term “system classes” was used in 

SIMULA to denote classes defining a set of predefined 
concepts (classes) for a program. The classes SIMSET 
and SIMULATION are examples of such system classes. 

                                                                 
1 In other contexts, we use the term type, as is common within 

programming languages. 
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Møller-Pedersen later revised and extended the notion of 
system classes and proposed the term “context”. In 
today’s terminology, class SIMSET was an example of a 
class library providing linked lists and class 
SIMULATION was an example of a class framework (or 
application framework). 
� Representative states. A major problem with concurrent 

programs was (and still is) to ensure that interaction 
between components results only in meaningful states of 
variables – denoted representative states in JLP. At that 
time, there was much research in concurrent 
programming including synchronization, critical regions, 
monitors, and communication. This subproject was to 
develop a conceptual approach to this problem, based 
upon the concepts of DELTA and work by Lars 
Mathiassen and Morten Kyng. 
� Implementation language. In the early seventies, it was 

common to distinguish between general programming 
languages and implementation languages. An 
implementation language was often defined as an 
extended subset of the corresponding programming 
language. The subset was supposed to contain the parts 
that could be efficiently implemented – an 
implementation language should be as efficient as 
possible to support the general language. The extended 
part contained low level features to access parts of the 
hardware that could not be programmed with the general 
programming language. It was decided to define an 
implementation language called BETA as the 
implementation language for GAMMA. The original 
team consisted of Nygaard, Kristensen and Madsen – 
Møller-Pedersen joined later in 1976. 

As described in Section 3.1 below, the BETA project was 
based on an initial research idea. This implied that there 
was much more focus on the BETA project than on the 
other activities in JLP. For the GAMMA language there 
were no initial ideas except designing a new language as a 
successor of SIMULA based on experience with DELTA 
and some of the best ideas of Pascal. In retrospect, 
language projects, like most other projects, should be based 
on one or more good ideas – otherwise they easily end up 
as nothing more than discussion forums. JLP was a useful 
forum for discussion of language ideas, but only the BETA 
project survived. 

2.5 The BETA name and language levels 
The name BETA was derived from a classification of 
language levels introduced by Nygaard, introducing a 
number of levels among existing and new programming 
languages. The classification by such levels would support 
the understanding of the nature and purpose of individual 
languages. The classification also motivated the existence 
of important language levels.  

� The δ-level contains languages for system description 
and has the DELTA language as an example. A main 
characteristic of this level is that languages are non-
executable. 

� The γ-level contains general-purpose programming 
languages. SIMULA, Algol, Pascal, etc. are all examples 
of such languages. The JLP project was supposed to 
develop a new language to be called GAMMA. 
Languages at this level are by nature executable. 

� The β-level contains implementation languages – and 
BETA was supposed to be a language at this level. 

� The α-level contains assembly languages – it is seen as 
the basic “machine” level at which the actual translation 
takes place and at which the systems are run.  

The level sequence defines the name of the BETA 
language, although the letter β was replaced by a spelling of 
the Greek letter β. Other names were proposed and 
discussed from time to time during the development of 
BETA. At some point the notion of beta-software became a 
standard term and this created a lot of confusion and jokes 
about the BETA language and motivated another name. For 
many years the name SCALA was a candidate for a new 
name – SCALA could mean SCAndinavian Language, and 
in Latin it means ladder and could be interpreted as 
meaning something ‘going up’. The name of a language is 
important in order to spread the news appropriately, but 
names somehow also appear out of the blue and tend to 
have lives of their own. BETA was furthermore well 
known at that time and it was decided that it did not make 
sense to reintroduce BETA under a new name. 

3. The BETA project 
The original idea for BETA was that it should be an 
implementation language for a family of application 
languages at the GAMMA level. Quite early2 during the 
development of BETA, however, it became apparent that 
there was no reason to consider BETA ‘just’ an 
implementation language. After the point when BETA was 
considered a general programming language, we considered 
it (instead of GAMMA) to be the successor of SIMULA. 
There were good reasons to consider a successor to 
SIMULA; SIMULA contains Algol as a subset, and there 
was a need to simplify parts of SIMULA in much the same 
way as Pascal is a simplification of Algol. In addition we 
thought that the new ideas arriving with BETA would 
justify a new language in the SIMULA style. 

3.1 Research approach 
The approach to language design used for BETA was 
naturally highly influenced by the SIMULA tradition. The 

                                                                 
2 In late 1978 and early 1979. 
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SIMULA I language report of 1965 opens with these 
sentences: 

“The two main objectives of the SIMULA language are: 

� To provide a language for a precise and standardised 
description of a wide class of phenomena, belonging to 
what we may call “discrete event systems”. 

� To provide a programming language for an easy 
generation of simulation programs for “discrete event 
systems”.” 

Thus, SIMULA I was considered as a language for system 
description as well as for programming. It was therefore 
obvious from the beginning that BETA should be used for 
system description as well as for programming. 

In the ’70s the SIMULA/BETA communities used the term 
system description to correspond to the term model 
(analysis and design models) used in most methodologies. 
We have always found it difficult to distinguish analysis, 
design and implementation. This was because we saw 
programming as modeling and program executions as 
models of relevant parts of the application domain. We 
considered analysis, design and implementation as 
programming at different abstraction levels. 

The original goal for JLP and the GAMMA subproject was 
to develop a general purpose programming language as a 
successor to SIMULA. From the point in time where BETA 
was no longer just considered to be an implementation 
language, the research goals for BETA were supplemented 
by those for GAMMA. All together, the research approach 
was based on the following assumptions and ideas: 

� BETA should be a modeling language.  
� BETA should be a programming language. The most 

important initial idea was to design a language based on 
one abstraction mechanism. In addition BETA should 
support concurrent programming based on the coroutine 
mechanisms of SIMULA. 

� BETA should have an efficient implementation. 

3.1.1 Modeling and conceptual framework 
Creating a model of part of an application domain is always 
based on certain conceptual means used by the modeler. In 
this way modeling defines the perspective of the 
programmer in the programming process. Object-oriented 
programming is seen as one perspective on programming 
identifying the underlying model of the language and 
executions of corresponding programs.  

Although it was realized from the beginning of the 
SIMULA era (including the time when concepts for record 
handling were developed by Hoare [52-54]) that the 
class/subclass mechanism was useful for representing 
concepts including generalizations and specializations, 
there was no explicit formulation of a conceptual 

framework for object-oriented programming. The term 
object-oriented programming was not in use at that time 
and neither were terms such as generalization and 
specialization. SIMULA was a programming language like 
Algol, Pascal and FORTRAN – it was considered superior 
in many aspects, but there was no formulation of an object-
oriented perspective distinguishing SIMULA from 
procedural languages. 

In the early seventies, the notion of functional 
programming arrived, motivated by the many problems 
with software development in traditional procedural 
languages. One of the strengths of functional programming 
was that it was based on a sound mathematical foundation 
(perspective). Later Prolog and other logic programming 
languages arrived, also based on a mathematical 
framework. 

We did not see functional or logic programming as the 
solution: the whole idea of eliminating state from the 
program execution was contrary to our experience of the 
benefits of objects. We saw functional/logic programming 
and the development of object-oriented programming as 
two different attempts to remedy the problems with 
variables in traditional programming. In functional/logic 
programming mutable variables are eliminated – in object-
oriented programming they are generalized into objects. 
We return to this issue in Section 4.2. 

For object-oriented programming the problem was that 
there was no underlying sound perspective. It became a 
goal of the BETA project to formulate such a conceptual 
framework for object-oriented programming. 

The modeling approach to designing a programming 
language provides overall criteria for the elements of the 
language. Often a programming language is designed as a 
layer on top of the computer; this implies that language 
mechanisms often are designed from technical criteria. 
BETA was to fulfill both kinds of criteria. 

3.1.2 One abstraction mechanism 
The original design idea for BETA was to develop a 
language with only one abstraction mechanism: the pattern. 
The idea was that patterns should unify abstraction 
mechanisms such as class, procedure, function, type, and 
record. Our ambition was to develop the ultimate 
abstraction mechanism that subsumed all other abstraction 
mechanisms. In the DELTA report, the term pattern is used 
as a common term for class, procedure, etc. According to 
Nygaard the term pattern was also used in the final stages 
of the SIMULA project. For SIMULA and DELTA there 
was, however, no attempt to define a language mechanism 
for pattern. 

The reason for using the term pattern was the observation 
that e.g. class and procedure have some common aspects: 
they are templates that may be used to create instances. The 
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instances of a class are objects and the instances of 
procedures are activation records.  

 

Figure 1 Classification of patterns 
In the beginning it was assumed that BETA would provide 
other abstraction mechanisms as specializations 
(subpatterns) of the general pattern concept illustrated in 
Figure 1. In other words, BETA was initially envisaged as 
containing specialized patterns like class, procedure, 
type, etc. A subpattern of class as in 

MyClass: class (# ... #) 

would then correspond to a class definition in SIMULA. In 
a similar way a subpattern of procedure would then 
correspond to a procedure declaration. It should be possible 
to use a general pattern as a class, procedure, etc. As 
mentioned in Section 5.8.5, such specialized patterns were 
never introduced. 

Given abstraction mechanisms like class, procedure, 
function, type and process type, the brute-force approach to 
unification would be to merge the elements of the syntax 
for all of these into a syntax describing a pattern. The 
danger with this approach might be that when a pattern is 
used e.g. as a class, only some parts of the syntactic 
elements might be meaningful. In addition, if the 
unification is no more than the union of class, procedure, 
etc., then very little has been gained.  

The challenges of defining a general pattern mechanism 
may then be stated as follows: 

� The pattern mechanism should be the ultimate 
abstraction mechanism, subsuming all other known 
abstraction mechanisms. 

� The unification should be more than just the union of 
existing mechanisms. 

� All parts of a pattern should be meaningful, no matter 
how the pattern is applied. 

The design of the pattern mechanism thus implied a heavy 
focus on abstraction mechanisms, unification, and 
orthogonality. Orthogonality and unification are closely 
associated, and sometimes they may be hard to distinguish.  

3.1.3 Concurrency 
It was from the beginning decided that BETA should be a 
concurrent programming language. As mentioned, 
SIMULA supported the notion of quasi-parallel system, 
which essentially defines a process concept and a 
cooperative scheduling mechanism. A SIMULA object is a 

coroutine and a quasi-parallel process is defined as an 
abstraction (in the form of a class) on top of coroutines.  

The support for implementing hierarchical schedulers was 
one of the strengths of SIMULA; this was heavily used 
when writing simulation packages. Full concurrency was 
added to SIMULA in 1995 by the group at Lund University 
headed by Boris Magnusson [158]. 

Conceptually, the SIMULA coroutine mechanism appears 
simple and elegant, but certain technical details are quite 
complicated. For BETA, the SIMULA coroutine 
mechanism was an obvious platform to build upon. The 
ambition was to simplify the technical details of coroutines 
and add support for full concurrency including 
synchronization and communication. In addition it should 
be possible to write cooperative as well as pre-emptive 
schedulers. 

3.1.4 Efficiency 
Although SIMULA was used by many communities in 
research institutions and private businesses, it had a 
relatively small user community. However, it was big 
enough for a yearly conference for SIMULA users to take 
place.  

One of the problems with making SIMULA more widely 
used was that it was considered very inefficient. This was 
mainly due to automatic memory management and garbage 
collection. Computers at that time were quite slow and had 
very little memory compared to computers of today. The 
DEC 10 at DAIMI had 128Kbyte of memory. This made 
efficient memory management quite challenging. 

One implication of this was that object orientation was 
considered to be quite inefficient by nature. It was therefore 
an important issue for BETA to design a language that 
could be efficiently implemented. In fact, it was a goal that 
it should be possible to write BETA programs with a 
completely static memory layout.  

Another requirement was that BETA should be usable for 
implementing embedded systems. Embedded systems 
experts found it provoking that Nygaard would engage in 
developing languages for embedded systems – they did not 
think he had the qualifications for this. He may not have 
had much experience in embedded systems, but he surely 
had something to contribute. This is an example of the 
controversies that often appeared around Nygaard. 

As time has passed, static memory requirements have 
become less important. However, this issue may become 
important again, for example in pervasive computing based 
on small devices.  

3.2 Project organization 
The process, intention, and organization of the BETA 
project appeared to be different from those of many 
projects today. The project existed through an informal 
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cooperation between Nygaard and the authors. During the 
project we had obligations as students, professors or 
consultants. This implied that the time to be used on the 
project had to be found in between other activities.  

As mentioned, Kristensen, Møller-Pedersen and Madsen 
were students at DAIMI, Århus. In 1974 Kristensen 
completed his Masters Thesis on error recovery for LR-
parsers. He was employed as assistant professor at the 
University of Ålborg in 1976. Madsen graduated in 1975, 
having written a Master’s thesis on compiler-writing 
systems, and continued at DAIMI as assistant professor and 
later as a PhD student. Møller-Pedersen graduated in 1976 
with a Master’s thesis on the notion of context, with 
Nygaard as a supervisor. He was then employed by the 
NCC, Oslo, in 1976 and joined the BETA project at the 
same time. Nygaard was a visiting professor at DAIMI in 
1974-75 – after that he returned to the NCC and continued 
at DAIMI as a guest lecturer.  

Most meetings took place in either Århus or Oslo, and 
therefore required a lot of traveling. At that time there was 
a ferry between Århus and Oslo. It sailed during the night 
and took 16 hours – we remember many pleasant trips on 
that ferry – and these trips were a great opportunity to 
discuss language issues without being disturbed. Later 
when the ferry was closed we had to use other kinds of 
transportation that were not as enjoyable. 

Funding for traveling and meetings was limited. Research 
funding was often applied for, but with little success. 
Despite his great contributions to informatics through the 
development of the SIMULA languages, Nygaard always 
had difficulties in getting funding in Norway. The Mjølner 
project described in Section 3.4 is an exception, by 
providing major funding for BETA development – 
however, Nygaard was not directly involved in applying for 
this funding. 

The project involved a mixture of heated discussions about 
the design of the BETA language and a relaxed, inspiring 
social life. It seemed that for Nygaard there was very little 
difference between professional work and leisure.  

Meetings. The project consisted of a series of more or less 
regular meetings with the purpose of discussing language 
constructs and modeling concepts. Meetings were planned 
in an ad hoc manner. The number of meetings varied over 
the years and very little was written or prepared in advance.  

Meetings officially took place at NCC or at our universities, 
but our private homes, trams/buses, restaurants, ferries, and 
taxies were also seen as natural environments in which the 
work and discussions could continue – in public places 
people had to listen to loud, hectic discussions about 
something that must have appeared as complete nonsense to 
them. But people were tolerant and seemed to accept this 
weird group. 

In October 1977, Madsen and family decided to stay a 
month in Oslo to complete the project – Madsen’s wife, 
Marianne was on maternity leave – and they stayed with 
Møller-Pedersen and his family. This was an enjoyable 
stay, but very little progress was made with respect to 
completing BETA – in fact we saw very little of Nygaard 
during that month. 

Discussions. A meeting would typically take place without 
a predefined agenda and without any common view on 
what should or could be accomplished throughout the 
meeting. The meetings were a mixture of serious 
concentrated discussions of ideas, proposals, previous 
understanding and existing design and general stuff from 
the life of the participants. 

State-of-the-art relevant research topics were rarely 
subjects for discussion. Nygaard did not consider this 
important – at least not for the ongoing discussions and 
elaboration of ideas. Such knowledge could be relevant 
later, in relation to publication, but was usually not taken 
seriously. In some sense Nygaard assumed that we would 
take care of this. Also established understanding, for 
example, on the background, motivations and the actual 
detailed contents of languages like Algol, SIMULA or 
DELTA was not considered important. It appeared to be 
much better to develop ideas and justify them without 
historical knowledge or relationships. The freedom was 
overwhelming and the possibilities were exhausting. 

The real strengths of Nygaard were his ability to discuss 
language issues at a conceptual level and focus on means 
for describing real-world systems. Most language designers 
come from a computer science background and their 
language design is heavily based on what a computer can 
do: A programming language is designed as a layer on top 
of the computer making it easier to program. Nygaard’s 
approach was more of a modeling approach and he was 
basically interested in means for describing systems. This 
was evident in the design of SIMULA, which was designed 
as a simulation language and therefore well suited for 
modeling real systems. 

Plans. There was no clear management of the project, and 
plans and explicit decisions did not really influence the 
project. We used a lot of time on planning, but most plans 
were never carried out. Deadlines were typically controlled 
by the evolution of the project itself and not by a carefully 
worked out project plan.  

Preparation and writing were in most cases the result of an 
individual initiative and responsibility. Nygaard was active 
in writing only in the initial phase of the project. Later on 
Nygaard’s research portfolio mainly took the form of of 
huge stacks of related plastic slides, but typically their 
relation became clear only at Nygaard’s presentations. The 
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progress and revisions of his understanding of the research 
were simply captured on excellent slides. 

At the beginning of the project it was decided that 
Kristensen and Madsen should do PhDs based on the 
project. As a consequence of the lack of project 
organization, it quickly became clear that this would not 
work. 

The original plan for the BETA project was that ‘a firm and 
complete language definition’ should be ready at the end of 
1977 [89]. An important deadline was February 1977 – at 
that time a first draft of a language definition should be 
available. In 1977 we were far from a complete language 
definition and Nygaard did not seem in a hurry to start 
writing a language definition report. However, two working 
notes were completed in 1976/77. In Section 3.3 and in 
Section 5.10, we describe the content of these working 
notes and other publications and actual events in the 
project. 

Social life. Meetings typically lasted whole days including 
evenings and nights. In connection with meetings the group 
often met in our private homes and had dinner together, 
with nice food and wine. The atmosphere was always very 
enjoyable but demanding, due to an early-morning start 
with meetings and late-evening end. Dinner conversation 
was often mixed with debate about current issues of 
language design. Our families found the experience 
interesting and inspiring, but also often weird. Nygaard 
often invited various guests from his network, typically 
without our knowing and often announced only in passing. 
Guests included Carl Hewitt, Bruce Moon, Larry Tesler, 
Jean Vaucher, Stein Krogdahl, Peter Jensen, and many 
more. They were all inspiring and the visits were learning 
experiences. In addition there were many enjoyable 
incidents as when passengers on a bus to the suburb where 
Madsen lived watched with surprise and a little fear as 
Nygaard (tall and insistent) and Hewitt (all dressed in red 
velour and just as insistent) loudly discussed not commonly 
understandable concepts on the rear platform of the bus. 

Nygaard was an excellent wine connoisseur and arranged 
wine-tasting parties on several occasions. We were 
“encouraged” to spend our precious travel money on 
various selected types of wines, and it was beyond doubt 
worth it. Often other guests were invited and had similar 
instructions about which wine to bring. At such parties we 
would be around 10 people in Nygaard’s flat, sitting around 
their big dinner table and talking about life in general. The 
wines would be studied in advance in Hugh Johnson’s 
“World Atlas of Wine” and some additional descriptions 
would be shared. The process was controlled and 
conducted by Nygaard at the head of the table.  

Crises. The project meetings could be very frustrating since 
Nygaard rarely delivered as agreed upon at previous 

meetings. This often led to very heated discussions. This 
seemed to be something that we inherited from the 
SIMULA project. In one incident Kristensen and Madsen 
arrived in Oslo at the NCC and during the initial 
discussions became quite upset with Nygaard and decided 
to leave the project. They took a taxi to the harbor in order 
to enter the ferry to Århus. Nygaard, however, followed in 
another taxi and convinced them to join him for a beer in 
nearby bar – and he succeeded in convincing them to come 
back with him. 

Crises and jokes were essential elements of meetings and 
social gatherings. Crises were often due to different 
expectations to the progress of the language development, 
unexpected people suddenly brought into the project 
meetings, and problems with planning of the meeting days. 
Crises were solved, but typically not with the result that the 
next similar situation would be tackled differently by 
Nygaard. Serious arguments about status and plans were 
often solved by a positive view on the situation together 
with promises for the future. Jokes formed an essential 
means of taking ‘revenge’ and thereby to overcome crises. 
Jokes were on Nygaard in order to expose his less 
appealing habits, as mentioned above, and were often 
simple and stupid, probably due to our irritation and 
desperation. Nygaard was an easy target for practical jokes, 
because he was always very serious about work, which was 
not something you joked about.3 On one occasion in 
Nygaard’s office at Department of Informatics at 
University of Oslo, the telephone calls that Nygaard had to 
answer seemed to never end, even if we complained 
strongly about the situation. One time when Nygaard left 
the office, we taped the telephone receiver to the base by 
means of some transparent tape. When Nygaard returned, 
we arranged for a secretary to call him. As usual Nygaard 
quickly grabbed the telephone receiver, and he got 
completely furious because the whole telephone device was 
in his hand. He tried to wrench the telephone receiver off 
the base unit, but without success. Nygaard blamed us for 
the lost call (which could be very important as were the 
approximately 20 calls earlier this morning) and left the 
office running to the secretary in order to find out who had 
called. He returned disappointed and angry, but possibly 
also a bit more understanding of our complaints. At social 
events he was on the other hand very entertaining and had a 
large repertoire of jokes – however, practical jokes were 
not his forte. 

3.3 Project events 
In this section we mention important events related to the 
project process as a supplement to the description in the 
previous sections. Events related to the development of the 

                                                                 
3 We never found out whether or not this was a characteristic of 

Nygaard or of Norwegians in general☺. 

10-9



 

conceptual framework, the language and its implementation 
are described in the following sections. 

Due to the lack of structure in the project organization, it is 
difficult to point to specific decisions during the project that 
influenced the design of BETA. The ambition for the 
project was to strive for the perfect language and it turned 
out that this was difficult to achieve through a strict 
working plan. Sometimes the design of a new programming 
language consists of selecting a set of known language 
constructs and the necessary glue for binding them 
together. For BETA the goal was to go beyond that. This 
implied that no matter what was decided on deadlines, no 
decisions were made as long as a satisfactory solution had 
not been found. In some situations we clearly were hit by 
the well known saying, ‘The best is the enemy of the good’. 

The start of the JLP and the start of the BETA project were 
clearly important events. There was no explicit decision to 
terminate the JLP – it just terminated.  

As mentioned, two working notes were completed in 
1976/1977. The first one was by Peter Jensen and Nygaard 
[66] and was mainly an argument why the NCC should 
establish cooperation with other partners in order to 
implement the BETA system programming language on 
microcomputers.  

First language draft. The second working note was the first 
publication describing the initial ideas of BETA, called 
BETA Language Development – Survey Report, 1, 
November 1976 [89]. A revised version was published in 
September 1977.  

Draft Proposal of BETA. In 1978 a more complete language 
description was presented in DRAFT PROPOSAL for 
Introduction to the BETA Programming Language as of 1st 
August 1978 [90] and a set of examples [91]. A grammar 
was included. Here BETA was still mainly considered an 
implementation language. The following is stated in the 
report: “According to the conventional classification of 
programming languages BETA is meant to be a system 
programming language. Its intended use is for 
programming of operating systems, data base systems, 
communication systems and for implementing new and 
existing programming languages. … The reason for not 
calling it a system programming language is that it is 
intended to be more general than often associated with 
system programming languages. By general is here meant 
that it will contain as few as possible concepts underlying 
most programming concepts, but powerful enough to build 
up these. The BETA language will thus be a kernel of 
concepts upon which more application oriented languages 
may be implemented and we do not imagine the language 
as presented here used for anything but implementation of 
more suitable languages. This will, however, be straight 
forward to do by use of a compiler-generator. Using this, 

sets of concepts may be defined in terms of BETA and 
imbedded in a language. Together with the BETA language 
it is the intention to propose and provide a ‘standard super 
BETA’.” 

As mentioned, BETA developed without any explicit 
decision into a full-fledged general programming language. 
In this process it was realized that GAMMA and special-
purpose languages could be implemented as class 
frameworks in BETA. With regard to class frameworks, 
SIMULA again provided the inspiration. SIMULA 
provided class Simulation – a class framework for 
writing simulation programs. Class Simulation was 
considered a definition of a special-purpose language for 
simulation – SIMULA actually has special syntax only 
meaningful when class Simulation is in use. For BETA it 
provided the inspiration for work on special-purpose 
languages. The idea was that a special-purpose language 
could be defined by means of a syntax definition (in BNF), 
a semantic definition in terms of a class framework, and a 
syntax-directed transformation from the syntax to a BETA 
program using the class framework. This is reflected in the 
1978 working note. 

First complete language definition. In February 1979 – and 
revised in April 1979 – the report BETA Language 
Proposal [92] was published. It contained the first attempt 
at a complete language definition. Here BETA was no 
longer considered just an implementation language: “BETA 
is a general block-structured language in the style of Algol, 
Simula and Pascal. … Most of the possibilities of Algol-like 
sequential languages are present”. BETA was, however, 
still considered for use in defining application-oriented 
languages – corresponding to what are often called domain-
specific languages today. 

The fact that BETA was considered a successor to 
SIMULA created some problems at the NCC and the 
University of Oslo. The SIMULA communities considered 
SIMULA to be THE language, and with good reason. 
There were no languages at that time with the qualities of 
SIMULA and as of today, the SIMULA concepts are still in 
the core of mainstream languages such as C++, Java and 
C#.  

Many people became angry with Nygaard that he seemed 
willing to give up on SIMULA. He did not look at it that 
way – he saw his mission as developing new languages and 
exploring new ideas. However, it did create difficulties in 
our relationship with the SIMULA community. SIMULA 
was at that time a commercial product of the NCC. When it 
became known that Nygaard was working on a successor 
for SIMULA, the NCC had to send out a message to its 
customers saying that the NCC had no intentions of 
stopping the support of SIMULA. 
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Around 1980 there was in fact an initiative by the NCC to 
launch BETA as a language project based on the model 
used for SIMULA. This included planning a call for a 
standardization meeting, although no such meeting ever 
took place. The plan was that BETA should be frozen by 
the end of 1980 and an implementation project should then 
be started by the NCC. However, none of this did happen. 

A survey of the BETA Programming Language. In 1981 the 
report ‘A Survey of the BETA Programming Language’ 
[93] formed the basis for the first implementation and the 
first published paper on BETA two years later [95]. As 
mentioned in Section 6.1, the first implementation was 
made in 1983. 

Several working papers about defining special-purpose 
languages were written (e.g. [98]), but no real system was 
ever implemented. A related subject was that the grammar 
of BETA should be an integrated part of the language. This 
led to work on program algebras [96] and 
metaprogramming [120] that made it possible to manipulate 
BETA programs as data. Some of the inspiration for this 
work came during a one-year sabbatical that Madsen spent 
at The Center for Study of Languages and Information at 
Stanford University in 1984, working with Terry 
Winograd, Danny Bobrow and José Meseguer. 

POPL paper: Abstraction Mechanisms in the BETA 
Programming Language. An important milestone for BETA 
was the acceptance of a paper on BETA for POPL in 1983 
[95]. We were absolutely thrilled and convinced that BETA 
would conquer the world. This did not really happen – we 
were quite disappointed with the relatively little interest the 
POPL paper created. At the same conference, Peter Wegner 
presented a paper called On the Unification of Data and 
Program Abstractions in Ada [159]. Wegner’s main 
message was that Ada contained a proliferation of 
abstraction mechanisms and there was no uniform treatment 
of abstraction mechanisms in Ada. Naturally we found 
Wegner’s paper to be quite in line with the intentions of 
BETA and this was the start of a long cooperation with 
Peter Wegner, who helped in promoting BETA.  

Hawthorne Workshop. Peter Wegner and Bruce Shriver 
(who happened to be a visiting professor at DAIMI at the 
same time as Nygaard) invited us to the Hawthorne 
workshop on object-oriented programming in 1986. This 
was one of the first occasions where researchers in OOP 
had the opportunity to meet and it was quite useful for us. It 
resulted in the book on Research Directions in Object-
Oriented Programming [145] with two papers on BETA 
[100, 111]. Peter Wegner and Bruce Shriver invited us to 
publish papers on BETA at the Hawaii International 
Conference on System Sciences in 1988. 

Sequential parts stable. In late 1986/early 1987 the 
sequential parts of the language were stable, and only 
minor changes have been made since then. 

Multisequential parts stable. A final version of the 
multisequential parts (coroutines and concurrency) was 
made in late 1990, early 1991. 

BETA Book. Peter Wegner also urged us to write a book on 
BETA and he was the editor of the BETA book published 
by Addison Wesley/ACM Press in 1993 [119].  

For a number of years we gave BETA tutorials at 
OOPSLA, starting with OOPSLA’89 in New Orleans. 
Dave Thomas and others were quite helpful in getting this 
arranged – especially at OOPSLA’90/ECOOP’90 in 
Ottawa, he provided excellent support.  

At OOPSLA’89 we met with Dave Unger and the Self 
group; although Self [156] is a prototype-based language 
and BETA is a class-based language, we have benefited 
from cooperation with the Self group since then. We 
believe that Self and BETA are both examples of languages 
that attempt to be based on simple ideas and principles.  

The Mjølner (Section 3.4) project (1986-1991) and the 
founding of Mjølner Informatics Ltd. (1988) were clearly 
important for the development of BETA.  

Apple and Apollo contracts. During the Mjølner project we 
got a contract with Apple Computer Europe, Paris, to 
implement BETA for the Macintosh – Larry Taylor was 
very helpful in getting this contract. A similar contract was 
made with Apollo Computer, coordinated by Søren Bry. 

In 1994, BETA was selected to be taught at the University 
of Dortmund. Wilfried Ruplin was the key person in 
making this happens. A German introduction to 
programming using BETA was written by Ernst-Erich 
Doberkat and Stefan Diβmann [38]. This was of great use 
for the further promotion of BETA as a teaching language. 

Dahl & Nygaard receive ACM Turing Award. In 2001 Dahl 
and Nygaard received the ACM Turing Award (“for their 
role in the invention of object-oriented programming, the 
most widely used programming model today”).  

Dahl & Nygaard receive the IEEE von Neumann Medal. In 
2002 they received the IEEE John von Neumann Medal 
(“for the introduction of the concepts underlying object-
oriented programming through the design and 
implementation of SIMULA 67”). Dahl was seriously ill at 
that time so he was not able to attend formal presentations 
of these awards, including giving the usual Turing Award 
lecture. Dahl died on June 29, 2002. Nygaard was supposed 
to give his Turing Award lecture at OOPSLA 2002 in 
Vancouver, October 2002, but unfortunately he died on 
August 10, just a few weeks after Dahl. Life is full of 
strange coincidences. Madsen was invited to give a lecture 
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at OOPSLA 2002 instead of Nygaard. The overall theme 
for that talk was ‘To program is to understand’, which in 
many ways summarizes Nygaard’s approach to 
programming. One of Nygaard’s latest public appearances 
was his after-dinner talk at ECOOP 2002 in Malaga, where 
he gave one of his usual entertaining talks that even the 
spouses enjoyed. 

3.4 The Mjølner Project 
Mjølner Project start. The Mjølner4 Project (1986-1991) 
[76] was an important step in the development of BETA. 
The objective of the Mjølner project was to increase the 
productivity of high-quality software in industrial settings 
by designing and implementing object-oriented software 
development environments supporting specification, 
implementation and maintenance of large production 
programs. The project was carried out in cooperation 
between Nordic universities and industrial companies with 
participants from Denmark, Sweden, Norway and Finland. 
In the project three software development environments 
were developed: 

� Object-oriented SDL and tools: The development of 
Object-oriented SDL is described in Section 7.3. 

� The Mjølner Orm System: a grammar-based 
interactive, integrated, incremental environment for 
object-oriented languages. The main use of Orm was to 
develop an environment for SIMULA. 

� The Mjølner BETA System: a programming 
environment for BETA.  

Mjølner Book. The approach to programming environments 
developed within the Mjølner Project is documented in the 
book Object-Oriented Environments – the Mjølner 
Approach [76], covering all these three developments. 

The development of the Mjølner BETA System was in a 
Scandinavian context a large project. The project was a 
major reason for the success of BETA. During this project 
the language developed in the sense that many details were 
clarified. For example, the Ada-like rendezvous for 
communication and synchronization was abandoned in 
favor of semaphores, pattern variables were introduced, etc. 
It was also during the Mjølner project that the fragment 
system found its current form – cf. Section 5.8.4. 

Most of the implementation techniques for BETA were 
developed during the Mjølner project, together with native 
compilers for Sun, Macintosh, etc. Section 6 contains a 
description of the implementation. 

                                                                 
4 In the Nordic myths Mjølner is the name of Thor’s hammer; 

Thor is the Nordic god of thunder. Mjølner is the perfect tool: it 
grows with the task, always hits the target, and always returns 
safely to Thor's hand. 

A complete programming environment for BETA was 
developed. In addition to compilers there was a large 
collection of libraries and application frameworks including 
a meta-programming system called Yggdrasil5, a persistent 
object store with an object browser, and application 
frameworks for GUI programs built on top of Athena, 
Motif, Macintosh and Windows. A platform independent 
GUI framework with the look and feel of the actual 
platform was developed for Macintosh, Windows and 
UNIX/Motif. 

The environment also included the MjølnerTool, which was 
an integration of the following tools: a source code browser 
called Ymer, an integrated text- and syntax-directed editor 
called Sif, a debugger called Valhalla, an interface builder 
called Frigg, and a CASE tool called Freja supporting a 
graphical syntax for BETA – see also Section 4.5. 

Mjølner Informatics. The Mjølner BETA System led in 
1988 to the founding of the company Mjølner Informatics 
Ltd., which for many years developed and marketed the 
Mjølner BETA System as a commercial product. Sales of 
the system never generated a high profit, but it gave 
Mjølner Informatics a good image as a business, and this 
attracted a lot of other customers. Today the Mjølner BETA 
System is no longer a commercial product, but free versions 
may be obtained from DAIMI.  

It may seem strange from the outside that three 
environments were developed in the Mjølner Project. And 
it is indeed strange. SDL was, however, heavily used by the 
telecommunication industry, and there was no way to 
replace it by say BETA – the only way to introduce object 
orientation in that industry seemed to be by adding object 
orientation to SDL. Although SDL had a graphical syntax, 
it also had a textual syntax, and it had a well-defined 
execution semantics, so it was more or less a domain-
specific programming language (the domain being 
telecommunications) and not a modeling language. Code 
generators were available for different (and at that time 
specialized) platforms. SDL is still used when code 
generation is needed, but for modeling purposes UML has 
taken over. UML2.0 includes most of the modeling 
mechanisms of SDL, but not the execution semantics.  

The BETA team did propose to the people in charge of the 
Mjølner Orm development – which focused on SIMULA – 
that they join the BETA team, and that we concentrate on 
developing an environment for BETA. BETA was designed 
as a successor of SIMULA, and we found that it would be 
better to just focus on BETA. However, the SIMULA 
people were not convinced; it is often said that SIMULA, 
like Algol 60, is one of the few languages that is better than 

                                                                 
5 Most tools in the Mjølner System had names from Nordic 

mythology.  
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most of its successors – we are not the ones to judge about 
this with respect to BETA. The lesson here is perhaps that 
in a project like Mjølner more long-term goals would have 
been beneficial. If the project had decided to develop one 
language including a graphical notation that could replace 
SDL, then this language might have had a better chance to 
influence the industry than each of OSDL, SIMULA and 
BETA. 

The motivation for modeling languages like SDL (and later 
UML) was that industries wanted to be independent of 
(changing) programming languages and run-time 
environments. A single language like BETA that claims to 
be both a programming language and a modeling language 
was therefore not understood. Even Java has not managed 
to get such a position. It is also interesting to note that 
while the Object Management Group advocates a single 
modeling language, covering many programming languages 
and platforms, Microsoft advocates a single programming 
language (or rather a common language run-time, CLR) on 
top of which they want to put whatever domain-specific 
modeling language the users in a specific domain require. 

4. Modeling and conceptual framework 
We believe that the success of object-oriented 
programming can be traced back to its roots in simulation. 
SIMULA I was designed to describe (model) real-world 
systems and simulate these systems on a computer. This 
eventually led to the design of SIMULA 67 as a general 
programming language. Objects and classes are well suited 
for representing phenomena and concepts from the real 
world and for programming in general. Smalltalk further 
refined the object model and Alan Kay described object-
oriented programming as a view on computation as 
simulation [68] (see also the formulation by Tim Budd 
[22]). An important aspect of program development is to 
understand, describe and communicate about the 
application domain and BETA should be well suited for 
this. In the BETA book [119] (page 3) this is said in the 
following way: 

To program is to understand: The development of an 
information system is not just a matter of writing a 
program that does the job. It is of utmost importance that 
development of this program has revealed an in-depth 
understanding of the application domain; otherwise, the 
information system will probably not fit into the 
organization. During the development of such systems it 
is important that descriptions of the application domain 
are communicated between system specialists and the 
organization. 

The term “To program is to understand” has been a leading 
guideline for the BETA project. This implied that an 
essential part of the BETA project was the development of 
a conceptual framework for understanding and organizing 

knowledge about the real world. The conceptual framework 
should define the object-oriented perspective on 
programming and provide a semantic foundation for 
BETA. Over the years perhaps more time was spent on 
discussing the conceptual framework than the actual 
language. Issues of this kind are highly philosophical and, 
not being philosophers, we could spend a large amount of 
time on this without progress. 

Since BETA was intended for modeling as well as 
programming there was a rule that applied when discussing 
candidates for language constructs in BETA: a given 
language construct should be motivated from both the 
modeling and the programming point of view. We realized 
that many programmers did not care about modeling but 
were only interested in technical aspects of a given 
language – i.e. what you can actually express in the 
language. We thus determined that BETA should be usable 
as a ‘normal’ programming language without its 
capabilities as a modeling language. We were often in the 
situation that something seemed useful from a modeling 
point of view, but did not benefit the programming part of 
the language and vice versa.  

We find the conceptual framework for BETA just as 
important as the language – in this paper we will not go 
into details, but instead refer to chapters 2 and 18 in the 
book on BETA [119]. Below we will describe part of the 
rationale and elements of the history of the conceptual 
framework. In Section 5, where the rationale for the BETA 
language is described, we will attempt to describe how the 
emphasis on modeling influenced the language. 

4.1 Programming as modeling 
As mentioned, DELTA was one of the starting points for 
the BETA project. For a detailed description of DELTA the 
reader is referred to the DELTA report [60]. Here we 
briefly summarize the concepts that turned out to be most 
important for BETA. 

The system to be described was called the referent system. 
A referent system exists in what today’s methodologies call 
application domain. A description of a system – the system 
description – is a text, a set of diagrams or a combination 
describing the aspects of the system to be considered. 
Given a system description, a system generator may 
generate a model system that simulates the considered 
aspects of the referent system. These concepts were derived 
from the experience of people writing simulation programs 
(system descriptions) in SIMULA and running these 
simulations (model systems). 

Programming was considered a special case of system 
description – a program was considered a system 
description and a program execution was considered a 
model system. Figure 2 illustrates the relationship between 
the referent system and the model system. 
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Figure 2 Modeling 
As illustrated in Figure 2, phenomena and (domain-
specific) concepts from the referent system are identified 
and represented as (realized) objects and concepts (in the 
form of patterns) in the model system (the program 
execution). The modeling activity of Figure 2 includes the 
making of a system description and having a system 
generator generate the model system according to this 
description.  

4.2 Object-orientation as physical modeling 
For BETA it has been essential to make a clear distinction 
between the program and the program execution (the model 
system). A program is a description in the form of a text, 
diagrams or a combination – the program execution is the 
dynamic process generated by the computer when 
executing the program. At the time when BETA was 
developed, many researchers in programming and 
programming languages were focusing on the program text. 
They worked on the assumption that properties of a 
program execution could (and should) be derived from 
analysis of the program text, including the use of assertions 
and invariants, formal proofs and formal semantics. 
Focusing on the (static) program text often made it difficult 
to explain the dynamics of a program execution. Especially 
for object-oriented programming, grasping the dynamic 
structure of objects is helped by considering the program 
execution. But considering the program execution is also 
important in order to understand mechanisms such as 
recursion and block structure. 

The discussion of possible elements in the dynamic 
structure of a BETA program execution was central during 
the design of BETA. This included the structure of 
coroutines (as described in Section 5.7 below), stacks of 
activation records, nested objects, references between 
objects, etc. Many people often felt that we were discussing 
implementation, but for us it was the semantics of BETA. It 
did cover aspects that normally belonged to 
implementation, but the general approach was to identify 
elements of the program execution that could explain to the 
programmer how a BETA program was executing. 

At that time, formal semantics of programming languages 
was an important issue and we were often confronted with 
the statement that we should concentrate on defining a 
formal semantics for BETA. Our answer to that was vague 
in the sense that we were perhaps uncertain whether or not 
they were right, but on the other hand we had no idea how 
to approach a formal semantics for a language we were 
currently designing. It seemed to us that the current 
semantic models just covered well known language 
constructs and we were attempting to identify new 
constructs. Also, our mathematical abilities were perhaps 
not adequate to mastering the mathematical models used at 
that time for defining formal semantics. 

Many years later we realized that our approach to 
identifying elements of the program execution might be 
seen as an attempt to define the semantics of BETA – not in 
a formal way, but in a precise and conceptual way. 

The focus on the program execution as a model eventually 
led to a definition of object-oriented programming based on 
the notion of physical model – first published at ECOOP in 
’88 [116]: 

Object-oriented programming. A program execution is 
regarded as a physical model simulating the behavior of 
either a real or imaginary part of the world. 

The notion of physical is essential here. We considered 
(and still do) objects as physical material used to construct 
models of the relevant part of the application domain. The 
analogy is the use of physical material to construct models 
made of cardboard, wood, plastic, wire, plaster, LEGO 
bricks or other substances. Work on object-oriented 
programming and computerized shared material by Pål 
Sørgaard [149] was an essential contribution here. 

Webster defines a model in the following way: “In general 
a model refers to a small, abstract or actual representation 
of a planned or existing entity or system from a particular 
viewpoint” [1]. Mathematical models are examples of 
abstract representations whereas models of buildings and 
bridges made of physical material such as wood, plastic, 
and cartoon are examples of actual representations. Models 
may be made of existing (real) systems as in physics, 
chemistry and biology, or of planned (imaginary) systems 
like buildings, and bridges. 

We consider object-oriented models6 to be actual (physical) 
representations made from objects. An object-oriented 
model may be of an existing or planned system, or a 
                                                                 
6 The term modeling is perhaps somehow misleading since the 

model eventually becomes the real thing – in contrast to models 
in science, engineering and architecture. We originally used the 
term description, in SIMULA and DELTA terminology, but 
changed to modeling when OOA/OOD and UML became 
popular. 

10-14



 

combination. It may be a reimplementation of a manual 
system on a computer. An example may be a manual library 
system that is transferred to computers. In most cases, 
however, a new (planned) system is developed. In any case, 
the objects and patterns of the system (model) represent 
phenomena and concepts from the application domain. An 
object-oriented model furthermore has the property that it 
may be executed and simulate the behavior of the system in 
accordance with the computation-is-simulation view 
mentioned above. 

The application domain relates to the real world in various 
ways. Most people would agree that a library system deals 
with real world concepts and phenomena such as books and 
loans. Even more technical domains like a system 
controlling audio/video units and media servers deal with 
real-world concepts and phenomena. Some people might 
find that a network communication protocol implementing 
TCP/IP is not part of the real world, but it definitely 
becomes the real world for network professionals, just as an 
electronic patient record is the real world for healthcare 
professionals. Put in other words: Even though the real 
world contains real trees and not so many binary search 
trees or other kinds of data structures, the modeling 
approach is just as valuable for such classical elements of 
(in this case) the implementation domain. 

In any case the modeling approach should be the same for 
all kinds of application domains – this is also the case for 
the conceptual means used to understand and organize 
knowledge about the application domain, be it the real 
world or a technical domain. In the approach taken by OO 
and BETA we apply conceptual means used for organizing 
knowledge about the real world, as we think this is useful 
for more technical and implementation-oriented domains as 
well. In Chapter 5 we describe how the modeling approach 
has influenced the design of the BETA language. 

From the above definition it should be evident that 
phenomena that have the property of being physical 
material should be represented as objects. There are, 
however, other kinds of phenomena in the real world. This 
led to a characterization of the essential qualities of 
phenomena in the real world systems of interest for object-
oriented models: 

� Substance – the physical material transformed by the 
process. 
� Measurable properties of the substance. 
� Transformations of the substance. 
People, vehicles, and medical records are examples of 
phenomena with substance, and they may be represented by 
objects in a program execution. The age, weight or blood 
pressure of a person are examples of measurable properties 
of a person and may be represented by values (defined by 
value types) and/or functions. Transformations of the 

substance may be represented by the concurrent processes 
and procedures being executed as part of the program 
execution. The understanding of the above qualities had a 
profound influence on the semantics of BETA. 

4.3 Relation to other perspectives 
In order to arrive at a conceptual understanding of object 
orientation, we found it important to understand the 
differences between object-orientation and other 
perspectives such as procedural, functional, and constraint 
programming. We thus contrasted our definition of object 
orientation (see e.g. our ECOOP’88 paper [116] and 
Chapter 2 in the BETA book [119]) to similar definitions 
for other perspectives. In our understanding, the essential 
differences between procedural and functional 
programming related to the use of mutable variables. In 
procedural programming a program manipulates a set of 
mutable variables. In pure functional programming there is 
no notion of mutable variable. A function computes its 
result solely based on its arguments. This also makes it easy 
to formulate a sound mathematical foundation for 
functional programming. We are aware that our conception 
of functional programming may not correspond to other 
people’s understanding. In most functional programming 
languages you may have mutable variables and by means of 
closures you may even define object-oriented programming 
language constructs as in CommonLisp. However, if you 
make use of mutable variables it is hard to distinguish 
functional programming from procedural programming. 
Another common characteristic of functional languages is 
the strong support for higher functions and types. However, 
higher-order functions (and procedures) and types may be 
used in procedural as well as object-oriented programming. 
Algol and Pascal support a limited form of higher-order 
functions and procedures, and generic types are known 
from several procedural languages. Eiffel and BETA are 
examples of languages supporting generic classes 
(corresponding to higher-order types), and for BETA it was 
a goal to support higher-order functions and procedures. 
When we discuss functional programming in this paper, it 
should be understood in its pure form where a function 
computes its result solely based on its arguments. This 
includes languages using non-mutable variables as in let 
x=e1 in e2. 

For BETA it was not a goal to define a pure object-oriented 
language as it may have been for Smalltalk. On the 
contrary, we were interested in integrating the best from all 
perspectives into BETA. We thus worked on developing an 
understanding of a unified approach that integrated object-
oriented programming with functional, logic and procedural 
programming [116]. BETA supports procedural 
programming and to some extent functional programming. 
We also had discussions with Alan Borning and Bjorn 
Freeman-Benson on integrating constraint-oriented 
programming into BETA. The idea of using equations 
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(constraints) to describe the state of objects was very 
appealing, but we never managed to identify primitive7 
language constructs that could support constraints. 
However, a number of frameworks supporting constraints 
were developed by students in Aarhus. 

4.4 Concepts and abstraction 
It was of course evident from the beginning that the 
class/subclass constructs of SIMULA were well suited to 
representing traditional Aristotelian concepts (for a 
description of Aristotelian concepts, see the BETA book) 
including hierarchical concepts. The first example of a 
subclass hierarchy was a classification of vehicles as shown 
in Figure 3. 

Abstraction is perhaps the most powerful tool available to 
the human intellect for understanding complex phenomena. 
An abstraction corresponds to a concept. In the 
Scandinavian object-oriented community it was realized in 
the late seventies by a number of people, including the 
authors and collaborators, that in order to be able to create 
models of parts of the real world, it was necessary to 
develop an explicit understanding of how concepts and 
phenomena relate to object-oriented programming. 

 

Figure 3 Example of a subclass hierarchy 
In the late seventies and early eighties the contours of an 
explicit conceptual framework started to emerge – there 
was an increasing need to be explicit about the conceptual 
basis of BETA and object orientation in general. The 
ongoing discussions on issues such as multiple inheritance 
clearly meant that there was a need for making the 
conceptual framework explicit. These discussions 
eventually led to an explicit formulation of a conceptual 
framework by means of Aristotelian concepts in terms of 
intension, extension and designation to be used in object-
oriented modeling. An important milestone in this work 
was the Master’s thesis of Jørgen Lindskov Knudsen [71] 
and part of the PhD Thesis of Jørgen Lindskov Knudsen 
and Kristine Thomsen [78].  

                                                                 
7 We do not consider equations to be programming-language 

primitives. 

Knudsen supplemented the conceptual framework with the 
so-called prototypical concepts inspired by Danish 
philosopher Sten Folke Larsen [42], who argued that most 
everyday concepts are not Aristotelian but fuzzy 
(prototypical). An Aristotelian concept is characterized by a 
set of defining properties (the intension) that are possessed 
by all phenomena covered by the concept (the extension). 
For a prototypical concept the intension consists of 
examples of properties that the phenomena may have, 
together with a collection of typical phenomena covered by 
the concept, called prototypes. An Aristotelian concept 
structure has well defined boundaries between the 
extensions of the concepts, whereas this is not the case for a 
prototypical concepts structure. In the latter the boundaries 
are blurred/fuzzy. A class is well suited to representing 
Aristotelian concepts, but since most everyday concepts are 
prototypical, a methodology should allow for prototypical 
concepts to be used during analysis. Prototypical concepts 
should not be confused with prototype-based languages. A 
prototypical concept is still a concept – prototypical objects 
are not based on any notion of concept. Prototypical 
concepts are described in the BETA book [119], and the 
relationship between prototypical concepts and prototype-
based languages is discussed by Madsen [113]. 

In the seventies there was similar work on modeling going 
on in the database and AI communities and some of this 
work influenced on the BETA project. This included papers 
such as the one by Smith & Smith [147] on database 
abstraction.  

The realization that everyday concepts were rarely 
Aristotelian made it clear that it was necessary to develop a 
conceptual framework that was richer than the current 
programming language in use. In the early days, there 
might have been a tendency to believe that SIMULA and 
other object-oriented languages had all mechanisms that 
were needed to model the real world – this was of course 
naive, since all languages put limitations on the aspects of 
the real world that can be naturally modeled. Programmers 
have a tendency to develop an understanding of the 
application domain in terms of elements of their favorite 
programming language. A Pascal programmer models the 
real world in terms of Pascal concepts like records and 
procedures. We believed that the SIMULA concepts 
(including class, and subclass) were superior to other 
programming languages with respect to modeling. 

The conceptual framework associated with BETA is 
deliberately developed to be richer than the language. In 
addition to introducing prototypical concepts, the BETA 
book discusses different types of classification structures 
that may be applied to a given domain, including some that 
cannot be directly represented in mainstream programming 
languages. The rationale for the richer conceptual 
framework is that programmers should understand the 
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application domain by developing concepts without being 
constrained by the programming language. During 
implementation it may of course be necessary to map 
certain concepts into the programming language. It is, 
however, important to be explicit about this. This aspect 
was emphasized in a paper on teaching object-oriented 
programming [77]. 

4.5 Graphical syntax for modeling 
When object-oriented programming started to become 
mainstream in the early eighties, code reuse by means of 
inheritance was often seen as the primary advantage of 
object-oriented programming. The modeling capabilities 
were rarely mentioned. The interest in using object-oriented 
concepts for analysis and design that started in the mid-
eighties was a positive change since the modeling 
capabilities came more in focus. 

One of the disadvantages of OOA/OOD was that many 
people apparently associated analysis and design with the 
use of graphical languages. There is no doubt that diagrams 
with boxes and arrows are useful when designing systems. 
In the SIMULA and BETA community, diagrams had of 
course also been used heavily, but when a design/model 
becomes stable, a textual representation in the form of an 
abstract program is often a more compact and 
comprehensive representation.  

The mainstream modeling methodologies all proposed 
graphical languages for OOA/OOD, which led to the UML 
effort on designing a standardized graphical language for 
OOA/OOD. We felt that this was a major step backwards – 
one of the advantages of object-orientation is that the same 
languages and concepts can be applied in all phases of the 
development process, from analysis through design to 
implementation. By introducing a new graphical language, 
one reintroduced the problem of different representations of 
the model and the code. It seems to be common sense that 
most software development is incremental and iterative, 
which means that the developer will iterate over analysis, 
design and implementation several times. It is also 
generally accepted that design will change during 
implementation. With different representations of the 
model and the code it is time consuming to keep both 
diagrams and code in a consistent state. 

In the early phases of Mjølner Project it was decided to 
introduce a graphical syntax for the abstraction mechanisms 
of BETA as an alternative to the textual syntax. The Freja 
CASE tool [141, 142] was developed using this syntax. In 
addition, Freja was integrated with the text and structure 
editor in such a way that the programmer could easily 
alternate between a textual and graphical representation of 
the code.  

When UML became accepted as a common standard 
notation, the developers at Mjølner Informatics decided to 

replace the graphical syntax defined for BETA by a subset 
of UML. Although major parts of BETA had a one-to-one 
correspondence with this UML subset, some of the 
problems of different representations were reintroduced. 

It is often said that a picture says more than a thousand 
words. This is true. Nygaard in his presentations often used 
a transparency with this statement (and a picture of 
Madonna). This was always followed by one saying that a 
word often says more than a thousand pictures, illustrated 
by a number of drawings of vehicles and the word 
‘vehicle’. The point is that we use words to capture 
essential concepts and phenomena – as soon as we have 
identified a concept and found a word for it, this word is an 
efficient means for communication among people. The 
same is true in software design. In the initial phase it is 
useful to use diagrams to illustrate the design. When the 
design stabilizes it is often more efficient to use a textual 
representation for communication between the developers. 
The graphical representation may still be useful when 
introducing new people to the design. 

4.6 Additional notes 
It was often difficult to convey to other researchers what 
we understood by system description and why we 
considered it important. As mentioned, there was an 
important workshop at the IBM Hawthorne Research 
Center in New York in 1986, organized by Peter Wegner 
and Bruce Shriver, in which Dahl, Nygaard and Madsen 
participated. Here we had long and heated debates with 
many researchers – it was difficult to agree on many issues, 
most notably the concept of multiple inheritance. We later 
realized that for most people at that time the advantage of 
object-orientation was from a reuse point of view – a purely 
technical argument. For us, coming from the SIMULA 
tradition, the modeling aspect was at least as important, but 
the difference in perspective was not explicit. Later Steve 
Cook [26] made the difference explicit by introducing the 
ideas of the ‘Scandinavian School’ and the ‘U.S. School’ of 
object-orientation. 

At that time the dominant methodology was based on 
structured analysis and design followed by implementation 
– SA/SD [162]. SIMULA users rarely used SA/SD, but 
formulated their designs directly in SIMULA. The work on 
DELTA and system description was an attempt to 
formulate concepts and languages for analysis and design – 
Peter Wegner later said that SIMULA was a language with 
a built-in methodology. We did find the method developed 
by Michael Jackson [63] more interesting than SA/SD. In 
SA/SD there is focus on identifying functionality. In 
Jackson’s method a model of the application domain is first 
constructed and functionality is then added to this model. 
The focus on modeling was in much more agreement with 
our understanding of object-orientation. 
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In the mid-eighties, Yourdon and others converted to object 
orientation and published books on object-oriented analysis 
and design, e.g. [25]. This was in many ways a good 
turning point for object orientation, because many more 
people now started to understand and appreciate its 
modeling advantages.  

In 1989 Madsen was asked to give a three-day course on 
OOD for software developers from Danish industry. He 
designed a series of lectures based on the abstraction 
mechanisms of BETA – including the conceptual 
framework. At the end of the first day, most of the 
attendees complained that this was not a design course, but 
a programming course. The attendees were used to SA/SD 
and had difficulties in accepting the smooth transition from 
design to implementation in object-oriented languages – it 
should be said that Madsen was not trying to be very 
explicit about this. There was no tradition for this in the 
SIMULA/BETA community – design was programming at 
a higher level of abstraction.  

It actually helped that, after some heated discussions with 
some of the attendees, a person stood up in the back of the 
room presenting himself and two others as being from DSB 
(the Danish railroad company) – he said that his group was 
using SIMULA for software development and they have 
been doing design for more than 10 years in the way it had 
been presented. He said that it was very difficult for them 
to survive in a world of SA/SD where SIMULA was quite 
like a stepchild – the only available SIMULA compiler was 
for a DEC 10/20 which was no longer in production, and 
they therefore had to use the clone produced by a third 
party. However, together with the course organizer, 
Andreas Munk Madsen, Madsen redesigned the next two 
days’ presentations overnight to make more explicit why 
this was a course on design. 

The huge interest in modeling based on object orientation 
in the late eighties was of course positive. The disadvantage 
was that now everybody seemed to advocate object 
orientation just because it had become mainstream. There 
were supporters (or followers) of object-orientation who 
started to claim that the world is object-oriented. This is of 
course wrong – object orientation is a perspective that one 
may use when modeling the world. There are many other 
perspectives that may be used to understand phenomena 
and concepts of the real world. 

5. The Language 
In this section we describe the rationale for the most 
important parts of BETA. We have attempted to make this 
section readable without a prior knowledge of BETA, 
although some knowledge of BETA will be an advantage. 
The reader may consult the BETA book [119] for an 
introduction to BETA. 

The BETA language has evolved over many years and 
many changes to the semantics and syntax have appeared in 
this period. It would be too comprehensive to describe all 
of the major versions of BETA in detail. We will thus 
describe BETA as of today, with emphasis on the rationale 
and discussions leading to the current design and to 
intermediate designs. In Section 5.10, we will briefly 
describe the various stages in the history of the language. 

As mentioned in Section 3.1, most language mechanisms in 
BETA are justified from a technical as well as a modeling 
point of view. In the following we will attempt to state the 
technical as well as the modeling arguments for the 
language mechanisms being presented. 

5.1 One abstraction mechanism 
From the beginning the challenge was to design a 
programming language mechanism called a pattern that 
would subsume well-known abstraction mechanisms. The 
common characteristic of abstraction mechanisms is that 
they are templates for generating instances of some kind. In 
the mid seventies when the BETA project started, designers 
and programmers were not always explicit about whether 
or not a given construct defined a template or an instance 
and when a given instance was generated. In this section we 
describe the background, rationale and final design of the 
pattern. 

5.1.1 Examples of abstraction mechanisms 
When the BETA project was started, research in 
programming languages was concerned with a number of 
abstraction mechanisms. Below we describe some of the 
abstraction mechanisms that were discussed in the 
beginning of the BETA project. We will explicitly use a 
terminology that distinguishes templates from instances. 

Record type. A record type as known from Pascal defines 
a list of fields of possibly different types. The following is 
an example of a Pascal record type, which is a template for 
records: 

type Person =  
  record name: String; age: integer end; 

Instances of Person may be defined as follows: 
var P:Person; 

Fields of the record P may be read or assigned as follows: 
n:= P.name; P.age:= 16 

Value type. Value types representing numbers, Boolean 
values, etc. have always been important in programming 
languages. New abstraction mechanisms for other kinds of 
value types were proposed by many people. This included 
compound value types like complex number, enumeration 
types such as color known from Pascal and numbers with a 
unit such as speed. The main characteristic of a value type 
is that it defines a set of values that are assignable and 
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comparable. Value types may to some extent be defined by 
means of records and classes, but as mentioned in Section 
2.4, we did not think that this was a satisfactory solution. 
We return to this in Section 5.8.2.  

Procedure/function. A procedure/function may be viewed 
as a template for activation records. It is defined by a name, 
input arguments, a possible return type, and a sequence of 
statements that can be executed. A typical procedure in a 
Pascal-like language may look like 

integer distance(var p1,p2: Point)  
   var dist: real  
   begin ...; return dist; end 

A procedure call of the form d := distance(x,y) 
generates an instance in the form of an activation record for 
distance, transmits x and y to the activation record, 
executes the statement part and returns a value to be 
assigned to d. 

The notion of pure function (cf. Section 4.2) was also 
considered an abstraction mechanism that should be 
covered by the pattern. 

Class. A (simple) class in the style of SIMULA has a name, 
input arguments, a possible superclass, a set of data fields, 
and a set of operations. Operations are procedures or 
functions in the Algol style. In today’s object-orientation 
terminology the operations are called methods. One of the 
uses of class was as a mechanism for defining abstract data 
types.  

Module. The module concept was among others proposed 
as an alternative to the class as a means for defining 
abstract data types. One of the problems with module – as 
we saw it – was that is was often not explicit from the 
language definition whether a module was a template or an 
instance. As described in Section 5.8.8, we considered a 
module to be an instance rather than a template. 

Control abstraction. A control abstraction defines a 
control structure. Over the years a large variety of control 
structures have been proposed. For BETA it was a goal to 
be able to define control abstractions. Control abstractions 
were mainly found in languages like CLU that allowed 
iterators to be defined on sets of objects.  

Process type. A process type defines a template for either a 
coroutine or a concurrent process. In some languages, 
however, a process declaration defined an instance and not 
a template. In SIMULA, any object is in fact a coroutine 
and a SIMULA class defines a sequence of statements 
much like a procedure. A SIMULA class may in this sense 
be considered a (pseudo) process type. For a description of 
the SIMULA coroutine mechanism see e.g. Dahl and Hoare 
[30]. In Concurrent Pascal the SIMULA class concept was 
generalized into a true concurrent process type [17].  

The relationship between template and instance for the 
above abstraction mechanisms is summarized in the table 
below:  

Abstraction/template Instance 
record type record 
value type value 

procedure/function activation record 
class object 

control abstraction control activation 
module? module 

process type process object 
 

The following observations may further explain the view 
on abstraction mechanisms and instances in the early part 
of the BETA project: 

� Some of terms in the above table were rarely considered 
by others at the programming level, but were considered 
implementation details. This is the case for activation 
record, control activation and process object. As we 
discuss elsewhere, we put much focus on the program 
execution – the dynamic evolution of objects and actions 
being executed – for understanding the meaning of a 
program. This was in contrast to most programming-
language schools where the focus was on the program 
text.  
� The notion of value type might seem trivial and just a 

special case of record type. However, as mentioned in 
Section 2.4, Nygaard found it doubtful to use the class 
concept to define value types – we return to this subject 
in Section 5.8.2. 
� A record type is obviously a special case of a class in the 

sense that a class may ‘just’ define a list of data fields. 
The only reason to mention record type as a case here is 
that the borderline between record type, value type and 
class was not clear to us.  
� If one follows Hoare, an object or abstract data type 

could only be accessed via its operations. We found it 
very heavyweight to insist that classes defining simple 
record types should also define accessor functions for its 
fields. This issue is further discussed in Section 5.5. 

5.1.2 Expected benefits from the unification 
As mentioned previously, the pattern should be more than 
just the union of the above abstraction mechanisms. Below 
we list some language features and associated issues that 
should be considered. 

� Pattern. The immediate benefit of unifying class, 
procedure, etc. is that this ensures a uniform treatment of 
all abstraction mechanisms. At the conceptual level, 
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programmers have a general concept covering all 
abstraction mechanisms. This emphasizes the similarities 
among class, procedure, etc., with respect to being 
abstractions defining templates for instances. From a 
technical point of view, it ensures orthogonality among 
class, procedure, etc.  
� Subpattern. It should be possible to define a pattern as a 

subpattern of another pattern. This is needed to support 
the notion of subclass. From the point of view of 
orthogonality, this means that the notion of subpattern 
must also be meaningful for the other abstraction 
mechanisms. For example, since a procedure is a kind of 
pattern, inheritance for procedures must be defined – and 
in a way that makes it useful. 
� Virtual pattern. To support virtual procedures, it must 

be possible to specify virtual patterns. Again, the concept 
of virtual pattern must be meaningful for the other 
abstraction mechanisms as well. As a virtual pattern can 
be used as a class, the concept of virtual class must be 
given a useful meaning. It turned out that the notion of 
virtual class (or virtual type) was perhaps one of the most 
useful contributions of BETA. 
� Nested pattern. Since Algol, SIMULA, and DELTA are 

block-structured languages that support nesting of 
procedures and classes, it was obvious that BETA should 
also be a block-structured language. I.e., it should be 
possible to nest patterns arbitrarily. 
� Pattern variable. Languages like C contain pointers to 

procedures. For BETA, procedure typed variables were 
not considered initially, but later suggested by Ole 
Agesen, Svend Frølund and Michael H. Olsen in their 
Master’s thesis on persistent objects [4]. The uniformity 
of BETA implied that we then had classes, procedures, 
etc. as first-order values.  

In addition to being able to unify the various abstraction 
mechanisms, it was also a goal to be able to describe 
objects directly without having to define a pattern and 
generate an instance. This lead to the notion of singular 
objects: 

� Singular objects. In Algol and SIMULA it is possible to 
have inner blocks. In Pascal it is possible to define a 
record variable without defining a record type. For BETA 
it was a design goal that singular objects (called 
anonymous classes in Java and Scala [133-135]) should 
apply for all uses of a pattern. That is, it should be 
possible to write a complete BETA program in the form 
of singular objects – without defining any patterns at all. 

5.1.3 Similarities between object and activation 
record 
As mentioned in Section 3.1.2, the observation about the 
similarities between objects and activation records was one 
of the main motivations for unifying e.g. class and 

procedure. From the beginning the following similarities 
between objects and activation records were observed: 

� An object is generated as an instance of a class. An 
activation record is generated as part of a procedure 
invocation. In both cases input parameters may be 
transferred to the object/activation record.  
� An object consists of parameters, and data items (fields). 

An activation record also consists of parameters and data 
items in the form of local variables.  
� An object may contain local procedures (methods). In a 

block-structured language an activation record may have 
local (nested) procedures. 
� In a block-structured language, an activation record may 

have a pointer to the statically enclosing activation record 
(often called the static link or origin). In SIMULA, 
classes may be nested, so a SIMULA object may also 
have an origin. 
� An activation record may have a reference pointing to the 

activation record of the calling procedure (often called 
the dynamic link or caller). In most object-oriented 
languages there is no counterpart to a dynamic link in an 
object. In SIMULA this is different since a SIMULA 
object is potentially a coroutine.  

Figure 4 shows an example of a SIMULA program except 
that we use syntax in the style of C++, Java and C#.  This 
example contains the following elements: 

 

Figure 4 SIMULA-like program 
� The class Main with local (nested) classes Person and 
Set and a procedure main. 
� The class Person with instance variables name and age.  
� The class Set with a parameter size, an instance 

variable (array) rep for representing the set, a non-virtual 
procedure (method) insert, and a virtual procedure 
display. 
� The procedure main with reference variables Joe and S. 

class Main: 
{  
  class Person:  
    { name: text; age: integer; }; 
  class Set(size: integer):  
    { rep: array(size); 
      proc insert(e: object): { do ... }; 
      virtual proc display(): { do ... }; 
    }; 
  proc main():  
    { Person Joe = new Person(); 
      Set S  
    do S = new Set(99); 
       S.insert(Joe); 
       S.display() 
    }; 
} 
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The example has the following characteristics: 

� Person, Set and main are nested within class Main. 
� Class instances (objects) are created by new Set().  
� Procedure instances are created by S.insert(Joe) and 
S.display().  

Figure 5 shows a snapshot of the execution of the program 
in Figure 4 at the point where S.insert(Joe) is executed 
at the end of main. 

 

Figure 5 Objects and activation records  
� The box named main is the activation record for main. It 

has a caller reference, which in this case is null since 
main is the first activation of this program. There is also 
an object reference (obj) to the enclosing Main object. In 
addition it has two data items Joe and S referring to 
instances of class Set and class Person 
� The boxes named Set and Person are Set and Person 

objects respectively. Since the example is SIMULA-like, 
both objects have an origin for representing block 
structure and a caller representing the coroutine 
structure. For both objects origin refer to the enclosing 
Main object. The caller is null since Set and Person 
have no statement part. 
� The box named insert is the activation record for the 

call of S.insert(Joe). Caller refers to main. It has 
an object reference (obj) to the Set object on which the 
method is activated. In addition it has two instance 
variables e and inx. The variable e refers to the same 
object as Joe. 

� The box named Main represents the Main object 
enclosing the Set and Person objects and the main 
activation record. 

From the above presentation it should be clear that there is 
a strong structural similarity between an object and an 
activation record. The similarity is stronger for SIMULA 
than for languages like C++, Java and C#, since SIMULA 
has block structure and objects are coroutines. Technically 
one may think of a SIMULA class as a procedure where it 
is possible to obtain a reference to the activation record – 
the activation record is then an instance of the class.  

5.1.4 The pattern  
From the discussion of the similarities between class and 
procedure it follows that the following elements are 
candidates for a unified pattern: 

� The name of the pattern 
� The input parameters 
� A possible superpattern 
� Local data items 
� Local procedures (methods) – virtual as well as non-

virtual 
� Local classes – possible nested classes 
� A statement part – in the following called a do-part 
One difference between a class and procedure is that a 
procedure may return a value, which is not the case for a 
class. To justify the unification we then had a minor 
challenge in defining the meaning of a return value for a 
pattern used as a class. We decided that we did not need an 
input parameter part for patterns. The rationale for this 
decision and the handling of return values are discussed in 
Section 5.8.1.  

 

Figure 6 Object layout 
In conclusion, we decided that a BETA object should have 
the layout shown in Figure 6. Origin represents the static 
link for nested procedures and objects and the object 
reference for method activations. Note that since a method 
is actually nested inside a class, there is no difference 
between the origin of a method activation and its object 
reference (obj in the above example). For patterns that are 
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not nested within other patterns, origin may be 
eliminated. Caller represents the dynamic link for 
activation records and coroutine objects. For patterns 
without a do-part, caller may be eliminated. 

Figure 7 shows how the example from Figure 4 may be 
expressed in BETA. All of the classes and procedures have 
been expressed as patterns.  

 

Figure 7 Pattern example 
Basically it is a simple syntactic transformation: 

� The keywords class and proc are removed. 
� The brackets { and } are replaced by (# and #). 
� The insert input parameter part (e: Object) is 

replaced by a declaration of an object reference variable 
(e: ^object) and a specification that e is the input 
parameter (enter e[]). 
� The symbol ^ in a declaration of a variable specifies that 

the variable is a (dynamic) reference – we show below 
that variables can also be defined as static.  
� The symbol ‘<’ specifies that display is a virtual 

pattern. 
� The keyword ‘do’ separates the declaration part and the 

do-part. 
� The symbol & corresponds to new – i.e. &Set generates 

an instance of pattern Set. 
� The symbol [] in an application of a name, as in Joe[], 

signals that the value of Joe[] is a reference to the 
object Joe. This is in contrast to Joe, which has the 
object Joe as its value. 
� Assignment has the form exp -> V, where the value of 
exp is assigned to V. 
� The parentheses () are removed from procedure 

declarations and activations. 

� The arrow -> is also used for procedure arguments, 
which are treated as assignments. This is the case with 
Joe[] -> S.insert, where Joe[] is assigned to the 
input parameter e[]. 
� Instances of a pattern may be created in two ways: 
� The constructs &Set[]. The value of &Set[] is a 

reference to the new Set instance and corresponds to 
the new operator in most object-oriented languages. 

� S.display. Here a new display instance is 
generated and executed (by executing its do-part). 
This corresponds to a procedure instance as shown in 
Figure 4. 

The general form for a pattern is 
P: superP                // super pattern 
   (# A1; A2;...;An      // attribute-part 
   enter (V1, V2,...,Vs) // enter-part 
   do I1; I2;...;Im      // statements 
   exit (R1, R2,...,Rt)  // exit-part 
   #) 

� The super-part describes a possible super pattern. 
� The attribute-part describes declaration of attributes 

including variables and local patterns 
� The enter-part describes an optional list of input 

parameters. 
� The do-part describes an optional list of executable 

statements. 
� The exit-part describes an optional list of output values. 
As is readily seen from this general form for a pattern, a 
pattern may define a simple record type (defining only 
attributes), it may define a class with methods (in which 
case the local patterns are methods), or it may define 
procedures/functions, in which case the enter/exit lists work 
as input/output parameters. 

 

Figure 8 Decomposition of S.insert(Joe) 
As mentioned above, a procedure call may be described as 
a generation of an activation record, transfer of arguments, 
and execution of the code of the procedure. In Figure 8, 
such a decomposition of the call S.insert(Joe) from 
Figure 4 is shown: 

� A variable ia of type S.insert is declared. 
� An instance of S.insert() is assigned to ia. 
� The argument e is assigned the value of Joe. 
� The statement part of ia is executed. 

Main: 
  (# Person: (# ... #); 
     Set:  
       (# insert:  
           (# e: ^object  
           enter e[] do ... #); 
          display:< (# ... #); 
          ... 
       #); 
     main:  
       (# Joe: ^Person; 
          S: ^Set 
       do &Person[] -> Joe[]; 
          &Set[] -> S[]; 
          Joe[] -> S.insert; 
          S.display 
       #); 
  #) 

ia: S.insert; 
ia = new S.insert(); 
ia.e = Joe; 
ia.execute(); 
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In BETA it is possible to write this code directly. This also 
implies that the activation record (object) ia may be 
executed several times by reapplying ia.execute(). Such 
procedure objects were referred to as static procedure 
instances and considered similar to FORTRAN subroutines. 

Although in a pure version of BETA one could imagine 
that all procedure calls would be written as in Figure 8, this 
would obviously be too clumsy. From the beginning an 
abbreviation corresponding to a normal syntax for 
procedure call was introduced. 

5.1.5 Subpatterns 
With respect to subpatterns a number of issues were 
discussed over the years. As with a SIMULA subclass, a 
subpattern inherits all attributes of its superpattern. We did 
discuss the possibility of cancellation of attributes as in 
Eiffel, but found this to be incompatible with a modeling 
approach where a subpattern should represent a 
specialization of its superpattern. We also had to consider 
how to combine the enter-, do- and exit-parts of a 
pattern and its superpattern. For the enter- and exit-parts 
we decided on simple concatenation as in SIMULA, 
although alternatives were discussed, such as allowing an 
inner statement (cf. Section 5.6) inside an enter/exit part 
to specify where to put the enter/exit part of a given 
subpattern. The combination of do-parts is discussed in 
Section 5.6. The following is an example of a subpattern: 

Student: Person (# ... #) 

The pattern Student is defined as a subpattern of Person. 
The usual rules regarding name-based subtype 
substitutability applies for variables in BETA. As in most 
class-based languages, an instance of Student has all the 
properties defined in pattern Person.  

In SIMULA a subclass can only be defined at the same 
block level as that in which its superclass is defined. The 
following example where TT is not defined at the same 
block level as its superclass T is therefore illegal: 

class A: {                // block-level 0 
   class T: { ... }       // block-level 1 
   class X: {             // block-level 1 
      class TT: T { ... } // block-level 2 
   } 
}  

BETA does not have this restriction. The restriction in 
SIMULA was because of implementation problems. We 
return to this question in Section 6.4.   

Multiple inheritance has been an issue since the days of 
SIMULA – we return to this issue in Section 5.5.1 and 
5.8.12. 

5.1.6 Modeling rationale 
The rationale for one pattern as described in Section 3.1.2 
and above is mainly technical. For a modeling language it 

is essential to be able to represent concepts and phenomena 
of the application domain. Abstraction mechanisms like 
class, procedure and type may represent specialized 
concepts from the application domain. It seemed natural to 
be able to represent a concept in general. The idea of 
having one pattern mechanism generalizing all other 
abstraction mechanisms was then considered well 
motivated from this point of view also. 

Since the primary purpose of patterns was to represent 
concepts, it has always been obvious that a subpattern 
should represent a specialized concept and thereby be a 
specialization of the superpattern. This implies that all 
properties of the superpattern are inherited by the 
subpattern. The ideal would be to ensure that a subpattern is 
always a behavioral specialization of the superpattern, but 
for good reasons it is not possible to ensure this by 
programming language mechanisms alone. The language 
rules were, however, designed to support behavioral 
specialization as much as possible. 

The notions of type and class are closely associated. 
Programming language people with focus on the technical 
aspects of a language often use the term ‘type’, and the 
purpose of types is to improve the readability of a program, 
to make (static) type checking possible and to be able to 
generate efficient code. A type may, however, also 
represent a concept, and for BETA this was considered the 
main purpose of a type. Many researchers (like Pierre 
America [8] and William Cook [27]) think that classes and 
types should be distinguished – classes should only be used 
to construct objects and types should be used to define the 
interfaces of objects. We have always found that it was an 
unnecessary complication to distinguish between class and 
type.  

There was also the issue of name or structural equivalence 
of types/classes. From a modeling point of view it is rarely 
questioned that name equivalence is the right choice. 
People in favor of structural equivalence seem to have a 
type-checking background. The names and types of 
attributes of different classes may coincidentally be the 
same, but the intention of the two classes might be quite 
different. Boris Magnusson [121] has given as example 
class Cowboy and class Figure that both may have a draw 
method. The meaning of draw for Cowboy is quite different 
from the meaning of draw for Figure. The name 
equivalence view is also consistent with the general view of 
a concept being defined by its name, intension (attributes) 
and extension (its instances).  

Another issue that is constantly being discussed is whether 
or not a language should be statically or dynamically typed. 
From a modeling point of view there was never any doubt 
that BETA should be statically typed since the type (class) 
annotation of variables is an essential part of the description 
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of a model. BETA is, however, not completely statically 
typed – cf. Section 5.4.4 on co- and contravariance. 

5.2 Singular objects 
BETA supports singular objects directly and thereby avoids 
superfluous classes. The following declaration is an 
example of a singular object: 

myKitchen: @ Room(# ... #) 

The name of the object is myKitchen, and it has Room as a 
superpattern. The symbol @ specifies that an object is 
declared.8 The object is singular since the object-descriptor 
Room(# … #) is given directly instead of a pattern like 
Kitchen. 

Technically it is convenient to be able to describe an object 
without having to first declare a class and then instantiate 
an object – it is simply more compact.  

With respect to modeling the rationale was as follows: 

� When describing (modeling) real-life systems there are 
many examples of one-of-a-kind phenomena. The 
description of an apartment may contain various kinds of 
rooms, and since there are many instances of rooms it is 
quite natural to represent rooms as patterns and 
subpatterns (or classes and subclasses). An apartment 
usually also has a kitchen, and since most apartments 
have only one kitchen, the kitchen may be most naturally 
described as a singular object. It should be mentioned 
that any description (program) is made from a given 
perspective for a given purpose. In a description of one 
apartment it may be natural to describe the kitchen as a 
singular object, but in a more general description that 
involves apartments that may have more than one kitchen 
it may be more natural to include a kitchen pattern (or 
class).  
� Development of system descriptions and programs is 

often evolutionary in the sense that the description 
evolves along with our understanding of the problem 
domain. During development it may be convenient to 
describe phenomena as singular objects; later in the 
process when more understanding is obtained the 
description is often refactored into patterns and objects. 
Technically it is easy to change the description of a 
singular object to a pattern and an instance – in the same 
way as a description of a singular phenomenon is easily 
generalized to be a description of a concept. For an 
elaboration of this see Chapter 18 in the BETA book 
[119]. 

Exploratory programming emphasizes the view of using 
objects in the exploratory phase, and it is the whole basis 
for prototype-based object-oriented programming as e.g. in 
                                                                 
8 This is in contrast to ^, which specifies that a reference to an 

object is declared. 

Self. However, as discussed by Madsen [113], prototype-
based languages lack the possibility of restructuring objects 
into classes and objects when more knowledge of the 
domain has been obtained. 

5.3 Block structure 
Algol allowed nesting of blocks and procedures. SIMULA 
in addition allowed general nesting of classes, although 
there were some restrictions on the use of nested classes. 
For BETA it was quite natural that patterns and singular 
objects could be arbitrarily nested. Nesting of patterns 
comes almost by itself when there is no distinction between 
class and procedure. A pattern corresponding to a class 
with methods is defined as a class pattern containing 
procedure patterns, and the procedure patterns are nested 
inside the class pattern. The pattern Set in Figure 7 is an 
example – the patterns display and insert are nested 
inside the pattern Set. It is thus quite natural that patterns 
may be nested to an arbitrary level – just as procedures may 
be nested in Algol, Pascal and SIMULA, and classes may 
be nested in SIMULA. With nesting of patterns, nesting of 
singular objects comes naturally. A singular object may 
contain inner patterns, just as a pattern may contain inner 
singular objects.  

A major distinction between Smalltalk and the 
SIMULA/BETA style of object-oriented programming is 
the lack of block-structure in Smalltalk. Since the mid-
eighties, we have been trying to convince the object-
oriented community of the advantages of block-structure, 
but with little success. In 1986 a paper with a number of 
examples of using block structure was presented at the 
Hawthorne Workshop (see Section 3.3) and also submitted 
to the first OOPSLA conference, but not accepted. It was 
later included in the book published as the result of the 
Hawthorne Workshop [111]. C++ (and later C#) does allow 
textual nesting of classes, but only to limit the scope of a 
given class. In C++ and C# a nested class cannot refer to 
variables and methods in the enclosing object. Block 
structure was added to Java in one of the first revisions, but 
there are a number of restrictions on the use of nested 
classes, which means that some of the generality is lost. As 
an example, it is possible to have classes nested within 
methods (local nested classes), but instances of these 
classes may not access nonfinal variables local to the 
method.  

In Algol and SIMULA, the rationale for block structure 
was purely technical in the sense that it was very 
convenient to be able to nest procedures, classes and 
blocks. Block structure could be used to restrict the scope 
and lifetime of a given data item. For some time it was not 
at all obvious that block structure could be justified from a 
modeling point of view.  

The first step towards a modeling justification for block 
structure was taken by Liskov and Zilles [109]. Here a 
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problem with defining classes representing grammars was 
presented. One of the elements of a grammar is its symbols. 
It is straightforward to define a class Grammar and a class 
Symbol. The problem pointed out by Liskov and Zilles was 
that the definition of class Symbol in their example was 
dependent on a given Grammar, i.e. symbols from an Algol 
grammar had different properties from symbols from a 
COBOL grammar. With a flat class structure it was 
complicated to define a class Symbol that was dependent 
on the actual grammar. With block structure it was 
straightforward to nest the Symbol class within the 
Grammar class. 

Another example that helped clarify the modeling 
properties of block structure was the so-called prototype 
abstraction relation problem as formulated by Brian Smith 
[146]. Consider a model of a flight reservation system: 

� Each entry in a flight schedule like SK471 describes a 
given flight by SAS from Copenhagen to Chicago 
leaving every day at 9:40 am with a scheduled flight time 
of 8 hours. 
� A flight entry like SK471 might naturally be an instance 

of a class FlightEntry. 
� Corresponding to a given flight entry there will be a 

number of actual flights taking place between 
Copenhagen and Chicago. One example is the flight on 
December 12, 2005 with an actual departure time of 9:45 
and an actual flight time of 8 hours and 15 minutes. 
These actual flights might be modeled as instances of a 
class SK471.  
� The dilemma is then that SK471 may be represented as 

an instance of class FlightEntry or as a class SK471. 
� With nested classes it is straightforward to define a class 
FlightEntry with an inner class ActualFlight. 
SK471 may then be represented as an instance of 
FlightEntry. The SK471 object will then contain a 
class ActualFlight that represents actual instances of 
flight SK471. 

The grammar example and the prototype abstraction 
relation problem are discussed in Madsen’s paper on block 
structure [111] and in the BETA book [119].  

Eventually block structure ended up being conceived as a 
means for describing concepts and objects that depend on 
and are restricted to the lifetime of an enclosing object. In 
the BETA book [119], the term localization is used for this 
conceptual means. The modeling view is in fact consistent 
with the more technical view of block structure as a 
construct for restricting the lifetime of a given data item. 

5.4 Virtual patterns 
One of the implications of having just one abstraction 
mechanism was that we would need a virtual pattern 
mechanism in order to support virtual procedures. Since a 

pattern may be used as e.g. a class, we needed to assure that 
it was meaningful to use a virtual pattern as a class. Algol, 
SIMULA and other languages had support for higher-order 
procedures and functions and proposals for higher-order 
types and classes had started to appear. Quite early in the 
BETA project it was noticed that there was a similarity 
between a procedure as a parameter and a virtual 
procedure. It was thus obvious to consider a unification of 
the two concepts. In the following we discuss virtual 
patterns used as virtual procedures and as virtual classes. 
Then we discuss parameterized classes and higher-order 
procedures and functions.  

5.4.1 Virtual procedures 
Virtual patterns may be used as virtual procedures, as 
illustrated by the pattern display in Figure 7. The main 
difference from virtual procedures in SIMULA and other 
languages is that in BETA a virtual procedure is not 
redefined in a subclass, but extended. The reason for this 
was a consequence of generalizing virtual procedure to 
cover virtual class, as described in the next section. 
Consider the example: 

Person: 
  (# name: @text; 
     display:<  
       (# do name[]->out.puttext; inner #) 
  #) 
Employee: Person 
  (# salary: @integer; 
     display::<(# do salary->out.putint #) 
  #) 

The display procedure in Employee is combined using 
inner with the one in Person yielding the following pattern 

display:  
  (# do name[] -> out.puttext;  
        salary -> out.putint  
  #) 

For further details, see the BETA book [119]; we return to 
this discussion in the sections on virtual class and 
specialization of actions. 

Wegner and Zdonik [160] characterized the different 
notions of class/subclass relationships as name-, signature-, 
or behavior-compatible. SIMULA has signature 
equivalence since the signature of the method in the super- 
and subclass must be the same. This is not the case for 
Smalltalk since there are no types associated with the 
declaration of arguments. I.e. a method being redefined 
must have the same name and number of arguments as the 
one from the superclass, but the types may vary. For BETA 
it was obvious that at least the SIMULA rule should apply. 
The modeling emphasis of BETA implied that from a 
semantic point of view a subclass should be a specialization 
of the superclass – i.e. behaviorally compatible. This means 
that code executed by a redefined method should not break 
invariants established by the method in the superclass. 
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Behavioral equivalence cannot be guaranteed without a 
formal proof and therefore cannot be expressed as a 
language mechanism. For BETA we used the term 
structural compatibility as a stronger form than signature 
compatibility. In BETA it is not possible to eliminate code 
from the superclass. It is slightly closer to behavioral 
equivalence since it is guaranteed that a given sequence of 
code is always executed – but of course the effect of this 
can be undone in the subclass. 

5.4.2 Virtual classes 
As mentioned above, it was necessary to consider the 
implications of using a virtual pattern as a class. At a first 
glance, it was not clear that this would work, as illustrated 
by the following example: 

Set: 
  (# ElmType:< (# key: @integer #); 
     newElement: 
       (# S: ^ElmType; 
       do &ElmType [] -> S[]; 
          newKey -> S.key; 
        #) 
  #); 
 
PersonSet:  
  Set(# ElmType::< (# name: @Text #)#) 
 
PS: @PersonSet; 

The pattern Set has a virtual pattern attribute ElmType, 
which is analogous to the virtual pattern attribute display 
of Person above. In Person, the pattern display is used 
as a procedure, whereas ElmType in Set is used as a class. 
In newElement, an instance of ElmType is created using 
&ElmType[]. This instance is assigned to the reference S 
and the attribute key of S is assigned to in newKey -> 
S.key.  

In SIMULA a virtual procedure may be redefined in a 
subclass. If redefinition is also the semantics for a pattern 
used as a class then the ElmType in instances of 
PersonSet will be ElmType as defined in PersonSet. 
This implies that an execution of &ElmType[] in 
PS.newElement will create an instance of ElmType 
defined as (# name: @Text #), and with no key 
attribute. A subsequent execution of newKey -> S.key will 
then break the type checking. This was considered 
incompatible with the type rules of SIMULA where at 
compile time it is possible to check that a remote access 
like newKey -> S.key is always safe. 

We quickly realized that if PersonSet.ElmType was a 
subclass of Set.ElmType, then the type checking would 
not break, i.e. the declaration of PersonSet should be 
interpreted as:  

PersonSet: Set 
  (# ElmType::< 
       Set.ElmType(# name: @Text #)  
  #) 

That is, ElmType in Set is implicitly the superpattern of 
ElmType in PersonSet. We introduced the term further 
binding for this to distinguish the extension of a virtual 
from the traditional redefinition semantics of a virtual. 

With redefinition of virtual patterns being replaced by the 
notion of extension, it was necessary to consider the 
implications of this for virtual patterns used as procedures. 
It did not take long to decide that extension was also useful 
for virtual patterns used as procedures. A very common 
style in object-oriented programming is that most methods 
being redefined start by executing the corresponding 
method in the superclass using super. With the extension 
semantics, one is always guaranteed that this is done. 
Furthermore, as discussed below in the section on 
specialization of actions, it is possible to execute code 
before and after code in the subclass. 

As mentioned in Section 5.4.1, we assumed that signature 
compatibility from SIMULA should be carried over to 
BETA. The extension semantics includes this and in 
addition gives the stronger form of structural compatibility. 
Again, from a modeling point of view it was pretty obvious 
(to us) that this was the right choice. 

The disadvantage of extension is less flexibility. With 
redefinition you may completely redefine the behavior of a 
class. One of the main differences between the U.S. school 
and Scandinavian school of object-orientation was that the 
U.S. school considered inheritance as a mechanism for 
incremental modification or reuse (sometimes called code 
sharing) [160]. It was considered important to construct a 
new class (a subclass) by inheriting as much as possible 
from one or more superclasses and just redefine properties 
that differ from those of the superclasses. Belonging to the 
Scandinavian school, we found it more important to support 
behavioral compatibility between subclasses than pure 
reuse. 

The only situation we were not satisfied with was the case 
where a virtual procedure was defined as a default behavior 
and then later replaced by another procedure. This was 
quite common in SIMULA. We did consider introducing 
default bindings of virtuals, but if a default binding was 
specified, then it should not be possible to use information 
about the default binding. That is, if a virtual V is declared 
as V:< A and AA (a subpattern of A) is specified as the 
default binding, then V is only known to be an A. New 
attributes declared in AA cannot be accessed in instances of 
V. We did never implement this, but this form of default 
bindings was later included in SDL 92 (see Section 7.3). 

5.4.3 Parameterized classes 
It was a goal that virtual patterns should subsume higher-
order parameter mechanisms like name and procedure 
parameters and traditional virtual procedures. In addition it 
was natural to consider using virtual patterns for defining 
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parameterized classes. The use of (locally defined) virtual 
patterns as described above was a step in the right 
direction: the pattern PersonSet may be used to represent 
sets of persons by their name, and other attributes like age 
and address may also be added to ElmType. We would, 
however, like to be able to insert objects of a pattern 
Person into a PersonSet. In order to do this we may 
define a parameterized class Set in the following way: 

Set: 
  (# ElmType:< (# #); 
     insert:< 
       (# x: ^object; e: ^ElmType 
       enter x[] 
       do &ElmType[] -> e[]; 
          inner; 
          e[] -> add  
       #) 
  #) 

The virtual pattern ElmType constitutes the type parameter 
of Set. The pattern add is assumed to store e[] in the 
representation of Set. A subclass of Set that may contain 
Person objects may be defined in the following way: 

PersonSet: Set 
  (# ElmType::< (# P: ^Person #) #); 
     insert::<(# do x[] -> e.P[] #) 
  #) 

The virtual pattern ElmType is extended to include a 
reference to a Person. The parameter e[] of insert is 
stored in e.P[]. This would work, but it is an indirect way 
to specify that PersonSet is a set of Person objects. 
Instead one would really like to write: 

Set: 
  (# ElmType:< object; 
     insert:< 
       (# x: ^ElmType 
       enter x[] 
       do (* add X[] to the rep. of Set *) 
       #) 
   #) 
 
PersonSet: Set (# ElmType::< Person #) 

Here ElmType is declared as a virtual pattern of type 
object. In PersonSet, ElmType is extended to Person, 
and in this way, the declaration of PersonSet now clearly 
states that it is a set of Person objects. It turned out that it 
was quite straightforward to allow this form of semantics 
where a virtual in general can be qualified by and bound to 
a nonlocal pattern – just as a combination of local and 
nonlocal patterns would work. The general rule is that if a 
virtual pattern is declared as T:< D then T may be 
extended by T::< D1 if D1 is a subpattern of D.  T may be 
further extended using T::< D2 if D2 is a subpattern of D1. 
The PersonSet above may be extended to a set holding 
Students, as in 

StudentSet:  
  PersonSet(# ElmType::< Student #) 

A final binding of the form ElmType:: Student may be 
used to specify that ElmType can no longer be extended. 

Both forms (V:< (# … #) and V:< A) of using virtual 
patterns have turned out to useful in practice – examples 
may be found in the OOPLSA’89 paper [117], and the 
BETA book [119]. 

5.4.4 Co- and contravariance 
For parameterized classes, static typing, subclass 
substitutability and co- and contravariance have been 
central issues. Most researchers seem to give static typing 
the highest priority, leading to – in our mind – limited and 
complicated proposals for supporting parameterized 
classes. In our 1990 OOPSLA paper [115] the handling of 
these issues in BETA was discussed. Subclass 
substitutability is of course a must, and covariance was 
considered more useful and natural than say contravariance. 
This implies that a limited form of run-time type checking 
is necessary when using parameterized classes – which in 
BETA are supported by patterns with virtual class patterns. 

SIMULA, BETA, and other object-oriented languages do 
contain run-time type checking for so-called reverse 
assignment where a less qualified variable is assigned to a 
more qualified variable – like  

aVehicle -> aBus 

The run-time type checking necessary to handle covariance 
is similar to that needed for checking reverse assignment. 

With emphasis on modeling it was quite obvious that 
covariance was preferred to contravariance, and it was 
needed for describing real-life systems. The supporters of 
contravariance seem mainly to be people with a static type-
checking approach to programming. 

It is often claimed in the literature (see e.g. [20]) that BETA 
is not type safe. This is because BETA requires some form 
of run-time type checking due to covariance. The compiler, 
however, gives a warning at all places where a run-time 
type check is inserted. It has often been discussed whether 
we should insist on an explicit cast in the program at all 
places where this run-time check is inserted. In SIMULA a 
reverse assignment may be written as  

aBus :- aVehicle 

In this case it is not clear from the program that an implicit 
cast is inserted by the compiler. SIMULA, however, also 
has explicit syntax for specifying that a cast is needed for a 
reverse assignment. It is possible to write  

aBus:- aVehicle qua Bus 

Here it is explicit that a cast is inserted. Introducing such an 
explicit syntax in BETA for reverse assignment and 
covariant parameters has often been discussed. As an 
afterthought, some of us would have preferred doing this 
from the beginning, since this would have ‘kept the static 
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typeziers away’☺. However, whenever we suggested this to 
our users, they strongly objected to having to write an 
explicit cast. With respect to type safety it does not make 
any difference since a type error may still occur at run-time. 
We do, however, think that from a language design point of 
view it would be the right choice to insist on an explicit 
syntax, since it makes it clear that a run-time check is 
carried out. 

With respect to static typing, it is pointed out in our 
OOPSLA’90 paper [115] that although the general use of 
virtual class patterns will involve run-time type checking, it 
is possible to avoid this by using final bindings and/or part 
objects (cf. Section 5.5). This has turned out to be very 
common in practice. 

5.4.5 Higher-order procedures and functions 
In many languages a procedure9 may be parameterized by 
procedures. A procedure specified as a parameter is called a 
formal procedure. The procedure passed as a parameter is 
called the actual procedure. It was an issue from the 
beginning of the project that formal procedures should be 
covered by the pattern concept – and it was quickly realized 
that this could be done by unifying the notions of virtual 
procedure and formal procedure. 

Consider a procedure fsum parameterized by a formal 
procedure f, as in: 

real proc fsum(real proc f){ ... } 

An invocation of fsum may pass an actual procedure sine 
as in: 

fsum(sine) 

In BETA a formal procedure may be specified using a 
virtual procedure pattern as in: 

fsum:(# f:< realFunction; ... #) 

An invocation then corresponds to specifying a singular 
subpattern of fsum and a binding of f to the sine pattern: 

fsum(# f:: sine #) 

SIMULA inherited call-by-name parameters from Algol. 
Value parameters are well suited to pass values around – 
this is the case for simple values as well as references. Call-
by-name-parameters, like formal procedures, involve 
execution of code. For a call-by-name parameter the actual 
parameter is evaluated every time the formal parameter is 
executed in the procedure body – this implies that the 
context of the procedure invocation must be passed 
(implicitly) as an argument. It was a goal to eliminate the 
need for call-by-name parameters, and the effect of call by 
name can in fact be obtained using virtual patterns. 

                                                                 
9 In this section, procedure may be read as procedure and/or 

function. 

5.4.6 Pattern variables 
Virtual patterns partially support higher-order procedures in 
the sense that a virtual pattern may be considered a 
parameter of a given pattern. Originally BETA had no 
means for a pattern to return a pattern as a value. In 
general, virtual patterns do not make patterns first class 
values in the sense that they may be passed as arguments to 
procedures (through the enter part), returned as values 
(through the exit part) and be assigned to variables. For 
some years we thought that using virtual patterns as 
arguments fulfilled most needs to support higher-order 
procedures, although it was not as elegant as in functional 
languages. 

Indirectly, the work of Ole Agesen, Svend Frølund and 
Michael H. Olsen on persistent objects for BETA [4, 5] 
made it evident that a more dynamic pattern concept was 
needed. When a persistent object is loaded, its class 
(pattern) may not be part of the program loading the object. 
There was thus a need to be able to load its associated 
pattern and assign it to some form of pattern variable. 
Agesen, Frølund, and Olsen suggested the notion of a 
pattern variable, which forms the basis for supporting 
patterns as first-class values.  

Consider a pattern Person and subpatterns Student and 
Employee. A pattern variable P qualified by Person may 
be declared in the following way: 

P: ## Person 

P denotes a pattern that is either Person or some 
subpattern of Person. This is quite similar to a reference 
R: ^Person where R may refer to an instance of Person 
or subpattern of Person. The difference is that R denotes 
an object, whereas P denotes a pattern. P may be assigned 
a value in the following way: 

Student## -> P## 

P now denotes the pattern Student and an instantiation of 
P will generate an instance of Student. P may be assigned 
a new value as in: 

Employee## -> P## 

P now denotes the pattern Employee and an instantiation 
of P will result in an Employee object. 

Pattern variables give full support to higher-order 
procedures in the sense that patterns may be passed as 
arguments to procedures, returned as values and assigned to 
variables. 

5.5 Part objects 
From the very start we distinguished between variables as 
references to autonomous objects separate from the 
referencing objects, and variables as part objects being 
constituents of a larger object. We had many examples 
where this distinction was obvious from a modeling point 
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of view: car objects with part objects body and wheels and 
references to a separate owner object, patient objects with 
organ part objects and a reference to a physician object, 
book objects with part objects (of type Text) representing 
the title and a reference to an author object, etc. In most of 
these examples there is always a question about 
perspective: for the owner, the car is not a car without four 
wheel part objects, while a mechanic has no problem with 
cars in which the wheels are separate (i.e. not part) objects. 

We were not alone in thinking that from a modeling point 
of view it is obvious that (physical) objects consist of parts. 
At the ECOOP’87 conference Blake and Cook presented a 
paper on introducing part objects on top of Smalltalk [12]. 
In [163] Kasper Østerbye described the proper (and 
combined) use of ‘parts, wholes and subclasses’. The 
example we used in our paper on part objects [118] was 
inspired by an example from Booch [14]: the problem 
presented there was to represent (in Smalltalk) buildings 
(for the purpose of heating control) as objects consisting of 
objects representing the parts of the building. While the 
Booch method and notation had no problem in modeling 
this, it was not possible in Smalltalk, where only references 
were supported.  

In our paper we used an apartment with kitchen, bath, etc. 
as example: 

Apartment:  
   (# theKitchen: @Kitchen; 
      theBathroom: @Bathroom; 
      theBedroom: @Bedroom; 
      theFamilyRoom: @FamilyRoom; 
      theOwner: ^Person; 
      theAddress: @Address; 
      ... 
   #) 

Note the difference between the rooms of the apartment 
modeled by part objects (using @) and the owner modeled 
by a reference variable (theOwner) to a separate object 
(using ^). 

Although BETA was designed from a modeling point of 
view, it was still a programming language, so we did not 
distinguish between parts objects modeling real parts (as 
the rooms above) and part objects implementing a property 
(theAddress property above) – in BETA terms they are 
all part objects. 

Another problem with Smalltalk was that it allowed 
external access only to methods, while all instance 
variables were regarded as private. The example would in 
Smalltalk have to have access methods for all rooms, and in 
order to get to the properties of these rooms, one would 
have to do this via these access methods. In BETA we 
allowed access to variables (both part objects and 
references) directly, so with the example above it is 
possible to e.g. invoke the paint method in theKitchen 
as follows: 

...; myApartment.theKitchen.paint; ... 

Comparing BETA with Java, a reference to an object (like 
theOwner variable above) corresponds to a Java reference 
variable typed with Person, while a part object is a final 
reference variable. 

A less important rationale for part objects was that part 
objects reflected the way ordinary variables of predefined 
value types like Integer, Real, Boolean, etc. were 
implemented, and we regarded e.g. Integer, Real and 
Boolean as (predefined) patterns. 

5.5.1 Inheritance from part objects 
In the part object paper we wrote: 

‘In addition to the obvious purpose of modeling that 
wholes consist of parts, part objects may also be used to 
model that the containing object is characterized by 
various aspects,10 where these aspects are defined by 
other classes.’ 

This reflects discussions we had, but they never led to 
additional language concepts. It does, however, illustrate 
the power of combining part objects, block structure and 
virtual patterns.  

Multiple inheritance by part objects. We explored the 
possibility of using part objects to represent various aspects 
of a concept. This was partially done in order to provide 
alternatives to multiple inheritance (see also Section 
5.8.12). In the following we give an example of using part 
objects to represent aspects. 

Persons and Companies are examples of objects that may 
be characterized by aspects such as being addressable and 
taxable. The aspect of being addressable may be 
represented by the pattern: 

Addressable: 
  (# street: @StreetName;  
     ... 
     printLabel:< (# ... #); 
     sendMail:< (# ... #) 
  #) 

Similarly, a taxable aspect may be represented by: 
Taxable: 
  (# income: @integer; 
     ... 
     makeTaxReturn: < (# ... #); 
     pay:< (# do ... #) 
  #) 

A pattern Person characterized by being addressable and 
taxable may then be described as follows: 

 

  
                                                                 
10 Here aspect is used as a general term and does not refer to 

aspect-oriented programming. 
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Person:  
  (# name: @PersonName; 
     myAddr: @Addressable 
       (# printLabel::< 
            (# do ...;name.print;... #); 
          sendMail::< (# ... #) 
       #); 
     myTaxable: Taxable 
       (# makeTaxReturn::<(# ... #); 
          pay::< (# ... #) 
       #) 
  #) 

As the descriptor of the myAddr part object has 
Addressable as a superpattern, the printLabel and 
sendMail virtuals can be extended11. Since these 
extensions are nested within pattern Person, an attribute 
like Name is visible. This implies that it is possible to 
extend printLabel and sendMail to be specific for 
Person. 

A pattern Company may be defined in a similar way: 
Company:  
  (# name: @CompanyName;  
     logo: @Picture; 
     myAddr:@Addressable 
       (# printLabel::<  
            (# ...;  
               name.print;  
               logo.print; ... 
            #); 
          sendMail::< (# ... #) 
    #); 
     myTaxable: Taxable(# ... #) 
  #) 

Again, notice that a virtual binding like printLabel may 
refer to attributes of the enclosing Company object. 

In languages with multiple inheritance, Person may be 
defined as inheriting from Addressable and Taxable. 
From a modeling point of view we found it doubtful to 
define say Person as a subclass of Addressable and 
Taxable. From a technical point of view the binding of 
virtuals of Addressable and Taxable in Person will all 
appear at the same level when using multiple inheritance. 
Using part objects these will be grouped logically. A 
disadvantage is that these virtuals have to be denoted via 
the part object, as in 

aPerson.myAddr.printLabel 
aCompany.myTaxable.pay 

The advantage is that the possibility of name conflicts does 
not arise.  

5.5.2 References to part objects 
Subtype substitutability is a key property of object-oriented 
languages: if e.g. Bus is a subclass of Vehicle then a 
reference of type Vehicle may refer to instances of class 
                                                                 
11 It is not important that extension semantics be used – the same 

technique may be used with redefinition of virtuals. 

Bus. For an aspect like Addressable there is not a 
class/subclass relationship with e.g. class Person. If 
multiple inheritance is used to make Person inherit from 
Addressable then a reference of type Addressable may 
refer to instances of class Person.  

In BETA it is possible to obtain a reference to a part object. 
This means that a reference of type Addressable may 
refer to a part object of type Addressable embedded 
within a Person object. If anAddr1 and anAddr2 are of 
type Addressable then the statements below will imply 
that anAddr1 and anAddr2 will refer the Addressable 
part-object of aPerson and aCompany respectively: 

aPerson.myAddr[] -> anAddr1[]; 
aCompany.myAddr[] -> anAddr2[]; 

The effect of this is that anAddr1 and anAddr2 refer 
indirectly to a Person and a Company object, respectively. 
This is analogous to a reference of type Vehicle may refer 
to an instance of class Bus. It is thus possible to have code 
that handles Addressable objects independently of 
whether the Addressable objects inherits from 
Addressable or have Addressable as a part object: 
Suppose that we have defined Company as a subpattern of 
Addressable and Person containing an Addressable 
part object as shown above. We may then assign to 
anAddr1 and anAddr2 as follows (assuming that 
andAddr1 and anAddr2 are of type Addressable): 

aCompany[] -> anAddr1 
aPerson.myAddr[] -> anAddr2[] 

Figure 9a shows how anAddr1 may refer to a Company-
object as a subpattern of Addressable. Figure 9b shows 
how anAddr2 may refer to an Addressable part object of 
a Person object. 

 

(a)    (b) 
Figure 9 Inheritance from Addressable as super and 
as part object 
A procedure handling Addressable objects – like calling 
PrintLabel – may then be called with anAddr1 or 
anAddr2 as its argument. 
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In many object-oriented languages it is also possible to 
make a reverse assignment (sometimes called casting) like  

aVehicle[] -> aBus[]  

Since it cannot be statically determined if aVehicle 
actually refers an instance of class Bus, a run-time type 
check is needed.  

In order to be able to do a similar thing for part objects, we 
proposed in our part-object paper that a part object be given 
an extra location field containing a reference to the 
containing object. That is the myAddr part of a Person 
object is referencing the containing Person object. It is 
then possible to make a reverse assignment of the form 

anAddr1.location[] -> aPerson[] 

As for the normal case of reverse assignment, a run-time 
check must be inserted in order to check that andAddr1 is 
actually a part of a Person. After publication of the part 
object paper, we realized that it would be possible to use 
the syntax  

anAddr1[] -> aPerson[]  

and extend the runtime check to check whether the object 
referred by anAddr1 is a subclass of Person or a part 
object of Person. 

In Figure 9b, the location field of the Addressable part 
object is shown. The concept of location was 
experimentally implemented, but did not become part of the 
released implementations. 

5.6 Specialization of actions 
From the very beginning we had the approach that 
specialization should apply to all aspects of a pattern, i.e. it 
should also be possible to specialize the behavior part of a 
pattern, not only types of attributes and local patterns. The 
inspiration was the inner mechanism of SIMULA. A class 
in SIMULA has an action part, and the inner mechanism 
allows the combination of the action parts of superclass and 
subclass. However, we had to generalize the SIMULA 
inner. In SIMULA, inner was simply a means for 
syntactically splitting the class body in two. The body of a 
subclass was defined to be a (textual) concatenation of the 
pre-inner body part of the superclass, the body part of the 
subclass, and the post-inner body part of the superclass. In 
BETA we rather defined inner as a special imperative that – 
when executed by the superpattern code – implied an 
execution of the subpattern do-part. This implied that an 
inner may appear at any place where a statement may 
appear, be executed several times (e.g. in a loop) and that 
an action part may contain more than one inner.  

5.6.1 Inner also for method patterns 
The fact that inner was defined for patterns in general and 
not only for classes as in SIMULA implied that it was 
useful also for patterns that defined methods. It was thereby 

possible to define the general behavior of e.g. the method 
pattern Open of class File, with bookkeeping behavior 
before and after inner, use this general Open as a 
superpattern for OpenRead and OpenWrite, adding 
behavior needed for these, and finally have user-defined 
method patterns specializing OpenRead and OpenWrite 
for specific types of files. 

Independently of this, Jean Vaucher had developed the 
same idea but applied to procedures in SIMULA [157]. 

5.6.2 Control structures and iterators 
As mentioned in Section 5.1.1, it was a goal for BETA that 
it should be possible to define control structures by means 
of patterns. A simple example of the use of inner for 
defining control structures is the following pattern: 

cycle: (# do inner; restart cycle #) 

Given two file objects F and G, the following code simply 
copies F to G: 

L: cycle(#  
     do (if F.eos then (* end-of-stream *) 
            leave L 
        if); 
        F.get -> G.put 
     #); 

This is done by giving the copying code as the main do-part 
of an object being a specialization of cycle. The copying 
code will be executed for each execution of inner in the 
superpattern cycle. 

The perhaps most striking example of the use of inner for 
defining control structure abstractions is the ability to 
define iterators on collection objects. If mySet is an 
instance of a pattern Set then the elements of the mySet 
may be iterated over by  

mySet.scan(# do current.display #) 

The variable current is defined in scan and refers to the 
current element of the set. The superpattern mySet.scan is 
an example of a remote pattern used as a superpattern. This 
is an example of another generalization of SIMULA. 

Someone12 has suggested that a data abstraction should 
define its associated control structures. By using patterns 
and inner it is possible in BETA to define control structures 
associated with any given data structure. Other languages 
had this kind of mechanism as built-in mechanisms for 
built-in data structures, while we could define this for any 
kind of user-defined data structure. At this time in the 
development there were languages with all kinds of fancy 
control structures (variations over while and for 
statements). We refrained from doing this, as it was 

                                                                 
12 We think this was suggested by Hoare, but have been unable to 

find a reference. 
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possible to define these by a combination of inner and 
virtual patterns. 

The basic built-in control structures are leave and 
restart, which are restricted forms of the goto statement, 
and the conditional if statement. We were much influenced 
by the strong focus on structured programming in the 
seventies. Dijkstra published his influential paper on ‘goto 
considered harmful’ [36]. Leave and restart have the 
property that they can only jump to labels that are visible in 
the enclosing scope, i.e. continue execution either at the 
end of the current block or at the beginning at an enclosing 
“block”. In addition the corresponding control graphs have 
the property of being reducible. In another influential paper 
on guarded commands [37], Dijkstra suggested 
nondeterministic if and while statements. In addition, there 
was no else clause since Dijkstra argued that the 
programmer should explicitly list all possible cases. We 
found his argument quite convincing and as a consequence 
the BETA if-statement was originally nondeterministic and 
had no else clause. However, any reasonable 
implementation of an if statement would test the various 
cases in some fixed order and our experience is that the 
programmer quickly relies on this – this means that the 
program may be executed differently if a different compiler 
is used. It is of course important to distinguish the language 
definition from a concrete implementation, but in this case 
it just seems to add another source of errors. In addition it is 
quite inconvenient in practice not to have an else clause. 
We thus changed the if statement to be deterministic and 
added an else clause. 

In principle we could have relied on leave/restart 
statements and if statements, but also a for statement was 
added. It is, however, quite simple to define a for 
statement as an abstraction using the existing basic control 
structures. However, the syntax for using control 
abstractions was not elegant – in fact Jørgen Lindskov 
Knudsen once said that it was clumsy. Today we may 
agree, and e.g. Smalltalk has a much more elegant syntax 
with respect to these matters. In the beginning of the BETA 
project we assumed that there would be (as an elegant and 
natural way to overcome these kinds of inconveniences) a 
distinction between basic BETA and standard BETA where 
the latter was an extension of basic BETA with special 
syntax for common abstractions. This distinction was 
inspired by SIMULA, which has special syntax for some 
abstractions defined in class Simulation. 

Furthermore, we considered special syntax for while and 
repeat as in Pascal, but this was never included. The for 
statement may be seen as reminiscent of such special 
syntax.  

5.6.3 Modeling 
The phenomena of a given application domain include 
physical material (represented by objects), measurable 

properties (represented by values of attributes) and 
transformations (represented by actions) of properties of the 
physical material – cf. Section 4.2. The traditional 
class/subclass mechanisms were useful for representing 
classification hierarchies on physical material. From a 
modeling point of view it was just as necessary to represent 
classification hierarchies of actions. This guided the design 
of using the inner mechanism to combine action parts and 
thereby be able to represent a classification hierarchy of 
methods and/or concurrent processes. The paper 
Classification of Actions or Inheritance Also for Methods 
[101] is an account of this. 

5.7 Dynamic structure 
From the beginning it was quite clear that BETA should be 
a concurrent object-oriented programming language. This 
was motivated from a technical as well as a modeling point 
of view. In the seventies there was lot of research activity 
in concurrent programming. Most of the literature on 
concurrency was quite technical and we spent a lot of time 
analyzing the different forms of concurrency in computer 
systems and languages. This led to the following 
classification of concurrency: 

� Hidden concurrency is where concurrent execution of 
the code is an optimization made by a compiler – e.g. 
concurrent execution of independent parts of an 
expression. 
� Exploited concurrency is where concurrency is used 

explicitly by a programmer to implement an efficient 
algorithm – concurrent sorting algorithms are examples 
of this. 
� Inherent concurrency is where the program executes in 

an environment with concurrent nodes – typically a 
distributed system with several nodes. 

We felt that it was necessary to clarify such conceptual 
issues in order to design programming language 
mechanisms. With the emphasis on modeling it was quite 
clear that inherent concurrency should be the primary target 
of concurrency in BETA. 

The quasi-parallel system concept of SIMULA was the 
starting point for designing the dynamic structure of BETA 
systems. As mentioned in Section 3.1.3, quasi-parallel 
systems in SIMULA are based on coroutines, but the 
SIMULA coroutine mechanism did not support full 
concurrency and is furthermore quite complex. 
Conceptually, the SIMULA coroutine mechanism appears 
simple and elegant, but certain technical details are quite 
complicated. The coroutine system described by Dahl and 
Hoare in their famous book on structured programming 
[29] is a simplified version of the SIMULA coroutine 
system. 

SIMULA did not have mechanisms for communication and 
synchronization, but several research results within 
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concurrent programming languages were published in the 
seventies. Concurrent Pascal [17] was a major milestone 
with regard to programming languages for concurrent 
programming. Concurrent Pascal was built upon the 
SIMULA class concept, but the class concept was 
specialized into three variants, class, process and monitor. 
This was sort of the opposite of the BETA goal of 
unification of concepts. In addition Concurrent Pascal did 
not have subclasses and virtual procedures. The monitor 
construct suggested by Brinch-Hansen and Hoare [57] has 
proved its usability in practice, and was an obvious 
candidate for inclusion in BETA. However, a number of 
problems with the monitor concept were recognized and 
several papers on alternative mechanisms were published 
by Brinch-Hansen and others [18].  

Another important research milestone was CSP [58] where 
communication and synchronization was handled by input 
and output commands. Nondeterministic guarded 
commands were used for selecting input from other 
processes. We were very much influenced by CSP and later 
Ada [2] with respect to the design of communication and 
synchronization in BETA. In Ada communication and 
synchronization were based on the rendezvous mechanism, 
which is similar to input/output commands except that 
procedure calls are used instead of output commands.  

5.7.1 The first version 
From the beginning, a BETA system was considered a 
collection of coroutines possibly executing in parallel. Each 
coroutine is organized as a stack of objects corresponding 
to the stack of activation records. A coroutine is thus a 
simple form of thread. In the nonconcurrent situation, at 
most one coroutine is executing at a given point in time. 
Since activation records in BETA are subsumed by objects, 
the activation records may be instances of patterns or 
singular objects. 

The SIMULA coroutine mechanism was quite well 
understood and the main work of designing coroutines for 
BETA was to simplify the SIMULA mechanism. SIMULA 
has symmetric as well as asymmetric coroutines [30]. In 
BETA there are only asymmetric coroutines – a symmetric 
coroutine system can be defined as an abstraction. In BETA 
it is furthermore possible to transfer parameters when a 
coroutine is called.  

Conceptually it was pretty straightforward to imagine 
BETA coroutines executing concurrently. It was much 
harder to design mechanisms for communication and 
synchronization and this part went through several 
iterations.  

The first published approach to communication and 
synchronization in BETA was based on the CSP/Ada 
rendezvous mechanism, mainly in the Ada style since 
procedure calls were used for communication. From a 

modeling point of view this seemed a good choice since the 
rendezvous mechanism allowed direct communication 
between concurrent processes. With monitors all 
communication was indirect – of course, this may also be 
justified from a modeling point of view. However, since 
monitors could be simulated using processes and 
rendezvous we found that we had a solution that could 
support both forms of communication between processes.  

In CSP and Ada input and output commands are not 
symmetric: input-commands (accept statements) may be 
used only in a guarded command. The possibility of 
allowing output commands as guards in CSP is mentioned 
by Hoare [58]. For BETA we considered it essential to 
allow a symmetric use of input  and output commands in 
guarded commands. We also found guarded commands 
inexpedient for modeling a process engaged in 
(nondeterministic) communication with two or more 
processes. Below we give an example of this. 

The following example is typical of the programming style 
used with guarded commands: 

� Consider a process Q engaged in communication with 
two other processes P1 and P2.  
� Q is engaged in the following sequential process with P1 

Q1: cycle{P1.get(V1); S1; P1.put(e1); S2} 

Q gets a value from P1, does some processing, sends a 
value to P1 and does some further processing. Note that 
rendezvous semantics is assumed for method 
invocations. This means that Q1 may have to wait at e.g. 
P1.get(V1) until P1 accepts the call. 

� Q is also engaged in the following sequential process with 
P2: 
Q2:cycle{ P2.put(e2); S3; P2.get(V2); S4 } 

� Q1 and Q2 may access variables in Q. A solution where 
Q1 and Q2 are executed concurrently as in: 
Q: { ... do (Q1 || Q2) } 

where || means concurrency will therefore not work 
unless access to variables in Q is synchronized. And this 
is not what we want – in general we want to support 
cooperative scheduling at the language level. 

� The two sequential processes have to be interleaved in 
some way to guarantee mutual access to variables in Q. It 
is not acceptable to wait for P1 if P2 is ready to 
communicate or vice versa. For instance, when waiting 
for P1.get one will have to place a guard that in 
addition accepts P2.put or P2.get. It is, however, 
difficult to retain the sequentiality between P1.get and 
P1.put and between P2.put and P2.get. Robin Milner 
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proposed the following solution using Boolean 
variables13: 

 
Q:  
{... do  
 if 
  B1     and P1.get(V1) then S1;B1:= false 
  not B1 and P1.put(e1) then S2;B1:= true 
  B2     and P2.put(e2) then S3;B2:= false 
  not B2 and P2.get(V2) then S4;B2:= true 
 fi 
} 

From a programming as well as a modeling point of view, 
we found this programming style problematic since the two 
sequential processes Q1 and Q2 are implicit. We did think 
that this was a step backward since Q1 and Q2 were much 
better implemented as coroutines. One might consider 
executing Q1 and Q2 in parallel but this would imply that 
Q1 and Q2 must synchronize access to shared data. This 
would add overhead and extra code to this example.  

Eventually we arrived at the notion of alternation, which 
allows an active object to execute two or more coroutines 
while at most one at a time is actually executing. The above 
example would then look like 

Q:  
{... 
 Q1: alternatingTask 
     {cycle{ P1.get(V1);S1;P1.put(e1);S2} 
 Q2: alternatingTask 
     {cycle{ P2.put(e2);S3;P2.get(V2);S4} 
do (Q1 | Q2) 
} 

The statement (Q1 | Q2) implies that Q1 and Q2 are 
executed in alternation. Execution of Q1 and Q2 may 
interleave at the communication points. At a given point in 
time Q1 may be waiting at say P1.put(e1) and Q2 at 
P2.get(V2). If P1 is ready to communicate, then Q1 may 
be resumed. If on the other hand P2 is ready before P1 then 
Q2 may be resumed.  

The statement (Q1 | Q2) is similar to (Q1 || Q2) – the 
former means alternation (interleaved execution at well 
defined points) and the latter means concurrent execution. 
Note, that the example is not expressed in BETA, whose 
syntax is slightly more complicated. 

The version of BETA based on CSP/Ada-like rendezvous 
and with support for alternation is described in our paper 
entitled Multisequential Execution in the BETA 
Programming Language [97] (also published in [145]). 

5.7.2 The final version 
We were happy with the generalized rendezvous 
mechanism – it seemed simple and general, But when we 
                                                                 
13 The syntax is CSP/Ada-like, 

started using and implementing it, we discovered a number 
of problems: 

� Although the rendezvous mechanism can be used to 
simulate monitors it turned out to be pretty awkward in 
practice. As mentioned above the monitor is one of the 
few concurrency abstractions that have proved to be 
useful in practice.  
� It turned out to be inherently complicated to implement 

symmetric guarded commands – at least we were not able 
to come up with a satisfactory solution. In [70] an 
implementation was proposed, but it was quite 
complicated. 

In addition we realized that the technique for defining a 
monitor abstraction as presented by Jean Vaucher [157] 
could also be used to define a rendezvous abstraction, 
alternation and several other types of concurrency 
abstractions including semi-coroutines in the style of 
SIMULA, and alternation. In late 1990 and early 1991, a 
major revision of the mechanisms for communication and 
synchronization was made. As of today, BETA has the 
following mechanisms: 

� The basic primitive for synchronization in BETA is the 
semaphore.  
� Higher-order concurrency abstractions such as monitor, 

and Ada-like rendezvous, and a number of other 
concurrency abstractions are defined by means of 
patterns in the Mjølner BETA libraries. The generality of 
the pattern concept, the inner mechanism and virtual 
patterns are essential for doing this. Wolfgang Kreutzer 
and Kasper Østerbye [80, 165] also defined their own 
concurrency abstractions. 
� In BETA it is possible to define cooperative as well as 

preemptive (hierarchical) schedulers in the style of 
SIMULA. Although there were other languages that 
allowed implementation of schedulers, they were in our 
opinion pretty ad hoc and not as elegant and general as in 
SIMULA. At that time and even today, there does not 
seem to be just one way of scheduling processes.  

For details about coroutines, concurrency, synchronization, 
and scheduling see the BETA book [119]. 

5.7.3 Modeling 
From a modeling perspective there was obviously a need 
for full concurrency. The real world consists of active 
agents carrying out actions concurrently.  

In DELTA it is possible to specify concurrent objects, but 
since DELTA is for system description and not 
programming, the DELTA concepts were not transferable 
to a programming language. To understand concurrency 
from a technical as well as a modeling point of view, we 
engaged in a number of studies of models for concurrency 
especially based on Petri nets. One result of this was the 
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language Epsilon [65], which was a subset of DELTA 
formalized by a Petri net model. 

For coroutines it was not obvious that they could be 
justified from a modeling perspective. The notion of 
alternation was derived in order to have a conceptual 
understanding of coroutines from a modeling point of view. 
An agent in a travel agency may be engaged in several 
(alternating) activities like ‘tour planning’, ‘customer 
service’ and ‘invoicing’. At a given point in time the agent 
will be carrying out at most one of these activities.  

As for coroutines, the notion of scheduling was not 
immediately obvious from a modeling point of view. This, 
however, led to the notion of an ensemble as described in 
Section 5.8.7 below. 

5.8 Other issues 
Here we discuss some of the other language elements that 
were considered for BETA. This includes language 
constructs that were discussed but not included in BETA. 

5.8.1 Parameters and return values 
In block-structured languages like Algol, the parameters of 
a procedure define an implicit block level: 

foo(a,b,c: integer) { x,y,z: real do ... } 

Here the parameters a,b,c corresponds to a block level 
and the local variables x,y,z are at an inner block level. 
For BETA the goal was that the implicit block level defined 
by the parameters should be explicit. A procedure pattern 
like foo should then be defined as follows: 

foo:  
  (# a,b,c: integer  
  do (#  x,y,z: integer do ... #)  
  #) 

The parameters are defined as data items at the outermost 
level, and the local variables are defined in a singular object 
in the do part. 

With respect to return values, the initial design was to 
follow the Algol style and define a return value for a 
procedure – which in fact is still the style used in most 
mainstream languages. In most languages a procedure may 
also return values using call-by-reference and/or call-by-
name parameters. However, many researchers considered it 
bad style to write a procedure that returns values through 
both its parameters and its return value. This style was (and 
still is), however, often used if a procedure needs to return 
more than one value. For BETA (as mentioned elsewhere), 
call-by-name was not an issue since it was subsumed by 
virtual patterns. As mentioned below, we did find that call-
by-reference parameters would blur the distinction between 
values and objects. There were language proposals 
suggesting call-by-return as an alternative to call-by-
reference. The advantage of call-by-return was that the 
actual parameter did not change during the execution of the 

procedure, but was first changed when the procedure 
terminated. We did find a need to be able to return more 
than one value from a procedure and in some languages 
(like Ada) a variable could be marked as in, out or inout 
corresponding to call-by-value, -return or both. Finally, 
there was also a discussion on whether or not arguments 
should be passed by position or by the name of the 
parameter. In the first version of BETA all data items at the 
outermost level could be used as arguments and/or return 
values, and the name of a data item was used to pass 
arguments and return values. The pattern foo above might 
then be invoked as follows: 

foo(put a:=e1, b:=e2) (get v:=b, w:=c) 

We later found this too verbose, and position-based 
parameters were introduced in the form of enter/exit lists. 
The pattern foo would then be declared as follows: 

foo: (# a,b,c: integer  
     enter (a,b) do (# ... #)  
     exit (b,c) 
     #) 

and invoked as follows: 
(e1,e2) -> foo -> (v,w) 

In this example, enter corresponds to defining a,b as in 
parameters and exit corresponds to defining b,c as out 
parameters, i.e. b was in fact an inout parameter. 

There were a number of intermediate steps before the 
enter/exit parts were introduced in their present form. One 
step was replacing the traditional syntax for calling a 
procedure with the above (and current) postfix notation. In 
a traditional syntax the above call would look like: 

(v,w) := foo(e1,e2) 

If e1 and e2 also were calls to functions, a traditional call 
might look like: 

(v,w):= foo(bar(f1,f2),fisk(g1,g2)) 

We did not find this to be the best syntax with respect to 
readability – in addition, we would like to write code as 
close as possible to the order of execution. This then led to 
the postfix notation where the above call will be written as 

((f1,f2)->bar,(g1,g2)->fisk)->foo->(v,w) 

We found this more readable, but others may of course 
disagree. 

The enter/exit part may be used to define value types. In 
this case, the exit part defines the value of the object and 
the enter part defines assignment (or enforcement) of a new 
value on the object. The following example shows the 
definition of a complex number: 

complex:  
 (# x,y: @ real enter(x,y) exit(x,y)#) 

Complex variables may be defined as follows: 
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C1,C2: @complex 

They may be assigned and compared: In C1 -> C2, the 
exit part of C1 is assigned to the enter part of C2. In C1 
= C2 the exit part of C1 is compared to the exitpart of C2. 

As part of defining a value type we would also like code to 
be associated with the value and assignment. For this 
reason, the enter/exit-part is actually a list of evaluations 
that may contain code to be executed. For purely illustrative 
purposes the following definition of complex keeps track of 
the number of times of the value is read or assigned: 

complex: 
  (# x,y: @real; n,m: @integer  
  enter (# enter(x,y) do n+1 -> n #) 
  exit (# do m+1 -> m exit (m,y) #) 
  #) 

Complex may also have a do-part, which is executed 
whenever enter or exit is executed. If C1 is a complex 
object with a do-part then 

� In C1 -> E, the do, and exit part of C1 is executed 
� In E -> C1, the enter- and do part of C1 is executed 
� In E -> C1 -> F, the enter, do and exit parts of C1 

are executed. 
The do part is thus executed whenever an object is 
accessed, the enter part when it is assigned and the exit 
part when the value is fetched. 

One problem with the above definitions of complex is that 
the representation of the value is exposed. It is possible to 
assign simple values and decompose the exit part, as in 

(3.14,1.11) -> C1 -> (q,w) 

To prevent this, it was once part of the language that one 
could restrict the type of values that could be assigned/read: 

complex:  
  (# x,y: @real  
  from complex enter(x,y)  
  to complex exit(x,y)  
  #) 

In general any pattern could be written after from/to, but 
there was never any use of this generality and since we 
never became really happy with using enter/exit to define 
value types, the from/to-parts were abandoned. 

The SIMULA assignment operators := and :- were taken 
over for BETA. In the beginning => was used for 
assignment of values and @> for assignment of references. 
However, since enter/exit-lists and lists in general may 
contain a mixture of values and references, we either had to 
introduce a third assignment operator to be used for such a 
mixture, or use one operator. Eventually -> was selected. 
The distinction between value and object is thus no longer 
explicit in the assignment operator. Instead, this is 
expressed by means of []. An expression X[] denotes the 

reference to the object referred by X. An expression X 
denotes the value of the object. 

5.8.2 Value concept 
The distinction between object and value has been 
important for the design of BETA. This is yet another 
example of the influence of SIMULA as exemplified 
through the operators := and :-. In the previous section, 
we have described how enter/exit may be used to define 
value types. In this section we discuss some of the design 
considerations regarding the value concept. 

As mentioned, the SIMULA class construct was a major 
inspiration for the notion of abstract data types developed 
in the seventies. For Nygaard a data type was an abstraction 
for defining values, and he found that the use of the class 
concept for this purpose might create conceptual confusion. 
In SIMULA, Dahl and Nygaard tried to introduce a concept 
of value types at a very late stage, but some of the main 
partners developing the SIMULA compilers refused to 
accept a major change at that late point of the project. The 
notion of value type was further discussed in the DELTA 
project and, as mentioned in Section 2.4, was one of the 
subprojects defined in JLP. Naturally the concept of value 
types was carried over to the BETA project. 

One may ask why it should be necessary to distinguish 
value types from classes – why are values not just instances 
of classes? The distinction between object and value is not 
explicit in mainstream object-oriented languages. In 
Smalltalk values are immutable objects. In C++, Java and 
C# values are not objects, but there does not seem to be a 
conceptual distinction between object and value – the 
distinction seems mainly to be motivated by efficiency 
considerations. 

From a modeling point of view, it is quite important to be 
able to distinguish between values and objects. As 
mentioned in Section 4, values represent measurable 
properties of objects. In 1982 MacLennan [110] formulated 
the distinction in the following way: 

… values are abstractions, and hence atemporal, 
unchangeable, and non-instantiated. We have shown that 
objects correspond to real world entities, and hence exist 
in time, are changeable, have state, and are instantiated, 
and can be created, destroyed and shared. These concepts 
are implicit in most programming languages, but are not 
well delimited. 

One implication of the distinction between value and object 
was that support for references to values as known from 
Algol 68 and C was ruled out from the beginning. A 
variable in BETA either holds a value or a reference to an 
object.  

Another implication was that a value conceptually cannot 
be an instance of a type. Consider an enumeration type:  

10-36



 

color = (red, green, blue) 

Color is the type and red, green, and blue are its values. 
Most people would think of red, green and blue as 
instances of color. For BETA we ended up concluding 
that it is more natural to consider red, green and blue as 
subpatterns of color. The instances of say green are then 
all green objects. In Smalltalk True and False are 
subclasses of Boolean, but they are also objects. Numbers 
in Smalltalk are, however, considered instances of the 
respective number classes. For BETA we considered 
numbers to be subpatterns and not instances. Here we are in 
agreement with Hoare [55] that a value, like four, is an 
abstraction over all collections of four objects.  

Language support for a value concept was a constant 
obstacle in the design of BETA. The enter/exit-part of a 
pattern, the unification of assignment and method 
invocation to some extent support the representation of a 
value concept. For Nygaard this was not enough and he 
constantly returned to the subject. Value type became an 
example of a concept that is well motivated from a 
modeling perspective, but it turned out to difficult to invent 
language mechanisms that added something new from a 
technical point of view.  

5.8.3 Protection of attributes 
There has been a lot of discussion of mechanisms for 
protecting the representation of objects. As mentioned, the 
introduction of abstract data types (where a data type was 
defined by means of its operations) and Hoare’s paper on 
using the SIMULA class construct led to the introduction of 
private and protected constructs in SIMULA. Variants of 
private and protected are still the most common 
mechanism used in mainstream object-oriented languages 
like C++, Java and C#. In Smalltalk the rule is that all 
variables are private and all methods are public. 

We found the private/protected constructs too ad hoc and 
the Smalltalk approach too restricted. Several proposals for 
BETA were discussed at that time, but none was found to 
be adequate. 

5.8.4 Modularization 
The concept of interface modules and implementation 
modules as found in Modula was considered a candidate for 
modularization in BETA. From a modeling point of view 
we needed a mechanism that would make it possible to 
separate the representative parts of a program – i.e. the part 
that represented phenomena and concepts from the 
application domain – from the pure implementation details. 
Interface modules and implementation modules were steps 
in the right direction.  

However, we found that we needed more than just 
procedure signatures in interface modules, and we also 
found the concept of interface and implementation modules 
in conflict with the ‘one-pattern concept’. In our view, 

modules were a mechanism that was used for two purposes: 
modularizing the program text and as objects encapsulating 
declarations of types, variables and procedures. In Section 
5.8.8 we describe how the object aspect of a module may 
be interpreted as a BETA object. 

For modularization of the program text we designed a 
mechanism based on the BETA grammar. In principle any 
sentential form – a correct sequence of terminal and 
nonterminal symbols from the BETA grammar – can be a 
module. This led to the definition of the fragment system, 
which is used for modularization of BETA programs. This 
includes separation of interface and implementation parts 
and separation of machine-dependent and independent 
parts. For details of the fragment system, see the BETA 
book [119]. 

5.8.5 Local language restriction 
From the beginning of the project it was assumed that a 
pattern should be able to define a so-called local language 
restriction part. The idea was that it should be possible to 
restrict the use of a pattern and/or restrict the constructs that 
might be used in subpatterns of the pattern. This should be 
used when defining special purpose patterns for supporting 
class, procedure, function, type, etc. For subpatterns of e.g. 
a function pattern the use of global mutable data items and 
assignment should be excluded. Local language restriction 
was, however, never implemented as part of BETA, but 
remained a constant issue for discussion. 

A number of special-purpose patterns were, however, 
introduced for defining external interfaces. These patterns 
are defined in an ad hoc manner, which may indicate that 
the idea of local language restriction should perhaps have 
been given higher priority. 

5.8.6 Exception handling 
Exception handling was not an issue when the BETA 
project started, but later it was an issue we had to consider. 
We did not like the dynamic approach to exception 
handling pioneered by Goodenough [45] and also criticized 
by Hoare [59]. As an alternative we adapted the notion of 
static exception handling as developed by Jørgen Lindskov 
Knudsen [72]. Knudsen has showed how virtual patterns 
may be used to support many aspects of exception handling 
and this style is being used in the Mjølner libraries and 
frameworks. The BETA static approach proved effective 
for exception handling in almost all cases, including large 
frameworks, runtime faults, etc. However, Knudsen [75] 
later concluded that there are cases (mostly related to third-
party software) where static exception handling is not 
sufficient. In these cases there is a need either to have the 
compiler check the exception handling rules (as in e.g. 
CLU) or to introduce a dynamic exception handling 
concept in addition to the static one. In his paper he 
describes such a design and illustrates the strengths of 
combining both static and dynamic exception handling. 

10-37



 

5.8.7 Ensemble 
The relationship between the execution platform (hardware, 
and operating system) and user programs has been a major 
issue during the BETA project. As BETA was intended for 
systems programming, it was essential to be able to control 
the resources of the underlying platform such as processors, 
memory and external devices. An important issue was to be 
able to write schedulers.  

The concept of ensemble was discussed for several years, 
and Dag Belsnes was an essential member of the team 
during that period. Various aspects of the work on 
ensembles have been described by the BETA team [93], 
Dag Belsnes [11], the BETA team [99], and Nygaard [131]. 
The first account of BETA’s ensemble concept is in the 
thesis of Øystein Haugen [49]. 

A metaphor in the form of a theatre ensemble was 
developed to provide a conceptual/modeling understanding 
of an execution platform. A platform is viewed as an 
ensemble that is able to perform (execute) a play (program) 
giving rise to a performance (program execution). The 
ensemble has a set of requisites (resources) available in 
order to perform the play. Among the resources are a set of 
actors (processors). An actor is able to perform one or more 
roles (execute one or more objects) in the play. The casting 
of roles between actors (scheduling) is handled by the 
ensemble. 

The interface to a given execution platform is described in 
terms of a BETA program including objects representing 
the resources of the platform. If a given platform has say 
four processors, the corresponding BETA program has four 
active objects representing the processors.  

In addition to developing a conceptual understanding of an 
execution platform, the intention was to develop new 
language constructs. We think that we succeeded with the 
notion of ensemble as a concept. With respect to language 
constructs many proposals were made, but none of these 
turned out to be useful by adding new technical possibilities 
to the language. It turned out that the notions of active 
object and coroutine were sufficient to support the interface 
to processors and scheduling. 

The ensemble concept did have some influence on the 
language. The Mjølner System includes an ensemble 
framework defining the interface to the execution platform. 
For most BETA implementations, one active object is 
representing the processor. A framework defines a basic 
scheduler, but users may easily define their own schedulers. 
An experimental implementation was made for a SPARC 
multiprocessor – here an active object was associated with 
each processor and a joint scheduler using these processors 
was defined as a framework.  

Dynamic exchange of BETA systems. It was also a goal to 
be able to write a BETA program that could load and 

execute other BETA programs. In an unpublished working 
note [99], we described a mechanism for ‘Dynamic 
exchange of BETA systems’, which in some way 
corresponds to class loading in Java. Bjorn Freeman-
Benson, Ole Agesen and Svend Frølund later implemented 
dynamic loaders for BETA. 

Memory management was another issue we would have 
liked to support at the BETA level, but we did not manage 
to come up with a satisfactory solution. 

5.8.8 Modules as objects 
In the seventies the use of the class construct as a basis for 
defining abstract data types was often criticized since it 
implied an asymmetry between arguments of certain 
operations on a data type. Consider the following definition 
of a complex number: 

class Complex:  
  { real x,y; 
    complex add(complex C) { ... } 
    ... 
  } 
 
Complex A,B,C; 
A:= B.add(C); 

The asymmetry in the call B.add(C) between the 
arguments B and C was considered by many a disadvantage 
of using classes to define abstract data types. As an 
alternative a module-like concept was proposed by Koster 
[79]: 

module ComplexDef: { 
  type Complex = record real x,y end 
  Complex add(Complex C1,C2) {... } 
  ... 
} 
 
Complex A,B,C; 
A := add(B,C); 

As can be seen, this allows symmetric treatment of the 
arguments of add.  

Depending on the language it was sometimes necessary to 
qualify the types and operation with the name of the 
module as in 

ComplexDef.Complex A,B,C; 
A := ComplexDef.add(A,B); 

Languages like Ada, CLU and Modula are examples of 
languages that used a module concept for defining abstract 
data types. 

For BETA, a module was subsumed by the notion of 
singular object. The reason for this was that a module 
cannot be instantiated – there is only one instance of a 
module and its local types and operations can be 
instantiated. A complex module may be defined in BETA 
as follows: 
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ComplexDef: @ 
 (# Complex:  
      (# X,Y: @real enter(X,Y) exit 
(X,Y)#) 
    add: (# ... #); 
    ... 
 #) 
 
A,B,C: @ComplexDef.Complex; 
(A,B) -> ComplexDef.add -> (B,C) 

For CLU it was not clear to us whether the cluster concept 
was an abstraction or an object. 

5.8.9 Constructors 
The concept of constructors was often discussed in the 
project, but unfortunately a constructor mechanism was 
never included in BETA. 

The idea of constructors for data types in general was 
introduced by Hoare (the idea was mentioned on page 55 
top in [52] and the word constructor appears in [55]) and 
was obviously a good idea since it assured proper 
initialization of the objects. In SIMULA initialization of 
objects was handled by the do part of the object. As 
mentioned, all SIMULA objects are coroutines – when an 
object is generated it is immediately attached to the 
generating object and will thus start to execute its do part 
until it suspends execution. The convention in SIMULA 
was that initialization was provided by the code up to the 
first detach.  

The SIMULA mechanism was not considered usable in 
BETA. In BETA an object is not necessarily a coroutine as 
in SIMULA. For BETA we wanted to support the notion of 
static procedure instance. This is illustrated by the example 
in Figure 8. The instance ia may be considered a static 
procedure instance and executed several times. We thought 
that it would not be meaningful to execute ia when it is 
generated. The do part of insert describes whatever 
insert should do and not its initialization.  

We did consider having constructors in the style of C++, 
but we did not really like the idea of defining the 
constructor at the same level as the instance attributes (data 
items and procedures). We found constructors to be of the 
same kind as static procedures and static data items. As 
discussed elsewhere, we found static attributes superfluous 
in a block-structured language. 

We liked the Smalltalk idea of a class object defining 
attributes like new to be global for a given class. Again, as 
described elsewhere, this should be expressed by means of 
block structure.  

Unfortunately, the issue of constructors ended up as an 
example in which the search for a perfect solution ended up 
blocking a good solution – like C++ constructors. 

5.8.10 Static (class) variables and methods 
Static variables and methods were never an issue. In a 
block-structured language variables and methods global to 
a class naturally belong to an enclosing object. Static 
variables and methods play the roles of class variables and 
class methods in Smalltalk, and Madsen’s paper on block 
structure [111] discusses how to model metaclasses and 
thereby class variables and class methods by means of 
block structure. 

A further benefit of block structure is that one may have as 
many objects of the enclosing class as required 
(representing different sets of objects of the nested class), 
while static variables give rise to only one variable for all 
objects.  

5.8.11 Abstract classes and interfaces 
One implication of the one-pattern idea was that it was 
never an issue whether or not to have explicit support for 
abstract classes (or interfaces as found in Java). An abstract 
class was considered an abstraction mechanism on the line 
with class, procedure, type, etc. 

If abstract class was to be included in BETA it would be 
similar to a possible support for class and procedure 
defined as patterns. I.e. one might imagine that BETA 
could have support for defining a pattern AbstractClass 
(or Interface).  

For class and procedure we never really felt a need for 
defining special patterns. Since a pattern with only local 
patterns containing just their signature may be considered 
an abstract pattern, there was never a motivation to have 
explicit syntactic support for abstract patterns. 

5.8.12 Multiple inheritance 
BETA does not have multiple inheritance. In fact we did 
not like to use the term ‘inheritance’, but rather used 
‘specialization’. This was deliberate: specialization is a 
relationship between a general pattern (representing a 
general concept) and patterns representing more special 
concepts, and with our conceptual framework as 
background this was most appealing. The specialized 
patterns should then have all properties of the more general 
pattern, and virtual properties could only be extended, not 
redefined. Inheritance should rather be a relationship 
between objects, as in everyday language. Specialized real-
world phenomena cannot of course in general be 
substituted in the sense that they behave identically. But 
specialization implies substitutability in the following 
sense: a description (including program pieces) assuming 
certain properties of a general class of phenomena (like 
vehicles) should be valid no matter what kind of 
specialization (like car, bus or truck) of vehicle is 
substituted in the description (program piece). The 
description (program code) is safe in the sense that all 
properties are available but typically differ. 
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During the BETA project there was an ongoing discussion 
on multiple inheritance within object-oriented 
programming. Although one may easily recognize the need 
for multiple classifications of phenomena, the multiple 
inheritance mechanisms of existing languages were often 
justified from a pure code-reuse point of view: it was 
possible to inherit some of the properties of the 
superclasses but not all. Often there was no conceptual 
relation between a class and its multiple superclasses. 

Language mechanisms for handling name conflicts between 
properties inherited from multiple superpatterns were a 
subject that created much interest. In one kind of approach 
they were handled by letting the order of superclasses 
define the visibility of conflicting names. From a modeling 
point of view it does not make sense for the order of the 
superclasses to be significant. In other approaches name 
conflicts should be resolved in the program text by 
qualifying an ambiguous name by the name of the 
superclass where it was declared. Name conflicts in general 
and as related to BETA were discussed by Jørgen Lindskov 
Knudsen [73]. He showed that no unifying name resolution 
rule can be devised since name conflicts can originate from 
different conceptual structures. The paper shows that there 
are essentially three necessary name-resolution rules and 
that these can coexist in one language, giving rise to great 
expressive power. 

For BETA we would in addition have the complexity 
implied by inner, e.g. in which sequence should the 
superpattern actions be executed? There was a proposal that 
the order of execution should be nondeterministic. Kristine 
Thomsen [150] elaborated and generalized these ideas. 

The heavy use of multiple inheritance for code sharing, and 
the lack of a need for multiple inheritance in real-world 
examples implied that we did not think that there was a 
strong requirement for supporting multiple inheritance. 
This was perhaps too extreme, but in order to include 
multiple inheritance the technical as well as modeling 
problems should be solved in a satisfactory way. We did 
not feel that we were able to do that. 

In practice, many of the examples of multiple inheritance 
may be implemented using the technique with part objects 
as described in Section 5.5.1. 

5.8.13 Mixins and method combination 
In the beginning mixins, as known from Flavors [23], were 
never really considered for inclusion in BETA – i.e. 
covered by the pattern concept. The reason was that we 
considered mixins to be associated with multiple 
inheritance, and the concept of mixins seemed to be even 
further promoting multiple inheritance as a mechanism for 
code sharing. The semantics of multiple inheritance in 
Flavors, Loops [13] and Common Lisp [69] where the 
order of the superclasses was essential did not seem to fit 

well with a language intended for modeling. Perhaps the 
emphasis on code sharing in these Lisp-based languages 
did not make us realize that a mixin can be used to define 
an aspect of a concept, as discussed in Section 5.5.1. 

We found the support for method combination in these 
languages interesting. Before and after methods are an 
alternative – and perhaps more general – to the inner 
mechanism. Method combination is an interesting and 
important issue. Thomsen proposed a generalization of 
inner for combination of concurrent actions [151]. Bracha 
and Cook proposed a mixin concept supporting super as 
well as inner [15]. 

5.9 Syntax 
It is often claimed that BETA syntax is awkward. It is 
noteworthy that these claims most often come from people 
not using BETA. Students attending BETA courses and 
programmers using BETA readily got used to it and 
appreciated its consistency. We could of course say that 
‘syntax was not a big issue for us’ and ‘the semantics is the 
important issue’, but the fact is we had many discussions on 
syntax and that there is a reason why the syntax became the 
way it is.  

First of all, we had the idea of starting with the desired 
properties of program executions and then making syntax 
that managed to express these properties. The terms object 
and object descriptor are simple examples of this.  

Assignment: As we generalized assignment and procedure 
call into execution of objects, and as it was desired to have 
sequences of object executions, there was obviously a need 
to have a syntax that reflected what really was going on. 
The general form therefore became 

ex1 -> ex2 -> ... -> exn 

where each of the exi is an object execution. Execution 
involved assignment to the enter part, execution of the do 
part and assignment from the exit part. 

Because references to objects could either be assigned to 
other references or be used in order to have the denoted 
object executed, we made the distinction syntactically: 

ref1[] -> ref2[] ->...-> refn[]  
 (* reference assignment *) 
 
ref1 -> ref2 ->...-> refn  
 (* object executions *) 

The two forms could of course be mixed, so if the enter part 
of the object denoted by ref2 required a reference as input, 
then that would be expressed by  

ref1[] -> ref2 

Naming: We devised the following consistent syntax for 
naming things and telling what they were: 

<name> ‘:’ <kind> <object descriptor> 
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By <kind> is meant pattern, part object, reference 
variable, etc. For part object the symbol @ is used to specify 
the kind and for reference variable ^ is used. For a pattern 
it was decided to use no symbol. So  

P: super(# ... #) 

simply was the syntax for a pattern. A possible super 
pattern was indicated by a name preceding the main part of 
the object descriptor and not (as in SIMULA) preceding the 
pattern name. Objects had two kinds and therefore different 
syntax: @ for a part object and ^ for a reference (to a 
separate object): 

P:(# anA: @A; 
     aRefToA: ^A; 
     ...  
  #) 

Whenever a descriptor was needed (in order to tell e.g. 
what the properties of part object are) we allowed either an 
identifier (of a pattern) or a whole object descriptor: 

P:(#  
  anA1: @A;  
    (* pattern-defined part object *) 
 
  anA2: @(# ...#);  
    (* singular part object *) 
 
  aSpecialA: @A(# ...#); 
  ...  
#) 

The last part object above has an object descriptor that 
specializes A. This was made possible by the above syntax 
where a super pattern is indicated by a name preceding the 
main part of the object descriptor. 

Parentheses: There are two reasons for using (# ... #) 
instead of {...}. The first was that we imagined that there 
would be more than object descriptors that needed 
parentheses. At one point in time there were discussions 
about (@ ... @) meaning description of part objects and 
(= ... =) meaning description of values. This was never 
introduced, but later we introduced ( ) to mean begin 
end of more than just object descriptors, e.g. 

(for ... repeat ... for) 
(if ... if) 

We felt that his was obviously nicer than e.g.  
for ... repeat ... endfor 
if ... endif 

found in other languages at that time. Although we did not 
introduce e.g.  (@ ... @), we still reserved the # to mean 
descriptor, so that (# ... #) could be read ‘begin 
descriptor ... descriptor end’. The syntax for pattern 
variables uses # in order to announce that these are 
variables denoting descriptors. 

5.10 Language evolution 
In this section we briefly comment on how the language 
has evolved since 1976. Some of the events discussed 
below are also mentioned in Section 3.3. 

The first account of BETA was the 1976 working note 
(First language draft [89]). At this stage the BETA project 
had mainly been concerned with discussing general 
concepts and sketching language ideas. A large part of the 
working note was devoted to a discussion of the DELTA 
concepts and their relation to BETA. The language itself 
was quite immature, but a first proposal for a pattern 
mechanism was presented. The report did not contain any 
complete program examples – an indication of the very 
early stage of the language. 

The report includes a long analytical discussion of issues 
related to concurrency – this includes representative states 
and an interrupt concept. We had very little experience in 
issues related to concurrent programming. Various 
generalizations of the SIMULA coroutine mechanism were 
discussed. A lot of stacks were drawn and there were 
primitives like ATTACH X TO Y that could be used to 
combine arbitrary stacks. A few other language constructs 
were sketched, but not in an operational form – they were 
abandoned in future versions of BETA.  

The syntax was quite verbose due to a heavy use of 
keywords. Parameters were passed by name and not by 
position. Objects had general enter/exit lists. The parameter 
mechanism made it possible to pass parameters and get 
return values to/from coroutines – something that is not 
possible in SIMULA. 

The unification of name and procedure parameters and 
virtual procedures was mentioned but not described in the 
1976 report. Virtual patterns were mentioned, and it was 
said that they would be as in SIMULA/DELTA). 

The 1978 working note (Draft Proposal of BETA [90]) 
included a complete syntax, and the contour of the 
language started to emerge. Virtual patterns were used for 
method patterns, for typing functions and for typing 
elements of local arrays, that is virtual classes were in fact 
there. The syntax was very verbose with keywords, and 
very different from the final syntax, and the examples were 
sketchy. 

The 1979 working note (First complete language definition 
[92]) included a complete definition of the language based 
on attribute grammars. In addition there were several 
examples. 

With respect to language concepts, the 1981 working note 
(A survey of the BETA Programming Language) was quite 
similar to the 1979 working note, but there were major 
changes to the syntax. Most keywords were changed to 
special symbols: begin and end were replaced by (#, and 
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#); virtual and bind were replaced by :< and ::<; if 
and endif were replaced by (if and if); etc. 

As mentioned previously, the POPL’83 paper on BETA 
(POPL: Abstraction Mechanisms [95]) was an important 
milestone. The POPL paper described the abstraction 
mechanisms of BETA. All the basic elements of BETA 
were in place including pattern, subpattern, block structure, 
virtual patterns and enter/exit. The syntax was almost as in 
the final version. The main difference was the use of a 
pattern keyword and different assignment operators like 
=> and @> corresponding to := and :- in SIMULA. It was 
stated that the application area of BETA was embedded and 
distributed systems. The distinction between basic BETA 
and standard BETA with an extension of basic BETA with 
special syntax for a number of commonly used patterns was 
also stated. The POPL’83 paper contains a proposal for a 
generalization of the virtual pattern concept. The idea was 
that any syntactic category of the BETA grammar could be 
used as a virtual definition. The idea of generalized virtuals 
was, however, never further explored.  

The POPL paper was accompanied with a paper describing 
the dynamic parts – coroutines, concurrency and 
communication. Communication and synchronization was 
based on CSP- and Ada-like rendezvous. We never 
managed to get the concurrency paper accepted at an 
international conference although we made several attempts 
– eventually the paper was published in Sigplan Notices 
[97] in 1985.  

A combined version of the POPL paper and the 
concurrency paper was later (1987) included in the book 
that was published as a result of the Hawthorne workshop 
in 1986 [145]. However, the syntax was revised to that used 
in the final version of BETA.  

Syntax Directed Program Modularization. A paper on 
syntax-directed program modularization was published at a 
conference in 1983 in Stresa [94] describing a proposal to 
program modularization based on the grammar (cf. Section 
5.8.4). These principles for program modularization were 
further developed in the Mjølner project. 

In the March 1986 revision of Dynamic Exchange of BETA 
Systems, the syntax was still not the final one although it 
differs from that of the POPL 83 paper.  

From late 1986/early 1987, the sequential parts of BETA 
were stable in the sense that only a few changes were made. 
Pattern variables were added, the if statement was made 
deterministic, an else clause was added, and a few other 
minor details were changed.  

During the Mjølner project, the rendezvous mechanism was 
replaced by the semaphore as a basic primitive for 
synchronization. In 1975 Jean Vaucher [157] had already 
shown how inner combined with prefixed procedures can 

be used to define a monitor abstraction. This was 
immediately possible in BETA too. It also turned out that 
the pattern is well suited to build other higher-level 
concurrency abstractions, including Ada-like rendezvous 
and futures. 

Many of the later papers on BETA were elaborations of the 
implications of the one-pattern approach. The simplicity of 
the pattern mechanism makes BETA simple to present, but 
the implications turned out to be difficult to convey. In 
many of the papers we therefore decided to use a keyword-
based syntax and not the compact BETA syntax. Often 
redundant keywords like class and proc were introduced 
to distinguish between patterns used as classes and 
procedures. Some of the most important papers are the 
following: 

� Classification of Actions – or Inheritance Also for Methods, 
presented at ECOOP’87 [101] and described how to use 
patterns and inner to define a hierarchy of methods and 
processes.  
� What Object-Oriented Programming May Be and What It 

Does Not Have to Be, presented at ECOOP’88 [116]. 
Here we for the first time gave our definition of object-
oriented programming and compared it with other 
perspectives on programming. 
� Virtual Classes – a Powerful mechanism in Object-

oriented Programming, which was presented at 
OOPSLA’89 [117]. The idea of virtual patterns was 
presented in the POPL’83 paper [95], but here the 
implications were presented in greater detail. 
� Strong Typing of Object-Oriented Programming Revisited, 

presented at OOPSLA 90. The goal of this paper was to 
argue for our choice of covariance at the expense of run-
time type checks. 

The 1993 book on BETA [119] is the most comprehensive 
description of the language and the associated conceptual 
framework. 

6. Implementations of BETA 
During the first period of the BETA project, no attempts 
were made to implement a compiler. The reasons for this 
were mainly lack of resources: The implementation of 
SIMULA had been a major effort requiring a lot of 
resources. A number of large companies were involved in 
funding the SIMULA implementations, and we had nothing 
like this. 

The SIMULA compilers were implemented in low-level 
languages – one of the compilers was even written in 
machine code. Implementation of the garbage collector, 
especially, had been a major task. In the beginning of the 
BETA project, we assumed that we would have to find 
funding for implementing BETA. We were thus working 
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from the assumption that we would have to establish a 
consortium of interested organizations. 

There were other reasons than lack of funding. Nygaard 
was not a compiler person, Møller-Pedersen was employed 
by the NCC and could only use a limited amount of his 
time on BETA, and Kristensen and Madsen had to qualify 
for tenure. 

In the early eighties an attempt was made to implement 
BETA by transforming a BETA program into a SIMULA 
program. The rationale for this was that we could then use 
the SIMULA compilers and run-time system for BETA. 
This project never succeeded – 90% of BETA was easy to 
map into SIMULA, but certain parts turned out to be too 
complicated. 

During the BETA project, however, Kristensen and 
Madsen did substantial research on compiler technology 
and after some years realized that we had perhaps 
overestimated the job of implementing BETA. 

6.1 The first implementation 
The first implementation. In 1983 Madsen implemented the 
first BETA compiler in SIMULA. The first version 
generated code to an interpreter written in Pascal. The 
second version generated machine code for a DEC-10. 

SUN Compiler. In 1985 this compiler was ported to a SUN 
workstation based on the Motorola 68020 microprocessor. 
This was an interesting exercise in bootstrapping. The SUN 
compiler was implemented using the DEC compiler, i.e. 
machine code was generated on the DEC-10 and 
transferred to the SUN for debugging. Since the turnaround 
time for each iteration was long, we manually corrected 
errors directly in the machine code on the SUN in order to 
catch as many errors as possible in each iteration. 
Afterwards such errors were fixed in the compiler. It was 
quite time-consuming and complicated to debug such 
machine code on the SUN. 

The final step was to bootstrap the compiler itself. The 
DEC-10 was a slow machine and the BETA compiler was 
not very efficient. Using the compiler to compile itself was 
therefore a slow process. In addition, the DEC-10 was 
becoming more and more unstable – and it was decided that 
it should be closed down. The DEC-10 would not stay 
running for a whole compilation of the compiler. This 
meant that it was necessary to dump the state of the 
compiler at various stages and be able to restart it from 
such a dump in order to complete a full compilation of the 
compiler.  

This was a complicated and time-consuming process and at 
one point Madsen did not believe that he would succeed. 
However, after three attempts, the bootstrapping succeeded 
and from then on the compiler was running on the SUN. 
This was a great experience. 

The compiler implemented most parts of BETA – however, 
a garbage collector was not included. At that time we did 
not think that we had the qualifications to implement a 
garbage collector – we really needed some of the 
experienced people from the NCC. 

6.2 The Mjølner implementations 
The Mjølner Project provided the necessary time and 
resources to implement efficient working compilers for 
BETA. In the project it was decided to use the existing 
BETA compiler to implement the new compilers. Without a 
garbage collector this was not easy – a simple memory 
management scheme was added such that it was possible to 
mark the heap and subsequently release the heap until that 
mark. This was of course pretty unsafe, but we managed to 
implement the new compilers and the first versions of the 
MjølnerTool. 

Knut Barra from the NCC wrote the first garbage collector 
[10] for BETA (as part of the SCALA project) and in 1987 
a full workable implementation of BETA was available. 

Macintosh Compiler. In the beginning of the Mjølner 
Project the SUN compiler was ported to a Macintosh. The 
Macintosh compiler was a special event. When we started 
working with Nygaard he did not use computers and he had 
not done any programming since the early sixties. When 
the Macintosh arrived we talked him getting a Mac and he 
quickly became a super user. It was therefore a great 
pleasure for us to be able to deliver the first Mac compiler 
to him on his 60th birthday in 1986. 

Later in the Mjølner Project the compiler was ported to a 
number of machines, including Apollo and HP 
workstations. Nokia was a partner in the Mjølner Project. 
We ported BETA to an Intel-based telephone switch and 
implemented a remote debugger for BETA programs 
running on the switch on an Apollo workstation. This was a 
major improvement compared to the very long 
development cycles that were used by NOKIA for 
developing software for the switch.  

The NOKIA compiler was later used as a basis for porting 
BETA to Intel-based computers running Windows or 
Linux. It took some time before these compilers were 
available since for many years the memory management on 
the Intel processors was based on segments, which were 
difficult to handle for a language with general references. 

As of today there are or have been native BETA compilers 
for SUN, Apollo, HP, SGI, Windows, Linux and 
Macintosh. 

6.3 The JVM, CLR, and Smalltalk VM 
compilers 
In 2003 Peter Andersen and Madsen engaged in a project 
on language interoperability inspired by Microsoft 
.NET/CLR, which was announced as a platform supporting 
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language interoperability – in contrast to the Java/JVM 
platform. The goal of the project was to pursue to what 
extent CLR supported language interoperability. Another 
goal was to investigate to what extent this was supported by 
the JVM [9]. 

We managed to implement BETA on both JVM and CLR – 
i.e. full BETA compilers are running on top of JVM and 
CLR. The main difficulty was to make all the necessary 
type information from BETA available in the byte codes. 
Since BETA in many ways is more general than Java and 
C#, there are elements of BETA that do not map efficiently 
to these platforms. The most notorious example of this is 
coroutines, which are implemented on top of the thread 
mechanisms.  

We are currently engaged in implementing BETA on a VM 
based on Smalltalk and intended for supporting pervasive 
computing – this VM is based on the Esmertec OSVM 
system and is being further developed in the PalCom 
project. One of the interesting features of this VM is that it 
has direct support for BETA-style coroutines. 

6.4 Implementation aspects 
We will touch only briefly on implementation aspects of 
BETA, since a complete description would take up a lot of 
space. The implementation is inspired by the SIMULA 
implementations [31, 122] and described by Madsen in the 
book about the Mjølner Project [112]. The generality of 
BETA implied that many people thought that it would be 
quite complicated (if not impossible) to make a reasonably 
efficient BETA implementation. Here are some of the 
major issues: 

� Virtual patterns. The most difficult part of BETA to 
implement was virtual patterns. There are two aspects of 
virtual patterns: semantic analysis and run-time 
organization. The run-time organization was quite 
straightforward using a dispatch table. Semantic analysis 
appeared quite complicated – the problem was given the 
use of a virtual pattern to find the binding of the virtual 
that was visible at the point of use. The first attempt to 
write a semantic analyzer was made in a student project 
that failed, and for some time we were a bit pessimistic 
about whether or not we would succeed. It was not the 
virtual pattern concept by itself that was the real problem, 
but the combination with block structure. However, a 
(simple) solution was found and later documented by 
Madsen in a paper at OOPSLA’99: Semantic Analysis of 
Virtual Patterns [114]. 
� Pattern. The generality of the pattern concept imposed 

some immediate challenges for an efficient 
implementation. For a pattern (or singular object) used as 
a class, there should be code segments (routines) 
corresponding to generation (allocation and initialization 
of data items), enter, do and exit. For a pattern used as a 

procedure there should just be one code segment. We 
originally assumed that the compiler could detect the use 
of a given pattern and generate code corresponding to the 
use. However, with separate compilation of pattern 
libraries, this is not possible. We ended up with a 
reasonable approach, but the code is not as efficient as it 
can be with separate constructs for class and procedure. 
In practice this has not been considered a problem. With 
modern just-in-time and adaptive compilation techniques, 
it should be straightforward to generate code for a pattern 
depending on its use.  
� Block-structure and subpatterns. The relaxation of the 

SIMULA restriction that a subclass may be defined only 
at the same block level as its superclass gave rise to some 
discussion of whether or not this would have negative 
implications for an efficient implementation of block 
structure as described by Stein Krogdahl [106]. Since 
Algol, a variable in a block-structured language has been 
addressed by a pair, [block-level, offset]. By allowing 
subpatterns at arbitrary block levels, a variable is no 
longer identified by a unique block level: let X be 
declared in pattern P, let A and B be different subpatterns 
of P, and let A and B be at different block levels; then X 
in A is not at the same block level as X in B. We instead 
adapted the approach proposed by Wirth for Pascal to 
address a data-item by following the static link (origin) 
from the use of a data item to its declaration. This implied 
that an object has an origin-reference for each subclass 
that is not defined on the same block level as its 
superclass. For details see Madsen’s implementation 
article [112]. 
� The dynamic structure. The implementation of the 

dynamic structure has been a subject for much 
discussion. Due to coroutines, SIMULA objects and 
activation-records are allocated on the heap. A similar 
scheme was adapted in the first BETA implementations, 
i.e. the machine stack was not used. Many people found 
this too inefficient and the implementation was later 
changed to use the machine stack. We do not know 
whether this makes a significant difference or not, since 
no systematic comparison of the two different techniques 
has been made. We do know that the heap-based 
implementation is significantly simpler than that using 
the machine stack. Whenever BETA has been ported to a 
new platform, stack handling has been the most time-
consuming part to port. The generalization of inner 
implied that an object will need a caller-reference 
corresponding to each subclass with a non-empty do-part. 
For the heap-base implementations, these caller-
references are stored in the object. For the stack-based 
implementations, the caller references are stored on the 
machine stack and thus not explicitly in the objects. We 
have also considered using the native stacks on modern 
operating systems, but these are too heavyweight for 
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coroutines – a program may allocate thousands of 
coroutines, which is beyond the capacity of these 
systems.  
� External interfaces. No matter how nice, simple and 

safe a language you design, you will have to be able to 
interface to software implemented in other (unsafe) 
languages. For BETA a large number of external 
interfaces were made including C, COM, database 
systems, Java, and C#. This introduced major 
complications in the compiler since it was most often 
done on a by-need basis – often with little time for a 
proper design. In order to support various data types and 
parameters, BETA was polluted with patterns supporting 
e.g. pointers to simple data types like integers and C-
structs. The handling of external calls further complicated 
the dynamic implementation since a coroutine stack may 
contain activations from external calls. If a callback is 
made from the external code, BETA activations may 
appear on top of the external stack. Perhaps the worst 
implication of this is that all BETA applications suffer 
from libraries and frameworks calling external code. The 
GUI-frameworks are examples of this: if they were used 
wrongly by the BETA programmer, the code was very 
difficult to debug. The lesson here is that external 
interfaces should be carefully designed and the 
implementation should encapsulate all external code in 
such a way that it cannot harm the BETA code – even 
though this may harm efficiency.   
� Garbage collection. Over the years the Mjølner team 

became more and more experienced in writing garbage 
collectors and a number of different garbage collectors 
have been implemented varying from mark-sweep to 
generation-based scavenging. The first implementation of 
the Train algorithm was implemented for BETA by Jacob 
Seligmann and Steffen Grarup [144]. 

7. Impact 
7.1 Teaching 
BETA has been used for teaching object-oriented 
programming at a number of universities. The most 
important places we are aware of are as follows: 

� BETA courses in Aarhus.  
At DAIMI, BETA was an integral part of the curriculum 
at both the undergraduate and graduate level. 

The Institute of Information Studies, Aarhus University 
is an interesting case, since this is a department in the 
Faculty of Humanities. Students within humanities 
traditionally have difficulties in learning programming. 
BETA was used for more than a decade and selected 
because of its clean and simple concepts, its modeling 
capabilities and its associated conceptual framework.  

 First draft of BETA book. A first draft of the BETA 
book [102] was made available (in the late eighties) to 
these students, and several versions of the BETA book 
[119] were tested here before the final version was 
printed. Originally all examples in the book were typical 
computer science examples such as stack, queue, etc. 
Such examples are not motivating for students within the 
humanities, and all the examples were changed to be 
about real world phenomena such as bank accounts, 
flight schedules, etc. Kim Halskov Madsen was very 
helpful in this process. Preprints of the BETA book were 
for many years distributed at OOPSLA and ECOOP by 
Mjølner Informatics and for many people these red 
books were their first encounter with BETA.  

� BETA courses in Oslo. At the University of Oslo there 
were courses on specification of systems by means of 
SDL and BETA in 1988 and 1993 (by Møller-Pedersen 
and Dag Belsnes) and on object-oriented programming in 
BETA in 1994 and 1995 (by Møller-Pedersen, Nygaard 
and Ole Smørdal). 
� BETA courses in Aalborg. At Department of Computer 

Science, University of Aalborg courses on object-
oriented programming in BETA were given by 
Kristensen in 1995 and 1996. 
� BETA courses in Dortmund. As mentioned, BETA was 

used for introductory programming at the University of 
Dortmund, Germany. Here the lecturers wrote a book in 
German on programming in BETA [38]. 

We believe that teaching of programming should be based 
on a programming language that reflects the current state of 
the art and is simple and general. Many schools use 
mainstream programming languages used in industry. Our 
experience is that it is easier to teach a state-of-the-art 
language than a standard industrial language. Students 
familiar with the state of the art can easily learn whatever 
industrial language they need to use in practice. The other 
way around is much more difficult. For BETA it was for 
many years necessary to argue that it was well suited for 
teaching. With the arrival of Java this changed, and Java 
took over at all places where BETA was used.  

7.2 Research 
In general BETA is well cited in the research literature. 
Perhaps the most influential part of BETA with respect to 
research is the concept of virtual class based on the use of 
virtual patterns as classes: Thorup [152], Bruce [19], 
Thorup [153], Mezini [126], and Odersky [134]. Other 
aspects of BETA such as inner, singular objects, block 
structure, and the pattern mechanism, have also been cited 
by many authors, e.g. Goldberg [44], and Igarashi and 
Pierce [62]. In 1994, Bill Joy designed a language without 
subclasses based on the ideas of inheritance from part 
objects as described in Section 5.5.1 [67]. Also in 1994, 
Bill Joy gave a talk in a SUN world-wide video conference 
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where he mentioned BETA as the most likely alternative to 
C++.  

When we designed BETA we did not have deep enough 
knowledge of formal type theory to be able to establish the 
precise relations. In 1988/89 Madsen and others at DAIMI 
started discussions with Jens Palsberg and Michael 
Schwartzbach on applying type theory to object-oriented 
languages. Initially the hypothesis of Palsberg and 
Schwartzbach was that standard type theory could be 
applied, but they also realized that subtype substitutability 
and covariance were nontrivial challenges. This led to a 
series of papers on type theory and object-oriented 
languages [138] and a well-known book [140]. The main 
impact for BETA was that we learned that concepts like co- 
and contravariance were useful for characterizing virtual 
patterns in BETA.  We had a hard time – and still have – 
relating to concepts such as universal and existential 
qualifiers, but more recent work has shed some light on this 
issue. Researchers with interests in such matters might 
think that virtual patterns are essentially existential types, 
but this view is too simplistic. One crucial difference, 
pointed out by Erik Ernst and explored in his work on 
family polymorphism [40], is that virtual classes rely on a 
simple kind of dependent types to allow more flexible 
usage: The unknown type, when bound by an existential 
quantifier, must be prevented from leaking out, whereas 
virtual classes can be used in a much larger scope, because 
the enclosing object can be used as a first-class package. 

Schwartzbach and Madsen discussed making a complete 
formal specification of BETA’s type system. Schwartzbach 
concluded at that time that the combination of block 
structure and virtual patterns made it very hard and we 
never succeeded. Igarashi and Pierce [61] and the authors 
mentioned below have over the years provided elements of 
formalization, including virtual classes and block structure. 

Palsberg and Schwartzbach also did a lot of interesting 
work on type inference [139]. Two students of 
Schwartzbach implemented a system that could eliminate 
most (all) of the run-time checks in BETA and also detect 
the use of a given pattern and thereby optimize the code 
generation. The technique assumed a closed world, which 
made it less usable in a situation with precompiled libraries 
and frameworks. The work on type inference was later 
refined by Ole Agesen for Self [6, 7]. 

In 1997, Kresten Krab Throrup [152] published a paper on 
how to integrate virtual classes with Java. This was the 
starting point for a number of papers on virtual classes. In 
addition to Thorup, the work of Erik Ernst [39, 40], and 
Mads Torgersen [154] has been very decisive for interest in 
virtual classes. Several other researchers have elaborated on 
or been inspired by the virtual class concept, including 
work by Bruce, Odersky and Wadler [19] and Igarashi and 
Pierce [61]. Ernst has pointed out that some authors use the 

term virtual type whereas he prefers (and we agree) the 
term virtual class. A virtual type may (only) be used to 
annotate variables whereas a virtual class may be used to 
create instances.  

Erik Ernst has developed the language gbeta, which is a 
further generalization of the abstraction mechanisms of 
BETA. gbeta among others includes a type-safe dynamic 
inheritance mechanism [39]. gbeta also supports the use of 
virtual patterns as superpatterns. BETA did have a 
semantics for virtual patterns as superpatterns, and virtual 
super patterns were implemented in the first BETA 
compiler. They were, however, abandoned in later versions, 
since we never found a satisfactory efficient 
implementation. In gbeta the restrictions on virtual 
superpatterns are removed. In BETA it is possible to 
express a simple kind of dependent types by means of 
block-structure and virtual classes. This was identified and 
generalized by Ernst as the concept of family 
polymorphism [40]. The connection to existential types 
mentioned above builds on this notion of dependent types. 

In order to have full static type checking, Torgersen has 
suggested forbidding invocation of methods with 
parameters that have a non-final virtual type [154]. For 
classes with such methods, a concrete subclass with all 
virtual types declared final must then be defined in order to 
invoke these methods.  

The Scala language has abstract type members, which are 
closely related to virtual classes. Finally, the language 
Caesar [126] supports the notion of gbeta virtual classes in 
a Java context with some simplifications and restrictions.  

At POPL’2006 [41], Erik Ernst, Klaus Ostermann, and 
William R. Cook presented a virtual class calculus that 
captures the essence of virtual classes. We think this is an 
important milestone because it is the first formal calculus 
with a type system and a soundness proof which directly 
and faithfully models virtual classes. 

Ellen Agerbo and Aino Cornils [3] used virtual classes and 
part objects to describe some of the design patterns in The 
Gang of Four book [43]. 

In 1996, Søren Brandt and Jørgen Lindskov Knudsen made 
a proposal for generalizing the BETA type system [16]. 
The proposal generalizes the type system in two directions: 
first, by allowing type expressions that do not uniquely 
denote a class, but instead denote a closely related set of 
classes, and second, by allowing types that cannot be 
interpreted as predicates on classes, but must be more 
generally interpreted as predicates on objects. The resulting 
increase in expressive power serves to further narrow the 
gap between statically and dynamically typed languages, 
adding among other things more general generics, 
immutable references, and attributes with types not known 
until runtime. 
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Knudsen has made use of the BETA fragment system to 
support aspect-oriented programming [74]. 

Goldberg, Findler and Flatt [44] developed a language with 
both super and inner, arguing that programmers need both 
kinds of method combination. They also present a formal 
semantics for the new language, and they describe an 
implementation for MzScheme. 

GOODS. Nygaard was the leader of General Object-
Oriented Distributed Systems (GOODS), a three-year 
Norwegian Research Council-supported project starting in 
1997. The aim of the project was to enrich object-oriented 
languages and system development methods by new basic 
concepts that make it possible to describe the relation 
between layered and/or distributed programs and the 
machine executing these programs. BETA was used as the 
foundation for the project and language mechanisms in 
BETA were studied, especially supporting the theatre 
ensemble metaphor. The GOODS team also included 
Haakon Bryhni, Dag Solberg and Ole Smørdal. 

STAGE. The GOODS project continued in the STAGE 
Project (STAGing Environments) project at the NCC, 
aiming at establishing a commercial implementation of the 
GOODS idea. The STAGE team also included Dag 
Belsnes, Jon Skretting, and Kasper Østerbye. The project 
pursued the idea of the theater metaphor – cf. Section 5.8.7. 

The Devise project. In 1990 three research groups at 
DAIMI decided to work together on research in tools, 
techniques, methods and theories for experimental system 
development. The groups were Coloured Petri Nets (headed 
by Kurt Jensen), systems work (HCI) (headed by Morten 
Kyng) and object-oriented programming (headed by 
Madsen). The rationale was that in order to make progress 
in system development, supplementary competences were 
needed. The implications for BETA were: 

BETA was used as a common language for development of 
tools. One major example is the CPN Tool [28] for editing, 
simulating and analyzing Coloured Petri Nets. A unique 
characteristic of CPN Tools is that they were one of the 
first tools to use so-called post-WIMP interaction 
techniques, including tool glasses, marking menus, and 
bimanual interaction (using two mice). CPN Tools is in 
widespread use. Another major tool was a Dexter-based 
hypermedia [48], [47], [143]. A unique characteristic of this 
tool was the use of anchors that makes it possible to link 
between positions in different pages without modifying the 
pages. The hypermedia tool was the basis for a start-up 
company, Hypergenic Ltd. 

BETA has played an important role in work on a 
multidisciplinary approach to experimental system 
development. Over the years the group developed 
techniques for people within programming, system 
development, participatory design, HCI and ethnography to 

work together on software development projects, often 
using BETA and the Mjølner System. The object-oriented 
conceptual framework turned out to be a common 
framework and the graphical syntax of BETA supported by 
the Mjølner Tool turned out to be a useful means for 
communication between system developers and (expert) 
users [24]. 

From the beginning it was a goal to integrate Petri nets and 
object-oriented programming languages. The motivation 
was that in the early days of the BETA project Petri nets 
had a major influence on our conception of concurrency. 
Jensen, Kyng and Madsen started working together in 
formalizing DELTA using Petri nets. Jensen continued 
working with Petri nets and the group at DAIMI is well 
known internationally. Numerous suggestions for 
integrating object-orientation and Petri nets were 
investigated, but no real breakthrough was obtained. There 
are many suggestions in the literature for integrating Petri 
nets and object orientation, [108, 123]. 

The Devise group has continued to work together and now 
forms the basis of the Center for Pervasive Computing in 
Aarhus. 

Conceptual Modeling and Programming. Design of 
programming languages could be based on human 
conceptualization in a more general sense. The approach 
was to include alternative kinds of concepts and selected 
ingredients of these concepts into programming languages 
in order to support modeling. The approach is described in 
[64, 104] and explored further in [124]. Object orientation 
could be seen as a specialized use of this approach, where 
the focus mainly is on “things” and their modeling in terms 
of classes and objects. The intention was that certain 
additional kinds of general (but not application area 
specific) concepts would enrich programming languages. 
The purpose was to limit the gap between understanding, 
designing and programming also in order to reduce the 
amount of software. The advantage of the approach is that 
because humans already use various alternative kinds of 
concepts, the modeling process is efficient and the model 
becomes understandable. The challenge was that any given 
potential kind of concept had to be understood and 
interpreted, and did not immediately comply with the 
typical understanding of programming languages. Each 
candidate concept should therefore be adjusted to fit with 
and slightly modify the expectations and possibilities at the 
programming level including implementation techniques. 
Candidate concepts include: 

� Activities [81, 82, 103] are abstractions over 
collaborations of objects. 
� Complex associations [83] are abstractions over complex 

relationships between structured objects. 
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� Roles [84, 105] are abstractions over the use of roles for 
objects as special relationships between objects. 
� Relations [164, 166] are abstractions over relationships 

between objects. 
� Subjective behavior [85] means abstraction over different 

views on objects from external and internal perspectives.  
� Associations [86-88] are abstractions over collaboration, 

and include both structural and interaction aspects by 
integrating activity and role concepts. 

7.3 Impact on language development 
Object-oriented SDL. In 1986 Elektrisk Bureau (later 
ABB) asked Dag Belsnes and Møller-Pedersen to develop 
an object-oriented specification language. At the start the 
idea was to make this from scratch, but the project soon 
turned into an extension ([127], [128]) of the specification 
language SDL standardized by ITU – the International 
Telecommunication Union. BETA had an impact in the 
sense that concurrent processes of SDL became the 
candidate objects, in addition to the data objects that were 
also part of SDL. Users of SDL were primarily using 
processes, and as BETA had concurrent objects (and 
thereby patterns/subpatterns of these), it was obvious to do 
the same with SDL. The underlying model of SDL is that 
of a SDL system consisting of sets of nonsynchronized 
communicating processes, where the behavior of each 
process is described by a state machine. Introducing object 
orientation to this model implied the introduction of process 
types (in addition to sets of processes) and process subtypes 
defining specialization of state machine behavior. The inner 
concept was generalized to virtual transitions, i.e. 
transitions of a process type that may be redefined in 
process subtypes. In addition, the notion of virtual 
procedures was introduced, enabling parts of transitions to 
be redefined. In addition to constraints on virtual 
procedures, SDL also introduced default bindings. Virtual 
types (corresponding to virtual inner classes) were 
introduced, with constraints, both in terms of a supertype 
(as in BETA) and by means of a signature. In [21] it is 
demonstrated how this may be used to define frameworks; 
the same idea is pursued in [167]. Finally, types were 
extended with context parameters, a kind of generalized 
generic parameters, where also the constraints on the type 
parameters followed the BETA style of constraining. All of 
these extensions were standardized in the 1992 version of 
SDL [136]. 

Java. We do not claim that BETA had a major impact on 
Java, but as a curiosum we could mention that the two first 
commercial licenses of the Mjølner BETA System were 
acquired by James Gosling and Bill Joy.  

Madsen was a visiting scientist a SUN Labs in 1994-95 
when Java appeared on the scene – he was involved in 

discussions on whether or not virtual types could be added 
to Java. However, this was never done.  

Java includes final bindings and singular objects – called 
anonymous classes. Nested classes were later added to Java 
and called inner classes. As we understand, final bindings, 
anonymous classes and nested classes were inspired by 
BETA. 

The recently added Wildcard mechanism [155] was 
developed by a research group at DAIMI based on research 
by Mads Torgersen, Kresten Krab Thorup, Erik Ernst and 
others and may be traced back to virtual patterns. 

UML2.0. Shortly after Møller-Pedersen joined Ericsson in 
1998, a number of UML users (including Ericsson) asked 
for a new and improved version of UML. On behalf of 
Ericsson Møller-Pedersen joined this work within OMG. 
The influence on UML2.0 was indirectly via SDL, i.e. the 
same kinds of concepts as in SDL were introduced in 
UML2.0 [50]. As an interesting observation, UML1.x had 
already classes with their own behavior, like in SIMULA 
and BETA, while (as mentioned above) most object 
programming languages do not have this. UML1.x also had 
nested classes, so the only new thing in UML2.0 is that 
they can be redefinable (i.e. virtual classes). 

8. Conclusion 
The BETA project has been an almost lifelong enterprise 
involving the authors, the late Kristen Nygaard and many 
other people. The approach to language design and 
informatics has been unusual compared to most other 
language projects we are aware of. The main reason is 
perhaps the emphasis on modeling, the working style, and 
the unusual organization of the project.  

The project was supposed to be organized in a well-defined 
manner based on partners, contracts/grants and a firm 
working plan with milestones including a language 
specification in 1997. Since we did not succeeded in 
obtaining this, the project continued for many years as an 
informal collaboration among the team members. If we had 
delivered a language specification in 1997 it would have 
been quite different from what BETA is today and probably 
less interesting. A project with firm deadlines and a firm 
budget might not have achieved the same result. Instead we 
were able to continue to invent, discuss, and reject ideas 
over many iterations. We could keep parts open where we 
did not have satisfactory solutions. It was never too late to 
come up with a complete new idea. We could continue to 
strive for the perfect language. 

From 1986 when the Mjølner projects started, there was an 
organization around BETA – although Mjølner was not 
supposed to develop the BETA language. We had to 
finalize the language and make decisions for the parts that 

10-48



 

were not complete and even make decisions we were not 
happy about. 

The “one abstraction mechanism” idea was an important 
driving factor, but it may not have been unusual to base a 
language project on one or more initial ideas. In fact, one 
should never engage in language design without overall 
major ideas. Languages based on the current state of art 
may be well engineered but will not add to the state of the 
art. Such languages may be highly influential on praxis and 
we have seen many examples of that. 

As time has passed, many new ideas for improving BETA 
have been proposed and new challenges have appeared. But 
for many years we found that most of the proposals would 
not make a real difference for the users of BETA. The work 
on updating the language, the documentation and software 
was simply not worth the effort. The time has, however, 
arrived for a new language in the SIMULA/BETA style, 
but the one or two real breaking ideas perhaps remain to be 
seen. 

Nygaard’s system description (modeling) approach was an 
unusual approach to language design. Designing a 
programming language from a system description 
perspective is certainly different from basing it on whatever 
a computer can do or on a mathematical foundation. 

Another unusual characteristic of the project was that we 
did not follow mainstream research in programming 
languages. As mentioned, Nygaard was not interested in the 
state of the art but left it to us. The advantage of this 
approach was that we were free to formulate new visions 
and not just focus on the next publication. Today most 
researchers seem mainly to focus on publishing minor 
improvements and solutions to state-of-the-art ideas. This 
does not create new big inventions. 

The BETA project heavily influenced the participants and 
their relationships. We established lifelong valuable and 
appreciated personal and professional relationships. Being 
young and inexperienced researchers learning from 
working together with such an experienced person as 
Nygaard, many of our research attitudes were established 
during the project. The most valuable has been not to take 
established solutions for given, but rather question them, 
try to go for more general solutions, and to have alternative, 
ambitious, and long-reaching objectives. 

Below we comment on the original research goals of the 
project. 

One abstraction mechanism. We succeeded in developing 
the pattern as an abstraction mechanism subsuming most 
other abstraction mechanisms. Originally this was a 
theoretical challenge and we think that the pattern 
mechanism has proved its relevance and importance from a 
research perspective. The pattern mechanism has also 

proved to be useful in teaching and practical programming. 
As a teaching tool it is beneficial to teach students the 
pattern mechanism as part of their first programming 
language, but probably only with success if the approach is 
supported strongly by the learning environment. Still, in 
order to appreciate the beauty of the pattern mechanism ,the 
student has also to be familiar with the culture of the 
programming-language world including notions such as 
record, procedure, etc. Such cultural variations need to be 
appreciated before the unified, more abstract notion is 
relevant and appealing. For the skilled programmer who 
has already used several different programming languages, 
the presentation of the pattern mechanism seems to be a 
very fruitful experience. Such programmers typically learn 
yet another abstract level of programming and this 
knowledge is valuable through the daily life with the usual 
ordinary programming languages. Programmers with the 
opportunity to use the pattern for a longer period for real 
system development appreciate the freedom and 
powerfulness it supports.  

The idea of one pattern replacing all other abstraction 
mechanisms worked out well in practice. The unification 
clearly implied a simplification of the language, just as the 
extra benefits as mentioned in Section 5.1.2 clearly paid 
off. We occasionally hear people complain that they find it 
to be a disadvantage that they cannot see from a pattern 
declaration whether it is a class or method. 

Virtual patterns turned out to be a major strength of BETA 
– the use of virtual patterns as virtual classes/types has in 
addition provided the basis for further research by many 
others. 

Singular objects, block structure, etc. have also proved their 
value in practice and are heavily used by all BETA 
programmers. These mechanisms are also starting to arrive 
in other languages. 

The enter-exit mechanism is of course used for defining 
parameters and return values for methods – in addition, it is 
used for defining value types. Many people make heavy use 
of enter/exit for overloading assignment and/or reading the 
value of an object. Although the enter/exit-mechanism has 
turned out to be quite useful in practice, it does have some 
drawbacks. The name of an argument has to be declared 
twice – once with a type and then in the enter/exit-part – 
this is similar to Algol and SIMULA but is, however 
inconvenient for simple parameters. In addition, the 
implementation of enter/exit in its full generality turned out 
to be quite complex.  

A constructor mechanism is perhaps the most profound 
language element that is missing in BETA. 

Coroutines and concurrency. We think that BETA has 
further demonstrated the usefulness of the SIMULA 
coroutine mechanism to support concurrency and 
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scheduling. The coroutine mechanism together with the 
semaphore turned out to fulfill the original goals. The 
implementation was simple and straightforward, and it has 
showed its usefulness in practice.  

In addition, the abstraction mechanisms of BETA have 
proved their usefulness in defining higher-order abstraction 
mechanisms. The BETA libraries contain several examples 
of high-level concurrency abstractions. Few people in 
practice, however, define their own concurrency 
abstractions. Most concurrency abstractions have been 
defined by the authors and implementers of BETA. 

In general concurrency and the ability to define 
concurrency abstractions are not as heavily used as we 
think they should be. This may it may be due to the fact that 
concurrency has not been an integrated part of most object-
oriented languages. Java has concurrency but as a fixed 
synchronization mechanism in the form of monitor – there 
are no means for defining other concurrency abstractions 
including schedulers. We think that it should be an 
integrated part of the design of frameworks and 
components also to define the associated concurrency 
abstractions including schedulers.  

We also think that SIMULA/BETA style coroutines are yet 
to be discovered by other language designers. 

Efficiency. The original goal of proving that an object-
oriented programming language could be efficiently 
implemented turned out to be less important. Several 
successors to SIMULA starting with C++ proved this. In 
addition, a number of efficient implementation techniques 
and more efficient microprocessors have implied that lack 
of efficiency is hardly an issue anymore. 

Modeling. The modeling approach succeeded in the sense 
that a comprehensive conceptual framework has been 
developed. The conceptual framework consists of a 
collection of conceptual means for understanding and 
organizing knowledge about the real world. It is 
furthermore described how these means are related to 
programming language constructs. But just as important, it 
is emphasized that some conceptual means are not 
supported by BETA and other programming languages. As 
mentioned previously, we think that it is necessary for 
software developers to be aware of a richer conceptual 
framework than that supported by a given language. 
Otherwise the programming language easily limits the 
ability of the programmer to understand the application 
domain. A conceptual framework that is richer than current 
programming languages can be used to define requirements 
for new programming languages. This leads to the other 
point where we think that the modeling approach has 
succeeded. 

We have demonstrated that language constructs and indeed 
a whole language can be based on a modeling approach. As 

we hope we have demonstrated in this paper, almost all 
constructs in BETA are motivated by their ability to model 
properties of the application domain. They also had to have 
properties from a technical point of view and to be 
sufficiently primitive in order to be efficiently 
implemented. The art of designing a programming language 
is to balance the support of conceptual means and selection 
of primitives that may be efficiently implemented. We did 
e.g. not include dynamic classification and equations since 
we did not find that we could implement such constructs 
efficiently.  

The goal for BETA was to design a language that could be 
used for modeling as well as programming. For many years 
the programming language community was not interested 
in modeling, and when object-orientation started to become 
popular, the main focus was on extensibility and reuse of 
code. This changed when the methodology schools started 
to become interested in object-oriented analysis and design. 
The approach to modeling in these schools was, however, 
different from ours. Most work on modeling aimed at 
designing special modeling languages based on a graphical 
syntax. As mentioned in Section 4, this reintroduced some 
of the problems of code generation and reverse engineering 
known from SA/SD. For BETA it was important to stress 
that the same language can be used for modeling as well as 
for programming and that syntax is independent of this. 
This was stressed by the fact that we designed both a 
textual and a graphical syntax for BETA. The attempts in 
recent years to design executable modeling languages in 
our opinion emphasizes that it was not a good idea to have 
separate modeling and programming languages.  

There is no doubt that object orientation has become the 
mainstream programming paradigm. There are hundreds (or 
thousands) of books introducing object-oriented 
programming and methodologies based on object 
orientation. The negative side of this is that the modeling 
aspect that originated with SIMULA seems to be 
disappearing. Very few schools and books are explicit 
about modeling. It is usually restricted to a few remarks in 
the introduction; the rest of the book is then concerned with 
technical aspects of a programming language or UML or 
traditional software methodology. 

We think that some of the advantages of object orientation 
have disappeared in its success and that there might be a 
need for proper reintroduction of the original concepts. 
OOA and OOD are in most schools nothing more than just 
programming at a high level of abstraction corresponding 
to the application domain. In order to put more content into 
this, there is room for making more use of the parts of the 
conceptual framework of BETA that go beyond what is 
supported by current programming languages. This would 
improve the quality of the analysis and design phases. We 
also think that future languages should be designed for 
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modeling as well as programming. Turning a modeling 
language into a programming language (or vice versa) may 
not be the best approach. 
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Appendix: Time line 
Below is a time line showing when events in the BETA project took place. After each event, the number of the section 
describing the event is shown. In some electronic versions of this paper there may be links to these sections as well as the 
part of the text describing the events. 

 
Kristen Nygaard visiting professor at DAIMI [2.1] 1974  

 |  
Joint Language Project start [2.4] 1975  

 |  
BETA project start [3] 1976  

First language draft [3.2] |  
 1977  
 |  
 1978 Draft Proposal of BETA [3.3] 
 |  

First complete language definition [3.3] 1979  
 |  
 1980  
 |  
 1981 A survey of the BETA Programming Language [3.2] 
 |  
 1982 Syntax Directed Program Modularization [5.10] 
 |  

The first implementation [6.1] 1983 POPL paper: Abstraction Mechanisms … [3.3] 
 |  
 1984  
 |  

SUN Compiler [6.1] 1985 Multisequential Execution … [5.7.1] 
Hawthorne Workshop [3.3] |  

Mjølner Project start [3.4] 1986 Dynamic exchange of BETA systems [5.8.7] 
Sequential parts stable [3.3] |  

Macintosh Compiler [6.2] 1987 Research Directions in Object-Oriented Programming [3.3] 
 | ECOOP: Classification of Actions ... [5.10] 

Apple and Apollo contracts [3.3] 1988 ECOOP: What Object-Oriented Programming May Be … [5.10] 
First draft of BETA book [7.1] |  
BETA courses in Aarhus [7.1] 1989 OOPSLA: Virtual Classes … [5.10] 

 |  
Multisequential parts stable [3.3] 1990 ECOOP/OOPSLA: Strong Typing of 

 |                                Object-Oriented Languages ... [5.10] 
 1991  
 | TOOLS: Multiple inheritance by part objects [5.5] 
 1992  
 | BETA Book [3.3] 
 1993  

BETA courses in Dortmund [7.1] | Mjølner Book [3.4] 
 1994  

BETA courses in Oslo [7.1] |  
 1995  

BETA courses in Aalborg [7.1] |  
 1996  

 |  
 1997  
 |  
 1998  
 |  
 1999 OOPSLA: Semantic Analysis of Virtual Patterns [6.4] 
 |  

 2000  
 |  

Dahl & Nygaard receive ACM Turing Award [3.3] 2001  
 |  

Dahl & Nygaard receive the IEEE von Neumann Medal [3.3] 2002  
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Abstract
Emerald is an object-based programming language and sys-
tem designed and implemented in the Department of Com-
puter Science at the University of Washington in the early
and mid-1980s. The goal of Emerald was to simplify the
construction of distributed applications. This goal was re-
flected at every level of the system: its object structure, the
programming language design, the compiler implementa-
tion, and the run-time support.

This paper describes the origins of the Emerald group, the
forces that formed the language, the influences that Emerald
has had on subsequent distributed systems and programming
languages, and some of Emerald’s more interesting technical
innovations.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General; D.3.2 [Language Classifications]:
Object-oriented languages; D.3.3 [Language Constructs
and Features]: Abstract data types, Classes and objects, In-
heritance, Polymorphism

General Terms abstract types, distributed programming,
object mobility, object-oriented programming, polymor-
phism, remote object invocation, remote procedure call.

Keywords call-by-move, Eden, Emerald, mobility, type
conformity, Washington

1. Introduction
Emerald was one of the first languages and systems to sup-
port distribution explicitly. More importantly, it was the first
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language to propose and implement the notion of object mo-
bility in a networked environment: Emerald objects could
move around the network from node to node as a result
of programming language commands, while they contin-
ued to execute. Object mobility was supported by location-
independent object addressing, which made the location of
the target of an object invocation semantically irrelevant to
other objects, although facilities were provided for placing
objects on particular machines when required. At a high
level, Emerald invocation could be thought of as an early im-
plementation of remote procedure call (RPC) [14], but with
a much more flexible and dynamic binding system that al-
lowed an object to move from one node to another between
(and during) invocations of methods. Furthermore, as seen
from a programmer’s point of view, Emerald removed the
“remote” from “remote procedure call”: the programmer did
not have to write any additional code to invoke a remote ob-
ject compared to a local object. Instead, all binding, mar-
shaling of parameters, thread control, and other tedious work
was the responsibility of the implementation, i.e., the com-
piler and the run-time system.

In addition, Emerald sought to solve a crucial problem
with distributed object systems at the time: terrible perfor-
mance. Smalltalk had pioneered an extremely flexible form
of object-oriented programming, but at the same time had
sacrificed performance. Our stated goal was local perfor-
mance (within a node) competitive with standard program-
ming languages (such as C), and distributed performance
competitive with RPC systems. This goal was achieved by
our implementation.

1.1 Ancient History

Emerald forms a branch in a distributed systems research
tree that began with the Eden project [3] at the University
of Washington in 1979. Setting the context for Emerald re-
quires some understanding of Eden and also of technology at
that time. In 1980, at the start of the Eden project, local area
networks existed only in research labs. Although early Eth-
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ernet [76] systems had been in use at Xerox PARC for some
time, the industrial Ethernet standard had only recently been
completed and the first products were still in development.
To the extent that network applications existed at all, out-
side of PARC, they were fairly primitive point-to-point ap-
plications such as FTP and email. UNIX did not yet support
a socket abstraction, and programming networked applica-
tions required explicit message passing, which was difficult
and error-prone.

Eden was a research project proposed by a group of faculty
at the University of Washington (Guy Almes, Mike Fischer,
Helmut Golde, Ed Lazowska, and Jerre Noe). The project
received one of the first grants from what seemed even at the
time to be a very far-sighted program at the National Sci-
ence Foundation called Coordinated Experimental Research
(CER), a program that sought to build significant expertise
and infrastructure at a number of computer science depart-
ments around the United States. The stated goal of Eden was
to support “integrated distributed computing.” While nobody
had distributed systems at the time, it was clear that some-
day in the future such systems would be commonplace, and
that programming them using existing paradigms would be
extremely difficult. The key insight of the Eden team was
to use objects — a computational model and technology that
was still controversial in both the operating system and the
programming language worlds at that time.

Eden was itself a descendant of Hydra [108], the father of all
object-based operating systems, developed by Bill Wulf and
his team at Carnegie-Mellon in the early 1970s. Guy Almes,
a junior faculty member at UW, had written his thesis on
Hydra at CMU [4], and brought those ideas to Washington.
The idea behind an object-based distributed system was that
every resource in the network — a file, a mail message, a
printer, a compiler, a disk — would be an object. At the time
we looked on an object as nothing more than some data
bound together with program code that operated on that data
to achieve a specific goal, such as printing a file object, or
sending a mail message object, or running a compiler object
on a file object. The code was partitioned into what are now
referred to as methods for printing, sending, running, etc.,
but at the time we just thought of the code as a bunch of
procedures that implemented operations on the object’s data.

The great thing about objects was that client programs could
use an object simply by invoking an operation in that object
and supplying appropriate parameters; they didn’t have to
concern themselves with how the object was implemented.
Thus, objects were a physical realization of Parnas’ princi-
ple of information hiding [85]. The key insight behind dis-
tributed object-based computing was that the same principle
applied to the location of the object: a client could use an ob-
ject without worrying about where that object was actually
located in the network, and two conceptually similar objects
(for example, two files) that were located in disparate places

might have completely different implementations. The Eden
system would take care of finding the object, managing the
remote communication, and invoking the right code, all in-
visibly to the programmer.

Several other research projects also explored the distributed
object notion, notably Argus at MIT [71] and Clouds at
Georgia Tech [2]. Argus, as a language design, was essen-
tially complete before the Emerald project started. Thus, Ar-
gus was contemporary with Eden rather than with Emerald,
and indeed shared with Eden the idea that there were two
kinds of objects — “large” objects that were remotely acces-
sible (and, in the case of Argus, transactional), and small
local objects (essentially, CLU objects). Some of the Clouds
ideas moved to Apollo Computer with the principals, and
appeared in the Apollo Domain system; there were several
visits between Apollo and Eden personnel.

This distributed object model is now the dominant paradigm
for Internet programming, whether it is Java/J2EE, Mi-
crosoft .NET, CORBA, SOAP, or whatever. We take it for
granted. So it is hard to convey how controversial the dis-
tributed object idea was in the early 1980s. People thought
that distributed objects would never work, would be way too
slow, and were just dumb. Objects had not yet been accepted
even in the non-distributed world: Simula was not main-
stream, C++ would not be invented for some years [100], and
Java wouldn’t appear for a decade and a half. Smalltalk had
just been released by PARC and was gathering a following
amongst computing “hippies,” but unless one had a Dorado,
it was not fast enough for “real” applications. Alan Born-
ing, our colleague at Washington, had distributed copies of
the influential 1981 Smalltalk issue of Byte magazine, but in
our opinion, the focus of Smalltalk was on flexibility to the
detriment of performance. Smalltalk, although an impressive
achievement, contributed to the view that poor performance
was inherent in object-oriented languages.

Emerald was a response to what we had learned from our
early experience with Eden and from other distributed ob-
ject systems of that time. In fact, it was a follow-on to Eden
before Eden itself was finished. Before describing that ex-
perience and its implications, we discuss the team and their
backgrounds and the beginnings of the project.

1.2 The People and the Beginning of Emerald

The Emerald group included four people:1

• Andrew Black joined UW and the Eden project as a
Research Assistant Professor in November 1981. He had
a background in language design from his D.Phil. at
Oxford (under C.A.R. Hoare), including previous work
on concurrency and exception handling. Andrew brought

1 Another Ph.D. student, Carl Binding, participated in some of the initial
discussions with a view to being responsible for a reasonable GUI for
Emerald; he decided to do a different Ph.D., so the GUI of the Emerald
system remained quite primitive.
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the perspective of a language designer to Eden, which
had been exclusively a “systems” project.
• Eric Jul came to UW as a Ph.D. student in September

1982 with a Master’s degree in Computer Science and
Mathematics from the University of Copenhagen. He had
previous experience with Simula 67 [15, 41] and Con-
current Pascal [29, 30] at the University of Copenhagen,
where he had ported Concurrent Pascal to an Intel 8080
based microcomputer [96], and also written a master’s
thesis [57] that described his implementation of a small
OS whose device drivers were written entirely in Concur-
rent Pascal.
• Norm Hutchinson also came to UW in September 1982,

having graduated from the University of Calgary. He had
spent the previous summer on an NSERC-funded re-
search appointment implementing a compiler for Simula
supervised by Graham Birtwistle, an author of SIMULA
Begin [15] and an object pioneer.
• Henry (Hank) Levy had spent a year at UW in 1980 on

leave from Digital Equipment Corp., where he had been
a member of the VAX design and implementation team.
While at UW he was part of the early Eden group and
also wrote an MS thesis on capability-based architec-
tures, which eventually became a Digital Press book [70].
Hank rejoined UW as a Research Assistant Professor in
September 1983, and brought with him a lot of systems-
building and architecture experience from DEC.

Shortly after his return to UW in 1983, Hank attended a
meeting of the Eden group in which Eric and Norm gave
talks on their work on the project. Although Hank was a
coauthor of the original Eden architecture paper [67], Hank
wasn’t up to date on the state of the Eden design and im-
plementation, and hearing about it after being away for two
years gave him more perspective. Several things about the
way the system was built — and the way that it performed —
did not seem right to him. After the meeting, Hank invited
Eric and Norm to a coffee shop on “the Ave”, the local name
for University Way NE, close by the UW campus.

At the meeting, the three of them discussed some of the
problems with Eden and the difficulties of programming
distributed applications. Hank listened to Eric’s and Norm’s
gripes about Eden, and then challenged them to describe
what they would do differently. Apparently finding their
proposals reasonable, Hank then asked, “Why don’t you do
it?”: thus the Emerald effort was born.

1.3 The Eden System

The problems with Eden identified at the coffee shop on the
Ave were common to several of the early distributed object
systems. Eden applications (that is, distributed applications
that spanned a local-area network) were written in the Eden
Programming Language (EPL) [21] — a version of Concur-
rent Euclid [50] to which the Eden team had added support

for remote object invocation. However, that support was in-
complete: while making a remote invocation in Eden was
much easier than sending a message in UNIX, it was still
a lot of work because the EPL programmer had to partici-
pate in the implementation of remote invocations by writing
much of the necessary “scaffolding”. For example, at the in-
voking end the programmer had to manually check a status
code after every remote invocation in case the remote opera-
tion had failed. At the receiving end the programmer had to
set up a thread to wait on incoming messages, and then ex-
plicitly hand off the message to an (automatically generated)
dispatcher routine that would unpack the arguments, execute
the call, and return the results. The reason for the limited
support for remote invocation was that, because none of the
Eden team had real experience with writing distributed ap-
plications, we had not yet learned what support should be
provided. For example, it was not clear to us whether or not
each incoming call should be run in its own thread (pos-
sibly leading to excessive resource contention), whether or
not all calls should run in the same thread (possibly leading
to deadlock), whether or not there should be a thread pool
of a bounded size (and if so, how to choose it), or whether
or not there was some other, more elegant solution that we
hadn’t yet thought of. So we left it to the application pro-
grammer to build whatever invocation thread management
system seemed appropriate: EPL was partly a language, and
partly a kit of components. The result of this approach was
that there was no clear separation between the code of the
application and the scaffolding necessary to implement re-
mote calls.

There was another problem with Eden that led directly to
the Emerald effort. While Eden provided the abstraction of
location-independent invocation of mobile distributed ob-
jects, the implementation of both objects and invocation
was heavy-weight and costly. Essentially, an Eden object
was a full UNIX process that could send and receive mes-
sages. The minimum size of an Eden object thus was about
200-300 kBytes — a substantial amount of memory in 1984.
This clearly precluded using Eden objects for implement-
ing anything “small” such as a syntax tree node. Further-
more, if two Eden objects were co-located on the same ma-
chine, the invocation of one by the other would still require
inter-process communication, which would take hundreds of
milliseconds — slow even by the standards of the day. In
fact, things were even worse than that, because in our pro-
totype the Eden “kernel” itself was another UNIX process,
so sending an invocation message would require two con-
text switches even in the local case, and receiving the reply
another two. This meant that the cost of a single invocation
between two Eden objects located on the same machine was
close to half the cost of a remote call (137 ms vs. 300 ms).
The good news was that Eden objects enjoyed the benefits
of location independence: an object did not have to know
whether the target of an invocation was on the same com-
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puter or across the network. The bad news was that if the
invoker and the target were on the same computer, the cost
was excessive.

Because of the high cost of Eden objects, both in terms of
memory consumption and execution time, another kind of
object was used in EPL programs — a light-weight language-
level object, essentially a heap data structure as implemented
in Concurrent Euclid. These objects were supported by
EPL’s run-time system. EPL’s language-level objects could
not be distributed, i.e., they existed within the address space
of a single Eden object (UNIX process) and could not be
referenced by, nor moved to, another Eden object. How-
ever, “sending messages” between these EPL objects was
extremely fast, because they shared an address space and an
invocation was in essence a local procedure call.

The disparity in performance between local invocations of
EPL objects and Eden objects was huge — at least three
orders of magnitude.2 This difference caused programmers
to limit their use of Eden objects to only those things that
they felt absolutely needed to be distributed. Effectively, pro-
grammers were using two different object semantics — one
for “local” objects and one for “remote” objects. Worse, they
had to decide a priori which was which, and in many cases,
needed to write two implementations for a single abstraction,
for example, a local queue and a distributed queue. In part,
these two different kinds of objects were a natural outgrowth
of the two (unequal) thrusts of the Eden project: the primary
thrust was implementing “the system”; providing a language
on top was an afterthought that became a secondary goal
only after Andrew joined the project. However, in part the
two object models were a reflection of the underlying imple-
mentation: there were good engineering reasons for the two
implementations of objects.

The presence of these two different object models was one of
the things that had bothered Hank in the Eden meeting that
he had attended. In their discussions, Eric, Norm and Hank
agreed that while the two implementations made sense, there
was no good reason for this implementation detail to be visi-
ble to the programmer. Essentially, they wanted the language
to have a single object abstraction for the programmer; it
would be left to the compiler to choose the most appropriate
implementation based on the way that the object was used.

1.4 From Eden to Oz

The result of the meeting on the Ave was an agreement be-
tween Eric, Hank and Norm to meet on a regular basis to
discuss alternatives to Eden — a place that Hank christened
the land of Oz, after the locale of L. Frank Baum’s fantasy
story [9]. A memo Getting to Oz dated 27 April 1984 (refer-
ence [69], included here as Appendix A) describes how the
discussions about Oz first focused on low-level kernel issues:

2 A local invocation in Eden took 137 ms in October 1983, while a local
procedure call took less than 20 µs.

processes and scheduling, the use of address spaces, and so
on. This led to the realization that compiler technology was
necessary to get adequate performance: rather than calling
system service routines to perform dynamic type-checking
and to pack up data for network interchange, a smart com-
piler could perform the checking statically and lay down the
data in memory in exactly the right format.

The memo continues:

It is interesting that up to this point our approach had
been mostly from the kernel level. We had discussed
address spaces, sharing, local and remote invocation,
and scheduling. However, we began to realize more
and more that the kernel issues were not at the heart
of the project. Eventually, we all agreed that language
design was the fundamental issue. Our kernel is just
a run-time system for the Oz language (called Toto)
and the interesting questions were the semantics sup-
ported by Toto.

Eventually the name Toto was dropped; Hank thought that
it was necessary to have a “more serious” name for our
language if we wanted our work to be taken seriously. For
a time we used the name Jewel, but eventually settled on
Emerald, a name that had the right connotations of quality
and solidity but preserved our connection to the Land of
Oz. Moreover, the nickname for Seattle, where Emerald was
developed, is The Emerald City.

The Emerald project was both short and long. The core of
the language and the system, designed and implemented by
Eric and Norm for their dissertations, was completed in a lit-
tle over 3 years, starting with the initial coffee-shop meeting
in the autumn of 1983, and ending in February 1987 when
the last major piece of functionality, process mobility, was
fully implemented. However, this view neglects the consid-
erable influence of the Eden project on Emerald, and the long
period of refinement, improvement and derived work after
1987. Indeed, Niels Larsen’s PhD thesis on transactions in
Emerald was not completed until 2006 [66]. Figure 1 shows
some of the significant events in the larger Emerald project;
we will not discuss them now, but suggest that the reader
refer back to the figure when the chronology becomes con-
fusing.

1.5 Terminology

A note on terminology may help clarify the remainder of
the paper. The terms message and message send, introduced
by Alan Kay to be consistent with the metaphor of an ob-
ject as a little computer, were generally accepted in the
object-oriented-language community. However, we decided
not to adopt these terms: in the distributed-systems commu-
nity, messages were things that were sent over networks be-
tween real, not metaphorical computers. We preferred the
term operation for what Smalltalk (following Logo) called
a method, and we used the term operation invocation for
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Emerald Timeline

IEEE TSE article appears

Norm defends his Ph.D. at UW; joins U 

of A Tucson

Process mobility worked

Eric leaves UW, joins DIKU in 

Copenhagen

Andrew leaves UW, joins Digital in 

Mass.

"Much ado about NIL"

restrict designed and implemented in a 

day

Fine-Grained Object Mobility published

Andrew and Norm working on Types, 

using graph theory

Eric defends his Ph.D. at UW

Andrew reformulates conformity as limit 

of relation, proves transitivity

Jade presented at ECOOP in Notingham

Types and Polymorphism in the Emerald 

Programming Language submitted to 

PoPL.  Rejected.
Joint Arizona/CRL TR: Typechecking 

polymorphism in Emerald

Emerald: a general-purpose 

programming language published in 

SwP&E

Paper on comprehensive and robust 

garbage collection published

Andrew presents "Types for the 

Working Programmer" at OOPSLA

Heteorogeneous Emerald SOSP paper

Handwritten paper "The Lattice of Data 

Types"

Revision of TR 86-02-04 Distribution 

and Abstract Types (became IEEE TSE 

article)
TR 85-08-05 Distribution and Abstract 

Types (without fomal def of conformity)

Need to think about types!

Meetings intensify

Getting to Oz manifesto

Coffee shop meeting

Hank arrives at UW as a Research 

Assistant Professor

Norm and Eric arrive at UW and start as 

RAs on Eden

Andrew Black arrives at UW as a 

Research Assistant Professor

Eden starts
Eden CER Grant starts

Larry Carter sabbatical at UW

MicroVAX II arrive

Digital Grant for five MicroVAX II

TR 86-02-04 Distribution and Abstract 

Types (includes def. of conformity)

TR 86-04-03 Object Structure (became 

1986 OOPSLA paper)

Object Structure in the Emerald System 

presented at OOPSLA

Object mobility worked

Jan 78 Jan 79 Jan 80 Jan 81 Jan 82 Jan 83 Jan 84 Jan 85 Jan 86 Jan 87 Jan 88 Jan 89 Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97

Figure 1: Some significant events in the Emerald Project

message send. In some ways this was unfortunate: language
influences thought, and because we avoided the use of the
terms message and message send, it was many years before
some of us really understood the power of the messaging
metaphor.

Emerald used the term process in the same sense as Con-
current Pascal and Concurrent Euclid. A process was light
in weight and was protected by the language implementa-
tion rather than by an operating system address space; to-
day the term thread is used to describe the same concept.
Similarly, Emerald used the term kernel in the same sense
as its predecessor languages: it meant the language-specific
run-time support code that implemented object and process
creation and process scheduling, and translated lower-level
interrupts into operations on the language’s synchronization
primitives. Successor languages now often use the term Vir-
tual Machine about such run-time support. Indeed, if we cre-
ated Emerald today, we would have used the term Emerald
Virtual Machine.

2. The Goals of Emerald
Beyond “Improving on Eden,” Emerald had a number of
specific goals.

• To implement a high-performance distributed object-
oriented system. While the Eden experience had con-
vinced us that objects were indeed a good abstraction
for writing distributed systems, it did nothing to dispel
doubts about the performance of distributed objects. We
believed that distributed objects could be made efficient
and wanted to demonstrate this efficiency goad by con-
struction. Norm saw that by exploiting compiler technol-
ogy, we could not only make run-time operations more
efficient, but could eliminate many of them altogether
(by moving the work to compile time). Eric was already
concerned with wide-area distribution: even during the
planning phases of the project he was thinking of send-
ing objects from Copenhagen to Seattle, although this did
not become possible for several years citeFolmer93.
• To demonstrate high-performance objects. Stepping back

from distributed objects, we were also concerned with
validating the ideas of object-oriented programming per
se. Smalltalk-80 had created a lot of excitement about
the power and flexibility of objects, but there was also
a lot of skepticism about whether or not objects could
ever be made reasonably efficient. The failure of the In-
tel iAPX 432 architecture [79] effort had, in the minds
of some people, reinforced the view that objects would
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always impose excessive overhead. Dave Ungar’s disser-
tation research at Stanford was investigating how hard-
ware could help overcome the inherent costs of support-
ing objects [102]. One of our goals was to show that op-
erations similar to those found in a low-level language
like C could be executed in Emerald with comparable ef-
ficiency. Thus, we wanted the cost of incrementing an
integer variable to be no higher in Emerald than in C.
Of course, the cost of invoking a remote object would be
higher than the cost of a C procedure call. An important
principle was that of no-use, no-cost: the additional cost
of a given functionality, e.g., distribution, should be im-
posed only on those parts of the program that used the
additional functionality.
• To simplify distributed programming. Although Eden was

a big step forward with respect to building distributed ap-
plications, it still suffered from major usability problems.
The Eden Programming Language’s dual object model
was one, the need to explicitly receive and dispatch in-
coming invocation messages was another, and the need
to explicitly check for failure and deal with checkpoint-
ing and recovery was yet another. One of the goals for
Emerald was to make programming simpler by automat-
ing many of the chores that went along with distributed
programming. If a task was difficult enough to make au-
tomation impossible, then the goal was to automate the
bookkeeping details and thus free the programmer to deal
with the more substantive parts of the task. For example,
we had no illusion that we could automate the placement
of objects in a distributed system, and left object loca-
tion policy under the explicit control of the programmer.
However, the mechanisms for creating the objects on, or
moving them to, the designated network node, and of in-
voking them once there, could all be automated.
• To exploit information hiding. We believed in the prin-

ciple of information hiding [85], and wanted our lan-
guage to support it. The idea that a single concept in the
language, with a single semantics — the object — might
have multiple implementations follows directly from the
principle of information hiding: the details of the imple-
mentation are being hidden, and the programmer ought to
be able to rely on the interface to the object without car-
ing about those details. In the Getting to Oz memo [69]
we wrote: “Another goal, then, and a difficult one, is to
design a language that supports both large objects (typ-
ically, operating system resources such as files, mail-
boxes, etc.) and small objects (typically, data abstractions
such as queues, etc.) using a single semantics.”
• To accommodate failure. Emerald was intended for build-

ing distributed applications. What distinguishes dis-
tributed applications from centralized ones is that both
the individual computers on which the application runs
and the network links that connect them can fail; nev-

ertheless, the application as a whole should continue to
run. We realized that handling failures was a natural part
of programming a distributed application, in fact, failures
were anticipated conditions that arose from distribution:
computers and programs would crash and restart, net-
work links would break, and consequently objects would
become temporarily or permanently unavailable. We saw
it as the programmer’s job to deal with these failures,
and therefore as the language designer’s job to provide
the programmer with appropriate tools. It was explicitly
not a goal of Emerald to provide a full-blown exception-
handling facility [69], or to impose on the programmer
a particular way of handling failure, as Argus was doing
with its pioneering support for transactions in distributed
systems [71].
• To minimize the size of the language. We wanted Emerald

to be as small and simple as possible while meeting our
other goals. We planned to achieve this by “pulling out”
many of the features that in other languages were built-
in, and instead relying on the abstraction provided by
objects to extend the language as necessary. Our goal
was a simple yet powerful object-based language that
could be described by a language report not substantially
larger than that defining Algol 60 [8]. We did not want
to go as far as Smalltalk and rely on library code for the
basic control structures: this would have conflicted with
our efficiency goal. We also felt that not allowing the
programmer to define new control structures would not
adversely affect the writing of distributed applications.
We did decide to build in only the simplest kind of fixed-
length Vector, and to rely on library code to provide all
the common data structures, such as arrays of variable
size, and lists. This meant that the type system had to be
adequate to support user-defined container objects; striv-
ing to do this led us to make several innovations in object-
oriented type systems, even though inventing a type sys-
tem was not one of our primary goals. The same idea
of pulling out functionality into a library was applied
to integer arithmetic. We had to decide whether to in-
clude infinite-precision or fixed-length integers. Infinite-
precision arithmetic was clearly more elegant and would
lead to simpler programs and a more concise language
definition, but it would not help us in our quest to make
x ← x + 1 as fast as in the C language. So we included
fixed-precision integers in the base language, and allowed
the programmer to define other kinds of integers in li-
brary code.
• To support object location explicitly. We knew that the

placement of objects would be critical to system per-
formance, and so our information-hiding goal could not
be allowed to hide this performance-critical information
from the programmer. So “we decided that the concept
of object location should be supported by the language”
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and that “the movement of objects should be easily ex-
pressible in the language” [69]. Early on we envisaged
language support for determining the location of an ob-
ject, moving the object to a particular host, and fixing an
object at a particular host. The idea of call-by-move was
floated in the 1984 Getting to Oz memo; call-by-move
was a new parameter passing mechanism in which the
invoker of an operation indicated explicitly that a param-
eter should be moved to the target object’s location. By
March 1985 call-by-move was established, and Andrew
was arguing for a separation of concerns between the lan-
guage’s semantics, which he thought should be similar to
those of any other object-based language (for example,
all parameters would be passed by object reference), and
its locatics — a term that we invented to mean the part
of the language concerned with the placement of objects.
We adopted this separation: the primitives that controlled
the placement of objects were designed to be orthogonal
to the ordinary operational semantics of the language. For
the most part we were successful in maintaining this sep-
aration, but locatics does inevitably influence failure se-
mantics. For example, if two objects are co-located, then
an invocation between them can never give rise to a ob-
ject unavailable event.

3. How We Worked
The Emerald group was informal and largely self-organized.
Hank kept Eric and Norm in line by requiring regular meet-
ings, minutes, and written progress reports. He was also the
prime mover in getting the first external funding that the
project received: a grant of five MicroVAX computers from
Digital Equipment Corp. Andrew attended some of the meet-
ings, and had many impromptu and as well as scheduled dis-
cussions with Norm about the language design, and in par-
ticular the type system.

Minutes from March 1985 reveal an intent to meet three
times per week. They state: “It will be Norm’s job to see that
local invocations execute as fast as local procedure calls, and
Eric’s to make sure that remote invocations go faster than
Eden.” This captured the major distribution of work: Norm
implemented the compiler, while Eric worked on the run-
time system, which we called the Emerald kernel.

They pursued an incremental implementation strategy. The
first compiler was for a simplified version of the language
and produced byte-codes that were then interpreted. The in-
terpreter ran on top of a kernel that provided threads. Initially
there was no I/O other than a println instruction provided by
the interpreter. In this way, they very quickly had a work-
ing prototype, even though it could execute only the sim-
plest of programs. Over time, the compiler was modified to
generate VAX assembly language, which ran without need-
ing interpretation, but which still called kernel procedures
for run-time support. This incremental strategy brought new

functionality and better performance every day, and was a
real catalyst for the development of the prototype. Looking
back, we realize that we pioneered many of the techniques
that have now become popular as part of agile development
practices such as XP [10], although there is no evidence to
suggest that those who invented XP were aware of what we
had done.

A hallmark of Emerald was the close integration between the
compiler and the run-time kernel. In part, this was achieved
by putting the compiler writer (Norm) and the kernel imple-
mentor (Eric) in the same office, together with two worksta-
tions. (It was unusual at the time to allocate expensive work-
stations to graduate students.) Norm and Eric could clarify
even minor details immediately. But there was also a techni-
cal side to this integration. The compiler and the kernel had
to agree on several basic data structures. For example, the
structure of an object descriptor was laid down in memory
by the compiler, and manipulated by the kernel. The alter-
native approach in which this structure is encapsulated in a
single kernel module would have simplified the software en-
gineering, but it would also have meant that whenever the
compiler wanted the code that it was generating to create an
object, it would be forced to lay down code that made a call
to the run-time kernel. This would have conflicted with our
efficiency goal.

To ensure compatibility between the compiler and the ker-
nel, all of these basic data structures were defined in a single
file, both in C (for the compiler) and in assembly language
(for the kernel). Careful use of the C preprocessor meant that
this file could be treated either as a C program with assembly
language comments, or as assembly language with C com-
ments. The development of the shared description of the data
structures was aided by the presence of a whiteboard where
the important data structures were described; by convention,
the truth was on the whiteboard, and the rest of the system
was made to conform to it (see Figure 2). We avoided di-
vergence by rebuilding the compiler and run-time system
completely every night and during lunch breaks. Even lan-
guage changes were handled efficiently. Because all existing
Emerald programs were stored on Norm’s and Eric’s Mi-
croVAX workstations, we could decide to change the syntax
or semantics of the language and within hours change the
compiler, the run-time system and all existing Emerald pro-
grams to reflect the modification. Typically, such changes
were made before lunch so that a rebuild could happen over
lunch with a full afternoon to verify that things still worked.

Initial development took place on the VAX 11/780 and two
VAX 11/750s of the Eden project, which were called June,
Beaver, and Wally. In December 1985 we obtained our
grant of MicroVAX workstations from DEC; the worksta-
tions themselves arrived a few months later. Three of these
(Roskilde, Taber, and Whistler) were used as personal devel-
opment machines by Eric, Norm and Hank. The others were
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Figure 2: The whiteboard that defined the basic data structures in the Emerald system, February 1986.

used remotely in distribution experiments. We used micro-
benchmarks to find the fastest instruction sequences for
common operations, and found that sometimes sequences
of RISC operations were faster than the equivalent single
CISC instruction. One example of this was copying a small
number of bytes, where repeated reads and writes were faster
than using the VAX block move (MOVC3) instruction.

The interpreter itself was written in C, but in a way that
treated C as a macro-assembler. We would first identify the
most efficient assembly-language sequence for the task at
hand; for example, we found that non-null loops were more
efficient if the termination test came at the end rather than at
the beginning, because this avoided an unconditional branch.
We then wrote the C code that we knew would generate the
appropriate assembly language sequence, for example, using
if (B) do . . . while (B) rather than while (B) . . .

Over time, more and more data structures were defined to en-
able the compiler to transmit information to the interpreter.
These included a source-code line number map, which en-
abled us to map back from the program counter to the source
code line for debugging, and templates for the stack and
for objects, which enabled us to distinguish between object-
references and non-references. The latter information was
essential for implementing object mobility, because object
references were implemented as local machine addresses,
and had to be translated to addresses on the new host when

an object was moved. (The same information is of course
useful for garbage collection, but the garbage collector was
not implemented until later.)

By June 1985 we had realized that we needed to think se-
riously about types. We had decided that utility objects like
variable-sized arrays and sets should not be built into the
language, but would be provided in a library, as they were
in Smalltalk. This would keep the language simple. How-
ever, we wanted these objects to have the same power, and
offer the same convenience to programmers, as the built-in
arrays and sets of Pascal. We had also decided early on that
Emerald was to be statically typed, both for efficiency and to
make possible the early detection and reporting of program-
ming errors. We therefore needed a way of declaring that an
array or a set would contain objects of a certain type — in
other words, we needed parameterized types. We were influ-
enced by the Russell type system [43], one of the few con-
temporary systems that supported parameterized types. We
were also aware of CLU’s decision to provide a parameteri-
zation mechanism that allowed procedures and clusters to be
dependent on manifest values, including types; this mecha-
nism (which used square brackets and operated at compile
time) was completely separate from the mechanism used to
pass arguments to procedures (which used parentheses and
operated at run time). However, we realized that an open dis-
tributed system could not make a clear distinction between
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compile time and run time: it is possible to compile new
pieces of program and add them to the running system at
any time. Thus, while we planned to check types statically
whenever this was possible, we knew from the outset that
sometimes we would have to defer type checking until run
time, for the very good reason that the object that we needed
to check arrived over the network at run time, having been
compiled on a different computer. So we followed Russell,
and made types first-class values that existed at run time and
could be manipulated like any other values. In an object-
oriented language, the obvious way to do that was to make
types objects, so that is what we did in Emerald.

4. Technical Innovations
As we have discussed, the goals of Emerald centered on sim-
plifying the programming of distributed applications. The
way in which Emerald supports distribution has been de-
scribed in a journal article [59] that was widely cited in the
1980s and 1990s but may not be familiar to this audience.
In addition, Emerald made a number of other, lesser-known
technical contributions that are nevertheless historically in-
teresting. In this section we first summarize Emerald’s object
model and then discuss a few of these other contributions.

4.1 Emerald’s Object Model

Key to any object-based language or system is its object
model: the story of how its objects can be created and used,
and what properties they enjoy. We have previously de-
scribed the motivation for Emerald’s single object model:
the problem with having both heavyweight and lightweight
objects visible to the programmer, and the need for the pro-
grammer to choose between them. This was a reflection of
the state of the art in the early 1980s, which recognized two
very distinct object worlds: object-oriented programing lan-
guages, such as Smalltalk, and object-based operating sys-
tems, such as Eden and Hydra. In object-oriented languages,
the conceptual model of an object was a small, lightweight
data structure whose implementation was hidden from its
clients. In object-oriented operating systems, the conceptual
model of an object was a heavyweight, possibly remote oper-
ating system resource, such as a remote disk, printer, or file.
Consequently, these systems frequently used an OS process
to implement an object.

4.1.1 A Single Object Model

An important goal of Emerald was to bridge the gulf between
these two worlds and to provide the best of each in a unified
object model. On the one hand, we wanted an Emerald object
to be as light in weight as possible — which meant as light as
an object provided by a procedural programming language
of the time. On the other hand, we wanted an Emerald
object to be capable of being used in the OS framework,
for example as a distributed resource that was transparently
accessible across the local-area network.

Emerald achieved this goal. It provided a single, simple ob-
ject model. An object, once created, lived forever and was
unique, that is, there was only one instance of it at any time.
Each object had (1) a globally unique name, (2) a represen-
tation, i.e., some internal state variables that contained prim-
itive values and references to other objects, and (3) a set of
operations (methods) that might be invoked on the object.
Some of these operations could be declared to be functional,
which meant that they computed a single value but had no
effect and did not access any mutable state outside of the ob-
ject itself. Any Emerald object could also have an associated
process, which meant that an object could be either active
(having its own process) or passive (executing only as a re-
sult of invocation by another process); the process model is
described fully in Section 4.3.1.

4.1.2 Immutability

One of our more powerful insights was to recognize the im-
portance of immutability in a distributed system. With ordi-
nary, mutable objects, the distinction between the original of
an object and a copy is very important. You can’t just go off
and make a copy of an object and pass it off as the origi-
nal, because changes to the original won’t be reflected in the
copy. So programmers must be kept aware of the difference,
and the object and the copy must have separate identities.
However, with immutable objects, the copy and the original
will always have the same value. If the language implemen-
tation lies and tells the programmer that the two objects have
the same identity — that they are in fact one and the same —
the programmer will never find out.

The idea of an immutable object was familiar to us from
CLU. While this idea did at first seem strange — after all,
one of the main distinctions between objects and values was
that objects can change state — a little thought showed that
it was inevitable. Even the most ardent supporter of mutable
objects would find it difficult to argue that 3, π and ‘h’
should be mutable. So, the language designer is forced either
to admit non-objects into the computational universe or to
allow immutable objects. Once immutable primitive objects
have been admitted, there are strong arguments in favor of
allowing user-defined immutable objects, and little reason
to protest. For example, Andrew knew that CLU’s designers
had eventually found it expedient to provide two versions of
all the built-in container objects, one mutable and the other
immutable, even though they had initially decided to provide
only mutable containers [92, 28].

Once we accepted that some objects were immutable, we
found that there were many benefits to formally distinguish-
ing immutable from mutable objects by introducing the im-
mutable keyword. Emerald made wide use of the fact that
some objects were known to be immutable. Although the
language semantics said that there was a unique integer ob-
ject 3, it would have been ridiculous to require that there re-
ally be only a single 3 in a distributed system. Because inte-
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gers were immutable, the implementation was free to create
as many copies of 3 as was expedient, and to insist (if any-
one asked, by using the == operation to test object identity)
that they were all the very same object. The implementation
was lying to the user, of course, but it was lying so well and
so consistently that it would never betray itself.

Another place where Emerald used immutability was for
code objects. Logically, each Emerald object owned its own
code, but if a thousand similar objects were created contain-
ing the same code, there was clearly no need to create a
thousand copies of the code. But neither was it reasonable
to insist that there could be only a single copy: in practice,
the code needed to be on the same computer as the data that
it manipulated. The obvious implementation was to put one
copy of the code on each computer that hosted one of the
objects; if an object were moved to a new computer, a copy
of the code would be placed there too, unless a copy were
there already. Because the code was immutable, we could
pretend that all of these copies were logically the same, and
this pragmatic use of copying by the implementation did not
“show through” in the language semantics. Indeed, from the
programmer’s point of view, code objects did not exist at all.

Immutability applied to programmer-defined objects as well
as built-in objects. Indeed, any object could be declared as
immutable by the programmer: immutability was an asser-
tion that the abstract state of the object did not change. It was
quite legal, for example, to maintain a cache in an immutable
object for efficiency purposes, provided that the cache did
not change the object’s abstract state.

Functional operations on immutable objects had the prop-
erty that they always returned the same result. This meant
that they could be evaluated early without changing the pro-
gram’s semantics. In particular, functional operations on im-
mutable objects could be evaluated at compile time: they
were manifest. This turned out to be vitally important to
Emerald’s type system, because we required types of vari-
ables and operations to be manifest expressions: the declara-
tor Array.of [Integer] is an invocation of the function of on
the immutable object Array, with the immutable object Inte-
ger as argument.

Our decision to trust the programmer to say when an ob-
ject was immutable or an operation was functional, rather
than attempting to enforce these properties in the compiler,
arose from our experience with Concurrent Euclid (CE).
Concurrent Euclid distinguished between functions and pro-
cedures, and in CE the compiler would enforce the distinc-
tion by emitting an error message if a function attempted to
do something that had an effect. We had found it to be enor-
mously frustrating to get an error message when we were
trying to debug a program by putting a print statement in a
function. (The compiler was smarter than we thought. We
eventually found out that the error messages were actually
warnings: the compiler generated perfectly good code de-

spite the existence of the print statement!) What we learned
from this was that programmers resent tools that get in their
way: a language should help programmers to express what
they need to express, rather than always trying to second-
guess them. Interestingly, in “A History of CLU” Liskov ex-
plains that she rejected the idea of immutability declarations
exactly because the compiler would not have been able to
check them [72, p. 484–5].

4.1.3 Objects Were Encapsulated

Because of our background in distributed systems, we took
encapsulation much more seriously than did those who
thought that encapsulation was just something that one did
to get software engineering brownie points. The only way to
access an object in Eden was to send a message to the ma-
chine that hosted it: there were no “back doors” that could
be left ajar. In Emerald, because all of the objects that were
co-located shared a single address space, it would have theo-
retically been possible to provide a back door through which
a co-located object could sneak a look at some private data.
But this would clearly be a really bad idea: such a back door
would need to be slammed shut if the target object moved
to another machines, and objects could move at any time.
Moreover, as system implementors, we had to know all of
the references leading into and out of each object, and we
had to know that those references were used only through
legitimate invocations of the object. This knowledge is what
made mobility possible; if an object could somehow “cons
up” a direct reference to the internal state of another ob-
ject, then mobility would be next to impossible. Moreover,
Emerald objects were concurrent (see Section 4.3), so it was
necessary to ensure that any access to the internal state of
an object was subject to some kind of synchronization con-
straint.

In the Emerald language, we indicated encapsulation by
distinguishing between operations that could be invoked on
an object from the outside (which were flagged with the
export keyword), and operations that could be invoked only
on the object itself. The compiler used the list of exported
operations to determine the signature of the object: attempts
to invoke other operations were not only forbidden by the
type system, but would in any case not be supported at run
time.

It is worthwhile comparing this approach to encapsulation
to that taken by Java. In Java (and in C++), encapsulation is
class-based rather than object based: a field or a method that
is designated as private can in fact be accessed by any other
object that happens to be implemented by the same class.
However, access to fields of remote objects is not supported
by Java RMI, and consequently Java can’t make local and
remote objects look the same.

11-10



4.1.4 One Object Model, Three Implementations

Although many of the newer languages with which we were
familiar — Alphard, CLU, Euclid, and so on — claimed to
support “abstract data types”, we realized that most of them
didn’t. To us, abstract meant that two different implemen-
tations of the same type could coexist, and that client code
would be oblivious to the fact that they were different. Other
languages actually supported concrete data types: only a sin-
gle implementation of each data type was permitted.

If we took encapsulation seriously — and, as we have dis-
cussed in Section 4.1.3, distribution meant that we had to —
then Emerald objects would be characterized by truly ab-
stract types. This meant that so long as two objects had the
same set of operations, client code would treat them identi-
cally, and the fact that they actually had different implemen-
tations would be completely hidden from the programmer.
When the object implementation and the client code were
compiled separately — this might mean separate in space as
well as separate in time — the difference would also be hid-
den from the compiler.

However, when the implementation and the client code were
not compiled separately, then the compiler could take advan-
tage of the ability for multiple implementations of the same
type to coexist. The same source code could be compiled
into different representations, if the compiler decided that
there was a reason to do so. Thus, the compiler could choose
a customized representation that took advantage of the fact
than an object was used in a restricted way. Norm designed
the compiler to examine the object constructors in the code
that it was compiling and to choose between two alternative
implementations for the object under construction.

Global was the most general implementation. A global ob-
ject could move to other machines and could be invoked
by any other object regardless of location. References to
a global object were implemented as pointers to an object
descriptor.

Local was an implementation optimized for objects that
could never be referenced from a remote machine. The
compiler chose this implementation when it could as-
certain that a reference to the object could never cross a
machine boundary. For example, if object A defined an
internal object B but never passed a reference to B out-
side of its own boundary, then the compiler knew3 that
B could only be invoked by code in A. This allowed the
compiler to strip away all code related to remote refer-
encing, including the object descriptor.

There was actually a third implementation, direct, which we
used to implement objects of “primitive” types (Boolean,
Character, Integer, etc.). However, direct objects were a

3 More precisely: the compiler could figure this out, using techniques from
what is now called escape analysis.

bit of a cheat, because for these types we gave up on type
abstraction. Primitive types are discussed in Section 4.2.5.

Letting the compiler choose the implementation meant that
programs that did not use distribution could be compiled into
code similar to that produced for a comparable C program.
In particular, integer arithmetic and vector indexing were
implemented by single machine instructions on the VAX.
Moreover, we were able to provide multiple representations
without boxing, and could thus represent integers by a direct
bit pattern, just as in C. The result was that Emerald achieved
performance very close to that of C — for the kind of simple
non-distributed programs that could have been written in C.
Nevertheless, the very same source code, used in a program
that exploited distribution, could create remotely accessible
distributed objects.

4.1.5 Object Constructors Replace Classes

During the initial development of Emerald we were unhappy
about adopting Smalltalk’s idea of a class that could change
dynamically. Smalltalk allowed a class to be modified, for
example by adding an instance variable or a method, while
instances of that class were alive; all of the instances im-
mediately reflected the changes to their class. This worked
well in a single-user centralized system, but we did not see
how to adapt it to a distributed system. For performance rea-
sons, the class would have to be replicated on every node
that hosted an instance of the class; if the class were sub-
sequently modified, we would be faced with the classic dis-
tributed update problem. The problem was compounded in
Emerald by the fact that some machines might be inaccessi-
ble when the update occurred. For us, the semantics of class
update seemed impossible to define in a satisfying manner:
the only implementable semantics that we could think of was
that the update would take effect eventually, but perhaps at
widely differing times on different machines, and possibly
far in the future.

The difficulty of defining update for classes was one of the
reasons that we considered classes harmful. 4 Another reason
was that we wanted Emerald to be a simple language in
which everything was an object. This implied that if we had
classes they should also be objects, which would in turn need
their own classes. Smalltalk’s metaclass hierarchy resolved
this apparent infinite regression, but at the cost of significant
complexity, which we also wanted to avoid.

We noted that in classic OO languages, such as Simula 67
and Smalltalk, the concept of class was used for several
different purposes: as a classification scheme for object in-
stances, as a template describing the internal structure of
those instances, as a repository for their code, and as a fac-
tory for generating new instances [17, p. 85].

4 During our car trip from Seattle to Portland for the first OOPSLA in 1986,
we bounced around the idea of writing a paper about Classes Considered
Harmful.
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Because we had a type system, we did not need to use classes
for classification. Code storage was managed by the ker-
nel, because it was heavily influenced by distribution. To
describe the internal structure of an instance, and to gen-
erate new instances, we invented the idea of an object con-
structor, based on the record constructor common in con-
temporary languages. An object constructor was an expres-
sion that, each time it was executed, generated a new object;
the details of the internals of the object were specified by
the constructor expression. Object constructors could create
fully-initialized instances; in combination with block struc-
ture, this meant that the initial state of an object could de-
pend on the parameters of the surrounding context. More-
over, because object constructors could be nested, it was
easy to write an object that acted like a factory, that is, an
object that would make other objects of a certain kind when
requested to do so. It was also easy to write an object that
acted like a prototype, in that it created a clone of itself when
requested to do so.

4.1.6 Objects Are Not Fragmented

An important early decision was that the whole of an ob-
ject would be located on a single machine. The alternative
would have been to allow an object to be fragmented across
multiple machines, but this would then require some other
inter-machine communication mechanism (apart from oper-
ation invocation), thus making the language much larger. It
would also seriously complicate reasoning about failure. We
were also not convinced that fragmented objects were neces-
sary: a distributed resource could after all be represented by
a distributed collection of communicating (non-distributed)
objects that held references to each other. One of the conse-
quences of this design decision was that if any part of an ob-
ject were locally accessible, then all other parts were also lo-
cally accessible. This allowed the compiler to strip away all
distributed code for intra-object invocations and references.

4.1.7 The Unit of Mobility and the Concept of
Attachment

Because we had decided that Emerald objects would be
mobile, it might seem that we had also determined the unit
of mobility: the object. Unfortunately, things were not quite
that simple. An object contained nothing more than variables
that were references to other objects, so moving an object to
a new machine would achieve little: every time the code in
the object invoked an operation on one of its variables, that
operation would be remote.

If the variable referred to a small immutable object, it would
clearly make sense to copy that object when the enclosing
object was moved. Mutable objects could not be copied,
but they could be moved along with the object that refer-
enced them. A working memo written by Eric in August
1986 discusses various ways of defining groups of objects
that would move together; the memo describes both imper-

ative and declarative language features. We eventually de-
cided to introduce the concept of attachment by allowing
the attached keyword to be applied to a variable declaration,
with the meaning that the object referenced by the attached
variable should be moved along with object containing the
variable itself. Although this appeared to make attachment
a static property, we realized that this was not in fact the
case. An object could maintain two variables a and u that
referenced the same object, a being attached and u not at-
tached; by assigning u to a, or assigning nil to a, attachment
could be controlled dynamically. Thus, the concept of at-
tachment was powerful enough to implement dynamically
composable groups efficiently. Joining or leaving a group
could be as simple as a single assignment. Furthermore, in
many cases when a new object joined a group, it would be as-
signed to a variable anyway, and so the additional cost would
be zero. Attachment was also very simple to implement, be-
cause it required nothing more than a bit in the template that
described the object’s layout in memory (described in Sec-
tion 4.6) and thus there was no per-object overhead, nor was
there any cost for an object not using the concept.

4.2 The Emerald Type System

At the time we started the Emerald project, none of us knew
very much about type theory, and innovation in type theory
was not one of Emerald’s explicit goals. However, we found
that the goals that we had set for Emerald seemed to require
features that were not mainstream; indeed, in 2007 some
of them are still not mainstream. So we set about figuring
out how to support the features we needed. The aim of this
section is to describe that process and its end point; it draws
from material originally written by Andrew and Norm in an
unpublished paper dated 1989.

4.2.1 Emerald’s Goals as They Relate to Types

We had decided from the first that Emerald needed the fol-
lowing features.

• Type declarations and compile-time type checking for
improved performance. We had all done most of our
programming in statically typed languages, and felt that
Smalltalk’s dynamic type checking was one of the rea-
sons for its poor performance.
• A type system that was used for classification by behav-

ior rather than implementation, or naming. This was de-
manded by our view that programming in Emerald con-
sisted of adding new objects to an existing system of ob-
jects (as in Smalltalk) rather than writing standalone pro-
grams, (as in Euclid or Object Pascal). We might know
nothing at all about the implementation of an object com-
piled elsewhere; we could demand that the object sup-
ported certain operations, but not that it had a particular
implementation, or inherited from some other implemen-
tation.
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• A small language in which utilities such as collection ob-
jects were not built-in, but could instead be implemented
(and typed) in the language itself.

The second goal was most influential. The Smalltalk idea
of operation-centric protocols formed the starting point for
our work on what came to be known as abstract types and
conformity-based typing.

4.2.2 The Purpose of Types

As we implied in Section 4.2.1, Emerald’s compile-time typ-
ing was more an article of faith than a carefully reasoned
decision: we believed that compile-time typing would help
the compiler to generate more efficient code. However, the
decision to declare types in Emerald did not tell us what
those declarations should mean. In a language like Pascal
or Concurrent Euclid, a type declaration determined the data
layout of the declared identifier. In Simula, a declaration de-
termined the class of the object referenced by the identifier.
But, as discussed in Sections 4.1.4 and 4.1.5, neither of these
functions of types would be applicable in Emerald. So, what
purpose should type declarations serve?

We turned for inspiration to two recently published papers
on types. According to Donahue and Demers [44], the pur-
pose of a type system was to prevent the misinterpretation
of values — to ensure that the meaning of a program was in-
dependent of the particular representation of its data types.
This independence would be necessary if we wished to ab-
stract away from representation details — for example, so
that some of them could be left to the compiler. Cardelli and
Wegner [40] made the same point more colorfully:

A major purpose of type systems is to avoid embar-
rassing questions about representations, and to forbid
situations in which these questions might come up. A
type may be viewed as a set of clothes (or a suit of
armor) that protects an underlying untyped represen-
tation from arbitrary or unintended use.

In fact, Donahue and Demers stated that a programming
language was strongly typed exactly when it prevented this
misinterpretation of values [44].

However, for the most part these papers discussed typing for
values rather than objects. One of the properties of an ob-
ject was encapsulation: the object’s own operations were the
only ones that could be applied to its data. The only mech-
anism that was needed to enforce this encapsulation was
static scoping as found in Simula 67 and Smalltalk. There
was thus no need for Emerald’s type system to forbid “em-
barrassing questions about representations”: object encapsu-
lation already did exactly this. So, should we abandon the
idea of making Emerald statically typed? We thought not:
we felt that a type system could usefully serve other goals.
Amongst these goals were the classification of objects, ear-
lier and more meaningful error detection and reporting, and
improved performance.

In Smalltalk, objects were classified by class, and the in-
heritance relation between classes was important to under-
standing a Smalltalk program. However, classes conflated
two issues: how the object behaved, and how it was imple-
mented. Because Emerald took encapsulation seriously (see
Section 4.1.3), we had to separate these issues. We decided
that the programmer should use types to classify an object’s
behavior, while implementation details should be left to the
compiler. This led to the view of a type being the set of
operations understood by the object, as discussed in Sec-
tion 4.2.3.

A second problem we perceived with Smalltalk was that (al-
most) the only error that we saw was “message not under-
stood”, and we didn’t see this error until run time. As pro-
grammers who had grown up with Pascal and Concurrent
Euclid, when we accidentally added a boolean and an in-
teger we expected an explicit compile time error message.
We wanted to see similar error messages from the Emerald
compiler whenever possible — which was quite often (see
Section 4.2.4).

We also believed that at least some of Smalltalk’s perfor-
mance problems were caused by the absence of static typing
We felt that if only the compiler had more information avail-
able to it about the set of operations that could be invoked
on an object, it could surely optimize the process of find-
ing the right code, called method lookup. We may have been
right, although subsequent advances such as inline caches
have largely eliminated the “lookup penalty”. The way that
we used this extra information to eliminate method lookup
is described in Section 4.2.5.

In summary, we came to the conclusion that there were
three motivations for types in Emerald: to classify objects
according to the operations that they could understand, to
provide earlier and more precise error messages, and to
improve the performance of method lookup. We now discuss
in more detail the consequences of each of these motivations
for types on the development of Emerald’s type system.

4.2.3 Types Were Sets of Operations

We were aware from our experience with Eden that a dis-
tributed system was never complete: it was always open to
extension by new applications and new objects. Today, in
the era of the Internet, the fact that the world is “under con-
struction” has become a cliché, but in the early 1980s the
idea that all systems should be extensible — we called it the
“open world assumption” — was new.

A consequence of this assumption was that an Emerald pro-
gram needed to be able to operate on objects that did not
exist at the time that the program was written, and, more
significantly, on objects whose type was not known when the
application was written. How could this be? Clearly, an ap-
plication must have some expectations about the operations
that could be invoked on a new object, otherwise the appli-
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cation could not hope to use the object at all. If an existing
program P had minimal expectations of a newly injected ob-
ject, such as requiring only that the new object accept the run
invocation, many objects would satisfy those expectations.
In contrast, if another program Q required that the new ob-
ject understand a larger set of operations, such as redisplay,
resize, move and iconify, fewer objects would be suitable.

We derived most of Emerald’s type system from the open
world assumption. We coined the term concrete type to de-
scribe the set of operations understood by an actual, concrete
object, and the term abstract type to describe the declared
type of a piece of programming language syntax, such as an
expression or an identifier. The basic question that the type
system attempted to answer was whether or not a given ob-
ject (characterized by a concrete type) supported enough op-
erations to be used in a particular context (characterized by
an abstract type). Whenever an object was bound to an iden-
tifier, which could happen when any of the various forms
of assignment or parameter binding were used, we required
that the concrete type of the object conform to the abstract
type declared for the identifier. In essence, conformity en-
sured that the concrete type was “bigger” than the abstract
type, that is, the object understood a superset of the required
operations, and that the types of the parameters and results
of its operations also conformed appropriately.

Basing Emerald’s type system on conformity distinguished it
from contemporary systems such as CLU, Russell, Modula-
2, and Euclid, all of which required equality of types. It also
distinguished Emerald’s type system from systems in lan-
guages like Simula that were based on subclassing, that is, on
the ancestry of the object’s implementation. In a distributed
system, the important questions are not about the implemen-
tation of an object (which is what the subclassing relation
captures) but about the operations that it implements.

For our purposes, type equality was not only unnecessary:
it was counterproductive. Returning to the example above,
there was no need to require that new objects presented to P
supported only the operation run; no harm could come from
the presence of additional operations, because P would never
invoke them. The idea of conformity was that a type T con-
formed to a type U, written T ◦> U, exactly when T had
all of U’s operations, when the result types of those oper-
ations conformed, and when the argument types conformed
inversely. We chose the symbol ◦> to convey the idea that the
type to the left had more operations than the type to the right.
Nowadays, this relation is usually written <: and called sub-
typing, which seems to convey exactly the opposite intuition.

Having settled on a conformity-based type system, we still
had to address the question of whether conformity should be
deduced or declared. In other words, would it be sufficient
for an object to have all of the operations demanded by a
type, or would it also be necessary for the programmer to
say that it had them? Because URLs would not be invented

for another 10 years, and even local-area distributed file sys-
tems were rare and primitive, there was no simple way for a
programmer to state that one type (declared right here) con-
formed to another type (declared in some other program on
some other computer). Also, our experience with Eden had
taught us that we would often not appreciate the need for a
“supertype” (a type with fewer operations) until after some-
one else had written a program using a subtype. It seemed
quite impractical to have to ask some other programmer, pos-
sibly in some other organization, to change his or her code
to say that one of the types that it used conformed to a su-
pertype definition that we had written later. It also seemed
pointless: it was easy enough to check type conformity di-
rectly.

This question of whether type compatibility should be de-
duced or declared is currently still open; the current jargon
is to call deduced conformity structural and declared confor-
mity nominal. Four or five years after we had chosen struc-
tural equivalence for Emerald, Cardelli and his colleagues
wrote:

there is a strong argument for switching to struc-
tural equivalence, which is that structural equivalence
makes sense between types that occur in different pro-
grams, while name equivalence makes sense only be-
tween types that occur in the same program. This ad-
vantage becomes significant when type-safety is ex-
tended to distributed systems. . . or to permanent data
storage systems [39, p. 207].

Modula-3, a version of Modula designed for distributed sys-
tems, moved from the nominal typing of Modula-2 to struc-
tural typing [38].

We were not, of course, the first to use structural equiva-
lence — Algol–68 and Euclid were there before us. Neither
were we the first to realize that in an object-based language,
“structure” meant not the layout of data fields, but the avail-
ability of operations — Smalltalk had done that, and its lead
has since been followed by more recent languages such as
Python and Ruby, which call it “duck typing”. (The name
comes from the idea that if it looks like a duck, walks like
duck, and quacks like a duck, it must be a duck [107].) But
we were perhaps the first to apply static duck typing to ob-
jects.

4.2.4 Type Checking and Error Messages

Another consequence of the open world assumption was
that sometimes type checking had to be performed at run
time, for the very simple reason that neither the object to
be invoked nor the code that created it existed until after
the invoker was compiled. This requirement was familiar to
us from our experience with the Eden Programming Lan-
guage [21]. However, Eden used completely different type
systems (and data models) for those objects that could be
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created dynamically and those that were known at compile
time.

For Emerald, we wanted to use a single consistent object
model and type system. Herein lies an apparent contradic-
tion. By definition, compile-time type checking is done at
compile time, and an implementation of a typed language
should be able to guarantee at compile time that no type er-
rors will occur. However, there are situations where an ap-
plication must insist on deferring type checking, typically
because an object with which it wishes to communicate will
not be available until run time.

Our solution to this dilemma provided for the consistent ap-
plication of conformity checking at either compile time or
run time. If enough was known about an object at compile
time to guarantee that its type conformed to that required
by its context, the compiler certified the usage to be type-
correct. If not enough was known, the type-check was de-
ferred to run time. In order to obtain useful diagnostics, we
made the design decision that such a deferral would occur
only if the programmer requested it explicitly, which was
done using the view. . . as primitive, which was partially in-
spired by qualification in Simula 67 [15, 41].

Consider the example

var unknownFile: File
. . .

r← (view unknownFile as Directory).Lookup ["README "]

Without the view. . . as Directory clause, the compiler would
have indicated a type error, because unknownFile, as a File,
would not understand the Lookup operation. With the clause,
the compiler treated unknownFile as a Directory object,
which would understand Lookup. In consequence, view . . .
as required a dynamic check that the type of the object bound
to unknownFile did indeed conform to Directory. Thus, suc-
cessfully type-checking an Emerald program at compile time
did not imply that no type errors would occur at run time;
instead it guaranteed that any type errors that did occur at
run time would do so at a place where the programmer had
explicitly requested a dynamic type check.

The view. . . as primitive later appeared in C++.

Partially inspired by the inspect statement of Simula 67 [15,
41], we also introduced a Boolean operator that returned the
result of a type check. This allowed a programmer to check
for conformity before attempting a view. . . as.

4.2.5 Types and efficiency

A primary goal of Emerald was to demonstrate the viability
of using a single object model for both small (Integer) and
large (Directory) objects. One of our performance goals was
to achieve the performance of C for simple operations like
adding integers and invoking operations on local objects. We
believed that static typing would lead to improved efficiency

and we used information from the type system in two places:
primitive types and operation invocation.

Primitive types

We realized that a few primitive types must behave correctly
for the language to be usable. In particular, consider the
Boolean type. The correctness of the if statement and while
loop depend on the proper behaviour of the two Boolean
objects true and false5. We therefore insisted that a few
types would not follow the normal rules for conformity: no
non-primitive type conforms to Boolean. Eventually, we ex-
tended this notion for performance as well as correctness and
defined a collection of primitive object types that included
Boolean, Character, Integer, Real, String, and Vector. When
the compiler knew that a variable had a primitive type, it also
knew the implementation of the object bound to the variable,
and used the direct object implementation shown in Figure 9.
This meant that operations on such objects could be inlined
and be made as efficient as in a conventional language.

Operation Invocation

A performance problem plaguing object systems that were
contemporary with Emerald was the cost of finding the
code to execute when an operation was invoked on an ob-
ject. This process was then generally known by the name
“method lookup”; indeed it still is, but we in the Emerald
team called it operation invocation. In Smalltalk, method
lookup involved searching method dictionaries starting at
the class of the target object and continuing up the inheri-
tance class hierarchy until the code was located. We thought
that if Emerald didn’t do static type checking, each operation
invocation would require searching for an implementation of
an operation with the correct name, which would be expen-
sive — although, because we did not provide inheritance,
not as expensive as in Smalltalk. In a language like Sim-
ula in which each expression had a static type that uniquely
identified its implementation, each legal message could be
assigned a small integer and these integers could be used
as indices into a table of pointers to the code of the various
methods. In this way, Simula was able to use table lookup
rather than search to find a method (and C++ still does so).
We though that static typing would give Emerald the same
advantage, and this was one of the motivations for Emerald’s
static type system.

However, even with static typing, there is still a problem in
Emerald: except for the above-mentioned primitive types,
knowing the type of an identifier at compile time tells us
nothing about the implementation of the object to which it
will be bound at run time. This is true even if the program
submitted to the compiler contains only a single implemen-
tation that conforms to the declared type, because it is al-

5 Even in Smalltalk, in which conditional statements are represented by
message sends, messages such as ifTrue:ifFalse: are known to the compiler
and treated specially; it is not in practice feasible to re-implement Boolean.
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ways possible for another implementation to arrive over the
network from some other compiler. Thus, the Emerald im-
plementation would still have to search for the appropriate
method: the only advantage that static typing would give us
would be a guarantee that such a method existed.

It is often the case that dataflow analysis can be used to
ascertain that an object has a specific concrete type, and
the Emerald compiler used dataflow analysis quite exten-
sively to avoid method lookup altogether, by compiling a
direct subroutine call to the appropriate method. However,
the point that we did not fully appreciate when we started
the Emerald project was that static typing, in itself, would
not help us to avoid method lookup.

In those cases where dataflow analysis could not assign a
unique concrete type to the target expression, we avoided
the cost of searching for the correct method by inventing
a data structure that took advantage of Emerald’s abstract
typing. This data structure was called an AbCon, because
it mapped Abstract operations to Concrete implementa-
tions. The run-time system constructed an AbCon for each
〈type, implementation〉 pair that it encountered. An object
reference consisted not of a single pointer, but of a pair of
pointers: a pointer to the object itself, and a pointer to the
appropriate AbCon, as shown in Figure 3.

The AbCon was basically a vector containing pointers to
some of the operations in the concrete representation of the
object. The number and order of the operations in the vector
were determined by the abstract type of the variable; oper-
ations on the object that were not in the variable’s abstract
type could never be invoked, and so they did not need to
be represented. In Figure 3, the abstract type InputFile sup-
ports just the two operations Read and Seek, so the vector
is of size two, even though the concrete objects assigned
to f might support many more operations. AbCon vectors
were created where necessary when objects were assigned
to identifiers of a different type, and were cached whenever
possible to avoid recomputing them. AbCons increased the
cost of each assignment slightly, but made operation invoca-
tion as efficient as using a virtual function table. In practice
it was almost never necessary to generate them during an
assignment, because the number of different concrete types
that an expression would take on was limited, often to one.
We compare AbCons with more recent technologies in Sec-
tion 6.4.

4.2.6 Type:Type

As we mentioned in Section 3, the occasional need to de-
fer type checking until run time implied that types would
have to be representable at run time. Because Emerald was
object-based, it seemed like an obviously good idea that
types should themselves be represented as objects. The alter-
native would be to increase the size of the language dramat-
ically by providing one set of declaration and parameteriza-

tion constructs for objects and another parallel set for types.
Our minimality goal discouraged full exploration of this al-
ternative. A consequence of this decision was that Emer-
ald’s type system would have the Type:Type property, that
is, the property of an object being a type would be a type
property, just like the property of being an integer or the
property of being a set. At this time, the papers investigat-
ing Type:Type [36, 77] had not yet been published, and we
didn’t see Type:Type as a bad thing. Later, we realized that
one of the consequences of Type:Type was that Emerald’s
type system was undecidable: there were certain pathologi-
cal type checks involving infinite type objects that would not
terminate. But this didn’t seem to be a real problem either:
these infinite type checks would occur only at run time, and
the possibility of computations that did not terminate at run
time had always been with us.

Once types were objects, the distinction between types and
non-types was no longer one of syntax, but one of value.
Thus, arbitrary expressions might appear in positions that
required types. Such expressions were evaluated by the com-
piler, resulting in type objects, the values of which were used
to do type checking. For example, in the declaration

var x : Integer

the expression Integer was evaluated, resulting in an object
v. The type system then inspected v (i.e., it looked at v’s
value) in order to assign a type to the identifier x. Clearly,
the context implied that v’s value should be a type, in other
words, that v ◦> Type6; if it did not, the compiler signaled an
error. Thus, we see that the values of certain objects, called
type objects, were manipulated at compile time to do type
checking. These same type objects were also available at run
time to perform dynamic type checking.

For pragmatic reasons, the compiler restricted the expres-
sions that could appear in a type position to those that
were manifest. Intuitively, a manifest expression was one
that the compiler could evaluate without fear of either non-
terminating computations or (side) effects. We could guar-
antee a computation to be free from effects by insisting that
only functions on immutable objects with immutable ar-
guments that returned immutable results were evaluated at
compile time. In addition, while it was obviously not decid-
able whether or not an arbitrary computation would diverge,
the compiler placed restrictions on what it was willing to
evaluate to guarantee that compilation terminated. It turned
out that we never found a need for alternation (if) or itera-

6 The identifier that we initially chose to denote the type of all types was
AbstractType; we used the keyword type to signify the start of a type
constructor, a special form of an object constructor that created a type
object. Later, we reversed this decision: we used Type for the type of all
types, and typeobject for the special object constructor. In this article we
use the more recent syntax consistently; we felt that changing notation part
way though the text, although historically accurate, would be unnecessarily
confusing.
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Figure 3: This figure, taken from reference [18], shows a variable f of abstract type InputFle. At the top of the figure (part a), f references
an object of concrete type DiskFile, and f ’s AbCon (called an Operation vector in the legend) is a two-element vector containing references
to two DiskFile methods. At the bottom of the figure (part b), f references an object of concrete type InCoreFile, and f ’s AbCon has been
changed to a two-element vector that references the correspondingly named methods of InCoreFile. (Figure c©1987 IEEE; reproduced by
permission.)

tion (for, while) in our manifest expressions. Thus, when we
wrote

var v : Vector.of [Integer]

although Vector was just a constant identifier that happened
to name a built-in object, and of was just an operation on
that object, because the objects named by Vector and Integer
were both immutable, and because of was a function, the
evaluation of the expression Vector.of [Integer] could pro-
ceed at compile time; we knew that the value of this expres-
sion would be the same at compile time as it would be at run
time.

Once types were first-class objects, and comparison for con-
formity (rather than equality) was the norm, we realized that

it would be a small step to allow an object that was a type
also to have additional operations. For example, the object
denoted by the predefined identifier Time, in addition to be-
ing a type, also had a create operation that made a new time
from a pair of integers representing the number of seconds
and µs since the epoch. The Emerald programmer was thus
able to define objects that acted as types and also had arbi-
trary additional operations; this was particularly useful for
factory objects, which could be both the creators of new ob-
jects and their types.

4.2.7 Conformity, nil, and the Lattice of Data Types

The Nature of Conformity. The role of conformity in
Emerald was so central that in our early discussions we
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treated it as a relation between an object and a type. Other
operations on objects could be defined in terms of confor-
mity. For example, to ascertain whether or not an object o
possessed an operation f with one argument and one result,
we could evaluate:

o ◦> typeobject T
operation7 f [None8]→ [Any]

end T

However, in working with Larry Carter in 1985-6 to formal-
ize the definition of conformity, we realized that conformity
needed to be a relation between types: the definition of con-
formity is recursive and depends on the conformity of pa-
rameters and results. Consequently, the paper that presents
that definition [18] is somewhat inconsistent, referring in
places to objects conforming to types, and elsewhere to types
conforming to each other.

Unlike languages with which we were familiar, the notion
of conformity meant that every object had not one but many
types. Referring to Figure 4, any object that had type Scan-
ableDirectory also had type Directory. DeleteOnlyDirec-
tory, AppendOnlyDirectory and Any, among others. Thus,
we found ourselves talking not about “the” type of an ob-
ject but about its “best-fitting type”, meaning the type that
captured all of the operations understood by the object. We
realized that ◦> induced a partial order on types, as depicted
in Figure 4. Because in Emerald the type Any had no oper-
ations, it was the least element in this partial order. Some
types were incomparable: the type with Add as its only op-
eration seemed to be incomparable to the type with only
Delete. Nevertheless, these two types had Any as their great-
est lower bound.

The Partial Order of Types. Although this partial order
was for the most part simple and intuitive, we were aware of
two problems with it. The first problem, which confused us
for a long time, arose when two types had operations with the
same name but with different arities, i.e., different numbers
of arguments or results. For example, consider two types,
one with the operation Add [String]→ [ ] (Add with a single
String argument and no result), and one with the operation
Add [Integer]→ [Integer] (Add with a single argument and
a single result, both Integer). Not only are these types in-
comparable, but they seemed to have no upper bound: there
was no type to which they both conformed, because no type
could have an single Add operation with both of these arities.

A second problem was how to type nil, the “undefined”
object. We typically wish to use nil in assignments:

var d : Directory
d← nil

7 The syntax operation name[T]→ [U] means that the method name takes
one argument, which is of type T , and returns one result, of type U.
8 None is the type that includes every possible operation, and Any is the type
that includes no operations, as described later in this Section.

Figure 4: An example of a directed acyclic graph (July 1988) that
illustrates the partial order on types induced by conformity. Each
box represents a type; above the line is the name of the type, and
below is a list of the type’s operations. The arrows represent the
conformity relation, for example, ScanableDirectory ◦> Directory
because it has a superset of Directory’s operations.

and in tests:

if d 6= nil then r← d.Lookup[“key”] end if

It should be clear that for nil to be assignable to d, it must
support all the Directory operations. Similarly, for nil to be
assignable to var i : Integer it must support all of the Integer
operations. By extension, nil must possess all of the oper-
ations of all possible types that might ever be constructed!
This seemed like a contradiction, because operationally we
knew that nil, far from being an all-powerful object, actually
did nothing at all.

The conventional solution to this dilemma, and the one that
we initially adopted for Emerald, was to make nil a special
case. Either nil would refer to a single special object that
did not otherwise fit into the type system, or, as in Algol 68,
there would be a separate nil for each reference type, and
a syntactic mechanism for disambiguating the overloaded
symbol nil that denoted them all [103, §2.1 and §3.2].

From Partial Order to Lattice. We eventually stumbled
on an elegant solution to both the arity problem and the nil
problem. In the partial order so far described, every pair of
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types T and U had a “meet” (also known as greatest lower
bound) T uU that contained just those operations that were
common to T and U. If T and U had no operations in com-
mon their meet was Any, so Any was the least element in
the partial order. If T and U had in common just operation
α [f ] → [g] then the type containing just α with that sig-
nature was their meet T uU. However, because of the arity
problem, we could not see how to define the “join” (least
upper bound) of arbitrary types. When an operation α had
different arities in types T and U, the meet of T and U was
well-defined (it would omit α completely), but it seemed that
the join did not exist.

Meets and joins arose rather naturally when performing type
checking. For example, if a variable could take on either a
value of type T or a diferent value of type U, all that we
could say about the type of that variable is that it is the meet
of T and U. Because of contravariance, computing this meet
might involve computing a join, for example, if T and U both
supported operations α with the same arity but with differ-
ent signatures, say, α [fT ]→ [gT ] and α [fU ]→ [gU ], then
T uU was the type containing α [fT t fU ] → [gT u gU ] —
provided that fT t fU (the join of the fτ ) was defined. This
definition generalized in the obvious way to types with more
than one operation, and to operations with multiple argu-
ments and results.

The problem with this definition was the inelegant caveat
that the required meets and joins must all exist. Because of
contravariance, once some joins did not exist, it was also
possible for some meets not to exist: the problem cascaded.
Black had studied at Oxford under Stoy and Scott, and knew
that the conventional mathematical solution to this problem
was to ensure that all upper and lower bounds exist, i.e., to
embed the partial order in a complete lattice. He also knew
that we would not lose any generality by this embeding,
because such a lattice always exists [98, pp. 88-91, 414].
However, for a long time we could not see how to construct
it, because we could not see what to do about an operation
that had different arities in T and U.

The solution, like many good ideas, is quite simple and in
hindsight quite obvious: we needed to treat operations with
different arities as if they had different names. For practi-
cal purposes this meant that we changed the language to al-
low overloading by arity; formally, we equipped every op-
eration name with two subscripts, representing the number
of arguments and results. This meant, for example, that the
two add operations mentioned above became Add1,0 and
Add1,1. Now that the operations had distinct names, the up-
per bound could contain both of them, and as a consequence
we were able to turn the partial order into a lattice.

None. Of course, every lattice has a unique top element;
what surprised us initially was the discovery that the top
element of Emerald’s type lattice was semantically useful.
We realized that it provided a type for nil, so we called it

None; this also seemed like an appropriate name for the dual
of Any.

We defined T uU as the largest type (that is, the type with
the largest number of operations) such that T ◦> (T uU)
and U ◦> (T uU), and defined T tU as the smallest type
such that (T tU) ◦> U and (T tU) ◦> T . The type of all
objects, which we called Any, was then nothing more than
the bottom element of the lattice induced by the conformity
relation: Any was the maximal type such that for all types
T , T ◦> Any. Dually, we defined None to be the top of this
lattice: None was the minimal type such that for all types
T , None ◦> T . The keyword nil then simply denoted the
(unique) object of type None. By this definition, nil sup-
ported all possible operations, with all possible signatures. In
other words, nil supported the operation Add with 1, 3, and
17 arguments of the most permissive types, as well as the
operation Halt [Turing-machine, Tape] → [Boolean]. This
didn’t initially sound like the nil with which we were famil-
iar! However, we finally realized that the conformity lattice
spoke only about type checking. If any of these all-powerful
operations were actually invoked, the implementation would
immediately break — which is exactly the behavior we ex-
pected of nil.

Restriction and Capabilities. In Eden, object were ad-
dressed using a capabilities that included not only a refer-
ence to the object but also a set of access rights that described
which operations were invocable using the capability. Appli-
cations could create capabilities with restricted access rights
and send them to clients. For example, the creator of a mail
message object would have the right to perform all opera-
tions on it, but might send the recipients restricted capabil-
ities that gave then the right to read the message but not to
modify it. The access rights were implemented as a fixed-
length bit vector, which provided a small name space and
did not mesh well with subtyping [22].

Emerald’s type system provided a similar facility, in that
clients of an object could be given a reference with a re-
stricted type. However, the view. . . as facility meant that the
type restriction could always be circumvented. Apart from
this fatal flaw, the type-based mechanism was better than
Eden’s access rights: it resolved the small-name-space prob-
lem, and it was compatible with subtyping.

During the summer of 1987, Norm visited Seattle and met
Eric at a Lake Washington café. Over breakfast they de-
signed a new language primitive restrict. . . to, which re-
moved the flaw by limiting the power of the view facility. To
see how restrict works, consider the code in Figure 5, which
references a Directory object using the types of Figure 4. In
the figure, a single object conforming to Directory is bound
to d, l, and lr. Both l and lr have type LookupOnlyDirectory,
but whereas l’s reference is unrestricted, and can be “lifted”
back up to Directory by a view expression, lr’s reference is
restricted to LookupOnlyDirectory. Thus, the view expres-
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var d, d1, d2 : Directory
var l, lr : LookupOnlyDirectory
d← . . .
l← d
lr← restrict d to LookupOnlyDirectory
d1← view l as Directory
d2← view lr as Directory

Figure 5: The restrict. . . to primitive can be used to limit the oper-
ations invokable on an object. The types Directory and LookupOn-
lyDirectory are shown in Figure 4.

sion in the assignment to d1 will succeed, whereas the view
expression in the assignment to d2 will fail. This is because
the restricted reference stored in lr cannot be viewed above
the level of the LookupOnlyDirectory in the type lattice.

The restrict mechanism was implemented by late afternoon
of the day on which it was designed. The implementation
was simple. AbCons already contained a reference to the
concrete type of the object; all that was necessary was to
introduce an extra field that specified the largest type al-
lowed in a view. . . as expression. Upon creation of an Ab-
Con this field was initialized to the concrete type, but a re-
strict. . . to R expression would create an AbCon containing
the restricted type R.

Overloading. In spite of this rather theoretical genesis, our
decision to include overloading by arity but not by type was
made because it worked well for the practicing programmer.
We now believe that overloading by arity represents a “sweet
spot” in the space of possibilities for overloading. It supports
the most common uses, such as allowing unary and binary
versions of the same operation, and allowing the program-
mer to provide default values for parameters. Nevertheless,
it is always easy for the programmer (and the compiler) to
know which version of the operation is being used. In con-
trast, overloading by type, as provided in Ada at the time
of Emerald’s development and as now adopted in Java, is
simply a bad idea in an object-oriented language. Many pro-
grammers confuse overloading with dynamic dispatch; it is
difficult for both the programmer and the compiler to dis-
ambiguate; and it does little more than encourage the pro-
grammer to be lazy in inventing good names, for example,
by permitting both moveTo(aPoint) and moveBy(aVector) to
be called move. In a procedural or functional language, it is
hard to argue that procedures like print and functions like =
and + should not be overloaded. But in an object-based lan-
guage, these things are just operations on objects, and several
operations with the same name can be implemented by dif-
ferent objects without any need for type-based overloading.

Implementing nil. There was no difficulty in implement-
ing nil for objects that were represented by pointers: we just
chose a particular invalid address for nil whereby we had a
free hardware check for invocations of nil. However, the at-
tentive reader will recall from Section 4.1.4 that reals and in-

tegers were primitive and were represented directly, without
using pointers. We wanted to avoid a software-based (and
thus highly inefficient) check for nil on integer and real op-
erations. We couldn’t find a perfectly clean representation
for nil that was also efficient, and in the end in our imple-
mentation of Emerald we cheated just a little. We reserved
a special nil value that could be assigned to real and integer
variables. The bit pattern 0x80000000 was illegal as a VAX
floating-point number, so by using this value to represent nil
we could be sure that a legitimate floating-point operation
would never result in nil. Moreover, the hardware would trap
if this bit pattern were used in a floating-point instruction, so
it was easy to detect an attempt to invoke an operation on
nil. For integers, the same bit pattern represented −231, so
by using this value for nil we were “stealing” the most neg-
ative value from the range of valid integers. If the program
asked whether or not an integer variable was nil, the answer
would be right. However, we did not implement checks to
ensure that invocations on integer nil always failed or that
normal arithmetic operations didn’t generate nil by accident.
We were not happy with the idea that multiplying −230 by 2
would evaluate to nil; neither were we happy that multiply-
ing −230 by 3 would give the wrong answer. The decision
not to implement checks for integer overflow and underflow
was entirely a matter of efficiency: we wanted built-in inte-
gers to be as efficient as C’s integers, and C didn’t do any
checks, so we didn’t do any either. Of course, if a program-
mer wanted a integral numeric type that did all of the check-
ing, or had a greater range, or whatever, such a integer could
be implemented as an Emerald object — with the consequent
performance penalty. But the built-in Integer type was quick,
and in this case just a little bit dirty.

4.2.8 Polymorphism

In 1985, we felt that any “modern” programming language
should have a type system that provided support for poly-
morphic operations, that is, operations that might be in-
voked in several different places with an argument of dif-
ferent types. The contemporary authority on types, a survey
paper by Cardelli and Wegner [40], distinguished two broad
classes of polymorphism, ad hoc and universal, We were not
particularly concerned with ad hoc polymorphism; of uni-
versal polymorphism they wrote:

Universally polymorphic functions work with an in-
finite number of types, so long as these types share
a common structure. As suggested by the name, only
universal polymorphism is considered true polymor-
phism. Within this broad class are two sub-divisions:

inclusion polymorphism
An object can be viewed as belonging to many
different types that need not be disjoint.

parametric polymorphism
A function has an implicit or explicit type param-
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eter which determines the type of the argument for
each application of the function.

We found these definitions confusing because the distinc-
tion between parametric polymorphism and inclusion poly-
morphism appeared to break down in Emerald. Consider the
passing of an argument o of type S to an operation that ex-
pects an argument of type T such that S ◦>T . This could be
said to be an example of inclusion polymorphism because
the object o has a number of different types including S and
T (as well as Any and a host of others). An alternative expla-
nation is that, because o knows its own type, the type of o is
an implicit argument to every operation to which o is passed,
making this an example of parametric polymorphism.

We finally realized that the distinction was still a valid one
for Emerald: it lay in the way that the operation used its
argument. If the operation treated o as having a fixed type
T , then the inclusion polymorphism view was appropriate,
but if it treated o parametrically, then the parametric view
was appropriate (See the typechecking technical report [26]
for some examples.)

As a consequence, we included two features in the Emerald
type system, one for each of these two kinds of polymor-
phism. First, basing type checking on conformity rather than
equality supported inclusion polymorphism: every operation
that expected an argument of type T would also operate cor-
rectly on an argument whose type conformed to T .

Second, Emerald types were values (more precisely, ob-
jects), and we allowed arbitrary expressions to appear in syn-
tactic positions that required types. This implied that types
could be passed as parameters to operations. An operation
could also return type as its result, and that type could then
be used in a declaration. Figure 6 is an example of the sort
of parametric polymorphism that we provided in Emerald:
a polymorphic pair factory that insists that both elements of
the pair are of the same type. A trivial application of this
object to create a pair of strings might appear as follows.

const p← pair.of [String].create[“Hello”, “World”]

The of function of pair accepts any type as its argument,
but returns a pair that has no operations other than first
and second. Suppose that we want the pair to also have an
equality operation = that tests the component-wise equality
of one pair against another. Obviously, such a pair cannot
be constructed for arbitrary element types: the element type
must itself support an = operation. We therefore need to
be able to express a constraint on the argument to the of
operation on pair. This can be done by adding a constraint
on the value of the argument T passed to of . The constraint
that we need is that:

T ◦> typeobject eq
function = [eq]→ [Boolean]

end eq

const pair← immutable object pPair
export function of [T : Type]→ [r : PairCreator]

where
PairCreator← typeobject PC

operation create[T, T]→ [Pair]
end PC

where
Pair← typeobject P

function first→ [T]
function second→ [T]

end P
forall T 9

r← immutable object aPairCreator
export operation create[x : T, y : T]→ [r : Pair]

r← object thisPair
export function first→ [r : T]

r← x
end first
export function second→ [r : T]

r← y
end second

end thisPair
end create

end aPairCreator
end of

end pPair

Figure 6: A polymorphic pair factory (after an example in a Novem-
ber 1988 working paper).

Syntactically, we gave Emerald a suchthat clause to cap-
ture this constraint. Types constrained in this way provide
what Canning and colleagues later called F-bounded poly-
morphism [34] because the bound on the type T is expressed
as a function of T itself. The where clause of CLU [73] pro-
vided similar power, although we were unaware of this at
the time. We eventually realized that the ◦> relation in the
suchthat did not denote the conformity relation that we had
defined between types, but was actually a higher-order oper-
ation on type generators. In the types technical report [26]
we called this operation matches, and denoted it by the sym-
bol . . Subsequently, Kim Bruce adopted an equivalent def-
inition for an operation that he denoted by ≤meth [32], and
eventually also called matches [33].

Two other changes are necessary in Figure 6 to define a pair
with equality. The first is, obviously, the addition of the =
operation to the type Pair; the second is the addition of a
corresponding implementation of = to the object thisPair.
The complete factory for pairs with equality is shown in
Figure 7.

9 The forall keyword was added quite late in Emerald’s development. In a
sense the forall is unnecessary, because it expresses the empty constraint
on T . However, without it there is no declaration for the identifier T , and
we felt that every identifier should be declared explicitly; the alternative of
making the programmer write suchthat T ◦> Type seemed overly pedantic.
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const pair← immutable object pPair
export function of [T : Type]→ [r : PairCreator]

where
PairCreator← typeobject PC

operation create[T, T]→ [Pair]
end PC

where
Pair← typeobject P

function first→ [T]
function second→ [T]
function = [P]→ [Boolean]

end P
suchthat T ◦> typeobject eq

function = [eq]→ [Boolean]
end eq

r← immutable object aPairCreator
export operation create[x : T, y : T]→ [r : Pair]

r← object thisPair
export function first→ [r : T]

r← x
end first
export function second→ [r : T]

r← y
end second
export function = [other : Pair]→ [r : Boolean]

r← other.first = x and other.second = y
end =

end thisPair
end create

end aPairCreator
end of

end pPair

Figure 7: A Pair Factory that is polymorphic over types that support
equality

4.2.9 Publications on Types

Our initial ideas on types were published in an August 1985
technical report [19]. However, that report did not contain a
formal definition of the conformity relation, not because we
thought it unimportant, but because we were not sure how to
do it. The obvious definition of conformity was as a recur-
sive function, and we did not know how to ensure that the
recursion was well-founded. Fortunately, Larry Carter from
IBM was on sabbatical at UW in the fall of 1985, and we
were able to convince him to help us formulate the defini-
tion. Larry’s definition, which constructed the conformity re-
lation as the limit of a chain of approximations, appeared in
a revised version of the technical report [16], and was even-
tually published in Transactions on Software Engineering in
January 1987 [18].

As we deepened our understanding of the issues around
types, and in particular looked harder at polymorphism, we
revised a number of the decisions made in these early pa-

pers and developed more formal underpinnings for the type
system. We also redefined conformity using inference rules,
a technique that was then becoming popular. Andrew and
Norm were responsible for this evolution and for authoring
several documents describing it, none of which was formally
published. Our earliest document is a handwritten paper
“The Lattice of Data Types”, dated 1986.11.04. Sometime in
1987 this paper acquired a subtitle “Much Ado About NIL”;
it eventually evolved into “Types and Polymorphism in the
Emerald Programming Language”, which went through a se-
ries of versions between July 1988 and July 1989, before fi-
nally morphing into a technical report “Typechecking Poly-
morphism in Emerald”, which Andrew and Norm finished
over the Christmas holidays in 1990 [26].

4.3 Concurrency

We knew that concurrency was inherent in any distributed
system that made use of multiple autonomous computers.
Moreover, we realized that even in a non-distributed pro-
gram, Emerald’s object model implied that each object was
independent of all others and was capable of acting on its
own. This meant that every object should be given the pos-
sibility of independent execution; the consequence was that
we needed a concurrency model that allowed concurrency
on a much finer grain than that provided by operating sys-
tem processes in separate address spaces.

4.3.1 The Emerald Process Model

In designing Emerald’s process and concurrency control fa-
cilities, we were inspired by Concurrent Pascal [29], with
which Eric had worked extensively while writing his Mas-
ter’s thesis [57] at the University of Copenhagen, and Con-
current Euclid [50, 51], which we had used in Eden. Note
that, as we explained on page 4, we use the unqualified term
process to mean what it meant at the time: one of a number
of lightweight processes sharing an operating system address
space. Today this would more likely be called a thread; when
we mean an operating system process (in a protected address
space), we say so explicitly.

In Eden, each object was a full-blown UNIX process and thus
had its own address space, within which the Eden Program-
ming Language provided lightweight processes. The two
levels of scheduling and the costs of operating system in-
terprocess communication inherent in this scheme were part
of the cause of Eden’s poor performance. So, for Emerald,
we knew that we needed to find a way to develop a single
process model for all concurrency. We also knew that we
would have to implement it ourselves, rather than delegating
that task to an underlying operating system.

Our first idea was to have a separate language construct to
define a process, modeled on the process of Concurrent Pas-
cal. However, we we soon realized that this would not be
adequate. The Concurrent Pascal construct is static: all the
processes that can ever exist must be defined at compile
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time. This restriction could be lifted by making the creation
of processes dynamic, for example, by allowing a new pro-
cess construct similar to new in Simula. However, we were
not happy about the idea of introducing another first class-
citizen besides objects.

Object constructors had let us avoid introducing classes as
first-class citizens: instead we nested one object construc-
tor inside another. We realized that we could also nest pro-
cesses inside objects. We added an optional process section
to object constructors so that, when an object was created, a
process could be created as one of the object’s components.
The process would start execution as soon as the object had
been initialized. If the process section were omitted, the ob-
ject would be passive and would execute only in response
to incoming invocations. This design allowed us to have ac-
tive objects that could execute on their own, as well as con-
ventional passive objects. It also had the benefit of making
it clear where a program should start executing. Some lan-
guages express this with various kinds of ad-hocery, such as
a “special” process called “main”. Emerald needed no “spe-
cial” process. Instead, we saw the Emerald world as a vast
sea in which objects floated. When a program created a new
object (by executing an object constructor), the object was
merely added to the sea. If the new object had no process,
nothing more happened (until the new object was invoked).
If it did have a process, the process started execution concur-
rently with all the other Emerald processes.

Thus, instead of needing a “main procedure”, an Emerald
program was simply a collection of object declarations.
When the program was loaded, these declarations were elab-
orated, and any objects thus created were added to the sea. A
sequential Emerald Hello, world! program looked like this.

const simpleprogram← object myMainProgram
const i← 1
process

stdout.PutString[i.asString || “: hello, world!\n”]
end process

end myMainProgram

This program uses a simple object constructor to create an
essentially empty object whose only purpose is to house the
process that prints “1: hello, world”, and then terminates.

We also considered allowing more than one process section
in an object. This would have been of limited use: as a
static construct, it would not have helped the programmer
to create a variable number of processes in the object. The
more general case of dynamically created processes was
already provided: any number of processes could be created
simply by defining internal objects that contained not much
more than a process, and then creating such objects. This is
illustrated in the example below.

const p← object multiProgram
export operation workerBody[i: Integer]

stdout.PutString[i.asString ||“: hello, world!\n”]
end workerBody
process

var i: Integer← 17
var x: Any
loop

if i <= 0 then exit end if
x← object worker

process
multiProgram.workerBody[i]

end process
end worker
i← i − 1

end loop
end process

end multiProgram

This program contains a single object that creates 17 other
worker objects each housing a process. These 17 processes
thereafter execute in parallel and will print a message in
some (indeterminate) order.

The following example shows a generalized worker process
that is parameterized by a function containing the actual
work to be done.

const WorkToDoType← typeobject wtd
operation doWork[ ]

end wtd

const workerCreator← object wc
export operation createWorker[work: WorkToDoType]

var x: Any
x← object worker

process
work.doWork[ ]

end process
end worker

end createWorker
end wc

const exampleWork← object hello
var i: Integer← 0
export operation doWork[ ]

i← i + 1
stdout.print[i.asString || “: hello world! \n”]

end doWork
end hello

const exampleProgram← object exampleProgram
process

workerCreator.createWorker[exampleWork]
workerCreator.createWorker[exampleWork]

end process
end exampleProgram

The workerCreator operation is used to generate a process
that executes the doWork operation of any object given to it
as argument. In this example, the hello objects merely print
messages. The object exampleProgram creates two worker

11-23



processes; the order in which the messages are printed is
undefined because the two processes execute concurrently.

4.3.2 Synchronization

In general, many processes could be executing inside an
object simultaneously. However, if they updated the same
variables, race conditions could readily occur. Traditionally,
such problems were resolved by protecting the shared vari-
ables with some form of synchronization construct. The fi-
nal example in Section 4.3.1 contains a serious race con-
dition in the object hello over the update of the variable i
in the doWork operation. Because it was easy to write pro-
grams with unwanted race conditions, we provided a way for
the programmer to state that an object’s variables would be
protected inside a monitor; the externally visible operations
on that object would then become the monitor entry opera-
tions.10 Thus the hello object in the example becomes:

const exampleWork←monitor object hello
var i: Integer← 0
export operation doWork[ ]

i← i + 1
stdout.PutString[i.asString || “: hello world! \n”]

end doWork
end hello

We did not spend a lot of time considering alternatives to the
monitor. Innovation in concurrency control was not a goal;
we were familiar with monitors, they were known to be ade-
quate, and they were widely taught and understood (although
some of Black’s prior work [1] indicated that they were not
as well understood as we had thought!) We adopted Hoare
semantics [49] for monitors, including the facilities for sig-
naling and waiting on so-called condition variables. How-
ever, condition variables themselves posed a bit of a prob-
lem. In Hoare’s original design, condition variables could
be declared only inside a monitor, and consequently had a
scope that was limited to the enclosing monitor. It was im-
possible to export a reference to a condition variable, and it
made no sense to wait on a condition variable in one moni-
tor and signal it in another. So conditions seemed to be much
less general than objects, which were always known by ref-
erence and which could be passed around freely.

We initially followed Hoare’s approach and defined a spe-
cial system object, Condition, that returned a unique condi-
tion variable when its create operation was invoked. How-
ever, in line with our minimality goal (Section 2), we really
wanted to avoid introducing any kind of special variable into
Emerald. We realized that condition variables were not really
variables at all in the conventional sense: they did not refer
to values. The purpose of a condition variable was merely to

10 We initially allowed any object to contain a monitored section. We later
decided to instead make a whole object monitored; this simplified both the
language and the compiler. The effect of an internal monitor could still
be obtained with a nested object. For the sake of consistency, all of the
examples in this paper use the current (whole object as monitor) syntax.

serve as a label for the logical condition for which a process
might need to wait. Consequently, we realized that any kind
of unique label would do. To avoid creating another concept,
that of labels, we decided to use an arbitrary object as a label;
after all, every object had a unique identity. Thus, in signal
and wait statements, we allowed any object to be used to
label the condition.

However, this simplification gave rise to another problem.
If condition variables were not “special”, how were we to
enforce the restriction that a particular condition could be
used within only a single monitor? Although this restriction
would naturally follow from the practice of declaring the
condition object locally within the monitor, this practice did
not amount to a guarantee. Because condition objects were
now just general-purpose objects, they could be stored in-
side other objects, passed as arguments, and so on: it would
be impossible to limit their scope statically. We therefore de-
cided to enforced the “single monitor” restriction dynami-
cally. The implementation of condition variables created the
structure that implemented the condition the first time that
either signal or wait was applied to an object, and associ-
ated the condition structure with the enclosing monitor at
that time. Subsequent applications of signal or wait checked
that their condition argument had been associated with the
same monitor. Because signal and wait were language state-
ments, not operation invocations, it was trivial to ensure that
they appeared only inside a monitor.

One additional advantage of using the identity of the object
and not its representation was that this avoided any compli-
cations concerning distribution: nonresident objects still had
resident object descriptors, so signal and wait never needed
to access nonlocal data structures.

To help programmers express their intent, we retained the
special system object Condition. A Condition object was
an empty object without operations: Conditions were never
invoked, but were merely used for their unique identity in
signal and wait statements. In this way, we introduced the
concept of a first-class label without making the language
larger: labels were simply objects.

The code in Figure 8 shows two processes keeping in step
with one another by alternating their execution. Each process
executes an operation 10 times. They synchronize through a
monitor, so that if one gets ahead of the other, it will have to
wait its turn. The Condition object c represents the condition
“it’s my turn now”; the operations Hi and Ho wait on and
signal c, but c is never invoked.

Monitors did not present any significant challenge related
to mobility. The implementation structure for each monitor,
including the monitor lock and any conditions, was packed
up and moved along with its enclosing object. Processes
that were waiting for entry into the monitor, either because
they had invoked a monitored operation or because they
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const initialObject← object initialObject
const limit← 10

const newobj←monitor object innerObject
var flip : Boolean← true % true => print hi next
const c : Condition← Condition.create

export operation Hi
if ! flip then

wait c
end if
stdout.PutString[“Hi\n”]
flip← false
signal c

end hi
export operation Ho

if flip then
wait c

end if
stdout.PutString[“Ho\n”]
flip← true
signal c

end ho
initially

stdout.PutString[“Starting Hi Ho program\n”]
end initially

end innerObject

const hoer← object hoer
process

var i : Integer← 0
loop

exit when i = limit
newobj.Hi
i← i + 1

end loop
end process

end hoer

process
var i : Integer← 0
loop

exit when i = limit
newobj.Ho
i← i + 1

end loop
end process

end initialObject

Figure 8: One of the processes in the object hoer invokes the
Hi operation on newobj 10 times; the other invokes Ho. Because
these operations execute inside a monitored object, they operate in
mutual exclusion and the output is an alternating stream of Hi and
Ho messages.

were waiting on a condition, were moved just like any other
process that was executing (or waiting) within an object.

4.4 Initially

In many languages, initializing variables and data structures
was a bothersome task. In Emerald, the problem was further

compounded by concurrency: once created, a process ran in
parallel with its creator. Consequently, race conditions could
occur when creating a new object. For example, if a process
P created a new object A, and during its creation A caused
another process Q to be created, then Q might “outrun” P
and try to invoke the new object A before P had finished
initializing A. An object did not even need to create another
process for a race condition to occur: if a new object A
registered itself in a directory so that others could find it,
then an aggressive process that noticed A in the directory
might try to invoke A before A had finished its initialization.
The same problem exists today in Java.

We solved this problem by locking an object until its ini-
tially section had completed. This enabled the body of the
initially to use other objects freely, but a cycle would result
in deadlock and would thus be easy to detect.

4.5 Finalization

Some object-based languages allowed the programmer to
define so-called finalizers, also known as destructors. The
idea was that just before an object was destroyed, its finalizer
would be given a chance to “clean up”, for example, to
close open files or to release allocated data structures. In
our minds, objects lived forever, so a finalizer did not make
sense. The garbage collector could recycle objects that were
no longer of any use — which meant that they were not
accessible from a basic root or by an executing process. We
did consider introducing a finalizer that would be invoked
in this situation, but once something was executing inside
the object, it would no longer be a candidate for garbage
collection. So finalizers would have violated an important
monotonicity property: once an object became garbage, it
would stay garbage.

4.6 Compiler-Kernel Integration

The Emerald compiler and run-time kernel were very tightly
integrated (see Section 3). This was essential for accom-
plishing our performance goal. Tight integration allowed the
compiler several forms of flexibility: it could select between
the three object implementations (global, local, and direct,
described in Section 4.1.4) for every object reference; it
could use the general purpose registers to hold whatever data
it liked; and it understood the format of kernel-maintained
data structures and could inspect them directly, rather than
calling a kernel primitive to interpret them.

The compiler was responsible for informing the kernel about
its representation choices, and because the kernel could take
control at (almost) any point in the execution and might
need to marshal object data, the run-time stack, and even
the processor registers, the compiler had to provide descrip-
tions of every accessible data area at all times. These de-
scriptions, called templates, described the contents of an area
of memory. They informed the run-time system where im-
mediate data (direct objects), object pointers (local object
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references), and object descriptor references (remote object
references) were stored. A particular template described ei-
ther an object’s data fields or the contents of the processor
registers and stack for a single activation record. Because
the stack contents varied during the lifetime of an activa-
tion record we considered dynamic templates that would be
a function of the program counter, but we avoided this com-
plexity by ensuring that the variable part of the stack al-
ways contained full Emerald variable references, including
AbCon pointers. The same templates provided layout infor-
mation for the garbage collector, the debugger and, not the
least, the object serializer. The object serializer was capable
of marshaling any object, including those containing pro-
cesses and active invocations, using the compiler-generated
templates. This meant that, unlike other RPC-like systems
(e.g., Birrell and Nelsons’ RPC [14]) there was no need for
the programmer to be involved in serializing objects. Com-
pletely automatic serialization was also necessary because
we did not give programmers access to low-level represen-
tations.

Fast Path and Object Faulting Allowing compiled code
to inspect kernel data structures was key to making local in-
vocations of global objects as fast as procedure calls in C.
The implementation of an invocation followed either a “fast
path” or a “slow path”. The fast-path invocation code se-
quence generated by the compiler checked a frozen bit in the
object descriptor. If the object was not frozen, then the fast
path code was free to construct the new activation record
and jump to the appropriate method code. However, if the
object was frozen, then the compiler-generated code took
the slow path by calling into the kernel to perform the in-
vocation. There were a large number of situations in which
an object was frozen: it might have been still under construc-
tion, it might not have been resident on the machine, it might
have failed, it might have been been in the process of being
moved, or it might need to be scanned by the garbage col-
lector. The compiler-generated invocation sequence needed
to identify whether or not it could use the fast path: all of
the slow paths started with a call into the kernel that then
ascertained which of the various special cases applied. We
called this mechanism object faulting because it was similar
to page faulting on writes to read-only pages. Even without
hardware support the object-faulting mechanism was quite
efficient and was crucial for the implementation of the paral-
lel, on-the-fly, faulting garbage collector (seen Section 5.3).

4.7 Mobility

Although we could not know it at the time, the major ad-
vance of Emerald over most of its successors was that Emer-
ald objects were mobile. Given our experience with Eden,
mobile objects were the obvious way of meeting our goal of
explicit support for object location.

Although operation invocation was location independent in
Emerald, it was never a goal that objects should be location

independent. Indeed, we recognized that some objects, par-
ticularly those that needed to exploit hardware, would need
to be placed on particular machines. We also thought that
automating the placement of objects in a distributed system
was in general too hard; instead we felt that it was the re-
sponsibility of the application programmer to place objects
appropriately, given his or her knowledge of the applica-
tion domain. We therefore gave Emerald a small number of
location-dependent primitives, extending what we had done
in Eden.

4.7.1 Location Primitives

Location was expressed using Node objects, each of which
was an abstraction of a physical machine. For example, if
Y were a node object, the statement fix X at Y locked the
object X at location Y . However, Y was not restricted to
be a Node; any object could be used as a location. So,
if X was a mail message and Y a mail box, fix X at Y
was still valid, and meant that X should be locked at the
current location of Y . Andrew had first thought of the idea of
using arbitrary objects to represent locations when designing
Eden’s location-dependent operations; the idea had worked
well, so we adopted it for Emerald.

Emerald had five location-dependent operations and two
special parameter passing modes that influenced location.
The location dependent operations were as follows.

• locate an object; the answer was a Node object that in-
dicated where the target resided. There was no guarantee
that the object might not move immediately afterwards.
• move an object to another location.
• fix an object at a particular node; this might have in-

volved moving it there first. An attempt to fix an object
would fail (visibly) if, for example, the target object were
already fixed somewhere else. An isfixed predicate was
also provided.
• unfix an object: make it movable again after a fix.
• refix an object, that is, atomically unfix and fix an object

at a new place.

The move . . . to primitive was intended to be used for en-
hancing performance by colocating objects, and thus reduc-
ing the number of remote invocations between them. In con-
trast, fix was intended for applications where the location
of an object was part of the application semantics. For this
reason, we gave move weak semantics: a move was treated
as a performance hint. The kernel was not obliged to per-
form the move if a problem was encountered with it; if,
for example, the destination node were unavailable, move
would do nothing silently. Moves were also queued, so that
multiple move requests following one another would usu-
ally be batched, which in many cases gave us a huge (order
of magnitude) performance improvement. Even if the move
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succeeded, there was no guarantee that the object concerned
might not immediately move somewhere else.

The fix, unfix, and refix primitives were designed for use
when location was part of the application semantics, as when
trying to achieve high availability by positioning multiple
replicas on different machines, or when implementing a pro-
gram that performed load sharing (an Emerald load sharing
program was written later [68]).

We therefore gave fix much stronger semantics and imple-
mented fix transactionaly, so that after a successful fix the
programmer could be sure that the object concerned was in-
deed at the specified location. An attempt to move a fixed
object would fail, to avoid potential confusion as to whether
move or fix had priority.

4.7.2 Moving Parameter Objects

As early as the Getting to Oz memo of April 1984 [69], we
had decided that call by object reference was the only param-
eter passing semantics that made sense for mutable objects;
this was the same semantics used by CLU and Smalltalk.
However, we were also aware that call by reference could
cause a storm of remote invocations, and for this reason in-
vented two special parameter-passing modes that we called
call by move and call by visit. The memo continues: “a new
parameter passing mechanism we’ve considered is call by
move, in which the invoked operation explicitly indicates
that the parameter object should be moved to the location
of the invoked object.” We saw call by move as giving us the
efficiency of call by value with the semantic simplicity of
consistently using call by reference. However, call by move
was not always a benefit; although it co-located a parameter
with the target object, it would cause any invocations from
the call’s initiator to the parameter object to become remote,
which could drastically reduce performance. The cost of the
call would also be increased, albeit for smaller objects (less
than 1 000 bytes) the cost was about 3.5% for call by move
and 7% for call by visit [58, p. 131].

The Emerald compiler decided to move some objects on its
own authority. For example, small immutable objects were
always moved, because in this case the cost was negligible.
In general, however, application-specific knowledge was re-
quired to decide if it was a good idea to move an object,
and Emerald provided move and visit keywords that the pro-
grammer used to communicate to the compiler that a param-
eter should be moved along with the invocation. The use of
these keywords affected locatics but not semantics: the pa-
rameter was passed by reference, as was any other parame-
ter, but at the time of the call it was relocated to the destina-
tion node. The difference between move and visit was that,
after the invocation had completed, a call-by-visit parame-
ter was moved back to the source node when the invocation
returned, whereas a call-by-move parameter was left at the
destination.

Call by move was both a convenience and a performance
optimization. Without call by move, it would still have been
possible to request the move (using the move. . . to primi-
tive), but that would have required the programmer to write
more code and would not have allowed the packaging of pa-
rameter objects in the same network message as the invoca-
tion. There was also a return by move for result parameters.

4.7.3 Implementation

Whereas Eden objects had been implemented as whole ad-
dress spaces, Emerald objects were data structures inside an
address space, and so most of the implementation techniques
that we needed had to be invented from scratch. A guiding
principle was not to do anything that sped up mobility at the
expense of slowing down local operations: the costs of mo-
bility should rest on the applications that used it.

Moving the data structure representing an object was not
conceptually difficult: we just copied it into a message and
sent it to the destination machine. However, all of the ref-
erences to objects in that representation were local pointers
to object descriptors, and had to be translated to new point-
ers at the destination. To make this possible the kernel had
to be able to distinguish object references from direct ob-
jects, which was achieved by having the compiler allocate
all of the direct objects together, and putting a template in
the code object that specifies how many direct objects and
how many object references were in the object data area. A
table that translated object references to OIDs was appended
to the representation of the object, and the kernel at the des-
tination used this translation table, in combination with its
own object table, to overwrite the now-invalid object refer-
ences with valid pointers to local object descriptors.

Emerald objects contained processes as well as data; this
included their own processes and processes originating in
other objects whose thread of control passed through the ob-
ject. Whereas each object was on a single machine, Emerald
processes could span machines. This could occur either be-
cause of a remote invocation, or because an object moved
while a process was executing one of its operations. We re-
alized that if we treated the execution stack of a process as
a linked list of activation records, and each activation record
as an object referenced by a location-independent object ref-
erence, then everything would “just work”: processes return-
ing from the last operation on one machine would follow a
remote object reference back to the previous machine.

Of course, in reality things were not quite so simple. Each
activation record was not a separate object; instead, we allo-
cated stack segments large enough to accommodate many
activation records (the standard size was 600 bytes), and
linked in a new segment only when an existing one filled
up. This meant that when an object moved, we might have
to split a stack segment into three pieces and then move the
middle one. Also, stack segments were more complicated
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that ordinary object data areas, for example, because they
contained saved registers, and because the data stored in the
activation record was constantly being changed by the run-
ning process.

An alternative to moving activation records with the objects
to which they referred would have been to leave them in
place until the executing process returned to them. We chose
not to do this because it would have set up residual remote
dependencies: if the machine hosting the activation record
was unavailable, the executing process would be “stuck”.
Although this might sound like an unlikely scenario, we
thought that it would actually be quite common to move all
the objects off of a machine so that it could be taken down
for maintenance. If, in spite of moving all of the objects, the
activation records were left behind, the computation would
still be dependent on the machine that was down.

Finding out which activation records to move when an ob-
ject migrates is a little bit tricky. Although each activation
record has a context pointer linking it to an object, the object
does not normally have a pointer back in the other direc-
tion. We considered adding one, linking a list of activation
records from each object, but that would have almost dou-
bled the cost of operation invocation. However, searching
through every activation record whenever an object moved
would have been prohibitively expensive. The compromise
we adopted was to link objects to their activation records
only when there was a context switch from one process to
another. After all, it was only during a context switch that an
object could move; in between two context switches many
thousands of activation records would have been created and
destroyed without any overhead.

We used a lazy technique to ascertain what data was on the
current stack when a process was moved. This technique
added no overhead to normal execution, placing it all on the
move. The code object contained a static template that de-
scribed the format of the current activation record for any
given code address. As the name implies, static templates
could be generated at compile time. We originally thought
we would need a different template for each point in the code
that changed the content of the stack, leading to a large num-
ber of templates. To avoid this we devised what we called dy-
namic templates, which described the change in the contents
of the stack. However, Norm examined the problem care-
fully and found out that most temporaries pushed onto the
stack could just as well be stored into temporary variables
preallocated on the stack; because these variables could be
reused throughout an operation, this caused no change to the
stack layout and thus no change to the template. Moreover,
there was no real storage cost: the stack needed to accom-
modate only the maximum number of temporaries simulta-
neously in use at any point in the operation.

Any other temporaries that were pushed onto the stack were
full object references that included a pointer to the AbCon,

and so were self-describing. Thus, template information was
not needed for these variables, and so dynamic templates
were unnecessary. One static template, laid down by the
compiler, was sufficient.

4.8 Failures

Emerald did not include a general-purpose exception han-
dling mechanism. This was largely because Andrew was op-
posed to such mechanisms, and also because designing a
good one would have distracted us from our goals. Because
of Andrew’s thesis research [20], we were aware of the dis-
tinction between exceptions — special return values explic-
itly constructed by the program in known situations — and
failures — which occurred when programs went wrong.

An Emerald begin . . . end block could be suffixed with a
failure handler that specified what to do if one of the state-
ments in the block failed, e.g., by asserting a false predicate,
dividing by zero, or indexing a vector outside of its bounds.
We did not regard a failure as a control structure for deliber-
ate use, but as a bug that should eventually be fixed, and in
the meantime survived. This meant that if there were some
question whether or not an index was within the bounds of
a vector, we expected the programmer to test the index be-
fore using it, rather than to have the indexing operation fail
and then “handle” the failure. For this reason, Emerald did
not include a mechanism for distinguishing between differ-
ent kinds of failure.

If a failure occurred and there was no failure handler on
any block that (lexically) contained the failing statement,
the failure was propagated back along the call chain until
a failure handler was found. Along the way, each object
on the call chain was marked failed; this meant that any
future attempt to invoke that object would fail. The language
also provided a returnandfail statement so that an operation
called with invalid parameters could cause its caller to fail
without the invoked object itself failing.

4.9 Availability

As noted in Section 2, it was an explicit goal of Emerald
to accommodate machine and network failures. At a given
time, each mutable Emerald object was located on exactly
one machine. Thus, if a machine crashed, the objects on
it would become unavailable, and it would be temporarily
impossible for another object to invoke them. We saw un-
availability as a common and expected event, and felt that
distributed programs had to deal with it, so we provided a
special language mechanism to handle unavailability.

Our view was that unavailability was quite different from
failure. The availability of an object was not like the prop-
erty of an index being within bounds: programmers could
not test for availability before making each invocation, be-
cause availability was a transient property of the environ-
ment rather than a stable property of the program state.
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Emerald allowed programmers to attach an unavailable han-
dler to any block. This handler specified what to do when,
due to machine crashes or communication failures, an in-
vocation could not be completed or an object could not be
found. For example, if an object tried to invoke a name server
and that name server was unavailable, it could try a second
name server:

begin
homeDir← nameServer1.lookup[homeDirectoryName]

end
when unavailable

homeDir← nameServer2.lookup[homeDirectoryName]
end unavailable

An unhandled unavailable event was treated as a failure.
So, if nameServer2 were unavailable, the invocation of its
lookup operation would fail and the object containing the
above code would also fail.

4.10 Kernel Structure and Implementation

As mentioned in Section 1.5, our use of the term kernel fol-
lowed the tradition of Concurrent Pascal and Eden. In all
these systems the term meant the run-time support software
that was responsible for loading programs, managing stor-
age, performing I/O, creating and administering processes,
and performing remote invocations. The Concurrent Pascal
kernel actually ran on a bare machine. The Eden kernel was
a UNIX process, and implemented each Eden object as an-
other UNIX process; this led to excessive storage consump-
tion (minimum size of an object was 300 kBytes) and exe-
cution time (invocations between Eden objects on the same
machine took on the order of 100 ms). We wanted substan-
tially less overhead both in storage and execution time, so
we decided to implement the kernel in a single address space
as a single UNIX process within which all activity remained.
This saved us from expensive UNIX process boundary cross-
ings and allowed us to make object invocations almost as
fast as procedure calls in C. We handled our own storage al-
location, so we were in complete control of storage layout;
this let us implement mobility and prepared the system for
garbage collection.

The kernel was written in C, which we considered to be an
advanced assembler language: it allows detailed and efficient
access to data structures including the execution stacks and
let us build an invocation mechanism optimized for perfor-
mance. As mentioned in Section 3, we wrote stylized C code
designed to generate assembly language programs that were
as efficient as hand-coded assembler, but with the advantage
that portability was subtantially better. Portability was a con-
cern to us. One of the reasons that Eden had not seen any
use outside the University of Washington was that it was not
portable: Eden required a modified version of the 4.1 BSD
UNIX kernel and included much assembler code. We wanted
Emerald to see wider use, so we strove to minimize depen-
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Figure 9: Emerald object layouts from Eric’s thesis [58]. X is the
two-level structure used for global objects, Y is the one-level struc-
ture used for local objects, and Z shows a direct object.

dence on assembly code and programmed using as generic a
subset of the UNIX API as possible.

4.10.1 Object Layout and Object IDs

In the language, each object could potentially be accessed
from a remote machine. So, in principle, every object re-
quired a globally unique object identifier, known as an OID.
Because Emerald was developed on a local area network, we
initially implemented OIDs as 8-bit machine numbers (we
used the bottom 8 bits of the machine’s IP address) concate-
nated with 24-bit sequence numbers. In a subsequent wide-
area network version of Emerald, the OID was expanded to
be the full-32 bit IP address and a 32-bit sequence num-
ber [80]. To avoid wasting storage and OID space on objects
that would never be referenced remotely, we did not actually
allocate an OID until a reference to the object was exported
across the network.

We expanded the use of OIDs to other kernel data structures,
which made those structures remotely addressable using the
same mechanism as for objects. For example, the structure
containing the code for an object was given an OID by the
compiler (see Section 4.10.4). For this reason, in this section
on kernel implementation we use the term object to mean the
representation of either a real Emerald object or an object-
like kernel data structure.

Figure 9 shows the layout of kernel data. There were
two representations for non-primitive objects: a two-level
scheme (X) for global objects and a one-level scheme (Y)
for local objects. The first word of every kernel data area
had a standard format: a tag that identified the data area and a
number of tag bits, including the frozen bit and an indication
of the representation scheme. The two-level storage scheme
represented an object by the local address of an Object De-
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scriptor. The Object Descriptor indicated whether or not the
object was locally resident. If it was, the local address of the
Object Data Area was stored in the Object Descriptor. If the
object was not resident, the Object Descriptor contained the
OID for the object and a hint as to the current location of the
object. In the one-level representation, the Object Descriptor
and Object Data Area were merged together; we did this to
promote efficiency in access, allocation and storage space,
but only for objects that could never be accessed remotely.

Each OID was entered into a hashed object table that
mapped OIDs to Object Descriptors. This meant that an
OID arriving over the network from another machine could
be mapped to the corresponding Object Descriptor, if one
already existed. This made it easy to ensure that a given
object had no more than one Object Descriptor on each ma-
chine. For mutable objects, only one of the Object Descrip-
tors in the whole Emerald system would normally reference
an Object Data area. Moving an object from one machine
to another therefore meant copying the Data Area from one
machine to the other, and then changing a single address
in the Object Descriptor on the source and destination ma-
chines. While the object was being moved, it would have
a data area on both machines, so the object was flagged as
frozen to prevent the object’s operations from modifying the
data. Immutable objects could be replicated; they were rep-
resented by an Object Descriptor and an Object Data Area
on each machine where there was a reference to the object.

4.10.2 Kernel Concurrency: Task Management

The Emerald kernel needed to keep track of multiple con-
current activities, for example, an ongoing search for an ob-
ject, a remote invocation, and the loading of some code over
the network. At the time, good thread-management libraries
were not available, and instead of writing our own thread
package we decided to use event-driven programming, an
idea inspired by the MiK kernel [93]. We built a single-
threaded kernel that serviced a ready queue of kernel tasks,
which we made sure were atomic. These tasks were gen-
erated from many sources, for example, the arrival of a in-
vocation request message, a remote code load, or a bootup
message from another Emerald kernel. Many events arrived
in the form of a UNIX signal. For these, the signal handlers
merely set a signal-has-occurred bit; they were not allowed
to touch any other kernel data structures. To make sure that
signals were not dropped, kernel tasks were required to be
short and not to perform any blocking operation. If a task
needed to wait, it had to do so by generating a continuation
task that would run when the appropriate event arrived, and
then terminating itself. Synchronization around the signal-
has-occurred bit was complicated and took a lot of low-level
hacking; the details can be found in a technical report [53].

Each waiting kernel task was potentially linked into a de-
pendency graph: if a task B was waiting for another task
A to complete, B would be linked from task A. When A

completed, it would put all tasks waiting for it onto the
ready queue, unless they were also waiting for another un-
completed task. For example, the arrival of a moving object
would generate an object install task, but if the code for that
object were not already resident, a code load task would be
generated to find and load the code. The object install would
be dependent on the code load. When the code load com-
pleted, the object install’s dependency on the code load task
would be removed and, if the install task had no more de-
pendencies, it would be put on the ready queue.

4.10.3 Choice of Networking Protocols

Eden was built on a message module that used datagrams
and did not provide reliability. For Emerald, in contrast,
Eric modfied the Eden Message Module to provide reliabil-
ity by using a sliding window protocol taken from Tanen-
baum’s first Computer Networks book [101]. (In the process
he found an error in the protocol.) The importance of a truly
fault-tolerant communication protocol had become apparent
to Eric during a demo of Eden, when an object on one ma-
chine had reported that another object was inaccessible. This
was despite the fact that it was obviously alive because it
was displaying output on another screen, and was observed
as alive by an object on a third machine. After this demo Eric
spent a lot of time researching fault-tolerance and recovery
and worked hard to ensure that the low-level protocols would
be quite robust.

We considered using TCP instead of UDP, but the version of
UNIX we were using allowed only a very limited number of
open connections, both because UNIX had a low limit on the
number of open file descriptors and because TCP connec-
tions used a significant amount of buffer space. This meant
that full machine connectivity would require us to open and
close TCP connections frequently, leading to excessive over-
head and high latency for remote invocation. We also wanted
to have full information about when nodes failed to respond
to messages, so that we could declare them dead according to
our own policy. In Eden, we had noticed that nodes could be
considered up even if they had died some time previously;
even worse, nodes could be considered dead even though
they were up. We realized that no failure detector could be
completely reliable, but we felt that because we knew more
about the Emerald system than did the generic implementa-
tion of TCP in the UNIX kernel, we could do a better job.

Eric’s implementation of reliability on top of UDP strove
to reduce the number of network messages to the absolute
minimum. We used just two Ethernet messages for a remote
invocation: the acknowledgment message, which was neces-
sary for reliability, was piggybacked on the next interaction.
Thus, a series 100 remote invocations to the same destina-
tion would require 201 Ethernet packets: 100 invoke-request
packets, 100 invoke-return packets, and, after about 1 sec-
ond, a single acknowledgment packet — the remaning 199
ACKs would be piggybacked onto the other packets.
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4.10.4 OIDs for Compiled Entities

The compiler generated a file for each object constructor and
each type. For the purpose of loading and linking, the com-
piler assigned a unique OID to each file, and any reference
from one file to another used the OID. The compiler had its
own pseudo-machine number, so in effect it had control over
its own OID space, which was disjoint from the space of
“real” objects.

Because types were objects, they needed to have OIDs; be-
cause types were immutable, it was convenient to use the
same OID across multiple compilations of the same type.
(Recall that Emerald types contain only operation signa-
tures, and not executable code.) Two types were the same
even if the Emerald sources that defined them were different
in insignificant ways; for example, if the order of operations
was different in two versions of a type, or if they used differ-
ent names for themselves or their component types. We also
gave OID to Strings used as operation names; Strings were
also immutable objects. The purpose of this was to speed-
up the comparison of operation names when deciding if one
type conformed to another.

The initial implementation of type OIDs and and String iden-
tifiers was a file on the local network file system, which the
compiler treated as a global database, and in which it stored
a canonical form of the type definition. Of course, we were
well-aware that this implementation would not scale to a
global Emerald network, but at the time we had only five
machines, and it worked quite well. Our longer-term plans
involved using fingerprints of the type definitions, a tech-
nique that we had recently heard about from colleagues at
DEC SRC, where it had been used in the Modula-2+ sys-
tem. Fingerprinting was originally invented by Michael Ra-
bin [88]; the techniques that made it practical were devel-
oped by Andrei Broder at SRC in the mid 1980s, although
they were not published until much later [31]. Broder’s Fin-
gerprinting algorithm offered strong probabilistic guarantees
that distinct strings would not have the same fingerprint. We
never actually got around to using fingerprints; when Norm
used Emerald in distributed systems classes, he instead im-
plemented Type to OID and String to uid servers as Emerald
applications.

4.10.5 Process Implementation

Processes were implemented quite conventionally using one
stack for each process and one activation record for each
invocation. However, our stacks were segmented: a stack
could consist of multiple stack segments, each of which con-
tained some number of activation records. When returning
off the “bottom” of a stack segment, the run-time system
would check to see if the process had more stack segments,
in which case the process would continue execution using
the top activation record of the next segment.

There were two reasons for segmenting a stack. First, seg-
mentation allowed us to allocate a small stack and then ex-
pand it dynamically, thus saving space and letting us support
a substantial number of concurrent processes. Second, seg-
mentation allowed the process to make remote invocations.
The links between stack segments were object references,
and each link could thus could point to a segment on another
machine. When a process performed a remote invocation, it
simply continued execution on the remote machine using a
new stack segment containing the activation record for the
invoked operation. When the operation returned off the bot-
tom of the stack segment, the invocation results were pack-
aged up and sent back to the originating stack segment.

4.10.6 Dynamic Code Loading

Because Emerald objects shared a single address space, in-
troducing a new kind of object meant loading new code into
the address space. The loader had to perform “linking”: ref-
erences to abstract or concrete types in the loaded code had
to be replaced by references to the Object Descriptor of the
appropriate object.

We adopted the principle that all of the code files needed
for an object to execute had to be loaded before execution
was allowed within the object. This was an example of
a general philosophy of minimizing remote dependencies:
as much as possible we wanted to insulate objects from
failures of remote machines. By agressively “hoarding” all
the code files required by an object we ensured that the
object, once it started execution, would never stall waiting
for code to load, or fail because it needed code located
on a machine that had become unavailable. Loading all of
the code before execution started also meant that there was
no need for dynamic code-loaded checks that would have
introduced overhead into all programs, even those that didn’t
use distribution. This would be in violation of our no-use,
no-cost principle mentioned in Section 2.

5. Applications and Influences of Emerald
Immediately after the implementation of Emerald was com-
pleted, indeed even before it was completed, the Emerald
team dispersed. In January 1987, Norm graduated and took
up a faculty position the University of Arizona; Eric went
back to Denmark in February 1987 and taught at the Univer-
sity of Copenhagen while finishing his thesis. Andrew joined
the distributed systems group of Digital Equipment Corpo-
ration in December 1986. Only Hank grew roots at Wash-
ington, where he is now department chair. Nevertheless, in
addition to the initial batch of research papers, Emerald has
lived on in several forms. It has been used in teaching and
graduate student education and as a basis for subsequent re-
search. Emerald also influenced the design of successor sys-
tems. In this section we summarize what we have been able
to discover about the use and influences of Emerald after the
initial implementation effort.
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5.1 Applications of Emerald

Emerald has been used in teaching and research at various
universities; in most cases Emerald was carried to other sites
by those who had become familiar with the language at
Washington.

Norm has used Emerald at the University of Arizona and at
the University of British Columbia (UBC) in teaching grad-
uate classes on distributed operating systems. Three M.Sc.
students at UBC did their theses on aspects of Emerald
including generational garbage collection [48], porting the
language to the embedded processor on a network inter-
face card [86], and improving reliability by grouping ob-
jects [45].

Eric has used Emerald at the University of Copenhagen
for teaching at both the graduate and undergraduate lev-
els. From 1994–1997, Emerald was the first object-based
language taught to incoming students (their first language
being ML). During these four years approximately 1000
students used Emerald for about three months, including a
three-week-long graded assignment where they were to de-
velop and write a large (1000–2000 lines of Emerald) pro-
gram, such as a ray tracer. They did not use any of the dis-
tribution or concurrency facilities, but focused on the pure
object-based part of the language. During the 1990s Emerald
was also used to teach distribution in an introductory grad-
uate distributed systems course at DIKU.11 Students were
required to write small (200–300 lines of Emerald) pro-
grams to implement a distributed algorithm such as elec-
tion or time synchronization. About fourteen Master’s stu-
dents have to varying degrees based their Master’s theses on
Emerald [5, 54, 55, 56, 63, 65, 68, 78, 80]. In addition, two
Ph.D. students conducted research based on Emerald: Niels
Juul worked on distributed garbage collection [60] and Niels
Larsen worked on transactions [66].

Andrew used Emerald in research while at Digital Equip-
ment Corporation. It was used to build one of the first
distributed object-oriented applications to run on Digital’s
internal engineering network, a distributed object-oriented
mail system implemented by a summer student in 1987.
This student (Rajendra Raj) later went on to develop a pro-
gramming environment for Emerald [89], called Jade, that
was the subject of his doctoral dissertation [91].

Other University of Washington students took Emerald with
them to other parts of the globe. Ewan Tempero used it in
research at the Victoria University of Wellington. Results
include two theses: Neal Glew’s B. Sc. Honours thesis [47]
and Simon Pohlen’s M. Sc. Thesis [87].

Emerald was also used in research at the University of Min-
ing and Metallurgy (UMM) in Kracow, Poland. The research
focused on multicast group communication, and was ini-

11 DIKU is the department of Computer Science at the University of Copen-
hagen.

tiated by Przemek Pardyak and Eric Jul during a visit by
Przemek to Copenhagen in the early 1990s. Przemek subse-
quently worked with Krzysztof Zielinski at UMM, resulting
in two papers [82, 83] and a Master’s thesis [81]. The thesis
was awarded third prize in the annual Polish competition for
best engineering thesis. Along the way, they also published
an overview of Emerald in Polish in a book on distributed
systems; this article also appeared in the main Polish CS
magazine Informatyka [84].

5.2 Influences of Emerald

Emerald has influenced succeeding languages designs in two
main areas: support for distributed objects and advanced
type systems. Because the goal of Emerald was to innovate
with distributed objects, the language’s influence on distri-
bution is unsurprising. (What is perhaps surprising is that
in the more than twenty years since we implemented Emer-
ald, no other language has adopted mobile objects with sim-
ilar thoroughness.) In contrast, Emerald’s influence on type
systems was neither intended nor expected. At the time we
saw our innovation here as minor: we were going to do only
what was required to keep the language as small as possi-
ble. The idea of conformity has been quite widely adopted.
In an interesting example of feedback, both abstract types
(here called protocols) and conformity feature heavily in the
ANSI Smalltalk standard. The 1997 final draft says

The standard uses a particular technique for specify-
ing the external behavior of objects. This technique
is based on a protocol, or type system. The protocol-
based system is a lattice (i.e. multiply inherited) based
system of collections of fully-specified methods that
follow strict conformance rules [6, p. 6].

However, Java adopted nominal rather than structural typing
(see Section 4.2.3), and only partially separated types and
implementation: a Java interface is a type, but a Java class is
both an implementation and a type.

Several operating systems have followed Eden and Emer-
ald in providing mobile objects; notable among these is
SOS [94], which in addition allows an object to be frag-
mented across several machines. However, SOS provides
only minimal language support, so its objects and proxies
must be manipulated by explicit operating system primi-
tives. (SOS does use a compiler extension to simplify the
process of obtaining a proxy for a remote object.) One of
the early derivatives of Emerald’s object model and type
system was the Advanced Networked Systems Architecture
(ANSA) distributed computational model [106]. In its turn,
ANSA was one of the influences behind the Open Soft-
ware Foundation’s Distributed Computing Environment ini-
tiative, and perhaps more significantly, a contributor to the
ISO Basic Reference Model of Open Distributed Process-
ing ISO 10746 [46]. The architecture described in part 3 of
this standard includes a type system very strongly based on
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Emerald, extended with support for multiple terminations,
streams and signals — ideas taken from ANSA. In particu-
lar, Emerald’s type conformity rules are alive and well in
Section 7.2.4.3, and Annex A gives a set of subtyping judg-
ments including top and bottom types strikingly similar to
those used to formalize the Emerald type system [26].

Andrew Herbert, Chief Architect of the ANSA efforts, de-
scribes how the ANSA architecture was influenced by Emer-
ald.

Alongside the ANSA architecture we maintained
a number of software prototypes. The first version
of ANSAWare was called “Little DPL” and was pre-
processor based. . . A separate strand of development
was “Big DPL”, which borrowed very heavily from
Emerald. This was the foundation for the input to ISO
and also to OMG CORBA. It took the view that you
could do a complete language based on “distributed
objects”, where an object could have a number of
“interfaces” (which were named typed instances and
could be static or dynamic). Our invocation model
was that an interface defined a bunch of methods and
that each method had a bunch of “terminations”, one
of which generally was regarded as the “normal re-
turn” and the others as “exceptions”. All parameter
semantics were call by reference. Immutable objects
could of course be copied, and we had an object mi-
gration facility. Migratability and other “ilities” were
object properties and objects would generally have a
control interface through which the “ility” could be
exercised.

Big DPL was never well-enough developed and
not mainstream enough to compete with the C++
network object systems that came along around the
same time. . . Over time it shifted from a separate “toy
language” to DIMMA, yet another C++ distributed
object system, but which carried forward explicitly
the DPL type system. The final evolution was the
“FlexiNet” system written in Java, which had a hybrid
Emerald/Java object model and Java type system. . .

In summary Emerald had a lot of impact on us,
and through us on other bodies.12

Andrew Watson started working at ANSA in December
1989. At that time both the ANSA computational model and
the language that realized it (DPL) were well established.
There were several technical differences between Emerald
and DPL, principally that DPL allowed multiple interfaces
per object, that each operation in DPL could have multiple
named outcomes (with different types), and that DPL had
absolutely no primitive types built in. Watson writes:

However, leaving these differences aside, the in-
fluence of Emerald on DPL was obvious — especially

12 Andrew Herbert, personal communication.

the conformance-based type checking and type infer-
encing in the DPL language. It was this type system
that I chose to work on, and in particular the problem
of typing constructors for collections of homogeneous
and heterogeneous interfaces, and how to avoid hav-
ing every object carry around its type information at
run time via an Emerald-style “getInterface” opera-
tion. I did come up with a simple modification to DPL
that added a separate, opaque run-time type represen-
tation which would only be created when required by
the programmer — this would dramatically reduce the
need for the run-time system to create and transmit
run-time type tokens. . . [but the implementation of
this modification] was never finished.13

Emerald also had an impact on the design of the Guide
system and language at INRIA in Grenoble, France. Sacha
Krakowiak writes:

One important source of inspiration for the design of
the Guide language has been Emerald, a distributed
object-oriented language developed as a follow-on
project to Eden. The two main features of the design
of Emerald that directly influenced Guide were the
separation between types and implementations, and
the definition of type conformity (through covariant
and contravariant relations). This definition had been
proposed by Cardelli in 1984 [35], but we did not
know that work.14

Emerald’s closest descendant in the family of distributed ob-
ject systems is probably the Network Objects system de-
scribed and implemented by Birrell, Nelson, Owicki and
Wobber [12, 13]. The authors write: “We have built closely
on the ideas of Emerald [59] and SOS [94], and perhaps our
main contribution has been to select and simplify the most
essential features of these systems. An important simplifica-
tion is that our network objects are not mobile” [12, Section
2]. Instead, the Network Objects system provided what the
authors called “powerful marshaling”: the ability to send a
copy of an arbitrarily complex data structure across the net-
work. They write [13, p. 10]:

We believe it is better to provide powerful marshaling
than object mobility. The two facilities are similar, be-
cause both of them allow the programmer the option
of communicating objects by reference or by copying.
Either facility can be used to distribute data and com-
putation as needed by applications. Object mobility
offers slightly more flexibility, because the same ob-
ject can be either sent by reference or moved; while
with our system, network objects are always sent by
reference and other objects are always sent by copy-
ing. However, this extra flexibility doesn’t seem to

13 Andrew Watson, personal communication.
14 Sacha Krakowiak, personal communication.
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us to be worth the substantial increase in complexity
of mobile objects. For example, a system like Her-
mes [25], though designed for mobile objects, could
be implemented straightforwardly with our mecha-
nisms.

(As might be expected, we do not entirely agree with these
conclusions; see the discussion in Section 6.)

Emerald was also influential in the development of the dis-
tributed systems support provided by Java and Jini, although
here the influence was more indirect. Indeed, at first blush
the Java RMI mechanism seems to be the antithesis of Emer-
ald’s remote object invocation, because RMI distinguishes
between remote and local invocations. This is not acciden-
tal: Jim Waldo and colleagues at Sun Laboratories authored a
widely referenced technical report that argues that the “uni-
fied object” view espoused by Emerald is fundamentally
flawed [104]. The account here is largely based on material
supplied by Doug Lea.

Java RMI was most directly influenced by CORBA and
Modula-3’s Network Objects. In the summer of 1994, James
Gosling’s Oak language for programming smart appliances
was retargeted to the World-Wide Web and soon thereafter
renamed Java. Jim Waldo’s group were asked to look into
adding an object-oriented distributed RPC of some form. At
the same time, some people who had been in the Sun Spring
group (who were also contributors to CORBA) were look-
ing into the alternative approach of just providing Java with
a CORBA binding. Both of these approaches had their advo-
cates. Some people were excited by the “Emerald-ish” things
one could do with extensions of Waldo’s approach. Also,
Cardelli’s paper on Obliq had just appeared [37]. Obliq ob-
jects are implemented as Modula-3 network objects, and so
are remotely accessible. While Obliq objects are fixed at the
site at which they are created, distributed lexical scope al-
lows computations to roam over the network. Although the
people at Sun regarded Obliq as a thought experiment, it
clearly demonstrated the limitations of CORBA, which was
unable to express the idea of a computation moving around
the network; thus Obliq provided fuel for the argument that
Java needed a more powerful remote communication sys-
tem. Doug Lea writes: “I wanted a system that was not only
usable for classic RPC, but also for extensions of the things
that I knew to be possible in Emerald. My bottom line was
that I insisted it be possible to send a Runnable object to a re-
mote host so that it could be run in a thread.” After much de-
liberation, a committee at Sun chose Waldo’s approach, and
many of the researchers in Waldo’s group transitioned from
Sun Labs to the Java production group, and built what is now
known as Java RMI. After RMI was released, they moved on
to develop further what they had earlier been working on in
Sun Labs, which turned into Jini [7].

As it exists today, RMI supports neither Emerald-style mo-
bile objects nor Obliq-style mobile processes, and remote

invocations are not location transparent, because different
parameter-passing mechanisms can be used for local and re-
mote invocations of the same object. But many of these re-
strictions are the result not of limited vision, but of compro-
mises that had to be made to fit RMI over the Java language,
whose specification was at that time largely fixed. Emerald
was a force for a more adventurous design, and the ultimate
decision to go with RMI rather than a CORBA binding was
influenced by reading or hearing about Emerald’s capabil-
ities — these were continually brought up as the kinds of
things that a forward-looking language ought to support. Jim
Waldo writes:

The RMI system (and later the Jini system) took many
of the ideas pioneered in Emerald having to do with
moving objects around the network. We introduced
these ideas to allow us to deal with the problems
found in systems like CORBA with type truncation
(and which were dealt with in Network Objects by
doing the closest-match); the result was that passing
an object to a remote site resulted in passing [a copy
of] exactly that object, including when necessary a
copy of the code (made possible by Java bytecodes
and the security mechanisms). This was exploited to
some extent in the RMI world, and far more fully in
the Jini world, making both of those systems more
Emerald-like than we realized at the time.15

After the turn of the century, increasing use of mobile
devices lead to an interest in languages that supported
loosely connected devices. The ideas behind Emerald in-
spired Walsh’s thesis work on the Taxy Mobility system [105].
Walsh introduces Emerald-like objects into Java and dis-
cusses the idea of combining weak and strong mobility.
Similarily, the work of De Meuter takes a critical look at
strong mobility as present in Emerald and proposes alterna-
tive, weaker, mobility mechanisms [42].

5.3 Later Developments

Various research projects have built on Emerald: to complete
the implementation, to enhance the language, and to take
Emerald in new directions.

Garbage collection. We realized early on (see the minutes
from 18 March 1985) that Emerald would require a garbage
collector, but we also realized that the implementation of the
collector could be deferred until after Norm and Eric had
completed their theses. In practise, Emerald did quite well
without a collector. A prime reason was that the implemen-
tation was stack based and so only rarely would the imple-
mentation generate a temporary object and not be able to
deallocate it.

Eric’s Ph.D. dissertation [58] contains a chapter on the de-
sign of a distributed, on-the-fly, robust, and comprehensive

15 Jim Waldo, personal communication.
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garbage collector for Emerald, but there was no attempt to
implement it at that time. However, Eric did prepare the
Emerald prototype for the implementation of a distributed
collector at some time in the future, concluding that the im-
plementation effort would be worth a separate Ph.D. This is
actually what happened: Niels Christian Juul implemented
the collector for his doctorate [61, 60]. A strong point of this
on-the-fly collector was that it was possible to start the col-
lector and have it run to completion without requiring that
all machines be up at the same time. In the contemporary
demonstration of the collector, no more than 75% of the ma-
chines were up at any given time — we felt that this was a
very robust collector.

In 2001-2002, two Master’s students developed a non-
comprehensive collector that could collect smaller areas of
the distributed object graph and thus could reclaim garbage
while parts of the system was down [55].

Emerald as a general-purpose programming language.
Those of us involved in the development of Emerald nat-
urally saw it primarily as a language for distributed pro-
gramming. It took an “outsider” (Ewan Tempero) to make
us realize that Emerald was an interesting language in its
own right, even without its distribution features. This re-
alization led to a paper that described the language in this
light, emphasizing Emerald’s novel object constructors and
types [90].

The Hermes project at Digital Equipment Corporation.
Andrew started the Hermes project shortly after he moved
to Digital in December 1986. (This project is unrelated to
Rob Strom’s Nil project at IBM, which also used the name
Hermes in its later years [99].) The idea was to implement
as many of Emerald’s distributed object ideas as possible
in a conventional programming language (Modula-2+), but
also to find a way to make the implementation scale to
systems of around fifty thousand nodes, the size of Digital’s
internal DECnet-based Engineering Network at that time.
The project was a technical success [24, 25] but did not
have much influence on future products because, in spite of
the company’s early lead in networking, Digital was never
able to make the transition to shipping distributed systems
products.

Types. Norm and Andrew continued to work on types dur-
ing the period from 1986 to 1989, after both of them had
left Washington. Much of this work was unpublished, al-
though not for want of trying. The target of our publication
efforts was PoPL; at that time the PoPL community, based as
it was in traditional single-machine programming language
design, was developing ideas about the purpose of types and
how they should be discussed that were much more conser-
vative that those we had arrived at though our work in dis-
tributed systems. (To this day there is an enormous resistance
from some members of this community to even admitting
that something that might need to be checked at run time

could even be called a “type”.) The essence of our work was
captured in a widely-cited January 1991 joint Arizona/CRL
technical report [26], which had a major influence on the
ANSA architecture (see Section 5.2).

Gaggles. One of the deficiencies of Emerald’s pure object-
based approach is that not everything is most conveniently
represented as an object. In particular, in a distributed system
striving for high availability, resources must be replicated:
the collection of replicas is not itself an object. Of course,
it is possible to put the replicas inside an object, such as
a Set, but this recreates a single point of failure. Gaggles
resolve this problem: a Gaggle is a monotonically-increasing
set of replicas that can be treated as a single object with
“anycast” semantics [27]. An undergraduate student from
Harvard, Mark Immel, undertook the implementation.

Multicast invocations. As mentioned in Section 5.1, Prze-
mek Pardyak [82, 83] extended Emerald with facilities for
multicast invocation. In his system, one could make an invo-
cation of a group of objects, and either take the first answer,
or require all answers.

Wide-area Emerald. In 1992-3, two Master’s students at
DIKU implemented a Wide Area Emerald [80]. The imple-
mentation was modified to support machines on the internet
in general rather than on a LAN. They increased the size of
OIDs and had to spend a lot of time tuning the transport-
layer protocols: their initial move of an object around the
globe via seven machines took about 15–20 minutes, be-
cause the transport layer was optimized for LAN service.
Eventually, moving an object around the world took only a
few seconds.

Ports to various architectures. Between 1987 and 1994,
Emerald was ported from the original VAX architecture to
SUN 3 (Motorola 68000), SUN 4 (SPARC) [75], and Digi-
tal’s Alpha [66]. Tired of retargeting the compiler, Norm also
developed a byte-code compiler and a virtual machine, thus
allowing objects to move from one platform to another.

Eclipse plugin. In 2004, IBM funded a small project at the
University of Copenhagen to implement an Eclipse plugin
for Emerald. A student did the implementation during 2004–
2006; the source code for the plugin — and for Emerald in
general — is available at http://sourceforge.net/projects/
emeraldlanguage.

Heterogeneous Emerald. Emerald’s clear separation of
language concepts from implementation means that the se-
mantics of Emerald objects have a rigorous (if informal)
high-level description. Any implementation of an Emerald
object thus must define a translation of the language’s high-
level semantic concepts into a low level representation. This
means that given two different implementations of an Emer-
ald object for two different low level architectures, it should,
in principle, be easy to remap the representation of an Emer-
ald object on one architecture to the representation of that
same object on another architecture.
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Would this principle work out in practice? To answer that
question, between 1990 and 1991, two graduate students
(Povl Koch and Bjarne Steensgaard Madsen) worked with
Eric to develop a version of Emerald that ran on a set of
heterogeneous machines: VAX, SUN 3, and SUN SPARC.
This mainly involved remapping inter-machine communica-
tion. However, object mobility also posed significant prob-
lems because an object could contain an active Emerald pro-
cess. We introduced the concept of a bus stop, a place in
the Emerald program where mobility could occur and where
every implementation had to provide a consistent view. Bus
stops are frequent; they are present after essentially every
source-language statement. We then added so-called bridg-
ing code at each bus stop that could translate the state of
an Emerald process or object from one architecture to an-
other. The implementation was simplified because Emerald
already had the concept of stopping points where mobility
could take place.

To our knowledge, no one has since built a heterogenous
object system allowing not only objects but also executing
threads to move between architectures at almost any point
in the program with no decrease in performance after arrival
on the new architecture. That is, an Emerald process that
moves, e.g., from a VAX to a SUN 4 SPARC and back
will, when running on the SPARC, execute at the same
speed as if it had originated there, and it will also execute
at the original VAX speed after returning to a VAX. Cross-
architecture performance measurements showed that remote
invocations and object (and process) mobility took about
twice as long as in the homogeneous case, mainly due to
the large amount of work caused by checking for big-endian
to little-endian translations, and byte-swapping if necessary.
Note, however, that the programs locally always ran at full
speed unimpeeded by the facilities for heterogeneity.

Eric presented the heterogeneous Emerald work at a work-
in-progress session at SOSP in 1993, and generated signif-
icant attention. This caused Eric to contact one of the stu-
dents, who in the meantime had joined Microsoft Research.
The result was a paper presented at SOSP in 1995 [97]. At
the time, Marc Weiser was advocating the then-controversial
idea that researchers should make their code publicly avail-
able, so that anyone so motivated could verify the claimed
results. As a consequence, the Heteogeneous Emerald im-
plementation can be found on the 1995 SOSP CD.

Databases, Queries, and Transactions A bright grad-
uate student, Niels Elgaard Larsen, integrated databases
into Emerald as his Master’s thesis project [65]. He later
integrated transactions into Emerald as part of his Ph.D.
project [66].

6. Retrospective
The Emerald project never came to a formal conclusion;
it simply faded away as the members of the original team

became interested in other research. Nevertheless, time has
given us a certain perspective on the project; here we reflect
on what we did and what we might have done differently.

We are all proud of Emerald, and feel that it is one of the
most significant pieces of research we have ever undertaken.
People who have never heard of Emerald are surprised that
a language that is so old, and was implemented by so small
a team, does so much that is “modern”. If asked to describe
Emerald briefly, we sometimes say that it’s like Java, except
that it has always had generics, and that its objects are mo-
bile.

In hindsight, if we had had more experience program-
ming in Smalltalk, Emerald might have ended up more like
Smalltalk. For example, we might have had a better appre-
ciation of the power of closures, and have given Emerald a
closure syntax. Instead, we reasoned that anything one could
do with a closure one could also do with an object, not really
appreciating that the convenience of a closure syntax is es-
sential if one wants to encourage programmers to build their
own control structures.

6.1 The Problem with Location Independence

Emerald’s hallmark is that it makes distribution transpar-
ent by providing location-independent invocation. However,
there is definitely a downside to this transparency: it be-
comes easy to forget about the importance of placing one’s
objects correctly. Shortly after Eric started using Emerald in
his graduate course on distributed systems, a student showed
up at his office with an Emerald program that appeared to
hang; the student could not find any bug in the program.
Eric suggested turning on debugging and started with traces
of external activities. Streams of trace output immediately
showed up: the program was not hung but was executing
thousands of remote invocations. What had happened was
that the student had omitted an attached annotation on a
variable declaration, which meant that he was remotely ac-
cessing an array that should have been local. Thus the pro-
gram was running three to four orders of magnitude slower
than anticipated. The good news was that Emerald’s loca-
tion independent invocation semantics means that the pro-
gram was still correct; the bad news was that it ran more
than a thousand times too slowly. After adding the omitted
attached keyword the program ran perfectly!

6.2 Mobile Objects

Since we started working on Emerald, objects have become
the dominant technology for programming and for build-
ing distributed systems. However, mobile objects have not
enjoyed a similar success. Why is this so? The argument
against mobile objects goes something like this.

The simplicity of object orientation arises because objects
are good for modeling the real world. In particular, objects
enable the sharing of information and resources inside the
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computer, just as in the real world. Understanding object
identity is an important part of these sharing relationships.

Mobile objects promise to make that same simplicity avail-
able in a distributed setting: the same semantics, the same
parameter mechanisms, and so on. But this promise must
be illusory. In a distributed setting the programmer must
deal with issues of availability and reliability. So program-
mers have to replicate their objects, manage the replicas, and
worry about “one copy semantics”. Things are not so simple
any more, because the notion of object identity supported
by the programming language is no longer the same as the
application’s notion of identity. We can make things simple
only by giving up on reliability, fault tolerance, and avail-
ability — but these are the reasons that we build distributed
systems.

Once we have to manage replicas manually, mobile objects
don’t buy us very much over Birrell’s “powerful marshal-
ing” [13]: making a copy of an object at a new location. They
do buy us something, but the perception is that it is not worth
the implementation cost.

We feel that this argument misses the point, and for two rea-
sons. First, the implementation cost is not high. Eric and
Norm may be smart, but they are not that smart; if they
could figure out how to make objects mobile and efficient
in the mid-1980s, it should not be hard to reproduce their
work in the twenty-first century. Indeed, we believe that im-
plementing mobility right once is simpler than implementing
the various ad hoc mechanisms for pickling, process migra-
tion, remote code loading, and so on.

Second, we now know enough about replication for avail-
ability to design a robust mechanism like Gaggles [27] to
support replicated objects in the language. In the presence
of such a mechanism, object identity once again becomes a
simple concept: in essence, the complexity of the replication
algorithm has been moved inside the abstraction boundary
of an object. This does not make it any simpler to imple-
ment, but does permit the client of the complex replicated
abstraction to treat it like any other object.

There has also been a long-running debate [62, 74] that ques-
tions whether object identity should be a language-defined
operation at all, because it breaches encapsulation. Concep-
tually, we have a lot of sympathy for this position, but prag-
matically we know that it is important to support the op-
erations of identity comparison and hash on all objects if
we want to do efficient caching — and caching is a very im-
portant technique for building efficient distributed systems.
A compromise would seem to be in order. Andrew advo-
cated just this in 1993: equality and hashing of object iden-
tity should be fast, primitive operations that do not requiring
fetching an object’s state, but the programmer should able to
allow or disallow these operations on an object-by-object (or
perhaps class-by-class) basis [23].

6.3 Static Typing

With the benefit of hindsight, static typing may have been a
mistake: static types bought us very little in the way of effi-
ciency, and cost us a great deal of time and effort in devel-
oping the theory of bounded parameterized types. The one
place where static types do buy efficiency is with primitive
types such as integers, but this is not because of the types
themselves. The efficiency gain arises because we break our
own rule and confound implementation (of an integer as a
machine word) with interface. In other words, integers are
efficient only because we forbid the programmer to write an
alternative implementation of the integer type.

In the normal case of an object of user-defined type that is the
target of an invocation, we know that the dynamic type of the
object conforms to the static type of the identifier to which
it is bound. This guarantees that the invocation message will
be understood at run time, but it does not help us to find the
right code to execute. Finding the code must still be done
dynamically, because the implementation of the object is
generally not known until run time. Of course, in many cases
the implementation will be fixed at compile time, in which
case method lookup can be eliminated altogether. But the
presence of type information did not help us to implement
this optimization: it relies on dataflow analysis.

Emerald’s dynamic type checks rely on the compiler telling
the truth: the type of an object is encoded in it as a type when
the object is constructed, based on the information in its ob-
ject constructor. If the compiler lied, type checking might
succeed, but operation invocation still fails. We considered
certifying compilers and having them sign their objects, but
Because no one ever wrote a hostile Emerald compiler, sig-
natures were never implemented. This is one place where
Java does something simpler and more effective than Emer-
ald: Java byte codes are typed, and code arriving from an-
other compiler can be type-checked when it is loaded. This
is an idea that we might well have used in Emerald if we had
been aware of it.

6.4 Method Lookup and AbCon Vectors

AbCon vectors may be a more efficient mechanism for per-
forming dynamic lookup than method dictionaries, although,
to the best of our knowledge, the mechanisms have never
been benchmarked side by side. To compare them fairly one
must include the time taken to construct the AbCon on as-
signment. However, for many assignments the compiler is
able to determine the concrete type of the object and thus
does not need to generate an AbCon, or indeed perform
method lookup: the appropriate method can be chosen stat-
ically. For many of the remaining assignments, e.g., those
where the abstract types of the right- and left-hand sides are
the same, the extra cost involved in the assignment is merely
the copying of a reference to the AbCon. For some of the
remaining assignments, the compiler can determine the Ab-
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Con to be built; in these cases the AbCon is built at load time
and a reference to it is inserted into the code, so the overhead
is reduced to the store of a single constant. For the remaining
assignments, the asymptotic cost is reduced by caching Ab-
Cons; after a program has run for a while, all of the AbCons
that it needs will have been cached,16 but some time is still
expended in accessing the cache. In a similar way, the cost of
method lookup is normally reduced by caching recent hits.
Indeed, polymorphic inline caches [52] have proven so suc-
cessful in eliminating message lookup that its cost is widely
perceived as a non-problem.

6.5 What Made Emerald Fast?

As we discussed in the Introduction, Emerald grew out of
our experience with Eden, which had lots of good ideas but
rather disappointing performance. One of our major goals
was not just to improve on Eden’s performance, but to ac-
tually have good performance in an absolute sense (see Sec-
tion 2). Because performance is hard to retrofit, we practiced
performance-oriented design from the beginning. There was
no silver bullet: we had to get the details right all along the
line.

6.5.1 Single Address Space

A major design decision behind Emerald’s excellent perfor-
mance was placing all node-local objects and their processes
in a single address space (a UNIX process, as described in
Section 4.10), which was also shared with the Emerald ker-
nel. This meant that kernel calls were simply procedure calls
and any data structures in the object could be accessed by
the kernel simply by dereferencing a pointer.

6.5.2 Distributed Operations and Networking

The first Eden remote invocation took approximately 1 sec-
ond, during which time about 27 messages were sent (count-
ing both IPC messages and Ethernet messages). There was
considerable room for improvement: the Eden invocation
module was rewritten several times, resulting in substan-
tially fewer messages and a corresponding drop in invocation
times, which ended up at approximately 300 ms for a remote
invocation and 140 ms for a local invocation. A major les-
son from these rewrites was that performance was more or
less proportional to the number of messages sent. The best
case for node-local invocations in Eden was four IPC mes-
sages: one from the source object to the Eden kernel, one
from the Eden kernel to the target object, and two more to
obtain the result. In Emerald, putting all node-local objects
and the kernel into the same address space eliminated IPC
messages entirely. The result was that Emerald node-local
invocations were more than three orders of magnitude faster
than Eden’s, see Section 6.6.

16 We were surprised at how few AbCons even large programs needed.

6.5.3 Choosing Between Eager and Lazy Evaluation

In theory, lazy evaluation is wonderful: nothing is ever eval-
uated until it is needed, but once evaluated, it is never eval-
uated again. However, in practice there is a cost to laziness:
before a value is used, one must check to see if it is a thunk
that first needs to be evaluated. In consequence, eager eval-
uation is a win in many situations: if it is very likely that
a value will be needed, it makes sense to evaluate it early.
Moreover, if “early” can be made to mean “at compile time”,
then the cost of run-time evaluation can be eliminated en-
tirely.

Eager Evaluation. We applied the idea of aggressive eager
evaluation in several places. Using direct references rather
than OIDs was one of these. In Eden, objects were referred
to by a globally unique identifier, which meant that any oper-
ation on an object had to translate that global identifier into a
reference to some local data structure. In contrast, in Emer-
ald we translated OIDs to pointers as soon as possible, so
that, for example, a local object was represented by a direct
pointer to its data area. Code, AbCons, Types — indeed, any-
thing referenced by OID — was represented as a pointer to
either the relevant data structure or, in the case of a remote
object, to a descriptor that contained information on how to
find the data structure (see Section 4.10.1). This made lo-
cal operations faster, although it also made remote opera-
tions slower, because all direct pointers had to be translated
when they crossed from one machine to another. However,
the slowdown caused by translation was small compared to
the cost of a network operation. The principle was that users
should pay for a facility only when they used it: we did not
want to slow down local operations just to make remote op-
erations faster.

We also avoided lazy evaluation by changing the code to
make sure that expensive computations were performed only
once. Our experience with Eden had showed that many com-
putations were done repeatedly because several different
modules in the implementation needed the result of a single
computation. For example, in the early days of Eden invoca-
tion, the unique identifier of the invoked object was looked
up more than ten times! A quick performance fix was to
equip the object table lookup function with a one-item cache,
which eliminated the work of the lookup but added the over-
head of the cache check. In implementing Emerald we used
profiling techniques to discover such inefficiencies and fix
them, usually by passing on pointers to resolved data rather
than the original OID or pointer; this eliminated not only the
work of the lookup, but also the overhead of the function call
and the cache check.

The ultimate application of eagerness was to move as much
computation as possible into the compiler. For example, the
compiler did an excellent job of figuring out when it could
make an object local rather than global, thus eliminating all
the overhead associated with distribution. It also removed as
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much of the type information as it could, so if you wrote
and compiled a program that did not use distribution at all,
then all distribution overhead would be removed from the
compiled code. Consequently the program would run at a
speed comparable to that of compiled C. We found that on
the SPARC architecture, the Emerald version of a highly re-
cursive computation such as the Ackermann function actu-
ally ran faster than C, because our calling sequences were
more efficient.

Lazy Evaluation. Lazy evaluation was more efficient than
aggressive evaluation when the work that was delayed might
never need doing at all. A prime example is representing
global objects. Global objects were allocated directly by
compiled code, but most of the work of making them us-
able in a distributed environment was delayed until the first
time the object had any interaction with another node, for
example, by a reference to it being passed to another node.
At that time the object would be “baptized” by being given
an OID and entered into the local object table. Many ob-
jects had the potential to become known outside the node on
which they were created, but most would never actually do
so. Thus, postponing baptism was an excellent idea because
it was often unnecessary.

Another place where Emerald takes a lazy approach is in
moving the code for a migrating object. When an object
moves from one node to another, its code is not moved
along with its data. The reasoning behind this is that the
receiving node may well already have a copy of the code,
in which case the work would be unnecessary. Of course, if
the receiving node does not have the code, it has to obtain
it; this is actually more work than if the code had been sent
eagerly. However, it turns out that most applications have a
small working set of code objects, and so most of the time
the destination node will already have the code for an in-
migrating object. In the case where the code does have to
be requested, multiple code objects can be requested at the
same time, so we win again from a batching effect.

Another technique that used the idea of laziness is replacing
computation by compiler-generated tables. One simple ex-
ample is making the current source-code line number avail-
able when debugging. The Simula 67 compiler generated a
load instruction that put the current line number into a reg-
ister. This seemed to us to be optimizing for the uncommon
case: the Emerald implementation instead generated a table
in each code object that could translate the relative address
of any instruction into the line number in the Emerald source
code. This had a storage cost but no cost in execution time.
Of course, if the debugger was actually activated, it look
more time to find the line number, but that was a rare event,
and not a time-critical one.

Compiler-generated tables were also used for unavailable
and failure handlers. When a failure occurred, such as in-
voking nil or dividing by zero, the appropriate handler was

found by using the address of the failure to search a table
of handlers. The implementation of Mesa used the same
idea [64]. This was in contrast with other language imple-
mentations (for example, Sherman’s Ada compiler for the
VAX [95]) where the appropriate failure handler was pushed
onto the stack; this made finding the handler faster, but
slowed down every call that did not fail.

Lazy evaluation was also the technique of choice for most of
the work associated with mobility, because most objects did
not move; several examples are described in Section 4.7.3.

6.6 Some Historical Performance Data

From the start, performance was important to the Emerald
project; good performance was high on our list of goals,
and we hoped that good performance would distinguish our
work from contemporary efforts. Of course, by modern stan-
dards the performance of any 1980s computer system will
be unimpressive, so we summarize here not only Emerald’s
performance but also that of some comparable systems avail-
able to us at the time.

Most of the performance figures given below were measured
in February 1987 on a set of five MicroVAX II machines
running Ultrix. The figures in Section 6.6.6 were measured
on VAXStation 2000 machines, which had the same CPU
as the MicroVAX II but had a different architecture that
resulted in slightly longer execution times (usually about 6–
8%).

6.6.1 Remote Invocations

As shown in Table 1, remote invocation of a parameterless
remote operation took 27.9 ms. This included sending a re-
quest message of 160 bytes (i.e., one Ethernet payload) of
which 72 bytes were transport-layer protocol headers, 64
bytes were the invocation request and 24 bytes were the re-
turn address information. The return message consisted of
82 bytes of which 72 bytes were again transport-layer head-
ers and 12 bytes were the invocation reply.

We measured the low-level transport protocol by sending a
160-byte message and returning a 72-byte message. Such an
exchange took 24.5 ms. This means that the actual handling
of the remote invocation used only 3.4 ms (12%) of the
27.9 ms.

For comparison, a remote invocation in the Eden system
took 54 ms on a SUN 2 (and 140 ms on a VAX 11/ 750).
The major difference between the Eden implementation and
Emerald is that Emerald used only two network messages to
perform a remote invocation while Eden used four. Bennett’s
Distributed Smalltalk implementation used 136 ms for an
“empty” remote invocation [11].
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Table 1: Remote Operation Timing (MicroVAX II)

Operation Time/ms
local invocation 0.019
elapsed time, remote invocation 27.9
underlying message exchange 24.5
invocation handling time 3.4

Table 2: Object Creation Timing

Creation of Global/ms ∆/ms Local/ms ∆/ms
empty object 1.06 — 0.76 —
with an initially 1.34 +0.28 0.92 +0.16
with a monitor 1.34 +0.28 0.96 +0.20
with one Integer variable 1.36 +0.30 0.96 +0.20
with one Any variable 1.37 +0.31 0.96 +0.20
with 100 Integer variables 2.41 +1.26 2.01 +1.25
with 100 Any variables 3.49 +2.43 3.07 +2.31
with one process 2.17 +1.11 1.85 +1.09

Table 3: Remote Parameter Timing

Operation Type Time/ms ∆/ms
remote invocation, no parameter 30.3 —
remote invocation, one integer parameter 31.5 + 1.2
remote invocation, local reference parameter 32.5 + 2.2
remote invocation, two local reference parameters 34.7 + 4.4
remote invocation, call-by-move parameter 35.9 + 5.6
remote invocation, call-by-visit parameter 40.3 +10.0
remote invocation, with one call-back parameter 63.5 +30.2

6.6.2 Object Mobility

Moving a simple data object took about 12 ms. This time
is less than the round-trip message time because reply mes-
sages are piggybacked on other messages.

6.6.3 Process Mobility

We measured the time taken to move an object contain-
ing a small process with six variables. This took 40 ms or
about 43% more than the simplest remote invocation. This
included sending a message consisting of about 600 bytes
of information, including object references, immediate data
for replicated objects, a stack segment, and process-control
information. The process control information and stack seg-
ment together consumed about 180 bytes.

6.6.4 Object Creation

Table 2 shows creation times for various global and lo-
cal Emerald objects. The numbers were obtained by re-
peated timings and are median values — averages do not
make sense because the timings varied considerably (up to

+50%) when storage allocation caused paging activity. The
numbers are correct to about two digits (an error of 1–2%).

In general, it took about 0.3–0.4 ms longer to create an empty
global object than an empty local object because of the
additional allocation of an object descriptor. An initially
construct added another 0.2 ms as did the presence of a
monitor (because the monitor caused an implicit initially
to be added to initialize the monitor). Creating an object
containing 100 integer variables cost an extra 1.2 ms.

Creating an object containing 100 Any variables took about
2.4 ms longer than an empty object because Any variables
were 8 bytes long while integers were 4 bytes, so twice as
much storage had to be allocated and initialized.

6.6.5 Process Creation

Creating a process took an additional 1.1 ms beyond the time
required to create its containing object. We measured two
processes that took turns calling a monitor. It took 710 µs
for one process switch, one blocking monitor entry, one
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unblocking monitor exit, and two kernel calls. By executing
two CPU-bound processes and varying the size of the time
slice, we estimated the process switching time to be about
300 µs (± 5%), including the necessary Ultrixcalls to set a
timer.

6.6.6 Additional Costs for Parameters

The additional costs of adding parameters to remote invo-
cations were measured in the fall of 1988 on VAXStation
2000s, which ran slightly slower than MicroVAX IIs.

We compared the incremental cost of call by move and call
by visit with the incremental cost of call by object reference.
We performed an experiment in which an object on a source
node S invoked a remote object R and passed as an argument
a reference to an object on S. R then invoked the argument
object once. Without call by move, this caused a second
remote invocation back to S. When using call by move or
call by visit, the remote invocation was avoided because the
argument object was moved to R. The timings are shown in
Table 3.

Table 4 shows the benefit of call by move for a simple ar-
gument object containing only a few variables with a total
size of less than 100 bytes. The additional cost of call by
move over call by reference is 3.4 ms, while call by visit
adds 7.8 ms. The call-by-visit time includes sending the in-
vocation message and the argument object, performing the
remote invocation (which invokes its argument), and return-
ing the argument object with the reply. One would expect
the call-by-visit time to be approximately twice the call-by-
move time. It is actually slightly higher due to the dynamic
allocation of data structures to hold the call-by-visit control
information. Had the argument not been moved, the incre-
mental cost (of the consequent remote invocation) would
have been 31.0 ms. These measurements are a lower bound
because the cost of moving an object depends on the com-
plexity of the object and the types of the objects it references.
The lesson to take away is that call by visit is worthwhile for
small parameters, even if they are called only once.

6.6.7 Performance of Local Operations

Table 5 shows the performance of several local operations.
Integers and reals were implemented as direct objects. The
timings for primitive integer and real operations were ex-
actly the same as for comparable operations in C — which is
not surprising given that the instructions generated were the
same.

For comparison with procedural languages, a C procedure
call17 took 13.4 µs, a Concurrent Euclid procedure call took
16.4 µs, and an Emerald local invocation took 16.6 µs (i.e.,
23% longer than a C procedure call). Concurrent Euclid and
Emerald were slower because they had to make an explicit
stack overflow check on each call. C avoided this overhead
17 On a MicroVAX II using the Berkeley portable C compiler.

because UNIX used virtual memory hardware to perform
stack overflow checks at no additional per-call cost.

The “resident global invocation” time in Table 5 is for a
global object (i.e., one that potentially can move around the
network) when invoked by another object resident on the
same node. The additional 2.8 µs (above the time for a local
invocation) represents cost of the potential for distribution:
the time was spent checking whether or not the invoked
object was resident.

6.7 A Local Procedure Call Benchmark

We used Ackermann’s function as a benchmark program
because most of its execution time is due to procedure calls;
the only other operations performed are tests against zero
and integer decrement. We wrote Ackermann’s function in
Emerald and in C. The Emerald version appears below:

function Ackermann[n: Integer, m: Integer]→ [result: Integer]
if (m = 0) then

result← n+1
elseif (n = 0) then

result← self.Ackermann[1,m−1]
else

result← self.Ackermann[
self.Ackermann[n−1, m], m−1]

end if
end Ackermann

The C version was written twice: a straightforward version
and a hand-optimized version. The straightforward version
was timed when compiled both with and without the C
optimizer. We compared execution times for two pairs of
parameter values, namely (6,3) and (7,3). Table 6 shows
the timings along with the relative difference in execution
times normalized to the optimized C version. The Emerald
version ran about 50% slower than the C version. When the
C optimizer was used, the C timings improved by 12–13%.
Careful hand optimization improved the timings for C by an
additional 10%.

An analysis of the code generated by the C and Emerald
compilers revealed that the Emerald version was slower than
the C version for three reasons. First, as mentioned ear-
lier, Emerald invocations were 23% slower than C procedure
calls. Second, Emerald’s parameter-passing mechanism was
more expensive than C’s because Emerald also transfered
type information. Third, in Emerald all variables were ini-
tialized.

In 1992, Emerald was ported to the SUN SPARC architec-
ture [75]. The SUN C compiler used the SPARC register
window, while the Emerald implementation did not. As a
consequence, Emerald invocations on the SPARC were al-
most 15% faster than C procedure calls.
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Table 4: Incremental Cost of Remote Invocation Parameters: elapsed time in addition to a call-by-reference invocation

Parameter Passing Mode Time/ms
empty remote invocation 30.3
call-by-move + 3.4
call-by-visit + 7.8
call-by-reference, one call-back +31.0

Table 5: Local Emerald Invocation Timing — MicroVAX II

Emerald Operation Example Time/µs
primitive integer invocation i← i + 23 0.4
primitive real invocation x← x + 23.0 3.4
local invocation localobject.no-op 16.6
resident global invocation globalobject.no-op 19.4

Table 6: Ackermann’s Function Benchmark (Time in Seconds)

Version (6,3) ∆% (7,3) ∆%
C hand optimized 3.7 −10% 14.9 −10%
C with optimizer 4.1 0% 16.6 0%
C version 4.6 +12% 18.7 +13%
Emerald version 6.6 +61% 27.7 +67%

7. Summary
Emerald is a research programming language that was de-
veloped at the University of Washington from 1983 to 1987,
and has subsequently been used extensively in teaching
and research at the Universities of Copenhagen, British
Columbia, and Arizona, at Digital Equipment Corporation,
and at Victoria University of Wellington. It was originally
implemented on DEC VAX hardware, later on the Motorola
68000-series, then on a portable virtual machine, then on
Sun SPARC and Digital Alpha, and most recently in a het-
erogeneous setting in which objects run native code but can
move between architectures. Emerald is object-based in the
sense that it supports objects but not classes or inheritance;
its distinguishing feature is support for distribution, which
is arguably more complete than that of any other language
available even now, more than 20 years later. Along the way,
Emerald also made significant strides in type theory, includ-
ing implementations of what have since become known as
F-bounded polymorphism and generic data structures.

The primary problems that Emerald sought to address were
the costs of object invocation and the coupling between the
way that an object was represented in the programming lan-
guage and the way that the object was implemented. Con-
temporary object-based distributed languages, notably Ar-
gus and the Eden Programming Language, had two notions
of object: “small objects”, which were efficiently supported

within a single address space but could not be accessed re-
motely, and “large objects”, which were accessible from
remote address spaces but were thousands of times more
costly. Emerald’s contribution was the realization, obvious
in hindsight, that these different implementations need not
show through to the source language. Instead, the Emerald
language has a single notion of object and several different
implementation styles: the most appropriate implementation
is selected by the compiler depending on how the object is
used.

The idea that the users of an object should not know (or care)
about the details of its implementation is of course no more
than information hiding, a principle that was well known
at the time that we were designing Emerald. In addition to
using the principle of information hiding in the compiler
(the user didn’t have to know how the compiler implemented
a object), we also made it available to the programmer.
We did this by thoroughly separating the notions of class
(how an object is implemented) from those of type (what
interface it presents to other objects). Emerald’s type system
is based on the notion of structural type conformity, which
rigorously specifies when an implementation of an object
satisfies the demands of a type, and also when one type
subsumes another.

Letting the compiler choose an implementation was only
possible if this did not change the semantics, so we were

11-42



forced to define the semantics abstractly. Thus, the semantics
of parameter passing cannot depend on the relative locations
of the invoker and the invoked. Emerald does include fea-
tures to control the location of objects: to move an object to a
new location, to fix and unfix an object at a specific location,
to move an object to a remote location with an invocation,
and to cause an object to visit a remote location for the dura-
tion of an invocation. Using these features does not change
the semantics of a program, but may dramatically change its
performance. Emerald also distinguishes functions (which
have no effect on the state) from more general operation in-
vocations, and immutable objects (which the implementa-
tion can replicate) from mutable objects.

Emerald’s main deficiency, viewed from the vantage-point
of today, is its lack of inheritance. Given the absence of
classes from the language itself and the decentralized imple-
mentation strategy, it was not clear how inheritance could be
incorporated. After gaining some experience with the lan-
guage, and in particular with the tedium of writing two-level
object constructors all the time, we did add classes, includ-
ing single inheritance, as “syntactic sugar” for the obvious
two-level object constructor. The resolution of inherited at-
tributes was done entirely at compile time, implying that the
text of the superclass had to be available to the compiler
when the subclass was compiled. In addition, this simple
scheme offered no support for “super” or otherwise invoking
inherited methods in the body of subclass methods: a method
or instance variable in the subclass completely redefined,
rather than just overrode, any identically named method or
variable inherited from the superclass. Rather than pursu-
ing more traditional inheritance in the language, subsequent
work looked at compile-time code reuse [89].

One issue that the Emerald implementation never addressed
was ensuring that a remote object that claimed to be of a cer-
tain type did in fact conform to that type. Type information
was present in the run-time object structures in two forms:
an object structure representing the type, which was used for
conformity checking, and the executable code, which actu-
ally implemented the operations required by the type. While
a correct Emerald compiler always guaranteed that the object
structure and the code corresponded, a malicious user on a
remote node could in principle hack a version of the com-
piler to void this guarantee, thus breaching the type security
of the whole system. We imagined overcoming this problem
by certifying the compiler and having each compiler sign its
own code, but this was never implemented.

Although Emerald’s support for remote invocation has been
widely reproduced, remote invocation has rarely been imple-
mented with such semantic transparency. Implementations
of mobile objects are still rare and languages that incorpo-
rate mobility into their semantic model rarer still, although
recently proposals have been made for incorporating mobil-
ity into Java.

Acknowledgements
This paper has taken shape over a long period, and has been
much improved by the contributions of many colleagues.
Our HOPL referees, Brent Hailpern, Doug Lee, and Barbara
Ryder, all provided useful advice. Our external referee, An-
drew Watson, along with Andrew Herbert, helped to recon-
struct the influence of the Emerald type system. Kim Bruce,
Sacha Krakowiak, Roy Levin, and Jim Waldo helped fill
in numerous details, and Michael Mahoney helped us learn
how to write history.

We thank the Danish Center for Grid Computing, Microsoft
Research Cambridge, the University of Copenhagen, and
Portland State University for their generous support while
this paper was being written.

References
[1] J. Mack Adams and Andrew P. Black. On proof rules for

monitors. Operating Systems Review, 16(2):18–27, April
1982.

[2] J. E. Allchin and M. S. McKendry. Synchronization and
recovery of actions. In Proceedings of the 2nd Symposium
on Principles of Distributed Computing, pages 31–44, New
York, NY, USA, August 1983. SIGOPS/SIGACT, ACM
Press.

[3] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe.
The Eden system: A technical review. IEEE Transactions
on Software Engineering, SE11(1):43–59, January 1985.

[4] Guy T. Almes. Garbage Collection in an Object-Oriented
System. PhD thesis, Carnegie Mellon University, June 1980.

[5] Allan Thrane Andersen and Ole Høegh Hansen. Teoretiske
og praktiske forhold ved brugen af mønstre i forbindelse
med udvikling af objectorienteret software-med særlig
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Getting to Oz 

Hank Levy, Norm Hutchinson, Eric Jul 
April 27, 1984 

For the past several months, the three of us have been discussing the possibility of building 
a new object-based system. Carl Binding frequently attended our meetings, and occasionally 
Guy Almes, Andrew Black, or Alan Borning sat in also. This system, called Oz, is an 
outgrowth of our experience with the Eden system. In this memo we try to  capture the 
background that led to  our current thinking on Oz. This memo is not a specification but a 
brief summary of the issues discussed in our meetings. 

Starting in winter term, 1984, we began to examine some of the strengths and weaknesses 
of Eden. Several of the senior Eden graduate students had been experimenting with 
improving Eden's performance. Although they were able to  significantly decrease Eden 
invocation costs, performance was still far from acceptable. Certainly some of the 
performance problem was due to Eden's current invocation semantics, some was due to 
implementation of invocation, and some was due to  the fact that Eden is built on top of the 
Unix system. 

In addition to performance problems, Eden suffered from the lack of a clean interface. 
That is, the Eden programmer needs to know about Eden, about EPL (Eden Programming 
Language -- an preprocessor-implemented extension to  Concurrent Euclid), and about Unix 
to build Eden applications. Also, there was at that time no Eden user interface. Users built 
Eden applications with the standard Unix command system. 

This combination of issues led us to consider building a better integrated system from 
scratch. Performance was at the top of our priorities. To date, object systems have a 
reputation of being slow and we don't think this is inherently due to their support for objects. 
We want to build a distributed object-based system with performance comparable to good 
message passing systems. To do this, we would have to  build a low-level, bare-machine 
kernel and compiler support. In addition, we would like our system to  have an object-based 
user interface as well as an object-based programming interface. Thus, users should be able 
to create and manipulate objects from a display. 

Our first discussions concentrated on low-level kernel issues. In the Eden system, there are 
two types of processes and two levels of scheduling. Applications written in EPL contain 
multiple lightweight processes that coexist within a single Unix address space. These 
processes are scheduled by a kernel running within that address space. This kernel gains 
control through special checks compiled into the application. At the next level, multiple 
address spaces (Unix processes) are scheduled by the Unix system. 

Our first decision was that our system would provide both lightweight processes that share 
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Abstract
This paper describes the history of Haskell, including its genesis
and principles, technical contributions, implementations and tools,
and applications and impact.

1. Introduction
In September of 1987 a meeting was held at the confer-
ence on Functional Programming Languages and Computer
Architecture in Portland, Oregon, to discuss an unfortunate
situation in the functional programming community: there
had come into being more than a dozen non-strict, purely
functional programming languages, all similar in expressive
power and semantic underpinnings. There was a strong con-
sensus at this meeting that more widespread use of this class
of functional languages was being hampered by the lack of
a common language. It was decided that a committee should
be formed to design such a language, providing faster com-
munication of new ideas, a stable foundation for real ap-
plications development, and a vehicle through which others
would be encouraged to use functional languages.

These opening words in the Preface of the first Haskell Report,
Version 1.0 dated 1 April 1990, say quite a bit about the history of
Haskell. They establish the motivation for designing Haskell (the
need for a common language), the nature of the language to be
designed (non-strict, purely functional), and the processby which
it was to be designed (by committee).

Part I of this paper describes genesis and principles: how Haskell
came to be. We describe the developments leading up to Haskell
and its early history (Section 2) and the processes and principles
that guided its evolution (Section 3).

Part II describes Haskell’s technical contributions: whatHaskell is.
We pay particular attention to aspects of the language and its evo-
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lution that are distinctive in themselves, or that developed in un-
expected or surprising ways. We reflect on five areas: syntax (Sec-
tion 4); algebraic data types (Section 5); the type system, and type
classes in particular (Section 6); monads and input/output(Sec-
tion 7); and support for programming in the large, such as modules
and packages, and the foreign-function interface (Section8).

Part III describes implementations and tools: what has beenbuilt
for the users of Haskell. We describe the various implementations
of Haskell, including GHC, hbc, hugs, nhc, and Yale Haskell (Sec-
tion 9), and tools for profiling and debugging (Section 10).

Part IV describes applications and impact: what has been built by
the users of Haskell. The language has been used for a bewildering
variety of applications, and in Section 11 we reflect on the distinc-
tive aspects of some of these applications, so far as we can dis-
cern them. We conclude with a section that assesses the impact of
Haskell on various communities of users, such as education,open-
source, companies, and other language designers (Section 12).

Our goal throughout is to tell the story, including who was involved
and what inspired them: the paper is supposed to be ahistoryrather
than a technical description or a tutorial.

We have tried to describe the evolution of Haskell in an even-
handed way, but we have also sought to convey some of the ex-
citement and enthusiasm of the process by including anecdotes and
personal reflections. Inevitably, this desire for vividness means that
our account will be skewed towards the meetings and conversations
in which we personally participated. However, we are conscious
that many, many people have contributed to Haskell. The sizeand
quality of the Haskell community, its breadth and its depth,are both
the indicator of Haskell’s success and its cause.

One inevitable shortcoming is a lack of comprehensiveness.Haskell
is now more than 15 years old and has been a seedbed for an im-
mense amount of creative energy. We cannot hope to do justiceto
all of it here, but we take this opportunity to salute all those who
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Part I

Genesis and Principles

2. The genesis of Haskell
In 1978 John Backus delivered his Turing Award lecture, “Canpro-
gramming be liberated from the von Neumann style?” (Backus,
1978a), which positioned functional programming as a radical at-
tack on the whole programming enterprise, from hardware archi-
tecture upwards. This prominent endorsement from a giant inthe
field—Backus led the team that developed Fortran, and invented
Backus Naur Form (BNF)—put functional programming on the
map in a new way, as a practical programming tool rather than a
mathematical curiosity.

Even at that stage, functional programming languages had a long
history, beginning with John McCarthy’s invention of Lisp in the
late 1950s (McCarthy, 1960). In the 1960s, Peter Landin and
Christopher Strachey identified the fundamental importance of the
lambda calculus for modelling programming languages and laid
the foundations of both operational semantics, through abstract
machines (Landin, 1964), and denotational semantics (Strachey,
1964). A few years later Strachey’s collaboration with DanaScott
put denotational semantics on firm mathematical foundations un-
derpinned by Scott’s domain theory (Scott and Strachey, 1971;
Scott, 1976). In the early ’70s, Rod Burstall and John Darling-
ton were doing program transformation in a first-order functional
language with function definition by pattern matching (Burstall
and Darlington, 1977). Over the same period David Turner, a for-
mer student of Strachey, developed SASL (Turner, 1976), a pure
higher-order functional language with lexically scoped variables—
a sugared lambda calculus derived from the applicative subset of
Landin’s ISWIM (Landin, 1966)—that incorporated Burstalland
Darlington’s ideas on pattern matching into an executable program-
ming language.

In the late ’70s, Gerry Sussman and Guy Steele developed Scheme,
a dialect of Lisp that adhered more closely to the lambda calcu-
lus by implementing lexical scoping (Sussman and Steele, 1975;
Steele, 1978). At more or less the same time, Robin Milner in-
vented ML as a meta-language for the theorem prover LCF at Ed-
inburgh (Gordon et al., 1979). Milner’s polymorphic type system
for ML would prove to be particularly influential (Milner, 1978;
Damas and Milner, 1982). Both Scheme and ML were strict (call-
by-value) languages and, although they contained imperative fea-
tures, they did much to promote the functional programming style
and in particular the use of higher-order functions.

2.1 The call of laziness

Then, in the late ’70s and early ’80s, something new happened. A
series of seminal publications ignited an explosion of interest in the
idea oflazy(or non-strict, or call-by-need) functional languages as
a vehicle for writing serious programs. Lazy evaluation appears to
have been invented independently three times.

• Dan Friedman and David Wise (both at Indiana) published
“Cons should not evaluate its arguments” (Friedman and Wise,
1976), which took on lazy evaluation from a Lisp perspective.

• Peter Henderson (at Newcastle) and James H. Morris Jr. (at
Xerox PARC) published “A lazy evaluator” (Henderson and
Morris, 1976). They cite Vuillemin (Vuillemin, 1974) and
Wadsworth (Wadsworth, 1971) as responsible for the originsof
the idea, but popularised the idea in POPL and made one other
important contribution, the name. They also used a variant of

Lisp, and showed soundness of their evaluator with respect to a
denotational semantics.

• David Turner (at St. Andrews and Kent) introduced a series
of influential languages: SASL (St Andrews Static Language)
(Turner, 1976), which was initially designed as a strict lan-
guage in 1972 but became lazy in 1976, and KRC (Kent Re-
cursive Calculator) (Turner, 1982). Turner showed the elegance
of programming with lazy evaluation, and in particular the use
of lazy lists to emulate many kinds of behaviours (Turner, 1981;
Turner, 1982). SASL was even used at Burroughs to develop an
entire operating system—almost certainly the first exercise of
pure, lazy, functional programming “in the large”.

At the same time, there was a symbiotic effort on exciting newways
to implementlazy languages. In particular:

• In software, a variety of techniques based ongraph reduction
were being explored, and in particular Turner’s inspirationally
elegant use ofSK combinators(Turner, 1979b; Turner, 1979a).
(Turner’s work was based on Haskell Curry’scombinatory cal-
culus(Curry and Feys, 1958), a variable-less version of Alonzo
Church’s lambda calculus (Church, 1941).)

• Another potent ingredient was the possibility that all thiswould
lead to a radically different non-von Neumann hardware archi-
tectures. Several serious projects were underway (or were get-
ting underway) to builddataflowandgraph reductionmachines
of various sorts, including the Id project at MIT (Arvind and
Nikhil, 1987), the Rediflow project at Utah (Keller et al., 1979),
the SK combinator machine SKIM at Cambridge (Stoye et al.,
1984), the Manchester dataflow machine (Watson and Gurd,
1982), the ALICE parallel reduction machine at Imperial (Dar-
lington and Reeve, 1981), the Burroughs NORMA combinator
machine (Scheevel, 1986), and the DDM dataflow machine at
Utah (Davis, 1977). Much (but not all) of this architecturally
oriented work turned out to be a dead end, when it was later dis-
covered that good compilers for stock architecture could outper-
form specialised architecture. But at the time it was all radical
and exciting.

Several significant meetings took place in the early ’80s that lent
additional impetus to the field.

In August 1980, the first Lisp conference took place in Stanford,
California. Presentations included Rod Burstall, Dave MacQueen,
and Don Sannella on Hope, the language that introduced algebraic
data types (Burstall et al., 1980).

In July 1981, Peter Henderson, John Darlington, and David Turner
ran an Advanced Course on Functional Programming and its Appli-
cations, in Newcastle (Darlington et al., 1982). All the bignames
were there: attendees included Gerry Sussman, Gary Lindstrom,
David Park, Manfred Broy, Joe Stoy, and Edsger Dijkstra. (Hughes
and Peyton Jones attended as students.) Dijkstra was characteris-
tically unimpressed—he wrote “On the whole I could not avoid
some feelings of deep disappointment. I still believe that the topic
deserves a much more adequate treatment; quite a lot we were ex-
posed to was definitely not up to par.” (Dijkstra, 1981)—but for
many attendees it was a watershed.

In September 1981, the first conference on Functional Program-
ming Languages and Computer Architecture (FPCA)—note the
title!—took place in Portsmouth, New Hampshire. Here Turner
gave his influential paper on “The semantic elegance of applicative
languages” (Turner, 1981). (Wadler also presented his firstconfer-
ence paper.) FPCA became a key biennial conference in the field.

In September 1982, the second Lisp conference, now renamed
Lisp and Functional Programming (LFP), took place in Pittsburgh,
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Pennsylvania. Presentations included Peter Henderson on func-
tional geometry (Henderson, 1982) and an invited talk by Turner on
programming with infinite data structures. (It also saw the first pub-
lished papers of Hudak, Hughes, and Peyton Jones.) Special guests
at this conference included Church and Curry. The after-dinner talk
was given by Barkley Rosser, and received two ovations in themid-
dle, once when he presented the proof of Curry’s paradox, relating
it to the Y combinator, and once when he presented a new proof
of the Church-Rosser theorem. LFP became the other key biennial
conference.

(In 1996, FPCA merged with LFP to become the annual Interna-
tional Conference on Functional Programming, ICFP, which re-
mains the key conference in the field to the present day.)

In August 1987, Ham Richards of the University of Texas and
David Turner organised an international school on Declarative
Programming in Austin, Texas, as part of the UT “Year of Pro-
gramming”. Speakers included: Samson Abramsky, John Backus,
Richard Bird, Peter Buneman, Robert Cartwright, Simon Thomp-
son, David Turner, and Hughes. A major part of the school was a
course in lazy functional programming, with practical classes using
Miranda.

All of this led to a tremendous sense of excitement. The simplic-
ity and elegance of functional programming captivated the present
authors, and many other researchers with them. Lazy evaluation—
with its direct connection to the pure, call-by-name lambdacal-
culus, the remarkable possibility of representing and manipulating
infinite data structures, and addictively simple and beautiful imple-
mentation techniques—was like a drug.

(An anonymous reviewer supplied the following: “An interesting
sidelight is that the Friedman and Wise paper inspired Sussman and
Steele to examine lazy evaluation in Scheme, and for a time they
weighed whether to make the revised version of Scheme call-by-
name or call-by-value. They eventually chose to retain the original
call-by-value design, reasoning that it seemed to be much easier to
simulate call-by-name in a call-by-value language (using lambda-
expressions as thunks) than to simulate call-by-value in a call-by-
name language (which requires a separate evaluation-forcing mech-
anism). Whatever we might think of that reasoning, we can only
speculate on how different the academic programming-language
landscape might be today had they made the opposite decision.”)

2.2 A tower of Babel

As a result of all this activity, by the mid-1980s there were anum-
ber of researchers, including the authors, who were keenly inter-
ested in both design and implementation techniques for pure, lazy
languages. In fact, many of us had independently designed our own
lazy languages and were busily building our own implementations
for them. We were each writing papers about our efforts, in which
we first had to describe our languages before we could describe our
implementation techniques. Languages that contributed tothis lazy
Tower of Babel include:

• Miranda, a successor to SASL and KRC, designed and imple-
mented by David Turner using SK combinator reduction. While
SASL and KRC were untyped, Miranda added strong polymor-
phic typing and type inference, ideas that had proven very suc-
cessful in ML.

• Lazy ML (LML), pioneered at Chalmers by Augustsson and
Johnsson, and taken up at University College London by Peyton
Jones. This effort included the influential development of theG-
machine, which showed that one couldcompilelazy functional
programs to rather efficient code (Johnsson, 1984; Augustsson,
1984). (Although it is obvious in retrospect, we had become

used to the idea that laziness meant graph reduction, and graph
reduction meant interpretation.)

• Orwell, a lazy language developed by Wadler, influenced by
KRC and Miranda, and OL, a later variant of Orwell. Bird and
Wadler co-authored an influential book on functional program-
ming (Bird and Wadler, 1988), which avoided the “Tower of
Babel” by using a more mathematical notation close to both
Miranda and Orwell.

• Alfl, designed by Hudak, whose group at Yale developed a
combinator-based interpreter for Alfl as well as a compiler
based on techniques developed for Scheme and for T (a dialect
of Scheme) (Hudak, 1984b; Hudak, 1984a).

• Id, a non-strict dataflow language developed at MIT by Arvind
and Nikhil, whose target was a dataflow machine that they were
building.

• Clean, a lazy language based explicitly on graph reduction,
developed at Nijmegen by Rinus Plasmeijer and his colleagues
(Brus et al., 1987).

• Ponder, a language designed by Jon Fairbairn, with an impred-
icative higher-rank type system and lexically scoped type vari-
ables that was used to write an operating system for SKIM
(Fairbairn, 1985; Fairbairn, 1982).

• Daisy, a lazy dialect of Lisp, developed at Indiana by Cordelia
Hall, John O’Donnell, and their colleagues (Hall and O’Donnell,
1985).

With the notable exception of Miranda (see Section 3.8), allof these
were essentially single-site languages, and each individually lacked
critical mass in terms of language-design effort, implementations,
and users. Furthermore, although each had lots of interesting ideas,
there were few reasons to claim that one language was demonstra-
bly superior to any of the others. On the contrary, we felt that they
were all roughly the same, bar the syntax, and we started to wonder
why we didn’t have a single, common language that we could all
benefit from.

At this time, both the Scheme and ML communities had developed
their own standards. The Scheme community had major loci in
MIT, Indiana, and Yale, and had just issued its ‘revised revised’
report (Rees and Clinger, 1986) (subsequent revisions would lead to
the ‘revised5 ’ report (Kelsey et al., 1998)). Robin Milner had issued
a ‘proposal for Standard ML’ (Milner, 1984) (which would later
evolve into the definitiveDefinition of Standard ML(Milner and
Tofte, 1990; Milner et al., 1997)), and Appel and MacQueen had
released a new high-quality compiler for it (Appel and MacQueen,
1987).

2.3 The birth of Haskell

By 1987, the situation was akin to a supercooled solution—all that
was needed was a random event to precipitate crystallisation. That
event happened in the fall of ’87, when Peyton Jones stopped at
Yale to see Hudak on his way to the 1987 Functional Program-
ming and Computer Architecture Conference (FPCA) in Portland,
Oregon. After discussing the situation, Peyton Jones and Hudak
decided to initiate a meeting during FPCA, to garner interest in de-
signing a new, common functional language. Wadler also stopped
at Yale on the way to FPCA, and also endorsed the idea of a meet-
ing.

The FPCA meeting thus marked the beginning of the Haskell de-
sign process, although we had no name for the language and very
few technical discussions or design decisions occurred. Infact, a
key point that came out of that meeting was that the easiest way to
move forward was to begin with an existing language, and evolve
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it in whatever direction suited us. Of all the lazy languagesunder
development, David Turner’s Miranda was by far the most mature.
It was pure, well designed, fulfilled many of our goals, had a ro-
bust implementation as a product of Turner’s company, Research
Software Ltd, and was running at 120 sites. Turner was not present
at the meeting, so we concluded that the first action item of the
committee would be to ask Turner if he would allow us to adopt
Miranda as the starting point for our new language.

After a brief and cordial interchange, Turner declined. Hisgoals
were different from ours. We wanted a language that could be used,
among other purposes, for research into language features;in par-
ticular, we sought the freedom for anyone to extend or modifythe
language, and to build and distribute an implementation. Turner,
by contrast, was strongly committed to maintaining a singlelan-
guage standard, with complete portability of programs within the
Miranda community. He did not want there to be multiple dialects
of Miranda in circulation and asked that we make our new lan-
guage sufficiently distinct from Miranda that the two would not be
confused. Turner also declined an invitation to join the newdesign
committee.

For better or worse, this was an important fork in the road. Al-
though it meant that we had to work through all the minutiae of
a new language design, rather than starting from an already well-
developed basis, it allowed us the freedom to contemplate more
radical approaches to many aspects of the language design. For ex-
ample, if we had started from Miranda it seems unlikely that we
would have developed type classes (see Section 6.1). Neverthe-
less, Haskell owes a considerable debt to Miranda, both for general
inspiration and specific language elements that we freely adopted
where they fitted into our emerging design. We discuss the relation-
ship between Haskell and Miranda further in Section 3.8.

Once we knew for sure that Turner would not allow us to use Mi-
randa, an insanely active email discussion quickly ensued,using
the mailing listfplangc@cs.ucl.ac.uk, hosted at the Univer-
sity College London, where Peyton Jones was a faculty member.
The email list name came from the fact that originally we called
ourselves the “FPLang Committee,” since we had no name for the
language. It wasn’t until after we named the language (Section 2.4)
that we started calling ourselves the “Haskell Committee.”

2.4 The first meetings

The Yale Meeting The first physical meeting (after the im-
promptu FPCA meeting) was held at Yale, January 9–12, 1988,
where Hudak was an Associate Professor. The first order of busi-
ness was to establish the following goals for the language:

1. It should be suitable for teaching, research, and applications,
including building large systems.

2. It should be completely described via the publication of a for-
mal syntax and semantics.

3. It should be freely available. Anyone should be permitted to
implement the language and distribute it to whomever they
please.

4. It should be usable as a basis for further language research.

5. It should be based on ideas that enjoy a wide consensus.

6. It should reduce unnecessary diversity in functional program-
ming languages.More specifically, we initially agreed to base
it on an existing language, namely OL.

The last two goals reflected the fact that we intended the language
to be quite conservative, rather than to break new ground. Although
matters turned out rather differently, we intended to do little more

than embody the current consensus of ideas and to unite our dis-
parate groups behind a single design.

As we shall see, not all of these goals were realised. We abandoned
the idea of basing Haskell explicitly on OL very early; we violated
the goal of embodying only well-tried ideas, notably by the inclu-
sion of type classes; and we never developed a formal semantics.
We discuss the way in which these changes took place in Section 3.

Directly from the minutes of the meeting, here is the committee
process that we agreed upon:

1. Decide topics we want to discuss, and assign “lead person”to
each topic.

2. Lead person begins discussion by summarising the issues for
his topic.

• In particular, begin with a description of how OL does it.

• OL will be the default if no clearly better solution exists.

3. We should encourage breaks, side discussions, and literature
research if necessary.

4. Some issues willnot be resolved! But in such cases we should
establish action items for their eventual resolution.

5. It may seem silly, but we should not adjourn this meeting until
at least one thing is resolved: anamefor the language!

6. Attitude will be important: a spirit of cooperation and compro-
mise.

We return later to further discussion of the committee design pro-
cess, in Section 3.5. A list of all people who served on the Haskell
Committee appears in Section 14.

Choosing a Name The fifth item above was important, since a
small but important moment in any language’s evolution is the
moment it is named. At the Yale meeting we used the following
process (suggested by Wadler) for choosing the name.

Anyone could propose one or more names for the language, which
were all written on a blackboard. At the end of this process, the
following names appeared: Semla, Haskell, Vivaldi, Mozart, CFL
(Common Functional Language), Funl 88, Semlor, Candle (Com-
mon Applicative Notation for Denoting Lambda Expressions), Fun,
David, Nice, Light, ML Nouveau (or Miranda Nouveau, or LML
Nouveau, or ...), Mirabelle, Concord, LL, Slim, Meet, Leval, Curry,
Frege, Peano, Ease, Portland, and Haskell B Curry. After consider-
able discussion about the various names, each person was then free
to cross out a name that he disliked. When we were done, there was
one name left.

That name was “Curry,” in honour of the mathematician and lo-
gician Haskell B. Curry, whose work had led, variously and indi-
rectly, to our presence in that room. That night, two of us realised
that we would be left with a lot of curry puns (aside from the spice,
and the thought of currying favour, the one that truly horrified us
was Tim Curry—TIM was Jon Fairbairn’s abstract machine, and
Tim Curry was famous for playing the lead in the Rocky Horror
Picture Show). So the next day, after some further discussion, we
settled on “Haskell” as the name for the new language. Only later
did we realise that this was too easily confused with Pascal or Has-
sle!

Hudak and Wise were asked to write to Curry’s widow, Virginia
Curry, to ask if she would mind our naming the language after her
husband. Hudak later visited Mrs. Curry at her home and listened
to stories about people who had stayed there (such as Church and
Kleene). Mrs. Curry came to his talk (which was about Haskell, of
course) at Penn State, and although she didn’t understand a word
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of what he was saying, she was very gracious. Her parting remark
was “You know, Haskell actually never liked the name Haskell.”

The Glasgow Meeting Email discussions continued fervently af-
ter the Yale Meeting, but it took a second meeting to resolve many
of the open issues. That meeting was held April 6–9, 1988 at the
University of Glasgow, whose functional programming groupwas
beginning a period of rapid growth. It was at this meeting that
many key decisions were made.

It was also agreed at this meeting that Hudak and Wadler wouldbe
the editors of the first Haskell Report. The name of the report, “Re-
port on the Programming Language Haskell, A Non-strict, Purely
Functional Language,” was inspired in part by the “Report onthe
Algorithmic Language Scheme,” which in turn was modelled after
the “Report on the Algorithmic Language Algol.”

IFIP WG2.8 Meetings The ’80s were an exciting time to be do-
ing functional programming research. One indication of that ex-
citement was the establishment, due largely to the effort ofJohn
Williams (long-time collaborator with John Backus at IBM Al-
maden), of IFIP Working Group 2.8 on Functional Programming.
This not only helped to bring legitimacy to the field, it also provided
a convenient venue for talking about Haskell and for piggy-backing
Haskell Committee meetings before or after WG2.8 meetings.The
first two WG2.8 meetings were held in Glasgow, Scotland, July11–
15, 1988, and in Mystic, CT, USA, May 1–5, 1989 (Mystic is about
30 minutes from Yale). Figure 1 was taken at the 1992 meeting of
WG2.8 in Oxford.

2.5 Refining the design

After the initial flurry of face-to-face meetings, there followed fif-
teen years of detailed language design and development, coordi-
nated entirely by electronic mail. Here is a brief time-lineof how
Haskell developed:

September 1987.Initial meeting at FPCA, Portland, Oregon.

December 1987.Subgroup meeting at University College London.

January 1988. A multi-day meeting at Yale University.

April 1988. A multi-day meeting at the University of Glasgow.

July 1988. The first IFIP WG2.8 meeting, in Glasgow.

May 1989. The second IFIP WG2.8 meeting, in Mystic, CT.

1 April 1990. The Haskell version 1.0 Report was published (125
pages), edited by Hudak and Wadler. At the same time, the
Haskell mailing list was started, open to all.

The closedfplangc mailing list continued for committee dis-
cussions, but increasingly debate took place on the public
Haskell mailing list. Members of the committee became in-
creasingly uncomfortable with the “us-and-them” overtones of
having both public and private mailing lists, and by April 1991
the fplangc list fell into disuse. All further discussion about
Haskell took place in public, but decisions were still made by
the committee.

August 1991.The Haskell version 1.1 Report was published (153
pages), edited by Hudak, Peyton Jones, and Wadler. This was
mainly a “tidy-up” release, but it includedlet expressions and
operator sections for the first time.

March 1992. The Haskell version 1.2 Report was published (164
pages), edited by Hudak, Peyton Jones, and Wadler, introduc-
ing only minor changes to Haskell 1.1. Two months later, in
May 1992, it appeared inSIGPLAN Notices, accompanied by
a “Gentle introduction to Haskell” written by Hudak and Fasel.
We are very grateful to the SIGPLAN chair Stu Feldman, and

theNoticeseditor Dick Wexelblat, for their willingness to pub-
lish such an enormous document. It gave Haskell both visibility
and credibility.

1994. Haskell gained Internet presence when John Peterson regis-
tered the haskell.org domain name and set up a server and web-
site at Yale. (Hudak’s group at Yale continues to maintain the
haskell.org server to this day.)

May 1996. The Haskell version 1.3 Report was published, edited
by Hammond and Peterson. In terms of technical changes,
Haskell 1.3 was the most significant release of Haskell after
1.0. In particular:

• A Library Report was added, reflecting the fact that pro-
grams can hardly be portable unless they can rely on stan-
dard libraries.

• Monadic I/O made its first appearance, including “do” syn-
tax (Section 7), and the I/O semantics in the Appendix was
dropped.

• Type classes were generalised to higher kinds—so-called
“constructor classes” (see Section 6).

• Algebraic data types were extended in several ways: new-
types, strictness annotations, and named fields.

April 1997. The Haskell version 1.4 report was published (139
+ 73 pages), edited by Peterson and Hammond. This was a
tidy-up of the 1.3 report; the only significant change is that
list comprehensions were generalised to arbitrary monads,a
decision that was reversed two years later.

February 1999 The Haskell 98 Report: Language and Libraries
was published (150 + 89 pages), edited by Peyton Jones and
Hughes. As we describe in Section 3.7, this was a very signifi-
cant moment because it represented a commitment to stability.
List comprehensions reverted to just lists.

1999–2002In 1999 the Haskell Committeeper seceased to exist.
Peyton Jones took on sole editorship, with the intention of
collecting and fixing typographical errors. Decisions wereno
longer limited to a small committee; now anyone reading the
Haskell mailing list could participate.

However, as Haskell became more widely used (partly because
of the existence of the Haskell 98 standard), many small flaws
emerged in the language design, and many ambiguities in the
Report were discovered. Peyton Jones’s role evolved to thatof
Benign Dictator of Linguistic Minutiae.

December 2002The Revised Haskell 98 Report: Language and
Libraries was published (260 pages), edited by Peyton Jones.
Cambridge University Press generously published the Report as
a book, while agreeing that the entire text could still be available
online and be freely usable in that form by anyone. Their flex-
ibility in agreeing to publish a book under such unusual terms
was extraordinarily helpful to the Haskell community, and de-
fused a tricky debate about freedom and intellectual property.

It is remarkable that it took four years from the first publication
of Haskell 98 to “shake down” the specification, even though
Haskell was already at least eight years old when Haskell 98
came out. Language design is a slow process!

Figure 2 gives the Haskell time-line in graphical form1. Many of
the implementations, libraries, and tools mentioned in thefigure
are discussed later in the paper.

1 This figure was kindly prepared by Bernie Pope and Don Stewart.
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Back row John Launchbury, Neil Jones, Sebastian Hunt, Joe Fasel, Geraint Jones (glasses),
Geoffrey Burn, Colin Runciman (moustache)

Next row Philip Wadler (big beard), Jack Dennis (beard), Patrick O’Keefe (glasses), Alex Aiken (mostly
hidden), Richard Bird, Lennart Augustsson, Rex Page, ChrisHankin (moustache), Joe Stoy (red
shirt), John Williams, John O’Donnell, David Turner (red tie)

Front standing row Mario Coppo, Warren Burton, Corrado Boehm, Dave MacQueen (beard), Mary Sheeran,
John Hughes, David Lester

Seated Karen MacQueen, Luca Cardelli, Dick Kieburtz, ChrisClack, Mrs Boehm, Mrs Williams, Dorothy Peyton Jones
On floor Simon Peyton Jones, Paul Hudak, Richard (Corky) Cartwright

Figure 1. Members and guests of IFIP Working Group 2.8, Oxford, 1992

2.6 Was Haskell a joke?

The first edition of the Haskell Report was published on April1,
1990. It was mostly an accident that it appeared on April Fool’s
Day—a date had to be chosen, and the release was close enough to
April 1 to justify using that date. Of course Haskell was no joke, but
the release did lead to a number of subsequent April Fool’s jokes.

What got it all started was a rather frantic year of Haskell develop-
ment in which Hudak’s role as editor of the Report was especially
stressful. On April 1 a year or two later, he sent an email message
to the Haskell Committee saying that it was all too much for him,
and that he was not only resigning from the committee, he was
also quitting Yale to pursue a career in music. Many members of
the committee bought into the story, and David Wise immediately
phoned Hudak to plead with him to reconsider his decision.

Of course it was just an April Fool’s joke, but the seed had been
planted for many more to follow. Most of them are detailed on the
Haskell website at haskell.org/humor, and here is a summaryof the
more interesting ones:

1. On April 1, 1993, Will Partain wrote a brilliant announcement
about an extension to Haskell calledHaskerlthat combined the
best ideas in Haskell with the best ideas in Perl. Its technically
detailed and very serious tone made it highly believable.

2. Several of the responses to Partain’s well-written hoax were
equally funny, and also released on April 1. One was by Hudak,
in which he wrote:

“Recently Haskell was used in an experiment here at Yale in
the Medical School. It was used to replace a C program that
controlled a heart-lung machine. In the six months that it was
in operation, the hospital estimates that probably a dozen lives
were saved because the program was far more robust than the C
program, which often crashed and killed the patients.”

In response to this, Nikhil wrote:

“Recently, a local hospital suffered many malpractice suits due
to faulty software in their X-ray machine. So, they decided to
rewrite the code in Haskell for more reliability.
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Figure 2. Haskell timeline
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“Malpractice suits have now dropped to zero. The reason is that
they haven’t taken any new X-rays (‘we’re still compiling the
Standard Prelude’).”

3. On April 1, 1998, John Peterson wrote a bogus press release
in which it was announced that because Sun Microsystems had
sued Microsoft over the use of Java, Microsoft had decided to
adopt Haskell as its primary software development language.
Ironically, not long after this press release, Peyton Jonesan-
nounced his move from Glasgow to Microsoft Research in
Cambridge, an event that Peterson knew nothing about at the
time.

Subsequent events have made Peterson’s jape even more pro-
phetic. Microsoft did indeed respond to Java by backing another
language, but it was C# rather than Haskell. But many of the
features in C# were pioneered by Haskell and other functional
languages, notably polymorphic types and LINQ (Language In-
tegrated Query). Erik Meijer, a principal designer of LINQ,says
that LINQ is directly inspired by the monad comprehensions in
Haskell.

4. On April 1, 2002, Peterson wrote another bogus but entertain-
ing and plausible article entitled “Computer Scientist Gets to
the ‘Bottom’ of Financial Scandal.” The article describes how
Peyton Jones, using his research on formally valuating financial
contracts using Haskell (Peyton Jones et al., 2000), was able
to unravel Enron’s seedy and shaky financial network. Peyton
Jones is quoted as saying:

“It’s really very simple. If I write a contract that says its value
is derived from a stock price and the worth of the stock depends
solely on the contract, we have bottom. So in the end, Enron had
created a complicated series of contracts that ultimately had no
value at all.”

3. Goals, principles, and processes
In this section we reflect on the principles that underlay ourthink-
ing, the big choices that we made, and processes that led to them.

3.1 Haskell is lazy

Laziness was undoubtedly the single theme that united the various
groups that contributed to Haskell’s design. Technically,Haskell
is a language with a non-strict semantics; lazy evaluation is sim-
ply one implementation technique for a non-strict language. Nev-
ertheless the term “laziness” is more pungent and evocativethan
“non-strict,” so we follow popular usage by describing Haskell as
lazy. When referring specifically to implementation techniques we
will use the term “call-by-need,” in contrast with the call-by-value
mechanism of languages like Lisp and ML.

By the mid-eighties, there was almost a decade of experienceof
lazy functional programming in practice, and its attractions were
becoming better understood. Hughes’s paper “Why functional pro-
gramming matters” captured these in an influential manifesto for
lazy programming, and coincided with the early stages of Haskell’s
design. (Hughes first presented it as his interview talk whenapply-
ing for a position at Oxford in 1984, and it circulated informally
before finally being published in 1989 (Hughes, 1989).)

Laziness has its costs. Call-by-need is usually less efficient than
call-by-value, because of the extra bookkeeping required to delay
evaluation until a term is required, so that some terms may not be
evaluated, and to overwrite a term with its value, so that no term is
evaluated twice. This cost is a significant but constant factor, and
was understood at the time Haskell was designed.

A much more important problem is this: it is very hard for even
experienced programmers to predict thespacebehaviour of lazy

programs, and there can be much more than a constant factor at
stake. As we discuss in Section 10.2, the prevalence of thesespace
leaks led us to add some strict features to Haskell, such asseq and
strict data types (as had been done in SASL and Miranda earlier).
Dually, strict languages have dabbled with laziness (Wadler et al.,
1988). As a result, the strict/lazy divide has become much less an
all-or-nothing decision, and the practitioners of each recognise the
value of the other.

3.2 Haskell is pure

An immediate consequence of laziness is that evaluation order is
demand-driven. As a result, it becomes more or less impossible to
reliably perform input/output or other side effects as the result of a
function call. Haskell is, therefore, apure language. For example,
if a function f has typeInt -> Int you can be sure thatf will
not read or write any mutable variables, nor will it perform any
input/output. In short,f really is a function in the mathematical
sense: every call(f 3) will return the same value.

Once we were committed to alazy language, apure one was
inescapable. The converse is not true, but it is notable thatin
practice most pure programming languages are also lazy. Why?
Because in a call-by-value language, whether functional ornot, the
temptation to allow unrestricted side effects inside a “function” is
almost irresistible.

Purity is a big bet, with pervasive consequences. Unrestricted side
effects are undoubtedly very convenient. Lacking side effects,
Haskell’s input/output was initially painfully clumsy, which was a
source of considerable embarrassment. Necessity being themother
of invention, this embarrassment ultimately led to the invention of
monadic I/O, which we now regard as one of Haskell’s main con-
tributions to the world, as we discuss in more detail in Section 7.

Whether a pure language (with monadic effects) is ultimately the
best way to write programs is still an open question, but it certainly
is a radical and elegant attack on the challenge of programming,
and it was that combination of power and beauty that motivated
the designers. In retrospect, therefore, perhaps the biggest single
benefit of laziness is not lazinessper se, but rather that laziness
kept us pure, and thereby motivated a great deal of productive work
on monads and encapsulated state.

3.3 Haskell has type classes

Although laziness was what brought Haskell’s designers together, it
is perhaps type classes that are now regarded as Haskell’s most dis-
tinctive characteristic. Type classes were introduced to the Haskell
Committee by Wadler in a message sent to thefplangc mailing
list dated 24 February 1988.

Initially, type classes were motivated by the narrow problem of
overloading of numeric operators and equality. These problems had
been solved in completely different ways in Miranda and SML.

SML used overloading for the built-in numeric operators, resolved
at the point of call. This made it hard to define new numeric opera-
tions in terms of old. If one wanted to define, say, square in terms of
multiplication, then one had to define a different version for each
numeric type, say integers and floats. Miranda avoided this prob-
lem by having only a single numeric type, callednum, which was a
union of unbounded-size integers and double-precision floats, with
automatic conversion ofint to float when required. This is con-
venient and flexible but sacrifices some of the advantages of static
typing – for example, in Miranda the expression (mod 8 3.4) is
type-correct, even though in most languages the modulus operator
mod only makes sense for integer moduli.
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SML also originally used overloading for equality, so one could not
define the polymorphic function that took a list and a value and re-
turned true if the value was equal to some element of the list.(To
define this function, one would have to pass in an equality-testing
function as an extra argument.) Miranda simply gave equality a
polymorphic type, but this made equality well defined on function
types (it raised an error at run time) and on abstract types (it com-
pared their underlying representation for equality, a violation of the
abstraction barrier). A later version of SML included polymorphic
equality, but introduced special “equality type variables” (written
’’a instead of’a) that ranged only over types for which equality
was defined (that is, not function types or abstract types).

Type classes provided a uniform solution to both of these problems.
They generalised the notion of equality type variables fromSML,
introducing a notion of a “class” of types that possessed a given set
of operations (such as numeric operations or equality).

The type-class solution was attractive to us because it seemed more
principled, systematic and modular than any of the alternatives; so,
despite its rather radical and unproven nature, it was adopted by
acclamation. Little did we know what we were letting ourselves in
for!

Wadler conceived of type classes in a conversation with Joe Fasel
after one of the Haskell meetings. Fasel had in mind a different
idea, but it was he who had the key insight that overloading should
be reflected in the type of the function. Wadler misunderstood what
Fasel had in mind, and type classes were born! Wadler’s student
Steven Blott helped to formulate the type rules, and proved the
system sound, complete, and coherent for his doctoral dissertation
(Wadler and Blott, 1989; Blott, 1991). A similar idea was formu-
lated independently by Stefan Kaes (Kaes, 1988).

We elaborate on some of the details and consequences of the type-
class approach in Section 6. Meanwhile, it is instructive toreflect
on the somewhat accidental nature of such a fundamental and far-
reaching aspect of the Haskell language. It was a happy coincidence
of timing that Wadler and Blott happened to produce this key idea
at just the moment when the language design was still in flux.
It was adopted, with little debate, in direct contradictionto our
implicit goal of embodying a tried-and-tested consensus. It had
far-reaching consequences that dramatically exceeded ourinitial
reason for adopting it in the first place.

3.4 Haskell has no formal semantics

One of our explicit goals was to produce a language that had a
formally defined type system and semantics. We were strongly
motivated by mathematical techniques in programming language
design. We were inspired by our brothers and sisters in the ML
community, who had shown that it was possible to give a complete
formal definition of a language, and theDefinition of Standard ML
(Milner and Tofte, 1990; Milner et al., 1997) had a place of honour
on our shelves.

Nevertheless, we never achieved this goal. The Haskell Report fol-
lows the usual tradition of language definitions: it uses carefully
worded English language. Parts of the language (such as the se-
mantics of pattern matching) are defined by a translation into a
small “core language”, but the latter is never itself formally speci-
fied. Subsequent papers describe a good part of Haskell, especially
its type system (Faxen, 2002), but there is no one document that
describes the whole thing. Why not? Certainly not because ofa
conscious choice by the Haskell Committee. Rather, it just never
seemed to be the most urgent task. No one undertook the work, and
in practice the language users and implementers seemed to manage
perfectly well without it.

Indeed, in practice the static semantics of Haskell (i.e. the seman-
tics of its type system) is where most of the complexity lies.The
consequences of not having a formal static semantics is perhaps a
challenge for compiler writers, and sometimes results in small dif-
ferences between different compilers. But for the user, once a pro-
gram type-checks, there is little concern about the static semantics,
and little need to reason formally about it.

Fortunately, the dynamic semantics of Haskell is relatively simple.
Indeed, at many times during the design of Haskell, we resorted to
denotational semantics to discuss design options, as if we all knew
what the semantics of Haskellshouldbe, even if we didn’t write it
all down formally. Such reasoning was especially useful in reason-
ing about “bottom” (which denotes error or non-terminationand
occurs frequently in a lazy language in pattern matching, function
calls, recursively defined values, and so on).

Perhaps more importantly, the dynamic semantics of Haskellis cap-
tured very elegantly for the average programmer through “equa-
tional reasoning”—much simpler to apply than a formal denota-
tional or operational semantics, thanks to Haskell’s purity. The
theoretical basis for equational reasoning derives from the stan-
dard reduction rules in the lambda calculus (β- andη-reduction),
along with those for primitive operations (so-calledδ-rules). Com-
bined with appropriate induction (and co-induction) principles, it
is a powerful reasoning method in practice. Equational reasoning
in Haskell is part of the culture, and part of the training that ev-
ery good Haskell programmer receives. As a result, there maybe
more proofs of correctness properties and program transformations
in Haskell than any other language, despite its lack of a formally
specified semantics! Such proofs usually ignore the fact that some
of the basic steps used—such asη-reduction in Haskell—would not
actually preserve a fully formal semantics even if there wasone,
yet amazingly enough, (under the right conditions) the conclusions
drawn are valid even so (Danielsson et al., 2006)!

Nevertheless, we always found it a little hard to admit that alan-
guage as principled as Haskell aspires to be has no formal defini-
tion. But that is the fact of the matter, and it is not without its ad-
vantages. In particular, the absence of a formal language definition
does allow the language toevolvemore easily, because the costs of
producing fully formal specifications of any proposed change are
heavy, and by themselves discourage changes.

3.5 Haskell is a committee language

Haskell is a language designed by committee, and conventional
wisdom would say that a committee language will be full of
warts and awkward compromises. In a memorable letter to the
Haskell Committee, Tony Hoare wistfully remarked that Haskell
was “probably doomed to succeed.”

Yet, as it turns out, for all its shortcomings Haskell is often
described as “beautiful” or “elegant”—even “cool”—which are
hardly words one would usually associate with committee designs.
How did this come about? In reflecting on this question we identi-
fied several factors that contributed:

• The initial situation, described above in Section 2, was very
favourable. Our individual goals were well aligned, and we
began with a strong shared, if somewhat fuzzy, vision of what
we were trying to achieve. We all needed Haskell.

• Mathematical elegance was extremely important to us, formal
semantics or no formal semantics. Many debates were punctu-
ated by cries of “does it have a compositional semantics?” or
“what does the domain look like?” This semi-formal approach
certainly made it more difficult forad hoclanguage features to
creep in.
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• We held several multi-day face-to-face meetings. Many matters
that were discussed extensively by email were only resolvedat
one of these meetings.

• At each moment in the design process, one or two members of
the committee served asThe Editor. The Editor could not make
binding decisions, but was responsible for driving debatesto a
conclusion. He also was the custodian of the Report, and was
responsible for embodying the group’s conclusion in it.

• At each moment in the design process, one member of the
committee (not necessarily the Editor) served as theSyntax
Czar. The Czar was empowered to make binding decisions
about syntactic matters (only). Everyone always says that far
too much time is devoted to discussing syntax—but many of the
same people will fight to the death for their preferred symbolfor
lambda. The Syntax Czar was our mechanism for bringing such
debates to an end.

3.6 Haskell is a big language

A major source of tension both within and between members of
the committee was the competition between beauty and utility. On
the one hand we passionately wanted to design a simple, elegant
language; as Hoare so memorably put it, “There are two ways of
constructing a software design: one way is to make it so simple that
there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. Thefirst
method is far more difficult.” On the other hand, we alsoreally
wanted Haskell to be a useful language, for both teaching andreal
applications.

Although very real, this dilemma never led to open warfare. It did,
however, lead Richard Bird to resign from the committee in mid-
1988, much to our loss. At the time he wrote, “On the evidence of
much of the material and comments submitted tofplang, there is
a severe danger that the principles of simplicity, ease of proof, and
elegance will be overthrown. Because much of what is proposed is
half-baked, retrogressive, and even baroque, the result islikely to be
a mess. We are urged to return to the mind-numbing syntax of Lisp
(a language that held back the pursuit of functional programming
for over a decade). We are urged to design for ‘big’ programs,
because constructs that are ‘aesthetic’ for small programswill lose
their attractiveness when the scale is increased. We are urged to
allow large where-clauses with deeply nested structures. In short,
it seems we are urged to throw away the one feature of functional
programming that distinguishes it from the conventional kind and
may ensure its survival into the 21st century: susceptibility to
formal proof and construction.”

In the end, the committee wholeheartedly embracedsuperficial
complexity; for example, the syntax supports many ways of ex-
pressing the same thing, in contradiction to our original inclina-
tions (Section 4.4). In other places, we escheweddeepcomplex-
ity, despite the cost in expressiveness—for example, we avoided
parametrised modules (Section 8.2) and extensible records(Sec-
tion 5.6). In just one case, type classes, we adopted an idea that
complicated everything but was just too good to miss. The reader
will have to judge the resulting balance, but even in retrospect we
feel that the elegant core of purely functional programminghas sur-
vived remarkably unscathed. If we had to pick places where real
compromises were made, they would be the monomorphism re-
striction (see Section 6.2) and the loss of parametricity, currying,
and surjective pairing due toseq (see Section 10.3).

3.7 Haskell and Haskell 98

The goal of using Haskell for research demandsevolution, while
using the language for teaching and applications requiresstability.
At the beginning, the emphasis was firmly on evolution. The pref-
ace of every version of the Haskell Report states:“The committee
hopes that Haskell can serve as a basis for future research inlan-
guage design. We hope that extensions or variants of the language
may appear, incorporating experimental features.”

However, as Haskell started to become popular, we started toget
complaints about changes in the language, and questions about
what our plans were. “I want to write a book about Haskell, but
I can’t do that if the language keeps changing” is a typical, and
fully justified, example.

In response to this pressure, the committee evolved a simpleand
obvious solution: we simply named a particular instance of the lan-
guage “Haskell 98,” and language implementers committed them-
selves to continuing to support Haskell 98 indefinitely. We regarded
Haskell 98 as a reasonably conservative design. For example, by
that time multi-parameter type classes were being widely used, but
Haskell 98 only has single-parameter type classes (Peyton Jones
et al., 1997).

The (informal) standardisation of Haskell 98 was an important turn-
ing point for another reason: it was the moment that the Haskell
Committee disbanded. There was (and continues to be) a tremen-
dous amount of innovation and activity in the Haskell community,
including numerous proposals for language features. But rather
than having a committee to choose and bless particular ones,it
seemed to us that the best thing to do was to get out of the way,
let a thousand flowers bloom, and see which ones survived. It was
also a huge relief to be able to call the task finished and to fileour
enormous mail archives safely away.

We made no attempt to discourage variants of Haskell other than
Haskell 98; on the contrary, we explicitly encouraged the further
development of the language. The nomenclature encourages the
idea that “Haskell 98” is a stable variant of the language, while
its free-spirited children are free to term themselves “Haskell.”

In the absence of a language committee, Haskell has continued to
evolve apace, in two quite different ways.

• First, as Haskell has become a mature language with thousands
of users, it has had to grapple with the challenges of scale
and complexity with which any real-world language is faced.
That has led to a range of practically oriented features and
resources, such as a foreign-function interface, a rich collection
of libraries, concurrency, exceptions, and much else besides.
We summarise these developments in Section 8.

• At the same time, the language has simultaneously served as
a highly effective laboratory in which to explore advanced
language design ideas, especially in the area of type systems
and meta-programming. These ideas surface both in papers—
witness the number of research papers that take Haskell as their
base language—and in Haskell implementations. We discuss a
number of examples in Section 6.

The fact that Haskell has, thus far, managed the tension between
these two strands of development is perhaps due to an accidental
virtue: Haskell has not becometoo successful. The trouble with
runaway success, such as that of Java, is that you get too many
users, and the language becomes bogged down in standards, user
groups, and legacy issues. In contrast, the Haskell community is
small enough, and agile enough, that it usually not only absorbs
language changes but positively welcomes them: it’s like throwing
red meat to hyenas.
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3.8 Haskell and Miranda

At the time Haskell was born, by far the most mature and widely
used non-strict functional language was Miranda. Miranda was a
product of David Turner’s company, Research Software Limited,
which he founded in 1983. Turner conceived Miranda to carry
lazy functional programming, with Hindley-Milner typing (Milner,
1978), into the commercial domain. First released in 1985, with
subsequent releases in 1987 and 1989, Miranda had a well sup-
ported implementation, a nice interactive user interface,and a vari-
ety of textbooks (four altogether, of which the first was particularly
influential (Bird and Wadler, 1988)). It was rapidly taken upby both
academic and commercial licences, and by the early 1990s Miranda
was installed (although not necessarily taught) at 250 universities
and around 50 companies in 20 countries.

Haskell’s design was, therefore, strongly influenced by Miranda.
At the time, Miranda was the fullest expression of a non-strict,
purely functional language with a Hindley-Milner type system and
algebraic data types—and that was precisely the kind of language
that Haskell aspired to be. As a result, there are many similarities
between the two languages, both in their basic approach (purity,
higher order, laziness, static typing) and in their syntactic look and
feel. Examples of the latter include: the equational style of func-
tion definitions, especially pattern matching, guards, andwhere
clauses; algebraic types; the notation for lists and list comprehen-
sions; writing pair types as(num,bool) rather than theint*bool
of ML; capitalisation of data constructors; lexically distinguished
user-defined infix operators; the use of a layout rule; and thenam-
ing of many standard functions.

There are notable differences from Miranda too, including:place-
ment of guards on the left of “=” in a definition; a richer syntax
for expressions (Section 4.4); different syntax for data type decla-
rations; capitalisation of type constructors as well as data construc-
tors; use of alphanumeric identifiers for type variables, rather than
Miranda’s*, **, etc.; how user-defined operators are distinguished
(x $op y in Miranda vs.x ‘op‘ y in Haskell); and the details
of the layout rule. More fundamentally, Haskell did not adopt Mi-
randa’s abstract data types, using the module system instead (Sec-
tion 5.3); added monadic I/O (Section 7.2); and incorporated many
innovations to the core Hindley-Milner type system, especially type
classes (Section 6).

Today, Miranda has largely been displaced by Haskell. One indi-
cation of that is the publication of textbooks: while Haskell books
continue to appear regularly, the last textbook in English to use
Miranda was published in 1995. This is at first sight surprising, be-
cause it can be hard to displace a well-established incumbent, but
the economics worked against Miranda: Research Software was a
small company seeking a return on its capital; academic licences
were cheaper than commercial ones, but neither were free, while
Haskell was produced by a group of universities with public funds
and available free to academic and commercial users alike. More-
over, Miranda ran only under Unix, and the absence of a Windows
version increasingly worked against it.

Although Miranda initially had the better implementation,Haskell
implementations improved more rapidly—it was hard for a small
company to keep up. Hugs gave Haskell a fast interactive interface
similar to that which Research Software supplied for Miranda (and
Hugs ran under both Unix and Windows), while Moore’s law made
Haskell’s slow compilers acceptably fast and the code they gener-
ated even faster. And Haskell had important new ideas, as this paper
describes. By the mid-1990s, Haskell was a much more practical
choice for real programming than Miranda.

Miranda’s proprietary status did not enjoy universal support in
the academic community. As required to safeguard his trademark,
Turner always footnoted the first occurrence of Miranda in his pa-
pers to state it was a trademark of Research Software Limited.
In response, some early Haskell presentations included a footnote
”Haskell is not a trademark”. Miranda’s licence conditionsat that
time required the licence holder to seek permission before distribut-
ing an implementation of Miranda or a language whose design was
substantially copied from Miranda. This led to friction between Ox-
ford University and Research Software over the possible distribu-
tion of Wadler’s language Orwell. However, despite Haskell’s clear
debt to Miranda, Turner raised no objections to Haskell.

The tale raises a tantalising “what if” question. What if David
Turner had placed Miranda in the public domain, as some urged
him to do? Would the mid ’80s have seen a standard lazy func-
tional language, supported by the research communityand with
a company backing it up? Could Research Software have found
a business model that enabled it to benefit, rather than suffer, from
university-based implementation efforts? Would the additional con-
straints of an existing design have precluded the creative and some-
times anarchic ferment that has characterised the Haskell commu-
nity? How different could history have been?

Miranda was certainly no failure, either commercially or scientif-
ically. It contributed a small, elegant language design with a well-
supported implementation, which was adopted in many universities
and undoubtedly helped encourage the spread of functional pro-
gramming in university curricula. Beyond academia, the useof Mi-
randa in several large projects (Major and Turcotte, 1991; Page and
Moe, 1993) demonstrated the industrial potential of a lazy func-
tional language. Miranda is still in use today: it is still taught in
some institutions, and the implementations for Linux and Solaris
(now free) continue to be downloaded. Turner’s efforts madea per-
manent and valuable contribution to the development of interest in
the subject in general, paving the way for Haskell a few yearslater.

Part II

Technical Contributions

4. Syntax
The phrase “syntax is not important” is often heard in discussions
about programming languages. In fact, in the 1980s this phrase was
heard more often than it is today, partly because there was somuch
interest at the time in developing the theory behind, and emphasis-
ing the importance of, theformal semanticsof programming lan-
guages, which was a relatively new field in itself. Many program-
ming language researchers considered syntax to be the trivial part
of language design, and semantics to be “where the action was.”

Despite this, the Haskell Committee worked very hard—meaning it
spent endless hours—on designing (and arguing about) the syntax
of Haskell. It wasn’t so much that we were boldly bucking the trend,
or that the phrase “syntax is important” was a new retro-phrase that
became part of our discourse, but rather that, for better or worse, we
found that syntax design could be not only fun, but an obsession.
We also found that syntax, being the user interface of a language,
could become very personal. There is no doubt that some of our
most heated debates were over syntax, not semantics.

In the end, was it worth it? Although not an explicit goal, oneof the
most pleasing consequences of our effort has been comments heard
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many times over the years that “Haskell is a pretty language.” For
some reason, many people think that Haskell programs look nice.
Why is that? In this section we give historical perspectiveson many
of the syntactic language features that we think contributeto this
impression. Further historical details, including some ideas consid-
ered and ultimately rejected, may be found in Hudak’sComputing
Surveysarticle (Hudak, 1989).

4.1 Layout

Most imperative languages use a semicolon to separate sequential
commands. In a language without side effects, however, the notion
of sequencing is completely absent. There is still the need to sep-
arate declarations of various kinds, but the feeling of the Haskell
Committee was that we should avoid the semicolon and its sequen-
tial, imperative baggage.

Exploiting the physical layout of the program text is a simple and
elegant way to avoid syntactic clutter. We were familiar with the
idea, in the form of the “offside rule” from our use of Turner’s lan-
guages SASL (Turner, 1976) and Miranda (Turner, 1986), although
the idea goes back to Christopher Strachey’s CPL (Barron et al.,
1963), and it was also featured in ISWIM (Landin, 1966).

The layout rules needed to be very simple, otherwise users would
object, and we explored many variations. We ended up with a de-
sign that differed from our most immediate inspiration, Miranda,
in supporting larger function definitions with less enforced inden-
tation. Although we felt that good programming style involved
writing small, short function definitions, in practice we expected
that programmers would also want to write fairly large function
definitions—and it would be a shame if layout got in the way. So
Haskell’s layout rules are considerably more lenient than Miranda’s
in this respect. Like Miranda, we provided a way for the user to
override implicit layout selectively, in our case by using explicit
curly braces and semicolons instead. One reason we thought this
was important is that we expected people to write programs that
generated Haskell programs, and we thought it would be easier to
generate explicit separators than layout.

Influenced by these constraints and a desire to “do what the pro-
grammer expects”, Haskell evolved a fairly complex layout rule—
complex enough that it was formally specified for the first time
in the Haskell 98 Report. However, after a short adjustment pe-
riod, most users find it easy to adopt a programming style thatfalls
within the layout rules, and rarely resort to overriding them2.

4.2 Functions and function application

There are lots of ways to define functions in Haskell—after all, it is
a functional language—but the ways are simple and all fit together
in a sensible manner.

Currying Following a tradition going back to Frege, a function of
two arguments may be represented as a function of one argument
that itself returns a function of one argument. This tradition was
honed by Moses Schönfinkel and Haskell Curry and came to be
calledcurrying.

Function application is denoted by juxtaposition and associates to
the left. Thus,f x y is parsed(f x) y. This leads to concise and
powerful code. For example, to square each number in a list we
writemap square [1,2,3], while to square each number in a list
of lists we writemap (map square) [[1,2],[3]].

Haskell, like many other languages based on lambda calculus,
supports both curried and uncurried definitions:

2 The same is true of Miranda users.

hyp :: Float -> Float -> Float
hyp x y = sqrt (x*x + y*y)

hyp :: (Float, Float) -> Float
hyp (x,y) = sqrt (x*x + y*y)

In the latter, the function is viewed as taking a single argument,
which is a pair of numbers. One advantage of currying is that it
is often more compact:f x y contains three fewer lexemes than
f(x,y).

Anonymous functions The syntax for anonymous functions,
\x -> exp, was chosen to resemble lambda expressions, since
the backslash was the closest single ASCII character to the Greek
letter λ. However, “->” was used instead of a period in order to
reserve the period for function composition.

Prefix operators Haskell has only one prefix operator: arithmetic
negation. The Haskell Committee in fact did not wantany prefix
operators, but we couldn’t bring ourselves to force users towrite
something likeminus 42 or ~42 for the more conventional-42.
Nevertheless, the dearth of prefix operators makes it easierfor
readers to parse expressions.

Infix operators The Haskell Committee wanted expressions to
look as much like mathematics as possible, and thus from day one
we bought into the idea that Haskell would have infix operators.3

It was also important to us that infix operators be definable by
the user, including declarations of precedence and associativity.
Achieving all this was fairly conventional, but we also defined
the following simple relationship between infix application and
conventional function application: the formeralways binds less
tightly than the latter. Thusf x + g y never needs parentheses,
regardless of what infix operator is used. This design decision
proved to be a good one, as it contributes to the readability of
programs. (Sadly, this simple rule is not adhered to by@-patterns,
which bind more tightly than anything; this was probably a mistake,
although@-patterns are not used extensively enough to cause major
problems.)

Sections Although a commitment to infix operators was made
quite early, there was also the feeling that all values in Haskell
should be “first class”—especially functions. So there was con-
siderable concern about the fact that infix operators were not, by
themselves, first class, a problem made apparent by considering
the expressionf + x. Does this mean the functionf applied to
two arguments, or the function+ applied to two arguments?

The solution to this problem was to use a generalised notion of
sections, a notation that first appeared in David Wile’s disserta-
tion (Wile, 1973) and was then disseminated via IFIP WG2.1—
among others to Bird, who adopted it in his work, and Turner,
who introduced it into Miranda. A section is a partial application
of an infix operator to no arguments, the left argument, or theright
argument—and by surrounding the result in parentheses, onethen
has a first-class functional value. For example, the following equiv-
alences hold:

(+) = \x y -> x+y
(x+) = \y -> x+y
(+y) = \x -> x+y

Being able to partially apply infix operators is consistent with
being able to partially apply curried functions, so this wasa happy
solution to our problem.

3 This is in contrast to the Scheme designers, who consistently used prefix
application of functions and binary operators (for example, (+ x y)),
instead of adopting mathematical convention.
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(Sections did introduce one problem though: Recall that Haskell
has only one prefix operator, namely negation. So the question
arises, what is the meaning of(-42)? The answer is negative
42! In order to get the function\x-> x-42 one must write either
\x-> x-42, or (subtract 42), wheresubtract is a predefined
function in Haskell. This “problem” with sections was viewed
more as a problem with prefix operators, but as mentioned earlier
the committee decided not to buck convention in its treatment of
negation.)

Once we had sections, and in particular a way to convert infix
operators into ordinary functional values, we then asked ourselves
why we couldn’t go the other way. Could we design a mechanism
to convert an ordinary function into an infix operator? Our simple
solution was to enclose a function identifier in backquotes.For
example,x ‘f‘ y is the same asf x y. We liked the generality
that this afforded, as well as the ability to use “words” as infix
operators. For example, we felt that list membership, say, was more
readable when written asx ‘elem‘ xs rather thanelem x xs.
Miranda used a similar notation,x $elem xs, taken from Art
Evans’ PAL (Evans, 1968).

4.3 Namespaces and keywords

Namespaces were a point of considerable discussion in the Haskell
Committee. We wanted the user to have as much freedom as possi-
ble, while avoiding any form of ambiguity. So we carefully defined
a set of lexemes for each namespace that wereorthogonalwhen
they needed to be, andoverlappedwhen context was sufficient to
distinguish their meaning. As an example of orthogonality,we de-
signed normal variables, infix operators, normal data constructors,
and infix data constructors to be mutually exclusive. As an exam-
ple of overlap, capitalised names can, in the same lexical scope,
refer to a type constructor, a data constructor,and a module, since
whenever the nameFoo appears, it is clear from context to which
entity it is referring. For example, it is quite common to declare a
single-constructor data type like this:

data Vector = Vector Float Float

Here,Vector is the name of the data type, and the name of the
single data constructor of that type.

We adopted from Miranda the convention that data constructors are
capitalised while variables are not, and added a similar convention
for infix constructors, which in Haskell must start with a colon. The
latter convention was chosen for consistency with our use (adopted
from SASL, KRC, and Miranda) of a single colon: for the list
“cons” operator. (The choice of “:” for cons and “::” for type
signatures, by the way, was a hotly contested issue (ML does the
opposite) and remains controversial to this day.)

As a final comment, a small contingent of the Haskell Committee
argued that shadowing of variables shouldnot be allowed, because
introducing a shadowed name might accidentally capture a variable
bound in an outer scope. But outlawing shadowing is inconsistent
with alpha renaming—it means that you must know the bound
names of the inner scope in order to choose a name for use in an
outer scope. So, in the end, Haskell allowed shadowing.

Haskell has 21 reserved keywords that cannot be used as names
for values or types. This is a relatively low number (Erlang has 28,
OCaml has 48, Java has 50, C++ has 63—and Miranda has only
10), and keeping it low was a priority of the Haskell Committee.
Also, we tried hard to avoid keywords (such as “as”) that might
otherwise be useful variable names.

4.4 Declaration style vs. expression style

As our discussions evolved, it became clear that there were two
different styles in which functional programs could be written:
“declaration style” and “expression style”. For example, here is
the filter function written in both styles4:

filter :: (a -> Bool) -> [a] -> [a]

-- Declaration style
filter p [] = []
filter p (x:xs) | p x = x : rest

| otherwise = rest
where
rest = filter p xs

-- Expression style
filter = \p -> \xs ->

case xs of
[] -> []
(x:xs) -> let

rest = filter p xs
in if (p x)

then x : rest
else rest

The declaration style attempts, so far as possible, to definea func-
tion by multiple equations, each of which uses pattern matching
and/or guards to identify the cases it covers. In contrast, in the ex-
pression style a function is built up by composing expressions to-
gether to make bigger expressions. Each style is characterised by a
set of syntactic constructs:

Declaration style Expression-style
where clause let expression
Function arguments on left hand side Lambda abstraction
Pattern matching in function definitions case expression
Guards on function definitions if expression

The declaration style was heavily emphasised in Turner’s languages
KRC (which introduced guards for the first time) and Miranda
(which introduced a where clause scoping over several guarded
equations,including the guards). The expression style dominates
in other functional languages, such as Lisp, ML, and Scheme.

It took some while to identify the stylistic choice as we havedone
here, but once we had done so, we engaged in furious debate about
which style was “better.” An underlying assumption was thatif
possible there should be “just one way to do something,” so that,
for example, having bothlet andwhere would be redundant and
confusing.

In the end, we abandoned the underlying assumption, and pro-
vided full syntactic support for both styles. This may seem like
a classic committee decision, but it is one that the present authors
believe was a fine choice, and that we now regard as a strength
of the language. Different constructs have different nuances, and
real programmers do in practice employ bothlet and where,
both guards and conditionals, both pattern-matching definitions and
case expressions—not only in the same program but sometimes in
the same function definition. It is certainly true that the additional
syntactic sugar makes the language seem more elaborate, butit is a
superficial sort of complexity, easily explained by purely syntactic
transformations.

4 The example is a little contrived. One might argue that the code would be
less cluttered (in both cases) if one eliminated thelet or where, replacing
rest with filter p xs.
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Two small but important matters concern guards. First, Miranda
placed guards on the far right-hand side of equations, thus resem-
bling common notation used in mathematics, thus:

gcd x y = x, if x=y
= gcd (x-y) y, if x>y
= gcd x (y-x), otherwise

However, as mentioned earlier in the discussion of layout, the
Haskell Committee did not buy into the idea that programmers
should write (or feel forced to write)short function definitions, and
placing the guard on the far right of alongdefinition seemed like a
bad idea. So, we moved them to the left-hand side of the definition
(seefilter andf above), which had the added benefit of placing
the guard right next to the patterns on formal parameters (which
logically made more sense), and in a place more suggestive of
the evaluation order (which builds the right operational intuitions).
Because of this, we viewed our design as an improvement over
conventional mathematical notation.

Second, Haskell adopted from Miranda the idea that awhere clause
is attached to adeclaration, not an expression, and scopes over
the guards as well as the right-hand sides of the declarations. For
example, in Haskell one can write:

firstSat :: (a->Bool) -> [a] -> Maybe a
firstSat p xs | null xps = Nothing

| otherwise = Just xp
where
xps = filter p xs
xp = head xps

Here,xps is used in a guard as well as in the binding forxp. In
contrast, alet binding is attached to anexpression, as can be seen
in the second definition offilter near the beginning of this sub-
section. Note also thatxp is defined only in the second clause—but
that is fine since the bindings in thewhere clause are lazy.

4.5 List comprehensions

List comprehensions provide a very convenient notation formaps,
filters, and Cartesian products. For example,

[ x*x | x <- xs ]

returns the squares of the numbers in the listxs, and

[ f | f <- [1..n], n ‘mod‘ f == 0 ]

returns a list of the factors of n, and

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = [ y | x <- xs, y <- f x ]

applies a functionf to each element of a listxs, and concatenates
the resulting lists. Notice that each elementx chosen fromxs is
used to generate a new list(f x) for the second generator.

The list comprehension notation was first suggested by John Dar-
lington when he was a student of Rod Burstall. The notation was
popularised—and generalised to lazy lists—by David Turner’s use
of it in KRC, where it was called a “ZF expression” (named after
Zermelo-Fraenkel set theory). Turner put this notation to effective
use in his paper “The semantic elegance of applicative languages”
(Turner, 1981). Wadler introduced the name “list comprehension”
in his paper “How to replace failure by a list of successes” (Wadler,
1985).

For some reason, list comprehensions seem to be more popularin
lazy languages; for example they are found in Miranda and Haskell,
but not in SML or Scheme. However, they are present in Erlang and
more recently have been added to Python, and there are plans to add
them to Javascript as array comprehensions.

4.6 Comments

Comments provoked much discussion among the committee, and
Wadler later formulated a law to describe how effort was allotted
to various topics: semantics is discussed half as much as syntax,
syntax is discussed half as much as lexical syntax, and lexical
syntax is discussed half as much as the syntax of comments. This
was an exaggeration: a review of the mail archives shows that
well over half of the discussion concerned semantics, and infix
operators and layout provoked more discussion than comments.
Still, it accurately reflected that committee members held strong
views on low-level details.

Originally, Haskell supported two commenting styles. Depending
on your view, this was either a typical committee decision, or a
valid response to a disparate set of needs. Short comments begin
with a double dash-- and end with a newline; while longer com-
ments begin with{- and end with-}, and can be nested. The longer
form was designed to make it easy to comment out segments of
code, including code containing comments.

Later, Haskell added support for a third convention, literate com-
ments, which first appeared in OL at the suggestion of Richard
Bird. (Literate comments also were later adopted by Miranda.)
Bird, inspired by Knuth’s work on “literate programming” (Knuth,
1984), proposed reversing the usual comment convention: lines of
code, rather than lines ofcomment, should be the ones requiring
a special mark. Lines that were not comments were indicated by
a greater-than sign> to the left. For obvious reasons, these non-
comment indicators came to be called ‘Bird tracks’.

Haskell later supported a second style of literate comment,where
code was marked by\begin{code} and\end{code} as it is in
Latex, so that the same file could serve both as source for a typeset
paper and as an executable program.

5. Data types and pattern matching
Data types and pattern matching are fundamental to most modern
functional languages (with the notable exception of Scheme). The
inclusion of basic algebraic types was straightforward, but interest-
ing issues arose for pattern matching, abstract types, tuples, new
types, records,n+k patterns, and views.

The style of writing functional programs as a sequence of equa-
tions with pattern matching over algebraic types goes back at least
to Burstall’s work on structural induction (Burstall, 1969), and
his work with his student Darlington on program transformation
(Burstall and Darlington, 1977).

Algebraic types as a programming language feature first appeared
in Burstall’s NPL (Burstall, 1977) and Burstall, MacQueen,and
Sannella’s Hope (Burstall et al., 1980). They were absent from the
original ML (Gordon et al., 1979) and KRC (Turner, 1982), but
appeared in their successors Standard ML (Milner et al., 1997) and
Miranda (Turner, 1986). Equations with conditional guardswere
introduced by Turner in KRC (Turner, 1982).

5.1 Algebraic types

Here is a simple declaration of an algebraic data type and a function
accepting an argument of the type that illustrates the basicfeatures
of algebraic data types in Haskell.

data Maybe a = Nothing | Just a

mapMaybe :: (a->b) -> Maybe a -> Maybe b
mapMaybe f (Just x) = Just (f x)
mapMaybe f Nothing = Nothing
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The data declaration declaresMaybe to be a data type, with two
data constructorsNothing and Just. The values of theMaybe
type take one of two forms: eitherNothing or (Just x). Data
constructors can be used both inpattern-matching, to decompose
a value ofMaybe type, and inan expression, to build a value of
Maybe type. Both are illustrated in the definition ofmapMaybe.

The use of pattern matching against algebraic data types greatly
increases readability. Here is another example, this time defining a
recursive data type of trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

size :: Tree a -> Int
size (Leaf x) = 1
size (Branch t u) = size t + size u + 1

Haskell took from Miranda the notion of defining algebraic types as
a ‘sum of products’. In the above, a tree is either a leaf or a branch (a
sum with two alternatives), a leaf contains a value (a trivial product
with only one field), and a branch contains a left and right subtree
(a product with two fields). In contrast, Hope and Standard ML
separated sums (algebraic types) and products (tuple types); in the
equivalent definition of a tree, a branch would take one argument
which was itself a tuple of two trees.

In general, an algebraic type specifies a sum of one or more alter-
natives, where each alternative is a product of zero or more fields. It
might have been useful to permit a sum of zero alternatives, which
would be a completely empty type, but at the time the value of such
a type was not appreciated.

Haskell also took from Miranda the rule that constructor names
always begin with a capital, making it easy to distinguish construc-
tors (like Leaf andBranch) from variables (likex, t, andu). In
Standard ML, it is common to use lower case for both; if a pat-
tern consists of a single identifier it can be hard to tell whether this
is a variable (which will match anything) or a constructor with no
arguments (which matches only that constructor).

Haskell further extended this rule to apply to type constructors (like
Tree) and type variables (likea). This uniform rule was unusual.
In Standard ML type variables were distinguished by starting with
a tick (e.g.,tree ’a), and in Miranda type variables were written
as a sequence of one or more asterisks (e.g.,tree *).

5.2 Pattern matching

The semantics of pattern matching in lazy languages is more com-
plex than in strict languages, because laziness means that whether
one chooses to first match against a variable (doesn’t force evalu-
ation) or a constructor (does force evaluation) can change the se-
mantics of a program, in particular, whether or not the program
terminates.

In SASL, KRC, Hope, SML, and Miranda, matching against equa-
tions is in order from top to bottom, with the first matching equation
being used. Moreover in SASL, KRC, and Miranda, matching is
from left to right within each left-hand-side—which is important in
a lazy language, since as soon as a non-matching pattern is found,
matching proceeds to the next equation, potentially avoiding non-
termination or an error in a match further to the right. Eventually,
these choices were made for Haskell as well, after considering at
length and rejecting some other possibilities:

• Tightest match, as used in Hope+ (Field et al., 1992).

• Sequential equations, as introduced by Huet and Levy (Huet
and Levy, 1979).

• Uniform patterns, as described by Wadler in Chapter 5 of Pey-
ton Jones’s textbook (Peyton Jones, 1987).

Top-to-bottom, left-to-right matching was simple to implement, fit
nicely with guards, and offered greater expressiveness compared to
the other alternatives. But the other alternatives had a semantics in
which the order of equations did not matter, which aids equational
reasoning (see (Hudak, 1989) for more details). In the end, it was
thought better to adopt the more widely used top-to-bottom design
than to choose something that programmers might find limiting.

5.3 Abstract types

In Miranda, abstract data types were supported by a special lan-
guage construct,abstype:

abstype stack * == [*]
with push :: * -> stack * -> stack *

pop :: stack * -> *
empty :: stack *
top :: stack * -> *
isEmpty :: stack * -> bool

push x xs = x:xs
pop (x:xs) = xs
empty = []
top (x:xs) = x
isEmpty xs = xs = []

Here the typesstack * and[*] are synonyms within the defini-
tions of the named functions, but distinguished everywhereelse.

In Haskell, instead of a special construct, the module system is used
to support data abstraction. One constructs an abstract data type
by introducing an algebraic type, and then exporting the type but
hiding its constructors. Here is an example:

module Stack( Stack, push, pop,
empty, top, isEmpty ) where

data Stack a = Stk [a]
push x (Stk xs) = Stk (x:xs)
pop (Stk (x:xs)) = Stk xs
empty = Stk []
top (Stk (x:xs)) = x
isEmpty (Stk xs) = null xs

Since the constructor for the data typeStack is hidden (the export
list would sayStack(Stk) if it were exposed), outside of this
module a stack can only be built from the operationspush, pop,
andempty, and examined withtop andisempty.

Haskell’s solution is somewhat cluttered by theStk constructors,
but in exchange an extra construct is avoided, and the types of the
operations can be inferred if desired. The most important point is
that Haskell’s solution allows one to give a different instance to a
type-class for the abstract type than for its representation:

instance Show Stack where
show s = ...

The Show instance forStack can be different from theShow in-
stance for lists, and there is no ambiguity about whether a given
subexpression is aStack or a list. It was unclear to us how to
achieve this effect withabstype.

5.4 Tuples and irrefutable patterns

An expression that diverges (or calls Haskell’serror function) is
considered to have the value “bottom”, usually written⊥, a value
that belongs to every type. There is an interesting choice tobe made
about the semantics of tuples: are⊥ and (⊥,⊥) distinct values?
In the jargon of denotational semantics, alifted tuple semantics
distinguishes the two values, while anunlifted semantics treats
them as the same value.

12-15



In an implementation, the two values will berepresenteddiffer-
ently, but under the unlifted semantics they must be indistinguish-
able to the programmer. The only way in which they might be dis-
tinguished is by pattern matching; for example:

f (x,y) = True

If this pattern match evaluatesf’s argument thenf ⊥ = ⊥, but
f (⊥,⊥) = True, thereby distinguishing the two values. One can
instead consider this definition to be equivalent to

f t = True
where

x = fst t
y = snd t

in which casef⊥ = True and the two values are indistinguishable.

This apparently arcane semantic point became a subject of great
controversy in the Haskell Committee. Miranda’s design identified
⊥ with (⊥,⊥), which influenced us considerably. Furthermore,
this identification made currying an exact isomorphism:

(a,b) -> c ∼= a -> b -> c

But there were a number of difficulties. For a start, should single-
constructor data types, such as

data Pair a b = Pair a b

share the same properties as tuples, with a semantic discontinuity
induced by adding a second constructor? We were also concerned
about the efficiency of this lazy form of pattern matching, and the
space leaks that might result. Lastly, the unlifted form of tuples is
essentially incompatible withseq—another controversial feature
of the language, discussed in Section 10.3—because parallel eval-
uation would be required to implementseq on unlifted tuples.

In the end, we decided to make both tuples and algebraic data types
have a lifted semantics, so that pattern matching always induces
evaluation. However, in a somewhat uneasy compromise, we also
reintroduced lazy pattern-matching, in the form of tilde-patterns,
thus:

g :: Bool -> (Int,Int) -> Int
g b ~(x,y) = if b then x+y else 0

The tilde “~” makes matching lazy, so that the pattern match for
(x,y) is performed only ifx or y is demanded; that is, in this
example, whenb is True. Furthermore, pattern matching inlet
andwhere clauses is always lazy, so thatg can also be written:

g x pr = if b then x+y else 0
where

(x,y) = pr

(This difference in the semantics of pattern matching between
let/where andcase/λ can perhaps be considered a wart on the
language design—certainly it complicates the language descrip-
tion.) All of this works uniformly when there is more than one
constructor in the data type:

h :: Bool -> Maybe Int -> Int
h b ~(Just x) = if b then x else 0

Here again,h evaluates its second argument only ifb is True.

5.5 Newtype

The same choice described above for tuples arose for any algebraic
type with one constructor. In this case, just as with tuples,there was
a choice as to whether or not the semantics should be lifted. From
Haskell 1.0, it was decided that algebraic types with a single con-
structor should have a lifted semantics. From Haskell 1.3 onwards

there was also a second way to introduce a new algebraic type with
a single constructor and a single component, with an unlifted se-
mantics. The main motivation for introducing this had to do with
abstract data types. It was unfortunate that the Haskell definition
of Stack given above forced the representation of stacks to be not
quite isomorphic to lists, as lifting added a new bottom value⊥ dis-
tinct fromStk ⊥. Now one could avoid this problem by replacing
the data declaration inStack above with the following declara-
tion.

newtype Stack a = Stk [a]

We can view this as a way to define a new type isomorphic to an
existing one.

5.6 Records

One of the most obvious omissions from early versions of Haskell
was the absence ofrecords, offering named fields. Given that
records are extremely useful in practice, why were they omitted?

The strongest reason seems to have been that there was no obvi-
ous “right” design. There are a huge number of record systems,
variously supporting record extension, concatenation, update, and
polymorphism. All of them have a complicating effect on the type
system (e.g., row polymorphism and/or subtyping), which was al-
ready complicated enough. This extra complexity seemed partic-
ularly undesirable as we became aware that type classes could be
used to encode at least some of the power of records.

By the time the Haskell 1.3 design was under way, in 1993, the user
pressure for named fields in data structures was strong, so the com-
mittee eventually adopted a minimalist design originally suggested
by Mark Jones: record syntax in Haskell 1.3 (and subsequently) is
simply syntactic sugar for equivalent operation on regularalgebraic
data types. Neither record-polymorphic operations nor subtyping
are supported.

This minimal design has left the field open for more sophisti-
cated proposals, of which the best documented is TRex (Gaster
and Jones, 1996) (Section 6.7). New record proposals continue to
appear regularly on the Haskell mailing list, along with ingenious
ways of encoding records using type classes (Kiselyov et al., 2004).

5.7 n+k patterns

An algebraic type isomorphic to the natural numbers can be defined
as follows:

data Nat = Zero | Succ Nat

This definition has the advantage that one can use pattern matching
in definitions, but the disadvantage that the unary representation
implied in the definition is far less efficient than the built-in repre-
sentation of integers. Instead, Haskell provides so-called n+k pat-
terns that provide the benefits of pattern matching without the loss
of efficiency. (Then+k pattern feature can be considered a special
case of aview(Wadler, 1987) (see Section 5.8) combined with con-
venient syntax.) Here is an example:

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

The patternn+k only matches a valuem if m ≥ k, and if it
succeeds it bindsn to m − k.

Patterns of the formn+k were suggested for Haskell by Wadler,
who first saw them in Gödel’s incompleteness proof (Gödel,1931),
the core of which is a proof-checker for logic, coded using recur-
sive equations in a style that would seem not unfamiliar to users
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of Haskell. They were earlier incorporated into Darlington’s NPL
(Burstall and Darlington, 1977), and (partially at Wadler’s instiga-
tion) into Miranda.

This seemingly innocuous bit of syntax provoked a great dealof
controversy. Some users consideredn+k patterns essential, because
they allowed function definition by cases over the natural numbers
(as infib above). But others worried that theInt type did not, in
fact, denote the natural numbers. Indeed, worse was to come:since
in Haskell the numeric literals (0, 1 etc) were overloaded, it seemed
only consistent thatfib’s type should be

fib :: Num a => a -> a

although the programmer is, as always, allowed to specify a less
general type, such asInt -> Int above. In Haskell, one can
perfectly well applyfib to matrices! This gave rise to a substantial
increase in the complexity of pattern matching, which now had
to invoke overloaded comparison and arithmetic operations. Even
syntactic niceties resulted:

n + 1 = 7

is a (function) definition of+, while

(n + 1) = 7

is a (pattern) definition ofn—so apparently redundant brackets
change the meaning completely!

Indeed, these complications led to the majority of the Haskell
Committee suggesting thatn+k patterns be removed. One of the
very few bits of horse-trading in the design of Haskell occurred
when Hudak, then Editor of the Report, tried to convince Wadler to
agree to removen+k patterns. Wadler said he would agree to their
removal only if some other feature went (we no longer remember
which). In the end,n+k patterns stayed.

5.8 Views

Wadler had noticed there was a tension between the convenience of
pattern matching and the advantages of data abstraction, and sug-
gestedviewsas a programming language feature that lessens this
tension. A view specifies an isomorphism between two data types,
where the second must be algebraic, and then permits constructors
of the second type to appear in patterns that match against the first
(Wadler, 1987). Several variations on this initial proposal have been
suggested, and Chris Okasaki (Okasaki, 1998b) provides an excel-
lent review of these.

The original design of Haskell included views, and was basedon
the notion that the constructors and views exported by a module
should be indistinguishable. This led to complications in export
lists and derived type classes, and by April 1989 Wadler was ar-
guing that the language could be simplified by removing views.

At the time views were removed, Peyton Jones wanted to add views
to an experimental extension of Haskell, and a detailed proposal
to include views in Haskell 1.3 was put forward by Burton and
others (Burton et al., 1996). But views never made it back into
the language nor appeared among the many extensions available
in some implementations.

There is some talk of including views or similar features in
Haskell′, a successor to Haskell now under discussion, but they
are unlikely to be included as they do not satisfy the criterion of
being “tried and true”.

6. Haskell as a type-system laboratory
Aside from laziness, type classes are undoubtedly Haskell’s most
distinctive feature. They were originally proposed early in the de-
sign process, by Wadler and Blott (Wadler and Blott, 1989), as a

principled solution to a relatively small problem (operator over-
loading for numeric operations and equality). As time went on, type
classes began to be generalised in a variety of interesting and sur-
prising ways, some of them summarised in a 1997 paper “Type
classes: exploring the design space” (Peyton Jones et al., 1997).

An entirely unforeseen development—perhaps encouraged bytype
classes—is that Haskell has become a kind of laboratory in which
numerous type-system extensions have been designed, imple-
mented, and applied. Examples include polymorphic recursion,
higher-kinded quantification, higher-rank types, lexically scoped
type variables, generic programming, template meta-programming,
and more besides. The rest of this section summarises the historical
development of the main ideas in Haskell’s type system, beginning
with type classes.

6.1 Type classes

The basic idea of type classes is simple enough. Consider equality,
for example. In Haskell we may write

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

instance Eq Int where
i1 == i2 = eqInt i1 i2
i1 /= i2 = not (i1 == i2)

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = (x == y) && (xs == ys)
xs /= ys = not (xs == ys)

member :: Eq a => a -> [a] -> Bool
member x [] = False
member x (y:ys) | x==y = True

| otherwise = member x ys

In the instance forEq Int, we assume thateqInt is a primi-
tive function defining equality at typeInt. The type signature for
member uses a form of bounded quantification: it declares that
member has typea -> [a] -> Bool, for any typea that is an
instance of the classEq. A class declaration specifies the meth-
ods of the class (just two in this case, namely(==) and(/=)) and
their types. A type is made into an instance of the class usingan
instance declaration, which provides an implementation for each
of the class’s methods, at the appropriate instance type.

A particularly attractive feature of type classes is that they can
be translated into so-called “dictionary-passing style” by a type-
directed transformation. Here is the translation of the above code:

data Eq a = MkEq (a->a->Bool) (a->a->Bool)
eq (MkEq e _) = e
ne (MkEq _ n) = n

dEqInt :: Eq Int
dEqInt = MkEq eqInt (\x y -> not (eqInt x y))
dEqList :: Eq a -> Eq [a]
dEqList d = MkEq el (\x y -> not (el x y))

where el [] [] = True
el (x:xs) (y:ys) = eq d x y && el xs ys
el _ _ = False

member :: Eq a -> a -> [a] -> Bool
member d x [] = False
member d x (y:ys) | eq d x y = True

| otherwise = member d x ys
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Theclass declaration translates to adata type declaration, which
declares adictionary for Eq, that is, a record of its methods. The
functionseq andne select the equality and inequality method from
this dictionary. Themember function takes a dictionary parameter
of typeEq a, corresponding to theEq a constraint in its original
type, and performs the membership test by extracting the equal-
ity method from this dictionary usingeq. Finally, aninstance
declaration translates to a function that takes some dictionaries and
returns a more complicated one. For example,dEqList takes a dic-
tionary forEq a and returns a dictionary forEq [a].

Once type classes were adopted as part of the language design, they
were immediately applied to support the following main groups
of operations: equality (Eq) and ordering (Ord); converting values
to and from strings (Read and Show); enumerations (Enum); nu-
meric operations (Num, Real, Integral, Fractional, Floating,
RealFrac andRealFloat); and array indexing (Ix). The rather
daunting collection of type classes used to categorise the numeric
operations reflected a slightly uneasy compromise between alge-
braic purity (which suggested many more classes, such asRing
andMonoid) and pragmatism (which suggested fewer).

In most statically typed languages, the type system checks consis-
tency, but one can understand how the program willexecutewithout
considering the types. Not so in Haskell: the dynamic semantics of
the program necessarily depends on the way that its type-class over-
loading is resolved by the type checker. Type classes have proved to
be a very powerful and convenient mechanism but, because more is
happening “behind the scenes”, it is more difficult for the program-
mer to reason about what is going to happen.

Type classes were extremely serendipitous: they were invented at
exactly the right moment to catch the imagination of the Haskell
Committee, and the fact that the very first release of Haskellhad
thirteen type classes in its standard library indicates howrapidly
they became pervasive. But beyond that, they led to a wildly richer
set of opportunities than their initial purpose, as we discuss in the
rest of this section.

6.2 The monomorphism restriction

A major source of controversy in the early stages was the so-called
“monomorphism restriction.” Suppose thatgenericLength has
this overloaded type:

genericLength :: Num a => [b] -> a

Now consider this definition:

f xs = (len, len)
where
len = genericLength xs

It looks as iflen should be computed only once, but it can ac-
tually be computedtwice. Why? Because we can infer the type
len :: (Num a) => a; when desugared with the dictionary-
passing translation,len becomes afunction that is called once
for each occurrence oflen, each of which might used at a different
type.

Hughes argued strongly that it was unacceptable to silentlydupli-
cate computation in this way. His argument was motivated by a
program he had written that ran exponentially slower than heex-
pected. (This was admittedly with a very simple compiler, but we
were reluctant to make performance differences as big as this de-
pendent on compiler optimisations.)

Following much debate, the committee adopted the now-notorious
monomorphism restriction. Stated briefly, it says that a definition
that does not look like a function (i.e. has no arguments on the
left-hand side) should be monomorphic in any overloaded type

variables. In this example, the rule forceslen to be used at the
same type at both its occurrences, which solves the performance
problem. The programmer can supply an explicit type signature for
len if polymorphic behaviour is required.

The monomorphism restriction is manifestly a wart on the lan-
guage. It seems to bite every new Haskell programmer by giving
rise to an unexpected or obscure error message. There has been
much discussion of alternatives. The Glasgow Haskell Compiler
(GHC, Section 9.1) provides a flag:

-fno-monomorphism-restriction

to suppress the restriction altogether. But in all this time, no truly
satisfactory alternative has evolved.

6.3 Ambiguity and type defaulting

We rapidly discovered a second source of difficulty with type
classes, namelyambiguity. Consider the following classic exam-
ple:

show :: Show a => a -> String
read :: Read a => String -> a

f :: String -> String
f s = show (read s)

Here,show converts a value of any type in classShow to aString,
while read does does the reverse for any type in classRead.
So f appears well-typed... but the difficulty is there is nothing
to specify the type of the intermediate subexpression(read s).
Shouldread parse anInt from s, or aFloat, or even a value of
typeMaybe Int? There is nothing to say which should be chosen,
and the choice affects the semantics of the program. Programs like
this are said to beambiguousand are rejected by the compiler. The
programmer may then say which types to use by adding a type
signature, thus:

f :: String -> String
f s = show (read s :: Int)

However, sometimes rejecting the un-annotated program seems
unacceptably pedantic. For example, consider the expression

(show (negate 4))

In Haskell, the literal4 is short for(fromInteger (4::Integer)),
and the types of the functions involved are as follows:

fromInteger :: Num a => Integer -> a
negate :: Num a => a -> a
show :: Show a => a -> String

Again the expression is ambiguous, because it is not clear whether
the computation should be done at typeInt, or Float, or indeed
any other numeric type. Performing numerical calculationson con-
stants is one of the very first things a Haskell programmer does,
and furthermore there is more reason to expect numeric opera-
tions to behave in similar ways for different types than there is
for non-numeric operations. After much debate, we compromised
by adding anad hoc rule for choosing a particular default type.
When at least one of the ambiguous constraints is numeric butall
the constraints involve only classes from the Standard Prelude, then
the constrained type variable isdefaultable. The programmer may
specify a list of types in a special top-leveldefault declaration,
and these types are tried, in order, until one satisfies all the con-
straints.

This rule is clumsy but conservative: it tries to avoid making an
arbitrary choice in all but a few tightly constrained situations. In
fact, it seemstoo conservative for Haskell interpreters. Notably,
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consider the expression(show []). Are we trying toshow a list of
Char or a list ofInt, or what? Of course, it does not matter, since
the result is the same in all cases, but there is no way for the type
system to know that. GHC therefore relaxes the defaulting rules
further for its interactive version GHCi.

6.4 Higher-kinded polymorphism

The first major, unanticipated development in the type-class story
came when Mark Jones, then at Yale, suggested parameterising a
class over a typeconstructor instead of over atype, an idea he
calledconstructor classes(Jones, 1993). The most immediate and
persuasive application of this idea was to monads (discussed in
Section 7), thus:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Here, the type variablem has kind5 *->*, so that theMonad class
can be instantiated at a type constructor. For example, thisdeclara-
tion makes theMaybe type an instance ofMonad by instantiatingm
with Maybe, which has kind*->*:

data Maybe a = Nothing | Just a

instance Monad Maybe where
return x = Just x
Nothing >>= k = Nothing
Just x >>= k = k x

So, for example, instantiatingreturn’s type (a -> m a) with
m=Maybe gives the type(a -> Maybe a), and that is indeed the
type of thereturn function in theinstance declaration.

Jones’s paper appeared in 1993, the same year that monads became
popular for I/O (Section 7). The fact that type classes so directly
supported monads made monads far more accessible and popu-
lar; and dually, the usefulness of monadic I/O ensured the adoption
of higher-kinded polymorphism. However, higher-kinded polymor-
phism has independent utility: it is entirely possible, andoccasion-
ally very useful, to declare data types parameterised over higher
kinds, such as:

data ListFunctor f a = Nil | Cons a (f a)

Furthermore, one may need functions quantified over higher-
kinded type variables to process nested data types (Okasaki, 1999;
Bird and Paterson, 1999).

Type inference for a system involving higher kinds seems at first to
require higher-order unification, which is both much harderthan
traditional first-order unification and lacks most general unifiers
(Huet, 1975). However, by treating higher-kinded type construc-
tors as uninterpreted functions and not allowing lambda at the type
level, Jones’s paper (Jones, 1993) shows that ordinary first-order
unification suffices. The solution is a littlead hoc—for example,
the order of type parameters in a data-type declaration can matter—
but it has an excellent power-to-weight ratio. In retrospect, higher-
kinded quantification is a simple, elegant, and useful generalisa-
tion of the conventional Hindley-Milner typing discipline(Milner,
1978). All this was solidified into the Haskell 1.3 Report, which
was published in 1996.

6.5 Multi-parameter type classes

While Wadler and Blott’s initial proposal focused on type classes
with a single parameter, they also observed that type classes might

5 Kinds classify types just as types classify values. The kind* is pronounced
“type”, so if m has kind*->*, thenm is a type-level function mapping one
type to another.

be generalised to multiple parameters. They gave the following
example:

class Coerce a b where
coerce :: a -> b

instance Coerce Int Float where
coerce = convertIntToFloat

Whereas a single-parameter type class can be viewed as a predicate
over types (for example,Eq a holds whenevera is a type for
which equality is defined), a multi-parameter class can be viewed a
relation between types (for example,Coerce a b holds whenever
a is a subtype ofb).

Multi-parameter type classes were discussed in several early pa-
pers on type classes (Jones, 1991; Jones, 1992; Chen et al., 1992),
and they were implemented in Jones’s language Gofer (see Sec-
tion 9.3) in its first 1991 release. The Haskell Committee wasre-
sistant to including them, however. We felt that single-parameter
type classes were already a big step beyond our initial conservative
design goals, and they solved the problem we initially addressed
(overloading equality and numeric operations). Going beyond that
would be an unforced step into the dark, and we were anxious about
questions of overlap, confluence, and decidability of type inference.
While it was easy to definecoerce as above, it was less clear when
type inference would make it usable in practice. As a result,Haskell
98 retained the single-parameter restriction.

As time went on, however, user pressure grew to adopt multi-
parameter type classes, and GHC adopted them in 1997 (version
3.00). However, multi-parameter type classes did not really come
into their own until the advent of functional dependencies.

6.6 Functional dependencies

The trouble with multi-parameter type classes is that it is very
easy to write ambiguous types. For example, consider the following
attempt to generalise theNum class:

class Add a b r where
(+) :: a -> b -> r

instance Add Int Int Int where ...
instance Add Int Float Float where ...
instance Add Float Int Float where ...
instance Add Float Float Float where ...

Here we allow the programmer to add numbers of different types,
choosing the result type based on the input types. Alas, eventrivial
programs have ambiguous types. For example, consider:

n = x + y

wherex andy have typeInt. The difficulty is that the compiler
has no way to figure out the type ofn. The programmer intended
that if the arguments of(+) are bothInt then so is the result, but
that intent is implied only by theabsenceof an instance declaration
such as

instance Add Int Int Float where ...

In 2000, Mark Jones published “Type classes with functionalde-
pendencies”, which solves the problem (Jones, 2000). The idea is
to borrow a technique from the database community and declare an
explicit functional dependency between the parameters of aclass,
thus:

class Add a b r | a b -> r where ...

The “a b -> r” says that fixinga andb should fixr, resolving
the ambiguity.
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But that was not all. The combination of multi-parameter classes
and functional dependencies turned out to allow computation at the
type level. For example:

data Z = Z
data S a = S a

class Sum a b r | a b -> r

instance Sum Z b b
instance Sum a b r => Sum (S a) b (S r)

Here,Sum is a three-parameter class with no operations. The re-
lation Sum ta tb tc holds if the typetc is the Peano represen-
tation (at the type level) of the sum ofta andtb. By liberalising
other Haskell 98 restrictions on the form of instance declarations
(and perhaps thereby risking non-termination in the type checker),
it turned out that one could write arbitrary computations atthe type
level, in logic-programming style. This realisation gave rise to an
entire cottage industry of type-level programming that shows no
sign of abating (e.g., (Hallgren, 2001; McBride, 2002; Kiselyov
et al., 2004), as well as much traffic on the Haskell mailing list).
It also led to a series of papers suggesting more direct ways of ex-
pressing such programs (Neubauer et al., 2001; Neubauer et al.,
2002; Chakravarty et al., 2005b; Chakravarty et al., 2005a).

Jones’s original paper gave only an informal description offunc-
tional dependencies, but (as usual with Haskell) that did not stop
them from being implemented and widely used. These applications
have pushed functional dependencies well beyond their motivat-
ing application. Despite their apparent simplicity, functional depen-
dencies have turned out to be extremely tricky in detail, especially
when combined with other extensions such as local universaland
existential quantification (Section 6.7). Efforts to understand and
formalise the design space are still in progress (Glynn et al., 2000;
Sulzmann et al., 2007).

6.7 Beyond type classes

As if all this were not enough, type classes have spawned numer-
ous variants and extensions (Peyton Jones et al., 1997; Lämmel and
Peyton Jones, 2005; Shields and Peyton Jones, 2001). Furthermore,
even leaving type classes aside, Haskell has turned out to bea set-
ting in which advanced type systems can be explored and applied.
The rest of this section gives a series of examples; space precludes
a proper treatment of any of them, but we give citations for the
interested reader to follow up.

Existential data constructors A useful programming pattern is to
package up a value with functions over that value and existentially
quantify the package (Mitchell and Plotkin, 1985). Perry showed in
his dissertation (Perry, 1991b; Perry, 1991a) and in his implemen-
tation of Hope+ that this pattern could be expressed with almost no
new language complexity, simply by allowing a data constructor
to mention type variables in its arguments that do not appearin its
result. For example, in GHC one can say this:

data T = forall a. MkT a (a->Int)
f :: T -> Int
f (MkT x g) = g x

Here the constructorMkT has type∀a.a → (a → Int) → T;
note the occurrence ofa in the argument type but not the result.
A value of typeT is a package of a value of some (existentially
quantified) typeτ , and a function of typeτ → Int. The package
can be unpacked with ordinary pattern matching, as shown in the
definition off.

This simple but powerful idea was later formalised by Odersky
and Läufer (Läufer and Odersky, 1994). Läufer also described how

to integrate existentials with Haskell type classes (Läufer, 1996).
This extension was first implemented in hbc and is now a widely
used extension of Haskell 98: every current Haskell implementation
supports the extension.

Extensible records Mark Jones showed that type classes were
an example of a more general framework he calledqualified types
(Jones, 1994). With his student Benedict Gaster he developed a sec-
ond instance of the qualified-type idea, a system of polymorphic,
extensible records called TRex (Gaster and Jones, 1996; Gaster,
1998). The type qualification in this case is a collection oflacks
predicates, thus:

f :: (r\x, r\y)
=> Rec (x::Int, y::Int | r) -> Int

f p = (#x p) + (#y p)

The type should be read as follows:f takes an argument record with
anx andy fields, plus other fields described by the row-variabler,
and returns anInt. The lackspredicate(r\x, r\y) says thatr
should range only over rows that do not have anx or y field—
otherwise the argument typeRec (x::Int, y::Int | r)would
be ill formed. The selector#x selects thex field from its argument,
so (#x p) is what would more traditionally be writtenp.x. The
system can accommodate a full complement of polymorphic oper-
ations: selection, restriction, extension, update, and field renaming
(although not concatenation).

Just as each type-class constraint corresponds to a runtimeargu-
ment (a dictionary), so eachlackspredicate is also witnessed by a
runtime argument. The witness for the predicate(r\l) is the offset
in r at which a field labelledl would be inserted. Thusf receives
extra arguments that tell it where to find the fields it needs. The idea
of passing extra arguments to record-polymorphic functions is not
new (Ohori, 1995), but the integration with a more general frame-
work of qualified types is particularly elegant; the reader may find
a detailed comparison in Gaster’s dissertation (Gaster, 1998).

Implicit parameters A third instantiation of the qualified-type
framework, so-called “implicit parameters”, was developed by
Lewis, Shields, Meijer, and Launchbury (Lewis et al., 2000). Sup-
pose you want to write a pretty-printing library that is parame-
terised by the page width. Then each function in the library must
take the page width as an extra argument, and in turn pass it tothe
functions it calls:

pretty :: Int -> Doc -> String
pretty pw doc = if width doc > pw

then pretty2 pw doc
else pretty3 pw doc

These extra parameters are quite tiresome, especially whenthey
are only passed on unchanged. Implicit parameters arrange that
this parameter passing happens implicitly, rather like dictionary
passing, thus:

pretty :: (?pw::Int) => Doc -> String
pretty doc = if width doc > ?pw

then pretty2 doc
else pretty3 doc

The explicit parameter turns into an implicit-parameter type con-
straint; a reference to the page width itself is signalled by?pw; and
the calls topretty2 andpretty3 no longer pass an explicitpw pa-
rameter (it is passed implicitly instead). One way of understanding
implicit parameters is that they allow the programmer to make se-
lective use of dynamic (rather than lexical) scoping. (See (Kiselyov
and Shan, 2004) for another fascinating approach to the problem of
distributing configuration information such as the page width.)
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Polymorphic recursion This feature allows a function to be used
polymorphically in its own definition. It is hard toinfer the type of
such a function, but easy tocheckthat the definition is well typed,
given the type signature of the function. So Haskell 98 allows poly-
morphic recursion when (and only when) the programmer explic-
itly specifies the type signature of the function. This innovation is
extremely simple to describe and implement, and sometimes turns
out to be essential, for example when using nested data types(Bird
and Paterson, 1999).

Higher-rank types Once one starts to use polymorphic recursion,
it is not long before one encounters the need to abstract overa
polymorphic function. Here is an example inspired by (Okasaki,
1999):

type Sq v a = v (v a) -- Square matrix:
-- A vector of vectors

sq_index :: (forall a . Int -> v a -> a)
-> Int -> Int -> Sq v a -> a

sq_index index i j m = index i (index j m)

The functionindex is used insidesq_index at two different types,
so it must be polymorphic. Hence the first argument tosq_index is
a polymorphic function, andsq_index has a so-called rank-2 type.
In the absence of any type annotations, higher-rank types make type
inference undecidable; but a few explicit type annotationsfrom the
programmer (such as that forsq_index above) transform the type
inference problem into an easy one (Peyton Jones et al., 2007).

Higher-rank types were first implemented in GHC in 2000, in
a ratherad hoc manner. At that time there were two main mo-
tivations: one was to allow data constructors with polymorphic
fields, and the other was to allow therunST function to be de-
fined (Launchbury and Peyton Jones, 1995). However, once im-
plemented, another cottage industry sprang up offering examples
of their usefulness in practice (Baars and Swierstra, 2002;Lämmel
and Peyton Jones, 2003; Hinze, 2000; Hinze, 2001), and GHC’sim-
plementation has become much more systematic and general (Pey-
ton Jones et al., 2007).

Generalised algebraic data typesGADTs are a simple but far-
reaching generalisation of ordinary algebraic data types (Section 5).
The idea is to allow a data constructor’s return type to be specified
directly:

data Term a where
Lit :: Int -> Term Int
Pair :: Term a -> Term b -> Term (a,b)
..etc..

In a function that performs pattern matching onTerm, the pattern
match givestypeas well asvalue information. For example, con-
sider this function:

eval :: Term a -> a
eval (Lit i) = i
eval (Pair a b) = (eval a, eval b)
...

If the argument matchesLit, it must have been built with aLit
constructor, soa must beInt, and hence we may returni (anInt)
in the right-hand side. This idea is very well known in the type-
theory community (Dybjer, 1991). Its advent in the world of pro-
gramming languages (under various names) is more recent, but it
seems to have many applications, including generic programming,
modelling programming languages, maintaining invariantsin data
structures (e.g., red-black trees), expressing constraints in domain-
specific embedded languages (e.g. security constraints), and mod-
elling objects (Hinze, 2003; Xi et al., 2003; Cheney and Hinze,

2003; Sheard and Pasalic, 2004; Sheard, 2004). Type inference for
GADTs is somewhat tricky, but is now becoming better understood
(Pottier and Régis-Gianas, 2006; Peyton Jones et al., 2004), and
support for GADTs was added to GHC in 2005.

Lexically scoped type variablesIn Haskell 98, it is sometimes
impossible to write a type signature for a function, becausetype
signatures are alwaysclosed. For example:

prefix :: a -> [[a]] -> [[a]]
prefix x yss = map xcons yss

where
xcons :: [a] -> [a] -- BAD!
xcons ys = x : ys

The type signature forxcons is treated by Haskell 98 as speci-
fying the type∀a.[a] → [a], and so the program is rejected. To
fix the problem, some kind of lexically scoped type variablesare
required, so that “a” is bound byprefix and used in the signa-
ture forxcons. In retrospect, the omission of lexically scoped type
variables was a mistake, because polymorphic recursion and(more
recently) higher-rank types absolutely require type signatures. In-
terestingly, though, scoped type variables were not omitted after
fierce debate; on the contrary, they were barely discussed; we sim-
ply never realised how important type signatures would prove to
be.

There are no great technical difficulties here, although there is an
interesting space of design choices (Milner et al., 1997; Meijer and
Claessen, 1997; Shields and Peyton Jones, 2002; Sulzmann, 2003).

Generic programming A genericfunction behaves in a uniform
way on arguments of any data types, while having a few type-
specific cases. An example might be a function that capitalises all
the strings that are in a big data structure: the generic behaviour is
to traverse the structure, while the type-specific case is for strings.
In another unforeseen development, Haskell has served as the host
language for a remarkable variety of experiments in genericpro-
gramming, including: approaches that use pure Haskell 98 (Hinze,
2004); ones that require higher-rank types (Lämmel and Peyton
Jones, 2003; Lämmel and Peyton Jones, 2005); ones that require
a more specific language extension, such as PolyP (Jansson and
Jeuring, 1997), and derivable type classes (Hinze and Peyton Jones,
2000); and whole new language designs, such as Generic Haskell
(Löh et al., 2003). See (Hinze et al., 2006) for a recent survey of
this active research area.

Template meta-programming Inspired by the template meta-
programming of C++ and the staged type system of MetaML
(Taha and Sheard, 1997), GHC supports a form of type-safe meta-
programming (Sheard and Peyton Jones, 2002).

6.8 Summary

Haskell’s type system has developed extremely anarchically. Many
of the new features described above were sketched, implemented,
and applied well before they were formalised. This anarchy,which
would be unthinkable in the Standard ML community, has both
strengths and weaknesses. The strength is that the design space is
explored much more quickly, and tricky corners are often (but not
always!) exposed. The weakness is that the end result is extremely
complex, and programs are sometimes reduced to experimentsto
see what will and will not be acceptable to the compiler.

Some notable attempts have been made to bring order to this chaos.
Karl-Filip Faxen wrote a static semantics for the whole of Haskell
98 (Faxen, 2002). Mark Jones, who played a prominent role in sev-
eral of these developments, developed a theory ofqualified types, of
which type classes, implicit parameters, and extensible records are
all instances (Jones, 1994; Jones, 1995). More recently, hewrote
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a paper giving the complete code for a Haskell 98 type inference
engine, which is a different way to formalise the system (Jones,
1999). Martin Sulzmann and his colleagues have applied the the-
ory of constraint-handling rulesto give a rich framework to rea-
son about type classes (Sulzmann, 2006), including the subtleties
of functional dependencies (Glynn et al., 2000; Sulzmann etal.,
2007).

These works do indeed nail down some of the details, but the result
is still dauntingly complicated. The authors of the presentpaper
have the sense that we are still awaiting a unifying insight that will
not only explain but also simplify the chaotic world of type classes,
without throwing the baby out with the bath water.

Meanwhile, it is worth askingwhyHaskell has proved so friendly
a host language for type-system innovation. The following reasons
seem to us to have been important. On the technical side:

• The purity of the language removed a significant technical ob-
stacle to many type-system innovations, namely dealing with
mutable state.

• Type classes, and their generalisation to qualified types (Jones,
1994), provided a rich (albeit rather complex) framework into
which a number of innovations fitted neatly; examples include
extensible records and implicit parameters.

• Polymorphic recursion was in the language, so the idea that
every legal program should typecheck without type annotations
(a tenet of ML) had already been abandoned. This opens the
door to features for which unaided inference is infeasible.

But there were also nontechnical factors at work:

• The Haskell Committee encouraged innovation right from the
beginning and, far from exercising control over the language,
disbanded itself in 1999 (Section 3.7).

• The two most widely used implementations (GHC, Hugs) both
had teams that encouraged experimentation.

• Haskell has a smallish, and rather geeky, user base. New fea-
tures are welcomed, and even breaking changes are accepted.

7. Monads and input/output
Aside from type classes (discussed in Section 6),monadsare one
of the most distinctive language design features in Haskell. Monads
were not in the original Haskell design, because when Haskell was
born a “monad” was an obscure feature of category theory whose
implications for programming were largely unrecognised. In this
section we describe the symbiotic evolution of Haskell’s support
for input/output on the one hand, and monads on the other.

7.1 Streams and continuations

The story begins with I/O. The Haskell Committee was resolute in
its decision to keep the language pure—meaning no side effects—
so the design of the I/O system was an important issue. We did
not want to lose expressive power just because we were “pure,”
since interfacing to the real world was an important pragmatic
concern. Our greatest fear was that Haskell would be viewed as
a toy language because we did a poor job addressing this important
capability.

At the time, the two leading contenders for a solution to thisprob-
lem werestreamsand continuations. Both were understood well
enough theoretically, both seemed to offer considerable expressive-
ness, and both were certainly pure. In working out the details of
these approaches, we realised that in fact they were functionally
equivalent—that is, it was possible to completely model stream I/O
with continuations, and vice versa. Thus in the Haskell 1.0 Report,

we first defined I/O in terms of streams, but also included a com-
pletely equivalent design based on continuations.

It is worth mentioning that a third model for I/O was also discussed,
in which the state of the world is passed around and updated, much
as one would pass around and update any other data structure in a
pure functional language. This “world-passing” model was never a
serious contender for Haskell, however, because we saw no easy
way to ensure “single-threaded” access to the world state. (The
Clean designers eventually solved this problem through theuse
of “uniqueness types” (Achten and Plasmeijer, 1995; Barendsen
and Smetsers, 1996).) In any case, all three designs were consid-
ered, and Hudak and his student Sundaresh wrote a report describ-
ing them, comparing their expressiveness, and giving translations
between them during these deliberations (Hudak and Sundaresh,
1989). In this section we give a detailed account of the stream-
based and continuation-based models of I/O, and follow in Sec-
tion 7.2 with the monadic model of I/O that was adopted for Haskell
1.3 in 1996.

Stream-based I/O Using the stream-based model of purely func-
tional I/O, used by both Ponder and Miranda, a program is repre-
sented as a value of type:

type Behaviour = [Response] -> [Request]

The idea is that a program generates aRequest to the operating
system, and the operating system reacts with someResponse.
Lazy evaluation allows a program to generate a request priorto
processing any responses. A suitably rich set ofRequests and
Responses yields a suitably expressive I/O system. Here is a partial
definition of theRequest andResponse data types as defined in
Haskell 1.0:

data Request = ReadFile Name
| WriteFile Name String
| AppendFile Name String
| DeleteFile Name
| ...

data Response = Success
| Str String
| Failure IOError
| ...

type Name = String

As an example, Figure 3 presents a program, taken from the Haskell
1.0 Report, that prompts the user for the name of a file, echoesthe
filename as typed by the user, and then looks up and displays the
contents of the file on the standard output. Note the relianceon lazy
patterns (indicated by~) to assure that the response is not “looked
at” prior to the generation of the request.

With this treatment of I/O there was no need for any special-
purpose I/O syntax or I/O constructs. The I/O system was defined
entirely in terms of how the operating system interpreted a program
having the above type—that is, it was defined in terms of what re-
sponse the OS generated for each request. An abstract specification
of this behaviour was defined in the Appendix of the Haskell 1.0
Report, by giving a definition of the operating system as a function
that took as input an initial state and a collection of Haskell pro-
grams and used a single nondeterministic merge operator to capture
the parallel evaluation of the multiple Haskell programs.

Continuation-based I/O Using the continuation-based model of
I/O, a program was still represented as a value of typeBehaviour,
but instead of having the user manipulate the requests and re-
sponses directly, a collection oftransactionswere defined that cap-
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tured the effect of each request/response pair in a continuation-
passing style. Transactions were just functions. For each request
(a constructor, such asReadFile) there corresponded a transaction
(a function, such asreadFile).

The requestReadFile name induced either a failure response
“Failure msg” or success response “Str contents” (see above).
So the corresponding transactionreadFile name accepted two
continuations, one for failure and one for success.

type Behaviour = [Response] -> [Request]
type FailCont = IOError -> Behaviour
type StrCont = String -> Behaviour

One can define this transaction in terms of streams as follows.

readFile :: Name -> FailCont -> StrCont -> Behaviour
readFile name fail succ ~(resp:resps) =

= ReadFile name :
case resp of

Str val -> succ val resps
Failure msg -> fail msg resps

If the transaction failed, the failure continuation would be applied
to the error message; if it succeeded, the success continuation
would be applied to the contents of the file. In a similar way, it
is straightforward to define each of the continuation-basedtransac-
tions in terms of the stream-based model of I/O.

Using this style of I/O, the example given earlier in stream-based
I/O can be rewritten as shown in Figure 4. The code uses the
standard failure continuation,abort, and an auxiliary function
let. The use of a function calledlet reflects the fact thatlet
expressions were not in Haskell 1.0! (They appeared in Haskell
1.1.)

Although the two examples look somewhat similar, the continua-
tion style was preferred by most programmers, since the flow of
control was more localised. In particular, the pattern matching re-
quired by stream-based I/O forces the reader’s focus to jumpback
and forth between the patterns (representing the responses) and the
requests.

Above we take streams as primitive and define continuations in
terms of them. Conversely, with some cleverness it is also possi-
ble to take continuations as primitive and define streams in terms
of them (see (Hudak and Sundaresh, 1989), where the definition
of streams in terms of continuations is attributed to PeytonJones).
However, the definition of streams in terms of continuationswas
inefficient, requiring linear space and quadratic time in terms of
the number of requests issued, as opposed to the expected constant
space and linear time. For this reason, Haskell 1.0 defined streams
as primitive, and continuations in terms of them, even though con-
tinuations were considered easier to use for most purposes.

7.2 Monads

We now pause the story of I/O while we bringmonadsonto the
scene. In 1989, Eugenio Moggi published at LICS a paper on
the use of monads from category theory to describe features of
programming languages, which immediately attracted a great deal
of attention (Moggi, 1989; Moggi, 1991). Moggi used monads to
modularise the structure of a denotational semantics, systematising
the treatment of diverse features such as state and exceptions. But
a denotational semantics can be viewed as an interpreter written in
a functional language. Wadler recognised that the technique Moggi
had used to structure semantics could be fruitfully appliedto struc-
ture other functional programs (Wadler, 1992a; Wadler, 1992b). In
effect, Wadler used monads toexpressthe same programming lan-
guage features that Moggi used monads todescribe.

For example, say that you want to write a program to rename every
occurrence of a bound variable in a data structure representing a
lambda expression. This requires some way to generate a fresh
name every time a bound variable is encountered. In ML, you
would probably introduce a reference cell that contains a count,
and increment this count each time a fresh name is required. In
Haskell, lacking reference cells, you would probably arrange that
each function that must generate fresh names accepts an old value
of the counter and returns an updated value of the counter. This
is straightforward but tedious, and errors are easily introduced by
misspelling one of the names used to pass the current count into
or out of a function application. Using astate transformermonad
would let you hide all the “plumbing.” The monad itself would
be responsible for passing counter values, so there is no chance
to misspell the associated names.

A monad consists of a type constructorM and a pair of functions,
return and >>= (sometimes pronounced “bind”). Here are their
types:

return :: a -> M a
(>>=) :: M a -> (a -> M b) -> M b

One should read “M a” as the type of acomputationthat returns a
value of typea (and perhaps performs some side effects). Say that
m is an expression of typeM a andn is an expression of typeM b
with a free variablex of typea. Then the expression

m >>= (\x -> n)

has typeM b. This performs the computation indicated bym, binds
the value returned tox, and performs the computation indicated by
n. It is analogous to the expression

let x = m in n

in a language with side effects such as ML, except that the types
do not indicate the presence of the effects: in the ML version,
m has typea instead ofM a, and n has typeb instead ofM b.
Further, monads give quite a bit of freedom in how one defines the
operatorsreturn and>>=, while ML fixes a single built-in notion
of computation and sequencing.

Here are a few examples of the notions of side effects that onecan
define with monads:

• A state transformeris used to thread state through a program.
HereM a is ST s a, where s is the state type.

type ST s a = s -> (a,s)

A state transformer is a function that takes the old state (oftype
s) and returns a value (of typea) and the new state (of types).
For instance, to thread a counter through a program we might
takes to be integer.

• A state readeris a simplified state transformer. It accepts a state
that the computation may depend upon, but the computation
never changes the state. HereM a is SR s a, where s is the
state type.

type SR s a = s -> a

• An exceptionmonad either returns a value or raises an excep-
tion. HereM a is Exc e a, wheree is the type of the error
message.

data Exc e a = Exception e | OK a

• A continuation monad accepts a continuation. HereM a is
Cont r a, wherer is the result type of the continuation.

type Cont r a = (a -> r) -> r
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main :: Behaviour
main ~(Success : ~((Str userInput) : ~(Success : ~(r4 : _))))

= [ AppendChan stdout "enter filename\n",
ReadChan stdin,
AppendChan stdout name,
ReadFile name,
AppendChan stdout

(case r4 of
Str contents -> contents
Failure ioerr -> "can’t open file")

] where (name : _) = lines userInput

Figure 3. Stream-based I/O

main :: Behaviour
main = appendChan stdout "enter filename\n" abort (

readChan stdin abort (\userInput ->
letE (lines userInput) (\(name : _) ->
appendChan stdout name abort (
readFile name fail (\contents ->
appendChan stdout contents abort done)))))

where
fail ioerr = appendChan stdout "can’t open file" abort done

abort :: FailCont
abort err resps = []

letE :: a -> (a -> b) -> b
letE x k = k x

Figure 4. Continuation I/O

main :: IO ()
main = appendChan stdout "enter filename\n" >>

readChan stdin >>= \userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>
catch (readFile name >>= \contents ->

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 5. Monadic I/O

main :: IO ()
main = do appendChan stdout "enter filename\n"

userInput <- readChan stdin
let (name : _) = lines userInput
appendChan stdout name
catch (do contents <- readFile name

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 6. Monadic I/O usingdo notation
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• A list monad can be used to model nondeterministic computa-
tions, which return a sequence of values. HereM a is List a,
which is just the type of lists of values of typea.

type List a = [a]

• A parser monad can be used to model parsers. The input is
the string to be parsed, and the result is list of possible parses,
each consisting of the value parsed and the remaining unparsed
string. It can be viewed as a combination of the state trans-
former monad (where the state is the string being parsed) and
the list monad (to return each possible parse in turn). HereM a
is Parser a.

type Parser a = String -> [(a,String)]

Each of the above monads has corresponding definitions ofreturn
and>>=. There are three laws that these definitions should satisfy
in order to be a true monad in the sense defined by category
theory. These laws guarantee that composition of functionswith
side effects isassociativeand has anidentity(Wadler, 1992b). For
example, the latter law is this:

return x >>= f = f x

Each of the monads above has definitions ofreturn and>>= that
satisfy these laws, although Haskell provides no mechanismto
ensure this. Indeed, in practice some Haskell programmers use the
monadic types and programming patterns in situations wherethe
monad laws do not hold.

A monad is a kind of “programming pattern”. It turned out thatthis
pattern can be directly expressed in Haskell, using a type class, as
we saw earlier in Section 6.4:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The Monad class gives concrete expression to the mathematical
idea that any type constructor that has suitably typed unit and bind
operators is a monad. That concrete expression has direct practical
utility, because we can now write useful monadic combinators that
will work for anymonad. For example:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (m:ms) = m >>= \x ->

sequence ms >>= \ xs ->
return (x:xs)

The intellectual reuse of the idea of a monad is directly reflected
in actual code reuse in Haskell. Indeed, there are whole Haskell
libraries of monadic functions that work foranymonad. This happy
conjunction of monads and type classes gave the two a symbiotic
relationship: each made the other much more attractive.

Monads turned out to be very helpful in structuring quite a few
functional programs. For example, GHC’s type checker uses a
monad that combines a state transformer (representing the current
substitution used by the unifier), an exception monad (to indicate
an error if some type failed to unify), and a state reader monad
(to pass around the current program location, used when reporting
an error). Monads are often used in combination, as this example
suggests, and by abstracting one level further one can buildmonad
transformersin Haskell (Steele, 1993; Liang et al., 1995; Harrison
and Kamin, 1998). The Liang, Hudak, and Jones paper was the first
to show that a modular interpreter could be written in Haskell us-
ing monad transformers, but it required type class extensions sup-
ported only in Gofer (an early Haskell interpreter—see Section 9).
This was one of the examples that motivated a flurry of extensions
to type classes (see Section 6) and to the development of the monad

tranformer library. Despite the utility of monad transformers, mon-
ads do not compose in a nice, modular way, a research problem that
is still open (Jones and Duponcheel, 1994; Lüth and Ghani, 2002).

Two different forms of syntactic sugar for monads appeared
in Haskell at different times. Haskell 1.3 adopted Jones’s “do-
notation,” which was itself derived from John Launchbury’spa-
per on lazy imperative programming (Launchbury, 1993). Subse-
quently, Haskell 1.4 supported “monad comprehensions” as well
asdo-notation (Wadler, 1990a)—an interesting reversal, sincethe
comprehension notation was proposed beforedo-notation! Most
users preferred thedo-notation, and generalising comprehensions
to monads meant that errors in ordinary list comprehensionscould
be difficult for novices to understand, so monad comprehensions
were removed in Haskell 98.

7.3 Monadic I/O

Although Wadler’s development of Moggi’s ideas was not directed
towards the question of input/output, he and others at Glasgow soon
realised that monads provided an ideal framework for I/O. The
key idea is to treat a value of typeIO a as a “computation” that,
when performed, might perform input and output before delivering
a value of typea. For example,readFile can be given the type

readFile :: Name -> IO String

SoreadFile is a function that takes aName and returns a compu-
tation that, when performed, reads the file and returns its contents
as aString.

Figure 5 shows our example program rewritten using monads in
two forms. It makes use of the monad operators>>=, return, >>,
andcatch, which we discuss next. The first two are exactly as de-
scribed in the previous section, but specialised for theIO monad.
Soreturn x is the trivial computation of typeIO a (wherex::a)
that performs no input or output and returns the valuex. Simi-
larly, (>>=) is sequential composition;(m >>= k) is a compu-
tation that, when performed, performsm, appliesk to the result to
yield a computation, which it then performs. The operator(>>) is
sequential composition when we want to discard the result ofthe
first computation:

(>>) :: IO a -> IO b -> IO b
m >> n = m >>= \ _ -> n

The HaskellIO monad also supportsexceptions, offering two new
primitives:

ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

The computation(ioError e) fails, throwing exceptione. The
computation(catch m h) runs computationm; if it succeeds, then
its result is the result of thecatch; but if it fails, the exception is
caught and passed toh.

The same example program is shown once more, rewritten us-
ing Haskell’sdo-notation, in Figure 6. This notation makes (the
monadic parts of) Haskell programs appear much more imperative!

Haskell’s input/output interface isspecifiedmonadically. It can be
implementedusing continuations, thus:

type IO a = FailCont -> SuccCont a -> Behaviour

(The reader may like to write implementations ofreturn, (>>=),
catch and so on, using this definition ofIO.) However, it is also
possible to implement theIO monad in a completely different style,
without any recourse to a stream of requests and responses. The
implementation in GHC uses the following one:

type IO a = World -> (a, World)
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An IO computation is a function that (logically) takes the state of
the world, and returns a modified world as well as the return value.
Of course, GHC does not actually pass the world around; instead,
it passes a dummy “token,” to ensure proper sequencing of actions
in the presence of lazy evaluation, and performs input and output
as actual side effects! Peyton Jones and Wadler dubbed the result
“imperative functional programming” (Peyton Jones and Wadler,
1993).

The monadic approach rapidly dominated earlier models. Thetypes
are more compact, and more informative. For example, in the
continuation model we had

readFile :: Name -> FailCont -> StrCont -> Behaviour

The type is cluttered with success and failure continuations (which
must be passed by the programmer) and fails to show that the result
is aString. Furthermore, the types ofIO computations could be
polymorphic:

readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

These types cannot be written with a fixedRequest andResponse
type. However, the big advantage is conceptual. It is much easier
to think abstractly in terms of computations than concretely in
terms of the details of failure and success continuations. The monad
abstracts away from these details, and makes it easy to change
them in future. The reader may find a tutorial introduction tothe
IO monad, together with various further developments in (Peyton
Jones, 2001).

Syntax matters An interesting syntactic issue is worth pointing
out in the context of the development of Haskell’s I/O system. Note
in the continuation example in Figure 4 the plethora of parentheses
that tend to pile up as lambda expressions become nested. Since this
style of programming was probably going to be fairly common,
the Haskell Committee decided quite late in the design process
to change the precedence rules for lambda in the context of infix
operators, so that the continuation example could be written as
follows:

main :: Behaviour
main = appendChan stdout "enter filename\n" >>>

readChan stdin >>> \ userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>>
readFile name fail (\ contents ->
appendChan stdout contents abort done)

where
fail ioerr = appendChan stdout "can’t open file"

abort done

wheref >>> x = f abort x. Note the striking similarity of this
code to the monadic code in Figure 5. It can be made even more
similar by defining a suitablecatch function, although doing so
would be somewhat pedantic.

Although these two code fragments have a somewhat imperative
feel because of the way they are laid out, it was really the advent
of do-notation—not monads themselves—that made Haskell pro-
grams look more like conventional imperative programs (forbetter
or worse). This syntax seriously blurred the line between purely
functional programs and imperative programs, yet was heartily
adopted by the Haskell Committee. In retrospect it is worth ask-
ing whether this same (or similar) syntactic device could have been
used to make stream or continuation-based I/O look more natural.

7.4 Subsequent developments

Once theIO monad was established, it was rapidly developed in
various ways that were not part of Haskell 98 (Peyton Jones, 2001).
Some of the main ones are listed below.

Mutable state. From the very beginning it was clear that theIO
monad could also support mutable locations and arrays (Pey-
ton Jones and Wadler, 1993), using these monadic operations:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

An exciting and entirely unexpected development was Launch-
bury and Peyton Jones’s discovery that imperative computa-
tions could be securely encapsulated inside a pure function. The
idea was to parameterise a state monad with a type parameter
s that “infected” the references that could be generated in that
monad:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

The encapsulation was performed by a single constant,runST,
with a rank-2 type (Section 6.7):

runST :: (forall s. ST s a) -> a

A proof based on parametricity ensures that no references can
“leak” from one encapsulated computation to another (Launch-
bury and Peyton Jones, 1995). For the first time this offered
the ability to implement a function using an imperative algo-
rithm, with a solid guarantee that no side effects could acciden-
tally leak. The idea was subsequently extended to accommo-
date block-structured regions (Launchbury and Sabry, 1997),
and reused to support encapsulated continuations (Dybvig et al.,
2005).

Random numbers need a seed, and the Haskell 98Random library
uses theIO monad as a source of such seeds.

Concurrent Haskell (Peyton Jones et al., 1996) extends theIO
monad with the ability to fork lightweight threads, each of
which can perform I/O by itself (so that the language seman-
tics becomes, by design, nondeterministic). Threads can com-
municate with each other using synchronised, mutable loca-
tions called MVars, which were themselves inspired by the M-
structures of Id (Barth et al., 1991).

Transactional memory. The trouble with MVars is that programs
built using them are notcomposable; that is, it is difficult
to build big, correct programs by gluing small correct sub-
programs together, a problem that is endemic to all concurrent
programming technology.Software transactional memoryis
a recent and apparently very promising new approach to this
problem, and one that fits particularly beautifully into Haskell
(Harris et al., 2005).

Exceptions were built into theIO monad from the start—see the
use ofcatch above—but Haskell originally only supported a
single exception mechanism in purely functional code, namely
the functionerror, which was specified as bringing the entire
program to a halt. This behaviour is rather inflexible for real
applications, which might want to catch, and recover from, calls
to error, as well as pattern-match failures (which also call
error). The IO monad provides a way to achieve this goal
without giving up the simple, deterministic semantics of purely
functional code (Peyton Jones et al., 1999).

UnsafePerformIO Almost everyone who starts using Haskell
eventually asks “how do I getout of the IO monad?” Alas,
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unlikerunST, which safely encapsulates an imperative compu-
tation, there is no safe way to escape from theIO monad. That
does not stop programmers from wanting to do it, and occasion-
ally with some good reason, such as printing debug messages,
whose order and interleaving is immaterial. All Haskell imple-
mentations, blushing slightly, therefore provide:

unsafePerformIO :: IO a -> a

As its name implies, it is not safe, and its use amounts to a
promise by the programmer that it does not matter whether the
I/O is performed once, many times, or never; and that its relative
order with other I/O is immaterial. Somewhat less obviously, it
is possible to useunsafePerformIO to completely subvert the
type system:

cast :: a -> b
cast x = unsafePerformIO

(do writeIORef r x
readIORef r )

where r :: IORef a
r = unsafePerformIO

(newIORef (error "urk"))

It should probably have an even longer name, to discourage its
use by beginners, who often use it unnecessarily.

Arrows are an abstract view of computation with the same flavour
as monads, but in a more general setting. Originally proposed
by Hughes in 1998 (Hughes, 2000; Paterson, 2003), arrows
have found a string of applications in graphical user interfaces
(Courtney and Elliott, 2001), reactive programming (Hudak
et al., 2003), and polytypic programming (Jansson and Jeuring,
1999). As in the case of monads (only more so), arrow pro-
gramming is very much easier if syntactic support is provided
(Paterson, 2001), and this syntax is treated directly by thetype
checker.

Underlying all these developments is the realisation thatbeing ex-
plicit about effects is extremely useful, and this is something that we
believe may ultimately be seen as one of Haskell’s main impacts on
mainstream programming6. A good example is the development of
transactional memory. In an implementation of transactional mem-
ory, every read and write to a mutable location must be loggedin
some way. Haskell’s crude effect system (theIO monad) means that
almost all memory operations belong to purely functional compu-
tations, and hence, by construction, do not need to be logged. That
makes Haskell a very natural setting for experiments with transac-
tional memory. And so it proved: although transactional memory
had a ten-year history in imperative settings, when Harris,Marlow,
Herlilhy and Peyton Jones transposed it into the Haskell setting
they immediately stumbled on two powerful new composition op-
erators (retry and orElse) that had lain hidden until then (see
(Harris et al., 2005) for details).

8. Haskell in middle age
As Haskell has become more widely used for real applications,
more and more attention has been paid to areas that received short
shrift from the original designers of the language. These areas
are of enormous practical importance, but they have evolvedmore
recently and are still in flux, so we have less historical perspective
on them. We therefore content ourselves with a brief overview here,
in very rough order of first appearance.

6 “Effects” is shorthand for “side effects”.

8.1 The Foreign Function Interface

One feature that very many applications need is the ability to
call procedures written in some other language from Haskell, and
preferably vice versa. Once theIO monad was established, a variety
of ad hocmechanisms rapidly appeared; for example, GHC’s very
first release allowed the inclusion of literal C code in monadic
procedures, and Hugs had an extensibility mechanism that made it
possible to expose C functions as Haskell primitives. The difficulty
was that these mechanisms tended to be implementation-specific.

An effort gradually emerged to specify an implementation-independent
way for Haskell to call C procedures, and vice versa. This so-called
Foreign Function Interface (FFI) treats C as a lowest commonde-
nominator: once you can call C you can call practically anything
else. This exercise was seen as so valuable that the idea of “Blessed
Addenda” emerged, a well-specified Appendix to the Haskell 98
Report that contained precise advice regarding the implementation
of a variety of language extensions. The FFI Addendum effortwas
led by Manuel Chakravarty in the period 2001–2003, and finally re-
sulted in the 30-page publication of Version 1.0 in 2003. In parallel
with, and symbiotic with, this standardisation effort werea number
of pre-processing tools designed to ease the labour of writing all
theforeign import declarations required for a large binding; ex-
amples include Green Card (Nordin et al., 1997), H/Direct (Finne
et al., 1998), and C2Hs (Chakravarty, 1999a) among others.

We have used passive verbs in describing this process (“an effort
emerged,” “the exercise was seen as valuable”) because it was dif-
ferent in kind to the original development of the Haskell language.
The exercise was open to all, but depended critically on the will-
ingness of one person (in this case Manuel Chakravarty) to drive
the process and act as Editor for the specification.

8.2 Modules and packages

Haskell’s module system emerged with surprisingly little debate.
At the time, the sophisticated ML module system was becoming
well established, and one might have anticipated a vigorousdebate
about whether to adopt it for Haskell. In fact, this debate never
really happened. Perhaps no member of the committee was suffi-
ciently familiar with ML’s module system to advocate it, or perhaps
there was a tacit agreement that the combination of type classes
and ML modules was a bridge too far. In any case, we eventually
converged on a very simple design: the module system is a name-
space control mechanism, nothing more and nothing less. This had
the great merit of simplicity and clarity—for example, the module
system is specified completely separately from the type system—
but, even so, some tricky corners remained unexplored for several
years (Diatchki et al., 2002).

In versions 1.0–1.3 of the language, every module was specified
by an interfaceas well as animplementation. A great deal of dis-
cussion took place about the syntax and semantics of interfaces;
issues such as the duplication of information between interfaces
and implementations, especially when a module re-exports entities
defined in one of its imports; whether one can deduce from an inter-
face which module ultimately defines an entity; a tension between
what a compiler might want in an interface and what a programmer
might want to write; and so on. In the end, Haskell 1.4 completely
abandoned interfaces as a formal part of the language; instead in-
terface files were regarded as a possible artifact of separate compi-
lation. As a result, Haskell sadly lacks a formally checked language
in which a programmer can advertise the interface that the module
supports.
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8.2.1 Hierarchical module names

As Haskell became more widely used, the fact that the module
name space was completely flat became increasingly irksome;for
example, if there are two collection libraries, they cannotboth use
the module nameMap.

This motivated an effort led by Malcolm Wallace to specify anex-
tension to Haskell that would allow multi-component hierarchical
module names (e.g.,Data.Map), using a design largely borrowed
from Java. This design constituted the second “Blessed Adden-
dum,” consisting of a single page that never moved beyond ver-
sion 0.0 and “Candidate” status7. Nevertheless, it was swiftly im-
plemented by GHC, Hugs, and nhc, and has survived unchanged
since.

8.2.2 Packaging and distribution

Modules form a reasonable unit of programconstruction, but not
of distribution. Developers want to distribute a related group of
modules as a “package,” including its documentation, licencing
information, details about dependencies on other packages, include
files, build information, and much more besides. None of thiswas
part of the Haskell language design.

In 2004, Isaac Jones took up the challenge of leading an effort
to specify and implement a system called Cabal that supportsthe
construction and distribution of Haskell packages8. Subsequently,
David Himmelstrup implemented Hackage, a Cabal package server
that enables people to find and download Cabal packages. Thisis
not the place to describe these tools, but the historical perspective
is interesting: it has taken more than fifteen years for Haskell
to gain enough momentum that these distribution and discovery
mechanisms have become important.

8.2.3 Summary

The result of all this evolution is a module system distinguished by
its modesty. It does about as little as it is possible for a language
to do and still call itself a practical programming tool. Perhaps this
was a good choice; it certainly avoids a technically complicated
area, as a glance at the literature on ML modules will confirm.

8.3 Libraries

It did not take long for the importance of well-specified and well-
implemented libraries to become apparent. The initial Haskell Re-
port included an Appendix defining the Standard Prelude, butby
Haskell 1.3 (May 1996) the volume of standard library code had
grown to the extent that it was given a separate companion Library
Report, alongside the language definition.

The libraries defined as part of Haskell 98 were still fairly modest in
scope. Of the 240 pages of the Haskell 98 Language and Libraries
Report, 140 are language definition while only 100 define the
libraries. But real applications need much richer libraries, and an
informal library evolution mechanism began, based around Haskell
language implementations. Initially, GHC began to distribute a
bundle of libraries calledhslibs but, driven by user desire for
cross-implementation compatibility, the Hugs, GHC andnhc teams
began in 2001 to work together on a common, open-source set of
libraries that could be shipped with each of their compilers, an
effort that continues to this day.

7http://haskell.org/definition
8http://haskell.org/cabal

Part III

Implementations and Tools

9. Implementations
Haskell is a big language, and it is quite a lot of work to imple-
ment. Nevertheless, several implementations are available, and we
discuss their development in this section.

9.1 The Glasgow Haskell Compiler

Probably the most fully featured Haskell compiler today is the
Glasgow Haskell Compiler (GHC), an open-source project with a
liberal BSD-style licence.

GHC was begun in January 1989 at the University of Glasgow, as
soon as the initial language design was fixed. The first version of
GHC was written in LML by Kevin Hammond, and was essentially
a new front end to the Chalmers LML compiler. This prototype
started to work in June 1989, just as Peyton Jones arrived in Glas-
gow to join the burgeoning functional programming group there.
The prototype compiler implemented essentially all of Haskell 1.0
including views (later removed), type classes, the deriving mecha-
nism, the full module system, and binary I/O as well as both streams
and continuations. It was reasonably robust (with occasional spec-
tacular failures), but the larger Haskell prelude stressedthe LML
prelude mechanism quite badly, and the added complexity of type
classes meant the compiler was quite a lot bigger and slower than
the base LML compiler. There were quite a few grumbles about
this: most people had 4–8Mbyte workstations at that time, and
the compiler used a reasonable amount of that memory (upwards
of 2Mbytes!). Partly through experience with this compiler, the
Haskell Committee introduced the monomorphism restriction, re-
moved views, and made various other changes to the language.

GHC proper was begun in the autumn of 1989, by a team consist-
ing initially of Cordelia Hall, Will Partain, and Peyton Jones. It
was designed from the ground up as a complete implementationof
Haskell in Haskell, bootstrapped via the prototype compiler. The
only part that was shared with the prototype was the parser, which
at that stage was still written in Yacc and C. The first beta release
was on 1 April 1991 (the date was no accident), but it was another
18 months before the first full release (version 0.10) was made in
December 1992. This version of GHC already supported several
extensions to Haskell: monadic I/O (which only made it officially
into Haskell in 1996), mutable arrays, unboxed data types (Pey-
ton Jones and Launchbury, 1991), and a novel system for spaceand
time profiling (Sansom and Peyton Jones, 1995). A subsequentre-
lease (July 1993) added a strictness analyser.

A big difference from the prototype is that GHC uses a very large
data type in its front end that accurately reflects the full glory of
Haskell’s syntax. All processing that can generate error messages
(notably resolving lexical scopes, and type inference) is performed
on this data type. This approach contrasts with the more popular
method of first removing syntactic sugar, and only then processing
a much smaller language. The GHC approach required us to write
a great deal of code (broad, but not deep) to process the many
constructors of the syntax tree, but has the huge advantage that the
error messages could report exactly what the programmer wrote.

After type checking, the program is desugared into an explicitly
typed intermediate language called simply “Core” and then pro-
cessed by a long sequence of Core-to-Core analyses and opti-
mising transformations. The final Core program is transformed in
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the Spineless Tagless G-machine (STG) language (Peyton Jones,
1992), before being translated into C or machine code.

The Core language is extremely small — its data type has only
a dozen constructors in total — which makes it easy to write a
Core-to-Core transformation or analysis pass. We initially based
Core on the lambda calculus but then, wondering how to decorate
it with types, we realised in 1992 that a ready-made basis layto
hand, namely Girard’s SystemFω (Girard, 1990); all we needed to
do was to add data types,let-expressions, andcase expressions.
GHC appears to be the first compiler to use System F as a typed
intermediate language, although at the time we thought it was such
a simple idea that we did not think it worth publishing, except as a
small section in (Peyton Jones et al., 1993). Shortly afterwards, the
same idea was used independently by Morrisett, Harper and Tarditi
at Carnegie Mellon in their TIL compiler (Tarditi et al., 1996). They
understood its significance much better than the GHC team, and the
whole approach of type-directed compilation subsequentlybecame
extremely influential.

Several years later, we added a “Core Lint” typechecker that
checked that the output of each pass remained well-typed. Ifthe
compiler is correct, this check will always succeed, but it provides
a surprisingly strong consistency check—many, perhaps most bugs
in the optimiser produce type-incorrect code. Furthermore, catch-
ing compiler bugs this way is vastly cheaper than generatingin-
correct code, running it, getting a segmentation fault, debugging
it with gdb, and gradually tracing the problem back to its original
cause. Core Lint often nails the error immediately. This consistency
checking turned out to be one of the biggest benefits of a typedin-
termediate language, although it took us a remarkably long time to
recognise this fact.

Over the fifteen years of its life so far, GHC has grown a huge num-
ber of features. It supports dozens of language extensions (notably
in the type system), an interactive read/eval/print interface (GHCi),
concurrency (Peyton Jones et al., 1996; Marlow et al., 2004), trans-
actional memory (Harris et al., 2005), Template Haskell (Sheard
and Peyton Jones, 2002), support for packages, and much morebe-
sides. This makes GHC a dauntingly complex beast to understand
and modify and, mainly for that reason, development of the core
GHC functionality remains with Peyton Jones and Simon Marlow,
who both moved to Microsoft Research in 1997.

9.2 hbc

Thehbc compiler was written by Lennart Augustsson, a researcher
at Chalmers University whose programming productivity beggars
belief. Augustsson writes:

“During the spring of 1990 I was eagerly awaiting the first Haskell
compiler, it was supposed to come from Glasgow and be based
on the LML compiler. And I waited and waited. After talking to
Glasgow people at the LISP & Functional Programming conference
in Nice in late June of 1990 Staffan Truvé and I decided that instead
of waiting even longer we would write our own Haskell compiler
based on the LML compiler.

“For various reasons Truvé couldn’t help in the coding of the
compiler, so I ended up spending most of July and August cod-
ing, sometimes in an almost trance-like state; my head filledwith
Haskell to the brim. At the end of August I had a mostly com-
plete implementation of Haskell. I decided thathbc would be a
cool name for the compiler since it is Haskell Curry’s initials. (I
later learnt that this is the name the Glasgow people wanted for
their compiler too. But first come, first served.)

“The first release, 0.99, was on August 21, 1990. The implementa-
tion had everything from the report (except for File operations) and

also several extensions, many of which are now in Haskell 98 (e.g.,
operator sections).

“The testing of the compiler at the time of release was reallymin-
imal, but it could compile the Standard Prelude—and the Prelude
uses alot of Haskell features. Speaking of the Prelude I think it’s
worth pointing out that Joe Fasel’s prelude code must be about the
oldest Haskell code in existence, and large parts of it are still un-
changed! The prelude code was also remarkably un-buggy for code
that had never been compiled (or even type checked) beforehbc
came along.

“Concerning the implementation, I only remember two problematic
areas: modules and type checking. The export/import of names in
modules were different in those days (renaming) and there were
many conditions to check to make sure a module was valid. But
the big stumbling block was the type checking. It washard to do.
This was way before there were any good papers about how it was
supposed to be done.

“After the first release hbc became a test bed for various extensions
and new features and it lived an active life for over five years. But
since the compiler was written in LML it was more or less doomed
to dwindle.”

9.3 Gofer and Hugs9

GHC and hbc were both fully fledged compilers, themselves im-
plemented in a functional language, and requiring a good deal of
memory and disk space. In August 1991, Mark Jones, then a D.Phil.
student at the University of Oxford, released an entirely different
implementation called Gofer (short for “GOod For Equational Rea-
soning”). Gofer was an interpreter, implemented in C, developed on
an 8MHz 8086 PC with 640KB of memory, and small enough to fit
on a single (360KB) floppy disk.

Jones wrote Gofer as a side project to his D.Phil. studies—indeed,
he reports that he did not dare tell his thesis adviser about Gofer
until it was essentially finished—to learn more about the imple-
mentation of functional programming languages. Over time,how-
ever, understanding type classes became a central theme of Jones’
dissertation work (Jones, 1994), and he began to use Gofer asa
testbed for his experiments. For example, Gofer included the first
implementation of multi-parameter type classes, as originally sug-
gested by Wadler and Blott (Wadler and Blott, 1989) and a regular
topic of both conversation and speculation on the Haskell mailing
list at the time. Gofer also adopted an interesting variant of Wadler
and Blott’s dictionary-passing translation (Section 6.1)that was de-
signed to minimise the construction of dictionaries at run time, to
work with multiple parameter type classes, and to provide more
accurate principal types. At the same time, however, this resulted
in small but significant differences between the Haskell andGofer
type systems, so that some Haskell programs would not work in
Gofer, and vice versa.

Moving to take a post-doctoral post at Yale in 1992, Jones contin-
ued to develop and maintain Gofer, adding support for construc-
tor classes (Section 6.4) in 1992–93 and producing the first imple-
mentation of thedo-notation in 1994. Both of these features were
subsequently adopted in Haskell 98. By modifying the interpreter’s
back end, Jones also developed a Gofer-to-C compiler, and heused
this as a basis for the first “dictionary-free” implementation of type
classes, using techniques from partial evaluation to specialise away
the results of the dictionary-passing translation.

After he left Yale in the summer of 1994, Jones undertook a major
rewrite of the Gofer code base, to more closely track the Haskell

9 The material in this section was largely written by Mark Jones, the author
of Gofer and Hugs.
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standard. Briefly christened “Hg” (short for Haskell-gofer), the new
system soon acquired the name “Hugs” (for “the Haskell User’s
Gofer System”). The main development work was mostly complete
by the time Jones started work at the University of Nottingham in
October 1994, and he hoped that Hugs would not only appease the
critics but also help to put his newly founded research groupin
Nottingham onto the functional programming map. Always enjoy-
ing the opportunity for a pun, Jones worked to complete the first
release of the system so that he could announce it on February14,
1995 with the greeting “Hugs on Valentine’s Day!” The first re-
lease of Hugs supported almost all of the features of Haskell1.2,
including Haskell-style type classes, stream-based I/O, afull pre-
lude, derived instances, defaults, overloaded numeric literals, and
bignum arithmetic. The most prominent missing feature was the
Haskell module system; Hugs 1.0 would parse but otherwise ignore
module headers and import declarations.

Meanwhile, at Yale, working from Hugs 1.0 and striving to further
close the gap with Haskell, Alastair Reid began modifying Hugs
to support the Haskell module system. The results of Reid’s work
appeared for the first time in the Yale Hugs0 release in June 1996.
Meanwhile, Jones had continued his own independent development
of Hugs, leading to an independent release of Hugs 1.3 in August
1996 that provided support for new Haskell 1.3 features suchas
monadic I/O, the labelled field syntax, newtype declarations, and
strictness annotations, as well as adding user interface enhance-
ments such as import chasing.

Even before the release of these two different versions of Hugs,
Jones and Reid had started to talk about combining their efforts into
a single system. The first joint release, Hugs 1.4, was completed in
January 1998, its name reflecting the fact that the Haskell standard
had also moved on to a new version by that time. Jones, however,
had also been working on a significant overhaul of the Hugs type
checker to include experimental support for advanced type system
features including rank-2 polymorphism, polymorphic recursion,
scoped type variables, existentials, and extensible records, and also
to restore the support for multi-parameter type classes that had been
eliminated in the transition from Gofer to Hugs. These features
were considered too experimental for Hugs 1.4 and were released
independently as Hugs 1.3c, which was the last version of Hugs to
be released without support for Haskell modules.

It had been a confusing time for Hugs users (and developers!)while
there were multiple versions of Hugs under development at the
same time. This problem was finally addressed with the release of
Hugs 98 in March 1999, which merged the features of the previous
Yale and Nottingham releases into a single system. Moreover, as
the name suggests, this was the first version of Hugs to support
the Haskell 98 standard. In fact Hugs 98 was also the last of the
Nottingham and Yale releases of Hugs, as both Jones and Reid
moved on to other universities at around that time (Jones to OGI
and Reid to Utah).

Hugs development has proceeded at a more gentle pace since the
first release of Hugs 98, benefiting in part from the stabilitypro-
vided by the standardisation of Haskell 98. But Hugs development
has certainly not stood still, with roughly one new formal release
each year. Various maintainers and contributors have worked on
Hugs during this period, including Jones and Reid, albeit ata re-
duced level, as well as Peterson, Andy Gill, Johan Nordlander, Jeff
Lewis, Sigbjorn Finne, Ross Paterson, and Dimitry Golubovsky.
In addition to fixing bugs, these developers have added support
for new features including implicit parameters, functional depen-
dencies, Microsoft’s .NET, an enhanced foreign function interface,
hierarchical module names, Unicode characters, and a greatly ex-
panded collection of libraries.

9.4 nhc

The originalnhc was developed by Niklas Röjemo when he was
a PhD student at Chalmers (Rojemo, 1995a). His motivation from
the start was to have a space-efficient compiler (Rojemo, 1995b)
that could be bootstrapped in a much smaller memory space than
required by systems such ashbc and GHC. Specifically he wanted
to bootstrap it on his personal machine which had around 2Mbytes
main memory.

To help achieve this space-efficiency he made use during develop-
ment of the first-generation heap-profiling tools—which hadpre-
viously been developed at York and used to reveal space-leaks
in hbc (Runciman and Wakeling, 1992; Runciman and Wakeling,
1993). Because of this link, Röjemo came to York as a post-doctoral
researcher where, in collaboration with Colin Runciman, hede-
vised more advanced heap-profiling methods, and used them tofind
residual space-inefficiencies innhc, leading to a still more space-
efficient version (Rjemo and Runciman, 1996a).

When Röjemo left York around 1996 he handednhc over to Runci-
man’s group, for development and free distribution (with due ac-
knowledgements). Malcolm Wallace, a post-doc at York working
on functional programming for embedded systems, became the
principal keeper and developer ofnhc—he has since released a se-
ries of distributed versions, tracking Haskell 98, adding standard
foreign-function interface and libraries, and making various im-
provements (Wallace, 1998).

Thenhc system has been host to various further experiments. For
example, a continuing strand of work relates to space efficiency
(Wallace and Runciman, 1998), and more recently the development
of the Hat tools for tracing programs (Wallace et al., 2001).In 2006,
the York Haskell Compiler project,yhc, was started to re-engineer
nhc.

9.5 Yale Haskell

In the 1980s, prior to the development of Haskell, there was an
active research project at Yale involving Scheme and a dialect of
Scheme calledT. Several MS and PhD theses grew out of this work,
supervised mostly by Hudak. TheOrbit compiler, an optimising
compiler for T, was one of the key results of this effort (Kranz et al.,
2004; Kranz et al., 1986).

So once Hudak became actively involved in the design of Haskell,
it was only natural to apply Scheme compilation techniques in an
implementation of Haskell. However, rather than port the ideas to a
stand-alone Haskell compiler, it seemed easier to compile Haskell
into Scheme or T, and then use a Scheme compiler as a back end.
Unfortunately, the T compiler was no longer being maintained and
had problems with compilation speed. T was then abandoned in
favour of Common Lispto address performance and portability
issues. This resulted in what became known asYale Haskell.

John Peterson and Sandra Loosemore, both Research Scientists at
Yale, were the primary implementers of Yale Haskell. To achieve
reasonable performance, Yale Haskell used strictness analysis and
type information to compile the strict part of Haskell into very ef-
ficient Lisp code. The CMU lisp compiler was able to generate
very good numeric code from Lisp with appropriate type annota-
tions. The compiler used a dual-entry point approach to allow very
efficient first-order function calls. Aggressive in-liningwas able
to generate code competitive with other languages (Hartel et al.,
1996). In addition, Yale Haskell performed various optimisations
intended to reduce the overhead of lazy evaluation (Hudak and
Young, 1986; Bloss et al., 1988b; Bloss et al., 1988a; Young,1988;
Bloss, 1988).
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Although performance was an important aspect of the Yale com-
piler, the underlying Lisp system allowed the Yale effort tofocus at-
tention on the the Haskell programming environment. Yale Haskell
was the first implementation to support both compiled and inter-
preted code in the same program (straightforward, since Lisp sys-
tems had been doing that for years). It also had a very nice emacs-
based programming environment in which simple two-keystroke
commands could be used to evaluate expressions, run dialogues,
compile modules, turn specific compiler diagnostics on and off, en-
able and disable various optimisers, and run a tutorial on Haskell.
Commands could even be queued, thus allowing, for example, a
compilation to run in the background as the editing of a source file
continued in emacs in the foreground.

Another nice feature of Yale Haskell was a “scratch pad” thatcould
be automatically created for any module. A scratch pad was a log-
ical extension of a module in which additional function and value
definitions could be added, but whose evaluation did not result in
recompilation of the module. Yale Haskell also supported many
Haskell language extensions at the time, and thus served as an ex-
cellent test bed for new ideas. These extensions included monads,
dynamic types, polymorphic recursion, strictness annotations, in-
lining pragmas, specialising over-loaded functions, mutually recur-
sive modules, and a flexible foreign function interface for both C
and Common Lisp.

Ultimately, the limitations of basing a Haskell compiler ona Com-
mon Lisp back-end caught up with the project. Although early
on Yale Haskell was competitive with GHC and other compilers,
GHC programs were soon running two to three times faster than
Yale Haskell programs. Worse, there was no real hope of making
Yale Haskell run any faster without replacing the back-end and run-
time system. Optimisations such as reusing the storage in a thunk
to hold the result after evaluation were impossible with theCom-
mon Lisp runtime system. The imperative nature of Lisp prevented
many other optimisations that could be done in a Haskell-specific
garbage collector and memory manager. Every thunk introduced an
extra level of indirection (a Lisp cons cell) that was unnecessary in
the other Haskell implementations. While performance within the
strict subset of Haskell was comparable with other systems,there
was a factor of 3 to 5 in lazy code that could not be overcome due
to the limitations of the Lisp back end. For this reason, in addition
to the lack of funding to pursue further research in this direction,
the Yale Haskell implementation was abandoned circa 1995.

9.6 Other Haskell compilers

One of the original inspirations for Haskell was the MIT dataflow
project, led by Arvind, whose programming language was called
Id. In 1993 Arvind and his colleagues decided to adopt Haskell’s
syntax and type system, while retaining Id’s eager, parallel evalu-
ation order, I-structures, and M-structures. The resulting language
was calledpH (short for “parallel Haskell”), and formed the ba-
sis of Nikhil and Arvind’s textbook on implicit parallel program-
ming (Nikhil and Arvind, 2001). The idea of evaluating Haskell
eagerly rather than lazily (while retaining non-strict semantics), but
on a uniprocessor, was also explored by Maessen’s Eager Haskell
(Maessen, 2002) and Ennals’s optimistic evaluation (Ennals and
Peyton Jones, 2003).

All the compilers described so far were projects begun in the
early or mid ’90s, and it had begun to seem that Haskell was
such a dauntingly large language that no further implementations
would emerge. However, in the last five years several new Haskell
implementation projects have been started.

Helium. The Helium compiler, based at Utrecht, is focused espe-
cially on teaching, and on giving high-quality type error mes-
sages (Heeren et al., 2003b; Heeren et al., 2003a).

UHC and EHC. Utrecht is also host to two other Haskell com-
piler projects, UHC and EHC (http://www.cs.uu.nl/wiki/
Center/ResearchProjects).

jhc is a new compiler, developed by John Meacham. It is fo-
cused on aggressive optimisation using whole-program anal-
ysis. This whole-program approach allows a completely dif-
ferent approach to implementing type classes, without using
dictionary-passing. Based on early work by Johnsson and Bo-
quist (Boquist, 1999),jhc uses flow analysis to support a de-
functionalised representation of thunks, which can be extremely
efficient.

The York Haskell Compiler, yhc, is a new compiler for Haskell
98, based onnhc but with an entirely new back end.

9.7 Programming Environments

Until recently, with the notable exception of Yale Haskell,little
attention has been paid by Haskell implementers to the program-
ming environment. That is now beginning to change. Notable ex-
amples include the Haskell Refactorer (Li et al., 2003); theGHC
Visual Studio plug-in (Visual Haskell), developed by Krasimir An-
gelov and Simon Marlow (Angelov and Marlow, 2005); and the
EclipseFP plug-in for Haskell, developed by Leif Frenzel, Thiago
Arrais, and Andrei de A Formiga10.

10. Profiling and debugging
One of the disadvantages of lazy evaluation is that operational
aspects such as evaluation order, or the contents of a snapshot
of memory at any particular time, are not easily predictablefrom
the source code—and indeed, can vary between executions of the
same code, depending on the demands the context makes on its
result. As a result, conventional profiling and debugging methods
are hard to apply. We have alltried adding side-effecting print
calls to record a trace of execution, or printing a backtraceof the
stack on errors, only to discover that the information obtained was
too hard to interpret to be useful. Developing successful profiling
and debugging tools for Haskell has taken considerable research,
beginning in the early 1990s.

10.1 Time profiling

At the beginning of the 1990s, Patrick Sansom and Peyton Jones
began working on profiling Haskell. The major difficulty was find-
ing a sensible way to assign costs. The conventional approach,
of assigning costs to functions and procedures, works poorly for
higher-order functions such asmap. Haskell provides many such
functions, which are designed to be reusable in many different
contexts and for many different tasks—so these functions feature
prominently in time profiles. But knowing thatmap consumes 20%
of execution time is little help to the programmer—we need to
know insteadwhich occurrence ofmap stands for a large fraction
of the time. Likewise, when one logical task is implemented by
a combination of higher-order functions, then the time devoted to
the task is divided among these functions in a way that disguises
the time spent on the task itself. Thus a new approach to assigning
costs was needed.

The new idea Sansom and Peyton Jones introduced was to label
the source code withcost centres, either manually (to reflect the
programmer’s intuitive decomposition into tasks) or automatically.

10http://eclipsefp.sourceforge.net
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The profiling tool they built then assigned time and space costs
to one of these cost centres, thus aggregating all the costs for one
logical task into one count (Sansom and Peyton Jones, 1995).

Assigning costs to explicitly labelled cost centres is muchmore
subtle than it sounds. Programmers expect that costs shouldbe
assigned to the closest enclosing cost centre—but should this be
the closestlexicallyenclosing or the closestdynamicallyenclosing
cost centre? (Surprisingly, the best answer is the closest lexically
enclosing one (Sansom and Peyton Jones, 1995).) In a language
with first-class functions, should the cost ofevaluatinga function
necessarily be assigned to the same cost centre as the costs of
calling the function? In a call-by-need implementation, where the
cost of using a value the first time can be much greater than thecost
of using it subsequently, how can one ensure that cost assignments
are independent of evaluation order (which the programmer should
not need to be aware of)? These questions are hard enough to
answer that Sansom and Peyton Jones felt the need to develop
a formal cost semantics, making the assignment of costs to cost
centres precise. This semantics was published at POPL in 1995, but
a prototype profiling tool was already in use with GHC in 1992.
Not surprisingly, the availability of a profiler led rapidlyto faster
Haskell programs, in particular speeding up GHC itself by a factor
of two.

10.2 Space profiling

Sansom and Peyton Jones focused on profilingtime costs, but at
the same time Colin Runciman and David Wakeling were work-
ing on space, by profiling the contents of the heap. It had been
known for some time that lazy programs could sometimes exhibit
astonishingly poor space behaviour—so-calledspace leaks. Indeed,
the problem was discussed in Hughes’s dissertation in 1984,along
with the selective introduction of strictness to partiallyfix them,
but there was no practical way offinding the causes of space leaks
in large programs. Runciman and Wakeling developed a profiler
that could display a graph of heap contents over time, classified
by the function that allocated the data, the top-level constructor of
the data, or even combinations of the two (for example, “showthe
allocating functions of all the cons cells in the heap over the en-
tire program run”). The detailed information now availableenabled
lazy programmers to make dramatic improvements to space effi-
ciency: as the first case study, Runciman and Wakeling reduced the
peak space requirements of a clausification program for proposi-
tional logic by two orders of magnitude, from 1.3 megabytes to
only 10K (Runciman and Wakeling, 1993). Runciman and Wakel-
ing’s original profiler worked for LML, but it was rapidly adopted
by Haskell compilers, and the visualisation tool they wroteto dis-
play heap profiles is still in use to this day.

By abstracting away fromevaluation order, lazy evaluation also
abstracts away fromobject lifetimes, and that is why lazy evalua-
tion contributes to space leaks. Programmers who cannot predict—
and indeed do not think about—evaluation order also cannot pre-
dict which data structures will live for a long time. Since Haskell
programs allocate objects very fast, if large numbers of them end
up with long lifetimes, then the peak space requirements canbe
very high indeed. The next step was thus to extend the heap profiler
to provide direct information about object lifetimes. Thisstep was
taken by Runciman and Röjemo (the author ofnhc), who had by
this time joined Runciman at the University of York. The new pro-
filer could show how much of the heap contained data that was not
yet needed (lag), would never be used again (drag), or, indeed, was
never used at all (void) (Rjemo and Runciman, 1996a). A further
extension introducedretainer profiling, which could explainwhy
data was not garbage collected by showing which objects pointed
at the data of interest (Rjemo and Runciman, 1996b). Combina-

tions of these forms made it possible for programmers to get an-
swers to very specific questions about space use, such as “what
kind of objects point at cons cells allocated by function foo, after
their last use?” With information at this level of detail, Runciman
and Röjemo were able to improve the peak space requirementsof
their clausify program to less than 1K—three orders of magnitude
better than the original version. They also achieved a factor-of-two
improvement in thenhc compiler itself, which had already been
optimised using their earlier tools.

10.3 Controlling evaluation order

In 1996, Haskell 1.3 introduced two features that give the program-
mer better control over evaluation order:

• the standard functionseq, which evaluates its first argument,
and then returns its second:

seq x y =

{

⊥, if x =⊥
y, otherwise

• strictness annotations indata definitions, as in:

data SList a = SNil | SCons !a !(SList a)

where the exclamation points denote strict fields, and thus here
define a type of strict lists, whose elements are evaluated before
the list is constructed.

Using these constructs, a programmer can move selected compu-
tations earlier, sometimes dramatically shortening the lifetimes of
data structures. Bothseq and strict components of data structures
were already present in Miranda for the same reasons (Turner,
1985), and indeedseq had been used to fix space leaks in lazy
programs since the early 1980s (Scheevel, 1984; Hughes, 1983).

Today, introducing aseq at a carefully chosen point is a very com-
mon way of fixing a space leak, but interestingly, this was not
the main reason for introducing it into Haskell. On the contrary,
seq was primarily introduced to improve thespeedof Haskell pro-
grams! By 1996, we understood the importance of using strictness
analysis to recognise strict functions, in order to invoke them us-
ing call-by-value rather than the more expensive call-by-need, but
the results of strictness analysis were not always as good aswe
hoped. The reason was that many functions were “nearly,” butnot
quite, strict, and so the strictness analyser was forced to (safely)
classify them as non-strict. By introducing calls ofseq, the pro-
grammer could help the strictness analyser deliver better results.
Strictness analysers were particularly poor at analysing data types,
hence the introduction of strictness annotations in data type decla-
rations, which not only made many more functions strict, butalso
allowed the compiler to optimise the representation of the data type
in some cases.

Although seq was not introduced into Haskell primarily to fix
space leaks, Hughes and Runciman were by this time well aware
of its importance for this purpose. Runciman had spent a sabbatical
at Chalmers in 1993, when he was working on his heap profiler and
Hughes had a program with particularly stubborn space leaks—the
two spent much time working together to track them down. This
program was in LML, which already hadseq, and time and again
a carefully placedseq proved critical to plugging a leak. Hughes
was very concerned that Haskell’s version ofseq should support
space debugging well.

But addingseq to Haskell was controversial because of its neg-
ative effect on semantic properties. In particular,seq is not de-
finable in the lambda calculus, and is the only way to distin-
guish\x -> ⊥ from ⊥ (sinceseq ⊥ 0 goes into a loop, while
seq (\x -> ⊥) 0 does not)—a distinction that Jon Fairbairn, in
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particular, was dead set against making. Moreover,seq weakens
the parametricity property that polymorphic functions enjoy, be-
causeseq does not satisfy the parametricity property for its type
∀a,b.a -> b -> b, and neither do polymorphic functions that
use it. This would weaken Wadler’s “free theorems” in Haskell
(Wadler, 1989) in a way that has recently been precisely char-
acterised by Patricia Johann and Janis Voigtländer (Johann and
Voigtländer, 2004).

Unfortunately, parametricity was by this time not just a nice bonus,
but the justification for an important compiler optimisation, namely
deforestation—the transformation of programs to eliminate inter-
mediate data structures. Deforestation is an important optimisation
for programs written in the “listful” style that Haskell encourages,
but Wadler’s original transformation algorithm (Wadler, 1990b)
had proven too expensive for daily use. Instead, GHC usedshort-
cut deforestation, which depends on two combinators:foldr,
which consumes a list, and

build g = g (:) []

which constructs one, with the property that

foldr k z (build g) = g k z

(the “foldr/build rule”) (Gill et al., 1993). Applying this rewrite
rule from left to right eliminates an intermediate list verycheaply. It
turns out that thefoldr/build rule is not true forany functiong;
it holds only if g has a sufficiently polymorphic type, and that can
in turn be guaranteed by givingbuild a rank-2 type (Section 6.7).
The proof relies on the parametrictity properties ofg’s type.

This elegant use of parametricity to guarantee a sophisticated pro-
gram transformation was cast into doubt byseq. Launchbury ar-
gued forcefully that parametricity was too important to give up,
for this very reason. Hughes, on the other hand, was very con-
cerned thatseq should be applicable to values ofany type—even
type variables—so that space leaks could be fixed even in polymor-
phic code. These two goals are virtually incompatible. The solution
adopted for Haskell 1.3 was to makeseq anoverloadedfunction,
rather than a polymorphic one, thus weakening the parametricity
property that it should satisfy. Haskell 1.3 introduced a class

class Eval a where
strict :: (a->b) -> a -> b
seq :: a -> b -> b
strict f x = x ‘seq‘ f x

with the suspect operations as its members. However, programmers
were not allowed to define their own instances of this class—which
might not have been strict (!)—instead its instances were derived
automatically. The point of theEval class was to record uses of
seq in the typesof polymorphic functions, as contexts of the form
Eval a =>, thus warning the programmer and the compiler that
parametricity properties in that type variable were restricted. Thus
short-cut deforestation remained sound, while space leakscould be
fixed at any type.

However, the limitations of this solution soon became apparent. In-
spired by the Fox project at CMU, two of Hughes’s students imple-
mented a TCP/IP stack in Haskell, making heavy use of polymor-
phism in the different layers. Their code turned out to contain seri-
ous space leaks, which they attempted to fix usingseq. But when-
ever they inserted a call ofseq on a type variable, the type signa-
ture of the enclosing function changed to require anEval instance
for that variable—just as the designers of Haskell 1.3 intended.
But often, the type signatures of very many functions changed as
a consequence of a singleseq. This would not have mattered if
the type signatures were inferred by the compiler—but the students
had written them explicitly in their code. Moreover, they had done

so not from choice, but because Haskell’s monomorphism restric-
tion required type signatures on these particular definitions (Sec-
tion 6.2). As a result, each insertion of aseq became a nightmare,
requiring repeated compilations to find affected type signatures and
manual correction of each one. Since space debugging is to some
extent a question of trial and error, the students needed to insert
and remove calls ofseq time and time again. In the end they were
forced to conclude that fixing their space leaks was simply not fea-
sible in the time available to complete the project—not because
they were hard to find, but because making the necessary correc-
tions was simply too heavyweight. This experience providedam-
munition for the eventual removal of classEval in Haskell 98.

Thus, today,seq is a simple polymorphic function that can be
inserted or removed freely to fix space leaks, without changing
the types of enclosing functions. We have sacrificed parametric-
ity in the interests of programming agility and (sometimes dra-
matic) optimisations. GHC still uses short-cut deforestation, but it
is unsound—for example, this equation doesnot hold

foldr ⊥ 0 (build seq) 6= seq ⊥ 0

Haskell’s designers love semantics, but even semantics hasits price.

It’s worth noting that making programs stricter is not the only way
to fix space leaks in Haskell. Object lifetimes can be shortened by
moving their last use earlier—or by creating them later. In their
famous case study, the first optimisation Runciman and Wakeling
made was to make the programmore lazy, delaying the construction
of a long list until just before it was needed. Hearing Runciman
describe the first heap profiler at a meeting of Working Group
2.8, Peter Lee decided to translate the code into ML to discover
the effect of introducing strictness everywhere. Sure enough, his
translation used only one third as much space as the lazy original—
but Runciman and Wakeling’s first optimisation made the now-
lazier program twice as efficient as Peter Lee’s version.

The extreme sensitivity of Haskell’s space use to evaluation order
is a two-edged sword. Tiny changes—the addition or removal of
a seq in one place—can dramatically change space requirements.
On the one hand, it is very hard for programmers toanticipate
their program’s space behaviour and place calls ofseq correctly
when the program is first written. On the other hand, given suffi-
ciently good profiling information, space performance can be im-
proved dramatically by very small changes in just the right place—
without changing the overall structure of the program. As design-
ers who believe in reasoning, we are a little ashamed that reasoning
about space use in Haskell is so intractable. Yet Haskell encour-
ages programmers—even forces them—to forget space optimisa-
tion until after the code is written, profiled, and the major space
leaks found, and at that point puts powerful tools at the program-
mer’s disposal to fix them. Maybe this is nothing to be ashamedof,
after all.

10.4 Debugging and tracing

Haskell’s rather unpredictable evaluation order also madeconven-
tional approaches to tracing and debugging difficult to apply. Most
Haskell implementations provide a “function”

trace :: String -> a -> a

that prints its first argument as a side-effect, then returnsits
second—but it is not at all uncommon for the printing of the first
argument to triggeranothercall of trace before the printing is com-
plete, leading to very garbled output. To avoid such problems, more
sophisticated debuggers aim toabstract awayfrom the evaluation
order.
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10.4.1 Algorithmic debugging

One way to do so is viaalgorithmic debugging(Shapiro, 1983),
an approach in which the debugger, rather than the user, takes
the initiative to explore the program’s behaviour. The debugger
presents function calls from a faulty run to the user, together with
their arguments and results, and asks whether the result is correct.
If not, the debugger proceeds to the calls made from the faulty one
(its “children”), finally identifying a call with an incorrect result,
all of whose children behaved correctly. This is then reported as
the location of the bug.

Since algorithmic debugging just depends on the input-output be-
haviour of functions, it seems well suited to lazy programs.But
there is a difficulty—the values of function arguments and (parts
of their) results are often not computed until longafter the func-
tion call is complete, because they are not needed until later. If they
were computed early by an algorithmic debugger, in order to dis-
play them in questions to the user, then this itself might trigger
faults or loops that would otherwise not have been a problem at all!
Henrik Nilsson solved this problem in 1993 (Nilsson and Fritzson,
1994), in an algorithmic debugger for a small lazy language called
Freja, by waiting until execution was complete before starting al-
gorithmic debugging. At the end of program execution, it is known
whether or not each value was required—if it was, then its value
is now known and can be used in a question, and if it wasn’t, then
the value was irrelevant to the bug anyway. This “post mortem” ap-
proach abstracts nicely from evaluation order, and has beenused by
all Haskell debuggers since.

Although Nilsson’s debugger did not handle Haskell, Jan Sparud
was meanwhile developing one that did, by transforming Haskell
program source code to collect debugging information whilecom-
puting its result. Nilsson and Sparud then collaborated to com-
bine and scale up their work, developing efficient methods tobuild
“evaluation dependence trees” (Nilsson and Sparud, 1997),data
structures that provided all the necessary information forpost-
mortem algorithmic debugging. Nilsson and Sparud’s tools are no
longer extant, but the ideas are being pursued by Bernie Popein his
algorithmic debugger Buddha for Haskell 98 (Pope, 2005), and by
the Hat tools described next.

10.4.2 Debugging via redex trails

In 1996, Sparud joined Colin Runciman’s group at the University
of York to begin working onredex trails, another form of program
trace which supports stepping backwards through the execution
(Sparud and Runciman, 1997). Programmers can thus ask “Whydid
we callf with these arguments?” as well as inspect the evaluation
of the call itself.

Runciman realised that, with a little generalisation, thesametrace
could be used to support several different kinds of debugging (Wal-
lace et al., 2001). This was the origin of the new Hat project,
which has developed a new tracer for Haskell 98 and a variety
of trace browsing tools. Initially usable only withnhc, in 2002 Hat
became a separate tool, working by source-to-source transforma-
tion, and usable with any Haskell 98 compiler. Today, there are
trace browsers supporting redex-trail debugging, algorithmic de-
bugging, observational debugging, single-stepping, and even test
coverage measurement, together with several more specific tools
for tracking down particular kinds of problem in the trace—see
http://www.haskell.org/hat/. Since 2001, Runciman has
regularly invited colleagues to send him their bugs, or evenin-
sert bugs into his own code while his back was turned, for the sheer
joy of tracking them down with Hat!

The Hat suite are currently the most widely used debugging tools
for Haskell, but despite their power and flexibility, they have not

become a regular part of programming for most users11. This is
probably because Haskell, as it is used in practice, has remained
a moving target: new extensions appear frequently, and so itis
hard for a language-aware tool such as Hat to keep up. Indeed,
Hat was long restricted to Haskell 98 programs only—a subsetto
which few serious users restrict themselves. Furthermore,the key to
Hat’s implementation is an ingenious, systematic source-to-source
transformation of the entire program. This transformationincludes
the libraries (which are often large and use language extensions),
and imposes a substantial performance penalty on the running
program.

10.4.3 Observational debugging

A more lightweight idea was pursued by Andy Gill, who developed
HOOD, the Haskell Object Observation Debugger, in 1999–2000
(Gill, 2000). HOOD is also a post-mortem debugger, but usersin-
dicate explicitly which information should be collected byinserting
calls of

observe :: String -> a -> a

in the program to be debugged. In contrast totrace, observe
prints nothing when it is called—it just collects the value of its sec-
ond argument, tagged with the first. When execution is complete,
all the collected values are printed, with values with the same tag
gathered together. Thus the programmer can observe the collection
of values that appeared at a program point, which is often enough
to find bugs.

As in Nilsson and Sparud’s work, values that were collected but
never evaluated are displayed as a dummy value “_”. For example,

Observe> take 2 (observe "nats" [0..])
[0,1]

>>>>>>> Observations <<<<<<

nats
(0 : 1 : _)

This actually provides useful information about lazy evaluation,
showing ushow muchof the input was needed to produce the given
result.

HOOD can even observe function values, displaying them as a table
of observed arguments and results—the same information that an
algorithmic debugger would use to track down the bug location.
However, HOOD leaves locating the bug to the programmer.

10.5 Testing tools

While debugging tools have not yet really reached the Haskell
mainstream, testing tools have been more successful. The most
widely used is QuickCheck, developed by Koen Claessen and
Hughes. QuickCheck is based on a cool idea that turned out to work
very well in practice, namely that programs can be tested against
specifications by formulating specifications as boolean functions
that should always returnTrue, and then invoking these functions
on random data. For example, the function definition

prop_reverse :: [Integer] -> [Integer] -> Bool
prop_reverse xs ys =
reverse (xs++ys) == reverse ys++reverse xs

expresses a relationship betweenreverse and++ that should al-
ways hold. The QuickCheck user can test that it does just by evalu-
atingquickCheck prop_reverse in a Haskell interpreter. In this

11 In a web survey we conducted, only 3% of respondents named Hatas one
of the “most useful tools and libraries.”
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case testing succeeds, but when properties fail then QuickCheck
displays a counter example. Thus, for the effort of writing asimple
property, programmers can test a very large number of cases,and
find counter examples very quickly.

To make this work for larger-than-toy examples, programmers need
to be able to control the random generation. QuickCheck supports
this via an abstract data type of “generators,” which conceptually
represent sets of values (together with a probability distribution).
For example, to test that insertion into an ordered list preserves
ordering, the programmer could write

prop_insert :: Integer -> Bool
prop_insert x
= forAll orderedList

(\xs -> ordered (insert x xs))

We read the first line as quantification over the set of orderedlists,
but in realityorderedList is a test data generator, whichforAll
invokes to generate a value forxs. QuickCheck provides a library
of combinators to make such generators easy to define.

QuickCheck was first released in 1999 and was included in the
GHC and Hugs distributions from July 2000, making it easily
accessible to most users. A first paper appeared in 2000 (Claessen
and Hughes, 2000), with a follow-up article on testing monadic
code in 2002 (Claessen and Hughes, 2002). Some early success
stories came from the annual ICFP programming contests: Tom
Moertel (“Team Functional Beer”) wrote an account12 of his entry
in 2001, with quotable quotes such as “QuickCheck to the rescue!”
and “Not so fast, QuickCheck spotted a corner case. . . ,” concluding

QuickCheck found these problems and more, many that I
wouldn’t have found without a massive investment in test
cases, and it did so quickly and easily. From now on, I’m a
QuickCheck man!

Today, QuickCheck is widely used in the Haskell community and
is one of the tools that has been adopted by Haskell programmers
in industry, even appearing in job ads from Galois Connections
and Aetion Technologies. Perhaps QuickCheck has succeededin
part because of who Haskell programmers are: given the question
“What is more fun, testing code or writing formal specifications?”
many Haskell users would choose the latter—if you can test code
by writing formal specifications, then so much the better!

QuickCheck is not only a useful tool, but also a good example of
applying some of Haskell’s unique features. It defines a domain-
specific language of testable properties, in the classic Haskell tradi-
tion. The class system is used to associate a test data generator with
each type, and to overload thequickCheck function so that it can
test properties with any number of arguments, of any types. The
abstract data type of generators is a monad, and Haskell’s syntactic
sugar for monads is exploited to make generators easy to write. The
Haskell language thus had a profound influence on QuickCheck’s
design.

This design has been emulated in many other languages. One of
the most interesting examples is due to Christian Lindig, who
found bugs in production-quality C compilers’ calling conven-
tions by generating random C programs in a manner inspired by
QuickCheck (Lindig, 2005). A port to Erlang has been used to find
unexpected errors in a pre-release version of an Ericsson Media
Gateway (Arts et al., 2006).

QuickCheck is not the only testing tool for Haskell. In 2002,Dean
Herington released HUnit (Herington, 2002), a test framework in-
spired by the JUnit framework for Java, which has also acquired a

12Seehttp://www.kuro5hin.org/story/2001/7/31/0102/11014.

dedicated following. HUnit supports more traditional unittesting: it
does not generate test cases, but rather provides ways to define test
cases, structure them into a hierarchy, and run tests automatically
with a summary of the results.

Part IV

Applications and Impact
A language does not have to have a direct impact on the real world
to hold a prominent place in the history of programming languages.
For example, Algol was never used substantially in the real world,
but its impact was huge. On the other hand, impact on the real world
was an important goal of the Haskell Committee, so it is worthwhile
to consider how well we have achieved this goal.

The good news is that there are far too many interesting applica-
tions of Haskell to enumerate in this paper. The bad news is that
Haskell is still not a mainstream language used by the masses! Nev-
ertheless, there are certain niches where Haskell has faredwell. In
this section we discuss some of the more interesting applications
and real-world impacts, with an emphasis on successes attributable
to specific language characteristics.

11. Applications
Some of the most important applications of Haskell were origi-
nally developed as libraries. The Haskell standard includes a mod-
est selection of libraries, but many more are available. TheHaskell
web site (haskell.org) lists more than a score of categories, with
the average category itself containing a score of entries. For ex-
ample, the Edison library of efficient data structures, originated by
Okasaki (Okasaki, 1998a) and maintained by Robert Dockins,pro-
vides multiple implementations of sequences and collections, or-
ganised using type classes. The HSQL library interfaces to avari-
ety of databases, including MySQL, Postgres, ODBC, SQLite,and
Oracle; it is maintained by Angelov.

Haskell also has the usual complement of parser and lexer genera-
tors. Marlow’sHappywas designed to be similar to yacc and gen-
erated LALR parsers. (“Happy” is a “dyslexic acronym” for Yet
Another Haskell Parser.) Paul Callaghan recently extendedHappy
to produce Generalised LR parsers, which work with ambiguous
grammars, returning all possible parses. Parser combinator libraries
are discussed later in this section. Documentation of Haskell pro-
grams is supported by several systems, including Marlow’s Had-
dock tool.

11.1 Combinator libraries

One of the earliest success stories of Haskell was the development
of so-calledcombinator libraries. What is a combinator library?
The reader will search in vain for a definition of this heavilyused
term, but the key idea is this: a combinator library offers functions
(the combinators) that combinefunctionstogether to make bigger
functions.

For example, an early paper that made the design of combinator
libraries a central theme was Hughes’s paper “The design of a
pretty-printing library” (Hughes, 1995). In this paper a “smart
document” was an abstract type that can be thought of like this:

type Doc = Int -> String

That is, a document takes anInt, being the available width of the
paper, and lays itself out in a suitable fashion, returning aString
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that can be printed. Now a library of combinators can be defined
such as:

above :: Doc -> Doc -> Doc
beside :: Doc -> Doc -> Doc
sep :: [Doc] -> Doc

The functionsep lays the subdocuments out beside each other if
there is room, or above each other if not.

While aDoc can bethought ofas a function, it may not beimple-
mentedas a function; indeed, this trade-off is a theme of Hughes’s
paper. Another productive way to think of a combinator library is as
a domain-specific language(DSL) for describing values of a par-
ticular type (for example, document layout in the case of pretty-
printing). DSLs in Haskell are described in more detail in Sec-
tion 11.2.

11.1.1 Parser combinators

One of the most fertile applications for combinator libraries has
undoubtedly beenparser combinators. Like many ingenious pro-
gramming techniques, this one goes back to Burge’s astonishing
bookRecursive Programming Techniques(Burge, 1975), but it was
probably Wadler’s paper “How to replace failure by a list of suc-
cesses” (Wadler, 1985) that brought it wider attention, although he
did not use the word “combinator” and described the work as “folk-
lore”.

A parser may be thought of as a function:

type Parser = String -> [String]

That is, aParser takes a string and attempts to parse it, returning
zero or more depleted input strings, depending on how many ways
the parse could succeed. Failure is represented by the emptylist of
results. Now it is easy to define a library of combinators thatcom-
bine parsers together to make bigger parsers, and doing so allows
an extraordinarily direct transcription of BNF into executable code.
For example, the BNF

float ::= sign? digit+ (′.′ digit+)?

might translate to this Haskell code:

float :: Parser
float = optional sign <*> oneOrMore digit <*>

optional (lit ’.’ <*> oneOrMore digit)

The combinatorsoptional, oneOrMore, and (<*>) combine
parsers to make bigger parsers:

optional, oneOrMore :: Parser -> Parser
(<*>) :: Parser -> Parser -> Parser

It is easy for the programmer to make new parser combinators by
combining existing ones.

A parser of this kind is only arecogniserthat succeeds or fails.
Usually, however, one wants a parser to return a value as well, a re-
quirement that dovetails precisely with Haskell’s notion of a monad
(Section 7). The type of parsers is parameterised toParser t,
wheret is the type of value returned by the parser. Now we can
write thefloat parser usingdo-notation, like this:

float :: Parser Float
float
= do mb_sgn <- optional sign

digs <- oneOrMore digit
mb_frac <- optional (do lit ’.’

oneOrMore digit )
return (mkFloat mb_sgn digs mb_frac)

where optional :: Parser a -> Parser (Maybe a), and
oneOrMore :: Parser a -> Parser [a].

The interested reader may find the short tutorial by Hutton and
Meijer helpful (Hutton and Meijer, 1998). There are dozens of
papers about cunning variants of parser combinators, including
error-correcting parsers (Swierstra and Duponcheel, 1996), paral-
lel parsing (Claessen, 2004), parsing permutation phrases(Baars
et al., 2004), packrat parsing (Ford, 2002), and lexical analysis
(Chakravarty, 1999b). In practice, the most complete and widely
used library is probably Parsec, written by Daan Leijen.

11.1.2 Other combinator libraries

In a way, combinator libraries do not embody anything fundamen-
tally new. Nevertheless, the idea has been extremely influential,
with dozens of combinator libraries appearing in widely different
areas. Examples include pretty printing (Hughes, 1995; Wadler,
2003), generic programming (Lämmel and Peyton Jones, 2003),
embedding Prolog in Haskell (Spivey and Seres, 2003), financial
contracts (Peyton Jones et al., 2000), XML processing (Wallace
and Runciman, 1999), synchronous programming (Scholz, 1998),
database queries (Leijen and Meijer, 1999), and many others.

What makes Haskell such a natural fit for combinator libraries?
Aside from higher-order functions and data abstraction, there seem
to be two main factors, both concerning laziness. First, onecan
write recursive combinators without fuss, such as this recursive
parser for terms:

term :: Parser Term
term = choice [ float, integer,

variable, parens term, ... ]

In call-by-value languages, recursive definitions like this are gen-
erally not allowed. Instead, one would have to eta-expand the def-
inition, thereby cluttering the code and (much more importantly)
wrecking the abstraction (Syme, 2005).

Second, laziness makes it extremely easy to write combinator li-
braries with unusual control flow. Even in Wadler’s originallist-
of-successes paper, laziness plays a central role, and thatis true of
many other libraries mentioned above, such as embedding Prolog
and parallel parsing.

11.2 Domain-specific embedded languages

A common theme among many successful Haskell applications
is the idea of writing a library that turns Haskell into adomain-
specific embedded language(DSEL), a term first coined by Hu-
dak (Hudak, 1996a; Hudak, 1998). Such DSELs have appeared in
a diverse set of application areas, including graphics, animation,
vision, control, GUIs, scripting, music, XML processing, robotics,
hardware design, and more.

By “embedded language” we mean that the domain-specific lan-
guage is simply an extension of Haskell itself, sharing its syntax,
function definition mechanism, type system, modules and so on.
The “domain-specific” part is just the new data types and functions
offered by a library. The phrase “embedded language” is commonly
used in the Lisp community, where Lisp macros are used to design
“new” languages; in Haskell, thanks to lazy evaluation, much (al-
though emphatically not all) of the power of macros is available
through ordinary function definitions. Typically, a data type is de-
fined whose essential nature is often, at least conceptually, a func-
tion, and operators are defined that combine these abstract func-
tions into larger ones of the same kind. The final program is then
“executed” by decomposing these larger pieces and applyingthe
embedded functions in a suitable manner.

In contrast, a non-embedded DSL can be implemented by writ-
ing a conventional parser, type checker, and interpreter (or com-
piler) for the language. Haskell is very well suited to such ap-
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proaches as well. However, Haskell has been particularly success-
ful for domain-specific embedded languages. Below is a collection
of examples.

11.2.1 Functional Reactive Programming

In the early 1990s, Conal Elliott, then working at Sun Microsys-
tems, developed a DSL calledTBAG for constraint-based, semi-
declarative modelling of 3D animations (Elliott et al., 1994;
Schechter et al., 1994). Although largely declarative, TBAG was
implemented entirely in C++. The success of his work resulted in
Microsoft hiring Elliot and a few of his colleagues into the graph-
ics group at Microsoft Research. Once at Microsoft, Elliott’s group
released in 1995 a DSL calledActiveVRMLthat was more declar-
ative than TBAG, and was in fact based on an ML-like syntax
(Elliott, 1996). It was about that time that Elliott also became in-
terested in Haskell, and began collaborating with several people in
the Haskell community on implementing ActiveVRML in Haskell.
Collaborations with Hudak at Yale on design issues, formal seman-
tics, and implementation techniques led in 1998 to a language that
they calledFran, which stood for “functional reactive animation”
(Elliott and Hudak, 1997; Elliott, 1997).

The key idea in Fran is the notion of abehaviour, a first-class data
type that represents atime-varyingvalue. For example, consider
this Fran expression:

pulse :: Behavior Image
pulse = circle (sin time)

In Fran,pulse is a time-varying image value, describing a circle
whose radius is the sine of the time, in seconds, since the program
began executing. A good way to understand behaviours is via the
following data type definition:

newtype Behavior a = Beh (Time -> a)
type Time = Float

That is, a behaviour in Fran is really just a function from time to
values. Using this representation, the valuetime used in thepulse
example would be defined as:

time :: Behaviour Time
time = Beh (\t -> t)

i.e., the identity function. Since many Fran behaviours arenumeric,
Haskell’sNum and Floating classes (for example) allow one to
specify how to add two behaviours or take the sine of a behaviour,
respectively:

instance Num (Behavior a) where
Beh f + Beh g = Beh (\t -> f t + g t)

instance Floating (Behaviour a) where
sin (Beh f) = Beh (\t -> sin (f t))

Thinking of behaviours as functions is perhaps the easiest way to
reason about Fran programs, but of course behaviours are abstract,
and thus can be implemented in other ways, just as with combinator
libraries described earlier.

Another key idea in Fran is the notion of an infinite stream of
events. Various “switching” combinators provide the connection
between behaviours and events—i.e. between the continuousand
the discrete—thus making Fran-like languages suitable forso-
called “hybrid systems.”

This work, a classic DSEL, was extremely influential. In particu-
lar, Hudak’s research group and others began a flurry of research
strands which they collectively referred to asfunctional reactive
programming, or FRP. These efforts included: the application of

FRP to real-world physical systems, including both mobile and hu-
manoid robots (Peterson et al., 1999a; Peterson et al., 1999b); the
formal semantics of FRP, both denotational and operational, and the
connection between them (Wan and Hudak, 2000); real-time vari-
ants of FRP targeted for real-time embedded systems (Wan et al.,
2002; Wan et al., 2001; Wan, 2002); the development of an arrow-
based version of FRP calledYampain 2002, that improves both the
modularity and performance of previous implementations (Hudak
et al., 2003); the use of FRP and Yampa in the design of graphical
user interfaces (Courtney and Elliott, 2001; Courtney, 2004; Sage,
2000) (discussed further in Section 11.3); and the use of Yampa in
the design of a 3D first-person shooter game calledFrag in 2005
(Cheong, 2005). Researchers at Brown have more recently ported
the basic ideas of FRP into a Scheme environment called “Father
Time” (Cooper and Krishnamurthi, 2006).

11.2.2 XML and web-scripting languages

Demonstrating the ease with which Haskell can support domain-
specific languages, Wallace and Runciman were one of the firstto
extend an existing programming language with features for XML
programming, with a library and toolset called HaXml (Wallace
and Runciman, 1999). They actually provided two approachesto
XML processing. One was a small combinator library for manip-
ulating XML, that captured in a uniform way much of the same
functionality provided by the XPath language at the core of XSLT
(and later XQuery). The other was a data-binding approach (im-
plemented as a pre-processor) that mapped XML data onto Haskell
data structures, and vice versa. The two approaches have comple-
mentary strengths: the combinator library is flexible but all XML
data has the same type; the data-binding approach captures more
precise types but is less flexible. Both approaches are stillcommon
in many other languages that process XML, and most of these lan-
guages still face the same trade-offs.

Haskell was also one of the first languages to support what has
become one of the standard approaches to implementing web ap-
plications. The traditional approach to implementing a webappli-
cation requires breaking the logic into one separate program for
each interaction between the client and the web server. Eachpro-
gram writes an HTML form, and the responses to this form become
the input to the next program in the series. Arguably, it is better to
invert this view, and instead to write a single program containing
calls to a primitive that takes an HTML form as argument and re-
turns the responses as the result, and this approach was firsttaken
by the domain-specific language MAWL (Atkins et al., 1999).

However, one does not need to invent a completely new language
for the purpose; instead, this idea can be supported using concepts
available in functional languages, either continuations or mon-
ads (the two approaches are quite similar). Paul Graham useda
continuation-based approach as the basis for one of the firstcom-
mercial applications for building web stores, which later became
Yahoo Stores (Graham, 2004). The same approach was indepen-
dently discovered by Christian Queinnec (Queinnec, 2000) and fur-
ther developed by Matthias Felleisen and others in PLT Scheme
(Graunke et al., 2001). Independently, an approach based ona gen-
eralisation of monads called arrows was discovered by Hughes
(Hughes, 2000) (Section 6.7). Hughes’s approach was further de-
veloped by Peter Thiemann in the WASH system for Haskell, who
revised it to use monads in place of arrows (Thiemann, 2002b). It
turns out that the approach using arrows or monads is closelyre-
lated to the continuation approach (since continuations arise as a
special case of monads or arrows). The continuation approach has
since been adopted in a number of web frameworks widely used by
developers, such as Seaside and RIFE.
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Most of this work has been done in languages (Scheme, Smalltalk,
Ruby) without static typing. Thiemann’s work has shown thatthe
same approach works with a static type system that can guarantee
that the type of information returned by the form matches the
type of information that the application expects. Thiemannalso
introduced a sophisticated use of type classes to ensure that HTML
or XML used in such applications satisfies the regular expression
types imposed by the document type declarations (DTD) used in
XML (Thiemann, 2002a).

11.2.3 Hardware design languages

Lazy functional languages have a long history of use for describ-
ing and modelling synchronous hardware, for two fundamental rea-
sons: first, because lazy streams provide a natural model fordis-
crete time-varying signals, making simulation of functional mod-
els very easy; and second, because higher-order functions are ideal
for expressing the regular structure of many circuits. Using lazy
streams dates to Steve Johnson’s work in the early eighties,for
which he won the ACM Distinguished Dissertation award in 1984
(Johnson, 1984). Higher-order functions for capturing regular cir-
cuit structure were pioneered by Mary Sheeran in her languageµFP
(Sheeran, 1983; Sheeran, 1984), inspired by Backus’ FP (Backus,
1978b).

It was not long before Haskell too was applied to this domain.One
of the first to do so was John O’Donnell, whose Hydra hardware
description language is embedded in Haskell (O’Donnell, 1995).
Another was Dave Barton at Intermetrics, who proposed MHDL
(Microwave Hardware Description Language) based on Haskell
1.2 (Barton, 1995). This was one of the earliest signs of industrial
interest in Haskell, and Dave Barton was later invited to join the
Haskell Committee as a result.

A little later, Launchbury and his group used Haskell to describe
microprocessor architectures in the Hawk system (Matthewset al.,
1998), and Mary Sheeran et al. developed Lava (Bjesse et al.,
1998), a system for describing regular circuits in particular, which
can simulate, verify, and generate net-lists for the circuits de-
scribed. Both Hawk and Lava are examples of domain-specific
languages embedded in Haskell.

When Satnam Singh moved to Xilinx in California, he took Lava
with him and added the ability to generate FPGA layouts for Xilinx
chips from Lava descriptions. This was one of the first success-
ful industrial applications of Haskell: Singh was able to generate
highly efficient and reconfigurable cores for accelerating applica-
tions such as Adobe Photoshop (Singh and Slous, 1998). For years
thereafter, Singh used Lava to develop specialised core generators,
delivered to Xilinx customers as compiled programs that, given
appropriate parameters, generated important parts of an FPGA
design—in most cases without anyone outside Xilinx being aware
that Haskell was involved! Singh tells an amusing anecdote from
these years: on one occasion, a bug in GHC prevented his latest
core generator from compiling. Singh mailed his code to Peyton
Jones at Microsoft Research, who was able to compile it with the
development version of GHC, and sent the result back to Singhthe
next day. When Singh told his manager, the manager exclaimed
incredulously, “You mean to say you got 24-hour support from
Microsoft?”

Lava in particular exercised Haskell’s ability to embed domain spe-
cific languages to the limit. Clever use of the class system enables
signals-of-lists and lists-of-signals, for example, to beused almost
interchangeably, without a profusion of zips and unzips. Captur-
ing sharing proved to be particularly tricky, though. Consider the
following code fragment:

let x = nand a b
y = nand a b

in ...

Here it seems clear that the designer intends to model two separate
NAND-gates. But what about

let x = nand a b
y = x

in ...

Now, clearly, the designer intends to model a single NAND-gate
whose output signal is shared byx andy. Net-lists generated from
these two descriptions should therefore bedifferent—yet according
to Haskell’s intended semantics, these two fragments should be
indistinguishable. For a while, Lava used a “circuit monad”to make
the difference observable:

do x <- nand a b
y <- nand a b
...

versus

do x <- nand a b
y <- return x
...

which are perfectly distinguishable in Haskell. This is therecom-
mended “Haskellish” approach—yet adopting a monadic syntax
uniformly imposes quite a heavy cost on Lava users, which is frus-
trating given that the only reason for the monad is to distinguish
sharing from duplication! Lava has been used to teach VLSI design
to electrical engineering students, and in the end, the struggle to
teach monadic Lava syntax to non-Haskell users became too much.
Claessen usedunsafePerformIO to implement “observable shar-
ing”, allowing Lava to use the first syntax above, but still todistin-
guish sharing from duplication when generating net-lists,theorem-
prover input, and so on. Despite its unsafe implementation,observ-
able sharing turns out to have a rather tractable theory (Claessen
and Sands, 1999), and thus Lava has both tested Haskell’s ability to
embed other languages to the limit, and contributed a new mecha-
nism to extend its power.

Via this and other work, lazy functional programming has had
an important impact on industrial hardware design. Intel’slarge-
scale formal verification work is based on a lazy language, in
both the earlier Forté and current IDV systems. Sandburst was
founded by Arvind to exploit Bluespec, a proprietary hardware
description language closely based on Haskell (see Section12.4.2).
The language is now being marketed (with a System Verilog front
end) by a spin-off company called Bluespec, but the tools arestill
implemented in Haskell.

A retrospective on the development of the field, and Lava in partic-
ular, can be found in Sheeran’s JUCS paper (Sheeran, 2005).

11.2.4 Computer music

Haskoreis a computer music library written in Haskell that allows
expressing high-level musical concepts in a purely declarative way
(Hudak et al., 1996; Hudak, 1996b; Hudak, 2003). Primitive values
corresponding to notes and rests are combined using combinators
for sequential and parallel composition to form larger musical val-
ues. In addition, musical ornamentation and embellishment(legato,
crescendo, etc.) are treated by an object-oriented approach to mu-
sical instruments to provide flexible degrees of interpretation.

The first version of Haskore was written in the mid ’90s by Hudak
and his students at Yale. Over the years it has matured in a number
of different ways, and aside from the standard distributionat Yale,
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Henning Thielemann maintains an open-source Darcs repository
(Section 12.3) to support further development. Haskore hasbeen
used as the basis of a number of computer music projects, and
is actively used for computer music composition and education.
One of the more recent additions to the system is the ability to
specify musical sounds—i.e. instruments—in a declarativeway, in
which oscillators, filters, envelope generators, etc. are combined in
a signal-processing-like manner.

Haskore is based on a very simple declarative model of music
with nice algebraic properties that can, in fact, be generalized to
other forms of time-varying media (Hudak, 2004). Although many
other computer music languages preceded Haskore, none of them,
perhaps surprisingly, reflects this simple structure. Haskell’s purity,
lazy evaluation, and higher-order functions are the key features that
make possible this elegant design.

11.2.5 Summary

Why has Haskell been so successful in the DSEL arena? After
all, many languages provide the ability to define new data types
together with operations over them, and a DSEL is little morethan
that! No single feature seems dominant, but we may identify the
following ways in which Haskell is a particularly friendly host
language for a DSEL:

1. Type classespermit overloading of many standard operations
(such as those for arithmetic) on many nonstandard types (such
as theBehaviour type above).

2. Higher-order functionsallow encoding nonstandard behaviours
and also provide the glue to combine operations.

3. Infix syntaxallows one to emulate infix operators that are com-
mon in other domains.

4. Over-loaded numeric literalsallow one to use numbers in new
domains without tagging or coercing them in awkward ways.

5. Monads and arrows are flexible mechanisms for combining
operations in ways that reflect the semantics of the intended
domain.

6. Lazy evaluationallows writing recursive definitions in the new
language that are well defined in the DSEL, but would not
terminate in a strict language.

The reader will also note that there is not much difference in
concept between the combinator libraries described earlier and
DSELs. For example, a parser combinator library can be viewed
as a DSEL for BNF, which is just a meta-language for context-
free grammars. And Haskell libraries for XML processing share a
lot in common with parsing and layout, and thus with combinator
libraries. It is probably only for historical reasons that one project
might use the term “combinator library” and another the term
“DSL” (or “DSEL”).

11.3 Graphical user interfaces

Once Haskell had a sensible I/O system (Section 7), the next ob-
vious question was how to drive a graphical user interface (GUI).
People interested in this area rapidly split into two groups: the ide-
alistsand thepragmatists.

The idealists took a radical approach. Rather than adopt theimper-
ative, event-loop-based interaction model of mainstream program-
ming languages, they sought to answer the question, “What isthe
right way to interact with a GUI in a purely declarative setting?”
This question led to several quite unusual GUI systems:

• The Fudgetssystem was developed by Magnus Carlsson and
Thomas Hallgren, at Chalmers University in Sweden. They
treated the GUI as a network of“stream processors”, or stream

transformers (Carlsson and Hallgren, 1993). Each processor
had a visual appearance, as well as being connected to other
stream processors, and the shape of the network could change
dynamically. There was no central event loop: instead each
stream processor processed its own individual stream of events.

• Sigbjorn Finne, then a research student at Glasgow, devel-
oped Haggis, which replaced the event loop with extremely
lightweight concurrency; for example, each button might have
a thread dedicated to listening for clicks on that button. The
stress was on widgetcomposition, so that complex widgets
could be made by composing together simpler ones (Finne and
Peyton Jones, 1995). The requirements of Haggis directly drove
the development of Concurrent Haskell (Peyton Jones et al.,
1996).

• Based on ideas in Fran (see section 11.2.1), Meurig Sage devel-
opedFranTk (Sage, 2000), which combined the best ideas in
Fran with those of the GUI toolkit Tk, including an imperative
model of call-backs.

• Antony Courtney took a more declarative approach based en-
tirely on FRP and Yampa, but with many similarities to Fudgets,
in a system that he calledFruit (Courtney and Elliott, 2001;
Courtney, 2004). Fruit is purely declarative, and uses arrows to
“wire together” GUI components in a data-flow-like style.

Despite the elegance and innovative nature of these GUIs, none
of them broke through to become the GUI toolkit of choice for a
critical mass of Haskell programmers, and they all remainedsingle-
site implementations with a handful of users. It is easy to see why.
First, developing a fully featured GUI is a huge task, and each
system lacked the full range of widgets, and snazzy appearance,
that programmers have come to expect. Second, the quest for purity
always led to programming inconvenience in one form or another.
The search for an elegant, usable, declarative GUI toolkit remains
open.

Meanwhile, the pragmatists were not idle. They just wanted to get
the job done, by the direct route of interfacing to some widely
available GUI toolkit library, a so-called “binding.” Early efforts
included an interface to Tcl/Tk called swish (Sinclair, 1992), and
an interface to X windows (the Yale Haskell project), but there
were many subsequent variants (e.g., TkGofer, TclHaskell,HTk)
and bindings to other tool kits such as OpenGL (HOpenGL), GTK
(e.g., Gtk2Hs, Gtk+Hs) and WxWidgets (WxHaskell). These ef-
forts were hampered by the absence of a well defined foreign-
function interface for Haskell, especially as the libraries involved
have huge interfaces. As a direct result, early bindings were often
somewhat compiler specific, and implemented only part of thefull
interface. More recent bindings, such as Gtk2Hs and WxHaskell,
are generated automatically by transforming the machine-readable
descriptions of the library API into the Haskell 98 standardFFI.

These bindings all necessarily adopt the interaction modelof the
underlying toolkit, invariably based on imperative widgetcreation
and modification, together with an event loop and call-backs. Nev-
ertheless, their authors often developed quite sophisticated Haskell
wrapper libraries that present a somewhat higher-level interface to
the programmer. A notable example is the Clean graphical I/Oli-
brary, which formed an integral part of the Clean system froma
very early stage (Achten et al., 1992) (unlike the fragmented ap-
proach to GUIs taken by Haskell). The underlying GUI toolkit
for Clean was the Macintosh, but Clean allows the user to spec-
ify the interface by means of a data structure containing call-back
functions. Much later, the Clean I/O library was ported to Haskell
(Achten and Peyton Jones, 2000).
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To this day, the Haskell community periodically agonises over the
absence of a single standard Haskell GUI. Lacking such a standard
is undoubtedly an inhibiting factor on Haskell’s development. Yet
no one approach has garnered enough support to becomethe de-
sign, despite various putative standardisation efforts, although Wx-
Haskell (another side project of the indefatigable Daan Leijen) has
perhaps captured the majority of the pragmatist market.

11.4 Operating Systems

An early operating system for Haskell was hOp, a micro-kernel
based on the runtime system of GHC, implemented by Sebastian
Carlier and Jeremy Bobbio (Carlier and Bobbio, 2004). Building
on hOp, a later project, House, implemented a system in which
the kernel, window system, and all device drivers are written in
Haskell (Hallgren et al., 2005). It uses a monad to provide access to
the Intel IA32 architecture, including virtual memory management,
protected execution of user binaries, and low-level IO operations.

11.5 Natural language processing13

Haskell has been used successfully in the development of a va-
riety of natural language processing systems and tools. Richard
Frost (Frost, 2006) gives a comprehensive review of relevant work
in Haskell and related languages, and discusses new tools and li-
braries that are emerging, written in Haskell and related languages.
We highlight two substantial applications that make significant use
of Haskell.

Durham’sLOLITA system (Large-scale, Object-based, Linguistic
Interactor, Translator and Analyzer) was developed by Garigliano
and colleagues at the University of Durham (UK) between 1986
and 2000. It was designed as a general-purpose tool for processing
unrestricted text that could be the basis of a wide variety ofapplica-
tions. At its core was a semantic network containing some 90,000
interlinked concepts. Text could be parsed and analysed then in-
corporated into the semantic net, where it could be reasonedabout
(Long and Garigliano, 1993). Fragments of semantic net could also
be rendered back to English or Spanish. Several applications were
built using the system, including financial information analysers
and information extraction tools for Darpa’s “Message Understand-
ing Conference Competitions” (MUC-6 and MUC-7). The latter
involved processing original Wall Street Journal articles, to per-
form tasks such as identifying key job changes in businessesand
summarising articles. LOLITA was one of a small number of sys-
tems worldwide to compete in all sections of the tasks. A system
description and an analysis of the MUC-6 results were written by
Callaghan (Callaghan, 1998).

LOLITA was an early example of a substantial application writ-
ten in a functional language: it consisted of around 50,000 lines
of Haskell (with around 6000 lines of C). It is also a complex and
demanding application, in which many aspects of Haskell were in-
valuable in development. LOLITA was designed to handle unre-
stricted text, so that ambiguity at various levels was unavoidable
and significant. Laziness was essential in handling the explosion
of syntactic ambiguity resulting from a large grammar, and it was
much used with semantic ambiguity too. The system used multiple
DSELs (Section 11.2) for semantic and pragmatic processingand
for generation of natural language text from the semantic net. Also
important was the ability to work with complex abstractionsand to
prototype new analysis algorithms quickly.

TheGrammatical Framework(GF) (Ranta, 2004) is a language for
defining grammars based on type theory, developed by Ranta and
colleagues at Chalmers University. GF allows users to describe a

13This section is based on material contributed by Paul Callaghan.

precise abstract syntax together with one or more concrete syn-
taxes; the same description specifies both how to parse concrete
syntax into abstract syntax, and how to linearise the abstract syntax
into concrete syntax. An editing mode allows incremental construc-
tion of well formed texts, even using multiple languages simulta-
neously. The GF system has many applications, including high-
quality translation, multi-lingual authoring, verifyingmathemati-
cal proof texts and software specifications, communicationin con-
trolled language, and interactive dialogue systems. Many reusable
“resource grammars” are available, easing the construction of new
applications.

The main GF system is written in Haskell and the whole system is
open-source software (under a GPL licence). Haskell was chosen
as a suitable language for this kind of system, particularlyfor the
compilation and partial evaluation aspects (of grammars).Monads
and type classes are extensively used in the implementation.

12. The impact of Haskell
Haskell has been used in education, by the open-source community,
and by companies. The language is the focal point of an activeand
still-growing user community. In this section we survey some of
these groups of users and briefly assess Haskell’s impact on other
programming languages.

12.1 Education

One of the explicit goals of Haskell’s designers was to create a lan-
guage suitable for teaching. Indeed, almost as soon as the language
was defined, it was being taught to undergraduates at Oxford and
Yale, but initially there was a dearth both of textbooks and of robust
implementations suitable for teaching. Both problems weresoon
addressed. The first Haskell book—Tony Davie’sAn Introduction
to Functional Programming Systems Using Haskell—appeared in
1992. The release of Gofer in 1991 made an “almost Haskell” sys-
tem available with a fast, interactive interface, good for teaching. In
1995, when Hugs was released, Haskell finally had an implemen-
tation perfect for teaching—which students could also install and
use on their PCs at home. In 1996, Simon Thompson published a
Haskell version of hisCraft of Functional Programmingtextbook,
which had first appeared as a Miranda textbook a year earlier.This
book (revised in 1998) has become the top-selling book on Haskell,
far ahead of its closest competitor in Amazon’s sales rankings.

The arrival of Haskell 98 gave textbooks another boost. Birdre-
vised Introduction to Functional Programming, using Haskell, in
1998, and in the same year Okasaki published the first textbook
to use Haskell to teach another subject—Purely Functional Data
Structures. This was followed the next year by Fethi Rabhi and
Guy Lapalme’s algorithms textAlgorithms: A functional program-
ming approach, and new texts continue to appear, such as Graham
Hutton’s 2006 bookProgramming in Haskell.

The first Haskell texts were quite introductory in nature, intended
for teaching functional programming to first-year students. At the
turn of the millennium, textbooks teaching more advanced tech-
niques began to appear. Hudak’sHaskell School of Expression(Hu-
dak, 2000) uses multimedia applications (such as graphics,anima-
tion, and music) to teach Haskell idioms in novel ways that gowell
beyond earlier books. A unique aspect of this book is its use of
DSELs (for animation, music, and robotics) as an underlyingtheme
(see Section 11.2). Although often suggested for first-yearteach-
ing, it is widely regarded as being more suitable for an advanced
course. In 2002, Gibbons and de Moor editedThe Fun of Program-
ming, an advanced book on Haskell programming with contribu-
tions by many authors, dedicated to Richard Bird and intended as a
follow-up to his text.

12-40



Another trend is to teach discrete mathematics and logic using
Haskell as a medium of instruction, exploiting Haskell’s mathemat-
ical look and feel. Cordelia Hall and John O’Donnell published the
first textbook taking this approach in 2000—Discrete Mathemat-
ics Using a Computer. Rex Page carried out a careful three-year
study, in which students were randomly assigned to a group taught
discrete mathematics in the conventional way, or a group taught
using Hall and O’Donnell’s text, and found that students in the lat-
ter group became significantly more effective programmers (Page,
2003). Recently (in 2004) Doets and van Eijck have publishedan-
other textbook in this vein,The Haskell Road to Logic, Maths and
Programming, which has rapidly become popular.

For the more advanced students, there has been an excellent se-
ries of International Summer Schools on Advanced Functional Pro-
gramming, at which projects involving Haskell have always had a
significant presence. There have been five such summer schools to
date, held in 1995, 1996, 1998, 2002, and 2004.

12.1.1 A survey of Haskell in higher education

To try to form an impression of the use of Haskell in university
education today, we carried out a web survey of courses taught in
the 2005–2006 academic year. We make no claim that our survey
is complete, but it was quite extensive: 126 teachers responded,
from 89 universities in 22 countries; together they teach Haskell to
5,000–10,000 students every year14. 25% of these courses began
using Haskell only in the last two years (since 2004), which sug-
gests that the use of Haskell in teaching is currently seeingrapid
growth.

Enthusiasts have long argued that functional languages areide-
ally suited to teaching introductory programming, and indeed, most
textbooks on Haskell programming are intended for that purpose.
Surprisingly, only 28 of the courses in our survey were aimedat
beginners (i.e. taught in the first year, or assuming no previous
programming experience). We also asked respondents which pro-
gramming languages students learn first and second at their Uni-
versities, on the assumption that basic programming will teach
at least two languages. We found that—even at Universities that
teach Haskell—Java was the first language taught in 47% of cases,
and also the most commonly taught second language (in 22% of
cases). Haskell was among the first two programming languages
only in 35% of cases (15% as first language, 20% as second lan-
guage). However, beginners’ courses did account for the largest
single group of students to study Haskell, 2–4,000 every year, be-
cause each such course is taken by more students on average than
later courses are.

The most common courses taught using Haskell are explicitly
intended to teach functional programmingper se(or sometimes
declarative programming). We received responses from 48 courses
of this type, with total student numbers of 1,300–2,900 per year.
A typical comment from respondees was that the course was in-
tended to teach “a different style of programming” from the object-
oriented paradigm that otherwise predominates. Four othermore
advanced programming courses (with 3–700 students) can be said
to have a similar aim.

The third large group of courses we found were programming
language courses—ranging from comparative programming lan-
guages through formal semantics. There were 25 such courses,
with 800–1,700 students annually. Surprisingly, there is currently
no Haskell-based textbook aimed at this market—an opportunity,
perhaps?

14We asked only for approximate student numbers, hence the wide range
of possibilities.

Haskell is used to teach nine compilers courses, with 3–700 stu-
dents. It is also used to teach six courses in theoretical computer
science (2–400 students). Both take advantage of well-known
strengths of the language—symbolic computation and its mathe-
matical flavour. Finally, there are two courses in hardware descrip-
tion (50–100 students), and one course in each of domain-specific
languages, computer music, quantum computing, and distributed
and parallel programming—revealing a surprising variety in the
subjects where Haskell appears.

Most Haskell courses are aimed at experienced programmers see-
ing the language for the first time: 85% of respondents taughtstu-
dents with prior programming experience, but only 23% taught
students who already knew Haskell. The years in which Haskell
courses are taught are shown in this table:

Year %ge
1st undergrad 20%
2nd undergrad 23%
3rd undergrad 25%
4–5th undergrad 16%
Postgrad 12%

This illustrates once again that the majority of courses aretaught at
more advanced levels.

The countries from which we received most responses were the
USA (22%), the UK (19%), Germany (11%), Sweden (8%), Aus-
tralia (7%), and Portugal (5%).

How does Haskell measure up in teaching? Some observations we
received were:

• Both respondents and their students are generally happy with
the choice of language—“Even though I am not a FL researcher,
I enjoy teaching the course more than most of my other courses
and students also seem to like the course.”

• Haskell attracts good students—“The students who take the
Haskell track are invariably among the best computer science
students I have taught.”

• Fundamental concepts such as types and recursion are ham-
mered home early.

• Students can tackle more ambitious and interesting problems
earlier than they could using a language like Java.

• Simple loop programs can be harder for students to grasp when
expressed using recursion.

• The class system causes minor irritations, sometimes leading to
puzzling error messages for students.

• Array processing and algorithms using in-place update are
messier in Haskell.

• Haskell input/output is not well covered by current textbooks:
“my impression was that students are mostly interested in things
which Simon Peyton Jones addressed in his paper ‘Tackling
the Awkward Squad’ (Peyton Jones, 2001). I think, for the
purpose of teaching FP, we are in dire need of a book on FP
that not only presents the purely functional aspects, but also
comprehensively covers issues discussed in that paper.”

As mentioned earlier, a simplified version of Haskell,Helium,
is being developed at Utrecht specifically for teaching—thefirst
release was in 2002. Helium lacks classes, which enables it to give
clearer error messages, but then it also lacks textbooks andthe
ability to “tackle the awkward squad.” It remains to be seen how
successful it will be.
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12.2 Haskell and software productivity

Occasionally we hear anecdotes about Haskell providing an “order-
of-magnitude” reduction in code size, program developmenttime,
software maintenance costs, or whatever. However, it is very diffi-
cult to conduct a rigorous study to substantiate such claims, for any
language.

One attempt at such a study was an exercise sponsored by Darpa
(the U.S. Defense Advanced Research Projects Agency) in the
early 1990s. About ten years earlier, Darpa had christened Ada as
the standard programming language to be used for future software
development contracts with the U.S. government. Riding on that
wave of wisdom, they then commissioned a program calledPro-
toTechto develop software prototyping technology, including the
development of a “common prototyping language,” to help in the
design phase of large software systems. Potential problemsasso-
ciated with standardisation efforts notwithstanding, Darpa’s Pro-
toTech program funded lots of interesting programming language
research, including Hudak’s effort at Yale.

Toward the end of the ProtoTech Program, the Naval Surface War-
fare Center (NSWC) conducted an experiment to see which of
many languages—some new (such as Haskell) and some old (such
as Ada and C++)—could best be used to prototype a “geometric
region server.” Ten different programmers, using nine different pro-
gramming languages, built prototypes for this software component.
Mark Jones, then a Research Scientist at Yale, was the primary
Haskell programmer in the experiment. The results, described in
(Carlson et al., 1993), although informal and partly subjective and
too lengthy to describe in detail here, indicate fairly convincingly
the superiority of Haskell in this particular experiment.

Sadly, nothing of substance ever came from this experiment.No
recommendations were made to use Haskell in any kind of govern-
ment software development, not even in the context of prototyping,
an area where Haskell could have had significant impact. The com-
munity was simply not ready to adopt such a radical programming
language.

In recent years there have been a few other informal efforts at run-
ning experiments of this sort. Most notably, the functionalprogram-
ming community, through ICFP, developed its very own Program-
ming Contest, a three-day programming sprint that has been held
every year since 1998. These contests have been open to anyone,
and it is common to receive entries written in C and other impera-
tive languages, in addition to pretty much every functionallanguage
in common use. The first ICFP Programming Contest, run by Olin
Shivers in 1998, attracted 48 entries. The contest has grownsub-
stantially since then, with a peak of 230 entries in 2004—more
teams (let alone team members) than conference participants! In
every year only a minority of the entries are in functional lan-
guages; for example in 2004, of the 230 entries, only 67 were func-
tional (24 OCaml, 20 Haskell, 12 Lisp, 9 Scheme, 2 SML, 1 Mer-
cury, 1 Erlang). Nevertheless, functional languages dominate the
winners: of the first prizes awarded in the eight years of the Contest
so far, three have gone to OCaml, three to Haskell, one to C++,and
one to Cilk (Blumofe et al., 1996).

12.3 Open source: Darcs and Pugs

One of the turning points in a language’s evolution is when people
start to learn it because of the applications that are written in it
rather than because they are interested in the language itself. In
the last few years two open-source projects, Darcs and Pugs,have
started to have that effect for Haskell.

Darcs is an open-source revision-control system written inHaskell
by the physicist David Roundy (Roundy, 2005). It addresses the

same challenges as the well-established incumbents such asCVS
and Subversion, but its data model is very different. Ratherthan
thinking in terms of a master repository of which users take copies,
Darcs considers each user to have a fully fledged repository,with
repositories exchanging updates by means of patches. This rather
democratic architecture (similar to that of Arch) seems very attrac-
tive to the open-source community, and has numerous technical ad-
vantages as well (Roundy, 2005). It is impossible to say how many
people use Darcs, but the user-group mailing list has 350 members,
and the Darcs home page lists nearly 60 projects that use Darcs.

Darcs was originally written in C++ but, as Roundy puts it, “af-
ter working on it for a while I had an essentially solid mass of
bugs” (Stosberg, 2005). He came across Haskell and, after a few
experiments in 2002, rewrote Darcs in Haskell. Four years later,
the source code is still a relatively compact 28,000 lines ofliter-
ate Haskell (thus including the source for the 100-page manual).
Roundy reports that some developers now are learning Haskell
specifically in order to contribute to Darcs.

One of these programmers was Audrey Tang. She came across
Darcs, spent a month learning Haskell, and jumped from thereto
Pierce’s bookTypes and Programming Languages(Pierce, 2002).
The book suggests implementing a toy language as an exercise, so
Tang picked Perl 6. At the time there were no implementationsof
Perl 6, at least partly because it is a ferociously difficult language
to implement. Tang started her project on 1 February 2005. A year
later there were 200 developers contributing to it; perhapsamaz-
ingly (considering this number) the compiler is only 18,000lines
of Haskell (including comments) (Tang, 2005). Pugs makes heavy
use of parser combinators (to support a dynamically changeable
parser) and several more sophisticated Haskell idioms, including
GADTs (Section 6.7) and delimited continuations (Dybvig etal.,
2005).

12.4 Companies using Haskell

In the commercial world, Haskell still plays only a minor role.
While many Haskell programmers work for companies, they usu-
ally have an uphill battle to persuade their management to take
Haskell seriously. Much of this reluctance is associated with func-
tional programming in general, rather than Haskell in particular,
although the climate is beginning to change; witness, for example,
the workshops for Commercial Users of Functional Programming,
held annually at ICFP since 2004. We invited four companies that
use Haskell regularly to write about their experience. Their lightly
edited responses constitute the rest of this section.

12.4.1 Galois Connections15

The late ’90s were the heady days of Internet companies and ridicu-
lous valuations. At just this time Launchbury, then a professor in the
functional programming research group at the Oregon Graduate In-
stitute, began to wonder: can wedosomething with functional lan-
guages, and with Haskell in particular? He founded Galois Connec-
tions Inc, a company that began with the idea of finding clients for
whom they could build great solutions simply by using the power
of Haskell. The company tagline reflected this: Galois Connections,
Purely Functional.

Things started well for Galois. Initial contracts came fromthe U.S.
government for building a domain-specific language for cryptogra-
phy, soon to be followed by contracts with local industry. One of
these involved building a code translator for test program for chip
testing equipment. Because this was a C-based problem, the Galois
engineers shifted to ML, to leverage the power of the ML C-Kit

15This section is based on material contributed by John Launchbury of
Galois Connections.
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library. In a few months, a comprehensive code translation tool was
built and kept so precisely to a compressed code-delivery schedule
that the client was amazed.

From a language perspective, there were no surprises here: com-
pilers and other code translation are natural applicationsfor func-
tional languages, and the abstraction and non-interference proper-
ties of functional languages meant that productivity was very high,
even with minimal project management overhead. There were busi-
ness challenges, however: a “can do anything” business doesn’t get
known for doing anything. It has to resell its capabilities from the
ground up on every sale. Market focus is needed.

Galois selected a focus area of high-confidence software, with spe-
cial emphasis on information assurance. This was seen as a growth
area and one in which the U.S. government already had major con-
cerns, both for its own networks and for the public Internet.It also
appeared to present significant opportunity for introducing highly
innovative approaches. In this environment Haskell provided some-
thing more than simple productivity. Because of referential trans-
parency, Haskell programs can be viewed as executable mathemat-
ics, as equations over the category of complete partial orders. In
principle, at least, the specificationbecomesthe program.

Examples of Haskell projects at Galois include: development tools
for Cryptol, a domain-specific language for specifying crypto-
graphic algorithms; a debugging environment for a government-
grade programmable crypto-coprocessor; tools for generating FPGA
layouts from Cryptol; a high-assurance compiler for the ASN.1
data-description language; a non-blocking cross-domain file sys-
tem suitable for fielding in systems with multiple independent lev-
els of security (MILS); a WebDAV server with audit trails andlog-
ging; and a wiki for providing collaboration across distinct security
levels.

12.4.2 Bluespec16

Founded in June, 2003 by Arvind (MIT), Bluespec, Inc. manu-
factures an industry standards-based electronic design automation
(EDA) toolset that is intended to raise the level of abstraction for
hardware design while retaining the ability to automatically syn-
thesise high-quality register-transfer code without compromising
speed, power or area.

The name Bluespec comes from a hardware description language
by the same name, which is a key enabling technology for the
company. Bluespec’s design was heavily influenced by Haskell.
It is basically Haskell with some extra syntactic constructs for
the term rewriting system (TRS) that describes what the hardware
does. The type system has been extended with types of numeric
kind. Using the class system, arithmetic can be performed onthese
numeric types. Their purpose is to give accurate types to things like
bit vectors (instead of using lists where the sizes cannot bechecked
by the type checker). For example:

bundle :: Bit[n] -> Bit[m] -> Bit[n+m]

Here,n andm are type variables, but they have kindNat, and (lim-
ited) arithmetic is allowed (and statically checked) at thetype level.
Bluespec is really a two-level language. The full power of Haskell
is available at compile time, but almost all Haskell language con-
structs are eliminated by a partial evaluator to get down to the basic
TRS that the hardware can execute.

16This section was contributed by Rishiyur Nikhil of Bluespec.

12.4.3 Aetion17

Aetion Technologies LLC is a company with some nine employ-
ees, based in Columbus, Ohio, USA. The company specialises in
artificial intelligence software for decision support.

In 2001 Aetion was about to begin a significant new software devel-
opment project. They chose Haskell, because of its rich static type
system, open-source compilers, and its active research community.
At the time, no one at Aetion was an experienced Haskell program-
mer, though some employees had some experience with ML and
Lisp.

Overall, their experience was extremely positive, and theynow
use Haskell for all their software development except for GUIs
(where they use Java). They found that Haskell allows them towrite
succinct but readable code for rapid prototypes. As Haskellis a very
high-level language, they find they can concentrate on the problem
at hand without being distracted by all the attendant programming
boilerplate and housekeeping. Aetion does a lot of researchand
invention, so efficiency in prototyping is very important. Use of
Haskell has also helped the company to hire good programmers:
it takes some intelligence to learn and use Haskell, and Aetion’s
rare use of such an agreeable programming language promotes
employee retention.

The main difficulty that Aetion encountered concerns efficiency:
how to construct software that uses both strict and lazy evalua-
tion well. Also, there is an initial period of difficulty while one
learns what sorts of bugs evoke which incomprehensible error mes-
sages. And, although Aetion has been able to hire largely when
they needed to, the pool of candidates with good Haskell program-
ming skills is certainly small. A problem that Aetion has notyet
encountered, but fears, is that a customer may object to the use of
Haskell because of its unfamiliarity. (Customers sometimes ask the
company to place source code in escrow, so that they are able to
maintain the product if Aetion is no longer willing or able todo
so.)

12.4.4 Linspire18

Linspire makes a Linux distribution targeted for the consumer mar-
ket. The core OS team settled in 2006 on Haskell as the preferred
choice for systems programming. This is an unusual choice. In this
domain, it is much more common to use a combination of several
shells and script languages (such asbash, awk, sed, Perl, Python).
However, the results are often fragile and fraught withad hoccon-
ventions. Problems that are not solved directly by the shellare
handed off to a bewildering array of tools, each with its own syntax,
capabilities and shortcomings.

While not as specialised, Haskell has comparable versatility but
promotes much greater uniformity. Haskell’s interpretersprovide
sufficient interactivity for constructing programs quickly; its li-
braries are expanding to cover the necessary diversity withtruly
reusable algorithms; and it has the added benefit that transition to
compiled programs is trivial. The idioms for expressing systems
programming are not quite as compact as in languages such as Perl,
but this is an active area of research and the other language benefits
outweigh this lack.

Static type-checking has proved invaluable, catching manyerrors
that might have otherwise occurred in the field, especially when the
cycle of development and testing is spread thin in space and time.
For example, detecting and configuring hardware is impossible to
test fully in the lab. Even if it were possible to collect all the

17This section was contributed by Mark Carroll of Aetion.
18This section was contributed by Clifford Beshers of Linspire.
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Figure 7. Growth of the “hard-core” Haskell community

various components, the time to assemble and test all the possible
combinations is prohibitive. Another example is that Linspire’s
tools must handle legacy data formats. Explicitly segregating these
formats into separate data types prevented the mysterious errors
that always seem to propagate through shell programs when the
format changes.

Runtime efficiency can be a problem, but the Haskell community
has been addressing this aggressively. In particular, the recent de-
velopment of theData.ByteString library fills the most impor-
tant gap. Linspire recently converted a parser to use this module,
reducing memory requirements by a factor of ten and increasing
speed to be comparable with the standard commandcat.

Learning Haskell is not a trivial task, but the economy of expression
and the resulting readability seem to provide a calm inside the
storm. The language, libraries and culture lead to solutions that feel
like minimal surfaces: simple expressions that comprise significant
complexity, with forms that seem natural, recurring in problem
after problem. Open source software remains somewhat brittle,
relying on the fact that most users are developers aware of its
weak points. At Linspire, Haskell offers the promise of annealing a
stronger whole.

12.5 The Haskell community

A language that is over 15 years old might be expected to be
entering its twilight years. Perhaps surprisingly, though, Haskell
appears to be in a particularly vibrant phase at the time of writing.
Its use is growing strongly and appears for the first time to show
signs of breaking out of its specialist-geeky niche.

The last five years have seen a variety of new community initia-
tives, led by a broad range of people including some outside the
academic/research community. For example:

The Haskell Workshops.The first Haskell Workshop was held in
conjunction with ICFP in 1995, as a one-day forum to discuss

the language and the research ideas it had begun to spawn. Sub-
sequent workshops were held in 1997 and 1999, after which it
became an annual institution. It now has a refereed proceedings
published by ACM and a steady attendance of 60-90 partici-
pants. Since there is no Haskell Committee (Section 3.7), the
Haskell workshop is the only forum at which corporate deci-
sions can be, and occasionally are, taken.

The Haskell Communities and Activities Report (HCAR). In
November 2001 Claus Reinke edited the first edition of the
Haskell Communities and Activities Report19, a biannual news-
letter that reports on what projects are going on in the Haskell
community. The idea really caught on: the first edition listed
19 authors and consisted of 20 pages; but the November 2005
edition (edited by Andres Löh) lists 96 authors and runs to over
60 pages.

The #haskell IRC channel first appeared in the late 1990s, but
really got going in early 2001 with the help of Shae Erisson
(akashapr)20. It has grown extremely rapidly; at the time of
writing, there are typically 200 people logged into the channel
at any moment, with upward of 2,000 participants over a full
year. The#haskell channel has spawned a particularly suc-
cessful software client calledlambdabot (written in Haskell,
of course) whose many plugins include language translation,
dictionary lookup, searching for Haskell functions, a theorem
prover, Darcs patch tracking, and more besides.

The Haskell Weekly News.In 2005, John Goerzen decided to
help people cope with the rising volume of mailing list ac-
tivity by distributing a weekly summary of the most important
points—theHaskell Weekly News, first published on the 2nd of
August21. TheHWN covers new releases, resources and tools,
discussion, papers, a “Darcs corner,” and quotes-of-the-week—
the latter typically being “in” jokes such as “Haskell separates
Church and state.”

The Monad Reader.Another recent initiative to help a wider
audience learn about Haskell is Shae Erisson’sThe Monad
Reader22, a web publication that first appeared in March 2005.
The first issue declared:“There are plenty of academic pa-
pers about Haskell, and plenty of informative pages on the
Haskell Wiki. But there’s not much between the two extremes.
The Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal article.”Five issues
have already appeared, with many articles by practitioners, il-
lustrated with useful code fragments.

Planet Haskell is a site for Haskell bloggers23, started by Antti-
Juhani Kaijanaho in 2006.

The Google Summer of Coderan for the first time in 2005, and
included just one Haskell project, carried out by Paolo Mar-
tini. Fired by his experience, Martini spearheaded a much larger
Haskell participation in the 2006 Summer of Code. He organ-
ised a panel of 20 mentors, establishedhaskell.org as a men-
toring organisation, and attracted an astonishing 114 project
proposals, of which nine were ultimately funded24.

It seems clear from all this that the last five years has seen partic-
ularly rapid growth. To substantiate our gut feel, we carried out an

19http://haskell.org/communities/
20http://haskell.org/haskellwiki/IRC_channel
21http://sequence.complete.org/hwn
22http://www.haskell.org/hawiki/TheMonadReader
23http://planet.haskell.org
24http://hackage.haskell.org/trac/summer-of-code
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informal survey of the Haskell community via the Haskell mailing
list, and obtained almost 600 responses from 40 countries. Clearly,
our respondees belong to a self-selected group who are sufficiently
enthusiastic about the language itself to follow discussion on the
list, and so are not representative of Haskell users in general. In
particular, it is clear from the responses that the majorityof stu-
dents currently being taught Haskell did not reply. Nevertheless, as
a survey of the “hard core” of the community, the results are inter-
esting.

We asked respondees when they first learnt Haskell, so we could
estimate how the size of the community has changed over the
years25. The results are shown in Figure 7, where the bars show the
total number of respondees who had learnt Haskell by the yearin
question. Clearly the community has been enjoying much stronger
growth since 1999. This is the year that the Haskell 98 standard was
published—the year that Haskell took the step from a frequently
changing vehicle for research to a language with a guaranteeof
long-term stability. It is tempting to conclude that this iscause and
effect.

Further indications of rapid growth come from mailing list activity.
While the “official” Haskell mailing list has seen relatively flat
traffic, the “Haskell Café” list, started explicitly in October 2000
as a forum for beginners’ questions and informal discussions, has
seen traffic grow by a factor of six between 2002 and 2005. The
Haskell Café is most active in the winters: warm weather seems to
discourage discussion of functional programming26!

Our survey also revealed a great deal about who the hard-core
Haskell programmers are. One lesson is that Haskell is a program-
ming language for the whole family—the oldest respondent was 80
years old, and the youngest just 16! It is sobering to realisethat
Haskell was conceived before its youngest users. Younger users do
predominate, though: respondents’ median age was 27, some 25%
were 35 or over, and 25% were 23 or younger.

Surprisingly, given the importance we usually attach to university
teaching for technology transfer, only 48% of respondees learned
Haskell as part of a university course. The majority of our respon-
dents discovered the language by other means. Only 10% of re-
spondents learnt Haskell as their first programming language (and
7% as their second), despite the efforts that have been made to pro-
mote Haskell for teaching introductory programming27. Four out
of five hard-core Haskell users were already experienced program-
mers by the time they learnt the language.

Haskell is still most firmly established in academia. Half ofour
respondents were students, and a further quarter employed in a uni-
versity. 50% were using Haskell as part of their studies and 40%
for research projects, so our goals of designing a language suitable
for teaching and research have certainly been fulfilled. But22%
of respondents work in industry (evenly divided between large and
small companies), and 10% of respondents are using Haskell for
product development, so our goal of designing a language suitable
for applications has also been fulfilled. Interestingly, 22% are us-
ing Haskell for open-source projects, which are also applications.
Perhaps open-source projects are less constrained in the choice of
programming language than industrial projects are.

The country with the most Haskell enthusiasts is the United States
(115), closely followed by Portugal (91) and Germany (85). Tra-
ditional “hotbeds of functional programming” come lower down:

25Of course, this omits users who learnt Haskell but then stopped using it
before our survey.
26This may explain its relative popularity in Scandinavia.
27Most Haskell textbooks are aimed at introductory programming courses.

the UK is in fourth place (49), and Sweden in sixth (29). Other
countries with 20 or more respondees were the Netherlands (42)
and Australia (25). It is curious that France has only six, whereas
Germany has 85—perhaps French functional programmers prefer
OCaml.

The picture changes, though, when we consider the proportion of
Haskell enthusiasts in the general population. Now the Cayman Is-
lands top the chart, with one Haskell enthusiast per 44,000 people.
Portugal comes second, with one in 116,000, then Scandinavia—
Iceland, Finland, and Sweden all have around one Haskeller per
300,000 inhabitants. In the UK, and many other countries, Haskell
enthusiasts are truly “one in a million.” The United States falls
between Bulgaria and Belgium, with one Haskeller for every
2,500,000 inhabitants.

If we look instead at the density of Haskell enthusiasts per unit
of land mass, then the Cayman Islands are positively crowded:
each Haskeller has only 262 square kilometres to program in.
In Singapore, Haskellers have a little more room, at 346 square
kilometres, while in the Netherlands and Portugal they have1,000
square kilometres each. Other countries offer significantly more
space—over a million square kilometres each in India, Russia, and
Brazil.

12.6 Influence on other languages

Haskell has influenced several other programming languages. In
many cases it is hard to ascertain whether there is acausalrela-
tionship between the features of a particular language and those of
Haskell, so we content ourselves with mentioning similarities.

Clean is a lazy functional programming language, like Miranda
and Haskell, and it bears a strong resemblance to both of these
(Brus et al., 1987). Clean has adopted type classes from Haskell,
but instead of using monads for input-output it uses an approach
based on uniqueness (or linear) types (Achten et al., 1992).

Mercury is a language for logic programming with declared types
and modes (Somogyi et al., 1996). It is influenced by Haskell in
a number of ways, especially its adoption of type classes.Hal, a
language for constraint programming built on top of Mercury, uses
type classes in innovative ways to permit use of multiple constraint
solvers (de la Banda et al., 2002).

Curry is a language for functional-logic programming (Hanus et al.,
1995). As its name indicates, it is intended as a sort of successor
to Haskell, bringing together researchers working on functional-
logic languages in the same way that Haskell brought together
researchers working on lazy languages.Escheris another language
for functional-logic programming (Lloyd, 1999). Both languages
have a syntax influenced by Haskell and use monads for input-
output.

Cayenneis a functional language with fully fledged dependent
types, designed and implemented by Lennart Augustsson (Augusts-
son, 1998). Cayenne is explicitly based on Haskell, although its
type system differs in fundamental ways. It is significant asthe first
example of integrating the full power of dependent types into a pro-
gramming language.

Isabelleis a theorem-proving system that makes extensive use of
type classes to structure proofs (Paulson, 2004). When a type class
is declared one associates with it the laws obeyed by the operations
in a class (for example, that plus, times, and negation form aring),
and when an instance is declared one must prove that the instance
satisfies those properties (for example, that the integers are a ring).

Pythonis a dynamically typed language for scripting (van Rossum,
1995). Layout is significant in Python, and it has also adopted the
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list comprehension notation. In turn,Javascript, another dynami-
cally typed language for scripting, is planned to adopt listcompre-
hensions from Python, but called array comprehensions instead.

Java. The generic type system introduced in Java 5 is based on the
Hindley-Milner type system (introduced in ML, and promotedby
Miranda and Haskell). The use of bounded types in that systemis
closely related to type classes in Haskell. The type system is based
on GJ, of which Wadler is a codesigner (Bracha et al., 1998).

C# and Visual Basic. The LINQ (Language INtegrated Query) fea-
tures of C# 3.0 and Visual Basic 9.0 are based on monad compre-
hensions from Haskell. Their inclusion is due largely to theefforts
of Erik Meijer, a member of the Haskell Committee, and they were
inspired by his previous attempts to apply Haskell to build web ap-
plications (Meijer, 2000).

Scala. Scala is a statically typed programming language that at-
tempts to integrate features of functional and object-oriented pro-
gramming (Odersky et al., 2004; Odersky, 2006). It includesfor
comprehensions that are similar to monad comprehensions, and
view bounds and implicit parameters that are similar to type
classes.

We believe the most important legacy of Haskell will be how it
influences the languages that succeed it.

12.7 Current developments

Haskell is currently undergoing a new revision. At the 2005 Haskell
Workshop, Launchbury called for the definition of “Industrial
Haskell” to succeed Haskell 98. So many extensions have appeared
since the latter was defined that few real programs adhere to the
standard nowadays. As a result, it is awkward for users to sayex-
actly what language their application is written in, difficult for tool
builders to know which extensions they should support, and im-
possible for teachers to know which extensions they should teach.
A new standard, covering the extensions that are heavily used in
industry, will solve these problems—for the time being at least. A
new committee has been formed to design the new language, ap-
propriately named Haskell′ (Haskell-prime), and the Haskell com-
munity is heavily engaged in public debate on the features tobe
included or excluded. When the new standard is complete, it will
give Haskell a form that is tempered by real-world use.

Much energy has been spent recently on performance. One light-
hearted sign of that is Haskell’s ranking in the Great Computer Lan-
guage Shootout28. The shootout is a benchmarking web site where
over thirty language implementations compete on eighteen differ-
ent benchmarks, with points awarded for speed, memory efficiency,
and concise code. Anyone can upload new versions of the bench-
mark programs to improve their favourite language’s ranking, and
early in 2006 the Haskell community began doing just that. Toev-
eryone’s amazement, despite a rather poor initial placement, on the
10th of February 2006 Haskell and GHC occupied the first placeon
the list! Although the shootout makes no pretence to be a scientific
comparison, this does show that competitive performance isnow
achievable in Haskell—the inferiority complex over performance
that Haskell users have suffered for so long seems now misplaced.

Part of the reason for this lies in the efficient new librariesthat the
growing community is developing. For example,Data.ByteString
(by Coutts, Stewart and Leshchinskiy) represents strings as byte
vectors rather than lists of characters, providing the sameinterface
but running between one and two orders of magnitude faster. It
achieves this partly thanks to an efficient representation,but also
by using GHC’s rewrite rules to program the compiler’s optimiser,

28Seehttp://shootout.alioth.debian.org

so that loop fusion is performed when bytestring functions are com-
posed. The correctness of the rewrite rules is crucial, so itis tested
by QuickCheck properties, as is agreement between corresponding
bytestring andString operations. This is a great example of us-
ing Haskell’s advanced features to achieve good performance and
reliability without compromising elegance.

We interpret these as signs that, eighteen years after it waschris-
tened, Haskell is maturing. It is becoming more and more suitable
for real-world applications, and the Haskell community, while still
small in absolute terms, is growing strongly. We hope and expect
to see this continue.

13. Conclusion
Functional programming, particularly in its purely functional form,
is a radical and principled attack on the challenge of writing pro-
grams that work. It was precisely this quirky elegance that attracted
many of us to the field. Back in the early ’80s, purely functional
languages might have been radical and elegant, but they werealso
laughably impractical: they were slow, took lots of memory,and
had no input/output. Things are very different now! We believe that
Haskell has contributed to that progress, by sticking remorselessly
to the discipline of purity, and by building a critical mass of interest
and research effort behind a single language.

Purely functional programming is not necessarily the RightWay
to write programs. Nevertheless, beyond our instinctive attraction
to the discipline, many of us were consciously making a long-
term bet that principled control of effects would ultimately turn
out to be important, despite the dominance of effects-by-default in
mainstream languages.

Whether that bet will truly pay off remains to be seen. But we
can already see convergence. At one end, the purely functional
community has learnt both the merit of effects, and at least one way
to tame them. At the other end, mainstream languages are adopting
more and more declarative constructs: comprehensions, iterators,
database query expressions, first-class functions, and more besides.
We expect this trend to continue, driven especially by the goad of
parallelism, which punishes unrestricted effects cruelly.

One day, Haskell will be no more than a distant memory. But we
believe that, when that day comes, the ideas and techniques that it
nurtured will prove to have been of enduring value through their
influence on languages of the future.
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Appendix:  Content Guidelines for Authors 
 
The criteria for the programming languages considered appropriate for HOPL-III are: 
 

1. The programming language came into existence before 1996, that is, it was 
designed and described at least 11 years before HOPL-III (2007). 
 
2. The programming language has been widely used since 1998 either (i) 
commercially or (ii) within a specific domain. In either case, “widely used” implies 
use beyond its creators. 
 
3. There also are some research languages which had great influence on widely 
used languages that followed them. As long as the research language was used 
by more than its own inventors, these will be considered to be appropriate for 
discussion at HOPL-III. 

 
Please be sure to include within your paper a clear indication of how the subject material 
satisfies these criteria (i.e., 1&2 or 1&3). This information can certainly be provided 
indirectly as part of the overall text. (For instance, some of the criteria are dates; it 
suffices to include the dates as part of the historical narrative.) 
 
The main purpose of these guidelines is to help you develop the appropriate content for 
your contribution to HOPL-III. The questions herein point to the kind of information that 
people want to know about the history of programming languages. A set of questions is 
included for each of the major areas to be covered by HOPL-III: 
 

• Early history of a specific language 
• Later evolution of a specific language (usually a language treated in HOPL-I or in 

HOPL-II) 
 
The sets of questions overlap to some extent. This guideline includes both sets of 
questions, in the hope that having the other set available may prove useful to you. 
 
Even within a single set, the same question, or very similar questions, may be asked in 
different contexts. Please draft your paper in light of these different emphases and 
contexts. 
 
Your paper should try to answer as many questions as possible in your topic area: it is 
understood that you might not be able to address every one of them. Because history 
can unfold in so many different ways, some of the questions may be clearly irrelevant to 
your particular topic, or your particular point of view. The information requested might no 
longer be available, but please remember this information is important as well. Several 
questions are of the form “How did something affect something else?”—it can be 
important for the historical record to assert that “it didn’t.” 
 
The question set suggests the content, not the form, of your paper. (In particular, your 
paper should not be in question-answer format.) The questions are organized into topics 
and subtopics for your convenience during your research; this structure is not meant as 
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an outline for your paper. (Topics, subtopics, and questions are also numbered and 
lettered for convenience of reference.) Please feel free to use whatever form and style 
seems most appropriate and comfortable to you. 
 
The Program Committee strongly suggests that you examine at least one paper from 
each of the proceedings of HOPL-I and HOPL-II to see what earlier contributors did. The 
references are: 
 
History of Programming Languages, 
Edited by, Richard L. Wexelblat, 
Academic Press, 1981 
 
History of Programming Languages-II, 
Edited by, Thomas J. Bergin, Jr. and Richard G. Gibson, Jr., 
ACM Press/Addison-Wesley Publishing Company, 1996 
 
The first two History of Programming Languages conferences established high technical 
and editorial standards. We trust that your contribution will help HOPL-III maintain or 
surpass these standards. 
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QUESTIONS ON THE EARLY HISTORY OF A LANGUAGE 
 
I. BACKGROUND 
 
1. Basic Facts about Project Organization and People 
 
(a) Under what organizational auspices was the language developed (e.g., name of 
company, department/division in the company, university?) Be as specific as possible 
about organizational subunits involved. 
 
(b) Were there problems or conflicts within the organization in getting the project started? 
If so, please indicate what these were and how they were resolved. 
 
(c) What was the source of funding (e.g., research grant, company R&D, company 
production units, or a government contract?) 
 
(d) Who were the people on the project and what was their relationship to the author(s) 
(e.g., team members, subordinates)? To the largest extent possible, name all the people 
involved, including part-timers, when each person joined the project and what each 
person worked on. Indicate the technical experience and background of each participant, 
including formal education. 
 
(e) Was the development done originally as a research project, as a development 
project, as a committee effort, as an open-source effort, as a one-person effort with 
some minor assistance, or….? 
 
(f) Was there a defined leader to the group? If so, what was his or her exact position 
(and title) and how did he or she get to be the leader? (e.g., appointed “from above”, 
self-starter, volunteer, elected?) 
 
(g) Was there a de facto leader different from the defined leader? If so, who was this 
leader and what made them the de facto leader, i.e., personality, background, 
experience, a “higher authority” or something else? 
 
(h) Were there consultants from outside the project who had a formal connection to it? If 
so, who were they, how and why were they chosen, and how much help were they? 
Were there also informal consultants? If so, please answer the same questions. 
 
(i) Did the participants of the project view themselves primarily as language designers, 
as implementers, or as eventual users? If there were some of each working on the 
project, indicate the split as much as possible. How did this internal view of the people 
involved affect the initial planning and organization of the project? 
 
(j) Did the language designers know (or believe) that they would also have the 
responsibility for implementing the first version? Whether the answer is “yes” or “no” and 
was the technical language design affected by this? 
 
 
2. Costs and Schedules 
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(a) Was there a budget? Did the budget provide a fixed upper limit on the costs? If so, 
how much money was to be allocated and in what ways? What external or internal 
factors led to the budget constraints? Was the money formally divided between language 
design and actual implementation? If so, indicate in what way? 
 
(b) Was there a fixed deadline for completion of the project? Was the project divided into 
phases and did these have deadlines? How well were the deadlines met? 
 
(c) What is the best estimate for the amount of human resources involved (i.e., in 
person-years)? How much was for language design, for documentation, and for 
implementation? 
 
(d) What is the best estimate of the costs prior to putting the first system in the hands of 
the first users? If possible, show as much breakdown on this as possible. 
 
(e) If there were cost and/or schedule constraints, how did that affect the language 
design and in what ways? 
 
 
3. Basic Facts About Documentation 
 
(a) In the planning stage, was there consideration of the need for documentation of the 
work as it progressed? If so, was it for internal communication among project members 
or external monitoring of the project by others, or both? 
 
(b) What types of documentation were decided upon? 
 
(c) To the largest extent possible, cite both dates and documents for the following 
(including internal papers and web sites which may not have been released outside of 
the project) by title, date, and author. (In items c1, c4, c9, and c10, indicate the level of 
formality of the specifications – e.g., English, formal notation – and what kind.) 
 
* (c1) Initial idea 
 
* (c2) First documentation of initial idea 
 
* (c3) Preliminary specifications 
 
* (c4) “Final” specifications (i.e., those which were intended to be implemented) 
 
* (c5) “Prototype” running (i.e., as thoroughly debugged as the state of the art permitted, 
but perhaps not all of the features included) 
 
* (c6) “Full” language compiler (or interpreter) was running 
 
* (c7) Usage on real problems done by the developers 
 
* (c8) Usage on real problems done by people other than the developers 
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* (c9) Documentation by formal methods 
 
* (c10) Paper(s) in professional journals or conference proceedings 
 
* (c11) Please identify extensions, modifications and new versions 
 
 
4. Languages and Systems Known at the Time 
 
(a) What specific languages were known to you and/or other members of the 
development group at the time the work started? Which others did any of you learn 
about as the work progressed? How much did you know about these languages and in 
what ways (e.g., as users, from having read unpublished and/or published papers, 
informal conversations)? (Please try to distinguish between what you, as the writer knew 
and what the other members of the project knew.) 
 
(b) Were these languages considered as formal inputs that you were definitely supposed 
to consider in your own language development, or did they merely provide background? 
What was it about these languages that you wanted to emulate (e.g., syntax, 
capabilities, internal structure, application area, etc.)? 
 
(c) How influenced were you by these languages? Put another way, how much did the 
prior language backgrounds of you and other members of the group influence the early 
language design? Whether the answer is “a lot” or “a little,” why did these other 
languages have that level of influence? (This point may be more easily considered in 
Section II: Rationale of Content of Language.) 
 
(d) Was there a primary source of inspiration for the language and if so, what was it? 
Was the language modeled after this (or any other predecessors or prototypes)? 
 
 
5. Intended Purposes and Users 
 
(a) For what application area was the language designed, i.e., what type of problems 
was it suppose to be used for? Be as specific as possible in describing the application 
area; for example, was “business data processing” or “scientific applications” ever 
carefully defined? Was the apparent application area of some other language used as a 
model? 
 
(b) For what types of users was the language intended (e.g., experienced programmers, 
mathematicians, business people, novice programmers, non-programmers)? Was there 
any conflict within the group on this? Were compromises made, and if so, were they 
made for technical or non-technical reasons? 
 
(c) What equipment was the language intended to be implemented on? Wherever 
possible, cite specific machine(s) by manufacturer(s) and number, or alternatively, give 
the broad descriptions of the time period with examples (e.g., “COBOL was defined to be 
used on ‘large’ machines which at that time included UNIVAC I and II, IBM 705.”) Was 
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machine independence a significant design goal, albeit within this class of machines? 
(See also Question (1b) in Rationale of the Content of the Language.) 
 
 
6. Source of Motivation 
 
(a) What (or who) was the real origin of the idea to develop this language? 
 
(b) What was the primary motivation in developing the language (e.g., research, task 
assigned by management? 
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II.RATIONALE OF THE CONTENT OF THE LANGUAGE 
 
These questions are intended to stimulate thought about various factors that affect most 
language design effort. Not all the questions are relevant for every language. They are 
intended to suggest areas that might be addressed in each paper. 
 
 
1. Environment Factors 
 
To what extent was the design of the language influenced by: 
 
(a) Program size: Was it explicitly thought that programs written in the language would 
be large and/or written by more than one programmer? What features were explicitly 
included (or excluded) for this reason? If this factor wasn’t considered, did it turn out to 
be a mistake? Were specific tools or development environments designed at the same 
time to support these choices? 
 
(b) Program libraries: Were program libraries envisioned as necessary or desirable, and 
if so, how much provision was made for them? 
 
(c) Portability: How important was the goal of machine independence? What features 
reflect concern for portability? How well was this goal attained? See also question (1) on 
Standardization and question (5c) under Background. 
 
(d) User Background and Training: What features catered to the expected background of 
intended users? In retrospect, what features of the language proved to be difficult for 
programmers to use correctly? Did some features fall into disuse? Please identify such 
features and explain why they fell into disuse? How difficult did it prove to train users in 
the correct and effective use of the language, and was the difficulty a surprise? What 
changes in the language would have alleviated training problems? Were any proposed 
features rejected because it was felt users would not be able to use them correctly or 
appropriately? 
 
(e) Execution Efficiency: How did requirements for executable code size and speed 
affect the language design? Were programs in the language expected to execute on 
large or small computers (i.e., was the size of object programs expected to pose a 
problem)? What design decisions were explicitly motivated by the concern (or lack of 
concern) for execution efficiency? Did these concerns turn out to be accurate? How was 
the design of specific features changed to make it easier to optimize executable code? 
 
(f) Target Computer Architecture: To what extent were features in the language dictated 
by the anticipated target computer, e.g., its word size, existence of floating-point 
hardware, instruction set peculiarities, availability and use of index registers, special-
purpose co-processors and accelerators, etc.? 
 
(g) Compilation Environment: To what extent, if any, did concerns about compilation 
efficiency affect the design? Were features rejected or included primarily to make it 
easier to implement compilers for the language or to ensure that the compiler(s) would 
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execute quickly? In retrospect, how correct or incorrect do you feel these decisions 
were? What decisions did you make regarding use of the compiler run-time system? 
 
(h) Programming Ease: To what extent was the ease of coding an important 
consideration and what features in the language reflect the relative importance of this 
goal? Did maintainability considerations affect any design decisions? If so, which ones? 
 
(i) Execution Environment: To what extent did the language design reflect its anticipated 
use in a batch, embedded, portable, office, or networked environment? What features 
reflect these concerns? 
 
(j) Parallel Implementation: Were there multiple implementations being developed at the 
same time as the later part of the language development? If so, was the language 
design hampered of influenced by this in any way? 
 
(k) Standardization: In addition to (or possibly separate from) the issue of portability, 
what considerations were given to possible standardization? What types of 
standardization were considered, and what groups were involved and when? 
 
(l) Networking/Parallel Environment: To what extent did the language design reflect its 
anticipated use in a networked- or parallel-execution environment? What features reflect 
these concerns? 
 
 
2. Functions to be Programmed 
 
(a) How did the operations and data types in the language support the writing of 
particular kinds of algorithms? 
 
(b) What features might have been left out, if a slightly different application area has 
been in mind? 
 
(c) What features were considered essential to properly express the kinds of programs to 
be written? 
 
(d) What misconceptions about application requirements turned up that necessitated 
redesign of these application specific features before the language was actually 
released? 
 
 
3. Language Design Principles 
 
(a) What consideration, if any, was given to designing the language so that programming 
errors could be detected early and easily? Were the problems of debugging and testing 
considered? Were debugging and testing facilities deliberately included in the language? 
 
(b) To what extent was the goal of keeping the language simple considered important? 
What kind of simplicity was considered most important? What did your group mean by 
“simplicity”? 

BM-8



  

   

 
(c) What thought was given to make programs more understandable and how did these 
considerations influence the design? Was there conscious consideration of making 
programs “easy to read” versus “easy to write”? If so, which were choosen and why? 
 
(d) Did you consciously develop the data types first and then the operations, or did you 
use the opposite order, or did you try to develop both in parallel with appropriate 
iteration? Were data and operations combined into objects? 
 
(e) To what extent did the design reflect a conscious philosophy of how languages 
should be designed (or how programs should be developed)? What was this 
philosophy? 
 
 
4. Language Definition 
 
(a) What techniques for defining languages were known to you? Did you use these or 
modify them, or did you develop new ones? 
 
(b) To what extent--if any-- was the language itself influenced by the technique used for 
the definition? 
 
 
5. Concepts About Other Languages 
 
(a) Were you consciously trying to introduce new concepts? If so, what were they? Do 
you feel that you succeeded? 
 
(b) If you were not trying to introduce new concepts, what was the justification for 
introducing this new language? (Such justification might involve technical, political, or 
economic factors.) 
 
(c) To what extent did the design consciously borrow from previous language designs or 
attempt to correct perceived mistakes in other languages? 
 
 
6. Influence of Non-technical Factors 
 
(a) How did time and cost constraints (as described in the Background section) influence 
the technical design? 
 
(b) How did the size and structure of the design group affect the technical design? 
 
(c) Provide any other information you have pertaining to ways in which the technical 
language design was influenced or affected by non-technical factors. 
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III. A POSTERIORI EVALUATION 
 
1. Meeting of Objectives 
 
(a) How well do you think the language met its original objectives? 
 
(b) Do the users think the language has met its objectives? 
 
(c) How well do you think the computing community (as a whole) thinks the objectives 
were met? 
 
(d) How much impact did portability (i.e., machine independence) have on the 
acceptance by users? 
 
(e) Did the objectives change over time? If so, how, when, and in what ways did they 
change? See also question (2d) under Rationale of Content of Language and answer 
here if appropriate. 
 
 
2. Contributions of Language 
 
(a) What is the major contribution made by this language? Was this one of the 
objectives? Was this contribution a technical or a non-technical contribution, or both? 
What other important contributions are made by this language? Were these part of the 
define objectives? Were these contributions technical or non-technical? 
 
(b) What do you consider the best points of the language, even if they are not 
considered to be a contribution to the field (i.e., what are you proudest of, regardless of 
what anybody else thinks)? 
 
(c) How many other people or groups decided to implement this language because of its 
inherent value? 
 
(d) Did this language have any effect on the development of later hardware? 
 
(e) Did this language spawn any “dialects”? If so, please identify them. Were they major 
or minor changes to the language definition? How significant did the dialects themselves 
become? 
 
(f) In what way do you feel the computer field is better off (or worse) for having this 
language? 
 
(g) What fundamental effects on the future of language design resulted from this 
language development (e.g., theoretical discoveries, new data types, new control 
structures)? 
 
 
3. Mistakes or Desired Changes 
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(a) What mistakes do you think were made in the design of the language? Were any of 
these able to be corrected in a later version of the language? If you feel several mistakes 
were made, list as many as possible with some indication of the severity of each. 
 
(b) Even if not considered mistakes, what changes would you make if you could do it all 
over again? 
 
(c) What have been the biggest changes made to the language (albeit probably by other 
people) since its early development? Were these changes or new capabilities 
considered originally and dropped in the initial development, or were they truly later 
thoughts? 
 
(d) Have changes been suggested but not adopted? If so, be as explicit as possible 
about changes suggested, and why they were not adopted. 
 
 
4. Problems 
 
(a) What were the biggest problems you had during the language design process? Did 
these affect the end result significantly? 
 
(b) What are the biggest problems the users have had? 
 
(c) What are the biggest problems the implementers have had? Were these deliberate, 
in the sense that a conscious decision was made to do something in the language 
design, even if it made the implementation more difficult? 
 
(d) What trade-offs did you consciously make during the language design process? What 
trade-offs did you unconsciously make? 
 
(e) What compromises did you have to make to meet other constraints such as time, 
budget, user demands, political, or other factors? 
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IV. IMPLICATIONS FOR CURRENT AND FUTURE LANGUAGES 
 
1. Direct Influence 
 
(a) What language developments of today and the foreseeable future are being directly 
influenced by your language? Regardless of whether your answer is “none” or “many, 
such as…,” please indicate the reasons. 
 
(b) Is there anything in the experience of your language development which should 
influence current and future languages? If so, what is it? Put another way, in light of your 
experience, do you have advice for current and future language designers? 
 
(c) Does your language have a long-range future? Regardless of whether your answer is 
“yes” or “no”, please indicate the reasons. 
 
 
2. Indirect Influence 
 
(a) Are there indirect influences which your language is having now? Are there any 
indirect influences that it can be expected to have in the near future? What are these, 
and why do you think they will be influential? 
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QUESTIONS ON THE EVOLUTION OF A PROGRAMMING LANGUAGE 
 
The principle objective of a contribution in this category is to treat the history of a major 
language subsequent to its original development. In many cases, this entails extending 
the history of some language whose origins were treated in HOPL-I, or in HOPL-II. 
(Authors of papers in this category will be working with a member of the Program 
Committee, who will keep you informed of other relevant papers under consideration.) 
 
When a programming language is first developed, it is typically the work of an individual 
or a small, concentrated group. Later development of the language is often the result of 
an expanded, re-staffed group, and perhaps additional individuals or groups outside the 
original organization. Similarly, while the original work is often focused on language 
design and implementation for a single environment, later developments are undertaken 
in a broader arena. 
 
When compared with questions about the early history of a language, the following 
questions reflect this change in context. In particular, these questions are about the set 
of diverse development activities that surround the language, such as standardization, 
new implementations, significant publications, language-oriented groups (e.g., SIGs, 
user groups), etc. 
 
These questions are grouped into the same four broad categories that apply to papers 
on the origins of a language: 
 
    * Background 
    * Rationale 
    * A posteriori evaluation 
    * Implications for current and future languages 
 
The first question applies broadly to the language itself. It is intended to identify the 
particular development activities that are the focus of the history paper. In contrast, you 
should address the remaining questions for each of the activities identified in that initial 
background section. 
 
You might also have significant information to contribute in response to questions raised 
about the early history of the language. Please examine the questions provided for 
authors of “early history” papers. 
 
Where appropriate, your contribution should make reference to related papers from 
HOPL-I, HOPL-II, or HOPL-III. 
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I. BACKGROUND 
 
1. Basic Facts About Activities, Organizations and People 
 
(a) What are the categories of development to be discussed (e.g., standardization, new 
implementations, open source, significant publications) and what specific activities are 
reported on? 
 
(From this point on, each question is intended to apply independently to each 
development activity identified in question I.1(a) above.) 
 
(b) What organizations played principal roles in these developments? Identify them as 
precisely as possible: corporation and division, university and department, agency and 
office, etc. How were these organizations sponsored and funded? 
 
(c) What, if any, was the nature of the cooperation or competition among these 
organizations? 
 
(d) Who were the people involved in these developments? How were they related 
organizationally to each other and to the original developers for this language? Please 
be as specific as possible regarding names, titles, and dates. 
 
(e) How did the roles of various individuals change during the course of the activity? 
 
 
2. Costs and Schedules 
 
(a) What was the source and amount of funding for supporting the development? Was it 
adequate? 
 
(b) What was the schedule, if any? 
 
(c) What was the estimated human effort required to carry it out? 
 
(d) What was the estimated cost of the development? 
 
(e) What were the effects of cost and schedule constraints? 
 
 
3. Basic Facts About Documentation 
 
(a) What are the significant publications arising from development? For each provide: 
 
• A specific reference 
• Names of authors (if not part of the reference) 
• Intended audience (e.g., user, implementer) 
• Format (e.g., manual, general trade book, standards document) 
• Availability 
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4. Languages/Systems Known at the Time 
 
(a) What languages or systems other than the one in question had an effect on the 
development? In what ways did they affect the development? 
 
(b) How did information about each of these languages or systems become available to 
the people it influenced? 
 
 
5. Intended Purposes and Users 
 
(a) What was the intended purpose of the development? 
 
(b) Were the results proprietary, for sale, freely distributed, etc.? 
 
(c) For whom were its results intended? How did this group of people differ from the 
originally intended set of users for this language? 
 
 
6. Motivation 
 
(a) Who was the prime mover for the development? 
 
(b) What was the underlying motivation for the development? 
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II. RATIONALE FOR THE CONTENT OF THE DEVELOPMENT 
 
To the extent that is appropriate, apply the “early history” questions in each of the 
following subcategories to the activity being addressed. 
 
 
1. Environment Factors 
 
(a) What were the effects on the development of concerns about program size, program 
libraries, portability, user background, execution efficiency, target computer architecture 
and speed, compilation environment, programming ease, execution environment, 
character set, parallel implementation, standardization, networked or parallel 
environment? 
 
(b) In what ways had the environment changed since the original development of the 
language? 
 
 
2. Expected Applications of the Language 
 
(a) How did expected applications influence choice of operations, data types, and 
objects? 
 
(b) What features were essential to meet intended applications? 
 
 
3. Design Principles Applied to the Development 
 
(a) What, if any, was the underlying, consciously applied design philosophy? 
 
(b) What considerations were made for detecting and correcting errors in the 
development? 
 
(c) What role did “simplicity” play, and what was meant by “simplicity”? 
 
(d) What role did “understandability” play? Which was given higher priority: “ease of 
reading” or “ease of writing”, and why? 
 
(e) Were certain aspects of language (e.g., data types, operations, objects) considered 
more fundamental to the development than others? Why? 
 
 
4. Language Definition 
 
(a) What language definition techniques were used in this development? To what extent 
was the result of the development influenced by these choices? 
 
 
5. Concepts of Other Languages 
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(a) To what extent was the introduction of new language concepts or features a part of 
this development? 
 
(b) In what ways did concepts from other languages influence this development? 
 
 
6. Influence of Non-Technical Factors 
 
(a) What was the effect of other, similar developments on this one (e.g., overlapping 
standardization efforts)? 
 
(b) What was the effect of time and cost constraints on the development? 
 
(c) How did the size and structure of the development group affect results? 
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III. A POSTERIORI EVALUATION 
 
 
1. Meeting of Objectives 
 
(a) How well did the development meet its objectives? 
 
(b) How well did the users feel the development met its objectives? 
 
(c) What was the reaction of the computing community at large? 
 
(d) How did portability of results impact their acceptance? 
 
(e) Did the objectives of the development change over time? If so, when, how, and why 
did they change? 
 
 
2. Contributions of the Development 
 
(a) What were the biggest contributions of this development? Were they among the 
original objectives? 
 
(b) What do you consider its best features? What do you consider its worst features? 
 
(c) How has this development affected other activities (e.g., development of other 
languages, dialects, language processors, standards, operating systems, and computer 
hardware)? Which of these other activities have become significant in their own right? 
 
(d) In what way is the computer field better or worse off because of this development? 
 
(e) What fundamental effects on programming language methodology have arisen from 
this development? (e.g., new data types, control structures, techniques for definition, for 
types of documentation, application design strategies, theoretical discoveries, etc.) 
 
 
3. Mistakes or Desired Changes 
 
(a) What mistakes were made in the development? Were these mistakes corrected in 
later developments? 
 
(b) What changes would you now make, if you could? 
 
(c) What were the biggest changes made to the development results since they were 
first released? Had they been considered earlier and then dropped, or were they truly 
later thoughts? 
 
(d) What significant changes have been suggested but not adopted, and why? 
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4. Problems 
 
(a) What were the major obstacles in carrying out the development? 
 
(b) What were the major problems encountered by people who used its results: e.g., 
language users, designers, implementors, standards committees, etc.? 
 
(c) What trade-offs were made during the development? Which were made consciously 
and which were recognized after the fact? 
 
(d) What compromises were made to meet other constraints such as time, budget, user 
demand, and political factors? 
 
(e) Which estimates (time, cost, effort, and human resources) were farthest from reality? 
Why were they off? 
 
(f) What application-specific features might better have been left out? 
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IV.IMPLICATIONS FOR CURRENT AND FUTURE LANGUAGES 
 
(a) Which current and foreseeable developments are being directly or indirectly 
influenced by this development, and why? 
 
(b) Which results, if any, of this development have a long range future? Why? 
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