

800 East 96th Street, Indianapolis, Indiana 46240

D E V E L O P E R ’ S H A N D B O O K

Python

A N D R É D O S S A N T O S L E S S A

00 0672319942 FM 11/15/00 11:36 AM Page i

Python Developer’s Handbook
Copyright © 2001 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-31994-2

Library of Congress Catalog Card Number: 00-105615

Printed in the United States of America

First Printing: November 2000

02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The author and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Acquisitions Editor

Shelley Johnston

Development Editor

Scott D. Meyers

Managing Editor

Charlotte Clapp

Project Editor

Dawn Pearson

Copy Editor

Rhonda Tinch-Mize

Indexer

Cheryl Landes

Proofreaders

Katherin Bidwell

Bob LaRoche

Technical Editor

James Henstridge

Team Coordinator

Amy Patton

Media Developer

Dan Scherf

Interior Designer

Gary Adair

Cover Designer

Alan Clements

00 0672319942 FM 11/15/00 11:36 AM Page ii

Contents at a Glance

Introduction . 1

Part I Basic Programming

1 Introduction . 7

2 Language Review . 31

3 Python Libraries . 97

4 Exception Handling . 153

5 Object-Oriented Programming . 179

Part II Advanced Programming

6 Extending and Embedding Python . 221

7 Objects Interfacing and Distribution . 259

8 Working with Databases . 305

9 Other Advanced Topics. 351

Part III Network Programming

10 Basic Network Background. 391

11 Web Development . 427

12 Scripting Programming. 451

13 Data Manipulation . 491

Part IV Graphical Interfaces

14 Python and GUIs. 555

15 Tkinter . 575

Part V Developing with Python

16 Development Environment . 635

17 Development Tools . 673

Part VI Python and Java

18 JPython . 717

00 0672319942 FM 11/15/00 11:36 AM Page iii

iv PYTHON DEVELOPER’S HANDBOOK

Part VII Appendixes

A Python/C API . 741

B Running Python on Specific Platforms . 807

C Python Copyright Notices. 817

D Migrating to Python 2.0. 827

Index . 833

00 0672319942 FM 11/15/00 11:36 AM Page iv

Table of Contents

Introduction 1

Part I Basic Programming

1 Introduction 7

Introduction to Python . 7
Python!? What Is It? . 8

Why Use Python? . 10
Readability. 10
It Is Simple to Get Support . 10
Fast to Learn. 11
Fast to Code . 11
Reusability . 11
Portability. 12
Object-Oriented Programming . 12
Overall Conclusion . 12

Main Technical Features . 13
Automatic Memory Management . 13
Exception Handling . 13
Rich Core Library. 13
Web Scripting Support and Data Handling . 13
Built-In Elements . 14
Development Flow. 14
Clear Syntax and a Diversity of Useful Lexical Elements . 14
Embeddable and Extendable . 14
Objects Distribution . 15
Databases . 15
GUI Application . 15
Introspection. 15
Third-Party Projects Integration . 15

Python Distribution . 16
System Requirements . 17

Installing and Configuring Python . 18
UNIX Environment . 18
Macintosh Environment. 20
Windows Environment . 20

00 0672319942 FM 11/15/00 11:36 AM Page v

vi PYTHON DEVELOPER’S HANDBOOK

Python and Other Languages . 22
Python Versus C/C++ . 23
Python Versus Perl. 23
Python Versus Tcl . 24
Python Versus Smalltalk. 24
Python Versus Java . 24
Conclusion . 25

Patches and Bugs List. 25
PSA and the Python Consortium . 26

Support and Help . 27
Python Conferences and Workshops . 28

Summary. 28

2 Language Review 31

Language Review . 31
The Shell Environment . 32

Command Line Interpreter . 32
Programs . 35

Indentation . 37
Lexical Analysis . 38
Reserved Words. 40
Identifiers . 40

Built-In Data Types . 40
Immutable Data Types. 40
Mutable Data Types . 40
Numbers . 41
Strings . 43
True and False Logical Values . 47

Operators . 47
Augmented Assignment . 49

Expressions. 49
Built-In Functions. 50
Sequence Functions. 52
Object Manipulation . 54
Mathematical/Logical Functions . 55
Code Functions . 56
Type Conversion. 57

00 0672319942 FM 11/15/00 11:36 AM Page vi

viiCONTENTS

Control Statements . 59
if/elif/else . 60
for. 60
while. 61
break/continue . 61

Data Structures . 62
Lists. 62
Built-In Methods . 65
Ranges . 66
Tuples . 67
Dictionaries (hash tables). 68

Functions and Procedures . 71
Functions. 71
Dynamic Namespace . 76

Modules and Packages. 77
Built-In Methods . 79
from in Contrast to import . 79
Releasing and Reloading Modules. 81

Input and Output . 82
Displaying Information . 82
Formatting Operations . 83

File Handling. 86
Opening a File. 86
Supported Methods . 87
File Object Attributes . 89

Summary. 89
Code Example. 90

3 Python Libraries 97

Python Libraries . 97
The Library Reference . 98
The Standard Library of Modules. 98

Python Services . 99
sys. 99
types . 102
UserDict . 103
UserList . 103
operator . 103
traceback . 104

00 0672319942 FM 11/15/00 11:36 AM Page vii

viii PYTHON DEVELOPER’S HANDBOOK

linecache . 104
pickle . 104
cPickle . 104
copy_reg . 105
shelve . 105
copy . 105
marshal . 106
imp . 106
parser . 107
symbol . 107
token . 107
keyword . 107
tokenize . 108
pyclbr . 108
code . 108
codeop . 108
pprint . 109
repr . 109
py_compile . 109
compileall . 109
dis . 110
new . 110
site . 110
user . 110
__builtin__ . 110
__main__ . 110

The String Group. 110
string . 111
re . 114
regex . 114
regsub . 114
struct . 114
fpformat . 115
StringIO . 115
cStringIO . 115

Miscellaneous. 115
math . 115
cmath . 116

00 0672319942 FM 11/15/00 11:36 AM Page viii

ixCONTENTS

random . 116
whrandom . 117
bisect . 117
array . 117
ConfigParser . 118
fileinput . 118
calendar . 118
cmd . 118
shlex . 118

Generic Operational System . 119
os . 119
os.path . 121
dircache . 122
stat . 122
statcache . 122
statvfs . 122
cmp . 122
cmpcache . 122
time . 123
sched . 123
getpass . 124
curses . 124
getopt . 124
tempfile . 125
errno . 125
glob . 126
fnmatch . 126
shutil . 126
locale . 127
mutex . 127

Optional Operational System. 127
signal . 127
socket . 128
select . 128
thread . 129
threading . 129
Queue . 129
anydbm . 129
dumbdbm . 129

00 0672319942 FM 11/15/00 11:36 AM Page ix

x PYTHON DEVELOPER’S HANDBOOK

dbhash . 129
whichdb . 129
bsddb . 130
zlib . 130
gzip . 130
rlcompleter . 130

Debugger . 130
Profiler . 131
Internet Protocol and Support . 131

cgi . 131
urllib . 131
httplib . 131
ftplib . 132
gopherlib . 132
poplib . 132
imaplib . 132
nntplib . 132
smtplib . 133
telnetlib . 133
urlparse . 133
SocketServer . 133
BaseHTTPServer . 133
SimpleHTTPServer . 133
CGIHTTPServer . 134
asyncore . 134

Internet Data Handling . 134
sgmllib . 134
htmllib . 134
htmlentitydefs . 134
xmllib . 134
formatter . 135
rfc822 . 135
mimetools . 135
MimeWrite . 135
multifile . 135
binhex . 135
uu . 135
binascii . 135
base64 . 136

00 0672319942 FM 11/15/00 11:36 AM Page x

xiCONTENTS

xdrlib . 136
mailcap . 136
mimetypes . 136
quopri . 136
mailbox . 137
mhlib . 137
mimify . 137
netrc . 137

Restricted Execution . 137
rexec . 137
Bastion . 137

Multimedia . 137
audioop . 138
imageop . 138
aifc . 138
sunau . 138
wave . 138
chunk . 138
colorsys . 138
rgbimg . 138
imghdr . 138
sndhdr . 138

Cryptographic . 139
md5 . 139
sha . 139
mpz . 139
rotor . 139

UNIX Specific . 140
posix . 140
pwd . 140
grp . 140
crypt . 140
dlmodule . 141
dbm . 141
gdbm . 141
termios . 141
TERMIOS . 141
tty . 142
pty . 142

00 0672319942 FM 11/15/00 11:36 AM Page xi

xii PYTHON DEVELOPER’S HANDBOOK

fcntl . 142
pipes . 142
posixfile . 142
resource . 142
nis . 142
syslog . 142
popen2 . 143
commands . 143

SGI IRIX Specific . 143
al . 143
AL . 143
cd . 144
fl . 144
FL . 144
flp . 144
fm . 144
gl . 144
DEVICE . 144
GL . 144
imgfile . 144
jpeg . 144

Sun OS Specific. 145
sunaudiodev . 145
SUNAUDIODEV . 145

MS Windows Specific. 145
msvcrt . 145
winsound . 145

Macintosh Specific . 145
findertools . 146
macfs . 146
macostools . 146

Undocumented Modules . 146
Frameworks. 146
Miscellaneous Useful Utilities . 146
Platform Specific Modules . 147
Multimedia. 147
Obsolete . 147
Extension Modules . 148
New Modules on Python 2.0. 148

00 0672319942 FM 11/15/00 11:36 AM Page xii

xiiiCONTENTS

Summary . 150
Python Services. 150
The String Group . 150
Miscellaneous . 150
Generic Operational System . 151
Optional Operational System . 151
Debugger. 151
Profiler . 151
Internet Protocol and Support. 151
Internet Data Handling . 151
Restricted Execution . 151
Multimedia. 151
Cryptographic . 151
OS Specific (UNIX, SGI IRIX, SUN OS, MS Windows, and

Macintosh) . 151
Undocumented Modules . 152
New Modules in Python 2.0. 152

4 Exception Handling 153

Exception Handling . 153
Standard Exceptions (Getting Help from Other Modules) . 157
Raising Exceptions . 159

Raising an Exception to Leave the Interpreter. 161
Raising an Exception to Leave Nested Loops. 161
Raising String Exceptions . 162
Instancing an Exception Class . 163
Debugging Your Code . 164

Catching Exceptions. 165
Catching Standard Errors . 166

try/finally . 167
Creating User-defined Exceptions . 168
The Standard Exception Hierarchy. 169
Summary . 173
Code Examples. 174

5 Object-Oriented Programming 179

Object-Oriented Programming . 179
An Introduction to Python OOP . 180

Class Instances . 180

00 0672319942 FM 11/15/00 11:36 AM Page xiii

xiv PYTHON DEVELOPER’S HANDBOOK

Python Classes and Instances . 183
Attributes of a Class. 186
The Python Class Browser. 187
Python Instances . 187

Methods Handling . 190
Accessing Unbounded Methods . 190
Handling Global Class Variables . 191
Calling Methods from Other Methods . 192

Special Methods . 192
Method Attributes . 196
Overloading Operators. 196

Inheritance . 198
Polymorphism . 201
Encapsulation. 204
Metaclasses . 206
Summary . 209
Code Examples. 211

Part II Advanced Programming

6 Extending and Embedding Python 221

Extending and Embedding Python . 221
The Python/C API . 223
Extending . 223

Creating New Extensions . 224
Importing an Extension Module . 228
Formatting Strings . 229
Exporting Constants . 233
Error Checking. 233
Reference Counting. 235
Building Extensions in C++. 236

Compiling and Linking Extension Modules . 237
Linking Static Extensions to the Interpreter . 237
Linking Dynamic Extensions to the Interpreter. 241

SWIG—The Simple Wrapper Interface Generator . 243
Other Wrappers . 245
Embedding . 246

Implementing Callback Functions . 246
Embedding the Python Interpreter . 247

00 0672319942 FM 11/15/00 11:36 AM Page xiv

xvCONTENTS

Embedding Python in C++ . 249
Embedding Python in Other Applications . 250

Summary . 251
Code Examples. 252

Wrapping C Functions. 255

7 Objects Interfacing and Distribution 259

Object Interfacing and Distribution . 259
Interfacing Objects. 260
Introduction to COM Objects . 261

The COM Specification . 261
COM Interfaces . 262
ADO . 266
ActiveX. 266

Implementing COM Objects in Python. 266
The win32com Package. 267
Talking to Windows Applications. 268
Word and Excel . 269
Visual Basic . 275
Delphi . 282

Distributing Objects with Python . 285
Inter-Language Unification (ILU). 286
CORBA Binding and Implementation . 289
Fnorb . 291
DCOM. 292
OMF. 293
Hector. 294

Summary . 295
Code Examples. 297

Parking Lot (File parkinglot.py). 297

8 Working with Databases 305

Working with Databases . 305
Flat Databases . 306

Text Data . 306
Binary Data—The struct Module . 307

DBM (Database Managers) Databases . 309
dbm Module . 310
gdbm Module . 311
bsddb Module . 312

00 0672319942 FM 11/15/00 11:36 AM Page xv

xvi PYTHON DEVELOPER’S HANDBOOK

dbhash Module . 313
anydbm Module . 314
dumbdbm Module . 315
whichdb Module . 315

Object Serialization and Persistent Storage . 315
pickle Module . 316
cPickle Module . 317
copy_reg Module . 317
marshal Module . 318
shelve Module . 319
More Sources of Information . 321

The ODBC Module . 322
mxODBC . 324
calldll . 324
unixODBC . 325
Other Interesting ODBC Web Pages . 325

ADO (ActiveX Data Objects) . 325
Using SQL . 327

SQL Mini-Tutorial . 327
PostgreSQL Databases . 332
MySQL Modules . 333
The GadFly SQL Module . 333
MetaKit Database Engine. 334

Python DB API . 335
DB-API Specification v2.0 . 336

Summary . 348

9 Other Advanced Topics 351

Other Advanced Topics. 351
Manipulating Images . 352

Python Imaging Library . 353
Other Modules . 354

Working with Sounds . 355
winsound Module . 355
sndhdr Module . 356
wave Module . 357
aifc Module . 359
audiodev Module . 359

Restricted Execution Mode. 360
Protecting the Application Environment . 362

00 0672319942 FM 11/15/00 11:36 AM Page xvi

xviiCONTENTS

Scientific Computing. 363
Numerical Extensions . 364
Other Scientific Extensions . 367
Computer Programming for Everybody. 368

Regular Expressions . 369
Regular Expression Functions and Object Methods . 372

Threads. 376
Python Threads . 376
Python Thread Modules. 378
Microthreads . 381

Summary . 382
Code Examples. 383

HTML Parsing Tool (File: parsing.py) . 383
TV Network Audiences (File: audience.py) . 385

Part III Network Programming

10 Basic Network Background 391

Networking . 391
Networking Concepts. 392

Protocols . 394
Addresses . 395
Sockets . 396

HTTP . 405
M2Crypto, by Ng Pheng Siong’s . 406
CTC (Cut The Crap), by Constantinos Kotsokalis . 406
Alfajor, by Andrew Cooke. 406
Building Web Servers. 406
Setting Up the Client Side of the HTTP Protocol . 412

Accessing URLs. 414
The urllib Module . 414
The urlparse Module . 415

FTP. 417
Transferring Data . 417

SMTP/POP3/IMAP . 418
Handling Email Services . 419

Newsgroups—Telnet and Gopher. 421
Summary . 423

00 0672319942 FM 11/15/00 11:36 AM Page xvii

xviii PYTHON DEVELOPER’S HANDBOOK

11 Web Development 427

Web Development . 427
Configuring Web Servers for Python/CGI Scripts . 428

Python in Apache . 428
AOLserver Web Server . 432
Microsoft IIS and PWS. 432

Third-Party Internet Applications . 433
Grail Web Browser. 434
Zope Web Application Server. 435
Mailman—GNU Mailing List Manager . 436
Medusa Internet Server . 438

Other Applications . 439
BSCW. 439
LDAP . 440
WebLog . 441

Site Management Tools. 442
WebDAV/PyDAV . 442
Zebra . 442
httpd_log . 443
Linbot . 443
Python-Friendly Internet Solution Providers (ISPs) . 444
mxCGIPython . 444
HTMLgen . 444
Document Template . 444
Persistent CGI. 445
Webchecker. 445
LinkChecker . 445
FastCGI . 446

Summary . 447

12 Scripting Programming 451

Web Programming. 451
An Introduction to CGI. 452
The cgi Module . 454

Functions . 455
Creating, Installing, and Running Your Script . 456

Sending Information to Python Scripts . 458
Working with Form Fields and Parsing the Information . 459

00 0672319942 FM 11/15/00 11:36 AM Page xviii

xixCONTENTS

Security . 463
Sessions . 464
Data Storage . 464
Locking . 465
Cookies . 465
Creating Output for a Browser . 468
Uploading/Uploaded Files . 471
Environment Variables . 473
Debugging and Testing Your Script . 477

Python Active Scripting . 481
Using COM Objects. 484
ASP and Microsoft ActiveX Scripting . 485
Python Server Pages . 487

Summary . 488

13 Data Manipulation 491

Parsing and Manipulating Data . 491
XML Processing. 492

Introduction to XML. 492
Writing an XML File. 493
Python XML Package . 495
xmllib . 497
The SAX API . 504
DOM: The Document Object Model . 506
XSL Transformations (XSLT) . 507
XBEL—XML Bookmark Exchange Language . 507
RPC—What Is It? . 508
Simple Object Access Protocol (SOAP). 509
PythonPoint . 510
Pyxie . 510

XML-RPC . 510
The Python Implementation . 511
Working with Zope . 512

XDR Data Exchange Format . 512
xdrlib . 512

Handling Other Markup Languages. 517
sgmllib . 517
htmllib . 521

00 0672319942 FM 11/15/00 11:36 AM Page xix

xx PYTHON DEVELOPER’S HANDBOOK

htmlentitydefs . 524
formatter . 524

MIME Parsing and Manipulation . 530
rfc822 . 531
mimetools . 531
MimeWriter . 532
multifile . 533
mailcap . 536
mimetypes . 537
base64 . 538
quopri . 538
mailbox . 539
mimify . 539

Generic Conversion Functions. 544
netrc . 544
mhlib . 545
binhex . 546
uu . 547
binascii . 548

Summary . 549

Part IV Graphical Interfaces

14 Python and GUIs 555

Python GUI Toolkits. 555
The Tkinter Module . 557
Overview of Other GUI Modules . 558

Pythonwin/MFC. 558
wxPython. 559
STDWIN . 561
PyKDE. 562
Wpy. 563
PyGTK . 563
PyOpenGL . 566
wafepython. 566
pyFLTK. 567
FXPy. 567
Motif. 568
PyAmulet . 569

00 0672319942 FM 11/15/00 11:36 AM Page xx

xxiCONTENTS

DynWin . 569
JPI . 569
FORMS. 570

Designing a Good Interface. 571
Summary . 572

15 Tkinter 575

Introduction to Tcl/Tk . 575
Tkinter . 576

Checking the Installation. 577
Hello Python World . 578

Geometry Management . 580
pack() . 581
grid() . 582
place() . 584

Handling Tkinter Events . 585
Mouse Events . 586
Keyboard Events . 587
Event Attributes . 587
Event Callbacks . 588
Protocols . 589

Tkinter Widgets . 590
Widget Standard Options . 590
Widgets Reference . 596
General Widget Methods . 620

Designing Applications . 624
PMW—Python Mega Widgets . 630
Tkinter Resources. 630
Summary . 631

Part V Developing with Python

16 Development Environment 635

Building Python Applications. 635
Development Strategy . 636

Optimizing the Code . 637
Style Guide . 641

Integrated Development Environments . 647

00 0672319942 FM 11/15/00 11:36 AM Page xxi

xxii PYTHON DEVELOPER’S HANDBOOK

IDLE. 647
Installing and Configuring IDLE. 649
Python Shell. 650
File Menu . 652
Edit Menu. 655
Writing an IDLE Extension. 660
Python 2.0 and IDLE . 660

Pythonwin . 661
The Pythonwin Environment. 662
Keyboard Bindings . 668

Summary . 671

17 Development Tools 673

The Development Process of Python Programs . 673
Compiling Python . 674

Windows . 674
UNIX . 675

Editing Code . 678
Emacs. 679

Python Scripts . 681
Generating an Executable Python Bytecode . 685
Interpreter . 686
Debugging the Application. 689

The Base Debugger Module (bdb) . 690
The Python Debugger (pdb). 692
Disassembling Python Bytecodes . 696

Profiling Python . 697
Python Profiler . 698
Analyzing Profiles with the pstats Module. 701

Distributing Python Applications . 708
SqueezeTool . 711
Python2C—The Python to C Translator . 711
Small Python . 711
Gordon McMillan’s Installer . 711
Distutils . 711

Summary . 712

00 0672319942 FM 11/15/00 11:36 AM Page xxii

xxiiiCONTENTS

Part VI Python and Java

18 JPython 717

Welcome to JPython . 717
JPython Features. 718
CPython Versus Jpython . 719
JPython Resource Links . 721

Java Integration . 722
Java Certification. 723
Java Links . 723

Downloading and Installing JPython. 723
Downloading the CPython Library . 725
Licensing . 725
JVMs That Support JPython . 726

The Interpreter . 727
The JPython Registry . 729

Registry Properties . 730
Finding the Registry File . 730

Creating Graphical Interfaces . 731
Embedding . 732

JPython in a Java Application . 732
Java in a JPython Application . 733

jpythonc . 734
Running JPython Applets . 736
Summary . 737

VII Appendixes

A Python/C API 741

Python/C API . 741
Include Files . 742
Objects, Types, and Reference Counts . 743
Exceptions . 747
Embedding Python. 750

The Very High Level Layer. 751
Reference Counting . 753
Exception Handling . 754
Standard Exceptions . 757

Deprecation of String Exceptions. 758

00 0672319942 FM 11/15/00 11:36 AM Page xxiii

xxiv PYTHON DEVELOPER’S HANDBOOK

Utilities . 759
OS Utilities . 759
Process Control . 759
Importing Modules. 760

Abstract Objects Layer. 762
Object Protocol . 763
Number Protocol . 766
Sequence Protocol. 768
Mapping Protocol . 770

Concrete Objects Layer . 771
Fundamental Objects . 771
Sequence Objects . 772
Mapping/Dictionary Objects . 780
Numeric Objects . 781
Other Objects . 786

Initialization, Finalization, and Threads. 789
Thread State and the Global Interpreter Lock . 795

Memory Management . 800
Memory Interface. 801
Examples . 802

Defining New Object Types . 804
Common Object Structures . 804
Mapping Object Structures . 804
Number Object Structures. 805
Sequence Object Structures . 805
Buffer Object Structures . 805

B Running Python on Specific Platforms 807

Python on Win32 Systems . 807
Python on MacOS Systems . 810
Python on UNIX Systems . 814
Other Platforms. 815

Python for OS/2 . 815
Python for Windows 3.1. 815
Python for DOS. 815
Python for BeOS. 815
Python for VMS . 816

00 0672319942 FM 11/15/00 11:36 AM Page xxiv

xxvCONTENTS

Python for Psion . 816
Python for Windows CE . 816
Python for Anything Else . 816

C Python Copyright Notices 817

Python 2.0 License Information . 817
HISTORY OF THE SOFTWARE. 817

Python’s Copyright Notice (version 1.6) . 819
Python’s Copyright Notice (until version 1.5.2) . 821
Copyright Notice of the profile and pstats Modules. 822
Copyright Notice of JPython with OROMatcher . 822
Copyright Notice of JPython without OROMatcher . 824

D Migrating to Python 2.0 827

Python 1.6 or Python 2.0. Which One to Choose?. 828
New Development Process . 828
Enhancements . 828

Unicode Support. 830
List Comprehension . 830
Strings Manipulation . 830
Augmented Assignment . 830
Garbage Collection . 830
Maximum Recursion. 831

Expected Code Breaking . 831

Index 833

00 0672319942 FM 11/15/00 11:36 AM Page xxv

About the Author

My name is André dos Santos Lessa. I decided to follow an IT career when I was
just 11 years old; that happened the day I first saw a real computer—well, actually it
was just a TK85. On my next birthday after that fateful day, I got a TK90X. Then
came the MSX, 386, 486, and so forth. This long-time background has opened many
doors (and Windows!) to me. I got both my graduate and my post-graduate degrees in
the computer field.

At this time, I am an IT consultant with little more than eight years of professional IT
experience, ranging from database administration to Web design. Currently, I work
for Emplifi Inc., where I use my best technical skills to support projects at Deloitte
Consulting.

As I really like undertaking new technologies, mostly anything Web related, I’ve
created and designed some interesting sites for the Web. www.lessaworld.com,
www.bebemania.com.br, and www.alugueaqui.com.br are my little toys.

The most recent endeavour that I became part of is called iTraceYou.com, which is an
international and well-grounded project that brings a new security philosophy to good
old services that we are used to. It is scheduled to be released by October, 2000.

I was born in Rio de Janeiro, Brazil, but I moved to the United States in 1998 in a
quest for new challenges for my career. When I am not working (just a few seconds
per day), I try to spend some time with my wife Renata. Currently, we live in the city
of Pittsburgh, and she is pregnant with our first child, who is called João Pedro.

If necessary, you can contact me by sending a note to my main email account, which is
webmaster@lessaworld.com.

00 0672319942 FM 11/15/00 11:36 AM Page xxvi

Dedication

I dedicate this book to my son, a little boy named João Pedro. Even though
we haven’t met yet, he already has acquired a special place in my heart.

We love you JP!

Acknowledgments

I would like to render my acknowledgments to the ones who most shared my life
during the last few months while I wrote this book, giving me support and inspiration
to conclude this beautiful work.

God

My parents, Neuza & Josué My wife, Renata

Thank you all!

In addition, I would like to express gratitude to my entire family and friends for being
so friendly, and for supporting my wife and I in our decision to move to the United
States.

... and of course, for sending Brazilian goodies and baby gifts to us by mail!

Beth, Bruno, Carol, Cleber, Dinda Teca, Djalminha, Gabriel Jorge, Gustavo, Jorge,
Juliana, Lucas, Matheus, Ney, Patricia Beatriz, Penha, Rafael, and Victor. And if I
forgot about you, consider yourself included in this list!

Thanks folks! (Valeu galera!)

Also, I would like to thank everyone at Macmillan for the patience and comprehension
that they had every time I was late in my milestones.

A special thank you goes to my Technical Editor James Henstridge for providing
outstanding suggestions and remarks about the contents of this book.

Rhonda, you were great correcting my English mistakes and reviewing my writings!

Thanks Katie, thanks Mandie. I do know I gave you a lot of work, didn’t I?

Dawn, Amy, Scott, even though we didn’t have much contact, I know that you were all
there every time this book needed you. God bless you all!

And last, but not least, Shelley, thanks for discovering me! I still remember that day,
March 14, when I got your email asking me if I had ever considered authoring. Well,
this book says everything. Thank you very much for this opportunity.

00 0672319942 FM 11/15/00 11:36 AM Page xxvii

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: webdev_sams@mcp.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0672319942 FM 11/15/00 11:36 AM Page xxviii

INTRODUCTION

When I was a little kid, I had this dream where a snake would
rule and dominate the entire world (actually, I guess that a pen-
guin was also part of the dream…but never mind). I didn’t pay
much attention to the fact at that time because I thought the
dream was caused by an overexposure to all those Japanese
series that were popping up on the screens. Later, in my
teenage years, there was this science project where I had to
spend some time studying snakes to display at an exhibition.
After analyzing Red Tail boas and coral snakes, I found this
3-year old giant of 10 feet, 40+ pounds. Instantly, I recognized
that snake as being the same one that I had seen in my dream
years before. Its name was Python, but at that time, I still
couldn’t figure out what was the relationship between that rep-
tile and the world domination.

Fifteen years ago, I was trying to select a channel in my old TV
set, when a special program caught my attention—A huge ani-
mated foot was dancing in the opening titles. After the program
started, there were a group of funny guys who were playing
jokes about parrots and lumberjacks. After watching tons of
episodes and all their five films, I decided to write a book about
them. I noticed that they were called Python too. Maybe that
was the answer. That troupe would dominate the entire world. I
wanted to let everyone know about it. Initially I had planned to
write about the actors and their most famous sketches, but I had
to abandon the idea when I realized that my editors wouldn’t
give me enough time to write a book of approximately 25,030
pages. That would be a nice bestseller, though.

Even though none of the previous facts has really happened,
both have at least one thing in common—the name Python.
Python is also a scripting language whose name’s origin has
much to do with the English troupe than with the legless rep-
tile. This book will guide you step-by-step through the universe

01 0672319942 Intro 11/15/00 11:45 AM Page 1

2 PYTHON DEVELOPER’S HANDBOOK

of Python, a fantastic programming language that can help you to implement solutions
for almost all types of IT challenges that you might face. Almost all IT-related tasks,
such as the manipulation of database systems, or the design of Web-driven applications
can be managed using Python. Maybe that’s the answer for my dream.

For the last couple of months, I’ve been trying to organize all the information about
Python that I have available, arranging them in this book. I can’t say that I have
included every little thing in the book, but I do know that I have covered the most
important aspects of the Python language. Note that along the 5-month development
period of this book, Python had several version upgrades, which made things way
more difficult to organize. So, I apologize if something important is missing.

This book is organized into 18 chapters and some additional appendixes, where each
one covers a specific aspect of the language. Inside each chapter, you will find many
hints about how to use Python to meet your needs. As you might agree with me, it is
impossible to cover every single aspect of the language in such a complete and up-to-
date way. That’s why I choose to provide Web links to other sources of material that I
think will be useful for your learning.

What this book covers?

A short answers is

The book starts with a very extensive review of the language and the modules that
come as part of the Python distribution. It goes through Object-Oriented
Programming, Networking, Web Development, Graphical Interfaces, and other
important topics. The last chapter covers JPython, a version of Python that runs in
Java systems.

A long answer is

Chapter 1 explains what Python is, why Python must be used, where to get support and
how to go through each installation process.

Chapter 2 is a complete review of the Python programming language. By the end of
this chapter, you will learn how to create Python applications.

Chapter 3 shows which main modules extensions are currently available and for what
purposes they can be used. The focus here is to expand your knowledge about the
Python libraries, showing the resources that you already have available in the Python
programming language.

Chapter 4 demonstrates how to handle exception situations and how to avoid error
messages.

01 0672319942 Intro 11/15/00 11:45 AM Page 2

3INTRODUCTION

Chapter 5 introduces the OO methodology in a very complete and direct way. You will
be able to easily create and use objects and classes in your programs after reading this
chapter.

Chapter 6 discusses extending and embedding Python. You will learn how to extend
Python methods using other languages and how to call Python methods from within
other applications.

Chapter 7 explains objects interfacing and distribution. The information provided in
this chapter explains objects distribution and how to use them from within other sys-
tems.

Chapter 8 shows all the database options available within Python. For those that don’t
know anything about database yet, it explains how databases work and how to execute
basic SQL statements.

Chapter 9 provides very useful information concerning the use and manipulation of
some advanced topics, including images, sounds, threads, and scientific Python
Modules.

Chapter 10 explains basic network concepts and invites you to play with these concepts
using Python programs.

Chapter 11 provides information concerning how to use Python for Internet develop-
ment. It also introduces you to some well-known Python third-party Web applications.

Chapter 12 provides information concerning how to use Python for scripting program-
ming.

Chapter 13 provides information concerning how to use Python for data parsing and
manipulation, such as XML parsing and mail processing.

Chapter 14 shows what the available GUI options for graphic designing in Python are.

Chapter 15 provides Tkinter information. For those that don’t know yet, Tkinter is the
standard Python GUI.

Chapter 16 shows some performance suggestions, and guides you through the process
of writing clean code within style.

Chapter 17 introduces a handful programming tools. You will learn how to go through
all the development stages without fear, including how to debug, compile, and distrib-
ute Python applications.

Chapter 18 demonstrates how easy it is to mix Java and Python using JPython.

01 0672319942 Intro 11/15/00 11:45 AM Page 3

4 PYTHON DEVELOPER’S HANDBOOK

Now that you know that you have a lot of interesting material to learn, I suggest you
accept my hint:

The best way to read this book is by sitting on a comfortable beach chair, or laying on
your bed, and relaxing. If for some reason, if you think the topic is getting boring, just
turn the page and go to another chapter until you find something that you like. Later,
you can return to where you originally left. This book can be read from the start, or
you can go directly to the chapter that teaches a specific functionality. It’s your choice!

So, what are you waiting for? Turn this page at once, and get ready to start dominating
the world.

01 0672319942 Intro 11/15/00 11:45 AM Page 4

PART I

Basic Programming

CHAPTER

1 Introduction

2 Language Review

3 Python Libraries

4 Exception Handling

5 Object-Oriented Programming

02 0672319942 Pt 1 11/15/00 11:36 AM Page 5

02 0672319942 Pt 1 11/15/00 11:36 AM Page 6

CHAPTER 1

Introduction

Nobody expects the Spanish Inquisition

This chapter explains to you why Python is considered to be a
good language, why it should be used, what its main features
are, where you can find support, and how to go through each
installation process.

Introduction to Python

Python is an open source language that is getting a lot of
attention from the market. It combines ease of use with the
capability to run on multiple platforms because it is
implemented focusing on every major operating system. Guido
van Rossum created the language nearly 11 years ago and since
then, Python has changed through the years, turning itself into
one of the most powerful programming languages currently
available.

Python is a good prototype language. In just a few minutes, you
can develop prototypes that would take you several hours in
other languages. It also embodies all object-oriented concepts as
part of its core engine. Therefore, creating programming
object-oriented applications in Python is much easier than it
would be in other languages such as Java or C++.

D E V E L O P E R ’ S H A N D B O O K

03 0672319942 CH01 11/15/00 11:37 AM Page 7

8 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

As I just said, Python is an open source project. Consequently, it is truly free. No
copylefts or copyrights are involved in its license agreement. You can change it, modify
it, give it away, sell it, and even freely distribute it for commercial use. Its copyright
only protects the author from legal problems that might occur if someone decides to
sue the author for errors caused by using Python, or if someone else tries to claim
ownership of the language.

Maybe you still don’t know Python, but many companies are out there using it. The
problem is these companies don’t want to go public talking about it because they think
that using Python without getting the attention of their competitors is a good strategy.
Okay, I know that you are curious to know who in the world is using Python.
Organizations like Industrial Light and Magic, Yahoo!, Red Hat, and NASA are some
of companies that run Python applications.

Note
You can always check out the latest news about Python by visiting
http://www.python.org/News.html.

Nowadays, many developers are contributing to Python’s support. That means that,
currently, a lot of people are testing and designing modules for the language. If you
spend some time visiting Python’s official Web site, you can get a list of several
development groups that are working hard to give Python some support to new
technologies, such as XML and image processing.

Both Perl and Java already have a large group of programmers who are very devoted
to their programming languages, and, today, Python is starting to get there.

Notice that Python is a language extremely easy to code if you have ever programmed
before. Guido claims to have fun every time he has to do something using Python.
Learning Python through this book will be exciting too. Soon, you will have some
practice and understand the reason I say that.

In this chapter, I give you a quick overview of Python’s main features. The other
chapters of this book cover in detail the topics that I mention next.

Python!? What Is It?

Let’s define Python:

Python is an interpreted, high-level programming language, pure object-oriented, and
powerful server-side scripting language for the Web. Like all scripting languages,
Python code resembles pseudo code. Its syntax’s rules and elegant design make it

03 0672319942 CH01 11/15/00 11:37 AM Page 8

9CHAPTER I Introduction
Introduction to Python

readable even among multiprogrammer development teams. The language doesn’t
provide a rich syntax, which is really helpful. The idea behind that is to keep you
thinking about the business rules of your application and not to spend time trying to
figure out what command you should use.

Quoting Guido van Rossum—“Rich syntax is more of a burden than a help.”

It is also true (and later you will have a chance to check it out) that Python is
interactive, portable, easy to learn, easy to use, and a serious language. Furthermore, it
provides dynamic semantics and rapid prototyping capabilities.

Python is largely known as a glue language that connects existing components. It is
embeddable in applications from other languages (C/C++, Java, and so on), and it is
also possible to add new modules to Python, extending its core vocabulary.

Python is a very stable language because it has been in the market for the last 10 years
and also because its interpreter and all standard libraries have their source code
available along with the binaries. Distributing the sources for everyone is a good
development strategy because it makes developers from all around the world work
together. Anyone can submit suggestions and patches to the official development team,
led by Python’s creator—Guido van Rossum.

Guido is the coauthor of the second implementation of the scripting language ABC—a
language that was used, mostly, for teaching purposes in the ‘80s by a small number of
people. Python is directly derived from ABC.

Python was born in an educational environment, in the Christmas of 1989 at CWI in
Amsterdam, Netherlands. Guido was a researcher at CWI at that time. Initially, it was
just a project to keep him busy during the holidays. Later, it became part of the
Amoeba Project at CWI. Its first public release was in February of 1991.

For a long time, Python’s development occurred at CNRI in Reston, VA in the United
States. In June of 2000, the Python development team moved to PythonLabs, a
member organization of the BeOpen Network, which is maintained by the lead
developers of the Python language, including Guido.

On October 27, 2000 the entire PythonLabs Team has left BeOpen.com because of
some mutual disagreements concerning the future of Python. The Team is now
working for Digital Creations (the makers of Zope - http://www.digicool.com/), and
Guido has just announced the idea of creating a non-profit organization called Python
Software Foundation (PSF)in order to take ownership of future Python developments.

By the way, Python was named after the British comedy troupe Monty Python. It had
a comedy series called Monty Python’s Flying Circus on the BBC in the ‘70s. Guido is a
huge fan.

03 0672319942 CH01 11/15/00 11:37 AM Page 9

10 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

As many Monty Python quotes are throughout the chapters of this book as in any
other Python book. That is something of a standard behavior among Python authors,
and I won’t be the one who will try to change it.

Note
“Nobody expects the Spanish Inquisition” is one of the most famous quotes that is
always recited by Guido. Each chapter of this book is headed by a famous Monty
Python quote.

Why Use Python?

Let’s take a look at an interesting scenario:

Imagine that you don’t have a team of programmers who are professionally trained. In
addition to that, you are in a position to choose a programming language that would
be the best solution for projects that require GUI implementations and the use of
complex routines along with OOP technology. Unfortunately, and by chance, you
don’t have much money to spend in a big investment, well… If I were you, I would
pick up Python as my choice.

But if you are simply a programmer who, for this moment, only wants to know what
the significant advantages are that Python has to offer you, maybe you are asking
yourself why you need this language if you already know many others.

The answer is quite simple. Although the original plan is not to turn Python into an
all-purpose language, you can easily do almost anything if you know how. The next
couple of paragraphs list and explain why Python is a cool programming language and
what things make Python more flexible than other languages.

Readability

Python’s syntax is clear and readable. The way Python’s syntax is organized imposes
some order to programmers. Experts and beginners can easily understand the code and
everyone can become productive in Python very quickly. It is also important to
mention that Python has fewer “dialects” than other languages, such as Perl. And
because the block structures in Python are defined by indentations, you are much less
likely to have bugs in your code caused by incorrect indentation.

It Is Simple to Get Support

The Python community always provides support to Python users. As we already know,
Python code is freely available for everyone. Therefore, thousands of developers

03 0672319942 CH01 11/15/00 11:37 AM Page 10

11CHAPTER I Introduction
Why Use Python?

worldwide are working hard to find bugs and create patches to fix those bugs.
Furthermore, many people are creating new enhancements to the language and
sending them for approval.

Fast to Learn

The language is very easy to learn because its source code resembles pseudo code. It
doesn’t ask for long and strange lines of code. Therefore, less training is a direct result.
Companies don’t need to spend much time to have their programmers coding in
Python. Once you start learning Python, you can do useful coding almost immediately.
And after some practice, your productivity will suddenly increase.

You can design a high-level, object-oriented programming code in a friendly and
interpreted Python environment. This feature works great for small tasks.

Fast to Code

Python provides fast feedback in several ways. First, the programmer can skip many
tasks that other languages require him to take. Therefore, it reduces both the cost of
program maintenance and the development time. If necessary, Python enables a fast
adaptation of the code. You can change the high-level layer of your application
without changing the business rules that are coded within your modules.

The interactive interpreter that comes with the Python distribution brings rapid
development strategies to your project. In spite of traditional programming languages
that require several distinct phases (such as compiling, testing, and running) and other
scripting languages that require you to edit the code outside the execution
environment, Python is a ready-to-run language. Every time you use Python’s
interactive interpreter, you just need to execute the code you have. A direct benefit of
this feature over Perl is the way you can interactively test and play around with your
code.

Python provides a bottom-up development style in which you can build your
applications by importing and testing critical functions in the interpreter before you
write the top-level code that calls the functions.

The interpreter is easily extensible. It enables you to embed your favorite C code as a
compiled extension module.

Reusability

Python encourages program reusability by implementing modules and packages. A
large set of modules has already been developed and is provided as The Standard
Python Library, which is part of the Python distribution.

03 0672319942 CH01 11/15/00 11:37 AM Page 11

12 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

You can easily share functionality between your programs by breaking the programs
into modules, and reusing the modules as components of other programs.

Portability

Besides running on multiple systems, Python has the same interface on multiple
platforms. Its design isn’t attached to a specific operational system because it is written
in portable ANSI C. This means that you can write a Python program on a Mac, test
it using a Linux environment, and upload it to a Windows NT server. Everything
mentioned here is possible because Python supports most of its features everywhere.
However, you must know that some modules were developed to implement specific
mechanisms of some operational systems and, of course, programs that use those
modules don’t work in all environments.

But, wait a minute. This problem affects only some specific modules. Usually, you can
make most of your applications run on multiple platforms without changing one line
of code. How many other languages can claim this type of behavior?

Python is well integrated with both UNIX and Windows platforms. The Macintosh
environment also supports Python applications, even though it doesn’t provide a full
set of solutions yet. But don’t worry. Developers are currently working on that.

Object-Oriented Programming

Usually, scripting languages have object-orientation support included in the language
as an add-on. However, everything in Python, as in Smalltalk, is designed to be object-
oriented. You can start programming using non-OO structures, but it doesn’t take too
long for you to find out that it is much simpler if you use its OO features. Some of the
implemented OO functionality in Python is inheritance and polymorphism.

Overall Conclusion

The overall conclusion is that Python is a fantastic language that provides all these
features for free. I assure you that if you want all these features in any other language,
you will have to buy costly third-part libraries. Every detail in Python’s project is part
of a huge plan to have the most used and necessary features of other languages in a
unique environment.

If someone asks which are the cases that Python doesn’t provide the best solution, I
would have just one answer: applications that require huge amounts of low-level data
processing. That is said because, as you already know, Python is an interpreted
language; and for that reason, it is proven to be a little bit slower than compiled
languages. However, even in cases such as this, Python makes it easy to replace

03 0672319942 CH01 11/15/00 11:37 AM Page 12

13CHAPTER I Introduction
Main Technical Features

bottlenecks with C implementations, which speeds things up without sacrificing
Python’s features.

If you have already decided that Python is exactly what you need, be sure to go
through all the following chapters. It will be fun.

Main Technical Features

Now that you already know many reasons why you should use Python, let’s focus on
some of its main technical features.

Automatic Memory Management

Python objects are collected whenever they become unreachable. Python identifies the
“garbage,” taking the responsibility from you.

Exception Handling

The exception handling support helps you to catch errors without adding a lot of error
checking statements to the code. By the way, it is said that Python programs never
crash; they always return a traceback message.

Rich Core Library

Many extension modules were already developed and became part of The Standard
Python Library of tools, which can be used by programmers in any Python application.
Besides those generic modules, we have others that are specific for particular platforms
or environments. The Standard Python Library makes the tasks that are simple in theory
also simple in practice.

In a short time, programmers can make their Python programs speak to HTTP, FTP,
SMTP, Telnet, POP, and many other services because Python modules perform all the
common daily tasks. You can download a Web page, parse HTML files, show windows
on the screen, and even use—as part of your programs—built-in interfaces that were
created to handle many operational system services.

Web Scripting Support and Data Handling

Python enables you to write CGI programs that work fine in several environments.
Have you ever imagined switching platforms without changing the code? All right, it’s
possible if Python is the choice. There is even more: You can parse XML, HTML,
SGML, and every other kind of text by using Python built-in classes and regular
expression methods.

03 0672319942 CH01 11/15/00 11:37 AM Page 13

14 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Built-In Elements

Python provides a huge list of useful built-in elements (the language’s basic data
structure) along with many special operations that are required to correctly process
them. This list is as follows:

• Data types—such as strings, tuples, lists, hash tables, and so on

• Operations—like searching routine statements (in and not in), sorting, and so on

Development Flow

Even though it doesn’t have any compilation or linking process, Python supports byte
compilation. The compiled code is saved in an intermediate language called bytecode
that can be accessed by any system that has a Python virtual machine. This feature
offers a kind of portability similar to the one that Java also offers. Applications can be
used in several different systems without the need for compilation. Furthermore, you
can create a standalone executable and securely distribute your applications.

Clear Syntax and a Diversity of Useful Lexical Elements

The way Python is organized seems to encourage object-oriented programming
because everything is an object. In addition to that, it has various helpful lexical
elements, such as the following:

• Operator overloading—The same operator has different meanings according to
the elements that are being referenced.

• Dynamic typing—You don’t need to assign types in your code. After you assign a
value to an object, it instantly knows what type it should assume. You can even
assign different types to the same variable within the same program.

• Name resolution—Each structure (module, class, and so on) defines its own
scope of names.

• Indentation—There are no line-end markers as in Java and C++, where
programmers need to use semicolons. Python defines indentations by using
block structures.

Embeddable and Extendable

Python can be embedded in applications written in many other programming and
scripting languages. Whenever you need to have a programmable interface for your
applications, give Python a chance. Python is well known for easily gluing everything.

03 0672319942 CH01 11/15/00 11:37 AM Page 14

15CHAPTER I Introduction
Main Technical Features

Python also enables you to add low-level modules to the interpreter. Those built-in
modules are easily written in C and C++. Extension modules are easily created and
maintained using Python. For tasks like this, you can develop components in C and
run them through Python subclasses.

Objects Distribution

Python can be used to implement routines that need to talk to objects in other
applications. For example, Python is a great tool to glue Windows COM components.
Besides that, Python also has a few CORBA implementations that enable you to use
cross-platform distributed objects, as well.

Databases

Python has interfaces to all major commercial databases, provides several facilities to
handle flat-file databases, and implements object-persistence systems that can save
entire objects to files. But the greatest database feature is that Python defines a
standard database API, which makes it easy to port applications to different databases.

GUI Application

You can create applications that implement graphical user interfaces (GUIs), which are
portable to many system calls, libraries, and windowing systems such as Windows
MFC, Macintosh, Motif, and UNIX’s X Window System. This is possible because
many GUI bindings were developed for Python. The Python distribution is bundled
with Tkinter, a standard object-oriented interface to the Tk GUI API that has become
the official GUI development platform for Python.

Introspection

You can develop programs in Python to help in the creation of other programs in
Python. The most important examples are the Debugger and the Profiler. And there is
even more: Python has an Integrated Development Environment (IDLE) developed
using Python for use with Python.

Third-Party Projects Integration

The Python Extension NumPy (Numerical Extensions to Python) along with the Python
Library PIL (Python Imaging Library) prove that everyone who contributes to the
language can make his projects almost a required complement to the standard Python
distribution.

03 0672319942 CH01 11/15/00 11:37 AM Page 15

16 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python Distribution

At the time of this writing, the last official version of Python is version 2.0, released on
October 16, 2000. Prior to that, we had version 1.6 final released on September 5,
2000, and version 1.5.2 released on April 13, 1999.

After release 2.0, Guido plans to work on two more 2.x releases that might be available
by the end of 2000 or January 2001. After that, all his attention will be dedicated to a
total Python redesign, a future project called Python 3000. Despite many rumors that
have been spread in the Python community, Guido affirms that this mythical version is
“not as incompatible as people fear.”

This book was planned to be a Python 1.5.2 book. But it turned out to cover the
migration from 1.5.2 to 2.0. That’s why you will see much of the text focusing on
release 1.5.2, and special notes about release 2.0.

The latest Python source codes for your UNIX, Windows, or Mac system are
maintained under the CVS revision control system. CVS (Concurrent Version System) is
a version control system that stores and manages the code that is in process of
development. Remember! The source code available through CVS might be slightly
different from the one released along with the last official release.

If you want to download the source code from CVS, go to
http://www.python.org/download/cvs.html and check out the instructions that show
how to get the appropriate CVS client for your system. The Python CVS tree is
currently hosted by SourceForge at http://sourceforge.net/projects/python/.

It is normal to have more than one Python installation in your system. You can install
the official version in one location and build the CVS source code in some other
location.

Guido van Rossum, the creator of Python, maintains high-quality Python documen-
tation at Python’s official Web site. You can download Python’s documents from
http://www.python.org/doc/. There are versions in HTML, PostScript, and PDF.
Part of this documentation is included in the distribution packages.

03 0672319942 CH01 11/15/00 11:37 AM Page 16

17CHAPTER I Introduction
Python Distribution

The 1.5.2 distribution comes with five tutorials that you should wisely go through:

• The Python Tutorial

• The Library Reference

• The Language Reference

• Extending and Embedding Python

• The Python/C API

The new release 2.0 also contains the following manuals:

• Distributing Python Modules

• Installing Python Modules

• Documenting Python

The first two manuals above cover how to setup the the Python Distribution Utilities
(“Distutils”) in order to create source and built distributions. The former uses the
module developer’s point-of-view, and the latter uses the end-user’s point-of-view.

The last manual shows how to follow some standard guidelines for documenting
Python.

Python’s current documentation is also available for download at
http://www.python.org/doc/current/download.html.

More information about Python 2.0 documentation and downloading can be found at
http://www.PythonLabs.com.

System Requirements

Python runs on many platforms. Its portability enables it to run on several brands of
UNIX, Macintosh, Windows, VMS, Amiga, OS/2, Be-OS, and many others. Most all
platforms, which have a C compiler, support Python. You can try to compile Python
yourself in any architecture you want because the source code is distributed along with
the binaries.

You should also have a text editor because sometimes it is easier to use an application
like emacs, pico, notepad, or other similar one, instead of using the interpreter or the
graphical development environment. If you are using emacs, make sure that python-
mode is installed because it makes it a lot easier to develop Python code. See Chapter
17, “Development Tools,” for details.

03 0672319942 CH01 11/15/00 11:37 AM Page 17

18 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

After downloading the source code at http://www.python.org/download/
download_source.html, you can carefully play around with it and if you want to go one
step further, port it to another platform.

If you are using UNIX, it’s going to be necessary to have tar and the GNU gzip
programs in-hand in order to unpack the downloaded files.

If you are using Windows, you must have WinZip available for the task.

GNU gzip is available at http://www.gnu.org/software/gzip/gzip.html and WinZip
is available at http://www.winzip.com.

Depending on the system that you are using, you might need to get a C compiler in
case you have need to download the source code instead of the binary distribution.

Right now it is okay to use the binary distributions (whenever they are available), but
when you become more confident with the language, you might want to build a
Python version that uses your own extensions. So, you will need to have a C compiler.

Remember that you are free to use Python’s source code any way you want. The full C
source code is freely available for download.

Installing and Configuring Python

Setting up Python in your system is a very easy process because all versions are freely
available and highly documented. Check the following instructions that show how to
download the files from the binary repository. Each distribution includes reference
manuals that demonstrate in detail how to install and configure Python for that
specific environment. See Chapter 17 for details about how to build Python from
source code.

Python’s Web site—http://www.python.org/download—has a section that gives you
access to all distributions that are available for download (see Figure 1.1).

Up-to-date versions for the most popular distributions are always available.

Keep this URL because we will go to the site later to download other Python items
that we might need.

UNIX Environment

The UNIX distribution is, in my opinion, the best distribution. It comes with POSIX
bindings, and it supports environment variables, files, sockets, and so on. It is perfect
for all flavors of UNIX.

03 0672319942 CH01 11/15/00 11:37 AM Page 18

19CHAPTER I Introduction
Installing and Configuring Python

Figure 1.1

Python’s download Web page is the place where you can get the latest Python releases.

Linux Installation
These days, all the major Linux distributions include Python, which makes your life
simple because you don’t have to download the files. Sometimes, Python is even
automatically installed for you. Just make sure that you have the latest version.

If you already have Python installed in your machine, and you’ve got a new Python
RPM package, you must execute the following command in order to update the RPM:
(Note that this filename reflects the 1.5.2 version.)

rpm -Uhv python-1.5.2-2.i386.rpm

Otherwise, run the following command in your Linux prompt to install the RPM
package.

rpm -ihv python-1.5.2-2.i386.rpm

When the installation process is over, check to see whether everything went fine by
typing python at the prompt. You should get access to the Python interpreter, and
when you are satisfied, press Ctrl+D to leave it.

Perfect! Now you are ready to start coding in Python.

03 0672319942 CH01 11/15/00 11:37 AM Page 19

20 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

In case you are using a Linux system that doesn’t offer RPM support, you need to
download the source code and compile it in your machine. Or, check whether your
Linux distribution included Python. Instructions for compiling Python are provided in
Chapter 17.

Other UNIX Systems
If you are running a UNIX system other than Linux, you need to download the source
code and compile it in your own machine.

Download the file py152.tgz from http://www.python.org/download/
download_source.html. Note that this file corresponds to version 1.5.2. You might
need to change the filename for the latest version.

Following the instructions listed in the README file of the distribution will show you
how to build and install the source code.

Macintosh Environment

MacPython is a Python version available for the Macintosh. Jack Jansen maintains it,
and you can have full access to the entire documentation at his Web site. Currently,
version 1.5.2 is available for download at http://www.cwi.nl/~jack/macpython.html.
Beta versions from version 1.6 are also available.

You can also download this distribution at Python’s official Web site at
http://www.python.org/download/download_mac.html. The full distribution is
available in one unique file that also contains Tkinter and an interactive development
environment.

Windows Environment

The Win32 and COM extensions by Mark Hammond are the result of an excellent
work that is successfully reducing the distance between the overall performance of
Python for UNIX and Python for Windows platforms. The following instructions
show how to install the Python version for Windows systems. Note that to install the
Win32 extensions, you need to install a separate package called Win32all-xxx.exe. You
should replace the xxx with the number of the latest available release.

The installation process is very straightforward within Win32 systems (Windows
95/98/2000 and NT). Go to the Python for Windows download page at
http://www.python.org/download/download_windows.html and choose a location. If
the location you selected isn’t available at the moment, choose a mirror site.

03 0672319942 CH01 11/15/00 11:37 AM Page 20

21CHAPTER I Introduction
Installing and Configuring Python

Figure 1.2

PythonWin’s Installation Wizard guides you through a very simple installation process.

Select everything and confirm the selections. The installation process will start and
after Python is installed, you will be asked if you also want to install Tcl/Tk (see
Figure 1.3). I strongly suggest that you install it too because later you will learn how to
create GUI interfaces using Tkinter. After you confirm it, the Wizard will guide you
through Tcl’s 8.0.5 for Windows installation. Choose the full installation, confirm it,
and that’s it. Your Windows system is fully configured to use both PythonWin and
IDLE.

Figure 1.3

Installing Tcl/Tk now enables you to create GUI applications later.

I suggest that you spend some time going through all the documentation that was
installed in your machine.

Right now you might have everything already set up in your environment.

Let’s download the py152.exe file (Python’s version 1.5.2). Now that you have
downloaded the file, save it to a location on your local hard disk.

Double-clicking the file will launch an Installation Wizard as shown in Figure 1.2.

03 0672319942 CH01 11/15/00 11:37 AM Page 21

22 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

If you decide later to download and build the source code, download the same source
code that is provided for UNIX systems at
http://www.python.org/download/download_source.html.

Get the file py152.tgz and follow the instructions listed in the README file. It clearly
explains how you could use Microsoft Visual C++ 5.0 to build the source code. See
Chapter 17 for more details.

If you are interested in downloading Python 2.0, the following link takes you directly
to its download page.

http://www.pythonlabs.com/products/python2.0/download_python2.0.html

At PythonLabs, you have the source tarball available to build Python from the source
in the platform of your choice. Note that if you are running Windows, you can
download and run the Windows installer as well.

The following links cover the 2.0 distribution.

News about Python 2.0

http://www.pythonlabs.com/products/python2.0/news.html

Python 2.0 Manuals

http://www.pythonlabs.com/doc/manuals/python2.0/

Python 2.0 - The new license

http://www.pythonlabs.com/products/python2.0/license.html

Note
A special note is necessary here to let you know that Python 2.0 doesn’t run a
separate Tcl/Tk installer anymore. It installs all the files it needs under the Python
directory. This was made to avoid conflicting problems with other Tcl/Tk installations
that you might have on your system.

Python and Other Languages

Scripting languages, as everyone knows, are slower than compiled languages. Python
uses its interpreter to manage most of the things you need to worry about when using
compiled languages. The consequence is that you have a productive application in a
short period. However, the application doesn’t run as fast as a compiled version. Okay;
it is slower, but who cares? Nowadays, the development time is a great differential
between companies. It doesn’t matter whether an application runs slower or faster in

03 0672319942 CH01 11/15/00 11:37 AM Page 22

23CHAPTER I Introduction
Python and Other Languages

Python than in other languages. The fact is that you have saved a considerable amount
of time. And by the way, it’s not as slow as many people say.

Python incorporates the best of scripting languages (Perl, Tcl, Awk) and systems
languages (Java, C, C++). If you work in large projects, the use of Python will give you
fast and reliable results.

However, Python doesn’t beat other languages all the time. C and C++ are good for
performance-critical modules of an application because they are system languages that
talk almost directly to the processor. For that reason, many programmers create
Python extensions using these languages when time is crucial for the project.

Python Versus C/C++

The following is a list of differences between Python and C/C++:

• Python’s array constructs don’t have the same number of problems that arrays
written in C have.

• Most of the memory allocation and reference errors that we easily get when
coding C/C++ programs are eliminated as Python performs automatic memory
management.

• Python checks array references for boundary violations.

• In many cases, developing an application in Python requires much less code than
an equivalent application in C.

In general, Python is a great tool to test C/C++ applications. Python adds some contri-
bution to C/C++ projects by gluing components and handling interfaces to test them.

In addition to C/C++, Python is often compared to Perl, Java, and Tcl.

Python Versus Perl

Python is easier to learn than Perl, and it presents a more readable code. Perl is an
excellent language too. Perl is great for work that requires text manipulation and data
extraction, and it is also a great language for system administrators. The Windows
distribution of Perl is apparently pretty good, so it can be used productively under
Windows. However, Perl is much more productive when used in a UNIX
environment. Python’s productivity is platform-independent. Another important
difference is that Python was designed to be fully object-oriented and Perl had object-
orientation implemented later as an add-on to the language. One problem with Perl is
that because “there’s more than one way to do it,” different programmers in large
projects might know different subsets of the language and will not be able to read each
other’s code.

03 0672319942 CH01 11/15/00 11:37 AM Page 23

24 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python Versus Tcl

Python’s syntax is much clearer than Tcl’s. Besides, it is the fastest one, and it needs
less C extensions than those Tcl requires when doing the same job. Similar to Tcl,
Python uses Tk as its standard GUI. Also, Python has more data types than just
strings.

Python Versus Smalltalk

The following list shows some differences between Python and Smalltalk:

• Python has scalability because it can handle small routines and large applications
equally well.

• Python is much easier to learn than Smalltalk.

• Python enables the use of C and C++ code in programs that require a good
performance because it is extensible.

• As most of Smalltalk’s users come from the scientific society, the Numeric
Python Extension becomes helpful by covering many mathematical aspects and
making them easily written in Python.

Python Versus Java

Python offers dynamic typing and a rapid development environment that requires less
code and no compilation phase. Although Python runs slower than Java, it is the more
portable one.

JPython
It’s a new Python implementation that is 100% written in Java. You can use all the
features of Python languages along with the entire universe of Java classes. The
integration between JPython and Java is better than the integration between Python
and C++ because JPython can use Java classes without needing a wrapper generator.
Several other reasons why you should consider giving JPython a try are as follows:

• JPython is interactive, as is CPython.

• JPython applications can import Java classes directly and, whenever required,
integrate Java classes with their own JPython classes.

• JPython compiles directly to Java bytecode, generating Java .class files, which
can be used to create applets.

03 0672319942 CH01 11/15/00 11:37 AM Page 24

25CHAPTER I Introduction
Patches and Bugs List

By the way, JPython programmers also refer to Non-Java Python as CPython in order
to distinguish Python’s Java Implementation from Python’s C implementation.

Conclusion

Now, just imagine projects that require several layers of application design. Do you
think that these projects’ leaders have some kind of problem to scale up their
applications? If you’ve been in a situation like that, have you ever thought about using
the same language for all your needs? Are you going to have a programmer coding in
JavaScript? (That language doesn’t support exception handling.)

Say that you need to create some Java routines, using Servlets, for the back end. What
if this programmer doesn’t know Java? Are you going to explain Java to him, or are
you going to hire a Java programmer?

Nowadays, technology and projects are moving too fast. You don’t have time to teach
new technologies to the people who are coding your applications. This is one more
reason to stick with Python. You have the flexibility to play in all bases and do almost
everything using the same language.

I am sure you are satisfied now that you know the reasons why Python is a fantastic
language. What are you waiting for? I strongly encourage you to use Python now.

For more information about Python versus other languages, check out the
following URL:

http://www.python.org/doc/Comparisons.html.

Patches and Bugs List

In case you notice something bizarre happening while you are coding, you can check it
out in order to find out whether it is a bug or not.

A query tool is provided by Python’s official Web site to enable searches in the bug’s
list. Go to http://www.python.org/search/search_bugs.html and perform your
search. You will be able to identify which bugs are opened, resolved, and so on.

If you think that you might have caught a new bug, you can fill out a form to let the
developer’s team know about it. Remember to ALWAYS check the Python Bugs List
before reporting a bug. It is also good to take a look at the current CVS tree before
reporting any bugs.

03 0672319942 CH01 11/15/00 11:37 AM Page 25

26 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

If you have fixed a bug and want to submit your patch to the PSA team, follow the
standard Patch Submission Guidelines at http://www.python.org/patches/.

PSA and the Python Consortium

The Python Software Activity (PSA) was established by CNRI Inc. to be the home of
Python and to guide its development according to the common interests of the Python
development community. A large number of contributions are submitted periodically.
The PSA Web site stores the official documentation and download area of Python
distributions. PSA’s creation has taken some of the responsibility that Guido had. As a
result, a group is working to develop Python, instead of just one man. This fact helps
propagate the maturity of Python’s development strategy.

You can obtain more information about the PSA by visiting its official home page at
http://www.python.org (see Figure 1.4). That is the place where all the information
about Python gets officially organized and published. Note that with the move of
Guido and his team to PythonLabs, the future of PSA is uncertain. The information
currently available says that CNRI, which manages the existing PSA, will determine its
future at the end of the current membership term, on October 1, 2000.

Figure 1.4

The Python Software Activity (PSA) official home page.

03 0672319942 CH01 11/15/00 11:37 AM Page 26

27CHAPTER I Introduction
PSA and the Python Consortium

Several Special Interest Groups (SIGs), hosted by PSA, are currently studying and
developing special topics of Python, such as XML Processing, String Processing,
Python in Education, Distributed Objects, and many other important topics. To find
out what newest groups are being formed and to participate in the discussions that are
conducted in their mailing lists, take a look at http://www.python.org/sigs/. Much of
Python’s real work takes place on Special Interest Group mailing lists.

Behind the PSA, a group of companies and individuals helps to propagate the Python
voice. They work together, creating conferences and keeping their Web site up-to-
date. If you want to be part of the PSA, get more details at
http://www.python.org/psa/.

After you become a member of the PSA, you are eligible to have an account on the
Web site http://starship.python.net.

Today, this site is filled with information provided by many Python developers from all
around the world.

On Oct 25, 1999, the Python Consortium was publicly announced and officially began
its mission “to ensure Python’s continued support and development.”

The membership fees that are received by the Consortium members support the
development of Python and JPython. Many organizations have already registered as
part of the Consortium (for more information, see http://www.python.org/
consortium/).

The Corporation for National Research Initiatives (CNRI) is a nonprofit organization that
hosts the Python Consortium. Check out its Web site at http://www.cnri.reston.
va.us/.

Even with his transition to PythonLabs, Guido van Rossum remains the Technical
Director of the Python Consortium, and BeOpen.com continues to be just a member.

Support and Help

Python has a Usenet newsgroup called comp.lang.python. This newsgroup is an
excellent source of Python information and support. The guys who really know the
language always hang out there.

One of the best ways to keep yourself up-to-date to the Python world is to sign up for
the Python general mailing lists and to always check the newsgroup for some
information that might be helpful for you.

03 0672319942 CH01 11/15/00 11:37 AM Page 27

28 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Go to http://www.python.org/psa/MailingLists.html and look for the list that
provides the level of information that you need. At this time, there are four main
mailing lists:

Tutor is a list for beginners who have basic knowledge and need simple and straight
answers.

JPython is a list that openly discusses the Python implementation for Java.

Announcements is a list that doesn’t have huge traffic. The objective of this list is
just to publish important notices to the Python community.

An open discussion mailing list generates an average of 100 daily messages and
covers everything related to general Python discussion topics.

Python Conferences and Workshops

The Python community has organized many workshops and conferences to discuss
Python hot topics. You can have access to the materials that were used for the presen-
tations, and you can also download many technical documents provided by the people
who have participated in the conferences and workshops.

For more details about the latest events and upcoming ones, check out the Web page
at http://www.python.org/workshops/.

Summary

Python is an interpreted, high-level programming language, pure object-oriented and
powerful server-side scripting language for the Web. It is an open source project that
doesn’t have any copylefts or copyrights involved in its license agreement.

You should consider moving to Python because it is simple to get support from the
Python community; it is fast to learn and code it; it offers object-oriented
programming support; and it provides a readable, reusable, and portable coding
language.

The main technical features that distinguish Python from the other languages are as
follows:

• Automatic memory management

• Exception handling management

03 0672319942 CH01 11/15/00 11:37 AM Page 28

29CHAPTER I Introduction
Summary

• Rich core library

• Web scripting support and data handling

• Rich built-in elements

• Clear syntax and useful lexical elements

• Embeddable and Extendable language

• Objects Distribution support

• Databases support

• GUI applications support

• Introspection

• Easily integrated to third-party projects.

Python runs on many platforms, such as Microsoft Windows, Linux, and Macintosh.
The source code and the documentation are freely downloadable. It is also available
for downloading the binaries for some systems.

Python is always compared against other languages and, usually, it wins.

Python has an implementation in Java called JPython.

Two institutions have guided the Python community along the last few years: the
Python Software Activity (PSA) and The Python Consortium. The PSA took the
responsibility of creating Python conferences and workshops and keeping the Python
official Web site up and running, whereas The Python Consortium supported the
development of Python and JPython. Today, the future of these two institutions is a
little uncertain because Guido and his whole development team have moved to
BeOpen.com to support PythonLabs.com.

The Python community has been doing a great job by providing help to new Python
aficionados. Most of this help is provided through the mailing lists, newsgroups, bug
lists, and other available forms of support.

By the way, Python has nothing to do with those legless reptiles. It was named after
the British comedy troupe Monty Python.

03 0672319942 CH01 11/15/00 11:37 AM Page 29

03 0672319942 CH01 11/15/00 11:37 AM Page 30

CHAPTER 2

Language Review

Spam spam spam spam spam spam spam and spam!

This chapter offers a complete review of the Python
programming language. After you finish reading it, you will
understand and master the concepts of this language.
Furthermore, you will learn everything that is necessary to
write useful Python programs.

Language Review

Some people say that Python is a magic language because it
enables you to do almost everything with a minimum amount of
code. The coding speed depends only on your effort to acquire
the required knowledge to decide which commands you should
use. Different from other languages, Python doesn’t sell the
idea of being able to code one task in many ways. The reason
for that is because there is only one dialect of Python.
Therefore, the core language doesn’t provide a huge number of
grammar styles and definitions. Consequently, you can keep the
entire vocabulary in your mind without too much effort.

After spending some time studying Python, you can easily
master the whole set of instructions that shapes the core
language. As Python doesn’t have any hard-to-remember

D E V E L O P E R ’ S H A N D B O O K

04 0672319942 CH02 11/15/00 11:37 AM Page 31

32 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

commands, the language is very comfortable and simple. Most of the work that you
have to do is identify the right module for your needs. By the way, Python’s standard
library of modules is very complete and well documented.

This chapter will guide you across the lines of code that are required to reach the
stardom. Among other things, handling control statements and performing files
management will become easy tasks for you.

Later, in the following chapters, you will learn how to go through each important
Python module and understand what it does and how useful it can be for you.

Now, let’s roll up our sleeves and start working.

The Shell Environment

The Python language is wrapped within a shell development environment. The main
component of this shell is a command line interpreter, which is perfect for practicing,
learning, and testing your programs.

Command Line Interpreter

The command line interpreter is the heart of Python’s shell environment. To access
the command line interpreter, you need to switch to the prompt of your operating
system. The following examples presume that the python directory is in your system’s
path environment variable.

On a UNIX system, you must type

$ python

If you are running MS Windows, just say

c:\> python

Note that in both cases, you just need to type the word python; the rest is part of the
shell prompt.

The Python for Windows installation also provides access to the command line
interpreter by clicking its icon on the Start menu (see Figure 2.1).

After the command line interpreter is loaded (see Figure 2.2), you can start coding
your own programs.

04 0672319942 CH02 11/15/00 11:37 AM Page 32

33CHAPTER 2 Language Review
The Shell Environment

Figure 2.1

By clicking on the Python (command line) icon, you gain access to the shell environment.

Figure 2.2

Python’s command line interface is now ready to use.

Instead of using the command line interpreter, you can also use a graphical user
interface called IDLE (see Figure 2.3).

Note
See Chapter 16, “Development Environment,” for details about using IDLE.

04 0672319942 CH02 11/15/00 11:37 AM Page 33

34 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Figure 2.3

IDLE is Python’s GUI interpreter.

As you can see by looking at the coding area in both Figures 2.2 and 2.3, the
interpreter’s primary prompt is a >>>.

Let’s start interacting with Python by running a variation of the standard ”hello
world” program.

>>> print “Hello Python World”

Hello Python World

The previous example demonstrates that the screen is the standard output device for
commands that are typed in the interpreter’s prompt. Next, another example is
demonstrated. Note that the first command doesn’t print anything because it is just an
assignment operation. The result of the operation is passed to and stored at the
informed variable. On the other hand, the second command has its output redirected
to the standard output, which enables you to see the result of the operation.

>>> alfa = 3 + 2

>>> alfa * 4

20

Python’s syntax automatically indicates when a statement requires a subblock. The
interpreter’s secondary prompt ... means that the next line is a continuation from the
current line and not a new line. In some cases, when you finish entering a multiline
statement, you need to type ENTER at the beginning of the first line located after the
end of the code block. By doing so, you will return to the primary prompt.

04 0672319942 CH02 11/15/00 11:37 AM Page 34

35CHAPTER 2 Language Review
Programs

Four basic situations that use a secondary prompt are as follows:

• When you explicitly add a line continuation with a backslash \ literal:

>>> print “I am a lumberjack “ + \

... “and I am OK.”

I am a lumberjack and I am OK.

• When parenthetical expressions are incomplete:

>>> print (“I am a lumberjack “ + \

... “and I am OK.”)

I am a lumberjack and I am OK.

>>> a = {

... ‘song’: ‘lumberjack’

... }

• Multiline statements ending with a :

>>> if 1==2:

... print “This line will never be printed”

...

>>>

• When you comment a line:

>>> # The next function statement returns 2 plus 2.

... 2+2

4

Tip
If you need to quit the interpreter while working on UNIX or MS Windows systems,
press CTRL+D or CTRL+Z, respectively.

Programs

Until now, all the examples were written directly in the interpreter environment.
However, most Python programs are executed as external scripts, being loaded from
files.

04 0672319942 CH02 11/15/00 11:37 AM Page 35

36 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

You can write your own Python scripts by using any text editor of your choice.
Remember to always save your files using the .py extension.

As with any other UNIX scripting language, Python scripts (for UNIX) need a special
handling.

First, you need to put a “shebang” in the first line of the script. This line declares the
location of Python’s interpreter in your system. For example

#!/usr/local/bin/python

Note that this example works only if Python was installed under the given mounting
point. Most Linux systems have Python installed under /usr by default, so the
preceding example will not work. Today, the following line of code seems to be more
common, and does not depend on where Python is installed:

#!/usr/bin/env python

If you are running your scripts on an MS Windows environment, you can keep this
line of code for portability purposes because the literal # is only used to identify
comment lines that are ignored by the interpreter, so it will cause no harm to your
programs.

Tip
The “shebang” line is only meaningful when you work on a UNIX system.

If you don’t know where Python is located on your UNIX system, use the following
command:

$ whereis python

Also, remember to set the permissions on your script to 755 in order to let every user
be able to execute it.

$ chmod +x scriptname.py

or

$ chmod 755 scriptname.py

As you cannot directly execute Python scripts in the MS Windows systems through
the command line, you have two options: Either double-click the file using Windows
Explorer or call the interpreter, passing the filename as an argument. For example,

c:\>python scriptname.py

04 0672319942 CH02 11/15/00 11:37 AM Page 36

37CHAPTER 2 Language Review
Programs

Another way to call the interpreter on Windows systems is by typing start
scriptname.py at the shell prompt. This command will find and execute the program
associated with the extension .py.

If you want to open the interpreter after executing a program, use the -i argument
when calling the script. The interpreter will run your script, and after it executes all
the commands, it will open its command-line interface for you. Here’s how to call the
script with a command-line option:

c:\python -i scriptname.py

Otherwise, after the script finishes its execution, it will automatically close the
interpreter.

After spending some time creating Python programs, you might find some .pyc files
in the same directory in which you are saving your .py scripts. See Chapter 17,
“Development Tools,” to know more about this other file extension.

Indentation

Python delimits code blocks by using indentation. There is no concept of {}s or
Begin/Ends as in other languages. When you indent a block of code, you define the
way the statements are grouped. It also reduces errors due to bad indentation. For
instance, the following C or Perl code looks like a single if statement, but the second
statement is always executed:

if (expression)

statement1;

statement2;

Python doesn’t suffer from this problem because indentation defines block structure.

Another great aspect of this implementation is that you can reduce the size of your
code while using indentation instead of conventional block delimiters.

Tip
Keep in mind that tabs are internally converted to spaces (1 tab = 8 spaces), and
blank lines are ignored when part of scripts.

I suggest you write one statement per line, using a newline (ENTER) to terminate each
line. If you decide to have more than one statement in the same line, you need to
separate them by using semicolons, as shown in the following:

>>> print “When AH “; print “were young...”

04 0672319942 CH02 11/15/00 11:37 AM Page 37

38 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Remember that you must put a backslash \ at the end of lines that need to be broken
into two lines:

>>> t = “Nobody expects “ + \

... “the Spanish inquisition”

Lexical Analysis

It is unnecessary to declare the type of a variable in Python programs. The same
variable name might have different types at different occasions because it is re-
initialized every time a value gets assigned to it, as illustrated in the following:

>>> x = “Albatross!!”

>>> print x

Albatross!!

>>> x = 123

>>> print x

123

You can assign any object type to a variable (for example, functions, classes, and
modules). The following example shows how you can create a variable that references
the round() function object:

>>> x = round

>>> print x(27.234523, 2)

27.23

You don’t have to worry about deallocating variables in Python. Python objects are
collected whenever they become unreachable because Python does reference counting.
This means that as long as there is a reference to an object, the object isn’t collected.
When you delete a reference to an object, its reference counting goes down by one,
and when the count has dropped to 0, it is eligible for garbage collection. Note that
under CPython, objects are deallocated as soon as the reference count reaches 0.

The problem with reference counting is that you can create circular references, such as
the following:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> a.append(b)

>>> a

[1, 2, 3, [4, 5, 6]]

04 0672319942 CH02 11/15/00 11:37 AM Page 38

39CHAPTER 2 Language Review
Programs

>>> b.append(a)

>>> a

[1, 2, 3, [4, 5, 6, [...]]]

>>> b

[4, 5, 6, [1, 2, 3, [...]]]

>>> del a

>>> del b

Now, you can never refer to variables a and b, nor to their contents again, and because
each one of them is still referenced by the other list, they cannot be collected, either.
Note that recursion is indicated by the [...] element. I know that it is fairly easy to
fall into this trap, and although some work is being done to cure this problem, I
strongly suggest that you avoid recursive constructs. As you might notice, del removes
the reference to the object, which could cause it to be deallocated if its reference count
reaches 0.

You can monitor the reference counting of an object by using the sys.getrefcount()
function:

>>> import sys

>>> sys.getrefcount(b)

3

Note that you can break the circular reference if you insert the following lines
between the appends and dels:

>>> del a[-1]

>>> del b[-1]

Actually, we are just breaking the references by removing the [...] entries from the lists.
Note that the release 2.0 of Python makes sure that deleting objects is safe even for
deeply nested data structures. The Python interpreter is now using a new mechanism
to collect unused objects. From time to time, this mechanism performs a cycle
detection algorithm that searches for inaccessible cycles and deletes the participating
objects. This process has been named Garbage Collection of Cycles.

There are a couple of parameters of the garbage collection that you can manipulate.
The module gc provides functions that helps you out with that. Of course, you always
have the option to disable this feature. To do so, simply specify the argument
“-without-cycle-gc” when running the Python configure script.

04 0672319942 CH02 11/15/00 11:37 AM Page 39

40 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Reserved Words

Python has reserved a group of words for its own use. Those words have specific
meanings that cannot be changed. You cannot use these words as identifiers in your
code.

“and, assert, break, class, continue, def, del, elif, else, except,

exec, finally, for, from, global, if, import, in, is, lambda, not,

or, pass, print, raise, return, try, while”

Identifiers

Python identifiers are any objects created by programmers (such as variables, classes,
and so on). Identifiers can be named using any of the following characters: A-Z, a-z,
0-9, and _. However, they can’t start with a digit.

You must write your code carefully because Python identifiers are case sensitive.

The special characters: $, %, and @, aren’t allowed to be part of an identifier’s name.
Besides that, $ and @ can be used only in a program, inside quoted strings. The %
character may be used in a program because it is the mod operator.

Built-In Data Types

Built-in data types are types that are already built into the interpreter. They are
divided into two groups:

Immutable Data Types

These objects cannot have their values altered (for example, strings, numbers, and
tuples).

Mutable Data Types

These objects can have their values manipulated (for example, lists and dictionaries).

Sometimes, it becomes necessary to assign a null value to a variable using the special
data type known as None:

>>> x = 1

>>> x

1

>>> print x

1

04 0672319942 CH02 11/15/00 11:37 AM Page 40

41CHAPTER 2 Language Review
Built-In Data Types

>>> x = None

>>> x

>>>

As you could see, nothing was returned. However, if you try to print this value, the
print method of the object will specially handle the None value by returning a None
result. This is shown in the following:

>>> print x

None

Numbers

Python provides the following numeric data types: integer, floating-point, hexadecimal
(base 16), and octal (base 8). Some examples of these data types are 43, 1.5, 0xB3, and
045, respectively.

Tip
Hexadecimal numbers must always be preceded by 0x, and octal numbers must be
preceded by 0.

Python can do a lot of things with numbers:

It can write equations:

>>> 3*(3.0/34)

0.264705882353

It can use functions:

>>> round(12.32,1)

12.3

It can make comparisons:

>>> x = 2

>>> 0<x<5

1

It can make binary operations, such as shifting and masking:

>>> 16<<2

64

>>> 40&0xab

40

>>> 2|1

04 0672319942 CH02 11/15/00 11:37 AM Page 41

42 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

3

>>> ~2

-3

>>> 3^4

7

A very important detail is the fact that Python truncates integer divisions:

>>> 3/2

1

If you really want the decimals, you have two options. Either you pass a converted
number to the division function, or you put a decimal point in your number, as
illustrated here:

>>> x = 3

>>> float(x)/2

1.5

>>> x

3

>>> 3.0/2

1.5

Python supports long integers—with unlimited size. To let Python know that it should
handle an integer as a long integer, you need to put an L at the end of the number:

>>> 2L**100

1267650600228229401496703205376L

Otherwise you get an error message:

>>> 2**100

Traceback (innermost last):

File “<stdin>”, line 1, in ?

OverflowError: integer pow()

Chapter 4, “Exception Handling,” teaches you how to interpret this exception
message.

Python also handles complex numbers in the format (real part + imaginary part):

>>> 2j**2

(-4+0j)

04 0672319942 CH02 11/15/00 11:37 AM Page 42

43CHAPTER 2 Language Review
Built-In Data Types

Strings

Python considers a string as a sequence of characters. Therefore, every time you use,
for example, the string “Parrot”, internally Python handles it as the sequence [“P”,
“a”, “r”, “r”, “o”, “t”]. The first indexer value is always the number zero. Hence,
to have access to the letter P, you need to say “Parrot”[0] and to access the letter a,
you need to say “Parrot”[1]. Using the same concept, we can get access to all the
other elements.

The following is an example of string operators:

>>> “dead parrot “ + “sketch” # concatenation

“dead parrot sketch”

>>> “parrot “ * 2 # repetition

“parrot parrot”

>>> “parrot”[1] # indexing

“a”

>>> “parrot”[-1] # indexing backward

“t”

>>> “parrot”[1:3] # slicing (*)

“ar”

When slicing, it isn’t necessary to include both first and last elements. Whenever you
omit one of the elements, it is assumed that you want everything in that direction.
Note that the second argument is always a positional reference.

>>> “parrot”[1:]

“arrot”

>>> “parrot”[:3]

“par”

Always remember that assigning z = x doesn’t make a copy of the object x. Instead, it
creates a new reference for that object (as you already saw in the earlier round
example). If you have to create a copy of a sequence named x, you need to type:

>>> z = x[:]

The variable z will identify the middle of the variable x, and it will be initialized with
everything from the left direction plus everything from the right direction. Note that
since Python 1.5, id(s) == id(s[:]) for strings because of string interning.

Strings cannot be modified after creation. It isn’t possible to assign a value to a
substring because strings are immutable. See the error message in the next example:

04 0672319942 CH02 11/15/00 11:37 AM Page 43

44 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> t = “pxrrot”

>>> t[1:2] = “a”

Traceback (innermost last):

File “<stdin>”, line 1, in ?

TypeError: object doesn’t support slice assignment

In cases like this, the usual solution is a little trick:

s = s[:left_element] + new_substring + s[right_element:]

For example

>>> t = “pxrrot”

>>> t = t[:1] + “a” + t[2:]

>>> t

“parrot”

Let me show you other useful operations that you can do with strings:

>>> len(“parrot”) # Get its length

6

>>> “parrot” < “sketch” # Compare one string against another.

1

>>> “t” in “parrot” # This logical test needs a char left operand

1

>>> “\n, \0, \x” # Use escape codes

“\012, \000, \\x”

Table 2.1 lists the escape codes supported by Python strings.

Table 2.1 Escape Codes Supported by Python Strings

Escape Code Description

\\ backslash

\’ single quote

\” double quote

\b backspace

\e escape

\0 null

\n linefeed, also known as \012

\v vertical tab

\t horizontal tab

04 0672319942 CH02 11/15/00 11:37 AM Page 44

45CHAPTER 2 Language Review
Built-In Data Types

\r carriage return

\f form feed

\0nn octal value, the nn domain is: 0..7

\xnn hexa value, the nn domain is: 0..9, A..F, a..f

Next is an example of escape code:

>>> print “I am a lumberjack\nand I am OK”

I am a lumberjack

and I am OK

You can use either single quotes or double quotes. They are both interpreted the
same way.

Both strings ‘Spam’ and “Spam” are basically the same thing.

Python also accepts triple quotes for remarks that span across several lines:

>>> t = “””I am a lumberjack

... and I am OK”””

>>> print t

I am a lumberjack

and I am OK

>>> t

“I am a lumberjack\012and I am OK”

Note that the escape code \012 becomes part of the string.

If you need to create strings with the / (slash literal), you must use raw strings. Raw
strings are identified by the letter r right before the first quote, as shown in the
following:

>>> print r”\n, \f, \x”

\n, \f, \x

There is one more thing that I think you should know about strings. The enclosing
backticks `` tell the interpreter to understand that the enclosed object is of string data
type:

>>> n = 123

>>> print `n` + “ Parrot”

123 Parrot

Table 2.1 Escape Codes Supported by Python Strings

Escape Code Description

04 0672319942 CH02 11/15/00 11:37 AM Page 45

46 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Note
Python doesn’t treat the contents of back quotes as commands to execute, as do
Perl and sh.

Prior to version 2.0, you had to rely on the string module to manipulate your string
objects because the string-manipulation functionality was in the string module. With
this new release, the methods were pushed to the string type. Note that old string
module was not removed from the distribution because it is still necessary for
backwards compatibility.

The following example shows how to call a method from a string object.

>>> ‘Python ‘.join(‘World’)

Python World

Note that ‘Python ‘.join(‘World’) is equivalent to the old string module:
string.join(“World”, “Python “)

Besides the methods that were inherited from the string module, two new methods
were added: startswith() and endswith().

s.startswith(t) is equivalent to s[:len(t)] == t

and

s.endswith(t) is equivalent to s[-len(t):] == t.

Unicode Support
Unicode is a new immutable string data type supported by Python 2.0. Basically, it can
represent characters using 16-bit numbers, instead of the 8-bit numbers used by the
ASCII standard, which means that Unicode strings can support up to 65,536 distinct
characters. Note that when combining an 8-bit string and an Unicode string, the
resulting string is an Unicode string.

In order to write a Unicode string in Python, you need to use the notation u”string”.
If you need to write arbitrary Unicode characters, you can use the new escape
sequence, \uHHHH, where HHHH is a 4-digit hexadecimal number from 0000 to FFFF.
Note that you can also use the existing \xHHHH escape sequence. Another option is to
use octal escapes whenever you need to write characters up to U+01FF (represented by
\777).

04 0672319942 CH02 11/15/00 11:37 AM Page 46

47CHAPTER 2 Language Review
Operators

True and False Logical Values

Falsity is represented by zeros, empty structures, or the value None (for example, 0, [],
{}, (), None).

Logical Truth is represented by results different from zero and non-empty structures
(for example, 1, [2], (1,2,3), “abc”). The following if statement checks whether the
variable t has any value; in this case, the statement returns true, allowing the block
contents to be executed:

>>> t = “Parrot”

>>> if t:

... print “Parrot”

...

Parrot

Operators

Next, I list the available Python operators in their precedence order. I also provide
some specific details about some of them.

1. (), [], {}

2. `object`

3. object[i], object[l:r], object.attribute, function()

The . (dot) operator is used to access attributes and methods of a variable
(object). In the following example, the dot enables the object t to access its
method append.

>>> t = [“p”,”a”,”r”,”r”,”o”]

>>> t.append(“t”)

>>> t

[“p”,”a”,”r”,”r”,”o”,”t”]

4. +x, -x, ~x

These are bitwise operators.

5. x**y

6. x*y, x/y, x%y

The % (modulo) operator lets you know whether a number is divisible by another
number. For example, if a % b == 0, a is divisible by b.

04 0672319942 CH02 11/15/00 11:37 AM Page 47

48 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

7. x+y, x-y

8. x<<y, x>>y

These operators provide shifting operations. The << operator ensures left
shifting (at bit level), and the >> operator ensures right shifting (at bit level).

>>> x = 2 # the binary representation is 0010

>>> x << 1 # the binary representation will be 0100

4

9. x & y

The bitwise AND operator

10. x ^ y

The bitwise XOR (exclusive OR) operator

11. x | y

The bitwise OR operator

12. <, <=, >, >=, ==, !=, <>, is, is not, in, not in

The operators in and not in work only with lists. Another aspect of this group is
that there’s an important difference between the == operator and the = assigning
symbol.

is checks whether two variables refer to the same object. On the other hand, is
not checks whether two variables don’t refer to the same object.

The == operator ensures equality testing, whereas = assigns a value to a variable.

Tip
Keep in mind that x = y doesn’t create a new copy of y. Instead, it makes a
reference to it. However, if later you define x=x+1, a new reference for x is created,
and then they become different because the operator has created a new object.

Note that x.append(5) doesn’t create a new reference to x because x changes itself
without using a = operator.

13. not

14. and

15. or, lambda args:expr

04 0672319942 CH02 11/15/00 11:37 AM Page 48

49CHAPTER 2 Language Review
Expressions

As a good programmer, you need to know that logical operations can also be emulated
by using if statements. Note that the return values are not limited to zeros and ones.

The operation a and b can be written as the following:

>>> def newand(a,b):

... if not a: #If a is false

... return a

... else:

... return b

...

The operation a or b can be written as the following:

>>> def newor(a,b):

... if a: #If a is true

... return a

... else:

... return b

...

The operation not a can be written as the following:

>>> def newnot(a):

... if not a: #If a is false

... return 0

... else:

... return 1

...

Augmented Assignment

Starting with Python 2.0, the language also implements a full set of augmented
assignment operators. That includes: +=, -=, *=, /=, %=, **=, &=, |=, ^=, »=,
and «=

For example, instead of saying x = x+1, you can choose to say x += 1

Expressions

Python operators support a wide range of expressions, such as

>>> x,y,z = z-x, y*z, x+y # Parallel assignment: example 1

>>> x,y,z = 5,4,3 # Parallel assignment: example 2

04 0672319942 CH02 11/15/00 11:37 AM Page 49

50 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> a,b = b,a # Switching assignments

>>> a = b = c = 10 # Multiple assignments

>>> string.atof(s) # Functions support

>>> 20 < x < 40 # Multiple range testing

The last example is equivalent to

>>> 20 < x and x < 40

Built-In Functions

The following functions are always available when you load the Python interpreter.
You don’t need to import them because they are already part of the __builtin__
module, which is always imported when you launch Python.

apply()
It executes a given function, passing the arguments provided.

basic syntax: apply(function, (tuple of positional arguments) [, dictionary of
keywords arguments])

>>> apply (raise_salary, (6000), {‘employee’:’John’, ‘id’:13})

Note that starting at Python 1.6, the functionality of apply is now available with
normal function calling, such as

>>> args = (6000,)

>>> kwargs = { ‘employee’:’John’, ‘id’:13}

>>> raise_salary(*args, **kwargs)

coerce()
coerce is used to try to convert the two given arguments x and y to the same type,
returning them as a tuple.

basic syntax: coerce(x, y)

>>> coerce(42,5.4)

(42.0, 5.4)

filter()
It creates a new list by taking each element of list for which function evaluates to
true.

basic syntax: filter(function, list)

04 0672319942 CH02 11/15/00 11:37 AM Page 50

51CHAPTER 2 Language Review
Expressions

>>> a = range (4)

>>> b = filter(lambda x: x < 3, a)

>>> print b

[0,1,2]

globals()
It returns the global namespace dictionary.

basic syntax: globals()

input()
It provides an input interface for the user. Only numbers are accepted.

basic syntax: input([prompt])

a = input(“Please, type a number greater than 5: “)

if a<5:

print “a is not greater than 5”

locals()
It returns the local namespace dictionary

basic syntax: locals()

map()
It applies a function to each element of list, producing another list. If function is set
to None and multiple lists are provided, a tuple matrix is generated in the format of a
list.

basic syntax: map(function, list)

>>> lst = map(None, [1,2,3,4], [1,2,3,4,5,6])

>>> lst

[(1, 1), (2, 2), (3, 3), (4, 4), (None, 5), (None, 6)]

open()
It opens a file. (See the section “File Handling” for details.)

basic syntax: open(filename [,mode [,bufsize]])

pow()
It returns x**y or (x**y) % z, depending on the number of arguments that are
transported.

basic syntax: pow(x, y [,z])

04 0672319942 CH02 11/15/00 11:37 AM Page 51

52 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

raw_input()
It reads from standard input (sys.stdin), returning the read data as a string. prompt is
an optional text that can be displayed in the screen.

basic syntax: raw_input([prompt])

reduce()
It applies a function cumulatively to the items in sequence (implied loop), returning a
single value. initializer is an optional starting value.

basic syntax: reduce(function, sequence [,initializer])

>>> import operator

>>> a = [1,2,3]

>>> print reduce(operator.add, a)

6

The equivalent Python code for this function is something like

def reduce(func, list):

ret = list[0]

for x in list[1:]:

ret = func(ret, x)

return ret

__import__()
This is a function invoked by the import statement. To import a module, you just need
to inform the module name.

basic syntax: __import__(module_name [,globals() [, locals() [,from list]]])

>>> modname = “string”

>>> string = __import__(modname)

>>> string

reload()
It reloads an already imported module. Internally, it calls the __import__ function.

basic syntax: reload(module)

Sequence Functions

The next set is built-in functions that deal with sequences.

04 0672319942 CH02 11/15/00 11:37 AM Page 52

53CHAPTER 2 Language Review
Expressions

range()
It returns a list of numbers according to the transported information.

basic syntax: variable = range([initial_value,] final_value-1 [, step])

>>> lst = range(1,5)

>>> lst

[1, 2, 3, 4]

See the section “Data Structures” for details.

xrange()
It is similar to range(), but it doesn’t assign the returned list to a variable, Therefore,
it doesn’t use as much memory, so you won’t run out of memory by typing
xrange(2000000000), for instance.

basic syntax: xrange([initial_value,] final_value-1 [, step])

See the section “Data Structures” for details.

len()
It returns the length/number of elements of string.

basic syntax: len(variablename)

max()
It returns the maximum/largest element of sequence.

basic syntax: max(sequence)

>>> max(1, 2, 3)

3

>>> max(“MY BRAIN HURTS”)

“Y”

min()
It returns the minimum/smallest element of sequence.

basic syntax: min(sequence)

>>> min(“MY BRAIN HURTS”)

“ “

04 0672319942 CH02 11/15/00 11:37 AM Page 53

54 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

zip()
It returns a list of tuples where each tuple contains the i-th element from each of the
given sequences. This function generates a resulting list whose length is exactly the
same as of the shortest given sequence. Note that, on the other hand, the function
map(None, sequence1, sequence2, ...) pads the resulting list with None when the
sequences don’t have the same length.

basic syntax: zip(sequence1, sequence 2, sequence3, ...)

Object Manipulation

The next set is built-in functions that deal with object handling.

setattr()
It sets a new value for object.name

basic syntax: setattr(object, name, value)

getattr()
It returns the attribute from object. This command is equivalent to
object.attribute.

basic syntax: getattr(object, attribute)

hasattr()
It returns 1 if object has attribute, 0 if it doesn’t.

basic syntax: hasattr(object, attribute)

delattr()
It deletes the attribute from object. This command is equivalent to del
object.attribute.

basic syntax: delattr(object, attribute)

type()
It returns the type of object.

basic syntax: type(object)

>>> type(“andre”)

<type “string”>

04 0672319942 CH02 11/15/00 11:37 AM Page 54

55CHAPTER 2 Language Review
Expressions

dir()
It returns a list of attribute names from the active namespace. object can be anything
(a variable, a module, a class, and so on).

basic syntax: dir([object])

callable()
It returns 1 if object is callable. Otherwise, it returns 0.

basic syntax: callable(object)

hash()
It returns a hash value for object.

basic syntax: hash(object)

id()
It returns the system unique identifier of object.

basic syntax: id(object)

vars()
It returns the symbol table of object or a dictionary from the local namespace.

basic syntax: vars([object])

Mathematical/Logical Functions

The next set is built-in functions that deal with mathematical and logical operations.

abs()
It returns the absolute value of number.

basic syntax: abs(number)

>>> abs(-12), abs(34), abs(+20.23), abs(-10.82)

(12, 34, 20.23, 10.82)

cmp()
It returns -1 when x<y; 0 when x==y, 1 when x>y

basic syntax: cmp(x,y)

>>> cmp(10,20), cmp(25,25), cmp(30,25)

(-1, 0, 1)

04 0672319942 CH02 11/15/00 11:37 AM Page 55

56 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

round()
It rounds number to the given number of decimals. Note that the provided number is
rounded to an integer by default.

basic syntax: round(number [,decimals])

divmod()
It returns a tuple (quotient, remainder), resulting in the expression dividend/divisor.

basic syntax: divmod(dividend, divisor)

>>> divmod(25/3)

(8, 1)

Code Functions

The next set is built-in functions that deal with Python bytecode manipulation.

eval()
It evaluates the compiled code string object as if it were Python code, and returns the
result. globals and locals define the namespaces for the operation. Note that eval
can evaluate expressions only—not arbitrary statements. Therefore, eval(‘import
string’) won’t work.

basic syntax: eval(string [,globals [,locals]])

>>> a = eval(‘2 * y + (20 / x)’)

exec()
exec is a statement that executes a string containing Python code. globals and locals
define the namespaces for the operation.

basic syntax: exec string [in globals [,locals]]

>>> a=’for b in range(4):\n print b,\n’

>>> exec a

0 1 2 3

execfile()
It executes the statements included in the file provided. globals and locals define
the namespaces for the operation.

basic syntax: execfile(file [,globals[,locals]])

>>> execfile(“c:\\python\program2.py”)

04 0672319942 CH02 11/15/00 11:37 AM Page 56

57CHAPTER 2 Language Review
Expressions

You can redefine the global and the local namespaces for these functions by creating
dictionaries, just like the next example shows. If you omit the values, the current
environment namespace is always used.

>>> globalsvar = {‘x’: 7}

>>> execfile(“c:\\python\\program2.py”, globalsvar)

compile()
It compiles a code object (string) that optionally might be located in a file. The type
value depends on the following: if string is a sequence of statements, type is “exec”; if
string is a single expression, type is “eval”; and if string is an executable statement,
type is “single”.

basic syntax: compile(string, file, type)

>>> a = “for i in range(0,10): print i,”

>>> b = compile(a, “”, “exec”)

>>> exec b

0 1 2 3 4 5 6 7 8 9

>>> a = “123 * 2”

>>> c = compile(a, “”, “eval”)

>>> d = eval(c)

>>> d

246

Tip
If you need to evaluate or execute the same code many times in your application, the
application will get more optimized if you compile all the source code first.

Type Conversion

The next set is built-in functions that deal with data type conversion.

int()
It converts object to an integer number.

basic syntax: int(object)

long()
It converts object to a long integer.

basic syntax: long(object)

04 0672319942 CH02 11/15/00 11:37 AM Page 57

58 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

As of Python 2.0, the functions int() and long() have an optional base argument,
which can be used when the first argument is a string. Note that if you try to use this
second argument with a value that is not a string, you get a TypeError exception
message. The following examples demonstrate what happens when we use this
argument: int(‘450’, 10) returns 450, and int(‘25’, 16) returns 37.

float()
It converts object to a floating-point number.

basic syntax: float(object)

complex()
It creates a complex number in the format (real number + imaginary number)

basic syntax: complex(real [,imaginary])

str()
It returns the printable representation of object. It returns the same value that a
“print object” statement does.

basic syntax: str(object)

repr()
It is equivalent to the enclosing backticks ``. It returns an expression that can be
evaluated.

basic syntax: repr(object)

You can use either repr() or `` to get the representation of an escape character.

>>> repr(‘spam\n’)

“‘spam\\012’”

tuple()
It creates a tuple based on sequence.

basic syntax: tuple(sequence)

list()
It creates a list based on sequence.

basic syntax: list(sequence)

04 0672319942 CH02 11/15/00 11:37 AM Page 58

59CHAPTER 2 Language Review
Control Statements

chr()
It converts an integer into one character.

basic syntax: chr(integer)

ord()
It returns the ASCII value of string.

basic syntax: ord(string)

hex()
It converts an object into a hexadecimal value.

basic syntax: hex(object)

oct()
It converts an object into an octal value.

basic syntax: oct(object)

unicode()
This function takes an 8-bit string and creates a Unicode string.

basic syntax: unicode(string [, encoding] [, errors])

encoding and errors are some additional arguments that you can also provide to the
function. The first one is a string that names the encoding to use. errors defines what
to do when an invalid character is used for the current encoding. You have three
options for values here: strict causes an exception to be raised on any encoding error,
ignore simply ignores any errors, and replace replaces the invalid character with the
official replacement character U+FFFD whenever it finds any problem.

unichr()
This function returns a 1-length Unicode string containing the given character.

basic syntax: unichr(character)

Control Statements

Python implements all the necessary types of control statements that your program
might require. The syntax provided by Python’s if, for, and while statements should
be enough for your needs.

04 0672319942 CH02 11/15/00 11:37 AM Page 59

60 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Tip
Remember to type a colon at the end of each line where you enter a statement
declaration.

if/elif/else

The general syntax for the if/elif/else statement is as follows:

1: if <condition>:

2: <statements>

3: [elif <condition>:

4: <statements>]

5: [elif <condition>:

6: pass]

7: ...

8: [else:

9: <statements>]

Note that both elif and else clauses are optional. As you can see in lines 3 through 7,
it is only necessary to use elif when you need to handle multiple cases. That is exactly
how you implement the switch/case statements from other languages.

Line 6 introduces you to an empty clause that does nothing. It is called pass.

for

The for statement implements loops within a sequence (list). Each element in the
sequence assigns its value to variable on its turn. The general syntax is as follows:

for <variable> in <sequence>:

<statements>

[else:

<statements>]

The else clause is only executed when the for statement isn’t executed at all, or after
the last loop has been executed. In other words, the else statement is always executed
unless the break statement is executed inside the loop.

Let’s see some examples:

>>> for n in [1,2,3,4,5]:

... print n,

...

1, 2, 3, 4, 5

04 0672319942 CH02 11/15/00 11:37 AM Page 60

61CHAPTER 2 Language Review
Control Statements

>>> t = [(1,2),(2,4),(3,6)]

>>> for t1, t2 in t:

... print t1, t2

...

1 2

2 4

3 6

while

The while statement implements a loop that executes the statements while the
condition returns true.

while <condition>:

<statements>

[else:

<statements>

The else clause is only executed when the while statement isn’t executed at all, or
after the last loop has been executed. In other words, the else statement is always
executed unless the break statement is executed inside the loop.

The following example demonstrates the use of the while statement:

>>> x = 5

>>> while x > 0:

... print x,

... x = x-1

...

5 4 3 2 1

The next example implements an infinite loop because the pass statement does
nothing and the condition will always be true.

>>> while 1:

... pass

break/continue

Next are two commands that can be used inside for and while types of loop.

break
The break clause exits a loop statement without executing the else clause.

04 0672319942 CH02 11/15/00 11:37 AM Page 61

62 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> for n in [1, 2, 3]:

... print n,

... if n == 2:

... break

... else:

... print “done”

...

1 2

continue
The continue clause skips the rest of the loop block, jumping all the way back to the
loop top.

>>> x = 5

>>> while x > 0:

... x = x - 1

... if x == 3:

... continue

... print x,

...

4 2 1 0

Data Structures

Python implements a variety of data structures, such as lists, tuples, ranges, and
dictionaries (also known as hash tables).

Lists

Lists are mutable sequences of objects indexed by natural numbers that can be
changed after they are created.

Lists are very flexible and easy to create. They are always enclosed in brackets:

>>> lst = [1,2,3,4] # this is simple list

A list can have elements of different data types:

>>> lst = [1, “ni!”, 2]

Lists can also include other lists:

>>> lst = [1, “ni!”, [1,2,”Albatross!!”]]

04 0672319942 CH02 11/15/00 11:37 AM Page 62

63CHAPTER 2 Language Review
Data Structures

A list uses the same operators that strings use. For example, you need to use slice
notation to grab a range of elements from a list.

>>> lst = [1, “ni!”, [1, 2, 3, 4, “Albatross!!”, 3]]

>>> lst[1]

“ni!”

To grab elements from lists that are located inside other lists, you need to use a pair of
brackets to represent each list. Check out the next couple of examples.

>>> lst = [1, “ni!”, [1, 2, 3, 4, “Albatross!!”, 3]]

>>> lst[2][4]

“Albatross!!”

>>> lst[2][4][5]

“r”

Let’s see some examples of operations that can be applied to a list.

Identifying an Entry
>>> lst = [“p”, “a”, “r”, “r”, “o”, “t”]

>>> lst.index(“o”)

4

Assigning Values to a List
>>> lst = [“p”, “a”, “r”, “r”, “o”, “t”]

>>> lst[1] = “aaaaaaaaaaaaa”

>>> lst

[“p”, “aaaaaaaaaaaaa”, “r”, “r”, “o”, “t”]

Assigning Values to a Slice
>>> lst = [“p”, “a”, “r”, “r”, “o”, “t”]

>>> lst[1:4] = [“aaaaaaaaaaaaa”, “rrr”, “rrrr”]

>>> lst

[“p”, “aaaaaaaaaaaaa”, “rrr”, “rrrr”, “o”, “t”]

Inserting Values
The following example starts inserting values at index number 6.

>>> lst = [“p”, “a”, “r”, “r”, “o”, “t”]

>>> lst[6:] = [“ “, “s”, “k”, “e”, “t”, “c”, “h”]

[‘p’, ‘a’, ‘r’, ‘r’, ‘o’, ‘t’, ‘ ‘, ‘s’, ‘k’, ‘e’, ‘t’, ‘c’, ‘h’]

04 0672319942 CH02 11/15/00 11:37 AM Page 63

64 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

If the list was longer than 6 elements, the statement would overwrite a portion of the
list. Note that you can also insert a value in this list with

>>> lst.insert(6, val)

Deleting a Value
>>> lst = [“p”, “a”, “r”, “r”, “o”, “t”]

>>> del lst[-1]

>>> lst

[“p”, “a”, “r”, “r”, “o”]

>>> del lst[0:2]

[“r”, “r”, “o”]

The following example converts objects to their string representation:

>>> lst = [10,20,30,”inquisition”,”lumberjack”]

>>> text = “”

>>> for element in lst:

... text = text + `element`

... # enables the concatenation of any object

... print text

...

10

1020

102030

102030’inquisition’

102030’inquisition’’lumberjack’

List Comprehension
Starting with release 2.0, there is a new notation to create lists whose elements are
computed from another list (or lists). The method is called List Comprehension, and
it adopts the following format:

[expression for expression1 in sequence1

[for expression2 in sequence2]

[... for expressionN in sequenceN]

[if condition]]

All for...in clauses are evaluated and iterated from left to right. That means that the
resulting list is a cartesian product of the given sequences. For example, if you have
three lists of length 5, the output list has 125 elements. The if clause is optional, but
when present, it can limit the number of pairs that will become part of the resulting

04 0672319942 CH02 11/15/00 11:37 AM Page 64

65CHAPTER 2 Language Review
Data Structures

list by adding pairs to the resulting list only when the result condition of the if
statement evaluates to true. Check the following example:

letters = ‘py’

numbers = (1.52, 1.6, 2.0)

>>> [(l,n) for l in letters for n in numbers]

[(‘p’, 1.52), (‘p’, 1.6), (‘p’, 2.0), (‘y’, 1.52), (‘y’, 1.6),

(‘y’, 2.0)]

This new concept is more efficient than a for loop with an if statement along with a
list.append() function call.

Built-In Methods

To list all the built-in methods of a list, go to the interpreter and type dir([]).

Let’s practice the methods that you have found, and see what happens to our list lst.

>>> lst = [0, 1, 2]

>>> lst.append(5) # appends the element 5 to the list

>>> lst

[0, 1, 2, 5]

>>> lst.append((5, 6)) # appends the tuple (5, 6)

>>> lst

[0, 1, 2, 5, (5, 6)]

>>> lst.pop() # removes the last element of the list

(5, 6)

>>> lst

[0, 1, 2, 5]

>>> lst.insert(2,7) # inserts the element 7 at index number 2

>>> lst

[0, 1, 7, 2, 5]

>>> lst.pop(2) # removes the element at index number 2

7

>>> lst

[0, 1, 2, 5]

>>> lst.reverse() # reverse the list order

>>> lst

[5, 2, 1, 0]

>>> lst.sort() # sorts the list elements

>>> lst

[0, 1, 2, 5]

>>> lst.extend([3, 4, 5]) # adds this list to our original list

>>> lst

04 0672319942 CH02 11/15/00 11:37 AM Page 65

66 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

[0, 1, 2, 5, 3, 4, 5]

>>> lst.count(5) # counts the number of elements number 5 that exist.

2

>>> lst.index(3) # returns the associated index of element 3.

4

>>> lst.remove(2) # removes the element number 2 (not the index!!!)

>>> lst

[0, 1, 5, 3, 4, 5]

Note that up to release 1.5.2, whenever you used lst.append (1,2), a tuple (1,2)
would be appended to the list lst. Now, with release 2.0, when you do that, you get an
TypeError exception followed by a message like “append requires exactly 1
argument; 2 given”. Don’t panic! To fix that, you just need to add an extra pair of
parenthesis, like this: lst.append ((1,2)).

Ranges

A range is an actual list of integers. The built-in function range() provides this data
structure.

>>> r = range(2,5)

>>> print r

[2,3,4]

When the first argument is left out, it is assumed to be zero.

>>> r = range(3)

>>> print r

[0,1,2]

When you provide a third argument to the range() function, you specify the interval
that you want to exist between the list elements.

>>> r = range(2,10,2)

>>> print r

[2, 4, 6, 8]

Let’s see an example of stepping backward:

>>> r = range(5,1,-1)

>>> print r

[5, 4, 3, 2]

04 0672319942 CH02 11/15/00 11:37 AM Page 66

67CHAPTER 2 Language Review
Data Structures

The xrange() function computes the values only when they are accessed. This
function returns an XrangeType object, instead of storing a large list of numbers in a
variable.

>>> for n in xrange(10):

... print n,

...

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The previous example also works with the range() function, although it will store the
whole list in memory.

It is possible to assign a reference to the return value of the xrange() function to a
variable, as you will see next. Note that we are not storing the values, only a reference
to the function.

>>> lst = xrange(10)

>>> lst

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

However, you can convert this reference later into a real list by using the tolist()
method.

>>> lst.tolist()

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Tuples

A tuple is a sequence of immutable Python objects.

The general syntax of a tuple is as follows:

variable = (element1, element2, ...)

It looks like a list without the brackets. Note in the following examples that
parentheses are optional.

>>> t = (1,)

>>> print t

(1,)

>>> t = 1,

>>> print t

(1,)

>>> t = () # this is an empty tuple.

>>> print t

04 0672319942 CH02 11/15/00 11:37 AM Page 67

68 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

()

>>> t = (1,2,3)

>>> print t

(1,2,3)

>>> t = 1,2,3

>>> print t

(1,2,3)

Note that in the previous example, it is necessary to use the comma when defining a
length-1 tuple. Otherwise, the variable being created wouldn’t be defined as of type
tuple. Instead, the interpreter would think that you wanted to assign a numeric value
to the variable.

A tuple really looks like a list. The difference between tuples and lists is that tuples are
immutable.

You can bypass this rule if you bind a new structure to the old tuple variable.

>>> t = 10,15,20

>>> t = t[0],t[2]

>>> t

(10,20)

Other Interesting Facts About Tuples
• They support indexing.

>>> t = 10,20,30,40

>>> print t[1]

20

• You will see, later in this chapter, that you need to use tuples whenever you need
to return more than one value from a function.

>>> Def tuplefunction():

... return 10, 20, 30

...

>>> x, y, z = tuplefunction()

>>> print x, y, z

10 20 30

Dictionaries (hash tables)

Dictionaries illustrate the only mapping type of Python. They represent finite sets of
objects indexed by nearly arbitrary values. I say nearly because dictionary keys cannot

04 0672319942 CH02 11/15/00 11:37 AM Page 68

69CHAPTER 2 Language Review
Data Structures

be variables of mutable type, which are compared by value rather than by object
identity.

Python dictionaries are also known as associative arrays or hash tables. The
general syntax of a dictionary is as follows:

variable = {“key1”:”value1”, “key2”:”value2”, ...}

Dictionaries are always enclosed in braces. They associate key elements with value
elements—keys and values are displayed separated by a colon.

The values of a dictionary can be of any type, but the keys must be of an immutable
data type (such as strings, numbers, or tuples). Dictionary keys have no natural order
and are always listed in arbitrary order because it uses a hash technique to implement a
fast lookup.

Let’s focus now on the operations that we can implement with dictionaries. First, let’s
create a simple dictionary.

>>> dic = {“bird”:”parrot”, “fish”:”tuna”, “dino”:”t-rex”}

Now, let’s apply some operations to it:

>>> dic[“fish”] # value lookup

“tuna”

>>> dic[“animal”] # raises a KeyError exception

Traceback (innermost last):

File “<stdin>”, line 1, in ?

KeyError: animal

>>> del dic[“fish”] # deletes the key fish

>>> print dic

{‘bird’: ‘parrot’, ‘dino’: ‘t-rex’}

>>> dic[“dino”] = “brontosaur” # updates an entry

>>> dic[“parrot age”] = 58 # adds an entry

>>> dic

{“bird”: “parrot”, “dino”: “brontosaur”, “parrot age”: 58}

>>> len(dic) # provides the number of keys

3

Built-In Methods
The following sequence of commands shows the built-in methods that are
implemented for dictionaries.

04 0672319942 CH02 11/15/00 11:37 AM Page 69

70 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> dic = {“a”:1, “b”:2, “c”:3}

>>> dic.keys() # creates a list of keys. Very used in for statements.

[“a”,”b”,”c”]

>>> dic.values() # creates a list of values

[“1”,”2”,”3”]

>>> dic.items() # creates a tuple with the dictionary elements

[(“a”,”1”),(“b”,”2”),(“c”,”3”)]

>>> dic.has_key(“a”) # returns 1 if key exists. Otherwise it returns 0.

1

dic.get(value, default)

If key exists, returns its value. Otherwise it returns the second arg.

>>> dic.get(“b”, None)

2

dic.update(dictionary)

adds the dictionary in the argument to the original dictionary.

>>> dic.update({“d”:4})

>>> newdic = dic.copy() # creates a copy of the dictionary

>>> keys = dic.keys()

>>> keys.sort() # sorts the dictionary keys

>>> dic.clear() # removes all the items from the dictionary.

Python 2.0 contains a brand-new method for dictionaries, which is called
setdefault(). This method returns the value for the given key (exactly as the get()
method would do). However, if the given key is not found, it returns the given default
value, and at the same time, it initializes the given key with the default value, as
demonstrated in the following code.

if dict.has_key(key):

return dict[key]

else:

dict[key] = [“default value”]

return dict[key]

is the same of saying

return dict.setdefault(key, “default value”)

04 0672319942 CH02 11/15/00 11:37 AM Page 70

71CHAPTER 2 Language Review
Functions and Procedures

Functions and Procedures

Functions and procedures are blocks of code that you can access from several different
parts of your code. As you already know, Python gives you some built-in functions,
but you can also create your own functions. Yours are called user-defined functions.
Functions and procedures provide better modularity for your application and a high
degree of code reusing.

Procedures are functions that don’t return a value. The only difference between a
function and a procedure is that a procedure has either a return command without
arguments (that returns None), or it doesn’t have any return statement. From now on, I
will use only the word function.

While functions are being executed, they create their own namespace.

Every time you invoke a function, such as function(a,b,c)

• Python does a search within its namespaces looking for function to identify
whether this is a python object.

• Python creates a tuple of the arguments that were passed. Following our example,
we have arguments=(a,b,c).

• Python invokes the function internally like this: apply(function,arguments).

As you can see, tuples are an unavoidable concept inside the language.

Python, by nature, allows introspection to an unprecedented degree. You can separate
a function name from its parameters, store them in some place, play around with
them, and later use the apply built-in function to execute the function.

Functions

Functions always start with the abbreviation def. Their end is defined by the last line
of the indented block of code that goes underneath.

The general format of a function is as follows:

def functionname(arg1, arg2, ...): # tuple of arguments

“documentation string” # optional

<statements>

04 0672319942 CH02 11/15/00 11:37 AM Page 71

72 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Let’s see a real example now:

>>> def addnumbers(x,y):

... “This function returns arg1 + arg2”

... return x + y

...

>>> addnumbers(3,4)

9

Remember that to call a function without arguments, it’s necessary to use empty
parentheses.

>>> variable = name() # instead of variable = name

As a matter of fact, remember that you can assign functions to variables.

>>> x = abs

>>> print x(-2) # it’s the same as saying print abs(-2)

-2

x = abs returns the own function, and assigns its value to x.

Python uses dynamic namespaces. In order to show that, the next example uses the value
of n, available at the time of calling the function, because n isn’t defined inside the
function nor is it part of its list of arguments. n is part of the global namespace of the
function.

>>> def add_to_n(arg):

... return n + arg

...

Variables that have values assigned to them inside a function always belong to the
function namespace. Study the next example to learn how to change a global variable
inside a function by using the keyword global.

>>> x = 10

>>> def nudge():

... global x

... x = 20

... return x

...

Python implements procedural abstraction. Although this topic has a scary name, it is
something very easy and simple. Python offers this feature by providing anonymous
functions implemented with the keyword lambda. This type of abstraction can be used

04 0672319942 CH02 11/15/00 11:37 AM Page 72

73CHAPTER 2 Language Review
Functions and Procedures

when the function is just an expression. In other words, lambda is just another way of
writing def, except that it doesn’t have to be named, and you can only put an
expression in it. (The return is implicit.) It is intended to be just a shorthand to write
small functions easier as shown in the following:

>>> f = lambda x: x * 2

>>> f(20)

40

The previous case can also be written as follows:

>>> def f(x):

... return x * 2

>>> f(30)

60

Here’s another example:

>>> def compose(func1,func2,y):

... f = lambda x, f1=func1, f2=func2: f1(f2(x))

... return f(y)

...

>>> compose(chr,abs,-65)

‘A’

Note that in this last example, it is necessary to pass the default arguments to the
lambda function because Python has only local and global namespaces.

lambda is very useful for functions—such as map, filter, and reduce—that need a
function as an argument.

>>> def listtostring(list):

... return reduce(lambda string, item: string + chr(item), list, “”)

...

>>> listtostring([1,2,3,4,5])

“\001\002\003\004\005”

Parameters
All parameters (arguments) in the Python language are passed by reference. Modules,
classes, instances, and other functions can be used as arguments to functions and
examined dynamically. Keep in mind that you don’t need to specify the object type of
an argument. By default, arguments have a positional behavior, and you need to
inform them in the same order that they were defined.

04 0672319942 CH02 11/15/00 11:37 AM Page 73

74 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> def powerdivision(x,y):

... return x/y

...

>>> print powerdivision(4,2)

2

Whenever mutable objects (dictionaries and lists)—that are transported to a function
as arguments—change within the function, their external values also change.

>>> a = [1]

>>> def changelist(argument):

... argument.append(4)

...

... changelist(a)

>>> a

[1,4]

Python also offers you named arguments. This type is different from positional
arguments because it enables you to call a function and pass argument names and
values in an arbitrary way—the order isn’t important at all.

Both function calls

>>> connect(port=80, name=”www.bebemania.com.br”)

and

>>> connect(name=”www.bebemania.com.br”, port=80)

are executed perfectly well and in the same way (when the function is implemented, of
course).

Default arguments are also allowed by the syntax. If the argument isn’t provided, the
default value takes place. The default value is optional. Even though its absence
doesn’t break your program, its presence cuts many lines from your code, as shown in
the following:

>>> def connect(port=80):

The following example demonstrates namespace handling along with default
arguments:

>>> a = 5

>>> def test(b = a):

... print b

...

04 0672319942 CH02 11/15/00 11:37 AM Page 74

75CHAPTER 2 Language Review
Functions and Procedures

>>> test()

5

>>> test(2)

2

>>> a = 10

>>> test() # Note that the b wasn’t reassigned

5

This effect is because the value of a was collected when the function was created.

In some cases, you cannot pre-identify the number of arguments that you might need.
For this kind of situation, you can use the special symbols * and ** next to a generic
argument name.

*args gets a tuple of values in the received order; **args gets a dictionary mapping
argumentname:value.

>>> def showargs(*args):

... # defines a list of an undefined number of arguments.

... print args

...

>>> showargs(10,20,30)

(10, 20, 30)

>>> def add(*args):

... sum=0

... for arg in args:

... sum=sum+arg

... return sum

...

>>> add(1,2,3,4)

10

>>> add(1,2,3,4,5,6,7)

28

Returning Values
The return expression halts the execution of a function, but when it’s followed by an
expression, it returns the expression.

>>> def returnargument(x):

... return x

...

>>> 5

5

04 0672319942 CH02 11/15/00 11:37 AM Page 75

76 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

A function can return multiple values by using tuples.

>>> def returntuple(s,p):

... return (s,p)

...

>>> x = 10

>>> y = 20

>>> a, b = returntuple(x,y) # or (a, b) = returntuple(x,y)

>>> print a, b

10, 20

It is also possible for a function to have no return at all. When that happens, the value
None is returned.

Built-In Methods
When you have a function f, the following built-in methods can be accessed:

>>> f.__doc__ or f.func_doc # “documentation string”

>>> f.__name__ or f.func_name # “function name”

>>> f.func_code # byte-compile code

>>> f.func_defaults # tuple containing the default arguments

>>> f.func_globals # dictionary defining the global namespace

Let’s get the documentation string of the join function, which is part of the string
module.

>>> import string

>>> print string.join.__doc__

join(list [,sep]) -> string

joinfields(list [,sep]) -> string

Return a string composed of the words in list, with intervening

occurences of sep. Sep defaults to a single space.

(join and joinfields are synonymous)

Dynamic Namespace

Maybe you haven’t noticed yet, but Python uses dynamic namespace concepts. Each
function, module, and class defines its own namespace when it is created.

When you inform an instruction, command, or statement to Python, it searches first
inside the local namespace and afterwards inside the global namespace.

04 0672319942 CH02 11/15/00 11:37 AM Page 76

77CHAPTER 2 Language Review
Modules and Packages

Python has the following namespaces:

Built-in names—int, string, def, print, and so on

Global names—Declared as global and assigned at the top-level of a module

Local names—Assigned inside a function

When you are writing your code, you have two forms of writing an object name. You
can use qualified names and unqualified names. Qualified names use object
namespaces as references, for example:

>>> print objectnamespace.objectname

Unqualified names deal with scopes, provided the object is in your namespace. For
example

>>> print objectname

Modules and Packages

A module is a collection of classes, functions, and variables saved in a text file.

When referencing a module within your Python application, you don’t need to specify
the file suffix—your program text files must carry a .py extension. Modules can be
written in Python or in C. No matter what option you use, you call both types of
modules using the same syntax. The following syntax imports and creates the global
namespace for a module:

import <module>

A module filename called yourmodule.py should be mentioned in your import clause as
follows:

>>> import yourmodule

It is also possible to have multiple modules imported at the same time, using just one
import statement as follows:

>>> import m1, m2, m3

Tip
An interesting fact you should know is that all the code is executed when it is
imported for the first time.

04 0672319942 CH02 11/15/00 11:37 AM Page 77

78 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Some modules are always available in Python. Others (including yours) are files and
need to be imported (in most cases, those files have .py or .pyc suffixes). To be
imported, a file must have been saved in one of the directories listed in the sys.path
variable.

If you need your module to be runnable and importable at the same time, you need to
put something like the following line of code at the end of the file:

If __name__ == “__main__”: your_function()

Tip
Remember that in UNIX, you need to change the permission of a file to make it
executable.

You can find out the contents of a module by typing:

dir(<module>)

For example,

>>> dir(math)

Now we will talk about packages.

A package is a collection of modules in the same directory. Package names must be
subdirectories of one of the directories listed in the sys.path variable.

A package directory must have, at least, an empty __init__.py file, and it might
contain subpackages (subdirectories). Each subdirectory also needs, at least, an empty
__init__.py file.

In the statement

>>> import a.b

the module named a.b designates a submodule named b inside a package called a.

When you import a package, its subpackages aren’t imported all together. You need to
explicitly say that in the __init__.py file.

It would be similar to saving the following line in the __init__.py file of your
package:

import subpackage1, subpackage2, subpackage3

04 0672319942 CH02 11/15/00 11:37 AM Page 78

79CHAPTER 2 Language Review
Modules and Packages

Remember that to locate modules and packages, Python uses the paths that are stored
at sys.path. This variable is a simple list, like any other, and you can add any directory
to this list that you want. Type sys.path at the prompt of your interpreter to know the
current contents of this variable.

A new feature incorporated to release 2.0 is the possibility to rename modules when
importing them. The syntax for that can be either

import module as newname

or

from module import name as newname

This feature is equivalent to the code

import module

newmodule = module

del module

Built-In Methods

All these built-in functions are part of the __builtin__ module, and you can use them
after you have a module or package named m.

>>> m.__dict__ # lists the module dictionary

>>> m.x = m.__dict__[“x”] # provides access to a specific attribute

>>> m.__doc__ # returns the documentation string

>>> m.__name__ # returns the name of the module

>>> m.__file__ # returns the file name

>>> m.__path__ # returns the fully qualified package name

from in Contrast to import

The import and from statements allow one module to refer to objects from another
module’s namespace. They help eliminate problems with different modules that have
some internal names equal. The next examples discuss the possible ways to use these
statements.

>>> import string

>>> print string.join(list)

The previous example imports the string module as a local reference to an external
module, allowing fully qualified references to any other objects in the string
namespace.

04 0672319942 CH02 11/15/00 11:37 AM Page 79

80 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

The next example adds the join() function to the namespace of the current module.
This method allows you to control exactly which names you import into your local
namespace from a module.

>>> from string import join

>>> print join(list)

Now, take a look at the next line:

>>> from string import *

The problem with this syntax is that if the string module defines its own
dosomething() function, you lose the dosomething() that might exist in your current
namespace.

If you instead do a simple import string, you will keep your current dosomething()
function. However, the dosomething() function from the string module will now be
accessed by string.dosomething().

Tip
The main reason that you don’t want to do from <module> import * is to avoid
namespace clashing.

Also, let me tell you that identifiers beginning with _ (one underscore), such as
_salary, aren’t imported by a from <module> import * clause.

>>> import package1.string

>>> print package1.string.join(list)

The previous example loads the module string from the package package1.

>>> from package1 import string

>>> print string.join(list)

In order to access the string module, you need to reference its objects by typing
string.<object>. This is the recommended notation to import a module from a
package.

>>> from package1.string import join

>>> print join(list)

In the syntax form <package.module> import <object>, the <object> can be a
subpackage of the package, a function, a class, a variable, and so on.

>>> from package1 import *

04 0672319942 CH02 11/15/00 11:37 AM Page 80

81CHAPTER 2 Language Review
Modules and Packages

If you just say from package import *, it isn’t guaranteed that all modules will be
import unless you insert the following piece of code in the __init__.py file of the
package.

__all__ = [“module1”,”module2”,”module3”]

This is a list containing the names of the package modules that should be imported:

>>> from package.subpackage.module import *

Whenever you use a structure like package.subpackage.module, Python ensures that
the package’s __init__.py is loaded first. Afterwards, the subpackage’s __init__.py is
loaded, and only after they have been imported will the module finally be imported.
After a package is loaded, there is no difference between a package and a module.
Module objects represent both of them.

Releasing and Reloading Modules

After you have imported a module, you can release it from the system memory at
anytime you want. The following example is to give you an idea of what I am talking
about:

import string, sys

lst = [“a”,”b”,”c”,”d”]

print string.join(lst,”-”)

del string

del sys.modules[“string”]

Note that you also need to delete the module’s reference, which exists in the
sys.module variable.

The command reload <module> reloads and re-executes a module. Note that objects
created before the reloading will use the previous version until they are re-created. Try
to avoid using this command.

You can easily find out what the imported modules are by typing

>>> sys.modules.key()

[‘os.path’, ‘operator’, ‘os’, ‘exceptions’, ‘__main__’, ‘ntpath’,

‘strop’, ‘nt’, ‘sys’, ‘__builtin__’, ‘site’, ‘signal’, UserDict’,

‘string’, ‘stat’, ‘cmath’]

04 0672319942 CH02 11/15/00 11:37 AM Page 81

82 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Input and Output

Python, as any other language, provides means to get input from the user and also to
display information to him.

Let’s see how we can handle it.

>>> x = input (“type anything: “)

>>> print “You have typed “, x

Note that the input prompt can be anything, even an empty one.

If the user types 5, x is properly treated as a number. To make x become a string, the
user must explicitly type the quotes.

To avoid this problem, you can use the raw_input function:

>>> x = raw_input (“type anything: “)

>>> print “You have typed “, x

Now, it doesn’t matter whether the user types the quotes.

Note that the print command requires objects to be separated by commas:

>>> print “parrot”, “sketch”

parrot sketch

Displaying Information

Let’s delve a little bit deeper into this topic.

Python has three standard file objects, which are available from the sys module. The
interpreter uses them to provide input and output facilities. (Refer to Chapter 3,
“Python Libraries,” for details and examples—the sys module.)

They are known as sys.stdin, sys.stdout, sys.stderr

print statements are mapped to the sys.stdout. Hence, they send the textual
representation of objects to the standard output stream:

>>>import sys

>>>sys.stdout.write(“Nudge-nudge\n”)

Nudge-nudge

Did you know that it is possible to re-map the standard output device?

Yes, that is possible.

04 0672319942 CH02 11/15/00 11:37 AM Page 82

83CHAPTER 2 Language Review
Input and Output

You can run the following code to write to a file:

>>> sys.stdout = open(“outputtest.txt”, “w”)

>>> print “hello”

>>> sys.stdout.close

>>> sys.stdout = sys.__stdout__

>>> sys.exit()

Note that sys.__stdout__ stores the original stdout.

The last line restores the sys.__stdout__ original value to such an extent that new
print statements will display onscreen, instead of being sent to a file.

As additional information, this program uses sys.exit() to quit its execution (refer to
Chapter 3 for details).

Starting with release 2.0, the print statement can have its output directed to a file-like
object, as it is demonstrated in the following example.

print >> sys.stderr, “Sorry, you cannot do that!”

Formatting Operations

Python provides formatting operations similar to the printf() function from the C
language.

Take a look at the following example:

>>> print “Mr. Lumberjack! do not sing!”

What if you don’t want to hard-code the name inside the string? Compare the
previous line of code against the following one:

>>> print “Mr. %s, do not sing!” % someone

Flexible, don’t you think? And by the way, the order of the elements doesn’t affect the
final result.

Therefore, saying

>>> print “Mr. %s” % someone

is the same as saying

>>> print someone % “Mr. %s”

04 0672319942 CH02 11/15/00 11:37 AM Page 83

84 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

As a matter of fact, the following example shows how Python handles multiple format
arguments. Note that you need to provide a tuple of values to fill the position
indicated by the formatting operators (see Table 2.2).

>>> print “The %s has %i wings” % (“parrot”, 2)

Table 2.2 Formatting Operators Table

Formatting Operator Description

%d decimal integer

%i decimal integer

%u unsigned integer

%o octal integer

%x hexadecimal integer

%X hexadecimal integer (uppercase letters)

%f floating point as [-]m.dddddd

%e floating point as [-]m.dddddde±xx

%E floating point as [-]m.ddddddE±xx

%g, %G floating point where the exponent is less than -4 or greater than
the precision

%s any printable object (such as strings)

%c a single character

%% the literal %

The following code is another simple example:

>>> value = 14

>>> print “The value is %d” % value

The value is 14

Next, you will see some special ways to format operations by putting special characters
between the % literal and the formatting operator. Before going through the examples,
we need to initialize some variables.

>>> intg = 42

>>> fltn = 13.142783

>>> strg = “hello”

>>> dict = {“xx”:13, “yy”:1.54321, “zz”:”parrot”}

04 0672319942 CH02 11/15/00 11:37 AM Page 84

85CHAPTER 2 Language Review
Input and Output

• You can use dictionary key names in parentheses.

>>> print “%(zz)s” % dict

parrot

• By using the - literal, you can left align the string block.

>>> print “%-8dend” % fltn

“13 end”

• By using the + literal, you can show positive and negative numerical signs.

>>> print “%+d” % intg

+42

• If you insert a zero, you will get a zero-filling.

>>> print “%08d “ % intg

“0000042”

• Maximum field width (strings)

>>> print “%0.2s” % strg

“he”

• Period (.) + precision (floating-point numbers)

>>> print “%0.2f” % fltn

13.14

• Minimum number of digits (integer)

>>> print “%0.10f” % intg

0000000042

Tip
A * can be used in the place of any number. It uses the next value that matches that
format in a tuple.

>>> print “%*.*f” % (5,3,2.45)

2.450

04 0672319942 CH02 11/15/00 11:37 AM Page 85

86 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Note
Python 2.0 contains a new format string called %r, which prints the repr() value of
the given argument. You can clearly see the difference between %r and %s by
looking at the following example.

‘%r %s’ % (‘Python’, ‘Python’)

returns the string

‘Python’ Python

File Handling

Python’s core language supports all the basic functions that are necessary to
manipulate files. It isn’t necessary to import any modules to use them. Whenever you
use the open function to get access to a file, Python creates a file object that supports
all the built-in methods that apply to this new object.

Opening a File

basic syntax: file = open (filename[, mode[, buffersize]])

The mode can be r, w, or a (read, write, and append, respectively). If none of them are
mentioned, read mode is assumed.

If you are working with a binary file, add the letter b to the mode indicator (for
example, rb or wb). The b stands for binary mode (text translation mode).

You can also place a + sign to the mode letter to indicate a read/write open (for
example, r+ or w+)—it is useful when you need to perform both operations (read and
write) in the file. Remember that if you use w+, it will first truncate the file length to
zero.

The last argument in the open syntax is the buffersize clause, which means

• 0 = unbuffered

• 1 = line buffered

• If buffersize is greater than 1, its value is equal to the buffer size, in bytes.

• If negative, the buffer size is the system default(default behavior).

Here’s an example:

file = open(“foo.txt”, “r”)

line = file.readline()

04 0672319942 CH02 11/15/00 11:37 AM Page 86

87CHAPTER 2 Language Review
File Handling

line = line[:-1] #chop off the newline character

while line:

print line

line = file.readline()

line = line[:-1]

file.close()

Supported Methods

The following methods are supported by all file objects.

read()
It reads up to n bytes. But, if you don’t provide any argument, read() reads all
available data from the file.

basic syntax: file.read([nbytes])

>>> file = open(“foo.txt”).read()

If you say file = open(“foo.txt”).read(100), Python will read the file up to its first
100 bytes.

readline()
It reads only one line at a time (until, and including, the newline character).

basic syntax: file.readline()

>>> file=open(“test.txt”,”r”)

>>> while 1:

... line = file.readline()

... if not line:

... break

...

Both read() and readline() functions return an empty string for EOF.

readlines()
It reads the entire file into a list of strings.

basic syntax: file.readlines()

>>> file=open(“test.txt”,”r”)

>>> for line in file.readlines():

... print line

...

04 0672319942 CH02 11/15/00 11:37 AM Page 87

88 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

write()
It writes a string to a file.

basic syntax: file.write(string)

>>> file.write(‘Spam’)

writelines()
It writes a list of strings to a file.

basic syntax: file.writelines(list)

>>> file.writelines([“We are the knights who say ...”,”ni!”])

seek()
It goes to a new file position. If how=0, it starts from the beginning of the file; if
how=1, the position is relative to the current position; if how=2, the position is relative
to the end of the file. The default value for how is 0.

basic syntax: file.seek(position[, how])

tell()
It returns the current file pointer.

basic syntax: file.tell()

Fileno()
It returns an integer file descriptor.

basic syntax: file.fileno()

flush()
It flushes the internal buffer.

basic syntax: file.flush()

close()
It closes the file.

basic syntax: file.close()

04 0672319942 CH02 11/15/00 11:37 AM Page 88

89CHAPTER 2 Language Review
Summary

truncate()
It truncates the file.

basic syntax: file.truncate([size])

Now, let’s mix two distinct concepts. The next line of code takes the filename and the
file extension from two variables, and combines them to create the name of a file that
should be opened.

>>> file=open (“%s.%s” % (file_name, file_extension)).read()

Remember that you need to escape your backslashes to prevent them from being
interpreted as beginning a character code. See the next example.

>>> file=open(‘C:\Autoexec.bat’) # wrong way

>>> file=open(‘C:\\Autoexec.bat’) # right way

The functions that you saw in this chapter are perfect for handling strings. Chapter 8,
“Working with Databases,” explains how to use other file handling functions to save
entire objects into a file.

File Object Attributes

Some special attributes for files are as follows:

>>> file.closed # returns 0 if the file is closed; 1 otherwise

>>> file.mode # returns the I/O mode for the file

>>> file.name # returns the name of the file

Summary

Python is a language that doesn’t ask too much from programmers while they are
learning it. A programmer can code almost anything using a minimum amount of
code. Python provides a command-line interpreter, which is the interface to its shell
environment.

Python programs can be typed and executed directly in the interpreter or stored and
called from files. No matter where the programmer is entering the code, indentation is
vital. It is extremely critical that all code blocks follow the indentation rules defined by
the language.

04 0672319942 CH02 11/15/00 11:37 AM Page 89

90 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python does object reference counting in order to keep you away from the job of
deallocating variables by doing its own memory management.

The language has two groups of built-in data types that already exist in the interpreter:
the immutable data types (for example, strings, numbers, and tuples) and the mutable
data types (for example, lists and dictionaries).

Python also provides a number of built-in functions that are always available when you
load the interpreter. Besides that, it enables you to define and use your own group of
functions, which are called user-defined functions. Apart from that, Python also
implements procedural abstraction using the function lambda.

The basics control statements if, for, and while are provided by Python too. They all
have predictable behavior. However, the statements for and while also implement the
else structure.

Python defines three types of dynamic namespace: built-in names, global names, and
local names. This feature allows you to encapsulate your objects within distinct scopes.

You can use modules and packages (collections of modules) to store your programs.
Both are well supported by Python.

All the regular features that provide input and output operations are currently
supported by Python. Along with that, Python’s core language supports all the basic
functions necessary to manipulate files.

Code Example

This is a very simple benchmark application that offers you a general overview of
Python programming. Note that this version doesn’t provide any type or error
handling and the interface is still very rough.

Before going through the code, you must first understand what the program does.
Figure 2.4 shows an interaction with the program.

The program consists of two questions that should be answered by an n number of
companies. These questions cover the number of IT employees and the total IT cost
of a company. The benchmark uses the total cost / employee value to calculate the
statistics.

04 0672319942 CH02 11/15/00 11:37 AM Page 90

91CHAPTER 2 Language Review
Code Example

Figure 2.4

This example covers many aspects of basic Python concepts.

After checking the results, you have the option to save them in a file, and later when
opening the application again, you get the option to visualize them again.

Listing 2.1 Benchmark Tool (File benchmark.py)

1: ###

2: # Program: Benchmark tool

3: # Author: Andre S Lessa

4: ###

5:

6: ### import modules

7:

8: import sys

9: import string

10: import operator

11:

12: ### create dictionary of questions

13:

14: def definequiz():

15: questions = {}

16: questions[“1”] = “What is the number of IT employees of this
company?”

04 0672319942 CH02 11/15/00 11:37 AM Page 91

92 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

17: questions[“2”] = “What is the total IT cost of this company?”

18:

19: return questions

20:

21: ### Loop to collect companies data

22:

23: def collectresults():

24: company = getcompanyname()

25: while company:

26: if company == “”:

27: break

28:

29: quizkeys = quiz.keys()

30: quizkeys.sort()

31: for question in quizkeys:

32: showquestion(lo_question=question, lo_company=company)

33:

34: company = getcompanyname()

35:

36: if len(answers) > 0:

37: generateresults()

38: showresults(gl_companies, gl_avg, gl_max, gl_min)

39:

40: userinput = raw_input (“Do you want to save your results ? “)

41: if string.upper(userinput[0]) == “Y”:

42: saveresults(gl_companies, gl_avg, gl_max, gl_min)

43:

44: return

45:

46: ### Generate benchmark results

47:

48: def generateresults():

49: global gl_companies, gl_avg, gl_max, gl_min

50:

51: gl_companies = string.join(answers.keys(), “,”)

52:

53: company_count = len(answers.keys())

54:

55: lo_avg = []

56:

57: for company in answers.keys():

58: lo_employees = answers[company][0][1]

Listing 2.1 (continued)

04 0672319942 CH02 11/15/00 11:37 AM Page 92

93CHAPTER 2 Language Review
Code Example

59: lo_cost = answers[company][1][1]

60: average = (float(lo_cost) / int(lo_employees))

61: lo_avg = lo_avg + [average]

62:

63: gl_max = max(lo_avg)

64: gl_min = min(lo_avg)

65: gl_avg = reduce(operator.add, lo_avg) / company_count

66:

67: return

68:

69: ### Interface to enter company name

70:

71: def getcompanyname():

72: print “Please enter the company name, “ \

73: “or press ENTER when you are done.”

74: userinput = raw_input()

75: return userinput

76:

77: ### Displays questions and collect results

78:

79: def showquestion(lo_question, lo_company):

80: print quiz[lo_question]

81: if answers.has_key(lo_company):

82: answers[lo_company] = answers[lo_company] + \

83: [coerce(lo_question, raw_input())]

84: else:

85: answers[lo_company] = [coerce(lo_question, raw_input())]

86: return

87:

88: ### Save results in a file

89:

90: def saveresults(*arguments):

91: file = open(filename, “w”)

92: for value in arguments:

93: file.write(repr(value)+”\n”)

94: file.close

95: showresults(gl_companies, gl_avg, gl_max, gl_min)

96: print “The results were saved.”

97: print

98:

Listing 2.1 (continued)

04 0672319942 CH02 11/15/00 11:37 AM Page 93

94 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

99: ### Load results from a file

100:

101: def loadresults():

102: count = 0

103: file = open(filename, “r”)

104: line = file.readline()

105: line = line[:-1]

106: while line:

107: if count == 0:

108: lo_companies = line

109: if count == 1:

110: lo_avg = float(line)

111: elif count == 2:

112: lo_max = float(line)

113: elif count == 3:

114: lo_min = float(line)

115: line = file.readline()

116: line = line[:-1]

117: count = count + 1

118: file.close()

119: return(lo_companies, lo_avg, lo_max, lo_min)

120:

121: ### Show results in the screen

122:

123: def showresults(lo_companies, lo_avg, lo_max, lo_min):

124: print “Companies : “

125: print lo_companies

126: print “-------------------------------------”

127: print “%0.2f is the average cost/employees” % lo_avg

128: print “%0.2f is the maximum cost/employees” % lo_max

129: print “%0.2f is the minimum cost/employees” % lo_min

130: print

131: return

132:

133: ### Main action block

134:

135: def main():

136: print

137: print “Welcome to the benchmark tool!”

138: print

139:

Listing 2.1 (continued)

04 0672319942 CH02 11/15/00 11:37 AM Page 94

95CHAPTER 2 Language Review
Code Example

140: userinput = raw_input(“Do you want to load the saved results ? “)

141:

142: if userinput == “”:

143: collectresults()

144: elif string.upper(userinput[0]) == “Y”:

145: gl_companies, gl_avg, gl_max, gl_min = loadresults()

146: showresults(gl_companies, gl_avg, gl_max, gl_min)

147: else:

148: collectresults()

149:

150: print

151: sys.exit()

152:

153: ### Global Variables

154:

155: quiz = definequiz()

156: answers = {}

157: filename = “results.txt”

158: gl_companies = “”

159: gl_avg = 0

160: gl_max = 0

161: gl_min = 0

162:

163: main()

Note that the program effectively starts at line 155, when the global variables are
declared, and soon after that, the main() function is executed.

The following list shows some of the important concepts that are provided by this
simple example.

Lines 8-10—Loads the required modules.

Lines 15-17, 53, 81—Dictionary manipulation.

The answers dictionary has the following structure:

{company1: [(question1,answer1), (question2,answer2), company2:
[(question1,answer1), (question2,answer2), ...}

Note that the dictionary values are lists of tuples.

Line 27—break statement that exits the while loop.

Listing 2.1 (continued)

04 0672319942 CH02 11/15/00 11:37 AM Page 95

96 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Lines 29,30—Sorts dictionary keys.

Line 32—Named arguments.

Line 40—User input.

Lines 41, 51—Uses functions from imported modules.

Line 41—String manipulation.

Lines 53, 63-65—Uses built-in functions.

Line 90—Function with undefined number of arguments.

Lines 81-85—Creates and inserts a tuple in the dictionary.

Line 93—Adds a newline character to the value.

Line 104—Reads a line (delimited by the newline character).

Line 105—Removes the newline character.

Line 127—Formats the numbers to display only two decimals.

Line 151—Exits the application.

Line 163—Calls to the function that initializes the program.

04 0672319942 CH02 11/15/00 11:37 AM Page 96

CHAPTER 3

Python Libraries

All right, it’s a fair cop, but society is to blame.

This chapter shows what main module services and extensions
are currently available for the Python programming language.
The focus here is to expand your knowledge by introducing the
most used modules and listing some examples for you.

Python Libraries

The first chapter has given you a good introduction about the
Python core language. Everything you have successfully learned
will be applied from now on. All the topics covered in the
previous chapters are the building blocks for your Python
mastering.

Now we will concentrate on this chapter. Python’s standard
distribution is shipped with a rich set of libraries. These
libraries intend to offer flexibility to the programmers.

The libraries (also known as modules) cover many topics, such
as the following:

Python core services—A group of modules, such as sys and
os, that enable you to interact with what is behind the
interpreter.

Network and Internet services—Python has modules for
almost everything that is Internet related. You have many

D E V E L O P E R ’ S H A N D B O O K

05 0672319942 CH03 11/15/00 11:37 AM Page 97

98 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

network client protocol implementations that handle the most used Internet
services, such as HTTP and FTP. Python also provides support for parsing mark-
up languages, like XML and HTML.

Regular expressions—The re module is a very comprehensive choice for text
manipulation because it provides Perl 5 style patterns and matching rules.

These are just some of the features implemented by the modules that are reviewed by
this chapter.

The Library Reference

The robustness of Python’s library is something amazing. Many users have contributed
to the development of these modules during the last few years.

Some modules were written in C and are built into the interpreter. Others are written
in Python and can be loaded by using the import command.

Keep in mind that some of the interfaces may change slightly (for instance, bug fixes)
with the next release. Therefore, I suggest that you visit Python’s Web site once in a
while, and keep yourself up-to-date. You can always browse the latest version of the
Python Library Reference at

http://www.python.org/doc/lib

I encourage you to use this chapter in order to get a quick overview about the existing
Python libraries. After you have exhausted all the material provided by this book,
check out the online Python Library Reference to see the minor details about each
one of these Python module interfaces.

This chapter introduces you to the practical side of several modules’ utilization. The
next pages show what main functions each module exposes, and, whenever possible,
some examples are listed.

Some of the modules—such as debugger(pdb), profiler, Tkinter (the standard
Python GUI API) and re—aren’t deeply studied here because they are presented in
detail in other chapters of this book. Whenever this happens, the chapter number is
mentioned next to the module name.

The Standard Library of Modules

This book covers the latest version of the Standard Library of Modules that is
available at the time of this writing. The modules are presented in the same order as
they are shown in Python’s official documentation. This was done to make the work of
cross-referencing easier for you.

05 0672319942 CH03 11/15/00 11:37 AM Page 98

99CHAPTER 3 Python Libraries
Python Services

The following topics are the group names that organize the modules you will find.

Python Services

String

Miscellaneous

Generic Operational System

Optional Operational System

Debugger

Profiler

Internet Protocol and Support

Internet Data Handling

Restricted Execution

Multimedia

Cryptographic

UNIX Specific

SGI IRIX Specific

Sun OS Specific

MS Windows Specific

Macintosh Specific

Undocumented Modules

Python Services

This first group of modules is known as Python Services. These modules provide
access to services related to the interpreter and to Python’s environment.

sys

The sys module handles system-specific parameters, variables, and functions related to
the interpreter.

05 0672319942 CH03 11/15/00 11:37 AM Page 99

100 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

sys.argv
This object contains the list of arguments that were passed to a program.

If you pass arguments to your program, for example, by saying,

c:\python program.py -a -h -c

you are able to access those arguments by retrieving the value of sys.argv:

>>> import sys

>>> sys.argv

[“program.py”, “-a”, “-h”, “-c”]

You can use this list to check whether certain parameters are transported to the
interpreter.

>>> If “-h” in sys.argv:

>>> print “Sorry. There is no help available.”

sys.exit()
This is a function used to exit a program. Optionally, it can have a return code. It
works by raising the SystemExit exception. If the exception remains uncaught while
going up the call stack, the interpreter shuts down.

basic syntax: sys.exit([return_code])

>>> import sys

>>> sys.exit(0)

The return_code argument indicates the return code that should be passed back to the
caller application.

The sys module also contains three file objects that take care of the standard input
and output devices (see Chapter 1, “Introduction,” for more details about these
objects).

sys.stdin—File object that is used to read data from the standard input device.
Usually it is mapped to the user keyboard.

sys.stdout—File object that is used by every print statement. The default
behavior is to output to the screen.

sys.stderr—It stands for standard error output. Usually, it is also mapped to the
same object of sys.stdout.

05 0672319942 CH03 11/15/00 11:37 AM Page 100

101CHAPTER 3 Python Libraries
Python Services

Example:

>>> import sys

>>> data = sys.stdin.readlines()

>>> str = “Counted %d lines.” % len(data)

>>> sys.stdout.write (str)

Now, save the previous example in a file named countlines.py, and test it by typing
the following instructions on your prompt:

On Unix: cat coutlines.py | python countlines.py

On DOS and Windows: type countlines.py | python countlines.py

sys.modules
It is a dictionary that contains the modules that were loaded by the current session.

sys.platforms
This is a string that shows the current platform (for example, “win32”, “mac”,
“linux-i386”).

You can test which platform is running a program by doing something like this:

if sys.platforms == “win32”

<do something>

elif sys.platform == “mac”

<do something else>

sys.path
This is the list of directories that are searched to find the location of a module at the
time of importing it.

>>> import.sys

>>> sys.path

[‘’, ‘C:\\Program Files\\Python\\Lib\\plat-win’,

‘C:\\Program Files\\Python\\Lib’, ‘C:\\Program Files\\Python\\DLLs’,

‘C:\\Program Files\\Python\\Lib\\lib-tk’,’C:\\PROGRAM FILES\\PYTHON\\DLLs’,

‘C:\\PROGRAM FILES\\PYTHON\\lib’,

‘C:\\PROGRAM FILES\\PYTHON\\lib\\plat-win’,

‘C:\\PROGRAM FILES\\PYTHON\\lib\\lib-tk’,

‘C:\\PROGRAM FILES\\PYTHON’]

You can easily update this list to include your own directories.

05 0672319942 CH03 11/15/00 11:37 AM Page 101

102 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

sys.builtin_module_names
This is the list of modules that are not imported as files.

>>> import sys

>>> sys.builtin_module_names

(‘__builtin__’, ‘__main__’, ‘_locale’, ‘_socket’, ‘array’, ‘audioop’,

‘binascii’, ‘cPickle’, ‘cStringIO’, ‘cmath’, ‘errno’, ‘imageop’, ‘imp’,

‘marshal’, ‘math’, ‘md5’, ‘msvcrt’, ‘new’, ‘nt’, ‘operator’, ‘pcre’,

‘regex’, ‘rgbimg’, ‘rotor’, ‘select’, ‘sha’, ‘signal’, ‘soundex’, ‘strop’,

‘struct’, ‘sys’, ‘thread’, ‘time’, ‘winsound’)

For all the next sys objects, see Chapter 4, “Exception Handling,” for details.

sys.exc_info()
Provides information about the current exception being handled.

sys.exc_type, sys.exc_value, sys.exc_traceback
It is another way to get the information about the current exception being handled.

sys.last_type, sys.last_value and sys.last_traceback
Provides information about the last uncaught exception.

Python 2.0 contains a mode detailed version information function called
sys.version_info. This function returns a tuple in the format (major, minor, micro,
level, serial). For example, suppose the version number of your Python system is
3.0.4alpha1, the function sys.version_info() returns (3, 0, 4, ‘alpha’, 1). Note
that the level can be one of the following values: alpha, beta, or final.

Another set of functions added to Python 2.0 are: sys.getrecursionlimit() and
sys.setrecursionlimit(). These functions are responsible for reading and modifing
the maximum recursion depth for the routines in the system. The default value is
1000, and you can run the new script Misc/find_recursionlimit.py in order to know
the maximum value suggested for your platform.

types

The types module stores the constant names of the built-in object types.

FunctionType, DictType, ListType, and StringType are examples of the built-in type
names.

You can use these constants to find out the type of an object.

>>> import types

05 0672319942 CH03 11/15/00 11:37 AM Page 102

103CHAPTER 3 Python Libraries
Python Services

>>> if type(“Parrot”) == types.StringType:

... print “This is a string!”

...

This is a string

The complete list of built-in object types, that are stored at the types module, can be
found in Chapter 5, “Object-Oriented Programming.”

UserDict

The UserDict module is a class wrapper that allows you to overwrite or add new
methods to dictionary objects.

UserList

The UserList module is a class wrapper that allows you to overwrite or add new
methods to list objects.

operator

The operator module stores functions that access the built-in standard operators. The
main reason for the operator module is that operator.add, for instance, is much faster
than lambda a,b: a+b.

For example, the line

>>> import operator

>>> operator.div(6,2)

3

provides the same result that the next line does.

>>> 6 / 2

3

This module is mostly used when it becomes necessary to pass an operator as the
argument of a function. For example

1: import sys, glob, operator

2: sys.argv = reduce(operator.add, map(glob.glob, sys.argv))

3: print sys.argv

To run the previous example, save the code in a file and execute it by switching to your
OS prompt and typing:

python yourfilename.py *.*

05 0672319942 CH03 11/15/00 11:37 AM Page 103

104 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

The heart of this example is Line 2. Let’s interpret it:

The glob.glob() function is applied for each element of the original sys.argv list
object (by using the map() function). The result is concatenated and reduced into a
single variable sys.argv. The concatenation operation is performed by the
operator.add() function.

traceback

The traceback module supports print and retrieve operations of the traceback stack.
This module is mostly used for debugging and error handling because it enables you
to examine the call stack after exceptions have been raised.

See Chapter 4 for more details about this module.

linecache

The linecache module allows you to randomly access any line of a text file.

For example, the next lines of code belong to the file c:\temp\interface.py.

import time, sys

name = raw_input(“Enter your name: “)

print “Hi %s, how are you?” % name

feedback = raw_input(“What do you want to do now? “)

print “I do not want to do that. Good bye!”

time.sleep(3)

sys.exit()

Check the result that is retrieved when the function
linecache.getline(file,linenumber) is called.

>>> import linecache

>>> print linecache.getline(“c:\\temp\interface.py”,4)

feedback = raw_input(“What do you want to do now? “)

pickle

The pickle module handles object serialization by converting Python objects to/from
portable strings (byte-streams).

See Chapter 8, “Working with Databases,” for details.

cPickle

The cPickle module is a faster implementation of the pickle module.

See Chapter 8 for details.

05 0672319942 CH03 11/15/00 11:37 AM Page 104

105CHAPTER 3 Python Libraries
Python Services

copy_reg

The copy_reg module extends the capabilities of the pickle and cpickle modules by
registering support functions.

See Chapter 8 for details.

shelve

The shelve module offers persistent object storage capability to Python by using
dictionary objects. The keys of these dictionaries must be strings and the values can be
any object that the pickle module can handle.

See Chapter 8 for more details.

copy

The copy module provides shallow and deep object copying operations for lists, tuples,
dictionaries, and class instances.

copy.copy()
This function creates a shallow copy of the x object.

>>> import copy

>>> x = [1, 2, 3, [4, 5, 6]]

>>> y = copy.copy(x)

>>> print y

[1, 2, 3, [4, 5, 6]]

>>> id(y) == id(x)

0

As you can see at the end of the previous example, the new list is not the old one.

As you can see, this function provides the same result that y=x[:] does. It creates a
new object that references the old one. If the original object is a mutable object and
has its value changed, the new object will change too.

copy.deepcopy()
It recursively copies the entire object. It really creates a new object without any link to
the original structure.

basic syntax: variable = copy.deepcopy(object)

>>> import copy

>>> listone = [{“name”:”Andre”}, 3, 2]

>>> listtwo = copy.copy(listone)

05 0672319942 CH03 11/15/00 11:37 AM Page 105

106 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> listthree = copy.deepcopy(listone)

>>> listone[0][“name”] = “Renata”

>>> listone.append(“Python”)

>>> print listone, listtwo, listthree

[{“name”:”Renata”}, 3, 2, “Python”]

[{“name”:”Renata”}, 3, 2]

[{“name”:”Andre}, 3, 2]

marshal

The marshal module is an alternate method to implement Python object serialization.
It allows you to read/write information in a binary format, and convert data to/from
character strings. Basically, it is just another way to do byte stream conversions by
using serialized Python objects. It is also worth mentioning that marshal is used to
serialize code objects for the .pyc files.

This module should be used for simple objects only. Use the pickle module to
implement persistent objects in general.

See Chapter 8 for details.

imp

The imp module provides mechanisms to access the internal import statement
implementation. You might want to use this module to overload the Python import
semantics. Note that the ihooks module provides an easy-to-use interface for this task.

imp.find_module()
This function identifies the physical location of a given module name.

basic syntax: file, path, desc = imp.find_module(modulename)

imp.load_module()
This one loads and returns a module object based on the information provided.

basic syntax: obj = imp.load_module(modulename,file,path,desc)

>>> import imp

>>> def newimport(modulename):

... file, path, desc = imp.find_module(modulename)

... moduleobj = imp.load_module(modulename,file,path,desc)

... return moduleobj

...

... math = newimport(math)

05 0672319942 CH03 11/15/00 11:37 AM Page 106

107CHAPTER 3 Python Libraries
Python Services

... math.e

2.71828182846

imp.getsuffixes()
It lists the precedence order in which files are imported when using the import
statement.

Typing the following commands in my environment accomplishes this:

>>> import imp

>>> imp.get_suffixes()

[(‘.pyd’, ‘rb’, 3), (‘.dll’, ‘rb’, 3), (‘.py’, ‘r’, 1), (‘.pyc’, ‘rb’, 2)]

Note that if I have a module stored in a file called mymodule.pyc, and I enter the
command import mymodule at the interpreter, the system initially searches for a file
called mymodule.pyd, and then for one called mymodule.dll, one called mymodule.py,
and finally it searches for a file called mymodule.pyc.

Tip
When importing packages, this concept is ignored because directories precede all
entries in this list.

parser

The parser module offers you an interface to access Python’s internal parser trees
and code compiler.

symbol

The symbol module includes constants that represent the numeric values of internal
nodes of Python’s parse trees. This module is mostly used along with the parser
module.

token

The token module is another module that is used along with the parser module. It
stores a list of all constants (tokens) that are used by the standard Python tokenizer.
These constants represent the numeric values of leaf nodes of the parse trees.

keyword

The keyword module tests whether a string is a Python keyword. Note that the
keyword-checking mechanism is not tied to the specific version of Python being used.

05 0672319942 CH03 11/15/00 11:37 AM Page 107

108 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

keyword.kwlist
This is a list of all Python keywords.

>>> import keyword

>>> keyword.kwlist

[‘and’, ‘assert’, ‘break’, ‘class’, ‘continue’, ‘def’, ‘del’, ‘elif’,

‘else’, ‘except’, ‘exec’, ‘finally’, ‘for’, ‘from’, ‘global’, ‘if’,

‘import’, ‘in’, ‘is’, ‘lambda’, ‘not’, ‘or’, ‘pass’, ‘print’, ‘raise’,

‘return’, ‘try’, ‘while’]

keyword.iskeyword()
This function tests whether a string is a Python keyword:

>>> import keyword

>>> str = “import”

>>> keyword.iskeyword(str)

1

tokenize

The tokenize module is an analysis tool that provides a lexical scanner for Python
source code.

pyclbr

The pyclbr module offers class browser support in order to provide information about
classes and methods of a module.

See Chapter 5 for details.

code

The code module interprets base classes, supporting operations that pertain to Python
code objects. In other words, it can simulate the standard interpreter’s interactive
mode.

The next code opens a new interpreter within your interpreter:

>>> import code

>>> interpreter = code.InteractiveConsole()

>>> interpreter.interact()

codeop

The codeop module offers a function to compile Python code. This module is accessed
by the code module and shouldn’t be used directly.

05 0672319942 CH03 11/15/00 11:37 AM Page 108

109CHAPTER 3 Python Libraries
Python Services

pprint

The pprint (pretty printer) module prints Python objects so that the interpreter can
use them as input for other operations.

>>> import pprint

>>> var = [(1,2,3),”Parrot”]

>>> pprint.pprint(var)

[(1,2,3),”Parrot”]

repr

The repr module is an alternate repr() function implementation that produces object
representations that limit the size of resulting strings.

>>> import repr

>>> var = [“Spam” * 10]

>>> print var

[‘SpamSpamSpamSpamSpamSpamSpamSpamSpamSpam’]

>>> print repr.repr(var)

[‘SpamSpamSpam...mSpamSpamSpam’]

py_compile

The py_compile module is a single function that compiles Python source files,
generating a byte-code file.

>>> import py_compile

>>> py_compile.compile(“testprogram.py”)

compileall

The compileall module compiles all Python source files that are stored in a specific
directory tree. Note that compileall uses py_compile.

compileall.compile_dir()
This function byte-compiles all source files stored in the provided directory tree.

basic syntax: compile.compile_dir(directory)

>>> import compileall

>>> compileall.compile_dir(“c:\\temp”)

Listing c:\temp ...

Compiling c:\temp\program3.py ...

Compiling c:\temp\program4.py ...

Compiling c:\temp\program5.py ...

1

05 0672319942 CH03 11/15/00 11:37 AM Page 109

110 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

dis

The dis module is a Python byte-code dissassembler. This module enables you to
analyze Python byte-code.

new

The new module implements a runtime interface that allows you to create various
types of objects such as class objects, function objects, instance objects, and so on.

site

The site module performs site-specific packages’ initialization. This module is
automatically imported during initialization.

user

The user module is a user-specific mechanism that allows one user to have a standard
and customized configuration file.

__builtin__

The __builtin__ module is a set of built-in functions that gives access to all
built-in Python identifiers. You don’t have to import this module because Python
automatically imports it.

Most of the content of this module is listed and explained in the section “Built-In
Functions” of Chapter 2, “Language Review.”

__main__

The __main__ module is the top-level script environment object in which the
interpreter’s main program executes. This is how the if __name__ == ‘__main__’
code fragment works.

The String Group

This group is responsible for many kinds of string services available. These modules
provide access to several types of string manipulation operations.

Note that since release 2.0, all these functions are tied directly to string objects, as
methods. The string module is still around only for backward compatibility.

05 0672319942 CH03 11/15/00 11:37 AM Page 110

111CHAPTER 3 Python Libraries
The String Group

string

The string module supports common string operations by providing several functions
and constants that manipulate Python strings.

string.split()
This function splits a string into a list. If the delimiter is omitted, white-spaces are
used.

basic syntax: string.split(string [,delimiter])

>>> print string,split(“a b c”)

[“a”,”b”,”c”]

string.atof()
It converts a string to a floating number.

basic syntax: string.atof(string)

string.atoi()
It converts a string to an integer. atoi takes an optional second argument: base. If
omitted, the start of the string (for instance, 0x for hexadecimal) is used to determine
the base.

basic syntax: string.atoi(string[, base])

string.atol()
It converts a string to a long integer. atol takes an optional second argument: base. If
omitted, the start of the string (for instance, 0x for hexadecimal) is used to determine
the basic syntax: string.atol(string[, base])

string.upper()
It converts a string to uppercase.

basic syntax: string.upper(string)

string.find()
It returns the index position of the substring within string. Optionally, you can
specify the string’s range that should be used in the search.

basic syntax: string.find(string, substring[, start [,end]])

05 0672319942 CH03 11/15/00 11:37 AM Page 111

112 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

string.join()
This function joins the string elements of a list using separator to separate them.

basic syntax: string.join(list, separator)

string.capitalize()
It capitalizes the first character of string.

basic syntax: string.capitalize(string)

string.capwords()
This function capitalizes the first letter of each word in string and removes repeated,
leading, and trailing whitespace.

basic syntax: string.capwords(string)

string.lower()
It converts all characters in string to lowercase.

basic syntax: string.lower(string)

string.lstrip(),string.rstrip() and string.strip()
These functions remove leading and/or trailing whitespace from string.

basic syntaxes:

string.lstrip(string)

string.rstrip(string)

string.strip(string)

string.ljust(),string.rjust() and string.center()
These functions define the alignment of string within a variable of width characters.

basic syntaxes:

string.ljust(string, width)

string.rjust(string, width)

string.center(string, width)

string.replace()
It replaces a maximum number of occurrences of oldtext with newtext in string. If
maximum is omitted, all occurrences are replaced.

basic syntax: string.replace(string, oldtext, newtext [,maximum])

05 0672319942 CH03 11/15/00 11:37 AM Page 112

113CHAPTER 3 Python Libraries
The String Group

string.zfill()
It inserts zeros on the left side of a string that has width characters.

basic syntax: string.zfill(string, width)

Next, I list a few constants that can be used to test whether a certain variable is part of
a specific domain:

>>> import string

>>> string.digits

“0123456789”

>>> string.octdigits

“01234567”

>>> string.uppercase

“ABCDEFGHIJKLMNOPQRSTUVWXY”

>>> string.hexdigits

“0123456789abcdefABCDEF”

>>> string.lowercase

“abcdefghijklmnopqrstuvwxy”

Let’s write an example that uses string.uppercase:

>>> text = “F”

>>> if text in string.uppercase:

... print “%s is in uppercase format” % text

...

“F is in uppercase format”

string.maketrans()
Returns a translation table that maps each character in the from string into the
character at the same position in the to string. Then this table is passed to the
translate function. Note that both from and to must have the same length.

basic syntax: string.maketrans(from, to)

string.translate()
Based on the given table, it replaces all the informed characters, according to the table
created by the string.maketrans function. Optionally, it deletes from the given string
all characters that are presented in charstodelete.

basic syntax: string.translate(string, table[, charstodelete])

05 0672319942 CH03 11/15/00 11:37 AM Page 113

114 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

re

The re module performs Perl-style regular expression operations in strings, such as
matching and replacement.

Tip
As a suggestion, always use raw string syntax when working with regular
expression because it makes the work of handling special characters simpler.

>>> import re

>>> data = r”Andre Lessa”

>>> data = re.sub(“Lessa”, “L.”, data)

>>> print data

Andre L.

See Chapter 9, “Other Advanced Topics,” for more details about creating regular
expression patterns.

Note
It is expected that in version 1.6, the re module will be changed to a front end to the
new sre module.

regex

The regex module is an obsolete module since Python version 1.5. This module used
to support regular expression search and match operations.

If necessary, you can use the regex-to-re HOWTO to learn how to migrate from the
regex module to the re module. Check out the address
http://www.python.org/doc/howto/regex-to-re/.

regsub

The regsub module is another obsolete module. It also handles string operations (such
as substitution and splitting) by using regular expressions. The functions in this
module are not thread-safe, so be careful.

struct

The struct module interprets strings as packed binary data. It processes binary files
using the functions pack(),unpack(), and calcsize(). This module allows users to
write platform-independent, binary-file manipulation code when using the big-endian
or little-endian format characters. Using the native formats does not guarantee
platform independence.

05 0672319942 CH03 11/15/00 11:37 AM Page 114

115CHAPTER 3 Python Libraries
Miscellaneous

fpformat

The fpformat module provides functions that deal with floating point numbers and
conversions.

StringIO

The StringIO module creates a string object that behaves like a file, but actually, it
reads and writes data from string buffers. The StringIO class, which is exposed by the
StringIO module supports all the standard file methods.

>>> import StringIO

>>> str = StringIO.StringIO(“Line 1\nLine 2\nLine 3”)

>>> str.readlines()

[‘Line1\012’, ‘Line2\012’, ‘Line3’]

An additional method provided by this class is StringIO.getvalue()

It returns and closes the string object.

basic syntax: variable = stringobject.getvalue()

>>> import StringIO

>>> text = “Line 1\nLine 2\nLine 3”

>>> str = StringIO.StringIO()

>>> str.write(text)

>>> result = str.getvalue()

“Line 1\012Line 2\012Line 3”

cStringIO

The cStringIO is a faster version of the StringIO module. The difference is that you
cannot subclass this module. It is necessary to use StringIO instead.

Miscellaneous

This group handles many functions that are available for all Python versions.

math

The math module provides standard mathematical functions and constants. It doesn’t
accept complex numbers, only integers and floats. Check out the following example:

import math

>>> math.cos(180)

05 0672319942 CH03 11/15/00 11:37 AM Page 115

116 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

-0.598460069058

>>> math.sin(90)

0.893996663601

>>> math.sqrt(64)

8.0

>>> math.log(10)

2.30258509299

>>> math.pi # The mathematical constant pi

3.14159265359

>>> math.e # The mathematical constant e

2.71828182846

cmath

The cmath module also provides standard mathematical functions and constants.
However, its implementation enables it to accept complex numbers as arguments. All
the returned values are expressed as complex numbers.

random

The random module generates pseudo-random numbers. This module implements all
the randomizing functions provided by the whrandom module plus several pseudo-
random real number generators. These random modules aren’t very secure for
encryption purposes.

random.choice()
It randomly picks one element from list.

basic syntax: random.choice(list)

>>> lst = [“A”,”l”,”b”,”a”,”t”,”r”,”o”,”s”,”s”,”!”,”!”]

>>> while lst:

... element = random.choice(lst)

... lst.remove(element)

... print element, # inserts a linefeed

...

b l o A s r ! ! t s a

random.random()
It returns a random floating-point number between 0.0 and 1.0.

basic syntax: random.random()

05 0672319942 CH03 11/15/00 11:37 AM Page 116

117CHAPTER 3 Python Libraries
Miscellaneous

random.randint()
It returns a random integer n, where x <= N <= y.

basic syntax: random.randint(x,y)

whrandom

The whrandom module provides a Wichmann-Hill floating-point pseudo-random
number generator. This module is mostly useful when you need to use multiple
independent number generators.

whrandom.whrandom()
This function initializes multiple random generators using the same seed.

>>> import whrandom

>>> rga = whrandom.whrandom(2,1,3)

>>> rgb = whrandom.whrandom(2,1,3)

>>> rga.random()

0.0337928613026

>>> rgb.random()

0.0337928613026

bisect

The bisect module has an array bisection algorithm that provides support for keeping
lists in sorted order without the need for sorting them out all the time.

array

The array module is a high efficiency array implementation that handles large lists of
objects. The array type is defined at the time of creation.

By using this module, you can create an ArrayType object that behaves exactly like any
other list, except that it isn’t recommended for storing elements of different types.

>>> import array

>>> s = “This is a string”

>>> a = array.array(“c”, s)

>>> a[5:7] = array.array(“c”, “was”)

>>> print a.tostring()

This was a string

Note that NumPy provides a superior array implementation, which can be used for more
than just numeric algorithms.

05 0672319942 CH03 11/15/00 11:37 AM Page 117

118 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Note that Python 2.0 has improved the array module, and new methods were added
to its array objects, including: count(), extend(), index(), pop(), and remove().

ConfigParser

The ConfigParser module is a basic configuration file parser that handles structures
similar to those found in the Microsoft Windows INI file.

Note
Note that as of Release 2.0, the ConfigParser module is also able to write config
files as well as read them.

fileinput

The fileinput module helps you by writing a loop that reads the contents of a file,
line by line.

>>> import fileinput

>>> for line in fileinput.input(“readme.txt”):

... if line.isfirstline:

... print “<< This is the first line >>”

... print “filename = %s” % line.filename

... print “ ---------------------------”

... else:

... print “<< This is the line number %d>>” % line.lineno

... print line

...

calendar

The calendar module provides general calendar-related functions that emulate the
UNIX cal program, allowing you to output calendars, among other things.

cmd

The cmd module is a simple interface used as a framework for building command line
interpreters and shells. You just need to subclass its cmd.Cmd class in order to create
your own customized environment.

shlex

The shlex module helps you write simple lexical analyzers (tokenizers) for syntaxes
that are similar to the UNIX shell.

05 0672319942 CH03 11/15/00 11:37 AM Page 118

119CHAPTER 3 Python Libraries
Generic Operational System

Generic Operational System

This group of services provides interfaces to operating system features that you can
use in almost every platform. Most of Python’s operating system modules are based on
the Posix interface.

os

The os module is a portable OS API that searches for Operating-System–dependent
built-in modules (mac, posix, nt), and exports their functionality using the same
interface. Certain tools are available only on platforms that support them. However, it
is highly recommended that you use this module instead of the platform-specific
modules, which are really an implementation detail of os. By using the os module, you
make your program more portable.

os.environ
This is a dictionary that contains all the environment variables.

You can search for a specific variable:

>>> import os

>>> path = os.environ[“PATH”] #USER, EDITOR, etc...

or list all of them:

>>> for key in os.environ.keys():

... print key, “ = “ , os.environ[key]

...

os.name
It returns the name of the current system.

>>> name = os.name # “posix”,”dos”,”mac”,”nt”

nt

os.getcwd()
This function returns the current working directory.

>>> os.getcwd()

‘C:\\Program Files\\Python’

05 0672319942 CH03 11/15/00 11:37 AM Page 119

120 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

os.curdir
This is a simple constant that returns the OS-specific string used to identify the
current directory.

>>> os.curdir

‘.’

os.listdir()
If directory is omitted, it lists the filenames of the current directory. Otherwise, it
lists the filenames of directory.

basic syntax: os.listdir([directory])

>>> files = os.listdir(os.curdir)

os.rename()
It renames a file.

basic syntax: os.rename(oldfile, newfile)

os.chmod()
It changes the file mode. This is a UNIX command.

basic syntax: os.chmod(file, mode)

os.system()
It opens an Operating System subshell and executes the command.

basic syntax: os.system(command)

>>> os.system(“rm -rf “ + filename)

os.popen()
This is a UNIX function that returns a file-like object. It allows you to execute a shell
command and read the standard output of external pipes (by setting mode to r) or write
to their standard input (by setting mode to w). The default mode is r. Note that even
though popen is a UNIX function, it is also implemented on the other Python ports.

basic syntax: os.popen(shell command, mode)

>>> file = os.popen(‘sed \’s/yes/no/g’ > output’,’w’)

>>> file.write(“yes\n”)

>>>

>>> file = os.popen(‘cat manual.txt’, ‘r’)

>>> f = file.read()

05 0672319942 CH03 11/15/00 11:37 AM Page 120

121CHAPTER 3 Python Libraries
Generic Operational System

os.remove()
It deletes a file.

basic syntax: os.remove(file)

os.mkdir()
It creates a new directory.

basic syntax: os.mkdir(directory)

os.rmdir()
It removes an existing directory.

basic syntax: os.rmdir(directory)

os.removedirs()
It is a wrapper for rmdir that deletes everything under the directory.

basic syntax: os.removedirs(directory)

os.path

The os.path is a module imported by the os module that exposes useful common
functions to manipulate pathnames. Remember that you don’t have to explicitly import
os.path. You get it for free when you import os.

os.path.exists()
It returns true if path really exists.

basic syntax: os.path.exists(path)

os.path.isfile()
It returns true if the specified path is a file.

basic syntax: os.path.isfile(path)

os.path.isdir()
It returns true if the specified path is a directory.

basic syntax: os.path.isdir(path)

05 0672319942 CH03 11/15/00 11:37 AM Page 121

122 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

os.path.split()
It splits filename, returning a tuple that contains the directory structure and filename,
which together combine the original filename argument.

basic syntax: os.path.split(filename)

dircache

The dircache module reads directory listings using a cache. Note that this module
will be replaced by the new module filecmp in Python 1.6.

stat

The stat module works along with the os module by interpreting information about
existing files that is extracted by the os.stat() function and stored on a tuple
structure. This tuple contains the file size, the file owner group, the file owner
name, the last accessed and last modified dates, and its mode.

statcache

The statcache module is a simple optimization of the os.stat() function.

statvfs

The statvfs module stores constants that are used to interpret the results of a call to
the os.statvfs() function. By the way, the os.statvfs provides information about
your file system.

>>> import statvfs, os

>>> stat = os.statvfs(“.”)

>>> maxfnl = stat[statvfs.F_NAMEMAX]

>>> print “%d is the maximum file name length” % maxfnl

>>> print “that is allowed on your file system.”

255

cmp

The cmp module is used to compare files. Note that this module will be replaced by
the new module filecmp in Python 1.6.

cmpcache

The cmpcache module is a more efficient version of the cmp module for file
comparisons. Note that this module will be replaced by the new module filecmp in
Python 1.6.

05 0672319942 CH03 11/15/00 11:37 AM Page 122

123CHAPTER 3 Python Libraries
Generic Operational System

time

The time module exposes functions for time access and conversion. It is important to
remember that there are no Year 2000 issues in the Python language.

time.time()
It returns the current timestamp in seconds since the UNIX epoch began (start of
1970, UTC - Universal Time Coordinated).

basic syntax: time.time()

time.localtime()
It converts a time expressed in seconds into a time tuple. This tuple has the following
format: (4digitsyear, month, day, hour, minute, second, day of week, day of year,
daylight savings flag).

basic syntax: time.locatime(seconds)

time.asctime()
It converts a time tuple into a 24-character string.

basic syntax: time.asctime(tuple)

>>> import time

>>> time.time()

957044415.14

>>> time.localtime(time.time())

(2000, 4, 29, 17, 42, 14, 5, 120, 1)

>>> time.asctime(time.localtime(time.time()))

‘Sat Apr 29 17:42:59 2000’

time.sleep()
It suspends the execution of a program for a specific number of seconds.

basic syntax: time.sleep(seconds)

>>> import time

>>> time.sleep(10) # waits for 10 seconds

sched

The sched module implements a general-purpose event scheduler.

05 0672319942 CH03 11/15/00 11:37 AM Page 123

124 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

getpass

The getpass module implements a portable function that enables the user to type a
password without echoing the entry in the screen.

basic syntax: getpass.getpass([prompt])

This module also provides a function to collect information about the user’s login.

basic syntax: getpass.getuser()

import getpass

defaultpwd = “Ahhhhh”

user = getpass.getuser()

print “Hello %s,” % user

pass = getpass.getpass(“Please, type the password. “)

if pass == defaultpwd:

print “Welcome back to the system!!

else:

print r”You’ve just activated the detonation process.Sorry”

curses

The curses module is a terminal independent I/O interface to the curses UNIX
library.

For more details, check out the curses HOWTO at
http://www.python.org/doc/howto/curses/curses.html.

getopt

The getopt module is a parser for command-line options and arguments (sys.argv).
This module provides the standard C getopt functionality.

1: >>> import getopt

2: >>> args = [‘-h’,’-r’,’origin.txt’,’—file’,’work.txt’,’755’,’777’]

3: >>> opts, pargs = getopt.getopt(args, ‘hr:’, [‘file=’])

4: >>> opts

5: [(‘-h’, ‘’), (‘-r’,’origin.txt’) , (‘—file’,’work.txt’)]

6: >>> pargs

7: [‘755’,’777’]

Before transporting arguments to this function, line 2 shows you that single options
must be preceded by a single hyphen and long options must be preceded by double
hyphens.

05 0672319942 CH03 11/15/00 11:37 AM Page 124

125CHAPTER 3 Python Libraries
Generic Operational System

In line 3, note that single options that require an argument must end with a colon. On
the other hand, long options that require an argument must end with an equal sign.

The getopt.getopt() returns two values: A tuple that contains pairs of (option,
argument) values (line 5), and a list of standalone arguments that aren’t associated with
any options (line 7).

tempfile

The tempfile module generates unique temporary filenames based on templates
defined by the variables tempfile.tempdir and tempfile.template.

tempfile.mktemp()
This function returns a temporary filename. It doesn’t physically create or remove
files.

basic syntax: filename = tempfile.mktemp()

>>> import tempfile, os

>>> temp = tempfile.mktemp()

>>> open(temp, ‘w’)

>>> os.close(file)

>>> os.remove(file)

tempfile.TemporaryFile()
This function returns a file object that is saved in your temporary local folder (/tmp or
c:/temp, for example). The system removes this file after it gets closed.

basic syntax: fileobject = tempfile.TemporaryFile()

errno

The errno module makes available the standard errno system symbols, such as EACCES,
EADDRINUSE, and EDEADLOCK.

Each symbol is associated to a constant error code value.

>>> import errno

>>> errno.ELOOP

10062

More information about this module and its symbols is provided in Chapter 4.

05 0672319942 CH03 11/15/00 11:37 AM Page 125

126 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

glob

The glob module finds and returns pathnames matching a specific pattern, just like
the UNIX shell does.

basic syntax: glob.glob(pattern)

>>> import glob

>>> lst = glob.glob(“c:*.txt”)

>>> print lst

[‘c:\\FRUNLOG.TXT’, ‘c:\\DETLOG.TXT’, ‘c:\\BOOTLOG.TXT’, ‘c:\\SETUPLOG.TXT’,

‘c:\\NETLOG.TXT’, ‘c:\\RESETLOG.TXT’]

fnmatch

The fnmatch module uses wildcards to provide support for UNIX shell-style filename
pattern matching. These wildcards are different from those normally used by the re
module.

fnmatch.fnmatch()
This function returns 1 (true) if the provided filename matches the pattern defined.

basic syntax: fnmatch.fnmatch(filename, pattern)

>>> import fnmatch

>>> fnmatch.fnmatch(“foo.gif”, “*.gif”)

1

fnmatch.translate()
This function converts a fnmatch-style pattern into a regular expression.

basic syntax: variable = fnmatch.translate(pattern)

>>> import fnmatch

>>> regexpr = fnmatch.translate(“*.txt”)

>>> print regexpr

.*\.txt$

shutil

The shutil module provides high-level file operations. Essentially, it offers many file-
copying functions and one directory removal function.

05 0672319942 CH03 11/15/00 11:37 AM Page 126

127CHAPTER 3 Python Libraries
Optional Operational System

shutil.copyfile()
It makes a straight binary copy of the source file, calling it newcopy.

basic syntax: shutil.copyfile(source, newcopy)

shutil.rmtree()
It deletes the path directory, including all of its subdirectories, recursively. If
ignore_errors is set to 0, errors are ignored. Otherwise, the onerror function
argument is called to handle the error. If the clause onerror is set to None, an
exception is raised when an error occurs.

basic syntax: shutil.rmtree(path, ignore_errors=0, onerror=None)

locale

The locale module provides access to the POSIX locale mechanism, enabling interna-
tionalization services. This module defines a set of parameters that describe the
representation of strings, time, numbers, and currency.

The good thing about using this module is that programmers don’t have to worry
about the specifics of each country where their applications are executed.

mutex

The mutex module defines a mutex class that allows mutual-exclusion support via
acquiring and releasing locks.

Optional Operational System

The next set of modules implements interfaces to optional operational system features.
Keep in mind that these features are not available for all platforms.

signal

The signal module provides mechanisms to access POSIX signals in order to let the
programmer set her own signal handlers for asynchronous events.

A good example is the case when it is necessary to monitor the users, checking
whether they press CTRL+C to stop the execution of a program. Although Python
provides default handlers, you can overwrite them by creating your own.

import signal, sys

def signal_handler(signal, frame):

print “You have pressed CTRL+C”

05 0672319942 CH03 11/15/00 11:37 AM Page 127

128 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

signal.signal(signal.SIGINT, signal.SIG_IGN)

print “Now, you can\’t stop the script with CTRL+C “ \

“for the next 10 seconds!”

signal.signal(signal.SIGALRM, alarm_handler)

signal.alarm(10)

while 1:

print “I am looping”

def alarm_handler(signal, frame):

print “Now you can leave the program”

sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

print “Press CTRL+C”

while 1:

continue

Some of the available signals you can use are as follows:

SIGALRM Alarm

SIGCONT Continue

SIGING Terminal interrupt character

SIGQUIT Terminal Quit character

SIGTERM Termination

SIG_IGN Signal handler that ignores a signal

socket

The socket module provides access to a low-level BSD socket-style network interface.

See Chapter 10, “Basic Network Background,” for details.

select

The select module is used to implement polling and to multiplex processing across
multiple I/O streams without using threads or subprocesses. It provides access to the
BSD select() function interface, available in most operating systems.

On windows it only works for sockets. On UNIX, it is used for pipes, sockets, files,
and so on.

See Chapter 10 for details.

05 0672319942 CH03 11/15/00 11:37 AM Page 128

129CHAPTER 3 Python Libraries
Optional Operational System

thread

The thread module supports lightweight process threads. It offers a low-level interface
for working with multiple threads.

See Chapter 9 for details.

threading

The threading module provides high-level threading interfaces on top of the thread
module.

See Chapter 9 for details.

Queue

The Queue module is a synchronized queue class that is used in thread programming to
move Python objects between multiple threads.

See Chapter 9 for details.

anydbm

The anydbm module is a generic dbm-style interface to access variants of the dbm
database.

See Chapter 8 for details.

dumbdbm

The dumbdbm module is a simple, portable, and slow database implemented entirely in
Python.

See Chapter 8 for details.

dbhash

The dbhash module provides a function that offers a dbm-style interface to access the
BSD database library.

See Chapter 8 for details.

whichdb

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or
dbhash) should be used to open a specific database.

See Chapter 8 for details.

05 0672319942 CH03 11/15/00 11:37 AM Page 129

130 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

bsddb

The bsddb module provides an interface to access routines from the Berkeley db
library.

See Chapter 8 for details.

zlib

The zlib module provides functions that allow compression and decompression using
the zlib library. The compression that is provided by this module is compatible with
gzip.

For more details check out the zlib library home page at
http://www.cdrom.com/pub/infozip/lib.

gzip

The gzip module offers support for gzip files. This module provides functions that
allow compression and decompression using the GNU compression program gzip.

This module has a class named GzipFile that can be used to read and write files
compatible with the GNU gzip program. The objects that are generated by this class
behave just like file objects. The only exception is that the seek and tell methods
aren’t part of the standard implementation.

>>> import gzip

>>> gzipfile = gzip.GzipFile(“backup.gz”)

>>> contents = gzipfile.read()

>>> print contents

rlcompleter

The rlcompleter module provides a completion function for the readline module.

The readline module is a UNIX module that is automatically imported by
rlcompleter. It uses a compatible GNU readline library to activate input editing on
UNIX.

Debugger

The pdb module defines an interactive source code debugger for Python programs.
You can use this tool to verify and modify variables and to set and examine
breakpoints. It allows inspection of stack frames, single stepping of source lines, and

05 0672319942 CH03 11/15/00 11:37 AM Page 130

131CHAPTER 3 Python Libraries
Internet Protocol and Support

code evaluation. This module is based on the module bdb, which implements a generic
Python debugger base class.

See Chapter 17,“Development Tools,” for details.

Profiler

The profiler module is a code execution profiler. This tool can be used to analyze
statistics about the runtime performance of a program. It helps you to identify what
parts of your program are running slower than the expected and what can be done to
optimize it. The pstats module works along with the profiler module in order to
analyze the collected data.

See Chapter 17 for details.

Internet Protocol and Support

These are the modules that implement internet protocols and support for related
technology.

For examples and details about the following modules, refer to Chapters 10–12.

cgi

The cgi module is used to implement CGI (common gateway interface) scripts and
process form handling in Web applications that are invoked by an HTTP server.

See Chapter 12, “Scripting Programming,” for details.

urllib

The urllib module is a high-level interface to retrieve data across the World Wide
Web. It opens any URL using sockets.

See Chapters 10 and 12 for details.

httplib

The httplib module implements the client side of the HTTP (Hypertext Transfer
Protocol) protocol.

05 0672319942 CH03 11/15/00 11:37 AM Page 131

132 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Tip
HTTP is a simple text-based protocol used for World Wide Web applications.

See Chapters 10 and 12 for details.

ftplib

The ftplib module implements the client side of the FTP protocol. You can use it for
mirroring FTP sites. Usually the urllib module is used as an outer interface to
ftplib.

See Chapters 10 and 12 for details.

gopherlib

The gopherlib module is a minimal client-side implementation of the Gopher
protocol.

poplib

The poplib module provides a low-level, client-side interface for connecting to a
POP3 server using a client protocol, as defined in the Internet standard RFC 1725.

See Chapter 10 for details.

imaplib

The impalib module provides a low-level, client-side interface for connecting to an
IMAP4 mail server using the IMAP4rev1 client protocol, as defined in the Internet
standard RFC 2060.

See Chapter 10 for details.

nntplib

The nntplib module implements a low-level interface to the client side of the NNTP
(Network News Transfer Protocol) protocol—a service mostly known for
implementing newsgroups.

See Chapter 10 for details.

05 0672319942 CH03 11/15/00 11:37 AM Page 132

133CHAPTER 3 Python Libraries
Internet Protocol and Support

smtplib

The smtplib module provides a low-level client interface to the SMTP protocol that
can be used to send email to any machine in the Internet that has an SMTP or
ESMTP listener daemon.

See Chapter 10 for details.

telnetlib

The telnetlib module implements a client for the telnet protocol.

urlparse

The urlparse module manipulates a URL string, parsing it into tuples. It breaks a
URL up into components, combines them back, and converts relative addresses to
absolute addresses.

See Chapters 10 and 12 for details.

SocketServer

The SocketServer module exposes a framework that simplifies the task of writing
network servers. Rather than having to implement servers using the low-level socket
module, this module provides four classes that implement interfaces to the mostly used
protocols: TCPServer, UDPServer, UnixStreamServer, and UnixDatagramServer. All
these classes process requests synchronously.

See Chapter 10 for details.

BaseHTTPServer

The BaseHTTPServer module defines two base classes for implementing basic HTTP
servers (also known as Web servers).

See Chapter 10 for details.

SimpleHTTPServer

The SimpleHTTPServer module provides a simple HTTP server request-handler class.
It has an interface compatible with the BaseHTTPServer module that enables it to serve
files from a base directory.

See Chapter 10 for details.

05 0672319942 CH03 11/15/00 11:37 AM Page 133

134 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

CGIHTTPServer

The CGIHTTPServer module defines a simple HTTP server request-handler class. It
has an interface compatible with BaseHTTPServer that enables it to serve files from a
base directory, but it can also run CGI scripts.

See Chapters 10 and 12 for details.

asyncore

The asyncore module provides the basic infrastructure for writing and handling
asyncronous socket service clients and servers that are the result of a series of events
dispatched by an event loop.

See Chapter 10 for details.

Internet Data Handling

This group covers modules that support encoding and decoding of data handling
formats and that are largely used in Internet applications.

For more details and examples about using these modules, see Chapter 13, “Data
Manipulation.”

sgmllib

The sgmllib module is an SGML (Standard Generalized Markup Language) parser
subset. Although it has a simple implementation, it is powerful enough to build the
HTML parser.

htmllib

The htmllib module defines a parser for text files formatted in HTML (Hypertext
Markup Language).

htmlentitydefs

The htmlentitydefs module is a dictionary that contains all the definitions for the
general entities defined by HTML 2.0.

xmllib

The xmllib module defines a parser for text files formatted in XML (Extensible
Markup Language).

05 0672319942 CH03 11/15/00 11:37 AM Page 134

135CHAPTER 3 Python Libraries
Internet Data Handling

formatter

The formatter module is used for generic output formatting by the HTMLParser class
of the htmllib module.

rfc822

The rfc822 module parses mail headers that are defined by the Internet standard RFC
822. The headers of this form are used in a number of contexts including mail
handling and in the HTTP protocol.

mimetools

The mimetools module provides utility tools for parsing and manipulation of MIME
multipart and encoded messages.

Tip
MIME (multipurpose Internet mail extensions) is a standard for sending multipart
multimedia data through Internet mail.

MimeWrite

The MimeWrite module implements a generic file-writing class that is used to create
MIME-encoded multipart files.

multifile

The multifile module enables you to treat distinct parts of a text file as file-like input
objects. Usually, this module uses text files that are found in MIME encoded messages.

binhex

The binhex module encodes and decodes files in binhex4 format. This format is
commonly used to represent files on Macintosh systems.

uu

The uu module encodes and decodes files in uuencode format. This module does its
job by transferring binary data over an ASCII-only connection.

binascii

The binascii module implements methods to convert data between binary and
various ASCII-encoded binary representations.

05 0672319942 CH03 11/15/00 11:37 AM Page 135

136 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

base64

The base64 module performs base64 encoding and decoding of arbitrary binary
strings into text strings that can be safely emailed or posted. This module is commonly
used to encode binary data in mail attachments.

xdrlib

The xdrlib module is used extensively in applications involving Remote Procedure
Calls (RPC). Similarly, it is often used as a portable way to encode binary data for use
in networked applications. This module is able to encode and decode XDR data
because it supports the external data representation (XDR) Standard.

mailcap

The mailcap module is used to read mailcap files and to configure how MIME-aware
applications react to files with different MIME types.

Note
mailcap files are used to inform mail readers and Web browsers how to process files
with different MIME types.

mimetypes

The mimetypes module supports conversions between a filename or URL and the
MIME type associated with the filename extension.

Essentially, it is used to guess the MIME type associated with a file, based on its
extension, as shown in Table 3.1.

Table 3.1 Some MIME Type Examples

Filename Extension MIME Type Associated

.html text/html

.rdf application/xml

.gif image/gif

quopri

The quopri module performs encoding and decoding of MIME quoted printable data.
This format is primarily used to encode text files.

05 0672319942 CH03 11/15/00 11:37 AM Page 136

137CHAPTER 3 Python Libraries
Multimedia

mailbox

The mailbox module implements classes that allow easy and uniform access to read
various mailbox formats in a UNIX system.

mhlib

The mhlib module provides a Python interface to access MH folders and their contents.

mimify

The mimify module has functions to convert and process simple and multipart mail
messages to/from the MIME format.

netrc

The netrc module parses, processes, and encapsulates the .netrc configuration file
format used by the UNIX FTP program and other FTP clients.

Restricted Execution

Restricted Execution is the basic framework in Python that allows the segregation of
trusted and untrusted code. The next modules prevent access to critical operations
mostly because a program running in trusted mode can create an execution
environment in which untrusted code can be executed with limited privileges.

rexec

The rexec module implements a basic restricted execution framework by encapsu-
lating, in a class, the attributes that specify the capabilities for the code to execute.
Code executed in this restricted environment will only have access to modules and
functions that are believed to be safe.

Bastion

The Bastion module provides restricted access to objects. This module is able to
provide a way to forbid access to certain attributes of an object.

Multimedia

The next several modules implement algorithms and interfaces that are mainly useful
for multimedia applications.

05 0672319942 CH03 11/15/00 11:37 AM Page 137

138 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

audioop

The audioop module manipulates raw audio data, such as samples and fragments.

imageop

The imageop module manipulates raw image data by operating on images consisting of
8- or 32-bit pixels stored in Python strings.

aifc

The aifc module is devoted to audio file access for AIFF and AIFC formats. This
module offers support for reading and writing files in those formats.

sunau

The sunau module provides an interface to read and write files in the Sun AU sound
format.

wave

The wave module provides an interface to read and write files in the WAV sound format.
It doesn’t support compression/decompression, but it supports mono/stereo channels.

chunk

The chunk module provides an interface for reading files that use EA IFF 85 data
chunks. This format is used in the AIFF/AIFF-C, RMFF, and TIFF formats.

colorsys

The colorsys module defines bidirectional conversions of color values between colors
expressed in RGB and three other coordinate systems: YIQ, HLS, and HSV.

rgbimg

The rgbimg module allows Python programs to read and write SGI imglib .rgb

files—without requiring an SGI environment.

imghdr

The imghdr module determines the type of an image contained in a file or byte stream.

sndhdr

The sndhdr module implements functions that try to identify the type of sound
contained in a file.

05 0672319942 CH03 11/15/00 11:37 AM Page 138

139CHAPTER 3 Python Libraries
Cryptographic

Cryptographic

The following modules implement various algorithms of cryptographic nature.

For more information about this topic, you can also check out the following Web site:

http://starship.python.net/crew/amk/python/crypto.html

It contains cryptographic modules written by Andrew Kuchling for reading and
decrypting PGP files.

md5

The md5 module is a cryptographically secure hashing algorithm that implements an
interface to RSA’s MD5 message digest algorithm. Based on a given string, it calculates
a 128-bit message signature.

sha

The sha module is a message digest algorithm that implements an interface to NIST’s
secure hash algorithm, known as sha. This module takes a sequence of input text and
generates a 160-bit hash value.

mpz

The mpz module implements the interface to part of the GNU multiple precision
integer libraries.

rotor

The rotor module implements a permutation-based encryption and decryption
engine. (The design is derived from the Enigma device, a machine used by the
Germans to encrypt messages during WWII.)

>>> import rotor

>>> message = raw_input(“Enter the message”)

>>> key = raw_input(“Enter the key”)

>>> newr = rotor.newrotor(key)

>>> enc = newr.encrypt(message)

>>> print “The encoded message is: “, repr(enc)

>>> dec = newr.decrypt(enc)

>>> print “The decoded message is: “, repr(dec)

05 0672319942 CH03 11/15/00 11:37 AM Page 139

140 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

UNIX Specific

This group of modules exposes interfaces to features that are specific to the UNIX
environment.

posix

The posix module provides access to the most common POSIX system calls. Do not
import this module directly; instead, I suggest that you import the os module.

>>> uid = posix.getuid() # returns the user id

pwd

The pwd module provides access to the UNIX passwd (password database) file routines.

pwd.getpwnam()

Returns the password of a given user.

basic syntax: password = getpwnam(username)[1]

>>> import pwd, getpass

>>> pw = pwd.getpwnam(getpass.getuser())[1]

grp

The grp module provides access to the UNIX group database.

crypt

The crypt module offers an interface to the UNIX crypt routine. This module has a
hash function based on a modified DES algorithm that is used to check UNIX
passwords.

To encrypt:

newpwd = crypt.crypt(passwordstring, salt)

salt consists of a two-random character seed used to initialize the algorithm.

To verify:

If newpwd == crypt.crypt(passwordstring, newpwd[:2])

import getpass

05 0672319942 CH03 11/15/00 11:37 AM Page 140

141CHAPTER 3 Python Libraries
UNIX Specific

import pwd

import crypt

uname = getpass.getuser() # get username from environment

pw = getpass.getpass() # get entered password

realpw = pwd.getpwnam(uname)[1] # get real password

entrpw = crypt.crypt(pw, realpw[:2]) # returns an encrypted password

if realpw == entrpw: # compare passwords

print “Password Accepted”

else:

print “Get lost.”

dlmodule

The dlmodule module exposes an interface to call C functions in shared objects that
handle dynamically linked libraries. Note that this module is not needed for dynamic
loading of Python modules. The documentation says that it is a highly experimental
and dangerous device for calling arbitrary C functions in arbitrary shared libraries.

dbm

The dbm module is a database interface that implements a simple UNIX (n)dbm library
access method. dbm objects behave like dictionaries in which keys and values must
contain string objects. This module allows strings, which might encode any python
objects, to be archived in indexed files.

See Chapter 8 for details.

gdbm

The gdbm module is similar to the dbm module. However, their files are incompatible.
This module provides a reinterpretation of the GNU dbm library.

See Chapter 8 for details.

termios

The termios module provides an interface to the POSIX calls for managing the
behavior of the POSIX tty.

TERMIOS

The TERMIOS module stores constants required while using the termios module.

05 0672319942 CH03 11/15/00 11:37 AM Page 141

142 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

tty

The tty module implements terminal controlling functions for switching the tty into
cbreak and raw modes.

pty

The pty module offers utilities to handle the pseudo-terminal concept.

fcntl

The fcntl module performs file and I/O control on UNIX file descriptors. This
module implements The fcntl() and ioctl() system calls, which can be used for file
locking.

pipes

The pipes module offers an interface to UNIX shell pipelines. By abstracting the
pipeline concept, it enables you to create and use your own pipelines.

posixfile

The posixfile module provides file-like objects with support for locking. It seems
that this module will become obsolete soon.

resource

The resource module offers mechanisms for measuring and controlling system
resources used by a program.

nis

The nis module is a thin wrapper around Sun’s NIS library.

syslog

The syslog module implements an interface to the UNIX syslog library routines.
This module allows you to trace the activity of your programs in a way similar to
many daemons running on a typical GNU/Linux system.

import syslog

syslog.syslog(‘This script was activated’)

print “I am a lumberjack, and I am OK!”

syslog.syslog(‘Shutting down script’)

05 0672319942 CH03 11/15/00 11:37 AM Page 142

143CHAPTER 3 Python Libraries
SGI IRIX Specific

Use the command tail -f /var/log/messages to read what your script is writing to
the log.

popen2

The popen2 module allows you to create processes by running external commands and
to connect their accessible streams (stdin, stdout, and stderr) using pipes.

import os,popen2

str1 = os.popen(‘ls’,’r’).read()

print str1

out1,in1 = popen2.popen2(‘cat’)

in1.write(str1)

in1.close()

str2 = out1.read()

out1.close()

print str2

Note
Note that as of release 2.0, functions popen2, popen3, popen4 are supported on the
Windows Platform.

commands

The commands module provides functions that execute external commands under
UNIX by implementing wrapping functions for the os.popen() function. Those
functions get a system command as a string argument and return any output
generated by that command.

SGI IRIX Specific

The following features are specific to SGI’s IRIX Operating System.

al

The al module implements access to the audio functions of the SGI Indy and Indigo
workstations.

AL

The AL module stores constants that are used with the al module.

05 0672319942 CH03 11/15/00 11:37 AM Page 143

144 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

cd

The cd module provides an interface to the Silicon Graphics CD-ROM Library.

fl

The fl module provides an interface to the FORMS Library (by Mark Overmars) for
GUI applications.

FL

The FL module stores constants that are used with the fl module.

flp

The flp module defines functions that can load stored form designs created by the
form designer (fdesign) program that comes with the FORMS library (the fl
module).

fm

The fm module implements an interface that provides access to the IRIS font manager
library.

gl

The gl module implements an interface that provides access to the Silicon Graphics
graphic library. Note that this is different for OpenGL. There is a wrapper for
OpenGL called PyOpenGL. More details can be found at Chapter 14, “Python and
GUIs.”

DEVICE

The DEVICE module defines the constants that are used with the gl module.

GL

The GL module stores the constants that are used with the gl module.

imgfile

The imgfile module implements support to access SGI’s imglib image files.

jpeg

The jpeg module provides image file access (read and write) to the JPEG compressor
and decompressor format written by the Independent JPEG Group (IJG).

05 0672319942 CH03 11/15/00 11:37 AM Page 144

145CHAPTER 3 Python Libraries
Macintosh Specific

Sun OS Specific

These modules implement interfaces that are specific to the Sun OS Operating
System.

sunaudiodev

The sunaudiodev module implements an interface that gives you access to the Sun
audio hardware.

SUNAUDIODEV

The SUNAUDIODEV module stores the constants that are used with the sunaudiodev
module.

MS Windows Specific

The next modules define interfaces that are specific to the Microsoft Windows
Operating System.

msvcrt

The msvcrt module implements many functions that provide access to useful routines
from the Microsoft Visual C++ runtime library.

winsound

The winsound module implements an interface that provides access to the sound-
playing environment provided by Windows Platforms.

Macintosh Specific

The following modules implement specific interfaces to the Macintosh Operating
System.

For more information about Macintosh module, take a look at the online Macintosh
Library Reference at http://www.python.org/doc/mac.

05 0672319942 CH03 11/15/00 11:37 AM Page 145

146 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

findertools

The findertools module provides access to some of the functionality presented in the
Macintosh finder. It launches, prints, copies, and moves files; it also restarts and shuts
down the machine.

macfs

The macfs module is used to manipulate files and aliases on the Macintosh OS.

macostools

The macostools module implements functions for file manipulation on the
Macintosh OS.

Undocumented Modules

Currently, the modules listed in this section don’t have any official documentation.
However, you might find some information about them in this book, by browsing an
updated version of the online library reference, or by checking some other Web site.

Frameworks

The next modules represent some Python frameworks that don’t have any official
documentation yet.

Tkinter—This module allows you to create GUIs (graphical user interfaces)
because it implements an interface to the Tcl/Tk windowing libraries (see Chapter
15, “Tkinter,” for details).

Tkdnd—This module provides drag-and-drop support for Tkinter.

test—This package is responsible for the regression-testing framework.

Miscellaneous Useful Utilities

At this time this book went to press, the following modules didn’t have any official
documentation.

dircmp
This module defines a class on which to build directory comparison tools.

05 0672319942 CH03 11/15/00 11:37 AM Page 146

147CHAPTER 3 Python Libraries
Undocumented Modules

tzparse
This module is an unfinished work to parse a time zone specification.

ihooks
The ihooks module is a framework that manages the co-existence of different import
routines.

Platform Specific Modules

These are implementation details of the os module.

dospath, macpath, posixpath, ntpath

These modules are for their platforms what the os.path module is for the UNIX
platform. They can all be used by any platform in order to handle pathnames of
different platforms.

Multimedia

At the time this book went to press, the following modules didn’t have any official
documentation.

audiodev, sunaudio, toaiff

Obsolete

The following modules became obsolete as of release 1.6:

stdwin, soundex, cml, cmpcache, dircache, dump, find, grep, packmail, poly, zmod,
strop, util, and whatsound.

Note that release 2.0 hasn’t made any module obsolete. All modules that were replaced
were moved to the lib-old subdirectory of the distribution. That list, includes: cmp,
cmpcache, dircmp, dump, find, grep, packmail, poly, util, whatsound, zmod.

ni
Before version 1.5a4, the ni module was used to support import package statements.

dump
The dump module prints the definition of a variable. Note that this module can be
substituted for the pickle module.

>>> import dump

>>> var = (10, 20, 30, 40)

>>> dump.dumpvar(“newvar”, var)

newvar = (10, 20, 30, 40)

05 0672319942 CH03 11/15/00 11:37 AM Page 147

148 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Extension Modules

The following modules are obsolete tools to support GUI implementations.

stdwin—This module provides an interface to the obsolete STDWIN. STDWIN is an
unsupported platform-independent GUI interface that was replaced by Tkinter.

stdwinevents—Interacts with the stdwin module by providing piping services.

New Modules on Python 2.0

Next, you a have a list of new modules that were introduced to Python recently. As
always, I suggest you take a look at the 2.0 documentation for details about any given
module.

atexit—Registers functions to be called when Python exits. If you already use the
function sys.exitfunc(), you should change your code to import atexit, and call
the function atexit.register(), passing as an argument the function that you want
to call on exit.

codecs—Provides support (base classes) for Unicode encoders and decoders, and
provides access to Python’s codec registry. You can use the functions provided by
this module to search for existing encodings, or to register new ones. Most
frequently, you will adhere to the function codecs.lookup(encoding), which returns
a 4-function tuple: (encoder, decoder, stream_reader, stream_writer). This module
along with the unicodedata module was added as part of the new Unicode support
to Python 2.0. The condec class defines the interface for stateless encoders and
decoders. The following functions and classes are also available in this module.

codec.encode()—Takes a Unicode string, and returns a 2-tuple (8-bit-string,
length). The length part of the tuple shows how much of the Unicode string was
converted.

codec.decode()—Takes an 8-bit string, and returns a 2-tuple (ustring, length). The
length part of the tuple shows how much of the 8-bit string was consumed.

codecs.stream_reader(file_object)—This is a class that supports decoding input
from a stream. Objects created with this class carry the read(), readline(), and
readlines() methods, which allow you to take the given encoding of the object,
and read as a Unicode string.

codecs.stream_writer(file_object)—This is a class that supports encoding
output to a stream. Objects created with this class carry the write() and
writelines() methods, which allow you to pass Unicode string to the object, and
let the object translate them to the given encoding on output.

05 0672319942 CH03 11/15/00 11:37 AM Page 148

149CHAPTER 3 Python Libraries
Undocumented Modules

unicodedata—This module provides access to the Unicode 3.0 database of
character properties. The following functions are available:

unicodedata.category(u’P’) returns the 2-character string ‘Lu’, the ‘L’ denoting
it’s a letter, and ‘u’ meaning that it’s uppercase.

unicodedata.bidirectional(u’\x0660’) returns ‘AN’, meaning that U+0660 is an
Arabic number.

encodings—This is a package that supplies a wide collection of standard codecs.
Currently, only the new Unicode support is provided.

distutils—Package of tools for distributing Python modules.

filecmp—This module comes into place of both the cmp.py, the cmpcache.py and
dircmp.py modules.

gettext—Provides an interface to the GNU gettext message catalog library in order
to supply internationalization (I18N) and localization (L10N) support for Python
programs.

imputil—This module is an alternative API for writing customized import hooks in
a simpler way. It is similar to the existing ihooks module.

linuxaudiodev—Provides audio for any platform that supports the Open Sound
System (OSS). Most often, it is used to support the /dev/audio device on Linux
boxes. This module is identical to the already existing sunaudiodev module.

mmap—This module works on both Windows and Unix to treat a file as a memory
buffer, making it possible to map a file directly into memory, and make it behave
like a mutable string.

pyexpat—This module is an interface to the Expat XML parser.

robotparser—Initially at Tools/webchecker/, this module parses a robots.txt file,
which is used for writing web spiders.

sre—This module is a new implementation for handling regular expressions.
Although it is still very raw, its features include: faster mechanism, and support to
unicode. The idea of the development team is to reimplement the re module using
sre (without making changes to the re API).

tabnanny—Originally at Tools/scripts/, this module checks Python sources for
tab-width dependance (ambiguous indentation).

urllib2—This module is an experimental version of urllib, which will bring new
and enhanced features, but will be incompatible with the current version.

05 0672319942 CH03 11/15/00 11:37 AM Page 149

150 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

UserString—This module exposes a base class for deriving objects from the string
type.

xml—This package covers the whole-new XML support and it is organized in three
subpackages: xml.dom, xml.sax, and xml.parsers.

webbrowser—A module that provides a platform independent API to launch a web
browser on a specific URL.

_winreg—This module works as an interface to the Windows registry. It contains
an enhanced set of functions that has been part of PythonWin since 1995.

zipfile—This module reads and writes zip-format archives (the format produced by
PKZIP and zip applications. Not the one produced by the gzip program!).

Summary

Python’s standard distribution is shipped with a rich set of libraries (also known as
modules). This chapter introduces you to the practical side of several modules’
utilization.

The following items are groups that organize all the modules that are mentioned in
this chapter.

Python Services

The modules from this group provide access to services related to the interpreter and
to Python’s environment.

The String Group

This group is responsible for many kinds of string services available. Its modules
provide access to several types of string manipulation operations.

Miscellaneous

This group handles many functions that are available for all Python versions, such as
mathematical operations and randomizing functions.

05 0672319942 CH03 11/15/00 11:37 AM Page 150

151CHAPTER 3 Python Libraries
Summary

Generic Operational System

This group of services provides interfaces to operating system features that you can
use in almost every platform.

Optional Operational System

This set of modules implements interfaces to optional operational system features.

Debugger

The pdb module defines an interactive source code debugger for Python programs.

Profiler

The profiler module is a code execution profiler.

Internet Protocol and Support

These are the modules that implement internet protocols and support for related
technology.

Internet Data Handling

This group covers modules that support encoding and decoding of data handling
formats and that are largely used in Internet applications.

Restricted Execution

These modules prevent access to critical operations.

Multimedia

This group of modules implements algorithms and interfaces that are mainly useful for
multimedia applications.

Cryptographic

These modules implement various algorithms of cryptographic nature.

OS Specific (UNIX, SGI IRIX, SUN OS, MS Windows, and Macintosh)

These groups of modules expose interfaces to features that are specific to the OS
environment of each one of them.

05 0672319942 CH03 11/15/00 11:37 AM Page 151

152 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Undocumented Modules

This group contains the modules that currently don’t have any official documentation.

New Modules in Python 2.0

These are the new modules that will be part of the next release of Python.

05 0672319942 CH03 11/15/00 11:37 AM Page 152

CHAPTER 4

Exception Handling

Oh my God, he’s fallen off the edge of the cartoon.

This chapter’s aim is to teach you how to handle exception
situations and how to manage error messages. Certainly the
next couple of pages will guide you through a fantastic “catch-
all-errors” kind of programming experience.

Exception Handling

Exceptions are mostly used for error handling and event notifi-
cation. They work by breaking the regular flow of a program
and jumping to a special set of statements that handle the
exception case. Python has many standard exceptions, which are
exceptions already built into the language. Python also supports
user-defined exceptions, which are exceptions created by users.
The provided exceptions are almost no different from user-
defined exceptions—the only difference is that they are defined
in one of the files in the standard library (exceptions.py).

Any unexpected program behavior drives the interpreter to raise
an exception. Many scenarios can help an exception to be
raised, such as dividing a number by zero or reading from a
nonexistent file. Note that the programmer can also manually
raise exceptions with the raise statement.

The default behavior of Python, when it encounters unhandled
exceptions, is to terminate the program and to display a

D E V E L O P E R ’ S H A N D B O O K

06 0672319942 CH04 11/15/00 11:37 AM Page 153

154 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

traceback message that describes the error condition. My goal in this chapter is to
show you how to handle those exceptions.

If you don’t handle exceptions in your program, Python’s interpreter returns a
traceback message that shows the error message, the exception type, the function that
contains the error, and the line of code that has caused the error. Hence, a complete
history of what has caused the error is provided.

So that you can start learning how Python raises and handles exceptions, I will define
the following example:

>>> a = {“a”:1,”b”:2}

>>> def returnelement(element):

... print a[element]

...

Now, we will call this function:

>>> print returnelement(“c”)

Note that “c” is not part of the a dictionary. Therefore, Python raises an exception
that displays the following traceback message.

Traceback (innermost last):

File “<stdin>”, line 1, in ?

File “<stdin>”, line 2, in returnelement

KeyError: c

The last line of the traceback message tells us what exception was raised and what
element has caused the exception to be triggered. If we run the previous code in the
interpreter, the File clause is set to “<stdin>” by default because the code lines come
from the keyboard and not from a file. However, if we run the code from an external
file, the filename becomes part of the File clause. It is also worth mentioning that the
line numbers are relative to the statement where the error occurred when the code was
entered interactively. So, we get line 2 in the traceback because the exception occurred
on the second line of the function, which was treated as a single statement. The
outermost part of the trace says line 1 because the call to returnelement was treated as
a one-line statement.

Next to the filename, we have a line number, which is the line in which the error has
been triggered. Next to the line number is the name of the function that caused the
error.

Tip
By handling exceptions, you can save a lot of time while testing your code.

06 0672319942 CH04 11/15/00 11:37 AM Page 154

155CHAPTER 4 Exception Handling
Exception Handling

Exceptions can be handled by using either try/except or try/finally statements. The
difference between them is that an except clause is only executed when an exception is
raised, and a finally clause is always executed; it doesn’t matter whether an exception
is raised or not. Also, the try/finally block doesn’t catch the exception like
try/except can.

Next is the standard structure for a try/except statement:

try:

<statements>

except [<exception_name> [, <instance_variable>]]:

<exception handling statements>

[else:

<statements executed only when no exception is raised>]

The else block must be inserted after the last exception block, and it is only executed
when the try block doesn’t raise any errors.

In order to handle multiple exceptions, you can use multiple except clauses for the
same try block.

The next example raises an error message whenever it can’t find a given element.

>>> name = [“Andre”,”Renata”,”Joao”,”Rebecca”]

>>> def getname(order):

... try:

... if order < 10:

... data = name[order]

... else:

... file = open(“names.txt”)

... data = file.readline()

... file.close()

... return data

... except IndexError:

... print “This name is not in the list.”

... except IOError:

... print “The file names.txt does not exist.”

...

>>> getname(0)

“Andre”

>>> getname(8)

“This name is not in the list.”

>>> getname(20)

“The file names.txt does not exist.”

06 0672319942 CH04 11/15/00 11:37 AM Page 155

156 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python syntax also enables you to use a single except clause that handles all
exceptions. The general syntax for the except clause for handling all exceptions is to
not specify any exception types at all, such as

try:

<statements>

except:

<exception handling statements>

Next, you have the syntax and an example for handling multiple exception types.

except (exception1, exception 2, exception 3)[, variable]:

>>> name = [“Andre”,”Renata”,”Joao”,”Rebecca”]

>>> def getname(order):

... try:

... if order < 10:

... data = name[order]

... else:

... file = open(“names.txt”)

... data = file.readline()

... file.close()

... return data

... except (IndexError, IOError):

... print “Data not available.”

...

>>> getname(8)

“Data not available.”

>>> getname(20)

“Data not available.”

You can also use try/except statements to ignore exceptions. The next structure uses a
pass statement to ignore an exception whenever it gets raised. However, note that if
an exception is raised, all the remaining statements in the try block will not be
executed.

try:

<statements>

except <exception_name>:

pass

In the next example, we use exceptions not to catch and handle an unexpected error,
but to ignore errors that we know might happen when the code is running. As you can

06 0672319942 CH04 11/15/00 11:37 AM Page 156

157CHAPTER 4 Exception Handling
Standard Exceptions (Getting Help from Other Modules)

see, an exception is raised every time you try to convert a text string into a float number
in line 6. However the pass statement in line 8 simply ignores the problem.

1: >>> import string

2: >>> list = [“1”,”3”,”Monkey”,”Parrot”,”10”]

3: >>> total = 0

4: >>> for z in list:

5: >>> try:

6: >>> total = total + string.atof(z)

7: >>> except:

8: >>> pass

9: >>> print total

10: 14

Standard Exceptions (Getting Help from Other Modules)

Apart from the exception module, other Python modules offer you some advanced
functionality to handle exceptions. We will talk about the sys and the traceback
modules.

You can use the sys.exc_info() thread-safe function to get information about the
current exception being handled. This function returns a tuple of values that is
equivalent to the values provided by three other sys module objects:

sys.exc_type—Returns the exception type

sys.exc_value—Returns the exception value

sys.exc_traceback—Returns a traceback object

Note that these objects only work when called from within an except clause.>>>
import sys

>>> try:

... 1/0

... except:

... print sys.exc_type, “:”, sys.exc_value

exceptions.ZeroDivisionError : integer division or modulo

The last example can also be implemented as

>>> import sys

>>> try:

... 1/0

... except:

06 0672319942 CH04 11/15/00 11:37 AM Page 157

158 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

... info = sys.exc_info()

... exc_type = info[0]

... exc_value = info[1]

... exc_traceback = info[2]

... print exc_type, “:”, exc_value

...

exceptions.ZeroDivisionError : integer division or modulo

A more compact way to assign the values to the variables is by using sequence
unpacking, as is demonstrated by the following:

exc_type, exc_value, exc_traceback = self.exc_info()

The Python module called traceback, which is part of the standard Python library,
helps you to debug the call stack after an exception has been raised.

1: >>> import traceback

2: >>> try:

3: ... 1/0

4: ... except:

5: ... print “The next lines show the traceback message”

6: ... print “---”

7: ... traceback.print_exc()

8: ... print “---”

9: ...

10: The next lines show the traceback message

11: ---

12: Traceback (innermost last):

13: File “<stdin>”, line 2, in ?

14: ZeroDivisionError: integer division or modulo

15: ---

The previous program chooses the right time to display the traceback message by
using the traceback.print_exc() function (line 7).

You can also extract the traceback information by parsing the results of
sys.exc_traceback.

>>> import sys, traceback

>>> try:

... result = 1/0

... except:

... trace = traceback.extract_tb(sys.exc_traceback)

... for filename, lineno,function,message in trace:

... print “File name: “, filename

06 0672319942 CH04 11/15/00 11:37 AM Page 158

159CHAPTER 4 Exception Handling
Raising Exceptions

... print “Error message: “, message

... print “Line: “, lineno

... print “Function: “, function

...

By using the objects sys.last_type, sys.last_value, and sys.last_traceback, you
can get the details about the last uncaught exception. When I say that, I mean the last
exception that had a traceback message displayed.

>>> import sys

>>> x = 0

>>> 1 / x

Traceback (innermost last):

File “<stdin>”, line 1, in ?

ZeroDivisionError: integer division or modulo

>>> 1.0 / 10

0.1

>>> print sys.last_type

exceptions.ZeroDivisionError

>>> print sys.last_value

integer division or modulo

Raising Exceptions

There are several ways to raise exceptions. You can either raise your own exceptions or
Python standard exceptions by using any of the four techniques listed as follows:

• raise class

• raise exception, argument

• raise exception, (argument1, argument2, ...)

• raise exception (argument1, argument2, ...)

Note that the second and third forms of raising exceptions use the old form of passing
arguments with the exception. I recommended using only the first and fourth forms.

Passing None, as the second argument, to the raise statement is equivalent to
omitting it.

raise class, None is equivalent to raise class()

Check the following cases.

06 0672319942 CH04 11/15/00 11:37 AM Page 159

160 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

raise IndexError()

raise IndexError

raise IndexError(“x is out of range”)

raise IndexError, “x is out of range”

In the previous lines, the examples use a standard exception called IndexError.
However, you can raise any one of the supported built-in exceptions.

Look at another example that uses a different exception:

op = raw_input(“Enter an operator: “)

op1 = input(“Enter first operand: “)

op2 = input(“Enter second operand: “)

if op == “+”:

print op1 + op2

else:

raise RuntimeError(“I don’t know this command”)

In the next chapter, after learning how you can handle classes, you will be able to
easily understand this next example. For the present time, take a deep breath and just
have some fun.

This example raises an exception that blocks your access to nonexistent members of
the c class.

1: >>> class c:

2: ... def __init__(self, name):

3: ... self.name = name

4: ... def __getattr__(self, attr):

5: ... if attr <> “name”:

6: ... raise AttributeError

7: ...

8: >>> a = c(“Andre”)

9: >>> a.name

10: ‘Andre’

11: >>> a.age

The following traceback message is generated after running the command located at
line 11.

Traceback (innermost last):

File “<stdin>”, line 1, in ?

File “<stdin>”, line 6, in __getattr__

AttributeError

06 0672319942 CH04 11/15/00 11:37 AM Page 160

161CHAPTER 4 Exception Handling
Raising Exceptions

As you can see, line 5 checks the name of the attribute that is being passed to the
method. That makes the exception in line 6 to always be raised when the attribute
name is not “name”.

However, note that if you assign something to a.age, as demonstrated next, getting
the value of a.age will no longer cause the error. To handle that, you would need to
write a code to deal with the __setattr__ method, but that would be another example.

>>> a.age = 32

>>> print a.age

32

Raising an Exception to Leave the Interpreter

Raising the SystemExit exception is a generic way to leave the Python interpreter.

C:\Program Files\Python>python

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> raise SystemExit

C:\Program Files\Python>

The next example demonstrates how you can trap the SystemExit exception.

>>> try:

... raise SystemExit

... except SystemExit:

... print “Sorry. You can not leave.”

...

Sorry. You can not leave.

The sys.exit() function raises an exception SystemExit that, if not caught, causes the
thread to exit silently.

>>> import sys

>>> try:

... sys.exit()

... except SystemExit:

... print “I have already told you. You can not leave.”

...

I have already told you. You can not leave.

Raising an Exception to Leave Nested Loops

Sometimes you are so deeply involved in your data structures that you only want to
get out of all your nested loops quickly. Normally, you would have to use break for

06 0672319942 CH04 11/15/00 11:37 AM Page 161

162 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

each level of interaction. The next example demonstrates how to handle this situation
by using exceptions.

>>> ExitLoop = “ExitLoop”

>>> try:

... i=1

... while i < 10:

... for j in xrange(1,5):

... print i,j

... if (i==2) and (j==3):

... raise ExitLoop

... i = i + 1

... except ExitLoop:

... print “i=2 and j=3 is a special case.”

...

1 1

1 2

1 3

1 4

2 1

2 2

2 3

i=2 and j=3 is a special case.

Raising String Exceptions

Older versions used to support only strings for both Python standard exceptions and
user-defined exceptions.

>>> NetworkError = “NetworkError”

>>> raise NetworkError, “Bad hostname”

Nowadays, Python supports both strings and exception classes. There are costs to
using class exceptions because they must be instantiated to be caught. Note that most
people don’t use exceptions to control the flow of their program, so they don’t occur
much.

However, classes give you much more flexibility to generalize the type of error that
you want to catch.

Tip
Try to define your own exceptions as classes instead of strings.

06 0672319942 CH04 11/15/00 11:37 AM Page 162

163CHAPTER 4 Exception Handling
Raising Exceptions

Instancing an Exception Class

Every time an exception is raised, an instance of the exception class is created. The
next syntax demonstrates how to catch a class instance in your program.

try:

<statements>

except exception, instance:

<statements>

The instance variable is an instance of the raised exception. Therefore, it inherits
attributes from the exception class.

Each instance has an attribute called args that returns the error string in a tuple
format.

>>> try:

... a = [1,2]

... print a[4]

... except IndexError, b:

... print b.args

...

(‘list index out of range’,)

Particularly, the EnvironmentError exception has a 2-tuple or 3-tuple structure that can
be translated as (error number, string error message, and an optional filename).

>>> try:

... file = open(“Parrot”)

... except EnvironmentError, b:

... print b.args

...

(2, ‘No such file or directory’)

When the instance belongs to a SyntaxError class exception, four special attributes are
also returned: filename, lineno, offset, and text.

>>> try:

... a = “x===10”

... exec a

... except SyntaxError, b:

... print b.args

...

(‘invalid syntax’, (None, 1, 4, ‘x===10’))

06 0672319942 CH04 11/15/00 11:37 AM Page 163

164 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Note
Modules are parsed before being run, so syntax errors in a file can’t be caught by
try/except blocks that surround the error. You can catch it from the bit of code that
imported the module, however.

Debugging Your Code

Exceptions are very good for helping to debug your code. You can use the assert
command to raise a debugging exception that transports a message to your exception
handling code.

The syntax is assert <TestStatement> [, argument]

This command raises an AssertionError exception whenever <TestStatement>
evaluates to false.

For example

>>> def divide (a,b):

... assert b != 0, “Can’t divide by zero”

... return a/b

>>>

>>> divide(10,0)

Traceback (innermost last):

File “<stdin>”, line 1, in ?

File “<stdin>”, line 2, in divide

AssertionError: Can’t divide by zero

The assert command is equivalent to

>>> if __debug__:c

>>> if not (<TestStatement>):

>>> raise AssertionError [, argument]

__debug__ is a built-in name and has its value set to true by default. To set __debug__
to false, it is necessary to change the interpreter to run in optimized mode.

Tip
Calling the interpreter with the -O option activates the optimized mode.

c:\>python -O

Currently, Python’s command-line option -X turns all standard exceptions into
strings. Version 1.6 is expected to have this option removed, and make all standard
exceptions into classes. User code that deals with string exceptions will still be
supported, but not encouraged.

06 0672319942 CH04 11/15/00 11:37 AM Page 164

165CHAPTER 4 Exception Handling
Catching Exceptions

See Chapter 17, “Development Tools,” for more details about other command-line
options that you can transport as configuration parameters to the interpreter.

Catching Exceptions

Look at an example that shows how to catch a specific exception message.

1: >>> def zerodivision(x):

2: ... return 1/x

3: ...

4: >>> def test(x):

5: ... try:

6: ... print zerodivision(x)

7: ... except ZeroDivisionError:

8: ... print “You can not divide this number by Zero”

9: ...

10: test(0)

In line 7, we are specifying the exact exception type that we want to catch.

You can also replace lines 7 and 8 from the previous example with the text from the
next snippet. The difference is that this new scenario also shows the error message
provided by the interpreter.

except ZeroDivisionError, error_message:

print “You can’t divide this number by Zero - “, error_message

Besides catching Python standard exceptions, it is also possible to catch user-defined,
non-Error exceptions.

>>> found = “Item found”

>>> def searcher(arg):

... if arg == 1:

... print “executing the routine.”

... else:

... raise found

...

>>> try:

... searcher()

>>> except found:

... print “The routine has failed.”

... else:

... print “The routine was successfully concluded”

06 0672319942 CH04 11/15/00 11:37 AM Page 165

166 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

The next example re-raises an exception because the win32pipe module is not present
in the system.

>>> try:

... import win32pipe

... except:

... raise ImportError, “The module is not available”

Traceback (innermost last):

File “<stdin>”, line 4, in ?

ImportError: The module is not available

The next example actually shows how to raise the same exception (provided the
exception is a class exception). This type of implementation doesn’t require you to
know the name of the exception being raised.

>>> import sys

>>> try:

... import win32pipe

... except:

... raise sys.exc_value

Traceback (innermost last):

File “<stdin>”, line 4, in ?

ImportError: No module named win32pipe

The following code catches an IOError exception and raises a SystemExit exception by
using the sys.exit() function.

>>> import sys

>>> try:

... file = open(“file.txt”)

... except IOError:

... print “Error opening file for reading”

... sys.exit(0)

Catching Standard Errors

The errno module makes available the standard errno system symbols, which can be
used to check the meaning of an error.

>>> import errno

>>> try:

>>> file = open(“test.py”)

>>> except IOError, (errcode, errmsg):

>>> if errcode == errno.ENOENT:

>>> print “File does not exist!”

>>>

06 0672319942 CH04 11/15/00 11:37 AM Page 166

167CHAPTER 4 Exception Handling
try/finally

You can check the entire list of error symbols by typing,

>>> import errno

>>> dir(errno)

[‘E2BIG’, ‘EACCES’, ‘EADDRINUSE’, ‘EADDRNOTAVAIL’, EAFNOSUPPORT’, ‘EAGAIN’,

‘EALREADY’, ‘EBADF’, ‘EBUSY’, ‘ECHILD’, ‘ECONNABORTED’, ‘ECONNREFUSED’,

‘ECONNRESET’, ‘EDEADLK’, ‘EDEADLOCK’, ‘EDESTADDRREQ’, ‘EDOM’, ‘EDQUOT’,

‘EEXIST’, ‘EFAULT’, ‘EFBIG’, ‘EHOSTDOWN’, ‘EHOSTUNREACH’, ‘EILSEQ’,

‘EINPROGRESS’, ‘EINTR’, ‘EINVAL’, ‘EIO’, ‘EISCONN’, ‘EISDIR’, ‘ELOOP’,

‘EMFILE’, ‘EMLINK’, ‘EMSGSIZE’, ‘ENAMETOOLONG’, ‘ENETDOWN’, ‘ENETRESET’,

‘ENETUNREACH’, ‘ENFILE’, ‘ENOBUFS’, ‘ENODEV’, ‘ENOENT’, ‘ENOEXEC’, ‘ENOLCK’,

‘ENOMEM’, ‘ENOPROTOOPT’, ‘ENOSPC’, ‘ENOSYS’, ‘ENOTCONN’, ‘ENOTDIR’,

‘ENOTEMPTY’, ‘ENOTSOCK’, ‘ENOTTY’, ‘ENXIO’, ‘EOPNOTSUPP’, ‘EPERM’,

‘EPFNOSUPPORT’, ‘EPIPE’, ‘EPROTONOSUPPORT’, ‘EPROTOTYPE’, ‘ERANGE’,

‘EREMOTE’, ‘EROFS’, ‘ESHUTDOWN’, ‘ESOCKTNOSUPPORT’, ‘ESPIPE’, ‘ESRCH’,

‘ESTALE’, ‘ETIMEDOUT’, ‘ETOOMANYREFS’, ‘EUSERS’, ‘EWOULDBLOCK’, ‘EXDEV’,

‘WSABASEERR’, ‘WSAEACCES’, ‘WSAEADDRINUSE’, ‘WSAEADDRNOTAVAIL’,

‘WSAEAFNOSUPPORT’, ‘WSAEALREADY’, ‘WSAEBADF’, ‘WSAECONNABORTED’,

‘WSAECONNREFUSED’, ‘WSAECONNRESET’, ‘WSAEDESTADDRREQ’, ‘WSAEDISCON’,

‘WSAEDQUOT’, ‘WSAEFAULT’, ‘WSAEHOSTDOWN’, ‘WSAEHOSTUNREACH’,

‘WSAEINPROGRESS’, ‘WSAEINTR’, ‘WSAEINVAL’, ‘WSAEISCONN’, ‘WSAELOOP’,

‘WSAEMFILE’, ‘WSAEMSGSIZE’, ‘WSAENAMETOOLONG’, ‘WSAENETDOWN’,

‘WSAENETRESET’, ‘WSAENETUNREACH’, ‘WSAENOBUFS’, ‘WSAENOPROTOOPT’,

‘WSAENOTCONN’, ‘WSAENOTEMPTY’, ‘WSAENOTSOCK’, ‘WSAEOPNOTSUPP’,

‘WSAEPFNOSUPPORT’, ‘WSAEPROCLIM’, ‘WSAEPROTONOSUPPORT’, ‘WSAEPROTOTYPE’,

‘WSAEREMOTE’, ‘WSAESHUTDOWN’, ‘WSAESOCKTNOSUPPORT’, ‘WSAESTALE’,

‘WSAETIMEDOUT’, ‘WSAETOOMANYREFS’, ‘WSAEUSERS’, ‘WSAEWOULDBLOCK’,

‘WSANOTINITIALISED’, ‘WSASYSNOTREADY’, ‘WSAVERNOTSUPPORTED’, ‘__doc__’,

‘__name__’, ‘errorcode’]

Use the os.strerror() function to \retrieve the system message associated to a
specific error symbol.

>>> import os, errno

>>> os.strerror(errno.EPERM)

“Operation not permitted”

try/finally

The try/finally statement is good for clean-up actions. The code in the finally
block is always executed, no matter whether the try block fails or not.

06 0672319942 CH04 11/15/00 11:37 AM Page 167

168 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

1: try:
2: f = open(“c:\\autoexec.bat”)
3: lines = f.readlines()
4: finally:
5: f.close() # it is always executed
6: print “It is done” # it is executed on success only

The previous piece of code opens a file and tries to read its lines. It is not necessary to
check whether the process raises an error in order to close the file because the close
function in line 5 is always executed, no matter what. Now, take a look at line 6. The
print statement is only executed when the finally block is bypassed because when an
error is raised, the finally block is executed and the program is terminated
immediately afterwards if the exception is not handled, leaving the exception
unhandled.

Tip
finally and except clauses cannot be used together along with a unique try clause.

Creating User-defined Exceptions

Python allows you to create your own exceptions by subclassing any standard Python
exception.

Note
Take a look at Chapter 5, “Object-Oriented Programming,” for more details about
working with classes.

>>> import exceptions
>>> class ConfigError (exceptions.Exception):
... def __init__(self, arg=None):
... self.args = arg
...
>>> try:
... raise ConfigError(“Bad hostname”)
... except ConfigError, e:
... print e.args
...

Bad hostname

The import statement from the previous example isn’t really necessary because the
exceptions module contents are automatically imported by the interpreter.
Remember that you can’t use the prefix “exceptions” because the exceptions module
is not available in the __main__ namespace until you import it.

06 0672319942 CH04 11/15/00 11:37 AM Page 168

169CHAPTER 4 Exception Handling
The Standard Exception Hierarchy

The next example uses the class created in the previous example as a base class to
create a new class.

>>> class TimeoutError(ConfigError):

... def printargs(self):

... print self.args

...

>>> try:

... raise TimeoutError, “Timeout”

... except TimeoutError, e:

... e.printargs()

...

Timeout

As you could see, just by overriding the __init__ method, you are able to create your
own exception classes.

You can also change the output of a traceback message by overwriting the __str__
method.

>>> class ConfigError(Exception):

... def __init__(self, args=None):

... self.args = args

... def __str__(self):

... return “\nError in the module configuration\n” + \

... `self.args` + “\n”...

>>> raise ConfigError, “bad hostname”

Traceback (innermost last):

File “<stdin>”, line 1, in ?

__main__.ConfigError

Error in the module configuration

bad hostname

The Standard Exception Hierarchy

Python comes filled with many built-in exceptions. All these exceptions are part of the
exceptions module, which is always loaded prior to any program execution.

06 0672319942 CH04 11/15/00 11:37 AM Page 169

170 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

The following structure identifies the standard exception hierarchy, and, immediately
afterwards, it is given the description of each exception type.

This structure, which resembles a tree, shows you that all exceptions are derived from
a base class named Exception. If we highlight, for example, the ImportError exception,
we note that it is a subclass of the StandardError class. In addition to that, the
StandardError class is a subclass of the Exception class. Table 4.1 shows the structure.

Table 4.1 The Exception Class Hierarchy

Exception

SystemExit

StandardError

KeyboardInterrupt

ImportError

EnvironmentError

IOError

OSError

EOFError

RuntimeError

NotImplementedError

NameError

UnboundLocalError

AttributeError

SyntaxError

TypeError

AssertionError

LookupError

IndexError

KeyError

ArithmeticError

OverflowError

ZeroDivisionError

FloatingPointError

ValueError

SystemError

MemoryError

06 0672319942 CH04 11/15/00 11:37 AM Page 170

171CHAPTER 4 Exception Handling
The Standard Exception Hierarchy

Exception—This is the root class. All exception classes are subclasses of this base
class. Every user exception class should be derived from this class too.

SystemExit—This is an exception because it isn’t really an error message. Instead, it
can be used to exit a program. The important thing is that this exception doesn’t
return any traceback message.

StandardError—It is the base class for all errors (except for SystemExit, of course).

KeyboardInterrupt—It is raised when an interrupt key, such as CTRL+C, is pressed.

ImportError—It is raised when Python cannot find a module to import.

EnvironmentError—This is the base class for errors that occur outside the Python
environment. The IOError and OSError classes subclass it.

IOError—It is raised by I/O operation errors.

OSError—This one is raised by operating system errors, usually generated by the os
module.

EOFError—Exception raised when an End-of-File (EOF) error occurs.

RuntimeError—This is a special type of exception raised by errors that aren’t
covered by any of the other exceptions.

NotImplementedError—Methods or functions that aren’t implemented should raise
this exception.

>>> def updateregistry():

>>> raise NotImplementedError

NameError—It is raised when the interpreter finds a name that is neither in the local
nor in the global namespace.

UnboundLocalError—This is a new exception that was created for version 1.6. It
subclasses the NameError exception, raising an error when a local variable is
undefined.

AttributeError—It is raised by attribute reference and attribute assignment kinds
of errors. Note that starting with version 1.6, this exception will have a more
friendly error message, which is expected to break some code that assumes the
message to be exactly equivalent to the attribute name.

SyntaxError—It is raised by syntax errors.

TypeError—This exception is raised when you try to apply a function operation to
an object of inappropriate type.

06 0672319942 CH04 11/15/00 11:37 AM Page 171

172 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

AssertionError—This kind of exception is raised when an assert statement fails by
evaluating to false.

LookupError—This is the base class for indexing and key errors. The IndexError
and KeyError classes subclass it.

IndexError—It is raised by “sequence out of range” errors.

KeyError—It is raised when a key is not found in a dictionary.

ArithmeticError—This is the base class for arithmetic errors. The classes
OverflowError, ZeroDivisionError, and FloatingPointError subclass it.

OverflowError—This exception is raised when the result is so large that it makes
the operation overflow.

ZeroDivisionError—It is raised when an operation that tries to divide a number by
zero is performed.

FloatingPointError—This exception is raised by floating-point operation errors.
Note that on Linux systems, you are required to enable the SIGFPE handling with
the fpectl module to use this exception.

ValueError—This one is raised when you try to perform an action using the right
type but the wrong value.

SystemError—It is raised if a Python’s interpreter internal error takes place.

MemoryError—This exception is raised by a recoverable out-of-memory error.

As exception classes are grouped within other exception classes (known as base classes),
it becomes much easier to catch several different types of errors/exceptions by using
just one except clause.

Base classes are never raised, but can be used to catch up errors.

The next scenario shows how to cover multiple exceptions by declaring only the base
class exception.

>>> dict = {1:”First Element”,2:”Second Element”}

>>> list = [13,14,15,16]

Based on these structures, we get the following error messages when we try any out-of-
range type of operations.

>>> dict[3]

Traceback (innermost last):

File “<stdin>”, line 1, in ?

06 0672319942 CH04 11/15/00 11:37 AM Page 172

173CHAPTER 4 Exception Handling
Summary

KeyError: 3

>>> list[8]

Traceback (innermost last):

File “<stdin>”, line 1, in ?

IndexError: list index out of range

The following example is able to catch both IndexError and KeyError exceptions.

>>> def getelement(element):

>>> try:

>>> if element < 10:

>>> print dict[element]

>>> else:

>>> print list[element]

>>> except LookupError:

>>> print “Sorry. This element does not exist”

>>> getelement(1)

First Element

>>> getelement(20)

Sorry. This element does not exist

Now, let’s talk about release 2.0. Check the next code.

def showcounter():

print “counter=”, counter

counter = counter + 1

showcounter()

The previous code raises an exception on the print statement in both 1.5.2 and 2.0
release. However, in 1.5.2 a NameError exception is raised, while in 2.0 a new exception
is raised. This new exception is called UnboundLocalError, which is a subclass of the
NameError exception.

Talking about new exceptions, the Python 2.0 release comes with two more brand-new
exceptions. They are called TabError and IndentationError, and they are subclasses of
the SyntaxError exception.

Summary

Python exceptions are mostly used for error handling and event notification. If you
don’t handle exceptions in your program, Python’s interpreter returns traceback
messages.

06 0672319942 CH04 11/15/00 11:37 AM Page 173

174 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python comes filled with many built-in exceptions. All these exceptions are part of the
exceptions module, which is always loaded prior to any program execution.

Exceptions can be handled by using either try/except or try/finally statements. The
difference between them is that an except clause is only executed when an exception is
raised, and a finally clause is always executed, no matter whether an exception is
raised or not. The try/finally statement is good for clean-up actions, but remember
that it doesn’t actually catch the exceptions.

Python supports both strings and exception classes. As exception classes are grouped
within other exception classes (known as base classes), it becomes much easier to catch
several different types of errors/exceptions by using just one except clause. Base classes
are never raised, but can be used to catch up errors.

You can either raise your own exceptions or use Python standard exceptions. Python
allows you to create your own exceptions by subclassing any standard Python
exception.

Exceptions can be raised for several purposes (for example, exit the interpreter, leaving
nested loops, and so on). Every time an exception is raised, an instance of the
exception class is created.

The assert command helps debug your code by raising a debugging exception.

Besides the exceptions module, the sys, the errno, and the traceback modules also
offer you some advanced functionality to handle exceptions.

Code Examples

This first example returns the square root of a given input value. If the input value is
negative or if it is a character, two traceback messages are displayed.

Listing 4.1 Square root (File squareroot.py)

1: ###

2: # Program: Square root

3: # Author: Andre S Lessa

4: ###

5:

6: ### import modules

7:

8: import sys, traceback, math

9:

06 0672319942 CH04 11/15/00 11:37 AM Page 174

175CHAPTER 4 Exception Handling
Code Examples

10: try:

11: n = float(raw_input(“Please, enter a number: “))

12: print “The sqrt of %f is %f” % (n, math.sqrt(n))

13:

14: except (ValueError, TypeError, OverflowError):

15: print “---”

16: print “This is the standard traceback message:”

17: print “”

18: traceback.print_exc()

19:

20: print “---”

21: print “This is the customized traceback message:”

22: print “”

23: info = sys.exc_info()

24: exc_type = info[0]

25: exc_value = info[1]

26: exc_traceback = info[2]

27:

28: trace = traceback.extract_tb(sys.exc_traceback)

29: print “Exception Type: “, exc_type

30: print “Error Message: “, exc_value

31: print “File name: “, trace[0][0]

32: print “Error message: “, trace[0][1]

33: print “Line: “, trace[0][2]

34: print “Function: “, trace[0][3]

35: else:

36: print “Everything went just fine.”

The except clause in line 14 covers ValueError, OverflowError, and TypeError
exceptions.

The else clause in line 35 is only executed when no exception is raised.

The next lines show the two traceback messages that are displayed by this program:
Python standard traceback message and a customized version.

C:\python> s:\python\squareroot.py

Please, enter a number: i

This is the standard traceback message:

Traceback (innermost last):

File “s:\python\squareroot.py”, line 11, in ?

Listing 4.1 (continued)

06 0672319942 CH04 11/15/00 11:37 AM Page 175

176 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

n = float(raw_input(“Please, enter a number: “))

ValueError: invalid literal for float(): i

This is the customized traceback message:

Exception Type: exceptions.ValueError

Error Message: invalid literal for float(): i

File name: s:\python\squareroot.py

Error message: 11

Line: ?

Function: n = float(raw_input(“Please, enter a number: “))

This example uses multiple except clauses (lines 17 and 20). It also takes advantage of
the assert command to raise a debug exception (line 15).

Listing 4.2 Internet country codes (File countrycode.py)

1: ###

2: # Program: Country code

3: # Author: Andre S Lessa

4: ###

5:

6: ### import modules

7:

8: import sys, string

9:

10: matrix = {“brazil”:”br”,”france”:”fr”,”argentina”:”ar”,”usa”:”us”}

11:

12: def getcode(country):

13: try:

14: data = matrix[string.lower(country)]

15: assert data != “br”, “You cannot select this country “ + \

“for this action!”

16: return data

17: except KeyError:

18: print sys.exc_type, “:”, “%s is not in the list.” % \

sys.exc_value

19: print

20: except AssertionError, b:

21: print b

22: print

23:

24: while 1:

06 0672319942 CH04 11/15/00 11:37 AM Page 176

177CHAPTER 4 Exception Handling
Code Examples

25: country = raw_input(“Enter the country name or press x to exit: “)

26: if country == “x”:

27: break

28: code = getcode(country)

29: if code != None:

30: print “%s’s country code is %s” % (country, code)

31: print

The following screen dump shows the execution of this program. Note that the
program doesn’t end after an exception has been raised.

C:\>python s:\python\countrycode.py

Enter the country name or press x to exit: Mexico

exceptions.KeyError : mexico is not in the list.

Enter the country name or press x to exit: USA

USA’s country code is us

Enter the country name or press x to exit: Brazil

You cannot select this country for this action!

Enter the country name or press x to exit: Argentina

Argentina’s country code is ar

Enter the country name or press x to exit: x

C:\Python>

See more exception handling cases in the final section of the next chapter.

Listing 4.2 (continued)

06 0672319942 CH04 11/15/00 11:37 AM Page 177

06 0672319942 CH04 11/15/00 11:37 AM Page 178

CHAPTER 5

Object-Oriented
Programming

Is it a bird? No! Is it a plane? No! It’s bicycle repair man!

This chapter introduces object-oriented methodology in a very
complete and straightforward way. You will be able to easily
create and use objects and classes in your programs after going
through the next pages of material.

Object-Oriented Programming

Python uses the traditional class architecture for object-oriented
programming (OOP).

The object-oriented model adopted by Python

• Promotes modular design

• Promotes and facilitates Python software reusability

• Uses notions of real-world objects to develop programs

• Results in better quality software (but, of course, you can
write bad code with any paradigm)

Object-oriented programming promotes data abstraction,
information hiding, encapsulation, and modular programming.

Saying that OOP promotes data abstraction means that we
define the functions that operate on the data. The ideal scenario
provides encapsulated data that can be accessible only through

D E V E L O P E R ’ S H A N D B O O K

07 0672319942 CH05 11/15/00 11:37 AM Page 179

180 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

the class methods. However, in Python, we cannot totally block the programmer from
accessing the information that is stored inside a class.

Encapsulation, Inheritance, and Polymorphism are the most important thoughts
provided by OOP. Python doesn’t strictly follow the standard concepts, but you will
see how far it goes.

Encapsulation—Data can only be accessed or manipulated by means of a set of
interface functions. Encapsulation of data enables information hiding. Python
provides encapsulation through conventions rather than strictly enforcing it, which
can be preferable.

Inheritance—With inheritance, the derived class (also known as subclass,
descendant, or child class) inherits the data members and class methods of its base
(parent) class.

Polymorphism—It enables a function to have several different kinds of interfaces.
Depending on the parameters used by the caller, the class knows which interface
should be used. Python achieves this through its dynamic typing and late binding.

An Introduction to Python OOP

A class defines a category of objects in terms of the data it encapsulates and the
operations on the data that are allowed by the interface functions. Essentially, a class is
a template from which objects can be created.

Each object created from a class is an instance of a class. They all look alike and exhibit
a similar behavior.

A class stores object attributes (also known as data members) and the behavior of
objects (mostly known as methods). This behavior can be inherited from other (base)
classes. The non-method attributes of the class are usually referred to as class members
or class attributes so that they are not confused with instance attributes.

Each class has its own namespace in which all the assignments and function definitions
occur.

Class Instances

A class instance is a Python object, and similar to every Python object, it has the
following properties: identity, object type, attributes, methods, and value.

07 0672319942 CH05 11/15/00 11:37 AM Page 180

181CHAPTER 5 Object-Oriented Programming
An Introduction to Python OOP

I will use the following class definition as the basis for the next explanations. First, let’s
declare the c class, and then we will create an instance of this class called obj.

>>> class c:

... def __init__(self, value=None):

... self.name = value

...

>>> obj = c()

>>> obj.name = “Andre”

The identity is the memory location allocated for the object. It can be identified by
using the id() function.

>>> id(obj)

6623988

The object type is the object’s internal representation. It defines the supported methods
and operation for each object. You can use the type() function in order to find out the
type of a specific object.

>>> type(obj)

<type ‘ínstance’>

>>> type(obj.name)

<type ‘string’>

While we’re talking about object types, let’s take a quick break from the whole class
issue and examine the types for Python objects defined in extension modules, which do
not necessarily act like classes.

Table 5.1 lists all Python built-in object types defined by the types module. Note that
almost all the types shown in this table are unrelated to Python classes.

Table 5.1 Built-In Object Types Defined by the types Module

Built-In Object Type Description

NoneType the None (null) object

IntType integer

LongType arbitrary precision integer

FloatType floating point

ComplexType complex number

StringType list of characters

07 0672319942 CH05 11/15/00 11:37 AM Page 181

182 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

ListType list

TupleType tuple

XrangeType returned by xrange()

DictType dictionary

BuiltinFunctionType built-in functions

BuiltinMethodType built-in methods

FuntionType user-defined function

ClassType class object/definition

InstanceType class object instance/class instance

MethodType bound class method

UnboundMethodType unbound class method

ModuleType module

FileType file

CodeType* raw byte-compiled code

FrameType* represent execution frame

TracebackType* stacks the traceback information of an exception

SliceType* generated by extended slices

EllipsisType* it is used in extended slices

*The checked types indicate internal Python objects that can be exposed to the user.

The attributes and methods of an object are bound properties that must be accessed by
putting a dot (.) after the object name.

>>> obj.name

“Andre”

At last, the value of an object is better visualized by an example.

>>> obj.name = “Andre”

The string “Andre” is the value assigned to the name attribute of the object obj.

Table 5.1 (continued)

Built-In Object Type Description

07 0672319942 CH05 11/15/00 11:37 AM Page 182

183CHAPTER 5 Object-Oriented Programming
Python Classes and Instances

Python Classes and Instances

In Python, a class is a user-defined data type, and as in most other languages, you
define Python classes using the keyword class.

class <class name>:

<class statements>

The class statements section contains any valid Python statement that defines class
constants or class methods. Note that the contents of the variable namespace formed
by executing the commands in the class statement make up the class dictionary.

Two ways to create classes are

• You can define it from scratch.

class <class name>:

[“documentation text”]

<class statements>

• You can create a new class that inherits properties of other classes. This is called
subclassing, and you will learn more about it later in this chapter.

class <class name> [(baseclass1, baseclass2, ...)]:

[“documentation text”]

<statements>

A class definition starts at the keyword class and ends at the last line of the indented
block of code that goes underneath.

Methods and class constants define a class namespace. Usually, a class has several
methods, and they must all start with the keyword def.

Tip
Methods are how to call functions in a class.

All methods have the additional argument self as the first argument in the method
header—The convention is to call it self because it could be any other name. Python’s
self argument is similar to the this keyword in C++. Its function is to transport a
reference of the object in a way that when a method is called, it knows which object
should be used.

>>> class a:

... def __init__(self):

... print self

...

07 0672319942 CH05 11/15/00 11:37 AM Page 183

184 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> b = a()

>>> b

<__main__.a instance at 795420>

In order to reference an attribute within a class, you need to use either
self.attribute or classname.attribute. Note that the self.attribute syntax is to
remove ambiguities between instance variables and function local variables. Also,
self.attribute and classname.attribute are different. The second sets class
attributes, which will affect all instances of the class.

>>> class c:

... def __init__(self, value=None):

... self.name = value

...

To reference an attribute while using a class instance, you have to use
instancename.attribute.

>>> obj.name

A class can also contain class variable assignments. These variables are shared by all
the class instances. Class variables are useful when the assignment of default values to
instances is required. Class variables do not have the self. prefix.

For example

>>> class Student:

... default_age = 20 # class variable

... def __init__ (self):

... self.age = Student.default_age # instance variable

Note that in the previous example, we had to use Student.default_age instead of
using only default_age because the global namespace for a method is the module in
which it was defined—not the class namespace.

The next example creates an instance variable that has the same name of the class
variable.

>>> class Student:

... default_age = 20 # class variable

... def __init__ (self, age):

... self.default_age = age # instance variable

07 0672319942 CH05 11/15/00 11:37 AM Page 184

185CHAPTER 5 Object-Oriented Programming
Python Classes and Instances

Suppose that you have the following code stored in a file called
c:\python\studentfile.py. This code defines three different variables named
default_age (at lines 2, 4, and 9).

1: class Student:

2: default_age = 20 # base class variable

3: def __init__(self, age):

4: self.default_age = age # base class instance variable

5:

6: class Newstudent(Student):

7: “New student class”

8: def __init__(self, age=20):

9: self.default_age = age # instance variable

The following code imports the previous module. Which variable is being used by the
instance call at line 5?

1: >>> import sys

2: >>> sys.path = sys.path + [‘c:\\python’]

3: >>> import studentfile

4: >>> Joao = studentfile.Newstudent(15)

5: >>> Joao.default_age

6: 15

Tip
In order for Python to find your modules, the directory where you save them must be
an entry of the sys.path list.

The answer is the instance variable of the newstudent class (line 9 from the first
listing). In cases like this, the search order is defined as

1. instance variables

2. class variables

3. base classes variables—note that the search order for base classes makes the
deepest-level classes used first

>>> Renata = studentfile.newstudent()

>>> print Renata.default_age

20

The following variation is slightly different than the previous code. This example
shows what you need to do to make the class Newstudent call the superclass’s __init__
method.

07 0672319942 CH05 11/15/00 11:37 AM Page 185

186 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

6: class Newstudent(Student):

7: “New student class”

8: def __init__(self):

9: Student.__init__(self, Student.default_age)

Note that we are calling the __init__ method of the Student class (the superclass).
The class constant Student.default_age is also used in this example. It is important to
say that when calling unbound methods (methods that are not tied to an instance) like
this one, you must explicitly say that the first argument is self.

1: >>> Joao = studentfile.Newstudent()

2: >>> Joao.default_age

3: 20

Attributes of a Class

Next, I list the attributes that classes expose to programmers.

classname.__dict__—This attribute contains the class namespace dictionary.

>>> studentfile.newstudent.__dict__

{‘__init__’: <function __init__ at 799e90>, ‘__doc__’: ‘New student

class’, ‘__module__’: ‘studentfile’}

classname.__doc__—This one returns the documentation string of the class.

>>> studentfile.newstudent.__doc__

‘New student class’

classname.__name__—This attribute returns the class name.

>>> studentfile.newstudent.__name__

‘newstudent’

classname.__module__—This one provides the module name that contains the
class.

>>> studentfile.newstudent.__module__

‘studentfile’

classname.__bases__—This is a tuple containing the names of the base classes.

>>> studentfile.newstudent.__bases__

(<class studentfile.student at 799e00>,)

07 0672319942 CH05 11/15/00 11:37 AM Page 186

187CHAPTER 5 Object-Oriented Programming
Python Classes and Instances

The Python Class Browser

The pyclbr module offers you the possibility of browsing all the information about
classes that is stored in a specific module.

readmodule()
This function reads the module and returns a dictionary in the format
{classname:classinfo}, where classinfo is an instance object of the class.

basic syntax: variable = pyclbr.readmodule(module)

>>> import pyclbr

>>> moduletobrowse = pyclbr.readmodule(“profile”)

>>> for classname, classinfo in moduletobrowse.items():

... print “Class name: %s” % classname

...

Class name: HotProfile

Class name: OldProfile

Class name: Profile

or, if you use our student example

>>> import pyclbr

>>> moduletobrowse = pyclbr.readmodule(“studentfile”)

>>> for classname, classinfo in moduletobrowse.items():

... print “Class name: %s” % classname

...

Class name: student

Class name: newstudent

If you need to go deeper than that, you can look at the classinfo object.

Python Instances

Each instance defines its own namespace of data, and it inherits behavior from the
class (and possible base classes) that have originated it.

In order to create a new instance of a class, you just need to say

newinstance = classname()

Suppose that you have a Person class like this

class Person:

def __init__(self, name):

self.name = name

self.family = []

07 0672319942 CH05 11/15/00 11:37 AM Page 187

188 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

def addmember(self, member):

self.family.append(member)

For example, if you want to create a new instance of the chef class, you must type:

>>> anthony = Person()

You can also pass arguments to the __init__ function of the class. These arguments
can be used to set the initial values of an object. Let’s see how it works.

>>> anthony = Person(“anthony”)

To call the methods of a class, you have to use the dot notation:

>>> anthony.addmember(“son”)

You also need to use the dot notation to have access to variables (attributes) of each
instance.

>>> anthony.family

[“son”]

An interesting detail about Python object attributes is that they don’t need to be
declared inside the class before they get used because they can be created dynamically.

>>> class DummyClass:

... pass

...

>>> colors = DummyClass()

>>> color.alarm = “red”

The next example dynamically creates multiple attributes for the colors instance.

>>> class record:

... def __init__(self, **args):

... self.__dict__.update(args)

...

>>> colors = record(alarm=”red”, normal=”green”)

>>> colors.normal

‘green’

isinstance() and issubclass()
The built-in functions isinstance() and issubclass() are always available without
the need for importing any module because they are part of the __builtin__ module.

07 0672319942 CH05 11/15/00 11:37 AM Page 188

189CHAPTER 5 Object-Oriented Programming
Python Classes and Instances

isinstance()

This function tests whether an object is an instance of a class. It returns 1 if the object
is an instance. Otherwise, it returns 0. Note that this function handles subclass
relationships as well—for instance, isinstance(subclassinstance, superclass)
returns true.

basic syntax: isinstance(instance_object, class_object)

>>> class a:

... pass

...

>>> inst = a()

>>> isinstance(inst,a)

1

As you can see next, you can also use this function to identify the object’s type. Note
however, that this is behavior that works for non–instance objects. Floats and ints act
quite differently from Python class instances (for instance, there is no way to subclass
types.IntType).

>>> import types

>>> isinstance(3, types.IntType)

1

>>> isinstance(3, types.FloatType)

0

issubclass()

This function returns 1 if the class object classobj1 is a subclass (derived class) of the
class object classobj2.

basic syntax: issubclass(classobj1, classobj2)

>>> class a:

... pass

...

>>> class b(a):

... pass

...

>>> issubclass(a,b)

1

Instance Attributes
obj.__dict__—This is the dictionary that contains all the attributes defined for the
obj instance.

07 0672319942 CH05 11/15/00 11:37 AM Page 189

190 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> colors.__dict__

{‘alert’: ‘yellow’, ‘alarm’: ‘red’, ‘norma’: ‘green’}

obj.__class__—It shows the class that has created the obj instance.

>>> colors.__class__

<class __main__.record at 7883a0>

To get just the name of the class, use

>>> colors.__class__.__name__

‘record’

obj.__methods__—This attribute is a list of all supported methods of the obj
instance. Note that this attribute is available for lists and dictionaries, which are not
class instances.

>>> a=[1,2]

>>> a.__methods__

[‘append’, ‘count’, ‘extend’, ‘index’, ‘insert’, ‘pop’, ‘remove’,’reverse’,

‘sort’]

>>> b={1:’’}

>>> b.__methods__

[‘clear’, ‘copy’, ‘get’, ‘has_key’, ‘items’, ‘keys’, ‘update’, ‘values’]

Methods Handling

Whenever you have to write methods in your classes, always keep in mind that the
namespace searching order for attributes and methods is instance, class, and base
classes; and don’t forget that self is always the first or only argument to be used in
method headers.

Accessing Unbounded Methods

The next example shows what you should do in order to unbind a class method and
use it outside the class definition.

1: obj = classname()

2: umethod = classname.methodname()

3: umethod(obj, args)

07 0672319942 CH05 11/15/00 11:37 AM Page 190

191CHAPTER 5 Object-Oriented Programming
Methods Handling

Line 1: Creates a class instance object.

Line 2: Creates an object that references the class method. The method is still
unattached to the object at this stage.

Line 3: Executes the class method by transporting the instance reference (obj) and the
list of arguments (args).

Note that the first argument to an unbound method must be an instance of the correct
class, or an exception will be thrown.

Handling Global Class Variables

The next example defines a function that prints a class variable. Every time a new
instance is created, Globalcount increases.

>>> def printGlobalcount():

... print Globalcount.n

...

>>> class Couting:

... n = 0

... def __init__(self):

... Globalcount.n = Globalcount.n + 1

...

>>> inc = Couting()

>>> inc = Couting()

>>> printGlobalcount()

2

The next code overwrites the class variable x when subclassing the baseclass class.

>>> class baseclass:

... x = 5

... def multiply(self, a):

... return a * (self.__class__.x)

...

>>> class inherited(baseclass):

... x = 9

...

>>> x = inherited()

>>> x.multiply(2)

18

After a method is defined, it uses the variable values that are associated to the current
namespace.

07 0672319942 CH05 11/15/00 11:37 AM Page 191

192 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> class A:

... n = 1

... def printn(self):

... print self.n

...

>>> class B(A):

... n = 2

...

>>> class C(B):

... n = 3

...

>>> obj1 = C()

>>> obj1.printn()

3

>>> obj2 = B()

>>> obj2.printn()

2

Calling Methods from Other Methods

The next code exposes how simple it is to create a method to call another method.

>>> class c:

... def funcx(self):

... self.funcy()

... def funcy(self):

... print “Ni!”

...

>>> obj = c()

>>> obj.funcx()

Ni!

Special Methods

Python exposes some special methods that are easily highlighted in the code because
they start and end with __ (double underscores). These methods override (inherit)
built-in functions of the same name that are provided by Python itself. The next list
shows some of the most used special methods.

__init__(self)—This is the constructor method, which is called during creation of
instances. Usually, this is the place where the instance variables are initialized,
among other things.

07 0672319942 CH05 11/15/00 11:38 AM Page 192

193CHAPTER 5 Object-Oriented Programming
Special Methods

__str__(self)—This method is called when str() is called on instances of this
type. It specifies how the object must be displayed when it is used as a string (for
example, when a print command is applied to an object).

__repr__(self)—This method is called when repr() is called on instances of this
type. This method provides a readable representation of the object. Usually, it is
possible to re-create an object by using this method. Although not guaranteed, and
the standard repr of an instance can’t be executed to re-create the instance.

__getattr__(self, name)—Implement this method to trap or modify the access to
nonexisting members, for example, returning the attribute self.name.

__setattr__(self, name, value)—This method allows you to control setting of
attributes in the instance. It assigns the given value to the self.name instance’s
attribute. Note that you can also use “self.__dict__[‘attr’] = ...” to set
attributes from within __setattr__ (if you do it the normal way, you will get
infinite recursion).

__delattr__(self,name)—Implement this method to delete a specific attribute of
an object. It’s like saying del self.name.

__del__(self)—The __del__ method covers the deletion of the object. Be careful
because sometimes it isn’t immediately used when an object is destroyed (JPython
behavior). CPython’s garbage collector destructs objects as soon as their reference
count reaches zero.

__cmp__(self,other)—Implement this method to compare and return a negative,
zero, or positive number.

__hash__(self)—Implement this method to generate a 32-bit hash index.

__nonzero__(self)—Implement this method to return 0 or 1 for truth-value
testing.

__call__(self)—Classes that implement the __call__ method are callable, and
their instances can be invoked like a function. This is the concept used by the built-
in functions. The syntax obj(*args) is equivalent to obj.__call__(*args).

__getitem__(self, index)—This method supports list indexing, returning
self[index].

>>> class Seq:

... def __getitem__(self, i):

... if i < 5:

... return i

... else:

... raise IndexError

07 0672319942 CH05 11/15/00 11:38 AM Page 193

194 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

...

>>> s = Seq()

>>> for i in s:

>>> print i,

0, 1, 2, 3, 4

>>> print s[2]

2

>>> print s[6]

Traceback (innermost last):

File “<stdin>”, line 1, in ?

File “<stdin>”, line 6, in __getitem__

IndexError

Next, you have some more special methods that deal with sequence and number-
related methods.

__len__(self)—This method is called to return the length of the instance when
len() is called on an instance of this type.

__add__ (self, other)—Implement this method to return self + other.

__sub__ (self, other)—Implement this method to return self – other.

__mul__ (self, other)—Implement this method to return self * other.

__div__ (self, other)—Implement this method to return self / other.

__mod__ (self, other)—Implement this method to return self % other.

__neg__ (self)—Implement this method to return self negated.

__pos__ (self)—Implement this method to return self positive.

__abs__ (self)—This method is called to return the absolute value of self when
abs() is called on instances of this type.

__inv__ (self)—Implement this method to return the inverse of self.

__lshift__ (self, other)—Implement this method to return self shifted left by
other.

__rshift__ (self, other)—Implement this method to return self shifted right by
other.

__and__ (self, other)—Implement this method to return the bitwise and value of
self and other.

__or__ (self, other)—Implement this method to return the bitwise or value of
self and other.

07 0672319942 CH05 11/15/00 11:38 AM Page 194

195CHAPTER 5 Object-Oriented Programming
Special Methods

__xor__ (self, other)—Implement this method to return the bitwise exclusive or
value of self and other.

__not__ (self)—Implement this method to return the outcome of not self.
(Note that there is no __not__() discipline for object instances; only the interpreter
core defines this operation.)

__setitem__ (a, b, c)—Implement this method to set the value of a at
index b to c.

__delitem__ (a, b)—Implement this method to remove the value of a at index b.

__getslice__ (a, b, c)—Implement this method to return the slice of a from
index b to index c–1.

__setslice__ (a, b, c, v)—Implement this method to set the slice of a from
index b to index c–1 to the sequence v.

__delslice__ (a, b, c)—Implement this method to delete the slice of a from
index b to index c–1.

The next example has a class definition that overrides some methods. Note that every
instance of this class is callable.

>>> class Author:

... def __init__(self, argname):

... self.name = argname

... def __str__(self):

... return self.name

... def __repr__(self):

... return `self.name`

... def __call__(self, other):

... return self.name + other

...

>>> obj = Author(“Andre”)

>>> print obj

Andre

>>> obj

‘Andre’

>>> obj(“ Lessa”)

‘Andre Lessa’

07 0672319942 CH05 11/15/00 11:38 AM Page 195

196 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Python 2.0 has added a special set of operators to the language, which are called
augmented assignment operators. These operators can be overriden by inserting an ‘i’ in
front of the name, for example, __isub__ implements in-place __sub__ (in other
words, the -= operator).

Also in this new release, you have access to the built-in method __contains__, which
gives you access to customize the in operator.

Method Attributes

A method implements some special attributes that can be accessed from within the
class that implements it.

Suppose that you have a method called method:

method.__doc__—Returns the documentation string of method.

method.__name__—Returns the method name.

method.im_class—Returns the class that has defined method.

method.im_self—Returns the instance associated with method.

The next example retrieves and prints the __init__ method’s documentation string.

>>> class c:

... def __init__(self):

... “This is a method “

... print self.__init__.__doc__

...

>>> obj = c()

This is a method

Overloading Operators

Python operators are implemented for a class by implementing the equivalent special
methods. This feature is called operator overloading.

Extensive support exists for operators overloading via the double-underscored special
methods such as __add__ and __init__.

07 0672319942 CH05 11/15/00 11:38 AM Page 196

197CHAPTER 5 Object-Oriented Programming
Special Methods

Note that the following expressions are equivalent:

a * b = __mul__(a, b)

len(a) = __len__(a)

a + b = __add__(a,b)

The following example overrides the __add__ method and returns a tuple of results.

>>> class c:

... def __init__(self, x, y):

... self.x = x

... self.y = y

... def __add__(self, other):

... return (self.x + other.x, self.y + other.y)

...

>>> obj1 = c(5,2)

>>> obj2 = c(10,4)

>>> print obj1 + obj2

(15, 6)

Of course, in real life, you would be more likely to want to return an instance of the
class c, rather than just a tuple.

Some others built-in methods you can use or overwrite are as follows:

__sub__(self, other)

__div__(self, other)

__abs__(self)

__hex__(self)

__int__(self)

Another small example

>>> class C:

... def __init__(self, value):

... self.value = value

... def __sub__(self, other):

... return self.value - other.value

...

07 0672319942 CH05 11/15/00 11:38 AM Page 197

198 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> vara = C(5)

>>> varb = C(3)

>>> varc = vara - varb

>>> print varc

2

Inheritance

A subclass is a class that inherits attribute names and methods from another class—the
operation is called subclassing.

A base class (superclass) is defined as a class that another class inherits attributes from.
Base classes are listed in parentheses in a subclass header. You have to separate base
classes by putting commas between them, within the parentheses.

When you create a subclass, you can add or overwrite any methods of its base classes.

Python classes can be created:

• From scratch

>>> class A:

... pass

...

• By using single inheritance

>>> class B(A):

... pass

...

• By using multiple inheritance

>>> class D(B,C):

... pass

...

For a conceptual standpoint, take a look at the following example

Where,

Base class = writing tools

subclass = pen

subclass = chalk

07 0672319942 CH05 11/15/00 11:38 AM Page 198

199CHAPTER 5 Object-Oriented Programming
Inheritance

Both subclasses pen and chalk inherit characteristics of the base class writing
tools.

The subsequent class defines a complex class called Employee.

class Employee:

def __init__(self,name,salary=0):

self.name = name

self.salary = salary

self.family = []

def raisesalary(self, percent):

self.salary = self.salary + (self.salary * percent)

def work (self):

print self.name, “writes computer code.”

def hasfamily(self):

return len(self.family) == 0 # returns a boolean result

def addmember(self, x):

self.family.append(x)

def removemember(self, x):

if len(self.family) > 0:

x = self.family[-1]

del self.family[-1]

return x

The next class is a subclass of the Employee class.

class Person(Employee):

“this is the class Person”

def __init__ (self, name):

Employee.__init__ (self, name, 50000)

def work (self):

print self.name, “works like any other employee.”

Inherited methods of base classes aren’t automatically called. It is necessary to call
them explicitly. That’s why, in the previous example, the Person.__init__ method had
to call the Employee.__init__ method.

It is always necessary to pass the self argument because base classes don’t know what
instance is being used. The previous example passes three parameters to the base
class’s __init__ method (the self reference, an argument, and a default value for the
other argument).

07 0672319942 CH05 11/15/00 11:38 AM Page 199

200 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Multiple inheritance is defined by entering multiple classes in the header of a new
class. The order used for informing the base classes really does matter. The
precedence order, for a search in the base classes, starts at the classes located at the left
side.

class A:

pass

class B(A):

pass

class C:

pass

class D(B,C):

pass

The precedence order for class D inheritance is: B, A, C.

Tip
You always have to use fully qualified names when calling a superclass’s method (if
it has been overridden) because if the class has multiple base classes containing the
same symbol, the first one found is used.

>>> class A:

... def __init__(self, name):

... self.name = name

... def printname(self):

... print ‘The name %s belongs to class A!’ % self.name

...

>>> class B(A):

... __baseclass=A

... def __init__(self, name):

... self.__ baseclass.__init__(self,name)

... def printname(self):

... print ‘The name %s belongs to class B!’ % self.name

... self.__ baseclass.printname(self)

...

>>> class C(B):

... __baseclass=B

... def __init__(self, name):

... self.__ baseclass.__init__(self,name)

... def printname(self):

... print ‘The name %s belongs to class C!’ % self.name

... self.__ baseclass.printname(self)

...

07 0672319942 CH05 11/15/00 11:38 AM Page 200

201CHAPTER 5 Object-Oriented Programming
Polymorphism

>>> A(“monkey”).printname()

The name monkey belongs to class A!

>>> B(“parrot”).printname()

The name parrot belongs to class B!

The name parrot belongs to class A!

>>> C(“ant”).printname()

The name ant belongs to class C!

The name ant belongs to class B!

The name ant belongs to class A!

Polymorphism

The concept of polymorphism doesn’t really apply to Python objects because Python
doesn’t offer type declaration. This concept (having a function or method work for
multiple argument types) is something you get for free with Python because of the
dynamic typing. It does exist, but you don’t usually explicitly code for it. When
handling an obj.method expression, the meaning of method depends on the type, or
class, of the object obj.

Python doesn’t know what type of object implements an interface until the program is
running. This feature is called runtime binding.

Python variables are typed, just not explicitly so. They are typed implicitly as the
program uses them. For instance, if a program invokes abs(x), it doesn’t make sense
for x to be any object but a number. Therefore, the variable x is informally typed.

The capability of dealing with objects at different levels of abstraction is one of the
most important features of object-oriented programming and a very important part of
Python.

The next example shows how you can use just one function to implement poly-
morphism in Python. C++ refers to this variety of polymorphism as method overloading.

>>> class polymorph:

... def handle_int(self, argint):

... print ‘%d is an int’ % argint

... def handle_str(self, argStr):

... print ‘%s is a string’ % argStr

... def handle(self, arg):

... if type(arg) == type(1):

... self.handle_int(arg)

07 0672319942 CH05 11/15/00 11:38 AM Page 201

202 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

... elif type(arg) == type(‘’):

... self.handle_str(arg)

... else:

... print “%s is not a string nor an integer” % arg

...

>>> p = polymorph()

>>> p.handle(10)

10 is an integer

>>> p.handle(“Albatross!!”)

Albatross!! is a string

The following code implements a class that does not work because the program tries to
apply the general concept of polymorphism. This is a very common mistake that
always catches programmers who don’t know this concept doesn’t exist in Python.

Note that we try to define two different implementations of the same method (see
lines 3 and 6). Right below this sample of code, you can see a traceback message that is
provided by the interpreter when we try to run it.

1:>>> ## Beginning of a Python class THAT DOES NOT WORK...

2:...

3:>>> class Polimorpherror:

4:... def __init__(self):

5:... print ‘No arguments!’

6:... def __init__(self, args):

7:... print ‘One argument!’

8:... self.args = args

9:...

10:>>> ## End of a python class THAT DOES NOT WORK

11:...

12:>>> x = Polimorpherror()

>>> x = Polimorpherror()

Traceback (innermost last):

File “<stdin>”, line 1, in ?

TypeError: not enough arguments; expected 2, got 1

You cannot do method overloading as shown in the previous example. The next
example presents a suggestion for the correct way to implement a solution for this
problem.

07 0672319942 CH05 11/15/00 11:38 AM Page 202

203CHAPTER 5 Object-Oriented Programming
Polymorphism

>>> class Polimorpherror:

... def __init__(self, args=None):

... if args == None:

... print ‘No arguments!’

... if args == 1:

... print ‘One argument!’

... self.args = args

...

The behavior of overloaded functions and methods is better implemented in Python
using default arguments or by explicitly looking at the types of the arguments passed
into the function.

If you have a class for which you need to specify both a default constructor and a
constructor that takes initial values of state as arguments, I suggest that you do so by
transporting default arguments to the __init__ method.

>>> class Animal:

... def __init__(self, name = “Parrot”):

... self.name = name

... def printAnimal(self):

... print self.name

...

>>> p = Animal()

>>> p.printAnimal()

Parrot

>>> p = Animal(“Monkey”)

>>> p.printAnimal()

Monkey

If you want to initialize a variable but you don’t want to enforce an object type, you
can use the None type.

>>> class Animal:

... def __init__(self, name = None):

... self.name = name

... def printAnimal(self):

... print self.name

...

07 0672319942 CH05 11/15/00 11:38 AM Page 203

204 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Encapsulation

All Python attributes (variables and methods) are public. Even though you cannot have
private attributes in Python, you can use the following two agreements:

• By convention, attributes preceded with a single underscore (for example, _n) are
to be viewed as internal variables, not to be used externally.

• Attributes starting with double underscores (for example, __n) aren’t explicitly
exported. They are renamed to _Class__Variablename when byte compiled.
Because the name of a class is used as part of the variable name, the attribute __n
(when inside a subclass) isn’t the same __n variable defined at a base class. This is
probably the closest to private that you will get. But, it isn’t really a private
implementation because when you know the name of the class, you can access
the attribute. C++ programmers probably know this as name mangling.

We cannot say that Python supports private attributes because it is still possible to
have access to the attributes if you know the class and attributes names. For example,
in a class called C, the attribute self.__attr becomes self._C__attr, when exported
from the class. Hence, you can access this attribute by referencing it as _C__attr.

>>> class Number:

... def __init__(self, value):

... self._n = value

... self.__n = value

... def __repr__(self):

... return ‘%s(%s)’ % (self.__class__.__name__, self._n)

... def add(self, value):

... self._n = self._n + value

... def incr(self):

... self._n = self._n + 1

...

Based on the previous class, we will have some interactive examples next.

>>> a = Number(20)

>>> a

Number(20)

>>> a.add(4)

>>> a

Number(24)

>>> a.incr()

>>> a

Number(25)

07 0672319942 CH05 11/15/00 11:38 AM Page 204

205CHAPTER 5 Object-Oriented Programming
Encapsulation

>>> a._n

25

>>> a._n = 30

>>> a

Number(30)

>>> a._Number__n

20

The important thing to remember is that nothing in Python is private (unless it is
hidden within a C extension type).

To demonstrate that you can use default arguments to help storing the environment
variables in a variable from the class namespace, the next example initializes the value of
the variable n by using a default argument. The value of n is assigned at the time of
defining the function and is stored at the class namespace.

>>> v = 10

>>> class C:

... def storen(self, n=v):

... return n

...

>>> objA = C()

>>> objA.storen()

10

>>> v = 20

>>> objB = C()

>>> objB.storen()

10

>>> n = 30

>>> objC = C()

>>> objC.storen()

10

Note that the value of n remains constant for all instances of the class C.

The following example shows that it is possible to manipulate the internal attributes of
an object by directly accessing the members of a class.

>>> class fun:

... def __init__(self):

... self.total = None

...

>>> a = fun()

>>> b = fun()

07 0672319942 CH05 11/15/00 11:38 AM Page 205

206 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> a.total = 2

>>> b.total = 3

>>> print a, b

2 3

In this next example, we hide the a() method definition by preceding it with two
underscores. Note that if you later need to access this method (and you don’t want to
rename it), you must create a reference to the method, as shown in the following
example.

>>> class C:

... def __a(self):

... print “ni!”

... b = __a

...

>>> a = C()

>>> a.b()

ni!

Metaclasses

A metaclass is just a class that is used as a template to create class-like entities.

Normally, you create instances based on classes. The goal here is to create classes
(metainstances) based on other classes (metaclasses). The resulting metainstances are used
as base classes for your own classes.

The whole idea is to offer you the possibility of operating Python’s internal class-
handling engine. Everything that usually happens behind the scenes while
manipulating your classes and objects now can be accessed and changed. The meta-
instance makes it easier for you to handle the task of modifying the attribute lookup
behavior of objects.

Prior to Python, version 1.5, it was necessary to use C extensions in order to define
metaclasses.

The subsequent code defines a simple metaclass and its supporting classes. Note that
this structure doesn’t cover the whole model.

1: >>> import types

2: >>> class METACLASS:

3: ... def __init__(self, name, bases, namespace):

4: ... self.__name__ = name

07 0672319942 CH05 11/15/00 11:38 AM Page 206

207CHAPTER 5 Object-Oriented Programming
Metaclasses

5: ... self.__bases__ = bases

6: ... self.__namespace__ = namespace

7: ... def __call__(self):

8: ... return METAINSTANCE(self)

9: ...

10: >>> class METAINSTANCE:

11: ... def __init__(self, metaclass):

12: ... self.__metaclass__ = metaclass

13: ... def __getattr__(self, name):

14: ... try:

15: ... value = self.__metaclass__.__namespace__[name]

16: ... except KeyError:

17: ... raise AttributeError, name

18: ... if type(value) is not types.FunctionType:

19: ... return value

20: ... return METHODWRAPPER(value, self)

21: ...

22: >>> class METHODWRAPPER:

23: ... def __init__(self, function, metainstance):

24: ... self.function = function

25: ... self.instance = metainstance

26: ... self.__name__ = self.function.__name__

27: ... def __call__(self, *args):

28: ... return apply(self.function, (self.instance,) + args)

29: ...

Line 2 : Defines the metaclass METACLASS.

Lines 3-6 : Creates a new metaclass. The __init__ method expects three arguments:
The metainstance name, a tuple of base classes, and a dictionary of the metainstance
namespace.

Lines 7-8 : Invokes METAINSTANCE.__init__ when METACLASS is called, returning a
metainstance.

Line 10 : Defines the metainstance METAINSTANCE.

Line 13 : Handles the access to attributes of the user instance by checking whether it
is part of the user class namespace (lines 14-17). If the attribute is a value, it returns
the value. Otherwise, if the attribute is a function, it returns an instance of the
METHODWRAPPER class, which is actually the result of the function call.

Line 22 : Defines the METHODWRAPPER class, which handles all the accesses to the
method attributes of the user class.

07 0672319942 CH05 11/15/00 11:38 AM Page 207

208 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Now that we are ready to call metaclasses, you can use metainstances as base classes of
your own classes, trapping the access to your class objects. The next line of code
creates an instance of a metainstance.

>>> BASECLASS = METACLASS(‘BASECLASS’, (), {})

Let me explain to you what is really happening here:

We are creating a class called BASECLASS whose behavior is inherited from the
METACLASS constructor class. The METACLASS.__init__ method is invoked at this stage.

From now on, every class that you create—which uses BASECLASS as the base class—
will inherit the whole behavior that you have specified in the METACLASS definition.

The following code exemplifies a user class that has our BASECLASS as the base class.

>>> class CEO(BASECLASS):

... def push(self, name):

... self.name = [name]

... def pop(self):

... if len(self.name) > 0:

... item = self.name[-1]

... del self.name[-1]

... print item

...

Now it’s time to illustrate the use of this whole concept.

>>> ITCEO = CEO()

>>> ITCEO.push(“Andre”)

>>> ITCEO.pop()

[‘Andre’]

>>> ITCEO.name

[]

Note that ITCEO = CEO() invokes METACLASS.__call__, which creates a METAINSTANCE
instance, whereas all the other calls invoke METAINSTANCE.__getattr__.

More details about metaclasses can be found at the following addresses:

http://www.python.org/doc/essays/metaclasses/

and Mess—The Meta-Extension System Set (old stuff) at
http://starship.python.net/crew/da/mess/doc/Tutorial.

07 0672319942 CH05 11/15/00 11:38 AM Page 208

209CHAPTER 5 Object-Oriented Programming
Summary

Mess is a set of extensions that allows the creation of new types, among other things.
It’s not certain whether it will ever be integrated into Python, but its documentation
can provide a lot of help in understanding metaclass concepts.

Maybe you will like to take a look at the ExtensionClass extension by Digital
Creations that uses metaclasses to allow creation of class-like objects in C (and is a lot
easier to use than Mess). This extension illustrates how the Python class mechanism
can be extended, and provides a lightweight mechanism developed for making Python
extension types more class-like. Classes can be developed in an extension language,
such as C or C++, and treated like other Python classes.

http://www.digicool.com/releases/ExtensionClass/

Summary

Python is a language that implements object-oriented programming (OOP) by
supporting classes and class instances.

A class is a template from which objects can be created. It has its own namespace and
stores object attributes and methods, which can be inherited from other base classes—
a process called subclassing.

A class can also contain class variable assignments. These variables are shared by all
the class instances, and they are part of the class namespace. All class attributes
(variables and methods) are public.

In order to identify the right variable that is used when you get multiple variables with
the same name within your code, the following search order is followed: instance
variables, class variables, and base class variables.

Python has a module called pyclbr (Python Class Browser) that offers you the
possibility of browsing all the information about classes that is stored in some other
specific module. Note that most of this information can also be deduced through
introspection. pyclbr gives you another benefit in that you don’t need to import the
module.

Each object created from a class is an instance of a class, which has some specific
properties: identity, object type, attributes, methods, and value.

Classes and instances have built-in attributes that provide access to their internal
definitions (namespace, name, and so on).

07 0672319942 CH05 11/15/00 11:38 AM Page 209

210 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

The built-in functions isinstance() and issubclass() are provided to help determine
the inheritance properties of instance and class objects.

Each instance defines its own namespace of data, and it inherits behavior from the
class (and possible base classes) that have originated it.

Python object attributes don’t need to be declared inside the class before they get used
because they can be created dynamically.

Class methods can be unbound and used outside a class definition. They also carry
some special attributes that can be called from within the class that implements them.
These attributes enable the access to the method’s name, the method’s documentation
string, and so on.

All method definitions must carry the argument self, whose function is to transport a
reference of the object in a way so that when a method is called, it knows which object
should be affected.

Python exposes some special methods, such as __init__(), __str__(), and so on.
These methods inherit built-in functions of the same name that are provided by
Python itself.

Python operators can be re-created by remapping their built-in functions and
methods. This feature is called operator overloading. Extensive support exists for
operators overloading via the double-underscored special methods such as __add__()
and __div__().

Python classes can be created from scratch by using single inheritance and multiple
inheritance.

A subclass is a class that inherits attribute names from another class, whereas a base class
is defined as a class that another class inherits attributes from. When you create a
subclass, you can add or overwrite any method from its base classes. However,
inherited methods of base classes aren’t automatically called. It is necessary to call
them explicitly.

The order used to inform the base classes in a class header is really important. The
precedence order for attribute searches in the base classes starts at the class located at
the left side.

Python doesn’t offer type declaration because it doesn’t know what type of object
implements an interface until the program is running. This feature is called runtime
binding.

07 0672319942 CH05 11/15/00 11:38 AM Page 210

211CHAPTER 5 Object-Oriented Programming
Code Examples

A single underscore preceding the attribute name is used to point out internal
attributes that shouldn’t be used externally. Attributes starting with double underscores
aren’t explicitly exported.

Python also offers you the possibility of operating its internal class handling engine by
using metaclasses and metainstances. A metaclass is just a class used as a template to
create class-like entities, and the use of metainstance makes it easier for you to handle
the task of modifying the attribute lookup behavior of objects.

Code Examples

This application subclasses an exception class and executes the commands stored in a
file. The filename is asked by the application.

Listing 5.1 Configuration File (File configfile.py)

1: ###

2: # Program: Configuration File

3: # Author: Andre S Lessa

4: ###

5:

6: ### import modules

7:

8: import exceptions, sys

9:

10: configfile = raw_input(“Configuration File: “)

11:

12: class ConfigError (exceptions.Exception):

13: def __init__(self, arg=None):

14: self.args = arg

15:

16: try:

17: try:

18: file = open(configfile)

19: lines = file.readlines()

20: finally:

21: file.close()

22: except:

23: print “Error. Invalid file name.”

24: sys.exit()

25:

07 0672319942 CH05 11/15/00 11:38 AM Page 211

212 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

26: lines[0] = lines[0][:-1]

27:

28: if lines[0] != “CFG2000”:

29: raise ConfigError, “Invalid header.”

30:

31: lines = lines[1:]

32:

33: for line in lines:

34: try:

35: exec line

36: except LookupError, b:

37: if b.args[0] == “list index out of range”:

38: print “Error. Invalid index entry”

39: else:

40: print “Error. Generic LookupError entry”

41: except SystemExit:

42: print “Error. sys.exit() cannot be used.”

Lines 12-14: The class ConfigError is created. It inherits all the attributes from the
exceptions.Exception class.

Line 29: Raises our new exception class.

In order to test this program, we have to create a file called config.txt that contains
the following lines:

CFG2000

print

print “Configuration File”

print “------------------”

server = “SRV001”

port = 80

print “Server: “, server

print “Port: “, port

The next interaction shows how to call the program. It also shows the results provided
by the program when no exception is raised.

C:\ Python>python configfile.py

Configuration File: config.txt

Configuration File

Listing 5.1 (continued)

07 0672319942 CH05 11/15/00 11:38 AM Page 212

213CHAPTER 5 Object-Oriented Programming
Code Examples

Server: SRV001

Port: 80

C:\Program Files\Python>

This simple program creates a class structure that stores and prints a list of groceries.

Listing 5.2 Groceries List (File groceries.py)

1: ###

2: # Program: Groceries List

3: # Author: Andre S Lessa

4: ###

5:

6: ### import modules

7:

8:

9: class grocery:

10: “Items that you need to buy at the grocery store.”

11: def __init__(self, name, quantity=1):

12: self.name = name

13: self.quantity = quantity

14:

15: items = {}

16: print “Type ENTER when you are done.”

17: while 1:

18: name = raw_input(“Grocery name: “)

19: if name == “”:

20: break

21: quantity = raw_input(“%s quantity: “ % (name))

22: if quantity == “”:

23: items[name] = grocery(name)

24: else:

25: items[name] = grocery(name,quantity)

26:

27: print “------------------------\nList of groceries to buy”

28: print “------------------------”

29:

30: for item in items.keys():

31: print “Grocery : “, items[item].name,

32: print “\tQuantity: “, items[item].quantity

33:

34: print “---------”

07 0672319942 CH05 11/15/00 11:38 AM Page 213

214 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

Line 9: Declares the grocery class.

Line 10: The class’s documentation text.

Line 11: A default value is defined for the quantity argument.

Lines 22-25: Uses a different interface to initialize the object, depending on the
information provided.

Lines 31-32: Provides access to the object attributes.

The next interaction shows how the program works.

C:\Python>python groceries.py

Type ENTER when you are done.

Grocery name: bananas

bananas quantity: 12

Grocery name: apples

apples quantity: 6

Grocery name: pears

pears quantity: 8

Grocery name: pineapple

pineapple quantity:

Grocery name:

List of groceries to buy

Grocery : pineapple Quantity: 1

Grocery : pears Quantity: 8

Grocery : apples Quantity: 6

Grocery : bananas Quantity: 12

C:\Python>

This file introduces two classes and one function that extensively manipulate class
methods and attributes.

Listing 5.3 Company employees (File company.py)

1: ###

2: # Program: Company employees

3: # Author: Andre S Lessa

4: ###

5:

07 0672319942 CH05 11/15/00 11:38 AM Page 214

215CHAPTER 5 Object-Oriented Programming
Code Examples

6: ### import modules

7:

8: import types

9:

10: class Employee:

11: “Generic class for all company employees”

12:

13: __employees = 0

14:

15: def __init__(self,name,salary=500.00):

16: self.name = name

17: self.salary = salary

18: self.family = []

19: Employee.__employees = Employee.__employees + 1

20:

21: def __str__(self):

22: return “employee: %s” % self.name

23:

24: def raisesalary(self, percent):

25: self.salary = self.salary + (self.salary * (1.0/percent))

26:

27: def job(self):

28: print self.name, “writes Python code.”

29:

30: def hasfamily(self):

31: return len(self.family) > 0

32:

33: def addmember(self, name):

34: self.family.append(name)

35:

36: def removemember(self, arg):

37: if len(self.family) > 0:

38: if type(arg) == type(1):

39: self.removemember_int(arg)

40: elif isinstance(arg, types.StringType):

41: self.removemember_str(arg)

42:

43: def removemember_int(self, index):

44: member = self.family[index]

45: del self.family[index]

46: return member

47:

Listing 5.3 (continued)

07 0672319942 CH05 11/15/00 11:38 AM Page 215

216 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

48: def removemember_str(self, name):

49: for member in self.family:

50: if member == name:

51: del self.family[self.family.index(member)]

52: return member

53:

54: def __getitem__(self, index):

55: member = self.family[index]

56: return member

57:

58: class Leader(Employee):

59: “Company’s Leader of the employees”

60: def __init__ (self, name):

61: Employee.__init__ (self, name, 1500.00)

62: def job(self):

63: print self.name, “supervises who writes Python code.”

64:

65: def totalemployee():

66: return Employee._employee_employees

Line 10: Defines the Employee class.

Line 13: Class variable __employees.

Line 19: Increments the number of employees.

Line 31: Returns a logical value (0 or 1).

Lines 36-41: Implements polymorphism by enabling the user to enter both string and
integer values.

Lines 43-52: Helper methods for the polymorphism implementation.

Line 54: Enables the slicing of employees instances.

Line 58: Defines a subclass Leader that inherits attributes from the Employee class.

Lines 60-63: The __init__() and the job() methods are overwritten.

Line 65: Provides a function that returns the total number of employees who are
currently part of the class.

The following interaction shows how the classes must be used.

>>> import company

>>> andre = company.employee(“Andre”) # Creates an employee instance

Listing 5.3 (continued)

07 0672319942 CH05 11/15/00 11:38 AM Page 216

217CHAPTER 5 Object-Oriented Programming
Code Examples

>>> print andre

employee: Andre

>>> print andre.salary

500

>>> andre.raisesalary(10) # Raises his salary in 10 percent

>>> andre.salary

550.0

>>> andre.job() # Shows his job description

Andre writes Python code.

>>> andre.hasfamily()

0

>>> andre.addmember(“Renata”) # Add a member to his family

>>> andre.addmember(“Joao Pedro”) # Add a member to his family

>>> andre.addmember(“Rebecca”) # Add a member to his family

>>> andre.hasfamily() # Returns 1 or 0

1

>>> andre.family

[‘Renata’, ‘Joao Pedro’, ‘Rebecca’]

>>> andre.removemember(“Joao Pedro”) # Remove string member from list

>>> andre.family

[‘Renata’, ‘Rebecca’]

>>> andre.removemember(“Renata

>>> andre.family

[‘Rebecca’]

>>> andre.removemember(0) # Remove index member from list

>>> andre.family

[]

>>> andre.addmember(“Joao Pedro”)

>>> andre.addmember(“Renata”)

>>> andre.addmember(“Rebecca”)

>>> andre[0]

‘Joao Pedro’

>>> andre[1

‘Renata’

>>> andre[2]

‘Rebecca’

>>> company.totalemployee()# Shows the total number of employees

1

>>> renata = company.employee(“Renata”)

>>> company.totalemployee()

2

>>> Joao = company.Leader(“Joao Pedro”) # Creates a leader instance

07 0672319942 CH05 11/15/00 11:38 AM Page 217

218 PYTHON DEVELOPER’S HANDBOOK

PART I Basic Programming

>>> Joao.salary

1500.0

>>> Joao.job()

Joao Pedro makes food

>>> company.totalemployee()

3

>>>

07 0672319942 CH05 11/15/00 11:38 AM Page 218

PART II

Advanced Programming

CHAPTER

6 Extending and Embedding Python

7 Objects Interfacing and Distribution

8 Working with Databases

9 Other Advanced Topics

08 0672319942 Pt 2 11/15/00 11:38 AM Page 219

08 0672319942 Pt 2 11/15/00 11:38 AM Page 220

CHAPTER 6

Extending and Embedding
Python

What is your name? ... What is your quest? ... What is your favorite
color?

The information provided in this chapter is a big step for those
who want to be highly specialized in Python programming. It
demonstrates how you can create Python extension modules in
C and C++, and how you can embed Python objects in other
non-Python applications.

Extending and Embedding Python

Python has the capability to glue applications together. No
doubt this is one of Python’s most important and well-known
features. The reason for that is mostly because Python provides
a two-way communication channel to C by supporting both
embedding and extending functionality. Whenever you use
Python code to call C code, you are extending Python. On the
other hand, if you use C code to call Python code, you are
embedding Python. Even though these features can bring great
results to your application, most programmers never need to
use these Python capabilities. Well, most programmers will
have to use the results of someone else extending Python.

We already know that Python can be used to write simple code
in a shorter time. However, we can also use C/C++ code to
provide efficient and fast data processing, such as create built-in

D E V E L O P E R ’ S H A N D B O O K

09 0672319942 CH06 11/15/00 11:38 AM Page 221

222 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

modules containing functions, variables, exceptions; define new built-in object types in
C; and call C library functions and system calls.

Python has a good relationship with C because Python’s interpreter is written in C,
and since the beginning, the interpreter has been ready to work with extension
modules. Furthermore, the fact that C is supported on almost all platforms makes
Python a good choice between cross-platform languages. By writing extension
modules in Python, you can generate tight C/C++ interfaces that can be used both in
production environments and in efficient prototype testing wrappers.

Currently, many Python-contributed modules (implemented as C extensions) provide
interfaces to many different system components. Those extension modules allow
Python to talk to already existing subroutine libraries, to native application
programmer interfaces, and to special-purpose devices. They are imported and
handled the same as any other Python module written in Python.

The extension modules are used mostly to add new functionality to Python when
there is no other way to interface Python with a particular system or hardware.
Sometimes, when Python code is inefficient, extension modules are also used to boost
performance.

If you need to call Python routines from inside your application, you can use the
embedding functionality to have them called by your application.

In order to write Python extensions, you must have the source code for the Python
interpreter and access to a C or C++ compiler. If you are running Windows, your
compiler choice should be Microsoft Visual C++ version 5 or later. Note that most Linux
distributions have a package that contains all the necessary files needed for compiling
extensions, so you don’t need a full source distribution in this case. On Red Hat like
systems, this package is called python-devel.

The Python official documentation and the links that are listed throughout this
chapter are a good source of information about this topic.

Embedding and Extending the Python Interpreter:

http://www.python.org/doc/current/ext/ext.html

Some people using Win32 claim to have successfully used the Free Borland Compiler
to compile Python extension modules.

Free Borland Compiler:

http://www.borland.com/bcppbuilder/freecompiler/

09 0672319942 CH06 11/15/00 11:38 AM Page 222

223CHAPTER 6 Extending and Embedding Python
Extending

Some people also successfully used GNU gcc with the mingw32 runtime. There is
some info at http://starship.python.net/crew/kernr/mingw32/Notes.html

The Python/C API

Python provides an intuitive and clean C Application Programmers Interface (API)
that exposes the interface to the Python runtime system. This API provides a great
number of functions to manipulate Python objects and built-in types from C and C++.
Most of the functions work in much the same way as they would when called from the
interpreter.

To include this API in your C/C++ program, you just need to add the header
”<Python.h>” to your source code.

Internally, this header file includes both Python and C header files, including:
<stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. Therefore, you don’t need to
include these again once you include “<Python.h>”.

Python/C API Reference Manual (This link takes you to the official and latest
documentation about the Python/C API.):

http://www.python.org/doc/current/api/api.html

Check Appendix A, “Python/C API” of this book for more details and for a complete
list of the interface functions provided by the Python/C API.

Extending

Because Python cannot access C/C++ functions in a straightforward way, it is necessary
to handle the conversion between Python and C/C++ data types when putting them to
work together. That is when we use the Python extension modules. These extensions
work like a thin wrapper of functions written in C/C++ that are necessary to bring the
C/C++ functionality to the developer.

It is widely known that interpreted languages execute intensive applications slower
than compiled languages. As a result, it is a good choice to implement as extension
modules the application routines that need to run fast, such as network access,
database manipulation, and routines that intensively use the graphical interface.

09 0672319942 CH06 11/15/00 11:38 AM Page 223

224 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Keep in mind that you always have to think about whether it is really necessary to
implement routines as extension modules. Are you sure that the processing speed will
get better by calling C functions instead of just using plain Python?

Before starting to implement anything in C, I suggest that you analyze and test your
Python code. Check to see whether it can be optimized. Profile it, and only if you find
some big problem, create C extensions. As an example, if you have the execution time
of a function that only accounts for 1% of the program execution time, you have only
reduced total execution time by 0.5%.

And remember, before you implement some surreal extension, to first check the
Python distribution and the contributed modules. What you need might already be
there.

Some good links to where you can check for existing modules are

The Python contributed modules page at

http://www.python.org/download/Contributed.html

The Vaults of Parnassus collection of Python resources at

http://www.vex.net/~x/parnassus/

The extension modules should be used to write specific operations, and not complete
applications. By doing this, you will spend less time developing the wrapping
interfaces.

The next two links provide a good source of information about writing an extension
module:

“How to Write a Python Extension,” by Michael P. Reilly:

http://starship.python.net/crew/arcege/extwriting/pyext.html

“Extension Classes, Python Extension Types Become Classes,” by Jim Fulton:

http://www.digicool.com/releases/ExtensionClass/

Creating New Extensions

I presume that if you came this far, you are sure that you want to use extension
modules. So, let’s start developing something.

09 0672319942 CH06 11/15/00 11:38 AM Page 224

225CHAPTER 6 Extending and Embedding Python
Extending

First, in many places, you will see the naming convention for extension module files
defined as modulenamemodule.c. Second, all extension modules must include the
Python/C API “<Python.h>” system header file.

The next example is an extension module called helloworldmodule.c that is used to
demonstrate how easy it is to create a Python extension.

/* File: helloworldmodule.c */

#include “<Python.h>”

/* external function*/

static PyObject *sayhello(PyObject *self)

{

return Py_BuildValue(“s”,”Hello Python World!”);

}

/* name binding table */

static PyMethodDef hellomethods[] = {

{“say”, sayhello, METH_VARARGS },

{NULL, NULL} /* sentinel */

};

/* initialization function*/

DL_EXPORT(void) inithello()

{

Py_InitModule(“hello”, hellomethods);

}

After linking this module to your interpreter, it becomes promptly accessible for your
use (see Figure 6.1).

It is important to stick to the naming convention because when the module is first
imported, the initmodulename() function is called.

Every time you implement a C function that Python will call, you have to define two
arguments. The first one is called self, and it is a pointer to the called object. The
argument self is used when implementing built-in methods to point to the bound
object. When a function is implemented, self is set to NULL.

The other argument is usually called args, which is a pointer to a tuple object that
contains the arguments of the function.

09 0672319942 CH06 11/15/00 11:38 AM Page 225

226 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Check out another example. This one passes arguments between Python and C.

/* File: systemmodule.c*/

#include “<Python.h>”

static PyObject *system_command(PyObject *self, PyObject *args)

{

int return_status;

char *program;

char *argument;

static char statement[255];

if (!PyArg_ParseTuple(args, “ss”, &program, &argument))

return NULL;

sprintf(statement, “%s %s”, program, argument);

return_status = system(statement);

return Py_BuildValue(“i”, return_status);

}

static PyMethodDef systemmethods[] = {

{“command”, system_command, METH_VARARGS},

Figure 6.1

As you can see, there is no difference between the way you use an extension module and the

other modules.

09 0672319942 CH06 11/15/00 11:38 AM Page 226

227CHAPTER 6 Extending and Embedding Python
Extending

{NULL, NULL}

};

DL_EXPORT(void) initsystem() {

Py_InitModule(“system”, systemmethods);

}

The next set of instructions calls the command() function that is part of the system
module, which is stored in the systemmodule.c file.

>>> import system

>>> system.command(“dir”,”|more”)

All interface items are Python objects. Thus, function arguments and return values are
pointers to PyObject structures. PyObjects are C representations of real Python
objects. All PyObjects have a reference count.

You shouldn’t declare a variable of type PyObject. Instead, you have to declare
PyObject * pointers to the actual storage of the object. Because all Python objects
have a similar behavior, they can be represented by a single C type (PyObject *). Note
that a variable of type PyObject can be defined, but it won’t be of much use.

In order to implement basic extensions, you essentially use the following commands:

PyArg_ParseTuple(args, format, arg1 [, arg2 [,...]])—Checks the argument
types and converts them to C values. It returns a true value when the checking and
the conversion doesn’t return any errors.

PyArg_ParseTuple—Used to parse the PyObject that contains the function
arguments (args). The second argument is a format string that lists the object types
that you expect to collect, and all the other arguments are pointers to be filled with
values from the parsing operation. Note that you can add the function name to the
format string to make error messages a bit more informative.

Py_BuildValue(format, Cvar1 [, Cvar2 [,...]])—Converts C objects into
Python Objects based on the formatting string. Py_BuildValue is mostly used when
it is necessary to return values to the Python interpreter.

09 0672319942 CH06 11/15/00 11:38 AM Page 227

228 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Tip
C functions that return a void argument must return the Python type called None.

Py_INCREF(Py_None);

return Py_None;

For this other example, let’s create a function that takes two Python objects and
returns a pointer to a Python object.

/* File: divisionmodule.c*/

#include “<Python.h>”

static PyObject *division_function(PyObject *self, PyObject *args)

{ PyObject *result = NULL;

long a, b;

if (PyArg_ParseTuple(args, “ii”, &a, &b)) {

result = Py_BuildValue(“i”, a / b);

}

return result;

}

static PyMethodDef divisionmethods[] = {

{“divide”, division_function, METH_VARARGS},

{NULL, NULL},

};

DL_EXPORT(void) initdivision()

{

Py_InitModule(“division”, divisionmethods);

}

Importing an Extension Module

As you could see in the previous example, in order to allow Python to import your
module, a few steps are required.

1. Create a method array. Each element of this array is a structure that contains: the
function’s name to be exported to the Python interface, the C function’s name
and a indicator that shows how arguments must be passed. Each function of the

09 0672319942 CH06 11/15/00 11:38 AM Page 228

229CHAPTER 6 Extending and Embedding Python
Extending

module to be exported to Python must be an element in this array. Note that the
last element of the array works as a sentinel, and it must contain NULLs.

static PyMethodDef systemmethods[] = {

{“command”, system_command, METH_VARARGS},

{NULL, NULL}

};

The third argument of each array entry can be

METH_VARARGS means that the arguments are in a tuple format.

METH_VARARGS | METH_KEYWORDS indicates that keyword arguments are also
allowed. It will just pass a NULL for the extra argument if no keyword arguments
are given.

The modulenamemethods[] array has a fourth optional element, which is a
documentation string.

2. Create the initialization function of the module. This function should be
declared as non-static. All the others should be defined as static in order to avoid
name conflicts with other modules.

The initmodulename() function is automatically called by the interpreter. The
DL_EXPORT() definition is used to expose the module entry point. Note that the
DL_EXPORT macro only does something on the Win32 platform.

DL_EXPORT(void) initsystem() {

Py_InitModule(“system”, systemmethods);

In this example, the Py_InitModule creates a “system” module object based on the
array systemmethods.

You can verify that by checking the sys.modules dictionary after importing the
extension module.

Formatting Strings

Whenever you use the PyArg_ParseTuple() or the Py_BuildValue() function, you
must follow a mechanism that is based on some formatting tables, which are
mentioned next, in order to make the correct conversion between Python types and C
types.

Both functions check the arguments type by looking at a formatting string. All the
elements of the formatting string must match in type and number with the variables
that are also part of the function’s list of arguments.

09 0672319942 CH06 11/15/00 11:38 AM Page 229

230 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Sometimes, it isn’t strictly necessary to have both sides (C and Python) matching in
type. The reality is that the receiving field only has to be big enough to fit the received
value; hence, the Python type called float is easily stored by a C double variable. Of
course, using a C type that doesn’t match the format character will cause problems
that might only affect some platforms.

The literals |, :, and ; have special meanings when placed inside a formatting string.

|—The remaining arguments in the formatting string are optional. The C variables
will keep their original values in case they aren’t assigned to any arguments. You
should make sure that the variables are initialized for optional arguments.

:—The string after the colon is the function name to be called in case of error
messages.

;—The string after the semicolon is the user error message that must substitute for
the original error message.

Tip
A given formatting string must contain only one | with : or ; because : and ; are
mutually exclusive.

Table 6.1 covers all the elements that can be part of a PyArg_ParseTuple’s formatting
string. Just to remind you, PyArg_ParseTuple() is used to convert Python objects into
C objects.

Table 6.1 A PyArg_ParseTuple’s Formatting String Elements

Element Python Type C Type Notes

s string char * The C string is NULL terminated;

The Python string cannot be None
and it cannot contain embedded
NULLs, otherwise, a TypeError
exception is raised.

s# string char *, int Pointer to the character string and
its length. Note that s# allows
embedded NULLs in the string.

z string or None char * Python string can be None. If that
happens, the C pointer is set to NULL.

z# string or None char *, int Similar to s#.

b integer char Stores a tiny int (8-bit integer) in a
char.

09 0672319942 CH06 11/15/00 11:38 AM Page 230

231CHAPTER 6 Extending and Embedding Python
Extending

h integer short int

i integer int

l integer long int

c string of char

length 1

f float float

d float double

D complex Py_complex

O object PyObject * The C variable (of type PyObject *)
stores an s pointer to the address of
the Python object. The object
reference count isn’t increased.

O! object typeobject, Similar to O, but it also looks at the
PyObject * address of the Python-type object

that specifies the required type. If
the Python object doesn’t match the
required type, a TypeError exception
is raised.

O& object function, variable Converts a Python object into a C
variable of arbitrary type (void *),
using a function.

It is equivalent to: status =
function(object, variable).

The returned status should be 1 for
success and 0 for failure.

S string PyStringObject * Similar to O, but it expects a string
object. It raises a TypeError
exception otherwise.

Note
Using anything other than the given types could very easily cause problems on some
architectures.

If the Python object is a tuple, the number of matching variables passed to the C
function must be equal to the number of formatting elements informed. A tuple is
indicated in the formatting string by placing the formatting elements between
parenthesis.

Table 6.1 (continued)

Element Python Type C Type Notes

09 0672319942 CH06 11/15/00 11:38 AM Page 231

232 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The Py_BuildValue function is used to return values to the Python program that has
called the extension module. Its functionality is similar to PyArg_ParseTuple.

This function doesn’t create a tuple of one element automatically, unless you enclose
the single formatting element in parentheses.

Table 6.2 covers the Py_BuildValue function and all the elements that can be part of
its formatting string. Just to remind you, this function is used to convert C objects into
Python objects.

Table 6.2 A Py_BuildValue’s Formatting String Elements

Element C type Python type Notes

s char * string If the C string pointer is NULL,
None is returned.

s# char *, int string Converts the C pointer to a
character string and its length
into a Python string object. If
the C pointer is NULL, None is
returned.

z char * string or None Similar to s.

z# char *, int string or None Similar to s#.

b char integer

h short int integer

i int integer

l long int integer

c char string of
length 1

f float float

d double float

O PyObject * object It increments the reference
count of the transported object.

O! typeobject,

PyObject * object

O& function, object It returns a Python object, or
variable NULL if an error occurs.

S PyObject * object Same as O.

N PyObject * object Similar to O, except that the
reference count isn’t
incremented.

09 0672319942 CH06 11/15/00 11:38 AM Page 232

233CHAPTER 6 Extending and Embedding Python
Extending

The following list complements the previous table by showing how Python tuples,
lists, and dictionaries are generated.

• Matching items between parenthesis are converted into a Python tuple.

• Matching items between square brackets are converted into a Python list.

• Matching items between curly braces are converted into a Python dictionary.
Each consecutive pair of values forms a dictionary entry in the format (key,
value).

Exporting Constants

In addition to methods, you can also export constants back to Python. You just need to
bind the constant name to the module namespace dictionary.

/* File: pimodule.c*/

#include “<Python.h>”

static PyMethodDef pimethods[] = {

{NULL, NULL}

};

DL_EXPORT(void)

initpi()

{ PyObject *module, *dictionary;

PyObject *pivalue;

module = Py_InitModule(“pi”, pimethods);

dictionary = PyModule_GetDict(module);

pivalue = PyFloat_FromDouble(3.1415926);

PyDict_SetItemString(dictionary, “pi”, pivalue);

Py_DECREF(pivalue);

}

Error Checking

You must indicate errors in your extension module by returning NULL to the interpreter
because functions signal errors by returning NULL. If your function has no return at all,
you need to return the None object.

return Py_BuildValue(“”);

09 0672319942 CH06 11/15/00 11:38 AM Page 233

234 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

or

Py_INCREF(Py_None);

return Py_None;

In case you need to raise an exception, you can do that prior to the return NULL
statement. Note that returning NULL without raising an exception is bad.

Handling Exceptions
Exceptions work as functions in the Python/C API. For example, to raise an
IndexError exception, you just need to call PyExc_SetString() prior to the return
NULL statement.

Extension modules also support the creation of new exception types.

/* File: testexceptionmodule.c*/

#include “<Python.h>”

static PyObject *exception = NULL;

static PyMethodDef testexceptionmethods[] = {

{NULL, NULL}

};

DL_EXPORT(void)

inittestexception()

{ PyObject *module, *dictionary;

module = Py_InitModule(“testexception”, testexceptionmethods);

dictionary = PyModule_GetDict(module);

exception = PyErr_NewException(“testexception.error”, NULL, NULL);

PyDict_SetItemString(dictionary, “error”, exception);

}

If you need to raise your just-created exception, just call it:

PyErr_SetString(exception, “I could not do that”);

Check Appendix A for more information about the Python/C API exception functions,
including how to handle threads in your extensions.

09 0672319942 CH06 11/15/00 11:38 AM Page 234

235CHAPTER 6 Extending and Embedding Python
Extending

Reference Counting

We all know that programmers are responsible for dynamic memory allocation and
deallocation in C and C++.

However, Python extensions don’t benefit from all the security provided by the Python
runtime system. There are a lot of things that you have to be worried about. The main
thing is reference counting.

The core Python counts references to every Python object that is created, which
enables it to deallocate an object when it doesn’t have any more references.

If an object’s reference count reaches 0, this object is marked for deallocation. If this
same object references other objects, their references are decremented too. The code
for deallocating referenced objects occurs in the object destructor.

The counter is incremented when a reference to the object is created, and it is
decremented when the reference is deleted. If the reference count becomes zero, the
object is released. That’s how Python works.

However, Python extensions don’t have this functionality built in. You have to
increment (Py_INCREF) and decrement (Py_DECREF) the references by yourself.

You can be sure that your reference counting is wrong if your system crashes when
you either return a value from the extension module or when you exit the application.

Too few Py_INCREFs can cause the application to freeze at an unspecific time, whereas
too few Py_DECREFs cause memory leaks that drive the application to use more and
more memory for the process.

An object reference count is defined as the number of owned references to it. The
owner of a reference is responsible for calling Py_DECREF(). It is also possible to
borrow a reference to an object. The borrower should neither call Py_DECREF() nor
use the reference after the reference owner has disposed of it. If you are borrowing a
reference, make sure that you are absolutely certain the owner will not release the
reference while you are using it.

To make a borrowed reference to become an owned reference, you just need to call
Py_INCREF() for the mentioned object.

Take a look at following lines of code:

PyObject *O;

if (! PyArg_ParseTuple(args, “O”, &O)) return NULL;

You don’t need to call Py_DECREF() before leaving the module that implements this
kind of code because PyArg_ParseTuple() returns borrowed references, and releasing

09 0672319942 CH06 11/15/00 11:38 AM Page 235

236 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

references that you don’t own can cause you severe problems. Py_INCREF and
Py_DECREF are implemented as macros, so only pass a variable as the argument because
the argument is evaluated twice after macro expansion.

Python Official Documentation—Reference Counts

http://www.python.org/doc/current/api/refcounts.html

“Debugging Reference Count Problems,” by Guido van Rossum

http://www.python.org/doc/essays/refcnt.html

Building Extensions in C++

Python has a C-based interpreter, and it becomes a bit harder to adjust code to
compile it as C++ because Python has some restrictions when it comes to creating
extension modules using C++. However, there are some things that you can do in
order to reduce your problems. The next hints will help you to link Python to a C++
compiler.

The problems depend on the C++ compiler that you are using. However the most
common ones are discussed in the following paragraphs.

If the Python interpreter is compiled and liked by a C compiler, you cannot use global
or static C++ objects with constructors. Unless you use a C++ compiler. But, you can
initialize the globals in the module’s init function instead.

You need to place extern “C” { ... } around the Python include files. You need to
define the Python API as a C segment to the C++ compiler as well.

extern “C”{

#include “<Python.h>”

}

If the header files for Python on your machine already include the extern “C” { ... }
stuff, adding an extra extern “C” block will cause an error on most compilers (as the
extern “C” syntax is not valid C).

Functions that are going to be called by the interpreter (in particular, module initial-
ization functions) have to be declared using extern “C”.

extern “C” {

DL_EXPORT(void)

initmodulename()

{

Py_InitModule(“modulename”, modulename_methods);

09 0672319942 CH06 11/15/00 11:38 AM Page 236

237CHAPTER 6 Extending and Embedding Python
Compiling and Linking Extension Modules

}

}

This same declaration could also be written as

extern “C” DL_EXPORT(void)

initmodulename()

{

Py_InitModule(“modulename”, modulename_methods);

You have these same concerns when building a dynamic module. In fact, there are
more concerns (for instance, the DL_EXPORT stuff isn’t required if the module is
statically linked to the interpreter).

You can use Python to access many C++ class libraries. You just need to have the right
wrapper that provides the necessary access to the libraries.

Tip
When embedding Python in your C++ code, it isn’t necessary to recompile Python
itself using C++. However, if you want to use C++ extension modules, the Python
interpreter might have to be compiled with a C++ compiler though recent Linux
distributions should work fine without a recompile.

For more information, check out

“Binding Python to C++,” by Guido van Rossum

http://www.python.org/workshops/1994-11/C++Python.txt

Compiling and Linking Extension Modules

Two options are available for building Python extension modules. The first one
compiles and links the module into the interpreter. This option makes the module
always available to the interpreter.

The second option doesn’t require that you recompile the interpreter because it
dynamically links the modules to the system.

Linking Static Extensions to the Interpreter

Before starting, make sure that you have already compiled the interpreter’s source code
(refer to Chapter 17, “Development Tools,” for more details). Building and installing
Python before adding new modules is essential to have the libraries and other files in
the right places.

09 0672319942 CH06 11/15/00 11:38 AM Page 237

238 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Static Extensions on UNIX
On UNIX, Python modules written in C are easily identified by looking at the
/usr/lib/Python1.5 directory. Most of the time, they are the shared library files with
the .so extension. Although, if you are using HPUX, the extension is .sl, and on
some others it is just .o.

The next few steps show how to create static extensions on UNIX.

1. You need to copy your module to the Modules directory.

2. You have to add the following entry to the end of the /modules/Setup.in config-
uration file, which is located in the Python source tree. This file has the list of all
the external libraries needed by the interpreter.

static

modulename filename

For example,

hello /mnt/hda/python/helloworldmodule.c

If your extension module requires additional libraries, add the argument
-llibraryname at the end of the line.

For example,

hello /mnt/hda/python/helloworldmodule.c -l/mnt/hda/python/auxmodule.c

The *static* flag builds the modules as static modules. The other option is to use the
shared flag, which means that they have to be built as shared modules (known as
DLLs on Windows).

The last step is to recompile Python as normal to include the extra module by typing
./configure and make in the top of the Python Source tree. The Python interpreter is
rebuilt after that.

To execute the new interpreter and test your new extension module, just call it like
this:

./python

09 0672319942 CH06 11/15/00 11:38 AM Page 238

239CHAPTER 6 Extending and Embedding Python
Compiling and Linking Extension Modules

Static Extensions on Windows
The following instructions are based on the use of Microsoft Visual C++ version 5.

First, you need to inform Python’s include path. To do that, go to Tools, Options,
Directories (see Figure 6.2).

Figure 6.2

You need to inform the include path.

It is also necessary to inform the library’s location (see Figure 6.3). You need to add the
python15.lib directory to your Tools, Options, Directories, Library files.

Now, the rest is easy.

1. Using a text editor, open the \PC\config.c file.

2. Look for the first comment. You need to add an external reference to the init
function of your module.

/* -- ADDMODULE MARKER 1 -- */

extern void initmodulename();

3. Locate the next comment. You need to add the module name and the init
function.

/* -- ADDMODULE MARKER 2 -- */

{“modulename”, initmodulename},

09 0672319942 CH06 11/15/00 11:38 AM Page 239

240 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Figure 6.3

You need to inform the python15.lib path.

4. Using a text editor, open the /PCbuild/python15.dsp file.

5. Go to the end of the file. Locate the entry that references the yuvconvert.c
source file. You need to add the location of your module’s source file just before
that entry.

SOURCE=..\Modules\yourmodulenamemodule.c
End Source File

Begin Source File

SOURCE=..\Modules\yuvconvert.c

End Source File

End Target

End Project

6. Using Microsoft Visual C++, open the /PCbuild/pcbuild.dsw workspace.

7. Select the Batch Build option and say Rebuild All.

By default, the EXE file and the DLLs will be saved in your /Pcbuild/ directory.

09 0672319942 CH06 11/15/00 11:38 AM Page 240

241CHAPTER 6 Extending and Embedding Python
Compiling and Linking Extension Modules

Linking Dynamic Extensions to the Interpreter

Now look at what you should do in order to create dynamic extension modules.

Dynamic Extensions on UNIX
The next few steps show how to build Dynamic extensions on UNIX.

1. Put the reference to your module in the Setup.in file. If your module references
other source files, you should include them too. You might want to create a new
Setup.in file in the directory containing your module.

shared

spam helloworldmodule.c

2. Copy the Makefile.pre.in file to the directory where your module is located.

3. Type

make -f Makefile.pre.in boot

make

This process creates a helloworldmodule.so file.

You could also try

gcc -c -I/usr/local/include/python1.5 helloworldmodule.c

gcc -shared helloworldmodule.o -o helloworldmodule.so

Dynamic Extension on Windows
Next, how you can build a Dynamic Extension on Windows is illustrated.

1. Create a directory in the Python top-level directory. Give it the name of your
module.

For example, c:\python\Python-1.5.2\pimodule

2. Copy your modulenamemodule.c file to this directory.

3. Copy the files example.def, example.dsp, example.dsw, and example.mak, which
are located at the /PC/example_nt directory of the standard distribution to your
new directory. Don’t forget to rename the prefix of these files in order to match
the name of your module.

4. On each file, replace the occurrences of example with your module name.

5. Choose the Build Menu option in order to generate your modulename.dll.

09 0672319942 CH06 11/15/00 11:38 AM Page 241

242 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

A subdirectory was created underneath your working directory. This subdirectory,
called Release, contains your modulename.dll.

A tool created by David Ascher is very useful to create Python extension modules. It
uses a UNIX Setup.in file to generate and build a Microsoft Visual C++ project. This
tool is called compile.py.

To use it, you just need to put your C module and the compile.py file in the same
directory, and execute the tool. When fired, the program creates a MS Visual C++
project (.dsp extension) and the workspace (.dsw extension).

Along with those files, it also creates a subdirectory called /pyds in which it stores the
python extension module (.pyd extension).

In order to use this extension in your application, the interpreter needs to be able to
locate the .pyd file by looking at the sys.path’s variable.

compile.py is available at

http://starship.python.net:9673/crew/da/Code/compile

Installing and Using Dynamic Modules
You have four simple choices:

• Place your module.so or module.dll in a directory that is defined by your
PYTHONPATH environment variable. The site-packages directory under the lib
directory is a good place to put your extension modules.

• At runtime, you can add the extension module’s path to sys.path.

• On Windows, you can place the extension module in the same directory of the
python.exe file.

• Put the extension in the current directory when you start Python.

You won’t find any difference while running dynamic modules. They act exactly the
same way as the static modules that are linked to the interpreter.

Accessing Generic DLLs
Sam Rushing has created an extension module called calldll that enables Python to
call any function that is part of a Windows DLL. It doesn’t matter whether the DLL is a
Python extension.

The problem to remember is that errors caused by non-Python extension DLLs don’t
return exception codes but error messages.

09 0672319942 CH06 11/15/00 11:38 AM Page 242

243CHAPTER 6 Extending and Embedding Python
SWIG—The Simple Wrapper Interface Generator

With this module you can call any function in any DLL. This means that you can do
just about anything on Win32. This module includes a library that gives access to lots
of the system GUI features, and a ‘callback’ generator for i386, which lets external
functions call back into Python as if it were C. (Much of the Win32 API uses
callbacks.)

Along with that, you can access ODBC by directly calling functions in odbc32.dll
using a wrapper module called odbc.py. The ODBC module is implemented using
calldll, and it has a few extra practical pieces; code for managing data sources,
installing ODBC itself, and creating and maintaining Jet (Microsoft Access) databases.
It has also been tested with ODBC drivers from Oracle and Objectivity. Of course,
using calldll destroys any platform or architecture independence your program may
have had.

You can see more details at http://www.nightmare.com/software.html.

SWIG—The Simple Wrapper Interface Generator

SWIG (Simple Wrapper and Interface Generator) is an automated tool create by David
Beazley used to write interfaces between Python and existing C libraries. These
interfaces can contain several single functions.

The programmer doesn’t have to write any special wrapping functions to provide the
glue between the Python scripting language and the C functions.

SWIG works by reading an interface file that contains function and method
prototypes. It automatically does the necessary type conversion, checks the code for
error, produces a C file, compiles the file, and builds it into a shared object file.

It works by taking the declarations commonly found in C/C++ header files and using
them to generate the glue code (wrappers) that scripting languages need to access the
underlying C/C++ code.

SWIG is better suited as a mechanism for controlling a variety of C programs because
it enables someone to combine bits and pieces of completely different software
packages without waiting for someone else to write a special purpose module.

The handling of datatypes when using SWIG for prototyping and control application
is very easy because whenever SWIG finds an unknown datatype, it simply assumes
that it is some kind of complex datatype. Consequently, wrapping a complex C
program doesn’t imply too much work.

SWIG provides a convenient way of building Python interfaces to libraries.

09 0672319942 CH06 11/15/00 11:38 AM Page 243

244 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

You just need to write simple interface definitions, which SWIG uses to generate the
C program that conforms to the Python/C extension guidelines.

SWIG makes it even easier to use scripting languages by automating the process of
connecting scripting languages to C/C++ code.

Many reasons you should try SWIG are as follows:

You can easily replace the main() function of a C program with Python’s
interpreter.

C/C++ code is easily tested because you can call C functions and libraries directly
from your scripting environment.

Debugging your C code also becomes easier once you use Python’s interpreter.
Remember that you don’t need to change your C code in order to use SWIG.

SWIG can integrate different C/C++ programs together by turning them into
extension modules. After the extensions are created, Python can combine and use
them to generate new applications.

SWIG understands and parses ANSI C/C++ syntax.

The output of SWIG is a fully functional scripting language module.

As SWIG is designed to work with existing C/C++ code, it will be rarely necessary
to change your existing programs.

Your C/C++ code remains separate from your Python code.

SWIG output can be freely extended and customized.

Now, the most interesting thing is that you don’t need to master all the details
about the Python/C API in order to use the basics of SWIG to create your Python
extension modules. SWIG automates the process of generating a Python extension
based on the header of the functions that you want to export.

Take a look at the following example and see how simple it is to generate a wrapper
file. We will first create an input file, and call it helloworld.i.

// file: helloworld.i

%module helloworld

%{

#include “helloworld.h”

%}

char *say();

09 0672319942 CH06 11/15/00 11:38 AM Page 244

245CHAPTER 6 Extending and Embedding Python
Other Wrappers

Now, we will use SWIG to generate the wrapper file. We need to pass an argument to
SWIG informing that the wrapper must be created for the Python language. That’s
because SWIG works with many different languages.

% swig -python helloworld.i

Generating wrappers for Python...

%

As you can see, a wrapper file called helloworld_wrap.c was created for you.

More information about SWIG can be found at the following Web pages:

SWIG official Web site:

http://www.swig.org

SWIG Users Guide—Chapter 9, “SWIG and Python”:

http://www.swig.org/Doc1.1/PDF/Python.pdf

“Using SWIG to Control, Prototype, and Debug C Programs with Python”:

http://www.swig.org/papers/Py96/python96.html

“Feeding a Large-scale Physics Application to Python”:

http://www.swig.org/papers/Py97/beazley.html

“Interfacing C/C++ and Python with SWIG”:

http://www.swig.org/papers/PyTutorial97/PyTutorial97.pdf

“The Benefits of Scripting Languages,” by John Ousterhout:

http://www.scriptics.com/people/john.ousterhout/scripting.html

Other Wrappers

Besides SWIG, there are other very interesting wrapper projects, such as SIP, which is
specifically designed for integrating C++ class libraries with Python by generating
compilable C++ code from a set of specification files that are similar to C++ header
files.

“SIP—Python Bindings for Qt and KDE,” by Phil Thompson:

http://www.river-bank.demon.co.uk/software/

09 0672319942 CH06 11/15/00 11:38 AM Page 245

246 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

“Python + KDE Tutorial,” by Boudewijn Rempt:

http://www.xs4all.nl/~bsarempt/python/tutorial.html

“SCXX (Simplified CXX) is a lightweight C++ wrapper for dealing with
PyObjects,” by Gordon McMillan:

http://starship.python.net/crew/gmcm/scxx.html

“CXX—A facility for creating Python extensions in C++,” by Paul F. Dubois:

http://www.foretec.com/python/workshops/1998-

11/proceedings/papers/dubois/dubois.html

Note that this last document is very instructive because it shows how to create new
object types in Python by using CXX.

Embedding

We will now talk about how to embed Python inside other programs. Python offers a
clean interface that allows embedding to occur.

You might be asking yourself why would you want to do it. Well, the answer is quite
simple; as a scripting language, Python can wire its interpreter into other programs to
enable you to make calls to specific Python functions and execute particular Python
statements from them.

Those programs will have the capability to load Python scripts and execute Python
services that belong to specific Python modules. You can also call Python functions
directly from your C code and access the Python objects that are returned by them.

In order to embed Python inside a program, you just need to use the Python API—the
Python EXE is not necessary.

Implementing Callback Functions

Embedding Python allows you to access and use the Python interpreter from inside
your application. But what happens if you need to call back your application functions
from inside Python?

For this reason, it is a good practice to provide a module written in C that exposes an
API related to the application. Therefore, when embedding Python within your
routines, you can make your application communicate both ways with your Python
program by accessing the Python extension modules.

09 0672319942 CH06 11/15/00 11:38 AM Page 246

247CHAPTER 6 Extending and Embedding Python
Embedding

Embedding the Python Interpreter

The next example adds Python functionality to a C program.

// File: embedding.c

#include <stdio.h>

#include <Python.h>

int main(int argc, char **argv)

{

Py_Initialize();

PyRun_SimpleString(“print ‘Hello Python World’”);

printf(“You are my visitor number %i”, args);

Py_Finalize();

return(0);

}

Python provides a set of function calls that provide an interface to the Python
interpreter. The most important ones are

• Py_Initialize—Initializes and allocates the internal resources of the interpreter
in order to start using the API.

• PyRun_SimpleString—Executes Python code strings in the context of the
__main__ module. Each string must be a complete Python command. This high-
level function reads from a character buffer and returns 0 for success and -1
when exceptions occur. Another function called PyRun_String provides more
control of the code execution. The source code of this function is available in
your installation in the Python/pythonrun.c file.

Tip
Remember that you need to inform the new line character at the end of each
command line to make sure that the interpreter validates the command.

• Py_Finalize—Releases the internal resources and shuts down the interpreter.
You should always call this function before leaving the program.

• PyRun_SimpleFile—Executes Python commands that are stored in a file. This
function reads from a FILE pointer.

Check out this other example:

// File: embedding2.c

#include “Python.h”

main(int argc, char **argv)

09 0672319942 CH06 11/15/00 11:38 AM Page 247

248 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

{

Py_Initialize();

PySys_SetArgv(int argc, char **argv);

PyRun_SimpleString(“print ‘Hello Python World’\n”);

PyRun_SimpleString(“print sys.argv\n”);

PyFinalize();

Py_Exit(0);

}

• PySys_SetArgv—This function sets the values for the sys.argv list.

You can access a module written in Python from C by getting a pointer to the module
object as follows:

module = PyImport_ImportModule(“<modulename>”);

If the module hasn’t been imported yet (that is, it isn’t yet present in sys.modules), this
function initializes the module; otherwise it simply returns the value of
sys.modules[“<modulename>”].

It doesn’t enter the module into any namespace—it only ensures that it has been
initialized and it is stored in sys.modules.

You can then access the module’s attributes (that is, any name defined in the module)
using PyObject_GetAttrString() as follows:

attr = PyObject_GetAttrString(module, “<attrname>”);

It is also possible to assign values to variables in the module using the
PyObject_SetAttrString() function.

There is a very straightforward example of embedding Python in a C program in the
file /Demo/embed/demo.c, which is part of your Python distribution source code.

Embedding on UNIX
On UNIX, you must link your C application against the Python interpreter library,
which is called libpython1.5a.

When compiling the yourprogram.c into a object file (yourprogram.o), you need to
specify the directory of the Python distribution.

For example,

gcc -g -c yourprogram.c

09 0672319942 CH06 11/15/00 11:38 AM Page 248

249CHAPTER 6 Extending and Embedding Python
Embedding

Note
You need to make sure that the header files required by your program are correctly
installed on your system.

When compiling the object file into an executable file, you need to include the
libraries and references for any extension modules embedded into the Python
interpreter itself.

Check the Makefile file of the Python interpreter to know the files that must be
mentioned.

Listing 6.1 File: Makefile...

VERSION= 1.5

LIBPYTHON= $(blddir)/libpython$(VERSION).a

LIBS= -lreadline -ltermcap -lcurses -lgdbm -ltk8.0 -ltcl8.0 -lX11 -ldl

SYSLIBS= -lm

MODLIBS= -L/usr/X11R6/lib -I/usr/local/pgsql/include

-L/usr/local/pgsql/lib -lcrypt

ALLLIBS= $(LIBPYTHON) $(MODLIBS) $(LIBS) $(SYSLIBS)

...

All the libraries found in the Makefile file are used as arguments to the function that
compiles the object file, as you can see next.

gcc yourprogram.o /usr/local/contrib/Python-1.5.2/libpython1.5.a

-L/usr/X11R6/lib -I/usr/local/pgsql/include -L/usr/local/pgsql/lib

-lcrypt -lreadline -ltermcap -lcurses -lgdbm -ltk8.0 -ltcl8.0 -lX11

-ld1 -lm -o yourprogram

The last step is to type make to build the application.

Note
In order to compile an extension module for use with the embedded python
interpreter, you just need to compile the module into the executable and make sure
that you call the init function for the module after initializing the interpreter.

Embedding Python in C++

You don’t have to recompile your interpreter. You just need to write your main
program in C++ and use a C++ compiler to compile and link your program.

09 0672319942 CH06 11/15/00 11:38 AM Page 249

250 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Embedding Python in Other Applications

On Windows, Python itself is implemented in a DLL called Python15.dll. Note that
the file Python.exe is a small program that calls all the routines stored in the DLL. This
is a good example showing that it must be easy to embed Python because it already
embeds itself.

Besides all this talk about embedding Python in C and C++ applications, Python can
also be embedded in other applications, such as Delphi. However, note that implicitly,
the embedding process is at the C level too.

Dr. Dietmar Budelsky and Morgan Martinet merged their two separate projects and
created The Python for Delphi project. The purpose of this project is to provide an
interface to the Python language in Delphi.

This project consists of a set of components that wrap the Python15.dll into Delphi.
These components let you easily execute Python scripts, create new Python modules
and new Python types. You can create Python extensions as DLLs and much more.
Currently, it supports Delphi versions 3, 4, and 5.

The Python for Delphi project:

http://www.multimania.com/marat/delphi/python.htm

NSAPI/NSAPY
A real-life example of how Python can be used by other applications is in the case of
embedding Python under Netscape HTTP Servers that support the NSAPI module
protocol.

This marriage brings several add-ons to the Netscape Server mostly because of the
general scripting capabilities acquired from the Python language.

In order to do this embedding, it is necessary to use the Nsapy, which is an extension
that works by embedding the interpreter within Netscape HTTP Servers that use
NSAPI.

NSAPI—The Netscape Server API:

http://oradb1.jinr.ru/netscape/NSAPI/

“Nsapy,” by Gregory Trubetskoy:

http://www.ispol.com/home/grisha/nsapy/nsapy.html

Example of embedding Python under a Netscape Commerce server:

http://starship.python.net/crew/aaron_watters/embed/

09 0672319942 CH06 11/15/00 11:38 AM Page 250

251CHAPTER 6 Extending and Embedding Python
Summary

Summary

This chapter exposes the extending and embedding functionality that gives Python the
credit of possessing the capability to glue applications together.

Whenever you use Python code to call C code, you are extending Python. On the
other hand, if you use C code to call Python code, you are embedding Python.

Python has a good relationship with C because Python’s interpreter is written in C,
and since its beginning, the interpreter has been ready to work with extension
modules.

The extension modules are mostly used to add new functionality to Python when
there is no other way to interface Python with a particular system or hardware.
Sometimes, when Python code is inefficient, extension modules are also used to boost
performance.

If you need to call Python routines from inside your application, you can use the
embedding functionality to have them called by your compiled language.

Python provides an intuitive and clean C Application Programmers Interface (API)
that exposes the interface to the Python runtime system. This API provides a great
number of functions to manipulate Python objects and built-in types from C and C++.

In order to use your new extension modules, you can’t forget to create the initial-
ization function of the module and the method array that assigns the internal function
names with the function names that are exposed in the module’s interface.

The most important functions of an extension module are PyArg_ParseTuple and
Py_BuildValue. They handle all the interfacing between C and Python. Both functions
check the argument’s type by looking at a formatting string. Tables 6.1 and 6.2 (one
for each function) list all the possible formatting strings.

In addition to methods, you can also export constants back to Python. You just need to
bind the constant name to the module namespace dictionary.

You must indicate errors in your extension module by returning NULL to the interpreter
because functions signal errors by returning NULL. You can also use exception functions
defined by the Python/C API. New exceptions can be created and stored at extension
module as well.

Python extensions don’t benefit from all the safety provided by the Python runtime
system. There are a lot of things that you have to be worried about. The main thing is
reference counting, which is handled by the Py_INCREF and Py_DECREF functions.

09 0672319942 CH06 11/15/00 11:38 AM Page 251

252 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

It becomes harder to adjust and compile code as C++ because Python has a C-based
interpreter that has some restrictions when it comes to creating extension modules
using C++.

Two options are available for building Python extension modules. The first one
compiles and links the module into the interpreter. This option makes the module
always available to the interpreter.

The second option doesn’t require that you recompile the interpreter because it
dynamically links the modules to the system.

SWIG is an automated tool create by David Beazley that is used to write interfaces
between Python and existing C libraries. These interfaces can contain several single
functions. The programmer doesn’t have to write any special wrapping functions to
provide the glue between the Python scripting language and the C functions. Besides
SWIG, other applications (such as SIP and SCXX) are suitable for helping
programmers wrap their C code.

While embedding Python in your programs, you will have the ability to load Python
scripts and execute Python services that belong to specific Python modules. You can
also call Python functions directly from your C code and access the Python objects
that are returned by them. In order to embed Python inside a program, you just need
to use the Python API—the Python EXE isn’t necessary. When embedding Python in
your C++ code, it isn’t necessary to recompile Python itself using C++.

In order to start the Python API service in your program, it is necessary to call the
Py_Initialize function. To shutdown the Python interpreter, it is necessary to call the
Py_Finalize function.

Python can be easily embedded in various languages and applications, such as C++,
Delphi and Netscape Servers.

Code Examples

Listing 6.1 Benchmark Extension (File benchmarkmodule.c)

1: #include “<Python.h>”

2:

3: static PyObject *

4: benchmark_generate(PyObject *self, PyObject *args);

5: {

6: int index, number_of_arguments;

7: PyObject *numberslist = NULL;

09 0672319942 CH06 11/15/00 11:38 AM Page 252

253CHAPTER 6 Extending and Embedding Python
Code Examples

8: PyObject *check_value = NULL;

9: PyFloatObject *aux_float = NULL;

10: double element_value;

11: double minimum_value = 100;

12: double maximum_value = 0;

13: char *exist_check;

14:

15: if (!PyArg_ParseTuple (args, “OO”, &numberslist, &check_value))

16: return NULL;

17:

18: if (!PyList_Check(numberslist))

19: {

20: PyErr_SetString(PyExc_TypeError, “Invalid list of values !”);

21: return NULL;

22: }

23:

24: if (!PyFloat_Check(check_value))

25: {

26: PyErr_SetString(PyExc_TypeError, “Invalid checking value !”);

27: return NULL;

28: }

29:

30: number_of_arguments = PyList_Size(numberslist);

31: exist_check = “No”;

32:

33: for (index=0; index<number_of_arguments; index++)

34: {

35: aux_float = (PyFloatObject *) PyList_GetItem(numberslist, index);

36: if (!PyFloat_Check(aux_float))

37: {

38: PyErr_SetString(PyExc_TypeError, “Invalid list value !”);

39: return NULL;

40: }

41: element_value = PyFloat_AsDouble(aux_float);

42: if (element_value < 0)

43: {

44: PyErr_SetString(PyExc_TypeError, “The values cannot be less than 0
!”);

45: return NULL;

46: }

47:

48: if (element_value > 100)

Listing 6.1 (continued)

09 0672319942 CH06 11/15/00 11:38 AM Page 253

254 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

49: {

50: PyErr_SetString(PyExc_TypeError,

“The values cannot be greater than 100 !”);

51: return NULL;

52: }

53:

54: if (element_value < minimum_value)

55: minimum_value = element_value;

56:

57: if (element_value > maximum_value)

58: maximum_value = element_value;

59:

60: if (element_value == PyFloat_AsDouble(check_value))

61: exist_check = “Yes”;

62: }

63: return Py_BuildValue(“(ffs)”, minimum_value, maximum_value,

exist_check);

64: }

65:

66: static PyMethodDef benchmark_methods[] = {

67: {“generate”, benchmark_generate, METH_VARARGS, “Minimum Value,

Maximum Value”},

68: {NULL, NULL}

69: };

70:

71: DL_EXPORT(void) initbenchmark()

72: {

73: Py_InitModule(“benchmark”, benchmark_methods);

74: }

Line 9: PyFloatObject is a subtype of PyObject.

Line 18: Checks whether the first argument is a list.

Line 24: Checks whether the type of the second argument is a float.

Line 26: Raises a TypeError exception.

Line 30: Returns the list’s length.

Line 60: PyFloat_AsDouble converts a Python Float into a C double.

Next, you can see a small interaction with this program. To execute it, we have to pass
two arguments: The first one is a list of numbers, and the second one is a float

Listing 6.1 (continued)

09 0672319942 CH06 11/15/00 11:38 AM Page 254

255CHAPTER 6 Extending and Embedding Python
Code Examples

number. This program returns the minimum and maximum values from the list, along
with a logical test that informs whether the float number is part of the list.

Python 1.5.2 (#0, May 30 2000, 00:16:14) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import benchmark

>>> benchmark.generate([1.1],1.1)

(1.1, 1.1, ‘Yes’)

>>> benchmark.generate([1,2,3],4.5)

(1.0, 3.0, ‘No’)

>>>

Wrapping C Functions

By wrapping functions, you can use C code files, without changing them. Every time
you feel the need to include a C source code file in your Python project, it is necessary
to create a special module that wraps its functions, and to include a reference to the
file in the python15.dsp.

The next example wraps the functions stored in the cfunctions.c file.

Listing 6.2 File: cfunctions.c

#include <stdio.h>

void display_info(char *user, char *domain, char *country) {

if (country == “USA”)

printf(“%s@%s\n”, user, domain);

else

printf(“%s@%s.%s\n”, user, domain, country);

}

int calc_year (int f_year, int m_year, int l_year) {

int result;

result = ((l_year + m_year + f_year) / 3);

return result;

}

09 0672319942 CH06 11/15/00 11:38 AM Page 255

256 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Listing 6.3 File: wrappermodule.c

1: #include “Python.h”

2:

3: extern void display_info(char *, char *, char *);

4: extern int calc_year(int, int, int);

5:

6: static PyObject *wrapper_display_info(PyObject *self, PyObject *args,

PyObject *kwargs)

7: {

8: char *user = “None”;

9: char *domain = “None”;

10: char *country = “None”;

11: static char *keywords[] = {“user”,”domain”,”country”,NULL};

12:

13: if (!PyArg_ParseTupleAndKeywords(args, kwargs, “|sss”, keywords,

&user, &domain, &country)){

14: return NULL;

15: }

16:

17: display_info(user, domain, country);

18: return Py_BuildValue(“”);

19: }

20:

21: static PyObject *wrapper_calc_year(PyObject *self, PyObject *args) {

22: int f_year, m_year, l_year, result;

23: if (!PyArg_ParseTuple(args, “iii”, &f_year, &m_year, &l_year)) {

24: return NULL;

25: }

26: result = calc_year(f_year, m_year, l_year);

27: return Py_BuildValue(“i”, result);

28: }

29:

30: static PyMethodDef wrappermethods[] = {

31: {“display_info”, wrapper_display_info, METH_VARARGS|METH_KEYWORDS},

32: {“calc_year”, wrapper_calc_year, METH_VARARGS},

33: {NULL, NULL}

34: };

35:

36: void initwrapper() {

37: Py_InitModule(“wrapper”, wrappermethods);

38: }

09 0672319942 CH06 11/15/00 11:38 AM Page 256

257CHAPTER 6 Extending and Embedding Python
Code Examples

Lines 3 and 4: Identify which functions are external to this file.

Line 11: Creates a dictionary of keywords to be accepted by the function.

Line 13: PyArg_ParseTupleAndKeywords() parses the Python-level parameters by
accepting a third “PyObject *” parameter.

Line 31: The METH_VARARGS|METH_KEYWORDS clause makes it clear that keyword
elements are expected.

Next, you can see a small interaction with this program. The first function builds an
email address based on the information provided. The other one calculates the average
age of a family of three people based on the number of years that are passed to the
function.

Python 1.5.2 (#0, May 30 2000, 00:56:46) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import wrapper

>>> wrapper.display_info(“andre2530”,”aol.com”,”br”)

andre2530@aol.com.br

>>> wrapper.calc_year(10, 30, 35)

25

>>>

09 0672319942 CH06 11/15/00 11:38 AM Page 257

09 0672319942 CH06 11/15/00 11:38 AM Page 258

CHAPTER 7

Objects Interfacing and
Distribution

This is an EX parrot!

This chapter provides information that explains how to interface
objects from different applications using Python. First, it
demonstrates the techniques to control both external objects
from Python and Python objects from external programs. Later,
it lists the Python projects currently being developed in this
area of study.

Object Interfacing and Distribution

Python has very comprehensive support for object interfacing
and distributing technologies. It is particularly well integrated
with the Windows platform; its programs can interact with
COM and DCOM services.

The win32com Python extensions developed by Mark Hammond
can be used to interface Python to Microsoft’s COM and
ActiveX architectures. This package, which is part of the
PythonWin distribution, enables Python to be used in Active
Server Pages, or as a COM controller that can exchange
information with other COM-aware applications, such as
Microsoft Word and Visual Basic.

Object-oriented design and programming is specifically
beneficial in distributed environments where the encapsulation

D E V E L O P E R ’ S H A N D B O O K

10 0672319942 CH07 11/15/00 11:38 AM Page 259

260 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

and subsequent independence of objects enable distribution of an application over a
network.

The possibilities of heterogeneous machine architectures, physically distant locations,
and independent component failures make it difficult to program distributed object
systems.

A number of distributed-processing environments, such as OMG’s CORBA and
Microsoft’s DCOM, have been developed to attempt to hide these problems from
programmers, reducing the complexity of their task. Besides the most famous object
models, an international standard known as the Reference Model for Open
Distributed Processing (RM-ODP) is currently being developed.

Python is one of the languages supported by Xerox PARC’s ILU (Inter-Language
Unification), which is a free CORBA-compatible distributed object system. To this
date, many distributed applications systems have been developed in Python using this
technology.

The Hector project at the University of Queensland, Australia, also uses Python.

Interfacing Objects

Currently, one of the biggest problems with both COM and DCOM architectures is
that they are supported only by Windows systems. However, most operating systems
have their own native way of connecting systems together at a remote procedure call
level. At the time of this writing, there are some unconfirmed rumors that Microsoft is
planning to create an interface to the Windows operating system using the XML-RPC
protocol. This development would bring a whole new world to the Windows
applications by increasing their connectivity with all the other platforms. Note that
Microsoft has already produced a similar protocol called SOAP.

The COM-based technologies are the focus of Microsoft’s development plans for
Windows, ranging from operating systems and languages to messaging and databases.
Nowadays, new COM-based technologies are found in a lot of places inside your
Windows system, such as the ActiveX controls and VBScript processing. OLEDB, for
example, is the successor to ODBC. ODBC gives access to relational databases,
whereas OLEDB provides a more versatile level of access, so that the same API can be
used to retrieve data from all kinds of sources, ranging from flat text files, through
Excel spreadsheets, up to ODBC databases.

10 0672319942 CH07 11/15/00 11:38 AM Page 260

261CHAPTER 7 Objects Interfacing and Distribution
Introduction to COM Objects

Introduction to COM Objects

Let’s learn a little about what is behind the Microsoft Common Object Model (COM)
technology before seeing how you can use it along with Python.

COM is the most widely used component software model in the world. It provides a
rich set of integrated services, a wide choice of easy-to-use tools, and a large set of
available applications. COM underlies a large majority of the new code developed for
Windows and Windows NT operating systems, whether created by Microsoft or by
others.

COM consists of a well-defined, mature, stable, and freely available specification, as
well as a reference implementation, which has been widely tested and adopted
worldwide. It provides the richest set of existing services for applications today, as well
as the largest set of development tools available for any component or object model on
the market. Of course, Windows is the only Operating System in which you can be
assured of finding COM, which makes us think that COM doesn’t appear to be a
standard because it doesn’t provide cross-platform solutions.

The COM Specification

COM is a specification and a set of services that enables you to create modular, object-
oriented, customizable and upgradable, distributed applications using a number of
languages. You can even use components that you already have written in other
languages.

The COM specification describes the standards that you need to follow in order to
create interoperable COM components. This standard describes what COM objects
should look like and how they should behave. The specification is backed up by a set
of services, or APIs. The COM library provides these services, which are part of the
operating system for Win32 platforms, and available as a separate package for other
operating systems.

COM components can be packaged as EXE or DLL files—COM provides the
communication mechanism to enable components in different modules to talk to each
other. They are true objects in the usual sense—they have identity, state, and behavior.
COM components that implement a common interface can be treated polymor-
phically, enabling easy customization and upgrades of your applications.

COM components link with each other dynamically, and COM defines standard ways
of locating components and identifying their functionality, so individual components
are swappable without having to recompile the entire application.

10 0672319942 CH07 11/15/00 11:38 AM Page 261

262 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

COM provides a communication mechanism that enables components to interact
across a network. More importantly, COM provides location transparency to
applications (if desired) that enables them to be written without regard to the location
of their components. The components can be moved without requiring any changes to
the application.

COM is a binary standard. Any language that can cope with the binary standard can
create or use COM objects. The number of languages and tools that support COM
increases every day. C, C++, Java, JScript, Visual Basic, VBScript, Delphi, and
PowerBuilder form just part of that growing list, which means that any one of these
languages can easily interoperate with Python. Keep in mind that COM is a standard
for interaction between programs—an Object Request Broker service.

COM is the object model that underlies most of the Microsoft technologies; here are a
few of those COM applications:

• ActiveX uses COM to provide controls.

• OLE uses COM to combine documents.

• OLEDB and ADO use COM for data access.

• DirectX uses COM for graphics.

Any COM-aware program is able to interact with other COM-aware programs. One
program can even execute commands of the other. The program that executes the
method call is called the COM server, and the program that calls the object method is
called the COM client. Because COM is a Microsoft product, most applications for
Windows can act as COM servers or clients.

Python’s support for the COM technology is included in the Python for Windows
(PythonWin) extensions.

COM Interfaces

The COM technology is very broad and complex. Basically, it enables objects to be
shared among many applications, without applications knowing the implementation
details of the objects. Objects that implement the COM technology can communicate
with each other without the need for knowing the others’ details.

COM components do business with interfaces. An interface defines functionality, but
not implementation. Objects must handle the implementation. COM objects are small
pieces of self-contained software that interact with other applications by exposing well-
defined, language-independent interfaces.

10 0672319942 CH07 11/15/00 11:38 AM Page 262

263CHAPTER 7 Objects Interfacing and Distribution
Introduction to COM Objects

COM is an object model that relies heavily on interfaces. These interfaces are entirely
separate from their implementations. Although COM defines the interfaces, its model
doesn’t provide the interface’s implementation. Each object’s class has the task of
defining the implementations. The interfaces can be standard ones that other objects
also expose, or they can be special ones that are particular to that object. A unique ID,
called an IID (Interface ID), identifies each interface. IIDs use Universally Unique
Identifiers (UUID). UUID is a format used for many COM IDs to allocate a unique
identification string for objects. Many tools can generate unique UUIDs. As you will
see later in this chapter, Python’s pythoncom module has a function called
CreateGuid() that generates UUID strings.

In order to create an object, COM locates the required class and creates an instance of
it. The concept of COM classes is identical to the other Python classes. Additionally,
each COM class needs to implement two identifiers: Class ID (_reg_clsid_), which is
another UUID, and Program ID (_reg_progid_), which is a identification string that
must be easier to remember than the Class ID. This string is not guaranteed to be
unique. In order to create an object, the programmer must specify either the progid,
or the clsid.

All interfaces are derived from the IUnknown interface. Therefore, they support its
methods. The IUnknown interface is the base of all COM interfaces. This interface
contains only three methods:

• AddRef() and Release() are used for managing COM lifetimes, which are based
on reference counts.

• QueryInterface() is used for obtaining a reference to one of the other interfaces
that the object exposes. In other words, interfaces are obtained by using the
IUnknown::QueryInterface() method.

IStream, IStorage, and IPropertyPage are examples of standard interfaces defined by
COM. They define file-like operations, file system-like semantics, and how a control
exposes a property page, respectively. Besides the standard interfaces, COM also
enables you to define your own custom interfaces by using an Interface Definition
Language (IDL).

The IDispatch interface enables any COM objects to be used from a scripting
environment. This interface was designed explicitly for languages that cannot use
normal COM interfaces. The objects that implement this interface are known as
automation objects because they expose a programmable interface that can be
manipulated by another program. This interface exposes dynamic object models whose
methods and properties can be determined at runtime. Basically, this interface is used

10 0672319942 CH07 11/15/00 11:38 AM Page 263

264 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

whenever you are handling an object whose interface is not known at compile time, or
if there is no compile time at all.

Note
Note for CORBA programmers: IDispatch is equivalent to the interface repository and
dynamic invocation interface that are standard parts of CORBA.

To access a method or a property of an object, you can use either late or early binding.
All the examples that you see in this book use late bindings because the Python
interpreter doesn’t know what the object interfaces look like. It doesn’t know which
are the methods and properties that compound the object. It just makes the calls
dynamically, according to the function names that you provide.

Late bindings use the IDispatch interface to determine the object model at runtime.
Python function win32com.client.Dispatch() provides this runtime facility. Most
examples in this chapter use the IDispatch interface. However, the
win32com.client.Dispatch() function hides many implementation details from us.
Internally, Python converts the names into IDs using the internal function
GetIDsOfNames(). Then, this ID is passed as an argument to the Invoke() function.

You can try to improve the performance of your program by calling the Invoke()
function directly. Usually, the performance gets better when names are not resolved at
runtime. Just be careful to provide the right ID. If you implement this way, an early
binding operation is executed.

For the early bindings, we have the concept of Type Libraries, wherein the object model
is exposed at compile time. In this kind of implementation, you don’t call the methods
and properties directly. The GetIDsOfNames() method gets an ID for the method or
property that you want to use, and the Invoke() method makes the call.

For example, a function call would be invoked as

id = GetIDsOfNames(“YourMethodCall”)

Invoke(id, DISPATCH_METHOD)

And a property would be collected as

id = GetIDsOfNames(“ObjectProperty”)

Invoke(id, DISPATCH_PROP_GET)

10 0672319942 CH07 11/15/00 11:38 AM Page 264

265CHAPTER 7 Objects Interfacing and Distribution
Introduction to COM Objects

Usually, you don’t have to worry about this kind of implementation. You just say

YourObject.YourMethodCall()

and

YourObject.ObjectProperty

In order to implicitly call the Invoke() method without causing data type problems,
the IDispatch interface assumes the data type VARIANT for all variables. That’s because
late bindings do not know the specific types of the parameters, whereas early
bindings do.

Late bindings do not know about parameters passed by reference, so no parameters
are passed by reference. However, early bindings accept parameters passed by
reference, and return them as tuples.

COM objects can be implemented as InProc objects, which are implemented as DLLs.
These objects are loaded into the calling process providing that best performance
because no marshalling is required. Of course, for most objects, some marshaling will
be needed to marshal Python parameters into a form that can be passed to the COM
object.

The other option is to implement COM objects as LocalServer/ RemoteServer objects.
This kind of object is implemented as a standalone EXE, which is safer than the first
option because of process isolation.

COM can also be used to decide which implementation should be used. If both types
of implementation are available, the caller interface is able to decide which option is
the best one to choose.

The Windows Registry
All the information concerning a COM object, such as the mapping between its progid
and clsid, is stored in the Windows Registry. The Windows Registry also stores the
name of the DLL file of an InProc object, and the name of the EXE LocalServer
object. Object security, threading models, and many other details are also stored there.

Check the following link for more details about the COM specification:

Microsoft—Common Object Model

http://www.microsoft.com/com/resources/specs.asp

10 0672319942 CH07 11/15/00 11:38 AM Page 265

266 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

ADO

ActiveX Data Objects (ADO) is an automation-based interface for accessing data. This
technology uses the OLE DB interface to access an extensive range of data sources,
including but not limited to data provided by the ODBC.

Microsoft Remote Data Service (RDS) is a component of ADO that provides fast and
efficient data frameworks for applications hosted in Microsoft Internet Explorer. RDS
uses data-aware ActiveX controls to provide data access programming to Web
developers, who need to build distributed, data-intensive applications for use over
networks. RDS is based on a client/server, distributed technology that works over
HTTP, HTTPS (HTTP over Secure Sockets layer), and DCOM application
protocols.

ActiveX

An ActiveX control is an OLE control that can live inside an HTML page; it can be
simple Window objects, such as buttons, text boxes, or scrollbars. It also can be quite
complicated, for example, a bar chart graph display can be an ActiveX control. An
entire spreadsheet can also be a single control. Each ActiveX control has properties
and reacts to external events. Its properties can be modified to change its appearance.
For example, its containing program can set color and fonts. External events such as a
mouse click or keyboard input can cause a control’s event handler to execute. Note
that the ActiveX technology is another Windows only thing, and not really any use in
a cross platform environment.

Microsoft’s Web browser, Internet Explorer, is ActiveX-aware, meaning that Web
application developers can package ActiveX components to create more dynamic
content in their Web pages.

ActiveX controls use COM technologies to provide interoperability with other types
of COM components and services. ActiveX controls provide a number of
enhancements specifically designed to facilitate distribution of components over high-
latency networks and to integrate controls into Web browsers. These enhancements
include features such as incremental rendering and code signing, which enables users
to identify the authors of controls before allowing them to execute.

Implementing COM Objects in Python

In order to implement COM objects in the Python version of Windows, you need a
set of extensions developed by Mark Hammond and Greg Stein. Part of the win32com

10 0672319942 CH07 11/15/00 11:38 AM Page 266

267CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

package, these extensions enable you to do everything that is COM-related, including
writing COM clients and COM servers.

The following link takes you to the download page of these extensions:

http://www.python.org/download/download_windows.html

All the Win32 extensions (including the COM extensions) are part of the win32all
installation package. This package also installs the PythonWin IDE in your machine.

The latest version of this whole package is located at the win32all home page. Search
for the win32all.exe file:

http://www.python.org/windows/win32all/

You can also go directly to Mark Hammond’s starship home page, which might have
more recent beta releases of this package:

http://starship.python.net/crew/mhammond/

After installing the package in your machine, take a look at the readme.htm file, which
is stored at the win32com directory.

COM support for Python is compounded of the core PythonCOM module, which
supports the C++ code, and the other modules that implement helper code in Python.
The whole package is known as win32com.

The win32com Package

The win32com support is standalone, as it does not require PythonWin. The win32com
package itself does not provide any functionality. Some of the modules contained in
this package are

win32com.pythoncom—Provides core C++ support for COM objects and exposes
COM object methods, such as QueryInterface() and Invoke(), just as the C++ API
does. Note that all the reference counting is automatically done for you.
Programmers rarely access this module directly. Instead, they usually use the
win32com wrapper classes and functions written in Python to provide a nice,
programmable interface.

win32com.client—Provides support for COM clients (for example, using Python to
start Microsoft Excel and create a spreadsheet). The COM client support enables
Python to manipulate other COM objects via their exposed interfaces. All client-
side IUnknown-derived objects, including IDispatch, are supported.

win32com.server—Provides support for COM servers (for example, creating and
registering a COM server object in Python and using a language such as Visual

10 0672319942 CH07 11/15/00 11:38 AM Page 267

268 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Basic or Delphi to access the Python objects). The COM server support enables
Python to create COM servers, which can be manipulated by another COM client.
All server-side IUnknown-derived objects are supported.

win32com.axscript—This is the ActiveX Scripting implementation for Python.

win32com.axdebug—This is the Active Debugging implementation for Python.

win32com.mapi—Provides utilities for working with MAPI and the Microsoft
Exchange Server.

Talking to Windows Applications

The COM technology has been part of the Windows world for a long time. The
COM genealogy can be traced back to DDE (Dynamic Data Exchange). DDE was the
first device for transferring data between various applications in a multi-tasking
computer. After some time, DDE was expanded to Object Linking and Embedding
(OLE)—note that COM was invented as part of OLE. The creation of the Visual
Basic Extensions (VBXs) enhanced the OLE technology for visual components,
originating a new standard called OLE2, which was based on top of COM. Soon, the
OLE2 technology became more integrated with COM, which is a general-purpose
mechanism. Nowadays, COM is mostly known, in part, because of the ActiveX
technology.

Professional applications such as Microsoft Office and the Netscape browser enable
you to control their objects using COM. Therefore, programs written in Python can
be easily used to control those applications.

COM passes string objects as Unicode characters. Before using these objects in
Python, it’s necessary to convert them to strings. The Python-2.0 Unicode string type
is not the same as the string type, but it is easy to convert between the two.

PythonWin comes with a basic COM browser (Python Object browser). This program
helps you to identify the current objects in your system that implement COM
interfaces.

To run the browser, select it from the PythonWin Tools menu, or double-click on the
file win32com\client\combrowse.py.

Note that there are other COM browsers available, such as the one that comes with
the Microsoft Visual C++.

If you study the file \python\win32com\servers\interp.py, which is installed as part
of your PythonWin distribution, you will learn how to implement a very simple COM

10 0672319942 CH07 11/15/00 11:38 AM Page 268

269CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

server. This server exposes the Python interpreter by providing a COM object that
handles both the exec and eval methods. Before using this object, register it by
running the module from Python.exe. Then, from Visual Basic, use
CreateObject(‘Python.Interpreter’) to initialize the object, and you can start calling the
methods.

Word and Excel

Let’s quit talking and get to some practicing. Our objective here is to open and
manipulate Microsoft applications from Python.

The first thing that you need to do is to import the COM client and dispatch the right
object. In the next example, a variable is assigned a reference to an Excel application:

>>> import win32com.client

>>> xl = win32com.client.Dispatch(“Excel.Application”)

The following does the same thing, but this time the reference is to a Word
application.

>>> wd = win32com.client.Dispatch(“Word.Application”)

Excel.Application and Word.Application are the Program IDs (progid), which are
the names of the objects for which you want to create an instance. Internally, these
objects have a Class ID (clsid) that uniquely registers them in the Windows Registry.
The matching table between progids and clsids is stored in the Windows Registry and
the matching is performed by the COM mechanism.

It is not an easy job to identify an application progid, or to find out object methods
and attributes. You can use COM browsers to see what applications have COM
interfaces in your system.

For the Microsoft Products, you can take a look at the documentation; it is a good
source of information.

Not necessarily every COM object implements the same interface. However, there are
similarities.

For example, if the previous assignments have just created the objects and you want to
make them visible, you have to type

>>> xl.Visible = 1 # Sets the visible property for the Excel application

>>> wd.Visible = 1 # Sets the visible property for the Word application

10 0672319942 CH07 11/15/00 11:38 AM Page 269

270 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

To close both programs and release the memory, you need to say

>>> xl = None

>>> wd = None

or, you could use

>>> del xl, wd

These were simple examples of implementing COM clients in Python. Next, we will
see how to implement a Python COM server by creating a Python interface that
exposes an object. The next block of code registers the interface in the Windows
Registry.

Note that every new COM object that you create must have a unique clsid, but you
don’t have to worry about it. The complex algorithm that works behind the scenes is
ready to generate a unique identification, as shown here:

>>> import pythoncom

>>> print pythoncom.CreateGuid()

Your COM server is defined next. You have to execute the program in order to make
the COM object available in the system. Store it on a file, and double-click on it.

1: class TaxApplication:

2: _public_methods_ = [‘PAtax’]

3: _reg_progid_ = “Tax.Application”

4: _reg_clsid_ = “{D2DEB6E1-3C6D-11D4-804E-0050041A5111}”

5:

6: def PAtax(self, amount, tax=0.07):

7: return amount + (amount * tax)

8:

9: if __name__==’__main__’:

10: print “Registering COM server”

11: import win32com.server.register

12: win32com.server.register.UseCommandLine(TaxApplication)

Line 2: Exposes the method to be exported.

Line 3: Defines the name that the COM client application must use to connect to the
object.

Line 4: Defines the unique Class ID (clsid) used by the object.

Line 12: Registers the TaxApplication class.

10 0672319942 CH07 11/15/00 11:38 AM Page 270

271CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

In order to test the program, we need to have an external COM client. Let’s use the
Visual Basic for Applications Editor, which is present in both Excel and Word.

Open your Microsoft application, type ALT+F8 in the Macro dialog box, and select the
option that creates a macro. Now, you need to type the following block of code:

Sub Tax()

Set TaxApplication = CreateObject(“Tax.Application”)

newamount = TaxApplication.PAtax(100)

MsgBox newamount

Set TaxApplication = Nothing

End Sub

Now, if you press F5, Visual Basic should display a message box showing the result of
our simple tax operation, which, in our case, is 107.

To unregister your COM object you can either pass the argument --unregister when
calling your script, or you can use the following line of code inside your Python
program:

>>> win32com.server.register.UnregisterClasses(TaxApplication)

A very comprehensive example of using Microsoft Word and Excel is stored in the
testMSOffice.py file, which is part of your PythonWin distribution. It’s worth
checking out!!!

Word
The following code implements a simple wrapper for the Microsoft Word Application.
To test it you need to create a Word document and replace its path in the code. The
program will open this file, replace the first occurrence of the string “#name#” within
the file, add a small bit of text to the end of the line, and print the file.

import win32com.client

False = 0

True = -1

wdLine = 5

class WordApp:

def __init__(self):

self.app = win32com.client.Dispatch(“Word.Application”)

def open(self, document_file):

self.app.Documents.Open(document_file)

10 0672319942 CH07 11/15/00 11:38 AM Page 271

272 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

def replace(self, source_selection, new_text):

self.app.Selection.HomeKey(Unit=wdLine)

self.app.Selection.Find.Text = source_selection

self.app.Selection.Find.Execute()

self.app.Selection.TypeText(Text=new_text)

def addtext(self, new_text):

self.app.Selection.EndKey(Unit=wdLine)

self.app.Selection.TypeText(Text=new_text)

def printdoc(self):

self.app.Application.PrintOut()

def close(self):

self.app.ActiveDocument.Close(SaveChanges =False)

worddoc = WordApp()

worddoc.open(r”s:\template.doc”)

worddoc.replace(“#name#”, “Andre Lessa”)

worddoc.addtext(“ What do you want to learn ?”)

worddoc.printdoc()

worddoc.close

If you type in the name of the object’s attribute that accesses the Dispatch method,
you get as a result, the COM object name:

>>> worddoc.app

<COMObject Word.Application.>

This object is an example of a dynamic dispatch object. The provided name indicates
that the object is a generic COM object, and affirms that Python doesn’t know
anything about it, except the name that you used to create it. All the information about
this object is built dynamically.

Besides dynamic dispatches, you can also use static dispatches, which involve the
generation of a .py file that contains support for the specific COM object. In CORBA
speak, this is called stub generation, or IDL compilation.

In order to generate the Python files that support a specific COM object, you need to
execute win32com\client\makepy.py. A list of Type Libraries will be displayed. Select
one (for example, ‘Microsoft Word 8.0 Object Library’) and click OK. You can also
call the makepy.py program directly from the command prompt by typing makepy.py
“Microsoft Word 8.0 Object Library”.

10 0672319942 CH07 11/15/00 11:38 AM Page 272

273CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

Now, Python knows exactly how to handle the interfaces before invoking the COM
object. Although, you can’t see any differences, you can check that Python really
knows something else now by querying the COM object:

>>> import win32com.client

>>> wd=win32com.client.Dispatch(“Word.Application”)

>>> wd

<win32com.gen_py.Microsoft Word 8.0 Object Library._Application>

Note that Python knows the explicit type of the object now.

All the compiled information is stored in a file in the win32com/gen_py directory. You
probably won’t understand the filename because it is encoded. Actually, you don’t need
to use this file at all. All the interface information is made available via
win32com.client.Dispatch and win32com.client.constants.

If you really need to identify the name of the module that was generated, you can use
the win32com.client.gencache module. This module has two functions:
GetModuleForCLSID and GetModuleForProgID that return Python module objects you
can use in your code.

makepy.py also automatically installs all generated constants from a library of types in
an object called win32com.clients.constants. After creating the object, all the
constants become available to you.

In the previous example, we had to initialize the constant wdLine, because the
constants were not available. Now, after running makepy.py, you can replace the line

self.app.Selection.EndKey(Unit=wdLine)

with

self.app.Selection.EndKey(Unit=win32com.clients.constants.wdLine)

and remove the initialization line

wdLine = 5

The next example uses the wdWindowStateMaximize constant to maximize Microsoft
Word:

>>> w.WindowState = win32com.client.constants.wdWindowStateMaximize

10 0672319942 CH07 11/15/00 11:38 AM Page 273

274 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Excel
Next, we’ll see how to create COM clients using Microsoft Excel. The principle is
very simple. Actually, it is the same one used previously for wrapping Microsoft Word,
as it is demonstrated in the following example.

>>> import win32com.client

>>> excelapp = win32com.client.Dispatch(“Excel.Application”)

>>> excelapp.Visible = 1

Note that we have to change the Visible property in order to see the Excel
application. The default behavior is to hide the application window because it saves
processor cycles. However, the object is available to any COM client that asks for it.

As you can see in the example, Excel’s progid is Excel.Application.

After you create the Excel object, you are able to call its methods and set its
properties. Keep in mind that the Excel Object Model has the following hierarchy:
Application, WorkBook, Sheet, Range, and Cell.

Let’s play a little with Excel. The following statements write to the workbook:

>>> excelapp.Range(“A1:C1”).Value = “Hello”, “Python”, “World”

>>> excelapp.Range(“A2:A2”).Value = ‘SPAM! SPAM! SPAM!’

Note that you can also use tuples to transport values:

>>> excelapp.Range(“A1:C1”).Value = (‘Hello’, ‘Python’, ‘World’)

To print a selected area, you need to use the PrintOut() method:

>>> excelapp.Range(“A1:C1”).PrintOut()

What about entering date and time information? The following examples will show
you how to set the Date/Time format for Excel cells.

First, call Excel’s time function:

>>> excelapp.Cells(4,3).Value = “=Now()”

>>> excelapp.Columns(“C”).EntireColumn.AutoFit()

The AutoFit() function is required in order to display the information, instead of
showing “#######”.

Now, use Python to set the time you want:

>>> import time, pythoncom

>>> excelapp.Cells(4,1).Value = pythoncom.MakeTime(time.time())

10 0672319942 CH07 11/15/00 11:38 AM Page 274

275CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

>>> excelapp.Range(“A4:A4”).NumberFormat = “d/mm/yy h:mm”

>>> excelapp.Columns(“A:C”).EntireColumn.AutoFit()

Note that the Cells() structure works like a numeric array. That means that instead of
using Excel’s notation of letters and numbers, you need to think of the spreadsheet as a
numeric matrix.

Visual Basic

In order to implement a COM object using Python you need to implement a Python
class that exposes the functionality to be exported. It is also necessary to assign two
special attributes to this class, as required by the Python COM implementation.

The first attribute is the Class ID (_reg_clsid_). This attribute must contain a UUID,
which can be generated by calling the pythoncom.CreateGuid() function. The other
attribute is a friendly string that you will use to call the COM object (_reg_progid_),
as follows:

class COMCalcServer:

_reg_clsid_ = ‘{C76BEA61-3B39-11D4-8A7C-444553546170}’

_reg_progid_ = ‘COMCALCSERVER.VERSION1’

_public_methods_ = [‘mul’,’div’,’add’,’sub’]

...

Other interesting attributes are

• _public_methods—A list of all method names that you want to publicly expose to
remote COM clients.

• _public_attrs—A list of all attribute names to be exposed to remote COM
clients.

• _readonly_attrs—A list of all attributes that can be accessed, but not set. This
list should be a subset of the list exposed by _public_attrs.

After creating the class, you need to register your COM object. The general technique
is to run the module that implements the COM object as a script, in order to register
the object:

if __name__ == ‘__main__’:

import win32com.server.register

win32com.server.register.UseCommandLine(COMCalcServer)

10 0672319942 CH07 11/15/00 11:38 AM Page 275

276 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Notice that you need to inform the class object, and not a class instance. After the
UseCommandLine() function has been successfully executed, the following message is
returned by the Python interpreter:

Registered: COMCALCSERVER.VERSION1

When you have your COM object up and running, any automation-capable language,
such as Python, Visual Basic, Delphi, or Perl, can use it.

The following example is a complete program that implements a calculator. First, you
need to collect the unique IDs for your class:

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import pythoncom

>>> print pythoncom.CreateGuid()

<iid:{C76BEA60-3B39-11D4-8A7C-444553546170}>

After informing the new clsid value to the _reg_clsid_ attribute, we have the
following program:

File: comcalcserver.py

class COMCalcServer:

_reg_clsid_ = ‘{C76BEA61-3B39-11D4-8A7C-444553546170}’

_reg_progid_ = ‘COMCALCSERVER.VERSION1’

_public_methods_ = [‘mul’,’div’,’add’,’sub’]

def mul(self, arg1, arg2):

return arg1 * arg2

def div(self, arg1, arg2):

return arg1 / arg2

def add(self, arg1, arg2):

return arg1 + arg2

def sub(self, arg1, arg2):

return arg1 - arg2

if __name__ == ‘__main__’:

import win32com.server.register

win32com.server.register.UseCommandLine(COMCalcServer)

Make sure that all methods are included in the _public_methods_. Otherwise, the
program will fail. Now, go to the DOS prompt and execute the program to register
the COM object:

C:\python>c:\progra~1\python\python comcalcserver.py

Registered: COMCALCSERVER.VERSION1

10 0672319942 CH07 11/15/00 11:38 AM Page 276

277CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

To create the Visual Basic COM client, you need to create a Visual Basic Form that
contains all the implementation details (see Figure 7.1).

Figure 7.1

A design for creating the Visual Basic Form.

Most of the time, the initialization steps are stored in the Form_Load section in order
to be executed when the application starts:

Dim COMCalcServer as Object

Set COMCalcServer = CreateObject(“COMCALCSERVER.VERSION1”)

Remember to always deallocate the objects before exiting the application. It’s good
practice to do it in the Form_Unload section:

Set COMCalcServer = Nothing

Public COMCalcServer As Object

Private Sub Form_Unload(Cancel As Integer)

Set COMCalcServer = Nothing

End Sub

Sub InitCOMCalcServer()

Set COMCalcServer = CreateObject(“COMCALCSERVER.VERSION1”)

10 0672319942 CH07 11/15/00 11:38 AM Page 277

278 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Exit Sub

End Sub

Private Sub Command1_Click()

Dim result As Double

result = COMCalcServer.Mul(Val(Text1), Val(Text2))

MsgBox Text1 & “*” & Text2 & “=” & Str(result)

End Sub

Private Sub Command2_Click()

Dim result As Double

result = COMCalcServer.Div(Val(Text1), Val(Text2))

MsgBox Text1 & “/” & Text2 & “=” & Str(result)

End Sub

Private Sub Command3_Click()

Dim result As Double

result = COMCalcServer.Add(Val(Text1), Val(Text2))

MsgBox Text1 & “+” & Text2 & “=” & Str(result)

End Sub

Private Sub Command4_Click()

Dim result As Double

result = COMCalcServer.Sub(Val(Text1), Val(Text2))

MsgBox Text1 & “-” & Text2 & “=” & Str(result)

End Sub

Private Sub Form_Load()

Text1 = 0

Text2 = 0

Command1.Caption = “Mul”

Command2.Caption = “Div”

Command3.Caption = “Add”

Command4.Caption = “Sub”

InitCOMCalcServer

End Sub

While executing the application (see Figure 7.2), your Visual Basic application will be
talking to the Python COM object behind the scenes.

The next example is based on the previous one. This one implements a callback
function. The VB program calls a Python function that clearly manipulates the Visual
Basic Form object.

You need to add or replace the following functions in the Visual Basic code:

Sub InitCOMCalcServer()

Set COMCalcServer = CreateObject(“COMCALCSERVER.VERSION2”)

10 0672319942 CH07 11/15/00 11:38 AM Page 278

279CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

Exit Sub

End Sub

Private Sub Form_Load()

Text1 = 0

Text2 = 0

Command1.Caption = “Mul”

Command2.Caption = “Div”

Command3.Caption = “Add”

Command4.Caption = “Sub”

InitCOMCalcServer

COMCalcServer.updatecaption Me

End Sub

Figure 7.2

A Visual Basic executable running.

The following new function must be created in the Python code, too. The VB function
call uses the keyword Me to send a reference of the Form object to Python’s
updatecaption() method:

def updatecaption(self, object):

Form = win32com.client.Dispatch(object)

Form.Caption = “Python COM Routine is Active”

The following code is a full replacement to be used with this example. Remember to
create a new _reg_clsid_ for this new example.

File: comcalcserver2.py

class COMCalcServer:

_reg_clsid_ = ‘{C76BEA64-3B39-11D4-8A7C-444553546170}’

_reg_progid_ = ‘COMCALCSERVER.VERSION2’

_public_methods_ = [‘mul’,’div’,’add’,’sub’, ‘updatecaption’]

10 0672319942 CH07 11/15/00 11:38 AM Page 279

280 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

def mul(self, arg1, arg2):

return arg1 * arg2

def div(self, arg1, arg2):

return arg1 / arg2

def add(self, arg1, arg2):

return arg1 + arg2

def sub(self, arg1, arg2):

return arg1 - arg2

def updatecaption(self, object):

import win32com.client

Form = win32com.client.Dispatch(object)

Form.Caption = “Python COM Routine is Active”

if __name__ == ‘__main__’:

import win32com.server.register

win32com.server.register.UseCommandLine(COMCalcServer)

The result of running this example is shown in Figure 7.3.

Figure 7.3

Python/Visual Basic callback implementation.

Every script that defines a COM class can be used to unregister the class, too. Python
automatically knows that, when you pass the argument --unregister to the script, you
want to remove all the references to this class from the Windows Registry.

C:\python>python comcalcserver2.py --unregister

Unregistered: COMCALCSERVER.VERSION2

Handling Numbers and Strings
Whenever you have a Python method as part of a COM server interface that returns a
number or a string, as shown in the next few lines of code:

10 0672319942 CH07 11/15/00 11:38 AM Page 280

281CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

def GetNumber(self):

return 25

def GetString(self, name):

return ‘Your name is %s’ % name

The COM client written in Visual Basic must handle the methods as follows

Dim num as Variant

num = Server.GetNumber

Dim str as Variant

str = Server.GetString(“Andre”)

MsgBox str

Python and Unicode do not really work well together in the current version of
Python. All strings that come from COM will actually be Unicode objects rather than
string objects. In order to make the previous code work in a COM environment, the
last line of the GetString() method must become

return ‘Your name is %s’ % str(name)

The conversion of the “name” to “str(name)” forces the Unicode object into a native
Python string object. In Python-2.0, if the win32com stuff starts using native Python
Unicode strings, the str() call will cause the Unicode string to be reencoded in
UTF8.

Handling Lists and Tuples
When you have a Python method as part of a COM server interface that returns a list
or a tuple, as illustrated in the next example:

def GetList(self):

return [1,2,3,4]

The COM client written in Visual Basic must handle the method as follows:

Dim arry as Variant

arry = Server.GetList

Debug.Print UBound(arry)

For Each item in arry

Debug.Print item

Next

10 0672319942 CH07 11/15/00 11:38 AM Page 281

282 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Delphi

Using Delphi to implement a COM client is very similar to using Visual Basic. First,
you need to register the COM class. The following code is similar to the one used for
the Visual Basic example.

File: comcalcserver.py

class COMCalcServer:

_reg_clsid_ = ‘{C76BEA61-3B39-11D4-8A7C-444553546170}’

_reg_progid_ = ‘COMCALCSERVER.VERSION1’

_public_methods_ = [‘mul’,’div’,’add’,’sub’]

def mul(self, arg1, arg2):

return arg1 * arg2

def div(self, arg1, arg2):

return arg1 / arg2

def add(self, arg1, arg2):

return arg1 + arg2

def sub(self, arg1, arg2):

return arg1 - arg2

if __name__ == ‘__main__’:

import win32com.server.register

win32com.server.register.UseCommandLine(COMCalcServer)

Now, you need to create a Delphi form to support all the COM client activities (see
Figure 7.4).

Figure 7.4

Delphi design: A form with three Edit boxes and four buttons.

10 0672319942 CH07 11/15/00 11:38 AM Page 282

283CHAPTER 7 Objects Interfacing and Distribution
Implementing COM Objects in Python

unit Calcform;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

StdCtrls, OLEAuto;

type

TForm1 = class(TForm)

Button1: TButton;

Edit1: TEdit;

Edit2: TEdit;

Edit3: TEdit;

Button2: TButton;

Button3: TButton;

Button4: TButton;

procedure FormCreate(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

COMCalcServer: Variant;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);

begin

try

COMCalcServer := CreateOleObject(‘COMCALCSERVER.VERSION1’);

Form1.Caption := ‘Python COM Routine is Active’;

Edit1.text := ‘’;

Edit2.text := ‘’;

Edit3.text := ‘’;

10 0672319942 CH07 11/15/00 11:38 AM Page 283

284 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Button1.Name := ‘mul’;

Button2.Name := ‘div’;

Button3.Name := ‘add’;

Button4.Name := ‘sub’;

except

MessageDlg(‘An error has happened!’, mtError, [mbOk],0);

Application.Terminate;

end;

end;

procedure TForm1.Button1Click(Sender: TObject);

var tmp1float, tmp2float : Real;

tmp3string : String;

begin

tmp1float := StrToFloat(Edit1.text);

tmp2float := StrToFloat(Edit2.text);

tmp3string := FloatToStr(COMCalcServer.mul(tmp1float, tmp2float));

Edit3.text := tmp3string;

end;

procedure TForm1.Button2Click(Sender: TObject);

var tmp1float, tmp2float : Real;

tmp3string : String;

begin

tmp1float := StrToFloat(Edit1.text);

tmp2float := StrToFloat(Edit2.text);

tmp3string := FloatToStr(COMCalcServer.div(tmp1float, tmp2float));

Edit3.text := tmp3string;

end;

procedure TForm1.Button3Click(Sender: TObject);

var tmp1float, tmp2float : Real;

tmp3string : String;

begin

tmp1float := StrToFloat(Edit1.text);

tmp2float := StrToFloat(Edit2.text);

tmp3string := FloatToStr(COMCalcServer.add(tmp1float, tmp2float));

Edit3.text := tmp3string;

end;

procedure TForm1.Button4Click(Sender: TObject);

var tmp1float, tmp2float : Real;

10 0672319942 CH07 11/15/00 11:38 AM Page 284

285CHAPTER 7 Objects Interfacing and Distribution
Distributing Objects with Python

tmp3string : String;

begin

tmp1float := StrToFloat(Edit1.text);

tmp2float := StrToFloat(Edit2.text);

tmp3string := FloatToStr(COMCalcServer.sub(tmp1float, tmp2float));

Edit3.text := tmp3string;

end;

end.

After compiling and running the application, you should see the interface shown in
Figure 7.5.

Figure 7.5

Delphi Calculator Application.

Distributing Objects with Python

There are some other packages that enable you to talk to other programs on platforms
without COM support. As for the object distribution models, Python has many projects
currently being developed.

The Inter-Language Unification system (ILU) is a free and stable multi-language
object interface system.

The Object Request Broker is the mechanism that lets objects transparently make
requests to—and receive from—other objects located locally or remotely. The ORB
component is also commonly referred to as CORBA, which stands for Common Object
Request Broker Architecture. omniORBpy is an almost complete implementation of the
current Python CORBA mapping.

10 0672319942 CH07 11/15/00 11:38 AM Page 285

286 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Fnorb is an Object Request Broker (ORB) that is compliant with the CORBA 2.0
specification from the Object Management Group (OMG). Fnorb implements a single
language mapping from OMG IDL to Python. This implementation is excellent for
those who want to learn CORBA. Another project worth mentioning is the ORBit-
python project, which a binding for ORBit, the CORBA orb used by GNOME and
some other projects.

DCOM is the COM technology that distributes objects between different machines
on the network. It defines a protocol that enables software components to
communicate directly over a network in a reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware
environment for the process automation area. Even though it doesn’t contain any
Python code, it is heavily tested using Python scripts. The object model used by OMF
is similar to other distributed object systems, such as OMG’s CORBA and Xerox’s
ILU. OMF is implemented in C++, with APIs for other languages, including Python.
It is said that the Python API was primarily created for writing test programs, but it
has since been used to write various tools for application development and runtime
management.

Hector is a distributed object system developed at the University of Queensland,
Australia. It is written almost entirely in Python. Hector attempts to provide
application objects with a consistent environment, regardless of their physical location,
through a series of transparencies.

Inter-Language Unification (ILU)

The Inter-Language Unification system (ILU) is a free and stable multi-language
object interface system, whose interfaces hide implementation distinctions between
different languages, address spaces, and operating system types. ILU can be used to
build multilingual, object-oriented class libraries with well-specified, language-
independent interfaces. It can also be used to implement distributed systems and to
define and document interfaces between the modules of nondistributed programs. ILU
interfaces can be specified in either the OMG’s CORBA Interface Definition
Language (OMG IDL) or ILU’s Interface Specification Language (ISL).

ILU is primarily about interfaces between modules of program structure. Each module
encapsulates the part of a program that has high adhesion internally and low
connection to other parts of the program. The main goal of ILU is to create object-
oriented interfaces that can communicate with those modules. ILU does all the
translating and communicating necessary to use all kinds of modules in a single
program. Its mechanism optimizes calls across module interfaces to involve only what
it is necessary for the calling and called modules to interact. The notion of a module

10 0672319942 CH07 11/15/00 11:38 AM Page 286

287CHAPTER 7 Objects Interfacing and Distribution
Distributing Objects with Python

should not be confused with the independent concept of a program instance, which is
translated as a combination of code and data running in one memory image, such as
the UNIX processes.

ILU standardizes many of the issues involved in providing proper inter-module
independence, such as memory management and error detection and recovery
strategies. ILU also includes an implementation of the Object Management Group’s
CORBA Internet Inter-Orb Protocol (IIOP), and can be used to write CORBA
services or clients, as well. ILU provides a standard notation to write its interfaces—
ISL, which stands for Interface Specification Language. ISL is a declarative language,
which can be processed by computer programs that enables you to define exceptions,
constants, object and non-object types. Next, you have a sample of what ISL looks
like:

INTERFACE CalcMachine;

EXCEPTION DivideByZero;

TYPE Calculator = OBJECT

METHODS

SetValue (v : REAL),

GetValue () : REAL,

Divide (v : REAL) RAISES DivideByZero END

END;

ILU provides a program, islscan, which can be used to check the syntax of an ISL
specification, parse the specification, and summarize it to standard output.

After you’ve defined an interface, you then need to supply an implementation of your
module, which can be done in any language supported by ILU.

The program python-stubber is used to read an ISL file, and generate all the Python
code that is required to support the ISL interface. One of the files generated is
‘Interface.py’, which contains the definitions of all the Python types for that
interface:

% python-stubber CalcMachine.isl

client stubs for interface “CalcMachine” to CalcMachine.py ...

server stubs for interface “ CalcMachine “ to CalcMachine__skel.py ...

%

To provide an implementation of your interface, subclass the generated Python class
for the Calculator class:

CalculatorImpl.py

import CalcMachine, CalcMachine__skel

class Calculator (CalcMachine__skel.Calculator):

10 0672319942 CH07 11/15/00 11:38 AM Page 287

288 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

def __init__ (self):

self.value = 0.0

def SetValue (self, value):

self.value = value

def GetValue (self):

return self.value

def Divide (self, value):

try:

self.value = self.value / value

except ZeroDivisionError:

raise CalcMachine.DivideByZero

Each instance of a CalculatorImpl.Calculator object inherits from
CalcMachine__skel.Calculator, which in turn inherits from CalcMachine.Calculator.
Each has an instance variable called value, which maintains a running total of the
accumulator for that instance. We can create an instance of a CalcMachine.Calculator
object by simply calling CalculatorImpl.Calculator().

A very simple program to demonstrate the use of the CalcMachine module is listed
next. To run this program, you have to type the command python divide.py
<NUMBER_TO_DIVIDE>.

File: divide.py

import CalcMachine, CalculatorImpl, sys, string

def main (argv):

calc = CalculatorImpl.Calculator()

if not calc:

error(“Error creating the calculator”)

calc.SetValue (10.0)

divisor = string.atof(argv[1])

calc.Divide(divisor)

print “the division result is”, calc.GetValue()

sys.exit(0)

main(sys.argv)

This program would be compiled and run as follows:

% python divide.py 5.0

the division result is 2.0

%

ILU also supports the use of the interface definition language OMG IDL, defined by
the Object Management Group (OMG) for its Common Object Request Broker

10 0672319942 CH07 11/15/00 11:38 AM Page 288

289CHAPTER 7 Objects Interfacing and Distribution
Distributing Objects with Python

Architecture (CORBA). That kind of support allows more programmers to easily use
ILU because OMG’s IDL uses a syntax similar to C++. However, because CORBA
doesn’t implement some of the concepts found in ILU, programmers can’t implement
all types of ILU interface using OMG IDL.

ILU is available for free at

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

Using ILU with Python: A Tutorial

ftp://parcftp.parc.xerox.com/pub/ilu/misc/tutpython.html

CORBA Binding and Implementation

The Object Request Broker (ORB) is the mechanism that lets objects transparently
make requests to—and receive from—other objects located locally or remotely. The
ORB is the middleware that establishes the client/server relationship between objects.

Using an ORB, a client object can transparently invoke a method on a server object,
which can be on the same machine or across a network. The ORB intercepts the call
and is responsible for finding an object that can implement the request, pass it the
parameters, invoke its method, and return the results. The client does not have to be
aware of where the object is located, its programming language, its operating system,
or any other system aspects that are not part of an object’s interface. The client is not
aware of the mechanisms used to communicate with, activate, or store the server
objects. The ORB serves as the foundation for building distributed object applications.
Note that CORBA can short circuit requests to objects in the same address space, as
ILU and COM can, if the implementation supports this.

The ORB component, or CORBA, is a set of specifications defining the ways software
objects should work together in a distributed environment. The organization that
drives the specifications, the Object Management Group (OMG), has hundreds of
members representing a major portion of the software industry. The members work
together to propose, review, and finally adopt a set of specifications to enable software
objects to be developed independently and yet work together in a harmonic fashion.

The fundamental piece of CORBA is the ORB, or Object Request Broker. The ORB
can be viewed like a channel carrying objects between the clients (those that consume
the objects) and the servers (those that produce the objects). The consumers are
provided with object interfaces, which are defined using a language called the Interface
Definition Language. The detailed implementation of the objects by the producers is
totally shielded from the consumers. The ORB is usually just a library that the
program links to that marshals object requests. The promised benefits of making the

10 0672319942 CH07 11/15/00 11:38 AM Page 289

290 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

software objects from different vendors publicly known made those vendors highly
endorse OMG’s specifications.

At the most basic level, CORBA is a standard for distributed objects. CORBA enables
an application to request that an operation be performed by a distributed object and
that the results of the operation be returned to the application making the request.
The application communicates with the distributed object performing the operation.
This is basic client/server functionality, in which a client issues a request to a server,
and the server responds to the client. Data can pass from the client to the server and is
associated with a particular operation on a particular object. Data is then returned to
the client in the form of a response. Note that just like COM/DCOM, CORBA can be
used to access objects that are local to the process, machine, or non-local.

DCOM is a Microsoft-specific distribution solution, whereas CORBA products are
available from more than 20 different vendors, and they support Microsoft and non-
Microsoft operating systems. CORBA is an excellent mechanism to bridge between
Microsoft desktops and UNIX servers.

There is no explicit need to choose between DCOM and CORBA. Distributed
applications can be developed using both CORBA and DCOM. For example, a client
application might be developed to access a set of OLE automation objects, and OLE
automation objects might in turn access CORBA Objects running on a non-Microsoft
platform such a UNIX. The OMG has defined a COM/CORBA interworking specifi-
cation that standardizes this sort of bridging.

Note
Python can be used to create wrappers between COM and CORBA systems.

CORBA is more mature than DCOM; it has existed since 1990, and commercial
implementations have been available since 1992. DCOM wasn’t available in beta form
until 1996. Also, a large number of different companies have developed CORBA
ORBs. This level of competition increases the robustness of CORBA solutions on the
whole. It also ensures compatibility—a vendor’s CORBA ORB is of much greater
value if it can talk to a competitor’s ORBs.

One of the advantages of DCOM over CORBA is the fact that DCOM is well suited
to front-end application development. If entire distributed application runs under
Microsoft platforms, DCOM might be a good choice. DCOM can also be used with
CORBA. Of course, using DCOM will lock you into Win32 in the future, which
might not be a good thing even if you are using Win32 at the moment.

The CORBA distributed object system is becoming an important standard in
developing industrial-strength client/server and Web applications. It is also used as an

10 0672319942 CH07 11/15/00 11:38 AM Page 290

291CHAPTER 7 Objects Interfacing and Distribution
Distributing Objects with Python

IPC layer between a number of components in both the Gnome and KDE desktop
environments for UNIX.

In the current development phase of the CORBA binding for Python, the OMG
board of directors has adopted the specification, and the finalization task force has
completed its report. After approval, this report will become an available specification.
omniORBpy is an almost complete implementation of the current Python/CORBA
mapping. It is currently in beta, but is very stable.

More information about the omniOrbpy interface, which is provided by omniORB, can
be found at

http://www.uk.research.att.com/omniORB/omniORB.html

Other interesting links for you include

CORBA IDL Parser—by Sam Rushing

http://www.nightmare.com/software.html

This parser uses Aaron Watters’ kwParsing parser-generator package to construct a
CORBA IDL parser in Python.

Object Management Group

Common Object Request Broker Architecture 2.0

OMG TC Document 96.03.04, July 1995

http://www.omg.org/docs/ptc/96-03-04.ps

Python Distributed Objects Special Interest Group

http://www.python.org/sigs/do-sig/

Fnorb

Fnorb is written in Python and its framework supports only Python. The implemen-
tation provided by this object-model helps you to learn more about CORBA systems.

Fnorb is an object request broker (ORB) compliant with the CORBA 2.0 specification
from the Object Management Group (OMG). Fnorb implements a single language
mapping from OMG IDL to Python. Because of the interpreted and interactive nature
of Python, and the simplicity of the mapping (as compared to mappings with C++ and
Java), Fnorb is ideally suited as a tool for the rapid prototyping, testing, and scripting
of CORBA systems and architectures.

10 0672319942 CH07 11/15/00 11:38 AM Page 291

292 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The pair Python/Fnorb is ideal for prototyping complex CORBA architectures, for
using as a scripting tool, and for building test harnesses for all your CORBA
development projects.

The combination of Python and Fnorb provides the existing CORBA community with
a much needed tool for rapid prototyping and scripting, and gives those new to
CORBA a great way to learn the fundamental concepts without being swamped by the
intricacies of a “heavyweight” language mapping.

Like ILU from Xerox PARC, Fnorb gives the Python programmer access to the
wonderful world of CORBA. It supports all CORBA 2.0 data types (including Any’s)
and provides a full implementation of IIOP. Unlike ILU, Fnorb is Python and
CORBA/IDL-specific, which makes it simple, lightweight, and easy to install and use.

Using Fnorb, you no longer have to use other languages to write CORBA clients and
servers—you can use Python now. This makes Fnorb ideal for prototyping complex
CORBA architectures, for use as a scripting tool, and for building test harnesses for all
your CORBA development projects.

The Python language mapping used by Fnorb is based on a specification document
being prepared by members of the DO-SIG (Distributed Objects - Special Interest
Group). One goal of Fnorb is to enable the Python community to experiment with the
mapping before attempting to set it in stone via the OMG standardization process.

Fnorb is being developed at the CRC for Distributed Systems Technology based at the
University of Queensland in Brisbane, Australia. Fnorb is released under a free for
non-commercial use license. Another license must be acquired to use it commercially.

Official Fnorb home page

http://www.fnorb.org/

Jeff Rush’s Fnorb Web page

http://starship.python.net/crew/jrush/Fnorb/

Provides Fnorb tips, techniques, and Linux RPMs for Fnorb.

DCOM

DCOM is Microsoft’s way of distributing objects between different machines on the
network. DCOM, or Distributed Common Object Model, defines the specifications
that an object must obey to interoperate with other objects using Microsoft
distributing architecture.

10 0672319942 CH07 11/15/00 11:38 AM Page 292

293CHAPTER 7 Objects Interfacing and Distribution
Distributing Objects with Python

The core of DCOM is the Common Object Model, defined and refined from the
earlier Object Link and Embedding implementation. Started naively as a way to enable
documents to be embedded or linked into another document, OLE has completely
reinvented itself.

The Common Object Model (COM) lays the foundation for objects to gain knowledge
about, and to make use of, each other; thus they can engage in so-called component-
based computing. DCOM extends the capability to include the constituent objects on
other machines connected through the network.

The Distributed Common Object Model (DCOM) is a protocol that enables software
components to communicate directly over a network in a reliable, secure, and efficient
manner. Previously called Network OLE, DCOM is designed for use across multiple
network transports, including Internet protocols such as HTTP. DCOM is based on
the Open Software Foundation’s DCE-RPC spec and will work with both Java applets
and ActiveX components through its use of the (COM).

DCOM enables objects to be remote from their caller, and it handles all marshalling
across machines and necessary security. Configuration tools enable an administrator to
configure objects so that neither the object nor the caller needs any changes.

The following Microsoft article takes you to the download page of the DCOM
configuration tool (dcomcnfg.exe), which was not included on the Windows 98 2nd
Edition CD:

http://support.microsoft.com/support/kb/articles/Q253/3/11.ASP

Sometimes, code changes can be used to explicitly control the source of objects.

OMF

Object Management Facility (OMF) is an object-oriented middleware environment for
the process automation area. It is used as the middleware foundation for several ABB
[the ABB Industrial Systems AB (Sweden)] control system applications. Although it
doesn’t contain any Python code, it is heavily tested using Python scripts.

OMF includes the all-important features of an object request broker. A type definition
language defines the interface and provides mappings to multiple programming
languages. Objects can be distributed transparently on heterogeneous platforms.
Furthermore, services for naming, type management, messaging, and persistence are
available. OMF contains features particularly for real-time distributed control, such as
high-speed communication, asynchronous messaging, message prioritization, and
support for different bus protocols.

10 0672319942 CH07 11/15/00 11:38 AM Page 293

294 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

OMF is a distributed object system specifically designed for the process control
industry. The object model is similar to other distributed object systems, such as
OMG’s CORBA and Xerox’s ILU. What makes OMF different from these is its
interaction model. The OMF interaction model specifies that, after finding a set of
objects, OMF has to select what methods to call (for each object) and what attributes
to get or set. It also has to choose when to perform the operation (at request, at event,
periodically). After all this is done, OMF sends a single request for all objects.

OMF is implemented in C++, with APIs for other languages, including Python.
Created for writing test programs, Python API has since then been used to write
various tools (testing tools, development tools, and maintenance tools) to aid in
application development and runtime management.

The OMF API for Python is implemented in two layers: The lower layer is written
using a slightly modified version of Jack Jensen’s modulator tool, whereas the higher
layer is completely written in Python. On top of this API there are a few utility classes,
such as the OMF agent, in which the agent lets the user treat OMF objects as local
Python objects with attributes and methods, as follows:

from OMFagent import Agent

Connect to an object in the network

ai = Agent(‘AI1.1’)

Get the Analog Input’s value

This will actually result in an RPC

value = ai.VALUE

The Agent code is surprisingly small, but results in a drastically higher abstraction
layer than the bare OMF API. This is a rather simple class because of Python’s
dynamic typing.

Using Python in a Distributed Object System—by Daniel Larsson

http://www.python.org/workshops/1996-06/papers/d.larsson-dist-objs.html

Hector

Hector is a distributed object system written almost entirely in Python, taking
advantage of the language’s many features.

This specification provides a communication transparency layer enabling negotiation
of communication protocol qualities, comprehensive support services for application
objects, and novel interaction architecture. Its framework sits above other distributed
environments, providing open negotiation and interoperability of communication

10 0672319942 CH07 11/15/00 11:38 AM Page 294

295CHAPTER 7 Objects Interfacing and Distribution
Summary

protocols, high level description of component services and their requirements, a rich
set of support services for objects and an interaction framework which enables the
description of workflow-like interactions between autonomous objects.

Hector attempts to provide application objects with a consistent environment,
regardless of their physical location, through a series of transparencies. Designed with
the goal of supporting a dynamic, global system of distributed objects, it embraces
diversity through extensibility. Specifically, it supports the following features while
maintaining transparent usage of object services:

• Multiple parties in high-level interaction bindings

• Multiple object implementation languages

• Multiple interaction models

• Multiple transport protocols

Hector is structured as four layered components representing decreasing levels of
abstraction. These layers are the Object, Language, Encapsulation (or Kernel), and
Communication layers.

The initial language layer supports Python. Python Language Binding is available by
default because the visible kernel classes are actually written in Python, making the
wrapper classes very simple.

Hector: Distributed Objects in Python—by David Arnold, Andy Bond, Martin Chilvers,
and Richard Taylor

http://www.python.org/workshops/1996-06/papers/d.arnold/paper.html

Elvin Has Left the Building: A Publish/Subscribe Notification Service with
Quenching

http://www.dstc.edu.au/Research/Research/Projects/Elvin/mirror/

www.dstc.edu.au/Elvin/papers/AUUG97/AUUG97.html

Summary

This chapter explains how to use Python to interface objects from different
applications on a single machine, and across networks through distributed systems.
Python has very comprehensive support for object interfacing and distributing
technologies.

10 0672319942 CH07 11/15/00 11:38 AM Page 295

296 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

COM is the most widely used component software model in the world when it comes
to object interfacing. COM provides a rich set of integrated services, a wide choice of
easy-to-use tools, and a large set of available applications.

The COM genealogy can be traced back to DDE (Dynamic Data Exchange). DDE
was the first device for transferring data between various applications in Windows.
After some time, DDE was expanded to Object Linking and Embedding (OLE). The
creation of the Visual Basic Extensions (VBXs) enhanced the OLE technology for
visual components, originating a new standard called OLE2. Soon, the OLE2
technology became COM, which is a general-purpose mechanism.

Many technologies, currently in the market, are COM-based. For example, we have
ActiveX, OLE, OLEDB, ADO, and DirectX.

The entire set of information that belongs to a COM object is stored in the Windows
Registry.

In order to implement COM interfaces with Python, you need to install the win32com
Python extensions developed by Mark Hammond. These extensions are part of the
PythonWin installation.

The COM support for Python is made of the PythonCOM module, which supports the
C++ code, and other modules that implement helper code in Python. Known as
win32com”, this package provides support for COM client and COM server interfaces.
The access to objects’ methods and properties can be either by late or early binding.

PythonWin also comes with a COM browser (Python Object browser). This program
helps you identify the objects currently running on your system that offer COM
interfaces.

Many kinds of software and languages, such as, Microsoft Word, Excel, Visual Basic,
and Delphi provide ways to interoperate with COM objects. Therefore, as you can see
in the examples of this chapter, it is very easy to “talk” to these objects.

In order to implement COM object using Python, you must design a Python class that
exposes the functionality to be exported. This class must carry some special attributes
that will uniquely identify the COM interface in your system. After elaborating the
class, you need to register it. The operation is simple: It simply saves the class
information in your Windows Registry. The option to unregister classes is also
available.

Python can handle its many different types of objects across COM interfacing
transactions perfectly well. Numbers, strings, core objects, lists, and tuples have
implementations that handle their exposure to the interfaces.

Python has many projects currently being developed for object distribution models.

10 0672319942 CH07 11/15/00 11:38 AM Page 296

297CHAPTER 7 Objects Interfacing and Distribution
Code Examples

The Inter-Language Unification system (ILU) is a free and stable multi-language
object interface system.

The Object Request Broker lets objects transparently make requests to—and receive
from—other objects located locally or remotely. The ORB component is also
commonly referred to as CORBA (Common Object Request Broker Architecture).
omniORBpy is an almost complete implementation of the current Python/CORBA
mapping.

Fnorb is an Object Request Broker (ORB) compliant with the CORBA 2.0 specifi-
cation from the Object Management Group (OMG). Fnorb implements a single
language mapping from OMG IDL to Python. This implementation is excellent for
those who want to learn CORBA.

DCOM is the COM technology that distributes objects between different machines
on the network. It defines a protocol that enables software components to
communicate directly over a network in a reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware
environment for the process automation area. Even though it doesn’t contain any
Python code, it is heavily tested using Python scripts. The object model used by OMF
is similar to other distributed object systems, such as OMG’s CORBA and Xerox’s
ILU. OMF is implemented in C++, with APIs for other languages, including Python.
Python API was originally designed for writing test programs, but has since been used
to write various tools to aid in application development and runtime management.

Hector is a distributed object system developed at the University of Queensland,
Australia. It is written almost entirely in Python. Hector attempts to provide
application objects with a consistent environment, regardless of their physical location,
through a series of transparencies.

Code Examples

Parking Lot (File parkinglot.py)

This example generates a Python COM server that exposes a parking lot object. The
example uses a Visual Basic graphical interface to manipulate the vehicles of this
parking lot. Each vehicle is a Python Object that is also defined as a Python COM
Server object.

10 0672319942 CH07 11/15/00 11:38 AM Page 297

298 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The first thing to do is to generate two clsids: one for each object.

>>> import pythoncom

>>> print pythoncom.CreateGuid()

BD2CB7C0-3BB9-11D4-804E-0050041A5111

>>> print pythoncom.CreateGuid()

BD2CB7C1-3BB9-11D4-804E-0050041A5111

Now, we take these ids and use them to create a module.

Listing 7.1 parkinglot.py

1: # File: parkinglot.py

2:

3: from win32com.server.exception import Exception

4: import win32com.server.util

5:

6: class ParkingServer:

7: _reg_clsid_ = ‘{BD2CB7C0-3BB9-11D4-804E-0050041A5111}’

8: _reg_progid_ = ‘Python.ParkingServer’

9: _public_methods_ = [‘ParkVehicle’, ‘UnparkVehicle’,

10: ‘GetVehiclesCount’, ‘IdentifyVehicle’,

11: ‘GetLocationList’]

12:

13: def __init__(self):

14: self.Vehicles = [Vehicle()]

15:

16: def ParkVehicle(self, floor=1, model=””, license=””, color=””):

17: VehicleToPark = Vehicle()

18: VehicleToPark.floor = floor

19: VehicleToPark.model = str(model)

20: VehicleToPark.license = str(license)

21: VehicleToPark.color = str(color)

22: self.Vehicles.append(VehicleToPark)

23:

24: def UnparkVehicle(self,index):

25: del self.Vehicles[index]

26:

27: def IdentifyVehicle(self, index):

28: return win32com.server.util.wrap(self.Vehicles[index])

29:

30: def GetLocationList(self):

31: return map(lambda x:x.GetLocation(), self.Vehicles)

32:

10 0672319942 CH07 11/15/00 11:38 AM Page 298

299CHAPTER 7 Objects Interfacing and Distribution
Code Examples

33: def GetVehiclesCount(self):

34: return len(self.Vehicles)

35:

36: class Vehicle:

37: _reg_clsid_ = ‘{BD2CB7C1-3BB9-11D4-804E-0050041A5111}’

38: _reg_progid_ = ‘Python.Vehicle’

39: _public_methods_ = [‘GetLocation’]

40: _public_attrs_ = [‘floor’,’model’,’license’,’color’]

41:

42: def __init__(self, floor=1, model = ‘Dodge Neon’,

license = ‘LKS-92020’, color = ‘Red’):

43: self.floor = floor

44: self.model = model

45: self.license = license

46: self.color = color

47:

48: def GetLocation(self):

49: return ‘The %s %s license %s is on the %d floor’ % \

50: (self.color, self.model, self.license, self.floor)

51:

52: def RegisterClasses():

53: print “Registering COM servers...”

54: import win32com.server.register

55:

56: win32com.server.register.UseCommandLine(ParkingServer)

57: print “ParkingServer Class registered.”

58:

59: win32com.server.register.UseCommandLine(Vehicle)

60: print “Vehicle Class registered.”

61:

62: def UnRegisterClasses():

63: print “Unregistering COM server...”

64: import win32com.server.register

65:

66: win32com.server.register.UnregisterClasses(ParkingServer)

67: print “ParkingServer Class unregistered.”

68:

69: win32com.server.register.UnregisterClasses(Vehicle)

70: print “Vehicle Class unregistered.”

71:

72: if __name__==’__main__’:

73: import sys

Listing 7.1 (continued)

10 0672319942 CH07 11/15/00 11:38 AM Page 299

300 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

74: if “-unregister” in sys.argv:

75: UnRegisterClasses()

76: else:

77: RegisterClasses()

Lines 9–11: List of methods to be exported to the COM interface.

Line 13: Initializes parking with one vehicle [object].

Lines 20–21: As COM interfaces use Unicode objects, it is necessary to convert the
objects to string.

Line 28: Wraps the Python Object before sending it to the COM client.

Line 31: Calls the appropriate GetLocation() method f or each Vehicle object in the
Python List. Then, it returns a whole new list of strings.

Line 33: Counts the number of vehicles in the parking lot.

Line 52: Registers both COM servers.

Line 62: Unregisters both servers. (Unregistering them is necessary to clean up the
Windows Registry.)

Line 72: Automatically registers the classes when the module is executed as a script.

Line 74: If the user calls the script at the command prompt passing the -unregister
argument, the UnRegisterClasses() methods are executed.

When you have the module stored in the file, you can double-click on the file to
execute it, or you can go to a DOS prompt and manually call it to register the server:

C:\python parkinglot.py

Registering COM server...

ParkingServer Class registered.

Vehicle Class registered.

Listing 7.2 implements the Visual Basic 5 project that provides the client interface for
our Python COM server. It is the code for the main form.

Listing 7.2 frmMain.frm

1: Option Explicit

2: Public ParkingServer As Object

3: Public newVehicle As Object

4: Private Sub cmdPark_Click()

Listing 7.1 (continued)

10 0672319942 CH07 11/15/00 11:38 AM Page 300

301CHAPTER 7 Objects Interfacing and Distribution
Code Examples

5: Set newVehicle = CreateObject(“Python.Vehicle”)

6: newVehicle.floor = 1

7: newVehicle.model = “”

8: newVehicle.license = “”

9: newVehicle.Color = “”

10: If frmVehicle.ModifyInfo(newVehicle) Then

11: ParkingServer.ParkVehicle newVehicle.floor, newVehicle.model,

newVehicle.license, newVehicle.Color

12: RefreshVehiclesList

13: End If

14: Set newVehicle = Nothing

15: End Sub

16:

17: Private Sub CmdUnpark_Click()

18: Dim CarSpot As Integer

19: Dim Vehicle As Object

20: If Vehicles.ListIndex = -1 Then

21: Exit Sub

22: Else

23: CarSpot = Vehicles.ListIndex

24: ParkingServer.UnparkVehicle CarSpot

25: RefreshVehiclesList

26: End If

27: End Sub

28:

29: Private Sub cmdUpdate_Click()

30: Dim CarSpot As Integer, Vehicle As Object

31: If Vehicles.ListIndex = -1 Then

32: Exit Sub

33: Else

34: CarSpot = Vehicles.ListIndex

35: Set Vehicle = ParkingServer.IdentifyVehicle(CarSpot)

36: If frmVehicle.ModifyInfo(Vehicle) Then RefreshVehiclesList

37: End If

38: End Sub

39:

40: Private Sub cmdInitializeServer_Click()

41: If ParkingServer Is Nothing Then

42: On Error GoTo cmdInitializeServer_Click_CreationError

43: Set ParkingServer = CreateObject(“Python.ParkingServer”)

44: On Error GoTo 0

45: lblStatus.Caption = “The ParkingServer is up and running...”

Listing 7.2 (continued)

10 0672319942 CH07 11/15/00 11:38 AM Page 301

302 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

46: cmdInitializeServer.Caption = “&Stop Server”

47: Vehicles.Visible = True

48: cmdPark.Visible = True

49: CmdUpdate.Visible = True

50: CmdUnpark.Visible = True

51: Label2.Visible = True

52: lbvehicles_number.Visible = True

53: RefreshVehiclesList

54: Vehicles.ListIndex = 0

55: Vehicles.SetFocus

56: Exit Sub

57: Else

58: Vehicles.Visible = False

59: cmdPark.Visible = False

60: CmdUpdate.Visible = False

61: CmdUnpark.Visible = False

62: lbvehicles_number.Visible = False

63: Label2.Visible = False

64: Set ParkingServer = Nothing

65: cmdInitializeServer.Caption = “&Start Server”

66: lblStatus.Caption = “The ParkingServer is not running.”

67: Exit Sub

68: End If

69: cmdInitializeServer_Click_CreationError:

70: MsgBox “An error has happened while initializing the ParkingServer.”

71: End Sub

72:

73: Public Sub RefreshVehiclesList()

74: Dim VehiclesList As Variant, VehiclesInList As Variant,

highlighted As Integer

75: lbvehicles_number.Caption = ParkingServer.GetVehiclesCount

76: highlighted = Vehicles.ListIndex

77: Vehicles.Clear

78: VehiclesList = ParkingServer.GetLocationList

79: For Each VehiclesInList In VehiclesList

80: Vehicles.AddItem VehiclesInList

81: Next VehiclesInList

82: If highlighted < Vehicles.ListCount Then Vehicles.ListIndex =

highlighted

83: Vehicles.SetFocus

84: End Sub

85:

Listing 7.2 (continued)

10 0672319942 CH07 11/15/00 11:38 AM Page 302

303CHAPTER 7 Objects Interfacing and Distribution
Code Examples

86: Private Sub Form_Load()

87: Vehicles.Visible = False

88: cmdPark.Visible = False

89: CmdUpdate.Visible = False

90: CmdUnpark.Visible = False

91: Label2.Visible = False

92: lblStatus.Caption = “The ParkingServer is not running.”

93: End Sub

Lines 2–3: The Python COM Objects are declared as Objects at the Form level.

Line 14: Releases the Vehicle object from the memory.

Line 20: Check whether the list is empty.

Line 35: Calls the Python IdentifyVehicle() method, which returns a Vehicle Object
according to the indexing position (spot) provided as the function argument.

Line 76: Stores the index associated to the selected vehicle.

Line 78: Python sends a list of strings that becomes an array-type Variant.

Lines 82–83: Returns the focus to the last selected list item.

Listing 7.3 is used by the project’s form, which enables you to type each vehicle’s data.

Listing 7.3 frmVehicle.frm

1: Public Function ModifyInfo(VehicleToModify As Object) As Boolean

2: txt_floor.Text = Str(VehicleToModify.floor)

3: txt_model.Text = VehicleToModify.model

4: txt_license.Text = VehicleToModify.license

5: txt_color.Text = VehicleToModify.Color

6: Show 1

7: VehicleToModify.floor = Val(txt_floor.Text)

8: VehicleToModify.model = txt_model.Text

9: VehicleToModify.license = txt_license.Text

10: VehicleToModify.Color = txt_color.Text

11: ModifyInfo = True

12: End Function

13:

14: Private Sub FormExit_Click()

15: Me.Visible = False

16: End Sub

Listing 7.2 (continued)

10 0672319942 CH07 11/15/00 11:38 AM Page 303

304 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Lines 2–5: The public attributes of the Vehicle Object, _public_attrs_, are
transported to the form objects.

Lines 14–16: If you close the window, the values are not transported back to the form.
You must click on the OK button, which hides the form and brings the control back to
the ModifyInfo() function.

When you execute this project, you have an easy-to-use interface that connects to
the COM servers and accesses all the public methods that are implemented (see
Figure 7.6).

Figure 7.6

Parking lot demonstration.

If you have problems trying to connect to the server, check whether you have registered
the class from the Python console.

10 0672319942 CH07 11/15/00 11:38 AM Page 304

CHAPTER 8

Working with Databases

Nudge, nudge. Wink, wink. Say no more!

Sometimes, the machine’s memory is not enough, and we need to
store data somewhere else. That is what this chapter talks
about—it shows all the database options that Python has
available. For those who still don’t know anything about
databases, this chapter briefly explains how they work, and it
also lists and explains the basic SQL statements that you need
to know.

Working with Databases

For simplicity, let’s say that databases are summarized as the
place where you store and update data. Python is able to
connect to a wide variety of databases.

The simplest solution to handle databases in Python is to use
plain text files. A tiny variation of this method is to store the
information in binary format.

The next possible solution is to use the indexing mechanism
provided by the dbm-like modules. This mechanism provides
better performance than our first option because it automat-
ically organizes the data. It works by implementing dictionary
structures that are used to store information. This option
enables you to encode Python objects, and efficiently archive

D E V E L O P E R ’ S H A N D B O O K

11 0672319942 CH08 11/15/00 11:38 AM Page 305

306 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

them in indexed files without having to go through the details of parsing and
unparsing the information.

For this reason, object serialization and persistence storing are also present in this
chapter. Both concepts are very helpful when it comes to storing information. Their
roles are to translate Python objects to strings before archiving them to the file system
or before transferring them to another process.

The last solution is to use “real” databases’ systems by importing third-party database
extension modules, such as the native Python interfaces to MySQL, Oracle, and
Sybase database systems.

If your database doesn’t have a native interface to Python, don’t worry. Python also
offers ODBC extensions that will enable you to connect to any database that supports
ODBC, and as you know, almost all database servers have ODBC drivers available
nowadays.

In the worst-case scenario, many client/server database systems provide C libraries
that connect to their databases. If you are a dedicated hacker, you can create extension
modules that talk to these C libraries connecting to the database.

For more information about using databases versus Python, check Python’s Web site at
the following URL:

http://www.python.org/topics/database/

Flat Databases

The simplest way to store any kind of information in Python is using flat files. You just
need to use the open function that we already studied in Chapter 2, “Language
Review.” Two options are available: You can either store the information as simple text
or as binary data.

Text Data

The next example is a straightforward case of using flat files to store and to retrieve
information. First we try to read from the file. If the file doesn’t exist, it is created, and
the information provided by the user is saved on it.

filename = “myflatfile.txt”

try:

file = open(filename, “r”)

data = file.read()

file.close()

11 0672319942 CH08 11/15/00 11:38 AM Page 306

307CHAPTER 8 Working with Databases
Flat Databases

print data

except IOError:

data = raw_input(“Enter data to save:”)

file = open(filename,”w”)

file.write(data)

file.close()

Binary Data—The struct Module

The struct module is largely used to manipulate code of platform-independent binary
files. It is a good choice for handling small files. For large files, you should consider
using the array module.

Binary data files are much less likely to be platform independent. Also, it is easier to
extend a text file format without breaking compatibility.

The struct module works by converting data between Python and binary data
structures, which normally interact using functions written in C.

This module implements only three functions: pack, unpack, and calcsize.

• pack—Takes the list of values and returns a binary object based on the
formatstring provided.

binobject = pack (formatstring, value1, value2, value3, ...)

• unpack—Returns a Python tuple containing the original values. It uses the
formatstring to translate the string.

pythontuple = unpack (formatstring, string)

• calcsize—Provides the size in bytes of the structure matching the format string.

no_of_bytes = calcsize(formatstring)

The next example packs the values (1, 2, 3) into binary format based on the format
string “ihb”, and later converts them back to the original values.

>>> import struct

>>> buffer = struct.pack(“ihb”, 1,2,3)

>>> print repr(buffer)

‘\001\000\000\000\002\000\003’

>>> print struct.unpack(‘ihb’, buffer)

(1,2,3)

Note that the binary data is represented as a Python string.

11 0672319942 CH08 11/15/00 11:38 AM Page 307

308 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The next example is based on a binary file that stores three different objects. The first
one is the author’s initial, the second one is the number of bytes used by an article
written by the author, and the last object is the article itself.

>>> import struct

>>> data = open(‘mybinaryfile.dat’).read()

>>> start, stop = 0, struct.calcsize(‘cl’)

>>> author, num_bytes = struct.unpack(‘cl’, data[start:stop])

>>> start, stop = stop, start + struct.calcsize(‘B’*num_bytes)

>>> bytes = struct.unpack(‘B’*num_bytes, data[start:stop])

The next table shows the list of formatting units that can be used by this module.

Table 8.1 Formatting Units Used by the struct Module

Format C Type Python Type

b signed char Integer

B unsigned char Integer

c char String of length 1

d double Float

f float Float

h short Integer

H unsigned short Integer

i int Integer

I unsigned int Integer

l long Integer

L unsigned long Integer

p char[] String

P void * Integer

s char[] String

x pad byte No value

Are you looking for more information about handling binary data? Check out the file
npstruct-980726.zip at the following address:

http://www.nightmare.com/software.html

Sam Rushing has created an extension module useful for parsing and unparsing binary
data structures. It is similar to the standard struct module, but with a few extra
features (bit-fields, user-function-fields, byte order specification, and so on), and a

11 0672319942 CH08 11/15/00 11:38 AM Page 308

309CHAPTER 8 Working with Databases
DBM (Database Managers) Databases

different API that is more convenient for streamed and context-sensitive formats like
network protocol packets, image, and sound files.

DBM (Database Managers) Databases

Now, let’s look at this other mechanism for storing data. The next modules store data
in dbm-style format. This format specifies a simple disk-based storage facility that
handles data in a way equivalent to dictionaries. The objects are manipulated by using
unique key strings. Each of these modules is an interface to a specific library.

dbm, gdbm, and dbhash are database modules that are part of the standard Python distri-
bution.

Also included with the standard Python distribution is the anydbm module, which is a
generic interface to all the dbm-like modules. It uses the modules that are installed.

The dbhash module provides a function that offers a dbm-style interface to access the
BSD database library.

All these modules have some behavior in common. For example, to open the files, the
following syntax is used by all of them.

dbhandle = open(filename [, flag [,mode]])

Where, filename is the database filename; flag can have one of the following values: r
(read-only access), w (read/write access), c (create the database), n (force the creation of
a new database); and mode specifies the file access mode (specific for UNIX systems).

The following operations are supported:

dbhandle[key] = value # Set the value of a given key entry

value = dbhandle[key] # Get the value of a given key entry

dbhandle.has_key(key) # Test whether a key exists

dbhandle.keys() # Returns a list of the current keys available

del dbhandle[key] # Delete a key

dbhandle.close() # Close the file

For all these dbm-like modules, the keys and the values to be stored must be of type
string. Later, you will see a module called shelve with a behavior similar to these dbm-
like modules. However, it stores persistent objects.

Each module provides its own exception, which is called modulename.error.

>>> import anydbm

>>> try:

11 0672319942 CH08 11/15/00 11:38 AM Page 309

310 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

... dbhandle = anydbm.open(“datafile”,”r”)

... except anydbm.error:

... print “Error while opening file”

...

Error while opening file

>>>

This is a simplified database system based on key/value pairs. Depending on the
module and the system, it uses one or two files to store the data (for example, both
gdbm and bsddb use a single file).

The disadvantage of this kind of implementation is that it is not portable. The storage
format is specific to a particular hardware platform and operating system. Also, it is
not designed for large volumes of data. The smaller the file, the better the
performance. This is caused by the original specification, which wanted information to
be accessed in a single system call. After some interactions, the data file gets very
fragmented, full of data holes, which drives the performance to very low indexes. Of
course, they are very efficient when you do lots of reads and almost no writes.

If you have a data file but you don’t know which database you used to create it, take a
look at the whichdb module.

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or
dbhash) should be used to open a specific database. However, using the anydbm module
should take care of guessing the format for you.

Another important fact you must know is concerning the storage size limitation of
each key/value pair, which is also known as bucket size. The dbm module accepts
between 1K and 2K of data. However, both gdbm and bsddb don’t have any limitation
at all.

dbm Module

The dbm module is a database interface that implements a simple UNIX dbm library
access method. dbm objects behave similar to dictionaries in which keys and values
must contain string objects. This module allows strings, which can encode any Python
object, to be archived in indexed files. dbm is the original implementation of the DBM
toolkit. The main function of this module opens a dbm database and returns a dbm
object that behaves similar to a dictionary.

>>> import dbm

>>> dbhandle = dbm.open(“datafile”, “c”)

>>> dbhandle[“animal”] = “parrot”

>>> dbhandle[“country”] = “Spain”

>>> dbhandle.close()

11 0672319942 CH08 11/15/00 11:38 AM Page 310

311CHAPTER 8 Working with Databases
DBM (Database Managers) Databases

>>>

>>> dbhandle = dbm.open(“datafile “, “r”)

>>> for key in dbhandle.keys():

print dbhandle[key]

parrot

Spain

>>> db.close()

gdbm Module

The gdbm module is similar to the dbm module. However, their files are incompatible.
This module provides a GNU/FSF reinterpretation of the GNU dbm library. This
module supports multi-user application, it is faster than the dbm module (the
performance gets better when the number of records increases), and it was already
ported to a larger number of platforms.

Check out the GNU Web site for more details:

http://www.gnu.org/software/gdbm/gdbm.html

>>> import gdbm

>>> key = raw_input(“key: “)

>>> data = raw_input(“value: “)

>>> dbhandle = gdbm.open(“DATABASE”,”w”)

>>> while not(dbhandle.has_key(key)):

... dbhandle[key]=value

... key = raw_input(“key: “)

... data = raw_input(“value: “)

...

>>> dbhandle.close()

The gdbm module implements the following additional methods:

dbhandle.firstkey()

Returns the first key in the database.

dbhandle.nextkey(key)

Returns the next key located after the provided key.

dbhandle.reorganize()

Reorganizes the database by eliminating unused disk space that is created when
deletions occur.

11 0672319942 CH08 11/15/00 11:38 AM Page 311

312 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

If you append “f” to the flag clause in the open statement, Python opens the database
in fast mode. This means that data is not automatically saved to disk. You must call the
sync method in order to save all the unwritten information to disk. This is done to
improve performance.

bsddb Module

The bsddb module is part of the standard Python distribution. In addition to the
dictionary-like behavior, this module also supports B-trees (which allows traversing the
keys in sorted order), extended linear hashing, and fixed- and variable-length records.
Although this module has the more complex implementation, this is the fastest dbm-
like module.

The bsddb module provides an interface to access routines from the Berkeley db
library, a C library of database access methods copyrighted by Sleepycat Software.
This library provides full transactional support, database recovery, online backups, and
separate access to locking, logging, and shared-memory caching subsystems.

More information about the Berkeley DB package can be found at
http://www.sleepycat.com.

The bsddb module implements the following open interfaces:

dbhandle = hashopen(filename [, flag [,mode]])

Handles hash format files.

dbhandle = btopen(filename [, flag [,mode]])

Handles btree format files.

dbhandle = rnopen(filename [, flag [,mode]])

Handles record-based files.

Along with the previous interfaces, this module also provides the following additional
methods—these methods are used to move a cursor across the database.

cursor = dbhandle.set_location(key)

Moves the cursor to the location indicated by the key and assigns the location’s value
to the cursor variable.

11 0672319942 CH08 11/15/00 11:38 AM Page 312

313CHAPTER 8 Working with Databases
DBM (Database Managers) Databases

cursor = dbhandle.first()

Moves the cursor to the first element and assigns its value to the cursor variable.

cursor = dbhandle.next()

Moves the cursor to the next element and assigns its value to the cursor variable.

cursor = dbhandle.previous()

Sets the cursor to the previous element and assigns its value to the cursor variable.

cursor = dbhandle.last()

Moves the cursor to the last element and assigns its value to the cursor variable.

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

These methods are not supported by the hash format databases.

Although the standard Python distribution installs the bsddb module on Windows
machines, there is another interesting Win32 port of the bsddb module, which was
created by Sam Rushing. For more information, check out
http://www.nightmare.com/software.html.

dbhash Module

The dbhash module provides a “clean” open interface to the Berkeley DB hash
database. Note that the bsddb module must be installed before trying to call dbhash
because the bsddb module is used to open the databases.

The syntax to open the hash database is the same as the one used by the other dbm-
like modules.

dbhandle = open(filename [, flag [,mode]])

This module provides the following additional methods:

dbhandle.first()

Returns the first element.

dbhandle.last()

11 0672319942 CH08 11/15/00 11:38 AM Page 313

314 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Returns the last element.

dbhandle.next(key)

Returns the next element after the key element.

dbhandle.previous(key)

Returns the previous element before the key element.

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

Let’s look at an example:

>>> import dbhash

>>> key = raw_input(“key: “)

>>> data = raw_input(“value: “)

>>> dbhandle = dbhash.open(“DATABASE”,”w”)

>>> while not(dbhandle.has_key(key)):

... dbhandle[key]=value

... key = raw_input(“key: “)

... data = raw_input(“value: “)

...

>>> dbhandle.close()

anydbm Module

The anydbm module opens (or creates) a database using the best implementation
available. It searches within the available databases using the following order: Berkeley
bsddb, gdbm, and dbm. It only loads the dumbdbm module when none of the others are
available. Actually, the module doesn’t know what database packages are installed and
available—it just tries to use them.

>>> import anydbm

>>> def opendatabase(filename, flag):

... try:

... dbhandle = anydbm.open(filename, flag)

... except:

... raise “Error opening file “ + anydbm.error

... return dbhandle

...

>>> dbhandle = opendatabase(“mydata”,”c”)

11 0672319942 CH08 11/15/00 11:38 AM Page 314

315CHAPTER 8 Working with Databases
Object Serialization and Persistent Storage

dumbdbm Module

The dumbdbm module is a simple, portable, and slow dbm-style database implemented
entirely in pure Python. It shouldn’t be used for development because it is slow,
inefficient, and inconsistent. The only case acceptable for using this module is when
no other module is available.

whichdb Module

The whichdb module tries to identify which database was used to create a given file.
This module implements a function of the same name. The syntax is

dbtype = whichdb(filename)

This function returns the module name (for example, gdbm) when the format is
identified.

The function returns an empty string if the format is not identified. Note that
databases created using the dumbdbm module were not supported by this module prior
to Python 2.0.

The function returns None if the file doesn’t exist or if it can’t be opened.

import whichdb

dbtype = whichdb.whichdb(“filename”)

if dbtype:

handler = __import__(result)

dbhandle = handler.open(“filename”,”r”)

print dbhandle.keys()

if dbtype = “”:

print “I cannot recognize this file “

if dbtype = None:

print “An error happened while reading this file”

Note
You shouldn’t need to use this module. anydbm uses whichdb to work out what
module to use to open a database.

Object Serialization and Persistent Storage

These other modules provide persistent storage of arbitrary Python objects. Whenever
you need to save objects whose value is not a simple string (such as None, integer,

11 0672319942 CH08 11/15/00 11:38 AM Page 315

316 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

long integer, float, complex, tuple, list, dictionary, code object, and so on), you
need to serialize the object before sending it to a file.

Both pickle and shelve modules save serializable objects to a file.

By using these persistent storage modules, Python objects can be stored in relational
database systems. These modules abstract and hide the underlying database interfaces,
such as the Sybase module and the Python Database API.

Included in the standard Python distribution, the pickle module can convert Python
objects to and from a string representation.

The cPickle module is a faster implementation of the pickle module.

The copy_reg module extends the capabilities of the pickle and cpickle modules by
registering support functions.

The marshal module is an alternate method to implement Python object serialization.
It allows you to read/write information in a platform independent binary format and
convert data to/from character strings (the module only supports the simple built-in
types). Basically, it is just another way to do byte stream conversions by using
serialized Python objects. This module is used to serialize the compiled bytecode for
Python modules.

This module should be used for simple objects only. Use the pickle module to
implement persistent objects in general.

Persistent Storage of Python Objects in Relational Databases is a paper by Joel Shprentz
presented at the Sixth Python Conference. For more information, check out
http://www.python.org/workshops/1997-10/proceedings/shprentz.html.

pickle Module

The pickle module serializes the contents of an object into a stream of bytes.
Optionally, it can save the serialized object into a file object. It is slower than the
marshal module.

>>> import pickle

>>> listobj = [1,2,3,4]

>>> filehandle = open(filename, ‘w’)

>>> pickle.dump(filehandle, listobj)

>>> filehandle = open(filename, ‘r’)

>>> listobj = pickle.load(filehandle)

The next functions are the ones implemented by the pickle module.

pickle.dump(object, filename [,bin])

11 0672319942 CH08 11/15/00 11:38 AM Page 316

317CHAPTER 8 Working with Databases
Object Serialization and Persistent Storage

This function serializes and saves an object into a file. The bin argument specifies that
the information must be saved as binary data. This function is the same as the
following:

p = pickle.Pickler(filename)

p.dump(object)

If an unsupported object type is serialized, a PicklingException is raised.

pickle.dumps(object [,bin])

This function has the same behavior of dump. The difference is that this one returns
the serialized object.

pickle.load(file)

Restores a serialized object from a file. This function is the same as the following:

object = pickle.Unpickler(file).load()

The next example serializes the information and converts it back again.

>>> import pickle

>>> value = (“parrot”, (1,2,3))

>>> data = pickle.dumps(value)

>>> print pickle.loads(data)

(“parrot”, (1,2,3))

cPickle Module

This module implements the same functions that the pickle module does. The
difference is that cPickle is much faster because it doesn’t support subclassing of the
Pickler and Unpickler objects. See the next example code. It uses the fastest pickle
module available on the system.

try:

import cPickle

pickle = cPickle

except ImportError:

import pickle

copy_reg Module

This module registers new types to be used with the pickle module. It extends the
capabilities of the pickle and cPickle modules by supporting the serialization of new
object types defined in C extension modules.

11 0672319942 CH08 11/15/00 11:38 AM Page 317

318 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The next example corrects the fact that the standard pickle implementation cannot
handle Python code objects. It registers a code object handler by using two functions:

• dumpdata—Takes the code object and returns a tuple that can only contain simple
data types.

• loaddata—Processes the tuple.

import copy_reg, pickle, marshal, types

def loaddata(data):

return marshal.loads(data)

def dumpdata(code):

return loaddata, (marshal.dumps(code),)

copy_reg.pickle(types.CodeType, dumpdata, loaddata)

script = “””

x = 1

while x < 10:

print x

x = x - 1

“””

code = compile(script, “<string>”, “exec”)

codeobj = pickle.dumps(code)

exec pickle.loads(codeobj)

Note
Note that starting at Python 2.0, the copy-reg module can’t be used to register
pickle support for classes anymore. It can only be used to register pickle support for
extension types. You will get a TypeError exception from the pickle() function
whenever you try to pass a class to the function.

marshal Module

This module is only used to serialize simple data objects because class instances and
recursive references in lists, tuples, and dictionaries are not supported. It works similar
to pickle and shelve.

This module implements the following functions:

marshal.dump(value, filename)

11 0672319942 CH08 11/15/00 11:38 AM Page 318

319CHAPTER 8 Working with Databases
Object Serialization and Persistent Storage

Writes the value in the opened filename.

marshal.load(filename)

Returns the next readable value from file.

marshal.dumps(value)

Only returns the string.

marshal.loads(string)

Returns the next readable value from string.

Errors in the value manipulation will raise a ValueError exception.

>>> import marshal

>>> value = (“spam”, [1,2,3,4])

>>> data = marshal.dumps(value)

>>> print repr(data)

‘(\002\000\000\000s\004\000\000\000spam[\004\000\000\000i\001\000\000\000i\002\0

00\000\000i\003\000\000\000i\004\000\000\000’

>>> print marshal.loads(data)

(“spam”, [1,2,3,4])

The next example handles code objects by storing precompiled Python code.

import marshal

script = “””

x = 1

while x < 10:

print x

x = x - 1

“””

code = compile(script, “<script>”, “exec”)

codeobj = marshal.dumps(code)

exec marshal.loads(codeobj)

shelve Module

The shelve module is also part of the standard Python distribution. Built on top of
the pickle and anydbm modules, it behaves similar to a persistent dictionary whose
values can be arbitrary Python objects.

11 0672319942 CH08 11/15/00 11:38 AM Page 319

320 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The shelve module offers persistent object storage capability to Python by using
dictionary objects. Both keys and values can use any data type, as long as the pickle
module can handle it.

import shelve

key = raw_input(“key: “)

data = raw_input(“value: “)

dbhandle = shelve.open(“DATABASE”,”w”)

while not(dbhandle.has_key(key)):

dbhandle[key]=data

key = raw_input(“key: “)

data = raw_input(“value: “)

dbhandle.close()

The shelve module implements a shelf object which supports persistent objects that
must be serializable using the pickle module. In other words, a shelf is a dbm (or
gdbm) file that stores pickled Python objects. It stores dictionary structures (pickled
objects) on disks. For that purpose, it uses dbm-like databases, such as dbm or gdbm.
The file it produces is, consequently, a BINARY file. Therefore, the file’s format is
specific to the database manager used in the process.

To open a shelve file, the following function is available:

shelve.open(filename)

The file is created when the filename does not exist. The following methods and
operations are also supported:

dbhandle[key] = value # Set the value of a given key entry

value = dbhandle[key] # Get the value of a given key entry

dbhandle.has_key(key) # Test whether a key exists

dbhandle.keys() # Returns a list of the current keys available

del dbhandle[key] # Delete a key

dbhandle.close() # Close the file

Next, I present a simple example of the shelve module using the following:

>>> import shelve

>>> dbhandle = shelve.open(“datafile”, “c”)

>>> dbhandle[“animal”] = “parrot”

>>> dbhandle[“country”] = “Spain”

>>> dbhandle[“weekdays”] = 5

>>> dbhandle.close()

>>>

11 0672319942 CH08 11/15/00 11:38 AM Page 320

321CHAPTER 8 Working with Databases
Object Serialization and Persistent Storage

>>> dbhandle = shelve.open(“datafile “, “r”)

>>> for key in dbhandle.keys():

print dbhandle[key]

parrot

Spain

5

>>> db.close()

Locking
As a matter of fact, even though modules such as gdbm and bsddb perform locking,
shelves don’t implement locking facilities. This means that many users can read the
files at the same time. However, only one user can update the file at a given moment.
An easy way to handle the situation is by locking the file while writing to it. A routine
like this must be implemented because it is not part of the standard distribution.

More Sources of Information

PyVersant
PyVersant is a simple Python wrapper for the Versant commercial OODBMS. By using
PyVersant in the Python command prompt, you can interactively find objects, look at
their values, change those values, and write the object back to the database, among
other things. More information is provided at the following site:

http://starship.python.net/crew/jmenzel/

Details about Versant OODBMS are shown at the following site:

http://www.versant.com/

ZODB
The Zope Object Database is a persistent-object system that provides transparent
transactional object persistence to Python applications. For more information, check
out the following site:

http://www.zope.org/Members/michel/HowTos/ZODB-How-To

ZODB is a powerful object database system that can be used with or without Zope. As
a database, it offers many features. Note that ZODB uses other database libraries for
the actual storage.

More information about Zope can be found in Chapter 11, “Web Development.”

11 0672319942 CH08 11/15/00 11:38 AM Page 321

322 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The ODBC Module

ODBC (Open Database Connectivity) is a standard interface created by Microsoft; hence,
it is fully supported by the Windows platform. It provides access to almost every
database. Currently, the ODBC implements the ANSI standard SQL3.

To configure the ODBC settings for a database in your Windows system, you must use
the ODBC Data Source Administrator, which is located at the Windows Control
Panel.

The two major advantages of choosing to code an application to the ODBC API are as
follows:

• Portable Data Access Code—The ODBC API is available on all major databases.

• Dynamic Data Binding—This allows the user or the system administrator to
easily configure an application to use any ODBC compliant data source. This is
perhaps the single biggest advantage of coding an application to the ODBC API.
Dynamic binding allows the end user to pick a data source—that is, an SQL
Server—and use it for all data applications without having to worry about
recompiling the application. The ODBC module implements the Python DB
API, so you can get this level of abstraction at the DB API level. Also, you don’t
explicitly recompile Python code.

EShop kindly donated the ODBC module to the public domain. This module is included
in the PythonWin distribution. For more details, check out the site at
http://www.python.org/windows/win32/odbc.html.

The next example shows how you can open a ODBC connection using Python.

import dbi, odbc

try:

connection = odbc.odbc(‘DSN=mydatabase;UID=mylogin;
PASSWORD=mypassword’)

cursor = connection.cursor()

cursor.execute(‘select name, email from USERS’)

while 1:

record = cursor.fetchone()

if not record: break

print record

connection.close()

except NameError,e:

print ‘NameError: ‘, e

11 0672319942 CH08 11/15/00 11:38 AM Page 322

323CHAPTER 8 Working with Databases
The ODBC Module

Three ways (at least) to access ODBC from Python on the Windows platform are as
follows:

• DB API—Python Database API

• calldll—Sam Rushing’s calldll module

• DAO—Microsoft Data Access Objects

ODBC Example for Windows Platforms
The first thing you need is to create a DSN for your database in the ODBC Data
Source Administrator.

The PythonWin distribution comes with an odbc module, which by the way is very
stable. However, it is no longer going to be improved. This odbc module works along
with the dbi module. Both files conform to the Version 1.0 of the Python Database
API, providing a minimum implementation.

The whole ODBC functionality is made up of two extension files:

• odbc.pyd—The odbc module itself

• dbi.pyd—The database independence utilities module

The dbi module must be imported before you import the odbc module.

import dbi, odbc, pprint

connection = odbc.odbc(‘DSN=mydatabase;UID=myuser;PWD=mypassword’)

cursor = connection.cursor()

cursor.execute(‘SELECT name, email FROM USERS’)

data = mycursor.fetchall()

cursor.close()

connection.close()

pprint.pprint(data)

[(‘andre’,’andre@bebemania.com.br’), (‘renata’, None)]

Let’s see some of the functions and attributes exposed by the odbc connection and
cursor objects.

fetchall() # fetches all the rows

fetchone() # fetches only one row

fetchmany(n) # fetches n number of rows

mycursor.arraysize # number of rows fetched.

mycursor.description # structure of the cursor

11 0672319942 CH08 11/15/00 11:38 AM Page 323

324 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

mycursor.execute() supports DML and DDL. However, it doesn’t support prepared
statements.

The dbi module handles both date and time formats. All date results are returned as
dbi date objects.

>>> pprint.pprint(data)

[(‘col1’, <DbiDate object at 12e4b34>)]

>>> dateobj = data[0][1]

>>> dateobj

<DbiDate object at 12e4b34>

>>> int(dateobj)

984046200

>>> str(dateobj)

‘Fri Jun 02 00:00:00 2000’

The next command shows the preferred way to pass date values back to the ODBC driver
because this is the standard ODBC syntax for embedding dates in SQL strings.

mycursor.execute(“UPDATE tablename SET columnname={d ‘1999-04-15’}”)

mxODBC

mxODBC is an extension package created by Marc-André Lemburg that exposes
interfaces to ODBC 2.0 database drivers. This package implements the standard
Database API. Among other things, it supports more than one database per process
and it has preconfigured scripts for MySQL, Oracle, Informix, and more. This
package exposes an odbc module for both Windows and UNIX. One of the most
important differences between this module and the one that comes in the PythonWin
distribution might be that this one supports prepared statements, hence, you can
separate the SQL structure from the actual values. The engine parses a statement
once, creates a handle for it. After that, you just need to pass the correct parameters
that should be used for each interaction.

This package also possess an enhanced set of date and time types for moving data
between both Windows and UNIX systems. You can blame the mxDateTime package
for that. The mxDateTime package might become part of the mxODBC package in the
near future. Check it out at

http://starship.python.net/crew/lemburg/mxODBC.html

calldll

You can also use the calldll package, developed by Sam Rushing, to call the functions
that are part of the Microsoft ODBC DLL. One problem with using this DLL is that

11 0672319942 CH08 11/15/00 11:38 AM Page 324

325CHAPTER 8 Working with Databases
ADO (ActiveX Data Objects)

it doesn’t have any similarity to the Python DB API. Another problem is that if you
call the ODBC functions with the wrong arguments, your program might fail. The
function calls have a low-level interface that doesn’t handle exceptions as nicely as
Python does. For more information, check out
http://www.nightmare.com/software.html.

Caution
This is one of the most dangerous ways to access databases. calldll removes
almost all the safety Python gives you.

unixODBC

unixODBC is a complete, free/open, ODBC solution for UNIX/Linux. The unixODBC
Project goals are to develop and promote unixODBC to be the definitive standard for
ODBC on the Linux platform. This is to include GUI support for KDE. For more
information, check out http://www.unixODBC.org.

Other Interesting ODBC Web Pages

The next few links introduce some interesting material that you can use to understand
and use ODBC techniques.

ODBC Hints—by John Dell’Aquila

http://www.python.org/windows/OdbcHints.html

Full ODBC manual

http://www.solidtech.com/developer/documentation.html

ADO (ActiveX Data Objects)

ActiveX Data Objects (ADO) is an Automation-based interface technology for accessing
data. ADO uses the OLE DB interface to access a broad range of data sources,
including but not limited to data provided via ODBC.

Although ODBC seems to be the standard in the market, ADO offers significant
benefits. ADO is a rich and fully featured object model (see Chapter 7, “Objects
Interfacing and Distribution,” for details). The library name in which ADO lives is
called ADODB. The ADO object model gives you fantastic flexibility.

Users of RDO (Remote Data Objects) and DAO should have no problem moving to
ADO because the overall design of ADO comes from Microsoft’s experience in
developing those interfaces.

11 0672319942 CH08 11/15/00 11:38 AM Page 325

326 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Microsoft’s Remote Data Service (RDS) is a component of ADO that provides fast and
efficient data connectivity and the data-publishing framework for applications hosted
in Microsoft Internet Explorer. It is based on a client/server distributed technology
that works over HTTP, HTTPS (HTTP over Secure Sockets layer), and DCOM
application protocols. Using data-aware ActiveX controls, RDS provides data access
programming in the style of Microsoft Visual Basic to Web developers who need to
build distributed, data-intensive applications for use over corporate intranets and the
Internet. The use of ADO ties your application to Win32, whereas using the Python
DB API does not.

After you have created the Connection object, you need to open a database connection
by assigning a string value to the Open method. This string can be the name of a DSN
(Data Source Name) or a complete connection string.

>>> import win32com.client

>>> adoConn = win32com.client.Dispatch(‘ADODB.Connection’)

>>> adoConn.Open(‘data source=mySQLServer;’)

>>> adoRS = adoConn.Execute (‘truncate table tmp_table’)

>>> args = “34,25”

>>> del adoRS

>>> adoRS = adoConn.Execute (‘insert into tmp_table values (‘+args+’)’)

>>> args = “11,12”

>>> del adoRS

>>> adoRS = adoConn.Execute (‘insert into tmp_table values (‘+args+’)’)

>>> del adoRS

>>> (adoRS, success) = adoConn.Execute (‘Select c1, c2 from tmp_table’)

>>> while not adoRS.EOF:

... vl_a = adoRS.Fields(‘c1’).Value

... vl_b = adoRS.Fields(‘c2’).Value

... print vl_a, vl_b

... adoRS.MoveNext()

...

34 25

11 12

>>> adoRS.MoveFirst()

>>> (adoRS, success) = adoConn.Execute (‘Select c1, c2 from tmp_table’)

>>> print vl_a, vl_b

34 25

11 0672319942 CH08 11/15/00 11:38 AM Page 326

327CHAPTER 8 Working with Databases
Using SQL

Using SQL

SQL stands for Structured Query Language. It was developed in the mid-1970s by IBM
Research to serve as an English interface query language to the System R relational
database prototype.

SQL consists of a list of powerful and flexible commands that are used to manipulate
information collected in tables, by operating and controlling sets of records at a time.

• SQL is an interactive query language for ad hoc database queries.

• SQL is a database programming language.

• SQL is a data definition and data administration language.

• SQL is the language of networked database servers.

• SQL helps protect the data in a multi-user networked environment.

Nowadays, SQL servers are the dominant model for creating client/server
applications. The most important tendency among database servers of any size is the
revelation of SQL as the choice for the manipulation, definition, and control of data.

SQL has been an ISO standard for a long time. It is a powerful language for databases
that adhered to the relational model.

The relational model clearly separates the physical aspects of data from their logical
implementation. It frees you from being concerned with the details of how data is
stored and makes the access to data purely logical.

By using SQL statements, you just need to specify the tables, columns, and row
qualifiers to get to any data item.

SQL Mini-Tutorial

The idea behind this mini-tutorial is to teach you how to change and query the
database. Of course, this book does not cover everything. It should give you a brief
understanding of the concepts and basic usage of SQL statements. If it becomes
necessary to delve deeper in this topic, the last heading of this section contains a list of
Web sites that have some beneficial and complete SQL tutorials.

Selecting the Information
In a relational database, data is stored in tables. In our example, we have the USERS
Table. ID, NAME, EMAIL, and AGE are the columns of this table.

11 0672319942 CH08 11/15/00 11:38 AM Page 327

328 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Table 8.2 USERS

ID NAME EMAIL AGE

1 Andre alessa@bebemania.com.br 25

2 Renata rtaveira@bebemania.com.br 30

3 Cleber clessa@bebemania.com.br 45

4 Beth beth@alugueaqui.com.br 40

Now, say that you want to know the EMAIL and the AGE of each user. You have to use
the SELECT statement as follows:

SELECT EMAIL, AGE

FROM USERS

The following list is the result of your query:

EMAIL AGE

alessa@bebemania.com.br 25

rtaveira@bebemania.com.br 30

clessa@bebemania.com.br 45

beth@alugueaqui.com.br 40

Let me explain to you what you have done: you asked to see all the rows from the
USERS table, filtering only the EMAIL and AGE columns. Note that column names and
table names do not have spaces—they must be entered as just one word. The general
syntax for a SELECT statement (when selecting all the rows from a table) is

SELECT Column1Name, Column2Name, ...

FROM TableName

Note
This basic syntax doesn’t filter which rows are selected or do anything else
interesting.

You can use the asterisk symbol in order to retrieve all the columns from a table
without typing every column name:

SELECT * FROM TableName;

11 0672319942 CH08 11/15/00 11:38 AM Page 328

329CHAPTER 8 Working with Databases
Using SQL

Relational Operators
Six important relational operators exist in SQL, and after introducing them, we’ll see
how they’re used:

= Equal

<> Not Equal

< Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To

The WHERE clause of a SELECT statement specifies which rows of a table must be
selected. For example, let’s determine which users are 25 years old.

SELECT NAME

FROM USERS

WHERE AGE = 25;

The resultset is as follows:

NAME

Andre

Joins
Good database design suggests that each table in a database must contain data of only
one single entity. Detailed information can be acquired by joining tables according to
their primary and foreign keys. For example, we will create Table 8.3.

Table 8.3 NATIONALITY

ID ORIGIN

1 Greek

2 Spain

6 USA

8 Brazil

Let’s discuss the concept of keys. A primary key is a column or set of columns that
uniquely identifies the rest of the data in any given row. For example, in the USERS
table, the ID column uniquely identifies each row.

11 0672319942 CH08 11/15/00 11:38 AM Page 329

330 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

A foreign key is a column in a table that is a primary key of another table. It means
that any data in a foreign key column must exist in the other table where that column
is the primary key. For example, in the NATIONALITY table, the column ID is a foreign
key to the primary key of the USERS table, which is the ID column.

The purpose of these keys is to associate data across tables, eliminating data
redundancy in the tables—this is the power of relational databases.

To find the names of the user whose name comes from Spain, use the following query:

SELECT USERS.NAME

FROM USERS, NATIONALITY

WHERE USERS.ID = NATIONALITY.ID

AND NATIONALITY.ORIGIN = “Spain”

The resultset is as follows:

NAME

Renata

Using Aggregate Functions
I will present five important aggregation functions: SUM, AVG, MAX, MIN, and COUNT. They
are called aggregation functions because they summarize the results of a query, rather
than listing all the rows.

• SUM()—Returns the total value of a given column, based on the selected rows.

• AVG()—Returns the average value of the given column.

• MAX()—Returns the highest value in the given column.

• MIN()—Returns the lowest value in the given column.

• COUNT(*)—Returns the number of rows that satisfy the WHERE clause.

Let’s look at some examples:

SELECT SUM(AGE), AVG(AGE)

FROM USERS

The resultset is as follows:

SUM AVG

135 33.75

11 0672319942 CH08 11/15/00 11:38 AM Page 330

331CHAPTER 8 Working with Databases
Using SQL

SELECT COUNT(*)

FROM USERS

WHERE AGE > 30

The resultset is as follows:

COUNT(*)

2

Sometimes, when you are working with aggregation functions, the group by clause
might be required. For instance, let’s say that you need to list the average age by
username from your USERS table. The following SELECT statement can be used to
group the resultset of your query.

SELECT NAME, AVG(AGE)

FROM USERS

GROUP BY NAME

Adding Data
To insert rows in a table, use the following syntax:

INSERT INTO <TABLE NAME> [(<COLUMN1 NAME>, <COLUMN2 NAME>, ...)]

VALUES (<VALUE1>, <VALUE2>, ...);

Note
In order to not use the column name part of your statement (because it’s optional),
in most cases, you need to provide values for all the columns of your table.

For example

INSERT INTO USERS (ID, NAME, EMAIL, AGE) VALUES (5, “Bruno”,

“bruno@alugueaqui.com.br”, 17)

Deleting Data
Let’s delete a row from a table.

DELETE FROM USERS

WHERE NAME = “Cleber”

If more than one row exists in which NAME = “Cleber”, the other row will be deleted
too. Using the primary key is a good way to uniquely identify a row for deletion.

11 0672319942 CH08 11/15/00 11:38 AM Page 331

332 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

To delete all the rows from the table, type the following:

DELETE FROM USERS

Updating Data
Let’s update the age of one user.

UPDATE USERS

SET AGE = 18

WHERE NAME = “Bruno”

This statement sets Bruno’s age to 18. If we had more than one Bruno in our database,
we would have to include more conditions in the WHERE clause. It is also possible to
update multiple columns at the same time—you just need to separate the attribution
statements with commas.

UPDATE USERS

SET AGE = 18, EMAIL = “bruno@bebemania.com.br”

WHERE NAME = “Bruno” AND ID = 5

Cool SQL Language Web Pages
The Introduction to Structured Query Language site can be found at
http://w3.one.net/~jhoffman/sqltut.htm.

Several links to SQL material can be found at
http://www.lessaworld.com/links_basics_sql.html.

PostgreSQL Databases

PostgreSQL is a free (open-source) SQL database. It is a sophisticated Object-
Relational database system derived from Postgres4.2. It conforms to (most of) ANSI
SQL and offers many interesting capabilities, including subselects, transactions, and
user-defined types and functions. It is the most advanced open-source database
available anywhere.

Commercial Support is also available. For details, check out its Web site at
http://www.postgresql.org.

pg Module
The pg module was written by D’Arcy J.M. Cain in order to provide an interface to
the PostgreSQL database system. It embeds the PostgreSQL query library allowing easy
use of its powerful features from a Python script. This module is available for
download at http://www.druid.net/pygresql.

11 0672319942 CH08 11/15/00 11:38 AM Page 332

333CHAPTER 8 Working with Databases
Using SQL

The pg module exposes its own DB API interface specification, as you can see next.

>>> import pg

>>> for rs in pg.DB(‘dbname’).query(‘SELECT * FROM USERS’).dictresult():

... print rs

...

Note
At the time of this chapter was written, it was announced that the latest version of
pygresql began supporting the Python DB API 2.0.

MySQL Modules

MySQL is a true multiuser, multithreaded SQL database server. It is a client/server
implementation that consists of a server daemon mysqld and many different client
programs and libraries. MySQL is very fast for performing queries, but can slow down if
lots of updates are being performed. Also, it doesn’t have transaction support. For
more information, check out http://www.mysql.com.

MySQLdb Module
You need to get and build the MySQLdb module before using it. Check out
http://dustman.net/andy/python/MySQLdb.

>>> import MySQLdb

>>> connection = MySQLdb.connect(host=”spam”, db=”client”, port=3316, \

... user=”alessa”, passwd=”1020erw”)

...

>>> con = connection.cursor()

>>> sql_statement = “SELECT * FROM USERS WHERE AGE > 21”

>>> con.execute(sql_statement)

>>> result_set = con.fetchall()

>>> connection.close()

Python Interface for MySQL
This interface was designed by Joseph Skinner and modified by Joerg Senekowitsch.
For more information, check out http://www.mysql.com/Contrib/
MySQLmodule-1.4.tar.gz.

The GadFly SQL Module

The GadFly SQL module is a SQL database engine written entirely in Python by
Aaron Watters in compliance with the Python Database API. It uses fewer system
resources than PostgreSQL, and its speed is comparable to Microsoft Access. However,

11 0672319942 CH08 11/15/00 11:38 AM Page 333

334 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

it doesn’t have the performance of commercial software (such as Oracle). This module
is easily used by client/server applications because it includes TCP/IP support.

This module entirely fits in a small file, so it doesn’t leave huge footprints.

Because it only supports a small subset of the SQL language, it offers excellent code
for those who want to learn more about SQL parsing engines and client/server
communications. For more information, check out
http://www.chordate.com/gadfly.html.

MetaKit Database Engine

MetaKit is a C++ library for storage, transport, and manipulation of structured objects
and collections. The next examples show how the MetaKit database engine does on-
the-fly restructuring:

Example 1

>>> import Mk4py

>>> dbhandle = Mk4py.Storage(‘datafile.mk’,1)

>>> workspace = dbhandle.getas(‘users[name:S,email:S]’)

>>> workspace.append(name=’Andre’,email=’alessa@bebemania.com.br’)

>>> workspace.append(name=’Renata’,email=’rtaveira@bebemania.com.br’)

>>> dbhandle.commit()

Example 2

>>> import Mk4py

>>> dbhandle = Mk4py.Storage(‘datafile.mk’,1)

>>> workspace = dbhandle.getas(‘users[name:S,email:S,age:I]’)

>>> for user in workspace:

... print user.name

... user.age = input(‘age: ‘)

...

>>> dbhandle.commit()

>>> for user in workspace.sort():

>>> print user.name, user.email, user.age

If you run these two examples in order, you’ll have restructured on-the-fly. It will be
instant, regardless of the number of rows. If for any reason the transaction is not
completed, neither will the restructure be. For more information, check out their Web
site at http://www.equi4.com/metakit/python.html.

11 0672319942 CH08 11/15/00 11:38 AM Page 334

335CHAPTER 8 Working with Databases
Python DB API

Python DB API

The quest to provide a standard way to interface to database systems drove a group of
people to develop Python Database API. The Python DB API is maintained by the
Database Special Interest Group (DB-SIG). For more information, check out their
Web site at http://www.python.org/sigs/db-sig/.

The following list shows all the database modules that currently implement the
Python DB API specification proposed by the DB-SIG. This means that after you
understand the API, you will be able to handle, in a similar way, all the databases that
are manipulated by the following modules:

• GadFly—A simple relational database system implemented in Python based on
the SQL Structured Query Language, including a DB-API compliant interface.
Maintained by Aaron Watters.

http://www.chordate.com/gadfly.html

• Informix—Currently maintained by Stephen J. Turner.

http://starship.python.net/crew/sturner/informixdb.html

• Informix (Kinfxdb)—A completely new Informix module, called Kinfxdb.
Maintained by Alexander Kuznetsov.

http://thor.prohosting.com/~alexan/

• Interbase (Kinterbasdb)—An interface for Interbase 4.0 and 5.0. Maintained by
Alexander Kuznetsov.

http://thor.prohosting.com/~alexan/Kinterbasdb/

• MySQL—A MySQL module that is thread-safe and aims for compatibility with the
2.0 DB-API. It requires a newer version of MySQL, version 3.22.19 or higher.

http://dustman.net/andy/python/MySQLdb/

• mxODBC—The mxODBC package provides a nearly 100% Python DB API
compliant interface to databases that are accessible via the ODBC API. Many
databases include ODBC libraries, so this might be the only module you need.
Maintained by M. A. Lemburg.

http://starship.python.net/crew/lemburg/mxODBC.html

11 0672319942 CH08 11/15/00 11:38 AM Page 335

336 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

• ODBC—This module is currently available in the PythonWin distribution. It’s
public domain code, but unfortunately has no designated support person(s). The
best option for support is to ask questions on comp.lang.python newsgroups,
where other PythonWin users can answer them.

http://www.python.org/windows/win32/odbc.html

• DCOracle—An open source interface to Oracle from Digital Creations.

http://www.zope.org/Products/DCOracle/

• Sybase—Maintained by Peter Godman.

http://starship.python.net/crew/pgodman/

This is the information available at the time this book was written. For an updated list
of modules, check out http://www.python.org/topics/database/modules.html.

DB-API Specification v2.0

The following specification is available online at
http://www.python.org/topics/database/DatabaseAPI-2.0.html.

Comments and questions about this specification can be directed to the SIG for
Database Interfacing with Python at the email address db-sig@python.org.

For more information on database interfacing with Python and available packages, see
the Database Topics Guide at http://www.python.org.

This document describes the Python Database API Specification 2.0. The previous
version 1.0 is still available online at the Python Web site as a reference. Package
writers are encouraged to use this version of the specification as the basis for new
interfaces.

This API has been defined to encourage similarity between the Python modules that
are used to access databases. By doing this, we hope to achieve a consistency leading to
more easily understood modules, code that is generally more portable across databases,
and a broader reach of database connectivity from Python.

The interface specification consists of several sections:

• Module Interface

• Connection Objects

• Cursor Objects

11 0672319942 CH08 11/15/00 11:38 AM Page 336

337CHAPTER 8 Working with Databases
Python DB API

• Type Objects and Constructors

• Implementation Hints

• Major Changes from 1.0 to 2.0

Module Interface
Access to the database is made available through connection objects. The module must
provide the following constructor for these:

connect(parameters...)—This is a constructor for creating a connection to the
database. Returns a Connection Object. It takes a number of parameters that are
database dependent.1

These module globals must be defined:

apilevel—This string constant states the supported DB API level. Currently only
the strings ‘1.0’ and ‘2.0’ are allowed.

If not given, a Database API 1.0 level interface should be assumed.

threadsafety—This integer constant states the level of thread safety that the
interface supports. Possible values are

0—Threads cannot share the module.

1—Threads can share the module, but not connections.

2—Threads can share the module and connections.

3—Threads can share the module, connections, and cursors.

Sharing in the previous context means that two threads can use a resource without
wrapping it using a mutex semaphore to implement resource locking. Note that you
cannot always make external resources thread safe by managing access using a
mutex: The resource might rely on global variables or other external sources that
are beyond your control.

paramstyle—This string constant states the type of parameter marker formatting
expected by the interface. Possible values are as follows:2

‘qmark’ = Question mark style, e.g. ‘...WHERE name=?’

‘numeric’ = Numeric, positional style, e.g. ‘...WHERE name=:1’

‘named’ = Named style, e.g. ‘...WHERE name=:name’

‘format’ = ANSI C printf format codes, e.g. ‘...WHERE name=%s’

‘pyformat’ = Python extended format codes, e.g. ‘...WHERE name=%(name)s’

11 0672319942 CH08 11/15/00 11:38 AM Page 337

338 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The module should make all error information available through these exceptions or
subclasses thereof:

Warning—This exception is raised for important warnings such as data truncations
while inserting, and so on. It must be a subclass of the Python StandardError
(defined in the module exceptions).

Error—This exception is the base class of all other error exceptions. You can use
this to catch all errors with one single ‘except’ statement. Warnings are not
considered errors and thus should not use this class as base. It must be a subclass of
the Python StandardError (defined in the module exceptions).

InterfaceError—This exception is raised for errors that are related to the database
interface rather than the database itself. It must be a subclass of Error.

DatabaseError—This exception is raised for errors that are related to the database.
It must be a subclass of Error.

DataError—This exception is raised for errors that are because of problems with
the processed data such as division by zero, numeric value out of range, and so on.
It must be a subclass of DatabaseError.

OperationalError—This exception is raised for errors that are related to the
database’s operation and not necessarily under the control of the programmer; for
example, an unexpected disconnect occurs, the data source name is not found, a
transaction could not be processed, a memory allocation error occurred during
processing, and so on. It must be a subclass of DatabaseError.

IntegrityError—This exception is raised when the relational integrity of the
database is affected; for example, a foreign key check fails. It must be a subclass of
DatabaseError.

InternalError—This exception is raised when the database encounters an internal
error; for example, the cursor is not valid anymore, the transaction is out of sync,
and so on. It must be a subclass of DatabaseError.

ProgrammingError—This exception is raised for programming errors; for example,
table not found or already exists, syntax error in the SQL statement, wrong number
of parameters specified, and so on. It must be a subclass of DatabaseError.

NotSupportedError—This exception is raised in case a method or database API was
used that is not supported by the database; for example, requesting a .rollback()
on a connection that does not support transaction or has transactions turned off. It
must be a subclass of DatabaseError.

11 0672319942 CH08 11/15/00 11:38 AM Page 338

339CHAPTER 8 Working with Databases
Python DB API

This is the exception inheritance layout:

StandardError

|__Warning

|__Error

|__InterfaceError

|__DatabaseError

|__DataError

|__OperationalError

|__IntegrityError

|__InternalError

|__ProgrammingError

|__NotSupportedError

Note
The values of these exceptions are not defined. They should give the user a good
idea of what went wrong though.

Connection Objects
Connections Objects should respond to the following methods:

close()—It closes the connection now (rather than whenever __del__ is called).
The connection will be unusable from this point forward; an Error (or subclass)
exception will be raised if any operation is attempted with the connection. The
same applies to all cursor objects trying to use the connection.

commit()—It commits any pending transaction to the database. If the database
supports an autocommit feature, this must be initially off. An interface method
might be provided to turn it back on.

Database modules that do not support transactions should implement this method
with void functionality.

rollback()—This method is optional because not all databases provide transaction
support.3

In case a database does provide transactions, this method causes the database to roll
back to the start of any pending transaction. Closing a connection without
committing the changes first will cause an implicit rollback to be performed.

cursor()—It returns a new Cursor Object using the connection. If the database does
not provide a direct cursor concept, the module will have to emulate cursors using
other means to the extent needed by this specification. 4

11 0672319942 CH08 11/15/00 11:38 AM Page 339

340 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Cursor Objects
These objects represent a database cursor, which is used to manage the context of a
fetch operation. They should respond to the following methods and attributes:

description—This read-only attribute is a set of seven-item sequences. Each of
these sequences contains information describing one result column: (name,
type_code, display_size, internal_size, precision, scale, null_ok). This attribute will
be None for operations that do not return rows or if the cursor has not had an
operation invoked via the executeXXX() method yet.

The type_code can be interpreted by comparing it to the Type Objects specified in
the following section.

rowcount—This read-only attribute specifies the number of rows that the last
executeXXX() produced (for DQL statements such as select) or affected (for DML
statements such as update or insert).

The attribute is -1 in case no executeXXX() has been performed on the cursor, or
the rowcount of the last operation is not determinable by the interface.7

callproc(procname[,parameters])—This method is optional because not all
databases provide stored procedures.3

It calls a stored database procedure with the given name. The sequence of
parameters must contain one entry for each argument that the procedure expects.
The result of the call is returned as modified copy of the input sequence. Input
parameters are left untouched, and output and input/output parameters are replaced
with possibly new values.

The procedure can also provide a resultset as output. This must then be made
available through the standard fetchXXX() methods.

close()—It closes the cursor now (rather than whenever __del__ is called). The
cursor will be unusable from this point forward; an Error (or subclass) exception
will be raised if any operation is attempted with the cursor.

execute(operation[,parameters])—It prepares and executes a database operation
(query or command). Parameters can be provided as sequence or mapping and will
be bound to variables in the operation. Variables are specified in a database-specific
notation (see the module’s paramstyle attribute for details).5

11 0672319942 CH08 11/15/00 11:38 AM Page 340

341CHAPTER 8 Working with Databases
Python DB API

A reference to the operation will be retained by the cursor. If the same operation
object is passed in again, the cursor can optimize its behavior. This is most effective
for algorithms in which the same operation is used, but different parameters are bound
to it (many times).

For maximum efficiency when reusing an operation, it is best to use the
setinputsizes() method to specify the parameter types and sizes ahead of time. It is
legal for a parameter to not match the predefined information; the implementation
should compensate, possibly with a loss of efficiency.

The parameters can also be specified as list of tuples to insert multiple rows in a single
operation, but this kind of usage is depreciated: executemany() should be used instead.

Return values are not defined.

executemany(operation,seq_of_parameters

It prepares a database operation (query or command) and then executes it against all
parameter sequences or mappings found in the sequence seq_of_parameters.

Modules are free to implement this method using multiple calls to the execute()
method or by using array operations to have the database process the sequence as a
whole in one call.

The same comments for execute() also apply accordingly to this method.

Return values are not defined.

fetchone()

It fetches the next row of a query resultset, returning a single sequence, or None when
no more data is available.6

An Error (or subclass) exception is raised if the previous call to executeXXX() did not
produce any resultset or no call was issued yet.

fetchmany([size=cursor.arraysize])

It fetches the next set of rows of a query result, returning a sequence of sequences (for
example, a list of tuples). An empty sequence is returned when no more rows are
available.

The number of rows to fetch per call is specified by the parameter. If it is not given,
the cursor’s arraysize determines the number of rows to be fetched. The method
should try to fetch as many rows as indicated by the size parameter. If this is not
possible because of the specified number of rows not being available, fewer rows can
be returned.

11 0672319942 CH08 11/15/00 11:38 AM Page 341

342 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

An Error (or subclass) exception is raised if the previous call to executeXXX() did not
produce any resultset or no call was issued yet.

Performance considerations are involved with the size parameter. For optimal
performance, it is usually best to use the arraysize attribute. If the size parameter is
used, it is best for it to retain the same value from one fetchmany() call to the next.

fetchall()

It fetches all (remaining) rows of a query result, returning them as a set of sequences
(for example, a list of tuples). Note that the cursor’s arraysize attribute can affect the
performance of this operation.

An Error (or subclass) exception is raised if the previous call to executeXXX() did not
produce any resultset or no call was issued yet.

nextset()

This method is optional because not all databases support multiple resultsets.3

This method will make the cursor skip to the next available set, discarding any
remaining rows from the current set.

If there are no more sets, the method returns None. Otherwise, it returns a true value
and subsequent calls to the fetch methods will return rows from the next resultset.

An Error (or subclass) exception is raised if the previous call to executeXXX() did not
produce any resultset or no call was issued yet.

arraysize

This read/write attribute specifies the number of rows to fetch at a time with
fetchmany(). It defaults to 1, which means to fetch a single row at a time.

Implementations must observe this value with respect to the fetchmany() method, but
are free to interact with the database a single row at a time. It can also be used in the
implementation of executemany().

setinputsizes(sizes)

This can be used before a call to executeXXX() to predefine memory areas for the
operation’s parameters.

sizes is specified as a sequence—one item for each input parameter. The item should
be a Type Object that corresponds to the input that will be used, or it should be an
integer specifying the maximum length of a string parameter. If the item is None, no
predefined memory area will be reserved for that column. (This is useful to avoid
predefined areas for large inputs.)

11 0672319942 CH08 11/15/00 11:38 AM Page 342

343CHAPTER 8 Working with Databases
Python DB API

This method would be used before the executeXXX() method is invoked.
Implementations are free to have this method do nothing, and users are free to not
use it.

setoutputsize(size[,column])

It sets a column buffer size for fetches of large columns (for example, LONGs, BLOBs, and
so on). The column is specified as an index into the result sequence. Not specifying
the column will set the default size for all large columns in the cursor.

This method would be used before the executeXXX() method is invoked.

Implementations are free to have this method do nothing, and users are free to not
use it.

Type Objects and Constructors
Many databases need to have the input in a particular format for binding to an
operation’s input parameters. For example, if an input is destined for a DATE column,
it must be bound to the database in a particular string format. Similar problems exist
for Row ID columns or large binary items (for example, BLOBs or RAW columns). This
presents problems for Python because the parameters to the executeXXX() method are
not typed. When the database module sees a Python string object, it doesn’t know if it
should be bound as a simple CHAR column, as a raw BINARY item, or as a DATE.

To overcome this problem, a module must provide the constructors defined later to
create objects that can hold special values. When passed to the cursor methods, the
module can then detect the proper type of the input parameter and bind it accordingly.

A Cursor Object’s description attribute returns information about each of the result
columns of a query. The type_code must be equal to one of Type Objects defined in
the following. Type Objects can be equal to more than one type code. (For example,
DATETIME could be equal to the type codes for date, time, and timestamp columns; see
“Implementation Hints” for details.)

The module exports the following constructors and singletons:

Date(year, month, day)—This function constructs an object holding a date value.

Time(hour, minute, second)—This function constructs an object holding a time
value.

Timestamp(year, month, day, hour, minute, second)—This function constructs an
object holding a timestamp value.

11 0672319942 CH08 11/15/00 11:38 AM Page 343

344 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

DateFromTicks(ticks)—This function constructs an object holding a date value
from the given ticks value (number of seconds since the epoch; see the documen-
tation of the standard Python time module for details).

TimeFromTicks(ticks)—This function constructs an object holding a time value
from the given ticks value (number of seconds since the epoch; see the documen-
tation of the standard Python time module for details).

TimestampFromTicks(ticks)—This function constructs an object holding a time
stamp value from the given ticks value (number of seconds since the epoch; see the
documentation of the standard Python time module for details).

Binary(string)—This function constructs an object capable of holding a binary
(long) string value.

STRING—This type object is used to describe columns in a database that are
string based (for example, CHAR).

BINARY—This type object is used to describe (long) binary columns in a database
(for example, LONG, RAW, BLOBs).

NUMBER—This type object is used to describe numeric columns in a database.

DATETIME—This type object is used to describe date/time columns in a database.

ROWID—This type object is used to describe the Row ID column in a database.

SQL NULL values are represented by the Python None singleton on input and output.

Note
Usage of UNIX ticks for database interfacing can cause troubles because of the
limited date range they cover.

Implementation Hints
The next list provides some suggestions about using this API.

• The preferred object types for the date/time objects are those defined in the
mxDateTime package
(http://starship.python.net/~lemburg/mxDateTime.html). It provides all
necessary constructors and methods both at Python and C level.

• The preferred object type for Binary objects are the buffer types available in
standard Python starting with version 1.5.2. See the Python documentation
for details. For information about the C interface, take a look at Include/
bufferobject.h and Objects/bufferobject.c in the Python source distribution.

11 0672319942 CH08 11/15/00 11:38 AM Page 344

345CHAPTER 8 Working with Databases
Python DB API

• Here is a sample implementation of the UNIX ticks based constructors for
date/time delegating work to the generic constructors:

import time

def DateFromTicks(ticks):

return apply(Date,time.localtime(ticks)[:3])

def TimeFromTicks(ticks):

return apply(Time,time.localtime(ticks)[3:6])

def TimestampFromTicks(ticks):

return apply(Timestamp,time.localtime(ticks)[:6])

• This Python class allows implementing the previous type objects even though
the description type code field yields multiple values for one type object:

class DBAPITypeObject:

def __init__(self,*values):

self.values = values

def __cmp__(self,other):

if other in self.values:

return 0

if other < self.values:

return 1

else:

return –1

Note
The resulting type object compares equal to all values passed to the constructor.

• Here is a snippet of Python code that implements the exception hierarchy
defined previously:

import exceptions

class Error(exceptions.StandardError):

pass

class Warning(exceptions.StandardError):

pass

class InterfaceError(Error):

pass

class DatabaseError(Error):

pass

class InternalError(DatabaseError):

pass

class OperationalError(DatabaseError):

pass

11 0672319942 CH08 11/15/00 11:38 AM Page 345

346 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

class ProgrammingError(DatabaseError):

pass

class IntegrityError(DatabaseError):

pass

class DataError(DatabaseError):

pass

class NotSupportedError(DatabaseError):

pass

Note
In C you can use the PyErr_NewException(fullname, base, NULL) API to create the
exception objects.

Major Changes from Version 1.0 to Version 2.0
The Python Database API 2.0 introduces a few major changes compared to the 1.0
version. Because some of these changes will cause existing DB API 1.0 based scripts to
break, the major version number was adjusted to reflect this change.

These are the most important changes from 1.0 to 2.0:

• The need for a separate dbi module was dropped and the functionality merged
into the module interface itself.

• New constructors and Type Objects were added for date/time values, the RAW
Type Object was renamed to BINARY. The resulting set should cover all basic data
types commonly found in modern SQL databases.

• New constants (apilevel, threadlevel, paramstyle) and methods (executemany,
nextset) were added to provide better database bindings.

• The semantics of .callproc() needed to call stored procedures are now clearly
defined.

• The definition of the .execute() return value changed. Previously, the return
value was based on the SQL statement type (which was difficult to implement
correctly)—it is undefined now; use the more flexible .rowcount attribute
instead. Modules are free to return the old style return values, but these are no
longer mandated by the specification and should be considered database interface
dependent.

• Class-based exceptions were incorporated into the specification. Module
implementers are free to extend the exception layout defined in this specification
by subclassing the defined exception classes.

11 0672319942 CH08 11/15/00 11:38 AM Page 346

347CHAPTER 8 Working with Databases
Python DB API

Open Issues
Although the version 2.0 specification clarifies a lot of questions that were left open in
the 1.0 version, there are still some remaining issues:

• Define a useful return value for .nextset() for the case in which a new resultset
is available.

• Create a fixed point numeric type for use as loss-less monetary and decimal
interchange format.

Footnotes
1. As a guideline, the connection constructor parameters should be implemented as

keyword parameters for more intuitive use and follow this order of parameters:

dsn = Data source name as string

user = User name as string (optional)

password = Password as string (optional)

host = Hostname (optional)

database = Database name (optional)

For example, a connect could look like this:

connect(dsn=’myhost:MYDB’,user=’guido’,password=’234$’)

2. Module implementers should prefer numeric, named, or pyformat over the other
formats because these offer more clarity and flexibility.

3. If the database does not support the functionality required by the method, the
interface should throw an exception in case the method is used.

The preferred approach is to not implement the method and thus have Python
generate an AttributeError in case the method is requested. This allows the
programmer to check for database capabilities using the standard hasattr()
function.

For some dynamically configured interfaces, it might not be appropriate to
require that the method be made available dynamically. These interfaces should
then raise a NotSupportedError to indicate the inability to perform the rollback
when the method is invoked.

4. A database interface can choose to support named cursors by allowing a string
argument to the method. This feature is not part of the specification because it
complicates semantics of the .fetchXXX() methods.

11 0672319942 CH08 11/15/00 11:38 AM Page 347

348 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

5. The module will use the __getitem__ method of the parameters object to map
either positions (integers) or names (strings) to parameter values. This allows for
both sequences and mappings to be used as input.

The term bound refers to the process of binding an input value to a database
execution buffer. In practical terms, this means that the input value is directly
used as a value in the operation. The client should not be required to “escape”
the value so that it can be used—the value should be equal to the actual database
value.

6. The interface can implement row fetching using arrays and other optimizations.
It is not guaranteed that a call to this method will only move the associated
cursor forward by one row.

7. The rowcount attribute might be coded in a way that updates its value
dynamically. This can be useful for databases that return useable rowcount values
only after the first call to a .fetchXXX() method.

Summary

This chapter shows all the database options that Python has available. The simplest
solution to handle databases in Python is to use plain text files. A tiny variation of this
method is to store the information in binary format.

The next solution is to use the indexing mechanism provided by the dbm-like modules
(such as dbm, gdbm, and dbhash). DBM stands for Database Manager, and it has its own
storing implementation. This format specifies a simple, disk-based storage facility that
handles data in a way equivalent to dictionaries. The objects are manipulated by using
unique key strings.

These are database modules that are part of the standard Python distribution, and each
one of them is an interface to a specific library.

Also included in the standard Python distribution is the anydbm module, which is a
generic interface to all the dbm-like modules. It uses whichever modules are installed.

The dbhash module provides a function that offers a dbm-style interface to access the
BSD database library.

11 0672319942 CH08 11/15/00 11:38 AM Page 348

349CHAPTER 8 Working with Databases
Summary

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or
dbhash) should be used to open a specific database.

The dumbdbm module is a simple, portable, and slow dbm-style database implemented
entirely in pure Python.

Also, a group of other modules provide persistent storage of arbitrary Python objects.
Whenever you need to save objects whose value is not a simple string (such as None,
integer, long integer, float, complex, tuple, list, dictionary, code object, and so
on), you need to serialize the object before sending it to a file.

Included in the standard Python distribution, the pickle module can convert Python
objects to and from a string representation.

The cPickle module is a faster implementation of the pickle module.

The copy_reg module extends the capabilities of the pickle and cpickle modules by
registering support functions.

The marshal module is an alternate method to implement Python object serialization.

The shelve module offers persistent object storage capability to Python by using
dictionary objects. Both keys and values can use any data type, as long as the pickle
module can handle it.

ODBC is a standard interface, created by Microsoft, that provides access to almost
every database. Python’s official ODBC module is included in the PythonWin distri-
bution, which is very stable, by the way. However, it is no longer going to be
improved. This odbc module works along with the dbi module.

Besides this odbc module, we have other technologies (such as mxODBC, calldll, and
unixODBC) that make the task of opening ODBC connections easier. Although ODBC
seems to be the standard in the market, ADO offers significant benefits. ADO is a rich
and fully featured object model.

In order to correctly manipulate data, the use of SQL is essential. SQL consists of a
list of powerful and flexible commands that are used to manipulate information
collected in tables, by operating and controlling sets of records at a time. The main
SQL commands are: SELECT, INSERT, DELETE, and UPDATE.

PostgreSQL, MySQL, GadFly, and Metakit are some of the SQL database mechanisms
that run on Python.

11 0672319942 CH08 11/15/00 11:38 AM Page 349

350 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Many third-party database extension modules are available for Python, such as the
native Python interfaces to MySQL, Oracle, and Sybase database systems.

The quest to provide a standard way to interface to database systems drove a group of
people to develop a Python Database API. The Python DB API is maintained by the
Database Special Interest Group (DB-SIG). GadFly, mxODBC, MySQL, odbc, and many
other modules have already adopted this API. This API has been defined to encourage
similarity between the Python Modules that are used to access databases.

11 0672319942 CH08 11/15/00 11:38 AM Page 350

CHAPTER 9

Other Advanced Topics

I’d like to have an argument please.

This chapter provides very useful information concerning the
use and manipulation of images, sounds, threads, and other
specific Python Modules.

Other Advanced Topics

After spending some time learning the basics of Python, you
will soon face the need for implementing more advanced
programs; programs that need to perform very specific tasks,
such as converting image file formats or handling regular
expressions. This chapter provides a general overview of some
important advanced Python topics that you might need to use.

• Image manipulation

• Sounds

• Restricted environment

• Numeric Python

• Regular expressions

• Threads

Each one of these items is discussed, and a brief explanation is
provided along with syntax formats and examples.

D E V E L O P E R ’ S H A N D B O O K

12 0672319942 CH09 11/15/00 11:38 AM Page 351

352 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

As you already know, this book presents many links to resources that have proven to
be of great help in allowing users to use Python in their day-to-day work.

Manipulating Images

Python has comprehensive support for handling image files. The foundation of this
structure is based on the Python Imaging Library (commonly known as PIL).

PIL is a set of Python modules that compound an extensive framework written by
Fredrik Lundh, from Secret Labs AB. PIL is able to convert and manipulate image
files of several different formats (such as GIF, JPEG, and PNG), and provides powerful
graphics capabilities. Its framework is cross-platform, which allows it to perform image
manipulation and processing in different systems using the same code. PIL also
supports some Windows-specific extensions that enable it to display images using the
Windows API.

Some of the main features of PIL are summarized in the following:

• PIL can load image objects from a variety of formats.

• It enables the Python interpreter to handle image objects.

• PIL enables a rich set of image operations to be applied to those objects.

• It saves images files to disk.

• It uses graphical interfaces, such as Tkinter and PythonWin in order to show the
resulting images.

• It allows you to create thumbnails automatically from a collection of images.

• You can create, read, and write different images formats, including JPEG, GIF, and
TIFF.

• It provides supports to some animation formats, such as FLI and MPEG.

• It automatically identifies file formats.

• PIL can be used to make file conversions between graphic files of different
formats.

• PIL also handles changes in the image file’s color table (for example, it can
change the color table of a file from RGB to grayscale).

These are just some of things you can do with PIL. You are invited to create an image
object in the interpreter using PIL, and play around for a while.

12 0672319942 CH09 11/15/00 11:38 AM Page 352

353CHAPTER 9 Other Advanced Topics
Manipulating Images

PIL’s home page and download center is located at the following site:

http://www.pythonware.com/products/pil/index.htm

Similar to Python itself, PIL is copyrighted but can be used without fee.

Python Imaging Library

The Image class is the most important class of PIL. To use it, you need to import the
Image module, and launch the open method. This method is very fast because it doesn’t
decode the whole image. It just reads the image header in order to start working with
the file.

>>> import Image

>>> im = Image.open(“c:\\logo.gif”)

As you can see in the next example, you can also load an image (GIF or JPEG) straight
from a URL without saving it to a file first. Note that filelocation is any file handle
like python object.

>>> filename = “http://www.lessaworld.com/images/brazil.gif “

>>> filelocation = urllib.urlopen(filename)

>>> im = Image.open(filelocation)

Every image object that is created by the open function exposes three attributes:
format, size, and mode.

im.format—Identifies the source format of the image.

im.size—It is a 2-tuple variable that contains the image’s width and height.

im.mode—Provides the image mode, such as grayscale (L), CMYK, or RGB mode. The
attribute called Image.MODES lists all the modes supported by the library.

>>> print im.format, im.size, im.mode

GIF (200, 130) L

If you want to generate a thumbnail image, you need to call the thumbnail method and
provide the size of the new image. Note that a new object isn’t created because the
change is applied to the old object. Therefore, the image must be copied if you need
both the original and thumbnail images.

>>> im.thumbnail((50, 32))

After you have done everything that you need, you can think about saving the new file.
Notice that the first argument in the save method is the name of the output file, and

12 0672319942 CH09 11/15/00 11:38 AM Page 353

354 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

the second argument is the format to be saved. If the format argument is omitted, the
format is deduced from the file extension.

>>> outfile = “a:\\out.jpg”

>>> im.save(outfile, “JPEG”)

Many other methods can be applied on the image. For cutting, pasting, and merging
images, you can use im.crop(), im.paste(), and im.transpose(). For resizing and
rotating an image, im.resize() and im.rotate() are available.

For a complete tutorial about using PIL, check out the Python Imaging Library
Handbook at the following site:

http://www.pythonware.com/library/pil/handbook/index.htm

Other Modules

Besides PIL, some other modules can help you manipulate graphic and image files.

imghdr Module
This module recognizes image files based on their headers’ first few bytes. The imghdr
module is part of the standard distribution. This module implements the what()
function, which returns the file type.

>>> import imghdr

>>> imgfile = imghdr.what(“d:\\logo.gif”)

>>> print imgfile

gif

The file types currently supported are: SGI image library, GIF (‘87 and ‘89 variants),
PBM (portable bitmap), PGM (portable graymap), PPM (portable pixmap), TIFF (can
be in Motorola or Intel byte order), Sun raster file, X bitmap (X10 or X11), JPEG data
in JFIF format, BMP, and PNG.

GD Module
The GD module is an interface to the GD GIF library that allows your code to quickly
draw images complete with lines, arcs, text, multiple colors, cut and paste from other
images, and flood fills, and to write out the result as a .GIF file. This module is
currently no longer maintained. Newer gd libraries generate png images rather than
gifs. Also, GD is not Free Software as it has commercial use restrictions. For more
information, check out the following site:

http://starship.beopen.com/crew/richard/gdmodule/

12 0672319942 CH09 11/15/00 11:39 AM Page 354

355CHAPTER 9 Other Advanced Topics
Working with Sounds

WBMP Module
WBMP is a wireless bitmap format, the graphic format used by WAP mobile phones. A
WBMP module for PIL is available for download at http://www.rcp.co.uk/
distributed/Downloads

The filename is wbmpconvsrc.zip. The download includes a script for converting
between WBMP and any other PIL supported bitmap format.

PyOpenGL Module
OpenGL, created by Silicon Graphics, is a portable library for rendering. It is a complex
API with superior performance that became an industry standard for 2D and 3D
graphics.

The Open GL home page is located at http://www.opengl.org.

PyOpenGL is a wrapper class for the OpenGL library that is maintained by David Ascher.
It can be found at http://starship.python.net/crew/da/PyOpenGL.

Working with Sounds

Python has many modules that can provide audio support for your programs by
allowing you to listen to your favorite audio CDs and read/write audio files (such as
.wav, .aifc, and so on). Next, I present some of the most important modules.
However, keep in mind that other modules exist that are not mentioned here.

winsound Module

The winsound module implements an interface that grants access to the sound-playing
environment provided by Windows Platforms. This module is able to play wave sound
files (.wav).

This module implements the function PlaySound, which has the following syntax:
PlaySound(sound, flags).

>>> import winsound

>>> winsound.PlaySound(r’C:\WINNT\Media\tada.wav’, winsound.SND_FILENAME)

The following flag constants, which are also defined by this module, can be used as
bitwise arguments to the PlaySound function:

SND_FILENAME—The sound is a wave filename.

SND_ALIAS—The sound is a control panel sound association name.

12 0672319942 CH09 11/15/00 11:39 AM Page 355

356 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

SND_LOOP—This plays the sound repeatedly; must also specify SND_ASYNC.

SND_MEMORY—The sound is a memory image of a wave file.

SND_PURGE—This stops all instances of the specified sound.

SND_ASYNC—The PlaySound returns immediately.

SND_NODEFAULT—This does not play a default beep if the sound cannot be found.

SND_NOSTOP—This does not interrupt any sounds currently playing.

SND_NOWAIT—This returns immediately if the sound driver is busy.

Tip
Before going further in this topic, let me present a small introduction about audio
concepts that is applicable for the understanding of the next couple of modules.

Audio files have a number of parameters that describe the audio data. The sampling
rate or frame rate is the number of times per second the sound is sampled. The
number of channels indicate whether the audio is mono, stereo, or quadro. Each
frame consists of one sample per channel. The sample size is the size in bytes of
each sample. Thus a frame consists of nchannels*samplesize bytes, and a second’s
worth of audio consists of nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two
channels (stereo), and has a frame rate of 44,100 frames/second. This gives a frame
size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes, that is,
176,400 bytes.

sndhdr Module

The sndhdr module is a collection of routines that help recognize sound files.

>>> import sndhdr

>>> audioinfo = sndhdr.what(“c:\windows\media\start.wav”)

(‘wav’, 22050, 2, -1, 4)

The function sndhdr.whathdr() recognizes various types of sound file headers as it
understands almost all headers that SOX can decode. The function sndhdr.what() calls
sndhdr.whathdr(), and the return tuple contains the following items, in this order:

• file type (as SOX understands it)

• sampling rate (0 if unknown or hard to decode)

• number of channels (0 if unknown or hard to decode)

12 0672319942 CH09 11/15/00 11:39 AM Page 356

357CHAPTER 9 Other Advanced Topics
Working with Sounds

• number of frames in the file (-1 if unknown or hard to decode)

• number of bits/sample; ‘U’ for U-LAW, or ‘A’ for A-LAW

If the file doesn’t have a recognizable type, it returns None; and if the file can’t be
opened, IOError is raised.

To compute the total time, divide the number of frames by the sampling rate (a frame
contains a sample for each channel).

wave Module

This module enables you to read, parse, and create wave (.wav) files where file is
either the name of a file or an open file pointer. The open file pointer must have
methods read(), seek(), and close(). When the setpos() and rewind() methods are
not used, the seek() method is not necessary. This function returns an instance of a
class with the following public methods:

Table 9.1 Public Methods Exposed by the wave Module for an Instance of a Class
That Can Read from a File

Public Method Description

getnchannels() Returns the number of audio channels (1 for mono, 2 for stereo).

getsampwidth() Returns sample width in bytes.

getframerate() Returns sampling frequency.

getnframes() Returns number of audio frames.

getcomptype() Returns compression type (‘NONE’ for linear samples).

getcompname() Returns human-readable version of compression type (‘not
compressed’ linear samples)

getparams() Returns a tuple consisting of all the previous in the order shown.

getmarkers() Returns None (for compatibility with the aifc module).

getmark(id) Raises an error because the mark does not exist (for compatibility with
the aifc module).

readframes(n) Returns at most n frames of audio.

rewind() Rewinds to the beginning of the audio stream.

setpos(pos) Seeks to the specified position.

tell() Returns the current position.

close() Closes the instance (makes it unusable).

12 0672319942 CH09 11/15/00 11:39 AM Page 357

358 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The position returned by tell() and the position given to setpos() are compatible
and have nothing to do with the actual position in the file. The close() method is
called automatically when the class instance is destroyed.

The syntax for writing wave files is f = wave.open(file, ‘w’) where file is either
the name of a file or an open file pointer. The open file pointer must have methods
write(), tell(), seek(), and close(). This function returns an instance of a class with
the following public methods:

Table 9.2 Public Methods Exposed by the wave Module for an Instance of a Class
That Can Write to a File

Public Method Description

setnchannels(n) Sets the number of channels.

setsampwidth(n) Sets the sample width.

setframerate(n) Sets the frame rate.

setnframes(n) Sets the number of frames.

setcomptype(type, name) Sets the compression type and the human-readable compression
type.

setparams(tuple) Sets all parameters at once.

tell() Returns current position in output file.

writeframesraw(data) Writes audio frames without patching up the file header.

writeframes(data) Writes audio frames and patches up the file header.

close() Patches up the file header and closes the output file.

You should set the parameters before the first writeframesraw or writeframes. The
total number of frames does not need to be set, but when it is set to the correct value,
the header does not have to be patched up. It is best to first set all parameters, perhaps
possibly the compression type, and then write audio frames using writeframesraw.
When all frames have been written, either call writeframes(‘’) or close() to patch
up the sizes in the header. The close() method is called automatically when the class
instance is destroyed.

>>> import wave

>>> audio = wave.open(‘c:\\windows\\media\\tada.wav’, ‘r’)

>>> audio.getnchannels()

2

>>> audio.getsampwidth()

2

>>> audio.getframerate()

12 0672319942 CH09 11/15/00 11:39 AM Page 358

359CHAPTER 9 Other Advanced Topics
Working with Sounds

22050

>>> audio.getnframes()

42752

aifc Module

The aifc module, which stands for Audio Interchange File Format, is devoted to audio
file access (reading/writing) in the AIFF and AIFC formats. This module has some
functionality that only works on IRIX systems, but it partially works fine on Windows
systems, as well.

>>> dev = aifc.open(“test.aifc”, “w”)

>>> dev.setframerate(22050)

>>> dev.setsampwidth(2)

>>> dev.setnchannels(2)

>>> dev.writeframes(‘123456787654321’*20000)

>>> dev.close()

Note that, the method aifc.writeframes() is equivalent to the
audiodev.Audiodev.writeframesraw. Both methods write data to the output file, and
they can only be called after the audio file parameters have been set.

You can hear the file that is generated by using the QuickTime Player on Macintosh
systems, or the MediaPlayer on Windows systems.

audiodev Module

The audiodev module provides a generic interface for audio output, which is used by
Macintoshes, the SGI UNIX(IRIX) and SunOS/Solaris platforms. Note that there is a
module called linuxaudiodev specific for Linux systems.

>>> import audiodev, aifc

>>> afile = aifc.open(“test.aifc”, “r”)

>>> dev = audiodev.AudioDev()

>>> dev.setoutrate(afile.getframerate())

>>> dev.setsampwidth(afile.getsampwidth())

>>> dev.setnchannels(afile.getnchannels())

>>> data = afile.getsampwidth()*afile.getnchannels()*afile.getframerate()

>>> while 1:

... frames = afile.readframes(data)

... if not data:

... break

... dev.writeframes(frames)

...

>>>

12 0672319942 CH09 11/15/00 11:39 AM Page 359

360 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The setoutrate() method defines the frequency rate of the sound wave; in this case, it
is set to 22.05Khz.

The setsampwidth() method defines the sample width in number of bytes.

The setnchannels() method establishes the number of channels that we want to use.
The previous example defines that we want to hear the sound in stereo.

The previous modules are all part of the standard distribution. Now, I will talk about
some third-party modules.

The PythonWare Sound Toolkit (PST) reads sound files in different formats, and plays
them on a variety of hardware platforms. Similar to Python itself, the PythonWare
Sound Toolkit is copyrighted but can be used without a fee. This also applies to
commercial applications. The current release reads AU, VOC, and WAV files, and plays
them on Windows and Sun boxes.

For more information and download, visit the Web page:

http://www.pythonware.com/products/pst/index.htm

The following link is an interesting resource that provides a Python package that plays
audio CDs on your Linux system:

ftp://starship.python.net/pub/crew/amk/unmaintained/linux-cd.tgz

If you are really interested in playing around with audio CDs, you’d better check the
CDDB module. CDDB.py provides an easy way for Python programs to fetch track and
disc information on audio CDs. This information is acquired from CDDB, a very
large online database of track listings and other information on audio CDs. Included is
a C extension module to enable Python to read track listings from audio CDs under
Linux, FreeBSD, Solaris, and Win32. The interface to this extension module is
portable and is intended to be ported to other operational systems easily.

You can check it out at http://csl.cse.ucsc.edu/~ben/python/.

Restricted Execution Mode

Restricted Execution is the basic framework in Python that allows the segregation of
trusted and untrusted code. These modules prevent access to critical operations mostly
because a program running in trusted mode can create an execution environment in
which untrusted code can be executed with limited privileges.

Two modules implement Python support to restricted execution: rexec and Bastion.

12 0672319942 CH09 11/15/00 11:39 AM Page 360

361CHAPTER 9 Other Advanced Topics
Restricted Execution Mode

The rexec module implements a basic restricted execution framework by encapsu-
lating, in a class (which is called RExec), the attributes that specify the capabilities for
the code to execute. Code executed in this restricted environment will only have access
to modules and functions that are believed to be safe.

The idea is to use a program that runs in trusted mode to create an execution
environment in which you can define limits to be applied on the execution of the
untrusted code.

The rexec.RExec() creates an instance of the RExec class. By doing so, you implement
a restricted environment. You can also subclass the RExec class, and change any one of
the class variables that define the environment by modifying the __init__() method of
the class.

RExec.ok_builtin_modules—Tuple of module names that can be imported.

RExec.nok_builtin_names—Tuple of built-in functions not available to the class.

RExec.ok_path—List of directories to be searched when importing modules.

RExec.ok_sys_names—Tuple of available function names from the sys module.

RExec.ok_posix_names—Tuple of available function names from the os module.

The following methods are called while inside a restricted environment:

r_import(modulename [,globals [,locals]])—Loads a module and is similar to
the built-in import function.

r_open(filename [, mode [, buffersize]])—Opens a file and is similar to the
built-in open function.

r_unload(modulename)—Unloads a given module.

r_reload(modulename)—Reloads a module and is similar to the built-in reload
function.

The methods s_import(), s_unload(), and s_reload() have functionality similar to
the previous methods, except that they also allow the use of sys.stdin, sys.stdout,
and sys.stderr.

When you create an instance of the RExec class, the instance has the following
methods available:

r_exec(code)—Same as the exec statement.

r_eval(code)—Same as the eval statement.

r_execfile(filename)—Same as the execfile statement.

12 0672319942 CH09 11/15/00 11:39 AM Page 361

362 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

The methods s_eval(), s_exec(), and s_execfile() have functionality similar to the
previous methods, except that they also allow the use of sys.stdin, sys.stdout, and
sys.stderr.

Protecting the Application Environment

The next example shows how you can use the rexec module to protect your processing
environment. We subclass the rexec.RExec class, and we redefine the r_import
method in order to block the access to the import implementation.

import rexec

class ExecEnv(rexec.RExec):

def r_import(*args):

raise SystemError, “The import function is not enabled.”

myEnv = ExecEnv()

myEnv.s_exec(“import sys”)

Bastion is the other module used to provide restricted access to objects. This module
is able to deny access to certain attributes of an object.

The basic syntax is Bastion.Bastion(object, filter).

import Bastion

>>> class parrot:

... def __init__(self):

... self.color = “blue”

... def setcolor(self, color):

... self.color = color

... def getcolor(self):

... return self.color

...

>>> myparrot = parrot()

>>> my = Bastion.Bastion(myparrot, lambda x:x in [‘setcolor’,’getcolor’])

>>> my.getcolor()

‘blue’

>>> my.setcolor(“green”)

>>> my.getcolor()

‘green’

>>> my.color

Traceback (innermost last):

File “<stdin>”, line 1, in ?

File “C:\Program Files\Python\Lib\Bastion.py”, line 78, in __getattr__

attribute = self._get_(name)

File “C:\Program Files\Python\Lib\Bastion.py”, line 121, in get2

return get1(name)

12 0672319942 CH09 11/15/00 11:39 AM Page 362

363CHAPTER 9 Other Advanced Topics
Scientific Computing

File “C:\Program Files\Python\Lib\Bastion.py”, line 117, in get1

raise AttributeError, name

AttributeError: color

>>>

As you could see, we prohibited the user to access the color attribute directly. It is
necessary to use either the getcolor() method or the setcolor() method in order to
manipulate it. The first argument of the Bastion function is the original object that
carries all the attributes, and the second argument is a function that must return true
for the attributes that can be accessed by the new object.

Scientific Computing

Python is extensively used for scientific computing because it enables a rapid
prototyping and execution of a number of functions. Scientists and engineers often
have needs for high-performance computation tools that are also easy to use and
modify. Many also want to be able to use a general-purpose language instead of a
specialized tool, allowing them to integrate networking, GUI’s, and so on in their
high-performance work. Several modules have been developed to address these needs
around the Python language.

In this section, I cover the Numeric Python extensions (NumPy), which provide efficient
operations on large multidimensional arrays, and it has proven to be the right choice
when talking about scientific computing with Python.

Besides NumPy, many other scientific tools are available. The Python community has
created several extensions for manipulating data and functions, interfaces to data
plotting libraries, storage solutions for scientific data, and much more. If you want to
deeply discuss scientific computing with Python, you can look for the plot-sig (the
Plotting Special Interest Group).

If you spend some time browsing around scientific Web pages, you will be surprised
about the number of people who are really using Python for their projects.

For more information, visit the following Web sites:

Scientific computing topic at Python’s Web site:

http://www.python.org/topics/scicomp/

Simple Numerical Recipes in Python was written by William Park to describe few
elementary numerical routines in Python:

http://www.python.org/topics/scicomp/recipes_in_python.html

12 0672319942 CH09 11/15/00 11:39 AM Page 363

364 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Python for Science—An Introduction to Python for Scientists:

http://starship.python.net/crew/hinsen/

Numerical Extensions

The most powerful way to face scientific computing in Python systems is to use
Python Numerical Extensions (commonly known as NumPy). The Numerical Python
extensions were originally written by Jim Hugunin (JPython’s author), but the respon-
sibility to continue the project now belongs to a group of python users from the
Lawrence Livermore National Laboratory. The languages that were used to guide the
development of NumPy include Basis, MATLAB, FORTRAN, S and S+, and others.

The NumPy package adds a fast, compact multidimensional array language facility to
Python. One-dimensional arrays are similar to standard Python sequences and two-
dimensional arrays are similar to matrices from linear algebra. This package also
includes tools for working with linear algebra, Fast Fourier Transforms (FFTs), random
numbers, and so forth.

In addition, NumPy adds two new types to Python: A sequence type (to implement
multidimensional arrays), and a new type of function called a universal function
(ufunc). Numeric Python consists of a set of modules:

Numeric.py (and Its Helper Modules multiarray, umath, and fast_umath)
This module defines two new object types and a set of functions that manipulate these
objects, as well as converting them and other Python types. The objects are the new
array object (technically called multiarray objects), and universal functions
(technically ufunc objects). The array objects are generally homogeneous collections of
potentially large numbers of numbers. Universal functions (ufuncs) are functions that
operate on arrays and other sequences.

The Numeric module provides, in addition to the functions needed to create the
previous objects, a set of powerful functions to manipulate arrays, select subsets of
arrays based on the contents of other arrays, and other array-processing operations.
Note that only Numeric need be imported.

RandomArray.py (and Its Helper Module ranlib)
This module provides a high-level interface to a random-number generator (ranlib),
which supplies a uniform distribution generator of pseudo-random numbers, as well as
some convenience functions:

12 0672319942 CH09 11/15/00 11:39 AM Page 364

365CHAPTER 9 Other Advanced Topics
Scientific Computing

For more information, check out Additions to RandomArray Module, by Lee A.
Barford:

http://numpy.sourceforge.net/RandomArray-additions.html

FFT.py (and Its Helper Module fftpack)
This module provides a high-level interface to the fast Fourier transform routines
implemented in the FFT-PACK library if it is available, or to the compatible but less
optimized fftpack library that ships with Numeric Python.

The FFT module provides a high-level interface to the fast Fourier transform
routines, which are implemented in the FFTPACK library. It performs one- and two-
dimensional FFT’s, forward and backwards (inverse FFTs), and includes efficient
routines for FFTs of real-valued arrays. It is most efficient for arrays whose size is a
power of two.

LinearAlgebra.py (and Its Helper Module lapack_litemodule)
This module provides a high-level interface to the linear algebra routines implemented
in the LAPACK library if it is available, or to the compatible but less optimized
lapack_lite library that ships with Numeric Python. It includes functions to solve
systems of linear equations and linear least squares problems, invert matrices, compute
eigenvalues and eigenvectors, generalized inverses, determinants, as well as perform
singular value decomposition.

People such as scientists and engineers—who need to manipulate large arrays of
numbers quickly, efficiently, and stylishly—find in these extensions a great tool, whose
power is compared against other numeric languages such as MATLAB and IDL.

A good point is that everything you can do using Numerical Python is also possible to
be written using core Python data structures, such as lists and tuples. The problem is
that the program will run much too slow. However, if you have a couple of huge
Numerical Python arrays, the speed of adding them up is close to the speed of doing it
in C. Therefore, processing sophisticated numeric operations using NumPy provides
similar results as running the same process using a compiled language, but without the
compile time overhead or having to worry about bugs in the low-level array
operations.

The following links are great sources of information about the Numeric Python
extensions:

Numerical Python

http://numpy.sourceforge.net

12 0672319942 CH09 11/15/00 11:39 AM Page 365

366 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Numerical Python—Documentation

You should consider taking a look at the official documentation for NumPy. The
tutorial walks you through a set of numeric manipulations.

http://numpy.sourceforge.net/numpy.pdf

Numerical Python Project

The Numerical Python Project Page has releases, links to the FTP site, a bug
tracking system, and a browser for the source repository plus instructions on how to
use CVS anonymously.

http://numpy.sourceforge.net

and

http://sourceforge.net/project/?group_id=1369

Numerical Python arrays in C extension modules

http://starship.python.net/crew/hinsen/NumPyExtensions.html

Writing C Extensions using Numerical Python

http://oliphant.netpedia.net/packages/Numerical_Extensions.pdf.gz

Installing NumPy
Note that before building Numerical Python, you need to obtain and install the
Distutils package.

Tip
The Distutils package will be distributed with Python beginning with the 1.6
release. Its purpose is to define a standard for installing Python modules. For details,
check out http://www.python.org/sigs/distutils-sig/

Currently, NumPy has two distribution options available.

On Win32 platforms, such as Microsoft Windows 95, 98, and NT, a binary installer is
available at

ftp://ftp-icf.llnl.gov/pub/python/NumPy.exe

This installer is simple to use (simply double-click on the NumPy.exe file and answer
questions on each screen in turn). Running this installer will perform all the needed
modifications to your Python installation so that NumPy works.

12 0672319942 CH09 11/15/00 11:39 AM Page 366

367CHAPTER 9 Other Advanced Topics
Scientific Computing

For both UNIX and other platforms, NumPy must be compiled from the source. The
source distribution for NumPy is part of the LLNLPython distribution, which is
available at

ftp://ftp-icf.llnl.gov/pub/python/Numeric-xx.y.tgz

There is also RPMs for Linux available from the numpy Web site at
http://sourceforge.net/project/filelist.php?group_id=1369.

The file is a gzipped tarfile that should be uncompressed using the gunzip program
and un-tarred with the tar program:

csh> gunzip Numeric-xx.y.tgz

csh> tar xf Numeric-xx.y.tar

Follow the instructions found in the top-level directory for compilation and instal-
lation procedures.

The standard Python installer for the Macintosh (available at
http://www.python.org/download/download_mac.html) optionally installs the NumPy
extensions, although these are typically not the most up-to-date files.

Other Scientific Extensions

Next, you have access to some extra Python extension modules that deal with scientific
computation.

ScientificPython
ScientificPython is a collection of Python modules that are useful for scientific
computing. In this collection, you will find modules that cover basic geometry
(vectors, tensors, transformations, vector, and tensor fields), quaternions, automatic
derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-
squares fits, unit calculations, Fortran-compatible text formatting, 3D visualization via
VRML, and two Tk widgets for simple line plots and 3D wireframe models. For more
information, check out the following site:

http://starship.python.net/crew/hinsen/scientific.html

Pyfort (The Python/Fortran Connection Tool)
Pyfort allows you to wrap your own Fortran routines in Python. For more
information, check out

http://pyfortran.sourceforge.net

12 0672319942 CH09 11/15/00 11:39 AM Page 367

368 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

RNG
RNG is a random number package from LLNL. For more information, check out

ftp://numpy.sourceforge.net/pub/numpy/RNG-2.0.tgz

pyclimate
This package contains some tools used for climate variability analysis. It makes
extensive use of Numerical Python. For more information, check out

http://lcdx00.wm.lc.ehu.es/~jsaenz/pyclimate/index.html

GmatH
GmatH is a Gnome interface to the Numerical Python extensions. For more
information, check out

http://gmath.sourceforge.net/index.html

Real
real.py is a library that introduces a new class, called Real, of arbitrarily precise
numbers, allowing computations with “infinite” precision. This package handles a
floating point number with a large number of decimal places (more than double by
far). For more information, check out

ftp://ftp.python.org/pub/python/contrib-09-Dec-1999/DataStructures/

real-accurate.pyar

Computer Programming for Everybody

Some great efforts are being made in bringing Python to classrooms in order to
prepare young people for our new computer reality.

Bringing a computer language to the class is not a new idea. Many schools already
teach some kind of programming language. However, Python is a very high-level
language, a human-readable language, not just computer-readable, it has a more up-
to-date design, and what you learn from Python can be adapted to other languages.

Everyone needs to know a little about computers these days, no matter what
profession is chosen. It is said that some day in the near future, everyone will have to
know how to code a computer program. Python is a great language that possesses all
the features required for teaching computer logic to tomorrow’s scientists.

For more information, see the following:

Computer Programming for Everybody, by Guido van Rossum

http://www.python.org/doc/essays/cp4e.html

12 0672319942 CH09 11/15/00 11:39 AM Page 368

369CHAPTER 9 Other Advanced Topics
Regular Expressions

EDU-SIG: Python in Education

http://www.python.org/sigs/edu-sig/

Check out the following four-part essay entitled Numeracy + Computer Literacy series
by Kirby Urner, who uses Python to teach various math concepts in the Oregon
Curriculum Network. This material will give you a clear idea of how Python can be
approached for education.

http://www.inetarena.com/~pdx4d/ocn/cp4e.html

Regular Expressions

We already know that the string module is used to apply basic manipulation
operations on strings; meanwhile, at the time of developing advanced routines, you
might need to enhance Python’s string-processing capabilities. That’s when you should
consider using the re module (re stands for regular expression).

Regular expressions are strings, which contain a mix of text and special characters, that
let you define complicated pattern matching and replacement rules for other strings.

Some of the special characters that compound regular expressions must be preceded by
backslashes in order to be matched. Consequently, regular expressions are usually
written as raw strings because they tend to use a lot of backslashes. That means that
instead of writing “\\b(usa)\\d”, it is much easier to say r”\b(usa)\d”.

Older versions of Python used to support the following regular expression obsolete
modules are: regexp, regex, and regsub.

Table 9.3 Special Characters Recognized by the re Module

Special Character What It Matches

. Any character (except newline by default).

^ The start of the string, or of a line (in case of multiline
re’s).

$ The end of the string, or of a line (in case of multiline
re’s).

* Any number of occurrences of the preceding expression.

+ 1 or n number of occurrences of the preceding expression.

12 0672319942 CH09 11/15/00 11:39 AM Page 369

370 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

| Either the preceding re or the following re, whichever is
true.

? 1 or 0 number of occurrences of the preceding expression.

*? Similar to *, but it matches as few occurrences as possible.

+? Similar to +, but it matches as few occurrences as possible.

?? Similar to ?, but it matches as few occurrences as possible.

{m, n} From m to n occurrences of the preceding expression. It
matches as many occurrences as possible.

{m, n}? From m to n occurrences of the preceding expression. It
matches as few occurrences as possible.

[list] A set of characters, such as r”[A-Z]”.

[^list] Characters that are not in the list.

(re) Matches the regular expression as a group. It specifies
logical groups of operations and saves the matched
substring.

Anystring The string anystring.

\w Any alphanumeric character.

\W Any non-alphanumeric character.

\d Any decimal digit.

\D Any non-decimal digit.

\b Empty strings at the starting or ending of words.

\B Empty strings that are not at the starting or ending of
words.

\s Matches a whitespace character.

\S Matches any non-whitespace character.

\number Text already matched by the group number.

\A Only at the start of the string.

\Z Only at the end of the string.

\\ The literal backslash.

(?:str) Matches str, but the group can’t be retrieved when
matched.

(?!str) If not followed by str (for example, only matches r”Andre
(?!Lessa)” if it doesn’t find “Andre Lessa”).

(?=str) If followed by str.

Table 9.3 (continued)

Special Character What It Matches

12 0672319942 CH09 11/15/00 11:39 AM Page 370

371CHAPTER 9 Other Advanced Topics
Regular Expressions

(?=.*str) If followed at some point by str (for example, only
matches r”Andre (?=.*Lessa)” if it finds something
similar to “Andre S Lessa”). This syntax doesn’t consume
any of the string, so in this example, the re only matches
the “Andre ” portion of the string.

(?#str) This is just to insert a comment in the middle of the
regular expression string.

(?P<name>...) Matches the regular expression that follows the name and
creates a group name.

(?P=name) Matches the same things that the group name has
matched.

.* Any number of characters.

In case you need to know a full definition of the syntax, visit the following link:

http://www.python.org/doc/current/lib/re-syntax.html

Next, you have the regular expression flags. These flags are used as bitwise-or
operators in the re functions.

re.DOTALL (also used as re.S)—Allows the dot character to match all characters,
including newlines.

re.IGNORE (also used as re.I)—Allows non case sensitive matching.

re.LOCALE (also used as re.L)—Enables locale settings for \w, \W, \b, and \B.

re.MULTILINE (also used as re.M)—Applies ^ and $ for each line, and not for each
string.

re.VERBOSE (also used as re.X)—Ignores unescaped whitespace and comments.

Let’s look at our first example of regular expressions. Suppose that you have the
following conversation text:

oldtext = “””

That terrible dead PARROT sketch must end!

Oh, Come on! It is a terrific parrot joke.

I agree, but I don’t like to see dead parrot.

Ok. I will suggest a new terrific parrot sketch.”””

Okay. Now our challenge is to create an expression that is able to identify all the
words “parrot” that

Table 9.3 (continued)

Special Character What It Matches

12 0672319942 CH09 11/15/00 11:39 AM Page 371

372 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

1. Are preceded by either “terrible” or “terrific” (such as “terrible parrot”,
“terrific parrot”).

2. Are not immediately preceded by the word “dead”.

3. Are separated from the previous word by a whitespace (“terribleparrot” does
not work).

4. Are not followed by the word “joke”, hence, “parrot joke” is an invalid string.

5. Are followed by a whitespace, and right after, by the word “sketch” (neither
“parrotsketch” nor “parrot old sketch” are valid).

6. The matching must not be case sensitive.

The word “parrot” that gets identified must be replaced with the word “spam”.

The following code is a possible solution for this problem:

1: import re

2: restring = re.compile(

3: r”””\b(terrible|terrific)

4: (?!dead)

5: (\s+

6: parrot

7: (?!joke)

8: \s+sketch)”””,

9: re.DOTALL | re.IGNORECASE | re.VERBOSE)

10: newline = restring.sub(r’\1 spam’, oldtext)

We are calling the compile function (line 2), which generates a compiled regular
expression object called restring. Then, we call the class method sub (line 10) to
substitute the matches found in the text variable that we have already defined
(oldtext). The sub() method replaces the entire matched section of the string. Note
that the r’\1 spam’ argument uses \1 to make sure that the result collected in the first
group of parenthesis (“Terrible” and “Terrific”) is placed right before the word
“spam”.

Regular Expression Functions and Object Methods

The re module implements just one exception—the error exception, which is raised
only when a regular expression string is not valid.

Next, you have the list of available re functions.

12 0672319942 CH09 11/15/00 11:39 AM Page 372

373CHAPTER 9 Other Advanced Topics
Regular Expressions

re.compile()
Compiles a regular expression pattern string and generates a regular expression object.

RegExpObject = compile(string [, flags])

For details about the flags argument, check out the previous list of available flags.

Every regular expression object exposes the following attributes and methods:

RegExpObject.search()
Searches for the compiled pattern in the string.

MatchObject = RegExpObject.search(string [,startpos] [,endpos])

It uses the startpos and endpos arguments to delimit the range of the search.

All functions that are supposed to return a MatchObject when the function succeeds,
return None when a fail occurs.

RegExpObject.match()
Checks whether the initial characters of string match the compiled pattern.

MatchObject = RegExpObject.match(string [,startpos] [,endpos])

It uses the startpos and endpos arguments to delimit the scope of the matching.

RegExpObject.findall()
Finds nonoverlapping matches of the compiled pattern in string.

MatchList = RegExpObject.findall(string)

RegExpObject.split()
Splits the string by the occurrences of the compiled pattern.

StringList = RegExpObject.split(string [, maxsplit])

RegExpObject.sub()
Substitutes the matches of pattern in string with newtext.

RegExpObject.sub(newtext, string [, count])

The replacements are done count number of times, starting from the left side of
string. When you leave out the count argument, you are not really saying don’t
perform the substitution at all, but apply it as many times as necessary.

12 0672319942 CH09 11/15/00 11:39 AM Page 373

374 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

RegExpObject.subn()
It is similar to sub. However, it returns a tuple that contains the new string and the
number of substitutions executed. When you leave out the count argument, you are
not really saying don’t perform the substitution at all, but apply it as many times as
necessary.

RegExpObject.subn(newtext, string [, count])

re.search()
Searches for the pattern in the string.

MatchObject = search(pattern, string [,flags])

re.match()
Sees whether the initial characters of string match the pattern.

MatchObject = match(pattern, string [,flags])

re.findall()
Finds nonoverlapping matches of pattern in string.

MatchList = findall(pattern, string)

re.split()
Splits the string by the occurrences of pattern.

StringList = split(pattern, string [, maxsplit])

re.sub()
Substitutes the matches of pattern in string with newtext.

sub(pattern, newtext, string [, count])

The replacements are done count number of times, starting from the left side of
string.

re.subn()
It is similar to sub(). However, it returns a tuple that contains the new string and the
number of substitutions executed.

subn(pattern, newtext, string [, count = 0])

12 0672319942 CH09 11/15/00 11:39 AM Page 374

375CHAPTER 9 Other Advanced Topics
Regular Expressions

re.escape()
Backslashes all the nonalphanumeric characters of string.

newstring = escape(string)

Each RegExpObject also implements the following methods and attributes:

RegExpObject.flags—Returns the flag arguments used at the compilation time of
the regular expression object.

RegExpObject.groupindex—Returns a dictionary that maps symbolic group names
to group numbers.

RegExpObject.pattern—Returns the object’s original pattern string.

Each MatchObject implements the following methods and attributes:

MatchObject.group([groupid,...])—Once you provide a list of group names or
numbers, Python returns a tuple containing the text matched by each of the groups.

MatchObject.groupdict()—Returns a dictionary that contains all the named
subgroups of the match.

MatchObject.groups()—Returns a tuple that contains all the text matched by all
groups.

MatchObject.start([group]) and MatchObject.end([group])—Returns the first
and last positions of the substring matched by the group.

MatchObject.span([group])—Returns a tuple that contains both the
MatchObject.start and the MatchObject.end values.

MatchObject.pos and MatchObject.endpos—Returns the pos and endpos values,
which were passed to the function when creating it.

MatchObject.string—Returns the string value, which was passed to the function
when creating it.

MatchObject.re—Return the RegExpObject that was used to generate the
MatchObject instance.

Special Note for Python 2.0 Users
All the internals of the re module were changed in Python 2.0. Now, the regular
expression engine is located in a new module called SRE written by Fredrik Lundh of
Secret Labs AB. The reason for that was to allow Unicode strings to be used in
regular expressions along with 8-bit strings. Pay attention to the re module as it
continues to be the front-end module, which internally calls the SRE module.

12 0672319942 CH09 11/15/00 11:39 AM Page 375

376 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Threads

Let’s start by quickly defining a thread. Many people still have some kind of confusion
when it comes to clarifying the difference between threads and processes.

When you run any program in your computer, the CPU creates a process for that
program. This process is defined as a group of elements that compound a single program.
These elements are the memory area reserved for the program, a program counter, a list
of files opened by the program, and a call stack where all the variables are stored. A
program with a single call stack and program counter is a single threaded program.

Now, suppose you have different tasks inside your program that you need to execute
several times simultaneously. What do you do? Maybe you are thinking about calling
the whole program several times. Wrong answer! Think about all the resources that
you are consuming without actually using them!

The solution to implement this multithreaded program is to create a function that
implements the code which needs to be executed several times concurrently, and then,
create a thread that uses only this function.

A thread is a program unit that processes multiple time-consuming actions as parallel
tasks in the background of your main application process. Sometimes threads are
difficult to debug because the circumstances in which they occur are hard to simulate.

Python Threads

Python threads can be implemented on every operational system that supports the
POSIX threads library. But actually, the Python threading support doesn’t always use
POSIX threads. In the python-2.0 source tree, there are beos, cthread, lwp, nt, os2, pth,
pthread, sgi, solaris, and wince thread implementations. In certain environments that
support multithreading, Python allows the interpreter to run many threads at once.

Python has two threading interfaces: The thread module and the threading module.
The use of these Python’s native threading built-in modules enables the code to be
portable across all platforms that support Python.

The thread module supports lightweight process threads. It offers a low-level interface
for working with multiple threads.

On the other hand, the threading module provides high-level threading interfaces on
top of the thread module.

Besides these two modules, Python also implements the Queue module. This is a
synchronized queue class used in thread programming to move Python objects between
multiple threads in a safe way.

12 0672319942 CH09 11/15/00 11:39 AM Page 376

377CHAPTER 9 Other Advanced Topics
Threads

Threads have limitations on some platforms. For instance, Linux thread switching is
quite fast, sometimes faster than NT thread switching.

Programs—such as Tkinter, CORBA, and ILU—that rely on a main loop to dispatch
events can complicate the design of threads. Definitively, they do not have a good
relationship with threaded programs. Main loops are usually used by Graphical User
Interfaces not to allow the main thread to exit.

MacPython is currently not built with thread support. That is because no posix-
compatible thread implementation was available, making Python integration hard.
However, this has changed with GUSI2 (a posix I/O emulation library), and the
upcoming MacPython 1.6a1 is planned to have threads.

The Windows Operation System adds many additional features to Python’s implemen-
tation of threads. The win32 package provides as additional features for Python’s
thread support:

• The win32process module—An interface to the win32 Process and Thread
API’s.

• The win32event module—A module that provides an interface to the win32
event/wait API.

The threading model provided by the COM technology allows objects not designed to
work as threads to be used by other objects that are thread-aware.

Python’s interpreter cannot handle more than one thread at the same time. The global
interpreter lock is the internal mechanism which guarantees that the Python
interpreter executes only one thread simultaneously. Although this is not a problem for
single-threaded programs, or programs on single-processor machines, it can become
trouble on performance-critical applications that run on multiprocessor computers. If
your threads are doing IO work, other threads can execute during reads and writes.

Check out Appendix A, “Python/C API,” for information about handling threads using
the Python/C API. You can also see the latest documentation about it at

http://www.python.org/doc/current/api/threads.html

You might also want to look at the thread and threading modules in the library
reference, which are documented at

http://www.python.org/doc/current/lib/module-thread.html

and

http://www.python.org/doc/current/lib/module-threading.html

12 0672319942 CH09 11/15/00 11:39 AM Page 377

378 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Anton Ertl has a Web page that exposes very interesting material about the differences
between the various threading techniques:

http://www.complang.tuwien.ac.at/forth/threaded-code.html

Python Thread Modules

Python includes two threading modules, assuming that your Python was configured
for threads when it was built. One provides the primitives, and the other provides
higher-level access. In general, Python relies on operating system threads unless you
specifically compile it by activating the thread directive. This should offer adequate
performance for all but the most demanding applications.

Thread Module
The following four functions are available in this module:

• thread.allocate_lock()—Creates and returns a lock object. This object has the
following three methods:

lckobj.acquire([flag])—It is used to acquire a lock. If the flag is omitted,
the function returns None when it acquires the lock. If flag is set to 0, the lock
is only acquired when it can be immediately acquired. Anything different from
0 blocks the methods until the lock is released. This process cannot be
interrupted. This function returns 1 if the lock is acquired, and 0 if not.

lckobj.release()—Releases the lock.

lckobj.locked()—Returns 1 if the object has a successful lock. Otherwise, it
returns 0.

• thread.exit()—Raises a SystemExit exception that ends the thread. It is
equivalent to sys.exit() function.

• thread.get_ident()—Gets the identifier of the current thread.

• thread.start_new_thread(func, args [,kwargs])—Starts a new thread.
Internally, it uses the apply function to call func using the provided arguments.
This method requires the second argument (args) to be a tuple.

As there isn’t any main loop in the next program, the time.sleep function (line 30)
doesn’t allow the child threads be killed because it doesn’t allow the main thread exit.
If this function weren’t there, the other threads would be killed immediately when the
main thread exited. You can test this by commenting the last line.

1: import thread, time

2: class VCR:

12 0672319942 CH09 11/15/00 11:39 AM Page 378

379CHAPTER 9 Other Advanced Topics
Threads

3: def __init__(self):

4: self._channel = {}

5: self._channel[‘1’] = self.channel_KDSF

6: self._channel[‘2’] = self.channel_FOKS

7: self._channel[‘3’] = self.channel_CBA

8: self._channel[‘4’] = self.channel_ESTN

9: def channel(self, selection, seconds):

10: self._channel[selection] (seconds)

11: def channel_KDSF(self, seconds_arg):

12: thread.start_new_thread(self.record, (seconds_arg,’1. KDSF’))

13: def channel_FOKS(self, seconds_arg):

14: thread.start_new_thread(self.record, (seconds_arg,’2. FOKS’))

15: def channel_CBA(self, seconds_arg):

16: thread.start_new_thread(self.record, (seconds_arg,’3. CBA’))

17: def channel_ESTN(self, seconds_arg):

18: thread.start_new_thread(self.record, (seconds_arg,’4. ESTN’))

19: def record(self, seconds, channel):

20: for i in range(seconds):

21: time.sleep(0.0001)

22: print “%s is recorded” % (channel)

23:

24: myVCR = VCR()

25:

26: myVCR.channel(‘1’, 700)

27: myVCR.channel(‘2’, 700)

28: myVCR.channel(‘3’, 500)

29: myVCR.channel(‘4’, 300)

30: time.sleep(5.0)

The time.sleep() function in line 21 is necessary to allow other threads to run. If you
don’t use this function, there will be no timing gap between commands to be used by
the other threads.

Threading Module
Besides exposing all the functions from the thread module, this module also provides
the following additional functions:

Threading.activeCount()—This function returns the number of active thread
objects.

Threading.currentThread()—This function returns the thread object in current
control.

Threading.enumerate()—This function returns a list of all active thread objects.

12 0672319942 CH09 11/15/00 11:39 AM Page 379

380 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Each Threading.Thread class object implements many methods, including

threadobj.start()—This method invokes the run method.

threadobj.run()—This method is called by the start method. You can redefine
this one.

threadobj.join([timeout])—This one waits for the threads to complete. The
optional timeout argument must be provided in seconds.

threadobj.isAlive()—Returns 1 if the run method of the thread object has
concluded. If not, it returns 0.

In the next example, you want to subclass the Thread class, and define a new run
method for the subclass. In order to activate the thread, you need to call the start()
method, not the run() method. The start method creates the new thread that
executes the run method.

import Threading

import time, random

class NewThread(Threading.Thread):

def run(self):

init = 0

max = random.randint(1,10)

while init < max:

init = init + 1

time.sleep(0.0001)

print max

threads = []

for i in range(20):

threadobj = NewThread()

threadobj.start()

threads.append(threadobj)

for thread in threads:

thread.join()

print “---- THE END ----”

Just as a suggestion, try commenting the for loop near the end of the program. The
reason for using it is to guarantee that all the threads are executed.

12 0672319942 CH09 11/15/00 11:39 AM Page 380

381CHAPTER 9 Other Advanced Topics
Threads

As final notes about this topic, I would like to highlight that

• The processing time of a thread in a multithreaded program is equal to the CPU
time of the program, divided by the number of threads that have been created.
Well, that is an estimate because some threads might take a lot more CPU time
than others.

• Multithreaded programs have their data shared among all the threads, so it
might cause race conditions (a state of inconsistent in a program). You have to be
very careful when updating data used by multiple threads. Usually, the solution
for this kind of problem is to lock the code before changing the data in order to
keep all the threads synchronized.

For more information about threading, check out Python and Indirect Threading, by
Vladimir Marangozov:

http://starship.python.net/crew/vlad/archive/threaded_code/

Microthreads

If you are really thinking about diving into multitasking applications, another option
that you should consider is called microthreads. It implements threading by tweaking
the execution order of Python’s virtual machine, rather than by interrupting the
processor. The microthread approach is much newer and much less deeply tested, but
it might be more straightforward for your application.

Simulations and high-volume mission critical applications typically prefer large
numbers of lightweight threads. There is a Stackless Python implementation that
implements lightweight microthreads (see http://www.stackless.com for more
information).

With microthreads, all your simulation threads run within a single operating system
thread. They are useful when you want to program many behaviors happening
simultaneously. Simulations and games often want to model the simultaneous and
independent behavior of many people, many businesses, many monsters, many
physical objects, many spaceships, and so forth. With microthreads, you can code these
behaviors as Python functions. Additionally, the microthread library includes a rich set
of objects for interthread communication, synchronization, and execution control.

Tip
Keep in mind that you need to have the Stackless Python in order to use the
microthread library.

12 0672319942 CH09 11/15/00 11:39 AM Page 381

382 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

Microthreads switch faster and use much less memory than OS threads. The
restrictions on microthreads (not shared by OS threads) are that they will only provide
context-switching within Python code, not within C or Fortran extensions, and they
won’t help you take advantage of multiple processors. Also, microthreads will not take
advantage of multiple CPUs in a box.

You can run thousands of microthreads at the same time. However, microthreads can
hang on some blocking I/O operations; they are so new that there isn’t yet a lot of
practical experience with which operations (input or output) are troublesome.

For details, check out Python Microthreads, by Christian Tismer and Will Ware:

http://world.std.com/~wware/uthread.html

Summary

This chapter provides a general overview of some important advanced Python topics
that you might need to use on a regular basis. They are image manipulation, sounds,
restricted environment, Numeric Python, regular expressions, and threads.

Python has comprehensive support for handling image files. The foundation of this
structure is based on the Python Imaging Library (commonly known as PIL). Its
framework is cross-platform, which allows it to perform image manipulation and
processing in different systems using the same code. Besides PIL, some other modules
(such as imghdr, GD, WBMP, and PyOpenGL) can help you manipulate graphic and image
files.

winsound, wave, sndhdr, aifc, and Audiodev are some of the Python modules that
provide audio support for your programs by allowing you to listen to your favorite
audio CDs and read/write audio files (such as .wav, .aifc, and so on). All these
modules are part of the standard distribution. However, there are some great third-
party Python audio modules too. The PythonWare Sound Toolkit (PST) reads sound
files in different formats, and plays them on a variety of hardware platforms. It is really
cool!

Restricted execution is the basic framework in Python that allows the segregation of
trusted and untrusted code. Two modules implement Python support to restricted
execution: rexec and Bastion. These modules prevent access to critical operations
mostly because a program running in trusted mode can create an execution
environment in which untrusted code can be executed with limited privileges. The
idea is to use a program that runs in trusted mode to create an execution environment
in which you can define limits to be applied on the execution of the untrusted code.

12 0672319942 CH09 11/15/00 11:39 AM Page 382

383CHAPTER 9 Other Advanced Topics
Code Examples

Python is also extensively used for scientific computing because it enables a rapid
prototyping and execution of a number of functions. The Python Numerical
Extensions (commonly known as NumPy) provides efficient operations on large multi-
dimensional arrays because it adds a fast and compact multidimensional array language
facility to Python. NumPy has also proven to be the correct powerful choice when
talking about scientific computing with Python. Other scientific extensions, such as
ScientificPython, Pyfort, RNG, pyclimate, GmatH, and Real are also part of the
constant work of many Python developers who want to turn Python into a more
complete scientific language.

While I’m talking about scientific and school projects, there is a very important
project that recommends the idea of teaching Python to young people at schools. The
project is titled “Computer Programming for Everybody,” and it was created by Guido
van Rossum.

Regular expressions are strings—containing a mix of text and special characters—that
let you define complicated pattern matching and replacement rules for other strings.
You can, for example, search for a specific pattern of data in a whole text file, and
substitute it for other text.

Python has two threading interfaces: the thread module and the threading module.
The use of these native threading built-in modules enables the code to be portable
across all platforms that support Python. The thread module supports lightweight
process threads. It offers a low-level interface for working with multiple threads. On
the other hand, the threading module provides high-level threading interfaces on top
of the thread module. Besides these two modules, Python also implements the Queue
module, which is a synchronized queue class that is used in thread programming to
move Python objects between multiple threads in a safe way. Besides these two
implementations, Python developers can use microthreads too. This technology
implements threading by tweaking the execution order of Python’s virtual machine,
rather than by interrupting the processor.

Code Examples

Next, you have some code examples that demonstrate the concepts illustrated by this
chapter.

HTML Parsing Tool (File: parsing.py)

We are going to use the exchange.html as the source of information for this program.
The idea is to read the file, replace all the occurrences of the domain name

12 0672319942 CH09 11/15/00 11:39 AM Page 383

384 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

“lessaworld” for “bebemania”, and add hyperlinks for all email and Web pages
references that exist there.

Listing 9.1 File: exchange.html

<HTML>

<HEAD>

<TITLE>Exchange Rates Home Page</TITLE>

</HEAD>

<BODY>

<p align=justify>

List of current files that we have available at this site:</p>

http://www.lessaworld.com/exchange/real.txt

http://www.lessaworld.com/exchange/pound.txt

http://www.lessaworld.com/exchange/dollar.txt

Many people are currently working to keep these exchange rates updated.

Andre (andre@bebemania.com.br) handles all the Brazilian Real operations,

meanwhile,Joao Pedro (jp@bebemania.com.br) takes care of pounds and

dollars.

</BODY>

</HTML>

The following code implements the parsing program.

Listing 9.2 File: parsing.py

1:

2: import re, sys

3:

4: TextOriginal = open(“exchange.html”).read()

5:

6: TextIn = re.sub(“lessaworld”, “bebemania”, TextOriginal)

7:

8: operation_result = re.search(r’<title>(.*?)</title>’, TextIn
,re.IGNORECASE)

9: if operation_result:

10: HTML_TITLE = operation_result.group(1)

11:

12: link_pattern = re.compile(r’((ftp|http)://[\w-]+(?:\.[\w-]+)*(?:/[\w-]*)*

(?:\.[\w-]*)*)’)

13: links = re.findall(link_pattern, TextIn)

12 0672319942 CH09 11/15/00 11:39 AM Page 384

385CHAPTER 9 Other Advanced Topics
Code Examples

14: TextIn = re.sub(link_pattern, r”\1”, TextIn)

15:

16: email_pattern = re.compile(r’([a-zA-Z][\w-]*@[\w-]+(?:\.[\w-]+)*)’)

17: emails = re.findall(email_pattern, TextIn)

18: TextIn = re.sub(email_pattern, r”\1”, TextIn)

19:

20: FileOut = open(“newexchange.html”, “w”)

21: FileOut.write(TextIn)

22: FileOut.close()

23:

24: print ‘“%s” is done.’ % (HTML_TITLE)

Line 4: Opens and reads the original file.

Line 6: Replaces occurrences of “lessaworld” with “bebemania”.

Lines 8–10: Locates the Web page title.

Line 10: The first group is the element between parenthesis in the regular expression
of line 8.

Line 12: Creates a regular expression that locates all the Web addresses in the text.

Line 13: Creates a list of all the elements (links) that were found by the matching.

Line 14: Adds the hyperlinks for all the Web links that were found.

Line 16: Creates a regular expression that locates all the email addresses in the text.

Line 17: Creates a list of all the elements (emails) that were found by the matching.

Line 18: Adds the hyperlinks for all the email addresses that were found.

Lines 20–22: Creates a new file with the new content.

In order to execute the routine, you just need to call it from the OS prompt, and then
check the resulting file in your browser.

S:\python> python parsing.py

“Exchange Rates Home Page” is done.

S:\python>

TV Network Audiences (File: audience.py)

The next example demonstrates the use of the Queue module. The idea is to have
several threads running and sharing information at the same time. The program starts

Listing 9.2 (continued)

12 0672319942 CH09 11/15/00 11:39 AM Page 385

386 PYTHON DEVELOPER’S HANDBOOK

PART II Advanced Programming

several threads that execute some time-consuming operations, while the main thread is
generating numbers that are used by all the other threads.

Listing 9.3 File: audience.py

1:

2: import threading, time

3: import Queue, random

4:

5: class VCR(threading.Thread):

6: channels = [“KDSF”, “FOKS”, “CBA”, “ESTN”]

7:

8: def __init__(self, queue, channel, seconds):

9: self.__queue = queue

10: self.seconds = seconds

11: self.network = VCR.channels[channel-1]

12: threading.Thread.__init__(self)

13: def run(self):

14: for i in range(self.seconds):

15: time.sleep(0.0001)

16: self.public = self.__queue.get()

17: print “After %d seconds, %d people were watching %s” % \

18: (self.seconds, self.public, self.network)

19:

20: queue = Queue.Queue(0)

21:

22: VCR(queue, 1, 60).start()

23: VCR(queue, 2, 40).start()

24: VCR(queue, 3, 35).start()

25: VCR(queue, 4, 75).start()

26:

27: audience = 0

28: while audience < random.randint(200,300):

29: queue.put(audience)

30: audience = audience + 1

31: print “The audience now has %d people.” % (audience)

32: time.sleep(0.001)

33:

34: time.sleep(10)

Line 5: Defines a subclass of the Thread class.

Line 6: Creates a class variable.

12 0672319942 CH09 11/15/00 11:39 AM Page 386

387CHAPTER 9 Other Advanced Topics
Code Examples

Line 13: Implements the functionality that is executed when the thread is started.

Line 15: Pauses the execution, in order to let other threads run simultaneously.

Line 16: Gets the current value in the Queue.

Line 20: Initializes the Queue object that is shared by all threads.

Lines 22–25: Starts all the threads.

Lines 28–32: Implements a routine that keeps generating numbers to be passed to the
thread.

Line 29: Sends a value to the queue in order to be collected by the threads.

Line 34: Pauses the main thread so that the other threads can end normally.

12 0672319942 CH09 11/15/00 11:39 AM Page 387

12 0672319942 CH09 11/15/00 11:39 AM Page 388

PART III

Network Programming

CHAPTER

10 Basic Network Background

11 Web Development

12 Scripting Programming

13 Data Manipulation

13 0672319942 Pt 3 11/15/00 11:39 AM Page 389

13 0672319942 Pt 3 11/15/00 11:39 AM Page 390

CHAPTER 10

Basic Network Background

Albatross! Albatross! Albatross!

This chapter exposes basic and advanced network concepts, and
invites you to learn a little more about them by using Python
routines.

Networking

Networking…This is the word behind all new technology that
arrives in the market these days.

It doesn’t matter if you are transferring a file via FTP or
browsing your favorite Web site, the network infrastructure is
right behind you. To support all these functionalities, Python
has a number of complex protocol implementations available
over the top of a low-level access to the Internet. This low-level
access is totally based on the concept of sockets.

High-level implementations make light work of many types of
network interaction that we want to implement most often (for
example, browse the Web, send an email, and so on). Of
particular note are the Web-based protocols and the support for
manipulating the data that might be retrieved using them.

D E V E L O P E R ’ S H A N D B O O K

14 0672319942 CH10 11/15/00 11:39 AM Page 391

392 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Now that the Internet seems to be not only part of our present, but also of our future,
networking has definitively become part of our lives. Therefore, it is good for you to
know a little about it.

Networking Concepts

Networking systems are well-defined by the OSI/ISO (Open Systems Interconnection/
International Standards Organization) seven-layer model, which suggests the following
levels of the networking process: physical, data link, network, transport, session,
presentation, and application. However, keep in mind that, in practice, protocols span
multiple layers, and you shouldn’t worry if your application doesn’t fit in this model.
Most of today’s networking stacks (including TCP/IP) use less layers that are not quite
as well separated as in the OSI model. Consequently, if you try to map a TCP/IP
session onto the OSI model, you will get a bit confused because some layers are
merged, and some others are removed.

Physical layer—Defines the information necessary to transport data over physical
components, such as cables.

Data link layer—Defines how data is passed to and from the physical components.
Point-to-point error correction is usually performed at this layer.

Network layer—Organizes the network by assigning distinct addresses for its
elements, so the information in traffic can be routed to the right computers. The IP
protocol works at this layer.

Transport layer—Packs the data and makes sure that the data transfer between the
machines is error-free. TCP and UDP are protocols that implement these responsi-
bilities.

Session layer—Handles each individual connection (session) made by the machines.

Presentation layer—Used to overcome differences such as different formats for
integers on different platforms. TCP/IP makes this the application’s responsibility,
and Python has some modules to help with this (for instance, the struct module).

Application layer—Implements your final product, your application. FTP clients,
SMTP/POP3 mail handlers, and HTTP browsers are examples of complete
applications that run over your network.

14 0672319942 CH10 11/15/00 11:39 AM Page 392

393CHAPTER 10 Basic Network Background
Networking Concepts

Network connections can be of two types: connection-oriented or connectionless
(packet-oriented).

Let’s talk about the pair TCP/IP, which is a packet-oriented implementation.
Nowadays, I can’t imagine a unique machine that doesn’t support it. TCP/IP is the
most widely used networking protocol possibly because it is robust and untied to any
particular physical medium, and maybe also because the specifications are freely
available.

TCP/IP was originally created by the United States Department of Defense, and soon,
this protocol combination became the network of choice for the U.S. government, the
Internet, and the universities. This tuple runs on virtually every operating system
platform, which makes it strong when internetworking between different LAN
environments is required. Today, a great number of commercial and public networks
are built on top of this implementation. Although the Internet grew out of the
TCP/IP work done at universities and the U.S. Department of Defense, it didn’t adopt
TCP/IP until part of the way through.

The network layer of the TCP/IP stack is provided by the Internet Protocol
(commonly known as IP). This protocol provides the basic mechanism for routing
packets in the Internet because it sends packets of data back and forth without building
an end-to-end connection.

IP doesn’t understand the relationships between packets, and doesn’t perform retrans-
mission. (It is not a reliable communication protocol!) Therefore, it requires
higher-level protocols such as TCP and UDP to provide a reliable class of service. It
does ensure that the IP header is not corrupted though.

TCP stands for Transmission Control Protocol, and it is the main form of communication
over the Internet because it provides a reliable, session-based service for the delivery of
sequenced packets.

This connection-oriented protocol provides a reliable two-way connection service over
a session. Each packet of information exchanged over a session is given a sequence
number through which it gets tracked and individually acknowledged. Duplicate
packages are detected and discarded by the session services. Sequence numbers are not
globally unique or even necessarily unique to the session. Although in a small enough
time window, they would be unique to the session.

The TCP/IP protocol doesn’t provide an application interface layer—the application
provides the application layer. However, sockets have emerged as TCP/IP’s premier
peer-to-peer API, providing a way of writing portable networking applications.

14 0672319942 CH10 11/15/00 11:39 AM Page 393

394 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

UDP, which stands for User Datagram Protocol, is another protocol that provides
transport services. This protocol provides an unreliable but fast datagram service.
They are unreliable in the sense that they are not acknowledged or tracked through a
sequence number. After transmitting the diagram, you have to hope that it gets
received. We don’t know if the recipient is there, or even if he is expecting a diagram.
Some statistics say that about 5% of the diagrams don’t make it. That’s depressing,
isn’t it?

Note
UDP is useful for streaming media, where a packet that is late is useless, so retrans-
mission is not desirable.

UDP is a connectionless transport protocol that doesn’t guarantee delivery or packet
sequence. As an example, UDP is used by the ping command in order to check
whether a host is reachable in the network.

No doubt the UDP protocol is faster than the TCP protocol. The reason is because
the TCP protocol spends more time switching information between the machines in
order to guarantee that the information gets transferred. That doesn’t happen when
using UDP, which makes it considerably faster than TCP. Another fact is that while
transferring data packets, the TCP protocol waits until all the packets arrive, and
organizes them in sequence for the client program. However, the UDP protocol
doesn’t do that. It allows the client program to decide how the packets should be
interpreted because packets aren’t received in any specific ordering format. The
problem is that this kind of implementation is completely unreliable because there is
no way to confirm whether the information has reached its destiny. If you need a
stream-oriented protocol, TCP is about as fast as you will get it. If it was such a bad
protocol, it would have been replaced by now.

Protocols

The most commonly used application protocols are built on top of TCP/IP
infrastructures. Actually, they don’t have to know any details about TCP nor about IP
because a thin layer called sockets exists between TCP/IP and them.

Python has modules that handle and support the access to all the following protocols.
These protocols use the services provided by the sockets in order to transport packets
on the network and to make connections to other hosts.

• HTTP processes Web pages.

• FTP transfers files between different machines.

14 0672319942 CH10 11/15/00 11:39 AM Page 394

395CHAPTER 10 Basic Network Background
Networking Concepts

• Gopher browses Gopher servers.

• Telnet provides access to another machine.

• POP3 reads mail files on POP3 servers.

• IMAP reads mail files on IMAP servers.

• NNTP provides access to the Usenet news.

• SMTP sends mail to standard mail servers.

Addresses

A socket address, on the TCP/IP internet structure, consists of two parts: an Internet
address (commonly known as an IP address) and a port number.

The IP address defines the addressing and routing of information around the network,
uniquely identifying a network interface.

An IP address is a 32-bit number (a sequence of four bytes), usually represented by
four decimal numbers ranging from 0 to 255, separated by dots. A IP address looks
something similar to 128.85.15.53.

Each IP number must be unique for each TCP/IP network interface card within an
administered domain, which in most cases means that each machine connected to the
Internet has a unique IP address. Actually, a networked machine can have more
Internet addresses than network interfaces. This is quite common in virtual hosting
situations.

A port is an entry point to an application/service that resides on a server. It is a
number represented by a 16-bit integer. This number can range between 0 and 65535,
but you can’t freely use all of them inside your programs. Always choose a port
number greater than 1024 because the range 0–1023 is reserved by the operation
system for some network protocols. Specific ports are shown in Table 10.1.

Note
Ports 0-1023 are called privileged ports and on most systems only the super user
can run applications that use them. If you do not specify a port for one of the end
points of your connection, one from the 1024-65535 range will be chosen.

14 0672319942 CH10 11/15/00 11:39 AM Page 395

396 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Table 10.1 Many Server Programs Have Their Own Famous Ports

Port Protocol

20 FTP (data)

21 FTP (control)

23 Telnet

25 SMTP

80 HTTP

119 NNTP

A larger list of ports can be found in the /etc/services file on UNIX machines or
c:\windows\services on Win95/Win98 machines.

Most of the time, you don’t need to worry about knowing the IP addresses offhand.
DNS services provide a translation between IP addresses and hostnames because it is
much easier to remind a name than a sequence of numbers. You should know that
extra mappings between IP addresses and hostnames can be added in the /etc/hosts
or c:\windows\hosts file.

The conclusion is that if you need to connect your client program to an application
running on a server, you just need to know the server’s IP address or hostname, and
the port number in which the application is listening.

Together TCP and IP provide the basic network services for the Internet.

Sockets

Sockets are objects that provide the current portable standard for network application
providers on certain suites of network protocols (such as TCP/IP, ICMP/IP, UDP/IP,
and so forth). They allow programs to accept and make connections, such as to send
and receive data. It is important that each end of a network communication have a
socket object in order to establish the communication channel.

Sockets were first introduced in 1981 as the UNIX BSD 4.2 generic interface that
would provide UNIX-to-UNIX communications over networks. Since that occasion,
sockets have become part of the BSD UNIX system kernel, and they have also been
adopted on a lot of other UNIX-like Operating Systems, including Linux.

Support for sockets is also provided, in the form of libraries, on a multiplicity of non-
BSD UNIX systems, including MS-DOS, Windows, OS/2, Mac OS, and most
mainframe environments. The Windows socket API, known colloquially as WinSock, is a
multivendor specification that has standardized the use of TCP/IP under Windows.

14 0672319942 CH10 11/15/00 11:39 AM Page 396

397CHAPTER 10 Basic Network Background
Networking Concepts

This library is based on the Berkeley sockets interface as well. Of course, WinSock is
not as convenient as a real sockets interface because the socket descriptors can’t be
passed to the select function as file descriptors can.

The reason for all this multi-environment possibility is because sockets are
implemented using a standard C-level interface, which makes it easier to implement in
other operating systems.

Each socket has a type that defines the protocol which implements the environment
where the socket is used. These types are specified at creation time. The three most
popular socket types are: stream, datagram, and raw. stream and datagram sockets can
interface directly to the TCP protocol, whereas the raw sockets interface to the IP
protocol. Note, however, that sockets are not limited to TCP/IP. Stream over a
PF_INET connection will give TCP, and datagram over PF_INET will give UDP.

The socket Module
The socket module is a very simple object-based interface that provides access to a
low-level BSD socket-style network. Both client and server sockets can be
implemented using this module.

This module provides an exception called error, which is raised every time a socket-
or address-related error happens.

Now we will look at the methods that are implemented by this module.

socket(family, type [, protocol])—This method creates and returns a new
socket object, which is an instance of the SocketType class.

The family value can be either AF_UNIX (for UNIX domain protocols) or AF_INET
(for IPv4 protocols such as TCP and UDP). Note that Python currently doesn’t
support IPv6, IPX, and other protocols used also.

The socket type defines whether the socket is a stream socket (SOCK_STREAM, for the
TCP protocol), a datagram socket (SOCK_DGRAM, for the UDP protocol), a raw socket
(SOCK_RAW), or a Sequenced connection-mode (SOCK_SEQPACKET).

The third and optional argument (protocol) is only used along with raw sockets,
which are used only with AF_INET families. This argument is a constant value that
identifies the protocol to be used. The default value is 0 for all socket types, and the
list of possible values is: IPPROTO_TCP, IPPROTO_UDP, IPPROTO_RAW, IPPROTO_IP, and
IPPROTO_ICMP. Note that these constant values are returned by the
getprotobyname() function.

14 0672319942 CH10 11/15/00 11:39 AM Page 397

398 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

gethostname()—Returns the hostname of the local machine.

gethostbyname(hostname)—Converts a hostname to an IP address.

gethostbyname_ex(hostname)—Returns a tuple (hostname, hostname_alias_list,
host_ip_list).

gethostbyaddr(ipaddress)—Returns a tuple (hostname, hostname_alias_list,
host_ip_list).

getprotobyname(protocol)—Returns a constant value that is equivalent to the
protocol name.

getservbyname(service, protocol)—Returns the port number associate to the
pair service+protocol. The protocol argument must be either ‘tcp’ or ‘udp’.

Each socket object has the following methods:

accept()—Accepts a new connection and returns two values: a new socket object to
be used while transferring data back and forth, and the address of the socket that
this object is talking to.

bind(hostname, port)—Binds the socket to a port address.

close()—Closes the socket.

connect(hostname, port)—Connects to another socket, which can be an external
socket or a local socket. The hostname for local sockets is localhost.

getpeername()—Returns the IP address and the port to which the socket is connected.

getsocketname()—Returns the IP address and the port of it’s own socket.

listen(max_connections)—Starts listening to the port, waiting for other sockets to
connect. Before it starts refusing connections, the OS queues the maximum number
of connections that you inform.

makefile([mode [, buffersize]])—Creates a file object that you can use read()
and write() on, which is useful for stream-oriented protocols. The arguments mode
and buffersize have the same meaning as the built-in open() function.

The next two functions are normally used for receiving packets on a datagram
oriented protocol such as UDP.recv(buffersize)—Returns the data string received
from the socket. buffersize limits the maximum amount of data to be received.

recvfrom(buffersize)—Returns the data string received from the socket and the
IP address that has originated from the socket. buffersize limits the maximum
amount of data to be received.

14 0672319942 CH10 11/15/00 11:39 AM Page 398

399CHAPTER 10 Basic Network Background
Networking Concepts

The next two functions are usually used for sending packets on a datagram oriented
protocol such as UDP.

send(string)—Sends the data string to the socket.

sendto(string, (hostname, port))—Sends the data string to the socket hosted by
hostname at the provided port.

setblocking(flag)—Blocks all read and write operations until they can proceed if
the flag is set to 1, the default value. If you change the value to 0, an error exception
is raised when those operations cannot proceed.

shutdown(flag)—Shuts down the client sockets if the flag is set to 0. If the flag is
set to 1, the server sockets are shut down. If the flag is set to 2, both types of
sockets are shut down.

For those that already have Python 2.0 installed, you should know that as a result of
some changes in the Python design, you are encouraged to use an extra pair of
parenthesis when passing tuples as arguments to some functions of the socket module.
Note that some funtions still accept the old interface, but you are encouraged to start
using the new model right away, for example, socket.connect((‘hostname’, 80)).
Among the functions that still accept the old interface, we have: socket.connect(),
socket.connect_ex(), and socket.bind().

Starting with Python 2.0, it’s available OpenSSL support for the socket module. That
means that from now on you can encrypt the data you send over a socket using this
implementation of the Secure Socket Layer. In order to have it properly installed you
need to edit the Modules/Setup file to include SSL support before compiling Python.
Doing so will add the socket.ssl() function to your socket module.

socket.ssl()

This function takes a socket object and returns an SSL socket.

basic syntax: socket.ssl(socket, keyfile, certfile)

Making Connections
Because we already know that sockets are mostly used for TCP and UDP connections,
let’s see how to implement those interfaces using Python. Initially, we will check the
necessary steps to start a TCP connection.

The server application needs to

1. Create a socket.

2. Bind the socket to an available port.

14 0672319942 CH10 11/15/00 11:39 AM Page 399

400 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

3. Tell the system to start listening to that port.

4. Query the port for new connections.

After these steps are performed, the TCP client application just needs to

1. Create a socket.

2. Open a connection to the server.

When the server receives the client request to establish a connection, it processes the
request and sends the response back to the client.

1: # TCP server example

2: import socket

3: svrsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

4: svrsocket.bind(“”, 8888)

5: svrsocket.listen(5)

6: while 1:

7: data_to_send = “This string could be anything”

8: clisocket, address = svrsocket.accept()

9: print “I got a connection from “, address

10: clisocket.send(data_to_send)

11: clisocket.close()

The first argument in line 3 is the family address protocol. Currently, Python supports
only two values: AF_UNIX (for UNIX domain sockets) and AF_INET (for Internet
sockets). If you are using a non-UNIX system, you must use the AF_INET protocol.

The second argument in line 3 defines the type of connection that must be open. The
common choices are SOCK_STREAM for stream-based connections (TCP) and
SOCK_DGRAM for datagram-based connection (UDP). Depending on your system,
you might also have other options: SOCK_SEQPACKET, SOCK_RAW,
SOCK_RDM, SOCK_PACKET (Obsolete).

After creating a server socket, you need to bind the socket to a port on the local
machine (line 4). The socket will listen to this port and process all the requests that
come to this port.

In this example, we are connecting to port 8888. Remember that you should not use
port numbers up to 1024 because they are reserved for system services. The
20,000–30,000 range is also prohibited because it is reserved for the Remote Procedure
Call (RPC) services. Of course you should use these port numbers if you are
implementing one of those services.

14 0672319942 CH10 11/15/00 11:39 AM Page 400

401CHAPTER 10 Basic Network Background
Networking Concepts

Tip
On UNIX systems, you need to have root privileges to implement services on ports
lower than 1024. NT systems implement the same concept where ports lower than
1024 can only be used by system (or root) processes or by programs executed by
privileged users.

The listen() method (line 5) tells the server to start “listening” to the port, waiting
for connections.

After a client connects to this server, the accept() method (line 8) is invoked, and a
new socket is created. Note that two sockets are involved in the whole process: one to
establish the connection, and the other one to manage all the transactions between the
client and the server.

The following example implements the client version of our program:

1: # TCP client example

2: import socket

3: clisocket = socket.socket(socket.AD_INET, SOCK_STREAM)

4: clisocket.connect(“lessaworld.com”, 8888)

5: data = clisocket.recv(512)

6: clisocket.close()

7: print “The data received is “, data

The socket() method (line 3) creates a TCP socket that tries to connect to the
server/port specified as arguments of the connect() method (line 4).

After the connection is set up, the recv() method (line 5) is used to read the data. In
this example, we are limiting the maximum number of 512 bytes to be read.

The next task is to implement the same client/server architecture using the UPD
protocol. The steps necessary to start a UDP connection are as follows:

1. Create a socket.

2. Bind the socket to an available port.

3. Query the port for new connections.

After these steps are performed, the UDP client application just needs to

1. Create a socket.

2. Send a request to the server.

14 0672319942 CH10 11/15/00 11:39 AM Page 401

402 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

When the server receives the client request to establish a connection, it sends the
response back to the client. And that’s it. As you know, there is no concept of
connection here. The following code example demonstrates an example of how to
handle an UDP server.

1: # UDP server example

2: import socket

3: svrsocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

4: svrsocket.bind(“”, 8000)

5: while 1:

6: data, address = svrsocket.recvfrom(256)

7: print address[0], “said : “, data

The recvfrom() method (line 6) is used to read datagrams that are sent to the port,
which is informed in line 4. The recvfrom() method returns two arguments: the actual
data and the address of the host that has sent the data.

The following code example demonstrates an example of how to handle an UDP
client.

1: # UDP client example

2: import socket

3: clisocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

4: while 1:

5: data = raw_input(“Type something: “)

6: if data:

7: clisocket.sendto(data, (“lessaworld.com”, 8000))

8: else:

9: break

10: s.close()

To send data to the server implementation, you need to use the sendto() method (line
7). The first argument is the data you want to send, and the second one is a tuple
containing both the hostname and the port number waiting for your connection.

The UDP implementation doesn’t try to set up a connection before starting to send
diagrams. When you transmit data using UDP, it’s hard to know whether the other
machine has received the datagram.

For more information about sockets, you should consider viewing Gordon McMillan’s
HOWTO on socket programming at

http://www.python.org/doc/howto/sockets/

14 0672319942 CH10 11/15/00 11:39 AM Page 402

403CHAPTER 10 Basic Network Background
Networking Concepts

Darrell Gallion’s Web site also has some examples that might help you get started with
sockets:

http://www.dorb.com/darrell/sockets

Asynchronous Sockets
The asyncore module provides the basic infrastructure for writing and handling
asynchronous socket service clients and servers that are the result of a series of events
dispatched by an event loop. This module is used to check what is happening with
sockets in the system, and it implements routines to handle each situation. The core of
this module is the dispatcher class.

dispatcher ([socket])

This is supposed to be the constructor of the asyncore.dispatcher class. To use this
class, you need to subclass it, and override the method that you want to handle. This
class is just a wrapper on top of a socket object. If the socket argument is omitted, you
need to call the create_socket() method as shown in the following example:

import asyncore

import socket

class Dispatcher(asyncore.dispatcher):

def handle_write(self):

self.send(“data”)

self.close()

class DataServer(asyncore.dispatcher):

def __init__(self, port=8888):

self.port = port

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.bind((“”, port))

self.listen(5)

def handle_accept(self):

link, address = self.accept()

Dispatcher(link)

dataserverobj = DataServer(8888)

asyncore.loop

This example overrides two methods from the dispatcher class: handle_write() and
handle_accept(). The first one is called when the socket receives an attempt to be
written, and the other one is called when the listening socket receives a connection
request.

14 0672319942 CH10 11/15/00 11:39 AM Page 403

404 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The other methods available in this class are as follows:

handle_connect()—Called when a connection is set up with success.

handle_expt()—Called when a connection fails.

handle_read()—Called when the socket has data available to be read.

handle_close()—Called when the connection to the socket is closed or reset.

handle_error(error_type, error_value, traceback)—Called whenever one of
the other handlers causes a Python error.

readable()—Returns 1 if the object has data to be read, 0 if not.

writable()—Returns 1 if the object wants to write data, 0 if not.

The dispatcher class also provides methods that have a implementation similar to
those available in the socket module. Here is the list: create_socket (equivalent to
socket), connect, bind, listen, send, recv, accept, and close.

This module also reveals two functions:

asyncore.poll([timeout=0 [, exceptions=0]])—Pools for events, calling the
proper handler functions. If you set the exceptions flag to 1, every exception
generated in event handlers will be raised.

asyncore.loop([timeout=30])—Repeatedly calls asyncore.poll().

You can also check out the Asynchronous Sockets Library, by Sam Rushing, which is used
for building asynchronous socket clients and servers:

http://www.nightmare.com/software.html

This is a single program that can simultaneously communicate with many other clients
and servers, using and implementing multiple protocols running within a single
address space on a single thread. Included in the library are sample clients, servers, and
demonstrations for several Internet protocols, including HTTP, finger, DNS, POP3,
and FTP.

The select Module
The select module is used to implement polling and to multiplex processing across
multiple I/O streams without using threads or subprocesses. It provides access to the
BSD select() function interface, available in most operating systems. On Windows,
this function only works for sockets. On UNIX, it is used for pipes, sockets, files,

14 0672319942 CH10 11/15/00 11:39 AM Page 404

405CHAPTER 10 Basic Network Background
HTTP

or any other stream-compatible objects. Also note that the that asyncore module is
built on top of the select module.

The select function accepts socket lists as arguments. The following example
implements a loop that will keep checking the sockets in order to identify the exact
moment when they become readable, writable, or signal an error. (An error is assigned
whenever a socket tries to open a connection, and the connection fails. A few other
conditions will trigger one of the sockets, not just connect errors.)

A socket becomes readable when it successfully gets a connection after calling the
listener, or when it receives data. On the other hand, if a connection is set up after a
non-blocking call to the connect method, the socket becomes writable.

import select

import socket

App_Socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

App_Socket.bind(“”, 8888)

App_Socket.listen(5)

while 1:

readable_sockets = [App_Socket]

writable_sockets = []

r, w, err = select.select(readable_sockets, writable_sockets, [], 0)

if r:

client, address = service.accept()

client.send(“data”)

client.close()

HTTP

HTTP (Hypertext Transfer Protocol) is a simple text-based protocol used for World
Wide Web Applications. Both Web servers and Web browsers implement this
protocol.

The HTTP protocol works by having a client that opens a connection, and sends a
request header to a Web server. This request is a simple text-based form that contains
the request method (GET, POST, PUT, …), the name of the file that should be opened,
and so forth.

The server interprets the request and returns a response to the client. This response
contains the HTTP protocol version number, as well as a lot of information—such as
cookies, document type and size, and so on—about the returned document.

14 0672319942 CH10 11/15/00 11:39 AM Page 405

406 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

For details about the HTTP specification, you’d better check:

http://www.w3.org/Protocols

Next, I list some Python projects that somehow use HTTP techniques.

M2Crypto, by Ng Pheng Siong’s

M2Crypto makes the following features available to the Python programmer: RSA,
DH, DSA, HMACs, message digests, symmetric ciphers, SSL functionality to
implement clients and servers, and S/MIME v2.

http://mars.post1.com/home/ngps/m2/

Note
With Python-2.0, the socket module can be compiled with support for the OpenSSL
library, so it can handle SSL without trouble.

CTC (Cut The Crap), by Constantinos Kotsokalis

This is a http proxy software written in Python, which cuts advertisement banners
from your Web browser display.

http://softlab.ntua.gr/~ckotso/CTC/

Alfajor, by Andrew Cooke

Alfajor is an HTTP cookie filter, written in Python with an optional GUI. It acts as an
HTTP proxy (you must configure your browser to use it) and can either contact sites
directly or work with a second proxy (for example, a cache). Note that Alfajor does not
fully conform to any HTTP version. However, in practice, it works with the vast
majority of sites.

http://www.andrewcooke.free-online.co.uk/jara/alfajor/

Building Web Servers

In order to build Internet servers using Python, you can use the following modules:

SocketServer—It is a generic socket-based IP server.

BaseHTTPServer—It provides the infrastructed required by the next two modules.

SimpleHTTPServer—It allows you to have a simple Web server.

CGIHTTPServer—It enables the implementation of a CGI-compliant HTTP server.

14 0672319942 CH10 11/15/00 11:39 AM Page 406

407CHAPTER 10 Basic Network Background
HTTP

The SocketServer Module
The SocketServer module exposes a framework that simplifies the task of writing
network servers. Rather than having to implement servers using the low-level socket
module, this module provides four basic server classes that implement interfaces to the
protocols used most often: TCPServer, UDPServer, StreamRequestHandler, and
DatagramRequestHandler. All these classes process requests synchronously. Each
request must be completed before the next request can be started.

This kind of behavior is not appropriate if each request takes a long time to complete
because it requires a lot of computation and the client might be slow to process all
data. In order to handle the requests as separate threads, you can use the following
classes: ThreadingTCPServer, ThreadingUDPServer, ForkingUDPServer, and
ForkingTCPServer.

Both the StreamRequestHandler and DatagramRequestHandler classes provide two file
attributes that can be used to read and write data from and to the client program.
These attributes are self.rfile and self.wfile.

The following code demonstrates the usage of the StreamRequestHandler class, which
is exposed by the SocketServer module.

import SocketServer

port = 8000

class myRequestHandler(SocketServer.StreamRequestHandler):

def handle(self):

print “connection from “, self.client_address

self.wfile.write(“data”)

srvsocket = SocketServer.TCPServer((“”, port), myRequestHandler)

print “The socket is listening to port”, port

srvsocket.serve_forever()

Tip
Always remember that you need to use user-accessible ports numbers.

Next, you have the classes provided by this module:

TCPServer((hostname, port), request_handler)—Implements a server that
supports the TCP protocol.

UDPServer((hostname, port), request_handler)—Implements a server that
supports the UDP protocol.

14 0672319942 CH10 11/15/00 11:39 AM Page 407

408 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

UnixStreamServer((hostname, port), request_handler)—Implements a server
that supports a stream-oriented protocol using UNIX domain sockets.

UnixDatagramServer((hostname, port), request_handler)—Implements a server
that supports a datagram-oriented protocol using UNIX domain sockets.

In all four classes, the request_handler must be an instance of the
BaseRequestHandler class, and usually, hostname is left blank.

Each one of these classes has its own instances of class variables.

request_queue_size stores the size of the request queue that is passed to the socket’s
listen() method.

socket_type returns the socket type used by the server. The possible values are
socket.SOCK_STREAM and socket.SOCK_DGRAM.

The class instances implement the following methods and attributes:

fileno()—Returns the server socket’s integer file descriptor.

handle_request()—Processes a single request, by creating an instance of the
handler class and invoking its handle() method.

serve_forever()—Implements a loop to handle infinite requests.

address_family—Returns either socket.AF_INET or socket.AF_UNIX.

RequestHandlerClass—Holds the request handler class, which was provided by the
user.

server_address—Returns the IP address and the port number being used by the
server for listening.

socket—Returns the socket object used for approaching requests.

The BaseHTTPServer Module
The BaseHTTPServer module defines two base classes for implementing basic HTTP
servers (also known as Web servers). This module is built on top of the SocketServer
module. Note that this module is rarely used directly. Instead, you should consider
using the modules CGIHTTPServer and SimpleHTTPServer.

The following code demonstrates the usage of the BaseHTTPRequestHandler class,
which is exposed by the BaseHTTPServer module, to implement a simple HTTP
Server.

14 0672319942 CH10 11/15/00 11:39 AM Page 408

409CHAPTER 10 Basic Network Background
HTTP

import BaseHTTPServer

htmlpage = “””

<html><head><title>Web Page</title></head>

<body>Hello Python World</body>

</html>”””

notfound = “File not found”

class WelcomeHandler(BaseHTTPServer.BaseHTTPRequestHandler):

def do_GET(self):

if self.path = “/”:

self.send_response(200)

self.send_header(“Content-type”,”text/html”)

self.end_headers()

self.wfile.write(htmlpage)

else:

self.send_error(404, notfound)

httpserver = BaseHTTPServer.HTTPServer((“”,80), WelcomeHandler)

httpserver.serve_forever()

The HTTPServer((hostname, port), request_handler_class) base class is derived
from the SocketServer.TCPServer, hence, it implements the same methods. This class
creates a HTTPServer object that listens to the hostname+port, and uses the
request_handler_class to handle requests.

The second base class is called BaseHTTPRequestHandler(request, client_address,
server). You need to create a subclass of this class in order to handle HTTP requests.
If you need to handle GET requests, you must redefine the do_GET() method. On the
other hand, if you need to handle POST requests, you must redefine the do_POST()
method.

This class also implements some class variables:

• BaseHTTPRequestHandler.server_version

• BaseHTTPRequestHandler.sys_version

• BaseHTTPRequestHandler.protocol_version

• BaseHTTPRequestHandler.error_message_format

14 0672319942 CH10 11/15/00 11:39 AM Page 409

410 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

This string should contain the code for a complete Web page that must be sent
to the client in case an error message must be displayed. Within the string, you
can reference some error attributes because this string is dynamically linked to
the contents of an error dictionary.

“””<head><title></title></head><body>

Error code = %(code)d

Error message = %(message)s

Error explanation = %(explain)s
</body>”””

Each instance of the BaseHTTPRequestHandler class implements some methods and
attributes:

handle()—Implements a request dispatcher. It calls the methods that start with
“do_”, such as do_GET() and do_POST().

send_error(error_code [, error_message])—Sends an error signal to the client.

send_response(response_code [, response_message])—Sends a response header
according to the Table 10.2.

Table 10.2 List of Response Codes and Messages Returned by the Web Server

Code Code Description

200 OK

201 Created

202 Accepted

204 No content available

300 Multiple choices

301 Moved permanently

302 Moved temporarily

303 Not modified

400 Bad request

401 Unauthorized

403 Forbidden

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

14 0672319942 CH10 11/15/00 11:39 AM Page 410

411CHAPTER 10 Basic Network Background
HTTP

send_header(keyword, value)—Writes a MIME header, which contains the header
keyword and its value, to the output stream.

end_header()—Identifies the end of the MIME headers.

The following object attributes are also exposed:

client_address—Returns a 2-tuple (hostname, port) that compounds the client
address.

command—Identifies the request type, which can be POST, GET, and so on.

path—Returns the request path.

request_version—Returns the HTTP version string from the request.

headers—Returns the HTTP headers.

rfile—Exposes the input stream.

wfile—Exposes the output stream.

The SimpleHTTPServer Module
The SimpleHTTPServer module provides a simple HTTP server request-handler class.
It has an interface compatible with the BaseHTTPServer module that enables it to serve
files from a base directory. This module implements both standard GET and HEAD
request handlers, as shown in this example:

import SimpleHTTPServer

import SocketServer

ServerHandler = SimpleHTTPServer.SimpleHTTPRequestHandler

httpserver = BaseHTTPServer.HTTPServer((“”, 80), ServerHandler)

httpserver.serve_forever()

The current directory used to start up the server is used as the relative reference for all
files requested by the client. This module implements the
SimpleHTTPRequestHandler(request, (hostname, port), server) class. This class
exposes the following two attributes:

• SimpleHTTPRequestHandler.server_version

• SimpleHTTPRequestHandler.extensions_map—A dictionary that maps file suffixes
and MIME types

14 0672319942 CH10 11/15/00 11:39 AM Page 411

412 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The CGIHTTPServer Module
The CGIHTTPServer module defines another simple HTTP server request-handler
class. This module has an interface compatible with BaseHTTPServer, which enables it
to server files from a base directory (the current directory and its subdirectories), and
also allow clients to run CGI (Common Gateway Interface) scripts.

Requests are handled using the do_GET and do_POST methods. You can override them
in order to meet your needs. Note that the CGI scripts are executed as the user
nobody. The next example demonstrates the implementation of a simple HTTP Server
that accepts CGI requests.

import CGIHTTPServer

import BaseHTTPServer

class ServerHandler(CGIHTTPServer.CGIHTTPRequestHandler):

cgi_directories = [‘/cgi-bin’]

httpserver = BaseHTTPServer.HTTPServer((“”, 80), Handler)

httpserver.serve_forever()

The CGIHTTPRequestHandler(request, (hostname, port), server) class is provided
by this module. This handler class supports both GET and POST requests. It also
implements the CGIHTTPRequestHandler.cgi_directories attribute, which contains a
list of directories that can store CGI scripts.

Setting Up the Client Side of the HTTP Protocol

The httplib module implements the client side of the HTTP (Hypertext Transfer
Protocol) protocol, and is illustrated as follows:

import httplib

url = “www.lessaworld.com”

urlpath = “/default.html”

host = httplib.HTTP(url)

host.putrequest(“GET”, urlpath)

host.putheader(“Accept”, “text/html”)

host.endheaders()

errcode, errmsg, headers host.getreply()

if errcode != 200:

raise RuntimeError

htmlfile = host.getfile()

htmlpage = htmlfile.read()

htmlfile.close()

return htmlpage

14 0672319942 CH10 11/15/00 11:39 AM Page 412

413CHAPTER 10 Basic Network Background
HTTP

The previous example doesn’t allow you to handle multiple requests in parallel because
the getreply() method blocks the application while waiting for the server to respond.
You should consider using the asyncore module for a more efficient and asynchronous
solution.

This module exposes the HTTP class. The HTTP([hostname [,port]]) class creates
and returns a connection object. If no port is informed, port 80 is used; and if no
arguments are informed at all, you need to use the connect() method to make the
connection yourself. This class exposes the following methods:

connect(hostname [,port])—Establishes a connection.

send(data)—Sends data to the server after the endheaders() method is called.

putrequest(request, selector)—Writes the first line in the client request header.
The request option can be one of the following most common request methods:
GET, POST, PUT, or HEAD. selector is the name of the document to be opened.

putheader(header, argument1 [, ...])—Writes a header line in the client
request header. Each line consists of the header, a colon and a space, and the list of
arguments.

endheaders()—Indicates the end of the headers in the client request header by
writing a blank line to the server.

getreply()—Returns a tuple (requestcode, requestmsg, headers) that is read after
closing the client side of the connection. This tuple comes from the server’s reply to
the client message. The pair requestcode and requestmsg is something like (500,
“Internal server error”). headers is an instance of the mimetools.Message class,
which contains the HTTP headers that were received from the server.

getfile()—Wraps the data returned by the server as a file object in order to make
reading it easy.

Note
Note that the httplib module packed with Python 2.0 has been rewritten by Greg
Stein, in order to provide new interfaces and support for HTTP/1.1 features, such as
pipelining. Backward compatibility with the 1.5 version of httplib is provided, but you
should consider taking a look at the documentation strings of the module for details.

Also note that Python 2.0’s version of the httplib module has support to “https://”
URLs over SSL.

14 0672319942 CH10 11/15/00 11:39 AM Page 413

414 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Accessing URLs

URL stands for uniform resource locator. URLs are those strings, such as
http://www.lessaworld.com/, that you have to type in your Web browser in order to
jump to a Web page.

Python provides the urllib and urlparse modules as great tools to process URLs.

Tip
Many applications today that have to parse Web pages always suffer with changes in
the page design. However, these problems will go away when more structural formats
(such as XML) start getting used to producing the pages.

The urllib Module

The urllib module is a high-level interface to retrieve data across the World Wide
Web, supporting any HTTP, FTP, and gopher connections by using sockets. This
module defines functions for writing programs that must be active users of the Web. It
is normally used as an outer interface to other modules, such as httplib, ftplib,
gopherlib, and so on.

To retrieve a Web page, use the urllib.urlopen(url [,data]) function. This
function returns a stream object that can be manipulated as easily as any other regular
file object, and is illustrated as follows:

>>> import urllib

>>> page = urllib.urlopen(“http://www.bog.frb.fed.us”)

>>> page.readline()

This stream object has two additional attributes: url and headers. The first one is the
URL that you are opening, and the other is a dictionary that contains the page
headers, as illustrated in the next example.

>>> page.url

‘http://www.bog.frb.fed.us’

>>> for key, value in page.headers.items():

... print key, “ = “, value

...

server = Microsoft-IIS/4.0

content-type = text/html

content-length = 461

date = Thu, 15 Jun 2000 15:31:32 GMT

14 0672319942 CH10 11/15/00 11:39 AM Page 414

415CHAPTER 10 Basic Network Background
Accessing URLs

Next, you have a couple of other functions that are made available by the urllib
module.

urllib.urlretrieve(url [,filename] [,hook]—Copies a network object to a local
file.

>>> urllib.urlretrieve(‘http://www.lessaworld.com’, ‘copy.html’)

urllib.urlcleanup()—Cleans up the cache used by urllib.urlretrieve.

urllib.quote(string [,safe])—Replaces special characters in string using %xx
escape codes. The optional safe parameter specifies additional characters that
should be quoted.

>>> urllib.quote(‘This & that @ home’)

‘this%20%26%20that%20%40%20home’

urllib.quote_plus(string [,safe])—Works just like quote(), but it replaces
spaces by using plus signs.

urllib.unquote(string)—Returns the original value that was passed to
urllib.quote.

>>> urllib.unquote(‘this%20%26%20that%20%40%20home’)

‘This & that @ home’

urllib.urlencode(dict)—Converts a dictionary into a URL-encoded string.

>>> dict = {‘sex’:’female’, ‘name’:’renata lessa’}

>>> urllib.urlencode(dict)

‘sex=female&name=renata+lessa’

Note
For those that have Python 2.0 installed, keep in mind that the new urllib module
is able to scan environment variables for proxy configuration.

Also note that Python 2.0’s version of the urllib module has support to “https://”
URLs over SSL.

The urlparse Module

The urlparse module manipulates an URL string, parsing it into tuples. It is able to
break an URL up into components, combines them back, and converts relative addresses
to absolute addresses. Basically, it rips URLs apart, being able to put them together
again.

14 0672319942 CH10 11/15/00 11:39 AM Page 415

416 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Let’s take a look at the functions that are provided by this module:

urlparse.urlparse()

syntax: urlparse.urlparse(urlstring [,default_scheme [,allow_fragments]])

Parses an URL into six elements—addressing scheme, network location, path,
parameters, query, fragment identifier—returning the following tuple:

>>> urlparse(‘http://www.python.org/FAQ.html’)

(‘http’, ‘www.python.org’,’FAQ.html’,’’,’’,’’)

urlparse.urlunparse(tuple)—Constructs a URL string from a tuple as returned
by urlparse().

urlparse.urljoin(base, url [,allow_fragments])—Combines an absolute URL
with a relative URL.

>>>urljoin(‘http://www.python.org’, ‘doc/lib’)

‘http://www.python.org/doc/lib’

The next example copies a Web page into a local file:

import urllib

pagehandler = urllib.urlopen(“http://www.lessaworld.com”)

outputfile = open(“sitecopy.html”, “wb”)

while 1:

data = pagehandler.read(512)

if not data:

break

outputfile.write(data)

outputfile.close()

pagehandler.close()

If you are behind a firewall, here’s a little trick you can do in order to use proxy servers
to handle your connections:

1: import urllib

2: proxies = {‘http’ : ‘http://proxy:80’}

3: urlopener = urllib.FancyURLopener(proxies)

4: htmlpage = urlopener.open(‘http://www.bog.frb.fed.us’)

5: data = htmlpage.readlines()

6: print data

14 0672319942 CH10 11/15/00 11:39 AM Page 416

417CHAPTER 10 Basic Network Background
FTP

Line 2: Creates a dictionary that identifies the proxy location. Note that proxy:80
corresponds to the name of the proxy server along with the port where it is
listening to.

Line 3: Creates a new function that masks the proxy connection.

FTP

FTP is a popular way to transfer files from machine to machine across a network. It is
convenient because there are FTP clients and FTP servers written for all the popular
platforms.

FTP servers can work with both private users and anonymous users. The difference is
that a private FTP server allows only system users to be able to connect via FTP,
whereas an anonymous FTP server allows anyone on the network to connect to it and
transfer files without having an account. Keep in mind that configuring an anonymous
FTP server always exposes the security of your system.

The ftplib module implements the client side of the FTP protocol. You can use it for
mirroring FTP sites. Usually the urllib module is used as an outer interface to
ftplib. For uploads you probably want to use ftplib.

The FTP implementation provides one control port and one data port, which means
that the actual transmission of data between client and server machines operates over a
separate socket on a completely separate port in order to avoid deadlock problems.

Check out the Python Documentation for more information:

http://www.python.org/doc/lib/module-ftplib.html

Transferring Data

The following example shows how to read data from a FTP site:

1: #!/usr/local/bin/python

2: import ftplib

3: ftp = ftplib.FTP(‘ftp.lessaworld.com’)

4: ftp.login()

5: ftp.cwd(‘downloads/programs’)

6: ftp.retrlines(‘LIST’)

7: file = open(‘filename.txt’, ‘w’)

8: ftp.retrbinary(‘RETR filename.txt’, file.write, 1024)

9: ftp.quit()

14 0672319942 CH10 11/15/00 11:39 AM Page 417

418 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Line 2: Imports the ftplib module.

Line 3: Creates the FTP object and connects to a host server.

Line 4: Establishes an anonymous login.

Line 5: Uses the cwd() method to change the directory.

Line 6: Retrieves the resulting lines of the provided command. In our case, it lists the
content of the directory.

Line 7: Creates a file on your local server.

Line 8: Retrieves the binary information passed to the FTP server, storing it into the
mentioned file object.

Tip
Note that the interface uses FTP commands—such as LIST, STOR, and RETR—that you
need to know. These commands are part of the FTP specification and have nothing
to do with Python.

The next example uploads a file to the FTP server:

1: import ftplib

2: ftp = ftblib.FTP(“ftp.lessaworld.com”)

3: ftp.login(“username”, “password”)

4: filename = “index.html”

5: ftp.storlines(“STOR “ + filename, open(filename))

6: filename = “app.exe “

7: ftp.storbinary(“STOR “ + filename, open(filename, “rb”), 1024)

Line 3: Provides a username and password to the FTP server in order to establish a
connection.

Line 5: Uploads a TEXT file to the server.

Line 7: Uploads a binary file to the server.

SMTP/POP3/IMAP

SMTP and POP3 are the protocols used most in the Internet because they provide the
necessary services to handle electronic mails (emails).

14 0672319942 CH10 11/15/00 11:39 AM Page 418

419CHAPTER 10 Basic Network Background
SMTP/POP3/IMAP

The Simple Mail Transfer Protocol (SMTP) is the official way to transfer mail over the
Internet. This protocol is an Internet standard, specified in RFC-821. It defines how
programs exchange email on the Internet.

The SMTP protocol is responsible for putting the email in mailboxes, and when it
comes to removing the messages from there, it is necessary to use the POP3 protocol.
The Post Office Protocol (POP) is used by mail readers that work on network clients and
are connected to designated mail servers to send and receive mail. The purpose of this
protocol is to allow remote access to a mailbox that is hosted by an external server. For
your information, SMTP is also used to send the messages across the Internet.

Anyone who writes a POP client can communicate with a POP server because this
protocol abstracts the details of the email to a system-independent level. This protocol
was designed so that users could access their mail from machines that weren’t
configured for receiving mail. Also, all systems on the Internet mail system agree to
use SMTP to handle mail. Storage of mail can vary on different systems, although this
is not an OS issue, but an application issue.

IMAP (Internet Message Access Protocol) is another protocol that is being used for mail
reading. It is a method of accessing electronic mail or bulletin board messages that are
kept on a (possibly shared) mail server. In other words, it permits a client email
program to access remote message stores as if they were local.

Handling Email Services

The smtplib module provides a low-level client interface to the SMTP protocol that
can be used to send emails to any machine in the Internet that has an SMTP or
ESMTP listener daemon. An example of this is as follows:

import smtplib

import string

host = “localhost”

fromclause = “alessa@bebemania.com.br”

toclause = “rtaveira@bebemania.com.br, jp@alugueaqui.com.br”

toclause = string.splitfields(toclause, “,”)

msgbody = “””

This email brings good news for you!!

Best Regards

“””

SMTPServer = smtplib.SMTP(host)

SMTPServer.sendmail(fromclause, toclause, msgbody)

SMTPServer.quit()

14 0672319942 CH10 11/15/00 11:39 AM Page 419

420 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The poplib module provides a low-level POP3 client-side interface for connecting to a
POP3 server using a client protocol, as defined in RFC 1725. This module is shown in
the following:

import poplib, string

PopServerName = “mail.lessaworld.com”

PopServer = poplib.POP3(PopServerName)

print PopServer.getwelcome()

PopServer.user(‘AndreLessa’)

PopServer.pass_(‘qwerty0987’)

r, items, octets = PopServer.list()

msgid, size = string.split(items[-1])

r, msg, octets = PopServer.retr(msgid)

msg = string.join(msg, “\n”)

print msg

See Chapter 13, “Data Manipulation,” for details about using the module rfc822 to
parse the header lines and the modules mimetools and mimify to process the data
attached to the message.

The imaplib module provides a low-level IMAP client-side interface for connecting to
an IMAP4 mail server using the IMAP4rev1 client protocol, as defined in RFC 2060. This
module is shown in the following:

1: import imaplib, getpass, string

2: host = “imap.lessaworld.com”

3: user = “AndreLessa”

4: pwd = getpass.getpass()

5: msgserver = imaplib.IMAP4(host)

6: msgserver.login(user, pwd)

7: msgserver.select()

8: msgtyp, msgitems = msgserver.search(None, “ALL”)

9: for idx in string.split(msgitems[0]):

10: msgtyp, msgitems = msgserver.fetch(idx, “(RFC822)”)

11: print “Message %s\n” % num

12: print “---------------\n”

13: print “Content: %s” % msgitems[0][1]

14: msgserver.logout()

The search method (line 8) lists all the message items available at the IMAP server.

For more details about IMAP, check out the IMAP Connection Web site:

http://www.imap.org/

14 0672319942 CH10 11/15/00 11:39 AM Page 420

421CHAPTER 10 Basic Network Background
Newsgroups—Telnet and Gopher

If you want to have more control over your emails, and you are willing to have it
filtered, take a look at SpamWall, by Sam Rushing.

This program is a simple, powerful framework for building custom SPAM filters.
SpamWall is a filtering proxy daemon that sits between your site’s SMTP server and
the outside world. It is modular and extensible. Included are two sample filters—a
regular-expression based filter (like procmail) and a blacklist filter. For more
information, check out

http://www.nightmare.com/software.html

Newsgroups—Telnet and Gopher

The nntplib module implements a low-level interface to the client side of the NNTP
(Network News Transfer Protocol) protocol—a service mostly known for providing
newsgroups.

This protocol is text-based because all the communication between the client and the
server uses ASCII text. This protocol is also used to exchange Usenet news articles
between servers.

Newsgroups are organized hierarchically, according to their levels, which are separated
by dots. In comp.lang.python for example, comp defines computer-related newsgroups
and lang defines that it refers to computer languages. It is shown as follows:

1: import nntplib

2: import string

3: ServerAlias = “news.lessaworld.com”

4: NewsGroup = “comp.lang.opensource”

5: Keyword = raw_input(“Enter keyword to search: “)

6: NewsServer = nntplib.NNTP(ServerAlias)

7: r, count, firstmsg, lastmsg, name = NewsServer.group(NewsGroup)

8: r, messages = NewsServer.xover(first, last)

9: for id, subject, author, date, msgid, refer, size, lines in messages:

10: if string.find(subject, Keyword) >= 0:

11: r, id, msgid, msgbody = NewsServer.article(id)

12: print “Author: %s - Subject: %s - Date: %s\n” % \

13: (author, subject, date)

14: print “<-Begin Message->\n”

15: print msgbody

16: print “<-End Message->\n”

14 0672319942 CH10 11/15/00 11:39 AM Page 421

422 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Line 6: Creates the NNTP object and connects to a NewsServer.

Line 7: Selects the newsgroup that you want to read.

Check out Python’s documentation for more details about this module at the following
URLs:

http://www.python.org/doc/lib/nntp-objects.html

and

http://www.python.org/doc/lib/module-nntplib.html

The telnetlib module implements a client for the telnet protocol. This protocol is
used to connect to remote computers, usually via the port (23). After you have
established your telnet connection, you can execute commands remotely on that
computer through your telnet interface. The commands you use are UNIX
commands, such as ls, cd, pine, elm, talk, rm provided that the telnet server is
running on a UNIX box. If you have a windows telnet server, you would probably
have an MS-DOS style command prompt.

The protocol is shown in the following:

import telnetlib

hostserver = “http://www.lessaworld.com”

newline = “\n”

username = “user02” + newline

password = “qwerty0987” + newline

telnet = telnetlib.Telnet(hostserver)

telnet.read_until(“login: “)

telnet.write(username)

telnet.read_until(“Password: “)

telnet.write(password)

while 1:

command = raw_input(“[shell]: “)

telnet.write(command)

if command == “exit”:

break

telnet.read_all()

For implementation details, you can check out the official documentation at

http://www.python.org/doc/lib/module-telnetlib.html

and

http://www.python.org/doc/lib/telnet-objects.html

14 0672319942 CH10 11/15/00 11:39 AM Page 422

423CHAPTER 10 Basic Network Background
Summary

Gopher provides a distributed information delivery system around which a world
campus-wide information system (CWIS) can readily be constructed. While providing a
delivery vehicle for local information, Gopher facilitates access to other Gopher and
information servers throughout the world.

The gopherlib module is a minimal client side implementation of the Gopher protocol.
Although Gopher is an old protocol, it is still used by many universities. Gopher
provides an hierarchical interface for both texts and binaries. This module is used by
the urllib module to handle URLs that use the Gopher protocol. The gopherlib
module is shown as follows:

import gopherlib

GopherServer = “gopher.lessaworld.com”

directory = gopherlib.send_selector(“1/”, GopherServer)

for topic in gopherlib.get_directory(directory):

print topic

Check out the official documentation for more details:

http://www.python.org/doc/lib/module-gopherlib.html

Summary

Networking is the word behind all new technology that arrives in the market these
days. Networking systems are well defined by the OSI/ISO (Open Systems
Interconnection/International Standards Organization) seven-layer model, which suggests
the following levels of networking process: Physical, Data Link, Network, Transport,
Session, Presentation, and Application.

Network connections can be of two types: connection-oriented (such as TCP) or
packet-oriented (such as UDP).

The network layer of the TCP/IP stack is provided by the Internet Protocol
(commonly known as IP). The IP address defines the addressing and routing of
information around the network, uniquely identifying a network interface.

The transport layer is provided by the TCP, which is the main form of communication
over the Internet because it provides a reliable, session-based service for the delivery of
sequenced packets.

UDP is a connectionless transport protocol that does not guarantee delivery or packet
sequence. This protocol provides an unreliable but fast datagram service.

14 0672319942 CH10 11/15/00 11:39 AM Page 423

424 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The most commonly used application protocols (such as HTTP, FTP, Gopher, Telnet,
POP3, IMAP, SMTP, and NNTP) are built on top of TCP/IP infrastructures.
Actually, they don’t have to know any details about TCP nor about IP because there is
a thin layer called “sockets” between TCP/IP and them.

A port is an entry point to an application/service that resides on a server.

Sockets are objects that allow programs to accept and make connections, such as to
send and receive data. They are mostly used for TCP and UDP connections. The
socket module is a very simple object-based interface that provides access to a low-
level BSD socket-style network.

The asyncore module provides the basic infrastructure for writing and handling
asynchronous socket service clients and servers that are result of a series of events
dispatched by an event loop.

The select module is used to implement polling and to multiplex processing across
multiple I/O streams without using threads or subprocesses.

In order to build Internet servers using Python, HTTP modules that you can use are
as follows:

• SocketServer—It is a generic socket-based IP server.

• BaseHTTPServer—It provides the infrastructure required by the next two
modules.

• SimpleHTTPServer—It allows you to have a simple Web server.

• CGIHTTPServer—It enables the implementation of a CGI-compliant HTTP
server.

The httplib module implements the client side of the HTTP (Hypertext Transfer
Protocol) protocol.

The urllib and urlparse modules are useful tools provided by Python to process
URLs. The urllib module is a high-level interface to fetch data across the World
Wide Web. It is normally used as an outer interface to other modules, such as httplib,
ftplib, gopherlib, and so on. On the other hand, the urlparse module manipulates a
URL string, parsing it into tuples.

The ftplib module implements the client side of the FTP protocol.

The smtplib module provides a low-level client interface to the SMTP protocol that can
be used to send emails in the Internet.

14 0672319942 CH10 11/15/00 11:39 AM Page 424

425CHAPTER 10 Basic Network Background
Summary

The poplib module provides a low-level POP3 client-side interface for connecting to a
POP3 server using a client protocol.

The imaplib module provides a low-level IMAP client-side interface for connecting to
an IMAP4 mail server using the IMAP4rev1 client protocol.

The nntplib module implements a low-level interface to the client side of the NNTP
(Network News Transfer Protocol) protocol—a service mostly known for providing
newsgroups. This protocol is also used to exchange Usenet news articles between
servers.

The telnetlib module implements a client for the telnet protocol. This protocol is
used to connect to remote computers. After you have established your telnet
connection, you can execute UNIX commands remotely on that computer through
your telnet interface.

The gopherlib module is a minimal client-side implementation of the Gopher
protocol.

14 0672319942 CH10 11/15/00 11:39 AM Page 425

14 0672319942 CH10 11/15/00 11:39 AM Page 426

CHAPTER 11

Web Development

We are the knights who say…ni!

This chapter provides information concerning how to use
Python for Internet development support. It also introduces
you to many Web applications and scripts developed using
Python.

Web Development

This chapter exposes the reality between Python and the
Internet by introducing some complete Web applications that
have emerged from the Python community.

No doubt the most popular application area at this time is the
Internet. Consequently, Python is acquiring a strong presence
on the Web because its library of modules that interface to the
main Internet protocols reach full maturity.

Python is a dynamic language absolutely useful for the Internet,
mostly because it easily allows the establishment of interfaces
with external systems.

Nowadays, some of the most important applications in the
Internet are based on the HTTP protocol. Python’s support to
HTTP, which is the basic communication protocol underlying
the Web, allows it to implement HTTP Servers (Web Servers)
and clients (Web browsers). Python has been successfully used

D E V E L O P E R ’ S H A N D B O O K

15 0672319942 CH11 11/15/00 11:39 AM Page 427

428 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

to implement an HTTP client called Grail, which is a Web browser full of features.
On the other hand, Python has many options for HTTP Servers, also known as Web
Servers. Python’s standard library of modules comes with some basic HTTP Server
implementations, such as BaseHTTPServer and SimpleHTTPServer. The advantage of
using Python as a Web Server is that you have total control about what is going on in
your application.

Besides the HTTP Servers that are part of Python’s distribution, a number of other
third-party Internet publishing tools are available for Python. Most of them are free
for both commercial and noncommercial use, such as Medusa and Zope.

This chapter also points you to the most used Python scripts and technologies used for
Web development. For more information, check out the Web Programming Topic
Guide site:

http://www.python.org/topics/web/

This area in the Python’s Web site covers Web-related programming with Python. It
possesses links to several distinct Web topics, such as HTML, HTTP, Zope, and so on.

Configuring Web Servers for Python/CGI Scripts

The next topics show you how to configure the most used Web servers in the market.
Mostly you will see how to handle Python CGI scripts within Apache and Microsoft
IIS Web servers.

Python in Apache

First, let’s see how Apache handles requests.

When a file is called, Apache executes an action, which internally is known as handler.
These handlers are usually implicitly related to the files, based on the file type.
However, new Apache releases are able to assign handles to filename extensions or file
locations, instead of only work with the file type.

Python script files are handled in exactly the same way as other CGI scripts. Once a
request is received, Apache calls the Python interpreter asking it to run the specific
script. Depending on the Apache configuration, there are several actions to be
performed when receiving a request (for instance, user authentication and file
transfer).

15 0672319942 CH11 11/15/00 11:39 AM Page 428

429CHAPTER 11 Web Development
Configuring Web Servers for Python/CGI Scripts

Apache comes with a predefined set of handlers for basic routine tasks. However, there
are several third-party handler applications that can be very useful as well, such as the
mod_python and mod_pyapache modules. Using these modules is not strictly necessary,
but it reduces the overhead of your server and increases the speed of your application.
Both of these reasons occur because the Python interpreter is not called for every
single connection anymore. You can create Apache Handlers by building them into the
Web Server, adding them to the Action directive, or implementing a module.

The Apache official Web site is as follows:

http://www.apache.org/

Configuring Apache for Python
The following guidelines will help you configure your Apache installation to run
Python in both Windows and UNIX systems. Steps 1–8 are specific for Win32 config-
urations.

1. Installing Python in the C:\Python directory is a more convenient way to handle
environment paths.

2. It is convenient if you have your CGI files in the same drive as the WINNT
system files.

3. Verify if you have a system variable called PATH that contains the Python
interpreter’s (python.exe) directory (if necessary, create it).

4. Create a system variable called PYTHONPATH. It must contain the list of
directories to be used when searching for Python files.

5. Use ASSOC to setup a file extension for Python.

ASSOC .py=PythonScript

6. Use FTYPE to associate the previous setting to the Python executable.

FTYPE PythonScript=python.exe %1 %*

7. Add the extension .py to the system environment variable PATHEXT. This variable
stores the list of executable extensions (for example,
PATHEXT=.EXE;.COM;.BAT;.CMD;.py).

8. Install Apache on your system’s root drive, that is, “c:\Apache”. Installing Apache
in this directory helps you during the whole configuration process.

9. Edit your C:\WINNT\system32\drivers\etc\hosts file, adding the IP address of
your machine. This file is the NT equivalent to UNIX /etc/hosts table file.

15 0672319942 CH11 11/15/00 11:39 AM Page 429

430 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following steps tell you how to configure the Apache Web Server. Note that
nowadays, the whole Apache configuration can be set using one unique file:
httpd.conf.

10. In the access.conf file, make the following changes:

<Directory /apache/htdocs>

Options Indexes ExecCGI

11. In the httpd.conf file, make the following changes:

ServerRoot /apache

12. In the srm.conf file, make the following changes. You also have the option to set
PYTHONPATH here using the command SetEnv, instead of defining it as a system
environment variable. Note that there are two AddHandler settings. The former
identifies the extension to be associated with CGI scripts, and the latter allows
you to use the .cgi extension in your files, in order to hide from crackers, the
language used to implement your site. Of utmost importance is to make certain
that you’re using Python in unbuffered mode (SetEnv PYTHONUNBUFFERED 1) and
to set (or pass) PYTHONPATH as a system environment variable. Forgetting to set
either of these parameters is the most common reason for “premature end of
header” errors.

DocumentRoot /apache/htdocs

ScriptAlias /cgi-bin/ /apache/cgi-bin/

PassEnv PYTHONPATH

SetEnv PYTHONUNBUFFERED 1

AddHandler cgi-script .py

AddHandler cgi-script .cgi

13. Place your scripts in your cgi-bin directory.

14. If you are using an UNIX system, make sure that the first line of your script
contain a shebang to identify the location of the Python interpreter.

15. Optionally, you can configure the server to run scripts only from the cgi-bin
directory by replacing the following line in the access.conf file:

<Directory /path/to/your/httpd/cgi-bin> Options Indexes FollowSymLinks

</Directory>

with

<Directory /path/to/your/httpd/cgi-bin> Options FollowSymLinks ExecCGI

</Directory>

15 0672319942 CH11 11/15/00 11:39 AM Page 430

431CHAPTER 11 Web Development
Configuring Web Servers for Python/CGI Scripts

If you want to run your scripts from any directory, comment the previous setting
and add the following one:

<Directory /path/to/your/httpd/htdocs> Options All </Directory>

16. Set the read and execute permissions of your script. If you are using an UNIX
system, you should type chmod 755 yourscript.py.

At this time, you should be ready to launch your Web browser and to access your CGI
script by typing its URL.

For UNIX, if Apache and Python are set up correctly, all you need to do is place the
Python scripts in the cgi-bin directory and set their permissions correctly.

More information about this topic can be found at the newsgroup for discussions
about running Apache under Windows at comp.infosystems.www.servers.ms-windows.

mod_python
mod_python is a module created by Gregory Trubetskoy that embeds the Python
language interpreter within the Apache server, allowing Apache handlers to be written
in Python. It provides nearly every possible handler to Apache.

mod_python brings a considerable boost in performance over the traditional CGI
approach, and adds flexibility in designing Web-based applications. In order to run it,
you must have at least Python 1.5.2 and Apache 1.3.

mod_python handlers by default do not perform any function, unless specifically told so
by a configuration directive. These directives begin with Python, end with Handler
(for example, PythonAuthenHandler), and associate a handler with a Python function.
Therefore, the main function of mod_python is to act as a dispatcher between Apache
handlers and python functions written by developers.

The most commonly used one is PythonHandler. It is for a handler that has no
specialized purpose, such as authentication. The default Apache action for this handler
would be to read the file and send it to the client. Most applications you write will use
this one handler. For more information, check out these sites:

mod_python Web site

http://www.modpython.org/

mod_python installation procedures

http://www.modpython.org/live/mod_python-2.4/doc/installation.html

15 0672319942 CH11 11/15/00 11:39 AM Page 431

432 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

mod_pyapache
This module will speed up the execution of your CGI scripts written in the Python
Language. It handles CGI scripts faster than other normal CGI scripts because the
server embeds the Python Interpreter. Therefore, the performance penalty of
executing an external one is eliminated.

This module has the advantage of being CGI compatible—it works well when CGI
scripts are simple and trusted and it provides total CGI control to your Python
application. However, this module currently has some limitations, including the fact
that it doesn’t avoid database connections delay. Check out the following Web site for
more information:

http://www.msg.com.mx/pyapache/

You will find the latest version of the module in the ftp://www.bel-epa.com/
pub/misc/ directory, where you will see a gzipped tar file named something like
PyApache-x.yy.tar.gz.

AOLserver Web Server

This is a Web Server created and used by AOL. Note that anyone using AOLserver
would be better off learning TCL. For details, see

http://www.aolserver.com

The project that embeds Python in the AOLServer Web Server, is now semi-stable for
simple CGI-style operations, and provides a 4-5x speedup over the straight CGI.

Check it out at http://pywx.sourceforge.net.

Microsoft IIS and PWS

You can set up both Microsoft IIS Server and Personal Web Server (PWS) to call the
Python interpreter to handle Python CGI scripts.

Tip
PWS is Microsoft’s free basic Web server for the Windows 95 platform.

You need to pay close attention when using the PWS server because a version of PWS
is part of the Front Page Personal Web Server, which doesn’t run files from executable
directories. Instead, it returns an error message. If you slide your mouse over the PWS
icon in the taskbar, and it says Personal Web Server, you have the proper version.

Now, let’s demonstrate how to configure IIS and PWS for Python/CGI scripting. I
assume that you have already installed Python on your system.

15 0672319942 CH11 11/15/00 11:39 AM Page 432

433CHAPTER 11 Web Development
Third-Party Internet Applications

On the Microsoft IIS server or on the Win95 MS Personal Web Server, you need to
set up Python in the same way that you would set up any other scripting engine:

1. Run REGEDIT.EXE

2. Find the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\

ScriptMap

3. Once there, select the menu selection EDIT, New, String Value, and enter the
following line (using the correct path):

.py :REG_SZ: c:\path\to\python.exe -u %s %s

Now, you are ready to call your scripts. Make sure that they are stored in an
executable directory in the Web server.

The -u flag specifies unbuffered and binary mode for stdin, which is needed when
working with binary data. This flag prevents cr-nl from being converted to newline
combinations.

Most developers agree that exposing the language behind your script works similar to
saying “Welcome” to crackers around the world. Therefore, it is suggested to hide
these details by using another extension, for example, .cgi, for your CGI scripts. You
don’t need to change the extension of all your files, just the ones that will be exposed
by your site’s Web interface. The other modules can continue to have the .py
extension. The line in the registry would resemble the following:

.cgi :REG_SZ: c:\path\to\python.exe -u %s %s

Note
Of course, this is no substitute for actually making sure that your scripts are secure.

After restarting your computer, everything gets set up, and every script (with the
proper extension) located at an executable directory is sent to the Python interpreter.

Third-Party Internet Applications

Some completely developed Web applications, written in Python, are available for
general use. You don’t need to do any programming to use them. You just have to
install, configure, and use them.

15 0672319942 CH11 11/15/00 11:39 AM Page 433

434 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Grail Web Browser

Grail is a free Web browser written entirely in Python, using the Tkinter GUI (Tk,
which is a free UI toolkit developed by John Ousterhout). Grail has the capability to
manipulate SGML, HTML, URL’s, images, and sound. Besides, it is easily extended to
offer new functionality.

Being written in Python helps Grail to have a high adhesion to the Python language.
Something similar happens to HotJava, which is a browser written entirely in Java.

For documentation and downloads, check out the following sites:

http://grail.python.org and http://grail.cnri.reston.va.us/grail/

Grail should run on any UNIX system to which Python and Tk have been ported—
that is, almost all UNIX systems supporting X11. In particular, Grail is one of the few
Web browsers that supports Solaris for Intel x86 processors. It now also runs on
Windows and Macintosh because there are now stable ports of Tk to those platforms
(you need a lot of RAM though). Grail supports the protocols and file formats
commonly found on the World Wide Web, such as HTTP, FTP, and HTML.
However, it is easily extended to support new protocols or file formats. Grail is
distributed by CNRI in source form, free of charge (without warranties), and can be
freely redistributed (within reason). Grail has not been worked on for a while, and
doesn’t support any of the latest standards you might expect in a browser.

Grail’s design tries to provide a plug-in architecture, which allows the browser to
easily support applets written in Python. Grail lets you download Python programs
that execute inside Grail on your local machine. These little applications, which are
called applets can do things such as display animations, interact with the user in new
ways, even create additional menus that pop up dialogs if you like. Grail applets run in
a restricted execution environment, so broken or malicious applets (Trojan Horses) can’t
erase your files or crash your computer.

Grail’s Web site has an applet demo collection that you can explore.

Grail has many positive qualities, such as support to full HTML 2.0, including images,
forms and image maps, as well as many HTML 3.2 features. It uses asynchronous
document transfer and supports printing and saving documents, searching, bookmarks,
history, and more. It also supports frames, file upload in forms, support for JPEG,
TIFF, and XBM images, image printing, and tables (within the limitations of the Tk
toolkit). It has preference panels, an I/O status display, a remote control interface, and
many other nice features.

Apart from running applets, Grail is extensible in other areas, by writing so-called
Grail plug-in modules. Grail plug-ins can be written for a number of new

15 0672319942 CH11 11/15/00 11:39 AM Page 434

435CHAPTER 11 Web Development
Third-Party Internet Applications

implementations, such as protocols (for example, CNRI’s handle protocol), file formats
(for example, for handling JPEG or sound directly), HTML tags (for example, tables),
and preference panels. Check out the following site for more information:

Grail—The Browser For The Rest Of Us (DRAFT), by Guido van Rossum

http://grail.cnri.reston.va.us/grail/info/papers/restofus.html

Zope Web Application Server

The Z Object Publishing Environment, also known as Zope, is an open source object
publishing system for the Web, developed by a company called Digital Creations.
Zope is a complete dynamic Web site management Web platform used for building
high-performance, dynamic Web sites. Essentially, it is a very complete framework for
building Web applications, written in Python.

Check out the following sites for details:

http://www.digicool.com and http://www.zope.org

Zope is the leading Open Source Web-application server. Zope enables teams to
collaborate in the creation and management of dynamic Web-based business
applications such as intranets and portals. It also makes it easy to build features such as
site search, news, personalization, and e-commerce into your Web applications.

Zope is a long running process, has a sophisticated authentication/authorization
model, and has a useful SQL related product called ZSQLMethod, which provides an
easy way to access a database from the Web application.

The following link is a technical introduction to object publishing with Zope. The
document introduces Zope’s object publishing facilities and shows you how to write
and publish your own objects in Python. It has an excellent tutorial on integrating a
Python module with the Zope ORB, Templates and Object Database.

http://www.zope.org/Members/Amos/WhatIsObjectPublishing

All requests made to the application server are mapped to Python objects. Therefore,
whenever you make a call to a URL, as demonstrated in the following line of code

http://host/path/to/object?name1=value1&name2=value2

The server internally calls an object passing the pairs (name, value) as arguments.

Zope is not monolithic. Instead, it is composed of parts which can be deployed
standalone with your own Python code support; for example, the Object Request
Broker, HTML Templates (DTML) and the Object Database (ZOBD, Z Object
Database, which stores Python objects) can all be abstracted from the mix.

15 0672319942 CH11 11/15/00 11:39 AM Page 435

436 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Zope’s templates are somehow similar to IIS ASP files. However, instead of being
associated to Web pages, they are associated to Python objects.

You don’t need to use Apache (PyApache/Httpdapy) in conjunction with Zope. In fact,
Zope comes with a fast Web server of its own, which supports multiple protocols. On
the other hand, it can also work with other Web servers as well. Most users do put
Apache in front of Zope for reasons of flexibility. Because Zope is a long running
process, they implement Persistent CGI, FastCGI, or ProxyPass.

If you need to find Web Hosting companies that support Zope, this might help:
http://www.zope.org/Resources/ZSP.

Mailman—GNU Mailing List Manager

Mailman is a Web integrated mailing list manager that helps manage email discussion
lists, much like Majordomo and Smartmail. Unlike most similar products, Mailman
gives each mailing list a Web page, and allows users to subscribe, unsubscribe, and so
on, over the Web. Even the list manager can administer his list entirely from the Web.
Both users and system administrator can do almost everything through an Internet
connection. Mailman also integrates most things people want to do with mailing lists,
including archiving, mail-to-news gateways, and so on.

Mailing lists are great for meeting people and sharing common interests. Within
Mailman, each mailing list has its own page that makes it much simpler to use. Each
mailing list’s Web page has an extensive Web-based user interface that is customizable
on a per-list basis. This allows users to manage their own subscriptions, with support
for temporarily disabling their accounts, selecting digest modes, hiding their email
addresses from other members, and so on.

All Mailman actions—including subscription requests, list administration, and
management reports—can be performed either through a Web interface or more
traditional textual commands.

In order to use Mailman, you will need the following:

• A Web server that supports CGI scripts, such as Apache

• An SMTP daemon (also known as mail transfer agents, MTAs, or mail servers),
such as Sendmail, Qmail, or Postfix

• Python 1.5 or newer

Mailman currently doesn’t work on Windows. Instead, it runs on most UNIX-like
systems. It is also compatible with most Web servers, browsers, and most SMTP

15 0672319942 CH11 11/15/00 11:39 AM Page 436

437CHAPTER 11 Web Development
Third-Party Internet Applications

servers. Actually, the only thing Mailman really requires of the mail server is the ability
to setup aliases that execute commands.

Mailman is written primary in Python (in approximately 13,000 lines) with a few
modules written in C (600 lines) for improved security (the C parts are the wrappers
that handle securely changing to the correct permissions). Mailman exposes Python as
an extension language that allows for customization of Mailman’s interfaces.

In case you need to build Mailman from the source, it is necessary to have in hand: the
GNU-make utility, an ANSI C Compiler, such as gcc, and Python 1.5 or higher.

Mailman is brought to you by the Mailman Cabal, which is currently composed of the
following core developers: Barry Warsaw, Harald Meland, Ken Manheimer, Scott
Cotton, and John Viega. Mailman was originally written by John Viega. Mailman is
free software. It is distributed under the GNU General Public License.

The following lists some of the main features implemented by Mailman:

• Automatic Web-based, hypermail-style archiving, including provisions for private
archives.

• Integrated gatewaying to and from Usenet.

• Smart bounce handling by using the Delivery Status Notification (DSN), which
is described in RFC 1894. This feature enables automatic disposition (that is,
configurable disabling, unsubscribing).

• Flexible and direct SMTP delivery of messages, including integrated fast bulk
mailing.

• Smart spam protection.

• Multiple list owners and moderators are possible.

• Supports RFC934 and MIME digest delivery.

• Support for virtual domains.

• Mail-based administrative commands.

• A Web-based list administration interface for all administrative-type tasks,
including list configuration, moderation (post approvals), selection of posting and
subscribing rules, management of user accounts via the Web, and so on.

Among other responsibilities, Mailman keeps track of the mailing lists of all
python.org activities, including the Python Special Interest Groups (Python SIGs).

15 0672319942 CH11 11/15/00 11:39 AM Page 437

438 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

As a practical matter, you’ll need root access on your host to configure Mailman
properly. Most open source products can be generated and initially tested by ordinary
UNIX users. Some organizations have a policy that requires this. With Mailman,
though, you’ll at least need to create a new account and group (the default for both is
“mailman”) for Mailman’s use.

Mailman, of course, powers the Python-list, which is a general discussion list for the
Python programming language. You can see it working at

http://www.python.org/mailman/listinfo/python-list

Also check out the Mailman home page:

http://www.gnu.org/software/mailman/mailman.html

More information is also available at: http://www.list.org.

Christopher Kolar has made Mailman documentation available, primarily for list
owners who aren’t necessarily technical, but who own Mailman mailing lists. The
GNU Mailman Documentation can be found at the following site:

http://www.aurora.edu/~ckolar/mailman/

Medusa Internet Server

Medusa is a Web server application that can be embeddable into a Python program,
offering high-performance for HTTP, FTP, and other IP services. Medusa was written
entirely in Python by Sam Rushing.

Medusa provides an Internet server framework for implementing asynchronous socket-
based servers—TCP/IP, and on UNIX, UNIX domain sockets. The first release
includes HTTP, FTP, and monitor servers. Medusa can simultaneously support several
instances of either the same or different server types. For example, you could start up
two HTTP servers, an FTP server, and a monitor server. Then you could connect to
the monitor server to control and manipulate Medusa while it is running, entering and
evaluating Python expressions (basically, a remote Python interpreter capability).

Out of the box, Medusa can run an unlimited number of HTTP and FTP servers
within a single address space, without the use of threads. Capable of impressive hit
rates, this server can solve your performance problems while handing you the most
powerful server-side scripting language available.

Because Medusa is written entirely in Python, it is portable to any platform that
implements the socket and select modules correctly. It has been tested on several
UNIX platforms, Windows NT, and Windows 95.

15 0672319942 CH11 11/15/00 11:39 AM Page 438

439CHAPTER 11 Web Development
Other Applications

Medusa is an elegant and efficient solution to a difficult programming problem.
Medusa’s core async-socket library is very stable because it has been in use virtually
unchanged since 1995.

Medusa is an architecture for building long-running, very high-performance TCP/IP
network servers (such as HTTP, FTP, and NNTP) in Python. Medusa is different
from most other servers because it runs as a single process, multiplexing I/O with its
various client and server connections within a single process/thread.

Medusa is in use now in several mission-critical applications, ranging from custom
Web servers at extremely high-traffic sites to distributed data processing systems.

As Medusa is written in Python, it can be extended and modified at runtime, even by
the end user. User scripts can be used to completely change the behavior of the server,
and even add in completely new server types.

Note
According to http://www.nightmare.com/medusa/license.html, Medusa is now Free
Software under the same license as Python, so you don’t need a commercial use
license.

For more details, check out the following site:

http://www.nightmare.com/medusa/

Other Applications

These other applications and scripts are utilities that might help you along your future
development efforts.

BSCW

The BSCW group at GMD in Germany has implemented a shared workspace server
for the Web as a collection of Python CGI scripts.

BSCW (Basic Support for Cooperative Work) is a “shared workspace” system, which
enables collaboration over the Web and supports document upload, event notification,
group management, and much more. To access a workspace, you only need a standard
Web browser.

This group maintains a public BSCW server with which everyone is invited to use for
creating their own shared workspaces. You only need an ordinary Web browser for
registering with the public server and for accessing the server once you have created
your login. If you want to upload documents, you might need an additional helper

15 0672319942 CH11 11/15/00 11:39 AM Page 439

440 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

application. If you use their recommended Web browser (Netscape), this is not
required.

For details, check out http://bscw.gmd.de/ and http://orgwis.gmd.de/.

LDAP
The Lightweight Directory Access Protocol (LDAP) is a directory access protocol that runs
directly over TCP/IP. It is documented in RFCs 1777 and 1778, and is a draft Internet
standard. LDAP can be used to implement a native standalone LDAP directory
service, or it can be used to access an X.500-based directory service.

Directory services such as LDAP are suitable for holding a lot of organizational
information in a standardized database scheme. LDAP is a useful tool for providing
centralized address books for the users of an organization—common mail client
software such as Netscape Messenger or Outlook already uses directory services for
retrieving personal data.

In some situations, there is a strong need for flexible LDAP client software that
provides features such as the following:

• Add/modify LDAP entries

• Access to the directory without having LDAP capable client software (for
example, via WWW)

• A secure LDAP client with clean login behavior

• Hiding the LDAP service behind a firewall

• Encryption for LDAP access over unsecured networks

In order to handle these issues, Michael Ströder developed web2ldap.py (formerly
known as ldap-client-cgi.py), which is a full-featured, Web-based LDAP client written
in Python. For more information, check out

http://www.web2ldap.de

There isn’t any standard LDAP support module in Python at this time, but there is
Python-LDAP. This project provides an LDAP client API for Python in the spirit of
RFC1823. For more information, check out the following:

http://python-ldap.sourceforge.net/

This LDAP module provides access to the University of Michigan’s Lightweight
Directory Access Protocol library. It is more-or-less compliant with the interface
described in RFC 1823, with the notable differences being that lists are manipulated

15 0672319942 CH11 11/15/00 11:39 AM Page 440

441CHAPTER 11 Web Development
Other Applications

via Python list operations, and errors appear as exceptions. It also works with
OpenLDAP (http://www.openldap.org), which is a bit newer.

WebLog
WebLog is a group of Python modules containing several class definitions that are useful
for parsing, manipulating, and postprocessing of common Web and Web proxy logfile
formats.

The modules can be broken up into two types: parsing and postprocessing. The classes
inside these modules are used by following the idea of first using a parsing class and
then stacking postprocessing classes on top of it. These modules are reasonably fast,
considering that they are written in a scripting language—especially the parsing
modules, which are very well optimized.

Parsing Modules
The following modules contain class definitions that can help you to implement
parsing routines.

common—Common (NCSA) Web log parser.

combined—Combined/extended Web log parser (adds referrer and agent).

squid—Squid Web Proxy Cache log parsers. This module contains two classes:
AccessParser (for access.log), and StoreParser (for store.log). If you have
full_mime_hdrs set in squid.conf, make sure to set the corresponding attribute in
AccessParser. However, use of this will appreciably slow down analysis.

multiple—Combines log files of the same content from different servers.

Postprocessing Modules
The following modules contain class definitions that can help you to implement
postprocessing routines.

url—Parses url and referer (if available) for components.

query—Parses queries into dictionaries.1

clean—Normalizes attributes of Web Log for more accurate analysis.1

resolve—Resolves client address to host and/or IP.

referer—Determines type of hit: local, offsite, manual, or file.1

limit—Limit output to certain domains, files, directories or times.1

1Requires use of url.Parse first.

15 0672319942 CH11 11/15/00 11:39 AM Page 441

442 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

For more details about WebLog, check out its Web site:

http://www.mnot.net/scripting/python/WebLog/

Site Management Tools

The following Python tools are used to manage Web sites. They implement several
functions that simplify the daily tasks performed by webmasters, such as dead link
checking, and object publishing.

WebDAV/PyDAV

WebDAV (World Wide Web Distributed Authoring and Versioning) is a set of extensions to
the HTTP/1.1 protocol, which allows users to collaboratively edit, manage, and
update files safely on remote Web servers. It was developed by the WebDAV working
group of the Internet Engineering Task Force (IETF).

WebDAV provides a standard infrastructure for asynchronous collaborative authoring
across the Internet in order to turn the Web into a collaborative environment.

WebDAV has the following core features: Metadata management, Name space
management, Collections, Overwrite prevention, Version management, Access
Control, and Locking (concurrency control).

For more information about WebDAV, check out its Web site at

http://www.webdav.org

PyDAV is a WebDAV (also known as DAV) server implemented in Python. Check out
its Web site at the following address:

http://sandbox.xerox.com/webdav/

Zebra

Zebra is an XML-based preprocessing language that offers a compact syntax for
expressing common Web design patterns. Similar to Zope, Zebra is a templating
system that is able to preprocess Python code. Therefore, developers don’t need to
stick to the details of the language before starting a nice design. For more information,
check out the following site:

http://zebra.sourceforge.net/

15 0672319942 CH11 11/15/00 11:39 AM Page 442

443CHAPTER 11 Web Development
Site Management Tools

httpd_log

The HTTPD logfile reporting tool (httpd_log) is a graphical Web statistics tool that
analyzes HTTP log files and generates a page of summary information, complete with
statistical graphs. Richard Jones developed this tool.

You’d better check out the new release 4.0b1 because it uses the more accurate PIL
module, instead of using the old GD graphic module. Although the release 3.0 is very
stable, the graphing provided by the new release is more accurate.

Keep in mind that you need to install the PIL module (PILGraph-0.1a7.tar.gz) in
order to use the release 4.0b1. For more information, check out

http://starship.python.net/crew/richard/httpd_log/

Linbot

Linbot is a site management tool that analyzes a site and allows the user to view a site
map, check for broken internal and external links, missing images, and list other
problems that were found. It downloads each page from the Web site, and parses its
contents in order to collect all the site’s information. Linbot is extensible, so new tests
can be added by writing some Python code.

Some of the things that Webmasters can do periodically and without user intervention
when using Linbot are listed as follows:

• View the structure of a Web site

• Track down broken links in Web pages

• Find potentially outdated Web pages

• List links pointing to external sites

• View portfolio of inline images

• Get a run down of problems sorted by author

• Locate pages that might be slow to download:

http://starship.python.net/crew/marduk/linbot/

15 0672319942 CH11 11/15/00 11:39 AM Page 443

444 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Python-Friendly Internet Solution Providers (ISPs)

The Web site “Python-friendly ISPs” lists Web site providers that support the
execution of CGI scripts written in Python. These lists are separated into some
specific categories:

• Python Installed System-Wide

• User May Install Python in Own Directories

• Providers with No Python Installed

• Other Providers (Python Support Unknown)

The address is http://www.corrt.com/info/pyisp-list.html

mxCGIPython

Instead of looking for an ISP that supports Python, you might be interested in the
mxCGIPython tool, which helps you install Python on your ISP when your ISP either
won’t or can’t. Marc-Andre Lemburg has put together a small Zip file, which contains
all necessary setup and config files. For more information, check out the following:

http://starship.python.net/~lemburg/mxCGIPython.html

HTMLgen

If you need a module to help you generate HTML, you should check out HTMLgen,
written by Robin Friedrich. It’s a class library of objects corresponding to all the
HTML 3.2 markup tags. It’s used when you are writing in Python and want to
synthesize HTML pages for generating a Web, for CGI forms, and so on. The
following lines are some examples of using HTMLgen:

>>> print H(1, “Welcome to Python World”)

<H1>Welcome to Python World</H1>

>>> print A(“http://www.python.org/”, “Python Web site”)

Python Web site

HTMLgen is available for download at:

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html

Document Template

When talking about generating HTML code, it might also be useful to consider
DocumentTemplate, which offers clear separation between Python code and HTML

15 0672319942 CH11 11/15/00 11:39 AM Page 444

445CHAPTER 11 Web Development
Site Management Tools

code. DocumentTemplate is part of the Zope objects publishing system, but it can also
be used independently. For more information, check out the following:

http:/www.digicool.com/

Persistent CGI

Persistent CGI architecture provides a reasonably high-performance, transparent
method of publishing objects as long running processes via the World Wide Web
(WWW). The current alternatives to CGI that allow the publishing of long-running
processes, such as FastCGI and ILU, have some level of Web server and platform
dependencies. Persistent CGI allows a long running process to be published via the
WWW on any server that supports CGI, and requires no specific support in the
published application.

Note
The latest version of Persistent CGI is bundled with the Zope software:

http:/www.digicool.com/

Webchecker

Webchecker is not a CGI application but a Web client application. The
webchecker.py script is located under the tools/webchecker/ directory of your Python
distribution. This tool enables you to check the validity of a site. In other words, given
a Web page, it searches for bad links in it, and keeps a record of the links to other sites
that exist in the page.

It requests all pages from the Web site via HTTP. After it loads a page, it parses the
HTML code and collects the links. Pages are never requested more than once. The
links found outside the original tree are treated as leaves, hence, they are checked, but
their links won’t be followed. Anyway, this script generates a report that contains all
bad links and says which page(s) the links are referenced.

The Linbot system, as you will see later in this chapter, has a similar functionality, but
its checks are more extensive than Web Checker’s.

Check out thewebsucker module, which is also part of the tools/webchecker directory
of the source. It mirrors a remote url locally.

LinkChecker

Pylice, a link checker written in Python, was renamed to LinkChecker. With
LinkChecker you can check your HTML documents for broken links. The homepage
for LinkChecker moved to the following:

15 0672319942 CH11 11/15/00 11:39 AM Page 445

446 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

http://linkchecker.sourceforge.net

You can find more information at

http://fsinfo.cs.uni-sb.de/~calvin/software/

FastCGI

FastCGI is a fast, open, and secure Web server interface that solves the performance
problems inherent in CGI, without introducing the overhead and complexity of
proprietary APIs (Application Programming Interfaces).

The FastCGI application library that implements the FastCGI protocol (hiding the
protocol details from the developer) is based on code from Open Market, and is in the
public domain while being fully supported by Fast Engines. This library makes
implementing FastCGI programs as easy as writing CGI applications.

The FastCGI interface combines the best aspects of CGI and vendor APIs. Like CGI,
FastCGI applications run in separate, isolated processes. The main advantages of using
FastCGI are

• Performance—FastCGI processes are persistent and do not create a new process
for each request.

• Simplicity—It is easily migrated from CGI.

• Language independence—Like CGI, FastCGI applications can be written in any
language.

• Process isolation—A buggy FastCGI application cannot crash or corrupt the
core server or other applications.

• Non-proprietary—FastCGI was originally implemented in the Open Market
Web server.

• Architecture independence—The FastCGI interface isn’t tied to any particular
server architecture.

• Support for distributed computing—FastCGI provides the ability to run
applications remotely.

For details about the library, check out FASTCGI’s official Web site at
http://www.fastcgi.org/.

The following link forwards you to a white paper that explains the minor details of
FASTCGI:

http://www.fastcgi.org/whitepapers/fcgi-whitepaper.shtml

15 0672319942 CH11 11/15/00 11:39 AM Page 446

447CHAPTER 11 Web Development
Summary

The best place to go for Python FastCGI support is at
http://www.digicool.com/releases/fcgi/.

There is also an all Python (no extension module required) implementation of the
FastCGI application interface located at http://starship.python.net/crew/robind/.

Summary

This chapter exposes the reality between Python and the Internet by introducing some
complete Web applications that have emerged from the Python community.

Python’s support to HTTP, which is the basic communication protocol underlying the
Web, allows it to implement HTTP servers (Web servers) and clients (Web browsers).
This chapter shows simple details about the configuration of Apache and Microsoft IIS
Server/Personal Web Server (PWS). Another Web server called AOLServer is also
introduced to you.

If you have Apache and you decide not to go through any CGI implementation, you
should consider embedding Python in this Web server.

mod_python is a module that embeds the Python language interpreter within the
Apache server, allowing Apache handlers to be written in Python. It brings a consid-
erable boost in performance over the traditional CGI approach.

mod_pyapache is another module that embeds Python within the Apache server. This
module also handles CGI scripts faster than other normal CGI scripts.

Besides Web Servers and Web Clients, Python has some completely developed Web
applications, written in Python itself, which are available for general use.

Grail is a free Web browser written entirely in Python, using the Tkinter GUI. Grail
has the capability to manipulate SGML, HTML, URL’s, images, and sound. Besides, it
is easily extended to offer new functionality. Grail’s design tries to provide a plug-in
architecture, which allows the browser to easily support applets written in Python.
Apart from running applets, Grail is extensible in other areas by writing so-called
Grail plug-in modules.

The Z Object Publishing Environment (Zope) is an open source object publishing
system for the Web. Zope is a complete dynamic Website management Web platform
used for building high-performance, dynamic Web sites. It is composed of parts that
can be deployed standalone with your own Python code support: The Object Request
Broker, HTML Templates (DTML), and the Object Database (ZODB, or Z Object
Database, which stores Python objects) can all be abstracted from the mix.

15 0672319942 CH11 11/15/00 11:39 AM Page 447

448 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Mailman is a Web integrated mailing list manager that helps managing email
discussion lists. Unlike most similar products, Mailman gives each mailing list a Web
page, and allows users to subscribe, unsubscribe, and so on, over the Web. All
Mailman actions, including subscription requests, list administration, and management
reports, can be performed either through a Web interface or more traditional textual
commands.

Medusa is a Web server application that can be embedded into a Python program,
offering high-performance for HTTP, FTP, and other IP services. Medusa was
entirely written in Python too.

The following applications and scripts are utilities that might help you with future
development efforts with Python.

BSCW is a shared Workspace Server for the Web, which is implemented as a collection
of Python CGI scripts.

The web2ldap.py script (formerly known as ldap-client-cgi.py) is a full-featured,
Web-based LDAP client written in Python.

WebLog is a group of Python modules containing several class definitions useful for
parsing, manipulating, and postprocessing of common Web and Web proxy logfile
formats.

The following Python tools are used to manage Web sites. They implement several
functions that simplify the daily tasks performed by Webmasters, such as dead link
checking, and object publishing.

WebDAV (World Wide Web Distributed Authoring and Versioning) is a set of extensions
to the HTTP/1.1 protocol, which allows users to collaboratively edit, manage, and
update files safely on remote Web servers.

Zebra is an XML-based preprocessing language that offers a compact syntax for
expressing common Web design patterns. As Zope, Zebra is a templating system that is
able to preprocess Python code.

The HTTPD logfile reporting tool (httpd_log) is a graphical Web statistics tool that
analyzes HTTP log files and generates a page of summary information.

Linbot is a site management tool that analyzes a site and allows the user to view a site
map, check for broken internal and external links, missing images, and list other
problems that were found.

The Web site “Python-friendly ISPs” lists Web site providers that support the
execution of CGI scripts written in Python. Another option that you have is to install
Python on your ISP using the mxCGIPython tool.

15 0672319942 CH11 11/15/00 11:39 AM Page 448

449CHAPTER 11 Web Development
Summary

HTMLgen is a module that helps you generate HTML. It contains a class library of
objects corresponding to all the HTML 3.2 markup tags. When talking about
generating HTML code, it might also be useful to consider DocumentTemplate, which
offers clear separation between Python code and HTML code.

Webchecker is not a CGI application but a Web client application that enables you to
check the validity of a site. LinkChecker is another tool that also allows you to check
your HTML documents for broken links.

Persistent CGI architecture provides a reasonably high-performance, transparent
method of publishing objects as long running processes via the World Wide Web.

FastCGI is a fast, open, and secure Web Server interface that solves the performance
problems inherent in CGI, without introducing the overhead and complexity of
proprietary APIs.

15 0672319942 CH11 11/15/00 11:39 AM Page 449

15 0672319942 CH11 11/15/00 11:39 AM Page 450

CHAPTER 12

Scripting Programming

strewth!

This chapter provides information about how to use Python as a
CGI scripting language. You will learn how to put Python to
work in your Web pages as a server-side component.

Web Programming

Python has a very extensive, well documented and portable
module library that provides a large variety of useful modules.
The Internet-related collection is particularly impressive, with
modules that deal with everything from parsing and retrieving
URLs to retrieving mail from POP servers, including CGI
scripting.

Python is suitable for CGI programming on Windows, Mac,
and UNIX platforms, allowing the creation of programs that
provide services over the Internet. Its capability to create
dynamic content makes the task of generating Web pages on-
the-fly a very easy thing to do.

However, before starting to implement your Web pages using
CGI scripts, you need to think about whether it is really

D E V E L O P E R ’ S H A N D B O O K

16 0672319942 CH12 11/15/00 11:39 AM Page 451

452 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

necessary to build dynamic pages for your site. Keep in mind that if the information is
not modified very often, static pages are the best solution because dynamic pages
always slow down the server. You can decide whether to use it, but if you conclude that
it would work for you, this chapter might help you a lot.

Note
It’s also good to mention that if you need a way to periodically build auto-generated
pages, you can implement solutions based on the use of cron on UNIX-like systems.
For the Windows NT, you have both the at command, and the scheduled tasks
extensions found in the newer copies of the Internet Explorer.

If your site becomes busy enough that the cost of starting a Python interpreter for
each CGI request becomes significant, you can use Web Server modules (such as
mod_python) to embed the Python interpreter in the server, hence, avoiding the startup
time. Zope provides yet another way to have Python scripts without the interpreter
startup time to worry about. Python code can also be invoked on top of Active Server
Pages (ASP) under IIS.

An Introduction to CGI

CGI (Common Gateway Interface) is a standardized way for the Web Server to invoke an
external program to handle the client request. It is possible for the external program to
access databases, documents, and other programs as part of the request, as well, and
present customized data to viewers via the Web. A CGI script can be written in any
language, but here, of course, we are using only Python.

CGI enables you to handle from the low end of mail-forms and counter programs to
the most complex database scripts that generate entire Web sites on-the-fly. CGI’s job
is to manage the communication between browsers and server-side scripts. Programs
that implement CGI routines are called CGI programs or CGI scripts. These scripts
are usually visualized, through the Web browser, in a directory called /cgi-bin, but
their actual location in the file system varies.

You have two ways to pass the information from the browser to the CGI script: You
can use either the POST or the GET method on your HTML Form. The POST method
uses the standard input to transfer the information, whereas the GET method places the
information into an environment variable.

16 0672319942 CH12 11/15/00 11:39 AM Page 452

453CHAPTER 12 Scripting Programming
An Introduction to CGI

The GET method has the limitation of the size of the environment variable and the
advantage of making it possible to encapsulate an HTML Form within an URL.
Another downside to the GET method is that it might leak information. If there is an
external image (for instance, a banner ad) or an off site link the user clicks on the page
generated by the CGI script, the form results will be passed to that third party
through the referer header. Therefore, don’t use banner ads or off-site links for the
CGI script handling a GET form.

The POST method, in theory, has no limits to the amount of information that can be
passed to the server. The disadvantage is that you can’t send the information as part of
the URL. You must have a form in your page.

Python uses the cgi module to implement CGI scripts and to process form handling
in Web applications that are invoked by an HTTP server. The cgi module also hides the
differences between GET and POST style forms.

Here is a very simple script to start you out with Python CGI processing:

1: #!/usr/bin/python

2: print “Content-Type: text/plain\n\n”

3: print “Hello Python World!”

Line 1: Path to the Python interpreter (UNIX only).

Line 2: Pass the MIME type to the browser in order to let it know how to render the
information.

Line 3: Prints a string in the browser window.

In order to execute it, place it on a executable directory on your Web server and call it
from your Web browser. If you are working on a UNIX-like OS, you need to run
chmod a+x scriptname.

Sometimes, CGI implementations also cause slow response times in the system. Keep
in mind that each CGI invocation creates a new process, starts a new instance of the
Python interpreter, and imports all the necessary library modules. Okay, I suppose you
got the picture.

The goal here is to let you know that sometimes the problem is not in the code, but in
the infrastructure that surrounds it. Within your CGI script, you should consider
avoiding using fork() as much as you can. But fork() is not the slow(est) part—it is
the interpreter startup time and database connection setup. To get help with that, try
using mod_pyapache or mod_python.

16 0672319942 CH12 11/15/00 11:39 AM Page 453

454 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following links take you to sites that demonstrate and clarify the use of CGI
routines:

Python’s Web Programming Topic Guide

http://www.python.org/topics/web/

vex.net’s directory of Python Web page samples

http://www.vex.net/py_examples/

Aaron Watters’s simple CGI examples

http://starship.python.net/crew/aaron_watters/cgi/

Fancy CGI Programming

http://www.python.org/topics/web/fancy-cgi.html

Python-CGI FAQ

http://starship.python.net/crew/davem/cgifaq/

The cgi Module

The cgi module accepts sys.stdin and environment variables set by the server as
input sources. The output is sent directly to sys.stdout, carrying an HTTP header and
the data itself.

A very simple header example would be

print “Content-type: text/html”

print

Note that it is necessary to have a new line at the end of the header information. In
most cases, the previous line is all you will use in your scripts.

The FieldStorage class, which is implemented by this module, is able to read both the
standard input (for POST calls) and the query string (for GET calls). In order to parse the
contents of an HTML Form, you need to create an instance of this class.

This instance carries the following attributes:

• fs.name—This is the field’s name.

• fs.value—This is the field’s value.

• fs.filename—This client-side filename is used in uploads.

16 0672319942 CH12 11/15/00 11:39 AM Page 454

455CHAPTER 12 Scripting Programming
The cgi Module

• fs.file—This is a file-like object from which data can be read.

• fs.type—This is the content type.

• fs.type_options—This dictionary of options is specified on the content-type
line of the HTTP request.

• fs.disposition—This is the “content-disposition” field, None if not specified.

• fs.disposition_option—This is the dictionary of disposition options.

• fs.headers—This is a dictionary-like object containing all HTTP headers
contents.

Each individual form field is defined as an instance of the MiniFieldStorage class,
whereas on the contrary, multipart data (such as uploaded files) is defined as an
instance of the FieldStorage class itself. Each instance is accessed as a dictionary
whose keys are the Form’s field names, and the values are their contents. These
dictionaries also implement methods such as .keys() and .has_key(). If a specific
form field has multiple values (for example, a selection list), a list of multiple
MiniFieldStorage instances is generated and assigned to the appropriate key value in
the dictionary. The use of MiniFieldStorage is pretty much transparent when using
CGI, thus, you don’t have to worry about these implementation details.

Note that uploaded files are read directly to the memory by accessing the value

attribute of the class instance.

Also note that Python 2.0 provides a new method called getvalue() to the objects of
the FieldStorage class, that implements the same functionality of a dictionary’s get()
method by returning the value attribute of the given object.

Functions

The following list shows some general functions exposed by the cgi module.

cgi.escape(string [,quote])—Translates “<”, “&”, “>” to “<”, “&”,
“>”. If you want to convert the double-quote character, you must set the quote
flag to true.

cgi.parse_qs(string, keep_blank_values=0)—Parses a query string such as
“country=USA&state=PA” to a dictionary-like format, for example, {“country”:
[“USA”], “state”: [“PA”],...}

cgi.parse([file], ...)—Parses query strings from default file locations (such as,
multiple file objects) from which data can be read, and generates a dictionary. The
default behavior is to map the input to stdin.

16 0672319942 CH12 11/15/00 11:39 AM Page 455

456 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

For CGI debugging, the following functions are available:

cgi.print_environ()—Formats the shell environment in HTML.

cgi.print_environ_usage()—Prints a list of environment variables, used by CGI,
in HTML.

cgi.print_form(form)—Formats a form in HTML.

cgi.print_directory()—Formats the current directory in HTML.

cgi.test()—Tests CGI script. It writes minimal HTTP headers and formats all
information provided to the script in HTML form.

The following functions are not part of the CGI module, but they are very useful for
CGI processing too.

urllib.quote(string), urllib.unquote(string)—These functions do and undo
convertions between literals (that are used in CGI applications) and their special
translation codes, which are required when transporting the literals to URL format
(for example, “ “ becomes “%20”).

urllib.urlencode(dictionary)—Converts a dictionary {“country”:”USA”,
“state”:”PA”,...} to query string format (for example, “country=USA&state=PA”).
Note that this function has the opposite functionality of the cgi.parse_qs()
function.

Creating, Installing, and Running Your Script

You are free to edit your Python scripts using your favorite text editor (such as,
Notepad, IDLE, Editpad, pico, PythonWwin, vi, and so on). Of course, we can’t
forget about Emacs, which has one of the best Python editing modes available.

Remember to upload your scripts as text files to your Web server. In order to execute
them, you need to make sure that they are in a “executable” directory, and that they
have the right permissions.

As I said before, most often CGI scripts live in the server’s special cgi-bin directory.
You should consider verifying whether the files, that your script needs to read or write,
are actually readable or writable, respectively, by other users. In UNIX, the command
to set the permissions is chmod.

16 0672319942 CH12 11/15/00 11:39 AM Page 456

457CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

For example,

chmod 755 filename

The mode argument 755 defines that the file’s owner can read, write, and execute the
file, whereas the other users can only read and execute it.

The common UNIX mode values and their respective symbolic arguments are

• chmod 755 for executable scripts, or chmod a+rx.

• chmod 666 for writable files, or chmod a+w.

• chmod 644 for readable files, or chmod a+r.

Tip
Keep in mind that commands and filenames are all case sensitive if the Web Server
is on an OS with case-sensitive filenames.

For security reasons, the HTTP server executes your script as user “nobody”, without
any special privileges. Therefore, it can only read (write, execute) files that everybody
can read (write, execute).

The current directory at execution time is usually the server’s /cgi-bin directory, and
the set of environment variables is different from what you get at login. In other
words, don’t count on the shell’s search path variable for executables ($PATH) or the
Python module search path variable ($PYTHONPATH) to be set to anything useful.

If you need to load modules from a directory that is not listed as part of the Python’s
default module search path, you can change the path variable in your script before
trying to import them. In the following example, we add three more directory entries
in the search path. Note that the last directory inserted, “/usr/python/testdict”, is
searched first.

import sys

sys.path.insert(0, “/usr/python/lib”)

sys.path.insert(0, “/usr/tmp”)

sys.path.insert(0, “/usr/python/testdict”)

Instead of using “from cgi import *”, you should use only “import cgi” because the
cgi module defines many other names for backward compatibility that can interfere
with your code.

It also might be useful for you to redirect the standard error (sys.stderr) to the
standard output (sys.stdout). This will display all the error messages in the browser.

16 0672319942 CH12 11/15/00 11:39 AM Page 457

458 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Sending Information to Python Scripts

Every time you use a URL to carry information to a CGI script, the data is
transported as name/value pairs, separated by ampersands (&), and each pair is separated
by an equal sign (=). Whitespaces between words are usually converted to the plus
symbol (+).

For example,

http://www.lessaworld.com/cgi-script/app.py?animal=Parrot&type=Singer

Special characters are encoded to hexadecimal format (%HH) and preceded by the
percent sign. Therefore, the string “Parrot sketch” is passed to the script as
“Parrot%20sketch”.

As you can see, the previous example is implicitly using the GET method to pass the
values to the CGI script. If you decide that the POST method is more suitable for your
needs, you will need to use the urllib module in order to send the information. The
following example demonstrates its use.

import urllib

request = urllib.urlencode({

“animal”: “Parrot”, “type”: “Singer”

})

page = urllib.urlopen(“http://oemcomputer/cgi-script/app.py”, request)

response = page.read()

Check the urllib documentation for details:

http://www.python.org/doc/current/lib/module-urllib.html

Table 12.1 contains a list of special characters and their encoded strings.

Table 12.1 Encoded Strings Used to Represent Special Characters When Dealing
with URLs

Character Encoded String

/ %2F

~ %7E

: %3A

; %3B

@ %40

& %26

16 0672319942 CH12 11/15/00 11:39 AM Page 458

459CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

space %20

return %0A

tab %09

Working with Form Fields and Parsing the Information

The first thing that most beginners in the Web development area want to know is how
to get information out of HTML forms and do something with it.

The following HTML code results in a Web page (see Figure 12.1) that queries the
user about his login information. Note that we use the POST method in the form.
Thus, the field values will not be displayed as part of the URL.

Table 12.1 (continued)

Character Encoded String

Figure 12.1

Login Form that calls a CGI script.

<HTML>

<HEAD><TITLE>Login Page</TITLE></HEAD>

<BODY>

<HR>

<CENTER>

<FORM method=”POST” action=”http://oemcomputer/cgi-bin/login.py”>

<p> Enter your login name: <input type=”text” name=”login”>

<p> Enter your password: <input type=password name=”password”>

16 0672319942 CH12 11/15/00 11:39 AM Page 459

460 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

<p> <input type=”submit” value=”Connect”>

</FORM>

</CENTER>

<HR>

</form>

</BODY>

</HTML>

Also, pay attention to the way data fields are referenced in HTML forms. Each input
element carries a name attribute that uniquely identifies the element within a form. For
instance, the tag <input type=”text” name=”login”> defines a data field called
“login” that implements a text box.

Every CGI script must send a header (the Content-type tag) describing the contents
of the document. The common values for this tag are text/html, text/plain,
image/gif, and image/jpeg. A blank line is used to indicate the end of this header.

Tip
The Content-type tag is used by the client browser and does not appear in the
generated page.

As you can see, a script is really executed, and not just displayed in the browser.
Everything printed to sys.stdout by the script is sent to the client browser, whereas
error messages go to an error log (/usr/local/etc/httpd/logs/error_log in
Apache).

The following script is the CGI program called by the HTML form from the previous
code.

1: #!/usr/local/bin/python

2: import cgi

3:

4: def header(title):

5: print “Content-type: text/html\n”

6: print “<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n” \

7: % (title)

8:

9: def footer():

10: print “</BODY></HTML>”

11:

16 0672319942 CH12 11/15/00 11:39 AM Page 460

461CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

12: form = cgi.FieldStorage()

13: password = “python”

14:

15: if not form:

16: header(“Login Response”)

17: elif form.has_key(“login”) and form[“login”].value != “” and \

18: form.has_key(“password”) and form[“password”].value == password:

19: header(“Connected ...”)

20: print “<center><hr><H3>Welcome back,” , form[“login”].value, \

21: “.</H3><hr></center>”

22: print r”””<form><input type=”hidden” name=”session” value=”%s”>

23: </form>””” % (form[“login”].value)

24: print “<H3>Click here to start \

25: browsing</H3>”

26: else:

27: header(“No success!”)

28: print “<H3>Please go back and enter a valid login.</H3>”

29:

30: footer()

This example first verifies if the form is a valid form (line 15). If it isn’t, a blank screen
is displayed. If the fields have a valid format, the form performs an action and
processes the results (lines 17–25). The last case is when the validation rule is not
followed, and an error message must be displayed. A full implementation should repeat
the form, and point out the error to the user.

Next, we have a simple check list to use while developing CGI scripts. It shows the
basic structure of CGI script creation.

1. Use cgi.FieldStorage() to parse the query.

2. Check the HTML form fields.

3. Take care of decoding, handling both GET and POST methods.

4. Perform the actions that are particular to your application.

5. Generate the proper HTTP/HTML data for output. The simplest way to write
to the output is using print statements. Note that template solutions are also
available, and for high-volume sites, it’s almost a necessary implementation.

16 0672319942 CH12 11/15/00 11:39 AM Page 461

462 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following example is a small variation of the previous script. This one lists the
values of all form fields.

#!/usr/local/bin/python

import cgi

def header(title):

print “Content-type: text/html\n”

print “<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n” % (title)

def footer():

print “</BODY></HTML>”

form = cgi.FieldStorage()

formkeys = form.keys()

formkeys.sort()

header(“Show form fields”)

print ‘’

for k in formkeys:

print ‘’ + k + ‘:’ + form[k].value + ‘’

print ‘’

footer()

The next example demonstrates that if you try to access a field that doesn’t exist (line
15), an exception is generated. If you don’t catch the exception with a try/except
statement, this will stop your script, and the user will see a message like “Internal
Server Error”. Also, note that the cgi dictionary of attribute/value pairs does not
support the values() method (line 14).

1: #!/usr/local/bin/python

2: import cgi

3:

4: def header(title):

5: print “Content-type: text/html\n”

6: print “<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n” /

7: % (title)

8:

9: def footer():

10: print “</BODY></HTML>”

11:

12: form = cgi.FieldStorage()

16 0672319942 CH12 11/15/00 11:39 AM Page 462

463CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

13: print form.keys() # [‘password’, ‘login’]

14: # print form.values() # Causes an error

15: # print form[“hostname”].value # Causes an error

16:

17: footer()

Security

You have to watch out when passing fields to the shell. Never pass any string received
from the client directly to a shell command. Take a look at the following statement:

os.popen(“dir %s” % form[“filename”].value)

Now, imagine if the user types something like *.* | del *.exe.

In order to solve problems like this, you have a few different kinds of approaches. We
will look some of them. First, you can choose to quote the variable:

filename = pipes.quote(form[“filename”].value)

A second solution is to get rid of every character that is not part of the acceptable
domain of values.

filename = re.sub(r”\W”, “”, form[“filename”].value)

Note
You should test for acceptable input, rather than for unacceptable input. You don’t
want to get caught by surprise when someone thinks of some input string you didn’t
think of, or exploits a bug you don’t know about.

The third, and most radical, solution is to test the form, and return an error message
in case a valid condition is not established. For example,

if not re.match(r”^\w+$”, filename):

raise “Invalid file name.”

If you invoke an external program (for example, via the os.system() or os.popen()
functions), make very sure that you don’t pass arbitrary strings received from the client
to the shell. It is a bad idea to use form data provided by random people on the Web
without validating it; especially if you’re going to use that data to execute a system
command or for acting on a database. Naively written CGI scripts, in any language,
are favorite targets for malicious system crackers. This is a well-known security hole
whereby clever hackers anywhere on the Web can exploit a naive CGI script to invoke

16 0672319942 CH12 11/15/00 11:39 AM Page 463

464 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

arbitrary shell commands. Even parts of the URL or field names cannot be trusted
because the request doesn’t have to come from your form.

To be on the safe side, if you must pass a string that you have gotten from a form to a
shell command, you should make sure that the string contains only alphanumeric
characters, dashes, underscores, and periods.

Sessions

If you need to correlate requests from the same user, you must generate and assign a
session key on the first contact of the user, and incorporate this session key in the next
forms, or in the URLs.

If you implement the first solution, you need to use a hidden input field.

<input type=”hidden” name=”session” value=”74ght2o5”>

If you decide that the second option will work better for you, you need to add the
information after the script’s name (separating with a slash).

http://lessaworld.com/cgi-bin/dosomething.py/74ght2o5

The information is passed to the CGI script through the environment variables, as you
can see next.

os.environment[“PATH_INFO”] = “74ght2o5”

os.environment[“PATH_TRANSLATED”] = “<rootdir>/74ght2o5”

Data Storage

The information manipulated by CGI scripts can come from any kind of data storage
structure. The important thing to keep in mind is that your data must be capable of
being managed and updated.

You have a number of options to use here. Plain files are the simplest way. Shelves
can be used too—they are used to store whole Python objects, which avoids the
parsing/unparsing of values. If you decide to go through dbm (or gdbm) files, you will
find better performance as they use strings for key/value manipulations. If you really
want to think about scalability or speed, you should consider choosing a real database.
You can use the information that is provided in Chapter 8, “Working with Databases,”
to help you define which database would be the best solution for your case.

If you don’t have a real database in hands, don’t worry. A number of sites only use
plain file databases, and they don’t have anything to complain about.

16 0672319942 CH12 11/15/00 11:39 AM Page 464

465CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

Locking

Whenever you are not working with real solution database systems, locking problems can
drive you nuts because you have to worry about every single detail. For example, shelves
and dbm (or gdbm) database files have no protection against concurrent updates.

In order to implement a good and efficient locking solution in Python, the best
approach is to write a routine that locks only when writing to the file. Python handles
multiple readers well, and when it comes to a single writer, Python can support it too.

In order to study a complex implementation of a locking algorithm, you should
consider seeing the Mailman source-code (precisely, the LockFile.py file). Although
this routine does not run on Windows systems, it works well on UNIX machines, and
besides, it supports NFS.

We all know how hard it is to implement a good locking solution. Occasionally your
process dies, and you lose the pointer to the locked file; other times you see your
program hanging because the process took longer than expected.

Cookies

A cookie is a piece of data that the Web Server asks the client to store on their system,
which gets sent back to the server on subsequent visits. One use of cookies is to store
customized information that belongs to the user who owns the browser.

Each time you visit a Web site that uses cookies, the server application is able to check
for cookies in the client site by inspecting the HTTP header. If cookies are available,
the client sends back all appropriate cookies for every request to the server.

The CGI script can update cookies at any time necessary, just before sending a Web
page to the client browser. The format used to move cookies back and forth is the
same one used for GET and POST requests.

In order to correlate sessions from the same user, you can also put cookies in the user’s
browser. This is very controversial, but useful. Keep in mind that many people turn off
the use of cookies in their browsers. Thus, you cannot count on them in your
applications. You should always have a solution ready in case the user’s browser doesn’t
accept cookies.

Caution
If you have something to hide, it becomes very important to store the information in
the cookies in a security format. You cannot let the user go to the cookies.txt file,
which stores all the cookies information in the client machine, and change anything.
In order to prevent that, you should consider storing the cookies using an encryption
algorithm. Another important warning is that you shouldn’t blindly trust the value of
the cookie, the same as you shouldn’t trust form variables.

16 0672319942 CH12 11/15/00 11:39 AM Page 465

466 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

In order to handle cookies in Python, Tim O’Malley has created a module called
Cookie.py that is able to write Set-Cookie headers and parse the HTTP_COOKIE
environment variable.

The following example demonstrates the use of cookies using the Cookie module.

The Cookie.py Module
Python has this module called Cookie.py, which basically handles everything that you
might need to worry about for what concerns cookies.

Cookie.Cookie()

This class enables the creation of a cookie object.

>>> import Cookie

>>> mycookie = Cookie.Cookie() # Create a new cookie

A cookie object generated by the Cookie.py module has a dictionary-like behavior. It
exposes the following properties and methods, supporting all cookie attributes defined
by RFC 2109.

mycookie[‘username’] = “Andre Lessa” # Assign a value to a cookie

mycookie[“books”] = 2 # automatically pickles non-string

objects (using cPickle or pickle)

mycookie[“username”].value # Returns the value associated with the
key.

“Andre Lessa”

print mycookie

Set-Cookie: books=”I2\012.”;

Set-Cookie: username=”Andre Lessa”;

Note that the print statement must be executed before the content-type header.

cookie.output()

This method outputs the contents of a cookie. You can also change the printable
representation if you want.

mycookie.output()

‘Set-Cookie: books=”I2\\012.”;\012Set-Cookie: username=”Andre Lessa”;’

mycookie.output(“Cookie Attributes:”)

‘Cookie Attributes: books=”I2\\012.”;\012Cookie Attributes: username=”Andre

Lessa”;’

16 0672319942 CH12 11/15/00 11:39 AM Page 466

467CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

cookie.load()

This method is used to extract cookies from a given string. You won’t have a problem
using escaped quotation marks and nested semicolons in the string.

mycookie.load(“userid=alessa;”)

print mycookie

Set-Cookie: books=”I2\012.”;

Set-Cookie: username=”Andre Lessa”;

Set-Cookie: userid=alessa;

mycookie.load(‘username=\”JP Lessa\”;books=4;cds=1’)

print mycookie

Set-Cookie: cds=1;

Set-Cookie: userid=alessa;

Set-Cookie: books=4;

Set-Cookie: username=”JP Lessa”;

mycookie.load(‘dvds=”I3\\012.”;’) # automatically unpickles pickled

objects.

mycookie[“dvds”].value # returns the true value, instead of the

encoded representation.

3

print mycookies

Set-Cookie: cds=1;

Set-Cookie: userid=alessa;

Set-Cookie: books=4;

Set-Cookie: dvds=”I3\012.”;

Set-Cookie: username=”JP Lessa”;

Cookie.net_setfunc() and Cookie.user_setfunc()
These two functions are defined in the Cookie module to help you encode and decode
the contents of your cookies. Cookie.net_setfunc() takes in an encoded string and
returns a value. On the other hand, Cookie.user_setfunc() takes in a value and
returns the original encoded string.

Note that you are not obliged to use their implementations. You can override them at
anytime, just by subclassing the Cookie() class, and redefining these methods. For
more information, check out the following:

Cookie protocol—Netscape’s documentation

http://devedge.netscape.com/library/documentation/communicator/jsguide4/

cookies.htm

16 0672319942 CH12 11/15/00 11:39 AM Page 467

468 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Cookie.py—Python Module created by Tim O’Malley

ftp://ftp.bbn.com/pub/timo/python/Cookie.py

Creating Output for a Browser

You already know that straightforward print statements do a good job of sending
information to the user’s browser.

Tip
Check out Chapter 10, “Basic Network Background,” for details about some third-
party modules that automatically generate HTML code for you.

Now, what about redirecting people from one page to another? In the next example, as
soon as a browser sees the Location: header, it will stop and try to retrieve the new
page.

new_location = ‘http://www.python.org/’

print ‘Status: 302 Redirected’

print ‘Location: %s\n’ % new_location

Maybe you are tired of just sending text to the user. What about sending images?

The next example demonstrates how you can output graphics, such as GIF files, using
CGI scripts. As you can see, you just need to specify the correct MIME-type in order to
tell the browser that you are sending an image.

import sys

gifimage = open(‘check.gif’,’rb’).read()

print HTTP headers

sys.stdout.write(‘Content-type: image/gif\n’)

print end-of-headers

sys.stdout.write(‘\n’)

print image

sys.stdout.write(gifimage)

Caution
Note that you cannot use print image because it would append a newline or a blank
to the data, in case you use print image, (with the comma at the end), and the
browser would not understand it.

16 0672319942 CH12 11/15/00 11:39 AM Page 468

469CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

The previous simple example takes an existing GIF image file and processes it. Keep
in mind that it is also possible to produce dynamic graphics images through Python
code, using the Python Imaging Library.

See http://www.python.org/sigs/image-sig/Imaging.html for details.

Using Templates
CGI programs usually contain many blocks of HTML code embedded within the
scripts. This is a problem for many teams of HTML designers and developers.
Imagine the case in which both kinds of professionals need to make changes in the
same file, at the same time. This kind of situation can generate many accidental errors
in the code.

The most common solution for this kind of trouble is to separate the Python code
from the HTML code by using template files. In a later stage, the HTML template
can be mixed with Python code using either formatting substitution or Python’s
regular-expression.

The basic idea is after you have finished reading the template file, replace all special
placeholders, such as <!-- # INSERT HERE # -->, with the correct values.

Listing 12.1 defines a simple template that is going to be used by our Python script.
Of course, real-production templates are more complex than this one.

Listing 12.1 file: template1.html

<html>

<head>

<title>My Application</title>

</head>

<body>

<H1><center><!-- # INSERT HERE # --></center></H1>

</body>

</html>

Note the customized tag tag>><!-- # INSERT HERE # -->. If you just open this
template file, nothing will show up. However, after you run the script, the program
will search for this tag and replace it with our new content before displaying to the
users.

16 0672319942 CH12 11/15/00 11:39 AM Page 469

470 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Next, you have the CGI script that makes everything possible. This script reads the
entire template file, storing it in memory. Then, after applying a regular expression
substitution, it swaps our special tag with the new content.

1: import re

2: filename = “template1.html”

3: TemplateException = “Error while parsing HTML template”

4: newContent = “Hello Python World”

5: filehandle = open(filename, “r”)

6: data = filehandle.read()

7: filehandle.close()

8: matching = re.subn(“<!-- # INSERT HERE # -->”, newContent, data)

9: if matching[1] == 0:

10: raise TemplateException

11: print “Content-Type: text/html\n\n”

12: print matching[0]

Line 1: Makes the regular expression module available.

Line 2: Specifies the filename of the template file.

Line 3: Defines an exception that is raised when no replacements are made.

Line 4: Contains the string to replace.

Line 6: Reads the entire file as a string.

As I told you before, another possibility is to use formatting substitution. In this new
scenario, we have to write the template file as shown in Listing 12.2.

Listing 12.2 file: template2.html

<html>

<head>

<title>My Application</title>

</head>

<body>

Student: %(student)s

Class: %(class)s

<hr>

Sorry, your application was refused.

If you have any questions, please call:

<center>%(phone)s</center>

<hr>

</body>

</html>

16 0672319942 CH12 11/15/00 11:39 AM Page 470

471CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

The script necessary to handle this new format is correctly listed next. The main
difference is that in this new script, you have to declare a dictionary that will be used
to map the placeholders in the template file.

filename = “template2.html”

dictemplate = {‘student’: ‘Andre’, ‘class’: ‘Math’, ‘phone’: ‘555-5553’}

filehandle = open(filename, “r”)

data = filehandle.read()

filehandle.close()

print “Content-Type: text/html\n\n”

print data % (dictemplate)

Uploading/Uploaded Files

Sometimes, it is necessary to receive files from users through the Web. This next
example shows how to send a file across an HTTP connection using an HTML page,
and how to later interpret it.

import cgi

form = cgi.FieldStorage()

if not form:

print “Content-Type: text/html”

print

print “””

<form action = “/cgi-bin/uploadfiles.py” method=”POST”

enctype=”multipart/form-data”>

<input type=”file” name=”filename”>

<input type=”submit”>

</form>

“””

elif form.has_key(“filename”):

item = form[“filename”]

if item.file:

data = item.file.read()

print “Content-Type: text/html”

print

print cgi.escape(data)

When a certain form field represents an uploaded file, the value attribute of that field
reads the entire file in memory as a string. Sometimes, this might not be what you
really want. Another way to get the information is to test for an uploaded file by
checking either the filename attribute or the file attribute. You can then read the
data, at your convenience, from the file attribute.

16 0672319942 CH12 11/15/00 11:39 AM Page 471

472 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Note
The enctype=”multipart/form-data” part is very important because without it, only
the filename is transmitted.

The next example is a slight variation of the previous example. This one assumes that
you have a form with a field called filename that will transport a user file to the CGI
script, and then it reads the uploaded file, line by line.

import cgi

form = cgi.FieldStorage()

if not form:

print “Content-Type: text/html\n\n”

print “””

<form action = “/cgi-bin/uploadingfile.py” method=”POST”

enctype=”multipart/form-data”>

<input type=”file” name=”filename”>

<input type=”submit”>

</form>

“””

elif form.has_key(“filename”):

uploadedfile = form[“filename”]

if uploadedfile.file:

print “Content-Type: text/html\n\n”

linecounter = 0

while 1:

line = uploadedfile.file.readline()

print line

if not line:

break

linecounter = linecounter + 1

cgiupload.py
The cgiupload module is a simple attempt to upload files via HTTP. Although the
mechanism is not as efficient as other protocols (for example, FTP), there are circum-
stances where using the http protocol has advantages such as when a user
login/password is not required, or when using firewalls because most firewalls allow
the HTTP protocol to pass through. Note that HTTP file upload is about as efficient
as email attachments.

A short description with code about how to upload files via CGI is available at

http://starship.python.net/crew/jbauer/cgiupload/index.html

16 0672319942 CH12 11/15/00 11:39 AM Page 472

473CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

Note that Python’s module “ftplib” provides better performance to transmit files
over the network.

Zope also provides a mechanism to perform CGI file uploads. Check out the Web
site at

http://www.zope.org

Environment Variables

Environment variables are one of the methods that Web servers use to pass
information to a CGI script. They are created and assigned appropriate values within
the environment that the server produces for the CGI script.

The next code generates a list of all environment variables that you have available at
the moment, in your browser.

import os

print “Content-type: text/html\n”

print “<HTML><HEAD><TITLE>List of Environment Variables</TITLE></HEAD>”

print “<BODY>”

for k,v in os.environ.items():

print “%s => %s
” % (k,v)

print “</BODY></HTML>”

The following list is the output collected from my environment. Of course, yours
might be different.

HTTP_ACCEPT_ENCODING => gzip, deflate

REMOTE_HOST => 10.15.108.33

SERVER_PORT_SECURE => 0

COMSPEC => C:\WINDOWS\COMMAND.COM

SERVER_PORT => 80

PATH_TRANSLATED => C:\Inetpub\wwwroot\cgi-bin\environment.py

REMOTE_ADDR => 10.15.108.33

WINBOOTDIR => C:\WINDOWS

INSTANCE_ID => 1

HTTP_ACCEPT_LANGUAGE => en-us

BLASTER => A220 I7 D1 T2

GATEWAY_INTERFACE => CGI/1.1

TEMP => C:\windows\TEMP

SNDSCAPE => C:\WINDOWS

HTTP_CONNECTION => Keep-Alive

HTTP_USER_AGENT => Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

WINDIR => C:\WINDOWS

16 0672319942 CH12 11/15/00 11:39 AM Page 473

474 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

CONTENT_LENGTH => 0

HTTP_HOST => www.lessaworld.com

PATH => C:\WINDOWS; C:\WINDOWS\COMMAND; M:\PVCS\WIN95; C:\MSSQL7\BINN;

SERVER_PROTOCOL => HTTP/1.1

HTTPS => off

PATH_INFO => /cgi-bin/environment.py

SERVER_NAME => www.lessaworld.com

REQUEST_METHOD => GET

LOCAL_ADDR => 10.15.108.33

SCRIPT_NAME => /cgi-bin/ environment.py

SERVER_SOFTWARE => Microsoft-IIS/4.0

CMDLINE => WIN

HTTP_ACCEPT => application/x-comet, application/vnd.ms-excel,

application/msword, application/vnd.ms-powerpoint, */*

PROMPT => pg

TMP => c:\windows\TEMP

As an example, when checking the user environment variables,
os.environ[‘HTTP_USER_AGENT’] gives you the user’s browser, and
os.environ[‘REMOTE_ADDR’] gives you the remote IP address. Note that the user
might be running a browser that doesn’t send a User-Agent HTTP header, so you
might not be able to count on os.environ[‘HTTP_USER_AGENT’].

The following is a list of environment variables used by Web Servers:

AUTH_TYPE—This is the protocol-specific authentication method used to validate the
user if the server supports user authentication, and the script is protected.

CONTENT_LENGTH—The length, in bytes, of the said content as given by the client
through standard input (sys.stdin). This is needed when a script is processing input
with the POST method, in order to read the correct number of bytes from the
standard input. Some servers end the input string with EOF, but this is not
guaranteed behavior.

CONTENT_TYPE—For queries that have attached information, such as HTTP POST
and PUT, this is the content type of the query data.

DOCUMENT_ROOT—Sometimes it is useful to know the root directory over which all
WWW document paths are resolved by the server, in order to compose absolute
file paths for the files that your script handles. It is a good practice to have your
script resolve paths in this way, both for security reasons and for portability.
Another common use is to be able to figure out what the URL of a file will be if
you only know the absolute path and the hostname.

16 0672319942 CH12 11/15/00 11:39 AM Page 474

475CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

GATEWAY_INTERFACE—The revision string of the CGI specification to which this
server complies. The format is CGI/revision.

HTTP_ACCEPT—MIME types accepted by the client.

HTTP_COOKIE—Netscape persistent cookie value.

HTTP_FROM—Email address of client (often disabled).

HTTP_REFERER—The URL that referred (via a link or redirection) the Web client to
the script. Typed URLs and bookmarks usually result in this variable being left
blank. In many cases, a script might need to behave differently depending on the
referrer. For example, you might want to restrict your counter script to operate
only if it is called from one of your own pages. This will prevent someone from
using it from another Web page without your permission. Or, the referrer might be
the actual data that the script needs to process. By expanding on the previous
example, you might also want to install your counter to many pages, and have the
script figure out from the referrer which page generated the call and increment the
appropriate count, keeping a separate count for each individual URL. Some proxies
or Web browsers might strip off the HTTP_Referer header for privacy reasons.

HTTP_USER_AGENT—This is the name/version pair of the client browser issuing the
request to the script. As with referrers, one might need to implement behaviors that
vary with the client software used to call the script. A redirection script could make
use of this information to point the client to a page optimized for a specific
browser. Or, you might want it to block requests from specific clients, such as
robots or clients that will not support appropriate features used by the normal script
output.

PATH_INFO—The extra path information following the script’s path in the URL.
This is appended to the URL and marked by a leading slash. The server puts this
information in the PATH_INFO variable, which can be used as a method to pass
arguments to the script. The extra path information is given by the client. In other
words, scripts can be accessed by their virtual pathname, followed by extra
information at the end of this path. The extra information is sent as PATH_INFO.
This information should be decoded by the server if it comes from a URL before it
is passed to the CGI script.

PATH_TRANSLATED—Translated version of PATH_INFO, which maps it onto
DOCUMENT_ROOT. Usually PATH_INFO is used to pass a path argument to the script. For
example, a counter might be passed the path to the file where counts should be
stored. The server also makes a mapping of the PATH_INFO variable onto the
document root path and stores it in PATH_TRANSLATED, which can be used directly as

16 0672319942 CH12 11/15/00 11:39 AM Page 475

476 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

an absolute path/file. You should use PATH_TRANSLATED rather than concatenating
DOCUMENT_ROOT and PATH_INFO because the documents on the Web Server might be
spread over more than just one directory (for instance, user directories under their
home directories).

QUERY_STRING—QUERY_STRING is the equivalent of content passed through STDIN in
POST, but for scripts called with the GET method. Query arguments are written in
this variable in their URL-Encoded form, just as they appear on the calling URL.
You can process this string to extract useful parameters for the script. The
information following the ? in the URL that references a script is exactly what we
call query information. It should not be decoded in any fashion. This variable should
always be set when there is query information, regardless of command line
decoding.

REMOTE_ADDR—This is the IP address from which the client is issuing the request.
This can be useful either for logging accesses to the script (for example a voting
script might want to log voters in a file by their IP in order to prevent them from
voting more than once) or to block/behave differently for particular IP addresses.
This might be a requirement in a script that has to be restricted to your local
network, and maybe perform different tasks for each known host.

REMOTE_HOST—This variable contains the hostname from which the client is issuing
the request (if the information is available via reverse lookup).

REMOTE_IDENT—If the HTTP server supports RFC 931 identification, this variable
will be set to the remote username retrieved from the server. Otherwise, this
variable should be left blank.

REMOTE_USER—If the server supports user authentication, and the script is protected,
this is the username they have authenticated as.

REQUEST_METHOD—This is the method with which the request was made (usually GET,
POST, or HEAD). It is wise to have your script check this variable before doing
anything. You can determine where the input will be (STDIN for POST, QUERY_STRING
for GET) or choose to permit operation only under one of the two methods. It is also
useful to identify when the script is called from the command-line because, in that
case, this variable will remain undefined. When using the cgi module, all this is
taken care of for you.

SCRIPT_NAME—A virtual path to the script being executed, used for self-referencing
URLs. This is very useful if your script will output HTML code that contains calls
to itself. Having the script determine its virtual path, (and hence, along with

16 0672319942 CH12 11/15/00 11:39 AM Page 476

477CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

DOCUMENT_ROOT, its full URL) is more portable than hard coding it in a configu-
ration variable. Also, if you prefer to keep a log of all script accesses in some file
and want to have each script report its name along with the calling parameters or
time, it is very portable to use SCRIPT_NAME to print the path of the script.

SERVER_NAME—The Web server’s hostname, DNS alias, or IP address. This
information can provide the capability to have different behaviors depending on the
server that’s calling the script.

SERVER_PORT—The Web server’s listening port number to which the request was
sent. This information complements SERVER_NAME, making your script portable.
Keep in mind that not all servers run on the default port and thus need an explicit
port reference in the server address part of the URL.

SERVER_PROTOCOL—The name and revision of the Server information protocol that
the request came in with. It comes in the format: protocol/revision.

SERVER_SOFTWARE—This variable contains the name and version of the information
server software answering the request. The format used by this variable is
name/version.

Debugging and Testing Your Script

Before putting your CGI scripts online, you need to be sure that they are working
fine. You have to test them carefully, especially in near bounds and out of bounds
conditions. A script that crashes in the middle of its job can cause large problems, such
as data inconsistency in a database application. This is why you would use a
transaction when updating a database from a cgi script (if it was deemed important
enough).

You should eliminate most of the problems by running your script from the command
line. Only after performing this check should you test it from your http daemon.

You have to remember that Python is an interpreted language, which means that
several syntax errors will only be discovered at runtime. You must be sure that your
script has been tested in every segment of the control flow.

Python is good for debugging processes because if things go wrong, you get a
traceback message that is beneficial. By default, tracebacks usually go to the server’s
error_log file.

16 0672319942 CH12 11/15/00 11:39 AM Page 477

478 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Printing a traceback message to the standard output is complicated because the error
could occur before the Content-type header is printed, in the middle of a HTML
markup tag, or even worse: the error message could contain markup elements itself.

You also need to be sure that incorrect input does not lead to an incorrect behavior of
your script. Don’t expect that all parameters received by your script will be
meaningful. They can be corrupted during communication, or some hacker could try
to obtain more data than normally allowed.

The following code suggests a simple way to debug Python CGI scripts.

1: import cgi

2: print “Content-type: text/plain\n”

3: try:

4: your_applicationcode()

5: except:

6: print “<h1>You’ve got an error.</h1>

7: cgi.print_exception()

Line 4: Calls the function that implements your application.

Line 2: We are using a content type of text/plain so that you can see all the output of
the script.

Line 7: Calls a CGI function that safely prints a traceback message.

Note that cookies handling affects this routine. Because cookies must be printed as
part of HTTP headers, they need to be handled before the first newline (line 2).
Therefore, the easiest solution is to move the \n into your application function, and
into the exception handler clause.

import cgi

print “Content-type: text/html”

try:

handle_cookies()

print”\n”

your_applicationcode()

except:

print”\n”

print “<h1>You’ve got an error.</h1>

cgi.print_exception()

16 0672319942 CH12 11/15/00 11:39 AM Page 478

479CHAPTER 12 Scripting Programming
Creating, Installing, and Running Your Script

When creating a debugging framework, it is desirable that the user should never see a
server error. Instead, you must provide a fancy page that tells him what has happened,
along with helper information.

As a suggestion, your framework could interpret every traceback message and email it
to the support team. This is a very useful solution for warning about problems in a live
Web site, and besides, logging errors can help the tracking of application problems.

If you are in the stage of doing quality-assurance testing procedures on your Web
application, you should try to test it outside the live site first. Let’s see how you can
do it.

Check the script for syntax errors by doing something similar to python script.py. If
you execute your script in this way, you are able to test the integrity and syntax of your
code.

If you have your script written as a module, adding the following two lines to its end
enables you to execute your library module from the command prompt.

if __name__ == “__main__”:

main()

A CGI script usually does not work from the command line. However, you should at
least call it from the command line because if the Python interpreter finds a syntax
error, a message will pop up on your screen. That’s cool! At least you know if the
syntax is all right. Otherwise, if you wait until you call your code through the Web,
the HTTP server could send a very problematic error message to you.

Assuming that your script has no syntax errors, yet it does not work, you have no
choice but to fake a form call to it.

If you are using UNIX csh or tcsh shells, and your script uses the cgi.FieldStorage
class for form input, you can set the environment variables REQUEST_METHOD and
QUERY_STRING.

setenv REQUEST_METHOD “GET”

setenv QUERY_STRING “animal=parrot”

For other shells, you use

REQUEST_METHOD=”GET”

QUERY_STRING=”animal=parrot”

export REQUEST_METHOD QUERY_STRING

16 0672319942 CH12 11/15/00 11:39 AM Page 479

480 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Check if your script is located at an executable directory, and if so, try sending an
URL request directly through the browser to the script. In other words, open your
browser and call your script, without forgetting to send the attribute/value pairs. For
instance,

http://yourhostname/cgi-bin/myapp.py?animal=parrot

If, for example, you receive an error number 404, it means that your server could not
find the script in that directory. As you can see, this might help you test and debug
your script through the Web.

Next, I list some considerations that you need to have in mind while debugging a
Python CGI application. They are as follows:

• Import the traceback module as soon as possible. (It needs to be imported before
the try/except statement.)

• Don’t forget that you need to put a blank line \n just after the header’s end.

• If you assign sys.stderr to sys.stdout, all error messages are sent to the
standard output.

• Create a try/except statement, put all your application code inside it, and don’t
forget to call traceback.print_exc() in the except clause.

The following example exposes all the previous considerations:

import sys

import cgi

import traceback

print “Content-type: text/html”

print

sys.stderr = sys.stdout

try:

n = 10

while n>0:

print “<hr>”

print 10/(n-1) # This will cause an error when n=1

n = n - 1

except:

print “\n\n<PRE>”

traceback.print_exc()

16 0672319942 CH12 11/15/00 11:39 AM Page 480

481CHAPTER 12 Scripting Programming
Python Active Scripting

Note that the assignment to sys.stdout is necessary because the traceback object
prints to the standard error output (stderr). The print “\n\n<PRE>” statement is being
used to disable the word wrapping in HTML.

If your script calls external programs, make sure that Python’s $PATH variable is set to
the right directories because when it is inside a CGI environment, this variable does
not carry useful values.

Python Active Scripting

Active Scripting is a technology developed by Microsoft that allows scripting
languages to be embedded inside Web browsers. Currently, Microsoft Internet
Explorer 4 and above supports client-side scripting, whereas Internet Information
Server (IIS) supports server-side scripting, using a component called Active Server
Pages (ASP). In both cases, the scripting code is embedded inside the HTML code.
There is a limitation to using Python as a client-side solution for your Web
applications: Each client machine must have Python installed. That’s probably the
greatest disadvantage that Python has among the other Active Scripting languages
because Internet Explorer provides core support for VBScript and JScript. Other
problems with using Python as a client-side scripting language include the fact that it
is only supported in Internet Explorer, it only works on Windows, and it requires that
the Python Active Scripting component be installed. It is probably okay in controlled
environments, but on the Internet, hardly anyone meets this criteria, so you can’t rely
on it.

In order to implement security procedures, not all Python commands are available.
Commands that execute some critical operations—such as open files, create sockets,
and so on—are hidden behind a “sandbox”, in a concept similar to the one used by
Java. For more information, check out

Python and Microsoft ActiveX Scripting

http://www.python.org/windows/win32com/ActiveXScripting.html

Active Scripting

http://msdn.microsoft.com/scripting

16 0672319942 CH12 11/15/00 11:39 AM Page 481

482 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The Python for Windows extensions come with more details about the use of Active
Scripting along with Internet Explorer. For now, let’s take a look at the following code:

<script language=python>

msg = “Hello Python World! I am counting down!
”

document.write(msg)

counter = 10

while counter > 0:

document.write(counter)

document.write(“
”)

counter = counter - 1

document.write(“Booooom!”)

</script>

This code must be inserted in a HTML file in order to be executed. Next, you have a
slightly modified code. This one uses the alert() function to put a message box in the
user’s screen. As you already know, each application exposes its own object model, and
for example, the alert() function is part of the object model exposed by the Internet
Explorer, which is similar to the Dynamic HTML object model. Actually, everything
here happens as COM transactions.

<script language=python>

msg = “Hello Python World! I am counting down!
”

document.write(msg)

counter = 10

while counter > 0:

document.write(counter)

document.write(“
”)

counter = counter - 1

alert(“Booooom!”)

</script>

A script tag can be executed in two places: in the client machine (default behavior) or
in the server. The next structure shows how to let the application know where it needs
to execute the script.

<SCRIPT RunAt=Server Language=Python >

#This code runs at the server

</SCRIPT>

<SCRIPT Language=Python >

#This code runs at the client

</SCRIPT>

16 0672319942 CH12 11/15/00 11:39 AM Page 482

483CHAPTER 12 Scripting Programming
Python Active Scripting

The next example demonstrates how you can cause your Python code to interact with
standard HTML code. Note that you cannot use leading whitespaces in the Python
block. In order to handle events such as the ones shown here, you need to have the
notation object_event in mind. Also note that in Python, you have to inform the
complete namespace of the object, including the form name. This is something that
VBScript handles better by allowing you to use just the object name.

<FORM NAME = “myform”>

<INPUT TYPE=”Text” NAME=”txt1” SIZE=40>

<INPUT TYPE=”Text” NAME=”txt2” SIZE=40>

<INPUT NAME=”B1” TYPE=”BUTTON” VALUE=”Click me”>

<SCRIPT LANGUAGE=Python>

def myform_onClick():

myform.txt1.value = document.location

def txt1_onChange():

myform.txt1.value = “”

myform.txt2.value = “”

def txt2_onFocus():

myform.txt2.value = myform.txt1.value

</SCRIPT>

</FORM>

In order to have full exposition with the Active Scripting technology, you also need to
take a look at Windows Scripting Host (WSH). WSH is part of Windows 98 and 2000,
but it can also be downloaded from http://msdn.microsoft.com/scripting for the
other Windows environments (95 and NT). WSH runs Python files that have the
extension .pys. These files are regular text files that can freely use the object model
exposed by WSH. Note that .pys files are not correctly registered—you need to
explicitly specify either cscript.exe or wscript.exe on the command line.

Now, that you are ready to write your programs, you might also need to debug your
Active Scripts. You have two tools for the job, both provided by Microsoft:

• The first one is a free product called The Windows Script Debugger. This version
can be downloaded from http://msdn.microsoft.com/scripting/.

• The other option is to use Microsoft Visual Interdev that comes as part of Microsoft
Visual C++. This option is not free because it’s attached to the commercial
product.

16 0672319942 CH12 11/15/00 11:39 AM Page 483

484 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Using COM Objects

Active Scripting is a COM-based technology that works by providing a specific
language’s object model to the user. In Chapter 7, “Objects Interfacing and
Distribution,” you learned that each application exposes a progID in order to interface
with other systems. Therefore, when you say Language = Python inside a script tag,
you are actually opening an interface to a progID called Python. As you might be
wondering, VBScript, JScript, and Python are COM progIDs used to handle each one
of these languages.

In our case, after you specify that the scripting language is Python, you acquire access
to the interface exposed by the Python object model. As you can see in the next ASP
example, within the COM scripting connection, you are still able to use other COM
interfaces.

This example opens an ODBC connection to the database identified in the connection
string. In order to test this example, make sure that your system has the informed
DSN, and that the database has the necessary table. This code must be saved in a file
using the .asp extension in order to let it run under Microsoft IIS.

After you execute it, it reads the selected columns from a database table and displays
the columns and contents in a HTML table structure. Obviously you’ll need this
particular table in your database for it to work, but you should be able to adapt it.
Note that this code is a straight conversion from VBScript, except for the fact that the
Execute statement returns a tuple.

<%@ LANGUAGE = Python %>

<%

import win32com.client

oconn=win32com.client.Dispatch(“ADODB.connection”)

oconn.Open (“DSN=db_sql_server”)

objRecords, thing = oconn.Execute (

“SELECT currency_desc, symbol FROM tb_currency”)

Response.Write(“<TABLE border=1><TR>”)

for objField in objRecords.Fields:

Response.Write(“<TH>”+objField.Name+”</TH>”)

Response.Write(“</TR>”)

while not objRecords.EOF :

Response.Write(“<TR>”)

16 0672319942 CH12 11/15/00 11:39 AM Page 484

485CHAPTER 12 Scripting Programming
Python Active Scripting

for objField in objRecords.Fields:

Response.Write(“<TD>”+objField.Value+”</TD>”)

objRecords.MoveNext()

Response.Write(“</TR>”)

Response.Write(“</TABLE>”)

oconn.close

oconn=None

%>

ASP and Microsoft ActiveX Scripting

Active Server Pages, commonly referred to as ASP, is Microsoft’s solution to server-
side scripting applications. The difference between Active Server Pages and HTML
pages is that with simple HTML pages, the client browser requests a Web page from a
Web server. The server sends the file to the client, and the page is shown on the
client’s browser. On the other hand, with Active Server Pages, the server gets a chance
to alter the file before sending it to the user. So, for every request for a file with an
.asp extension, the server runs the file through a interpreter that parses the ASP
commands. You can have your ASP code connect to any ODBC-compliant database,
and dynamically insert the data into your HTML pages.

To use Active Server Pages, you must be running a Microsoft Web Server, specifically
Internet Information Server (IIS) 3.0 or up—Microsoft’s Internet Information Server
is a Web Server that supports both CGI and ASP. If your Web site runs on a UNIX
system, you can still use Active Server Pages, but you need to use third-party tools to
translate the ASP before it is sent to the client. Of course, there are other (possibly
better) options when not using IIS. ASP is not necessarily the best choice.

Tip
Note that for everything you can do with ASP, you can also do using straight CGI
scripting.

ASP is not language dependent, and though most of the things you will find in the
market are written in VBScript or JScript, you can actually configure ASP to use any
other scripting language that supports the Microsoft ActiveX Scripting interface. This
includes VBScript, JScript, PERLScript, PScript, and of course, Python.

16 0672319942 CH12 11/15/00 11:39 AM Page 485

486 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The object model defined by ASP is different from the object model defined by
Internet Explorer. The first thing you will notice is that ASP code has some special
tags:

• The <%@ language=Python %> tag defines that all scripting tags after that will, by
default, belong to Python.

• The <% %> tag is equivalent to <script> </script>.

• <%= %> allows you to replace part of the contents to be displayed with the value
of a variable. For instance,

<%

name = “Andre” %>

Whassup <%= name %> !

There is no restriction on the commands that you can execute on a ASP page because
all the execution takes place at the Server. Thus, in theory there would be no need for
high security procedures. However, there is just as much need for security in ASP files
as in CGI script when you are making use of untrusted input. The fact that there is no
sandbox means you have to be especially careful not to compromise your system.

Note
ASP files are stored in files with the .asp extension.

One last detail about Python/ASP programs is that the print statement does not send
the information to the screen. You need to use ASP’s object model Response.Write()
function to do it, as you can check in the following example.

<%@ language=Python %>

<%

text = “this text here does not use the print command” %>

A curious fact is that <%= text %>.

Note that we still need to pay attention to the indentation in this code.

The next code block lists all the server variables.

<%

for k in Request.ServerVariables:

v = Request.ServerVariables(k)

Response.Write(“%s=” % (k))

Response.Write(“%s

” % (v))

%>

16 0672319942 CH12 11/15/00 11:39 AM Page 486

487CHAPTER 12 Scripting Programming
Python Active Scripting

Of course, you could fix the print statement problem with the following code to make
print work again.

class ASPStdout:

def write(self, bytes):

Request.Write(bytes)

def writelines(self, lines):

for line in lines: self.write(line)

sys.stdout = ASPStdout()

In case you want to try something different, Microsoft Visual Interdev, which is a very
popular tool for ASP development, can be integrated with Python for Windows.
Although it doesn’t have any specific knowledge about .py files, it doesn’t expose any
problems when using them.

Using its working environment, you can test and debug Python’s active scripts.
Another possible option that you have is to use a free debugger that can be found at
http://msdn.microsoft.com/scripting.

See http://starship.python.net/crew/pirx/asp/py_asp.html for more details about
using Python with ASP.

Python Server Pages

Python Server Pages is a server-side scripting engine designed along the lines of
Microsoft’s Active Server Pages and Sun’s Java Server Pages specification. The major
difference between ASP and PSP is that PSP is written in 100% Java and portable to a
wide variety of platforms, whereas Web applications written in ASP can be run only on
Microsoft platforms. Python Server Pages uses JPython as its scripting language,
which seems to be more appropriate for scripting Web sites than the Java language
itself in Java Server Pages.

A major benefit to using PSP is the huge number of add-on modules available for both
Python and JPython. You can access any module that is compatible with JPython from
within your PSP application’s pages. Because JPython is itself written in Java, you can
access Java packages from your Python Server Pages application as well. For more
information, check out the following:

Python Server Pages

http://www.ciobriefings.com/psp

16 0672319942 CH12 11/15/00 11:39 AM Page 487

488 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

JRun

JRun is the Java Servlet engine recommended for use with PSP.

http://www.allaire.com/products/jrun/index.cfm

JPython

JPython is the scripting language used by PSP.

http://www.jpython.org

Summary

This chapter provides information about how to use Python as a CGI scripting
language. Python is suitable for CGI programming on Windows, Mac, and UNIX
platforms, allowing the creation of programs that provide services over the Internet.

Python uses the cgi module to implement CGI scripts and to process form handling
in Web applications that are invoked by an HTTP server. This module accepts
sys.stdin and environment variables set by the server as input sources. The output is
sent directly to sys.stdout carrying an HTTP header and the data itself.

Every CGI script must send a header (the Content-type tag) describing the contents
of the document. The common values for this tag are text/html, text/plain,
image/gif, and image/jpeg. A blank line is used to indicate the end of this header.

You have to watch out when passing Form fields to the OS shell. Never pass any string
received from the client direct to a shell command. Before putting your CGI scripts
online, you need to be sure that they are working fine.

If you need to correlate requests from the same user, you must generate and assign a
session key on the first contact of the user, and incorporate this session key in the next
forms, or in the URLs.

In order to handle cookies in Python, you can use a module called Cookie.py, which is
able to write Set-Cookie headers and parse the HTTP_COOKIE environment variable.

Python CGI scripts allow you to output not only text, but also graphics.

In order to separate Python code from HTML code, many developers have adopted
the concept of template files. The HTML template can be mixed with Python code
using either formatting substitution or Python’s regular expression.

16 0672319942 CH12 11/15/00 11:39 AM Page 488

489CHAPTER 12 Scripting Programming
Summary

Sometimes, it is necessary to receive files from users through the Web. The properties
provided by the cgi module offer means to send a file across an HTTP connection
using an HTML page, and also to read files sent from a Web page.

Environmental variables are one of the methods that Web servers use to pass
information to a CGI script. They are created and assigned appropriate values within
the environment that the server produces for the CGI script.

Active Scripting is a COM-based technology developed by Microsoft that allows
scripting languages to be embedded inside the HTML code. It works by providing a
specific language’s object model to the user. In our case, after you specify that the
scripting language is Python, you acquire access to the interface exposed by the
Python object model.

Active Server Pages, commonly referred to as ASP, is Microsoft’s solution to server-
side scripting applications.

Python Server Pages is a server-side scripting engine designed along the lines of
Microsoft’s Active Server Pages and Sun’s Java Server Pages specification.

16 0672319942 CH12 11/15/00 11:39 AM Page 489

16 0672319942 CH12 11/15/00 11:39 AM Page 490

CHAPTER 13

Data Manipulation

I’m a lumberjack, and I’m okay! I sleep all night and I work all day.

This chapter provides information concerning how to use
Python for data parsing and manipulation. You will learn how
to interpret XML, SGML, and HTML documents and how to
parse and manipulate email messages, among other things.

Parsing and Manipulating Data

As you might already know, Python can be used as an effective
and productive tool to parse and manipulate information from
the Web.

This chapter covers modules that support encoding and
decoding of data handling formats, which are largely used in
Internet applications. Here, I expose you to modules, such as
xmllib, sgmllib, and htmllib, which are standard library
modules for processing the main markup languages used in the
Internet.

At the end of the chapter, you will be introduced to some other
modules, such as mimetypes and mimetools, which are used for
mail message manipulation, and data conversion.

D E V E L O P E R ’ S H A N D B O O K

17 0672319942 CH13 11/15/00 11:39 AM Page 491

492 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

XML Processing

The first standard that you will learn how to manipulate in Python is XML.

The Web already has a standard for defining markup languages like HTML, which is
called SGML. HTML is actually defined in SGML. SGML could have been used as
this new standard, and browsers could have been extended with SGML parsers.
However, SGML is quite complex to implement and contains a lot of features that are
very rarely used.

SGML is much more than a Web standard because it was around long before the
Web. HTML is an application of SGML, and XML is a subset.

SGML also lacks character sets support, and it is difficult to interpret an SGML
document without having the definition of the markup language (the DTD—
Document Type Definition) available.

Consequently, it was decided to develop a simplified version of SGML, which was
called XML. The main point of XML is that you, by defining your own markup
language, can encode the information of your documents more precisely than is
possible with HTML. This meas that programs processing these documents can
“understand” them much better and therefore process the information in ways that are
impossible with HTML (or ordinary text processor documents).

Introduction to XML

The Extensible Markup Language (XML) is a subset of SGML. Its goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is
now possible with HTML. XML has been designed for ease of implementation and
for interoperability with both SGML and HTML.

XML describes a class of data objects called XML documents and partially describes
the behavior of computer programs that process them. XML is an application profile
or restricted form of SGML, the Standard Generalized Markup Language (ISO 8879).
By construction, XML documents are conforming SGML documents. An XML parser
can check if an XML document is formal without the aid of a DTD.

XML documents are made up of storage units called elements, which contain either
parsed or unparsed data, and are delimited by tags. Parsed data is made up of
characters, some of which form character data, and some of which form markup
elements. Markup encodes a description of the document’s storage layout and logical
structure. XML provides a mechanism to impose constraints on the storage layout and
logical structure.

17 0672319942 CH13 11/15/00 11:39 AM Page 492

493CHAPTER 13 Data Manipulation
XML Processing

A software module called an XML parser is used to read XML documents and provide
access to their content and structure. It is assumed that an XML parser is doing its
work on behalf of another module, called the application. This specification describes
the required behavior of an XML parser in terms of how it must read XML data and
the information it must provide to the application. For more information, check out

Extensible Markup Language (XML) Recommendation

W3C Recommendation—Extensible Markup Language (XML) 1.0

http://www.w3.org/TR/REC-xml.html

Writing an XML File

As you can see next, it is simple to define your own markup language with XML. The
next block of code is the content of a file called survey.xml. This code defines a
specific markup language for a given survey.

<!DOCTYPE SURVEY SYSTEM “SURVEY.DTD”>

<SURVEY>

<CLIENT>

<NAME> Lessaworld Corp. </NAME>

<LOCATION> Pittsburgh, PA </LOCATION>

<CONTACT> Andre Lessa </CONTACT>

<EMAIL> webmaster@lessaworld.com </EMAIL>

<TELEPHONE> (412)555-5555 </TELEPHONE>

</CLIENT>

<SECTION SECTION_ID=”1”>

<QUESTION QUESTION_ID=”1” QUESTION_LEVEL=”1”>

<QUESTION_DESC>What is your favorite language?</QUESTION_DESC>

<Op1>Python</Op1>

<Op2>Perl</Op2>

</QUESTION>

<QUESTION QUESTION_ID=”2” QUESTION_LEVEL=”1”>

<QUESTION_DESC>Do you use this language at work?</QUESTION_DESC>

<Op1>Yes</Op1>

<Op2>No</Op2>

</QUESTION>

<QUESTION QUESTION_ID=”3” QUESTION_LEVEL=”1”>

<QUESTION_DESC>Did you expect the Spanish inquisition?</QUESTION_DESC>

<Op1>No</Op1>

<Op2>Of course not</Op2>

</QUESTION>

17 0672319942 CH13 11/15/00 11:39 AM Page 493

494 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

</SECTION>

</SURVEY>

In order to complement the XML markup language shown previously, we need a
Document Type Definition (DTD), just like the following one. The DTD can be part of
the XML file, or it can be stored as an independent file, as we are doing here. Note
the first line of the XML file, where we are passing the name of the DTD file
(survey.dtd). Also, it seems that XML is standardizing the use of XML Schemas
rather the DTDs.

<!ELEMENT SURVEY (CLIENT, SECTION+)>

<!ELEMENT CLIENT (NAME, LOCATION, CONTACT?, EMAIL?, TELEPHONE?)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT LOCATION (#PCDATA)>

<!ELEMENT CONTACT (#PCDATA)>

<!ELEMENT EMAIL (#PCDATA)>

<!ELEMENT TELEPHONE (#PCDATA)>

<!ELEMENT SECTION (QUESTION+)>

<!ELEMENT QUESTION (QUESTION_DESC, Op1, Op2)>

<!ELEMENT QUESTION_DESC (#PCDATA)>

<!ELEMENT Op1 (#PCDATA)>

<!ELEMENT Op2 (#PCDATA)>

<!ATTLIST SECTION SECTION_ID CDATA #IMPLIED>

<!ATTLIST QUESTION QUESTION_ID CDATA #IMPLIED

QUESTION_LEVEL CDATA #IMPLIED>

Now, let’s understand how a DTD works. For a simple example, like this one, we need
two special tags called <!ELEMENT> and <!ATTLIST>.

The <!ELEMENT> definition tag is used to define the elements presented in the XML
file. The general syntax is

<!ELEMENT NAME CONTENTS>

The first argument (NAME) gives the name of the element, and the second one
(CONTENTS) lists the element names that are allowed to be underneath the element that
we are defining.

The ordering that we use to list the contents is important. When we say, for example,

<!ELEMENT SURVEY (CLIENT, SECTION+)>

17 0672319942 CH13 11/15/00 11:39 AM Page 494

495CHAPTER 13 Data Manipulation
XML Processing

it means that we must have a CLIENT first, followed by a SECTION. Note that we have a
special character (the plus sign) just after the second element in the content list. This
character, as well as some others, has a special meaning:

• A + sign after an element means that it can be included one or more times.

• A ? sign indicates that the element can be skipped.

• A * sign indicates an entity that can be skipped or included one or more times.

Note
These characters have similar meanings to what they do in regular expressions. (Of
course, not everything you use in an re can be used in a DTD.)

Note that #PCDATA is used to indicate an entity that carries the information.

<!ATTLIST>, the other definition tag in the example, defines the attributes of an
element. In our DTD, we have three attributes, one for SECTION, and two for
QUESTION.

An important difference between XML and SMGL is that elements in XML that do
not have any contents (like and
 of HTML) are written like this in XML:

or in an equivalent format, such as

Note the slash before the final >. This means that a program can read the document
without knowing the DTD (which is where it says that IMG does not have any
contents) and still know that IMG does not have an end tag as well as what follows IMG
is not inside the element.

For more information about XML and Python, check out the XML package. It comes
with a Python XML-HOWTO in the doc directory, and very good examples:

http://www.python.org/sigs/xml-sig/status.html

Python XML Package

For those who want to play around with XML in Python, there will be a Python/XML
package to serve several purposes at once. This package will contain everything
required for basic XML applications, along with documentation and sample code—
basically, something easy to compile and install.

17 0672319942 CH13 11/15/00 11:39 AM Page 495

496 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

A release candidate of the latest release of this package is now available as PyXML-
0.5.5.tar.gz (GPG signature), dated June 5, 2000. This version contains SAX, the
Pyexpat module, sgmlop, the prototype DOM code, and xmlproc, an XML parser
written in Python.

The individual components contained in the Python/XML package include

• A Python implementation of SAX (Simple API for XML)

A SAX implementation has been written by Lars Marius Garshol. Garshol has
also written a draft specification of the Python version of SAX 1.0.

• An XML-HOWTO containing an overview of Python and XML processing.
(This is still being actively revised.)

Andrew Kuchling is working on this. A first draft of the XML-HOWTO is
available, and introduces the SAX interface in tutorial form. A reference manual
is available separately.

• A fairly stable Python interface to James Clark’s Expat parser. A Pyexpat C
extension has been written by Jack Jansen.

• Both Python and C implementations of the DOM (Document Object Model).

Stefane Fermigier’s DOM package has been modified to match the final DOM
W3C Recommendation.

• A module to marshal simple Python data types into XML. A module called
xml.marshal is available. However, it might end up being superseded by Lotos,
WDDX, or some other DTD.

The document called Python/XML Reference Guide is the reference manual for the
Python/XML package, containing descriptions for several XML modules. For more
information, check out the following sites:

Python/XML Reference Guide

http://www.python.org/doc/howto/xml-ref/

“SAX Implementation,” by Lars Marius Garshol

http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/saxlib.html

Draft specification of the Python version of SAX 1.0

http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/sax-spec.html

17 0672319942 CH13 11/15/00 11:39 AM Page 496

497CHAPTER 13 Data Manipulation
XML Processing

XML-HOWTO

http://www.python.org/doc/howto/xml/

Pyexpat C extension written by Jack Jansen

ftp://ftp.cwi.nl/pub/jack/python/pyexpat.tgz

DOM Recommendation

http://www.w3.org/TR/REC-DOM-Level-1/

Stefane Fermigier’s DOM package

http://www.math.jussieu.fr/~fermigie/python/

Python 2.0 was released with a lot of enhancements concerning the XML support,
including a SAX2 interface and a re-designed DOM interface as part of the xml
package. Note that the xml package that is shipped with Python 2.0 contains just a
basic set of options for XML development. If you want (or need) to use the full XML
package, you are suggested to install PyXML.

The PyXML distribution also uses the xml package. That’s the reason why PyXML
versions 0.6.0 or greater can be used to replace the xml package that is bundled with
Python. By doing so, you will extend the set of XML functionalities that you can have
available. That includes

• 4DOM, a full DOM implementation from FourThought, Inc

• The xmlproc validating parser, written by Lars Marius Garshol

• The sgmlop parser accelerator module, written by Fredrik Lundh

xmllib

The xmllib module defines a class XMLParser, which serves as the basis for parsing text
files formatted in XML. Note that xmllib is not XML 1.0 compliant, and it doesn’t
provide any Unicode support. It provides simple XML support for ASCII only
element and attribute names. Of course, it probably handles UTF8 character data
without problems.

17 0672319942 CH13 11/15/00 11:39 AM Page 497

498 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

XMLParser()
The XMLParser class must be instantiated without arguments. This class provides the
following interface methods and instance variables:

attributes—This is a mapping of element names to mappings. The latter mapping
maps attribute names that are valid for the element to the default value of the
attribute, or to None if there is no default. The default value is the empty
dictionary. This variable is meant to be overridden and not extended because the
default is shared by all instances of XMLParser.

elements—This is a mapping of element names to tuples. The tuples contain a
function for handling the start and end tag, respectively, of the element, or None if
the method unknown_starttag() or unknown_endtag() is to be called. The default
value is the empty dictionary. This variable is meant to be overridden and not
extended because the default is shared by all instances of XMLParser.

entitydefs—This is a mapping of entitynames to their values. The default value
contains definitions for lt, gt, amp, quot, and apos.

reset()—Resets the instance. Loses all unprocessed data. This is called implicitly at
the instantiation time.

setnomoretags()—Stops processing tags. Treats all following input as literal input
(CDATA).

setliteral()—Enters literal mode (CDATA mode). This mode is automatically
exited when the close tag matching the last unclosed open tag is encountered.

feed(data)—Feeds some text to the parser. It is processed insofar as it consists of
complete tags; incomplete data is buffered until more data is fed or close() is
called.

close()—Forces processing of all buffered data as if it were followed by an end-of-
file mark. This method can be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
close().

translate_references(data)—Translates all entity and character references in data
and returns the translated string.

handle_xml(encoding, standalone)—This method is called when the <?xml ...?>
tag is processed. The arguments are the values of the encoding and standalone
attributes in the tag. Both encoding and standalone are optional. The values passed
to handle_xml() default to None and the string no, respectively.

17 0672319942 CH13 11/15/00 11:39 AM Page 498

499CHAPTER 13 Data Manipulation
XML Processing

handle_doctype(tag, data)—This method is called when the <!DOCTYPE...> tag is
processed. The arguments are the name of the root element and the uninterpreted
contents of the tag, starting following the whitespace after the name of the root
element.

handle_starttag(tag, method, attributes)—This method is called to handle
starttags for which a start tag handler is defined in the instance variable elements.
The tag argument is the name of the tag, and the method argument is the function
(method) that should be used to support semantic interpretation of the start tag.
The attributes argument is a dictionary of attributes; the key being the name and
the value being the value of the attribute found inside the tag’s <> brackets.
Character and entity references in the value have been interpreted. For instance, for
the start tag , this method would be called as
handle_starttag(‘A’, self.elements[‘A’][0], {‘HREF’:

‘http://www.python.org/’}). The base implementation simply calls a method with
attributes as the only argument.

handle_endtag(tag, method)—This method is called to handle endtags for which
an end tag handler is defined in the instance variable elements. The tag argument is
the name of the tag, and the method argument is the function (method) that should
be used to support semantic interpretation of the end tag. For instance, for the
endtag , this method would be called as handle_endtag(‘A’,
self.elements[‘A’][1]). The base implementation simply calls method.

handle_data(data)—This method is called to process arbitrary data. It is intended
to be overridden by a derived class; the base class implementation does nothing.

handle_charref(ref)—This method is called to process a character reference of the
form &#ref;. ref can either be a decimal number, or a hexadecimal number when
preceded by an x. In the base implementation, ref must be a number in the range
0-255. It translates the character to ASCII and calls the method handle_data() with
the character as argument. If ref is invalid or out of range, the method
unknown_charref(ref) is called to handle the error. A subclass must override this
method to provide support for character references outside the ASCII range.

handle_entityref(ref)—This method is called to process a general entity
reference of the form &ref; where ref is an general entity reference. It looks for ref
in the instance (or class) variable entitydefs that should be mapping from entity
names to corresponding translations. If a translation is found, it calls the method
handle_data() with the translation; otherwise, it calls the method
unknown_entityref(ref). The default entitydefs defines translations for &,
', >, <, and ".

17 0672319942 CH13 11/15/00 11:39 AM Page 499

500 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

handle_comment(comment)—This method is called when a comment is encountered.
The comment argument is a string containing the text between the <!- and ->
delimiters, but not the delimiters themselves. For example, the comment <!-text->
will cause this method to be called with the argument text. The default method
does nothing.

handle_cdata(data)—This method is called when a CDATA element is
encountered. The data argument is a string containing the text between the
<![CDATA[“ and “]]> delimiters, but not the delimiters themselves. For example,
the entity <![CDATA[text]]> will cause this method to be called with the argument
text. The default method does nothing, and is intended to be overridden.

handle_proc(name, data)—This method is called when a processing instruction
(PI) is encountered. The name is the PI target, and the data argument is a string
containing the text between the PI target and the closing delimiter, but not the
delimiter itself. For example, the instruction <?XML text?> will cause this method to
be called with the arguments XML and text. The default method does nothing. Note
that if a document starts with <?xml ..?>, handle_xml() is called to handle it.

handle_special(data)—This method is called when a declaration is encountered.
The data argument is a string containing the text between the <! and > delimiters,
but not the delimiters themselves. For example, the entity <!ENTITY text> will
cause this method to be called with the argument ENTITY text. The default method
does nothing. Note that <!DOCTYPE ...> is handled separately if it is located at the
start of the document.

syntax_error(message)—This method is called when a syntax error is encountered.
The message is a description of what was wrong. The default method raises a
RuntimeError exception. If this method is overridden, it is permissible for it to
return. This method is only called when the error can be recovered from.
Unrecoverable errors raise a RuntimeError without first calling syntax_error().

unknown_starttag(tag, attributes)—This method is called to process an
unknown start tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_endtag(tag)—This method is called to process an unknown end tag. It is
intended to be overridden by a derived class; the base class implementation does
nothing.

17 0672319942 CH13 11/15/00 11:39 AM Page 500

501CHAPTER 13 Data Manipulation
XML Processing

unknown_charref(ref)—This method is called to process unresolvable numeric
character references. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown_entityref(ref)—This method is called to process an unknown entity
reference. It is intended to be overridden by a derived class; the base class
implementation does nothing.

XML Namespaces
The xmllib module has support for XML namespaces as defined in the XML
namespaces proposed recommendation.

Tag and attribute names that are defined in an XML namespace are handled as if the
name of the tag or element consisted of the namespace (that is, the URL that defines
the namespace) followed by a space and the name of the tag or attribute. For instance,
the tag <html xmlns:html=”http://www.w3.org/TR/REC-html40”> is treated as if the
tag name was “http://www.w3.org/TR/REC-html40 html”, and the tag <html:a
href=”http://frob.com”> inside the previous element is treated as if the tag name
were “http://www.w3.org/TR/REC-html40 a” and the attribute name as if it were
“http://www.w3.org/TR/REC-html40 src”.

An older draft of the XML namespaces proposal is also recognized, but triggers warn
about it.

XML Examples
The next example uses xmllib to parse a XML file. The file being used is the same
survey.xml that you saw in the beginning of this chapter. Our proposal is to read the
file, parse it, and convert it to a structure such as the following:

Survey of section number 1

1- What is your favorite language?

Python

Perl

2- Do you use this language at work?

Yes

No

3- Did you expect the Spanish inquisition?

No

Of course not

17 0672319942 CH13 11/15/00 11:39 AM Page 501

502 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following code implements a solution for our problem. Remember that XML tags
are case sensitive, thus the code must be properly balanced. In this code, note that
attributes are passed to the tag handlers in a dictionary, not in a tuple.

import xmllib, string

class myparser(xmllib.XMLParser):

def __init__(self):

xmllib.XMLParser.__init__(self)

self.currentquestiondesc = ‘’

self.currentOp1 = ‘’

self.currentOp2 = ‘’

self.currentquestion = ‘’

self.currentdata = []

def handle_data(self, data):

self.currentdata.append(data)

def start_SURVEY(self, attrs):

print “Survey of section number “,

def end_SURVEY(self):

pass

def start_SECTION(self, attrs):

print attrs[‘SECTION_ID’]

def end_SECTION(self):

pass

def start_QUESTION(self, attrs):

self.currentquestion = attrs[‘QUESTION_ID’]

def end_QUESTION(self):

print “””

%(currentquestion)s- %(currentquestiondesc)s

%(currentOp1)s

%(currentOp2)s

“”” % self.__dict__

def start_QUESTION_DESC(self, attrs):

self.currentdata = []

17 0672319942 CH13 11/15/00 11:39 AM Page 502

503CHAPTER 13 Data Manipulation
XML Processing

def end_QUESTION_DESC(self):

self.currentquestiondesc = string.join(self.currentdata,’’)

def start_Op1(self, attrs):

self.currentdata = []

def end_Op1(self):

self.currentOp1 = string.join(self.currentdata,’’)

def start_Op2(self, attrs):

self.currentdata = []

def end_Op2(self):

self.currentOp2 = string.join(self.currentdata,’’)

if __name__ == “__main__”:

filehandle = open(“survey.xml”)

data = filehandle.read()

filehandle.close()

parser=myparser()

parser.feed(data)

parser.close()

Let’s see another example. The next one opens our survey.xml file and lists all the
questions available. It also tries to find question #4, but as we don’t have it, it raises a
message to the user.

import xmllib

class QuestionNotFound:

pass

class Parser(xmllib.XMLParser):

def __init__(self, filename=None):

self.found = 0

xmllib.XMLParser.__init__(self)

if filename:

self.load(filename)

def load(self, filename):

while 1:

17 0672319942 CH13 11/15/00 11:39 AM Page 503

504 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

xmldata=filename.read(1024)

if not xmldata:

break

self.feed(xmldata)

self.close()

def start_QUESTION(self, attrs):

question_id = attrs.get(“QUESTION_ID”)

print “I found Question #” + question_id

if question_id == “4”:

self.found = 1

def end_SECTION(self):

if not self.found:

raise QuestionNotFound

try:

MyParser = Parser()

MyParser.load(open(“survey.xml”))

except QuestionNotFound(Exception):

print “I couldn’t find Question #4 !!!”

The SAX API

SAX is a common event-based interface for object-oriented XML parsers. The Simple
API for XML isn’t a standard in the formal sense, but an informal specification
designed by David Megginson, with input from many people on the XML-DEV
mailing list. SAX defines an event-driven interface for parsing XML. To use SAX, you
must create Python class instances that implement a specified interface, and the parser
will then call various methods of those objects.

SAX is most suitable for purposes in which you want to read through an entire XML
document from beginning to end, and perform some computation, such as building a
data structure representing a document, or summarizing information in a document
(computing an average value of a certain element, for example). It isn’t very useful if
you want to modify the document structure in some complicated way that involves
changing how elements are nested, though it could be used if you simply want to
change element contents or attributes. For example, you would not want to re-order
chapters in a book using SAX, but you might want to change the contents of any name
elements with the attribute lang equal to greek into Greek letters. Of course, if this is
an XML file, we would use the standard attribute xml:lang rather than just lang to
store the language.

17 0672319942 CH13 11/15/00 11:39 AM Page 504

505CHAPTER 13 Data Manipulation
XML Processing

One advantage of SAX is speed and simplicity. There is no need to expend effort
examining elements that are irrelevant to your application. You can therefore write a
class instance that ignores all elements that aren’t what you need. Another advantage is
that you don’t have the whole document resident in memory at any one time, which
matters if you are processing huge documents.

SAX defines four basic interfaces; a SAX-compliant XML parser can be passed any
objects that support these interfaces, and will call various methods as data is processed.
Your task, therefore, is to implement those interfaces relevant to your application.

The SAX interfaces are as follows:

DocumentHandler—Called for general document events. This interface is the heart
of SAX; its methods are called for the start of the document, the start and end of
elements, and for the characters of data contained inside elements.

DTDHandler—Called to handle DTD events required for basic parsing. This means
notation declarations (XML spec section 4.7) and unparsed entity declarations
(XML spec section 4).

EntityResolver—Called to resolve references to external entities. If your
documents will have no external entity references, you won’t need to implement
this interface.

ErrorHandler—Called for error handling. The parser will call methods from this
interface to report all warnings and errors.

Because Python doesn’t support the concept of interfaces, the previous interfaces are
implemented as Python classes. The default method implementations are defined to
do nothing—the method body is just a Python pass statement—so usually you can
simply ignore methods that aren’t relevant to your application. The one big exception
is the ErrorHandler interface; if you don’t provide methods that print a message or
otherwise take some action, errors in the XML data will be silently ignored. This is
almost certainly not what you want your application to do, so always implement at
least the error() and fatalError() methods. xml.sax.saxutils provides an
ErrorPrinter class that sends error messages to standard error, and an ErrorRaiser
class that raises an exception for any warnings or errors.

Pseudo-code for using SAX looks similar to the following:

Define your specialized handler classes

from xml.sax import saxlib

class docHandler(saxlib.DocumentHandler):

...

17 0672319942 CH13 11/15/00 11:39 AM Page 505

506 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Create an instance of the handler classes

dh = docHandler()

Create an XML parser

parser = ...

Tell the parser to use your handler instance

parser.setDocumentHandler(dh)

Parse the file; your handler’s method will get called

parser.parseFile(sys.stdin)

Close the parser

parser.close()

For more information, check out the following sites:

SAX: The Simple API for XML

http://www.python.org/doc/howto/xml/SAX.html

David Megginson’s SAX page

Megginson was the primary force behind SAX’s development, and implemented the
Java version of SAX.

http://www.megginson.com/SAX/

What is an Event-Based Interface?

This page explains what an event-based interface is, and contrasts the event-based
SAX with the tree-based Document Object Model (DOM).

http://www.megginson.com/SAX/event.html

Writing an application for a SAX-compliant XML parser

Simon Pepping gives a short overview of the Simple API for XML (SAX). He
describes how a SAX-compliant parser and a SAX application interact, and how one
should proceed to write a SAX application. The description focuses on the Python
implementation of SAX. The examples are written in Python.

http://www.hobby.nl/~scaprea/XML/

DOM: The Document Object Model

The Document Object Model (DOM) is a standard interface for manipulating XML and
HTML documents developed by the World Wide Web Consortium (W3C).

4DOM is a Python library developed by FourThought LLC for XML and HTML
processing and manipulation using the W3C’s Document Object Model for interface.

17 0672319942 CH13 11/15/00 11:39 AM Page 506

507CHAPTER 13 Data Manipulation
XML Processing

4DOM supports all of DOM level 1 (core and HTML), as well as core, HTML and
Document Traversal from level 2. 4DOM also adds some helper components for
DOM Tree creation and printing, python integration, whitespace manipulation, and
so on.

4DOM is designed to allow developers to rapidly design applications that read, write,
or manipulate HTML and XML. Check out

http://www.fourthought.com/4Suite/4DOM/

XSL Transformations (XSLT)

This W3C specification defines the syntax and semantics of XSLT, which is a language
for transforming XML documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In
addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL
specifies the styling of an XML document by using XSLT to describe how the
document is transformed into another XML document that uses the formatting
vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not
intended as a completely general-purpose XML transformation language. Rather, it is
designed primarily for the kinds of transformations that are needed when XSLT is
used as part of XSL. XSLT is also good for transforming some custom XML format
into XHTML that can be displayed by a browser, for instance. For more information,
check out

http://www.w3.org/TR/xslt

4XSLT is an XML transformation processor based on the W3C’s specification, and
written by FourThought LLC, for the XSLT transform language. Currently, 4XSLT
supports a subset of the final recommendation of XSLT. For more information, check
out the site:

http://www.fourthought.com/4Suite/4XSLT/

XBEL—XML Bookmark Exchange Language

The XML Bookmark Exchange Language, or XBEL, is an Internet bookmarks
interchange format. It was designed by the Python XML Special Interest Group on
the group’s mailing list. It grew out of an idea for a demonstration of using Python for
XML processing. Mark Hammond contributed the original idea, and other members
of the SIG chimed in to add support for their favorite browser features. After debate

17 0672319942 CH13 11/15/00 11:39 AM Page 507

508 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

that deviated from the original idea, compromises were reached that allow XBEL to be
a useful language for describing bookmark data for a range of browsers, including the
major browsers and a number of less widely used browsers.

At this time, the formal DTD was finalized and documentation was written. The
formal DTD and the documentation are available online at the following sites:

http://www.python.org/topics/xml/xbel/

http://www.python.org/topics/xml/xbel/docs/html/xbel.html

Supporting software is provided as part of the Python XML package. This software is
located in the demo/xbel/ directory of the distribution. This includes command-line
processes for converting XBEL instances to other common formats, including the
Navigator and Internet Explorer formats. Note that the current release of the Grail
Internet browser from CNRI supports XBEL as a native bookmarks format.

The script, created by Jürgen Hermann, on the following site, checks the URLs in an
XBEL document:

http://cscene.org/%7ejh/xml/bookmarks/checkurls.py

RPC—What Is It?

A Remote Procedure Call (RPC) uses the ordinary procedure call mechanism that is
familiar to every user in order to hide the intricacies of the network.

A client process calls a function on a remote server and suspends itself until it gets
back the results. Parameters are passed the same as in any ordinary procedure. The
RPC, similar to an ordinary procedure, is synchronous; clients and servers must run
concurrently. Servers must keep up with clients. The process (or thread) that issues the
call waits until it gets the results. Behind the scenes, the RPC runtime software
collects values for the parameters, forms a message, and sends it to the remote server.
(Note that servers must first come up before clients can talk to them.) The server
receives the request, unpacks the parameters, calls the procedure, and sends the reply
back to the client.

Asynchronous processing is limited because it requires threads and tricky code for
managing threads. A procedure call is the name of a procedure, its parameters, and the
result it returns.

Procedure calls are very important for the existence of computers. Every program is
just a single procedure called main; every operating system has a main procedure called
a kernel. There’s a top level to every program that sits in a loop waiting for something

17 0672319942 CH13 11/15/00 11:39 AM Page 508

509CHAPTER 13 Data Manipulation
XML Processing

to happen and then distributes control to a hierarchy of procedures that respond. This
is at the heart of interactivity and networking, it’s at the heart of software.

RPC is a very simple extension to the procedure call idea; it says, “let’s create
connections between procedures that are running in different applications or on
different machines.”

Conceptually, there’s no difference between a local procedure call and a remote one,
but they are implemented differently, perform differently (RPC is much slower), and
therefore are used for different things.

Remote calls are marshaled into a format that can be understood on the other side of
the connection. As long as two machines agree on a format, they can talk to each
other. That’s why Windows machines can be networked with other Windows
machines, Macs can talk to Macs, and so on. The value in a standardized cross-
platform format for RPC is that it allows UNIX machines to talk to Windows
machines and vice versa.

A number of formats are possible. One possible format is XML. XML-RPC uses XML
as the marshaling format. It allows Macs to easily make procedure calls to software
running on Windows machines and BeOS machines, as well as all flavors of UNIX
and Java, IBM mainframes, PDAs, and so on.

With XML it’s easy to see what it’s doing, and it’s also relatively easy to marshal the
internal procedure call format into a remote format.

Simple Object Access Protocol (SOAP)

SOAP is an XML/HTTP-based protocol for accessing services, objects, and servers in
a platform-independent manner. For more information, check out

http://www.develop.com/soap

A minimal Python SOAP implementation is located at

http://casbah.org/Scarab/

This module is derived in part from Andrew Kuchling’s xml.marshal code. It
implements the SOAP “section 8” serialization using the same API as pickle.py
(dump/load).

Scarab is an Open Source Communications library implementing protocols, formats, and
interfaces for writing distributed applications, with an emphasis on low-end and
lightweight implementations. Users can combine Scarab module implementations to
build a messaging system to fit their needs, scaling from very simple messaging or data

17 0672319942 CH13 11/15/00 11:39 AM Page 509

510 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

transfer all the way up to where CORBA can take over. Scarab implementations
include support for such areas as distributed objects, remote procedure calls, XML
messages, TCP transport, and HTTP transport.

PythonPoint

The ReportLab package contains a demo called PythonPoint, which has a simple XML
for doing presentation slides and can convert them to PDF documents, along with
imaginative presentation effects. The demo script that is provided in the Web site
illustrates how easily complex XML can be translated into useful PDF. The demo
output, pythonpoint.pdf, demonstrates some of the more exotic PDF capabilities:

http://www.reportlab.com/demos/demos.html

Pyxie

Pyxie is an Open Source XML processing library for Python developed by Sean
McGrath. He has also written a book called XML Processing with Python for Prentice
Hall. The book contains a description of the Pyxie library and many sample programs.

Pyxie is heavily based on a line-oriented notation for parsed XML known as PYX.
Pyxie includes utilities, known as xmln and xmlv, that generate PYX.

PYX is independent of Python and a number of programs processing PYX have
appeared in Java, Perl, and JavaScript:

http://www.digitome.com/pyxie.html

XML-RPC

XML-RPC is a specification and a set of implementations that allow software running
on different operating systems and different environments to make procedure calls
over the Internet. As a simple RPC protocol, it converts simple data types into an
XML-based format, and then ships them over the network using HTTP-POST
requests as the transport and XML as the encoding. The procedure executes on the
server and the value it returns is also formatted in XML. Procedure parameters can be
scalars, numbers, strings, dates, and so on; they can also be complex record and list
structures.

XML-RPC is designed to be as simple as possible, while allowing complex data
structures to be transmitted, processed, and returned. This re-use of high-level ideas
such as XML and HTTP makes it inefficient in comparison to a binary format, but it

17 0672319942 CH13 11/15/00 11:39 AM Page 510

511CHAPTER 13 Data Manipulation
XML-RPC

also makes it easy to implement; implementations already exist for Java, Python, Perl,
and Tcl, and Zope 2.0.

The XML-RPC library is copyrighted, but can be used without fee. This also applies
to commercial applications. For more information, check out

XML-RPC

http://www.xmlrpc.com/

The XML-RPC specification documents the XML-RPC protocol implemented in
Frontier 5.1.

http://www.xml-rpc.com/spec/

http://www.scripting.com/frontier5/xml/code/rpc.html

XML-RPC for Newbies, by Dave Winer

http://davenet.userland.com/1998/07/14/xmlRpcForNewbies

The Python Implementation

PythonWare’s Fredrik Lundhs xmlrpc package provides everything you need to build
clients and servers in Python:

http://www.pythonware.com/products/xmlrpc/

Secret Labs’ xmlrpclib module is a client-side implementation of the XML-RPC
protocol. This implementation is tightly integrated with Python, which makes it very
easy to call remote methods. For example, here’s the Python code needed to call one
of Userland’s sample servers:

betty = Server(“http://betty.userland.com”)

print betty.examples.getStateName(41)

This results in a remote call to the examples.getStateName method published by the
betty server, with the integer 41 as the single argument. The result from this call is a
string with the value “South Dakota”.

The marshalling and parsing classes provided by this module can also be used in
XML-RPC server implementations. Sample code for Medusa and Python’s
SocketServer module is also included in the current release.

17 0672319942 CH13 11/15/00 11:39 AM Page 511

512 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Working with Zope

Amos Latteier at Digital Creations has written an XML-RPC How To for Zope Users.
Among other things, it contains code to handle authentication issues and access
control.

The idea of using Zope to handle XML-RPC is based on the fact that every Zope
object can respond to HTTP requests.

The How To covers the use of Zope as an XML-RPC server, and as an XML-RPC
client. The document also shows how to extend Fredrik Lundh’s XML-RPC Python
module to support sending requests with basic authentication. It can be found at

http://www.zope.org/Members/Amos/XML-RPC

XDR Data Exchange Format

XDR is best described as a standard for data description and encoding. It uses a
implicit typing language to describe intricate data formats in a concise manner—note
that this language is not a programming language. Protocols such as Sun RPC
(Remote Procedure Call) and the NFS (Network File System, which was initially built
on top of RPC) use XDR to describe the format of their data because XDR is useful
for transferring data between different computer architectures. XDR has been used to
communicate with data between such diverse machines as the SUN
WORKSTATION, VAX, IBM-PC, and Cray. It is a very portable implementation.
For more information, check out

Internet standards—RFC 1014, External Data Representation

http://info.internet.isi.edu/in-notes/rfc/files/rfc1014.txt

xdrlib

The xdrlib module almost entirely supports the External Data Representation Standard
(XDR) as described in RFC 1014, written by Sun Microsystems, Inc. on June 1987.
Therefore, it is used extensively in networked applications, mainly the ones that need
to handle RPC.

17 0672319942 CH13 11/15/00 11:39 AM Page 512

513CHAPTER 13 Data Manipulation
XDR Data Exchange Format

This module defines two exceptions, and two classes—one for packing variables into
XDR representation, and another for unpacking from XDR representation:

Packer()—Packer is the class for packing data into XDR representation. The
Packer class is instantiated with no arguments.

Unpacker(data)—Unpacker is the complementary class, which unpacks XDR data
values from a string buffer. The input buffer is given as data.

Packer Objects
Packer instances have the following methods:

get_buffer()—Returns the current pack buffer as a string.

reset()—Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the
appropriate pack_type() method. Each method takes a single argument, the value to
pack. The following simple data type packing methods are supported: pack_uint(),
pack_int(), pack_enum(), pack_bool(), pack_uhyper(), and pack_hyper(). The
following methods support floating point number packing.

pack_float(value)—Packs the single-precision floating point number value.

pack_double(value)—Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

pack_fstring(n, s)—Packs a fixed length string, s. n is the length of the string,
but it is not packed into the data buffer. The string is padded with null bytes if
necessary to guarantee 4 byte alignment.

pack_fopaque(n, data)—Packs a fixed length opaque data stream, similar to
pack_fstring().

pack_string(s)—Packs a variable length string, s. The length of the string is first
packed as an unsigned integer, and then the string data is packed with pack_fstring().

pack_opaque(data)—Packs a variable length opaque data string, similar to
pack_string().

pack_bytes(bytes)—Packs a variable length byte stream, similar to pack_string().

17 0672319942 CH13 11/15/00 11:39 AM Page 513

514 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following methods support packing arrays and lists:

pack_list(list, pack_item)—Packs a list of homogeneous items. This method is
useful for lists with an indeterminate size; that is, the size is not available until the
entire list has been walked. For each item in the list, an unsigned integer 1 is
packed first, followed by the data value from the list. pack_item is the function
called to pack the individual item. At the end of the list, an unsigned integer 0 is
packed.

pack_farray(n, array, pack_item)—Packs a fixed length list (array) of
homogeneous items. n is the length of the list; it is not packed into the buffer, but a
ValueError exception is raised if len(array) is not equal to n. As stated previously,
pack_item is the function used to pack each element.

pack_array(list, pack_item)—Packs a variable length list of homogeneous items.
First, the length of the list is packed as an unsigned integer, and then each element
is packed as in pack_farray() stated previously.

Unpacker Objects
The Unpacker class offers the following methods:

reset(data)—Resets the string buffer with the given data.

get_position()—Returns the current unpack position in the data buffer.

set_position(position)—Sets the data buffer unpack position to position. You
should be careful about using get_position() and set_position().

get_buffer()—Returns the current unpack data buffer as a string.

done()—Indicates unpack completion. Raises an error exception if all the data has
not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an
Unpacker. Unpacking methods are of the form unpack_type(), and take no arguments.
They return the unpacked object.

unpack_float()—Unpacks a single-precision floating point number.

unpack_double()—Unpacks a double-precision floating point number, similar to
unpack_float().

17 0672319942 CH13 11/15/00 11:39 AM Page 514

515CHAPTER 13 Data Manipulation
XDR Data Exchange Format

In addition, the following methods unpack strings, bytes, and opaque data:

unpack_fstring(n)—Unpacks and returns a fixed length string. n is the number of
characters expected. Padding with null bytes to guaranteed 4 byte alignment is
assumed.

unpack_fopaque(n)—Unpacks and returns a fixed length opaque data stream,
similar to unpack_fstring().

unpack_string()—Unpacks and returns a variable length string. The length of the
string is first unpacked as an unsigned integer, and then the string data is unpacked
with unpack_fstring().

unpack_opaque()—Unpacks and returns a variable length opaque data string,
similar to unpack_string().

unpack_bytes()—Unpacks and returns a variable length byte stream, similar to
unpack_string().

The following methods support unpacking arrays and lists:

unpack_list(unpack_item)—Unpacks and returns a list of homogeneous items.
The list is unpacked one element at a time by first unpacking an unsigned integer
flag. If the flag is 1, the item is unpacked and appended to the list. A flag of 0
indicates the end of the list. unpack_item is the function called to unpack the items.

unpack_farray(n, unpack_item)—Unpacks and returns (as a list) a fixed length
array of homogeneous items. n is the number of list elements to expect in the
buffer. As stated previously, unpack_item is the function used to unpack each
element.

unpack_array(unpack_item)—Unpacks and returns a variable length list of
homogeneous items. First, the length of the list is unpacked as an unsigned integer,
and then each element is unpacked as in unpack_farray() previously.

In the following example, we pack a group of variables, unpacking them later.

import xdrlib

def f_packer(name, author, month, year):

data = xdrlib.Packer()

data.pack_string(name)

data.pack_string(author)

data.pack_uint(month)

17 0672319942 CH13 11/15/00 11:39 AM Page 515

516 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

data.pack_uint(year)

packed = data.get_buffer()

return packed

def f_unpacker(packer):

data = xdrlib.Unpacker(packer)

return data

print “The original values are: ‘Andre’, ‘Author’, 10, 2000”

print

packed = f_packer(‘Andre’, ‘Author’, 10, 2000)

print “The packed data is now defined by:”, repr(packed)

print

print “And now, the original data again. (After unpacking it!)”

unpacked = f_unpacker(packed)

print repr(unpacked.unpack_string()), “, “, \

repr(unpacked.unpack_string()), “, “, \

unpacked.unpack_uint(), “, “, \

unpacked.unpack_uint()

unpacked.done()

The original values are: ‘Andre’, ‘Author’, 10, 2000

The packed data is now defined by:

’\000\000\000\005Andre\000\000\000\000\000\000\006Author\000\000\000\000\

000\012\000\000\007\320’

And now, the original data again. (After unpacking it!)

‘Andre’ , ‘Author’ , 10 , 2000

Note
If you are only handling simple data types and only with Python, it is probably easier
to just use the marshal module.

Exceptions
Exceptions in this module are coded as class instances:

Error—This is the base exception class. Error has a single public data member msg
containing the description of the error.

ConversionError—This class is derived from Error. Contains no additional instance
variables.

17 0672319942 CH13 11/15/00 11:39 AM Page 516

517CHAPTER 13 Data Manipulation
Handling Other Markup Languages

Here is a simple example of how you would catch one of these exceptions:

>>> import xdrlib

>>> data = xdrlib.Packer()

>>> try:

... data.pack_double(“8.01”)

... except xdrlib.ConversionError, ErrorObj:

... print ‘Error while packing the data:’, ErrorObj.msg

...

Error while packing the data: required argument is not a float

>>>

Handling Other Markup Languages

The initial part of this chapter covers XML, which is, undoubtedly, a future promise
for the Internet.

The next pages of this section describe additional modules that support other data
format standards commonly used on the internet, SGML and HTML.

sgmllib

The sgmllib module is an SGML parser subset. Although it has a simple implemen-
tation, it is powerful enough to build the HTML parser.

This module implements the SGMLParser() class.

SGMLParser()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to
recognize the following constructs:

a. Opening and closing tags of the form <tag attr=”value ...> and </tag>,
respectively.

b. Numeric character references of the form &#name;.

c. Entity references of the form &name;.

d. SGML comments of the form <!--text-->. Note that spaces, tabs, and newlines
are allowed between the trailing > and the immediately preceding -.

17 0672319942 CH13 11/15/00 11:39 AM Page 517

518 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

SGMLParser instances have the following interface methods (note that the interface is
similar to the xmllib one):

reset()—Resets the instance. Loses all unprocessed data. This is called implicitly at
instantiation time.

setnomoretags()—Stops processing tags. Treat all following input as literal input
(CDATA). (This is only provided so that the HTML tag <PLAINTEXT> can be
implemented.)

setliteral()—Enters literal mode (CDATA mode).

feed(data)—Feeds some text to the parser. It is processed insofar as it consists of
complete elements; incomplete data is buffered until more data is fed or close() is
called.

close()—Force processing of all buffered data as if it were followed by an end-of-
file mark. This method can be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
close().

handle_starttag(tag, method, attributes)—This method is called to handle
start tags for which either a start_tag() or do_tag() method has been defined.
The tag argument is the name of the tag converted to lowercase, and the method
argument is the bound method that should be used to support semantic interpre-
tation of the start tag. The attributes argument is a list of (name, value) pairs
containing the attributes found inside the tag’s <> brackets. The name has been
translated to lowercase, and double quotes and backslashes in the value have been
interpreted. For instance, for the tag , this method
would be called as unknown_starttag(‘a’, [(‘href’, ‘http://www.cwi.nl/’)]).
The base implementation simply calls a method with attributes as the only
argument.

handle_endtag(tag, method)—This method is called to handle endtags for which
an end_tag() method has been defined. The tag argument is the name of the tag
converted to lowercase, and the method argument is the bound method that should
be used to support semantic interpretation of the end tag. If no end_tag() method
is defined for the closing element, this handler is not called. The base implemen-
tation simply calls method.

handle_data(data)—This method is called to process arbitrary data. It is intended
to be overridden by a derived class; the base class implementation does nothing.

17 0672319942 CH13 11/15/00 11:39 AM Page 518

519CHAPTER 13 Data Manipulation
Handling Other Markup Languages

handle_charref(ref)—This method is called to process a character reference of the
form &#ref;. In the base implementation, ref must be a decimal number in the
range 0–255. It translates the character to ASCII and calls the method
handle_data() with the character as argument. If ref is invalid or out of range, the
method unknown_charref(ref) is called to handle the error. A subclass must
override this method to provide support for named character entities.

handle_entityref(ref)—This method is called to process a general entity
reference of the form &ref;, where ref is an general entity reference. It looks for
ref in the instance (or class) variable entitydefs that should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the
method handle_data() with the translation; otherwise, it calls the method
unknown_entityref(ref). The default entitydefs defines translations for &,
&apos, >, <, and ".

handle_comment(comment)—This method is called when a comment is encountered.
The comment argument is a string containing the text between the <!- and ->
delimiters, but not the delimiters themselves. For example, the comment <!-text->
will cause this method to be called with the argument text. The default method
does nothing.

report_unbalanced(tag)—This method is called when an end tag is found that
does not correspond to any open element.

Tip
In order to handle all tags in your code, you need to overload the following two
methods: unknown_starttag and unknown_endtag.

unknown_starttag(tag, attributes)—This method is called to process an
unknown start tag. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_endtag(tag)—This method is called to process an unknown end tag. It is
intended to be overridden by a derived class; the base class implementation does
nothing.

unknown_charref(ref)—This method is called to process unresolvable numeric
character references. Refer to handle_charref() to determine what is handled by
default. It is intended to be overridden by a derived class; the base class implemen-
tation does nothing.

unknown_entityref(ref)—This method is called to process an unknown entity
reference. It is intended to be overridden by a derived class; the base class
implementation does nothing.

17 0672319942 CH13 11/15/00 11:39 AM Page 519

520 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Apart from overriding or extending the methods listed previously, derived classes can
also define methods of the following form to define processing of specific tags. Tag
names in the input stream are case independent; the tag occurring in method names
must be in lowercase:

start_tag(attributes)—This method is called to process an opening tag. It has
precedence over do_tag(). The attributes argument has the same meaning as
described for handle_starttag() previously.

do_tag(attributes)—This method is called to process an opening tag that does
not come with a matching closing tag. The attributes argument has the same
meaning as described for handle_starttag() previously.

end_tag()—This method is called to process a closing tag.

Note that the parser maintains a stack of open elements for which no end tag has been
found yet. Only tags processed by start_tag() are pushed on this stack. Definition of
an end_tag() method is optional for these tags. For tags processed by do_tag() or by
unknown_tag(), no end_tag() method must be defined; if defined, it will not be used.
If both start_tag() and do_tag() methods exist for a tag, the start_tag() method
takes precedence.

The following example opens an SGML file and collects the information regarding
the page title.

import sgmllib

import string

filename = “index.html”

class CleanExit(Exception):

pass

class Titlefinder(sgmllib.SGMLParser):

def __init__(self, verbose=0):

sgmllib.SGMLParser.__init__(self, verbose)

self.title = self.data = None

def start_title(self, attributes):

self.data = []

def end_title(self):

self.title = string.join(self.data, “”)

raise CleanExit

def handle_data(self, data):

17 0672319942 CH13 11/15/00 11:39 AM Page 520

521CHAPTER 13 Data Manipulation
Handling Other Markup Languages

if self.data is not None:

self.data.append(data)

def get_title(filehandle):

Parser = Titlefinder()

try:

while 1:

sgmldata = filehandle.read(1024)

if not sgmldata:

break

Parser.feed(sgmldata)

Parser.close()

except CleanExit:

return Parser.title

return None

filehandle = open(filename)

title = get_title(filehandle)

print “The page’s title is: %s” % (title)

htmllib

This module defines a parser class that can serve as a base for parsing text files
formatted in the Hypertext Markup Language (HTML). The class is not directly
concerned with I/O—it must be provided with input in string form via a method, and
makes calls to methods of a formatter object in order to produce output. The
HTMLParser class is designed to be used as a base class for other classes in order to add
functionality, and allows most of its methods to be extended or overridden. In turn,
this class is derived from and extends the SGMLParser class defined in module sgmllib.
The HTMLParser implementation supports the HTML 2.0 language as described in
RFC 1866. Two implementations of formatter objects are provided in the formatter
module.

The following is a summary of the interface defined by sgmllib.SGMLParser:

a. The interface to feed data to an instance is through the feed() method, which
takes a string argument. This can be called with as little or as much text at a time
as desired; “p.feed(a); p.feed(b)” has the same effect as “p.feed(a+b)”. When
the data contains complete HTML tags, these are processed immediately;
incomplete elements are saved in a buffer. To force processing of all unprocessed
data, call the close() method.

17 0672319942 CH13 11/15/00 11:39 AM Page 521

522 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

For example, to parse the entire contents of a file, use

parser.feed(open(‘myfile.html’).read())

parser.close()

b. The interface to define semantics for HTML tags is very simple: derive a class
and define methods called start_tag(),end_tag(), or do_tag(). The parser will
call these at appropriate moments: start_tag or do_tag() is called when an
opening tag of the form <tag ...> is encountered; end_tag() is called when a
closing tag of the form <tag> is encountered. If an opening tag requires a
corresponding closing tag, such as <H1>... </H1>, the class should define the
start_tag() method; if a tag requires no closing tag, such as <P>, the class
should define the do_tag() method.

This module defines a single class: HTMLParser(formatter). This is the basic HTML
parser class. It supports all entity names required by the HTML 2.0 specification
(RFC 1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2
elements. In addition to tag methods, the HTMLParser class provides some additional
methods and instance variables for use within tag methods. They are as follows:

formatter—This is the formatter instance associated with the parser.

nofill—This Boolean flag should be true when whitespace should not be
collapsed, or false when it should be. In general, this should only be true when
character data is to be treated as “preformatted” text, as within a <PRE> element.
The default value is false. This affects the operation of handle_data() and
save_end().

anchor_bgn(href, name, type)—This method is called at the start of an anchor
region. The arguments correspond to the attributes of the <A> tag with the same
names. The default implementation maintains a list of hyperlinks (defined by the
href attribute) within the document. The list of hyperlinks is available as the data
attribute anchorlist.

anchor_end()—This method is called at the end of an anchor region. The default
implementation adds a textual footnote marker using an index into the list of
hyperlinks created by anchor_bgn().

handle_image(source, alt[, ismap[, align[, width[, height]]]])—This
method is called to handle images. The default implementation simply passes the alt
value to the handle_data() method.

17 0672319942 CH13 11/15/00 11:39 AM Page 522

523CHAPTER 13 Data Manipulation
Handling Other Markup Languages

save_bgn()—Begins saving character data in a buffer instead of sending it to the
formatter object. Retrieve the stored data via save_end(). Use of the
save_bgn()/save_end() pair cannot be nested.

save_end()—Ends buffering character data and returns all data saved since the
preceding call to save_bgn(). If the nofill flag is false, whitespace is collapsed to
single spaces. A call to this method without a preceding call to save_bgn() will raise
a TypeError exception.

The following example is a CGI script that outputs to a Web page the Web links
found in a given HTML file.

import htmllib

import formatter, string, cgi

form = cgi.FieldStorage()

try:

myfile = form[“filename”].value

except:

myfile = “index.html”

class ParserClass(htmllib.HTMLParser):

def __init__(self, verbose=0):

self.anchors = {}

fmt = formatter.NullFormatter()

htmllib.HTMLParser.__init__(self, fmt, verbose)

def anchor_bgn(self, href, name, type):

self.save_bgn()

self.anchor = href

def anchor_end(self):

tagtext = string.strip(self.save_end())

if self.anchor and tagtext:

self.anchors[tagtext] = self.anchors.get(tagtext, []) + \

[self.anchor]

filename = open(myfile)

htmldata = filename.read()

filename.close()

17 0672319942 CH13 11/15/00 11:39 AM Page 523

524 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

parserobj = ParserClass()

parserobj.feed(htmldata)

parserobj.close()

print “Content-type: text/html\n”

for key in p.anchors.keys():

print key, p.anchors[key]

htmlentitydefs

The htmlentitydefs module contains a dictionary called entitydefs that contains all
the definitions for the general entities defined by HTML 2.0, as demonstrated next:

import htmlentitydefs

htmlentitydef = htmlentitydefs.entitydefs.keys()

for key in htmlentitydef:

print key, “ = “, htmlentitydef[key]

formatter

The formatter module is used for generic output formatting by the HTMLParser class
of the htmllib module. This module supports two interface definitions, each with
multiple implementations: Formatter and Writer.

Formatter objects transform an abstract flow of formatting events into specific output
events on writer objects. Formatters manage several stack structures to allow various
properties of a writer object to be changed and restored; writers need not be able to
handle relative changes nor any sort of “change back” operation. Specific writer
properties which can be controlled via formatter objects are horizontal alignment,
font, and left margin indentations. A mechanism is provided that supports providing
arbitrary, non-exclusive style settings to a writer as well. Additional interfaces facilitate
formatting events that are not reversible, such as paragraph separation. The writer
interface is required by the formatter interface.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are
supported as well as physical devices. The provided implementations all work with
abstract devices. The interface makes available mechanisms for setting the properties
that formatter objects manage and inserting data into the output.

17 0672319942 CH13 11/15/00 11:39 AM Page 524

525CHAPTER 13 Data Manipulation
Handling Other Markup Languages

The Formatter Interface
Interfaces to create formatters are dependent on the specific formatter class being
instantiated. The interfaces described as follows are the required interfaces, which all
formatters must support once initialized.

One data element is defined at the module level: AS_IS. This value can be used in the
font specification passed to the push_font() method described in the following, or as
the new value to any other push_property() method. Pushing the AS_IS value allows
the corresponding pop_property() method to be called without having to track
whether the property was changed.

The following attributes are defined for formatter instance objects:

writer—Interacts with the formatter.

end_paragraph(blanklines)—Closes any open paragraphs and inserts at least
blanklines before the next paragraph.

add_line_break()—Adds a hard line break if one does not already exist. This does
not break the logical paragraph.

add_hor_rule(*args, **kw)—Inserts a horizontal rule in the output. A hard break
is inserted if data is in the current paragraph, but the logical paragraph is not
broken. The arguments and keywords are passed on to the writer’s
send_line_break() method.

add_flowing_data(data)—Provides data that should be formatted with collapsed
whitespaces. Whitespace from preceeding and successive calls to
add_flowing_data() is considered as well when the whitespace collapse is
performed. The data that is passed to this method is expected to be word wrapped
by the output device. Note that any word wrapping still must be performed by the
writer object because of the need to rely on device and font information.

add_literal_data(data)—Provides data that should be passed to the writer
unchanged. Whitespace, including newline and tab characters, is considered legal in
the value of data.

add_label_data(format, counter)—Inserts a label that should be placed to the left
of the current left margin. This should be used for constructing bulleted or
numbered lists. If the format value is a string, it is interpreted as a format specifi-
cation for counter, which should be an integer. The result of this formatting
becomes the value of the label; if format is not a string, it is used as the label value
directly. The label value is passed as the only argument to the writer’s
send_label_data() method. Interpretation of nonstring label values is dependent
on the associated writer.

17 0672319942 CH13 11/15/00 11:39 AM Page 525

526 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Format specifications are strings that, in combination with a counter value, are used to
compute label values. Each character in the format string is copied to the label value,
with some characters recognized to indicate a transformation on the counter value.
Specifically, the character 1 represents the counter value formatter as an Arabic
number, the characters A and a represent alphabetic representations of the counter
value in upper- and lowercase, respectively, and I and i represent the counter value in
Roman numerals, in upper- and lowercase. Note that the alphabetic and roman
transformations require that the counter value be greater than zero.

flush_softspace()—Sends any pending whitespace buffered from a previous call to
add_flowing_data() to the associated writer object. This should be called before
any direct manipulation of the writer object.

push_alignment(align)—Pushes a new alignment setting onto the alignment stack.
This might be AS_IS if no change is desired. If the alignment value is changed from
the previous setting, the writer’s new_alignment() method is called with the align
value.

pop_alignment()—Restores the previous alignment.

push_font((size, italic, bold, teletype))—Changes some or all font
properties of the writer object. Properties that are not set to AS_IS are set to the
values passed in, whereas others are maintained at their current settings. The
writer’s new_font() method is called with the fully resolved font specification.

pop_font()—Restores the previous font.

push_margin(margin)—Increases the number of left margin indentations by one,
associating the logical tag margin with the new indentation. The initial margin level
is 0. Changed values of the logical tag must be true values; false values other than
AS_IS are not sufficient to change the margin.

pop_margin()—Restores the previous margin.

push_style(*styles)—Pushes any number of arbitrary style specifications. All
styles are pushed onto the styles stack in order. A tuple representing the entire
stack, including AS_IS values, is passed to the writer’s new_styles() method.

pop_style([n = 1])—Pops the last n style specifications passed to push_style(). A
tuple representing the revised stack, including AS_IS values, is passed to the writer’s
new_styles() method.

17 0672319942 CH13 11/15/00 11:39 AM Page 526

527CHAPTER 13 Data Manipulation
Handling Other Markup Languages

set_spacing(spacing)—Sets the spacing style for the writer.

assert_line_data([flag = 1])—Informs the formatter that data has been added
to the current paragraph out-of-band. This should be used when the writer has
been manipulated directly. The optional flag argument can be set to false if the
writer manipulations produced a hard line break at the end of the output.

Formatter Implementations
Two implementations of formatter objects are provided by this module. Most
applications can use one of these classes without modification or subclassing.

NullFormatter([writer])—A formatter that does nothing. If writer is omitted, a
NullWriter instance is created. No methods of the writer are called by
NullFormatter instances. Implementations should inherit from this class if
implementing a writer interface but don’t need to inherit any implementation.

AbstractFormatter(writer)—The standard formatter. This implementation has
demonstrated wide applicability to many writers, and can be used directly in most
circumstances. It has been used to implement a full-featured WWW browser.

The Writer Interface
Interfaces to create writers are dependent on the specific writer class being instan-
tiated. The interfaces described as follows are the required interfaces that all writers
must support once initialized. Although most applications can use the
AbstractFormatter class as a formatter, the writer must typically be provided by the
application.

flush()—Flushes any buffered output or device control events.

new_alignment(align)—Sets the alignment style. The align value can be any
object, but by convention is a string or None, where None indicates that the writer’s
preferred alignment should be used. Conventional align values are left, center,
right, and justify.

new_font(font)—Sets the font style. The value of font will be None, indicating that
the device’s default font should be used, or a tuple of the form (size, italic, bold,
teletype). Size will be a string indicating the size of font that should be used;
specific strings and their interpretation must be defined by the application. The
italic, bold, and teletype values are Boolean indicators specifying which of those
font attributes should be used.

17 0672319942 CH13 11/15/00 11:39 AM Page 527

528 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

new_margin(margin, level)—Sets the margin level to the integer level and the
logical tag to margin. Interpretation of the logical tag is at the writer’s discretion;
the only restriction on the value of the logical tag is that it not be a false value for
non-zero values of level.

new_spacing(spacing)—Sets the spacing style to spacing.

new_styles(styles)—Sets additional styles. The styles value is a tuple of arbitrary
values; the value AS_IS should be ignored. The styles tuple can be interpreted either
as a set or as a stack depending on the requirements of the application and writer
implementation.

send_line_break()—Breaks the current line.

send_paragraph(number)—Produces a paragraph separation of at least the given
number of blank lines, or the equivalent. The blankline value will be an integer.
Note that the implementation will receive a call to send_line_break() before this
call if a line break is needed; this method should not include ending the last line of
the paragraph. It is only responsible for vertical spacing between paragraphs.

send_hor_rule(*args, **kw)—Displays a horizontal rule on the output device.
The arguments to this method are entirely application- and writer-specific, and
should be interpreted with care. The method implementation can assume that a line
break has already been issued via send_line_break().

send_flowing_data(data)—Outputs character data that might be word wrapped
and re-flowed as needed. Within any sequence of calls to this method, the writer
can assume that spans of multiple whitespace characters have been collapsed to
single space characters.

send_literal_data(data)—Outputs character data that has already been formatted
for display. Generally, this should be interpreted to mean that line breaks indicated
by newline characters should be preserved and no new line breaks should be
introduced. The data can contain embedded newline and tab characters, unlike data
provided to the send_formatted_data() interface.

send_label_data(data)—Sets data to the left of the current left margin, if possible.
The value of data is not restricted; treatment of non-string values is entirely
application- and writer-dependent. This method will only be called at the beginning
of a line.

17 0672319942 CH13 11/15/00 11:39 AM Page 528

529CHAPTER 13 Data Manipulation
Handling Other Markup Languages

Writer Implementations
Three implementations of the writer object interface are provided as examples by this
module. Most applications will need to derive new writer classes from the NullWriter
class.

NullWriter()—A writer that only provides the interface definition; no actions are
taken on any methods. This should be the base class for all writers that do not need
to inherit any implementation methods.

AbstractWriter()—A writer that can be used in debugging formatters, but not
much else. Each method simply announces itself by printing its name and
arguments on standard output.

DumbWriter([file[, maxcol = 72]])—A simple writer class that writes output on
the file object passed in as file or, if file is omitted, on standard output. The output
is simply word wrapped to the number of columns specified by maxcol. This class is
suitable for reflowing a sequence of paragraphs.

Using the Formatter Module
The following example removes all tags from an HTML file, leaving only the plain
text left.

1: from htmllib import HTMLParser

2: from formatter import AbstractFormatter, DumbWriter

3: htmlfile = open(“stuff.html”)

4: parser = HTMLParser(AbstractFormatter(DumbWriter()))

5: parser.feed(htmlfile.read())

6: parser.close()

7: htmlfile.close()

The DumbWriter function is used here to dump all the non-tag contents of htmlfile to
the standard output.

Note that the file opened by line 3 can also be a URL. You just need to import and use
the urllib.urlopen function, like this:

from urllib import urlopen

htmlfile = urlopen(‘http://www.lessaworld.com/’)

17 0672319942 CH13 11/15/00 11:39 AM Page 529

530 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

MIME Parsing and Manipulation

MIME (Multipurpose Internet Mail Extensions) is a standard for sending multipart
multimedia data through Internet mail. This standard exposes mechanisms for
specifying and describing the format of Internet message bodies.

A MIME-encoded message looks similar to the following:

Content-Type: multipart/mixed; boundary=”====_238659232==”

Date: Mon, 03 Apr 2000 18:30:23 -0400

From: Andre Lessa <alessa@lessaworld.com>

To: Renata Lessa <rlessa@lessaworld.com>

Subject: Python Book

—====_238659232==

Content-Type: text/plain; charset=”us-ascii”

Sorry Honey, I am late for dinner. I am still writing Chapter 13. Meanwhile,

take a look at the following Cooking material that you’ve asked me to find in

the Internet.

—====_238659232==

Content-Type: application/msword; name=”cookmasters.doc”

Content-Transfer-Encoding: base64

Content-Disposition: attachment, filename=” cookmasters.doc”

GgjEPgkwIr4G29m1Lawr7GgjEPgkwIr4G29m14tifkAb3qPgGgjEPgkwIr4G29m1La29m14tifkAb

3qPgGgjEPgkwIr4G29m1Law29m14tifkAb3qPgGgjEPgkwIr4G29m1Lawr629m14tifkAb3qPgIr4

G29m1Lawr2GgjEPgkwIr4G29m1Lawr29m14tifkAb3qPg29m14tifkAb3qPgGgjEPgkwIr4G29m1L

awr8Ab3qPgGgjEPgkwIr4G29m1GgjEPgkwIr4G29m1Lawr7GgjEPgkwIr4G29m1Hawr0==

—====_238659232==—

Note that the message is broken into parts, and each part is delimited by a boundary.
The boundary itself works like a separator, and its value is defined in the first line of
the message, right next to the first content-type.

Every part starts with a boundary mark, and then it is followed by a set of RFC822
headers telling you what is the content-type and the encoding format of the data for
that part, and next, separated by a blank line, we have the data itself.

Check out the last line of the message. Do you see the trailing — after the boundary?
That’s how the message identifies the final boundary.

17 0672319942 CH13 11/15/00 11:39 AM Page 530

531CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

The next couple of modules are tools for mail and news message processing that use
MIME messages. For more information, check out

RFC 1521

http://info.internet.isi.edu/in-notes/rfc/files/rfc1521.txt

rfc822

The rfc822 module parses mail headers that are defined by the Internet standard RFC
822. This standard specifies the syntax for text messages that are sent among computer
users, within the framework of electronic mail. These headers are used in a number of
contexts including mail handling and in the HTTP protocol. For more information,
check out

Internet standards—Standard for ARPA Internet Text Messages

http://info.internet.isi.edu/in-notes/rfc/files/rfc822.txt

This module defines a class, Message, which represents a collection of email headers. It
is used in various contexts, usually to read such headers from a file. This module also
defines a helper class AddressList for parsing RFC822 addresses. A dictionary-like
object represents the Message object, where the message headers are the dictionary
keys.

mimetools

The mimetools module provides utility tools for parsing and manipulation of MIME
multipart and encoded messages. This module contains a special dictionary-like object
called Message that collects some information about MIME encoded messages. mime-
version, content-type, charset, to, date, from, and subject are some examples of
dictionary keys that the object possesses. This module also implements some utility
functions. The choose_boundary() function creates a unique boundary string.

The next two functions encode and decode file objects based on the encoding format,
which can be “quoted-printable”, “base64”, or “uuencode”.

• decode(inputfileobject, outputfileobject, encoding)

• encode(inputfileobject, outputfileobject, encoding)

The functions copyliteral(input, output) and copybinary(input, output) read the
input file (until EOF) and write them to the output file object. Note that the objects
must be opened.

17 0672319942 CH13 11/15/00 11:39 AM Page 531

532 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Take a look at the message = mimetools.Message(fileobject) function. This function
returns a Message object derived from the rfc822.Message class. Therefore, it supports
all the methods supported by rfc822.Message, plus the following ones:

message.gettype()—Returns the type/subtype from the content-type header. The
default value is text/plain.

message.getencoding()—Returns the message encoding method. The default value
is 7bit.

message.getplist()—Returns the list of parameters from the content-type header.

message.getmaintype()—Returns the main type of the content-type header. The
default value is text.

message.getsubtype()—Returns the subtype of the content-type header. The
default value is plain.

message.getparam(name)—Returns the value of the first name parameter found in
the content-type header.

MimeWriter

The MimeWriter module implements a generic file-writing class, also called
MimeWriter, that is used to create MIME encoded multipart files (messages).

message = MimeWriter.MimeWriter(fileobject_forwriting)

The following function adds a header line (“key: value”) to the MIME message.

message.addheader(key, value [,prefix = 0])

If prefix = 0, the header line is appended to the end; if it is 1, the line is inserted at
the start.

Next, you have some methods that are exposed by the message object.

message.flushheaders()—Writes all headers to the file.

message.startbody(ctype [,plist [,prefix = 1]])—Specifies the content-type,
and a list of additional parameters to be included in the message body. It returns a
file-like object that must be used to write to the message body.

17 0672319942 CH13 11/15/00 11:39 AM Page 532

533CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

message.startmultipartbody(subtype [,boundary [,plist [,prefix = 1]]])—
Specifies the multipart subtype, a possible user-defined boundary, and a list of
additional parameters to be included in the multipart message subtype. It returns a
file-like object that must be used to write to the message body.

message.nextpart()—Creates a new part in a multipart message. The startbody
method must be called before calling this one.

message.lastpart()—Indicates the last part of a multipart message.

The next code introduces the basic usage of the MimeWriter module, along with
other supporting modules.

import MimeWriter

import quopri, base64

msgtext = “This message has 3 images as attachments.”

files = [“sun.jpg”, “rain.jpg”, “beach.jpg”]

mimefile = “mymessage.msg”

mimemsg = MimeWriter.MimeWriter(sys.stdout)

mimemsg.addheader(“Mime-Version”,”1.0”)

mimemsg.startmultipartbody(“mixed”)

msgpart = mimemsg.nextpart()

msgpart.addheader(“Content-Transfer-Encoding”, “quoted-printable”)

msgpart.startbody(“text/plain”)

quopri.encode(StringIO.StringIO(msgtext), mimefile, 0)

for file in files:

msgpart = mimemsg.nextpart()

msgpart.addheader(“Content-Transfer-Encoding”, “base64”)

msgpart.startbody(“text/jpeg”)

base64.encode(open(file, “rb”), mimefile)

mimemsg.lastpart()

multifile

The multifile module enables you to treat distinct parts of a text file as file-like input
objects. Usually, it uses text files that are found in MIME encoded messages. This module

17 0672319942 CH13 11/15/00 11:39 AM Page 533

534 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

works by splitting a file into logical blocks that are delimited by a unique boundary
string. Next, you will be exposed to the class implemented by this module: MultiFile.

MultiFile (fp[, seekable])
Create a multifile. You must instantiate this class with an input object argument for the
MultiFile instance to get lines from, such as a file object returned by open(). MultiFile
only looks at the input object’s readline(),seek(), and tell() methods, and the latter
two are only needed if you want random access to the individual MIME parts. To use
MultiFile on a non-seekable stream object, set the optional seekable argument to
false; this will prevent using the input object’s seek() and tell() methods.

It will be useful to know that in MultiFile’s view of the world, text is composed of
three kinds of lines: data, section-dividers, and end-markers. MultiFile is designed to
support parsing of messages that might have multiple nested message parts, each with
its own pattern for section-divider and end-marker lines.

A MultiFile instance has the following methods:

push(str)—Pushes a boundary string. When an appropriately decorated version of
this boundary is found as an input line, it will be interpreted as a section-divider or
end-marker. All subsequent reads will return the empty string to indicate end-of-
file, until a call to pop() removes the boundary or a next() call re-enables it.

It is possible to push more than one boundary. Encountering the most-recently-
pushed boundary will return EOF; encountering any other boundary will raise an
error.

readline(str)—Reads a line. If the line is data (not a section-divider, end-marker,
or real EOF), return it. If the line matches the most-recently-stacked boundary,
return ‘’ and set self.last to 1 or 0 according to if the match is or is not an end-
marker. If the line matches any other stacked boundary, raise an error. On
encountering end-of-file on the underlying stream object, the method raises Error
unless all boundaries have been popped.

readlines(str)—Returns all lines remaining in this part as a list of strings.

read()—Reads all lines, up to the next section. Returns them as a single (multiline)
string. Note that this doesn’t take a size argument.

next()—Skips lines to the next section (that is, reads lines until a section-divider or
end-marker has been consumed). Returns true if there is such a section, false if an
end-marker is seen. Re-enables the most-recently-pushed boundary.

17 0672319942 CH13 11/15/00 11:39 AM Page 534

535CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

pop()—Pops a section boundary. This boundary will no longer be interpreted as
EOF.

seek(pos[, whence])—Seeks. Seek indices are relative to the start of the current
section. The pos and whence arguments are interpreted as if for a file seek.

tell()—Returns the file position relative to the start of the current section.

is_data(str)—Returns true if str is data and false if it might be a section
boundary. As written, it tests for a prefix other than - at the start of a line (which all
MIME boundaries have), but it is declared so that it can be overridden in derived
classes.

Note
Note that this test is intended as a fast guard for the real boundary tests; if it always
returns false, it will merely slow processing, not cause it to fail.

section_divider(str)—Turns a boundary into a section-divider line. By default,
this method prepends - (which MIME section boundaries have), but it is declared
so that it can be overridden in derived classes. This method needs not append LF
or CR-LF because a comparison with the result ignores trailing whitespace.

end_marker(str)—Turns a boundary string into an end-marker line. By default, this
method prepends - and appends - (similar to a MIME-multipart end-of-message
marker), but it is declared so that it can be overridden in derived classes. This
method need not append LF or CR-LF, because a comparison with the result
ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level—This is the nesting depth of the current part.

last—True if the last end-of-file was for an end-of-message marker.

The following code exemplifies the multifile module.

1: import multifile

2: import rfc822, cgi

3:

4: multipart = “multipart/”

5: filename=open(“mymail.msg”)

17 0672319942 CH13 11/15/00 11:39 AM Page 535

536 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

6: msg = rfc822.Message(filename)

7:

8: msgtype, args = cgi.parse_header(msg[“content-type”])

9:

10: if msgtype[:10] == multipart:

11: multifilehandle = multifile.MultiFile(filename)

12: multifilehandle.push(args[“boundary”])

13: while multifilehandle.next():

14: msg = rfc822.Message(multifilehandle)

15: print msg.read()

16: multifilehandle.pop()

17: else:

18: print “This is not a multi-part message!”

19: print “---------------------------------”

20: print filename.read()

Line 6: msg is a dictionary-like object. You can apply dictionary methods to this object,
such as msg.keys(), msg.values(), and msg.items().

Line 8: Parses the content-type header.

Lines 11-16: Handles the multipart message.

Line 15: Prints the multipart message.

Line 20: Prints the plain message, when necessary.

mailcap

The mailcap module is used to read mailcap files and to configure how MIME-aware
applications react to files with different MIME types.

Note
Mailcap files are used to inform applications, including mail readers and Web
browsers, how to process files with different MIME types. A small section of a mailcap
file looks like this:

image/jpeg; imageviewer %s

application/zip; gzip %s

The next code demonstrates the usage of the mailcap module.

>>> import mailcap

>>> capsdict = mailcap.getcaps()

>>> command, rawentry = mailcap.findmatch(capsdict, “image/jpeg”, \

filename=”/usr/local/uid213”)

>>> print command

17 0672319942 CH13 11/15/00 11:39 AM Page 536

537CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

imageviewer /usr/local/uid213

>>> print rawentry

image/jpeg; imageviewer %s

The getcaps() function reads the mailcap file and returns a dictionary mapping
MIME types to mailcap entries; and the findmatch() function searches the dictionary
for a specific MIME entry, returning a command line ready to be executed along with
the raw mailcap entry.

mimetypes

The mimetypes module supports conversions between a filename or URL and the MIME
type associated with the filename extension. Essentially, it is used to guess the MIME
type associated with a file, based on its extension.

For example,

Filename extension MIME type associated(Main type/Sub type)

.html text/html

.gif image/gif

.xml application/xml

A complete list of extensions and their associated MIME types can be found by typing

import mimetypes

for EXTENSION in mimetypes.types_map.keys():

print EXTENSION, “ = “, mimetypes.types_map[EXTENSION]

Next, you have a list of functions exposed by the mimetypes module.

mimetypes.guess_type(url_or_filename)—Returns a tuple (type, encoding), such
as (‘image/jpeg’, None) and (‘application/zip’, None).

mimetypes.guess_extension(type)—Tries to guess the file extension based on a
MIME type.

mimetypes.init([files])—Initializes the module after reading a file stored in the
following format:

type/subtype: extension1, extension2, ...

...

mimetypes.read_mime_types(filename)—Reads a file and returns a dictionary
mapping MIME types and the filename extensions associated to that type.

17 0672319942 CH13 11/15/00 11:39 AM Page 537

538 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

The following dictionaries are also exposed by the mimetypes module.

mimetypes.suffix_map—Dictionary that maps suffixes to suffixes.

mimetypes.encodings_map—Dictionary that maps encoding types to filename
extensions.

mimetypes.types_map—Dictionary that maps MIME types to filename extensions.

base64

The base64 module performs base64 encoding and decoding of arbitrary binary
strings into text string that can be safely emailed or posted. This module is commonly
used to encode binary data in mail attachments.

The arguments of the next functions can be either filenames or file objects. The first
argument is open for reading:

base64.encode(messagefilehandle, outputfilehandle)

The second argument is open for writing:

base64.decode(encodedfilehandle, outputfilehandle)

This module also implements the functions encodestring(stringtoencode) and
decodestring(encodedstring), which are built on top of the encode and decode
function. Both internally use the StringIO module in order to enable the use of the
base64 module to encode and decode strings. Note that the decodestring() function
returns a string that contains the decoded binary data.

quopri

The quopri module performs quoted-printable transport encoding and decoding of
MIME quoted-printable data, as defined in RFC 1521: “MIME (Multipurpose
Internet Mail Extensions) Part One”. The quoted-printable encoding is designed for
data in which there are relatively few nonprintable characters; the base64 encoding
scheme available via the base64 module is more compact if there are many such
characters, as when sending a graphics file. This format is primarily used to encode
text files.

decode(input, output) decodes the contents of the input file and writes the resulting
decoded binary data to the output file. input and output must either be file objects or
objects that mimic the file object interface. input will be read until input.read()
returns an empty string.

17 0672319942 CH13 11/15/00 11:39 AM Page 538

539CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

encode(input, output, quotetabs) encodes the contents of the input file and writes
the resulting quoted-printable data to the output file. input and output must either be
file objects or objects that mimic the file object interface. input will be read until
input.read() returns an empty string.

This module only supports file-to-file conversions. If you need to handle string
objects, you need to convert them using the StringIO module.

import quopri

quopri.encode(infile, outfile, tabs=0)

quopri.decode(infile, outfile)

This module is purely based on plain U.S. ASCII text. Non-U.S. characters are
mapped to an = followed by two hexadecimal digits. The = character resembles =3D,
and whitespaces at the end of lines are represented by =20.

mailbox

The mailbox module implements classes that allow easy and uniform access to read
various mailbox formats in a UNIX system.

import mailbox

mailboxname = “/tmp/mymailbox”

mbox = mailbox.UnixMailbox(open(mailboxname))

msgcounter = 0

while 1:

mailmsg = mbox.next()

if not mailmsg:

break

msgcounter = msgcounter + 1

messagebody = mailmsg.fp.read()

print messagebody

print

print “The message counter is %d” % (msgcounter)

mimify

The mimify module has functions to convert and process simple and multi-part mail
messages to/from MIME format—messages are converted to plain text. This module
can be used either as a command line tool, or as a regular Python module.

17 0672319942 CH13 11/15/00 11:39 AM Page 539

540 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

To encode, you need to type:

$mimify.py -e raw_message mime_message

or

import mimify, StringIO, sys

msgfilename = “msgfilename.msg”

filename = StringIO.StringIO()

mimify.unmimify(msgfilename, filename, 1)

file.seek(0)

mimify.mimify(filename, sys.stdout)

To decode, type

$mimify.py -f mime_message raw_message

or

import mimify, sys

mimify.unmimify(messagefilename, sys.stdout, 1)

Message(file[, seekable])
A Message instance is instantiated with an input object as parameter. Message relies
only on the input object having a readline() method; in particular, ordinary file
objects qualify. Instantiation reads headers from the input object up to a delimiter line
(normally a blank line) and stores them in the instance.

This class can work with any input object that supports a readline() method. If the
input object has seek and tell capability, the rewindbody() method will work; also,
illegal lines will be pushed back onto the input stream. If the input object lacks seek
and tell capability but has an unread() method that can push back a line of input,
Message will use that to push back illegal lines. Thus, this class can be used to parse
messages coming from a buffered stream.

The optional seekable argument is provided as a workaround for certain studio
libraries in which tell() discards buffered data before discovering that the lseek()
system call doesn’t work. For maximum portability, you should set the seekable
argument to zero to prevent that initial tell() when passing in an unseekable object
such as a file object created from a socket object.

Input lines as read from the file might either be terminated by CR-LF or by a single
linefeed; a terminating CR-LF is replaced by a single linefeed before the line is stored.

17 0672319942 CH13 11/15/00 11:39 AM Page 540

541CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

All header matching is done independent of upper- or lowercase; for example,
m[‘From’], m[‘from’], and m[‘FROM’] all yield the same result.

AddressList(field)—You can instantiate the AddressList helper class using a
single string parameter, a comma-separated list of RFC 822 addresses to be parsed.
(The parameter None yields an empty list.)

parsedate(date)—attempts to parse a date according to the rules in RFC 822.
However, some mailers don’t follow that format as specified, so parsedate() tries to
guess correctly in such cases. date is a string containing an RFC 822 date, such as
‘Mon, 20 Nov 1995 19:12:08 -0500’. If it succeeds in parsing the date,
parsedate() returns a 9-tuple that can be passed directly to time.mktime();
otherwise None will be returned.

parsedate_tz(date)—performs the same function as parsedate(), but returns
either None or a 10-tuple; the first nine elements make up a tuple that can be
passed directly to time.mktime(), and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time). (Note that the
sign of the timezone offset is the opposite of the sign of the time.timezone variable
for the same timezone; the latter variable follows the POSIX standard, whereas this
module follows RFC 822.) If the input string has no timezone, the last element of
the tuple returned is None.

mktime_tz(tuple)—Turn a 10-tuple as returned by parsedate_tz() into a UTC
timestamp. It the timezone item in the tuple is None, assume local time. Minor
deficiency: this first interprets the first eight elements as a local time and then
compensates for the timezone difference; this might yield a slight error around
daylight savings time switch dates. It is not enough to worry about for common use.

Message Objects
A message object behavior is very similar to a dictionary. A Message instance has also
the following methods:

rewindbody()—Seeks to the start of the message body. This only works if the file
object is seekable.

isheader(line)—Returns a line’s canonicalized fieldname (the dictionary key that
will be used to index it) if the line is a legal RFC822 header; otherwise returns
None (implying that parsing should stop here and the line be pushed back on the
input stream). It is sometimes useful to override this method in a subclass.

17 0672319942 CH13 11/15/00 11:39 AM Page 541

542 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

islast(line)—Returns true if the given line is a delimiter on which Message
should stop. The delimiter line is consumed, and the file object’s read location is
positioned immediately after it. By default, this method just checks that the line is
blank, but you can override it in a subclass.

iscomment(line)—Returns true if the given line should be ignored entirely, just
skipped. By default, this is a stub that always returns false, but you can override it in
a subclass.

getallmatchingheaders(name)—Returns a list of lines consisting of all headers
matching name, if any. Each physical line, whether it is a continuation line or not, is
a separate list item. Returns the empty list if no header matches name.

getfirstmatchingheader(name)—Returns a list of lines comprising the first header
matching name, and its continuation line(s), if any. Returns None if no header
matches name.

getrawheader(name)—Returns a single string consisting of the text after the colon
in the first header matching name. This includes leading whitespace, the trailing
linefeed, and internal linefeeds and whitespace if any continuation line(s) were
present. Returns None if no header matches name.

getheader(name[, default])—Similar to getrawheader(name), but strips leading
and trailing whitespace. Internal whitespace is not stripped. The optional default
argument can be used to specify a different default to be returned when there is no
header matching name.

get(name[, default])—An alias for getheader(), to make the interface more
compatible with regular dictionaries.

getaddr(name)—Returns a pair (full name, email address) parsed from the string
returned by getheader(name). If no header matching name exists, returns (None,
None); otherwise both the full name and the address are (possibly empty) strings.

Example: If m’s first From header contains the string ‘alessa@lessaworld.com
(Andre Lessa)’, m.getaddr(‘From’) will yield the pair (‘Andre Lessa’,
‘alessa@lessaworld.com’). If the header contained ‘Andre Lessa
<alessa@lessaworld.com>’ instead, it would yield the exact same result.

getaddrlist(name)—Similar to getaddr(list), but parses a header containing a list
of email addresses (for example, a To header) and returns a list of (full name, email
address) pairs (even if there was only one address in the header). If no header
matches name, returns an empty list.

17 0672319942 CH13 11/15/00 11:39 AM Page 542

543CHAPTER 13 Data Manipulation
MIME Parsing and Manipulation

If multiple headers exist that match the named header (for example, if there are
several CC headers), all are parsed for addresses. Any continuation lines that the
named headers contain are also parsed.

Note that the current version of this function is not really correct. It yields bogus
results if a full name contains a comma.

getdate(name)—Retrieves a header using getheader() and parses it into a 9-tuple
compatible with time.mktime(). If no header matches name, or it is unparsable,
returns None.

Date parsing appears to be a black art, and not all mailers adhere to the standard.
Although it has been tested and found correct on a large collection of email from
many sources, it is still possible that this function might occasionally yield an
incorrect result.

getdate_tz(name)—Retrieves a header using getheader() and parses it into a 10-
tuple; the first nine elements will make a tuple compatible with time.mktime(), and
the 10th is a number giving the offset of the date’s timezone from UTC. Similar to
getdate(), if no header matches name, or it is unparsable, it returns None.

Message instances also support a read-only mapping interface. In particular: m[name] is
similar to m.getheader(name), but raises KeyError if there is no matching header; and
len(m), m.has_key(name), m.keys(), m.values(), and m.items() act as expected (and
consistently).

Finally, Message instances have two public instance variables:

• headers—A list containing the entire set of header lines, in the order in which
they were read (except that setitem calls can disturb this order). Each line
contains a trailing newline. The blank line terminating the headers is not
contained in the list.

• fp—The file object passed at instantiation time.

AddressList Objects
An AddressList instance has the following methods:

__len__(name)—Returns the number of addresses in the address list.

__str__(name)—Returns a string representation of the address list. Addresses are
rendered in “name” <host@domain> form, comma separated.

17 0672319942 CH13 11/15/00 11:39 AM Page 543

544 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

__add__(name)—Returns an AddressList instance that contains all addresses in
both AddressList operands, with duplicates removed (set union).

__sub__(name)—Returns an AddressList instance that contains every address in the
left-hand AddressList operand that is not present in the right-hand address
operand (set difference).

Finally, AddressList instances have one public instance variable: addresslist, which is
a list of tuple string pairs, one per address. In each member, the first is the canoni-
calized name part of the address, the second is the route-address (@-separated
host-domain pair).

The following example demonstrates the use of the rfc822 module:

import rfc822

mailbox_filename = “mymailbox.msg”

file_handle = open(“mailbox_filename”)

messagedic = rfc822.Message(file_handle)

content_type = messagedic[“content-type”]

from_field = messagedic[“From”]

to_field = messagedic.getaddr(“To”)

subject_field = messagedic[“Subject”]

file_handle.close()

print content_type, from_field, to_field, subject_field

Generic Conversion Functions

The next couple of modules are used for general data conversions.

netrc

The netrc module parses, processes, and encapsulates the .netrc configuration file
format used by UNIX FTP program and other FTP clients.

import netrc

netrc_filename = “/usr/local/myconfig.netrc”

netrccfg = netrc.netrc(netrc_filename)

17 0672319942 CH13 11/15/00 11:39 AM Page 544

545CHAPTER 13 Data Manipulation
Generic Conversion Functions

l, a, p = netrccfg.authenticators(“connection.msg”)

print “My Login = %s” % (l)

print “My Password = %s” % (p)

print “My Account= %s” % (a)

mhlib

The mhlib module provides a Python interface to access MH folders/mailboxes and
their contents. This module contains three basic classes:

MH ([path[, profile]])—Represents a particular collection of MH folders.

Folder (mh, name)—Represents a single folder and its messages.

Message (folder, number[, name])—Represents individual messages in a folder.
The Message class is derived from mimetools.Message.

MH Objects
MH instances have the following methods:

error(format[, ...])—Prints an error message: can be overridden.

getprofile(key)—Returns a profile entry (None if not set).

getpath()—Returns the mailbox pathname.

getcontext()—Return the current folder name.

setcontext(name)—Sets the current folder name.

listfolders()—Returns a list of top-level folders.

listallfolders()—Returns a list of all folders.

listsubfolders(name)—Returns a list of direct subfolders of the given folder.

listallsubfolders(name)—Returns a list of all subfolders of the given folder.

makefolder(name)—Creates a new folder.

deletefolder(name)—Deletes a folder: must have no subfolders.

openfolder(name)—Returns a new open folder object.

17 0672319942 CH13 11/15/00 11:39 AM Page 545

546 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

Folder Objects
Folder instances represent open folders and have the following methods:

error(format[, ...])—Prints an error message; can be overridden.

getfullname()—Returns the folder’s full pathname.

getsequencesfilename()—Returns the full pathname of the folder’s sequences file.

getmessagefilename(n)—Returns the full pathname of message n of the folder.

listmessages()—Returns a list of messages in the folder (as numbers).

getcurrent()—Returns the current message number.

setcurrent(n)—Sets the current message number to n.

parsesequence(seq)—Parses msgs syntax into a list of messages.

getlast()—Gets last message, or 0 if no messages are in the folder.

setlast(n)—Sets last message (internal use only).

getsequences()—Returns dictionary of sequences in folder. The sequence names
are used as keys, and the values are the lists of message numbers in the sequences.

putsequences(dict)—Returns dictionary of sequences in folder name: list.

removemessages(list)—Removes messages in list from folder.

refilemessages(list, tofolder)—Moves messages in list to other folder.

movemessage(n, tofolder, ton)—Moves one message to a given destination in
another folder.

copymessage(n, tofolder, ton)—Copies one message to a given destination in
another folder.

Message Objects
openmessage(n) returns a new open message object (costs a file descriptor).

binhex

The binhex module encodes and decodes files in binhex4 format. This format is
commonly used to represent files on Macintosh systems.

import binhex, sys

infile = “filename.jpg”

binhex.binhex(infile, sys.stdout)

17 0672319942 CH13 11/15/00 11:39 AM Page 546

547CHAPTER 13 Data Manipulation
Generic Conversion Functions

binhex(inputfile, outputfile) converts a binary file (inputfile) to a binhex
file(outputfile).

hexbin(inputfile [, outputfile]) converts a binhex file (inputfile) back to a
regular binary file (outputfile). When the output name is omitted, the interpreter
uses the same one provided in the first argument.

uu

The uu module encodes and decodes files in uuencode format. This module does its
job by transferring binary data over an ASCII-only connection. Wherever a file
argument is expected, the methods accept a file-like object. For backwards compati-
bility, a string containing a pathname is also accepted, and the corresponding file will
be opened for reading and writing; the pathname - is understood to mean the standard
input or output. However, this interface is deprecated; it’s better for the caller to open
the file itself, and be sure that, when required, the mode is rb or wb on Windows or
DOS.

The code of this module was contributed by Lance Ellinghouse and modified by Jack
Jansen.

The uu module defines the following functions:

encode (in_file, out_file[, name[, mode]])—This function uuencodes file
in_file into file out_file. The uuencoded file will have the header specifying name
and mode as the defaults for the results of decoding the file. The default defaults
are taken from in_file, or - and 0666, respectively.

decode (in_file[, out_file[, mode]])—This call decodes uuencoded file in_file
placing the result on file out_file. If out_file is a pathname, the mode is also set.
Defaults for out_file and mode are taken from the uuencode header.

Note that in the previous functions, both arguments can be either filenames or file
objects.

This format used to be popular on the Usenet, but nowadays, it is being superceded by
base64 encoding.

Each encoded data stream starts with a begin line, which also includes the file
privileges, the filename, and ends with an end line, as you can see in the following
example:

begin 755 executeprog.py

KF_EF_#JFJ! ...

end

17 0672319942 CH13 11/15/00 11:39 AM Page 547

548 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

binascii

The binascii module implements methods to convert data between binary and
various ASCII-encoded binary representations, including binhex, uu, and base64. Note
that normally, you would just use the binhex, uu, or base64 modules rather than
binascii.

This module implements two exceptions: Error (raised on errors), and Incomplete
(raised on incomplete data). The following methods are implemented by this module:

binascii.b2a_base64(binarydata)—Converts a string of binary data to a string of
base64-encoded characters.

binascii.a2b_base64(string)—Converts a string of base64-encoded data to
binary.

binascii.b2a_uu(binarydata)—Converts a string of binary data to a string of
uuencoded characters.

binascii.a2b_uu(string)—Converts a string of uuencoded data to binary.

binascii.b2a_hqx(binarydata)—Converts a string of binary data to a string of
binhex4-encoded characters.

binascii.a2b_hqx(string)—Converts a string of binhex4-encoded data to binary.

binascii.rledecode_hqx(binarydata)—Decompresses the binary data using the
RLE (Run-Length Encoding) method. If the binary data is incomplete, an Incomplete
exception is raised.

binascii.rleecode_hqx(binarydata)—Compresses the binary data according to
the RLE method.

binascii.crc_hqx(binarydata, crc)—Returns the checksum of a given binhex4-
binary data. The argument crc indicates the checksum’s starting value.

Note that starting with Python 2.0, there are two more functions to include in the list
provided by the binascii module. They are called b2a_hex and a2b_hex. They are
used to convert between binary data and its hexadecimal representation.

17 0672319942 CH13 11/15/00 11:39 AM Page 548

549CHAPTER 13 Data Manipulation
Summary

Summary

This chapter provides information concerning how to use Python for data parsing and
manipulation. You learned how to interpret XML, SGML, and HTML documents
and how to parse and manipulate email messages, among other things. As you might
already know, Python can be used as a very effective and productive tool to parse and
manipulate information from the Web.

Extensible Markup Language describes a class of data objects called XML documents
and partially describes the behavior of computer programs that process them. For
those who want to play around with XML in Python, there is a Python/XML package
to serve several purposes at once. This package contains everything required for basic
XML applications, along with documentation and sample code.

Besides that, the xmllib module serves as the basis for parsing text files formatted in
XML. Note that xmllib is not XML 1.0 compliant, and it doesn’t provide any
Unicode support. It provides just simple XML support for ASCII only element and
attribute names.

Many XML-based technologies are available for Python/XML development, such as

SAX—This is a common event-based interface for object-oriented XML parsers.

The Document Object Model (DOM)—This is a standard interface for manipu-
lating XML and HTML documents developed by the World Wide Web
Consortium. 4DOM is a Python library for XML and HTML processing and
manipulation using the W3C’s Document Object Model for interface.

4XSLT—This is an XML transformation processor based on the W3C’s specifi-
cation.

XML Bookmark Exchange Language (XBEL)—This is an Internet “bookmarks”
interchange format.

SOAP—This is an XML/HTTP-based protocol for accessing services, objects, and
servers in a platform-independent manner. Scarab is a minimal Python SOAP
implementation.

PythonPoint—This has a simple XML markup language for doing presentation
slides and converting them to PDF documents.

Pyxie—This is an Open Source XML processing library for Python.

17 0672319942 CH13 11/15/00 11:39 AM Page 549

550 PYTHON DEVELOPER’S HANDBOOK

PART III Network Programming

XML-RPC—This is a specification and a set of implementations that allow
software running on different operating systems and different environments to
make procedure calls over the Internet. It is important to say that Python has its
own implementation of XML-RPC.

XDR—This is a standard for data description and encoding. Protocols such as RPC
and NFS use XDR to describe the format of their data.

But Python is not just XML. It also provides support for other markup languages.

The sgmllib module is an SGML (Standard Generalized Markup Language) parser
subset. Although it has a simple implementation, it is powerful enough to build the
HTML parser.

The htmllib module defines a parser class that can serve as a base for parsing text files
formatted in HTML. Two helper modules are used by htmllib:

• The htmlentitydefs module is a dictionary that contains all the definitions for
the general entities defined by HTML 2.0.

• The formatter module is used for generic output formatting by the HTMLPARSER
class of the htmllib module.

Apart from markup languages, this chapter also covers mail messages manipulation.

MIME (Multipurpose Internet Mail Extensions) is a standard for sending multi-part
multimedia data through Internet mail. This standard exposes mechanisms for
specifying and describing the format of Internet message bodies. Python provides
many modules to support MIME messages, including the following:

mimetools—Provides utility tools for parsing and manipulation of MIME multi-part
and encoded messages.

MimeWriter—Implements a generic file-writing class that is used to create MIME
encoded multi-part files (messages).

multifile—Enables you to treat distinct parts of a text file as file-like input objects.

mailcap—Reads mailcap files and configures how MIME-aware applications react
to files with different MIME types.

mimetypes—Supports conversions between a filename or URL and the MIME type
associated with the filename extension.

17 0672319942 CH13 11/15/00 11:39 AM Page 550

551CHAPTER 13 Data Manipulation
Summary

quopri—Performs quoted-printable transport encoding and decoding of MIME
quoted-printable data.

mailbox—Implements classes that allow easy and uniform access to read various
mailbox formats in a UNIX system.

mimify—Contains functions to convert and process simple and multi-part mail
messages to/from MIME format.

rfc822—Parses mail headers that are defined by the Internet standard RFC 822.

Python uses the following modules for general data conversions:

netrc—Parses, processes, and encapsulates the .netrc configuration file format
used by UNIX FTP program and other FTP clients.

mhlib—Provides a Python interface to access MH folders, mailboxes, and their
contents.

base64—Performs base64 encoding and decoding of arbitrary binary strings into
text string that can be safely emailed or posted.

binhex—Encodes and decodes files in binhex4 format. This format is commonly
used to represent files on Macintosh systems.

uu—Encodes and decodes files in uuencode format.

binascii—Implements methods to convert data between binary and various ASCII-
encoded binary representations, including binhex, uu, and base64.

17 0672319942 CH13 11/15/00 11:39 AM Page 551

17 0672319942 CH13 11/15/00 11:39 AM Page 552

PART IV

Graphical Interfaces

CHAPTER

14 Python and GUIs

15 Tkinter

18 0672319942 Pt 4 11/15/00 11:40 AM Page 553

18 0672319942 Pt 4 11/15/00 11:40 AM Page 554

CHAPTER 14

Python and GUIs

My brain hurts

Those who are tired of text-based applications will find this
chapter very helpful because it shows what the available GUI
options are for designing Python graphic interfaces. After
selecting your GUI toolkit of choice, you can come back to this
chapter and check out the topic that shows how to design a
good graphical interface.

Python GUI Toolkits

Choosing a toolkit for your graphical user interface (GUI)
projects is not a simple thing. You need to research and
compare what the features are that each option has to offer.
When you decide to stick to one toolkit, you’d better be
prepared to use it for some time. Toolkit implementations are
so different that it becomes hard to change your code and your
way of thinking from one toolkit to another whenever it comes
time to move to a different implementation. Most of all, if you
always jump from one OS to another, make sure that your GUI
of choice is cross-platform, even though it is known how hard it
is to implement a cross platform GUI these days (not just in
Python). On the other hand, if you know that you will stay in a
certain platform, such as Windows or Linux, for some time be
sure that—depending on what platform you choose—there are
a lot of options for you. Of course, by choosing a cross platform

D E V E L O P E R ’ S H A N D B O O K

19 0672319942 CH14 11/15/00 11:40 AM Page 555

556 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

toolkit, you leave your options open (which is a good thing because you might change
your mind in a few years).

Although you might decide to choose something different, the Python community has
already chosen the standard choice for GUI development with Python—it is called
Tkinter, and it’s part of the standard Python distribution. For more information, see
Chapter 15, “Tkinter.”

Besides Tkinter, many other GUI solutions are supported by Python. This chapter
exposes many of them.

STDWIN, which used to be the first word in GUI for Python, is now just an
unsupported and obsolete platform-independent, low-level windowing interface.

Support for the wxWindows portable GUI class library is also available through the
wxPython interface, which runs on multiple systems, such as GTK, Motif, MS
Windows, and Mac. wxPython is a Python extension module that is quickly becoming
acclaimed among Python developers by wrapping many of the wxWindows C++
classes.

Pythonwin is a Python GUI for Windows that includes an interface to the Microsoft
Foundation Classes and a Python programming environment that uses this interface.
By the way, this programming environment is also written in Python.

Other not-so-famous GUI options are also available:

• An object-oriented, cross-platform GUI based on the Microsoft Foundation
Classes model called Wpy.

• Interfaces to WAFE, FOX, Motif, PLTK, and so forth.

• Bindings to Gnome, KDE, OPENGL, QT, and so on.

• For Mac systems, you can use its large set of modules that support the native
Mac toolbox calls. Check out the documentation that comes with the Mac
Python port for more information.

• As well as many others, as shown in this chapter.

As you can see, the number of options is large. The conclusion is that you need to
think about today’s reality and tomorrow’s possibilities. Even though we know that
Tkinter is doing a great job today, and it seems that it will for a long time, you should
open your mind to other possibilities as well. Be sure that other nice tools out there
exist. Tk is slower than most other toolkits (the one reason people find it acceptable is
that it double buffers its widgets).

19 0672319942 CH14 11/15/00 11:40 AM Page 556

557CHAPTER 14 Python and GUIs
The Tkinter Module

At this time, a couple of other bindings are becoming quite capable, such as the
bindings for Gnome/GTK, QT, and KDE. These bindings fit nicer into their
respective desktop environments.

The question that I left for you is, “What toolkit will be part of the next generation of
standard GUIs for Python?” I see many alternatives: What about you? Most people
will stick to Tkinter. That is for sure. And that’s also the reason why the next chapter
covers this fantastic toolkit implementation.

The Tkinter Module

Tkinter is Python’s de facto standard GUI toolkit. It’s the most cross-platform GUI.
Many applications are written using Tkinter because it is a very powerful and flexible
tool. Maybe the most notable features are its geometry management, which is much
better than standard windows, and its efficient Text and Canvas widgets. Many toolkits
support as good as or better geometry management (some of them are listed in this
chapter).

Tkinter, which stands for Tk interface, is the standard Python interface to the Tk GUI
toolkit from Ajuba (formerly Scriptics). Tkinter is a binding to Tcl/Tk that in former
days was developed by Sun Labs. Actually it works on top of Tcl/Tk. To use Tkinter,
you don’t need to write Tcl code. Occasionally, you will need to consult the Tk
documentation and the Tcl documentation because Tk’s low-level event handling
mechanism is considered part of Tcl.

Both Tk and Tkinter are available on most UNIX platforms, as well as on Windows
and Macintosh systems. Some platforms come with Tcl/Tk as an optional part of the
OS distribution or, in the case of Win32, as part of the Python install. Quite a lot of
Linux distributions (and other free UNIX-like Operation Systems) install Tcl/Tk by
default. Starting with the 8.0 release, Tk offers a native look and feel on all platforms.

If you ask yourself why you should use Tkinter, I would say that it is a mature and
reliable solution for graphic applications, running on every platform where it is
possible to run Tcl/Tk, which is basically every platform, but Macintosh. Tkinter and
Macs are still negotiating a healthy version.

One of the most important reasons why Tkinter was chosen to be the official GUI
option is because it seems to have a long life ahead of it. Many people are against this,
but the fact is that Tkinter is available for Windows, UNIX, and Macintosh platforms,
and being part of the Official Python distribution puts it in a position of constant
upgrading.

19 0672319942 CH14 11/15/00 11:40 AM Page 557

558 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Tkinter is probably the most documented Python GUI that you will find. As you can
see in Chapter 15, there is a respectable knowledge base available for you, given its de
facto standard status.

See the Tkinter documentation page on http://www.python.org/ for more up-to-date
information about this toolkit.

Overview of Other GUI Modules

Python’s powerful object implementation and portability has encouraged the
development of many other GUI toolkits. Consequently, you have a number of
options to try before deciding which one is the best solution for your project.

Pythonwin/MFC

Pythonwin is a wrapper, written by Mark Hammond, to the Microsoft Foundation Class
Library (MFC). It is included within the Windows Python distribution.

Actually, Pythonwin is distributed as two key components—Pythonwin.exe and
win32ui.pyd. The latter contains all the bindings to the MFC (tens of MFC objects
are exposed, including Common Controls, Property Pages/Sheets, Toolbars, and so
on), and the former is a simple wrapper that hosts win32ui.pyd, being just a sample
program for the MFC user interface environment.

Pythonwin runs only on Windows, hence, if you need to have your program running
on both Win32 and UNIX platforms, you can use the Tk libraries instead.

Using Pythonwin, you can design applications that are bound very tightly to
Windows, using MFC in an interactive and interpreted environment to provide the
features of the Windows user interface. The user interface environment provided by
Pythonwin can be embedded in almost any other application—such as OLE
clients/servers, Netscape plugins, and so on.

Inside the Pythonwin distribution, you will find a Help File (Pythonwin.hlp), which
is a reference manual for all the objects exposed in Pythonwin. That is a great start
for you.

Pythonwin’s homepage provides resources documenting the Pythonwin GUI
environment. There is also some general documentation on the MFC Architecture.
After you install Pythonwin, you can find more details in the documentation that
comes bundled in it. For more information, check out the Pythonwin home page at

http://www.python.org/windows/pythonwin/

19 0672319942 CH14 11/15/00 11:40 AM Page 558

559CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

This next document describes how to imbed the win32ui extension module in your
own application:

http://www.python.org/windows/pythonwin/EmbeddingWin32ui.html

wxPython

wxPython is a GUI toolkit for the Python programming language that works like a
wrapper to the wxWindows C++ library. It is written in Python and uses the LPGL
license.

wxPython is a relatively fast cross-platform toolkit, and maybe it hasn’t become the
standard Python GUI yet because Tkinter is more portable. As a matter of fact,
wxPython is the second most common GUI, coming just after Tkinter.

Currently only Win32 and UNIX-like systems with GTK are supported. There are
plans to support wxPython on any platform running wxWindows.

wxWindows is a free, well-established, and well-documented set of libraries that allows
C++ applications to compile and run on several different types of computers, with
minimal source code changes.

The wx in the name wxWindows means w for Windows, and x for X system. It is
supposed to be a way to say that it is a Windows system that supports both platforms.

Each supported GUI (such as GTK+, Windows, Motif, and Mac) has its own library
provided by the wxWindows, which exposes natural API for all of them. The API is
much simpler to use than other native GUI APIs. Note that you cannot use
wxWindows as a GUI translator.

wxWindows provides a lot of extra built-in functionality for you as well, and you can
decide whether you want to use it. Such extra features have the main goal of providing
ways for you to develop user-friendly GUI applications. Included in this functionality
are many useful dialogs, built-in HTML display and printing, support to virtual
filesystems, OLE automation controller class, and Open GL support. It also offers
access to common operating system operations, such as file copying and deletion, and
network support for threads and sockets. wxWindows also supports basic data
structures such as arrays, strings, linked lists, and hash tables. If you are coming from
an MFC architecture, you can consider yourself lucky because both frameworks are
very similar, which makes it easier to port applications from one to another. Python
and wxWindows have a great thing in common, both had a object-oriented
conception. That was one thing that made it possible to develop wxPython, a fully
compatible interface to the libraries. Remember that it is very easy to translate C++
calls to Python calls.

19 0672319942 CH14 11/15/00 11:40 AM Page 559

560 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

wxPython is a very active Open Source project that makes its source code freely
available for anyone who wants to use or modify it. If you want, you can also
participate by contributing with new ideas and bug solutions for the project.

Using wxPython, it is easier to run the same program on multiple platforms without
modification. Currently, wxPython supports Microsoft Windows and most UNIX-like
systems.

This extension module allows programmers to use a strong, highly functional
graphical user interface to easily write Python programs that can create instances of
wxWindows 2.0 C++ classes, and invoke their methods.

wxPython classes are mirrored as closely as possible to the wxWindows class hierarchy.
But, we need to consider the difference between Python and C++, and understand that
we don’t have a 100% match. However, these distinctions can be easily handled by
Python. For example, some methods in the wxWindows library return multiple values
by returning argument pointers; the equivalent Python method returns a tuple of
values instead.

If you go to wxPython’s Web site, you can get the latest version of wxPython, and
optionally download a self-installer for Win32 systems. The distribution includes a
pre-built extension module, documentation in HTML help format and a set of demos.
You also have available, among other things, a Linux RPM, wxPython sources, and
documentation in raw HTML.

If you will build wxPython from sources yourself, you will also need the wxWindows
sources, available from http://www.wxwindows.org/.

wxPython has its own mailing list. It is not that difficult to find WxPython’s creator,
Robin Dunn, answering messages on the list. But as in any other list, always check the
archives before posting a question.

A number of documentation resources are available for both wxPython and
wxWindows. The wxPython interface is very close to the wxWindows implementation
in C++, which makes most of the wxPython documentation be just simple notes
attached to the C++ documents that describe the places where wxPython is different.

The Web site has a series of sample programs and documentation pages that can assist
you in getting started with wxPython.

By downloading wxPython, you get two other documentation resources, on Ogl (for
graphics) and an introduction to wxWindows, which has received additional wxPython
material from Robin. This addendum demonstrates how all wxWindows classes are
implemented in wxPython. Not all binaries contain this document, hence, you might
need to get it directly from the Web site.

19 0672319942 CH14 11/15/00 11:40 AM Page 560

561CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

wxPython home page

http://wxpython.org/

wxPython Tutorial

http://wxpython.org/tutorial.html

STDWIN

STDWIN stands for Standard Window Interface. It is a platform-independent interface
to C-based window systems. Currently, STDWIN is obsolete and unsupported,
without any further development effort being made. The stdwin module has been
removed for Python 2.0. The Python people say that if you want to use stdwin, you
should grab an older Python release. There is not really any reason you would want to
use this toolkit.

Python’s stdwin module defines several new object types and functions that provide
access to the functionality of the Standard Window Interface, STDWIN.

Tip
For a complete description of STDWIN, take a look at the documentation of STDWIN
for C programmers (CWI report CR-R8817).

This module is available on systems to which STDWIN has been ported, including
UNIX, Mac, and Windows. Initially, many Python developers had adopted this
module, but later, most of them migrated to Tkinter mostly because of the limited
functionality imposed by stdwin’s design. However, if you install the latest available
version available of this module, you can still use it as a solution for many types of
applications. Of course, you probably wouldn’t want to use stdwin ever.

The next example demonstrates a simple implementation of the stdwin module.

1: import stdwin, stdwinevents

2:

3: def mainloop():

4: appwin = stdwin.open(‘Hello’)

5: while 1:

6: (type, win, detail) = stdwin.getevent()

7: if type == stdwinevents.WE_DRAW:

8: draw = win.begindrawing()

9: draw.text((0, 0), ‘Hello Python world’)

10: del draw

11: elif type == stdwinevents.WE_CLOSE:

12: break

19 0672319942 CH14 11/15/00 11:40 AM Page 561

562 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

13:

14: mainloop()

This small program works by creating a main loop, and checking the events that occur
in the windowing environment. When the program starts, it creates and draws a
window. Every time the window needs to be redrawn, a WE_DRAW event is caught by this
program (line 7), triggering the line of code that draws a message in the window (line
9). This program only ends when the user closes the window, sending the WE_CLOSE
event notification to the main loop (line 11).

The latest STDWIN distribution can be downloaded at

ftp://ftp.cwi.nl/pub/stdwin/index.html

PyQt
PyQt is a set of straightforward Python bindings for the Qt toolkit, which is written in
C++. The bindings are implemented as a single Python module called qt, and this
module exposes a very comprehensive collection of useful classes. The current version
supports Qt versions 1.42 to 2.1.x. The main new feature is support for the new Qt
v2.0.x widgets. PyQt will also compile with Qt v2.1.0-beta3, but the new Qt v2.1.x
widgets are not yet supported.

Tip
QT is a cross-platform product between UNIX and Windows. The main difference is
that you have to pay for using it on Windows platforms, whereas on UNIX, you just
need to pay for proprietary usage. It is completely legal to use Qt commercially if
you meet its license conditions.

PyQT’s Web site is a good source of documentation about PyQT and QT itself. You
can even learn how to migrate your QT calls from C++ to Python. But if you need
more information about PyQT, you can use the PyQT mailing list.

PyQT: Development Tools for Qt Libraries

http://www.thekompany.com/projects/pykde

Check the following article, written by Boudewijn Rempt and Cameron Laird, about
implementing QT bindings on the next release of Python:

http://www.sunworld.com/sunworldonline/swol-05-2000/swol-05-qt.html

PyKDE

PyKDE is a set of Python bindings, developed by Phil Thompson, for the KDE
toolkit—the KDE classes. It is important to know that the Python bindings for the Qt

19 0672319942 CH14 11/15/00 11:40 AM Page 562

563CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

toolkit (PyQt) must also be installed because it comes in a different package, and that
KDE 2 is not yet supported. Just as KDE uses QT, PyKDE uses PyQT.

The bindings are implemented as a number of Python modules corresponding to the
names of the separate KDE libraries; that is, kdecore, kdeui, kfm, kfile, khtmlw, and
kspell. They support all KDE version 1 releases. Keep in mind that KDE is licensed
under the LPGL.

You can find help and more information about PyKDE in the project mailing list,
which is the same mailing list as for PyQT. Also, note that because PyKDE requires
the KDE libraries, it runs only on the UNIX platform.

PyKDE: Development Tools for KDE Libraries

http://www.thekompany.com/projects/pykde

Python + KDE Tutorial and Examples, by Boudewijn Rempt

http://www.xs4all.nl/~bsarempt/python/tutorial.html

http://www.valdyas.org/python/tutorial.html

Wpy

Wpy is a class library system, based on the Microsoft Foundation Classes, that is used
for writing GUI code easily in Python. Wpy is designed for simplicity and portability.

The Wpy Web site provides instructions about how to install the library and use it to
run Python programs with windowing GUI capability on UNIX using Tk, Windows
3.1 (16-bit native), and Windows 95, 98, and NT (32-bit native). The source code and
the main standard binary ports are available for download.

A Python/Wpy Netscape plug-in DLL is also provided. This plug-in enables you to
write Wpy programs that access the Netscape plug-in API and run in the browser
window.

Wpy Index

http://www.cwi.nl/ftp/python/wpy/

PyGTK

GTK+ is a Free Software GUI Toolkit that has a large number of widgets, primarily
developed for use with the X Window System. Everything about GTK+ from the
object-oriented design to the Free Software LGPL licensing allows you to code your
project with the most freedom possible. GTK is similar to Qt, but the difference is

19 0672319942 CH14 11/15/00 11:40 AM Page 563

564 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

that you can develop open software, free software, or even commercial non-free
software without having to pay anything for licenses. GTK’s license allows linking to
proprietary applications although the library itself must remain free (in the sense of
freedom). The upcoming GTK+ 2.0 includes multi-language support, and framebuffer,
Mac, Windows, and BeOS ports are being worked on.

http://www.gtk.org/

PyGTK is a set of bindings developed by James Henstridge, for the GTK widget set
and GNOME libraries that runs on any platform that supports GTK. It provides an
object-oriented interface that is a slightly higher level than the C one. It automatically
does all the type casting and reference counting that you would have to do normally
with the C API. Talking about C, all the underlying C classes are documented on the
GTK homepage.

Many simple examples come with PyGTK. They are a good start for your projects.
Look in the pygtk/examples or pygnome/examples directory for details. The
pygnome/examples directory is only part of the gnome-python package that is covered in
the next section.

The following code, extracted from James Henstridge PyGTK’s Web site, shows how
simple it is to use the PyGTK module:

from gtk import *

def hello_cb(button):

print “Hello World”

window.destroy()

window = GtkWindow(WINDOW_TOPLEVEL) # create a top level window

window.connect(“destroy”, mainquit) # quit the event loop on destruction

window.set_border_width(10) # set padding round child widget

button = GtkButton(“Hello World”)

button.connect(“clicked”, hello_cb) # call hello_cb when clicked

window.add(button) # add button to window

button.show() # show button

window.show()

mainloop() # enter the main event loop

PyGTK is available for download at the following FTP sites:

ftp://ftp.gtk.org/pub/gtk/python/

19 0672319942 CH14 11/15/00 11:40 AM Page 564

565CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

ftp://ftp.python.org/pub/contrib/Graphics/

ftp://ftp.daa.com.au/pub/james/python/

More information about PyGTK can be found at James Henstridge’s PyGTK home
page:

http://www.daa.com.au/~james/pygtk/

pygtools, a Web site maintained by J.W. Bizzaro, is an excellent resource for PyGTK
information. It contains the latest news about GNU development for Python,
including GTK projects.

http://theopenlab.uml.edu/pygtools

If you need to implement GTK application on Windows, there are a couple of Python
wrappers over GTK+ that you can use, such as

PyGTK on Win32, by Kevin J. Butler

http://theopenlab.uml.edu/pygtkwin/

PyGTK on Win32, by Hans Breuer

http://hans.breuer.org/ports/

Gnome-Python
The Gnome project has built a complete free and easy-to-use desktop environment for
the user, as well as a powerful application framework for the software developer. For
more information, check out

http://www.gnome.org/

The next Web address points you to a set of bindings for the Gnome libraries for use
with python. Although gnome-python uses PyGTK, you don’t need to have the
PyGTK package compiled or individually installed before compiling gnome-python.
This library runs on UNIX only, and it is licensed under the LGPL.

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gnome-python/

Developing Gnome Applications with Gnome-Python is a very comprehensive article
written by Daniel Solin that covers the main aspects of writing a program using
Gnome-Python. It is located at

http://www.linuxdev.net/features/articles/05.24.2000/

19 0672319942 CH14 11/15/00 11:40 AM Page 565

566 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

PyOpenGL

OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications from modeling to scientific to games. Since its introduction in
1992, OpenGL has become the industry’s most widely used and supported 2D and 3D
graphics application programming interface (API), bringing thousands of applications to a
wide variety of computer platforms. OpenGL fosters innovation and speeds
application development by incorporating a broad set of rendering, texture mapping,
special effects, and other powerful visualization functions. Developers can leverage the
power of OpenGL across all popular desktop and workstation platforms, ensuring
wide application deployment.

PyOpenGL (Python Tk-OpenGL Module) is the OpenGL-Widget for Python/Tk.
Initially based on the Togl widget, this module was written by David Ascher, Mike
Hartshorn, Jim Hugunin, and Tom Schwaller. PyOpenGL contains both a wrapper for
the Togl Tk widget and bindings for OpenGL. The non-Tk portions of PyOpenGL
can be used with other toolkits, such as PyGTK and others. For more information, see
the following sites:

History, installation, and tutorial for the Python Tk-OpenGL Module (with sample
code).

http://www.python.de/

wafepython

Wafe, which stands for Widget Athena front end, is a package that implements a
symbolic, string-based interface based on Tcl to the X Toolkit, the Athena Widget Set,
the OSF/Motif Widget Set (versions 1.1 to 2.0), and various complementary widget
classes and extension packages. Using Wafe, one can develop applications with high-
level graphical user interfaces in the scripting language Tcl, or one can use Wafe
mostly as a graphical front end that provides an easy access to GUI programming for
various programming languages.

Because Wafe can be easily linked with C programs, it can also be used to provide
GUI functionality for other interpretative languages by extending these languages by a
few commands. In the Wafe distribution are sample implementations for embedding
Wafe in interpretative languages, including Python. These implementations provide a
bidirectional interface from and to Wafe (for example, Wafe calls Python and Python
calls Wafe).

wafepython (a version of Python enhanced with Wafe commands)

http://www.wu-wien.ac.at/wafe/wafe.html

19 0672319942 CH14 11/15/00 11:40 AM Page 566

567CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

pyFLTK

FLTK (Fast Light Tool Kit, pronounced “fulltick”) is a C++ graphical user interface
toolkit for X (UNIX), OpenGL, and WIN32 (Microsoft Windows NT 4.0, 95, or 98).
It is also largely compatible with the XForms library. FLTK is currently maintained by a
small group of developers across the world with a central repository in the United
States, and it is distributed under the GNU Library GPL (LGPL).

FLTK was originally created to build in-house applications at Digital Domain for
image processing and 3D graphics. The original author, Bill Spitzak, received
permission from Digital Domain to release it to the public domain in the hopes that it
could be used to make better, faster, and nicer-looking UNIX programs. Digital
Domain has since withdrawn support for FLTK, but Bill is still able to work on it
from time to time.

pyFLTK is the Python wrapper for the Fast Light Tool Kit graphical user interface
library. The development team is using SWIG to create the wrapper.

Kevin Dalhausen and Bjorn Petterson, among others, are working on these bindings
for Python. They conduct their work through a mailing list. The main goals of the
Project are to develop usable Python and Perl wrappers for the FLTK library; to
demonstrate the wrapper’s functionality by converting the test programs supplied with
FLTK to Python and Perl; and to allow the use of Fluid (FLTK User Interface
Designer) to generate Python and Perl graphical user interfaces.

http://netpedia.net/hosting/fltk/

FXPy

FOX is a C++ based toolkit for developing GUIs easily and effectively. FOX runs on
UNIX and Windows, and supports the LGPL kind of license. It offers a wide, and
growing, collection of Controls and provides state of the art facilities such as drag and
drop, selection, as well as OpenGL widgets for 3D graphical manipulation. FOX also
implements icons, images, and user-convenience features such as status line help, and
tooltips. Tooltips can even be used for 3D objects!

Considerable importance has been placed on making FOX one of the fastest toolkits
around. To minimize memory use, FOX uses a number of techniques to speed up
drawing and spatial layout of the GUI. Memory is conserved by allowing
programmers to create and destroy GUI elements on-the-fly.

Even though FOX offers a large collection of Controls already, FOX leverages C++ to
allow programmers to easily build additional Controls and GUI elements by taking
existing controls and creating a derived class that simply adds or redefines the desired
behavior.

19 0672319942 CH14 11/15/00 11:40 AM Page 567

568 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

One of the prime design goals of FOX is the ease of programming; thus, most controls
can be created using a single line of C++ code; most parameters have sensible default
values so that they may be omitted, and layout managers ensure that designers of
GUIs do not have to worry about precise alignments.

Another nice feature of FOX that significantly reduces the number of lines of code
which have to be written is FOX’s ability to have widgets connect to each other, and
pass certain commands between them. For example, a menu entry Hide Toolbar can
be directly connected to the Toolbar, and cause it to hide.

Finally, FOX makes it easy to maintain the state of the GUI in an application by
having the GUI elements automatically updating themselves by interrogating the
application’s state. This feature eliminates the large amount of effort that might go
into sensitizing, graying out, checking/unchecking, and so on depending on the
application state. For more information, check out

FOX

http://www.cfdrc.com/FOX/fox.html

FXPy is a Python extension module, written by Lyle Johnson, which provides an
interface to the FOX GUI library. FXPy is a good Python extension, and up to this
date, has a quite complete documentation.

FXPy

http://home.hiwaay.net/~johnson2/FXPy/

Motif

Fearing the success of Sun in creating a GUI standard, other UNIX vendors created a
committee called the Open Software Foundation (OSF). Motif is a widely-accepted set of
user interface guidelines developed by this committee around 1989, to specify how an
X Window System application should look and feel.

Motif is the market leader among UNIX GUI toolkits—the single most widely used
toolkit in the UNIX world, and almost 10 years after its creation, it enjoys both the
advantages and disadvantages of maturity. It has the most advanced support for text
from languages other than English, a wealth of third-party tools support it, and
hundreds of books and online documents explain it. The disadvantages are that it has
regular performance, it is in decline, it is a lot more difficult to program than many
other toolkits, and it is not suitable for the current object-oriented programming
styles.

19 0672319942 CH14 11/15/00 11:40 AM Page 568

569CHAPTER 14 Python and GUIs
Overview of Other GUI Modules

Motif is so ubiquitous that many UNIX users confuse it with GUI operations, window
managers, or other pieces of technology, and some speak as if Motif is the only GUI
foundation or toolkit.

Sjoerd Mullender bound Motif to Python in a package he calls the Python X
Extension. Currently, this is a work in progress. For more information, check out

Source of the Python X Extension

http://www.cwi.nl/ftp/sjoerd/index.html

The following files are currently found in this site:

X-extension.tar.gz—The complete source (including source of documentation).

X-extension.ps.gz—The complete documentation in Postscript.

X-extension.html.tar.gz—The complete documentation as a set of HTML files.

vpApp.tar.gz—A GUI application framework for (X)Python.

PyAmulet

PyAmulet is another Python GUI. It wraps an underlying C library, called
OpenAmulet. This GUI has been successfully tested on Windows platforms. For more
information, check out

PyAmulet home page

http://www.openip.org/html/pyamulet/

PyAmulet Documentation

http://www.openip.org/html/PyAmulet/

DynWin

DynWin is a dynamic GUI class library for Windows (Win32) and Python. It looks
similar to Java’s Swing library. For more information, check out

http://www.nightmare.com/~rushing/dynwin/index.html

JPI

The Java Python Interface (JPI) is an interface that allows Java and Python (the C
Implementation, not JPython) to primitively work together. Therefore, you can use

19 0672319942 CH14 11/15/00 11:40 AM Page 569

570 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Python as a scripting language for the Java language. Prototyping routines in Python,
and later migrating them to Java is a simple and straightforward process because the
similarity between both syntaxes is huge. This interface is a work in progress because
it currently doesn’t provide a total match between both languages.

This interface enables one to dynamically manipulate Java objects using a Python
application, including GUI widget managers such as AWT, for example.

http://www.ndim.edrc.cmu.edu/dougc/jpi/Home.html

AWT
The Abstract Windowing Toolkit (AWT) is a user interface toolkit provided by the Java
programming language class library.

AWT is very simple to use. Although the documentation that is currently provided in
the Java distribution seems to scare AWT programmers away, the language is very
strong and flexible. After you find the right direction, you will see yourself creating
GUIs with your eyes closed.

As AWT is written in Java, you might want to use JPython in order to manipulate it
because JPython gives convenient access to Java classes and packages. However, you
can also try to use Python, also known as CPython, and JPI. Together, they can be
used to prototype AWT objects and create bindings calling Python routines.

For more information about JPython and AWT, see Chapter 18, “JPython.”

FORMS

FORMS is a module for the SGI IRIX platform that provides an interface to the
FORMS Library developed by Mark Overmars.

Among other things that might interest you, you better pay attention to the
terminology used by FORMS: The word object is used for buttons, sliders, and
anything else that you can place in a form.

The Python interface to FORMS introduces two new Python object types: form
objects (representing an entire form) and FORMS objects (representing one button,
slider, and so on).

There are no “free objects” in the Python interface to FORMS, nor is there an easy
way to add object classes written in Python. The FORMS interface to GL event
handling is available, though, so you can mix FORMS with pure GL windows.

FORMS library interface for GUI applications

http://www.python.org/doc/current/lib/module-fl.html

19 0672319942 CH14 11/15/00 11:40 AM Page 570

571CHAPTER 14 Python and GUIs
Designing a Good Interface

Designing a Good Interface

The user interface is part of a program that interacts with the user of the program.
User interfaces take many forms. These forms range in complexity from simple
command-line interfaces to the point-and-click graphical user interfaces provided by
many modern GUI applications.

A GUI is built of graphical elements generally called widgets. Typical widgets include
such items as buttons, scrollbars, and text fields. Widgets allow the user to interact
with the program and provide the user with visual feedback about the state of the
program.

Widgets do not stand alone, but rather are found within windows. Windows contain
and control the layout of widgets. Windows are themselves widgets, however, they are
called toplevel widgets as they can’t be placed inside other widgets.

A good interface makes it easy for users to tell the computer what they want to do, for
the computer to request information from the users, and for the computer to present
understandable information. Clear communication between the user and the computer
is the working premise of a good user interface design. Some of the qualities that a
good user interface must have are clear, consistent, simple, user-controlled, direct,
forgiving, feedback provider, and aesthetic.

Following the next GUI design principles should help you create more effective, user-
friendly interfaces while avoiding many design errors. Unfortunately, just following
design principles cannot alone guarantee success because it is entirely possible to
create completely unworkable interfaces while strictly adhering to the rules.

• Don’t try to reinvent the wheel. The user must be able to anticipate the behavior
of your program using knowledge gained from other programs.

• Provide adequate user feedback. Keep the user informed about his actions.

• Create a safe environment for exploration.

• Struggle to make your application self-evident, by making the actions easily
recognizable for the components of your application.

• The user must be able to anticipate a widget’s behavior from its visual properties.

• View every user warning and error dialog that your program generates as an
opportunity to improve your interface.

• Do not abuse sound, color, animation, and multimedia clips. They are
appropriate for education or entertainment, but effective use in other
applications is difficult.

19 0672319942 CH14 11/15/00 11:40 AM Page 571

572 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

• You better try to avoid modal behaviors. Programs using modal behavior force
the user to perform tasks in a specific order or otherwise modify the user’s
expected responses.

• Design your interface so that your users can accomplish their tasks while being
minimally aware of the interface itself.

• And finally, help users customize and preserve their preferred work environment.

Summary

This chapter shows what the available GUI options are for designing Python graphic
interfaces. Choosing a toolkit for your GUI projects is not a simple thing. Although
you might decide to choose something different, the Python community has already
chosen the standard choice for GUI development with Python—it is called Tkinter,
and it’s part of the standard Python distribution.

Besides Tkinter, many other GUI solutions are supported by Python. This chapter
exposes many of them.

Pythonwin is a wrapper to the MFC. It is included within the Python distribution for
Windows.

wxPython is a GUI toolkit for the Python programming language that works like a
wrapper to the wxWindows C++ library.

STDWIN stands for Standard Window Interface. It is a platform-independent interface
to C-based window systems. Currently, STDWIN is obsolete and unsupported,
without any further development effort being made.

PyKDE is a set of Python bindings for the KDE toolkit—the KDE classes, which uses
PyQt—a set of straightforward Python bindings for the Qt toolkit.

Wpy is a class library system, based on the Microsoft Foundation Classes, that is used
for writing GUI code easily in Python.

PyGTK is a set of bindings for the GTK widget set and Gnome libraries that runs on
any platform that supports GTK.

PyOpenGL (Python Tk-OpenGL Module) is the OpenGL-Widget for Python/Tk.
OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications.

19 0672319942 CH14 11/15/00 11:40 AM Page 572

573CHAPTER 14 Python and GUIs
Summary

Wafe, which stands for Widget Athena front end, is a package that implements a
symbolic, string-based interface based on Tcl to the X Toolkit, the Athena Widget Set.

pyFLTK is the Python wrapper for the Fast Light Tool Kit graphical user interface
library. FLTK is a C++ graphical user interface toolkit for X (UNIX), OpenGL, and
WIN32 platforms—it is also largely compatible with the XForms library.

FXPy is a Python extension module, which provides an interface to the FOX GUI
library. FOX is a C++ based toolkit for developing Graphical User Interfaces easily and
effectively that runs on UNIX and Windows. It offers a wide collection of Controls,
including support to drag and drop, selection, as well as OpenGL widgets for 3D
graphical manipulation.

Motif is the market leader among UNIX GUI toolkits, and Python X Extension bounds
it to Python.

PyAmulet is another Python GUI. It wraps an underlying C library, called OpenAmulet.

DynWin is a dynamic GUI class library for Win32 and Python.

The Java Python Interface (JPI) is an interface that allows Java and Python (the C
Implementation, not JPython) to primitively work together.

The Abstract Windowing Toolkit (AWT) is a user interface toolkit provided by the Java
programming language class library.

FORMS is a module for the SGI IRIX platform that provides an interface to the
FORMS Library.

As you could see, the number of options is large. It is your choice to decide which one
best fits your needs.

19 0672319942 CH14 11/15/00 11:40 AM Page 573

19 0672319942 CH14 11/15/00 11:40 AM Page 574

CHAPTER 15

Tkinter

Goodday, Bruce!

The focus here is to provide information about Tkinter, which
has become the standard Python GUI. You will learn how it
works and how you can create your first GUI-oriented
applications.

Introduction to Tcl/Tk

Tk is a popular and endorsed toolkit developed by John
Ousterhout that can handle windows, GUI events, and user
interactions. This toolkit is provided as an extension for Tcl.
That is why part of Tkinter is an interface to Tcl. Without
these routines, the management of a GUI environment would
require an application with many lines of code.

The toolkit was originally developed at the University of
California, Berkeley, to be a supplement to Tcl (a language also
developed by Ousterhout). After his transition to Sun
Microsystems, he started a firm called Scriptics (currently
known as Ajuba) just to take care of the Tk and Tcl
development projects.

Nowadays, many languages use Tk, including Scheme, Perl,
and Python. Tkinter is Python’s interface to the Tk GUI
toolkit. By the way, Tcl is the behind the scenes language that
Tkinter uses to communicate with the Tk toolkit. Those who

D E V E L O P E R ’ S H A N D B O O K

20 0672319942 CH15 11/15/00 11:40 AM Page 575

576 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

already know Tcl/Tk will have a nice time learning and using Python/Tkinter because
both pairs have a bit of familiarity.

Both Tcl and Tk are open source products and their ongoing development is part of a
collaboration effort between engineers at Scriptics and other users in the Tcl user
community. Scriptics hosts the CVS (Concurrent Versions System) repository for the
source code, and everyone else is welcome to submit source code changes and patches.

At this time, the latest stable version of Tcl/Tk is version 8.3. Among other things, this
version is shipped with a Tcl/Tk Web browser plug-in that provides an alternative to
Java programming for client-side Web applications. The plug-in provides a secure
environment to run downloaded Tcl programs, in a way similar to Java applets.

If you are using a supported platform, the chances of easily finding a precompiled
binary for your machine are extremely high. Tcl and Tk are highly portable, which
allows them to run on many platforms, including Win32, Linux, IRIX, AIX, Solaris,
BSD, Macintosh, and others. Therefore, it turns out to be very easy to implement
Tkinter on all these platforms. For more information, check out

Tcl/Tk Documentation

http://dev.scriptics.com/doc/

Ajuba

http://www.ajubasolutions.com/

Tkinter

As you saw in the previous chapter, other options exist for GUI projects using Python.
However, at this moment, Python has chosen to support Tkinter as its official GUI
implementation.

Tkinter is a standard object-oriented interface to the Tk GUI API, which was
originally written by Steen Lumholdt when he was in need for improving his GUI
work with Python. In this chapter, you will see how easy it is to subclass Tk widgets
using Python’s facilities. Some say that it is even easier than when using Tcl’s
capabilities.

Don’t worry. You don’t need to know a thing about Tcl before start learning Tkinter—
the only possible case is if you need to go through the Tcl/Tk documentation.

Tkinter is a mature cross-platform interface that provides a small set of basic widgets
for your GUI applications. But this doesn’t mean that you need to get stuck on that

20 0672319942 CH15 11/15/00 11:40 AM Page 576

577CHAPTER 15 Tkinter
Tkinter

set. Tkinter is extensible, which means that you can use third-party widget packages as
well. A widget is a user interface element, such as a list box or a radio button.

The only possible disadvantage of using Tkinter is the fact that it uses Tcl to make the
calls to Tk. This middle step can slow down some programs.

The Tkinter toolkit is a powerful GUI framework that allows Python programs to
work on Windows, UNIX, and Macintosh platforms. The main difference between
Tkinter and other toolkits is the portability issue. Almost all other toolkits are good in
some specific systems only. For example, KDE bindings (Linux), Pythonwin/MFC
(Windows), and Mac toolbox bindings (Macs) are GUI implementations that provide
support only for a specific platform. On the other hand, Tkinter allows you to write
code that can run in many platforms without a single change.

Tkinter proves that the interface design of an application can be created separate from
the application’s business routines. When you choose Tkinter to be your GUI
environment, you basically have to worry about where to put the right widgets and
how to perfectly design your application. Another feature that it provides is a set of
geometry management functions available to help you arrange the widgets all around
the interface. After you finish with the visual design, you just need to bind the widget
actions to the specific functions that you need to call, and voilà! Your graphical
interface is ready.

Tkinter enables you to handle buttons and windows and define their properties in a
glance. After designing and implementing your interface, it is possible to change the
business functions of your application without changing one line of your GUI code.
Isn’t it great?

Some time ago, there wasn’t almost any documentation available for Tkinter.
However, since it became the standard Python GUI, a lot of material has been
released about this toolkit. See the resources section at the end of this chapter for
details.

Checking the Installation

Beginning with version 1.5.2, Tkinter has become part of the Windows binary distri-
bution. Tkinter has been included with most UNIX distribution for a long time. The
Tkinter package contains all necessary classes, constants, and functions that are
required to wrap and use the Tk toolkit.

If you are running Microsoft Windows, the Python installer for Windows (version
1.5.2) comes with the version 8.0.5 of the Tcl/Tk installer. The same thing goes to
Mac users.

20 0672319942 CH15 11/15/00 11:40 AM Page 577

578 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

If you are running any UNIX system, you must download, build, and install both Tcl
and Tk from the source. You can download the files from
http://dev.scriptics.com/software/tcltk/8.0.html. Follow the instructions
contained in the README files, and the process should be very simple; that is, if you
don’t already have it installed (which most free UNIX-like systems do these days).

If for some reason, your need to download the latest version of Tcl/Tk, the files are
available at http://dev.scriptics.com/. As I said before, depending on your platform,
you can get binaries instead of downloading and compiling the source code.

Once you have Tkinter running in your system, you will find a low-level interface
module called _tkinter that can be a DLL, a shared library, or statically linked to your
interpreter; it all depends on your system. Note that _tkinter is mainly just a Python
interface to the Tcl interpreter. On top of this low-level module, you have the Tkinter
module, which is more readable, and is written in 100% pure Python. This module is
the main module of the Tkinter package, and it imports a lot of other helper modules
when it is imported, including Tkconstants.

Sometime ago, Windows users who had problems involving multiple copies of the
Tcl/Tk DLLs floating around the system needed to have special attention when
installing Tcl/Tk. Now, they can rest on fixtk, which is a utility that tries to locate the
Tcl/Tk 8.0 DLLs on Windows systems.

Hello Python World

Now that you have your Tkinter installation ready to go, you just need to import the
Tkinter module to start playing around with your system.

If you are using Windows, I suggest that you save files with the .pyw extension in
order to have it executed by pythonw.exe, which doesn’t open the interpreter console.
On the other hand, if you decide to keep the .py extension, your GUI scripts will be
executed by the command line interpreter (python.exe), which opens a DOS console.

The next program implements a simple Hello Python World example.

import Tkinter

import sys

win = Tkinter.Tk()

b = Tkinter.Button(win, text=”Hello Python World!”,command=sys.exit)

b.pack()

win.mainloop()

Note that we only use the Tk() method to create the main window for the application.
To run this program, just call the script as you usually do with any other script. To quit

20 0672319942 CH15 11/15/00 11:40 AM Page 578

579CHAPTER 15 Tkinter
Tkinter

the program, you just need to close the window. Figure 15.1 shows how this program
looks in a Window system. Remember that other windows can be created as Toplevels.

Figure 15.1

This figure shows a Tkinter implementation of the standard Hello World example.

The next example uses a convenient way to load the Tkinter module (from Tkinter
import *). Because this module only exposes names that are associated to GUI objects
(such as button and Frame), you don’t need to worry that much about namespace
conflicts with your applications, and it becomes easier to read the code. Another
feature shown in this example is that we can use a Toplevel instance instead of a Tk
instance to store other widgets.

from Tkinter import *

root = Tk()

win = Toplevel(root)

win.pack()

Label(win, text= “Hello Python World”).pack(side=TOP)

Button(win, text=”Close”, command=win.quit).pack(side=RIGHT)

win.mainloop()

You could have used win = Frame() instead of win.Toplevel(root). However, given
that a frame acts differently depending on whether it has a parent or not (either a
toplevel or just a widget to help with packing), this wouldn’t be such a good idea.

Figure 15.2 shows how this code looks when it is executed.

Figure 15.2

This figure shows a small variation of the previous Hello World example.

OK, now let’s see what is really happening in both examples. First, we have to import
the Tkinter module. Then, we have to create a widget to hold the other objects. (In
the first example we used a top-level window by calling the Tk() method and in the
second one we used an instance of the Toplevel widget). Creating another Tk()
instance is really starting up another instance of Tk—it is less expensive to create a
Toplevel.

20 0672319942 CH15 11/15/00 11:40 AM Page 579

580 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

When we have a background, we can start adding widgets to it. In the first example,
we added a single button, and in the second one, we added two widgets: a label and a
button.

You don’t necessarily associate a widget with its toplevel—you associate it with its
parent widget (if you are adding a Button to a Frame that is a child of a Toplevel, you
would pass the frame as the first argument). It is also necessary to pack the widgets in
order to display them in the window. This last process is part of a concept called
geometry management, which is used to manage the position and layout of widgets.

Both examples demonstrate how you can bind actions to the events that can occur in
your widget. Here, we are using a specific attribute called command for this purpose.
You can use keyword arguments to transport several attributes and their values to a
widget, which is a simple way to handle multiple attributes.

The last thing that we need to do is to start an event loop. Note that the application
only appears when you start the loop engine. Regular Python scripts are executed top
to bottom, and when the last line of code is executed, the program quits. We don’t
want this kind of behavior in a GUI application. Therefore, we need to call the
mainloop() method of the top-level window of our application. This method keeps the
GUI indefinitely running until the window is closed. This loop is responsible for
redrawing the window widgets whenever it becomes necessary, for handling events
(such as key presses and mouse clicks), and for managing Tkinter operations, such as
all the geometry management functions.

Note that the version of Tkinter shipped along with Python 2.0 also provides support
for Unicode characters because Tkinter is now able to display Unicode string in Tk
widgets. Talking about Python 2.0, Tkinter had some optimizations done in order to
make some operations much faster. It is also good to mention that the support for
Tcl/Tk 7.X versions has been dropped in this latest release.

Geometry Management

All Tkinter widgets have access to specific geometry management methods, which have
the purpose of organizing widgets throughout the parent widget area. These methods
are grouped in three distinct classes that provide a nice way to lay out child widgets in
their parent widget. Tkinter exposes the following geometry manager classes: pack,
grid, and place.

20 0672319942 CH15 11/15/00 11:40 AM Page 580

581CHAPTER 15 Tkinter
Geometry Management

• pack—This geometry manager organizes widgets in blocks before placing them
in the parent widget.

• grid—This geometry manager organizes widgets in a table-like structure in the
parent widget.

• place—This geometry manager organizes widgets by placing them in a specific
position in the parent widget.

Each one of these geometry managers has a specific purpose. The pack manager, for
example, is convenient for application windows’ design. On the other hand, the grid
manager is perfect for designing dialogs because you can easily arrange the position of
several widgets using an easy-to-figure-out table structure, behind the scenes. And last,
but not least, we have the place manager. This manager is perfect for placing a widget
in a specific position in a frame or window. However, it is not that useful to design
complex structures because it requires a lot of specific information about the
coordinates of the widget.

The usage of these methods is very simple. When you create a widget, such as

b = Button(root, text=”Quit”, padx=5, justify=CENTER)

You can apply the geometry method directly on the created object.

b.pack(side=RIGHT)

Or, if you do not want to create one more object instance, you can simply call the
geometry method directly from the creation line:

Button(root, text=”Quit”, padx=5, justify=CENTER).pack(side=RIGHT)

pack()

The pack manager adds the widgets to the frame or the window based in the order
that the widgets are packed. After creating a Frame widget, you can start adding
widgets to it (the area where the Frame stores a widget is called a parcel). If you want
to place a group of widgets next to each other, you can use the same anchor option for
all of them. Therefore, they will be stored in the same parcel of the parent frame. If
you don’t specify any option, the widgets are added from top to bottom in the
available spaces. Additionally, you can specify the frame side where you want to place
the widget. The final widget position is based on the size of the parent frame as well as
on the position of the other widgets already placed. Note that if you use Frames, you
will spend much less time designing your interface.

20 0672319942 CH15 11/15/00 11:40 AM Page 581

582 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

The pack method provides the following options, which can be informed as direct
assignments or as a dictionary variable:

expand—This option expands the widget to use all the remaining space after the
other widgets have been informed. This is an important attribute to set so that the
correct widgets use the extra space when the window is resized.

fill—This option defines how the widget should fill up the space provided by its
parcel. Possible values: x, y, both, and none.

ipadx, ipady—These options are used along with the fill option to define the
space, in pixels, around the widget.

padx, pady—These options define the space, in pixels, between widgets.

side—This option defines the side where we want to place the widget. Possible
values: top, bottom, left, and right.

The following lines demonstrate how you can use these options when packing a
widget:

topframe = Frame(root, relief=RAISED, borderwidth=2)

topframe.pack(side=TOP, fill=BOTH)

rightframe = Frame(root, relief=RAISED, borderwidth=2)

rightframe.pack(side=RIGHT, fill=BOTH, expand=1, padx=2, pady=2)

The default behavior is to measure the sizes in pixels, but if you prefer to use other
measurement units, you just need to add a special suffix to each specific measured
value. The possible values are c (for onscreen centimeters), m (for onscreen
millimeters), i (for onscreen inches), and p (for printer’s points—note that 1 printer
point is equivalent to 1/72 inches). Check out the next line of code to understand how
to use this feature. Note that the measurements are in centimeters.

rightframe.pack(side=RIGHT, fill=BOTH, expand=1, padx=4c, pady=3c)

grid()

The grid geometry manager is very flexible, which makes the task of designing dialogs
very simple. It creates a grid pattern in the frame and allocates a space in each cell to
hold a widget. To use it, you just need to inform the row and the column where you
want to insert the widget. In order to use the pack method to collect results similar to
the ones provided by this grid functionality, you would have to use a lot of frame
widgets. Actually, it is quite often impossible to get the same configuration with

20 0672319942 CH15 11/15/00 11:40 AM Page 582

583CHAPTER 15 Tkinter
Geometry Management

pack() as you do with grid(). You won’t necessarily get all the column/row
boundaries to match with pack().

As an example of the grid method, consider the dialog at Figure 15.3.

Figure 15.3

Window organized with the grid method.

Now, check out the code that works behind the scenes to organize the widgets:

from Tkinter import *

root = Tk()

Label(root, text=”Last Name:”).grid(row=0, sticky=W)

Label(root, text=”First Name:”).grid(row=1, sticky=W)

Label(root, text=”Phone #:”).grid(row=2, sticky=W)

Label(root, text=”email:”).grid(row=3, sticky=W)

entry_ln = Entry(root)

entry_fn = Entry(root)

entry_ph = Entry(root)

entry_em = Entry(root)

entry_ln.grid(row=0, column=1)

entry_fn.grid(row=1, column=1)

entry_ph.grid(row=2, column=1)

entry_em.grid(row=3, column=1)

Label(root).grid(row=4, sticky=W)

Label(root, text=”Skill set summary:”).grid(row=5, sticky=W)

cb_gender = Checkbutton(root, text=”Python”)

cb_gender.grid(row=6, sticky=W)

cb_gender = Checkbutton(root, text=”Perl”)

cb_gender.grid(row=7, sticky=W)

b_apply = Button(root, text=”Apply”)

b_apply.grid(row=7, column = 1)

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 583

584 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Note that we have to call the grid method for every single widget, always mentioning
the row and the column where we want to place it. If for some reason, we don’t use
the grid method for a widget, which is placed just after a group of gridded widgets,
this new widget is placed in the next available position beneath the gridded widgets.

For your information, the coordinate numbered (0,0) is given to the intersection of
the first row on the top with the first column on the left side.

This method implements the following options:

row—The number of the row where we want to place the widget.

column—The number of the column where we want to place the widget.

columnspan—This option defines the number of columns that must be occupied by
the widget.

rowspan—This option defines the number of rows that must be occupied by the
widget.

place()

Similar to all the other managers, this one is available for all Tkinter standard widgets
as well. The place geometry manager enables you to explicitly set the position and size
of each widget, which can be either in terms of absolute or relative coordinates. You
should only consider using this manager when you are in need of placing a widget in a
specific position that is not possible to set automatically. The next code exemplifies the
use of place:

lbl = Label(root, text=”Name:”)

lbl.place(relx=0.5, rely=2, anchor=LEFT)

The place geometry manager implements two methods: place and place_configure.
Both of them can use the following as arguments:

anchor—Defines the part of widget that must be placed on the given coordinates.
Possible values are N, NE, E, SE, SW, W, NW, and CENTER. The default value is NW, which
is the top-left corner.

bordermode—Defines whether the given coordinates must consider the border size
or not. The possible values are respectively OUTSIDE and INSIDE, which is the default
value.

height, width—Define the widget’s size in pixels.

20 0672319942 CH15 11/15/00 11:40 AM Page 584

585CHAPTER 15 Tkinter
Handling Tkinter Events

in (in_)—Places the widget in a position relative to the given widget. Note that to
use this option as a keyword option, you need to append an underscore to the
option name.

relheight, relwidth—Define the relative size of the widget to the reference
widget defined by the in_ option.

relx, rely—Define the relative position of the widget to the reference widget
defined by the in_ option, or to the parent widget when the in_ option is not
defined.

x, y—Define the absolute position of the widget, and the default value is 0 for each
one of them.

Handling Tkinter Events

Usually, when you create a graphical interface for your application, you want to handle
all the possible events that happen there, such as reading in each key in the keyboard
(including the F1–F12 set, Ctrl, Alt, and Shift keys), tracking the actions upon the
mouse button, or even controlling the window redraw events fired by the window
manager. Tkinter handles that by allowing you to create bindings for every specific
object. Actually, you can bind events to the widget instance itself, to the widget’s
Toplevel window, to the widget’s class, and to your entire application (such as a global
HELP functionality for the F1 function key).

After binding an event to a widget, you need to specify which function should be
called at the time the event occurs. This function (or method) is called a callback. You
can define callbacks for all kinds of windowing events, as you will see later. The
following code demonstrates a simple callback functionality, which is associated to the
command property from a specific widget.

from Tkinter import *

import sys

def close():

sys.exit(0)

root = Tk()

button = Button(root)

button[‘text’] = “Close”

button[‘command’] = close

button.pack()

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 585

586 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

The next example binds the mouse-click event (“<Button-1>”) to a specific function in
our program. Note that the event description is just a simple string. The mainloop
keeps checking for this event, and when it catches the event, the function (event
handler) is called. Note that an object is passed to the callback function carrying some
information provided by the event.

from Tkinter import *

def ShowPosition(event):

Top = Toplevel(root)

xlabel = Label(Top)

xlabel.pack()

xlabel.config(text = “X = “ + str(event.x))

ylabel = Label(Top)

ylabel.pack()

ylabel.config(text = “Y = “ + str(event.y))

Top.mainloop()

root = Tk()

frame = Frame(root, width=200, height=200)

frame.bind(“<Button-1>”, ShowPosition)

frame.pack()

root.mainloop()

The next sections provided more events that you can use in your programs.

Mouse Events

When handling mouse event, use 1 for the left button, 2 for the middle button, and 3
for the right button. The following events are based on the left button, and you need
to make the necessary changes in order to adapt them for usage with the other
buttons. Before starting, you should know that the current position of the mouse
pointer, the position relative to the widget, is provided in the x and y options of the
event object passed to the callback.

If you bind to both a single click event and to a double click event, both bindings will
be called whenever one of them is activated.

<Enter>—The mouse pointer entered the widget.

<Leave>—The mouse pointer left the widget.

<Button-1>, <ButtonPress-1>, or <1>—A mouse button is pressed over the widget.

<B1-Motion>—The mouse is moved, with mouse button 1 being held down.

20 0672319942 CH15 11/15/00 11:40 AM Page 586

587CHAPTER 15 Tkinter
Handling Tkinter Events

<ButtonRelease-1>—Button 1 was released.

<Double-Button-1>—Button 1 was double-clicked.

Keyboard Events

The following events are exposed by the keyboard interface:

<Key>—The user has pressed any key. The instance object originated by the
callback function carries an attribute called char that can be used to identify which
key was pressed.

a—The user typed the letter a.

b—The user typed the letter b.

The same concept can be applied for all the other printable characters.

<Control-Up>—The user pressed the Control key, while pressing the Up arrow.
This type of structure also allows you to use the keyword suffixes Up, Down, Left,
and Right, and the keyword prefixes Control, Alt, and Shift.

<Return>—The user pressed the Enter key.

<Escape>—The user pressed the Esc key.

The same concept can also be applied for all the other special keys found in the
keyboard, including: F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_Lock,
Scroll_Lock, Caps_Lock, Print, Insert, Delete, Pause, Prior (Page Up), Next (Page
Down), BackSpace, Tab, Cancel (Break), Control_L (any Control key), Alt_L (any Alt
key), Shift_L (any Shift key), End, Home, Up, Down, Left, and Right.

Event Attributes

Next, I list all the attributes that are exposed by the instance objects originated by the
callback functions:

char—Character code associated with a pressed key.

keycode—Key code associated with a pressed key.

keysym—Key symbol associated with a pressed key.

height, width—New size, in pixels, of a widget.

num—This attribute contains the mouse’s button number associated with an event.

20 0672319942 CH15 11/15/00 11:40 AM Page 587

588 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

widget—Widget instance of the widget that has generated the event.

x, y—Current position, in pixels, of the mouse.

x_root, y_root—These attributes identify the current position of the mouse, in
pixels, relative to the upper left corner of the screen.

type—Shows the event type.

Event Callbacks

The following methods are used to handle event callbacks by binding a Python
function or method to an action that can be applied to a widget. You will also find
some callback methods that handle alarm callbacks as well.

after(milliseconds [, callback [, arguments]])—Registers an alarm callback
that accepts optional arguments. This callback is called after the given number of
milliseconds. The returned value of this method is an identifier that can be used
along with the after_cancel method in order to cancel the callback. If you call the
after method using just the first argument, the application will block the event
loop and wait for the given number of milliseconds.

after_cancel(identifier)—Cancels the alarm callback that possesses the given
identifier.

after_idle(callback, arguments)—Registers a callback that is called whenever
the system is idle, without anything going on in the mainloop.

bindtags()—Returns the binding search order used by the widget. The returned
value is in a tuple format, and it lists the namespaces used to search for the
bindings. You can modify this order by calling this method with the altered order as
an argument.

bind(event, callback)—Defines the function or method (callback) that must be
associated to the given event. Use the form bind(event, callback, “+”) to handle
multiple callbacks within the same binding.

bind_all(event, callback)—Defines the function or method (callback) that must
be associated to the given event at the application level. Use the form
bind_all(event, callback, “+”) to handle multiple callbacks within the same
binding. As an example, this can be used to set global accelerator/shortcut keys.

bind_class(widgetclass, event, callback)—Defines the function or method
(callback) that must be associated to the given event at the given widget class.

20 0672319942 CH15 11/15/00 11:40 AM Page 588

589CHAPTER 15 Tkinter
Handling Tkinter Events

Use the form bind_class(widgetclass, event, callback, “+”) to handle
multiple callbacks within the same binding.

<Configure>—Indicates that the widget was resized or moved to a new location.
The instance object originated by the callback function carries two attributes that
can be used to identify the new size of the widget: height and width. Note that the
name comes from the fact that the configure event is emitted in X11 when a
window is mapped or resized.

unbind(event)—Removes the bindings for the given event.

unbind_all(event)—Removes the bindings for the given event at the application
level.

unbind_class(class, event)—Removes the bindings for the given event at the
given widget class.

Protocols

The mechanism called protocol handler is responsible for the communication between
the window manager and your application. Handling these protocols, you can
intercept the messages provided by the system, and define exactly what you want to
happen.

Usually, the protocols WM_DELETE_WINDOW, WM_TAKE_FOCUS, and WM_SAVE_YOURSELF are
the ones mostly used. For details about the other supported protocols, see the
Inter-Client Communication Conventions Manual (ICCCM) at

http://tronche.com/gui/x/icccm/

Although this convention was established for the X systems, the Tk library handles it
on all platforms. These protocols are X specific. If you are running an X server on
Windows or MacOS and have Tk compiled for X, it will do the same as on UNIX.
That’s because Tk ports map these calls to the equivalent actions on the other systems.

The necessary syntax to bind a handler to a protocol is

widget.protocol(protocol, function_handler)

Note that the widget must be a Toplevel widget. The following example demonstrates
the use of the WM_DELETE_WINDOW protocol. The window manager generates this
protocol when the user tries to close a window. Here, we are intercepting this
protocol.

20 0672319942 CH15 11/15/00 11:40 AM Page 589

590 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

from Tkinter import *

import tkMessageBox

def protocolhandler():

if tkMessageBox.askokcancel(“Exit”, “Wanna leave?”):

if tkMessageBox.askokcancel(“Exit”, “Are you sure?”):

if tkMessageBox.askokcancel(“Exit”, “Really?”):

root.destroy()

root = Tk()

root.protocol(“WM_DELETE_WINDOW”, protocolhandler)

root.mainloop()

Just to let you know, the WM_SAVE_YOURSELF protocol is called by X window managers
when the application should save a snapshot of its working set, and the WM_TAKE_FOCUS
protocol is called by X window managers when the application gets the focus.

Tkinter Widgets

The typical Tkinter distribution contains a basic set of 15 widgets, and some extra
classes.

The Tkinter reference that I present in this chapter only shows a small set of methods
and attributes for each one of the available widgets. This list is provided just to give
you some idea of what you can do with each one of the widgets, and it is doesn’t have
the intention to be a complete guide. If you need to go further in this topic, I suggest
you look at the Tkinter resources pages that I list at the end of this chapter.

Widget Standard Options

Almost all widgets have access to a set of standard attributes that define special charac-
teristics for each one of them, including color definitions and font types. The value for
each one of these attributes can be determined at the creation time as

mylabel = Label(win, width=40)

Or, if you prefer, you can also define (or change) the values at the execution time using
the configure method.

mylabel.configure(width=40)

20 0672319942 CH15 11/15/00 11:40 AM Page 590

591CHAPTER 15 Tkinter
Tkinter Widgets

The previous examples use key/value pairs to define the attribute values, but you can
also use dictionaries to easily inform multiple attributes at once.

mysize = {“height”=2, “width”=40}

mylabel.configure(mysize)

Support for using dictionaries here is really for backward compatibility for programs
written before Python 1.4 (which didn’t support keyword arguments). It is not a good
idea to use it with the latest versions of Python. The third way of changing properties
is with

mylabel[‘height’] = 2

Next, I list common properties that are defined for all Tkinter widgets.

height
In buttons, labels, and text widgets, this attribute defines the height in number of
characters. In all other widgets, it defines the height in pixels.

width
In buttons, labels, and text widgets, this attribute defines the width in number of
characters. In all other widgets, it defines the width in pixels.

background(bg) and foreground(fg)
These attributes define the background and foreground (text) colors for a specific
widget. It can be either a color name or a explicit hexadecimal notation RGB starting
with #. It is usually used in one of the following formats: “#RRGGBB”, “#RGB”, and
“#RRRRGGGGBBBB”, depending on the number of colors allowed by your system.

If you are using either a Windows or a Macintosh system, the table that contains the
available color names is already built into your system.

The following constants define the system colors that you can use within your
Windows system.

SystemActiveBorder, SystemActiveCaption, SystemAppWorkspace,

SystemBackground, SystemButtonFace, SystemButtonHighlight,

SystemButtonShadow, SystemButtonText, SystemCaptionText, SystemDisabledText,

SystemHighlight, SystemHighlightText, SystemInactiveBorder,

SystemInactiveCaption, SystemInactiveCaptionText, SystemMenu, SystemMenuText,

SystemScrollbar, SystemWindow, SystemWindowFrame, SystemWindowText.

Note that you can change the colors at any time by editing the control panel settings.

20 0672319942 CH15 11/15/00 11:40 AM Page 591

592 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

The same concept goes for Mac systems. The available list of color names for the
Macintosh platform is as follows:

SystemButtonFace SystemMenuActive

SystemButtonFrame SystemMenuActiveText

SystemButtonText SystemMenuDisabled

SystemHighlight SystemMenuText

SystemHighlightText SystemWindowBody

SystemMenu

On the other hand, if you are using a UNIX X windowing system, the table of color
names is located in a file called xrgb.txt, which contains a list of color names and
their corresponding RGB values, defined by the X Server.

relief
This attribute defines the style of a widget’s border. All Tkinter widgets have a border,
which might not be visible by default for some widgets. This attribute accepts the
following values: SUNKEN, RIDGE, RAISED, or GROOVE for 3D appearance; and FLAT or
SOLID for 2D appearance.

Tip
The border of a widget consists of a 3D relief and a focus highlight region (in most
cases, this is a border outside the relief).

Highlight Settings
These attributes control the process of indicating whether a widget has the keyboard
focus.

highlightcolor defines the color used to draw the highlight region when the widget
has the keyboard focus.

highlightbackground defines the color used to draw the highlight region when the
widget doesn’t have the keyboard focus.

highlightthickness defines the width of the highlight region, in pixels.

borderwidth (bd)
This attribute defines the width of a widget relief border in number of pixels.

20 0672319942 CH15 11/15/00 11:40 AM Page 592

593CHAPTER 15 Tkinter
Tkinter Widgets

text
This attribute contains the widget caption text, using the foreground and font values
to format it.

justify
This attribute defines how multiple lines of a text caption must line up. It can assume
one of the following values: LEFT, CENTER, or RIGHT.

font
In certain widgets that support caption text, you can specify the font that you want to
format the text with. The font specification must be in a valid tuple format that must
contain the font family name, the font size, and a string listing the font styles that you
want to apply (bold, italic, underline, and overstrike), as you can see in the following
code example:

w1 = Tkinter.Label(root, text=”Hello Python World”, font=(“Symbol”, 8,

“italic”))

w2 = Tkinter.Label(root, text=”Hello Python World”, font=(“Times”, 14,

“bold italic”))

w3 = Tkinter.Label(root, text=”Hello Python World”, font=(“Symbol”, 8))

The next example shows how you can use the Font class provided by the tkFont
module in order to create font instances. The great advantage of this style of
programming is that in case you need to make changes to a given font format, the
changes are replicated to every widget in which the font is mentioned.

import Tkinter, tkFont

root = Tkinter.Tk()

myfont = tkFont.Font(family=”times”, size=18, weight=tkFont.BOLD)

widget = Tkinter.Label(root, text=”Hello Python World”, font=myfont)

widget.pack()

Tkinter.mainloop()

We basically have three elements that we need to provide: The font family (name), the
font size, and a list of the required style options. The font name follows the format
used in Windows and X Systems, and we have at least the Times, Courier, and
Helvetica families predefined. The font style options follow the specification detailed
in Table 15.1.

20 0672319942 CH15 11/15/00 11:40 AM Page 593

594 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Table 15.1 Available Options for Font Styles

Font Style Option Description

family Font family

size Font size in points

weight Font thickness (NORMAL or BOLD)

slant Font slant (NORMAL or ITALIC)

underline Font underlining: (0) False, (1) True

overstrike Font strikeout: (0) False, (1) True

The tkFont module also exposes the functions and methods listed in Tables 15.2 and
15.3, respectively.

Table 15.2 Functions Provided by the tkFont Module

Function Description

families() List available font families

names() List names of user-defined fonts

Table 15.3 Available Methods for a Font Class Instance

Font Method Description

actual(options) Returns actual font attributes.

cget(option) Gets configured font attribute.

config(), configure() Gets a full set of configured fonts.

config(options), Modifies one or more font attributes.
configure(options...)

copy(font object) Returns a copy of the font object.

measure(text) Returns the width in integer format.

metrics(options) Returns the font metrics.

You can customize your application to use platform dependent fonts, which are
available on your system. For example, if you are running MS Windows, you can use
Arial, Courier New, Fixedsys, MS Sans Serif, MS Serif, Symbol, System, Times New
Roman, and others.

Some system fonts are also available for your usage (see Table 15.4), however, they
don’t allow you to change their style and size specifications. Be careful when porting
applications that use system fonts because those fonts are tied to specific systems.

20 0672319942 CH15 11/15/00 11:40 AM Page 594

595CHAPTER 15 Tkinter
Tkinter Widgets

Table 15.4 Examples of System Fonts

Platform System Font Examples

Windows ansi, ansifixed, device, system, and systemfixed

Macintosh application and system

UNIX 6x10 and fixed

command
This attribute associates a widget’s activation with a Python function. Therefore, the
function defined by this attribute is called when a specific action happens at the widget
(like the click of a button).

variable
This attribute maps the widget value to a variable in such a way that all changes made
to the widget are reflected to this variable, and vice versa. This variable is an instance
of one of the following classes: StringVar, IntVar, DoubleVar, or BooleanVar. These
classes wrap a Tcl variable, which is required to use some of the Tk interfaces. All
these instances implement at least two methods: get() and set(), which can be used
to obtain and define a variable’s value, respectively.

image, bitmap
These attributes define the image file or the bitmap file to be displayed within the
widget.

anchor
This attribute defines either the location of a widget within a window, or the location
of a text message within a widget. The possible values for this attribute are N, NE, E, SE,
S, SW, W, NW, and CENTER.

padx, pady
Defines the padding between the widget’s text or the widget’s image and the widget
border.

cursor
This attribute defines which mouse pointer (cursor) must be used when the mouse is
moved over the widget. Some widgets (such as the Text widget) define this value by
default. If you don’t set this option, the parent widget’s cursor is used by default. Some
possible cursor values are crosshair, watch, xterm, fleur, and arrow. There are plenty
of them for you to choose:

20 0672319942 CH15 11/15/00 11:40 AM Page 595

596 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

root.config(cursor=”wait”) # Changes to the wait cursor

root.config(cursor=””) # Changes back to the normal cursor

Widgets Reference

Tkinter offers the following basic set of widgets. Note that these widgets are not
defined or organized in any hierarchical way. Along with the set of methods that is
defined by each widget, all widgets also support many general specific methods, such
as the geometry management methods. This creates a wide coverage interface for each
one of them.

Button—This widget defines a clickable button that can execute a specific operation
when clicked.

Canvas—This widget is used to draw graphs, lines, polygons, and all other types of
graphic elements. The main reason people use the canvas is because it takes care of
all the items you add to it, and can take events on individual items in the canvas.

Checkbutton—This widget exposes a button that controls a variable that can have
two distinct values. After clicking the button, the variable value toggles between the
two possible values.

Entry—This widget implements a simple text entry field.

Frame—This widget works like a container for other widgets when creating a
complex layout within a window. It helps you to organize the layout of the other
widgets.

Label—This widget handles the exhibition of a text or an image.

Listbox—This widget displays a list of possible selections.

Menu—This widget is used to implement pull-down and pop-up menus.

Menubutton—This widget is used to implement pull-down menus and the toplevel
menu bar.

Message—This widget displays a text message in a way similar to the label widget,
but using powerful formatting capabilities.

Radiobutton—This widget is associated to a variable, and when clicked, the variable
assumes its value. Usually many radiobuttons (each one carrying a different value)
are associated to the same variable, and when one is clicked, it sets its value to the
variable.

Scale—This widget provides a slider that helps you set the value of a numerical
variable.

20 0672319942 CH15 11/15/00 11:40 AM Page 596

597CHAPTER 15 Tkinter
Tkinter Widgets

Scrollbar—This widget implements standard scrollbars that you can use along with
other widgets, such as listbox, canvas, entry, and text.

Text—This widget display text that you can edit and format.

Toplevel—This widget is another container widget, just like the frame widget.
However, it has its own toplevel window, which provides a window manager
interface.

Button
The Button widget can implement a number of button types, which can display either
text messages or images. See the previous Hello World code for an example of how to
use the Button widget.

Some special methods implemented by the button widget are as follows:

flash()—Reverses and resets the foreground and background colors in order to
cause a flashing effect.

invoke()—Executes the function defined in the command property.

The next properties are available for button widgets:

activebackground—The background color to use when the button is activated.

activeforeground—The foreground color to use when the button is activated.

bitmap—The bitmap to display in the button. This option is only used when the
image option is omitted. The general available values for this option are gray12,
gray25, gray50, gray75, hourglass, error, questhead, info, warning, and question. If
you prefer, you can load the bitmap directly from an XBM (X Bitmap) file, just by
prefixing the filename with an @ sign; for example, bitmap=@hello.xbm.

default—If set, identifies the default button.

disabledforeground—The foreground color that must be used when the button is
disabled.

image—An image to display in the widget. If indicated, this option precedes both
the text and bitmap options. Usually, before using this attribute, you need to create
an image instance first, using the image subclasses, and then assign the instance to
this attribute.

state—Defines the button state, which can be either NORMAL, ACTIVE, or DISABLED.

20 0672319942 CH15 11/15/00 11:40 AM Page 597

598 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

takefocus—Indicates whether the user can use the TAB key to change the focus to
this button.

text—The text to display in the button. If the bitmap or image options are used,
the text isn’t displayed.

underline—Integer offset applied on the text value to identify which character
must be underlined.

wraplength—Distance, in screen units, that determines when a button’s text must
be wrapped into multiple lines. The default configuration is to not accept wrapping.

Canvas
This widget is responsible for creating and displaying graphical items, such as arcs,
bitmaps, images, lines, ovals, polygons, and rectangles, in a customized way. It works
by providing a canvas into which you add the graphical items. The default behavior of
this widget is to draw the graphic items on top of the other items added to the canvas
first. When you have your canvas widget filled with the graphical items, you can
manipulate them using a lot of methods provided by Tkinter. Note that you can create
customized widgets this way by adding several layers of objects, and binding event
callbacks to each one of these layers.

The Canvas widget supports the following standard items:

arc—Creates an arc item, which can be a chord, a pieslice, or a simple arc.

coord = 10, 50, 240, 210

widgetitem = canvas.create_arc(coord, start=0, extent=150, fill=”blue”)

bitmap—Creates a bitmap item, which can be a built-in bitmap, such as “question”,
“info”, “hourglass”, “warning”, or one read from an XBM file.

widgetitem = canvas.create_bitmap(60, 30, bitmap=”warning”)

image—Creates an image item, which can be an instance of either the BitmapImage
or the PhotoImage classes.

filename = PhotoImage(file=”sunshine.gif”)

widget = canvas.create_image(50, 50, anchor=NE, image=filename)

line—Creates a line item.

widgetitem = create_line(x0, y0, x1, y1, ..., xn, yn, options)

20 0672319942 CH15 11/15/00 11:40 AM Page 598

599CHAPTER 15 Tkinter
Tkinter Widgets

Some options are

width—Line’s width. The default value is 1 pixel.

fill—Line’s color. The default value is black.

oval—Creates a circle or an ellipse at the given coordinates. It takes two pairs of
coordinates—the top left and bottom right corners of the bounding rectangle for
the oval.

widgetitem = create_oval(x0, y0, x1, y1, options)

Some options are

fill—The color to use for the interior. If an empty string is given, the interior is not
drawn. Default is empty (transparent).

outline—The color to use for the outline.

polygon—Creates a polygon item that must have at least three vertices.

widgetitem = create_polygon(x0, y0, x1, y1, x2, y2, ..., xn, yn, options)

Some options are

outline—Polygon outline’s color. The default value is black.

splinesteps—Integer that defines the smoothness of the curves.

rectangle—Creates a rectangle item using the given coordinates.

widgetitem = create_rectangle(x0, y0, x1, y1, options)

Some options are

fill—The color to use for the rectangle interior. If an empty string is given, the
interior is not drawn. The default is empty (transparent).

outline—The color to use for the outline. If an empty string is given, the outline is
not drawn. The default is black.

text—Creates a text item at the given position, using the given options. Note that
the text string itself is given by the text option.

widgetitem = create_text(x0, y0, options)

20 0672319942 CH15 11/15/00 11:40 AM Page 599

600 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Some options are

anchor—Specifies the text position. The default value is CENTER.

fill—The color to use for the text. If an empty string is given, the text is not drawn.
Default is empty (transparent).

window—Embeds a window at the given position based on the provided options.

widgetitem = create_window(x0, y0, options)

Some options are

window—The window widget to embed in the canvas.

anchor—Specifies the window position. The default value is CENTER.

Checkbutton
This widget implements a check box with two states: checked and unchecked; in other
words, on and off or true and false.

The following attributes are available:

onvalue, offvalue—These attributes specify the values to store within the variable
indicated by the variable property. If the button is not selected, the variable
receives the offvalue value, receiving the onvalue value when the button is
checked.

indicatoron—By setting this attribute to zero, you can make the whole widget to
be the check box.

This widget exposes the following methods:

select()—Selects the check button and sets the value of the variable to onvalue.

flash()—Reverses and resets the foreground and background colors in order to
cause a flashing effect.

invoke()—Executes the function defined in the command property.

toggle()—Reverses the state of the button. If it is on, it becomes off, and vice
versa.

20 0672319942 CH15 11/15/00 11:40 AM Page 600

601CHAPTER 15 Tkinter
Tkinter Widgets

The following code demonstrates a call to the Checkbutton widget:

from Tkinter import *

win = Frame()

win.pack()

Checkbutton(win, text=”Click here”).pack(side=LEFT)

win.mainloop()

Figure 15.4 shows the output of this code.

Figure 15.4

The Checkbutton widget as it is displayed.

In case you are wondering how to use the variables listed previously, take a look at the
following line, and check out how we would have to write the code to use them. var is
the name of a variable of your program. When you say variable=<your variable>,
you are asking the widget to assign to your variables the values of onvalue and
offvalue whenever your button is checked or unchecked, respectively.

Checkbutton(master, variable=var, indicatoron=0).pack()

Entry
The Entry widget is implemented by users to enter a single line of text in a frame or
in a window widget.

The following code exemplifies the use of this widget by creating a single line
interface in which you can type expressions:

from Tkinter import *

from math import *

def calc():

result = “= “ + str(eval(expression.get()))

label.config(text = result)

root = Tk()

frame = Frame(root)

label = Label(frame)

entry = Entry(frame)

expression = StringVar()

entry[“textvariable”] = expression

button = Button(frame, text = “=”, command = calc)

20 0672319942 CH15 11/15/00 11:40 AM Page 601

602 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

frame.pack()

entry.pack()

label.pack(side=LEFT)

button.pack(side=RIGHT)

frame.mainloop()

Figure 15.5 shows how the output of this code looks.

Figure 15.5

The Entry widget being used to implement an expression evaluator.

This widget provides the textvariable attribute, which contains the value either
entered by the user or to be displayed. The get() method can be used to access this
value, as well.

Frame
The Frame widget is very important for the process of grouping and organizing other
widgets in a somehow friendly way. It works like a container, which is responsible for
arranging the position of other widgets. It uses rectangular areas in the screen to
organize the layout and to provide padding of these widgets. A frame can also be used
as a foundation class to implement complex widgets.

In the next example, we create two frames responsible for aligning the colored buttons
in two distinct rows:

from Tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)

bottomframe.pack(side=BOTTOM)

redbutton = Button(frame, text=”Red”, fg=”red”)

redbutton.pack(side=LEFT)

greenbutton = Button(frame, text=”Brown”, fg=”brown”)

greenbutton.pack(side=LEFT)

bluebutton = Button(frame, text=”Blue”, fg=”blue”)

bluebutton.pack(side=LEFT)

blackbutton = Button(bottomframe, text=”Black”, fg=”black”)

blackbutton.pack(side=BOTTOM)

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 602

603CHAPTER 15 Tkinter
Tkinter Widgets

You can check the output of this function by looking at Figure 15.6.

Figure 15.6

This window uses two frames to organize the buttons.

Label
This widget implements a display box where you can place text or images. The text
displayed by this widget can be updated at any time you want. It is also possible to
underline part of the text (like to identify a keyboard shortcut), and span the text
across multiple lines.

label = Label(root, bg=”white”, relief =RAISED, borderwidth=3)

label.config(text=”Whassup!”)

If you want to easily manipulate the contents of a label widget when changing a single
variable, use the textvariable option as demonstrated in the next example:

var = StringVar()

Label(root, textvariable=var).pack()

var.set(“Hey!? How are you doing?”)

Listbox
Using this widget, you create a list of text items that can be selected by the user. This
list might contain several lines of information, and all lines must have the same
properties. Depending on how the widget is configured (see the selectmode property
in following list), the user is allowed to select multiple lines at the same time, which is
very useful in many cases.

The Listbox widget implements the following properties:

height—Number of rows in the list. A value of 0 automatically resizes the widget
to fit the largest option found. Setting the height to zero makes the listbox long
enough to show all options at once.

selectmode—This option defines the type of list that you are creating. It can be
either SINGLE, EXTENDED, MULTIPLE, or BROWSE.

width—Number of characters in each row. A value of 0 automatically resizes the
widget to fit the largest option found.

20 0672319942 CH15 11/15/00 11:40 AM Page 603

604 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

The following methods are also provided:

delete(row [,lastrow])—Deletes the given row, or the rows between the given
row and lastrow.

get(row)—Gets the string that starts at the given row.

insert(row, string)—Inserts the given string at the given row.

see(row)—Makes the given row visible for the user.

select_clear()—Clears the selection.

select_set(startrow, endrow)—Selects the rows starting at the startrow position
and ending at the endrow position.

The following example demonstrates the use of a list box:

from Tkinter import *

root = Tk()

mylistbox = Listbox(root)

mylistbox.pack()

mylistbox.delete(0, END)

mylistbox.insert(END, “This is the row number 1”)

for number in range(2,41):

mylistbox.insert(END, “This is the row number “ + str(number))

root.mainloop()

In order to see all the lines from the previous list, you are required to hold down the
mouse button while dragging down the selection. This process can be largely
simplified by using a Scrollbox widget along with the Listbox widget. Also check out
the example found at the Scrollbox widget section.

Menu
The goal of this widget is to allow us to create all kinds of menus that can be used by
our applications. The core functionality provides ways to create three menu types:
pop-up, toplevel, and pull-down. It is also possible to use other extended widgets to
implement new types of menus, such as the OptionMenu widget, which implements a
special type that generates a pop-up list of items within a selection. You can’t put
arbitrary widgets in a menu. However, there are special menu item types such as radio
menu items and check menu items that provide similar behavior to the widgets by the
same name.

20 0672319942 CH15 11/15/00 11:40 AM Page 604

605CHAPTER 15 Tkinter
Tkinter Widgets

The menu widget exposes the following methods:

add_command(options)—Adds a menu item to the menu.

add_radiobutton(options)—Creates a radio button menu item.

add_checkbutton(options)—Creates a check button menu item.

add_cascade(options)—Creates a new hierarchical menu by associating a given
menu to a parent menu.

add_separator()—Adds a separator line to the menu.

add(type, options)—Adds a specific type of menu item to the menu.

delete(startindex [,endindex])—Deletes the menu items ranging from
startindex to endindex.

entryconfig(index, options)—Allows you to modify a menu item, which is
identified by the index, and change its options.

index(item)—Returns the index number of the given menu item label.

The menu widget methods expose the following options:

accelerator—This is a keyboard alternative to the menu option that must be
displayed as right justified next to the menu option. It’s important to say here that
this option doesn’t automatically bind the given key to the option. You have to do it
by yourself.

command—Name of the callback function that is called when the menu item is
selected.

indicatorOn—Setting this option to true adds a switch next to the menu options.
This small button allows an option to be toggled on and off.

label—This option defines the text of a menu item.

menu—This option is used by the add_cascade method to add a submenu (another
Menu instance) to a menu.

selectColor—Switch’s color. See the indicatorOn property.

state—Defines the menu item status. The possible values are normal, active, and
disabled.

onvalue, offvalue—Values to be stored in the variable property. When the menu
item is selected, the onvalue’s value is copied to that property.

20 0672319942 CH15 11/15/00 11:40 AM Page 605

606 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

tearOff—By setting this option to true, a clickable separator is created in the top
of the menu. Clicking on this separator, the menu item separates from the main
menu, becoming part of a new window.

underline—Defines the index position of the character to be underlined.

value—The value of the attached radio button.

variable—The variable used to store a value.

Now, let’s get back to practice and learn how to design menus. The basic rules are
simple. First, you need to instantiate the menu class and anchor it to its parent widget.
Then, you just need to use one of the add methods to include items to it.

The next example shows how to create a pop-up menu. Note that we have to bind a
mouse action to a callback function that launches the menu (see Figure 15.7).

from Tkinter import *

def donothing():

filewin = Toplevel(root)

button = Button(filewin, text=”Do nothing button”)

button.pack()

root = Tk()

menu = Menu(root, tearoff=0)

menu.add_command(label=”Cut”, command=donothing)

menu.add_command(label=”Copy”, command=donothing)

menu.add_command(label=”Paste”, command=donothing)

menu.add_command(label=”Delete”, command=donothing)

frame = Frame(root, width=100, height=100)

frame.pack()

def popupmenu(event):

menu.post(event.x_root, event.y_root)

frame.bind(“<Button-3>”, popupmenu)

root.mainloop()

Figure 15.7

This pop-up menu is activated by right-clicking.

20 0672319942 CH15 11/15/00 11:40 AM Page 606

607CHAPTER 15 Tkinter
Tkinter Widgets

The next example demonstrates the creation and usage of a menu bar. This type of
menu is placed on the top of toplevel windows (see Figure 15.8).

from Tkinter import *

def filemenu():

filewin = Toplevel(root)

fileclose = Button(filewin, text=”Close Application”)

fileclose.config(command=root.quit)

fileclose.pack()

root = Tk()

menubar = Menu(root)

menubar.add_command(label=”File”, command=filemenu)

menubar.add_command(label=”Help”)

root.config(menu=menubar)

root.mainloop()

Figure 15.8

The menu bar is placed on top of a toplevel window.

This last example demonstrates how to create pull-down menus, which is a type of
menu that is bound to a parent menu (see Figure 15.9).

from Tkinter import *

def donothing():

filewin = Toplevel(root)

button = Button(filewin, text=”Do nothing button”)

button.pack()

root = Tk()

menubar = Menu(root)

filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label=”New”, command=donothing)

filemenu.add_command(label=”Open”, command=donothing)

filemenu.add_command(label=”Save”, command=donothing)

filemenu.add_command(label=”Save as...”, command=donothing)

filemenu.add_command(label=”Close”, command=donothing)

filemenu.add_separator()

filemenu.add_command(label=”Exit”, command=root.quit)

menubar.add_cascade(label=”File”, menu=filemenu)

editmenu = Menu(menubar, tearoff=0)

20 0672319942 CH15 11/15/00 11:40 AM Page 607

608 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

editmenu.add_command(label=”Undo”, command=donothing)

editmenu.add_separator()

editmenu.add_command(label=”Cut”, command=donothing)

editmenu.add_command(label=”Copy”, command=donothing)

editmenu.add_command(label=”Paste”, command=donothing)

editmenu.add_command(label=”Delete”, command=donothing)

editmenu.add_command(label=”Select All”, command=donothing)

menubar.add_cascade(label=”Edit”, menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label=”Help Index”, command=donothing)

helpmenu.add_command(label=”About...”, command=donothing)

menubar.add_cascade(label=”Help”, menu=helpmenu)

root.config(menu=menubar)

root.mainloop()

Figure 15.9

This pull-down menu is bound to a parent menu.

Menubutton
This widget was primarily used to display toplevel, pop-up, and pull-down menus.
However, you can now use the menu widget to obtain the same functionality.

Message
This widget provides a multiline and noneditable object that displays texts, automat-
ically breaking lines and justifying their contents. Its functionality is very similar to the
one provided by the Label widget, except that it can also automatically wrap the text,
maintaining a given width or aspect ratio. The following example creates a simple
Message widget instance:

from Tkinter import *

txt = “This message demonstrates the usage of the Message Widget”

root = Tk()

msg = Message(root, text = txt)

msg.pack()

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 608

609CHAPTER 15 Tkinter
Tkinter Widgets

Figure 15.10 shows the output of this code.

Figure 15.10

A message displayed by the Message widget.

Radiobutton
This widget implements a multiple-choice button, which is a way to offer many
possible selections to the user, and let her choose only one of them.

In order to implement this functionality, each group of radiobuttons must be
associated to the same variable, and each one of the buttons must symbolize a single
value. You can use the Tab key to switch from one radionbutton to another.

The following properties are made available by this widget:

command—Function to be called when the button is clicked.

variable—Variable to be updated when the button is clicked.

value—This attribute defines the value that must be stored in the variable when
the button is clicked.

The following methods are also provided by this widget:

flash()—Reverses and resets the foreground and background colors in order to
cause a flashing effect.

invoke()—Executes the function defined in the command property.

select()—Selects the radio button, setting the variable to value.

The following example creates three radiobuttons and displays the selected option on
the label widget (see Figure 15.11):

from Tkinter import *

def sel():

selection = “You selected the option “ + str(var.get())

label.config(text = selection)

root = Tk()

var = IntVar()

20 0672319942 CH15 11/15/00 11:40 AM Page 609

610 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Radiobutton(root, text=”Option 1”, variable=var, value=1,

command=sel).pack(anchor=W)

Radiobutton(root, text=”Option 2”, variable=var, value=2,

command=sel).pack(anchor=W)

Radiobutton(root, text=”Option 3”, variable=var, value=3,

command=sel).pack(anchor=W)

label = Label(root)

label.pack()

root.mainloop()

Figure 15.11

This window exemplifies the use of radiobuttons.

Check out the next example. Just by setting the indicatoron attribute to 0, we can
change the visual design of our radio buttons (see Figure 15.12):

from Tkinter import *

def sel():

selection = “You selected the option “ + str(var.get())

label.config(text = selection)

root = Tk()

var = IntVar()

r1 = Radiobutton(root, text=”Option 1”, variable=var, value=1, command=sel)

r2 = Radiobutton(root, text=”Option 2”, variable=var, value=2, command=sel)

r3 = Radiobutton(root, text=”Option 3”, variable=var, value=3, command=sel)

r1.config(indicatoron=0)

r2.config(indicatoron=0)

r3.config(indicatoron=0)

r1.pack(anchor=W)

r2.pack(anchor=W)

r3.pack(anchor=W)

label = Label(root)

label.pack()

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 610

611CHAPTER 15 Tkinter
Tkinter Widgets

Figure 15.12

An alternative way to use radiobuttons.

Scale
The Scale widget provides a graphical slider object that allows you to select values
from a specific scale. In order to get and set values to or from the object, you need to
use the following methods:

get()—This method gets the current scale value.

set(value)—This method sets the scale to a specific value.

The following example demonstrates the use of this widget (see Figure 15.13).

from Tkinter import *

def sel():

selection = “Value = “ + str(var.get())

label.config(text = selection)

root = Tk()

var = DoubleVar()

scale = Scale(root, variable=var)

button = Button(root, text=”Get Scale Value”, command=sel)

label = Label(root)

scale.pack(anchor=CENTER)

button.pack(anchor=CENTER)

label.pack()

root.mainloop()

You could also implement the previous example using the Scale.get(), as
demonstrated next.

from Tkinter import *

def sel():

label.config(text = scale.get())

20 0672319942 CH15 11/15/00 11:40 AM Page 611

612 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

root = Tk()

var = DoubleVar()

scale = Scale(root)

button = Button(root, text=”Get Scale Value”, command=sel)

label = Label(root)

scale.pack(anchor=CENTER)

button.pack(anchor=CENTER)

label.pack()

root.mainloop()

Figure 15.13

Using a Scale widget to select values from a specific scale.

Scrollbar
This widget provides a slide controller that is used to implement vertical scrolled
widgets, such as Listbox, Text, and Canvas. Note that you can also create horizontal
scrollbars on Entry widgets.

This widget uses the command property to define the callback function that must be
used to change the view in the widget.

Also, it implements the following two methods:

set(first, last)—Defines the fractions between 0 and 1 (representing the range
0%-100%) that delimits the current view.

get()—Returns the current scrollbar configuration settings.

The next example demonstrates how to link a vertical scrollbar to a Listbox widget.
The steps are very simple. You first need to set the Listbox widget’s yscrollcommand
callback method to the set method of the scrollbar widget. Second, you need to set
the scrollbar’s command to the yview method of the Listbox widget. Every time the
Listbox view is modified, the scrollbar’s set method is called, and every time the
scrollbar is changed, the Listbox’s yview method is called, as well (see Figure 15.14).

20 0672319942 CH15 11/15/00 11:40 AM Page 612

613CHAPTER 15 Tkinter
Tkinter Widgets

from Tkinter import *

root = Tk()

scrollbar = Scrollbar(root)

scrollbar.pack(side=RIGHT, fill=Y)

mylist = Listbox(root, yscrollcommand=scrollbar.set)

for line in range(100):

mylist.insert(END, “This is line number “ + str(line))

mylist.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=mylist.yview)

mainloop()

Figure 15.14

Here, the Scrollbar widget implements a vertical scrollbar for a Listbox widget.

If you need to use a horizontal scrollbar instead of a vertical scrollbar, the process is
very simple. All you have to do is change the orient option in the Scrollbar initial-
ization call, and replace the yscrollcommand and yview with xscrollcommand and
xview. The following example implements these changes, as you can see in Figure
15.15.

from Tkinter import *

root = Tk()

scrollbar = Scrollbar(root, orient=HORIZONTAL)

scrollbar.pack(side=BOTTOM, fill=X)

mylist = Listbox(root, xscrollcommand=scrollbar.set)

for line in range(100):

msg = “This is a very big line whose number is “ + str(line)

mylist.insert(END, msg)

mylist.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=mylist.xview)

mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 613

614 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Figure 15.15

Here, the Scrollbar widget is used to implement a horizontal scrollbar for another Listbox widget.

Text
Text widgets provide advanced capabilities that allow you to edit a multiline text and
format the way it has to be displayed, such as changing its color and font. You can also
use elegant structures like tabs and marks to locate specific sections of the text, and
apply changes to those areas. Moreover, you can embed windows and images in the
text because this widget was designed to handle both plain and formatted text. if you
need to split your text across multiple lines, you just have to insert \n (newline
characters) at the position where you want to break the line.

Note
The main display area of the Grail Web browser used the Tk text widget.

The following attributes are exposed by Text widgets:

state—This attribute has two possible values: normal and disabled. The former is
used to define standard editable text boxes that accept inserts and deletes, and the
latter is used for noneditable text boxes.

tabs—This attribute provides a list of strings that identifies all the tab stops on the
Text widget. Each list item is a concatenation of the index position of the tab stop
and a justification sign (l, r, or c) that defines the justification of the tab (left, right,
or center, respectively).

The following methods are exposed as well:

delete(startindex [,endindex])—This method deletes a specific character or a
range of text.

get(startindex [,endindex])—This method returns a specific character or a
range of text.

index(index)—Returns the absolute value of an index based on the given index.

20 0672319942 CH15 11/15/00 11:40 AM Page 614

615CHAPTER 15 Tkinter
Tkinter Widgets

insert(index [,string]...)—This method inserts strings at the specified index
location. If you need to insert elements other than strings, such as windows or
images, use the window_create and image_create methods, respectively.

see(index)—This method returns true if the text located at the index position is
visible.

Text widgets support three distinct helper structures: Marks, Tabs, and Indexes.

Marks are used to bookmark positions between two characters within a given text.
Note that you cannot recognize the marked positions visually: You need to use the
variables. The fact of being able to store positions without compromising the visual
design allows you to use as many marks as you need without causing problems to the
users. Tkinter offers two preconfigured marks for you: INSERT and CURRENT. The first
one defines the cursor’s insertion position, and the other one defines the closest
position to the mouse pointer. We have the following methods available when
handling marks:

index(mark)—Returns the line and column location of a specific mark.

mark_gravity(mark [,gravity])—Returns the gravity of the given mark. If the
second argument is provided, the gravity is set for the given mark. This defines
where new text must be inserted if someone tries to insert the text exactly on the
mark position.

mark_names()—Returns all marks from the Text widget.

mark_set(mark, index)—Informs a new position to the given mark.

mark_unset(mark)—Removes the given mark from the Text widget.

Tags are used to associate names to regions of text, which makes easy the task of
modifying the display settings of specific text areas. Tags are also used to bind event
callbacks to specific ranges of text. Tkinter provides a preconfigured tag called SEL that
matches the current selection. Next, are the available methods for handling tabs:

tag_add(tagname,startindex[,endindex] ...)—This method tags either the
position defined by startindex, or a range delimited by the positions startindex
and endindex.

tag_config—You can use this method to configure the tag properties, which
include, justify (center, left, or right), tabs (this property has the same
functionality of the Text widget tabs’s property), and underline (used to underline
the tagged text).

20 0672319942 CH15 11/15/00 11:40 AM Page 615

616 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

tag_delete(tagname)—This method is used to delete and remove a given tag.

tag_remove(tagname [,startindex[.endindex]] ...)—After applying this
method, the given tag is removed from the provided area without deleting the
actual tag definition.

The following example uses tags to format specific regions on the Text widget. Note
that we use row/column pairs to define the ranges that we want to manipulate.

from Tkinter import *

def onclick():

pass

root = Tk()

text = Text(root)

text.insert(INSERT, “Here, I start the text ...”)

text.insert(END, “... and here, I finish it.”)

text.pack()

text.tag_add(“here”, “1.0”, “1.4”)

text.tag_add(“start”, “1.8”, “1.13”)

text.tag_config(“here”, background=”yellow”, foreground=”blue”)

text.tag_config(“start”, background=”black”, foreground=”green”)

root.mainloop()

Indexes are used to point out the actual positions of characters, delimiting areas within
a text.

The following index types are available: INSERT, CURRENT, END, line/column
(“line.column”), line end (“line.end”), user-defined marks, user-defined tags
(“tag.first”, “tag.last”), selection (SEL_FIRST, SEL_LAST), window coordinate
(“@x,y”), embedded object name (window, images), and expressions.

In order to demonstrate more uses of this widget, the next example inserts a Button
widget right inside the text.

from Tkinter import *

def onclick():

pass

root = Tk()

text = Text(root)

text.insert(INSERT, “Here, I start the text ...”)

button = Button(text, text=”I am a button”, command=onclick)

20 0672319942 CH15 11/15/00 11:40 AM Page 616

617CHAPTER 15 Tkinter
Tkinter Widgets

text.window_create(INSERT, window=button)

text.insert(END, “... and here, I finish it.”)

text.pack()

root.mainloop()

Toplevel
Toplevel widgets work as windows that are directly managed by the window manager.
They do not necessarily have a parent widget on top of them. Toplevels do support
geometry management, as you can control where children of a toplevel are placed, but
you don’t need to pack the toplevel itself. Their behavior is similar to Frame’s. The
difference is that Toplevel widgets are displayed in a top-level, separated window.

This widget supports all the methods mentioned next. Also note that these methods
are also supported by the root window, which is originated by the Tk() call. Not
necessarily all functions will work on your window manager because each one of the
available window managers in the market has its own type of support definitions.

deiconify()—Displays the window, after using either the iconify or the withdraw
methods.

frame()—Returns a system-specific window identifier.

group(window)—Adds the window to the window group administered by the given
window.

iconify()—Turns the window into an icon, without destroying it.

protocol(name, function)—Registers a function as a callback which will be called
for the given protocol. See the Protocols topic, which is located some pages ahead.

state()—Returns the current state of the window. Possible values are normal,
iconic, withdrawn, and icon.

transient([master])—Turns the window into a temporary(transient) window for
the given master, or to the window’s parent, when no argument is given. These
windows are automatically hidden when the master window is iconified or
withdrawn.

withdraw()—Removes the window from the screen, without destroying it.

The following methods can be used either to set or to retrieve a specific information
to or from the method call. If you call them without passing any arguments, they
simply return their current value or state. On the other hand, if you inform the
arguments, the expected action is executed.

20 0672319942 CH15 11/15/00 11:40 AM Page 617

618 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

aspect(minNumer, minDenom, maxNumer, maxDenom)—Controls the relation
between window’s width and height (aspect ratio). The aspect ratio is limited to lay
between minNumer/minDenom and maxNumer/maxDenom. If you omit the arguments,
this method returns the current constraints as a 4-tuple.

client(name)—Used under the X window system to define the WM_CLIENT_MACHINE
property. It is the application that sets the WM_* properties. The window manager
can make use of these properties when managing the windows.

colormapwindows(wlist...)—Used under the X window system to define the
WM_COLORMAP_WINDOWS property.

command(value)—Used under the X window system to define the WM_COMMAND
property.

focusmodel(model)—Sets the focus model.

geometry(geometry)—Changes the windows geometry by using the following
argument format: “widthxheight+xoffset+yoffset”, showing the widget
coordinates in pixels.

iconbitmap(bitmap)—Defines a monochrome icon bitmap to be used when the
window gets iconified.

iconmask(bitmap)—Defines the icon bitmap mask to use when this window gets
iconified.

iconname(newName=None)—Defines the icon name to be used when this window gets
iconified.

iconposition(x, y)—Defines a suggestion for the icon position to be used when
this window gets iconified.

iconwindow(window)—Defines the icon window that should be used as an icon
when this window gets iconified.

maxsize(width, height)—Defines the maximum size for this window.

minsize(width, height)—Defines the minimum size for this window.

overrideredirect(flag)—Defines a flag different from 0 and tells the window
manager to not add a title or borders to the window.

positionfrom(who)—Defines the position controller.

20 0672319942 CH15 11/15/00 11:40 AM Page 618

619CHAPTER 15 Tkinter
Tkinter Widgets

resizable(width, height)—Defines the resize flags, which control whether the
window can be resized.

sizefrom(who)—Defines the size controller.

title(string)—Defines the window title.

Image
This class is used as a foundation to display graphic objects, including bitmaps and
GIF images. Two subclasses are inherited from this class: BitmapImage and PhotoImage.

In order to using the following syntax:

image = BitmapImage(options) or image = PhotoImage(options)

The following functions can be used for image handling:

image_names()—Returns a list containing the names of all existing images.

image_types()—Returns a list containing all the existing types that were created.

After a image object is created, it provides the following methods: image.type(),
image.width(), and image.height(), which return the type, actual width, and actual
height of the image, respectively.

BitmapImage
This subclass is used to display bitmap images on widgets, including buttons, canvas,
labels, and text. They really mean bitmap for BitmapImage (not a multicolor image,
which most Windows users think of because of the .BMP format). A bitmap image
represents a two color image (or 2 colors + transparency if a mask is used).

The following methods are exposed by this subclass. Table 15.5 shows the available
options for these methods.

cget(option)—Returns the value of the given option.

config(options), configure(options)—Changes the image options.

height(), width()—Returns the image dimension, in pixels.

type()—Returns the “bitmap” string.

20 0672319942 CH15 11/15/00 11:40 AM Page 619

620 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Table 15.5 Available Options for the BitmapImage Subclass

BitmapImage Options Description

background Background color to be used.

data String to be used instead of a file.

file File to be read.

foreground Foreground color to be used.

format Specifies the file handler to be used.

maskdata String that defines the contents of the mask in order to
produce a ‘shaped’ bitmap.

maskfile File that specifies the mask. If you specify both maskdata
and maskfile, the former becomes used.

height, width Requested dimensions for the image.

PhotoImage
This subclass is used to display full-color images on widgets, including buttons, canvas,
labels, and text.

The following attributes are exposed by this subclass:

data—String to be used instead of a file.

file—File to be read.

height, width—Requested dimensions for the image.

This subclass offers native support to GIF and PPM files. In order to add an image to
a widget, just implement the principle established by the following code:

from Tkinter import *

root = Tk()

frame = Frame(root)

myimage = PhotoImage(file=”new.gif”)

b = Button(root)

b.config(image= myimage) # or b.image = myimage

frame.pack()

b.pack()

root.mainloop()

General Widget Methods

Next, I list some of the methods inherited from the base Tk classes that are provided
for all Tkinter widgets, which also includes the toplevel object that is generated by the
Tk() method.

20 0672319942 CH15 11/15/00 11:40 AM Page 620

621CHAPTER 15 Tkinter
Tkinter Widgets

The following methods always apply to the widget object that makes the method call.
To demonstrate it, the next code lines create a label widget, and use the config
method to set the value of the text attribute for the label widget that we have just
created.

lb = Label(root)

lb.config(text= “Hello Python World”)

Now, let’s see the available methods:

cget(option)—Returns a string that contains the current configuration value for
the given option.

config(options), configure(options)—Sets the values for one or more options.
When used without arguments, it returns a dictionary containing the current
settings for all widget options.

destroy()—Destroys the widget, removing it from its namespace.

focus(), focus_set()—Sets the keyboard focus to the widget.

focus_displayof()—Returns the name of the window that contains the widget and
has the focus.

focus_force()—Enforces the keyboard focus to the widget.

focus_get()—Returns the identity of the window with focus.

focus_lastfor()—Returns the identity of the most recent window to receive the
input focus.

getvar(variable)—Returns the value of the provided Tkinter variable name.

grab_set()—Grabs all events for the current application to the widget.

grab_current()—Returns the identity of the widget that has set the grab
functionality in the current application.

grab_release()—Releases the grab on the widget.

grab_set_global()—Grabs all events for the entire screen to the widget.

grab_status()—Returns None, local, or global, depending whether there is no
grab set on window, a local grab is set, or a global grab is set, respectively.

keys()—Returns all the options available for this widget in a tuple format. In order
to obtain the value of each one of these options, you can use the cget method.

20 0672319942 CH15 11/15/00 11:40 AM Page 621

622 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

lift([object]), tkraise([object])—Moves the widget to the top of the window
stack, or if an object (a widget or a window) is provided, the widget is placed right
above the informed object.

lower([object])—Moves the widget to the bottom of the window stack, or if an
object (a widget or a window) is provided, the widget is placed right below the
informed object.

mainloop()—Activates the main event loop.

quit()—Quits the main event loop.

setvar(variablename, value)—Sets a value to the given Tkinter variable name.

update()—Processes all pending tasks, such as geometry management and widgets
redrawing. Be careful when using this method.

update_idletasks()—Processes all pending idle tasks.

tk_focusNext()—Returns the next widget that should have the keyboard focus.

tk_focusPrev()—Returns the previous widget that should have the keyboard focus.

wait_variable(variable)—Creates a local event that waits for the given Tkinter
variable to change. This loop doesn’t affect the application’s mainloop.

wait_visibility(widget)—Creates a local event that waits for the given widget to
become visible. This loop doesn’t affect the application’s mainloop.

wait_window(widget)—Creates a local event that waits for the given widget to be
destroyed. This loop doesn’t affect the application’s mainloop.

winfo (Widget Information) Methods
This set of methods provides specific functionality for the windowing widgets.

winfo_cells()—Returns the number of cells in the widget’s color map.

winfo_children()—Returns a list of widget instances for all the widget’s children.

winfo_class()—Returns the Tkinter widget class name for the widget.

winfo_colormapfull()—Returns true if the widget’s color map is full.

winfo_containing(xcoord, ycoord)—Returns the identity of the widget located at
the given coordinate (relative to the upper left corner of the root window).

winfo_depth()—Returns the bit depth (8, 16, 24, or 32 bits per pixel) used to
display the widget.

20 0672319942 CH15 11/15/00 11:40 AM Page 622

623CHAPTER 15 Tkinter
Tkinter Widgets

winfo_exists()—Returns true if a Tk window corresponds to the given widget.

winfo_fpixels(number)—Returns a floating point value, which is the result of the
conversion of the given distance to the corresponding number of pixels.

winfo_geometry()—Returns a string in the format
“widthxheight+xoffset+yoffset”, showing the widget coordinates in pixels.

winfo_height(), winfo_width()—Return the widget’s height and width, in pixels.

winfo_id()—Returns an integer that contains a platform-specific window identity
corresponding to the given widget. On UNIX systems, this is the X window
identifier; on Windows systems, this is the Window HWND; and on Macs, it is a
non-useful value.

winfo_ismapped()—Returns true if the widget is currently mapped by the
underlying window system.

winfo_manager()—Returns the name of the geometry manager that has been used
to organize the widget.

winfo_name()—Returns the widget’s name.

winfo_parent()—Returns the name of the widget’s parent, or an empty string in
case the widget doesn’t have a parent widget/window.

winfo_pathname(widget_id)—Returns the pathname of the widget whose identity is
given as the argument.

winfo_pixels(number)—Returns an integer value, which is the result of the
conversion of the given distance to the corresponding number of pixels.

winfo_pointerx()—Returns the x coordinate of the mouse pointer (in pixels) when
it is on the same screen of the widget.

winfo_pointerxy()—Returns a tuple of the x and y coordinates of the mouse
pointer (in pixels) when it is on the same screen of the widget.

winfo_pointery()—Returns the y coordinate of the mouse pointer (in pixels) when
it is on the same screen of the widget.

winfo_reqheight(), winfo_reqwidth()—Return the minimal height and width
required by the widget in order to be entirely displayed.

winfo_rootx(), winfo_rooty()—Return the pixel coordinates (integer values)
corresponding to the widget’s upper left corner, relative to the upper left corner of
root’s window border.

20 0672319942 CH15 11/15/00 11:40 AM Page 623

624 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

winfo_screen()—Returns the screen name for the current window in the format
display.screen. Note that it doesn’t provide any useful information on non-X
versions of Tk.

winfo_screencells()—Returns the number of cells in the default color map for
widget’s screen.

winfo_screendepth()—Returns the bit depth of the window widget.

winfo_screenheight(), winfo_screenwidth()—Returns the height and the width of
the widget’s screen, in pixels.

winfo_screenmmheight(), winfo_screenmmwidth()—Returns the height and the
width of the widget’s screen, in millimeters.

winfo_screenvisual()—Returns the default visual class used for widget’s screen.
Possible values include pseudocolor, directcolor, staticcolor, truecolor,
grayscale, and staticgray.

winfo_toplevel()—Returns a widget instance of the top-level window containing
the widget.

winfo_visual()—Returns the visual class used for the widget. Possible values
include pseudocolor, directcolor, staticcolor, truecolor, grayscale, and
staticgray.

winfo_x(), winfo_y()—Return the pixel coordinates (integer values) corresponding
to the widget’s upper left corner, relative to the upper left corner of its parent’s
window border.

Designing Applications

Up to this point, we’ve seen how to handle the properties and methods of Tkinter’s
widgets. Now, we will learn the basic steps to write real-world applications.

Tkinter is really powerful, and if you are not satisfied with the widgets that it offers,
you can create your own set of widgets. A very interesting and customized widget that
you should consider checking before learning how to create your own, is the
TreeWidget, which is part of the latest idle distribution. This widget uses a Tk Canvas
widget and some images to nicely simulate the TreeView Windows control.

20 0672319942 CH15 11/15/00 11:40 AM Page 624

625CHAPTER 15 Tkinter
Designing Applications

The simplest windowing application that you can create consists of just one window,
which is called the root window. The root window is created using the Tk() call.

from Tkinter import *

root = Tk()

root.mainloop()

If your application needs more than just one single window, you can use the Toplevel
widget to create additional windows for you. This widget has a behavior very similar
to the window generated by Tk(). This widget also dispenses the use of geometry
management functions because the window manager displays this widget, immediately
after you call it.

from Tkinter import *

def mywindow():

top = Toplevel(root)

root = Tk()

b1 = Button(root, text=”Create new window”, command=mywindow)

b1.pack()

root.mainloop()

After adding a lot of windows to your application, maybe now you are wondering
whether it would be OK to add a menu to your program. The following code does
that for you.

from Tkinter import *

import sys

def newwindow():

top = Toplevel(root)

def aboutwindow():

who = Toplevel(root)

Label(who, text=”This is the about window”).pack()

root = Tk()

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label=”File”, menu=filemenu)

filemenu.add_command(label=”New”, command=newwindow)

20 0672319942 CH15 11/15/00 11:40 AM Page 625

626 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

filemenu.add_separator()

filemenu.add_command(label=”Exit”, command=sys.exit)

helpmenu = Menu(menu)

menu.add_cascade(label=”Help”, menu=helpmenu)

helpmenu.add_command(label=”About...”, command=aboutwindow)

root.mainloop()

What’s next? What about adding a toolbar to our little application? The simplest way
to implement a toolbar is by taking a Frame widget and storing all the required
buttons on it.

from Tkinter import *

import sys

def newwindow():

top = Toplevel(root)

def aboutwindow():

who = Toplevel(root)

Label(who, text=”This is the about window”).pack()

root = Tk()

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label=”File”, menu=filemenu)

filemenu.add_command(label=”New”, command=newwindow)

filemenu.add_separator()

filemenu.add_command(label=”Exit”, command=sys.exit)

helpmenu = Menu(menu)

menu.add_cascade(label=”Help”, menu=helpmenu)

helpmenu.add_command(label=”About...”, command=aboutwindow)

toolbar = Frame(root)

newimage = PhotoImage(file=”new.gif”)

b1 = Button(toolbar, image=newimage, width=16, command=newwindow)

b1.pack(side=LEFT, padx=1, pady=1)

helpimage = PhotoImage(file=”help.gif”)

b2 = Button(toolbar, image=helpimage, width=16, command=aboutwindow)

b2.pack(side=LEFT, padx=1, pady=1)

toolbar.pack(side=TOP, fill=X)

root.mainloop()

20 0672319942 CH15 11/15/00 11:40 AM Page 626

627CHAPTER 15 Tkinter
Designing Applications

As we want our toolbar to be on the highest area of our screen, we have to pack it on
the top side of the Frame widget. The fill option being set to X in the toolbar widget
enables the toolbar to extend itself, covering the entire extension of the parent frame
size.

Note the usage of the PhotoImage class. This class is used to load the GIF files from
disk and store them into variables. Then, these variables are passed to the Button
options that handle images.

Let’s move forward now. The next step is to create a status bar for our small
application. We want this bar to be on the bottom side of the window.

from Tkinter import *

import sys

def newwindow():

top = Toplevel(root)

statusbar.config(text=”This is a testing application.”)

def aboutwindow():

who = Toplevel(root)

Label(who, text=”This is the about window”).pack()

statusbar.config(text=”Hi There!”)

root = Tk()

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label=”File”, menu=filemenu)

filemenu.add_command(label=”New”, command=newwindow)

filemenu.add_separator()

filemenu.add_command(label=”Exit”, command=sys.exit)

helpmenu = Menu(menu)

menu.add_cascade(label=”Help”, menu=helpmenu)

helpmenu.add_command(label=”About...”, command=aboutwindow)

toolbar = Frame(root)

newimage = PhotoImage(file=”new.gif”)

b1 = Button(toolbar, image=newimage, width=16, command=newwindow)

b1.pack(side=LEFT, padx=1, pady=1)

helpimage = PhotoImage(file=”help.gif”)

b2 = Button(toolbar, image=helpimage, width=16, command=aboutwindow)

20 0672319942 CH15 11/15/00 11:40 AM Page 627

628 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

b2.pack(side=LEFT, padx=1, pady=1)

toolbar.pack(side=TOP, fill=X)

statusbar = Label(root, text=”This is a testing application.”, bd=1,

relief=SUNKEN, anchor=W)

statusbar.pack(side=BOTTOM, fill=X)

As you could see, we used the Label widget to implement the statusbar in order to be
able to change the text value later. Pretty nice, isn’t it?

Now, have a look at the final shape of our interface (Figure 15.16).

Figure 15.16

This figure shows the complete example of designing the structure of an application using Tkinter.

In my opinion, one of the greatest things about designing GUI applications using
Tkinter is the number of things that are already done and ready to be used by your
applications. Some examples are the following modules, which are part of the Tkinter
distribution, and implement common dialog boxes.

tkMessageBox—This module implements the classic Yes/No and
Abort/Retry/Ignore dialog styles.

tkSimpleDialog—This module implements a base class that can be used to
implement other modules.

tkFileDialog—This module implements a file dialog, which is very close to the file
dialogs found in the Windows system.

tkColorChooser—This module implements a dialog that allows you to choose and
pick a color.

The usage of these modules is very simple. The next example opens a file dialog box,
which allows you to browse the files through your local directory, and returns the
filename selected (see Figure 15.17).

from Tkinter import *

import tkFileDialog

def openwindows():

statusbar.config(text = open.show())

20 0672319942 CH15 11/15/00 11:40 AM Page 628

629CHAPTER 15 Tkinter
Designing Applications

root = Tk()

myfiletypes = [(‘Python files’, ‘*.py’), (‘All files’, ‘*’)]

open = tkFileDialog.Open(root, filetypes = myfiletypes)

Button(root, text=”Open File Dialog”, command=openwindows).pack()

statusbar = Label(root, text=””, bd=1, relief=SUNKEN, anchor=W)

statusbar.pack(side=BOTTOM, fill=X)

root.mainloop()

As you could notice, this is a very simple example of the power of Tkinter, but the
concept of creating a dialog is as simple as the concept of creating a window.

Figure 15.17

Note that the FileDialog returns the name of the selected file, and our application shows that

name on the status bar.

After creating a Toplevel widget and making the call to open the dialog, the standard
dialog only returns to the Toplevel widget when it is closed. When you start facing
problems like this, you have several solution options, such as opening several dialogs
and making them run in parallel. Or you can create the dialog and only return the
control back to the Toplevel widget when the dialogs are closed by the user, creating a
modal behavior. This solution is implemented using the wait_window method, which
creates a local event loop, and only returns when the window informed as an
argument is closed.

Although application modal dialogs are easier to program, most users find them much
more annoying. If possible, only use modal dialogs where some action has to be
performed before the application can continue.

That’s it. Our overview about Tkinter ends here. Next you will see a toolkit that
extends the set of available widgets you can use, and next you will find a list of useful
resources for a more advanced approach on this topic.

20 0672319942 CH15 11/15/00 11:40 AM Page 629

630 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

PMW—Python Mega Widgets

PMW (Python Mega Widgets) is a toolkit for building high-level widgets in Python
using the Tkinter module. This toolkit provides a framework that contains a variety of
widgets richer than the one provided by Tkinter.

This package is 100% written in Python, which turns out to be a cross-platform
widget library. Being highly configurable allows it to create additional widget
collections by extending the basic Tkinter widget core set.

PMW provides many interesting and complex widgets, including: AboutDialog,
Balloon, ButtonBox, ComboBox, ComboBoxDialog, Counter, CounterDialog, Dialog,
EntryField, Group, LabeledWidget, MenuBar, MessageBar, MessageDialog,
NoteBookR, NoteBookS, NoteBook, OptionMenu, PanedWidget, PromptDialog,
RadioSelect, ScrolledCanvas, ScrolledField, ScrolledFrame, ScrolledListbox,
ScrolledText, SelectionDialog, TextDialog, and TimeCounter.

This package is energetically maintained by its author, Greg McFarlane, and it has an
extensive documentation. For more information about it, check out its Web site at

http://www.dscpl.com.au/pmw

Tkinter Resources

The following resources provide an excellent complement to the documentation
offered by this chapter. They link to several Tk/Tkinter related sites.

Tkinter

http://www.python.org/topics/tkinter/

Matt Conway’s Tkinter Life Preserver

http://www.python.org/doc/life-preserver/index.html

Tkinter Standard Dialogues

http://starship.python.net/crew/fredrik/py14/tkdialogs.htm

Tkinter: GUI programming with Python

http://www.nmt.edu/tcc/help/lang/python/tkinter.html

Python and Tkinter Programming, by John E. Grayson

http://www.manning.com/Grayson/Contents.html

20 0672319942 CH15 11/15/00 11:40 AM Page 630

631CHAPTER 15 Tkinter
Summary

An Introduction to Tkinter, by Fredrik Lundh

http://www.pythonware.com/library/tkinter/introduction/index.htm

Tkinter Class Reference Pages

http://www.pythonware.com/library/tkinter/tkclass/index.htm

Online Tcl/Tk Manual Pages—the official man pages at Scriptics

http://dev.scriptics.com/man/

Tk 8.0 man pages

http://dev.scriptics.com/man/tcl8.0/TkCmd/contents.htm

Ajuba (formerly Scriptics)—the company founded by Tcl/Tk’s inventor, John
Ousterhout

http://www.ajubasolutions.com/

Vaults of Parnassus—User Interfaces and Widgets Section

http://www.vex.net/parnassus/

Summary

Tk is a popular and endorsed toolkit that can handle windows, GUI events, and user
interactions. Tkinter is Python’s cross-platform interface to the Tk GUI toolkit that
enables you to handle buttons and windows, and define their properties at a glance.
The typical Tkinter distribution contains a basic set of 15 widgets, and some extra
classes that can be used by your GUI applications.

Button—This widget defines a clickable button that can execute a specific operation
when clicked.

Canvas—This widget is used to draw graphs, lines, polygons, and all other types of
graphic elements.

Checkbutton—This widget exposes a button that controls a variable that can have
two distinct values.

Entry—This widget implements a simple text entry field.

Frame—This widget works like a container for other widgets when creating a
complex layout within a window.

20 0672319942 CH15 11/15/00 11:40 AM Page 631

632 PYTHON DEVELOPER’S HANDBOOK

PART IV Graphical Interfaces

Label—This widget handles the exhibition of a text or an image.

Listbox—This widget displays a list of possible selections.

Menu—This widget is used to implement pull-down and pop-up menus.

Menubutton—This widget is used to implement pull-down menus.

Message—This widget displays a text message in a way similar to the label widget,
but using powerful formatting capabilities.

Radiobutton—This widget is associated with a variable, and when clicked, the
variable assumes its value.

Scale—This widget provides a slider that helps you set the value of a numerical
variable.

Scrollbar—This widget implements standard scrollbars that you can use along with
other widgets, such as listbox, canvas, entry, and text.

Text—This widget display text that you can edit and format.

Toplevel—This widget is another container widget, just like the frame widget.

Tkinter also provides the Image class. This class is used as a foundation to display
graphic objects, including bitmaps and GIF images. Two subclasses are inherited from
this class: BitmapImage and PhotoImage.

All these Tkinter widgets have access to specific geometry management methods,
which have the purpose of organizing them throughout the parent widget area. These
methods are grouped in three distinct classes that provide a nice way to lay out child
widgets in their parent widget. Tkinter exposes the following geometry manager
classes: pack, grid, and place.

Tkinter also allows you to create event bindings for every specific object, and after
binding an event to a widget, you can specify which function should be called at the
time the event occurs. This function (or method) is called callback.

To complement Tkinter, you can also use the Python Mega Widgets. PMW is a
toolkit for building high-level widgets in Python using the Tkinter module that
provides many interesting and complex widgets.

20 0672319942 CH15 11/15/00 11:40 AM Page 632

PART V

Developing with Python

CHAPTER

16 Development Environment

17 Development Tools

21 0672319942 Pt 5 11/15/00 11:40 AM Page 633

21 0672319942 Pt 5 11/15/00 11:40 AM Page 634

CHAPTER 16

Development Environment

Always look on the bright side of life.

This chapter shows some performance and style suggestions for
your code, now that you are probably writing your own
programs. It also introduces you to the main GUI development
environments that you can use to write Python applications.

Building Python Applications

Whenever you have to sit down in front of a computer to write
a Python program, you should stick to a good coding style
especially if you are working as part of a team. The clearer your
code gets, the better it is to maintain it. The development
process of writing Python application can be highly improved if
you follow some basic guidelines.

I am sure that in most cases, after you have defined your project
goal and gone through the development strategy stage, you will
understand that Python might be a solution for your application
problems.

Python is fairly easy to use, which requires less time to instruct
developers. If, as part of the training, the style considerations
are defined and taught, you can have a whole team of
developers coding within the same pattern in a very short time.
The maintenance time is also improved because Python is able

D E V E L O P E R ’ S H A N D B O O K

22 0672319942 CH16 11/15/00 11:40 AM Page 635

636 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

to generate an extremely readable kind of code that allows developers to share their
ideas without many problems.

Consequently, your development effort is reduced. As a matter of fact, the
development time might be reduced as well. When comparing Python to other
languages such as C or Java, an application written in one of these languages requires
more lines of code—most of the time—than the same functionality written in Python.

Development Strategy

Writing a program is something very easy, but writing a good and optimized program
requires some level of experience. A good way to start is to learn all the nuances of the
language, which in our case involves learning Python. You should know a little bit of
everything, and this book helps you learn most of them, including classes, modules,
functions, exception handling, dynamic typing, GUI, operator overloading,
indentation, and so forth.

Of course, you must know many other important items too.

Nowadays, the most important development efforts are focusing on the Internet.
Python offers the basic necessary tools that you might need for your Web projects.
Python can be used either for Web-based interface projects or to generate entire back-
end frameworks, using tools such as Zope.

Note that by extending Grail, the Web browser written in Python, you can embed
your Python application directly on it and distribute a browser to your clients that
carries specific and customized interfaces.

Even if you don’t use Grail, you can use any browser to provide GUI interfaces for
your applications. Have you ever considered delivering information and products
through the Web? If so, you can do it using Python.

Python is a perfect language for project prototyping. Python’s design allows you to
make changes very quickly. Later you can decide whether you will re-implement the
code using a compiled language, or stick to Python and continue the development
effort using the prototype as a startup. Remember that after spending some time
creating a prototype, you probably have a huge amount of code that you do not want
to throw away.

Prototyping with Python is very easy. You can, for example, wrap your code in a
function inside a module and use a development environment, such as Pythonwin or
IDLE, to run the script. To test this application, you just need to save it and execute
it—very simple. No intermediate stages are necessary.

22 0672319942 CH16 11/15/00 11:40 AM Page 636

637CHAPTER 16 Development Environment
Development Strategy

Python testing mechanisms also allow you to forge command-line arguments. You can
test your command-line scripts by first setting their expected arguments to predefined

values using the built-in variable sys.argv.

Along the development stage, you will soon see that Python can be easily used to code
entire applications, without discarding the prototyped code.

If speed is a requirement, you can use a compiled language in the back-end side of
your application to support the high-demand operations. Python, in this case, can be
used as the front end of the application, leaving the hard work to the other language.
This kind of implementation allows you to create black boxes of code, which get called
by Python, and Python doesn’t necessarily need to know what is happening behind the
scenes because only the external interface of the compiled language needs to be
exposed.

But whenever possible, select just Python. It is good to remember that supporting a
scripting language is much easier than supporting a compiled language. The usage of a
scripting language makes tasks such as debug the application, fix bugs, and add
enhancements look very simple. Because we are not using a compiled language, we
don’t need to spend time compiling and linking the files. Updating client sites with the
latest version of the application is also very easy because we just need to send the file
that carries the changed Python module.

As you can see, a lot of thinking is involved in the process of preparing yourself to
handle a Python development. Next, we will see some ideas about how to optimize
your code, and how to write a program with style. Both are very important things that
you must have in mind, not only when using Python, but also when writing in any
other language.

Optimizing the Code

To prevent your program from running very slowly, you might consider following
some basic Python optimization rules. By designing your application from the start
with these guidelines in mind, you will certainly be satisfied with the final overall
performance that you will get.

My goal in this section is to provide ways to generate acceptable performance in your
Python routines. Note that I don’t cover everything, but a good set of basic concepts is
covered.

Many things can be done to reduce the processing time of your application.
Remember that you have an interpreter being called every time you execute a Python
script. Consequently, you need to work on your code in order to compensate that
somehow. The fact that it is an interpreted language is a big concern, but by reducing

22 0672319942 CH16 11/15/00 11:40 AM Page 637

638 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

the number of statements that get parsed, you can also reduce the interpreter
overhead.

By the way, the Python interpreter has a command-line option (-O, which stands for
optimize) that enables you to execute your code in such a way that some of the
bytecode operations are not executed. Basically, it is used to remove the comments in
the bytecode that give the line number where exceptions occur, and does not compile
in the doc strings and a few other things. This flag does not give that much speed
increase, and it makes things harder to debug.

Some useful optimization hints are as follows:

• Variables—Depending on how your variables are defined, the interpreter spends
more or less time trying to figure out their values. Python deals with dynamic
scope rules when trying to resolve variable names. After it finds a variable in the
code, it first tries to discover if the variable is a local variable by looking at the
local namespace dictionary. If it finds the variable, it grabs the variable’s value.
Otherwise, it searches in the global namespace dictionary, and if necessary, in the
built-in namespace dictionary. As you can see, local variable lookups are pretty
much faster than other types. Consequently, the access to their values is faster
too. Also, local variable lookups are much faster because they correspond to
indexing into an array, whereas global variable lookups correspond to hash table
lookups. A good optimization hint might be that if you are using a global
variable a lot in a function, assigning its value to a local variable can help a lot.

• Modules—Within a single script, you just need to import an external module
once. Therefore, it is not necessary to have multiple import statements inside
your code. Actually, you should avoid trying to re-import modules on your
program. As a rule of thumb, put all the import statements in the very first part
of your program header. However, calling import on a module multiple times is
not really a problem because it is just a dictionary lookup.

In cases where you have to do a lot of referencing to particular attributes of an
external module, you should consider copying those elements to a single variable
(when that’s possible, of course) before starting to code—especially, if the
references are made inside a loop.

Whenever you import a module, the interpreter looks for a byte-compiled
version of the module. In case it doesn’t find any, it automatically bytecompiles
the module and generates a .pyc file. So, the next time you try to import the
module, the byte-compiled file will be there. As you can feel, .pyc files are
executed much faster than regular .py files because they have already being
interpreted by the interpreter prior to the execution. The suggestion here is to

22 0672319942 CH16 11/15/00 11:40 AM Page 638

639CHAPTER 16 Development Environment
Development Strategy

use byte-compiled modules the more you can. The Python code executes at the
same speed no matter if there is a .pyc file or not. The only difference is that if
there is a byte-compiled file, startup will be a bit quicker. The actual running
speed of the code is no different.

• Strings—Use format strings whenever you need to concatenate strings with
other variables. Check out the next concatenation forms.

name = “Andre”

print “Hello “ + name

print “Hello %s” % (name)

Be sure that the second print statement is more optimized than the first one.
The parentheses on the third line are not necessary. Another option would be

print “Hello”, name

• Tkinter—Avoid creating unnecessary instances of widgets. If you are not
planning to manipulate the attributes of a widget after it has been created, stick
to direct calls to the class. In a GUI app, this won’t affect the running speed that
much—just the startup time.

There is no reason to say

mybutton = Button(root, text=”Close”)

mybutton.pack(side=right)

when you can simply use

mybutton = Button(root, text=”Close”).pack(side=right)

Now, the interpreter has one less variable to handle.

I open a parenthesis here to let you know that if you are testing a Tkinter
application using IDLE, you need to comment your mainloop() command.
That’s because IDLE is already running inside a Tkinter mainloop, and calling
another one might freeze your entire environment.

• Loops—You can optimize a lot of things in your loops in order to make them
run smoothly. In a short list, I can tell you the following:

• You should use built-in functions in your inner loop instead of using
functions written in Python. By using built-in functions that support list
manipulation (such as map(), reduce(), and filter()) instead of straight
loops, you can move some of the loop overhead to the C code. Passing
built-in functions to map, reduce, or filter gives even better performance.

22 0672319942 CH16 11/15/00 11:40 AM Page 639

640 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

• Whenever you have multiple levels of loop, it is worth it to optimize only
the innermost one. When optimizing multiple-level loops, the idea is to
reduce the number of memory allocations. Making the innermost loop to
be the one with the fewer number of interactions should help your
performance design.

• Working with local variables is a great thing that improves the processing
time inside a loop. Whenever possible, copy all your global variables and
attribute look-ups to local variables before entering a loop.

• If you use construction methods such as range(n) inside a nested loop, it is
much faster to allocate the value range to a local variable outside the
outmost loop, and use this variable in the loop definitions.

yRange = range(500)

for xItem in range(100000):

for yItem in yRange:

print xItem, yItem

• Another optimization here would be using xrange for the x for loop
because a 100000 item list is a quite large list.

yRange = range(500)

for xItem in xrange(100000):

for yItem in yRange:

print xItem, yItem

• Functions—Python built-in functions are faster to execute than functions written
in clean Python because the built-in functions are already written in C.
map(),filter(), and reduce() are examples of built-in functions that can be used
to beat the performance of functions written in Python. It is also good to know
that Python handles function names as global constants. Having said that, the
whole conception of namespace look-up that we saw previously also applies to
functions as well. If you have the option to choose, use the map() function’s
implied loop than a for loop—it is much faster. The runtime of the loop
functions that I mention here is highly dependent on what function you pass in.
Passing a Python function will not be as fast as passing in a built-in function
(such as the ones in the operator module).

In case you want to test the performance of your routines, you can use a simple
concept, which is explained next. The idea is to measure the time spent between
calling the routine and finishing its execution.

22 0672319942 CH16 11/15/00 11:40 AM Page 640

641CHAPTER 16 Development Environment
Development Strategy

After you add these lines to your program, you can benchmark it and test new kinds of
approach. Note that we have a little time overhead because we have to call the time()
function.

First, you need to import the time module:

import time

Second, you just need to set a timer after executing and before starting your routine.
This is done using the time.clock() function:

start_timer = time.clock()

call_your_routine()

end_timer = time.clock()

print end_timer-start_timer

Code optimization is a very complex science that is not restricted just to Python
programs. Sometimes when you booster the performance in one place, it breaks
something somewhere else. What I mean by that is that if the processing time of your
application seems OK for you, don’t touch it. I suggest that you to just try to optimize
your code when a real performance problem is creating an unsupportable bottleneck in
your application.

Chapter 17, “Development Tools,” introduces the Python Profiler module to you. This
tool can help you to identify the bottlenecks in your code.

The following links have some more additional thoughts about code optimization for
Python applications:

Python Patterns—An Optimization Anecdote, essay by Guido Van Rossum

http://www.python.org/doc/essays/list2str.html

Python Performance Tips, by Skip Montanaro

http://www.musi-cal.com/~skip/python/fastpython.html

Style Guide

The following guidelines are directly based from some of the ideas of Guido van
Rossum about how to write a Python program within style. The main quality that we
need to acquire is the ability to decide exactly when we can apply these guidelines, and
when it is better to be a little inconsistent and step out of these rules in order to have a
more reliable implementation.

22 0672319942 CH16 11/15/00 11:40 AM Page 641

642 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

These are just suggestions. Feel free to write your code any way you want it. Nothing
or no one will force you to follow these rules, but you will see by yourself how
practical it is to have these guidelines in mind when coding a program.

Code Layout
Python’s core definition says that we must delimit structures using indented blocks. A
standard indentation consists of four spaces for each indentation level. Most of the
time, you can alternatively use one tab instead of four spaces.

Try to write your code with lines containing less than 80 characters each. If it turns
out to be necessary to break a line, use parentheses, brackets, and braces to continue
the code on the next line, using a backslash only if that is not possible.

Blank lines are used to separate chunks of related code, such as top-level function and
class definitions (two blank lines), class definition and the first method definition (one
line), and methods definitions inside a class (one blank line). You can omit the blank
lines in case your definitions have just one line each.

Handling whitespaces is another issue that you need to be aware of. The following are
bad examples of whitespace usage:

lst = [3,4,5] # After open parentheses, brackets or braces.

if var < 10 : # Preceding a comma, semicolon, or colon.

xrange (7) # Preceding the parenthesis of a function call.

car [“plate”] # Preceding indexing or slicing brackets.

var = 3 # Multiple whitespaces preceding an operator.

The next group of operators should always be preceded and followed by just one space
on each side.

=, ==, <, >, !=, <>, <=, >=, in, not in, is, is not, and, or, not.

However, there is a special remark here for the = (equal) sign. Whenever it is used to
indicate a keyword argument or a default parameter value, you should suppress the
spaces that surround it.

def printvar(input=10):

print input

printvar(input=20)

20

printvar()

10

Sometimes, arithmetic operators shouldn’t be surrounded by spaces either. By avoiding
whitespaces, you can make some expressions more readable, as you will see next.

22 0672319942 CH16 11/15/00 11:40 AM Page 642

643CHAPTER 16 Development Environment
Development Strategy

var = (x+y * (w/z))

The previous expression resembles ((x+y) * (w/z)) when in fact it is
(x+(y * (w/z))). A good way to write that would be

var = (x + y*(w/z))

Comments
If you decide to add comments to your code, you need to remember to keep them up-
to-date all the time. Otherwise, it can become more of a problem than being a helper
thing. Some of the basic rules for writing comments are listed next:

• Write your comments in plain English. For large projects with members of
different nationalities, English is often the common language. Of course, if no
developers know English, this rule is not a good idea.

• Capitalize the first word of sentences and phrases.

• Omit the period at the end of short comments.

• Never alter the case of identifiers. Remember that Python is case sensitive; thus,
you should write your helper comments using the same notation used by the
definition of the object that you are describing.

There are two kinds of comments: block comments and inline comments. The former
applies to the code that follows it, and the latter is put on the code’s own line. Both
types require at least a single #, followed by a single space at the beginning of each
commented line. When writing block comments, insert a blank line above them, and
another one below each paragraph.

Be careful when using inline comments because it can cause over-pollution of text in
your code—comments are no substitute for readable code. Inline comments are best
used when preceded by at least two whitespace characters from the inline statement.

A documentation string is a special kind of comment that goes beyond the remarking
concept that we get when using the # literal. All objects that accept the usage of
documentation strings incorporate those strings to their structure, allowing you to
later query, read, and use their documentation strings (see Chapter 2, “Language
Review,” for details).

Documentation strings are, by convention, surrounded by a triple quote structure on
each side. Do not use the documentation string to store a description. Instead, try to
be functional, showing the command’s action. Things that you should try to register in
documentation strings include: the environment variables, files, routine objective, and

22 0672319942 CH16 11/15/00 11:40 AM Page 643

644 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

the syntax design of scripts, modules, functions, classes, and public methods exported
by classes.

There are two types of documentation strings: the one-liners and the multi-line ones.
The former must entirely fit in a single line, including the closing quotes, and you are
not instructed to insert blank lines surrounding it. On the other hand, multi-line
documentation strings are formed by a single line of documentation followed by a
block that contains a complete description of the object. Note that we are instructed to
insert a blank line between these two structures. Also, note that additional lines in a
documentation string do not need to be indented following the pattern established by
the first line (it does look nicer if they are though). Before typing the closing quotes, it
is also advised that you enter a new paragraph in order to let the quotes stand in a line
of their own.

Next, you will have some suggestions about what to include in the documentation
string of modules, functions, methods, and classes.

Modules should document the objects they export, such as the classes, exceptions, and
functions, with a one-line summary for each one of them.

Functions and methods should document their behavior, arguments (including
optional arguments and keywords), return value(s), side effects, exceptions raised, and
so forth. When documenting arguments, put each one of them in a single line and
separate each name from its description using two dashes. Single blank lines separate
lists of methods and functions from each other.

Classes should document their public methods and instance variable properties. If the
class subclasses another class, you have to mention the superclasses as well, along with
the differences between both implementations. As a suggestion, use the verbs override
and extend to respectively indicate that a specific method entirely replaces, or acts in
addition to the superclass’s own method definition. It is also recommended that when
creating the documentation string for a class, you should surround it using single
blank lines.

Naming Styles and Conventions
When it comes time to name your objects and variables, you have a list of options to
choose from. You just can’t mix all styles throughout your code because it might cause
a big mess. You need to be consistent, and I suggest that you stick to a pattern and use
it in every part of your code. As I said before, many styles are available. You might
already be a big fan of one of them without even knowing it. It is quite common to
have different naming conventions for classes, functions, and variables (for instance,
CapWords for classes, lower_case_with_underscores for functions). In order to give you an

22 0672319942 CH16 11/15/00 11:40 AM Page 644

645CHAPTER 16 Development Environment
Development Strategy

idea of what kind of different styles we have, the following case conventions are
introduced to you:

x (single lowercase letter)

X (single uppercase letter)

lowercase

lower_case_with_underscores

UPPERCASE

UPPER_CASE_WITH_UNDERSCORES

CapitalizedWords (or CapWords)

mixedCase

Capitalized_Words_With_Underscores

The following leading/trailing underscore structures can be combined with any one of
the previously listed naming styles. You can substitute the variable VAR for any other
object name that you want (considering Python’s rules for object naming seen in
Chapter 2).

_VAR—Objects that have a single leading underscore indicate that the object can be
used only on the local module namespace. The from module import * statement
doesn’t import objects that start with a single leading underscore. The main
concern about writing global variables is that if you want to have the variable only
visible by the module that defines it, you need to have an underscore preceding it.

VAR_—You need to append a trailing underscore to the end of the name in order to
avoid naming conflicts whenever you want to use a Python keyword (such as
print_) as your own variable. This is one just possible way of getting rid of a
conflict with a Python keyword.

__VAR—The double leading underscore identifies class-private names.

__VAR__—When you have an object that has both leading and trailing underscores,
you can consider yourself in front of an object that, in most cases, is defined by the
Python interpreter. This definition applies to both objects and attributes that work
under the user namespace, which includes the __init__ method. Try to avoid using
this type of structure when naming your own objects because it might cause name
conflicts in your application as future releases of Python arrive.

22 0672319942 CH16 11/15/00 11:40 AM Page 645

646 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Although there is no current naming standard among the files that are part of the
Python’s Standard Library, I can list some guidelines that can make the task of naming
new modules easier for you.

When creating modules, give them MixedCase or lowercase names. Use the first
option whenever the module exports a single class or a bunch of related classes, and
the second option when the module exports a group of functions. Also, note that
module names are mapped to filenames in Python. Therefore, it is a good idea to pay
special attention when giving a name to a module in order to avoid long names
(module names can become truncated on some systems), and keep in mind that
Python is case sensitive, which makes a module called MyModule.py different from a
module called mymodule.py. If you have two modules where one is a low-level interface
written in C/C++, and the other one is a high-level object-oriented interface written in
Python, the almost common standard nowadays is to give the Python’s module a
CapWords name (it isn’t quite as widely used). On the other hand, the C/C++ module
should be written entirely using lowercase letters, and preceded by a leading
underscore (this is pretty much standardized). A known example of this concept is the
pair of modules Tkinter and _tkinter.

When writing class names, you can stick to the CapWords pattern. Although this is a
convention used most of the time, you are encouraged to modify this rule when
handling internal classes of modules that are not supposed to be exported. You have to
precede these classes with leading underscores.

When working with exceptions, you have two options. Their names are usually written
in lowercase letters when part of built-in modules, whereas the ones that are part of
Python modules are usually written using CapitalizedWords. The main deciding factor
for creating exception names is whether you expect people to normally use from ...
import * or import ... in the module.

When naming functions, you are encouraged to use one from the next two style
options: CapWords for functions that provide a large functionality (less used), and
lowercase for functions that expose less useful classes.

When naming methods, you should stick to the CapWords style for methods that are
published by an ILU interface. For all other cases, you should consider switching to
lowercase. If you don’t want a method to be visible by external methods or instances,
you must put an underscore in front of it. As you can see in Chapter 5, “Object-
Oriented Programming,” the use of this same concept can be applied to certain
attributes in order to make them available only to their classes. Note that this last
feature can be easily manipulated using the __dict__ attribute.

More details about these concepts can be found at

22 0672319942 CH16 11/15/00 11:40 AM Page 646

647CHAPTER 16 Development Environment
IDLE

Python Style Guide, by Guido Van Rossum

http://www.python.org/doc/essays/styleguide.html

Integrated Development Environments

For years, many people have been writing and editing their Python programs using
simple text editors, but now the scenario has changed because Python currently
provides two efficient development environments for your usage. The first one is
IDLE, a cross platform Integrated Development Environment for Python, and the
other one is Pythonwin, a development environment specifically for the Windows
platform.

IDLE

IDLE is written in Python and it uses Tkinter for the GUI interface. IDLE is portable
and available for all Python platforms that support Tkinter, which includes UNIX,
Windows, and Macintosh. Because it is written in Python, you can extend it in Python
as well. Guido van Rossum, along with many others including Jeremy Hylton, Tim
Peters, Moshe Zadka, and Mark Hammond are some of the people behind the
development effort of the IDLE project. IDLE can be considered to be a fresh
product because it was first released with version 1.5.2 of Python.

Tip
Some say that the name IDLE really comes from the surname of one of the actors
who was part of the British troupe. Well, I don’t know whether it is true or not.

The IDLE environment consists of several distinct modules, and each one of them is
responsible for a very specific functionality within the whole environment. There are
modules to handle the undo engine, the colorizer, the automatic indentation, the class
browser, the debugger, and many other features.

The undo engine dynamically intercepts all buffer-changing operations, stacking the
inverse of the commands. This engine also supports grouping options, which is used
by some high-level commands in order to undo/redo multiple operations simulta-
neously. It also tracks changes made in open files in order to ask you to save them
before effectively letting you close them.

The colorizer highlights Python syntax, and it works while IDLE is unoccupied.
When you resume working, the colorizer stops.

22 0672319942 CH16 11/15/00 11:40 AM Page 647

648 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

IDLE implements a powerful editor window, which gets subclassed when an instance
of the interactive shell window is created to provide you access to the Python
interactive mode. This subclass is able to handle the execution of commands, including
the command history management.

The editor window provides a set of functionality that allows you to create new files or
browse through and edit existing Python scripts. Two other important browsing
engines are also part of the IDLE environment: the Path Browser and the Class
Browser. The former is used for searching modules through the directories listed in
the sys.path variable, whereas the latter implements a simple Class Browser for
finding the methods of classes.

IDLE also has a flexible search capability through its Find in Files dialog that lets you
search through your files or the system files to find occurrences of identifiers or any
other text fragments.

A debugging implementation, which can be configured using the Debug Control
Panel, is also offered by IDLE. Keep in mind that this Debug is still in the process of
development and tuning.

Among the features included in the latest release (version 0.5) of IDLE, I highlight the
following ones:

• New functionality in the Shell window that displays call tips for functions that
know the documentation string.

• New implementation for both the Path Browser and the Class Browser that is
based on the tree widget navigation model. The Class and Path browsers now
use a new version of the pyclbr.py module, which is used to parse a Python file
to recognize class and method definitions and to find out the superclasses of a
class.

• Better auto-indent capabilities. It is now possible to set the indent width and
toggle between the use of tabs in the indentation. Now, the auto-indent
functionality knows how to indent the blocks inside multiline statements.

• You can now import files as modules and run them as scripts from the File
Editor.

• You can call IDLE with command-line arguments just as you normally do with
the Python interpreter.

• A status bar was created to display the current line and column.

• The Comment out region feature now inserts two hashes (##) in order to be
more distinguishing.

22 0672319942 CH16 11/15/00 11:40 AM Page 648

649CHAPTER 16 Development Environment
IDLE

For more information, check out the following:

IDLE

http://www.python.org/idle/

IDLE-dev Mailing List

http://www.python.org/mailman/listinfo/idle-dev

Installing and Configuring IDLE

Previously, IDLE version 0.4 used to be automatically installed when you installed
Python 1.5.2. The version 0.5, which is now available, can be downloaded from the
IDLE page in the Python Web site. To install it, you just need to save the files in the
idle subdirectory of your current Python installation. Note that you can still keep
your prior version by renaming it to something like idle4.

In order to start IDLE on a Windows machine, you need to either access the IDLE
icon on the Python Program’s folder or double-click the file idle.pyw, which is located
in the idle subdirectory of your installation. Note that you need to have Tkinter
perfectly installed on your system in order to use IDLE, which means that in order to
use IDLE you need to have one installation of Tcl/Tk running on your system.
(Multiple Tcl/Tk installations might confuse Python.)

In order to run IDLE on a UNIX machine, first you need to obtain the source code,
which usually is available along with the latest Python source code in the CVS tree—a
tarball can also be downloaded from the IDLE homepage without any need to use
CVS. Note that IDLE is part of most Python Distributions. Second, you just need to
type idle to open IDLE’s Python Shell Window. For more information, check out

Python CVS Page

http://www.python.org/download/cvs.html

Command Line Usage
The IDLE environment offers the following useful command-line arguments for your
usage:

idle.py [-c command] [-d] [-e] [-s] [-t title] [args ...]

-c command run this command (see text below)

-d enable the debugger

-e edit mode (see text below)

-s run $IDLESTARTUP or $PYTHONSTARTUP first

22 0672319942 CH16 11/15/00 11:40 AM Page 649

650 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

-t title defines the title of the shell window

args arguments to be used

If -e is used, the arguments should be the files to be opened for editing. sys.argv
receives the arguments passed to IDLE itself.

If -c is used, all arguments are placed in sys.argv[1:...], with sys.argv[0]
set to ‘-c’.

if neither -e nor -c is used, the first argument is a script that is executed with the
remaining arguments in sys.argv[1:...] and sys.argv[0] set to the script name. If
the script name is ‘-’, no script is executed, but an interactive Python session is
started; the arguments are still available in sys.argv.

Python Shell

After calling the IDLE environment, the Python Shell Window pops up on the screen
showing Python’s interactive mode interface. As you can see, although you have the
primary prompt >>>, no secondary prompt (...) is displayed. Sometimes, you might
feel like, “Where is the prompt?” Or, the interpreter might appear to have stopped
working in such a way that you cannot get a new prompt. The primary solution for
these problems is to press CTRL+C in order to interrupt any running command,
establish a keyboard interruption, and get back to the prompt. If you need to quickly
get out of the interpreter environment and close the Pythonwin window, press
CTRL+D at the primary prompt.

IDLE colorizes the shell elements according to their logical meanings and syntax
definitions. Note that while you are typing the code, definitions become blue, strings
become green, keywords become orange, comments become red, the interpreter’s
standard output becomes blue, and the standard input becomes black. When you
execute the code, the console outputs are displayed in brown and the standard error
messages are in dark green (see Figure 16.1. Observe that this figure, as all other
figures shown in this book are not in color). This process happens in a background
thread, and you can change the color scheme anytime you want just by editing the
ColorPrefs class in IdlePrefs.py file.

IDLE provides automatic support for indentation, which is fired when you press the
ENTER key after a block-opening statement. Pressing the BACKSPACE key moves
you back to one level of the indentation structure. Note that this automatically
happens when you insert a return, continue, break, pass, or raise statement.

Indentation options, including the indent level, can be fully configured, depending on
your own choice. The default value of the indent level sets the tabulation to be

22 0672319942 CH16 11/15/00 11:40 AM Page 650

651CHAPTER 16 Development Environment
IDLE

equivalent to four spaces. An interesting feature is that it is possible to select a specific
region and indent or dedent it (these options are available on the edit menu).

Figure 16.1

Note how IDLE uses colors to easily identify the various elements of the interface, such as the

traceback messages.

Tip boxes are a new sensation in this latest version of IDLE. They are displayed when
you type the opening parenthesis of functions (regular or built-in) and method calls
(including class constructors) from the Python Standard Library. Their contents
usually show a tip that lists the expected arguments. This feature is not limited to the
functions defined by the Python environment. You can also use it while coding your
own functions to automatically display their list of expected arguments. In addition to
the list of arguments, you can also include an additional string to your tip box by
adding a documentation string to your function/method definition. To close the tip
window, you need to press ESC or click somewhere else in the window.

Another new feature introduced in this version is the word completion mechanism.
Based on the list of the latest words introduced to the program, you can successively
press ALT+/ to toggle between them in order to expand and complete the word that
you have just started typing.

Something very interesting, but actually not new because it came from the previous
version, is the command history mechanism. It works when you move the cursor to the
end of a specific line, or block, and press ENTER. This action copies the whole line
(or block) to the primary prompt. Alternatively, you can use the keys ALT+p and
ALT+n to toggle between the latest commands matching what you have typed. When
you find the one you want to use, press ENTER and the command is retrieved.

Note that you can freely edit the commands before really executing them (see Figure
16.2).

22 0672319942 CH16 11/15/00 11:40 AM Page 651

652 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Figure 16.2

This example demonstrates how IDLE handles indentation, the word completion mechanism, and

the call tips functionality.

In case you want to change the current font used on windows, you just need to open
the EditorWindow.py file and define a new tuple value for the font entry in the text
dictionary, such as

text[‘font’] = (“times”, 12)

Keyboard Commands
Moving around in the IDLE buffer is fairly easy. For basic editing and navigation
controls, you can use the following key bindings:

• Backspace deletes to the left of the cursor.

• DEL deletes to the right of the cursor.

• Arrow keys and Page Up/Down are used to move around the buffer.

• Home goes to the beginning of the line.

• End goes to the end of the line.

• CTRL+Home goes to the beginning of the file.

• CTRL+End goes to the end of the file.

IDLE offers you the chance to modify some of the keyboard binding settings. Check
out the Bindings.py file for details.

File Menu

IDLE’s File Editor allows you to create new scripts or browse and edit existing Python
source files. The File Editor might also be brought up from the Path Browser or when
you are using the Debugger. In all cases, a new File Editor window will be opened
with the name of the file and the path to it as its title (or called Untitled if it is a new
unsaved file).

22 0672319942 CH16 11/15/00 11:40 AM Page 652

653CHAPTER 16 Development Environment
IDLE

Tip
A nice feature is almost hidden in the shell environment. If you click on the dotted
line at the top of a menu, a new window is created containing the menu itself.

The following options are menu items located in the File menu:

New window—Creates and opens a new editing window for when you want to
create a new Python source file.

Open...—Opens a dialog box that allows you to locate and open any Python source
file on your local system.

Open module...—Asks you to enter the name of a module, and then it searches
through all the directories listed in the sys.path. The module is opened after it has
been found.

Class browser—Opens a small utility that shows the classes and methods stored in
the current open file.

Path browser—Uses the sys.path variable as a startup helper for letting you browse
directories, modules, classes, and methods.

Save—Saves the current window. If the title of the window is delimited by * literals,
it indicates that the window has changed since the last time you saved it.

Save As...—Saves the current window using the given filename.

Save Copy As...—Saves the current window using the given filename. The
difference when comparing this to the previous option, is that this one doesn’t
rename the current window as the name of the new file.

Close—Closes the current window.

Exit—Used to leave IDLE. It closes all windows and quits.

The following table lists some Emacs and Windows bindings for the previous set of
Menu Options.

Table 16.1 Keyboard Bindings for the File Menu

Menu Option Emacs Style Binding Windows Binding

New CTRL+x CTRL+n CTRL+n

Open CTRL+x CTRL+f CTRL+o

Open Module CTRL+x CTRL+m CTRL+m

22 0672319942 CH16 11/15/00 11:40 AM Page 653

654 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Save CTRL+x CTRL+s CTRL+s

Save As CTRL+x CTRL+w ALT+s

Save Copy As CTRL+x w ALT+SHIFT+s

The Class and the Path Browsers
The Class Browser function is implemented in the ClassBrowser.py file. You can
launch this browser by pressing ALT+C or by selecting the Class browser option of
the File menu. Note that you need to have already opened a file in order to use this
function (see Figure 16.3).

Table 16.1 (continued)

Menu Option Emacs Style Binding Windows Binding

Figure 16.3

Class Browser.

The Path Browser is implemented in the PathBrowser.py file. This option creates a
tree object that provides the following hierarchy structure:

Directory

Python source file

Class

Class method

This structure is used to allow you to navigate through the directories listed in the
Python sys.path variable. You just need to double-click on the upper level in order to
expand all the sublevels. If you double-click on any of the sublevels of this tree, IDLE
opens the associated object in a File Editor window for you. You can avoid that if you
are just interested in browsing through the directories. Using the + and - marks on the

22 0672319942 CH16 11/15/00 11:40 AM Page 654

655CHAPTER 16 Development Environment
IDLE

left side of the tree allows you to expand and shrink the tree without opening the File
Editor.

Because of some internal problems, this version of IDLE has a cosmetic error that lists
some directories more than once in the tree (see Figure 16.4).

Figure 16.4

Path Browser.

Edit Menu

The following menu options are found in the Edit menu:

Undo—Used to undo the last change made to the current window. Note that IDLE
supports up to 1000 changes to be undone.

Redo—Redoes last change.

Cut—Copies and deletes the current selection.

Copy—Copies selection.

Paste—Inserts the buffer value into the desired location.

Select All—Selects all contents of the edit buffer.

Find...—Allows you to search specific text patterns. You can even use regular
expressions.

Find again—Finds previous search again.

Find selection—Searches for a given string within the selected area.

Find in Files—Allows you to search for a specific string inside files stored in your
system.

Replace—Allows you to search and replace specific entries.

22 0672319942 CH16 11/15/00 11:40 AM Page 655

656 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Go to line—Opens a dialog box where you have to type a line number. Then, it
moves you to that line.

Indent region—Moves selected lines one tab (4 spaces) to the right.

Dedent region—Moves selected lines one tab (4 spaces) to the left.

Comment out region—Comments a block of lines by inserting ## in front of them.

Uncomment region—Gets rid of the leading # and ## from the selected region.

Tabify region—Converts leading spaces in a selection to tabs.

Untabify region—Converts all tabs in a selection to the correct number of spaces.

Toggle Tabs—Sets the type of the automatic indents. If you turn Tabs On, the
indentation uses tabs and spaces. On the other hand, if you turn Tabs Off (default),
the indentation uses only spaces.

New Indent width—Changes the width of the automatic indents.

Expand word—Expands the word you have entered to match another word that you
have previously typed in the same buffer.

Format Paragraph—Formats the current selection as a paragraph.

Import module—Imports or reloads the module you are working on, adds the
module name to the __main__ namespace, and opens the Shell window, if necessary.

Run script—Runs the script stored in the __main__ namespace, and adds the script
name to the sys.argvp[] variable.

The following table lists some Emacs and Windows bindings for the previous set of
Menu Options.

Table 16.2 Keyboard Bindings for the Edit Menu

Menu Options Emacs Style Bindings Windows Bindings

Cut CTRL+w CTRL+x

Paste CTRL+y CTRL+v

Copy ALT+w, ESC+w CTRL+c

Select All ALT+a, ESC+a ALT+a

Replace CTRL+r CTRL+h

Undo CTRL+z CTRL+z

Redo ALT+z, ESC+z CTRL+y

Find CTRL+u CTRL+s CTRL+f

22 0672319942 CH16 11/15/00 11:40 AM Page 656

657CHAPTER 16 Development Environment
IDLE

Find again CTRL+u CTRL+s CTRL+g, F3

Find selection CTRL+s CTRL+F3

Go to line ALT+g, ESC+g ALT+g

Indent Region CTRL+] CTRL+]

Dedent region CTRL+[CTRL+[

Comment out region ALT+3 ALT+3

Uncomment region ALT+4 ALT+4

Tabify region ALT+5 ALT+5

Untabify region ALT+6 ALT+6

Format Paragraph ALT+q ALT+q

Expand word ALT+/ ALT+/

Toggle Tabs ALT+t ALT+t

New indent width ALT+u ALT+u

Import module F5 F5

Run script CTRL+F5 CTRL+F5

Windows Menu
This menu only provides the Zoom Height option, which is used to toggle the window
between normal size (24x80) and the maximum allowed height.

The Windows menu is also used to list the name of all open windows. After you select
a window from the list, the window pops up in the front of your screen (unless it is
minimized and you have to click on the icon to maximize it).

Debug Menu
The debugging mechanism offers the following menu options.

Go to file/line
This option looks around the insert point for a filename and line number, opens the
file, and shows the line. It is useful when you get a traceback message, and you want to
go to the line that has caused the error. You just need to put the cursor somewhere in
the line that displays the filename and the line number, and select the Go to File/Line
option on the menu.

Table 16.2 (continued)

Menu Options Emacs Style Bindings Windows Bindings

22 0672319942 CH16 11/15/00 11:40 AM Page 657

658 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Stack Viewer
This option opens a tree widget that shows the stack traceback of the last exception.
Note that it can be used separately from the debug mechanism.

Debugger
Opens the Debug Control Panel, which allows you to run commands in the shell
under the debugger mechanism. In order to close the Panel, you can toggle the option
off in the menu.

Auto-open Stack Viewer
Once set, this option automatically opens the stack viewer when a traceback message
occurs.

The Debug mechanism that IDLE exposes allows you to

• Set breakpoints in a source code window.

• Execute a program and step through its statements.

• View the call stack. If necessary, you can right-click in the stack trace, and the
debugger will move you to the corresponding section of the source code.

• Check the value of the local and global variables.

• Analyze the source code in the editor window as you step through the program.

The debugging process starts when you open a File Editor Window, and creates or
imports a module. After you have the code available, you can double-click the lines
that you want, and select the Set Breakpoint Here option, which highlights the line.
Now, you need to select the Debug Control Panel option on the menu. Notice that
although the Panel pops up on the screen, the message [DEBUG ON] is printed on the
Shell Window. After clicking the Go button on the Debug Control Panel, the
execution will stop at every breakpoint that it finds.

You can also debug code that is typed directly into the Shell Window (see Figure
16.5).

The Debug Control Panel is made up of five regular control buttons and four
checkbuttons (see Figure 16.6).

Go button—Continues the execution of the program starting from the current
point until it reaches the end of the program, or finds a break point.

Step button—Steps into the execution of the next statement.

22 0672319942 CH16 11/15/00 11:40 AM Page 658

659CHAPTER 16 Development Environment
IDLE

Over button—Fully executes the current statement without requiring you to step
through its inner lines.

Out button—Resumes the execution of the program in order to leave (get out of)
the current function.

Quit button—Quits the execution of the current program without leaving the
debug mode. In order to leave the Debug Control Panel, you either need to toggle
the menu option to OFF, or close the window Panel. Notice that when the Panel
Window closes, the message [DEBUG OFF] is printed on the Shell Window.

Between the buttons and the stack area, you have the status area. This line lets you
know where you are in the script. As you can see in Figure 16.6, we are in the line
number 3 in a function called ShowAxis().

Figure 16.5

Debugging a user function typed in the Shell Window.

Figure 16.6

Using the Debug Control Panel to debug the function that we typed in Figure 16.5.

22 0672319942 CH16 11/15/00 11:41 AM Page 659

660 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Next to the buttons are some checkbuttons responsible for setting the configuration of
the Debug Control Panel area. They define what you want to see and trace.

Stack—Displays the call stack.

Source—Opens a File Editor Window for every file that is mentioned in the
debugging process, highlighting the current line, which is being processed.

Locals—Displays the set of local variables (and their values) defined by the program
for the current namespace.

Globals—Displays all the global variables (and their values), including the internal
variables, defined by the program.

Writing an IDLE Extension

The way that IDLE has been set up allows you to write your own extensions and define
new key bindings and menu entries for IDLE edit windows. There is a simple mechanism
to load extensions when IDLE starts up and to attach them to each edit window.

For Guido’s instructions on writing these extensions, take a look at the file extend.txt,
which is located on your idle directory, or grab it online at

http://www.python.org/idle/idle-0.5/extend.txt

Python 2.0 and IDLE

Python 2.0 was released with IDLE 0.6, which includes some additional features and
enhancements.

The main new features are

• You can install IDLE as a package now.

• Three new keystroke commands were added: Check module (Alt+F5), Import
module (F5), and Run script (Ctrl+F5).

• A bar showing the line and column of the cursor was included at the bottom of
the editor window.

• A command line was added to IDLE. This command line is very similar to the
Python interpreter shell.

• You can now use IDLE to call several brands of browsers and triggering
documents to open inside the browsers.

22 0672319942 CH16 11/15/00 11:41 AM Page 660

661CHAPTER 16 Development Environment
Pythonwin

As for the enhancements, we can list improvements and optimizations to the following
main areas:

• User interface.

• Syntax highlighting and auto-indentation.

• Class browser, which is now showing more information.

• Ability to set the Tab width as part of the user configuration set of option, which
means that IDLE is now able to display the tabulation of a given file according
to the user configuration settings.

• Call tips—they are now available in many locations.

Pythonwin

Pythonwin is implemented as a wrapper for the Microsoft Foundation Class library.
The interactive and interpreted environment is in fact just a fully functional program
created by Mark Hammond to demonstrate the full power of the interface between
MFC and Python. Besides the development environment, you can use Pythonwin to
write your own application, based on a given set of MFC objects. As of now,
Pythonwin supports more than 30 MFC objects that are exposed by the Windows
environment, which includes Common Controls, Property Pages/Sheets, Toolbars,
and so forth.

Pythonwin’s latest version (at this moment) is the beta 3 of version 2. This beta comes
as part of the most recent 1.5.2 build for Windows (win32all-132.exe). Note that this
version might be different at the time of your reading.

This version provides a stabilization of many features, including the debugger and the
general IDE interface, which had a great advance compared to the prior Pythonwin
version. This version also includes a number of other enhancements and bug fixes,
such as a number of changes/enhancements to Scintilla, COM fixes (mainly in obscure
situations), and the new full support for COM User Defined Types (Records/Structs).
Preliminary ADSI support has been added, as well.

Note
Scintilla is a free source code editing component, whose development started as
an effort to improve Pythonwin.

22 0672319942 CH16 11/15/00 11:41 AM Page 661

662 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

In order to install Pythonwin, you can download the file from the following address:

http://starship.python.net/crew/mhammond/win32/Downloads.html

If you also want to have access to the top-level functions in both the PythonPath and
Module browsers, you need to download the latest version of the module pyclbr.py.
This module is a standard Python module that has been updated since Python 1.5.2.
To download the module and for more information, check out the following:

http://starship.python.net/crew/mhammond/downloads/pyclbr.py

Mark Hammond’s Python Extensions

http://starship.python.net/crew/mhammond/

Pythonwin Documentation Index

http://www.python.org/windows/pythonwin/

Python for Windows Repository

http://www.python.org/windows/

The Pythonwin Environment

Pythonwin simulates the built-in Python interpreter by using the Microsoft
Foundation Classes to implement an Interactive Development Framework.

Tip
You can study Pythonwin’s code by examining the files located in the directory
\Pythonwin\pywin\framework of your local Pythonwin installation.

The shell provided by the Interactive Window implements many known features
inherited from IDLE, such as the history mechanism. Depending on where you place
the cursor when pressing ENTER, you can either execute a command located at the
end of your screen buffer, or copy a block of code from somewhere else to the end of
your buffer. Note that the end of the screen buffer is the place where you have an
active primary prompt.

When the line that you are typing has to be continued in another line, the code
doesn’t get executed. At this time, Python starts a new line using the secondary
prompt After you enter a complete Python statement, Pythonwin tries to execute
it. If your execution generates an exception in a file, the file is displayed to you in a
separate window, pointing to the line that has caused the exception. If a COM object
generates the exception, and the exception contains a reference to a WinHelp file, the
help topic is opened to you.

22 0672319942 CH16 11/15/00 11:41 AM Page 662

663CHAPTER 16 Development Environment
Pythonwin

Pythonwin has available all the standard file operations that follow the MFC
framework. If necessary, you can create Python programs to implement plug-in
support for other file types that are not currently supported by Pythowin.

The Locate option defined in the menu is used to quickly locate a specific Python
script. It searches for the file throughout all the directories listed in the sys.path
variable. If you need to locate a module in a package, replace the dot between the
package name and the module name with a backslash.

The Import option tries to import or reload a given script. Pythonwin is the one that
decides if the script needs to be imported or reloaded. Pythonwin also handles
modules that use the old and historic ni module. If you have a .py file opened, you can
use this option to save and import the file. If a file cannot be located, a File dialog
pops up asking you to locate the file.

The Run option runs a script, as if the file was passed on the command line. A dialog
is opened, asking the script name and arguments. If you already have a script file open
and just want to execute it, press CTRL+SHIFT+R.

This version of Pythonwin is heavily similar to the latest version of IDLE (in new
functionality). As Mark says, “Many of the new Pythonwin features below have come
about simply by stealing code from IDLE.” Pythonwin demonstrates its high
integration with IDLE extensions by incorporating the ExpandWord extension module
and IDLE’s history capability.

Among other new features, the latest version of Pythonwin brings the following main
changes:

• Support for simple toggling and definition of fixed and propertional fonts.

• Improved call tips and attribute expansion.

• Key binding for toggling between the interactive window and the most recently
used editor window.

• Far improved find facility, including the ability to search across all open files.

Pythonwin provides an easily configurable color scheme because you can see the
standard “Hello World” example shown in Figure 16.7. Note that example was written
directly in the Interactive Window.

The View/Options item in the Menu is useful to configure a lot of small details, such
as the color scheme, and Tabs and Whitespace configuration (see Figure 16.8).

22 0672319942 CH16 11/15/00 11:41 AM Page 663

664 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Figure 16.7

Interactive Window displaying Hello World.

Figure 16.8

The Tabs and Whitespace configuration tab on the Pythonwin Option dialog box.

Under the Tools menu, you have several routines that provide some special
functionality. The first one called Browser, displays information about an object whose
name you have to type in a dialog box.

The Browse PythonPath option splits the screen into two parts: the Python Path
browser and the Interactive Window file editor. When you click on a program or
program item (class, function, and so on) in the Path Browser, the right panel opens
the given file and places you on the part of the code that defines the object you have
just clicked (see Figure 16.9). Note that the interface looks much nicer when you use
the latest version of the pyclbr.py module.

Another option provided is the ability to make changes on the Pythonwin Registry
settings, as you can see in Figure 16.10. In order to open this window, you need to call
the menu item named Edit PythonPath.

The next two options are used when you have to write COM interfaces using Python.
The first option COM Makepy utility is mentioned in Chapter 7, “Objects Interfacing
and Distribution.” It lists all the available COM objects registered in the system and

22 0672319942 CH16 11/15/00 11:41 AM Page 664

665CHAPTER 16 Development Environment
Pythonwin

Figure 16.10

The Registry Editor allows you to make changes on the registry settings of Pythonwin.

Figure 16.9

Python Projects: tree widget that displays Python directories and files.

allows you to create a Python interface for them (see Figure 16.11). In this example,
we are highlighting the Excel 8.0 Object Library in order to create a Python interface
that will allow us to use Excel COM interface.

Figure 16.11

A list of available COM libraries.

22 0672319942 CH16 11/15/00 11:41 AM Page 665

666 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

This next option COM Browser allows you to visualize all the properties of registered
COM objects (see Figure 16.12).

Figure 16.12

The Python Object Browser.

Pythonwin supports source code folding, which means that it has the capability to
collapse sections of source code into single lines, and later expand them back to the
original structure (see Figure 16.13). This folding featured was added to Pythonwin
thanks to Scintilla. You can fold and unfold any Python statement that introduces a
new block either by clicking on the indicator in the folding margin, by selecting one of
the folding keystrokes, or by using View, Folding menu. Note that the folding feature
must be enabled via the menu option View/Options/Editor dialog. You can also
change the configuration so that all files have only their top-levels folded when
opened. All editing functions work properly when code is folded. If necessary,
functions like find, replace, and goto are able to unfold the code before they start
performing their tasks. For more information, check out

Scintilla

http://www.scintilla.org

Pythonwin’s debugger had a great improvement since the last version. To use the
Debug mechanism, you need to open a program and set the breakpoints on the code.
You can toggle the breakpoints by clicking on a specific line and using the F9 key
binding, as shown in Figure 16.13. You don’t need to run the debugger just to set the
breakpoints; you can do that while the debugger is not running. While the debugger is
inactive, the breakpoints are shown without any coloring.

22 0672319942 CH16 11/15/00 11:41 AM Page 666

667CHAPTER 16 Development Environment
Pythonwin

Figure 16.14

The Debug Framework.

Figure 16.13

Opening a file and toggling the breakpoint.

You just can’t let the breakpoints remain there and pray for something to happen. You
need to activate the debugger by either using the Step in (F11) option, the Go (F5)
option, or one of the shortcuts in the toolbar and in the menu. When you start the
debugging process, all breakpoints become red (see Figure 16.14—note that as the
figure isn’t in color, it might feel that some colors are not easily identified in the book).

22 0672319942 CH16 11/15/00 11:41 AM Page 667

668 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

In order to add watch variables and break-point conditions, you need to click on a
specific part of the Debugging window. To add variables, you need to click on the
Expression/Value text box and click on the <New item> text. The prompt will let you
type the name of the variables that you want to watch. In case you want to delete
something from there, you just need to press the Delete key.

If you close the Debugging toolbar, you can open it using the menu option View,
Toolbars, Debugging. Note that this toolbar follows the standard found in other
languages, as we can see in the Figure 16.14 (from left to right):

• Watch Window toggle option

• Stack Viewer Window toggle option

• Breakpoint List Window toggle option

• Option to toggle a breakpoint

• Option to clear all breakpoints

• Step into a statement

• Step over a function

• Step out of a structure

• Go

• Close the debugger

As you can see in Figure 16.14, when you select all debug windows to be open, you get
a Debug Framework containing five windows. Let’s go clockwise, starting from the
top-left corner: We have the variable watch window, the stack viewer, the Python path
browser, the interactive window that displays the source code, and a list of breakpoint
conditions (on the bottom).

Keyboard Bindings

Pythonwin has a customizable keyboard binding mechanism that allows you to define
your own custom events and keyboard bindings. All this information gets stored in a
file called default.cfg, which is located in the pywin directory. You can freely edit this
file if you want. All the documentation necessary to create the new bindings is kept in
this file, including how to create your own configuration based on the default file.
This last feature is a handful to incorporate into your system default file from new
versions of Pythonwin without changing your code. This directory also contains a

22 0672319942 CH16 11/15/00 11:41 AM Page 668

669CHAPTER 16 Development Environment
Pythonwin

configuration file called IDLE.cfg that simulates the keyboard bindings of IDLE,
providing a good customization example.

The bindings in Table 16.3 are part of Pythonwin’s default configuration.

Table 16.3 Pythonwin’s Default Set of Bindings

Keyboard Binding Description

Alt+Q Format the current paragraph

Alt+/ Apply the functionality that expands the word under the cursor

Alt+I Show/hide the interactive window

Ctrl+W View/hide whitespaces

Built-in Binding Description

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+A Select All

Ctrl+L Cut the current line

Ctrl+Shift+L Delete the current line

Ctrl+T Swap the current line with the line above

Ctrl+U Convert the selection to lowercase

Ctrl+Shift+U Convert the selection to uppercase

Ctrl+Backspace Delete the word to the left side of the cursor

BackSpace Remove one indent to the left

Enter Insert a newline and indent

Tab Insert an indent, or perform a block indent in a given selection

Shift+Tab Dedent the selected block

F2 Go to the next bookmark

Ctrl+F2 Add or remove a bookmark on the current line

Ctrl+G Go to a specific line number

Alt+B Add a simple comment banner at the current location

Alt+3 Block comment the selected region

Shift+Alt+3 Uncomment the selected region

Alt+4 Uncomment the selected region (IDLE’s default binding)

22 0672319942 CH16 11/15/00 11:41 AM Page 669

670 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Alt+5 Tabify the selected region

Alt+6 Untabify the selected region

Ctrl+T Toggle the use of tabs for the current file

Alt+U Change the indent width for the current file

KeypadPlus Expand a folded line, if it is located under the cursor

Alt+KeypadPlus Expand all folds in the current file

KeypadMinus Collapse a folded line, if it is located under the cursor

Alt+KeypadMinus Collapse all folds in the current file

KeypadMultiply Toggle between expanding and collapsing all top-level folds in the
current file

Ctrl+KeypadPlus Zoom-in for the current window

Ctrl+KeypadMinus Zoom-out for the current window

Debugger Bindings Description

F9 Toggle breakpoint on and off

F5 Activate the debugging process

Shift+F5 Stop the debugging process

F11 Single step into functions

F10 Step over functions

Shift+F11 Step out of the current function

Interactive Bindings Description

Ctrl+Up Show the previous command in the history list

Ctrl+Down Show the next command in the history list

Command Line Arguments
Pythonwin accepts the following command line arguments. In case you need to make
changes in any one of these commands, you just need to modify the intpyapp.py file.

/run scriptname arguments

This command runs the given script in the GUI environment and sends the output
directly to Pythonwin’s interactive window.

/runargs scriptname arguments

Table 16.3 (continued)

Built-in Binding Description

22 0672319942 CH16 11/15/00 11:41 AM Page 670

671CHAPTER 16 Development Environment
Summary

This command also runs the given script in the GUI enviroment. The difference
between this and the previous command is that this one shows Pythonwin’s “Run
Script” dialog.

/edit filename

This command allows you to edit the given file. Currently, you can omit the /edit
command because it is not strictly enforced.

/app scriptname arguments

This command runs an application script that is able to change the appearance of a
Pythonwin program. For details, check the examples located in the Pythonwin
application folder (/Pythonwin/pywin/Demos/app) of your Python installation.

Summary

This chapter shows some performance and style suggestions for your code now that
you are probably writing your own programs. It also introduces you to the main GUI
development environments that you can use to write Python applications.

Writing a program is very easy, but writing a good and optimized program requires
some level of experience. A good way to start is to learn all the nuances of the
language, which in our case involves learning Python.

Python is a perfect language for project prototyping. Python’s design allows you to
make changes very quickly. Along the development stage, you will soon see that
Python can be easily used to code entire applications, without discarding the
prototyped code.

Performing code optimization and writing a program with style are very important
things that you must have in mind, not only when using Python, but also when writing
in any other language.

For years, many people have been writing and editing their Python programs using
simple text editors, but now the scenario has changed. Python currently provides two
efficient development environments for your usage: IDLE, a cross platform Integrated
Development Environment for Python, and Pythonwin, a development environment
specifically for the Windows platform.

22 0672319942 CH16 11/15/00 11:41 AM Page 671

672 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

The next chapter introduces you to the Python-mode package for Emacs, which
provides almost all the features in the IDLE and Pythonwin edit windows (and a few
features they don’t). This includes auto indentation, syntax highlighting, and so on.
You can use Emacs on just about any UNIX-like system, and there is a Windows port
as well.

22 0672319942 CH16 11/15/00 11:41 AM Page 672

CHAPTER 17

Development Tools

Wenn ist das Nunnstueck git und Slotermeyer?

Ja! Beierhund das oder die flipperwaldt gersput.

A handful of programming tools are introduced here. This
chapter demonstrates how to go through all the development
stages of creating a Python application. You will learn how to
compile the Python interpreter, and how to debug, profile, and
distribute Python programs.

The Development Process of Python
Programs

At this point, it’s presumed that you have already written many
Python programs, and that you want more details and material
covering development tools that can optimize the development
stage of your applications. The next list of topics shows what is
introduced in the chapter that can help you along the
development process of your programs.

• How to compile the Python interpreter on Windows and
UNIX platforms

• Available tools for code editing

• List of example scripts that come as part of the Python
distribution

• How to generate executable Python bytecode files

D E V E L O P E R ’ S H A N D B O O K

23 0672319942 CH17 11/15/00 11:41 AM Page 673

674 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

• How to start the Python interpreter using different command line options

• How to debug and profile a Python program

• How to pack and distribute your Python application

Compiling Python

The Python source code distribution comes with complete instructions about how to
compile the code for both Windows and UNIX platforms. The instructions about
compiling for Windows are stored in the subdirectories /PCbuild and /PC—the UNIX
instructions are separate. The /PC subdirectory contains complete project files to make
several PC ports of Python.

If you want to compile Python on Windows, you need to start the Integrated
Development Environment of your compiler and read in the native project file (or
makefile) provided. This enables you to change any source files or build settings so
you can make custom builds.

The following are important files that can help you configure the port of the source
code to your favorite platform (in case it hasn’t been ported yet).

config.h—An important configuration file specific to PCs. This is generated by the
configure script on UNIX systems.

config.c—The list of C modules to include in the Python PC version. Manually
edit this file to add or remove Python modules. This is auto-generated by the
makesetup script on UNIX systems.

testpy.py—A Python test program. Run this to test your Python port. It should
produce copious output, ending in a report on how many tests were OK, how many
failed, and how many were skipped. Don’t worry about skipped tests (these test
unavailable optional features).

Windows

The Python distribution comes with instructions to compile the source code using
many different tools, such as Microsoft Visual C++ Version 1.5 (16-bit Windows),
Watcom C++ compiler, and IBM VisualAge C/C++ for OS/2. See the /PC/readme.txt
file in the distribution tree for detailed instructions.

The instructions here cover the Microsoft Visual C++ Versions 5.0 and 6.0.

23 0672319942 CH17 11/15/00 11:41 AM Page 674

675CHAPTER 17 Development Tools
Compiling Python

In order to build Python using this tool, the first thing you need to do is open the
workspace pcbuild.dsw that is located under the /PCbuild directory. This directory
also contains a readme.txt file with more instructions. Note that all files in this
directory are used to build Python for Win32 platforms, which includes Windows 95,
98, and NT platforms.

Then, you just need to select the Debug or Release setting (using Set Active
Configuration in the Build menu) and build the projects in the proper order, which is

1. python15 (this builds python15.dll and python15.lib)

2. python (this builds python.exe)

3. The other subprojects

If you select the Debug option, the files will be generated carrying a _d at the end of
their name, such as python15_d.dll, python_d.exe, and parser_d.pyd.

We call subprojects—the other applications that don’t come as part of the Python
application—that include for example: Tcl/Tk, bsddb, and zlib. In order to build these
projects, you might have to change some of the settings on your compiler, such as the
include and library paths.

The following files and subdirectories of the distribution are useful and helpful when
building Win32 versions of Python:

python_nt.rc—Resource compiler input for python15.dll.

dl_nt.c, import_nt.c—Additional sources used for 32-bit Windows features.

getpathp.c—Default sys.path calculations (for all PC platforms).

dllbase_nt.txt—A (manually maintained) list of base addresses for various DLLs,
to avoid runtime relocation.

example_nt—This is a subdirectory that shows how to build an extension as a DLL.

UNIX

Binary distributions for the UNIX platforms are not made available by the Python
Web site because the compilation process depends much on your system. In order to
compile Python on a UNIX system, you first need to obtain the source code distri-
bution. Note that the next guidelines are just a summary of the operations that you
need to perform. This installation process, by default, installs Python under the
/usr/local directory and presumes that you want to provide access to the Tkinter
module too. If that’s not the case, you can just skip the whole Tcl/Tk/Tkinter steps

23 0672319942 CH17 11/15/00 11:41 AM Page 675

676 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

and install just the core Python environment. You can skip building Tcl and Tk if they
are already installed on your system.

1. Create a root directory with three subdirectories underneath: Python, Tcl,
and Tk.

2. Download the latest versions of these three programs, and save them on the
respective subdirectories.

3. In each directory, you need to extract the files out of the package using a
command such as this:

gunzip -c filename | tar xf -

4. Now, we need to configure and install Tcl and Tk. The actions below (steps 5, 6,
and 7) need to be performed in both subdirectories, first for Tcl and later for Tk.

5. Go to the specific subdirectory.

6. Define the compiler and system options for the building process. You need to
type the following command:

./configure

7. Run the utility commands that create and install the binary and library files.

make

make install

8. Now, we are ready to install Python. Go to the Python subdirectory.

9. Define the compiler and system options for the building process. You need to
type the following command. Note that optionally, you can enable the threading
option by passing the argument --with-thread to the configure command. Also,
you might want to enable floating point exception support by passing the
argument --enable-fpectl.

./configure

10. Copy the Modules/Setup.in file to the subdirectory Modules/Setup.

11. In order to enable the Tkinter module (because it is not enabled by default), you
need to modify this file. This file is responsible for deciding the built-in modules
that must be built along with Python. Modifying this file is not difficult, as you
can see next. The following piece of file code shows where you need to change in
order to enable Tkinter. This example shows what you might want to

23 0672319942 CH17 11/15/00 11:41 AM Page 676

677CHAPTER 17 Development Tools
Compiling Python

uncomment because it can vary for different UNIX systems (what you see here
should be fine for most systems though).

The _tkinter module.

#

The TKPATH variable is always enabled, to save you the effort.

TKPATH=:lib-tk

The command for _tkinter is long and site specific. Please

uncomment and/or edit those parts as indicated. If you don’t have a

specific extension (e.g. Tix or BLT), leave the corresponding line

commented out. (Leave the trailing backslashes in! If you

experience strange errors, you may want to join all uncommented

lines and remove the backslashes -- the backslash interpretation is

done by the shell’s “read” command and it may not be implemented on

every system.

#***Always uncomment this (leave the leading underscore in!):

_tkinter _tkinter.c tkappinit.c -DWITH_APPINIT \

#***Uncomment and edit to reflect where your Tcl/Tk headers are:

-I/usr/local/include \

#***Uncomment and edit to reflect where your X11 header files are:

-I/usr/X11R6/include \

#***Or uncomment this for Solaris:

-I/usr/openwin/include \

#***Uncomment and edit for Tix extension only:

-DWITH_TIX -ltix4.1.8.0 \

#***Uncomment and edit for BLT extension only:

-DWITH_BLT -I/usr/local/blt/blt8.0-unoff/include -lBLT8.0 \

#***Uncomment and edit for PIL (TkImaging) extension only:

-DWITH_PIL -I../Extensions/Imaging/libImaging tkImaging.c \

#***Uncomment and edit for TOGL extension only:

-DWITH_TOGL togl.c \

#***Uncomment and edit to reflect where your Tcl/Tk libraries are:

-L/usr/local/lib \

#***Uncomment and edit to reflect your Tcl/Tk versions:

-ltk8.0 -ltcl8.0 \

#***Uncomment and edit to reflect where your X11 libraries are:

-L/usr/X11R6/lib \

#***Or uncomment this for Solaris:

-L/usr/openwin/lib \

#***Uncomment these for TOGL extension only:

-lGL -lGLU -lXext -lXmu \

#***Uncomment for AIX:

23 0672319942 CH17 11/15/00 11:41 AM Page 677

678 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

-lld \

#***Always uncomment this; X11 libraries to link with:

-lX11

12. Optionally, you can choose for building the modules as shared libraries. It is a
good idea to build shared libraries because it will decrease the size of the Python
binary, reduce the number of libraries it is linked to, and probably reduce its
memory consumption. You need to look for the following lines in the Setup.in
file, and make the small change that is indicated there.

Uncommenting the following line tells makesetup that all following

modules are to be built as shared libraries (see above for more

detail; also note that *static* reverses this effect):

#*shared*

Note
Note that you can uncomment lines for other modules you want to build, as well.

13. Now, you just have to run the utility commands that creates and installs the
Python executable and library files.

make

make install

14. Finally, sometimes you need to set up the environment variables: PATH,
PYTHONPATH, TCL_LIBRARY, and TK_LIBRARY to the correct values. In most cases,
this shouldn’t be necessary because the programs are installed where they expect
to be installed. Possibly having to add /usr/local/bin to PATH is probably all
that is needed.

Editing Code

As you already know, Python provides two development environments that offer a lot
of useful features which can help you while coding: Pythonwin and IDLE. However,
for simple programs, or in case you don’t have a graphical environment available, you
can stick to simple text editors that can be used to handle the job very nicely.

On Windows systems, you can use editors such as Editpad and Notepad to write
Python scripts; on DOS systems, EDIT, and on UNIX systems you have choices such
as Pico, Vi, Emacs, and others.

23 0672319942 CH17 11/15/00 11:41 AM Page 678

679CHAPTER 17 Development Tools
Editing Code

Pico is a full screen editor that is reasonably intuitive. Pico’s commands can be learned
in just some minutes and Pico itself is good for editing small texts with just a few
changes. However, you need commands that are more powerful when a text becomes
bigger because Pico only has a limited number of commands. These commands are
shown at the bottom of the editing screen. Also note that Pico makes limited use of
mice. Pico is not 100% recommended for Python programming because it wasn’t
designed as a programmer’s editor. It does things such as automatic word wrap, which
might not be what you want.

Vi (visual editor) is another full screen editor that was seen as a big improvement over
line editing. Vi is highly customizable, allows filtering, has number prefixes for
commands, has an invocation of a shell, has better jump commands, can read in the
result of external commands, save parts of text, substitute literal strings and regular
expressions, and many other options. The vi clone vim (vi improved) can be scripted in
Python among other languages.

JED is a freely available text editor for UNIX, VMS, MSDOS, OS/2, and MS
Windows. This editor has many features, including drop-down menus, folding
support, color syntax highlighting on color terminals, and emulation of Emacs, EDT,
Wordstar, and Borland editors. It’s said that the latest version of the JED editor has a
Python mode, with many of the same features as the Emacs/XEmacs Python mode.

See its Web page for more information:

http://space.mit.edu/~davis/jed.html

Vi, Pico, and JED are certainly powerful editors. However, Emacs is quite a jump in
feature variety. Emacs is a very extensible and customizable editor. The richness of
Emacs makes it more difficult to learn, but it is worth the try. A version of Emacs
called XEmacs (which is a very famous implementation) can also be used for writing
Python programs.

Emacs

Emacs originally was an acronym for Editor MACroS. The heart of Emacs is an
interpreter for elisp (Emacs Lisp), which is a dialect of the Lisp programming language
with extensions to support text editing. Currently, Emacs is much more than a text
editor. Besides allowing you to edit several styles of source codes and other general-
purpose files, it contains many extensions that provide support for features such as
Web browsing and mail reading. Emacs is a GNU project, and it is maintained by the
Free Software Foundation.

Some of the features of Emacs include

23 0672319942 CH17 11/15/00 11:41 AM Page 679

680 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

• Content sensitive major modes for a wide variety of file types, from plain text to
source code to HTML files.

• Complete online documentation, including a tutorial for new users.

• Emacs is highly extensible through the Emacs Lisp language.

• Support for many human languages and their scripts.

• A large number of extensions which add other functionality (the GNU Emacs
distribution includes many extensions).

Check out the GNU Emacs Web site for details:

http://www.gnu.org/software/emacs/

Note
XEmacs is a highly customizable open source text editor and application
development system, which is based on GNU Emacs, and shares a lot of code with it.
XEmacs is protected under the GNU Public License, and its emphasis is on modern
graphical user interface support and an open software development model. XEmacs
has an active development community and runs on Win32 and UNIX platforms. See
http://www.xemacs.org/ for details.

Emacs has its own section on the Python Web site, precisely at the following address:

http://www.python.org/emacs/

At that page, you can find a collection of links to several Emacs codes that might help
with your Python programming. Most of the code works fine on top of the latest
versions of both Emacs and XEmacs.

From that page, you can also get access to some Emacs modes that enable the coding
of Python source code when using Emacs, such as the Python Mode, located at

http://www.python.org/emacs/python-mode/

You might want to byte-compile that python-mode file when installing it on your
system, primarily for better performance. To do so, you need to open Emacs (or
XEmacs) and execute the following commands. Note that you can safely ignore any
byte compiler warnings.

C-x C-f /path/to/python-mode.el RET

M-x byte-compile-file RET

On the Web site, besides getting access to the latest release of the python-mode (the
current version is 3.105), you can also obtain other useful stuff, which includes: a
detailed list of changes since the last released version, installation notes, a FAQ, and a

23 0672319942 CH17 11/15/00 11:41 AM Page 680

681CHAPTER 17 Development Tools
Python Scripts

Emacs/XEmacs compatibility details list, which brings special notes about
Emacs/XEmacs versions and package interactions.

To install the python-mode package so that it can be used in Python, you would put it
in the site-lisp directory, and edit your site-start.el to autoload python-mode.el
and bind it to .py files.

The following links provide additional information related to the usage of
Emacs/XEmacs along with Python.

The OO-Browser—This is a multi-windowed, interactive, object-oriented class
browser that supports Python, and was designed for professional use under the
Emacs editor. See the following Web site for details:

http://www.beopen.com/manuals/alt-oobr-cover.html

Introduction to Using OO-Browser with Python—This is a paper by Harri Pasanen,
presented at the International Python Conference IV, June 1996.

http://www.python.org/workshops/1996-06/papers/h.pasanen/

oobr_contents.html

Python Library Reference Hot-Key Help System for XEmacs—This is Harri Pasanen’s
work. This program shows the Python Library Reference for the word under cursor
every time you press the F1 key when in Python mode under the XEmacs.

http://bigbear.pc.helsinki.fi/harri/

Python Scripts

The Python distribution comes with lots of scripts that you can study and use. Those
scripts are stored in two directories: \Tools and \Demos.

Table 17.1 lists programs that are stored in the \Tools directory.

Table 17.1 Programs Stored in the Tools Directory

Program Description

bgen Generates complete extension modules from a description (under
development).

faqwiz FAQ Wizard.

freeze Creates a standalone executable from a Python program.

23 0672319942 CH17 11/15/00 11:41 AM Page 681

682 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

modulator Interactively generates a boiler plate for an extension module. Works
easiest if you have Tk.

Pynche The PYthonically Natural Color and Hue Editor.

versioncheck Checks whether you have the latest version of a specific package.

webchecker Checks Web sites for bad links.

The \Tools\Scripts subdirectory contains a number of useful single-file programs.
They are shown in Table 17.2.

Table 17.2 Programs Stored in the Tools\Scripts Directory

Program Description

byteyears Prints the product of a file’s size and age

checkpyc Checks presence and validity of .pyc files

classfix Converts old class syntax to new

copytime Copies one file’s atime and mtime to another

crlf Changes CRLF line endings to LF (Windows to UNIX)

cvsfiles Prints a list of files that are under CVS

dutree Formats du output as a tree sorted by size

eptags Creates Emacs TAGS file for Python modules

findlinksto Recursively finds symbolic links to a given path prefix

fixcid Massive identifier substitution on C source files

fixheader Adds some cpp magic to a C include file

fixnotice Fixes the copyright notice in source files

fixps Fixes Python scripts’ first line (if #!)

ftpmirror FTP mirror script

h2py Translates #defines into Python assignments

ifdef Removes #if(n)def groups from C sources

lfcr Changes LF line endings to CRLF (UNIX to Windows)

linktree Makes a copy of a tree with links to original files

lll Finds and lists symbolic links in current directory

logmerge Consolidates CVS/RCS logs read from stdin

mailerdaemon Parses error messages from mailer daemons

methfix Fixes old method syntax def f(self, (a1, ..., aN)):

Table 17.1 (continued)

Program Description

23 0672319942 CH17 11/15/00 11:41 AM Page 682

683CHAPTER 17 Development Tools
Python Scripts

mkreal Turns a symbolic link into a real file or directory

ndiff Intelligent diff between text files

nm2def Creates a template for PC/python_nt.def

objgraph Prints object graph from nm output on a library

pathfix Changes #!/usr/local/bin/python into something else

pdeps Prints dependencies between Python modules

pindent Indents Python code, giving block-closing comments

ptags Creates vi tags file for Python modules

rgrep Reverses grep through a file

suff Sorts a list of files by suffix

sum5 Prints md5 checksums of files

tabnanny Checks inconsistent mixing of tabs and spaces

tabpolice Checks for ambiguous indentation

texi2html Converts GNU texinfo files into HTML

treesync Synchronizes source trees

untabify Replaces tabs with spaces in argument files

which Finds a program in $PATH

xxci Wrapper for rcsdiff and ci

The \Demo directory contains good examples of how to write Python code. The
programs are described in Table 17.3.

Table 17.3 Programs Stored in the Demo Directory

Program Description

classes Some examples of how to use classes.

dns Module that implements a DNS client.

embed Example of embedding Python in another application (see also pysvr).

extend Example of using the generic Makefile.pre.in from the Misc directory to
build a statically linked or shared extension module.

ibrowse Emacs info file browser (uses stdwin).

md5test Test program for the optional md5 module.

metaclasses Metaclasses examples.

Table 17.2 (continued)

Program Description

23 0672319942 CH17 11/15/00 11:41 AM Page 683

684 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

pdist Filesystem, RCS, and CVS client and server classes. This directory
contains various modules and classes that support remote file system
operations.

pysvr Example of embedding Python in a threaded application.

rpc Set of classes for building clients and servers for Sun RPC.

sockets Examples for the new built-in module socket.

sgi Demos that only run on Silicon Graphics machines.

stdwin Demos that use the STDWIN library.

threads Demos that use the thread module (for SGIs).

tkinter Demos using the Tk interface.

zlib zlib demo.

The directory /Demos/scripts contains a collection of useful executable Python
scripts. They are presented in Table 17.4.

Table 17.4 Programs Stored in the Demos/Scripts Directory

Script Description

fact Factorizes numbers

from Summarizes mailbox

ftpstats Summarizes ftp daemon log file

lpwatch Watches BSD line printer queues

markov Markov chain simulation of words or characters

mboxconvvert Converts MH or MMDF mailboxes to UNIX mailbox format

morse Produces Morse code (audible or on AIFF file)

mpzpi test mpz—prints digits of pi (compare pi.py)

pi Prints all digits of pi—given enough time and memory

pp Emulates some Perl command line options

primes Prints prime numbers

script Equivalent to BSD script

unbirthday Prints unbirthday count

update Updates a bunch of files according to a script

Table 17.3 (continued)

Program Description

23 0672319942 CH17 11/15/00 11:41 AM Page 684

685CHAPTER 17 Development Tools
Generating an Executable Python Bytecode

Generating an Executable Python Bytecode

When loading a module, the Python interpreter first tries to load a byte-compiled
version of the module (a .pyc or .pyo bytecode file) from the system. If it doesn’t find
one, it automatically byte-compiles the module, and in case the permissions given to
the user who is executing the command allow, a byte-compiled version of the module
is saved in the disk for a later user. Note that it is a good idea to bytecompile all files
before giving Python access to users who cannot save in that source directory.
Otherwise, the interpreter has to byte-compile the module every time the module is
loaded, which can slow down program startup considerably.

Even though a Python bytecode file can automatically be created when importing a
module, you can manually create them whenever you need, as well. In order to
explicitly byte-compile a source file (.py) to a .pyc (or .pyo) bytecode file, you just
need to execute the following code:

import py_compile

pycompile.compile(“anyfilename.py”)

As you can see, the py_compile module provides a function called compile() that does
all the jobs. The general syntax for this function is

compile(file [, cfile] [, dfile])

where,

file source filename

cfile target filename; defaults to source with c or o appended (c normally and
o in optimizing mode, giving .pyc or .pyo)

dfile filename to store error messages (defaults to source)

The compileall module can be used either as a script or as a module. It uses the
py_compile module to byte-compile all installed files (or all files in selected
directories).

The following example compiles all files from the current directory:

import compileall.py

compileall.compile_dir(“.”, force=1)

You can also use this module as a script, passing arguments to it. The syntax for usage
as a script is as follows:

23 0672319942 CH17 11/15/00 11:41 AM Page 685

686 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

python compileall [-l] [-f] [-d destdir] [directory ...]

where,

-l avoids recursing into directories

-f forces rebuild even if timestamps are up-to-date

-d destdir directory to store the error messages

The script reads the directories that are informed as arguments and compiles all the
files that it finds there. If no directory arguments are given, the routine uses the
sys.path variable.

Note that the current version doesn’t recur down into subdirectories of a package.
Another implementation detail is that it only recurs into the maximum number of 10
levels. (This number is hard coded in the module’s code.) Also note that to generate
both .pyc and .pyo files, you will need to run Python twice—once without the -O flag
and once with it.

Interpreter

After installing Python, some special environment variables can be configured in order
to guarantee the maximum usage of the Python environment. The following list shows
some important environment variables recognized by the Python interpreter.

PYTHONPATH—This variable contains a list of directories used by the interpreter, as
search path, when importing modules. The best installation strategy is to put extra
Python modules in the /lib/python$(ver)/site-packages subdirectory under the
root Python installation, so you can tell between standard Python packages and
add-ons. Then you just need to set PYTHONPATH to your Python search path.

PYTHONSTARTUP—This variable contains the name of the directory that must have all
its files automatically loaded at the time of starting the Python interpreter.

PATH(or path)—This is a system environment variable that contains the directory
where the Python interpreter is located.

TCL_LIBRARY, TK_LIBRARY—These variables set the names of the directories where
we can find the libraries for both the Tcl and Tk systems. You don’t need to set
these variables unless you move your Tcl or Tk files after building and installing
them (the same as for Python).

23 0672319942 CH17 11/15/00 11:41 AM Page 686

687CHAPTER 17 Development Tools
Interpreter

Each system has a different way to set up these variables. For example, UNIX users
running all bourne shell compatible shells, could type

PYTHONPATH=”.:/usr/local/python/lib”

export PYTHONPATH

On the other hand, Windows and DOS users are familiar with the following syntax:

set PYTHONPATH=.;c:\python\lib

The Macintosh people must use the EditPythonPrefs program that comes along with
their version of the Python distribution. Note that this application is also used to set
up the values for the command line options that are passed to the interpreter.

When your system is able to locate the Python installation, you can call the interpreter
by typing the command

python

invoking the interpreter without arguments, connecting the standard input to a tty
device, executing commands interactively.

python filename

If you inform a filename, the interpreter tries to read and execute the contents of the
file.

The next line shows the general syntax to start up the Python interpreter.

python [options] [-c cmd | filename | -] [file_arguments]

The command line options in Table 17.5 are available on Windows and UNIX
systems.

Table 17.5 Python Interpreter Command Line Options

Option Description

-d Generates parser debugging information.

-i Enters interactive mode after program execution.

-O Sets optimized mode that optimizes bytecompiled files.

-OO Acts like -O, but also strips docstrings.

-S Prevents inclusion of the site initialization module.

-t Reports warnings about inconsistent tab usage.

23 0672319942 CH17 11/15/00 11:41 AM Page 687

688 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

-u Sets unbuffered binary stdout and stdin.

-v Sets the verbose mode.

-x Skips the first line of the source program.

-X Disables class-based exceptions. Note that release 2.0 doesn’t contain this option
anymore—it has been removed. Standard exceptions cannot be strings anymore.
They always have to be classes. Also note that since release 2.0 the exceptions
module was converted from Python to a built-in C module.

-c cmd Executes the provided Python command cmd. It’s important to use double quotes
here because the Python command can contain spaces.

- using - as a filename makes the interpreter read from the standard input.

Note
Note that Python 2.0 brings the new -U command line option to you. This option
tells the Python compiler to interpret all 8-bit string literals as Unicode string
literals. You should hang on to this one as the support for 8-bit strings might be
abandoned in future releases.

Whenever you inform the script’s filename and additional arguments to the
interpreter, that information gets stored in the sys.argv variable, which is a list of
strings. To be part of this list, the arguments must appear after the filename or after
the -.

When commands are read from a tty, the interpreter is said to be in interactive mode.
In this mode, it prompts for the next command with the primary prompt, which is by
default three greater than signs (>>>); for continuation lines, it prompts with the
secondary prompt, which is by default three dots (...). Note that these prompts can
be modified by changing the values of sys.ps1 and sys.ps2, respectively. Users might
want to modify the default values of these variables by putting these definitions in a
file that can be found in a directory in the $PYTHONSTARTUP directory.

When you start the interpreter, a welcome message is printed stating its version
number and a copyright notice before printing the first prompt as follows:

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>>

If you are using Python on a UNIX system, you can extend its line-editing features by
using the GNU readline library. To check whether you have this library installed on

Table 17.5 (continued)

Option Description

23 0672319942 CH17 11/15/00 11:41 AM Page 688

689CHAPTER 17 Development Tools
Debugging the Application

your system, just press CONTROL+P on the primary prompt. If the letter P is
echoed back to you, it means that you don’t have access to the library. Otherwise, you
can check the documentation and use all the editing and history features that are
provided by the library.

To exit the interpreter, you can type an EOF character (Control+D on UNIX,
Control+Z on DOS or Windows) at the primary prompt, import the sys module and
call the sys.exit() function, or just raise the SystemExit exception.

In order to launch the Python applications, you have a different kind of approach,
depending on your system. The UNIX people need to adjust the shebang in the first
line of the Python program to point to the Python interpreter. On Windows, you can
either click on the program icon or use batch files to transport arguments to the script
(or to the interpreter). Note that you can also open your files without opening the
interpreter; you just need to rename them to .pyw. This extension is associated with
the pythonw.exe application, which is responsible for executing the script without
opening a command window for the interpreter. If you are using a Macintosh system,
you need to use some special programs that come as part of the Python distribution
for Macintoshes. The first one is called BuildApplet. This program takes your
program and generates a file that automatically starts up the interpreter and executes
the code, when opened. The other program is called BuildApplication. This one
takes your program and generates a standalone application that doesn’t need a Python
installation running behind the scenes. This application is useful for cases in which
you want to distribute your Python application to other Macs that don’t have Python
installed.

Debugging the Application

Debugging a Python program is something that doesn’t require too much work. The
Standard Python Library comes with a debugger module called bdb that can be used
by you to subclass your own debuggers. If you don’t want to spend time writing your
own debug, you can use the Python debugger (the pdb module), which is also part of
the Python distribution. For those who need high-specialized debugging information,
Python provides a disassembler module. And for those who only want to debug the
value of variables, nothing works better than spreading a couple of print statements
throughout your program.

If you decide to use the Python debugger, you will not regret it. This debugger allows
you to set breakpoints, trace the values of local and global variables, step through the
code, and many other attractive features.

23 0672319942 CH17 11/15/00 11:41 AM Page 689

690 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

Because it is written in Python, the debugger exemplifies a powerful feature of the
Python language: the ability to create introspective applications, which means that we
are able to write programs in Python that can handle and manipulate the execution of
other programs.

The Base Debugger Module (bdb)

The bdb module exposes a framework for creating debuggers. This module provides a
base class called bdb that allows you to create your own debuggers by subclassing the
base class.

The following methods are available in this class. Note that derived classes should
override the following four methods to gain control of the application.

user_call(frame, argument_list)—This method is called when there is the
remote possibility that we ever need to stop in this function pass.

user_line(frame)—This method is called when we stop or break at this line pass.

user_return(frame, return_value)—This method is called when a return trap is
set here.

user_exception(frame, (exc_type, exc_value, exc_traceback))—This method
is called if an exception occurs, but only if we are to stop at or just below this level
pass.

The following methods can be called by the derived classes and by the clients in order
to affect the stepping state:

set_step()—Stops after one line of code

set_next(frame)—Stops on the next line in or below the given frame

set_return(frame)—Stops when returning from the given frame

set_trace()—Starts debugging from here

set_continue()—Doesn’t stop except at breakpoints or when finished

set_quit()—Quits the debugging process

Derived classes and clients can call the following methods in order to manipulate
breakpoints. These methods return an error message if something went wrong, and
None if everything goes well.

23 0672319942 CH17 11/15/00 11:41 AM Page 690

691CHAPTER 17 Development Tools
Debugging the Application

set_break(filename, lineno, temporary=0, cond = None)—This method prints
out the breakpoint line and filename:lineno.

clear_break(filename, lineno)—This method removes the breakpoint entry.

clear_bpbynumber(arg)—This method removes the breakpoint identified by the
given number.

clear_all_file_breaks(filename)—This method removes all the breakpoints
found in the given file.

clear_all_breaks()—This method removes all the active breakpoints from the
current program.

get_break(filename, lineno)—This method returns true if the given file has a
breakpoint in the given line number.

get_breaks(filename, lineno)—This method returns true if the given file has a
breakpoint in the given line number.

get_file_breaks(filename)—This method returns a list of all breakpoints found in
the given file.

get_all_breaks()—This method returns a list of all active breakpoints from the
current program.

The following methods can be called by clients to use a debugger to debug a statement
given as a string:

run(command, globals=None, locals=None)—Executes the string command, under
the debugger control.

runeval(expr, globals=None, locals=None)—Evaluates the expression expr under
the debugger control.

runcall(func, *args)—This method calls the single function func under the
debugger control.

set_trace()—This method starts the debugger at the point at which this function
is called. It is used to hard-code a debugger breakpoint into a specific code location.

The following example demonstrates how we can subclass the bdb class in order to
design our own debug. This example is based on the testing routine included in the
bdb module file.

23 0672319942 CH17 11/15/00 11:41 AM Page 691

692 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

import bdb

class Tdb(bdb.Bdb):

def user_call(self, frame, args):

name = frame.f_code.co_name

if not name:

name = ‘???’

print ‘+++ call’, name, args

def user_line(self, frame):

import linecache, string

name = frame.f_code.co_name

if not name:

name = ‘???’

fn = self.canonic(frame.f_code.co_filename)

line = linecache.getline(fn, frame.f_lineno)

print ‘+++’, fn, frame.f_lineno, name, ‘:’, string.strip(line)

def user_return(self, frame, retval):

print ‘+++ return’, retval

def user_exception(self, frame, exc_stuff):

print ‘+++ exception’, exc_stuff

self.set_continue()

def factorials(n):

for f in xrange(n, 0, -1):

factorial = calc(f)

print ‘The factorial of %d is %d’ % (f, factorial)

def calc(f):

factorial = 1

for n in xrange(f, 1, -1):

factorial = factorial * n

return factorial

def main():

debug = Tdb()

debug.run(‘factorials(3)’)

main()

The Python Debugger (pdb)

The Python debugger is directly based on the bdb class, as you can see when
examining its source code. To start the Python debugger, you need to import the pdb

23 0672319942 CH17 11/15/00 11:41 AM Page 692

693CHAPTER 17 Development Tools
Debugging the Application

module, and type one of the following commands: run(), runeval(), runcall(), or
set_trace().

import pdb

def myprog(n):

for l in xrange(n):

print l

debub=pdb.Pdb()

debub.runcall(myprog,10)

The debugger will then pop up a prompt. The debugger’s prompt is ‘(Pdb) ‘.

To use the debugger in its simplest form, type

import pdb

pdb.run(‘<a statement>’)

This will stop in the first function call in <a statement>.

Alternatively, if a statement terminated with an unhandled exception, you can use pdb’s
post-mortem facility to inspect the contents of the traceback:

>>> <a statement>

<exception traceback>

>>> import pdb

>>> pdb.pm()

The commands recognized by the debugger are listed in the next section. Note that
some commands have a short and a long form. The commands not recognized by the
debugger are assumed to be Python commands, and are executed in the context of the
program being debugged. Python statements can also be prefixed with an exclamation
point (!). This is a powerful way to inspect the program being debugged; it is even
possible to change variables. When an exception occurs in such a statement, the
exception name is printed, but the debugger’s state is not changed.

The debugger supports aliases, which can save typing. And aliases can have parameters
(see the alias help entry) that allow one a certain level of adaptability to the context
under examination.

Multiple commands can be entered on a single line, separated by the pair ;;. No
intelligence is applied to separating the commands; the input is split at the first ;;,
even if it is in the middle of a quoted string.

If a file .pdbrc exists in the user’s home directory or in the current directory, it is read
in and executed as if it had been typed at the debugger prompt. This is particularly
useful for aliases. If both files exist, the one in the home directory is read first and

23 0672319942 CH17 11/15/00 11:41 AM Page 693

694 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

aliases defined there can be overriden by the local file. Aside from aliases, the
debugger is not directly programmable; but it is implemented as a class from which
you can derive your own debugger class, which you can make as fancy as you like.

You can also invoke the Python debugger as a main program, on a script. Just use the
following structure to start up the debugger.

import pdb

def main():

Add your code here

if __name__==’__main__’:

pdb.run(‘main()’)

Debugger Commands
When you are at the debugger prompt, you can type any one of the following
commands. Note that some of them have an abbreviated version. Next to each
command, enclosed in brackets, you will find the command’s optional arguments.
Except for the list command, all commands can be repeated by entering a blank line
at the prompt.

h(elp)—Prints the list of available commands.

w(here)—Prints a stack trace, with the most recent frame at the bottom. An arrow
indicates the current frame, which determines the context of most commands.

d(own)—Moves the current frame one level down in the stack trace (to an older
frame).

u(p)—Moves the current frame one level up in the stack trace (to a newer frame).

b(reak) [([filename:]lineno | function) [, condition]]—With a
filename:line number argument, set a break there. If filename is omitted, use the
current file. With a function name, set a break at the first executable line of that
function. Without an argument, list all breaks. Each breakpoint is assigned a
number to which all the other breakpoint commands refer. The condition
argument, if present, is a string that must evaluate to true in order for the
breakpoint to be honored.

tbreak [([filename:]lineno | function) [, condition]]—Temporary
breakpoint, which is removed automatically when it is first hit. The arguments are
the same as break.

cl(ear) [bpnumber [bpnumber ...]]—With a space separated list of breakpoint
numbers, clear those breakpoints. Without an argument, clear all breaks (but first
ask confirmation).

23 0672319942 CH17 11/15/00 11:41 AM Page 694

695CHAPTER 17 Development Tools
Debugging the Application

disable bpnumber [bpnumber ...]—Disables the breakpoints given as a space
separated list of breakpoint numbers. Disabling a breakpoint means that it cannot
cause the program to stop execution. But unlike clearing a breakpoint, it remains in
the list of breakpoints and can be (re-)enabled.

enable bpnumber [bpnumber ...]—Enables the breakpoints specified.

ignore bpnumber count—Sets the ignore count for the given breakpoint number. If
the count is omitted, the ignore count is set to 0. A breakpoint becomes active when
the ignore count is zero. When non-zero, the count is decremented each time the
breakpoint is reached and the breakpoint is not disabled and any associated
condition evaluates to true.

condition bpnumber condition—Condition is an expression that must evaluate to
true before the breakpoint is honored. If condition is absent, any existing condition
is removed; that is, the breakpoint is made unconditional.

s(tep)—Executes the current line and stops at the first possible occasion (either in
a called function or in the current function).

n(ext)—Continues execution until the next line in the current function is reached
or it returns.

r(eturn)—Continues execution until the current function returns.

c(ont(inue))—Continues execution, only stops when a breakpoint is encountered.

l(ist) [first [,last]]—Lists source code for the current file. Without
arguments, lists 11 lines around the current line or continues the previous listing.
With one argument, lists 11 lines starting at that line. With two arguments, lists the
given range; if the second argument is less than the first, it is a count.

a(rgs)—Prints the argument list of the current function.

p expression—Prints the value of the expression.

(!) statement—Executes the (one-line) statement in the context of the current
stack frame. The exclamation point can be omitted unless the first word of the
statement resembles a debugger command. To assign to a global variable, you must
always prefix the command with a global command, for example

(Pdb) global list_options; list_options = [‘-l’]

(Pdb)

whatis arg—Prints the type of the argument.

23 0672319942 CH17 11/15/00 11:41 AM Page 695

696 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

alias [name [command]]—Creates an alias called name that executes command. The
command must not be enclosed in quotes. Replaceable parameters can be indicated
by %1, %2, and so on, whereas %* is replaced by all the parameters. If no
command is given, the current alias for name is shown. If no name is given, all
aliases are listed. Aliases might be nested and can contain anything that can be
legally typed at the pdb prompt. Note that you can override internal pdb commands
with aliases. Those internal commands are then hidden until the alias is removed.
Aliasing is recursively applied to the first word of the command line; all other words
in the line are left alone. As an example, here are two useful aliases (especially when
placed in the .pdbrc file):

#Print instance variables (usage “pi classInst”)

alias pi for k in %1.__dict__.keys(): print “%1.”,k,”=”,%1.__dict__[k]

#Print instance variables in self

alias ps pi self

unalias name—Deletes the specified alias.

q(uit)—Quit from the debugger. The program being executed is aborted.

Note
Some Python IDE’s, such as Pythonwin, implement derived debuggers, and Emacs’
Grand Unified Debugger can use pdb.

Disassembling Python Bytecodes

Python has a module called dis, which is used to disassemble Python bytecodes into
mnemonics. This module exposes a function, which is also called dis() that is able to
disassemble classes, methods, functions, or code. If you don’t provide any argument to
the function, it disassembles the last traceback.

>>> import dis

>>> def routine():

... i = 5

... for loop in xrange(i):

... print ‘Ni!’

>>>

>>> dis.dis(routine)

0 SET_LINENO 1

23 0672319942 CH17 11/15/00 11:41 AM Page 696

697CHAPTER 17 Development Tools
Profiling Python

3 SET_LINENO 2

6 LOAD_CONST 1 (5)

9 STORE_FAST 0 (i)

12 SET_LINENO 3

15 SETUP_LOOP 33 (to 51)

18 LOAD_GLOBAL 1 (xrange)

21 LOAD_FAST 0 (i)

24 CALL_FUNCTION 1

27 LOAD_CONST 2 (0)

>> 30 SET_LINENO 3

33 FOR_LOOP 14 (to 50)

36 STORE_FAST 1 (loop)

39 SET_LINENO 4

42 LOAD_CONST 3 (‘Ni!’)

45 PRINT_ITEM

46 PRINT_NEWLINE

47 JUMP_ABSOLUTE 30

>> 50 POP_BLOCK

>> 51 LOAD_CONST 0 (None)

54 RETURN_VALUE

Profiling Python

Profiling an application means to be able to sketch an image about what is going on
behind the scenes when you execute a program.

The sys module is able to perform a very simple profiling task by telling you a little
bit about what is going on after each function, method, or specific line gets executed.

sys.setprofiler(profiler_function)—This function implements a source code
profiler, which identifies a function that must be executed whenever a function or
method is called.

sys.settrace(tracer_function)—The functionality of this function is basically the
same one of the setprofiler() function. However, this one is called whenever a
new line is executed.

23 0672319942 CH17 11/15/00 11:41 AM Page 697

698 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

>>> import sys

>>> def profiler(frame, event, arguments):

... print frame.f_code.co_name, frame.f_lineno, event, arguments

...

>>> sys.setprofile(profiler)

? 1 return None

>>> lst = [“Spam”,”Parrot”,”Knights”]

? 1 call None

? 1 return None

>>> def showlist(_lst):

... for l in _lst:

... print l

... return _lst

...

? 1 call None

? 1 return None

>>> showlist(lst)

? 1 call None

showlist 1 call None

Spam

Parrot

Knights

showlist 4 return [‘Spam’, ‘Parrot’, ‘Knights’]

[‘Spam’, ‘Parrot’, ‘Knights’]

? 1 return None

>>> sys.setprofile(None)

If you really want to perform a more complete and accurate study, you need to use the
profiler module.

Python Profiler

The information provided here offers a brief overview about how to use the profile
module to perform the analysis of the run time performance of a Python program.
The original profile module was written by Sjoerd Mullender, and later Guido van
Rossum applied some changes to it. All the original documentation is copyrighted by
James Roskind (see copyright note in Appendix C, “Python Copyright Notices”), and
reproduced here with slight modifications.

Note
Check out the module’s original documentation for more information about its
“deterministic profiling” implementation.

23 0672319942 CH17 11/15/00 11:41 AM Page 698

699CHAPTER 17 Development Tools
Profiling Python

You have two possible ways to use the profile module. The first option is to import it,
and make it call a function on your program that you want to analyze, such as

import profile

def main():

for n in xrange(100):

print n,

profile.run(“main()”)

The run() function generates a profiling report that can be manipulated using the
pstats module (the report generating functions are in the pstats module).

The second option is to invoke the profiler as a main program and pass the script that
needs to be profiled as an argument.

python profile.py scriptfile [arg...]

Next, you have the static member functions that are available for the profiler class.
Note that an instance of Profile() is not needed to call them.

To profile an application with a main entry point of foo(), you would add the
following to your module:

import profile

profile.run(“foo()”)

The previous action would cause foo() to be run, and a series of informative lines (the
profile) to be printed. This approach is most useful when working with the interpreter.
If you would like to save the results of a profile into a file for later examination, you
can supply a filename as the second argument to the run() function:

import profile

profile.run(“foo()”, ‘fooprof’)

The primary entry point for the profiler is the global function profile.run(). It is
typically used to create any profile information. The reports are formatted and printed
using methods for the class pstats.Stats. The following is a description of all these
standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on “Extensions: Deriving Better Profilers,” which
includes a discussion of how to derive better profilers from the classes presented, or
reading the source code for these modules.

FUNCTION profile.run(string, filename_opt)

23 0672319942 CH17 11/15/00 11:41 AM Page 699

700 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

This function takes a single argument that can be passed to the exec statement, and an
optional filename. In all cases, this routine attempts to exec its first argument, and
gathers profiling statistics from the execution. If no filename is present, this function
automatically prints a simple profiling report, sorted by the standard name string
(file/line/function-name) that is presented in each line. The following is a typical
output from such a call:

main()

2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)

...

The first line indicates that this profile was generated by the call:
profile.run(‘main()’), and hence the executed string is ‘main()’. The second line
indicates that 2706 calls were monitored. Of those calls, 2004 were primitive. We
define primitive to mean that the call was not induced via recursion. The next line,
Ordered by: standard name, indicates that the text string in the far right column was
used to sort the output. The column headings include

ncalls stands for the number of calls.

tottime stands for the total time spent in the given function (and excluding time
made in calls to sub-functions).

percall is the quotient of tottime divided by ncalls.

cumtime is the total time spent in this and all subfunctions (that is, from invocation
till exit). This figure is accurate even for recursive functions.

percall is the quotient of cumtime divided by primitive calls.

filename:lineno(function) provides the respective data of each function.

When two numbers are in the first column (for instance, 43/3), the latter is the
number of primitive calls, and the former is the actual number of calls. Note that
when the function does not recurse, these two values are the same, and only the single
figure is printed.

23 0672319942 CH17 11/15/00 11:41 AM Page 700

701CHAPTER 17 Development Tools
Profiling Python

Analyzing Profiles with the pstats Module

The pstats module analyzes the data collected by the Python profile module. The
following example demonstrates how we can use this module to manipulate the
information generated by the profile module:

>>> import profile, pstats

>>> def main():

... for n in xrange(3):

... print n

...

>>> p = profile.Profile()

>>> p.run(“main()”)

0

1

2

<profile.Profile instance at 7c2c20>

>>> s = pstats.Stats(p)

>>> s.sort_stats(“time”, “name”).print_stats()

3 function calls in 58.727 CPU seconds

Ordered by: internal time, function name

ncalls tottime percall cumtime percall filename:lineno(function)

1 58.727 58.727 58.727 58.727 profile:0(main())

1 0.000 0.000 0.000 0.000 <stdin>:1(main)

1 0.000 0.000 0.000 0.000 <string>:1(?)

0 0.000 0.000 profile:0(profiler)

<pstats.Stats instance at 7c2280>

>>>

This module exposes the Stats(filename, ...) class. This class is used for creating
reports from data generated by the Profile class. It imports data either by direct access
to members of Profile class, or by reading in a dictionary that was emitted (viamarshal)
from the Profile class. When you want to review the profile, you should use the
methods in the pstats module. Typically you would load the statistics data as follows:

import pstats

p = pstats.Stats(‘fooprof’)

The class Stats (the previous code just created an instance of this class) has a variety
of methods for manipulating and printing the data that was just read into “p”. When
you ran profile.run(), the result of three method calls was printed:

p.strip_dirs().sort_stats(-1).print_stats()

23 0672319942 CH17 11/15/00 11:41 AM Page 701

702 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

The first method removed the extraneous path from all the module names. The
second method sorted all the entries according to the standard module/line/name
string that is printed (this is to comply with the semantics of the old profiler). The
third method printed out all the statistics. You might try the following sort calls:

p.sort_stats(‘name’)

p.print_stats()

The first call will actually sort the list by function name, and the second call will print
out the statistics. The following are some interesting calls to experiment with:

p.sort_stats(‘cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten
most significant lines. If you want to understand what algorithms are taking time, the
previous line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time,
you would do

p.sort_stats(‘time’).print_stats(10)

This sorts according to time spent within each function, and then prints the statistics
for the top ten functions.

You might also try

p.sort_stats(‘file’).print_stats(‘__init__’)

This will sort all the statistics by filename, and then print out statistics for only the
class init methods (because they are spelled with __init__ in them). The sort_stats()
method takes an arbitrary number of quoted strings to select the sort order. For
example, sort_stats(‘time’, ‘name’) sorts on the major key of “internal function
time”, and on the minor key of ‘the name of the function’. As one final example,
you could try:

p.sort_stats(‘time’, ‘cum’).print_stats(.5, ‘init’)

This line sorts stats with a primary key of time and a secondary key of cumulative
time, and then prints out some of the statistics. To be specific, the list is first culled
down to 50% (.5) of its original size, and then only lines containing “init” are
maintained, and that sub-sub-list is printed.

23 0672319942 CH17 11/15/00 11:41 AM Page 702

703CHAPTER 17 Development Tools
Profiling Python

Note
All the print methods take an argument that indicates how many lines to print. If the
arg is a floating point number between 0 and 1.0, it is taken as a decimal percentage
of the available lines to be printed (for example, .1 means print 10% of all available
lines). If it is an integer, it is taken to mean the number of lines of data that you want
to have printed.

If you wondered what functions called the previous functions, you could now (p is still
sorted according to the last criteria) do

p.print_callers(.5, ‘init’)

You would get a list of callers for each of the listed functions.

All methods from the Stats class return self, so you can string together commands
such as

Stats(‘foo’, ‘goo’).strip_dirs().sort_stats(‘calls’).\

print_stats(5).print_callers(5)

This class constructor creates an instance of a statistics object from a filename (or set
of filenames). Stats objects are manipulated by methods in order to print useful
reports.

The file selected by the previous constructor must have been created by the
corresponding version of profile. To be specific, there is no file compatibility
guaranteed with future versions of this profiler, and there is no compatibility with files
produced by other profilers (for example, the standard system profiler).

If several files are provided, all the statistics for identical functions will be coalesced so
that an overall view of several processes can be considered in a single report. If
additional files need to be combined with data in an existing Stats object, the add()
method can be used. This can be used to average out the statistics for a short running
program to increase the accuracy.

The following methods are exposed by the Stats class.

strip_dirs()—This method for the Stats class removes all leading path
information from filenames. It is very useful in reducing the size of the printout to
fit within (close to) 80 columns. This method modifies the object, and the striped
information is lost. After performing a strip operation, the object is considered to
have its entries in a random order, as it was just after object initialization and
loading. If strip_dirs() causes two function names to be indistinguishable (that is,
they are on the same line of the same filename, and have the same function name),
the statistics for these two entries are accumulated into a single entry.

23 0672319942 CH17 11/15/00 11:41 AM Page 703

704 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

add(filename, ...)—This method of the Stats class accumulates additional
profiling information into the current profiling object. Its arguments should refer to
filenames created by the corresponding version of profile.run(). Statistics for
identically named (file, line, name) functions are automatically accumulated into
single function statistics.

sort_stats(key, ...)—This method modifies the Stats object by sorting it
according to the supplied criteria. The argument is typically a string identifying the
basis of a sort (for example: “time” or “name”).

When more than one key is provided, additional keys are used as secondary criteria
when equality exists in all keys previously selected. For example, sort_stats(‘name’,
‘file’) will sort all the entries according to their function name and resolve all ties
(identical function names) by sorting by filename.

Abbreviations can be used for any key names as long as the abbreviation is
unambiguous. The keys currently defined are shown in Table 17.6.

Table 17.6 Abbreviations to Use as Sorting Keys

Valid Argument Meaning

”calls” call count

”cumulative” cumulative time

”file” filename

”module” filename

”pcalls” primitive call count

”line” line number

”name” function name

”nfl” name/file/line

”stdname” standard name

”time” internal time

Note that all sorts on statistics are in descending order (placing most time-consuming
items first), whereas name, file, and line number searches are in ascending order (that
is, alphabetical). The subtle distinction between “nfl” and “stdname” is that the
standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the
filenames were the same) appear in the string order “20”, “3”, and “40”. In contrast,

23 0672319942 CH17 11/15/00 11:41 AM Page 704

705CHAPTER 17 Development Tools
Profiling Python

“nfl” does a numeric compare of the line numbers. In fact, sort_stats(“nfl”) is the
same as sort_stats(“name”, “file”, “line”).

reverse_order()—This method for the Stats class reverses the ordering of the
basic list within the object. This method is provided primarily for compatibility
with the standard profiler. Its utility is questionable now that ascending versus
descending order is properly selected based on the sort key of choice.

print_stats(restriction, ...)—This method for the Stats class prints out a
report as described in the profile.run() definition. The order of the printing is
based on the last sort_stats() operation done on the object (subject to caveats in
add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant
entries. Initially, the list is taken to be the complete set of profiled functions. Each
restriction is either an integer (to select a count of lines), or a decimal fraction between
0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed). If several restrictions are provided,
they are applied sequentially. For example

print_stats(.1, “foo:”)

would first limit the printing to the first 10% of list, and then only print functions that
were part of filename “.*foo:”. In contrast, the following command:

print_stats(“.*foo:”, .1)

would limit the list to all functions having filenames “.*foo:”, and then proceed to
only print the first 10% of them.

print_callers(restrictions, ...)—This method for the Stats class prints a list
of all functions that called each function in the profiled database. The ordering is
identical to that provided by print_stats(), and the definition of the restricting
argument is also identical. For convenience, a number is shown in parentheses after
each caller to show how many times this specific call was made. A second non-
parenthesized number is the cumulative time spent in the function at the right.

print_callees(restrictions, ...)—This method for the Stats class prints a list
of all functions that were called by the indicated function. Aside from this reversal
of direction of calls (called versus was called by), the arguments and ordering are
identical to the print_callers() method.

23 0672319942 CH17 11/15/00 11:41 AM Page 705

706 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

ignore()—This method of the Stats class is used to dispose of the value returned
by earlier methods. All standard methods in this class return the instance that is
being processed so that the commands can be strung together. For example

pstats.Stats(‘foofile’).strip_dirs().sort_stats(‘cum’).

print_stats().ignore()

would perform all the indicated functions, but it would not return the final
reference to the Stats instance.

Limitations
There are two fundamental limitations on this profiler. The first is that it relies on the
Python interpreter to dispatch “call”, “return”, and “exception” events. Compiled C
code does not get interpreted, and hence is invisible to the profiler. All time spent in C
code (including built-in functions) will be charged to the Python function that has
invoked the C code. If the C code calls out to some native Python code, those calls
will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a
fundamental problem with deterministic profilers involving accuracy. The most
obvious restriction is that the underlying clock is only ticking at a rate (typically) of
about .001 seconds. Hence no measurements will be more accurate than that
underlying clock. If enough measurements are taken, the error will tend to average
out. Unfortunately, removing this first error induces a second source of error.

The second problem is that it “takes a while” from when an event is dispatched until
the profiler’s call to get the time actually gets the state of the clock. Similarly, there is a
certain amount of lag when exiting the profiler event handler from the time that the
clock’s value was obtained (and then squirreled away), until the user’s code is once
again executing. As a result, functions that are called many times, or call many
functions, will typically accumulate this error.

The error that accumulates in this fashion is typically less than the accuracy of the clock
(that is, less than one clock tick), but it can accumulate and become very significant.
This profiler provides a means of calibrating itself for a given platform so that this error
can be probabilistically (that is, on the average) removed. After the profiler is calibrated,
it will be more accurate (in at least a square sense), but it will sometimes produce
negative numbers (when call counts are exceptionally low, and the gods of probability
work against you). Do not be alarmed by negative numbers in the profile.

They should only appear if you have calibrated your profiler, and the results are
actually better than without calibration.

23 0672319942 CH17 11/15/00 11:41 AM Page 706

707CHAPTER 17 Development Tools
Profiling Python

Calibration
The profiler class has a hard-coded constant added to each event handling time to
compensate for the overhead of calling the time function, and storing away the results.
The following procedure can be used to obtain this constant for a given platform.

import profile

pr = profile.Profile()

pr.calibrate(100)

pr.calibrate(100)

pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to
get the CPU times. If your computer is very fast, you might have to do:

pr.calibrate(1000)

or even

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a
consistent answer, you are ready to use that number in the source code. For a Sun
Sparcstation 1000 running Solaris 2.3, the magical number is about .00053. If you
have a choice, you are better off with a smaller constant, and your results will less often
show up as negative in profile statistics.

The following shows how the trace_dispatch() method in the Profile class should
be modified to install the calibration constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):

t = self.timer()

t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):

t = self.timer()

self.t = t[0] + t[1]

else:

r = self.timer()

self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, the line containing the calibration
constant should simply say

t = t[0] + t[1] - self.t # no calibration constant

23 0672319942 CH17 11/15/00 11:41 AM Page 707

708 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

You can also achieve the same results using a derived class (and the profiler will
actually run equally fast), but the previous method is the simplest to use. If the profiler
was made self calibrating, it would have made the initialization of the profiler class
slower, and would have required some very fancy coding, or else the use of a variable
where the constant .00053 was placed in the code shown. This is a very critical
performance section, and there is no reason to use a variable lookup at this point when
a constant can be used.

Extensions: Deriving Better Profilers
The Profile class of profile was written so that derived classes could be developed to
extend the profiler. The following two examples of derived classes can be used to do
profiling. If the reader is an avid Python programmer, it should be possible to use
these as a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used,
the basic class has an option for that in the constructor for the class. Consider passing
the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will call your time function instead of os.times(). The function
should return either a single number, or a list of numbers (similar to what os.times()
returns). If the function returns a single time number or the list of returned numbers
has length 2, you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you
choose. For most machines, a timer that returns a lone integer value will provide the
best results in terms of low overhead during profiling. (os.times is pretty bad because
it returns a tuple of floating point values, so all arithmetic is floating point in the
profiler.) If you want to substitute a better timer in the cleanest fashion, you should
derive a class, and simply put in the replacement dispatch method that better handles
your timer call, along with the appropriate calibration constant.

Distributing Python Applications

You have more than one way to pack your Python files and distribute your application.
It depends only on the kind of goal that you are trying to reach. Probably your
greatest concern is about how to hide the source code of your application. Well…
Some suggest the use of encryption algorithms, others the distribution of Python

23 0672319942 CH17 11/15/00 11:41 AM Page 708

709CHAPTER 17 Development Tools
Distributing Python Applications

bytecode files. All these sound like good solutions, but they have their individual
problems. If you are really worried about opening your code to the public, I suggest
that you convert your Python application to C, and distribute a compiled executable.
Ask yourself if it is really a benefit to hide the source to your program. It is just as bad
to illegally distribute a program that comes with source, and could potentially increase
the value to the client.

When creating your distribution package, it is important to keep in mind the directory
location where you are saving your files. Python must know where to look. Python
requires module files to be available in one or more directories listed in the sys.path.
To see the current Python modules search path, start Python and type:

import sys

print sys.path

You can also allow your program to find a specific module placed somewhere else on
the disk. For that, you just need to add one more entry in the sys.path list. In the next
example, we intend to have a module called mymodule stored in a directory called
/usr/users/andre, which is not part of the sys.path yet.

#!usr/local/bin/python

import sys

sys.path.insert(0,”/usr/users/andre”)

import mymodule

mymodule.main()

If you are using Python on a Windows platform, you can try the following approach to
pack all files on a single structure:

1. Create a root directory.

2. Put the following files on this directory: python.exe, pythonw.exe, _tkinter.pyd,
python15.dll, tcl80.dll, tk80.dll, and any other specific libraries that your
application might need.

3. Create three directories under the root: \LIB, \TCL, and \TK, and copy all the
necessary files to these subdirectories.

4. Now, create a batch file where you set the value of the following variables:
PYTHONPATH, TCL_LIBRARY, and TK_LIBRARY and create a call to your application in
the file. Note that if you want to avoid opening the interpreter, you need to open
your application using the pythonw application.

23 0672319942 CH17 11/15/00 11:41 AM Page 709

710 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

You can zip this entire structure and freely distribute it. The person who receives the
package just has to execute the batch file to execute your application. If you want, you
can change your program to use that previous technique of dynamically informing the
path where your modules are located. Therefore, you don’t need to configure the
PYTHONPATH environment variable.

The Python distribution contains a tool that saves much time when you are dealing
with distribution issues. This tool is called Freeze.

This tool is able to freeze a Python script into an executable in order to let you ship
arbitrary Python programs to people who don’t have Python. Note that in order to
freeze programs that use Tkinter, Tcl/Tk must be installed on the target system.

Freeze works by converting all the Python code of your application to a stream of
Python bytecodes that can be later executed by the Python interpreter. For each
module that is opened, Freeze looks for other necessary modules too. After all
modules are converted to bytecode format, Freeze glues them all, and creates a
Makefile file that can be used by calling the make command. Note that the resulting
executable contains all your code plus the Python interpreter and the necessary library
modules. Therefore, you should expect a big file.

Freeze is a great option for the cases in which you don’t want your users to see and
copy your source code. Remember that the resulting file is an executable just like the
ones created by regular compiled applications.

In order to use Freeze, you just need to perform a simple call, such as

python freeze.py hello.py

Freeze creates a number of files: frozen.c, config.c, and Makefile, plus one file for
each Python module that gets included named M_<module>.c. To produce the frozen
version of your program, you can simply type “make”. This should produce a binary
file. If the filename argument to Freeze was hello.py, the binary will be called hello.

Details for usage under Win32 systems can be found on your own script at your local
installation.

If you built Python with some required modules as shared libraries (DLLs), the frozen
program will still require these extra files. If this is a problem (and it probably is if you
are considering the freeze tool), you should recompile Python (using the previous
instructions) with the required modules linked into the Python executable.

Note that you are not tied to the Freeze utility. There are a couple of other options
available too. Check them out.

23 0672319942 CH17 11/15/00 11:41 AM Page 710

711CHAPTER 17 Development Tools
Distributing Python Applications

SqueezeTool

This is a program, written by Fredrik Lundh, that is able to squeeze a Python
Application and all its support modules into a single, compressed package of bytecode
files. Whenever it becomes necessary, a special script is used to open the package and
run the bytecode files.

http://starship.python.net/crew/fredrik/ipa/squeeze.htm

Python2C—The Python to C Translator

Python2C is a Python to C translator, written by Bill Tutt and Greg Stein, that
attempts to speed up Python code by removing a significant fraction of the Python
interpreter overhead.

http://lima.mudlib.org/~rassilon/p2c/

Small Python

This tool was written by Greg Stein in order to create minimal Python distributions.
Note that although it is built for Windows, the concept and source code can be useful
for other Python platforms, as well.

http://www.lyra.org/greg/small/

Gordon McMillan’s Installer

Gordon McMillan wrote this tool by taking Fredrik’s Squeeze idea and Greg Stein’s
Small distribution, and combining them. The result is cross-platform, small (the
python Standard Library fits in a 500K archive) and fast (much less I/O for an import)
distribution installer for Python.

http://www.mcmillan-inc.com/install1.html

Distutils

Python 2.0 contains a brand-new distribution package as part of its Standard Library.
This package is called distutils, and is totally documented in a new set of manuals
that also join the official Python documentation. This package is able to create source
and binary distributions.

The logic used by this package, automatically detects the platform, recognizes the
compiler, compiles the C extension modules, and installs the distribution into the
proper directory.

23 0672319942 CH17 11/15/00 11:41 AM Page 711

712 PYTHON DEVELOPER’S HANDBOOK

PART V Developing with Python

In order to install a script using this package, you need to run a setup.py script with
the install command.

python setup.py install

Note that you need to write the setup.py script in order to execute the package. This
file can be very simple when you are using only .py files, such as in the next example.

from distutils.core import setup

setup (name = “myapp”, version = “1.0”, py_modules = [“bikes”,

“cars”])

It is important to know that you are not tied to use only .py files; you can also use
packages and C extensions. Check the official documentation for more details.

The sdist command, which can be passed to python setup.py sdist, builds a source
distribution such as myapp-1.0.tar.gz.

You can also add you own commands—that isn’t difficult at all. Bundled with the
package, there are some contributed commands already written for you, such as
bdist_rpm and bdist_wininst, which create an RPM distribution and a Windows
installer, respectively.

Summary

This chapter demonstrates how to go through all the development stages of creating a
Python application. You will learn how to compile the Python interpreter, and how to
debug, profile, and distribute Python programs.

The Python source code distribution comes with complete instructions about how to
compile the code for both Windows and UNIX platforms. These same instructions
are given here in a general format overview.

Although there is a binary distribution for Windows systems, binary distributions for
the UNIX platforms are not made available by the Python Web site because the
compilation process depends much on your system.

As you already know, Python provides two development environments that offer a lot
of useful features which can help you while coding: Pythonwin and IDLE. However,
for simple programs, or in case you don’t have a graphical environment available, you
can stick to simple text editors that can be used to handle the job very nicely. On
Windows systems, you can use editors such as Editpad and Notepad to write Python

23 0672319942 CH17 11/15/00 11:41 AM Page 712

713CHAPTER 17 Development Tools
Summary

scripts; on DOS systems, EDIT, and on UNIX systems, you have choices like Pico, Vi,
Emacs, and others. Note that Emacs lets you use a special Emacs mode, which is
called Python Mode, to write Python programs.

The Python distribution comes with lots of scripts that you can study and use. Those
scripts are stored in two directories: \Tools and \Demos.

Even though a Python bytecode file can automatically be created when importing a
module, you can manually create them whenever you need. It is a good idea to
bytecompile all files before giving Python access to users that cannot save in that
source directory. Otherwise, the interpreter has to byte-compile the module every
time the module is loaded, which can slow down program start-up considerably.

After installing Python, some special environment variables can be configured in order
to guarantee the maximum usage of the Python environment.

Debugging a Python program is something that doesn’t require too much work. The
Standard Python Library comes with a debugger module called bdb that can be used
by you to subclass your own debuggers. If you don’t want to spend time writing your
own debug, you can use the Python debugger (the pdb module), which is also part of
the Python distribution. For those who need highly-specialized debugging
information, Python provides a disassembler module called dis.

The information provided in this chapter also offers a brief overview about how to use
the profile module to perform the analysis of the runtime performance of a Python
program. Profiling an application means to be able to sketch an image about what is
going on behind the scenes when you execute a program. In addition to that, it is also
shown how to use the pstats module, which analyzes the data collected by the Python
profile module.

When it comes time to distribute your application, you have more than one way to
pack your Python files. It depends only on the kind of goal you are trying to reach.
The Python distribution contains a tool that saves much time when you are dealing
with distribution issues. This tool is called Freeze. You have other options too, such as
SqueezeTool and Gordon McMillan’s installer.

23 0672319942 CH17 11/15/00 11:41 AM Page 713

23 0672319942 CH17 11/15/00 11:41 AM Page 714

PART VI

Python and Java

CHAPTER

18 JPython

24 0672319942 Pt 6 11/15/00 11:41 AM Page 715

24 0672319942 Pt 6 11/15/00 11:41 AM Page 716

CHAPTER 18

JPython

What a senseless waste of human life

This chapter shows you how easy it is to use all the power of
Python within the elasticity of Java. JPython is the keyword for
the secret of your success in the Java world.

Welcome to JPython

JPython is a Java implementation of the object-oriented
scripting language called Python that has been certified as
100% pure Java. In other words, JPython does not use any of
the C code of the original Python implementation. It is a
version of Python that runs on top of the Java Virtual Machine.
Thus, it allows you to run Python on any Java platform and
enables your JPython applications to have access to any Java
library that you might need.

JPython offers the same language as Python, but it has a
different implementation. Python is a scripting language whose
interpreter is written in C, which means that this implemen-
tation is called CPython. On the other hand, JPython
re-implements the Python parser and interpreter in Java.
Actually, the interpreter is available as a Java application, which
allows Python programs to be created and seamlessly integrated
with the Java platform. Note however that both types of
implementation (Python and JPython) have their own pace.

D E V E L O P E R ’ S H A N D B O O K

25 0672319942 CH18 11/15/00 11:41 AM Page 717

718 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

Efforts are made to keep them in sync, but it is not guaranteed that this will always
happen.

JPython carries a license that complies with the Open Source definition. It is freely
available for both commercial and non-commercial use and is distributed with source
code.

JPython was designed by Jim Hugunin, who is also the main author of the Numeric
Python extensions. He has joined Guido at CNRI in 1998, leaving in mid-1999 to join
the Xerox PARC team in California. When he left, Barry Warsaw took care of the
JPython project, and he is the main person responsible for the project since then.
Currently, JPython is maintained by Warsaw at BeOpen Python Labs.

At the Web site, you can always obtain the latest information about this implemen-
tation and download info. In case you are interested in downloading the source code,
it is available via CVS. The latest version of JPython was released in January of 2000.
Check out the JPython Official Web site at

http://www.jpython.org/

If you want to be in touch with other users, JPythoners have their own mailing list
that you can use to discuss JPython, ask questions, and help other users as well. Check
out the jpython-interest mailing list at

http://www.python.org/mailman/listinfo/jpython-interest

JPython Features

JPython’s core is an interpreter engine, similar to CPython’s, that provides support to
the greater part of the Standard Python Library. JPython has a set of features that
includes

• High-level built-in data types

• Dynamic typing

• Optional static compilation (which allows the creation of beans, applets, servlets,
and so forth)

• Java classes and packages support

• A set of support libraries

• Interactive compilation direct to Java bytecodes (which enables JPython
programs to run directly on a JVM, including running as applets in Web browser
windows).

25 0672319942 CH18 11/15/00 11:41 AM Page 718

719CHAPTER 18 JPython
Welcome to JPython

JPython uses the Java’s introspection mechanism to understand the contents of the
package, which means that when you want to import a Java library, say something
such as

import java.awt

JPython first tries to find a Python package named java. And in case it doesn’t find
one, it uses the Java mechanism to search in the CLASSPATH system variable for a
.class or .jar file that meets the requirement.

Another important aspect of JPython is that you can create JPython classes that
subclass Java classes, extending JPython functionality without the need for using
wrapper generators (such as SWIG—Simplified Wrapper and Interface Generator),
provided the functionality is already implemented in Java code. Otherwise, you
probably need to use the JNI interface to make the code available to JPython. This
allows you to easily use the same set of classes that a regular Java application has access
to. The opposite is also true. Java has total integration with JPython, and because
JPython is 100% pure Java certified, you might embed JPython in your Java
applications without any worries of compromising the portability of your application.
If necessary, you can even pass JPython object instances back to Java (executing
callbacks), and manipulate these instances in the Java application because any Java code
that processes Java objects is also able to process JPython objects.

Sometimes, you might find JPython useful for testing your Java components. As
JPython has total integration to the Java implementation, you can use it to call, test,
and debug the functionality of Java functions through the interpreter. JPython is the
perfect choice for controlling Java through an interactive language.

JPython also handles memory management with care in order to remove from you the
responsibility of being worried about object circular references. To do so, it uses the
power of the Java memory management mechanism, a mechanism that implements a
garbage collector, which is executed at runtime.

JPython’s performance is still not as good as the performance of CPython, but there is
a lot of effort going on in order to make JVMs run faster.

CPython Versus Jpython

Both CPython and JPython are implementations of the same language: Python. Even
though the development team tries to make both codes as compatible as possible,
differences are inevitable. Each one of these languages is written using a different
programming language: C and Java, respectively. This primary difference is more than
enough to cause both codes to have many distinctive characteristics that are unlikely to

25 0672319942 CH18 11/15/00 11:41 AM Page 719

720 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

disappear soon. The following is a short list of differences between both implemen-
tations:

• JPython uses a slightly modified interface to handle scientific notation. For
example, if you type at the CPython interpreter the command print 9E+54,
CPython will echo the number 9e+054, whereas JPython will pop up 9.0E54.

• JPython has everything implemented to be an instance of a class, which is
opposite of CPython.

• JPython doesn’t provide access to the co_code attribute of code objects because
JPython code objects don’t have access to any Python bytecodes as CPython
code objects do. That’s because the JVM hides their existence.

• JPython doesn’t allow the use of Python extension modules written in C. If you
want to use them, you need to rewrite them in Java, or use JNI to make the C
code available to Java.

• JPython offers a Standard Python Library of modules slightly different than
CPython does because the built-in modules, which are written in C, need to be
ported to Java in order to be used by JPython. Some modules, such as cPickle,
cStringIO, and binascii, have already been ported. Another possible option to
access the built-in modules is by implementing a JNI bridge.

By typing import <modulename>, and later dir(<modulename>), you can check
whether a module is available, and if so, what its interface looks like.

• JPython is able to catch the CTRL+C command when you want to leave the
interpreter. However, CPython doesn’t accept this shortcut to perform that same
functionality.

• JPython implements the garbage collection mechanism native to Java, instead of
the reference counting mechanism implemented by CPython.

• JPython doesn’t provide any guarantees of telling you exactly when an object is
about to be destroyed, as CPython does. Opposite to CPython, the __del__()
method of the object is never called.

• JPython’s interpreter has a set of command line options completely different
from the ones recognized by the CPython interpreter.

The following Web page shows all known differences between the two implemen-
tations of the Python language, including the ones listed in this topic:

http://www.jpython.org/docs/differences.html

25 0672319942 CH18 11/15/00 11:41 AM Page 720

721CHAPTER 18 JPython
Welcome to JPython

JPython Resource Links

A collection of Web links that provide useful information about JPython are as
follows:

“Python and Java: The Best of Both Worlds,” by Jim Hugunin

http://www.python.org/workshops/1997-10/proceedings/hugunin.html

“Python Programming in the JVM”

This is a very good and complete article about JPython, written by Rick Hightower.

http://www.sys-con.com/java/archives/0503/hightower/index.html

See also his other article in the Java Developer’s Journal at

http://www.sys-con.com/java/archives/0502/hightower/index.html

Kirby Angell’s article in Dr. Dobb’s Journal

http://www.ddj.com/articles/1999/9904/9904toc.htm

Luke Andrew Cassady-Dorian’s article in JavaPro magazine

http://www.devx.com/upload/free/features/javapro/1998/12dec98/ld1298/

ld1298.asp

“Java and Python: a Perfect Couple.” This is an article at Developer.com by Guido
van Rossum.

http://www.earthweb.com/dlink.resource-jhtml.72.1396.|repository||common|

content|article|19980817|gm_jpython|jpython~xml.0.jhtml?cda=true

Python Server Pages

PSP is a freely available server-side scripting engine. It is 100% written in Java,
thus, it is portable to several platforms. PSP is mentioned here because it uses
JPython as its scripting language. In order to use PSP, you need to have a Web
Server that supports Java Servlets, or uses JRun from Live Software, which is a Java
Servlet engine recommended for use with PSP.

http://www.ciobriefings.com/psp

25 0672319942 CH18 11/15/00 11:41 AM Page 721

722 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

Java Integration

If you want to use the Python language and Java integration, you can find in JPython a
compatible and complementary couple for Java. Because JPython’s interpreter is
written in Java itself, you might think why you shouldn’t go directly to the point, and
use pure Java instead of using JPython. My advice is to go for JPython first because
soon you will see how simple it is to do a lot of tasks using JPython’s facilities (such as
running a piece of Java code without the need for defining a single class). JPython has
all the teaching principles on its background, which makes it a language of easy
learning.

The full object-oriented programming model provided by the Python language (since
its inception) brings power and clearness to the programmer world. This transparency
when handling objects makes Python a natural choice for interoperating with Java’s
object-oriented design, and to be Java’s scripting language. Other languages try, even
though they were not created to be OO. Object-oriented programming became part of
Perl programmer’s life in version 5, and Tcl developers can only use OO through an
extension called (itcl). It could be argued that Python evolved from the non-object
oriented ABC the same way that Perl 5 evolved from Perl 4 and incr tcl from tcl, but
Python had its evolutionary process carefully driven—almost a totally new
development effort.

Of course, other scripting languages can be used along with Java and its JVM, but
none of them beat JPython in portability and performance, mainly for two reasons:
JPython’s 100% Java certification, and JPython’s capability to translate Python source
code directly into optimized Java bytecodes, respectively.

Both Perl and Tcl offer scripting solutions, but none of the solutions offer a more
significant value than the JPython solution.

• Jacl is a 100% Java re-design of the Tcl interpreter, which is considered to be
much slower than JPython.

• Tcl Blend and JPL (for Perl) are other scripting solutions (not 100% Java) that
expose some portability problems.

Of course, in both of these cases, it is probably easier to port the Tcl or Perl runtimes
than to port the java virtual machine.

For more details about the Java language, you can check out
http://www.javasoft.com/.

25 0672319942 CH18 11/15/00 11:41 AM Page 722

723CHAPTER 18 JPython
Downloading and Installing JPython

Java Certification

On July 13, 1998, it was announced that KeyLabs had completed testing JPython to
certify that it is 100% pure Java.

The 100% Pure Java Certification Program is part of Sun Microsystems initiative
to promote the development of portable applications, applets, beans, class libraries,
and servlets written using the Java Programming language. Certification consists of
code analysis and testing by an independent test facility (in this case, KeyLabs) to
identify compiled code that meets the 100% Pure Java Requirements. The 100%
Pure Java certification standards and branding program is intended to give
customers confidence in products that display the brand.

Even though JPython has got this certification, you cannot use the 100% Java brand
for your own JPython programs. You need to make sure that your product passes the
100% Pure Java certification tests in order to have the rights to use the exclusive
100% Pure Java logo on your packing. For details about this process, read the
Certification Guide located at

http://www.javasoft.com/100percent/

Java Links

If you want to use JPython, but you don’t know Java yet, or need a quick review, check
out the following Java Web sites:

The Java Community

At this Web site, you can join ongoing forums on a variety of Java topics, chat with
Java experts, and access community resources, among other things.

http://developer.java.sun.com/developer/community

The Java Tutorial—a practical guide for programmers

http://java.sun.com/docs/books/tutorial

Downloading and Installing JPython

Next, you find the required steps that you need to perform in order to download and
install JPython. Visit the following address, and download the latest version.

http://www.jpython.org/download.html

25 0672319942 CH18 11/15/00 11:41 AM Page 723

724 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

You have two choices for downloading JPython. You can either download the JPython
version that contains the OROMatcher regular expression library, or the other version
that doesn’t contain it. Note that it’s required that you decide between the two
versions. Only if you decide to use the version that comes with the OROMatcher, will
you have access to the re module. However, you will have to agree with a different
kind of licensing.

Before spending time downloading the file, verify whether you have a working Java 1.1
or 1.2 compatible JVM installed. In case you don’t have one, you will need to locate
one on the Internet and install the right JVM for your system.

JPython is distributed as a self-extracting .class file created by InstallShield - Java
Edition. To install JPython, you need to open the command line to the directory in
which you have placed the JPython11.class file. Note that if you have downloaded
the JPythonONLY11.class file, you must first rename it to JPython11.class.

ren JPythonONLY11.class JPython11.class

Then, type the following command to start the installation process.

<java interpreter> JPython11

Depending on your system, you have to type one of the following options. Note that
you don’t have to include the .class on the end of the filename.

java JPython11

jre JPython11

jview JPython11

In case you don’t have a GUI, you need to add the following argument to the previous
command: -o dir_to_install_to. JPython will install to the specified directory
without activating the graphical installer.

After initiating the installation process, you will be prompted to accept the terms of
the license (see Figure 18.1). Read it and say yes to continue with the process.

Remember to check the Installation Notes after completing the installation.

Now, you should be able to run JPython by typing the following command:

jpython

If you are using a Windows system, you can have access to JPython by double-clicking
on its icon.

25 0672319942 CH18 11/15/00 11:41 AM Page 724

725CHAPTER 18 JPython
Downloading and Installing JPython

Downloading the CPython Library

As of now, JPython comes with support for only a small set of the standard Python
modules. For those who will concentrate on development using Java packages, the
modules provided by JPython should be fine, but note that CPython has a wide variety
of useful modules.

If you already have CPython 1.5.1, 1.5.2, or a later version installed on your computer,
you can use its library. If you don’t have CPython installed, you can get its libraries
from the JPython Web site. For example, the libraries for version 1.5.2 are stored in
the following file:

http://www.jpython.org/pylib152e.jar

To install the standard Python libraries, use the following command:

jpython -jar pylib152e.jar

Besides the regular distribution download page, the latest snapshots of the JPython
source code are always available via CVS too.

Licensing

Starting with version 1.1 beta 1, JPython has two separate distributions. This is
because JPython uses a third-party library for handling regular expressions—the
standard re module is implemented using OROMatcher, which is a regular expression
library by ORO, Inc.

Figure 18.1

When you accept the terms of the license, JPython is installed on your system.

25 0672319942 CH18 11/15/00 11:41 AM Page 725

726 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

Because OROMatcher has a different kind of license, the JPython distribution that uses it
requires a specific license as well because OROMatcher is not completely free software.
(It doesn’t allow you to have access to its source code.)

Currently, at the ORO Web site, you can find a note saying that the company plans to
open source their software, releasing it under the Apache license, so the restrictions on
using OROMatcher might be lifted. You should keep an eye on that.

However, JPython provides another distribution that comes without the library, which
makes the regular expression capability not available. This distribution is a completely
open source version of JPython. Note that if later you decide to use OROMatcher, you
can accept its licensing agreement, and integrate it with the free distribution of
JPython that you already have. Check out the OROMatcher site at

http://www.savarese.org/oro/

JVMs That Support JPython

As of now, JPython should run successfully on any bug-free fully 1.1 or 1.2 compliant
Java Virtual Machine (JVM). Next, you have a list of Operating System specific JVMs.
Even if your platform is not listed here, it doesn’t mean that it doesn’t have a JVM.

Linux
JDK 1.1.x and 1.2.x from blackdown.org—It is suggested that you use either the 1.1.7
JVM or 1.2 JVM.

http://www.blackdown.org/java-linux.html

IBM Developer Kit and Runtime Environment for Linux—This is IBM’s new JVM for
Linux.

http://www.ibm.com/java/jdk/118/linux/index.html

Sun’s J2SE (1.2.2 JVM) for Linux—This is Sun’s JVM ported to Linux. You need a
free login to access the Sun Developer Connection.

http://developer.java.sun.com/

Win32 (Windows NT, 95, and 98)
JView from Microsoft—This JVM is installed when you install Microsoft Internet
Explorer 4.0 or 5.0. Currently, this is the fastest JVM on which to run JPython.

http://www.microsoft.com/java/

25 0672319942 CH18 11/15/00 11:41 AM Page 726

727CHAPTER 18 JPython
The Interpreter

Sun’s JVM for Windows—Sun provides 1.2 (Java 2) and 1.1 Virtual Machines for the
Windows platform. This is certainly the most compatible VM with the official Java
specification.

http://www.javasoft.com/products/

Solaris
Although Solaris 2.6 comes with JDK 1.1.3, Solaris users will probably want to
upgrade to either the JRE 1.1.7 or JRE 1.2.1 at least.

JRE 1.1.7 from Sun

http://www.javasoft.com/products/jdk/1.1/jre/index.html

JRE 1.2.1 from Sun

http://www.javasoft.com/products/jdk/1.2/

Irix
Here, you can get version 3.1 of the Java Development Environment from SGI, which
is based on the 1.1.3 JVM.

http://www.sgi.com/developers/devtools/languages/java.html

Macintosh
Mizutori Tetsuya has made available an application called JPython Runner to make it
easier to use JPython on Macintoshes.

http://www.bekkoame.ne.jp/~mizutori/java/index.html#jpythonrunner

See also the document “How to Run JPython on Macintosh.”

http://www.bekkoame.ne.jp/~mizutori/java/index.html#howtojpython

The Interpreter

The JPython installation places several files on your system, including a set of
modules, some sample programs, an application called jpythonc (which we will see
later), and the JPython interpreter.

The JPython interpreter looks very similar to the CPython interpreter (see Figure
18.2). However, jpython is not a binary file, but a short script (or batch file, depending

25 0672319942 CH18 11/15/00 11:41 AM Page 727

728 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

on your system) that invokes your local JVM, sets the Java property install.path to
an appropriate value, and then runs the Java class file org.python.util.jpython.

Figure 18.2

If you glance at this screen, you might be confused whether JPython or CPython is running

because both interpreters do look alike.

The following syntax shows the possible options that you can pass to JPython when
invoking it from the shell. A list of options is shown in Table 18.1.

jpython [options] [-jar jar | -c cmd | file | -] [args]

Table 18.1 List of the Interpreter Options and Arguments

Option Description

-i Inspects interactively after running script and forces prompts, even if stdin
does not appear to be a terminal.

-S Doesn’t imply import site on initialization.

-X Disables class based standard exceptions.

-Dprop=value Sets the Java property prop to value.

-jar jar Runs the program that is read from the __run__.py file in the specified jar
file.

-c cmd Runs the program passed in as the cmd string. This option terminates the
options list.

file Runs file as the program script.

- Reads the program from standard input. This flag allows you to pipe a file
into Jpython and have it treated correctly.

--help Prints a usage message and exits.

--version Prints JPython version number and exits.

args Passes a list of arguments to the program in the sys.argv[1:] variable.

25 0672319942 CH18 11/15/00 11:41 AM Page 728

729CHAPTER 18 JPython
The JPython Registry

Because jpython is not a binary executable, but a simple script, you have to add the
following line to the top of your JPython programs (only if you have a UNIX system),
in order to make them executable.

#! /usr/bin/env jpython

Using something like #!/usr/bin/jpython/jpython will not work because this syntax
requires jpython to be a binary executable (which is not the case).

You also need to make sure that jpython’s directory is registered on your PATH variable.

Now let’s take a look at the following code:

class jhello:

def main(argv):

print “Hello Python world!”

myapp=jhello()

myapp.main()

After saving this code in a file, called jhello.py, you can execute it by typing at your
OS prompt:

jpython jhello.py

The JPython Registry

JPython, as Java, uses its own environment variable namespace. The reason for that is
because there isn’t a standard cross-platform way to handle environment variables,
doing what the Windows Registry does for the Win32 platform, for example.

The required namespace can be obtained from the following sources:

1. The Java system properties, which are usually informed through the -D option
on the command line prompt of the interpreter.

2. The JPython registry file, which contains prop=value pairs. The location of this
file is identified according to the algorithm listed in the next subtopic.

3. The user’s personal registry file, which contains correspondingly prop=value
pairs of properties. This file is located at user.home”+”/.jpython.

25 0672319942 CH18 11/15/00 11:41 AM Page 729

730 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

The previous sources are listed in the same order in which they are invoked when
trying to build the namespace. Note that if you have values provided for later options,
they override the values defined by default for the prior options.

Registry Properties

Next is a list of the properties that are recognized by the JPython interpreter. You can
easily study these and others, with more accuracy, by examining the JPython’s registry
file.

python.cachedir—Stores the name of the directory to use for caches. If no absolute
path is informed, it is assumed that its location is relative to the sys.prefix
variable.

python.jpythonc.classpath—Stores a list of extensions to the standard
java.class.path property for use with jpythonc.

python.jpythonc.compiler—Contains the absolute (or relative) path of the Java
compiler to use with jpythonc. If just the compiler name is provided, it is assumed
that the executable can be located by looking at your system PATH variable.

python.jpythonc.compileropts—Keeps the list of options to pass to the Java
compiler when using jpythonc.

python.path—Corresponds to CPython’s PYTHONPATH environment variable.

python.security.respectJavaAccessibility—Setting this property to false (in
case you have a Java 1.2 installation) provides you access to non-public members of
classes, such as methods and constructors.

python.verbose—Setting this property to one of the following values:

“error”, “warning”, “message”, “comment”, “debug”

sets the verbosity level for varying degrees of informative messages. Note that these
values are listed in order of increasing verbosity.

Finding the Registry File

The following steps are required to correctly identify the JPython registry file to use.

1. You need to create a root directory, which can be based either on the value of the
property python.home, or the value of the property install.root, whichever is
found first.

25 0672319942 CH18 11/15/00 11:41 AM Page 730

731CHAPTER 18 JPython
Creating Graphical Interfaces

2. If none of them is found, JPython tries to locate a file called jpython.jar by
looking at the system property java.class.path. Note that one of the paths
listed in this property must explicitly include the jpython.jar file.

3. Now, that JPython has identified our root directory, it populates the values of
both sys.prefix and sys.exec_prefix variables based on the root information.

4. The variable sys.path has an entry added to its list, <rootdir>/Lib, where
<rootdir> is the root dir that we’ve found previously.

5. Our initial goal can be finally reached now because the registry file is stored at
the <rootdir> directory, and to have permission to it, you just need to access the
location <rootdir>/registry.

Creating Graphical Interfaces

Windowing applications are written in JPython using the same set of options that you
have available for Java applications. Currently, the two names that you will hear most
for this kind of implementation are awt and swing.

AWT stands for Abstract Windowing Toolkit, which is the official name for the Java
GUI. Note that the syntax is very similar to Tkinter, thus it will not be a problem for
you to understand and use it.

import java

frame = java.awt.Frame(“Ni!”, visible = 1)

labeltop = java.awt.Label(“Hello Python World!”)

frame.add(labeltop)

frame.pack()

JPython also contains a package called pawt (stands for Python AWT), which wrappes
the access to awt, providing some additional functionality.

The successor of Java’s windowing toolkit is provided as part of the Java Foundation
Classes. This set of classes extends the original AWT by adding a comprehensive set of
graphical user interface class libraries, commonly known as JFC/Swing GUI
Components, or simply Swing. These components are simple to read and understand,
and they are written in the Java programming language, without window-
system–specific code. This causes less problems when distributing JPython
applications because you do not rely on the code of a specific windowing system.

For details, see http://java.sun.com/products/jfc/.

25 0672319942 CH18 11/15/00 11:41 AM Page 731

732 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

At this page, you can download the latest version of the Java Foundation Classes
(JFC)/Swing, which at this moment is in release 1.1.1. After downloading it, make sure
that you have the following environment variables correctly defined: JAVA_HOME,
SWING_HOME, CLASSPATH, and PATH.

Next, you have the section of the autoexec.bat of my Win98 machine that handles
these definitions, for your information.

set JAVA_HOME=C:\JDK1.1.8

set SWING_HOME=C:\JDK1.1.8\swing-1.1.1

set PATH=%PATH%;%JAVA_HOME%\bin

set CLASSPATH=.;%JAVA_HOME%\lib\classes.zip

set CLASSPATH=%CLASSPATH%;%SWING_HOME%;%SWING_HOME%\swing.jar;

set CLASSPATH=%CLASSPATH%;%SWING_HOME%\windows.jar

The next code shows an example that uses the Python package pawt to access the
swing components.

import java

import pawt

def exit(h):

java.lang.System.exit(0)

frame = pawt.swing.JFrame(‘Ni! again!’, visible=1)

display = pawt.swing.JTextField()

display.text = “Click on the button below to exit!”

frame.contentPane.add(display)

button = pawt.swing.JButton(‘Exit’, actionPerformed=exit)

frame.contentPane.add(button)

frame.pack()

Embedding

As JPython and Java are extremely close to each other, it is not difficult to believe that
you can embed JPython code inside a Java application, as well as embed Java code
directly into your JPython applications. Both types of implementation are easily
supported and coded. By extension, you could create new independent Python
interpreters from jpython very easily, as well.

JPython in a Java Application

If you really need to embed JPython in a Java application, you have two main choices
to choose from. The first option is to use the utility jpythonc to pick a JPython class

25 0672319942 CH18 11/15/00 11:41 AM Page 732

733CHAPTER 18 JPython
Embedding

and generate a Java .class file that can be called directly from inside your Java code,
in a very straightforward away. See the next section of this chapter to learn how to use
this utility.

The second option that you have is to import the PythonInterpreter object class into
your Java code. This class allows you to have control of the Python interpreter from
Java. The following example demonstrates how the code would be:

import org.python.util.PythonInterpreter;

import org.python.core.*;

public class GenNextYear {

public static void main(String []args)

throws PyException

{

PythonInterpreter interp = new PythonInterpreter();

System.out.println(“Hello Python World”);

interp.set(“year”, new PyInteger(2000));

interp.exec(“print ‘This is year %d’ % (age)”);

interp.exec(“nextyear = year + 1”);

PyObject nyear = interp.get(“nextyear”);

System.out.println(“Next year is gonna be “+nyear);

}

}

Note that we are able to set/access values to/from the interpreter besides executing
commands at the interpreter prompt line.

Check the JavaDoc documentation located at the following address. It is all about
org.python.util.PythonInterpreter.

http://www.jpython.org/docs/api/org.python.util.PythonInterpreter.html

Java in a JPython Application

Accessing Java from JPython is no big deal. You can normally work with Java libraries
as if you were working with JPython libraries. The process is fully transparent to you.
Remember that one of JPython’s primary goals is to provide easy support to Java
libraries.

JPython offers you access to all Java functionality available, which includes

• Support to JavaBean Properties. The use of JavaBeans is seen by JPython as a
solution to simplify the task of talking to most other Java classes.

25 0672319942 CH18 11/15/00 11:41 AM Page 733

734 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

• If you need to handle Java Arrays in JPython, you need to use the Jarray object.
Remember that some Java methods demand argument objects to be in Java array
format.

Also good to remember is you can create Python classes that subclass Java classes. This
is a helpful option when you need to pass information back and forth between both
implementations (Python and Java). Note that you need to create a Python class with
the same name of the module that carries class.

The following example shows how a user can instantiate a Java random number class
and then interact with that instance:

C:\jpython>jpython

>>> from java.util import Random

>>> number = Random()

>>> number.nextInt()

-857296727

>>> print number.nextDouble()

0.5334538483666526

>>> number.nextInt()

-356857265

Note that we are establishing direct access to the Java library without using any kind
of wrappers.

The following site is part of the original documentation showing how to use JPython
along with Java:

http://www.jpython.com/docs/usejava.html

jpythonc

The JPython distribution provides a tool called jpythonc that works like a Python
compiler for Java. This tool, which is actually just a JPython script, operates by taking
a JPython source code (extension .py), and compiling it to real Java class bytecodes,
which are executed by the Java Runtime Environment (JRE). Therefore you can write
your code in JPython, and later use jpythonc to generate a simple class, a JavaBean, a
servlet, or an applet. Note that you need full access to a Java compiler in order to use
jpythonc. Internally, the jpythonc tool creates a Java source file file, but it needs an
external compiler to generate the compiled Java .class file.

25 0672319942 CH18 11/15/00 11:41 AM Page 734

735CHAPTER 18 JPython
jpythonc

Check the installation directory where you installed the JPython package. That’s
where the tool is located.

The jpythonc tool is very useful for embedding your JPython application in a Java
application. After you generate the .class file, you are able to subclass Python classes
in Java, and also to create JavaBeans, Servlets, and Applets from a Python class file.

The jpythonc script accepts several command line options, as listed next. The general
format of the command’s syntax is as follows:

jpythonc [options] [module]*

The available options are listed as follows. Note that the information provided
between parenthesis shows a short way to say the same thing that the long name’s
option says.

--package package (-p package)—Puts all compiled code into the named Java
package.

--jar jarfile (-j jarfile)—Specifies a .jar file to create and put the results of
the freeze into. This option implies the --deep option.

--deep (-d)—Compiles all Python dependencies of the module. This is used for
creating applets.

--core (-c)—Includes the core JPython libraries (about 130K). Needed for
applets because Netscape doesn’t yet support multiple archives. This option implies
the --deep option.

--all (-a)—Includes all the JPython libraries (everything in core + compiler and
parser). This option implies the --deep option.

--bean jarfile (-b jarfile)—Compiles into jarfile, including the correct
manifest for the bean.

--addpackages pkgs (-A pkgs)—Includes Java dependencies from this list of
packages. Default is org.python.modules and com.oroinc.text.regex.

--workdir directory (-w directory)—Specifies the working directory where the
generated Java source code is placed. The default value is ./jpywork.

--skip modules (-s modules)—Doesn’t include any of these modules in
compilation. This is a comma-separated list of modules.

--compiler path (-C path)—Uses a compiler different from javac. If this is set
to NONE, compiles end with the generation of the Java source file. Alternatively, you
can set the property python.jpythonc.compiler in the registry file.

25 0672319942 CH18 11/15/00 11:41 AM Page 735

736 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

--compileropts options-- (-J options)—Passes options directly to the Java
compiler. Alternatively, you can set the property python.jpythonc.compileropts in
the registry file.

--falsenames names (-f names)—A comma-separated list of names that are
always false. Can be used to short-circuit if clauses.

--help (-h)—Prints a usage message and exits.

[module]*—A list of Python modules to freeze. Can be either module names that
are located on the python.path or .py files.

In order to create an applet, the following syntax is suggested. Note that you need to
use the -core option in order to include the JPython libraries as part of the applet.

jpythonc -core -deep -jar <appletapp.jar> *.py

In order to create a simple class, the following syntax is suggested:

jpythonc <yourapp.py>

Now, if you just need to create a bean, the following syntax should be used:

jpythonc -deep -bean <filename.jar> <beenname>

Running JPython Applets

Many people like Java because it makes easy the task of distributing interactive and
dynamic pieces of code through the Web by using applets. An applet is a program
written using the Java programming language, which can be included in an HTML
page with the <APPLET> tag. This tag needs to reference a class file that is not part of
the HTML page on which it is embedded. Applets do this with the CODE parameter,
which tells the browser where to look for the compiled .class file. When your
browser receives a request to load an applet from a site, it downloads the applet and
uses your Java Virtual Machine to execute it.

Before you start testing your applets, make sure that you are using a browser that
supports Java jdk1.1. The list of browsers that are currently jdk1.1-compliant include
Microsoft’s Internet Explorer 4.0 or later, and Netscape’s Navigator 4.06 or later.

Okay. Now you also need to make sure that you don’t have your class path variable
pointing to any directories with JPython .class files. If you are running JVM on

25 0672319942 CH18 11/15/00 11:41 AM Page 736

737CHAPTER 18 JPython
Summary

UNIX, you need to check out your CLASSPATH environment variable. If you are
running a Win32 virtual machine, you need to check out the registry entry Classpath
under LOCAL_MACHINE/Software/Microsoft/JavaVM/.

The next JPython applet has the goal of displaying the message “Hello Python
World”.

from java.applet import Applet

class HelloPythonWorld(Applet):

def paint(self, gc):

gc.drawString(“Hello Python World”, 12, 14)

If you want to test the applet to run it as a script too, add a few more lines to the end
of the applet file. These lines will allow you to interactively test the applet
functionality.

if __name__ == ‘__main__’:

import pawt

pawt.test(HelloPythonWorld())

If you want to embed this applet in your Web page, you just need to inform the right
values for the applet tag, such as

<applet code=”HelloPythonWorld” archive=”HelloPythonWorld.jar”

width = 50 height = 100>

JPython applets need to carry the whole set of JPython libraries, which adds about
150KB to the final size of your applet. Another important consideration is that you
can only use eval and exec commands in signed applets, which complies with the Java
security definition.

The following Web link takes you to the official home of JPython, specifically to the
applets page:

http://www.jpython.org/applets/

Summary

JPython is a Java implementation of the object-oriented scripting language Python
that has been certified as 100% pure Java. Both CPython and JPython are implemen-
tations of the same language: Python. Even though the development team tries to
make both codes as compatible as possible, differences are inevitable. Each one of
these languages is written using a different programming language: C and Java, respec-
tively. Note that JPython re-implements the CPython parser and interpreter in Java.

25 0672319942 CH18 11/15/00 11:41 AM Page 737

738 PYTHON DEVELOPER’S HANDBOOK

PART VI Python and Java

JPython has a set of features that include high-level built-in data types, dynamic
typing, optional static compilation, Java classes and packages support, a set of support
libraries, and interactive compilation direct to Java bytecodes.

JPython, as Java, uses its own environment variable namespace. The reason for that is
because there isn’t a standard cross-platform way to handle environment variables.

Windowing applications are written in JPython using the same set of options that you
have available for Java applications. Currently, the two names that you will hear most
for this kind of implementation are awt and swing.

As JPython and Java are extremely close to each other, it is not that difficult to believe
that you can embed JPython code inside a Java application, as well as embed Java code
directly into your JPython applications. Both types of implementation are easily
supported and coded.

The JPython distribution provides a tool called jpythonc that works like a Python
compiler for Java. Therefore you can write your code in JPython, and later use
jpythonc to generate a simple class, a JavaBean, a servlet, or an applet.

25 0672319942 CH18 11/15/00 11:41 AM Page 738

PART VII

Appendixes

A Python/C API

B Running Python on Specific Platforms

C Python Copyright Notices

26 0672319942 Pt 7 11/15/00 11:41 AM Page 739

26 0672319942 Pt 7 11/15/00 11:41 AM Page 740

APPENDIX A

Python/C API

The intention of this appendix is to expose the C API that you
need to use in order to create extension modules for your
Python programs or to embed Python in your C/C++ applica-
tions. The information provided in this appendix is entirely
extracted from the C/API reference manual, written by Guido
van Rossum, which is part of the Python distribution (see copy-
right note in Appendix C, “Python Copyright Notices”). Note,
however, that as you’re reading, this document might be incom-
plete because new Python versions will be arriving soon. Check
out the following address for the most up-to-date version of this
work:

http://www.python.org/doc/api

For more information about how to use the API, check out
Chapter 6, “Extending and Embedding Python,” and the docu-
ment “Extending and Embedding the Python Interpreter,” which
also comes as part of the Python installation.

Python/C API

The Application Programmer’s Interface to Python gives C and
C++ programmers access to the Python interpreter at a variety
of levels. The API is equally usable from C++, but for brevity it
is generally referred to as the Python/C API. There are two

D E V E L O P E R ’ S H A N D B O O K

27 0672319942 Appx A 11/15/00 11:46 AM Page 741

742 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

fundamentally different reasons for using the Python/C API. The first reason is to
write extension modules for specific purposes; these are C modules that extend the
Python interpreter. This is probably the most common use. The second reason is to
use Python as a component in a larger application; this technique is generally referred
to as embedding Python in an application.

Writing an extension module is a relatively well-understood process in which a “cook-
book” approach works well. Several tools automate the process to some extent.
Although people have embedded Python in other applications since its early existence,
the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extend-
ing Python; moreover, most applications that embed Python will need to provide a
custom extension as well, so it’s probably a good idea to become familiar with writing
an extension before attempting to embed Python in a real application.

Python 1.5 introduces a number of new API functions as well as some changes to the
build process that make embedding much simpler. This book describes the 1.5.2 state
of affairs.

Include Files

All function, type, and macro definitions needed to use the Python/C API are included
in your code by the following line:

#include “Python.h”

This implies inclusion of the following standard headers: <stdio.h>, <string.h>,
<errno.h>, and <stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included stan-
dard headers) have one of the prefixes Py or _Py. Names beginning with _Py are for
internal use by the Python implementation and should not be used by extension writ-
ers. Structure member names do not have a reserved prefix.

Important: User code should never define names that begin with Py or _Py. This con-
fuses the reader and jeopardizes the portability of the user code to future Python ver-
sions, which might define additional names beginning with one of these prefixes.

The header files are typically installed with Python. On UNIX, these are located in
the directories $prefix/include/pythonversion/ and $exec_prefix/include/
pythonversion/, where $prefix and $exec_prefix are defined by the corresponding
parameters to Python’s configure script and the version is sys.version[:3]. On
Windows, the headers are installed in $prefix/include, where $prefix is the installa-
tion directory specified to the installer.

27 0672319942 Appx A 11/15/00 11:46 AM Page 742

743APPENDIX A Python/C API
Python/C API

To include the headers, place both directories (if different) on your compiler’s search
path for includes. Do not place the parent directories on the search path and then use
#include <python1.5/Python.h>; this will break on multi-platform builds because the
platform independent headers under $prefix include the platform specific headers
from $exec_prefix.

Objects, Types, and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of
type PyObject*. This type is a pointer to an opaque data type representing an arbitrary
Python object. Because all Python object types are treated the same way by the Python
language in most situations (for example, assignments, scope rules, and argument pass-
ing), it is only fitting that they should be represented by a single C type. Almost all
Python objects live on the heap: You never declare an automatic or static variable of
type PyObject; only pointer variables of type PyObject* can be declared. The sole
exceptions are the type objects; because these must never be deallocated, they are typi-
cally static PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An
object’s type determines what kind of object it is (for example, an integer, a list, or a
user-defined function; there are many more as explained in the Python Reference
Manual). For each of the well-known types, there is a macro to check whether an
object is of that type; for instance, PyList_Check(a) is true if (and only if) the object it
points to is a Python list.

Reference Counts
The reference count is important because today’s computers have a finite (and often
severely limited) memory size; it counts how many different places there are that have
a reference to an object. Such a place could be another object, a global (or static) C
variable, or a local variable in some C function. When an object’s reference count
becomes zero, the object is deallocated. If it contains references to other objects, their
reference count is decremented. Those other objects might be deallocated in turn, if
this decrement makes their reference count become zero, and so on. (There’s an obvi-
ous problem with objects that reference each other here; for now, the solution is don’t
do that.)

Reference counts are always manipulated explicitly. The normal way is to use the
macro Py_INCREF() to increment an object’s reference count by one, and Py_DECREF()
to decrement it by one. The decref macro is considerably more complex than the
incref one because it must check whether the reference count becomes zero, and then
causes the object’s deallocation by calling a function contained in the object’s type
structure. The type-specific deallocator takes care of decrementing the reference

27 0672319942 Appx A 11/15/00 11:46 AM Page 743

744 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

counts for other objects contained in the object, and so on, if this is a compound
object type such as a list. There’s no chance that the reference count can overflow; at
least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof(long) >= sizeof(char *)). Thus, the
reference count increment is a simple operation. You should only pass a variable to
Py_DECREF or Py_XDECREF. If you pass an expression, it will be evaluated multiple times
(so don’t use Py_XDECREF(func(...)) to ignore the return value of a function).

It is not necessary to increment an object’s reference count for every local variable that
contains a pointer to an object. In theory, the object’s reference count goes up by one
when the variable is made to point to it, and it goes down by one when the variable
goes out of scope. However, these two cancel each other out, so at the end, the refer-
ence count hasn’t changed. The only real reason to use the reference count is to pre-
vent the object from being deallocated as long as our variable is pointing to it. If we
know that there is at least one other reference to the object that lives at least as long as
our variable, there is no need to increment the reference count temporarily. An impor-
tant situation in which this arises is in objects that are passed as arguments to C func-
tions in an extension module that are called from Python; the call mechanism
guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a
while without incrementing its reference count. Some other operation might conceiv-
ably remove the object from the list, decrementing its reference count, and possibly
deallocating it. The real danger is that innocent-looking operations might invoke arbi-
trary Python code that could do this; there is a code path that allows control to flow
back to the user from a Py_DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins
with PyObject_, PyNumber_, PySequence_, or PyMapping_). These operations always
increment the reference count of the object they return. This leaves the caller with the
responsibility to call Py_DECREF() when they are done with the result; this soon
becomes second nature.

Reference Count Details
The reference count behavior of functions in the Python/C API is best explained in
terms of ownership of references. Note that we talk of owning references, never of
owning objects; objects are always shared. When a function owns a reference, it has to
dispose of it properly—either by passing ownership on (usually to its caller) or by call-
ing Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on
to its caller, the caller is said to receive a new reference. When no ownership is

27 0672319942 Appx A 11/15/00 11:46 AM Page 744

745APPENDIX A Python/C API
Python/C API

transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two
possibilities: The function steals a reference to the object, or it does not. Few func-
tions steal references; the two notable exceptions are PyList_SetItem() and
PyTuple_SetItem(), which steal a reference to the item (but not to the tuple or list
into which the item is put). These functions were designed to steal a reference because
of a common idiom for populating a tuple or list with newly created objects; for exam-
ple, the code to create the tuple (1, 2, “three”) could look similar to this (forget about
error handling for the moment):

PyObject *t;

t = PyTuple_New(3);

PyTuple_SetItem(t, 0, PyInt_FromLong(1L));

PyTuple_SetItem(t, 1, PyInt_FromLong(2L));

PyTuple_SetItem(t, 2, PyString_FromString(“three”));

Incidentally, PyTuple_SetItem() is the only way to set tuple items;
PySequence_SetItem() and PyObject_SetItem() refuse to do this because tuples are an
immutable data type. You should only use PyTuple_SetItem() for tuples that you are
creating yourself.

Equivalent code for populating a list can be written using PyList_New() and
PyList_SetItem(). Such code can also use PySequence_SetItem(); this illustrates the
difference between the two (the extra Py_DECREF() calls):

PyObject *l, *x;

l = PyList_New(3);

x = PyInt_FromLong(1L);

PySequence_SetItem(l, 0, x); Py_DECREF(x);

x = PyInt_FromLong(2L);

PySequence_SetItem(l, 1, x); Py_DECREF(x);

x = PyString_FromString(“three”);

PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the recommended approach takes more code. However,
in practice, you will rarely use these ways of creating and populating a tuple or list.
There’s a generic function, Py_BuildValue(), that can create most common objects
from C values, directed by a format string. For example, the previous two blocks of
code could be replaced by the following (which also takes care of the error checking):

PyObject *t, *l;

t = Py_BuildValue(“(iis)”, 1, 2, “three”);

l = Py_BuildValue(“[iis]”, 1, 2, “three”);

27 0672319942 Appx A 11/15/00 11:46 AM Page 745

746 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

It is more common to use PyObject_SetItem() and become friends with items whose
references you are only borrowing, like arguments that were passed in to the function
you are writing. In that case, their behavior regarding reference counts is much saner
because you don’t have to increment a reference count so you can give a reference
away (have it be stolen). For example, this function sets all items of a list (actually, any
mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{

int i, n;

n = PyObject_Length(target);

if (n < 0)

return -1;

for (i = 0; i < n; i++) {

if (PyObject_SetItem(target, i, item) < 0)

return -1;

}

return 0;

}

The situation is slightly different for function return values. Although passing a refer-
ence to most functions does not change your ownership responsibilities for that refer-
ence, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: In many cases, the returned object is created
on-the-fly, and the reference you get is the only reference to the object. Therefore, the
generic functions that return object references, such as PyObject_GetItem() and
PySequence_GetItem(), always return a new reference (that is, the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function only
depends on which function you call—the plumage (that is, the type of the object
passed as an argument to the function) doesn’t enter into it. Thus, if you extract an
item from a list using PyList_GetItem(), you don’t own the reference—but if you
obtain the same item from the same list using PySequence_GetItem() (which happens
to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the
items in a list of integers; once using PyList_GetItem(), once using
PySequence_GetItem():

long sum_list(PyObject *list)

{

int i, n;

long total = 0;

27 0672319942 Appx A 11/15/00 11:46 AM Page 746

747APPENDIX A Python/C API
Python/C API

PyObject *item;

n = PyList_Size(list);

if (n < 0)

return -1; /* Not a list */

for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */

if (!PyInt_Check(item)) continue; /* Skip non-integers */

total += PyInt_AsLong(item);

}

return total;

}

long sum_sequence(PyObject *sequence)

{

int i, n;

long total = 0;

PyObject *item;

n = PyObject_Size(list);

if (n < 0)

return -1; /* Has no length */

for (i = 0; i < n; i++) {

item = PySequence_GetItem(list, i);

if (item == NULL)

return -1; /* Not a sequence, or other failure */

if (PyInt_Check(item))

total += PyInt_AsLong(item);

Py_DECREF(item); /* Discard reference ownership */

}

return total;

}

Types
Few other data types play a significant role in the Python/C API; most are simple C
types such as int, long, double, and char *. A few structure types are used to describe
static tables used to list the functions exported by a module or the data attributes of a
new object type. These will be discussed together with the functions that use them.

Exceptions

The Python programmer only needs to deal with exceptions if specific error handling
is required; unhandled exceptions are automatically propagated to the caller, and then
to the caller’s caller, and so on, until they reach the top-level interpreter, where they
are reported to the user accompanied by a stack traceback.

27 0672319942 Appx A 11/15/00 11:46 AM Page 747

748 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

For C programmers, however, error checking always has to be explicit. All functions in
the Python/C API can raise exceptions, unless an explicit claim is made otherwise in a
function’s documentation. In general, when a function encounters an error, it sets an
exception, discards any object references that it owns, and returns an error indicator—
usually NULL or -1. A few functions return a Boolean true/false result, with false
indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value and require explicit testing for errors with PyErr_Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global
storage in an unthreaded application). A thread can be in one of two states: An excep-
tion has occurred, or it hasn’t. The function PyErr_Occurred() can be used to check
for this: It returns a borrowed reference to the exception type object when an excep-
tion has occurred, and NULL otherwise. There are a number of functions to set the
exception state: PyErr_SetString() is the most common (though not the most gen-
eral) function to set the exception state, and PyErr_Clear() clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the excep-
tion type, the corresponding exception value, and the traceback. These have the same
meanings as the Python object sys.exc_type, sys.exc_value, sys.exc_traceback;
however, they are not the same: The Python objects represent the last exception being
handled by a Python try ... except statement, whereas the C level exception state
only exists while an exception is being passed on between C functions until it reaches
the Python interpreter, which takes care of transferring it to sys.exc_type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the excep-
tion state from Python code is to call the function sys.exc_info(), which returns the
per-thread exception state for Python code. Also, the semantics of both ways to access
the exception state have changed so that a function which catches an exception will
save and restore its thread exception state to preserve the exception state of its caller.
This prevents common bugs in exception handling code caused by an innocent-
looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the
traceback.

As a general principle, a function that calls another function to perform some task
should check whether the called function raised an exception, and if so, pass the excep-
tion state on to its caller. It should discard any object references that it owns, and
returns an error indicator, but it should not set another exception—that would over-
write the exception just raised and lose important information about the exact cause of
the error.

A simple example of detecting exceptions and passing them on is shown in the previ-
ous sum_sequence() example. It so happens that the example doesn’t need to clean up

27 0672319942 Appx A 11/15/00 11:46 AM Page 748

749APPENDIX A Python/C API
Python/C API

any owned references when it detects an error. The following example function shows
some error cleanup. First, to remind you why you like Python, we show the equivalent
Python code:

def incr_item(dict, key):

try:

item = dict[key]

except KeyError:

item = 0

return item + 1

Here is the corresponding C code, in all its glory:

int incr_item(PyObject *dict, PyObject *key)

{

/* Objects all initialized to NULL for Py_XDECREF */

PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;

int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);

if (item == NULL) {

/* Handle KeyError only: */

if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;

/* Clear the error and use zero: */

PyErr_Clear();

item = PyInt_FromLong(0L);

if (item == NULL) goto error;

}

const_one = PyInt_FromLong(1L);

if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);

if (incremented_item == NULL) goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:

/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */

Py_XDECREF(item);

Py_XDECREF(const_one);

Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */

}

27 0672319942 Appx A 11/15/00 11:46 AM Page 749

750 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

This example represents an endorsed use of the goto statement in C. It illustrates the
use of PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions,
and the use of Py_XDECREF() to dispose of owned references that might be NULL (note
the X in the name; Py_DECREF() would crash when confronted with a NULL reference).
It is important that the variables used to hold owned references are initialized to NULL
for this to work; likewise, the proposed return value is initialized to -1 (failure) and
only set to success after the final call made is successful.

Embedding Python

The one important task that only embedders (as opposed to extension writers) of the
Python interpreter have to worry about is the initialization, and possibly the finaliza-
tion, of the Python interpreter. Most functionality of the interpreter can only be used
after the interpreter has been initialized.

The basic initialization function is Py_Initialize(). This initializes the table of
loaded modules and creates the fundamental modules __builtin__, __main__, and sys.
It also initializes the module search path (sys.path).

Py_Initialize() does not set the script argument list (sys.argv). If this variable is
needed by Python code that will be executed later, it must be set explicitly with a call
to PySys_SetArgv(argc, argv) subsequent to the call to Py_Initialize().

On most systems (in particular, on UNIX and Windows, although the details are
slightly different), Py_Initialize() calculates the module search path based on its best
guess for the location of the standard Python interpreter executable, assuming that the
Python library is found in a fixed location relative to the Python interpreter exe-
cutable. In particular, it looks for a directory named lib/python1.5 (replacing 1.5 with
the current interpreter version) relative to the parent directory where the executable
named “python” is found on the shell command search path (the environment variable
$PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will
assume that the libraries are in /usr/local/lib/python1.5. (In fact, this particular
path is also the fallback location, used when no executable file named “python” is found
along $PATH, unless some other prefix is set when configure is called.) The user can
override this behavior by setting the environment variable $PYTHONHOME, or insert addi-
tional directories in front of the standard path by setting $PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName(file)
before calling Py_Initialize(). Note that $PYTHONHOME still overrides this and
$PYTHONPATH is still inserted in front of the standard path. An application that requires
total control has to provide its own implementation of Py_GetPath(), Py_GetPrefix(),

27 0672319942 Appx A 11/15/00 11:46 AM Page 750

751APPENDIX A Python/C API
The Very High Level Layer

Py_GetExecPrefix(), and Py_GetProgramFullPath() (all defined in Modules/
getpath.c).

Sometimes, it is desirable to uninitialize Python. For instance, the application might
want to start over (make another call to Py_Initialize()) or the application is simply
done with its use of Python and wants to free all memory allocated by Python. This
can be accomplished by calling Py_Finalize(). The function Py_IsInitialized()
returns true if Python is currently in the initialized state. More information about
these functions is given in a later section.

The Very High Level Layer

The functions in this section will let you execute Python source code given in a file or
a buffer, but they will not let you interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The
available start symbols are Py_eval_input, Py_file_input, and Py_single_input.
These are described following the functions that accept them as parameters.

int PyRun_AnyFile(FILE *fp, char *filename)

If fp refers to a file associated with an interactive device (console or terminal input or
UNIX pseudo-terminal), returns the value of PyRun_InteractiveLoop(), otherwise
returns the result of PyRun_SimpleFile(). If filename is NULL, use “???” as the file-
name.

int PyRun_SimpleString(char *command)

Executes the Python source code from command in the __main__ module. If __main__
does not already exist, it is created. Returns 0 on success or -1 if an exception was
raised. If there was an error, it is not possible to get the exception information.

int PyRun_SimpleFile(FILE *fp, char *filename)

Similar to PyRun_SimpleString(), but the Python source code is read from fp instead
of an in-memory string. filename should be the name of the file.

int PyRun_InteractiveOne(FILE *fp, char *filename)

int PyRun_InteractiveLoop(FILE *fp, char *filename)

struct _node* PyParser_SimpleParseString(char *str, int start)

27 0672319942 Appx A 11/15/00 11:46 AM Page 751

752 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Parses Python source code from str using the start token start. The result can be used
to create a code object that can be evaluated efficiently. This is useful if a code frag-
ment must be evaluated many times.

struct _node* PyParser_SimpleParseFile(FILE *fp, char *filename,

int start)

Similar to PyParser_SimpleParseString(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file.

PyObject* PyRun_String(char *str, int start, PyObject *globals,

PyObject *locals)

Executes Python source code from str in the context specified by the globals and
locals dictionaries. The parameter start specifies the start token that should be used to
parse the source code. Returns the result of executing the code as a Python object, or
NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, char *filename, int start, PyObject

*globals, PyObject *locals)

Similar to PyRun_String(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file.

PyObject* Py_CompileString(char *str, char *filename, int start)

Returns value: New reference. Parses and compiles the Python source code in str,
returning the resulting code object. The start token is given by start; this can be used
to constrain the code that can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to
construct the code object and can appear in tracebacks or SyntaxError exception mes-
sages. This returns NULL if the code cannot be parsed or compiled.

int Py_eval_input

The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString().

int Py_file_input

The start symbol from the Python grammar for sequences of statements as read from
a file or other source; for use with Py_CompileString(). This is the symbol to use
when compiling arbitrarily long Python source code.

int Py_single_input

27 0672319942 Appx A 11/15/00 11:46 AM Page 752

753APPENDIX A Python/C API
Reference Counting

The start symbol from the Python grammar for a single statement; for use with
Py_CompileString(). This is the symbol used for the interactive interpreter loop.

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREF(PyObject *o)

Increments the reference count for object o. The object must not be NULL; if you aren’t
sure that it isn’t NULL, use Py_XINCREF().

void Py_XINCREF(PyObject *o)

Increments the reference count for object o. The object might be NULL, in which case
the macro has no effect.

void Py_DECREF(PyObject *o)

Decrements the reference count for object o. The object must not be NULL; if you
aren’t sure that it isn’t NULL, use Py_XDECREF(). If the reference count reaches zero, the
object’s type’s deallocation function (which must not be NULL) is invoked.

Caution
The deallocation function can cause arbitrary Python code to be invoked (for exam-
ple, when a class instance with a __del__() method is deallocated). Although excep-
tions in such code are not propagated, the executed code has free access to all
Python global variables. This means that any object reachable from a global variable
should be in a consistent state before Py_DECREF() is invoked. For example, code to
delete an object from a list should copy a reference to the deleted object in a tempo-
rary variable, update the list data structure, and then call Py_DECREF() for the tempo-
rary variable.

void Py_XDECREF(PyObject *o)

Decrements the reference count for object o. The object might be NULL, in which case
the macro has no effect; otherwise the effect is the same as for Py_DECREF(), and the
same caution applies.

The following functions or macros are only for use within the interpreter core:
_Py_Dealloc(), _Py_ForgetReference(), _Py_NewReference(), as well as the global
variable _Py_RefTotal.

27 0672319942 Appx A 11/15/00 11:46 AM Page 753

754 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Exception Handling

The functions described in this section will let you handle and raise Python excep-
tions. It is important to understand some of the basics of Python exception handling.
It works somewhat like the UNIX errno variable: There is a global indicator (per
thread) of the last error that occurred. Most functions don’t clear this on success, but
will set it to indicate the cause of the error on failure. Most functions also return an
error indicator, usually NULL if they are supposed to return a pointer, or -1 if they
return an integer (exception: the PyArg_Parse*() functions returns 1 for success and 0
for failure). When a function must fail because some function it called failed, it gener-
ally doesn’t set the error indicator; the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vari-
ables: sys.exc_type, sys.exc_value, and sys.exc_traceback. API functions exist to
interact with the error indicator in various ways. There is a separate error indicator for
each thread.

void PyErr_Print()

Prints a standard traceback to sys.stderr and clears the error indicator. Call this func-
tion only when the error indicator is set. (Otherwise it will cause a fatal error.)

PyObject* PyErr_Occurred()

Return value: Borrowed reference. Tests whether the error indicator is set. If set,
returns the exception type (the first argument to the last call to one of the
PyErr_Set*() functions or to PyErr_Restore()). If not set, returns NULL. You do not
own a reference to the return value, so you do not need to Py_DECREF() it.

Note
Do not compare the return value to a specific exception; use
PyErr_ExceptionMatches() instead, shown as follows. (The comparison could eas-
ily fail because the exception might be an instance instead of a class, in the case
of a class exception, or it might the subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)

Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should
only be called when an exception is actually set; a memory access violation will occur if
no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)

27 0672319942 Appx A 11/15/00 11:46 AM Page 754

755APPENDIX A Python/C API
Exception Handling

Return true if the given exception matches the exception in exc. If exc is a class
object, this also returns true when given as an instance of a subclass. If exc is a tuple,
all exceptions in the tuple (and recursively in subtuples) are searched for a match. If
given is NULL, a memory access violation will occur.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr_Fetch() as follows can be
unnormalized, meaning that *exc is a class object but *val is not an instance of the
same class. This function can be used to instantiate the class in that case. If the values
are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

void PyErr_Clear()

Clears the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject

**ptraceback)

Retrieves the error indicator into three variables whose addresses are passed. If the
error indicator is not set, sets all three variables to NULL. If it is set, it will be cleared
and you own a reference to each object retrieved. The value and traceback object
might be NULL even when the type object is not.

Note
This function is normally only used by code that needs to handle exceptions or by
code that needs to save and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)

Sets the error indicator from the three objects. If the error indicator is already set, it is
cleared first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL
type and non-NULL value or traceback. The exception type should be a string or class; if
it is a class, the value should be an instance of that class. Do not pass an invalid excep-
tion type or value. (Violating these rules will cause subtle problems later.) This call
takes away a reference to each object; that is, you must own a reference to each object
before the call and after the call you no longer own these references. (Warning: If you
don’t understand this, don’t use this function.)

Note
This function is normally only used by code that needs to save and restore the error
indicator temporarily.

27 0672319942 Appx A 11/15/00 11:46 AM Page 755

756 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

void PyErr_SetString(PyObject *type, char *message)

This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, for example,
PyExc_RuntimeError. You need not increment its reference count. The second argu-
ment is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)

This function is similar to PyErr_SetString() but lets you specify an arbitrary Python
object for the value of the exception. You need not increment its reference count.

void PyErr_SetNone(PyObject *type)

This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()

This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message
indicates that a built-in operation was invoked with an illegal argument. It is mostly
for internal use.

PyObject* PyErr_NoMemory()

Return value: Borrowed reference. This is a shorthand for
PyErr_SetNone(PyExc_MemoryError); it returns NULL so that an object allocation func-
tion can write return PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)

This is a convenience function to raise an exception when a C library function has
returned an error and set the C variable errno. It constructs a tuple object whose first
item is the integer errno value and whose second item is the corresponding error mes-
sage (gotten from strerror()), and then calls PyErr_SetObject(type, object). On
UNIX, when the errno value is EINTR, indicating an interrupted system call, this calls
PyErr_CheckSignals(), and if that sets the error indicator, it is left set to that. The
function always returns NULL, so a wrapper function around a system call can write
return PyErr_SetFromErrno(); when the system call returns an error.

void PyErr_BadInternalCall()

This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where a mes-
sage indicates that an internal operation (for example, a Python/C API function) was
invoked with an illegal argument. It is mostly for internal use.

27 0672319942 Appx A 11/15/00 11:46 AM Page 756

757APPENDIX A Python/C API
Standard Exceptions

int PyErr_CheckSignals()

This function interacts with Python’s signal handling. It checks whether a signal has
been sent to the processes and if so, invokes the corresponding signal handler. If the
signal module is supported, this can invoke a signal handler written in Python. In all
cases, the default effect for SIGINT is to raise the KeyboardInterrupt exception. If an
exception is raised, the error indicator is set and the function returns 1; otherwise the
function returns 0. The error indicator might or might not be cleared if it was previ-
ously set.

void PyErr_SetInterrupt()

This function is obsolete. It simulates the effect of a SIGINT signal arriving—the next
time PyErr_CheckSignals() is called, KeyboardInterrupt will be raised. It can be called
without holding the interpreter lock.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)

Return value: New reference. This utility function creates and returns a new exception
object. The name argument must be the name of the new exception, a C string of the
form module.class. The base and dict arguments are normally NULL. Normally, this
creates a class object derived from the root for all exceptions, the built-in name
Exception (accessible in C as PyExc_Exception). In this case the __module__ attribute
of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). When the user has specified
the -X command line option to use string exceptions, for backward compatibility, or
when the base argument is not a class object (and not NULL), a string object created
from the entire name argument is returned. The base argument can be used to specify
an alternate base class. The dict argument can be used to specify a dictionary of class
variables and methods.

Standard Exceptions

All standard Python exceptions are available as global variables whose names are
PyExc_ followed by the Python exception name. These have the type PyObject*; they
are all either class objects or string objects, depending on the use of the -X option to
the interpreter. For completeness, all the variables are in Table A.1.

27 0672319942 Appx A 11/15/00 11:46 AM Page 757

758 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Table A.1 C Variables for the Standard Python Exceptions

C Name Python Name See Note below

PyExc_Exception Exception *

PyExc_StandardError StandardError *

PyExc_ArithmeticError ArithmeticError *

PyExc_LookupError LookupError *

PyExc_AssertionError AssertionError

PyExc_AttributeError AttributeError

PyExc_EOFError EOFError

PyExc_EnvironmentError EnvironmentError *

PyExc_FloatingPointError FloatingPointError

PyExc_IOError IOError

PyExc_ImportError ImportError

PyExc_IndexError IndexError

PyExc_KeyError KeyError

PyExc_KeyboardInterrupt KeyboardInterrupt

PyExc_MemoryError MemoryError

PyExc_NameError NameError

PyExc_NotImplementedError NotImplementedError

PyExc_OSError OSError

PyExc_OverflowError OverflowError

PyExc_RuntimeError RuntimeError

PyExc_SyntaxError SyntaxError

PyExc_SystemError SystemError

PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError

* This is a base class for other standard exceptions. If the -X interpreter command option is used, these will be tuples
containing the string exceptions that would have otherwise been subclasses.

Deprecation of String Exceptions

The -X command-line option will be removed in Python 1.6/2.0. All exceptions built
into Python or provided in the standard library will be classes derived from Exception.

27 0672319942 Appx A 11/15/00 11:46 AM Page 758

759APPENDIX A Python/C API
Utilities

String exceptions will still be supported in the interpreter to allow existing code to run
unmodified, but this will also change in a future release.

Utilities

The functions in this section perform various utility tasks, such as parsing function
arguments and constructing Python values from C values.

OS Utilities

int Py_FdIsInteractive(FILE *fp, char *filename)

Returns true (nonzero) if the standard I/O file fp with name filename is deemed inter-
active. This is the case for files for which isatty(fileno(fp)) is true. If the global
flag Py_InteractiveFlag is true, this function also returns true if the name pointer is
NULL or if the name is equal to one of the strings “<stdin>” or “???”.

long PyOS_GetLastModificationTime(char *filename)

Returns the time of last modification of the file filename. The result is encoded in the
same way as the timestamp returned by the standard C library function time().

Process Control

void Py_FatalError(char *message)

Prints a fatal error message and kills the process. No cleanup is performed. This func-
tion should only be invoked when a condition is detected that would make it danger-
ous to continue using the Python interpreter; for instance, when the object
administration appears to be corrupted. On UNIX, the standard C library function
abort() is called, which will attempt to produce a core file.

void Py_Exit(int status)

Exits the current process. This calls Py_Finalize() and then calls the standard C
library function exit(status).

int Py_AtExit(void (*func) ())

Registers a cleanup function to be called by Py_Finalize(). The cleanup function will
be called with no arguments and should return no value. At most, 32 cleanup functions
can be registered. When the registration is successful, Py_AtExit() returns 0; on

27 0672319942 Appx A 11/15/00 11:46 AM Page 759

760 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

failure, it returns -1. The cleanup function registered last is called first. Each cleanup
function will be called at most once. Because Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called by func.

Importing Modules

PyObject* PyImport_ImportModule(char *name)

Return value: New reference. This is a simplified interface to
PyImport_ImportModuleEx() that follows, leaving the globals and locals arguments set
to NULL. When the name argument contains a dot (in other words, when it specifies a
submodule of a package), the fromlist argument is set to the list [‘*’] so that the
return value is the named module rather than the top-level package containing it as
would otherwise be the case. (Unfortunately, this has an additional side effect when
name in fact specifies a subpackage instead of a submodule: the submodules specified
in the package’s __all__ variable are loaded.) Returns a new reference to the imported
module, or NULL with an exception set on failure (the module can still be created in
this case—examine sys.modules to find out).

Note
This interface bypasses any import hooks installed with the ihooks module.

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals,

PyObject *locals, PyObject *fromlist)

Return value: New reference. Imports a module. This is best described by referring to
the built-in Python function __import__() because the standard __import__() func-
tion calls this function directly.

The return value is a new reference to the imported module or top-level package, or
NULL with an exception set on failure (the module might still be created in this case).
As for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

PyObject* PyImport_Import(PyObject *name)

Return value: New reference. This is a higher-level interface that calls the current
“import hook function”. It invokes the __import__() function from the __builtins__
of the current globals. This means that the import is done using whatever import
hooks are installed in the current environment, for instance, by rexec or ihooks.

27 0672319942 Appx A 11/15/00 11:46 AM Page 760

761APPENDIX A Python/C API
Utilities

PyObject* PyImport_ReloadModule(PyObject *m)

Return value: New reference. Reloads a module. This is best described by referring to
the built-in Python function reload() because the standard reload() function calls
this function directly. Returns a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule(char *name)

Return value: Borrowed reference. Returns the module object corresponding to a
module name. The name argument might be of the form package.module). First
checks the modules dictionary if there’s one there, and if not, creates a new one and
inserts in in the modules dictionary. Warning: This function does not load or import
the module; if the module wasn’t already loaded, you will get an empty module object.
Use PyImport_ImportModule() or one of its variants to import a module. Returns NULL
with an exception set on failure.

PyObject* PyImport_ExecCodeModule(char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form
package.module) and a code object read from a Python bytecode file or obtained from
the built-in function compile(), loads the module. Returns a new reference to the mod-
ule object, or NULL with an exception set if an error occurred (the module can still be
created in this case). This function would reload the module if it was already imported.

long PyImport_GetMagicNumber()

Returns the magic number for Python bytecode files (also known as .pyc and .pyo
files). The magic number should be present in the first four bytes of the bytecode file,
in little-endian byte order.

PyObject* PyImport_GetModuleDict()

Return value: Borrowed reference. Returns the dictionary used for the module admin-
istration (also known as sys.modules). Note that this is a per-interpreter variable.

void _PyImport_Init()

Initializes the import mechanism. For internal use only.

void PyImport_Cleanup()

Empties the module table. For internal use only.

27 0672319942 Appx A 11/15/00 11:46 AM Page 761

762 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

void _PyImport_Fini()

Finalizes the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)

Return value: Borrowed reference. For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)

For internal use only.

int PyImport_ImportFrozenModule(char *)

Loads a frozen module. Returns 1 for success, 0 if the module is not found, and -1
with an exception set if the initialization failed. To access the imported module on a
successful load, uses PyImport_ImportModule(). (Note the misnomer—this function
would reload the module if it was already imported.)

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the
freeze utility (see Tools/freeze/ in the Python source distribution). Its definition is

struct _frozen {

char *name;

unsigned char *code;

int size;

};

struct _frozen* PyImport_FrozenModules

This pointer is initialized to point to an array of struct _frozen records, terminated
by one whose members are all NULL or zero. When a frozen module is imported, it is
searched in this table. Third-party code could play tricks with this to provide a dynam-
ically created collection of frozen modules.

Abstract Objects Layer

The functions in this section interact with Python objects regardless of their type, or
with wide classes of object types (for example, all numerical types, or all sequence
types). When used on object types for which they do not apply, they will raise a
Python exception.

27 0672319942 Appx A 11/15/00 11:46 AM Page 762

763APPENDIX A Python/C API
Abstract Objects Layer

Object Protocol

int PyObject_Print(PyObject *o, FILE *fp, int flags)

Prints an object o, on file fp. Returns -1 on error. The flags argument is used to
enable certain printing options. The only option currently supported is Py_PRINT_RAW;
if given, the str() of the object is written instead of the repr().

int PyObject_HasAttrString(PyObject *o, char *attr_name)

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the
Python expression “hasattr(o, attr_name)”. This function always succeeds.

PyObject* PyObject_GetAttrString(PyObject *o, char *attr_name)

Return value: New reference. Retrieves an attribute named attr_name from object o.
Returns the attribute value on success, or NULL on failure. This is the equivalent of the
Python expression “o.attr_name”.

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the
Python expression “hasattr(o, attr_name)”. This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)

Return value: New reference. Retrieves an attribute named attr_name from object o.
Returns the attribute value on success, or NULL on failure. This is the equivalent of the
Python expression “o.attr_name”.

int PyObject_SetAttrString(PyObject *o, char *attr_name, PyObject *v)

Sets the value of the attribute named attr_name, for object o, to the value v. Returns
-1 on failure. This is the equivalent of the Python statement “o.attr_name = v”.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)

Sets the value of the attribute named attr_name, for object o, to the value v. Returns
-1 on failure. This is the equivalent of the Python statement “o.attr_name = v”.

int PyObject_DelAttrString(PyObject *o, char *attr_name)

Deletes attribute named attr_name, for object o. Returns -1 on failure. This is the
equivalent of the Python statement “del o.attr_name”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 763

764 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)

Deletes attribute named attr_name, for object o. Returns -1 on failure. This is the
equivalent of the Python statement “del o.attr_name”.

int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)

Compares the values of o1 and o2 using a routine provided by o1, if one exists, other-
wise with a routine provided by o2. The result of the comparison is returned in result.
Returns -1 on failure. This is the equivalent of the Python statement
“result = cmp(o1, o2)”.

int PyObject_Compare(PyObject *o1, PyObject *o2)

Compares the values of o1 and o2 using a routine provided by o1, if one exists, other-
wise with a routine provided by o2. Returns the result of the comparison on success.
On error, the value returned is undefined; uses PyErr_Occurred() to detect an error.
This is equivalent to the Python expression “cmp(o1, o2)”.

PyObject* PyObject_Repr(PyObject *o)

Return value: New reference. Computes a string representation of object o. Returns
the string representation on success, or NULL on failure. This is the equivalent of the
Python expression “repr(o)”. Called by the repr() built-in function and by reverse
quotes.

PyObject* PyObject_Str(PyObject *o)

Return value: New reference. Computes a string representation of object o. Returns
the string representation on success, or NULL on failure. This is the equivalent of the
Python expression “str(o)”. Called by the str() built-in function and by the print
statement.

int PyCallable_Check(PyObject *o)

Determines if the object o is callable. Returns 1 if the object is callable and 0 other-
wise. This function always succeeds.

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)

Return value: New reference. Calls a callable Python object callable_object, with
arguments given by the tuple args. If no arguments are needed, args might be NULL.
Returns the result of the call on success, or NULL on failure. This is the equivalent of
the Python expression “apply(o, args)”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 764

765APPENDIX A Python/C API
Abstract Objects Layer

PyObject* PyObject_CallFunction(PyObject *callable_object, char

*format,...)

Return value: New reference. Calls a callable Python object callable_object, with a
variable number of C arguments. The C arguments are described using a
Py_BuildValue() style format string. The format might be NULL, indicating that no
arguments are provided. Returns the result of the call on success, or NULL on failure.
This is the equivalent of the Python expression “apply(o, args)”.

PyObject* PyObject_CallMethod(PyObject *o, char *m, char *format, ...)

Return value: New reference. Calls the method named m of object o with a variable
number of C arguments. The C arguments are described by a Py_BuildValue() format
string. The format might be NULL, indicating that no arguments are provided. Returns
the result of the call on success, or NULL on failure. This is the equivalent of the
Python expression “o.method(args)”. Note that special method names, such as
__add__(), __getitem__(), and so on are not supported. The specific abstract-object
routines for these must be used.

int PyObject_Hash(PyObject *o)

Computes and returns the hash value of an object o. On failure, it returns -1. This is
the equivalent of the Python expression “hash(o)”.

int PyObject_IsTrue(PyObject *o)

Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent
to the Python expression “not not o”. This function always succeeds.

PyObject* PyObject_Type(PyObject *o)

Return value: New reference. On success, returns a type object corresponding to the
object type of object o. On failure, it returns NULL. This is equivalent to the Python
expression “type(o)”.

int PyObject_Length(PyObject *o)

Returns the length of object o. If the object o provides both sequence and mapping
protocols, the sequence length is returned. On error, -1 is returned. This is the equiv-
alent to the Python expression “len(o)”.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)

Return value: New reference. Returns the element of o corresponding to the object
key or NULL on failure. This is the equivalent of the Python expression “o[key]”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 765

766 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)

Maps the object key to the value v. Returns -1 on failure. This is the equivalent of the
Python statement “o[key] = v”.

int PyObject_DelItem(PyObject *o, PyObject *key)

Deletes the mapping for key from o. Returns -1 on failure. This is the equivalent of
the Python statement “del o[key]”.

Number Protocol

int PyNumber_Check(PyObject *o)

Returns 1 if the object o provides numeric protocols, and false otherwise. This func-
tion always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of adding o1 and o2, or NULL on fail-
ure. This is the equivalent of the Python expression “o1 + o2”.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on
failure. This is the equivalent of the Python expression “o1 - o2”.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on
failure. This is the equivalent of the Python expression “o1 * o2”.

PyObject* PyNumber_Divide(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of dividing o1 by o2, or NULL on fail-
ure. This is the equivalent of the Python expression “o1 / o2”.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on
failure. This is the equivalent of the Python expression “o1 % o2”.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)

Return value: New reference. See the built-in function divmod(). Returns NULL on fail-
ure. This is the equivalent of the Python expression “divmod(o1, o2)”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 766

767APPENDIX A Python/C API
Abstract Objects Layer

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)

Return value: New reference. See the built-in function pow(). Returns NULL on failure.
This is the equivalent of the Python expression “pow(o1, o2, o3)”, where o3 is
optional. If o3 is to be ignored, pass Py_None in its place (passing NULL for o3 would
cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)

Return value: New reference. Returns the negation of o on success, or NULL on failure.
This is the equivalent of the Python expression “-o”

PyObject* PyNumber_Positive(PyObject *o)

Return value: New reference. Returns o on success, or NULL on failure. This is the
equivalent of the Python expression “+o”.

PyObject* PyNumber_Absolute(PyObject *o)

Return value: New reference. Returns the absolute value of o, or NULL on failure. This
is the equivalent of the Python expression “abs(o)”.

PyObject* PyNumber_Invert(PyObject *o)

Return value: New reference. Returns the bitwise negation of o on success, or NULL on
failure. This is the equivalent of the Python expression “~o”.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of left shifting o1 by o2 on success, or
NULL on failure. This is the equivalent of the Python expression “o1 << o2”.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of right shifting o1 by o2 on success,
or NULL on failure. This is the equivalent of the Python expression “o1 >> o2”.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of “anding” o1 and o2 on success and
NULL on failure. This is the equivalent of the Python expression “o1 and o2”.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the bitwise exclusive or of o1 by o2 on success,
or NULL on failure. This is the equivalent of the Python expression “o1 ^ o2”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 767

768 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of o1 and o2 on success, or NULL on
failure. This is the equivalent of the Python expression “o1 or o2”.

PyObject* PyNumber_Coerce(PyObject **p1, PyObject **p2)

This function takes the addresses of two variables of type PyObject*. If the objects
pointed to by *p1 and *p2 have the same type, increment their reference count and
return 0 (success). If the objects can be converted to a common numeric type, replace
*p1 and *p2 by their converted value (with new reference counts), and return 0. If no
conversion is possible, or if some other error occurs, return -1 (failure) and don’t
increment the reference counts. The call PyNumber_Coerce(&o1, &o2) is equivalent to
the Python statement “o1, o2 = coerce(o1, o2)”.

PyObject* PyNumber_Int(PyObject *o)

Return value: New reference. Returns the o converted to an integer object on success,
or NULL on failure. This is the equivalent of the Python expression “int(o)”.

PyObject* PyNumber_Long(PyObject *o)

Return value: New reference. Returns the o converted to a long integer object on suc-
cess, or NULL on failure. This is the equivalent of the Python expression “long(o)”.

PyObject* PyNumber_Float(PyObject *o)

Return value: New reference. Returns the o converted to a float object on success, or
NULL on failure. This is the equivalent of the Python expression “float(o)”.

Sequence Protocol

int PySequence_Check(PyObject *o)

Returns 1 if the object provides sequence protocol, and 0 otherwise. This function
always succeeds.

int PySequence_Length(PyObject *o)

Returns the number of objects in sequence; o on success, and -1 on failure. For objects
that do not provide sequence protocol, this is equivalent to the Python expression
“len(o)”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 768

769APPENDIX A Python/C API
Abstract Objects Layer

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the concatenation of o1 and o2 on success, and
NULL on failure. This is the equivalent of the Python expression “o1 + o2”.

PyObject* PySequence_Repeat(PyObject *o, int count)

Return value: New reference. Returns the result of repeating sequence object o count
times, or NULL on failure. This is the equivalent of the Python expression “o * count”.

PyObject* PySequence_GetItem(PyObject *o, int i)

Return value: New reference. Returns the ith element of o, or NULL on failure. This is
the equivalent of the Python expression “o[i]”.

PyObject* PySequence_GetSlice(PyObject *o, int i1, int i2)

Return value: New reference. Returns the slice of sequence object o between i1 and
i2, or NULL on failure. This is the equivalent of the Python expression “o[i1:i2]”.

int PySequence_SetItem(PyObject *o, int i, PyObject *v)

Assigns object v to the ith element of o. Returns -1 on failure. This is the equivalent
of the Python statement “o[i] = v”.

int PySequence_DelItem(PyObject *o, int i)

Deletes the ith element of object v. Returns -1 on failure. This is the equivalent of the
Python statement “del o[i]”.

int PySequence_SetSlice(PyObject *o, int i1, int i2, PyObject *v)

Assigns the sequence object v to the slice in sequence object o from i1 to i2. This is
the equivalent of the Python statement “o[i1:i2] = v”.

int PySequence_DelSlice(PyObject *o, int i1, int i2)

Deletes the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the
equivalent of the Python statement “del o[i1:i2]”.

PyObject* PySequence_Tuple(PyObject *o)

Return value: New reference. Returns the o as a tuple on success, and NULL on failure.
This is equivalent to the Python expression “tuple(o)”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 769

770 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int PySequence_Count(PyObject *o, PyObject *value)

Returns the number of occurrences of value in o; that is, returns the number of keys
for which o[key] == value. On failure, returns -1. This is equivalent to the Python
expression “o.count(value)”.

int PySequence_Contains(PyObject *o, PyObject *value)

Determines if o contains value. If an item in o is equal to value, returns 1, otherwise
returns 0. On error, returns -1. This is equivalent to the Python expression
“value in o”.

int PySequence_Index(PyObject *o, PyObject *value)

Returns the first index i for which o[i] == value. On error, returns -1. This is equiv-
alent to the Python expression “o.index(value)”.

Mapping Protocol

int PyMapping_Check(PyObject *o)

Returns 1 if the object provides mapping protocol, and 0 otherwise. This function
always succeeds.

int PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and -1 on failure. For objects that
do not provide mapping protocol, this is equivalent to the Python expression
“len(o)”.

int PyMapping_DelItemString(PyObject *o, char *key)

Removes the mapping for object key from the object o. Returns -1 on failure. This is
equivalent to the Python statement “del o[key]”.

int PyMapping_DelItem(PyObject *o, PyObject *key)

Removes the mapping for object key from the object o. Returns -1 on failure. This is
equivalent to the Python statement “del o[key]”.

int PyMapping_HasKeyString(PyObject *o, char *key)

On success, returns 1 if the mapping object has the key identified by the key pointer,
and 0 otherwise. This is equivalent to the Python expression “o.has_key(key)”. This
function always succeeds.

27 0672319942 Appx A 11/15/00 11:46 AM Page 770

771APPENDIX A Python/C API
Concrete Objects Layer

int PyMapping_HasKey(PyObject *o, PyObject *key)

Returns 1 if the mapping object has the key identified by the key pointer and 0 other-
wise. This is equivalent to the Python expression “o.has_key(key)”. This function
always succeeds.

PyObject* PyMapping_Keys(PyObject *o)

Return value: New reference. On success, returns a list of the keys in object o. On fail-
ure, returns NULL. This is equivalent to the Python expression “o.keys()”.

PyObject* PyMapping_Values(PyObject *o)

Return value: New reference. On success, returns a list of the values in object o. On
failure, returns NULL. This is equivalent to the Python expression “o.values()”.

PyObject* PyMapping_Items(PyObject *o)

Return value: New reference. On success, returns a list of the items in object o, where
each item is a tuple containing a key-value pair. On failure, returns NULL. This is equiv-
alent to the Python expression “o.items()”.

PyObject* PyMapping_GetItemString(PyObject *o, char *key)

Return value: New reference. Returns element of o corresponding to the object key or
NULL on failure. This is the equivalent of the Python expression “o[key]”.

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)

Maps the object key to the value v in object o. Returns -1 on failure. This is the equiv-
alent of the Python statement “o[key] = v”.

Concrete Objects Layer

The functions in this section are specific to certain Python object types. Passing them
an object of the wrong type is not a good idea; if you receive an object from a Python
program and you are not sure that it has the right type, you must perform a type check
first; for example: to check that an object is a dictionary, use PyDict_Check(). This sec-
tion is structured similar to the “family tree” of Python object types.

Fundamental Objects

This section describes Python type objects and the singleton object None.

27 0672319942 Appx A 11/15/00 11:46 AM Page 771

772 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Type Objects
PyTypeObject

The C structure of the objects used to describe built-in types.

PyObject* PyType_Type

This is the type object for type objects; it is the same object as types.TypeType in the
Python layer.

int PyType_Check(PyObject *o)

Returns true if the object o is a type object.

int PyType_HasFeature(PyObject *o, int feature)

Returns true if the type object o sets the feature identified by the feature argument.
Type features are denoted by single bit flags. The only defined feature flag is
Py_TPFLAGS_HAVE_GETCHARBUFFER, which is described in a later section.

The None Object
Note that the PyTypeObject for None is not directly exposed in the Python/C API.
Because None is a singleton, testing for object identity (using == in C) is sufficient.
There is no PyNone_Check() function for the same reason.

PyObject* Py_None

The Python None object denotes lack of value. This object has no methods.

Sequence Objects

Generic operations on sequence objects were discussed in the previous subsection; this
subsection deals with the specific kinds of sequence objects that are intrinsic to the
Python language.

String Objects
PyStringObject

This subtype of PyObject represents a Python string object.

PyTypeObject PyString_Type

This instance of PyTypeObject represents the Python string type; it is the same object
as types.TypeType in the Python layer.

27 0672319942 Appx A 11/15/00 11:46 AM Page 772

773APPENDIX A Python/C API
Concrete Objects Layer

int PyString_Check(PyObject *o)

Returns true if the object o is a string object.

PyObject* PyString_FromString(const char *v)

Return value: New reference. Returns a new string object with the value v on success,
and NULL on failure.

PyObject* PyString_FromStringAndSize(const char *v, int len)

Return value: New reference. Returns a new string object with the value v and length
len on success, and NULL on failure. If v is NULL, the contents of the string are uninitial-
ized.

int PyString_Size(PyObject *string)

Returns the length of the string object identified by the given pointer.

int PyString_GET_SIZE(PyObject *string)

Macro form of PyString_GetSize() but without error checking.

char* PyString_AsString(PyObject *string)

Returns a null-terminated representation of the contents of string. The pointer refers
to the internal buffer of string, not a copy. The data must not be modified in any way.
It must not be de-allocated.

char* PyString_AS_STRING(PyObject *string)

Macro form of PyString_AsString() but without error checking.

void PyString_Concat(PyObject **string, PyObject *newpart)

Creates a new string object in *string containing the contents of newpart appended to
string. The old value of string has its reference count decremented. If the new string
cannot be created, the old reference to string will still be discarded and the value of
*string will be set to NULL; the appropriate exception will be set.

void PyString_ConcatAndDel(PyObject **string, PyObject *newpart)

Creates a new string object in *string containing the contents of newpart appended to
string. This version decrements the reference count of newpart.

27 0672319942 Appx A 11/15/00 11:46 AM Page 773

774 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int _PyString_Resize(PyObject **string, int newsize)

A way to resize a string object even though it is “immutable”. Only use this to build up
a brand new string object; don’t use this if the string might already be known in other
parts of the code.

PyObject* PyString_Format(PyObject *format, PyObject *args)

Return value: New reference. Returns a new string object from format and args.
Analogous to format % args. The args argument must be a tuple.

void PyString_InternInPlace(PyObject **string)

Interns the argument *string in place. The argument must be the address of a pointer
variable pointing to a Python string object. If there is an existing interned string that is
the same as *string, it sets *string to it (decrementing the reference count of the old
string object and incrementing the reference count of the interned string object), oth-
erwise it leaves *string alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this
function as reference-count–neutral; you own the object after the call if and only if you
owned it before the call.)

PyObject* PyString_InternFromString(const char *v)

Return value: New reference. A combination of PyString_FromString() and
PyString_InternInPlace(), returning either a new string object that has been interned,
or a new (“owned”) reference to an earlier interned string object with the same value.

Buffer Objects
Python objects implemented in C can export a group of functions called the buffer
interface. These functions can be used by an object to expose its data in a raw, byte-
oriented format. Clients of the object can use the buffer interface to access the object
data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The
string object exposes the character contents in the buffer interface’s byte-oriented
form. An array can also expose its contents, but it should be noted that array elements
can be multi-byte values.

An example user of the buffer interface is the file object’s write() method. Any object
that can export a series of bytes through the buffer interface can be written to a file.
There are a number of format codes to PyArgs_ParseTuple() that operate against an
object’s buffer interface, returning data from the target object.

27 0672319942 Appx A 11/15/00 11:46 AM Page 774

775APPENDIX A Python/C API
Concrete Objects Layer

More information on the buffer interface is provided in the section “Buffer Object
Structures,” under the description for PyBufferProcs.

A buffer object is defined in the bufferobject.h header (included by Python.h). These
objects look very similar to string objects at the Python programming level: They sup-
port slicing, indexing, concatenation, and some other standard string operations.
However, their data can come from one of two sources: from a block of memory, or
from another object that exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer inter-
face to the Python programmer. They can also be used as a zero-copy slicing mecha-
nism. Using their ability to reference a block of memory, it is possible to expose any
data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before
passing to an operating system library, or it could be used to pass around structured
data in its native, in-memory format.

PyBufferObject

This subtype of PyObject represents a buffer object.

PyTypeObject PyBuffer_Type

The instance of PyTypeObject that represents the Python buffer type; it is the same
object as types.BufferType in the Python layer.

int Py_END_OF_BUFFER

This constant can be passed as the size parameter to PyBuffer_FromObject() or
PyBuffer_FromReadWriteObject(). It indicates that the new PyBufferObject should
refer to the base object from the specified offset to the end of its exported buffer.
Using this enables the caller to avoid querying the base object for its length.

int PyBuffer_Check(PyObject *p)

Returns true if the argument has type PyBuffer_Type.

PyObject* PyBuffer_FromObject(PyObject *base, int offset, int size)

Return value: New reference. Returns a new read-only buffer object. This raises
TypeError if base doesn’t support the read-only buffer protocol or doesn’t provide
exactly one buffer segment. It raises ValueError if offset is less than zero. The buffer
will hold a reference to the base object, and the buffer’s contents will refer to the base
object’s buffer interface, starting as position offset and extending for size bytes. If
size is Py_END_OF_BUFFER, the new buffer’s contents extend to the length of the base
object’s exported buffer data.

27 0672319942 Appx A 11/15/00 11:46 AM Page 775

776 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

PyObject* PyBuffer_FromReadWriteObject(PyObject *base, int offset,

int size)

Return value: New reference. Returns a new writable buffer object. Parameters and
exceptions are similar to those for PyBuffer_FromObject(). If the base object does not
export the writable buffer protocol, TypeError is raised.

PyObject* PyBuffer_FromMemory(void *ptr, int size)

Return value: New reference. Returns a new read-only buffer object that reads from a
specified location in memory, with a specified size. The caller is responsible for ensur-
ing that the memory buffer, passed in as ptr, is not deallocated while the returned
buffer object exists. Raises ValueError if size is less than zero. Note that
Py_END_OF_BUFFER might not be passed for the size parameter; ValueError will be
raised in that case.

PyObject* PyBuffer_FromReadWriteMemory(void *ptr, int size)

Return value: New reference. Similar to PyBuffer_FromMemory(), but the returned
buffer is writable.

PyObject* PyBuffer_New(int size)

Return value: New reference. Returns a new writable buffer object that maintains its
own memory buffer of size bytes. ValueError is returned if size is not zero or positive.

Tuple Objects
PyTupleObject

This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type

This instance of PyTypeObject represents the Python tuple type; it is the same object
as types.TupleType in the Python layer.

int PyTuple_Check(PyObject *p)

Return true if the argument is a tuple object.

PyObject* PyTuple_New(int len)

Return value: New reference. Returns a new tuple object of size len, or NULL on
failure.

27 0672319942 Appx A 11/15/00 11:46 AM Page 776

777APPENDIX A Python/C API
Concrete Objects Layer

int PyTuple_Size(PyTupleObject *p)

Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple_GetItem(PyTupleObject *p, int pos)

Return value: Borrowed reference. Returns the object at position pos in the tuple
pointed to by p. If pos is out of bounds, it returns NULL and sets an IndexError exception.

PyObject* PyTuple_GET_ITEM(PyTupleObject *p, int pos)

Return value: Borrowed reference. Does the same, but does no checking of its argu-
ments.

PyObject* PyTuple_GetSlice(PyTupleObject *p, int low, int high)

Return value: New reference. Takes a slice of the tuple pointed to by p from low to
high and returns it as a new tuple.

int PyTuple_SetItem(PyObject *p, int pos, PyObject *o)

Inserts a reference to object o at position pos of the tuple pointed to by p. It returns 0
on success.

Note
This function “steals” a reference to o.

void PyTuple_SET_ITEM(PyObject *p, int pos, PyObject *o)

Does the same, but does no error checking, and should only be used to fill in brand
new tuples.

Note
This function “steals” a reference to o.

int _PyTuple_Resize(PyTupleObject *p, int newsize, int last_is_sticky)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because
tuples are supposed to be immutable, this should only be used if there is only one ref-
erence to the object. Do not use this if the tuple might already be known to some
other part of the code. last_is_sticky is a flag—if true, the tuple will grow or shrink
at the front, otherwise it will grow or shrink at the end. Think of this as destroying the
old tuple and creating a new one, only more efficiently. Returns 0 on success and -1 on
failure (in which case, a MemoryError or SystemError will be raised).

27 0672319942 Appx A 11/15/00 11:46 AM Page 777

778 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

List Objects
PyListObject

This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type

This instance of PyTypeObject represents the Python list type. This is the same object
as types.ListType.

int PyList_Check(PyObject *p)

Returns true if its argument is a PyListObject.

PyObject* PyList_New(int len)

Return value: New reference. Returns a new list of length len on success, or NULL on
failure.

int PyList_Size(PyObject *list)

Returns the length of the list object in list; this is equivalent to “len(list)” on a list
object.

int PyList_GET_SIZE(PyObject *list)

Macro form of PyList_GetSize() without error checking.

PyObject* PyList_GetItem(PyObject *list, int index)

Return value: Borrowed reference. Returns the object at position pos in the list
pointed to by p. If pos is out of bounds, it returns NULL and sets an IndexError excep-
tion.

PyObject* PyList_GET_ITEM(PyObject *list, int i)

Return value: Borrowed reference. Macro form of PyList_GetItem() without error
checking.

int PyList_SetItem(PyObject *list, int index, PyObject *item)

Sets the item at the position identified by the integer index in the given list to the
value of the object identified by the pointer called item.

Note
This function “steals” a reference to item.

27 0672319942 Appx A 11/15/00 11:46 AM Page 778

779APPENDIX A Python/C API
Concrete Objects Layer

PyObject* PyList_SET_ITEM(PyObject *list, int i, PyObject *o)

Return value: Borrowed reference. Macro form of PyList_SetItem() without error
checking.

Note
This function “steals” a reference to item.

int PyList_Insert(PyObject *list, int index, PyObject *item)

Inserts the item called item into the list called list in front of the index called index.
Returns 0 if successful; returns -1 and raises an exception if unsuccessful. Analogous to
list.insert(index, item).

int PyList_Append(PyObject *list, PyObject *item)

Appends the object item at the end of the list called list. Returns 0 if successful;
returns -1 and sets an exception if unsuccessful. Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, int low, int high)

Return value: New reference. Returns a list of the objects in list containing the objects
between low and high. Returns NULL and sets an exception if unsuccessful. Analogous
to list[low:high].

int PyList_SetSlice(PyObject *list, int low, int high, PyObject

*itemlist)

Sets the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. Returns 0 on success, -1 on failure.

int PyList_Sort(PyObject *list)

Sorts the items of list in place. Returns 0 on success, -1 on failure. This is equivalent
to “list.sort()”.

int PyList_Reverse(PyObject *list)

Reverses the items of list in place. Returns 0 on success, -1 on failure. This is the
equivalent of “list.reverse()”.

PyObject* PyList_AsTuple(PyObject *list)

Return value: New reference. Returns a new tuple object containing the contents of
list; equivalent to “tuple(list)”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 779

780 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Mapping/Dictionary Objects

PyDictObject

This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type

This instance of PyTypeObject represents the Python dictionary type. This is exposed
to Python programs as types.DictType and types.DictionaryType.

int PyDict_Check(PyObject *p)

Returns true if its argument is a PyDictObject.

PyObject* PyDict_New()

Return value: New reference. Returns a new empty dictionary, or NULL on failure.

void PyDict_Clear(PyObject *p)

Empties an existing dictionary of all key/value pairs.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)

Inserts value into the dictionary with a key of key. key must be hashable; if it isn’t,
TypeError will be raised.

int PyDict_SetItemString(PyObject *p, char *key, PyObject *val)

Inserts value into the dictionary using key as a key. key should be a char*. The key
object is created using PyString_FromString(key).

int PyDict_DelItem(PyObject *p, PyObject *key)

Removes the entry in dictionary p with key called key. key must be hashable; if it isn’t,
TypeError is raised.

int PyDict_DelItemString(PyObject *p, char *key)

Removes the entry in dictionary p which has a key specified by the string key.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)

Return value: Borrowed reference. Returns the object from dictionary p, which has a
key called key. Returns NULL if the key called key is not present, but without setting an
exception.

27 0672319942 Appx A 11/15/00 11:46 AM Page 780

781APPENDIX A Python/C API
Concrete Objects Layer

PyObject* PyDict_GetItemString(PyObject *p, char *key)

Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is
specified as a char*, rather than a PyObject*.

PyObject* PyDict_Items(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the items from
the dictionary, as in the dictionary method items() (see Chapter 2, “Language
Review”).

PyObject* PyDict_Keys(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the keys from the
dictionary, as in the dictionary method keys() (see Chapter 2).

PyObject* PyDict_Values(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the values from
the dictionary p, as in the dictionary method values() (see Chapter 2).

int PyDict_Size(PyObject *p)

Returns the number of items in the dictionary. This is equivalent to “len(p)” on a dic-
tionary.

Numeric Objects

Next, you have the API function for numerical objects, which are classified in: plain
integer, long integer, floating point, and complex number objects.

Plain Integer Objects
PyIntObject

This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt_Type

This instance of PyTypeObject represents the Python plain integer type. This is the
same object as types.IntType.

int PyInt_Check(PyObject* o)

Return value: Borrowed reference. Returns true if o is of type PyInt_Type.

27 0672319942 Appx A 11/15/00 11:46 AM Page 781

782 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

PyObject* PyInt_FromLong(long ival)

Return value: New reference. Creates a new integer object with a value of ival.

Tip
The current implementation keeps an array of integer objects for all integers
between -1 and 100. When you create an int in that range, you actually just get back
a reference to the existing object. So it should be possible to change the value of 1.
It is suspected that the behavior of Python in this case is undefined.

long PyInt_AsLong(PyObject *io)

Will first attempt to cast the object to a PyIntObject, if it is not already one, and then
return its value.

long PyInt_AS_LONG(PyObject *io)

Returns the value of the object io. No error checking is performed.

long PyInt_GetMax()

Returns the system’s idea of the largest integer it can handle (LONG_MAX, as defined in
the system header files).

Long Integer Objects
PyLongObject

This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong_Type

This instance of PyTypeObject represents the Python long integer type. This is the
same object as types.LongType.

int PyLong_Check(PyObject *p)

Returns true if its argument is a PyLongObject.

PyObject* PyLong_FromLong(long v)

Return value: New reference. Returns a new PyLongObject object from v, or NULL on
failure.

27 0672319942 Appx A 11/15/00 11:46 AM Page 782

783APPENDIX A Python/C API
Concrete Objects Layer

PyObject* PyLong_FromUnsignedLong(unsigned long v)

Return value: New reference. Returns a new PyLongObject object from a C unsigned
long, or NULL on failure.

PyObject* PyLong_FromDouble(double v)

Return value: New reference. Returns a new PyLongObject object from the integer
part of v, or NULL on failure.

long PyLong_AsLong(PyObject *pylong)

Returns a C long representation of the contents of pylong. If pylong is greater than
LONG_MAX, an OverflowError is raised.OverflowError.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)

Returns a C unsigned long representation of the contents of pylong. If pylong is
greater than ULONG_MAX, an OverflowError is raised.OverflowError.

double PyLong_AsDouble(PyObject *pylong)

Returns a C double representation of the contents of pylong.

PyObject* PyLong_FromString(char *str, char **pend, int base)

Return value: New reference. Returns a new PyLongObject based on the string value
in str, which is interpreted according to the radix in base. If pend is non-NULL, *pend
will point to the first character in str which follows the representation of the number.
If base is 0, the radix will be determined based on the leading characters of str: if str
starts with 0x or 0X, radix 16 will be used; if str starts with 0, radix 8 will be used; oth-
erwise, radix 10 will be used. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces are ignored. If there are no digits, ValueError will be raised.

Floating Point Objects
PyFloatObject

This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type

This instance of PyTypeObject represents the Python floating point type. This is the
same object as types.FloatType.

27 0672319942 Appx A 11/15/00 11:46 AM Page 783

784 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int PyFloat_Check(PyObject *p)

Returns true if its argument is a PyFloatObject.

PyObject* PyFloat_FromDouble(double v)

Return value: New reference. Creates a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)

Returns a C double representation of the contents of pyfloat.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)

Returns a C double representation of the contents of pyfloat, but without error
checking.

Complex Number Objects
Python’s complex number objects are implemented as two distinct types when viewed
from the C API: one is the Python object exposed to Python programs, and the other
is a C structure that represents the actual complex number value. The API provides
functions for working with both.

Complex Numbers as C Structures
Note that the functions which accept these structures as parameters and return them
as results do so by value rather than dereferencing them through pointers. This is con-
sistent throughout the API.

Py_complex

This is the C structure that corresponds to the value portion of a Python complex
number object. Most of the functions for dealing with complex number objects use
structures of this type as input or output values, as appropriate. It is defined as

typedef struct {

double real;

double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)

Returns the sum of two complex numbers, using the C Py_complex representation.

27 0672319942 Appx A 11/15/00 11:46 AM Page 784

785APPENDIX A Python/C API
Concrete Objects Layer

Py_complex _Py_c_diff(Py_complex left, Py_complex right)

Returns the difference between two complex numbers, using the C Py_complex repre-
sentation.

Py_complex _Py_c_neg(Py_complex complex)

Returns the negation of the complex number complex, using the C Py_complex repre-
sentation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)

Returns the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)

Returns the quotient of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)

Returns the exponentiation of num by exp, using the C Py_complex representation.

Complex Numbers as Python Objects
PyComplexObject

This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type

This instance of PyTypeObject represents the Python complex number type.

int PyComplex_Check(PyObject *p)

Returns true if its argument is a PyComplexObject.

PyObject* PyComplex_FromCComplex(Py_complex v)

Return value: New reference. Creates a new Python complex number object from a C
Py_complex value.

PyObject* PyComplex_FromDoubles(double real, double imag)

Return value: New reference. Returns a new PyComplexObject object from real and
imag.

27 0672319942 Appx A 11/15/00 11:46 AM Page 785

786 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

double PyComplex_RealAsDouble(PyObject *op)

Returns the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)

Returns the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)

Returns the Py_complex value of the complex number op.

Other Objects
Next, you have the list of API function for all the other objects, including File,
Module, and C Objects.

File Objects
Python’s built-in file objects are implemented entirely on the FILE* support from the
C standard library. This is an implementation detail and might change in future
releases of Python.

PyFileObject

This subtype of PyObject represents a Python file object.

PyTypeObject PyFile_Type

This instance of PyTypeObject represents the Python file type. This is exposed to
Python programs as types.FileType.

int PyFile_Check(PyObject *p)

Returns true if its argument is a PyFileObject.

PyObject* PyFile_FromString(char *filename, char *mode)

Return value: New reference. On success, returns a new file object that is opened on
the file given by filename, with a file mode given by mode, where mode has the same
semantics as the standard C routine fopen(). On failure, returns NULL.

PyObject* PyFile_FromFile(FILE *fp, char *name, char *mode, int
(*close)(FILE*))

Return value: New reference. Creates a new PyFileObject from the already-open stan-
dard C file pointer, fp. The function close will be called when the file should be
closed. Returns NULL on failure.

27 0672319942 Appx A 11/15/00 11:46 AM Page 786

787APPENDIX A Python/C API
Concrete Objects Layer

FILE* PyFile_AsFile(PyFileObject *p)

Returns the file object associated with p as a FILE*.

PyObject* PyFile_GetLine(PyObject *p, int n)

Return value: New reference. Equivalent to p.readline([n]), this function reads one
line from the object p. p can be a file object or any object with a readline() method.
If n is 0, exactly one line is read, regardless of the length of the line. If n is greater than
0, no more than n bytes will be read from the file; a partial line can be returned. In
both cases, an empty string is returned if the end of the file is reached immediately. If
n is less than 0, however, one line is read regardless of length, but EOFError is raised
if the end of the file is reached immediately.

PyObject* PyFile_Name(PyObject *p)

Return value: Borrowed reference. Returns the name of the file specified by p as a
string object.

void PyFile_SetBufSize(PyFileObject *p, int n)

Available on systems with setvbuf() only. This should only be called immediately
after file object creation.

int PyFile_SoftSpace(PyObject *p, int newflag)

This function exists for internal use by the interpreter. Sets the softspace attribute of p
to newflag and returns the previous value. p does not have to be a file object for this
function to work properly; any object is supported (though it’s only interesting if the
softspace attribute can be set). This function clears any errors, and will return 0 as the
previous value if the attribute either does not exist or if there were errors in retrieving
it. There is no way to detect errors from this function, but doing so should not be
needed.

int PyFile_WriteObject(PyObject *obj, PyFileObject *p, int flags)

Writes object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if
given, the str() of the object is written instead of the repr(). Returns 0 on success or
-1 on failure; the appropriate exception will be set.

int PyFile_WriteString(char *s, PyFileObject *p, int flags)

Writes string s to file object p. Returns 0 on success or -1 on failure; the appropriate
exception will be set.

27 0672319942 Appx A 11/15/00 11:46 AM Page 787

788 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Module Objects
There are only a few functions special to module objects.

PyTypeObject PyModule_Type

This instance of PyTypeObject represents the Python module type. This is exposed to
Python programs as types.ModuleType.

int PyModule_Check(PyObject *p)

Returns true if its argument is a module object.

PyObject* PyModule_New(char *name)

Return value: New reference. Returns a new module object with the __name__
attribute set to name. Only the module’s __doc__ and __name__ attributes are filled in;
the caller is responsible for providing a __file__ attribute.

PyObject* PyModule_GetDict(PyObject *module)

Return value: Borrowed reference. Returns the dictionary object that implements
module’s namespace; this object is the same as the __dict__ attribute of the module
object. This function never fails.

char* PyModule_GetName(PyObject *module)

Returns module’s __name__ value. If the module does not provide one, or if it is not a
string, SystemError is raised and NULL is returned.

char* PyModule_GetFilename(PyObject *module)

Returns the name of the file from which module was loaded using module’s __file__
attribute. If this is not defined, or if it is not a string, raises SystemError and returns
NULL.

C Objects
Refer to the document “Extending and Embedding the Python Interpreter,” section
1.12 (“Providing a C API for an Extension Module”), for more information on using
these objects. This document is part of the Python distribution. Note that it is also
available on-line at the python.org.

PyCObject

This subtype of PyObject represents an opaque value, useful for C extension modules
that need to pass an opaque value (as a void* pointer) through Python code to other C

27 0672319942 Appx A 11/15/00 11:46 AM Page 788

789APPENDIX A Python/C API
Initialization, Finalization, and Threads

code. It is often used to make a C function pointer defined in one module available to
other modules, so the regular import mechanism can be used to access C APIs defined
in dynamically loaded modules.

int PyCObject_Check(PyObject *p)

Returns true if its argument is a PyCObject.

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))

Return value: New reference. Creates a PyCObject from the void * cobj. The destr
function will be called when the object is reclaimed, unless it is NULL.

PyObject* PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc,

void (*destr)(void *, void *))

Return value: New reference. Creates a PyCObject from the void *cobj. The destr
function will be called when the object is reclaimed. The desc argument can be used
to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr(PyObject* self)

Returns the object void * that the PyCObject self was created with.

void* PyCObject_GetDesc(PyObject* self)

Returns the description void * that the PyCObject self was created with.

Initialization, Finalization, and Threads

void Py_Initialize()

Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; with the exception of
Py_SetProgramName(), PyEval_InitThreads(), PyEval_ReleaseLock(), and
PyEval_AcquireLock(). This initializes the table of loaded modules (sys.modules), and
creates the fundamental modules __builtin__, __main__, and sys. It also initializes the
module search path (sys.path). It does not set sys.argv; it uses PySys_SetArgv() for
that. This is a no-operation when called for a second time (without calling
Py_Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

27 0672319942 Appx A 11/15/00 11:46 AM Page 789

790 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

int Py_IsInitialized()

Returns true (nonzero) when the Python interpreter has been initialized, false (zero)
if not. After Py_Finalize() is called, this returns false until Py_Initialize() is called
again.

void Py_Finalize()

Undoes all initializations made by Py_Initialize() and subsequent uses of Python/C
API functions, and destroys all sub-interpreters (see Py_NewInterpreter() in the fol-
lowing) that were created and not yet destroyed since the last call to Py_Initialize().
Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Initialize() again first). There is
no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might
want to restart Python without having to restart the application itself. An application
that has loaded the Python interpreter from a dynamic link library (or DLL) might
want to free all memory allocated by Python before unloading the DLL. During a
hunt for memory leaks in an application, a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats include: The destruction of modules and objects in modules is done
in random order; this can cause destructors (__del__() methods) to fail when they
depend on other objects (even functions) or modules. Dynamically loaded extension
modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter might not be freed (if you find a leak, please report it to the
development team). Memory tied up in circular references between objects is not
freed. Some memory allocated by extension modules might not be freed. Some exten-
sion might not work properly if their initialization routine is called more than once;
this can happen if an application calls Py_Initialize() and Py_Finalize() more than
once.

PyThreadState* Py_NewInterpreter()

Creates a new sub-interpreter. This is an (almost) totally separate environment for the
execution of Python code. In particular, the new interpreter has separate, independent
versions of all imported modules, including the fundamental modules __builtin__,
__main__, and sys. The table of loaded modules (sys.modules) and the module search
path (sys.path) are also separate. The new environment has no sys.argv variable. It
has new standard I/O stream file objects sys.stdin, sys.stdout, and sys.stderr
(however, these refer to the same underlying FILE structures in the C library).

27 0672319942 Appx A 11/15/00 11:46 AM Page 790

791APPENDIX A Python/C API
Initialization, Finalization, and Threads

The return value points to the first thread state created in the new sub-interpreter.
This thread state is made the current thread state. Note that no actual thread is cre-
ated; see the discussion of thread states later. If the creation of the new interpreter is
unsuccessful, NULL is returned; no exception is set because the exception state is stored
in the current thread state and there might not be a current thread state. (Like all
other Python/C API functions, the global interpreter lock must be held before calling
this function and is still held when it returns; however, unlike most other Python/C
API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a
particular extension is imported, it is initialized normally, and a (shallow) copy of its
module’s dictionary is squirreled away. When the same extension is imported by
another (sub-)interpreter, a new module is initialized and filled with the contents of
this copy; the extension’s init function is not called. Note that this is different from
what happens when an extension is imported after the interpreter has been completely
re-initialized by calling Py_Finalize() and Py_Initialize(); in that case, the exten-
sion’s initmodule function is called again.

Bugs and caveats include: Because sub-interpreters (and the main interpreter) are part
of the same process, the insulation between them isn’t perfect—for example, using
low-level file operations like os.close(), they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)inter-
preters, some extensions might not work properly; this is especially likely when the
extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one
sub-interpreter into a namespace of another sub-interpreter; this should be done with
great care to avoid sharing user-defined functions, methods, instances or classes
between sub-interpreters because import operations executed by such objects might
affect the wrong (sub-)interpreter’s dictionary of loaded modules.

Note
This is a hard-to-fix bug that will be addressed in a future release.

void Py_EndInterpreter(PyThreadState *tstate)

Destroys the (sub-)interpreter represented by the given thread state. The given thread
state must be the current thread state. See the discussion of thread states later. When
the call returns, the current thread state is NULL. All thread states associated with this
interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_Finalize() will destroy all sub-
interpreters that haven’t been explicitly destroyed at that point.

27 0672319942 Appx A 11/15/00 11:46 AM Page 791

792 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

void Py_SetProgramName(char *name)

This function should be called before Py_Initialize() is called for the first time, if it
is called at all. It tells the interpreter the value of the argv[0] argument to the main()
function of the program. This is used by Py_GetPath() and some other following func-
tions to find the Python runtime libraries relative to the interpreter executable. The
default value is python. The argument should point to a zero-terminated character
string in static storage whose contents will not change for the duration of the pro-
gram’s execution. No code in the Python interpreter will change the contents of this
storage.

char* Py_GetProgramName()

Returns the program name set with Py_SetProgramName(), or the default. The
returned string points into static storage; the caller should not modify its value.

char* Py_GetPrefix()

Returns the prefix for installed platform-independent files. This is derived through a
number of complicated rules from the program name set with Py_SetProgramName()
and some environment variables; for example, if the program name is
“/usr/local/bin/python”, the prefix is “/usr/local”. The returned string points into
static storage; the caller should not modify its value. This corresponds to the prefix
variable in the top-level Makefile and the --prefix argument to the configure script at
build time. The value is available to Python code as sys.prefix. It is only useful on
UNIX. See also the next function.

char* Py_GetExecPrefix()

Returns the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with Py_SetProgramName()
and some environment variables; for example, if the program name is
“/usr/local/bin/python”, the exec-prefix is “/usr/local”. The returned string points
into static storage; the caller should not modify its value. This corresponds to the
exec_prefix variable in the top-level Makefile and the --exec_prefix argument to
the configure script at build time. The value is available to Python code as
sys.exec_prefix. It is only useful on UNIX.

The background is the exec-prefix differs from the prefix when platform dependent
files (such as executables and shared libraries) are installed in a different directory tree.
In a typical installation, platform dependent files can be installed in the
“/usr/local/plat” subtree whereas platform independent files can be installed in
“/usr/local”.

27 0672319942 Appx A 11/15/00 11:46 AM Page 792

793APPENDIX A Python/C API
Initialization, Finalization, and Threads

Generally speaking, a platform is a combination of hardware and software families, for
example, Sparc machines running the Solaris 2.x operating system are considered the
same platform, but Intel machines running Solaris 2.x are another platform, and Intel
machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-UNIX operating
systems are a different story; the installation strategies on those systems are so differ-
ent that the prefix and exec-prefix are meaningless, and set to the empty string. Note
that compiled Python bytecode files are platform independent (but not independent
from the Python version by which they were compiled).

System administrators will know how to configure the mount or automount programs
to share “/usr/local” between platforms while having “/usr/local/plat” be a differ-
ent filesystem for each platform.

char* Py_GetProgramFullPath()

Returns the full program name of the Python executable; this is computed as a side-
effect of deriving the default module search path from the program name (set by
Py_SetProgramName() earlier). The returned string points into static storage; the caller
should not modify its value. The value is available to Python code as sys.executable.

char* Py_GetPath()

Returns the default module search path; this is computed from the program name (set
by Py_SetProgramName() earlier) and some environment variables. The returned string
consists of a series of directory names separated by a platform dependent delimiter
character. The delimiter character is : on UNIX, ; on DOS/Windows, and \n (the
ASCII newline character) on Macintosh. The returned string points into static storage;
the caller should not modify its value. The value is available to Python code as the list
sys.path, which can be modified to change the future search path for loaded modules.

const char* Py_GetVersion()

Returns the version of this Python interpreter. This is a string that looks something like

“1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]”

The first word (up to the first space character) is the current Python version; the first
three characters are the major and minor version separated by a period. The returned
string points into static storage; the caller should not modify its value. The value is
available to Python code as the list sys.version.

27 0672319942 Appx A 11/15/00 11:46 AM Page 793

794 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

const char* Py_GetPlatform()

Returns the platform identifier for the current platform. On UNIX, this is formed
from the official name of the operating system, converted to lowercase, followed by
the major revision number; for example, for Solaris 2.x, which is also known as SunOS
5.x, the value is sunos5. On Macintosh, it is mac. On Windows, it is win. The returned
string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.platform.

const char* Py_GetCopyright()

Returns the official copyright string for the current Python version; for example

“Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam”

The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as the list sys.copyright.

const char* Py_GetCompiler()

Returns an indication of the compiler used to build the current Python version, in
square brackets; for example

“[GCC 2.7.2.2]”

The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as part of the variable sys.version.

const char* Py_GetBuildInfo()

Return information about the sequence number and build date and time of the current
Python interpreter instance; for example

“#67, Aug 1 1997, 22:34:28”

The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as part of the variable sys.version.

int PySys_SetArgv(int argc, char **argv)

Sets sys.argv based on argc and argv. These parameters are similar to those passed to
the program’s main() function with the difference that the first entry should refer to
the script file to be executed rather than the executable hosting the Python interpreter.
If there isn’t a script that will be run, the first entry in argv can be an empty string. If
this function fails to initialize sys.argv, a fatal condition is signaled using
Py_FatalError().

27 0672319942 Appx A 11/15/00 11:46 AM Page 794

795APPENDIX A Python/C API
Initialization, Finalization, and Threads

Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multithreaded
Python programs, a global lock must be held by the current thread before it can safely
access Python objects. Without the lock, even the simplest operations could cause
problems in a multithreaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter
lock can operate on Python objects or call Python/C API functions. In order to sup-
port multithreaded Python programs, the interpreter regularly releases and reacquires
the lock—by default, every ten bytecode instructions (this can be changed with
sys.setcheckinterval()). The lock is also released and reacquired around potentially
blocking I/O operations such as reading or writing a file, so other threads can run
while the thread that requests the I/O is waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per
thread—for this it uses a data structure called PyThreadState. This is new in Python 1.5;
in earlier versions, such a state was stored in global variables, and switching threads
could cause problems. In particular, exception handling is now thread safe when the
application uses sys.exc_info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the current PyThreadState
structure. Although most thread packages have a way to store per-thread global data,
Python’s internal platform independent thread abstraction doesn’t support this yet.
Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock
has the following simple structure:

Save the thread state in a local variable.

Release the interpreter lock.

...Do some blocking I/O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS

...Do some blocking I/O operation...

Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local
variable; the Py_END_ALLOW_THREADS macro closes the block. Another advantage of

27 0672319942 Appx A 11/15/00 11:46 AM Page 795

796 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

using these two macros is that when Python is compiled without thread support, they
are defined empty, thus saving the thread state and lock manipulations.

When thread support is enabled, the previous block expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();

...Do some blocking I/O operation...

PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);

PyEval_ReleaseLock();

...Do some blocking I/O operation...

PyEval_AcquireLock();

PyThreadState_Swap(_save);

There are some subtle differences; in particular, PyEval_RestoreThread() saves and
restores the value of the global variable errno because the lock manipulation does not
guarantee that errno is left alone. Also, when thread support is disabled,
PyEval_SaveThread() and PyEval_RestoreThread() don’t manipulate the lock; in this
case, PyEval_ReleaseLock() and PyEval_AcquireLock() are not available. This is done
so that dynamically loaded extensions compiled with thread support enabled can be
loaded by an interpreter that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer
must be retrieved before the lock is released because another thread could immediately
acquire the lock and store its own thread state in the global variable. Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before
storing the thread state pointer.

Why so much detail about this? Because when threads are created from C, they don’t
have the global interpreter lock, nor is there a thread state data structure for them.
Such threads must bootstrap themselves into existence, by first creating a thread state
data structure, acquiring the lock, and finally storing their thread state pointer, before
they can start using the Python/C API. When they are done, they should reset the
thread state pointer, release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data
structure. The interpreter state data structure holds global data that is shared by all
threads in an interpreter, for example the module administration (sys.modules).
Depending on your needs, you can either create a new interpreter state data structure,

27 0672319942 Appx A 11/15/00 11:46 AM Page 796

797APPENDIX A Python/C API
Initialization, Finalization, and Threads

or share the interpreter state data structure used by the Python main thread (to access
the latter, you must obtain the thread state and access its interp member; this must be
done by a thread that is created by Python or by the main thread after Python is ini-
tialized).

PyInterpreterState

This data structure represents the state shared by a number of cooperating threads.
Threads belonging to the same interpreter share their module administration and a
few other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state
like available memory, open file descriptors and such. The global interpreter lock is
also shared by all threads, regardless of to which interpreter they belong.

PyThreadState

This data structure represents the state of a single thread. The only public data mem-
ber is PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()

Initialize and acquire the global interpreter lock. It should be called in the main thread
before creating a second thread or engaging in any other thread operations such as
PyEval_ReleaseLock() or PyEval_ReleaseThread(tstate). It is not needed before call-
ing PyEval_SaveThread() or PyEval_RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before
calling Py_Initialize().

When only the main thread exists, no lock operations are needed. This is a common
situation (most Python programs do not use threads), and the lock operations slow the
interpreter down a bit. Therefore, the lock is not created initially. This situation is
equivalent to having acquired the lock: When there is only a single thread, all object
accesses are safe. Therefore, when this function initializes the lock, it also acquires it.
Before the Python thread module creates a new thread, knowing that either it has the
lock or the lock hasn’t been created yet, it calls PyEval_InitThreads(). When this call
returns, it is guaranteed that the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently
has the global interpreter lock.

This function is not available when thread support is disabled at compile time.

27 0672319942 Appx A 11/15/00 11:46 AM Page 797

798 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

void PyEval_AcquireLock()

Acquires the global interpreter lock. The lock must have been created earlier. If this
thread already has the lock, a deadlock ensues. This function is not available when
thread support is disabled at compile time.

void PyEval_ReleaseLock()

Releases the global interpreter lock. The lock must have been created earlier. This
function is not available when thread support is disabled at compile time.

void PyEval_AcquireThread(PyThreadState *tstate)

Acquires the global interpreter lock and then sets the current thread state to tstate,
which should not be NULL. The lock must have been created earlier. If this thread
already has the lock, deadlock ensues. This function is not available when thread sup-
port is disabled at compile time.

void PyEval_ReleaseThread(PyThreadState *tstate)

Resets the current thread state to NULL and releases the global interpreter lock. The
lock must have been created earlier and must be held by the current thread. The
tstate argument, which must not be NULL, is only used to check that it represents the
current thread state—if it isn’t, a fatal error is reported. This function is not available
when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread()

Releases the interpreter lock (if it has been created and thread support is enabled) and
resets the thread state to NULL, returning the previous thread state (which is not NULL).
If the lock has been created, the current thread must have acquired it. (This function is
available even when thread support is disabled at compile time.)

void PyEval_RestoreThread(PyThreadState *tstate)

Acquires the interpreter lock (if it has been created and thread support is enabled) and
sets the thread state to tstate, which must not be NULL. If the lock has been created,
the current thread must not have acquired it, otherwise deadlock ensues. (This func-
tion is available even when thread support is disabled at compile time.)

The following macros are normally used without a trailing semicolon; look for exam-
ple usage in the Python source distribution.

27 0672319942 Appx A 11/15/00 11:46 AM Page 798

799APPENDIX A Python/C API
Initialization, Finalization, and Threads

Py_BEGIN_ALLOW_THREADS

This macro expands to “{ PyThreadState *_save; _save = PyEval_SaveThread();”.
Note that it contains an opening brace; it must be matched with the following
Py_END_ALLOW_THREADS macro. It is a no-op when thread support is disabled at compile
time.

Py_END_ALLOW_THREADS

This macro expands to “PyEval_RestoreThread(_save); }”. Note that it contains a
closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See
earlier section for further discussion of this macro. It is a no-op when thread support is
disabled at compile time.

Py_BEGIN_BLOCK_THREADS

This macro expands to “PyEval_RestoreThread(_save);” that is, it is equivalent to
Py_END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is
disabled at compile time.

Py_BEGIN_UNBLOCK_THREADS

This macro expands to “_save = PyEval_SaveThread();” that is, it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a
no-op when thread support is disabled at compile time.

All the following functions are only available when thread support is enabled at com-
pile time, and must be called only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState_New()

Creates a new interpreter state object. The interpreter lock need not be held, but can
be held if it is necessary to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)—Resets all infor-
mation in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)—Destroys an
interpreter state object. The interpreter lock need not be held. The interpreter state
must have been reset with a previous call to PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState *interp)—Creates a
new thread state object belonging to the given interpreter object. The interpreter
lock need not be held, but might be held if it is necessary to serialize calls to this
function.

27 0672319942 Appx A 11/15/00 11:46 AM Page 799

800 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

void PyThreadState_Clear(PyThreadState *tstate)—Resets all information in a
thread state object. The interpreter lock must be held.

void PyThreadState_Delete(PyThreadState *tstate)—Destroys a thread state
object. The interpreter lock need not be held. The thread state must have been
reset with a previous call to PyThreadState_Clear().

PyThreadState* PyThreadState_Get()—Returns the current thread state. The
interpreter lock must be held. When the current thread state is NULL, this issues a
fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)—Swaps the current
thread state with the thread state given by the argument tstate, which might be
NULL. The interpreter lock must be held.

Memory Management

Memory management in Python involves a private heap containing all Python objects
and data structures. The management of this private heap is ensured internally by the
Python memory manager. The Python memory manager has different components
that deal with various dynamic storage management aspects, such as sharing, segmen-
tation, preallocation, or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the
private heap for storing all Python-related data by interacting with the memory man-
ager of the operating system. On top of the raw memory allocator, several object-
specific allocators operate on the same heap and implement distinct memory manage-
ment policies adapted to the peculiarities of every object type. For example, integer
objects are managed within the heap different from strings, tuples, or dictionaries
because integers imply different storage requirements and speed/space tradeoffs. The
Python memory manager thus delegates some of the work to the object-specific allo-
cators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by
the interpreter itself and that the user has no control over it, even if she regularly
manipulates object pointers to memory blocks inside that heap. The allocation of heap
space for Python objects and other internal buffers is performed on demand by the
Python memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python
objects with the functions exported by the C library: malloc(), calloc(), realloc(),
and free(). This will result in mixed calls between the C allocator and the Python

27 0672319942 Appx A 11/15/00 11:46 AM Page 800

801APPENDIX A Python/C API
Memory Management

memory manager with fatal consequences because they implement different algo-
rithms and operate on different heaps. However, one can safely allocate and release
memory blocks with the C library allocator for individual purposes, as shown in the
following example:

PyObject *res;

char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

...Do some I/O operation involving buf...

res = PyString_FromString(buf);

free(buf); /* malloc’ed */

return res;

In this example, the memory request for the I/O buffer is handled by the C library
allocator. The Python memory manager is involved only in the allocation of the string
object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python
heap specifically because the latter is under control of the Python memory manager.
For example, this is required when the interpreter is extended with new object types
written in C. Another reason for using the Python heap is the desire to inform the
Python memory manager about the memory needs of the extension module. Even
when the requested memory is used exclusively for internal, highly-specific purposes,
delegating all memory requests to the Python memory manager causes the interpreter
to have a more accurate image of its memory footprint as a whole. Consequently,
under certain circumstances, the Python memory manager might or might not trigger
appropriate actions, such as garbage collection, memory compaction, or other preven-
tive procedures. Note that by using the C library allocator as shown in the previous
example, the allocated memory for the I/O buffer escapes completely the Python
memory manager.

Memory Interface

The following function sets, modeled after the ANSI C standard, are available for allo-
cating and releasing memory from the Python heap:

ANY*—Used to represent arbitrary blocks of memory. Values of this type should be
cast to the specific type that is needed.

ANY* PyMem_Malloc(size_t n)—Allocates n bytes and returns a pointer of type
ANY* to the allocated memory, or NULL if the request fails. Requesting zero bytes
returns a non-NULL pointer.

27 0672319942 Appx A 11/15/00 11:46 AM Page 801

802 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

ANY* PyMem_Realloc(ANY *p, size_t n)—Resizes the memory block pointed to by
p to n bytes. The contents will be unchanged to the minimum of the old and the
new sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n); if n is equal to
zero, the memory block is resized but is not freed, and the returned pointer is non-
NULL. Unless p is NULL, it must have been returned by a previous call to
PyMem_Malloc() or PyMem_Realloc().

void PyMem_Free(ANY *p)—Frees the memory block pointed to by p, which must
have been returned by a previous call to PyMem_Malloc() or PyMem_Realloc().
Otherwise, or if PyMem_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

ANY* Py_Malloc(size_t n)—Same as PyMem_Malloc(), but calls PyErr_NoMemory()
on failure.

ANY* Py_Realloc(ANY *p, size_t n)—Same as PyMem_Realloc(), but calls
PyErr_NoMemory() on failure.

void Py_Free(ANY *p)—Same as PyMem_Free().

The following type-oriented macros are provided for convenience. Note that TYPE
refers to any C type.

TYPE* PyMem_NEW(TYPE, size_t n)—Same as PyMem_Malloc(), but allocates
(n * sizeof(TYPE)) bytes of memory. Returns a pointer cast to TYPE*.

TYPE* PyMem_RESIZE(ANY *p, TYPE, size_t n)—Same as PyMem_Realloc(), but
the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a pointer cast to
TYPE*.

void PyMem_DEL(ANY *p)—Same as PyMem_Free().

Examples

Here is one example from the previous section, rewritten so that the I/O buffer is allo-
cated from the Python heap by using the first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_Free(buf); /* allocated with PyMem_Malloc */

return res;

27 0672319942 Appx A 11/15/00 11:46 AM Page 802

803APPENDIX A Python/C API
Memory Management

With the second function set, the need to call PyErr_NoMemory() is obviated:

PyObject *res;

char *buf = (char *) Py_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return NULL;

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

Py_Free(buf); /* allocated with Py_Malloc */

return res;

Here’s the same code using the macro set:

PyObject *res;

char *buf = PyMem_NEW(char, BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */

res = PyString_FromString(buf);

PyMem_DEL(buf); /* allocated with PyMem_NEW */

return res;

Note that in the three previous examples, the buffer is always manipulated via func-
tions/macros belonging to the same set. Indeed, it is required to use the same memory
API family for a given memory block so that the risk of mixing different allocators is
reduced to a minimum. The following code sequence contains two errors, one of
which is labeled as fatal because it mixes two different allocators operating on different
heaps.

char *buf1 = PyMem_NEW(char, BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);

...

PyMem_DEL(buf3); /* Wrong -- should be PyMem_Free() */

free(buf2); /* Right -- allocated via malloc() */

free(buf1); /* Fatal -- should be PyMem_DEL() */

In addition to the functions aimed at handling raw memory blocks from the Python
heap, objects in Python are allocated and released with _PyObject_New() and
_PyObject_NewVar(), or with their corresponding macros PyObject_NEW() and
PyObject_NEW_VAR().

27 0672319942 Appx A 11/15/00 11:46 AM Page 803

804 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Defining New Object Types

PyObject* _PyObject_New(PyTypeObject *type)

Return value: New reference.

PyObject* _PyObject_NewVar(PyTypeObject *type, int size)

Return value: New reference.

Common Object Structures

Next, you have a list of object structures commonly used in type and method defini-
tions.

PyObject PyVarObject

PyObject_HEAD PyObject_HEAD_INIT PyObject_VAR_HEAD

unaryfunc binaryfunc ternaryfunc

inquiry coercion intargfunc

intintargfunc intobjargproc intintobjargproc

objobjargproc destructor printfunc

getattrfunc getattrofunc setattrfunc

setattrofunc cmpfunc reprfunc

hashfunc

The document How to Write a Python Extension, by Michael Reilly lists and explains the
prototypes of these structures. It also demonstrates how to create new Python types.

http://starship.python.net/crew/arcege/extwriting/pyext.html

Mapping Object Structures

PyMappingMethods

Structure used to hold pointers to the functions used to implement the mapping pro-
tocol for an extension type.

27 0672319942 Appx A 11/15/00 11:46 AM Page 804

805APPENDIX A Python/C API
Defining New Object Types

Number Object Structures

PyNumberMethods

Structure used to hold pointers to the functions, which an extension type uses to
implement the number protocol.

Sequence Object Structures

PySequenceMethods

Structure used to hold pointers to the functions which an object uses to implement the
sequence protocol.

Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a
set of chunks of data, where each chunk is specified as a pointer/length pair. These
chunks are called segments and are presumed to be non-contiguous in memory.

If an object does not export the buffer interface, its tp_as_buffer member in the
PyTypeObject structure should be NULL. Otherwise, the tp_as_buffer will point to a
PyBufferProcs structure.

Note
It is very important that your PyTypeObject structure uses Py_TPFLAGS_DEFAULT for
the value of the tp_flags member rather than 0. This tells the Python runtime that
your PyBufferProcs structure contains the bf_getcharbuffer slot. Older versions of
Python did not have this member, so a new Python interpreter using an old exten-
sion needs to be able to test for its presence before using it.

PyBufferProcs

Structure used to hold the function pointers that define an implementation of the
buffer protocol.

The first slot is bf_getreadbuffer, of type getreadbufferproc. If this slot is NULL, the
object does not support reading from the internal data. This is nonsensical, so imple-
menters should fill this in, but callers should test that the slot contains a non-NULL value.

The next slot is bf_getwritebuffer having type getwritebufferproc. This slot can be
NULL if the object does not allow writing into its returned buffers.

The third slot is bf_getsegcount, with type getsegcountproc. This slot must not be
NULL and is used to inform the caller of how many segments the object contains.
Simple objects such as PyString_Type and PyBuffer_Type contain a single segment.

27 0672319942 Appx A 11/15/00 11:46 AM Page 805

806 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

The last slot is bf_getcharbuffer, of type getcharbufferproc. This slot will only be
present if the Py_TPFLAGS_HAVE_GETCHARBUFFER flag is present in the tp_flags field of
the object’s PyTypeObject. Before using this slot, the caller should test whether it is
present by using the PyType_HasFeature() function. If present, it might be NULL, indi-
cating that the object’s contents cannot be used as 8-bit characters. The slot function
can also raise an error if the object’s contents cannot be interpreted as 8-bit characters.
For example, if the object is an array that is configured to hold floating point values,
an exception might be raised if a caller attempts to use bf_getcharbuffer to fetch a
sequence of 8-bit characters. This notion of exporting the internal buffers as text is
used to distinguish between objects that are binary in nature, and those which have
character-based content.

Note
The current policy seems to state that these characters might be multibyte charac-
ters. This implies that a buffer size of N does not mean that there are N characters
present.

Py_TPFLAGS_HAVE_GETCHARBUFFER

Flag bit set in the type structure to indicate that the bf_getcharbuffer slot is known.
This being set does not indicate that the object supports the buffer interface or that
the bf_getcharbuffer slot is non-NULL.

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)

Returns a pointer to a readable segment of the buffer. This function is allowed to raise
an exception, in which case it must return -1. The segment that is passed must be
zero or positive, and strictly less than the number of segments returned by the
bf_getsegcount slot function. On success, returns 0 and sets *ptrptr to a pointer to
the buffer memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)

Returns a pointer to a writable memory buffer in *ptrptr; the memory buffer must
correspond to buffer segment called segment. Must return -1 and set an exception on
error. TypeError should be raised if the object only supports read-only buffers, and
SystemError should be raised when segment specifies a segment that doesn’t exist.

int (*getsegcountproc) (PyObject *self, int *lenp)

Returns the number of memory segments that comprise the buffer. If lenp is not NULL,
the implementation must report the sum of the sizes (in bytes) of all segments in
*lenp. The function cannot fail.

27 0672319942 Appx A 11/15/00 11:46 AM Page 806

APPENDIX B

Running Python on Specific
Platforms

This appendix exposes particular details about using Python on
specific platforms.

Python on Win32 Systems

As you might know at this point, Python has an official distri-
bution for Win32 systems (Windows 95, Windows 98,
Windows 2000, and Windows NT), called Pythonwin. In order
to extend this distribution to its full power, you must get an
installation package that contains Python Win32 Extensions.
This set of extensions for Python exposes a good part of the
Win32 API, along with other Win32 extensions. These exten-
sions are part of the win32all installation package, which is
available for download (including the source code) at

http://www.python.org/windows/win32/

You can obtain more detailed and up-to-date information at
Mark Hammond starship’s page. He is the creator and main-
tainer of these extensions.

http://starship.python.net/crew/mhammond/

After you download the latest win32all package, you will have
access to the Microsoft Foundation Classes, the ODBC

D E V E L O P E R ’ S H A N D B O O K

28 0672319942 Appx B 11/15/00 11:47 AM Page 807

808 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

interface, the Microsoft Common Object Model (COM), and to several Windows NT
services.

For details about the COM interface, see Chapters 7, “Objects Interfacing and
Distribution,” and 8, “Working with Databases,” of this book. More information about
using COM in a Python environment can be obtained at a COM Tutorial presented
by Greg Stein and Mark Hammond, on a presentation given at IPC-6.

http://www.python.org/windows/win32com/COMTutorial/ppframe.htm

The following list shows the most important modules that are provided as part of the
win32all package.

pythoncom—This module exposes a low-level mechanism that is used by Python to
access the COM interface. See Chapter 7 for details.

win32api—This module offers a variety of functions that access the Win32 API.
Those functions are capable of performing general tasks such as rebooting the
machine and returning the computer and domain name of the local machine.

win32event—This module provides access to the synchronization functions avail-
able in the Win32 SDK.

win32evtlog—This module exposes functions that provide access to the Windows
NT Event Log.

win32evtlogutil—This module provides additional control for the win32evtlog
module.

win32file—This module provides natural file manipulation for reading and writing
operations by using native Win32 API I/O functions.

win32net—This module is responsible for automating the administration of a
Windows NT Network. Among other things, it controls users, user groups, the
resources that are shared by multiple users, and the access to the security database.

win32pdh—This module exposes functions that provide access to the Windows NT
Performance Monitor.

win32pdhutil—This module provides additional control for the win32pdh module.

win32pipe—This module works like a pipe between processes, allowing them to
communicate with each other. The information that is sent to the pipe by one
process can be read by another.

win32process—This module provides access to Win32 API functions that are
related to thread and process management.

28 0672319942 Appx B 11/15/00 11:47 AM Page 808

809APPENDIX B Running Python on Specific Platforms
Python on Win32 Systems

win32service—This module is responsible for managing services dependency, defin-
ing how services should start, and for actually initializing and stopping the services.
Everything is done by accessing the Windows NT Service Control Manager.

win32serviceutil—This module provides additional control for the win32service
module.

The next couple of paragraphs expose you to third-party programs created to handle
specific Windows tasks. Note that many of these tasks can be replicated by writing
programs that access the Win32 API.

The first thing I will discuss is about how to load and use DLL files from Python run-
ning under MS Windows. My suggestion for you is to use Sam Rushing’s calldll
extension, which allows you to call functions in any DLL. This extension is part of the
dynawin package, a completely developed Win32 GUI development environment.

Also provided, there is a callback generator that lets external functions call back into
Python as if it were C, and an ODBC module implemented using calldll (additional
code for managing data sources, installing ODBC itself, and creating and maintaining
Jet (Microsoft Access) databases is supplied, as well). For more information, check out

http://www.nightmare.com/~rushing/dynwin/

By looking at http://www.nightmare.com/software.html, you can download a good
number of Win32-specific software that was also created by Rushing.

At Ken Seehof’s Python Page, you can find several programs for the Windows plat-
form, such as the Neural Integrator—a visual programming environment for prototyp-
ing neural networks and other directed graph-based programming models that can
bring AI capabilities to your program. Once there, you can also obtain Wizard applica-
tions for the Pythonwin IDE, which can simplify many of your tasks, including the
creation of extension modules. Be sure to have Visual C++ and Pythonwin, before try-
ing to use the Wizards. Check out the following site:

http://starship.python.net/crew/seehof/

Windows programmers sometimes have the requirement to make changes on the
Windows Registry. The win32all package contains a very interesting script, which is
installed at the subdirectory win32/scripts/regsetup.py that enables you to edit the
Windows Registry.

Another thing that we are always in need of is printing. It is your choice whether you
use the Win32 API to handle that, or use a third-party module. The one that I men-
tion here is a class developed by Bill Mailloux to print text to Windows printers. You
can download the class at the following address:

28 0672319942 Appx B 11/15/00 11:47 AM Page 809

810 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

http://musingattheruins.homepage.com/printer.html

The next example gives you a quick demonstration of how simple it is to use this
module.

import printer

driver = printer.Printer()

driver.open()

driver.write(“This sentence is going to be printed.”)

driver.close()

del driver

If you want to install Python 2.0 on a Windows NT or Windows 2000 machine, you
don’t necessarily need to have administrator priviledges. If you have them, great!
Python will write its registry info under the key HKEY_LOCAL_MACHINE. However, if you
don’t have admin rights, Python will write its registry info under the key
HKEY_CURRENT_USER. The only difference between both kinds of installations is that the
latter option blocks some specific functionalities, such as running Python scripts as
NT services. Note that all the core functionality remains available for you in both
installations.

Python on MacOS Systems

It is no big surprise that Python has a standard port for Macintoshes because Python
itself was created on a Macintosh. This port is called MacPython and is maintained by
Jack Jansen. MacPython applies to MacOS up to version 9. Installing Python on
MacOS X (10) systems will be much more like a standard UNIX installation.

Python runs great on Apple Macintoshes, iMacs, iBooks, and so forth. Note that you
can decide whether you want to install Python under the MacOS (using the
MacPython distribution), under a Linux installation (in case you are using a distribu-
tion such as the Yellow Dog), or even under Java (using JPython, the Python inter-
preter written in Java). If you have Linux installed on your Mac, it is best for you to
look at the UNIX section.

At this moment, the current stable distribution is 1.5.2. For this release, the installer is
available in two forms: MacBinary format and BinHex format. It is suggested that
the latter option should be used in case your browser mistreats MacBinary files. The
installer can also install some optional extensions for you, including Tkinter, the
Numerical, and Imaging modules.

28 0672319942 Appx B 11/15/00 11:47 AM Page 810

811APPENDIX B Running Python on Specific Platforms
Python on MacOS Systems

Also included in the distribution (and optionally installed by the installer) is an inte-
grated development environment written by Just van Rossum (Guido’s brother), which
includes an editor, debugger, and class browser.

The MacPython distribution contains the same set of extension modules that is avail-
able for almost every platform (sys, string, time, and so on). Besides that, it contains
a set of modules that provide interfaces to specific MacOS services, including access to
QuickTime and QuickDraw.

In order to download Python for Macintosh, the source code, and all the available
documentation, check out Jack Jansen’s MacPython Web page at

http://www.cwi.nl/~jack/macpython.html

The most noticeable differences between MacPython and the UNIX/Windows distri-
butions are the following:

• It doesn’t provide access to the standard POSIX features (pipes, forking, access
to command-line interfaces, and so on). In particular, looking at the Mac mod-
ule, you’ll see what functions you can expect in the os module. If you compare
this to the posix or winnt module, you’ll see what is missing: Options like
posix.fork are not available on the Mac.

• The threading mechanism is just starting to show up now (with Python 2.0), as
the most recent versions of the GUSI development environment for MacOS
support POSIX threads. Note that threading support using the user-space GNU
pth library was also added to the language in the release 2.0. Consequently, now
you have the option to run programs on Macintosh that are able to use Python’s
POSIX threading support.

• Tkinter works, but not as smoothly as it could. It is expected that when 1.6 bina-
ries come out, things should be much better.

• Support for C extension modules is based on patches because most of them are
written for UNIX or Windows.

• Porting a Python application from other systems to MacPython works fine,
assuming it has been written in a cross-platform way.

Precise details on the differences in the standard distribution can be found in the
Python Documentation—if a module or feature is not compatible with the Mac distri-
bution, it will say so there. For more technical details, you might want to join the
PythonMac SIG, which has discussions on Macintosh-specific aspects of Python.
Check out

http://www.python.org/sigs/pythonmac-sig/

28 0672319942 Appx B 11/15/00 11:47 AM Page 811

812 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

The official documentation for the Macintosh specific modules available in the
MacPython distribution is located at

http://www.python.org/doc/current/mac/mac.html

Next, I list the description of those modules.

mac—This module implements the operating system dependent functionality pro-
vided by the standard module os. Note that it is best used when accessed through
the os module.

macpath—This module is the Macintosh implementation of the os.path module.

Caution
You shouldn’t try to use the previous two modules directly. Instead, use the os
module.

ctb—This module provides a partial interface to the Macintosh Communications
Toolbox. Currently, only Connection Manager tools are supported. It might not be
available in all MacPython versions.

macconsole—This module is available on the Macintosh, provided Python has been
built using the Think C compiler. It provides an interface to the Think console
package, with which basic text windows can be created.

macdnr—This module provides an interface to the Macintosh Domain Name
Resolver. It is usually used in conjunction with the mactcp module, to map host-
names to IP addresses. It might not be available in all MacPython versions.

macfs—This module provides support for Macintosh FSSpec handling, the Alias
Manager, finder aliases, and the Standard File package.

ic—This module provides access to Macintosh Internet Config package, which
stores preferences for Internet programs such as mail address, default homepage,
and so on. Also, Internet Config contains an elaborate set of mappings from
Macintosh creator/type codes to foreign filename extensions plus information on
how to transfer files (binary, ascii, and so on).

MacOS—This module provides access to MacOS specific interpreter features, such as
how the interpreter eventloop functions and the like. It is suggested that you use
this module with care.

macostools—This module contains some convenience routines for file manipula-
tion on the Macintosh.

28 0672319942 Appx B 11/15/00 11:47 AM Page 812

813APPENDIX B Running Python on Specific Platforms
Python on MacOS Systems

findertools—This module provides wrapper routines around the finder’s Apple
Events interface.

mactcp—This module provides an interface to the Macintosh TCP/IP driver
(MacTCP). There is an accompanying module, macdnr, which provides an interface
to the name server (allowing you to translate hostnames to IP addresses), and a
module MACTCPconst that has symbolic names for constants used by MacTCP. Note
that because the built-in module socket is also available on the Macintosh, it is usu-
ally easier to use sockets instead of the Macintosh-specific MacTCP API.

macspeech—This module provides an interface to the Macintosh Speech Manager,
allowing you to let the Macintosh utter phrases. You need a version of the Speech
Manager extension (version 1 and 2 have been tested) in your Extensions folder for
this to work. The module does not provide full access to all features of the Speech
Manager yet. It might not be available in all MacPython versions.

EasyDialogs—The EasyDialogs module contains some basic dialogs for the
Macintosh, modeled after the stdwin dialogs with similar names.

FrameWork—The FrameWork module contains classes that together provide a frame-
work for an interactive Macintosh application. The programmer builds an applica-
tion by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often
be done on various different levels. For instance, to handle clicks in a single dialog
window in a non-standard way, it is not necessary to override the complete event
handling.

MiniAEFrame—The module MiniAEFrame provides a framework for an application
that can function as an Open Scripting Architecture (OSA) server, that is receive
and process AppleEvents. It can be used in conjunction with FrameWork or stand-
alone. This module is temporary; it will eventually be replaced by a module that
handles argument names better and possibly automates making your application
scriptable.

This Open Directory page provides many links for materials about MacPython avail-
able on the Web:

http://dmoz.org/Computers/Systems/Macintosh/Development/Languages/Python/

28 0672319942 Appx B 11/15/00 11:47 AM Page 813

814 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Python on UNIX Systems

Probably, UNIX users are the largest slice of the Python community pie graph, which
consequently turns this system into the one that has the most tested distribution. The
only thing that can be considered a negative aspect is the fact that you have to compile
and build the distribution yourself. But that’s understandable because there are several
different types of UNIX out there. However, to make things simple, nowadays most
Linux distributions already come with Python installed for you. You just need to check
whether it is the latest version available.

Sometimes, people build Python with some modules disabled (for instance, optional
modules and modules that belong to specific Operating Systems). If that’s your case,
and you feel that you are missing something such as the Tkinter module, you can
rebuild Python yourself.

Note
The Tk toolkit is portable to many UNIX platforms, which makes Tkinter a portable
GUI option across different UNIX systems.

In order to enable the modules that are disabled on your system, you need to copy the
file /Modules/Setup.in (located at the source distribution) to Setup, and edit that file.
Note that each line in the file lists the module name, the source file, compiler options,
and linked libraries. Take a look in the following line:

#readline readline.c -lreadline -ltermcap

In order to add the GNU readline program to your Python executable, you need to
uncomment the line, and rebuild the interpreter by typing the following commands in
the top-level directory of the source tree. See Chapter 17, “Development Tools,” for
more details.

make

make install

The standard Python distribution contains some extensions that are specifically for
UNIX systems, such as crypt, dbm, gdbm, grp, pwd, stat, and termios. These modules
aren’t available for Windows or for Mac platforms.

SGI systems, on the other hand, also have their specific modules, which are

• al and AL for handling the audio library

• cd for operating the CD library

28 0672319942 Appx B 11/15/00 11:47 AM Page 814

815APPENDIX B Running Python on Specific Platforms
Other Platforms

• fl, flp, and FL for accessing the FORMS library

• fm, the font manager

SunOS/Solaris systems have their specific module as well: sunaudiodev, which is used
to access the audio device.

There are also some Linux specific modules, such as linuxaudiodev, included with
Python.

Other Platforms

Besides Win32 systems, Macintoshes, and UNIX systems, Python is also available for
a couple of other platforms. Next is a list of some of these other distributions. If you
are reluctant about building Python from the start on your system, maybe it is a good
idea to look around and see if someone else has already done that. Maybe the binaries
are already out there, just waiting for you.

Python for OS/2

Jeff Rush provides a Web page where he offers the download of Python binaries for
OS/2:

http://warped.cswnet.com/~jrush/python_os2/index.html

Python for Windows 3.1

In order to run Python on 16-bit versions of the Windows OS (Windows 3.1,
Windows 3.11, and Windows for Workgroups), you can use either the DOS binary
distribution or the WPY package, which is based on the MFC classes. The main page for
all Windows ports is located at http://www.python.org/windows. There you can find
more information and download info.

Python for DOS

Hans Nowak’s Python-DX is a no-longer maintained version of Python for 32-bit
DOS, equivalent to Python 1.5.2:

http://www.hvision.nl/~ivnowa/newsite/Python/Python-DX/python-dx.html

Python for BeOS

Chris Herborth maintains ports of Python 1.5.2 for BeOS systems, which can be
found at http://www.bebits.com/app/606/

28 0672319942 Appx B 11/15/00 11:47 AM Page 815

816 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Python for VMS

Uwe Zessin has a port of Python 1.5.x to OpenVMS that includes interfaces to many
OpenVMS RTL and system service routines:

http://decus.decus.de/~zessin/python/index.html

Python for Psion

Duncan Booth is porting Python 1.5 to the Psion Series 5. Check out his Web site for
more details:

http://dales.rmplc.co.uk/Duncan/PyPsion.htm

Python for Windows CE

Once again, Mark Hammond brings a great contribution to the Python community
with his port of Python to the Windows CE platform. The current release can be
installed on any Windows CE 2.0 or later HPC, or PPC devices running MIPS or
SH3 processors. Note that you can install and run it directly from a flash memory
card. This distribution comes with the Python interpreter, a subset of the standard
python library modules, and many extension modules that provide access to the Win32
API. For more information, check out

http://starship.python.net/crew/mhammond/ce/

In case you are really into using Python in this type of system, there is an earlier port
written by Brian Lloyd, that can be accessed at

http://www.digicool.com/~brian/PythonCE/index.html

Python for Anything Else

If your Operating System is not listed here, don’t worry because if your system has a C
compiler, chances are huge that it can run Python. The first thing you need to do is
get your hands on the Python Source distribution at

http://www.python.org/download/download_source.html

The source code that you can download from the Python Web site comes ready to be
built on UNIX and Win32 systems. But note that this source code is the starting point
for porting Python to all other platforms. Good luck!

28 0672319942 Appx B 11/15/00 11:47 AM Page 816

APPENDIX C

Python Copyright Notices

The following copyright notices provide the necessary credits to
some of the material contained in this book.

Python’s Copyright Notices supports Python itself, and most of
the modules that are part of the standard distribution.
Exceptions exist, such as the profile and the pstats modules,
which have their own copyright notice. In Chapter 17,
“Development Tools,” we have part of the documentation and
user manual of those modules covered by their copyright
notice, which is presented in this appendix.

The last two copyrights listed in this section cover the JPython
distribution. Depending on your choice of using or not the
OROMatcher library (see Chapter 18, “JPython”), you have a spe-
cific copyright notice to obey.

Next, you have all the current type of licenses that are available
for Python. Note that the definitive license for each component
is the one distributed with the software.

Python 2.0 License Information

HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at
Stichting Mathematisch Centrum (CWI) in the Netherlands as

D E V E L O P E R ’ S H A N D B O O K

29 0672319942 Appx C 11/15/00 11:48 AM Page 817

818 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

a successor to a language called ABC. Guido is Python’s principal author, although it
includes many contributions from others. The last version released from CWI was
Python 1.2. In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI) in Reston, Virginia, where he released several
versions of the software. Python 1.6 was the last of the versions released by CNRI. In
2000, Guido and the Python core development team moved to BeOpen.com to form
the BeOpen PythonLabs team (www.pythonlabs.com). Python 2.0 is the first release
from PythonLabs. Thanks to the many outside volunteers who have worked under
Guido’s direction to make this release possible.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0

BeOpen Python Open Source License Agreement Version 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or
Organization (“Licensee”) accessing and otherwise using this software in source
or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative ver-
sion, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTA-
TION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER
USERS OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVA-
TIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

29 0672319942 Appx C 11/15/00 11:48 AM Page 818

819APPENDIX C Python Copyright Notices
Python’s Copyright Notice (version 1.6)

6. This License Agreement shall be governed by and interpreted in all respects by
the law of the State of California, excluding conflict of law provisions. Nothing
in this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names
in a trademark sense to endorse or promote products or services of Licensee, or
any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permis-
sions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

Python’s Copyright Notice (version 1.6)

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI’s License
Agreement. This Agreement together with Python 1.6 may be located on the Internet
using the following unique, persistent identifier (known as a handle): 1895.22/1012.
This Agreement may also be obtained from a proxy server on the Internet using the
following URL: http://hdl.handle.net/1895.22/1012.

Python 1.6

CNRI OPEN SOURCE LICENSE AGREEMENT

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CARE-
FULLY. BY CLICKING ON “ACCEPT” WHERE INDICATED BELOW,
OR BY COPYING, INSTALLING OR OTHERWISE USING PYTHON 1.6
SOFTWARE, YOU ARE DEEMED TO HAVE AGREED TO THE TERMS
AND CONDITIONS OF THIS LICENSE AGREEMENT.

1. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive, Reston, VA
20191 (“CNRI”), and the Individual or Organization (“Licensee”) accessing and
otherwise using Python 1.6 software in source or binary form and its associated
documentation, as released at the www.python.org Internet site on September 5,
2000 (“Python 1.6”).

29 0672319942 Appx C 11/15/00 11:48 AM Page 819

820 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works, distrib-
ute, and otherwise use Python 1.6 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e.,
“Copyright 1995-2000 Corporation for National Research Initiatives; All Rights
Reserved” are retained in Python 1.6 alone or in any derivative version prepared
by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may
substitute the following text (omitting the quotes): “Python 1.6 is made available
subject to the terms and conditions in CNRI’s License Agreement. This
Agreement together with Python 1.6 may be located on the Internet using the
following unique, persistent identifier (known as a handle): 1895.22/1012. This
Agreement may also be obtained from a proxy server on the Internet using the
following URL: http://hdl.handle.net/1895.22/1012”.

3. In the event Licensee prepares a derivative work that is based on or incorporates
Python 1.6 or any part thereof, and wants to make the derivative work available
to others as provided herein, then Licensee hereby agrees to include in any such
work a brief summary of the changes made to Python 1.6.

4. CNRI is making Python 1.6 available to Licensee on an “AS IS” basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF PYTHON 1.6 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF PYTHON 1.6 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUEN-
TIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIB-
UTING, OR OTHERWISE USING PYTHON 1.6, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by and interpreted in all respects by
the law of the State of Virginia, excluding conflict of law provisions. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License

29 0672319942 Appx C 11/15/00 11:48 AM Page 820

821APPENDIX C Python Copyright Notices
Python’s Copyright Notice (until version 1.5.2)

Agreement does not grant permission to use CNRI trademarks or trade name in
a trademark sense to endorse or promote products or services of Licensee, or any
third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing
or otherwise using Python 1.6, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

ACCEPT

Python’s Copyright Notice (until version 1.5.2)

Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The
Netherlands.

All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of Stichting
Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available
by the Corporation for National Research Initiatives (CNRI) at the Internet address
ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

29 0672319942 Appx C 11/15/00 11:48 AM Page 821

822 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Copyright Notice of the profile and pstats Modules

Copyright 1994, by InfoSeek Corporation, all rights reserved. Written by James
Roskind

Permission to use, copy, modify, and distribute this Python software and its associated
documentation for any purpose (subject to the restriction in the following sentence)
without fee is hereby granted, provided that the above copyright notice appears in all
copies, and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of InfoSeek not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior per-
mission. This permission is explicitly restricted to the copying and modification of the
software to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INFOSEEK
CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Copyright Notice of JPython with OROMatcher

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CARE-
FULLY.

BY CLICKING ON THE “ACCEPT” BUTTON WHERE INDICATED, OR
BY INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE,
YOU ARE DEEMED TO HAVE AGREED TO THE TERMS AND CONDI-
TIONS OF THIS AGREEMENT.

JPython version 1.1.x

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191

29 0672319942 Appx C 11/15/00 11:48 AM Page 822

823APPENDIX C Python Copyright Notices
Copyright Notice of JPython with OROMatcher

(“CNRI”), and the Individual or Organization (“Licensee”) accessing and using
JPython version 1.1.x in source or binary form and its associated documentation as
provided herein (“Software”).

Subject to the terms and conditions of this License Agreement, CNRI hereby grants
Licensee a non-exclusive, non-transferable, royalty-free, world-wide license to repro-
duce, analyze, test, perform and/or display publicly, prepare derivative works, distrib-
ute, and otherwise use the Software alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e.,
“Copyright 1996-1999 Corporation for National Research Initiatives; All Rights
Reserved” are both retained in the Software, alone or in any derivative version pre-
pared by Licensee.

Alternatively, in lieu of CNRI’s License Agreement, Licensee may substitute the fol-
lowing text (omitting the quotes), provided, however, that such text is displayed promi-
nently in the Software alone or in any derivative version prepared by Licensee:
“JPython (Version 1.1.x) is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement may be located on the Internet using the
following unique, persistent identifier (known as a handle): 1895.22/1006. The License
may also be obtained from a proxy server on the Web using the following URL:
http://hdl.handle.net/1895.22/1006.”

In the event Licensee prepares a derivative work that is based on or incorporates the
Software or any part thereof, and wants to make the derivative work available to the
public as provided herein, then Licensee hereby agrees to indicate in any such work, in
a prominently visible way, the nature of the modifications made to CNRI’s Software.

Licensee may not use CNRI trademarks or trade name, including JPython or CNRI,
in a trademark sense to endorse or promote products or services of Licensee, or any
third party. Licensee may use the mark JPython in connection with Licensee’s deriva-
tive versions that are based on or incorporate the Software, but only in the form
“JPython-based ___________________,” or equivalent.

The Software contains OROMatcher regular expression software from ORO, Inc.
Copyright 1997 by ORO, Inc. (“ORO software”). OROMatcher (TM) is a trademark
of Original Reusable Objects, Inc. Except as permitted by applicable law and this
Agreement, Licensee may not decompile, reverse engineer, disassemble, or modify the
ORO software provided herein. Licensee acknowledges that redistribution of the
ORO software separate from JPython or direct use of the ORO software interfaces
requires a separate license from ORO, Inc. http://www.oroinc.com/

CNRI is making the Software available to Licensee on an “AS IS” basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

29 0672319942 Appx C 11/15/00 11:48 AM Page 823

824 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES
NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OR LOSS AS A RESULT OF USING, MODIFYING OR DISTRIB-
UTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF. SOME STATES DO NOT
ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY SO THE
ABOVE DISCLAIMER MAY NOT APPLY TO LICENSEE.

This License Agreement may be terminated by CNRI (i) immediately upon written
notice from CNRI of any material breach by the Licensee, if the nature of the breach
is such that it cannot be promptly remedied; or (ii) sixty (60) days following notice
from CNRI to Licensee of a material remediable breach, if Licensee has not remedied
such breach within that sixty-day period.

This License Agreement shall be governed by and interpreted in all respects by the
law of the State of Virginia, excluding conflict of law provisions. Nothing in this
Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between CNRI and Licensee.

By clicking on the “ACCEPT” button where indicated, or by installing, copying or
otherwise using the Software, Licensee agrees to be bound by the terms and condi-
tions of this License Agreement.

Copyright Notice of JPython without OROMatcher

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CARE-
FULLY.

BY CLICKING ON THE “ACCEPT” BUTTON WHERE INDICATED, OR
BY INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE,
YOU ARE DEEMED TO HAVE AGREED TO THE TERMS AND CONDI-
TIONS OF THIS AGREEMENT.

29 0672319942 Appx C 11/15/00 11:48 AM Page 824

825APPENDIX C Python Copyright Notices
Copyright Notice of JPython without OROMatcher

JPython version 1.1.x

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
(“CNRI”), and the Individual or Organization (“Licensee”) accessing and using
JPython version 1.1.x in source or binary form and its associated documentation as
provided herein (“Software”)

Subject to the terms and conditions of this License Agreement, CNRI hereby grants
Licensee a non-exclusive, non-transferable, royalty-free, world-wide license to repro-
duce, analyze, test, perform and/or display publicly, prepare derivative works, distrib-
ute, and otherwise use the Software alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e.,
“Copyright 1996-1999 Corporation for National Research Initiatives; All Rights
Reserved” are both retained in the Software, alone or in any derivative version pre-
pared by Licensee.

Alternatively, in lieu of CNRI’s License Agreement, Licensee may substitute the fol-
lowing text (omitting the quotes), provided, however, that such text is displayed promi-
nently in the Software alone or in any derivative version prepared by Licensee:
“JPython (Version 1.1.x) is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement may be located on the Internet using the
following unique, persistent identifier (known as a handle): 1895.22/1005. The License
may also be obtained from a proxy server on the Web using the following URL:
http://hdl.handle.net/1895.22/1005.”

In the event Licensee prepares a derivative work that is based on or incorporates the
Software or any part thereof, and wants to make the derivative work available to the
public as provided herein, then Licensee hereby agrees to indicate in any such work, in
a prominently visible way, the nature of the modifications made to CNRI’s Software.

Licensee may not use CNRI trademarks or trade name, including JPython or CNRI,
in a trademark sense to endorse or promote products or services of Licensee, or any
third party. Licensee may use the mark JPython in connection with Licensee’s deriva-
tive versions that are based on or incorporate the Software, but only in the form
“JPython-based ___________________,” or equivalent.

CNRI is making the Software available to Licensee on an “AS IS” basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES
NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

29 0672319942 Appx C 11/15/00 11:48 AM Page 825

826 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES OR LOSS AS A RESULT OF USING, MODIFYING OR DISTRIB-
UTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF. SOME STATES DO NOT
ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY SO THE
ABOVE DISCLAIMER MAY NOT APPLY TO LICENSEE.

This License Agreement may be terminated by CNRI (i) immediately upon written
notice from CNRI of any material breach by the Licensee, if the nature of the breach
is such that it cannot be promptly remedied; or (ii) sixty (60) days following notice
from CNRI to Licensee of a material remediable breach, if Licensee has not remedied
such breach within that sixty-day period.

This License Agreement shall be governed by and interpreted in all respects by the
law of the State of Virginia, excluding conflict of law provisions. Nothing in this
Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between CNRI and Licensee.

By clicking on the “ACCEPT” button where indicated, or by installing, copying or
otherwise using the Software, Licensee agrees to be bound by the terms and condi-
tions of this License Agreement.

29 0672319942 Appx C 11/15/00 11:48 AM Page 826

APPENDIX D

Migrating to Python 2.0

This book was originally planned to cover Python 1.5.2 and its
transition to version 1.6. However, as release 2.0 was about to
be released when the book was ready to go to the printer, we
decided to make the necessary changes throughout the book in
order to cover the new features that are part of the 2.0 release.

This appendix gives you a general overview about what has
changed. More detailed information can be found inside each
chapter of this book.

The release 2.0, launched by BeOpen/PythonLabs, starts a new
life for Python as important features were incorporated to the
product; many bugs were fixed; the code has become better
documented; and a couple of optimizations were made.

Kuchling and Moshe Zadka wrote a document titled “What’s
New in Python 2.0” that lists in detail every single aspect of this
new release:

http://starship.python.net/crew/amk/python/writing/

new-python/

D E V E L O P E R ’ S H A N D B O O K

30 0672319942 Appx D 11/15/00 11:42 AM Page 827

828 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

Python 1.6 or Python 2.0. Which One to Choose?

For those of you who wonder what was the reason to launch version 1.6 when the 2.0
was about to be released, I can explain:

When Guido and his team decided to leave CNRI, that institution asked for a 1.6
release to be created. That release would have to contain all the Python code that was
designed while the team was still working at CNRI.

Although a lot of changes were incorporated to version 2.0, version 1.6 is forward-
compatible with Python 2.0. Note that both releases, 1.6final and 2.0beta1, were
released on the same day (September 5, 2000).

New Development Process

Some business processes have changed after the main development team has left
CNRI. Currently, SourceForge is hosting the Python project page at
http://sourceforge.net/projects/python/.

At that page, you can report bugs, visualize the Python CVS tree, submit patches, and
use the patch manager and the bug tracking tools.

From now on, a new kind of document must be used in order to discuss new possible
features and expose the Python community to information about features that have
been implemented. This new document records all the discussion about the possibility
to include a new idea in a future Python release. These documents are called Python
Enhancement Proposals (PEPs), modeled on the Internet RFC process. It is said that
they must provide a concise technical specification of the feature and a reason for the
feature. They have to be used to collect input from the community and to document
the design decisions that were approved. Each proposal has its own author as the sole
responsible for managing it. Any kind of enhancement to the language must be docu-
mented by a PEP before it can be accepted as valid. For more information, check out

http://python.sourceforge.net/peps/

Enhancements

Python 2.0 comes bundled with many new features, bug fixes, and optimizations. The
next list provides an appetizer for the main changes that were made, and that are about
to be shown.

30 0672319942 Appx D 11/15/00 11:42 AM Page 828

829APPENDIX D Migrating to Python 2.0
Enhancements

• Python 2.0’s source code was converted to ANSI C. That means that you need
an ANSI C compiler in order to compile Python. Compilers that only support
K&R C will not be able to compile version 2.0. Note that this isn’t a big prob-
lem, as just about every C compiler these days is ANSI C compliant.

• For those of you who had problems with the size of your source code, Python
2.0 has increased the limit of expressions and files in Python source code. That
limit is now 2**32. If compared to the 2**16 that we previously had, it can be
considered a good limit.

• This new release also starts the porting of Python to 64-bit platforms. Currently,
both Linux and Win64 are able to take care of that. Some extra effort was made
especially for Intel’s Itanium processor.

• The support to XML was fully extended. The xml package includes a renewed
DOM interface and a SAX2 interface.

• All the internals of the re module were changed. Now, the regular expression
engine is located in a new module called SRE written by Fredrik Lundh of Secret
Labs AB. This was to allow Unicode strings to be used in regular expressions
too. Pay attention to the re module as it continues to be the front-end module,
which internally calls the SRE module.

• Many new modules were added. (Check them out throughout the book!)

• Many enhancements were made to IDLE. Python 2.0 is distributed with
IDLE 0.6, which also contains a number of new features.

• Some methods had their syntax changed for enhancement purposes, including
listobj.insert(), listobj.append(), and the methods from the socket module.

• Python 2.0 introduces the possibility to rename a module when importing it, for
example, import Module as OtherName. Note that this syntax can also be used
when importing symbols from a module, for instance:

from module import sym1 as sym2

• Now, you can also redirect your print statements to a file-like object, for
example, print >> fileobj, “Hello Python World”.

30 0672319942 Appx D 11/15/00 11:42 AM Page 829

830 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

The following are considered to be the most important changes in this new release.

Unicode Support

This is a long awaited feature that was finally added to the language. Unicode strings
are a new sort of data type, which can handle up to 65,536 distinct characters, instead
of being limited to the 256 used by the ASCII format. Python now comes with a
library of codecs for converting between Unicode and the various character encodings in
use. This library can be extended very easily.

List Comprehension

Whenever you need to compute a list (or lists) of elements in order to generate a new
list, you can use this new and more efficient mechanism. It is offered for lists in order
to replace the not-that-efficient method of using a for loop with an if statement and a
list.append() call, for example, newlist = [y+3 for y in range(15)]

Strings Manipulation

Prior to version 2.0, you had to rely on the string module to manipulate your string
objects. With this new release, the methods were pushed to the string type. Besides
the methods that were inherited from the string module, two new methods were also
added. Note that old string module was not removed from the distribution because it
is still necessary for backward compatibility.

Augmented Assignment

Python 2.0 implements a full set of augmented assignment operators. This includes:
+=, -=, *=, /=, %=, **=, &=, |=, ^=, »=, and «=

For example, instead of saying x = x+1, you can choose to say x += 1

Note that you can also specify methods for classes (such as __iadd__) in order to han-
dle these new operators.

Garbage Collection

The Python interpreter is now using a new mechanism to collect unused objects.
From time to time, this mechanism performs a cycle detection algorithm that searches
for inaccessible cycles and deletes the participating objects. This process has been
named Garbage Collection of Cycles.

There are a couple of parameters of the garbage collection that you can manipulate.
The module gc provides functions that help you out with that. Of course, you always

30 0672319942 Appx D 11/15/00 11:42 AM Page 830

831APPENDIX D Migrating to Python 2.0
Expected Code Breaking

have the option to disable this feature. To do so, simply specify the argument
“--without-cycle-gc” when running the Python configure script.

Maximum Recursion

Prior to version 2.0, Python’s maximum recursion depth used to be decided when you
compiled Python. Now, the maximum number of recursive calls that can be made by
Python code is easily interpreted and modified by Python programs just by using the
functions sys.getrecursionlimit and sys.setrecursionlimit, respectively. Note that
the default number of recursive calls is set to 1000, and you can use the script
Misc/find_recursionlimit.py that comes as part of the 2.0 distribution to help you
figure out what is the best number to use on your system. After running this program,
you can add a setrecursionlimit() call to the end of site.py so that this limit is used
by all Python programs on the system.

Taking good care of this limit can help you trap infinite recursions of filling the C
stack and causing a core dump or GPF on your system.

Expected Code Breaking

There are a couple of changes in Python 2.0 that you should be aware of because they
could cause your current Python code to break.

• It’s not possible to have string exceptions anymore. All standard exceptions can
only be classes from now on. The -X command line option has been removed.

• The \x escape that you normally use for string literals now accepts only 2 hexa-
decimal digits, instead of reading everything that you inform and taking only the
lowest 8-bit of the given value. Note that not many people knew about or used
this fact, so it should not cause any significant breakage.

• Prior to 2.0, there were some methods that accepted multiple arguments, and
internally converted them to a tuple, such as the .append() method of a list
object. Consequently, you could type lstobj.append(3,4,5). After release 2.0,
you need to inform an additional pair of parenthesis in order to avoid raising a
TypeError exception. Thus, the right syntax has become
lstobj.append((3,4,5)). Note that there are a couple of methods that still work
in both ways, such as the socket.connect(). Also note that the script
Tools/scripts/checkappend.py can be used to catch most occurrences of this
mistake.

30 0672319942 Appx D 11/15/00 11:42 AM Page 831

832 PYTHON DEVELOPER’S HANDBOOK

PART VII Appendixes

• When dealing with long integers, the str() function doesn’t include the ‘L’ char-
acter anymore at the end of the string. Although, the repr() function still does.
Therefore, if you cut the last position of our string in order to get rid of the ‘L’,
you will now get rid of the last digit. So, be careful!

• Talking about str() and repr(), they now use different formatting precision
string. The former uses %.12g, and the latter uses %.17g. Consequently, repr()
might sometimes return more decimal places.

And always remember that you can depend on the support of the Python community
to help you out with problems that you can’t easily solve. If you think your problem is
a common or simple problem, try reading the list archives or asking questions in the
mailing lists. If it seems to be a bug, look at the CVS tree to see whether it has been
fixed. If not, you can report it.

Good luck in your Python Adventure!

30 0672319942 Appx D 11/15/00 11:42 AM Page 832

Index

Symbols

! (exclamation points), 693
(pound sign), 643
$ (dollar sign)

identifier names, 40
re module, 370

% (percent sign), identifier names, 40
& (ampersands), 458 () (parenthesis)

1st append, 66
tuples, 399

@ (at sign), identifier names, 40
\ (backslash)
` (back quotes), strings, 46
`` (backticks), strings, 45
| (pipe) literal, 230
’ (single quote), strings, 45
” (double quotes), strings, 45
’’’ (triple quotes), strings, 45
+ (plus) sign, 86, 370, 458, 495
<< operator, 48
= (equals sign), 48, 458, 642
== operator, 48
0 variable, 337
1 variable, 337
1, 526
1st.append, () (parenthesis), 66
2 variable, 337
3 variable, 337

31 0672319942 index 11/15/00 11:42 AM Page 833

834 4DOM

4DOM, 506
4XSLT, 507

adding line breaks, 38
escaping, 89

A

A, 526
a (append) mode, 86
a event, 587
a(rgs) command, 695
a2b_hex function, 548
abbreviations

def, functions, 71
sorting keys, 704

ABC scripting language, 9
__abs__(self) method, 194
Abstract Objects Layer, Python/C

Application Programmers Interface
(API), 762-769, 771

Abstract Windowing Toolkit (AWT), 731
Abstract Windowing Toolkit (AWT)

module, 570
AbstractFormatter(writer) class, 527
Abstraction, procedural, 72-73
AbstractWriter() class, 529
accelerator option, 605
accept() method, 398, 401
acceptable input, testing for, 463
accessing

command line interpreter, 32
databases

calldll package, 325
connection objects, 337, 339-340

dynamic link libraries (DLLs), 243

exception states, 748
methods and properties, objects, 264
module attributes, 248
modules, 248
private attributes, 204-205
swing components, 732
unbounded method, 191
uniform resource locators (URLs),

414-415, 417
variables, instances, 188

activating debuggers, Pythonwin, 667
Active Scripting, 481-488
Active Server Pages (ASP), 481, 485-487
activebackground property, 597
activeforeground property, 597
ActiveX control, 266, 485-487
ActiveX Data Objects (ADOs), 266,

325-326
actual(options) method, 594
__add__(name) method, 544
__add__(self, other) method, 194
add(filename, ...) method, 704
add(type, options) method, 605
adding

break-point connections, Pythonwin, 668
Button widgets inside text, 616-617
comments to code, 643-644
data, relational databases, 331
line breaks, 38
Python/C Application Programmers

Interface (API), 223
watch variables, Pythonwin, 668

addition (+) sign, 86, 370, 458, 495
AddRef() method, 263
addresses, 395-396
AddressList class, 531

31 0672319942 index 11/15/00 11:42 AM Page 834

835Application Programmers Interface (API)

AddressList objects, 543-544
addresslist variable, 544
AddressList(field) method, 541
address_family attribute, 408
add attributes, 525
add methods, 605
admin rights, installations, 810
administrator privileges, installations,

810
ADO. See ActiveX Data Objects
AF values, 400
after methods, 588
aggregate functions, relational databases,

330-331
agreements, CNRI, 819
AIFC (Audio Interchange File Format),

359
aifc module, 138, 359
aifc.writeframes() method, 359
Ajuba, 557
al module, 143, 814
Alafajor, 406
alert() function, 482
alias [name [command]] command, 696
aliases, 693
alibration, profiler class, 707-708
aligning colored buttons, frames, 602
allocating memory from Python heap,

801
allocators, raw memory, 800
Amoeba Project, 9
ampersands (&), 458
analyzing profiles, pstats module,

701-708
anchor argument, 584

anchor option, 581, 600
anchor property, 595
anchor_bgn(href, name, type) method,

522
anchor_end() method, 522
AND operator, 48
__and__(self, other) method, 194
anonymous FTP servers, 417
ANSI C language, portable, 12
ANY* functions, 801-802
anydbm module, 129, 309, 314
Anystring, re module, 370
AOLserver Web server, configuring Web

servers for Python/CGI scripts, 432
Apache, configuring Web servers for

Python/CGI scripts, 428-432
API. See Application Programmers

Interface
apilevel variable, 337
/app scriptname arguments, 671
append (a) mode, 86
Apple Computer. See Macintosh
<APPLET: tag, 736
applets, 434, 736-737
Application layer, 392
Application Programmers Interface (API)

Common Object Model (COM), 261
defining object types, 804-806

executing source code, files and
buffers, 751, 753

extending and embedding, 223
handling and raising exceptions,

754-757
initialization, finalization, and threads,

789-800
managing memory, 800-803

31 0672319942 index 11/15/00 11:42 AM Page 835

836 Application Programmers Interface (API)

managing reference counts, Python
objects, 753

utility tasks, 759-762
variables, exceptions, 757, 759

Python/C, 741-751
Abstract Objects Layer, 762-769, 771
Concrete Objects Layer, 771-789

Python DB, 335-348
Winsock, 396

applications
Alafajor, 406
AOLserver Web server, configuring Web

servers for Python/CGI scripts, 432
Apache, configuring Web servers for

Python/CGI scripts, 428-432
BSCW (Basic Support for Cooperative

Work), 439-440
BuildApplet, 689
BuildApplication, 689
calldll, 324-325
Common Object Request Broker

Architecture (CORBA), 285, 289-291
CTC (Cut the Crap), 406
debugging, 689-697
designing, Tkinter module, 624-625,

627-630
Distributed Common Object Model

(DCOM), 286, 290, 292-293
distributing, 708-711
Distutils, 366
DocumentTemplate, 445
EditPythonPrefs, 687
Emacs, editing source code, 679-681
embedding and extending Python in, 14

Excel, opening and manipulating from
Python, 269-275

FastCGI, 446-447
Fnorb, 286, 291-292
Front Page Personal Web Server, 432
Grail, 428, 434-435
graphical user interface (GUI), 15
Hector, 286, 294-295
hello world, 34, 578, 580
HTMLgen, 444
httpd_log, 443
improving performance, 264
Inter-Language Unification (ILU)

system, 285-289
Internet, third-party, 433-439
islscan, 287
Java, embedding JPython in, 732-734
JED, 679
Jpython, copyright notices (licenses),

822-826
JPython Runner, 727
launching, 689
LDAP (Lightweight Directory Access

Protocol), 440-441
Linbot, 443-444
LinkChecker, 445
M2Crypto, 406
MacPython, thread support, 377
Mailman, 436-438
Medusa Internet Server, 438-439
Microsoft IIS Server, configuring Web

servers for Python/CGI scripts, 432-433
Multithreaded, support, 795-800
mxCGIPython, 444

31 0672319942 index 11/15/00 11:42 AM Page 836

837arguments

mxDateTime, 324
mxODBC, 324
non-Python

compiling and linking extension
modules, 237-243

embedding Python objects in, 221,
223-226, 228-237, 246-257

Python/C Application Programmers
Interface (API), 223

Simplified Wrapper and Interface
Generator (SWIG), 243-245

wrappers, 245-246
Object Management Facility (OMF), 286,

293-294
Object Request Broker (ORB), 285,

289-291
OmniORBpy, 286, 291
opening interpreters after executing, 37
optimizing performance, 637-641
ORBit-python project, 286
OROMatcher, copyright notice (license),

822-824
parsing Web pages, 414
Persistent CGI, 445
Personal Web Server (PWS), configuring

Web servers for Python/CGI scripts,
432-433

Pico, 679
profiling, 697-708
protection environments, 362-363
PyDAV, 442
Python

building, 635-647
copyright notices (licenses), 817-826

python-stubber, 287

site management tools, 442-447
source code

compiling, 674-678
editing, 678-681

SpamWall, 421
stored in \Tools and \Demos directories,

681-684
transferring data between, 268-269
unixODBC, 325
Vi (visual editor), 679
Visual Interdev, 487
Webchecker, 445
WebDAV (World Wide Web Distributed

Authoring and Versioning), 442
WebLog, 441-442
win32all, 267
win32com, 266-268
Word, opening and manipulating from

Python, 269-275
Xemacs, editing source code, 679-681
Z Object Publishing Environment

(Zope), 435-436, 452
Zebra, 442-443
ZSQLMethod, 435

applying operations to dictionaries, 69
arc() method, 598
args argument, 225
args attribute, 163
args option, 728
arguments

anchor, 584
/app scriptname arguments, 671
args, 225
base, functions, 58
bitwise, PlaySound function, 355-356

31 0672319942 index 11/15/00 11:42 AM Page 837

838 arguments

bordermode, 584
–c, 650
calling functions without, 72
“calls”, 704
command-line

IDLE, 649-650
Pythonwin, 670-671

(CONTENTS), 494
“cumulative”, 704
–e, 650
/edit filename, 671
“file”, 704
functions, 73, 75
height, 584
–i, 37
in (in), 585
JPython interpreter, 728
“line”, 704
“module”, 704
(NAME), 494
“name”, 704
“nfl”, 704
“pcalls”, 704
place() and place_configure() methods,

584-585
protocol, 397
range() function, 66
relheight, 585
relwidth, 585
relx, 585
rely, 585
return code, 100
/run scriptname arguments, 670
/runargs scriptname arguments, 670
self, 183, 225
“stdname”, 704

“time”, 704
whatis, 695
width, 584
x, 585
y, 585

ArithmeticError class, 172
array module, 117-118, 307
array objects, 364
arrays

buffer interface support, 774
one-dimensional, 364
packing methods, 514
two-dimensional, 364

arraysize attribute, 342
ArrayType object, 117
Ascher, David, 242, 355
ASP (Active Server Pages), 481, 485-487
aspect(minNumer, minDenom,

maxNumer, maxDenom) method, 618
assert command, 164-165
AssertionError class, 172
assert_line_data([flag = 1]) method, 527
assigning

functions to variables, 72
null values to variables, 40
objects to variables, 38
values to substrings, 43
values to variables, modules, 248

assignment operators, Python 2.0, 830
associating widgets with toplevels, 580
asterisks (*), 495

identifying number of arguments,
functions, 75

re module, 370
replacing numbers with, 85

31 0672319942 index 11/15/00 11:42 AM Page 838

839attributes

asynchronous sockets, 403-404
Asynchronous Sockets Library, 404
asyncore module, 134, 403-404, 413
asyncore.loop([timeout=30]) function,

404
asyncore.poll([timeout=0 [,

exceptions=0]]) function, 404
at sign (@), identifier names, 40
atexit module, 148
<!ATTLIST> definition tag, 495
AttributeError class, 171
attributes

address_family, 408
add_flowing_data(data), 525
add_hor_rule(*args, **kw), 525
add_label_data(format, counter), 525
add_line_break(), 525
add_literal_data(data), 525
args, 163
arraysize, 342
BaseHTTPRequestHandler class,

410-411
callproc(procname[,parameters]), 340
CGIHTTPRequestHandler class, 412
char, 587
Checkbutton widget, 600
classes, 180, 186
client_address, 411
command, 411, 580
data, 620
DatagramRequestHandler class, 407
description, 340, 343
end_paragraph(blanklines), 525
events, 587-588
file, 472, 620
file objects, 89

filename, 472
formatter objects, 525
fs.disposition, 455
fs.file, 455
fs.headers, 455
fs.name, 454
fs.type, 455
fs.value, 454
headers, 411, 414
height, 587, 620
im.format, 353
im.mode, 353
im.size, 353
indicatoron, 600
instance, 180
keysym, 587
MatchObject, 375
methods, 196
modules, accessing, 248
name, 460
num, 587
obj.__class__, 190
obj.__dict__, 189
obj.__methods__, 190
objects, changing, 205
offvalue, 600
onvalue, 600
path, 411
PhotoImage subclass, 620
private, accessing, 204-205
_public_attrs(), 275
_public_methods(), 275
_readonly_attrs(), 275
RegExpObject, 375
RequestHandlerClass, 408
request_version, 411

31 0672319942 index 11/15/00 11:42 AM Page 839

840 attributes

rfile, 411
rowcount, 340
server_address, 408
SimpleHTTPRequestHandler class, 411
socket, 408
SocketServer module, 408
state, 614
stream object, 414
StreamRequestHandler class, 407
tabs, 614
Text widget, 614
textvariable, 602
url, 414
value, 455
wfile, 411
widget, 588
width, 587, 620
writer, 525
x, 588
x_root, 588
y, 588
y_root, 588

attributes property, 182
attributes variable, 498
audio, 355-360
Audio Interchange File Format (AIFC),

359
audiodev module, 359-360
audioop module, 138
augmented assignment operators, 49, 196
AUTH_TYPE environment variable, 474
Auto-open Stack Viewer option, File

Editor, 658, 660
AutoFit() function, 274
autogenerated pages, 452
automation objects, 263

AVG() function, 330
AWT (Abstract Windowing Toolkit), 731
AWT (Abstract Windowing Toolkit)

module, 570

B

b (binary) mode, 86
b element, 231-232
b event, 587
B format, 308
<B1-Motion event, 586
b(reak) [([filename]lineno | function) [,

condition]] command, 694
b2a_hex function, 548
back quotes (`), strings, 46
background option, 620
background(bg) property, 591-592
backslash (\)

adding line breaks, 38
escaping, 89

backticks (``), strings, 45
backward stepping, 66
base arguments, functions, 58
base class, 198
base classes, 180
Base Debugger (bdb) module, 690-692
base64 module, 136, 538
BaseHTTPRequestHandler class,

408-411
BaseHTTPServer module, 133, 406,

408-411
Basic Support for Cooperative Work

(BSCW), 439-440

31 0672319942 index 11/15/00 11:42 AM Page 840

841browsers

Bastion module, 137, 361-363
BBC (British Broadcasting

Corporation), 9
bdb (Base Debugger) module, 690-692
beans, creating, 736
Beazley, David, 243
benchmark extension source code,

253-255
benchmark tool source code, 87, 89-93,

95-96
BeOpen Network, 9
BeOpen Python Labs, 718
BeOpen.com, 27
BeOS, running Python, 815
bgen program, 681
binary (b) mode, 86
binary data, 307, 309
BINARY object, 344
binary operations, numbers in, 41
Binary(string) function, 344
binascii module, 135, 548
binascii methods, 548
bind_all(event, callback) method, 588
bind_class(widgetclass, event, callback)

method, 588
bind(event, callback) method, 588
bind(hostname, port) method, 398
binding

Dynamic Data, 322
events, widgets, 585, 587-590
handlers, protocols, 589
runtime, 201
sockets, 400-401

bindings
early and late, Type Libraries, 264-265
keyboard

Edit menu, Edit Editor, 656-657

File menu, File Editor, 653-654
Pythonwin, 668-670

bindtags() method, 588
binhex module, 135, 546-547
binhex(inputfile, outputfile) function, 547
bisect module, 117
bitmap property, 595, 597
bitmap() method, 598
BitmapImage subclass, 619-620
bitwise arguments, PlaySound function,

355-356
bitwise operators, 47-48
Bizzaro, J.W., 565
blank lines in scripts, 37
blocks

code, delimiting, 37-38
extern “C” { , }, 236-237
indented, 642, 650

Booth, Duncan, 816
bordermode argument, 584
borderwidth (bd) property, 592
borrowed references, 235, 745
break statement, 61-62
break-point connections, Pythonwin, 668
breaking circular references, 39
breaks, lines, 38
British Broadcasting Corporation

(BBC), 9
Browse PythonPath option, Pythonwin,

664
browsers

creating output, CGI scripts, 468-471
Grail, 428, 434-435
Internet Explorer, 266
OO, 681
passing data to CGI scripts from, 452

31 0672319942 index 11/15/00 11:42 AM Page 841

842 browsing classes

browsing classes, 187
browsing engines, 648
BSCW (Basic Support for Cooperative

Work), 439-440
bsddb module, 130, 310, 312-313
bucket size, 310
Budelsky, Dietmar, 250
buffer interface, 774
buffer objects, 774-776, 805-806
bufferobject.h header file, 775
buffers, executing source code for

Python/C Application Programmers
Interface (API), 751, 753

buffersize statement, 86
bug lists, 25-26
Build menu, Debug option, 675
BuildApplet, 689
BuildApplication, 689
building

extensions, C++, 236-237
modules as shared libraries, 678
Python applications, 635-647
Web servers, 406

built-in functions, 50-51, 53, 55-57, 59
built-in methods

dictionaries, 69-70
functions, 76
lists, 65-66
modules and packages, 79

built-in names, 77
__builtin__ module, 110, 750
BuiltinFunctionType object type, 182
BuiltinMethodType object type, 182
Button widget, 596-598, 616-617
<Button-1 event, 586

<ButtonPress-1> event, 586
<ButtonRelease-1> event, 587
buttons

colored, creating frames to align, 602
Debug Control Panel, 658, 660

byetcodes
disassembling, 696-697
executable, generating, 685-686

bytes, packing methods, 513
byteyears program, 682

C

–c argument, 650
–c cmd option, 688, 728
c element, 231-232
c format, 308
C library, memory corruption, 800
C objects, 788-789
C programming language

extending and embedding Python, 221,
223-226, 228-257

versus Python, 23
wrapping functions, source code, 255-257

C structures, complex numbers as,
784-785

c value, 309
c(ont(inue)) command, 695
C++ programming language

building extensions, 236-237
extending and embedding Python, 221,

223-226, 228-257
versus Python, 23

Cain, D’Arcy J.M., 332

31 0672319942 index 11/15/00 11:42 AM Page 842

843char attribute

calcsize() function, 114, 307
calculator objects, source code, 276-277,

279-280, 282-283, 285
calendar module, 118
__call__(self) method, 193
call stack, 104
callback functions, 246-247, 585
callback generator, 809
callbacks, events, 588-589
calldll, 324
calldll extension, 809
calldll module, 243
calldll package, 325
calling

functions without arguments, 72
interpreters, 687
methods

classes, 188
from other methods, 192
from string objects, 46

callproc(procname[,parameters])
attribute, 340

calls
Checkbutton widget, 601
Remote Procedure (RPC), 508-509

“calls” argument, 704
campus-wide information system

(CWIS), 423
Canvas widget, 596, 598-600
carats (^), re module, 370
case sensitivity

commands and file names, 457
identifiers, 40

catching
class instances, 163
exceptions, 165-167

cd module, 144, 814
Cells() function, 275
cget(option) method, 594, 619, 621
CGI (Common Gateway Interface)

scripts, 451-454
cgi module, 454-456
creating, installing, and running, 456-481

cgi module, 131, 453-456
CGI scripts

configuring servers for, 428-433
outputting links from HTML files to

Web pages, 523-524
cgi-bin directory, 456
cgi.escape(string [,quote]) method, 455
cgi.parse([file], ...) method, 455
cgi.parse_qs(string, keep blank values=0)

method, 455
cgi.print_directory() method, 456
cgi.print_environ() method, 456
cgi.print_environ_usage() method, 456
cgi.print_form(form) method, 456
cgi.test() method, 456
CGIHTTPRequestHandler class, 412
CGIHTTPServer module, 134, 406, 412
cgiupload.py module, 472-473
changing

data, relational databases, 332
fonts, windows, 652
global variables inside functions, 72
object attributes, 205
prompts, 688
source code, 678-681
values at execution time, 590
Visible property, 274

channels, audio files, 356
char attribute, 587

31 0672319942 index 11/15/00 11:42 AM Page 843

844 char* PyModule functions

char* PyModule functions, 788
char* PyString functions, 773
char* Py_Get functions, 792-793
characters

identifier names, 40
recognized by re module, 369-371
Unicode, Tkinter module, 580
See also strings

Checkbutton widget, 596, 600-601
Checkbuttons, Debug Control Panel, 660
checking

errors, 233-235, 745, 748
UNIX passwords, 140

checkpyc program, 682
chmod command, 456-457
choosing data, relational databases,

327-328
chunk module, 138
circular references, 38
cl(ear) [bpnumber [bpnumber ...]]

command, 694
Clark, James, 496
class attributes, 180
Class Browser, 648, 653-654
Class browser option, File Editor, 653

catching, 163
creating, 187

class keyword, 183
class members, 180
class namespaces, 205
class statements, 183
classes, 180, 183-190

AbstractFormatter(writer), 527
AbstractWriter(), 529
AddressList, 531
ArithmeticError, 172

AssertionError, 172
AttributeError, 171
base, 180, 198
BaseHTTPRequestHandler, 408-411
CGIHTTPRequestHandler class, 412
Cookie.Cookie(), 466
Cookie.py module, 466
creating, 736
DatagramRequestHandler, 407
dispatcher, 403-404
documentation strings, 644
DumbWriter([file[, maxcol = 72]]), 529
EnvironmentError, 171
EOFError, 171
ErrorPrinter, 505
ErrorRaiser, 505
Exception, 163-164, 171
FieldStorage, 454-455
FloatingPointError, 172
formatter objects, 527
grid, 581
HTMLParser, 521, 524
HTTP, 413
HTTPServer, 409
Image, 353, 619
ImportError, 171
IndexError, 172
IOEror, 171
Java Foundation (JFC), 731
KeyboardInterrupt, 171
KeyError, 172
LookupError, 172
MemoryError, 172
Message, 531, 540-541
MiniFieldStorage, 455
MultiFile (fp[, seekable]), 534-536

31 0672319942 index 11/15/00 11:42 AM Page 844

845cmd module

multifile module, 534-536
NameError, 171
naming styles and conventions, 646
NotImplementedError, 171
NullFormatter([writer]), 527
NullWriter(), 529
OSError, 171
OverflowError, 172
pack, 581
Packer(), 513-514
place, 581
profiler, 706-708
pstats.Stats, 699
queue, 377
Real, 368
RuntimeError, 171
sgmllib module, 517-519, 521
SGMLParser, 517-519, 521
SimpleHTTPRequestHandler, 411
SocketServer module, 407-408
StandardError, 171
Stats(filename, ...), 701
StreamRequestHandler, 407
SyntaxError, 171
SystemError, 172
SystemExit, 171
TCPServer, 407
TypeError, 172
UDPServer, 407
UnboundLocalError, 171
UnixDatagramServer, 408
UnixStreamServer, 408
Unpacker(data), 513-516
ValueError, 172
writer objects, 529

xdrlib module, 513-517
XMLParser, 498
ZeroDivisionError, 172
See also objects

classes program, 683
classfix program, 682
classname attributes, 186
classrooms, bringing Python to, 368-369
ClassType object type, 182
clauses

except, 168
finally, 167-168
group by, 331
try, 168
WHERE, 329

clean module, 441
clear methods, 691
client(name) method, 618
clients

Common Object Model (COM)
creating clients, Excel, 274-275
importing, 269

passing strings to shells from, 463
setting up, Hypertext Transfer Protocol

(HTTP), 412-413
User Datagram Protocol (UDP),

handling, 402
client_address attribute, 411
Close option, File Editor, 653
close() method, 339-340, 358, 398, 498,

518, 521
closing

Excel and Word, 270
interpreters, 650, 689

cmath module, 116
cmd module, 118

31 0672319942 index 11/15/00 11:42 AM Page 845

846 cmp module

cmp module, 122
__cmp__(self,other) method, 193
cmpcache module, 122
CNRI, 9
CNRI License Agreement, downloading,

819
CNRI (Corporation for National

Research Initiatives), 27
CORBA (Common Object Request

Broker Architecture), 285
code

benchmark extension, 253-255
benchmark tool, 87, 89-93, 95-96
calculator object, 276-277, 279-280,

282-283, 285
company employees, 214-216, 218
configuration files, 211-213
debugging, exceptions, 164-165
downloading, 16, 18, 21-22

editing, 678-681
executing, Python/C Application

Programmers Interface (API), 751,
753

folding, Pythonwin, 666
Python

glue. See wrappers
groceries list, 213-214
HTML parsing tool, 384-386
Internet country codes, 176-177
optimizing, 637-641
parking lot object, 297-298, 300-301,

303-304
pseudo, 8, 11
source

compiling, 674-678
Concurrent Version System (CVS)

square roots, 174, 176
standard exceptions, Python 2.0, 173
style guides, 641-647
TV network audience object, 386
wrapping C functions, 255-257

code blocks, delimiting, 37-38
code functions, 56-57
code module, 108
CODE parameter, 736
codecs module, 148
codeop module, 108
codes

escape, 44-45
response, returned by Web servers, 410

CodeType object type, 182
collecting

garbage, 39
page title information, 520-521
unused objects, 39

colon (:) literal, 230
color names, Macintosh, 592
colored buttons, creating frames to align,

602
colorizers, 647
colormapwindows(wlist...) method, 618
colors, shell elements, 650
colorsys module, 138
column headings, profiles, 700
column option, 584
columnspan option, 584
COM. See Common Object Model
COM (Component Object Model)

objects, Active Scripting, 484-485
combined module, 441
command attribute, 411, 580
command history mechanism, 651

31 0672319942 index 11/15/00 11:42 AM Page 846

847Common Object Model (COM)

command line interpreter, 32, 34-35
command option, 605
command property, 585, 595
command() function, 227
command(value) method, 618
command-line arguments

IDLE, 649-650
Pythonwin, 670-671

command-line options
interpreters, Windows and UNIX,

687-688
–O, 638
–U, 688

command-line scripts, testing, 637
commands

a(rgs), 695
alias [name [command]], 696
assert, 164-165
b(reak) [([filename]lineno | function) [,

condition]], 694
c(ont(inue)), 695
case sensitivity of, 457
chmod, 456-457
cl(ear) [bpnumber [bpnumber ...]], 694
condition bpnumber condition, 695
d(own), 694
del, 39
disable bpnumber [bpnumber ...], 695
enable bpnumber [bpnumber ...], 695
eval, 737
exec, 737
h(elp), 694
ignore bpnumber count, 695
implementing extensions, 227
keyboard, IDLE, 652
l(ist) [first [,last]], 695

n(ext), 695
PyArg_ParseTuple, 227
python, 687
Python Debugger (pdb) module, 693-696
python_filename, 687
Py_BuildValue(format, Cvar1 [, Cvar2

[,]]), 227
q(uit), 696
r(eturn), 695
reload module, 81
return, 71
running, interrupting, 650
s(tep), 695
shell, 463
start scriptname.py, 37
tbreak [([filename]lineno | function) [,

condition]], 694
u(p), 694
unalias name, 696
w(here), 694
whereis python, 36

commands module, 143
Comment out region option, File Editor,

656
comments

adding to code, 643-644
inline, 643

commit() method, 339
Common Gateway Interface (CGI)

scripts, 451-454
cgi module, 454-456
creating, installing, and running, 456-481

common module, 441
Common Object Model (COM),

261-277, 279, 281-283, 285, 293

31 0672319942 index 11/15/00 11:42 AM Page 847

848 Common Object Request Broker Architecture (CORBA)

Common Object Request Broker
Architecture (CORBA), 285, 289-291

company employees, source code,
214-216, 218

comparisons
%r and %s format strings, 86
numbers, 41

compile() function, 685
compile.py tool, 242
compileall module, 109, 685
compiling

extension modules, 237-243, 250
Python, 237
source code, 674-678

completion function, 130
complex number objects, 784-786
complex numbers, handling, 42
ComplexType object type, 181
Component Object Model (COM)

objects
Active Scripting, 484-485
components

source code editing, Scintilla, 661
swing, accessing, 732

computing, scientific, 363-369
COM_Browser option, Pythonwin, 666
COM_Makepy_utility option, Pythonwin,

664
Concrete Objects Layer, Python/C

Application Programmers Interface
(API), 771-789

Concurrent Version System (CVS), 16,
576

condition bpnumber condition command,
695

conditions, race, 381
conferences, Python, 28
config() method, 594
config(options) method, 594, 619, 621
config.c file, 674
config.h file, 674
ConfigParser module, 118
configuration files, source code, 211-213
configure() method, 594
<Configure> method, 589
configure(options) method, 594, 619, 621
configuring

IDLE, 649-650
items in lists, 746
permissions, 456-457
Python, 18-22
servers for Python/CGI scripts, 428-433
tuples, 745

connect() method, 401, 413
connect(hostname [,port]) method, 413
connect(hostname, port) method, 398
connect(parameters,) constructor, 337
connecting sockets, 399-403
connection objects, databases, 337,

339-340
connections

break-point, Pythonwin, 668
databases, opening, 326
Open Database Connectivity (ODBC),

opening, 322
proxy servers, handling, 416

const char* Py_Get functions, 794
constants

classes, 183
exporting, 233

31 0672319942 index 11/15/00 11:42 AM Page 848

849creating

flag, PlaySound function bitwise
arguments, 355-356

int Py END OF BUFFER, 775
SND, 355-356

construction methods, nested loops, 640
constructors

connect(parameters,), 337
databases, 343-344

_contains method, 196
Content-type tag, 460
CONTENT_LENGTH environment

variable, 474
CONTENT_TYPE environment

variable, 474
(CONTENTS) argument, 494
continue statement, 61-62
control ports, 417
control statements, 59-62
<Control-Up> event, 587
conventions, code, 644
ConversionError exception, 516
converting references into lists, 67
Cooke, Andrew, 406
Cookie.Cookie() class, 466
cookie.load() method, 467
Cookie.net_setfunc() method, 467
cookie.output() method, 466-467
Cookie.py module, 466-468
Cookie.user_setfunc() method, 467
cookies, CGI scripts, 465-468
copy module, 105-106
Copy option, File Editor, 655
copy reg module

pickle support
registering, 318

copy_reg module, 105, 316-318
copy(font object) method, 594
copying

objects, 43, 48
Web pages into local files, 416

copymessage(n, tofolder, ton) method,
546

copyright notices
CNRI License Agreement, downloading,

819
Python software, 817-826

copytime program, 682
Corporation for National Research

Initiatives (CNRI), 27
Corruption, memory, 800
Cotton, Scott, 437
COUNT(*) function, 330
counter values, 526
counters, incrementing and

decrementing, 235-236
counting, reference, 38-39, 235-236
country codes, source code, 176-177
counts, 743-747, 753
cPickle module, 104, 316-317
CPython versus JPython, 719-720
CPython library, downloading, 725
create_socket method, 403
creating

applets, 736
application distribution packages, 709
beans, 736
break-point connections, Pythonwin, 668
browser output, CGI scripts, 468-471
class instances, 187
classes, 736

31 0672319942 index 11/15/00 11:42 AM Page 849

850 creating

code
optimizing, 637-641
style guides, 641-647

comments for code, 643-644
Common Gateway Interface (CGI)

scripts, 456-481
Common Object Model (COM) clients
Excel, 274-275
dictionaries, 69
Extensible Markup Language (XML)

files, 493-495
extensions, 224-226, 228
extensions, C++, 236-237
file dialog boxes, 628-629
frames to align colored buttons, 602
global namespaces, modules, 77
graphical interfaces, JPython, 731-732
IDLE extensions, 660
image objects, 619
instances, metainstances, 208
line breaks, 38
menu bars, 607
menus, 625-626
messages, 608
modules as shared libraries, 678
object type definitions, Python/C

Application Programmers Interface
(API), 804-806

pop-up menus, 606
pull-down menus, 607-608
Python applications, 635-647
Python extension modules, 221, 223-237,

246-257
compiling and linking, 237-243
Python/C Application Programmers

Interface (API), 223

Simplified Wrapper and Interface
Generator (SWIG), 243-245

wrappers, 245-246
Python interfaces to expose objects, 270
radiobuttons, 609
scripts, 35-37, 39-40
single line interfaces, 601
sockets, 400
status bars, 627-628
strings, slash literal (/), 45
subclasses, 198-201
thread data structures, 796
toolbars, 626-627
user-defined exceptions, 168-169
watch variables, Pythonwin, 668
wave files, 358
Web servers, 406
windows, 625

crlf program, 682
crypt module, 140-141
Cryptographic library, 139
cStringIO module, 115
ctb module, 812
CTC (Cut the Crap), 406
cumtime column heading, 700
“cumulative” argument, 704
curses module, 124
cursor methods, 312-313
cursor objects, databases, 340-343
cursor property, 595
cursor() method, 340
Cut option, File Editor, 655
Cut the Crap (CTC), 406
CVS (Concurrent Versions System), 16,

576

31 0672319942 index 11/15/00 11:42 AM Page 850

851databases

cvsfiles program, 682
CWI, 9
CWIS (campus-wide information

system), 423

D

d element, 231-232
d format, 308
–d option, 687
d(own) command, 694
DAO, 325
data

binary, 307, 309
handling, Internet Data Handling library,

134-137
manipulating, 491, 549

Extensible Markup Language (XML),
492-510

formatter module, 524-529
generic conversion functions, 544-548
hemlentitydefs module, 524
htmllib module, 521-522, 524
Multipurpose Internet Mail Extension

(MIME) parsing and, 530-544
sgmllib module, 517-519, 521
XDR Data Exchange Format, 512-517
XML-RPC library, 510-512

opaque, packing methods, 513
parsing, form fields, 459-463
passing from browsers to CGI scripts,

452

relational databases
adding and deleting, 331
changing, 332
choosing, 327-328

saving to disk, 312
sending to Python scripts, 458-459
sending to screen, 486-487
storage, CGI scripts, 464
text, 306
transferring

between applications, 268-269
FTP sites, 417-418

data attribute, 620
data handling, 13
Data link layer, 392
data option, 620
data ports, 417
data structures, 61-70
data type conversion functions, 57, 59
data types

immutable, 40, 43
mutable, 40-41
None, 40
numeric, 41-42
Python, 14
Python/C Application Programmers

Interface, 747
database engines, MetaKit, 334-335
database managers (DBM) databases,

309-315
DatabaseError exception, 338
databases, 15, 305-306, 349

accessing, calldll package, 325
ActiveX Data Objects (ADOs), 325-326

31 0672319942 index 11/15/00 11:42 AM Page 851

852 databases

database managers (DBM), 309-315
flat, 306-307, 309
hash, opening, 313
identifying, 315
object serialization, 315-319, 321
Open Database Connectivity (ODBC)

module, 322-325
opening connections, 326
PostgreSQL, 332-333
Python DB API, 335-348
relational. See Structured Query

Language
Structured Query Language (SQLs),

327-335
Zope Object (ZODB), 321, 512

databases:dumbdbm module, 315
DataError exception, 338
datagram sockets, 397
DatagramRequestHandler class, 407
Date(year, month, day) function, 344
Date/Time format, setting, 274-275
DateFromTicks(ticks) function, 344
DATETIME object, 344
dbhandle interfaces, 312
dbhandle methods, 311-314
dbhash module, 129, 309, 313-314
dbi module, 323-324
DBM databases. See database managers

(DBM) databases
dbm module, 141, 309-310
DCOM. See Distributed Common Object

Model
deallocating

objects, 235
variables, 38-39

deallocation function, 753

Debug Control Panel, 658, 660
Debug menu, File Editor, 657-658, 660
Debug option, Build menu, 675
Debugger library, 130
Debugger option, File Editor, 658
debuggers, Pythonwin, 666
debugging

Active Scripts, 484
applications, 689-697
CGI scripts, 456, 477-481
code, exceptions, 164-165

Debugging toolbar, opening, 668
decimals in numbers, 42
declaring variables, 38, 227
decode (in_file[, out_file[, mode]])

function, 547
decode(input, output) function, 538
decode(inputfileobject, outputfileobject,

encoding) function, 531
decrementing

counters, 235-236
reference counts, 743

Dedent region option, File Editor, 656
def abbreviation, functions, 71
def keyword, 183
default arguments, 74
default property, 597
defining values at execution time, 590
definitions

classes, 183
object types, Python/C Application

Programmers Interface (API), 804-806
deiconify() method, 617
del command, 39
__del__(self) method, 193
__delattr__(self, name) method, 193

31 0672319942 index 11/15/00 11:42 AM Page 852

853dispatches, static

delete(row [,lastrow]) method, 604
delete(startindex [,endindex]) method,

605, 614
deletefolder(name) method, 545
deleting

data, relational databases, 331
string exceptions, 758
values from lists, 64

delimiting code blocks, 37-38
__delitem__(a, b) method, 195
Delivery Status Notification (DSN), 437
Delphi programming language,

implementing Common Object Model
(COM) objects, 282-283, 285

__delslice__(a, b, c) method, 195
\Demos directory, scripts stored in,

681-684
description attribute, 340, 343
designing

applications, Tkinter module, 624-625,
627-630

interfaces, 571-572
destroy() method, 621
Developing Gnome Applications with

Gnome-Python, 565
development on Web, 427-428, 447-449

BSCW (Basic Support for Cooperative
Work), 439-440

configuring servers for Python/CGI
scripts, 428-433

LDAP (Lightweight Directory Access
Protocol), 440-441

site management tools, 442-447
third-party applications, 433-439
WebLog, 441-442

development environments, 635
building Python applications, 635-647
IDLE, 647-660
Pythonwin, 661-663, 665-669, 671

development flow, Python, 14
DEVICE module, 144
dialog boxes, file, 628-629
dictionaries, 68-70

defining =values, 591
entitydefs, 524
mimetypes module, 538

dictionary objects, 780-781
DictType object type, 182
Digital Creations, 209, 435, 512
dircache module, 122
directories

cgi-bin, 456
loading modules from, 457
packages, 78
/PCbuild, 675
$PYTHONSTARTUP, 688
\Tools and \Demos, scripts stored in,

681-684
/usr/local, 675

dis module, 110, 696-697
dis() function, 696
disable bpnumber [bpnumber ...]

command, 695
disabledforeground property, 597
disabling registration, Common Object

Model (COM) objects, 271
disassembling bytecodes, 696-697
disks, saving data to, 312
Dispatch method, 272
dispatcher class, 403-404
dispatches, static, 272

31 0672319942 index 11/15/00 11:42 AM Page 853

854 displaying

displaying
error symbols, 167
input and output, 82-83
lines, lists, 604

Distributed Common Object Model
(DCOM), 286, 290, 292-293

distributing
applications, 708-711
objects, 259-277, 279, 281-283, 285-297

Distutils package, 366, 711-712
disutils module, 149
__div__(self, other) method, 194
DLLs (dynamic link libraries), accessing,

243
dllbase_nt.txt file, 675
dlmodule module, 141
dl_nt.c file, 675
dns program, 683
do_GET() method, 409, 412
do_POST() method, 409, 412
do_tag() method, 522
do_tag(attributes) method, 520
Document Object Model (DOM), 506
Document Type Definition (DTD), 494
documentation, Python, 16-17
documentation strings, 643-644, 651
DocumentHandler interface, 505
DocumentTemplate, 445
DOCUMENT_ROOT environment

variable, 475
dollar sign ($)

identifier names, 40
re module, 370

DOM (Document Object Model), 506
done() method, 514
DOS, running Python, 815

dosomething() function, 80
dot (.) operator, 47, 369
dots (.), 421
<Double-Button-1> event, 587
double PyComplex functions, 786
double PyFloat functions, 784
double PyLong_AsDouble(PyObject

*pylong) function, 783
double quotes (“), strings, 45
double variable, 230
downloading

CNRI License Agreement, 819
Concurrent Version System (CVS), 16,

18, 21-22
CPython library, 725
documentation, Python, 16-17
GNU gzip, 18
JPython, 723-727
Python 2.0, 22
Windows installer, 22
WinZip, 18

–Dprop=value option, 728
DSN (Delivery Status Notification), 437
DTD (Document Type Definition), 494
DTDHandler interface, 505
dumbdbm module, 129, 315
DumbWriter([file[, maxcol = 72]]) class,

529
dumpdata function(), 318
Dunn, Robin, 560
duplicating

objects, 43, 48
Web pages into local files, 416

dutree program, 682
Dynamic Data Binding, 322
dynamic dispatch object, 272

31 0672319942 index 11/15/00 11:42 AM Page 854

855encoded messages, Multipurpose Internet Mail Extension (MIME)

dynamic extensions, linking to
interpreters, 241-243

dynamic link libraries (DLLs), accessing,
243

dynamic modules, installing and running,
242

dynamic namespaces, 72, 76-77
dynamic typing, 14
DynWin module, 569

E

–e argument, 650
EasyDialogs module, 813
/edit filename, 671
Edit menu

File Editor, 655-657
options, Edit Editor, 655-656

editing
data, relational databases, 332
fonts, windows, 652
global variables inside functions, 72
object attributes, 205
prompts, 688
source code, 678-681
values at execution time, 590
Visible property, 274

editing components, Scintilla source
code, 661

editor window, 648
EditPythonPrefs, 687
Edit_PythonPath option, Pythonwin, 664
<!ELEMENT> definition tag, 494
elements, 39, 230-232, 492
elements variable, 498

elisp (Emacs Lisp) programming
language, 679

Ellinghouse, Lance, 547
EllipsisType object type, 182
else statement, 60-61
Emacs, editing source code, 679-681
Emacs bindings, File Editor, 653-654
Emacs Lisp (elisp) programming

language, 679
email services, handling, 419-421
embed program, 683
embedding

applets, 737
interpreters, 247-250, 452
JPython, 732-734
Python

in applications, 14
Python/C Application Programmers

Interface (API), 750-751
Python objects, 221, 223-226, 228-257

employees, source code, 214-216, 218
enable bpnumber [bpnumber ...]

command, 695
enabling

modules, UNIX operating systems, 814
Tkinter module, 676-678

encapsulation, 180, 204-206
encode (in_file, out_file[, name[, mode]])

function, 547
encode(input, output, quotetabs)

function, 539
encode(inputfileobject, outputfileobject,

encoding) function, 531
encoded messages, Multipurpose

Internet Mail Extension (MIME),
530-531

31 0672319942 index 11/15/00 11:42 AM Page 855

856 encoded strings

encoded strings, 458-459
encodings module, 149
encrypting, UNIX passwords, 140
end_header() method, 411
end_marker(str) method, 535
end_paragraph(blanklines) attribute, 525
end_tag() method, 520, 522
endheaders() method, 413
endswith() method, 46
engines

browsing, 648
database, MetaKit, 334-335
undo, 647

Enigma device, 139
<Enter> event, 586
entitydefs dictionary, 524
entitydefs variable, 498
EntityResolver interface, 505
entries, [,], 39
Entry widget, 596, 601-602
entryconfig(index, options) method, 605
environment variables

CGI scripts, 473-477
recognized by interpreters, 686-687
scanning, 415

EnvironmentError class, 171
EnvironmentError exception, 163
environments

applications, protecting, 362-363
development, 635

building Python applications, 635-647
IDLE, 647-660
Pythonwin, 661-663, 665-669, 671

EOFError class, 171
eptags program, 682
equal (=) sign, 48, 642

equal signs (=), 458
equations, numbers in, 41
erasing

data, relational databases, 331
string exceptions, 758
values from lists, 64

errno module, 125, 166
error checking, 233-235, 745, 748
Error exception, 338, 516
error indicator, 754
error messages

assigning values to substrings, 43
handling long integers, 42
non-Python extension dynamic link

libraries (DLLs), 243
error symbols, viewing, 167
error(format[, ...]) method, 545-546
ErrorHandler interface, 505
ErrorPrinter class, 505
ErrorRaiser class, 505
escape codes, 44-45
<Escape> event, 587
escaping backslashes (\), 89
Eshop, Open Database Connectivity

(ODBC) module, 322
eval command , 737
event loops, starting, 580
<1> event, 586
events, Tkinter module, 585, 587-590
example_nt subdirectory, 675
Excel, opening and manipulating from

Python, 269-275
except clause, 168
Exception class, 171
exception classes, instancing, 163-164

31 0672319942 index 11/15/00 11:42 AM Page 856

857extending Python in applications

exceptions
catching, 165-167
ConversionError, 516
DatabaseError, 338
DataError, 338
EnvironmentError, 163
Error, 338, 516
finding, 746-748
handling, 13, 153-157, 234-235, 754-757
IndexError, 160
IntegrityError, 338
InterfaceError, 338
InternalError, 338
modules, 309
naming styles and conventions, 646
NotSupportedError, 339
OperationalError, 338
ProgrammingError, 338
Python/C Application Programmers

Interface (API), 747-748, 750
raising, 153, 159-165, 234

Python/C Applications Programmers
Interface (API), 754-757

returning NULL values, 234
standard, 157-159, 169, 171-173
string

deprecating, 758
raising, 162

subclassing, 168-169
SyntaxError, 163
SystemExit, 161
try/finally statement, 167-168
uncaught, 159
user-defined, creating, 168-169

variables, Python/C Applications
Programmers Interface (API), 757, 759

Warning, 338
xdrlib module, 516-517

exclamation points (!), 693
exclusive OR (XOR) operator, 48
exec command , 737
exec statement, 700
executable bytecode, generating, 685-686
execute() method, 341
execute(operation[,parameters]), 341
executemany(operation,seq_of_

parameters) method, 341
executeXXX() method, 341-343
execution

Restricted Execution library, 137
CGI scripts, 453
script tags, 483
scripts from Windows, 36

Exit option, File Editor, 653
exiting

Excel and Word, 270
interpreters, 689

expand option, 582
Expand word option, File Editor, 656
exporting constants, 233
exposing objects, creating Python

interfaces, 270
expressions, 49-53, 55-57, 59

creating single line interfaces for
entering, 601

p, 695
regular, 369-375

extend program, 683
extending Python in applications, 14

31 0672319942 index 11/15/00 11:42 AM Page 857

858 Extensible Markup Language (XML), manipulating data

Extensible Markup Language (XML),
manipulating data, 492-510, 829

extension modules, 148
compiling, 250
compiling and linking, 237-243
creating, 221, 223-226, 228-237, 246-257
importing, 228-229

ExtensionClass extension, 209
extensions

benchmark, source code, 253-255
building, C++, 236-237
calldll, 809
creating, 224-226, 228
dynamic, linking to interpreters, 241-243
ExtensionClass, 209
IDLE, writing, 660
implementing, 227
Mess, 209
Multipurpose Internet Mail (MIME),

530-544
Numerical Python (NumPy), 364-367
profiler class, 708
.py, 77
Python X, 569
.pyw, 578
Static, linking to interpreters, 237-239,

241
extern “C” { , } block, 236-237
External Data Representation Standard

(XDR), 512

F

f element, 231-232
f format, 308

fact script, 684
fallback location, 750
false value, 47
families() function, 594
family option, 594
family value, 397
faqwiz program, 681
Fast Light Tool Kit (pyFLTK) module,

567
FastCGI, 446-447
fast_umath module, 364
fcntl module, 142
feed() method, 521
feed(data) method, 498, 518
Fermigier, Stefane, 496
fetchall() method, 342
fetchmany([size=cursor.arraysize])

method, 341-342
fetchone() method, 341
FFT.py module, 365
fftpack module, 365
fields

filename, 472
form, parsing data, 459-463
login data, 460
passing to shells, 463

FieldStorage class, 454-455
“file” argument, 704
file attribute, 472, 620
file dialog boxes, creating, 628-629
File Editor, 652, 654
file handling, 83, 85-89
File menu, keyboard bindings, 653-654
file names, case sensitivity of, 457
file objects, 100, 786-787
file option, 620

31 0672319942 index 11/15/00 11:42 AM Page 858

859firewalls, handling proxy server connections

–file option, 728
File Transfer Protocol (FTP), 417-418
FILE* PyFile_AsFile(PyFileObject *p)

function, 787
filecmp module, 149
fileinput module, 118
filenames, lineno(function) column

heading, 700
filename attribute, 472
filename field, 472
fileno() method, 408
files

config, 674
ConfigParser module, 118
configuration, source code, 211-213
dl_nt.c, 675
dllbase_nt.txt, 675
executing source code, Application

Programmers Interface (API),
Python/C, 751, 753

Extensible Markup Language (XML),
writing, 493-495

getpathp.c, 675
header, 742

Python.h, 223
bufferobject.h, 775

HTML, outputting links from to Web
pages, 523-524

image, saving, 353
import_nt.c, 675
include, Python/C Application

Programmers Interface (API), 742
JPython Registry, finding, 730-731
local, copying Web pages into, 416
Makefile, 249
opening, 86-87

packing, 709
.pdbrc, 693
project, 674
python_nt.rc, 675
saving, Tkinter, 578
SGML, opening, 520-521
shelve, 320-321
storing data, CGI scripts, 464
templates, creating browser output, CGI

scripts, 469-471
testpy.py, 674
uploading from Internet, 471-473
uploading to FTP servers, 418
wave, writing, 358
wrapper, generating, 245

FileType object type, 182
fill option, 582, 599-600
filter() function, 640
finalization, Python/C Application

Programmers Interface (API), 789-800
finally clause, 167-168
Find options, File Editor, 655
findertools module, 146, 813
finding

bugs, 25
contents of modules, 78
databases, 315
exceptions, 746-748
generated modules, 273
JPython Registry file, 730-731
Python in UNIX, 36
variables, 119

findlinksto program, 682
findmatch() function, 537
firewalls, handling proxy server

connections, 416

31 0672319942 index 11/15/00 11:42 AM Page 859

860 fixcid program

fixcid program, 682
fixes, bugs, 26
fixheader program, 682
fixnotice program, 682
fixps program, 682
fixtk utility, 578
fl module, 144, 815
flag constants, PlaySound function,

355-356
flags, 238, 371, 433, 522
flash() method, 597, 600, 609
flat databases, 306-307, 309
float variable, 230
floating point objects, 783-784
floating points, packing methods, 513
floating-point numbers, 41
FloatingPointError class, 172
FloatType object type, 181
flp module, 144, 815
flush() method, 527
flush_softspace() method, 526
fm module, 144, 815
fnmatch module, 126
Fnorb, 286, 291-292
focus() method, 621
focusmodel(model) method, 618
focus_displayof() method, 621
focus_force() method, 621
focus_get() method, 621
focus_lastfor() method, 621
focus_set() method, 621
Folder (mh, name) method, 545
folder objects, 546
folders. See directories
folding source code, Pythonwin, 666
font class instances, methods, 594

font property, 593-595
font styles, options, 594
font, changing in windows, 652
foo() function, 699
for statement, 60-61
foreground option, 620
foreground(fg) property, 591-592
foreign key, 330
fork() method, 453
form fields, parsing data, 459-463
form name, 483
format option, 620
Format Paragraph option, File Editor,

656
format strings, %r and %s, 86
formats

Audio Interchange File (AIFC), 359
data, struct module, 308
Date/Time, setting, 274-275
functions, 71
XDR Data Exchange, 512-517

formatter module, 135, 524-529
formatter objects, 524-527
formatter variable, 522
formatting strings, 229-233
formatting operations, 83-85
% formatting operators, 84
forms, testing, 463
FORMS library, 815
FORMS module, 570
FourThought, Inc., 497
FourThought LLC, 506-507
FOX (FXPy) module, 567-568
fp instance, 543
fpformat module, 115
frame rate, 356

31 0672319942 index 11/15/00 11:42 AM Page 860

861functions

Frame widget, 596, 602-603
frame() method, 617
frames

audio files, 356
creating to align colored buttons, 602

FrameType object type, 182
FrameWork module, 813
framework modules, 146
Free Software Foundation, 679
freeze program, 681
Freeze tool, 710
from script, 684
from statement, 79-81
Front Page Personal Web Server, 432
fs attributes, 454-455
FTP (File Transfer Protocol), 417-418
ftplib module, 132, 417
ftpmirror program, 682
ftpstats script, 684
functions, 69, 71-73, 75-77, 102, 771,

777, 802
a2b_hex, 548
aggregate, relational databases, 330-331
alert(), 482
allocating and releasing memory, Python

heaps, 801
ANY*, 801
ANY* PyMem_Malloc(size_t n), 801
ANY* PyMem_Realloc(ANY *p,

size_t n), 802
ANY* Py_Malloc(size_t n), 802
ANY* Py_Realloc(ANY *p, size_t n), 802
assigning to variables, 72
asyncore module, 404
asyncore.loop([timeout=30]), 404

asyncore.poll([timeout=0
[, exceptions=0]]) function, 404

AutoFit(), 274
AVG(), 330
b2a_hex, 548
Binary(string), 344
binascii module, 548
binhex module, 547
binhex(inputfile, outputfile), 547
built-in, 50-51, 53, 55-57, 59
calcsize(), 114, 307
callback, 246-247, 585
calling without arguments, 72
Cells(), 275
cgi module, 455
changing global variables inside, 72
char* PyModule, 788
char* PyString, 773
char* Py_Get, 792-793
code, 56-57
command(), 227
compile(), 685
completion, 130
const char* Py_Get, 793-794
COUNT(*), 330
data type conversion, 57, 59
Date(year, month, day), 344
DateFromTicks(ticks), 344
deallocation, 753
decode (in_file[, out_file[, mode]]), 547
decode(input, output), 538
decode(inputfileobject, outputfileobject,

encoding), 531
defining object types, 804-805
dis(), 696
documentation strings, 644

31 0672319942 index 11/15/00 11:42 AM Page 861

862 functions

dosomething(), 80
double PyComplex, 786
double PyFloat, 784
double PyLong_AsDouble(PyObject

*pylong), 783
dumpdata(), 318
embedding Python, 750-751
encode (in_file, out_file[, name[, mode]]),

547
encode(input, output, quotetabs), 539
encode(inputfileobject, outputfileobject,

encoding), 531
executing source code, Python/C

Application Programmers Interface
(API), 751, 753

families(), 594
FILE* PyFile_AsFile(PyFileObject *p),

787
filter(), 640
findmatch(), 537
foo(), 699
formats of, 71
generic conversion, 544-548
getcaps(), 537
GetIDsOfNames(), 264
getopt.getopt(), 125
getpass.getpass(), 124
getpass.getuser(), 124
glob.glob(), 104, 126
handling exceptions, 747-748, 750,

754-757
handling files, 87-89
handling objects, 54-55
hash(), 55
hexbin(inputfile [, outputfile]), 547
Image class, 619

image_names(), 619
image_types(), 619
importing modules, 760-762
init(), 250
initialization, finalization, and threads,

789-800
int (*getreadbufferproc) (PyObject *self,

int segment, void **ptrptr), 806
int (*getsegcountproc) (PyObject *self, int

*lenp), 806
int (*getwritebufferproc) (PyObject *self,

int segment, void **ptrptr), 806
int Py_AtExit(void (*func) ()), 759
int Py_eval_input , 752
int Py_FdIsInteractive(FILE *fp, char

*filename), 759
int Py_file_input , 752
int Py_IsInitialized(), 790
int Py_single_input , 752
int PyBuffer_Check(PyObject *p), 775
int PyCallable_Check(PyObject *o), 764
int PyCObject_Check(PyObject *p), 789
int PyComplex_Check(PyObject *p), 785
int PyDict, 780-781
int PyErr, 754-, 756-757
int PyFile, 786-787
int PyFloat_Check(PyObject *p), 784
int PyImport_ImportFrozenModule

(char *), 762
int PyInt_Check(PyObject* o), 781
int PyList, 778-779
int PyLong_Check(PyObject *p), 782
int PyMapping, 770
int PyModule_Check(PyObject *p), 788
int PyNumber_Check(PyObject *o), 766
int PyObject, 763-766

31 0672319942 index 11/15/00 11:42 AM Page 862

863functions

int PyRun_AnyFile(FILE *fp, char
*filename), 751

int PyRun, 751
int PySequence, 768-770
int PyString, 773
int _PyString_Resize(PyObject **string,

int newsize), 774
int PySys_SetArgv(int argc, char **argv),

794
int PyTuple, 776-777
int PyType, 772
int(), base arguments, 58
interfaces, 399
Invoke(), 264-265
isinstance(), 188-189
issubclass(), 188-189
join(), 80
loaddata(), 318
long PyImport_GetMagicNumber(), 761
long PyInt, 782
long PyLong_AsLong(PyObject *pylong),

783
long

PyOS_GetLastModificationTime(char
*filename), 759

long(), base arguments, 58
mainloop(), 639
managing reference counts, Python

objects, 753
map(), 104, 640
marshal.dump(value, filename), 318
marshal.dumps(value), 319
marshal.load(filename), 319
marshal.loads(string), 319
mathematical/logical, 55-56
MAX(), 330

mimetools module, 531
mimetypes module, 537
mimetypes.guess_extension(type), 537
mimetypes.guess_type(url_or_filename),

537
mimetypes.init([files]), 537
mimetypes.read_mime_types(filename),

537
MIN(), 330
names(), 594
namespace, 71-72, 74
naming styles and conventions, 646
numbers in, 41
object interactions, 763-771
object types, 771-786
objects

buffer, 774-776
C, 788-789
complex number, 784-786
dictionary, 780-781
file, 786-787
floating point, 783-784
list, 778-779
long integer, 782-783
mapping, 780-781
module, 788
none, 772
numeric, 781-786
plain integer, 781-782
sequence, 772-779
string, 772-774
tuple, 776-777
type, 772

operator.add(), 104
optimizing, 640
os.statvfs(), 122

31 0672319942 index 11/15/00 11:42 AM Page 863

864 functions

os.sterror(), 167
os.times(), 708
pack(), 114, 307
passing references to, 746
pickle.dump(object, filename [,bin]), 316
pickle.dumps(object [,bin]), 317
pickle.load(file), 317
PlaySound, bitwise arguments, 355-356
popen, 143
profile module, 699-700
profile.run(), 699
protocols

mapping, 770-771
number, 766-768
object, 763-766
sequence, 768-770

pwd.getpwnam(), 140
Py_BuildValue(), 229, 232-233, 745
Py_complex, 784-786
Py_DECREF(), 235-236
Py_Finalize(), 247, 751
Py_Get, 750-751
Py_INCREF(), 235-236
Py_Initialize(), 247, 750-751
Py_IsInitialized(), 751
Py_SetProgramName(file), 750
PyArg_ParseTuple(), 229
PyArgs_ParseTuple, 229,231, 774
PyErr_Clear(), 748
PyErr_ExceptionMatches(), 754
PyErr_SetString(), 748
PyImport_AddModule(char *name), 761
PyInterpreterState*

PyInterpreterState_New(), 799
PyList_GetItem(), 746-747
PyList_New(), 745

PyList_SetItem(), 745
PyObject, 227, 746, 752, 760-789
PyRun, 247-248
PySequence, 745-747
PySys_SetArgv(), 248
Pythoncom.CreateGuid(), 275
PythonHandler, 431
PyThreadState*, 798-800
PyTuple_SetItem(), 745
quopri module, 538-539
raise class(), 159
range(), 66-67
re.compile(), 373
recvfrom(buffersize), 398
reduce(), 640
reference counts, 744-747
repr(), Python 2.0, 832
Response_Write(), 486
returning values from, tuples, 68
rexec.RExec(), 361
round(), 38
run(), 699
select, 397
select(), 404
send(string), 399
sending packets on datagram protocols,

399
sendto(string, (hostname, port)), 399
sequence, 52-53
setblocking(flag), 399
setprofiler(), 697
shutdown(flag), 399
sndhdr.whathdr(), 356
sndhdrwhat(), 356
socket.ssl(), syntax, 399
str(), 832

31 0672319942 index 11/15/00 11:42 AM Page 864

865functions

string.center(), 112
string.rjust(), 112
string.rstrip(), 112
string.strip(), 112
string.uppercase(), 113
struct _frozen , 762
struct _frozen* PyImport_FrozenModules,

762
struct _node*

PyParser_SimpleParseFile(FILE *fp,
char *filename, int start), 752

struct _node*
PyParser_SimpleParseString(char *str,
int start), 751

SUM(), 330
sum_sequence(), 746-748
sys getrefcount(), 39
sys.exec, 102, 748, 795
sys.exit(), 161
sys.getrecursionlimit(), 102
sys.last, 102
sys.recursionlimit(), 102
sys.setprofiler(profiler_function), 697
sys.settrace(tracer_function), 697
sys.version_info(), 102
thread.allocate_lock(), 378
thread.exit(), 378
thread.get_ident(), 378
thread.start_new_thread(func,args

[,kwargs]), 378
Threading, 380
time(), 641
Time(hour, minute, second), 344
time.clock(), 641
time.sleep, 379
TimeFromTicks(ticks), 344

Timestamp, 344
tkFont module, 594
traceback.print_exc(), 158
unicode(), 59
universal, 364
unpack(), 114, 307
unsigned long

PyLong_AsUnsignedLong(PyObject
*pylong), 783

urllib module, 415
urllib.quote(string [,safe])(), 415
urllib.quote_plus(string [,safe])(), 415
urllib.unquote(string)(), 415
urllib.urlcleanup(), 415
urllib.urlencode(dict)(), 415
urllib.urlretrieve(url [,filename] [,hook])(),

415
urlparse module, 416
urlparse.urljoin(base, url

[,allow_fragments])(), 416
urlparse.urlparse()(), 416
urlparse.urlunparse(tuple)(), 416
user-defined, 71
utilities

OS, 759
process control, 759-760

uu module, 547
void Py_DECREF(PyObject *o), 753
void Py_EndInterpreter(PyThreadState

*tstate), 791
void Py_Exit(int status), 759
void Py_FatalError(char *message), 759
void Py_Finalize(), 790
void _PyImport, 761-762
void Py_INCREF(PyObject *o), 753

31 0672319942 index 11/15/00 11:42 AM Page 865

866 functions

void Py_Initialize(), 789
void Py_SetProgramName(char *name),

792
void Py_XDECREF(PyObject *o), 753
void Py_XINCREF(PyObject *o), 753
void PyDict_Clear(PyObject *p), 780
void PyErr, 755-756
void PyEval, 797-798
=void PyEval_RestoreThread

(PyThreadState *tstate), 798
void PyFile_SetBufSize(PyFileObject *p,

int n), 787
void PyImport_Cleanup(), 761
void PyInterpreterState, 799
void PyMem_Free(ANY *p), 802
void PyString, 773-774
void PyThreadState, 800
void PyTuple_SET_ITEM(PyObject *p,

int pos, PyObject *o), 777
void* PyCObject, 789
what(), 354
win32.com.client.Dispatch(), 264
xrange(), 67
zip(), 54
See also methods

FunctionType object type, 182
FXPy module, 567-568

G

GadFly SQL module, 333-334
garbage collection, 39
Garbage Collection of Cycles, 39

Garbage Collection of Cycles (Python
2.0), 830

Garshol, Lars Marius, 497
GATEWAY_INTERFACE environment

variable, 475
GD module, 354, 443
gdbm module, 141, 309-312
generating

executable bytecode, 685-686
modules, identifying, 273
thumbnail images, 353
wrapper files, 245

generators, callback, 809
generic conversion functions, 544-548
generic conversion functions parsing and,

544-548
Generic Operational System library,

119-127
geometry management, Tkinter module,

580-585
geometry(geometry) method, 618
GET method, 452-453
GET request handler, 411
GET requests, 409
get() method, 455, 602, 611-612
get(name[, default]) method, 542
get(row) method, 604
get(startindex [,endindex]) method, 614
getaddr(name) method, 542
getaddrlist(name) method, 542
getallmatchingheaders(name) method,

542
__getattr__(self, name) method, 193
getcaps() function, 537
getcompname() method, 357

31 0672319942 index 11/15/00 11:42 AM Page 866

867GNU gzip, downloading

getcomptype() method, 357
getcontext() method, 545
getcurrent() method, 546
getdate(name) method, 543
getfile() method, 413
getfirstmatchingheader(name) method,

542
getframerate() method, 357
getfullname() method, 546
getheader(name[, default]) method, 542
gethostbyaddr(ipaddress) method, 398
gethostbyname_ex(hostname) method,

398
gethostbyname(hostname) method, 398
gethostname() method, 398
GetIDsOfNames() function, 264
__getitem__(self, index) method, 193-194
getlast() method, 546
getmark(id) method, 357
getmarkers() method, 357
getmessagefilename(n) method, 546
getnchannels() method, 357
getnframes() method, 357
getopt module, 124
getopt.getopt() function, 125
getparams() method, 357
getpass module, 124
getpass.getpass() function, 124
getpass.getuser() function, 124
getpath() method, 545
getpathp.c file, 675
getpeername() method, 398
getprofile(key) method, 545
getprotobyname(protocol) method, 398
getrawheader(name) method, 542
getreply() method, 413

getsampwidth() method, 357
getsequences() method, 546
getsequencesfilename() method, 546
getservbyname(service, protocol)

method, 398
__getslice__(a, b, c) method, 195
getsocketname() method, 398
gettext module, 149
getvalue() method, 455
getvar(variable) method, 621
get_all_breaks() method, 691
get_break(filename, lineno) method, 691
get_breaks(filename, lineno) method, 691
get_buffer() method, 513-514
get_file_breaks(filename) method, 691
get_position() method, 514
gl module, 144
glob module, 126
glob.glob() function, 104, 126
global class variables, handling, 192
global keyword, 72
global locks, thread state, 795-800
global names, 77
global namespaces, modules, 77
global variables

changing inside functions, 72
Python/C Application Programmers

Interface (API), 757, 759
Globals checkbutton, Debug Control

Panel, 660
glue code. See wrappers
GmatH module, 368
GMD, 439
Gnome-Python module, 565
GNU gzip, downloading, 18

31 0672319942 index 11/15/00 11:42 AM Page 867

868 GNU Mailing List Manager (Mailman)

GNU Mailing List Manager (Mailman),
436-438

Go button, Debug Control Panel, 658
Go to file/line option, File Editor, 657
Go to line option, File Editor, 656
Gopher, 421-423
Gopher protocol, 423
gopherlib module, 132, 423
grab_current() method, 621
grab_release() method, 621
grab_set() method, 621
grab_set_global() method, 621
grab_status() method, 622
Grail, 428, 434-435
graphical user interfaces (GUIs), 555,

632
Abstract Windowing Toolkit (AWT), 731
applications, 15
Tkinter, 575-580, 631

designing applications, 624-625,
627-630

geometry management methods,
580-585

handling events, 585, 587-590
informational resources, 630-631
PMW (Python Mega Widgets), 630
widgets, 590-595, 597-624

toolkits, 555-557, 572
Abstract Windowing Toolkit (AWT),

570
designing good interfaces, 571-572
DynWin, 569
FORMS, 570
FXPy, 567-568
Java Python Interface (JPI), 569-570
Motif, 568-569

PyAmulet, 569
pyFLTK, 567
PyGTK, 563, 565
PyKDE, 562-563
PyOpenGL, 566
PyQt, 562
Pythonwin, 556, 558-559
stdwin, 562
Tkinter, 557-558
wafepython, 566
Wpy, 563
wxPython, 559-561

graphics, manipulating, 352-355
grid class, 581
grid() method, 582-584
groceries list, source code, 213-214
group by clause, 331
group(window) method, 617
grp module, 140
GTK+ module, 563
GUI. See graphical user interfaces
gzip module, 18, 130

H

h element, 231-232
H format, 308
h(elp) command, 694
h2py program, 682
Hammond, Mark, 266, 558, 647, 661,

807, 816
handle() methods, 410
handle.cdata(data) method, 500
handle.charref(ref) method, 499
handle.comment(comment) method, 500

31 0672319942 index 11/15/00 11:42 AM Page 868

869headers attribute

handle.data(data) method, 499
handle.doctype(tag, data) method, 499
handle.endtag(tag, method) method, 499
handle.entityref(ref) method, 499
handle.proc(name, data) method, 500
handle.special(data) method, 500
handle.starttag(tag, method, attributes)

method, 499
handle.xml(encoding, standalone)

method, 498
handlers

Apache, 428-429
binding, protocols, 589
request, GET and HEAD, 411

handle_accept() method, 403
handle_charref(ref) method, 519
handle_close() method, 404
handle_comment(comment) method, 519
handle_connect() method, 404
handle_data(data) method, 518
handle_endtag(tag, method) method, 518
handle_entityref(ref) method, 519
handle_error(error_type, error_value,

traceback) method, 404
handle_expt() method, 404
handle_image(source, alt[, is map[, align[,

width[, height]]]]) method, 522
handle_read() method, 404
handle_request() method, 408
handle_starttag(tag, method, attributes)

method, 518
handle_write() method, 403
handling

clients, User Datagram Protocol (UDP),
402

complex numbers, 42

data
Internet Data Handling library,

134-137
Python, 13

email services, 419-421
events, Tkinter module, 585, 587-590
exceptions, 13, 153-157

extension modules, 234-235
Python/C Application Programmers

Interface (API), 754-757
files, 83, 85-89
global class variables, 192
lists, 281-282
long integers, 42
methods, 190-198
namespaces, 74
numbers, 280-281
objects, functions, 54-55
proxy server connections, 416
requests

CGIHTTPServer module, 412
GET and POST, 409

strings, 280-281
tags, 519
threads, interpreters, 377
tuples, 281-282

hash databases, opening, 313
hash tables. See dictionaries
hash() function, 55
__hash__(self) method, 193
HEAD request handler, 411
header files, 742

<Python.h>, 223
bufferobject.h, 775

headers, HTTP, 454
headers attribute, 411, 414

31 0672319942 index 11/15/00 11:42 AM Page 869

870 headers instance

headers instance, 543
heading, column, 700
heaps, allocating and releasing memory,

801
Hector, 286, 294-295
height argument, 584
height attribute, 587, 620
height option, 620
height property, 591, 603, 609
height() method, 620
hello world program, 34
Hello World program, Tkinter, 578, 580
hemlentitydefs module, 524
Henstridge, James, 564
Herborth, Chris, 815
hexadecimal numbers, 41
hexbin(inputfile [, outputfile]) function,

547
hierarchies, standard exceptions, 169,

171-173
highlightthickness property, 592
How to Write a Python Extension, 804
HTML (Hypertext Markup Language),

interacting with Python code, 483
HTML files, outputting links from to

Web pages, 523-524
HTML pages, versus Active Server Pages

(ASP), 485
HTML parsing tool source code,

384-386
htmlentitydefs module, 134
HTMLgen, 444
htmllib module, 134, 521-522, 524
HTMLParser class, 521, 524
HTTP (Hypertext Transfer Protocol),

405-413, 427

HTTP class, 413
HTTP environment variables, 475
HTTP headers, 454
HTTP servers, 406, 408, 457
httpd_log, 443
httplib module, 131-132, 412-413
HTTPServer class, 409
Hugunin, Jim, 364, 718
Hylton, Jeremy, 647
Hypertext Markup Language (HTML),

interacting with Python code, 483
Hypertext Transfer Protocol (HTTP),

405-413, 427

I

I, 526
–i argument, 37
i element, 231-232
I format, 308
–i option, 687, 728
IBM Research, Structured Query

Language (SQL), 327
ibrowse program, 683
ic module, 812
ICCCM (Inter-Client Communication

Conventions Manual), 589
iconify() method, 617
iconmame(newName=None) method,

618
iconmask(bitmap) method, 618
iconposition(x, y) method, 618
iconwindow(window) method, 618
identation, 37-38

31 0672319942 index 11/15/00 11:42 AM Page 870

871in (in) argument

identifiers, 40
Interface (IID), 263
Universally Unique (UUID), 263

identifiers. See also objects
identifying

generated modules, 273
number of arguments, functions, 75

identity property, 181
IDispatch interface, 263-265
IDLE (Integrated Development

Environment), 15, 647-661, 829
IDLE extensions, writing, 660
IETF (Internet Engineering Task Force),

442
if statements, 49
if/elif/else statement, 60
ifdef program, 682
ignore bpnumber count command, 695
ignore() method, 706
IIDs (Interface Identifiers), 263
IIS (Internet Information Server), 481,

485
ILU system (Inter-Language Unification

system), 285
im.format attribute, 353
im.mode attribute, 353
im.size attribute, 353
Image class, 353, 619
Image module, 353
image objects, creating, 619
image property, 595, 597
image() method, 598
imageop module, 138
images, manipulating, 352-355
image_names() function, 619

image_types() function, 619
IMAP (Internet Message Access

Protocol), 418-421
imaplib module, 420
imgfile module, 144
imghdr module, 138, 354
imghdr WBMP, 355
immutable data types, 40, 43
imp module, 106-107
impalib module, 132
implementing

callback functions, 246-247
extensions, 227
objects, Common Object Model (COM),

266-277, 279, 281-283, 285
polymorphism, 201-203
Python Common Object Model (COM)

server, 270
wrappers, Word, 271-273

Import module option, File Editor, 656
Import option, Pythonwin, 663
import statement, 79-81, 168
ImportError class, 171
importing

Common Object Model (COM) client,
269

extension modules, 228-229
global namespaces, modules, 77
modules, 79-81, 638, 760-762
packages, 107
time module, 641

import_nt.c file, 675
improving performance, programs, 264
imputil module, 149
in (in) argument, 585

31 0672319942 index 11/15/00 11:42 AM Page 871

872 in operator

in operator, 48
include files, Python/C Application

Programmers Interface (API), 742
incrementing

counters, 235-236
reference counts, 744

Indent region option, File Editor, 656
indentation, 14
indented blocks, 642, 650
index methods, 605, 615
indexer values, strings, 43
IndexError class, 172
IndexError exception, 160
indexes, 616
indexing support, tuples, 68
indicator option, 605
indicatoron attribute, 600
indicators, error, 754
Industrial Light and Magic, 8
inheritance, 180, 198-201
__init__(self) method, 192
init() function, 250
initializing

variables, 203
Python/C Application Programmers

Interface (API), 789-800
inline comments, 643
InProc object, 265
input

testing, 463
users, 79, 81-85

<!-- # INSERT HERE # --> tag, 469
insert(index [,string]...) method, 615
insert(row, string) method, 604

inserting
Button widgets inside text, 616-617
Python/C Application Programmers

Interface (API), 223
rows in tables, 331

installations, administrator privileges,
810

Installer tool, 711
installers, 22
installing

Common Gateway Interface (CGI)
scripts, 456-481

dynamic modules, 242
IDLE, 649-650
JPython, 723-727
NumPy, 366-367
Python, 18-22
python-mode package, 681
Pythonwin, 662
Tkinter, 577-578

instance attributes, 180
instance variable, 163
instances, 183-190

accessing variables, 188
class, catching, 163
classes, 180-182, 187
fp, 543
headers, 543
Message objects, 543
metainstances, creating, 208

InstanceType object type, 182
instancing, exception classes, 163-164
int (*getreadbufferproc) (PyObject *self,

int segment, void **ptrptr) function,
806

31 0672319942 index 11/15/00 11:42 AM Page 872

873interfaces

int (*getsegcountproc) (PyObject *self,
int *lenp) function, 806

int (*getwritebufferproc) (PyObject *self,
int segment, void **ptrptr) function,
806

int Py_AtExit(void (*func) ()) function,
759

int Py_eval_input function, 752
int Py_FdIsInteractive(FILE *fp, char

*filename) function, 759
int Py_file_input function, 752
int Py_IsInitialized() function, 790
int Py_single_input function, 752
int _PyString_Resize(PyObject **string,

int newsize) function, 774
Int Py END OF BUFFER constant, 775
int PyBuffer_Check(PyObject *p)

function, 775
int PyCallable_Check(PyObject *o)

function, 764
int PyCObject_Check(PyObject *p)

function, 789
int PyComplex_Check(PyObject *p)

function, 785
int PyDict functions, 780-781
int PyErr functions, 754, 756-757
int PyFile functions, 786-787
int PyFloat_Check(PyObject *p)

function, 784
int PyImport_ImportFrozenModule(char

*) function, 762
int PyInt_Check(PyObject* o) function,

781
int PyList functions, 778-779
int PyLong_Check(PyObject *p)

function, 782

int PyMapping functions, 770-771
int PyModule_Check(PyObject *p)

function, 788
int PyNumber_Check(PyObject *o)

function, 766
int PyObject functions, 763-766
int PyRun functions, 751
int PySequence functions, 768-770
int PyString functions, 773
int PySys_SetArgv(int argc, char **argv)

function, 794
int PyTuple functions, 776-777
int() function, base argument, 58
integers, 41-42, 66-67
Integrated Development Environment

(IDLE), 15, 647-661, 829
integrating Java, JPython, 722-723
IntegrityError exception, 338
Inter-Client Communication

Conventions Manual (ICCCM), 589
Inter-Language Unification (ILU)

system, 285-289
interactions with objects, Python/C

Application Programmers Interface
(API), 762-769, 771

interactive mode, 688
Interface Identifiers (IIDs), 263
InterfaceError exception, 338
interfaces

application program (API)
Common Object Model (COM), 261
Python DB, 335-348
Winsock, 396

buffer, 774
Common Object Model (COM), 262-265
dbhandle, 312

31 0672319942 index 11/15/00 11:42 AM Page 873

874 interfaces

DocumentHandler, 505
DTDHandler, 505
EntityResolver, 505
ErrorHandler, 505
formatter, 525-527
functions, 399
graphical, creating, 731-732
graphical user (GUI), 555

Abstract Windowing Toolkit (AWT),
570, 731

Tkinter, 575-585, 587-595, 597-625,
627-631

toolkits, 555-557, 572
designing, 571-572
DynWin, 569
FORMS, 570
FXPy, 567-568
IDispatch, 263-265
IPropertyPage, 263
IStorage, 263
IStream, 263
IUnknown, 263
Java Python Interface (JPI), 569-570
Motif, 568-569
open, 312
PyAmulet, 569
pyFLTK, 567
PyGTK, 563, 565
PyKDE, 562-563
PyOpenGL, 566
PyQt, 562
Python/C Application Programmers

(API), 741-751
Abstract Objects Layer, 762-769, 771
Concrete Objects Layer, 771-789
defining object types, 804-806

executing source code, files and
buffers, 751, 753

extending and embedding, 223
handling and raising exceptions,

754-757
initialization, finalization, and threads,

789-800
managing memory, 800-803
managing reference counts, Python

objects, 753
utility tasks, 759-762
variables, exceptions, 757, 759

Pythonwin, 556, 558-559
sgmllib.SGMLParser, 521-522
Simple API for XML (SAX API),

504-506
single line, creating, 601
stdwin, 562
Tkinter, 557-558
wafepython, 566
Wpy, 563
writer, 527-529
wxPython, 559-561

interfacing objects, 259-277, 279,
281-283, 285-297

InternalError exception, 338
Internet Explorer, 266

Concurrent Version System (CVS) Web
site, 16

copying pages into local files, 416
development for, 427-428, 447-449

BSCW (Basic Support for
Cooperative Work), 439-440

configuring servers for Python/CGI
scripts, 428-433

31 0672319942 index 11/15/00 11:42 AM Page 874

875issubclass() function

LDAP (Lightweight Directory Access
Protocol), 440-441

site management tools, 442-447
third-party applications, 433-439
WebLog, 441-442

GNU Web site, 18
libraries, Internet Protocol and Support,

131-134
parsing Web pages, 414
Python documentation Web site, 17
Python news Web site, 8
Python source code Web site, 18, 21-22
retrieving Web pages, 414
uploading files, 471-473
WinZip Web site, 18

Internet country codes, source code,
176-177

Internet Data Handling library, 134-137
Internet Engineering Task Force (IETF),

442
Internet Explorer, 266
Internet Information Server (IIS), 481,

485
Internet Message Access Protocol

(IMAP), 418-421
Internet Protocol (IP), 393
Internet Solution Providers (ISPs),

Python-friendly, 444
interpreters

calling, 687
closing, 689
command line, 32, 34-35
embedding, 247-250, 452
environment variables recognized by,

686-687

global locks, thread state, 795-800
handling threads, 377
JPython, 727, 729
linking extensions, 237-239, 241-243
opening after executing programs, 37
raising exceptions to leave, 161
starting, 687-688

interrupting running commands, 650
introspection, 15
introspection mechanism, 719
IntType object type, 181
__inv__(self) method, 194
Invoke() function, 264-265
invoke() method, 597, 600, 609
IOEror class, 171
IP (Internet Protocol), 393
IP addresses, 395-396
ipadx option, 582
ipady option, 582
IPropertyPage interface, 263
IRIX Operating System

Java Virtual Machine (JVM) support,
JPython, 727

SGI IRIX Specific library, 143-144
is not operator, 48
is operator, 48
is_data(str) method, 535
iscomment(line) method, 542
isheader(line) method, 541
isinstance() function, 188-189
islast(line) method, 542
islscan, 287
ISPs (Internet Solution Providers),

Python-friendly, 444
issubclass() function, 188-189

31 0672319942 index 11/15/00 11:42 AM Page 875

876 IStorage interface

IStorage interface, 263
IStream interface, 263
IUnknown interface, 263

J

Jansen, Jack, 20, 496, 547
–jar jar option, 728
Java Foundation Classes (JFC), 731
Java mechanism, 719
Java programming language

embedding JPython in, 732-734
integrating, JPython, 722-723
versus Python, 24-25

Java Python Interface (JPI) module,
569-570

Java Virtual Machine (JVM), JPython
support, 726-727

JED, 679
JFC (Java Foundation Classes), 731
JFC/Swing GUI Components (Swing)

library, 731
Johnson, Lyle, 568
join() function, 80
joins, tables, 329-330
jpeg module, 144
JPI (Java Python Interface) module,

569-570
JPython, 24-25, 488, 717-719

copyright notices (licenses), 822-826
CPython versus, 719-720
creating graphical interfaces, 731-732
downloading and installing, 723-727
embedding, 732-734
integrating Java, 722-723

jpythonc tool, 734-736
running applets, 736-737
Web resources, 721

JPython interpreter, 727, 729
JPython Registry, 729-731
JPython Runner, 727
jpythonc tool, 734-736
justify property, 593
JVM (Java Virtual Machine), JPython

support, 726-727

K

<Key> event, 587
key/value pairs, bucket size, 310
keyboard bindings

File menu, File Editor, 653-654
Pythonwin, 668-670

keyboard commands, IDLE, 652
keyboard events, handling, 587
KeyboardInterrupt class, 171
KeyError class, 172
KeyLabs, 723
keys

foreign, 330
primary, 329
sorting abbreviations, 704

keys() method, 622
keysym attribute, 587
keyword module, 107-108
keywords, 72-73, 183
Kolar, Christopher, 438
Kotsokalis, Constantinos, 406
Kuchling, Andrew, 496

31 0672319942 index 11/15/00 11:42 AM Page 876

877libraries

L

l element, 231-232
l format, 308
l(ist) [first [,last]] command, 695
label option, 605
Label widget, 596, 603
lambda keyword, 72-73
languages. See programming languages
lapack_litemodule module, 365-366
last variable, 535
late bindings, 264-265
Latteier, Amos, 512
launching

applications, 689
interpreters, 32, 37
scripts from Windows, 36

Lawrence Livermore National Library,
364

layers
Abstract Objects, Python/C Application

Programmers Interface (API), 762-769,
771

Concrete Objects, Python/C Application
Programmers Interface (API), 771-789

OSI model, 392
sockets, 394

layouts, writing code, 642-643
lckobj.acquire([flag]) method, 378
lckobj.locked() method, 378
lckobj.release() method, 378
LDAP (Lightweight Directory Access

Protocol), 440-441
<Leave> event, 586
left shifting, 48

Lemburg, Marc-André, 324
__len__(name) method, 543
__len__(self) method, 194
level variable, 535
lexical elements, Python, 14
lfcr program, 682
libraries, 97-98

4DOM, 506
C, memory corruption, 800
CPython, downloading, 725
Cryptographic, 139
Debugger, 130
dynamic link (DLL), accessing, 243
FORMS, 815
Generic Operational System, 119-127
Internet Data Handling, 134-137
Internet Protocol and Support, 131-134
JFC/Swing GUI Components (Swing),

731
Lightweight Directory Access Protocol

(LDAP), 441
Microsoft Foundation Class library, 661
Miscellaneous, 115, 117-118
Multimedia, 137-138
operating systems, 140-146
Optional Operational System, 127-130
OROMatcher regular expression,

724-725
Profiler, 131
Python Imaging, 352-354
Python Imaging (PIL), 15
Python Library Reference, 98
Python Services, 99-101, 103-110
Pyxie, 510
Restricted Execution, 137
Scarab, 509

31 0672319942 index 11/15/00 11:42 AM Page 877

878 libraries

shared, building modules as, 678
Standard Library of Modules, 98-99
Standard Python, The, 11, 13
String Group, 110-115
Type, 264
Undocumented Modules, 146-147, 149
XML-RPC, 510-512
See also modules

licenses, Python software, 817-826
licensing, JPython, 725-726
lift([object]) method, 622
Lightweight Directory Access Protocol

(LDAP), 440-441
limit module, 441
Linbot, 443-444
“line” argument, 704
line breaks, 38
line() method, 598
LinearAlgebra.py module, 365-366
linecache module, 104
lines, 36-37, 604
LinkChecker, 445
linking

dynamic extensions to interpreters,
241-243

extension modules, 237-243
static extensions to interpreters, 237-239,

241
links

outputting from HTML files to Web
pages, CGI scripts, 523-524

Python 2.0, 22
linktree program, 682
Linux

installing Python, 19-20
Java Virtual Machine (JVM) support,

JPython, 726

linuxaudiodev module, 149
[^list], re module, 370
[list], re module, 370
List Comprehension, 64-65
list objects, 778-779
listallfolders() method, 545
listallsubfolders(name) method, 545
Listbox widget, 596, 603-604
listen() method, 401, 408
listen(max connections) method, 398
listfolders() method, 545
listing variables, 119
listmessages() method, 546
lists, 62-64, 66

company employees, source code,
214-216, 218

converting references into, 67
groceries, source code, 213-214
handling, 281-282
mailing, Mailman, 436
packing methods, 514
populating, 745
Python 2.0, 830
setting items in, 746
versus tuples, 68

listsubfolders(name) method, 545
ListType object type, 182
literals, 230
lll program, 682
loaddata() function, 318
loading

(from Tkinter import *) module, 579
images, 353
modules, 81, 457

local files, copying Web pages into, 416
local names, 77

31 0672319942 index 11/15/00 11:42 AM Page 878

879macspeech module

locale module, 127
Locals checkbutton, Debug Control

Panel, 660
LocalServer object, 265
Locate option, Pythonwin, 663
locking

CGI scripts, 465
shelve files, 321

locks, global interpreters, 795-800
logical functions, 55-56
logical values

true and false, 47
login data field, 460
logmerge program, 682
long integer objects, 782-783
long integers, handling, 42
long PyImport_GetMagicNumber()

function, 761
long PyInt functions, 782
long PyLong_AsLong(PyObject *pylong)

function, 783
long

PyOS_GetLastModificationTime(char
*filename) function, 759

LongType object type, 181
LookupError class, 172
loops

event, starting, 580
nested

construction methods, 640
raising exceptions to leave, 161-162

optimizing, 639-640
lower([object]) method, 622
lpwatch script, 684
lseek() method, 540
__lshift__(self, other) method, 194

Lumholdt, Steen, 576
Lundh, Fredrik, 497, 511, 711

M

{m, n}, re module, 370
M2Crypto, 406
mac module, 812
macconsole module, 812
macdnr module, 812
macfs module, 146, 812
Macintosh

color names, 592
fonts, 595
installing Python, 20
Java Virtual Machine (JVM) support,

JPython, 727
launching Python applications, 689
running Python, 810-813
setting up environment variables, 687

Macintosh Specific library, 145-146
MacOS module, 812
macostools module, 146, 812
macpath module, 812
MacPython, 20, 377
macros

Py_BEGIN, 799
Py_DECREF(), 743-745, 753
Py_END_ALLOW_THREADS, 799
Py_INCREF(), 743
Py_XDECREF(), 744
reference counts, 743-744
TYPE* PyMem, 802
void PyMem_DEL(ANY *p), 802

macspeech module, 813

31 0672319942 index 11/15/00 11:42 AM Page 879

880 mactcp module

mactcp module, 813
mailbox module, 137, 539
mailcap module, 136, 536-537
mailerdaemon program, 682
mailing lists, Mailman, 436
Mailloux, Bill, 809
Mailman, 436-438
Mailman Cabal, 437
__main__ module, 110, 750
mainloop() function, 639
mainloop() method, 580, 622
Makefile file, 249
makefile([mode [, buffersize]]) method,

398
makefolder(name) method, 545
makepy.py module, 273
managing

memory, 13, 800-803
reference counts, Python objects, 753

mangling, name, 204
Manheimer, Ken, 437
manipulating

data, 491, 549
Extensible Markup Language (XML),

492-510
formatter module, 524-529
generic conversion functions, 544-548
hemlentitydefs module, 524
htmllib module, 521-522, 524
Multipurpose Internet Mail Extension

(MIME), 530-544
sgmllib module, 517-519, 521
XDR Data Exchange Format, 512-517
XML-RPC library, 510-512

images, 352-355
object attributes, 205

manuals, Python 2.0 release, 17
map() function, 104, 640
mapping object structures, 804
mapping objects, 780-781
mapping protocol, 770-771
markov script, 684
marks, 615
marshal module, 106, 316, 318-319
marshal functions, 318-319
Martinet, Morgan, 250
maskdata option, 620
maskfile option, 620
masking, numbers in, 41
MatchObject, methods and attributes,

375
math module, 115
mathematical functions, 55-56
MAX() function, 330
maxsize(width, height) method, 618
mboxconvvert script, 684
McFarlane, Greg, 630
McGrath, Sean, 510
McMillan, Gordon, 711
md5 module, 139
md5test program, 683
measure(text) method, 594
Medusa Internet Server, 438-439
Megginson, David, 504, 506
Meland, Harald, 437
members, class, 180
memory management, 13, 800-803
MemoryError class, 172
menu bars, creating, 607
menu option, 605
Menu widget, 596, 604-608
Menubutton widget, 596, 608

31 0672319942 index 11/15/00 11:42 AM Page 880

881methods

menus
Build, Debug option, 675
creating, 625-626
Debug

File Editor, 657-658, 660
options, File Editor, 657-658, 660

Edit
File Editor, 655-657
keyboard bindings, Edit Editor,

656-657
options, Edit Editor, 655-656

File
keyboard bindings, File Editor,

653-654
options, File Editor, 653

options, Pythonwin, 663
pop-up, creating, 606
pull-down, creating, 607-608
Tools, Pythonwin, 664-666
Windows, File Windowsor, 657

Mess, 209
Message (folder, number[, name])

method, 545
Message class, 531
message objects, 531-533, 541-543, 546
Message widget, 596, 608-609
Message(file[, seekable]) class, 540-541
message.flushheaders() method, 532
message.get() methods, 532
message.lastpart() method, 533
message.nextpart() method, 533
message.startbody(ctype, [,plist [,prefix =

1]]) method, 532
message.startmultipartbody(subtype

[,boundary [,plist [,prefix = 1]]])
method, 533

messages
creating, 608
error

assigning values to substrings, 43
handling long integers, 42
non-Python extension dynamic link

libraries (DLLs), 243
MIME-encoded, 530-531
system, retrieving, 167
traceback, 13, 478

metaclasses, 206-209
metaclasses program, 683
metainstances, 206, 208
MetaKit database engine, 334-335
methfix program, 682
method overloading, 201-203
methods

accept(), 398, 401
accessing objects, 264
actual(options), 594
add(type, options), 605
AddRef(), 263
AddressList objects, 543-544
AddressList(field), 541
add, 605
after(milliseconds [, callback

[, arguments]]), 588
after, 588
aifc.writeframes(), 359
anchor_bgn(href, name, type), 522
anchor_end(), 522
arc(), 598
array module, 118
aspect(minNumer, minDenom,

maxNumer, maxDenom), 618
assert_line_data([flag = 1]), 527

31 0672319942 index 11/15/00 11:42 AM Page 881

882 methods

attributes, 196
Base Debugger (bdb) module, 690-691
BaseHTTPRequestHandler class,

410-411
binascii module, 548
bind, 398, 588
bindtags(), 588
bitmap(), 598
BitmapImage subclass, 619
built-in

dictionaries, 69-70
functions, 76
lists, 65-66
modules and packages, 79

Button widget, 597-598
calling from other methods, 192
calling from string objects, 46
Canvas widget, 598-600
cget(option), 594, 619, 621
cgi, 455-456
Checkbutton widget, 600
classes, 183-184, 188
clear, 691
client(name), 618
close(), 339-340, 358, 398, 498, 518, 521
colormapwindows(wlist...), 618
command(value), 618
commit(), 339
config(), 594
config(options), 594, 619, 621
configure(), 594
configure(options), 594, 619, 621
connect(), 401, 413
connect(hostname [,port]), 413
connect(hostname, port), 398
construction, nested loops, 640

cookie.load(), 467
Cookie.net_setfunc(), 467
cookie.output(), 466-467
Cookie.py module, 466-467
Cookie.user_setfunc(), 467
copy(font object), 594
copymessage(n, tofolder, ton), 546
create_socket, 403
cursor = dbhandle, 312-313
cursor(), 340
dbhandle, 311-313
deiconify(), 617
delete, 604-605, 614
deletefolder(name), 545
destroy(), 621
Dispatch, 272
do_GET(), 409, 412
do_POST(), 409, 412
do_tag(), 522
do_tag(attributes), 520
documentation strings, 644
done(), 514
endheaders(), 413
endswith(), 46
end_header(), 411
end_marker(str), 535
end_tag(), 520, 522
entryconfig(index, options), 605
error(format[, ...]), 545-546
event callbacks, 588-589
execute, 341-343
exposed by message object, 532-533
feed(), 521
feed(data), 498, 518
fetchall(), 342
fetchone(), 341

31 0672319942 index 11/15/00 11:42 AM Page 882

883methods

fileno(), 408
flash(), 597, 600, 609
flush(), 526-527
focus(), 618, 621
Folder (mh, name), 545
folder objects, 546
font class instances, 594
for dictionaries, 70
fork(), 453
formatter objects, 526-527
frame(), 617
geometry management, Tkinter module,

580-585
geometry(geometry), 618
GET, 452-453
get(), 455, 602, 611-612
get(name[, default]), 542
get(row), 604
get(startindex [,endindex]), 614
getaddr(name), 542
getaddrlist(name), 542
getallmatchingheaders(name), 542
getcompname(), 357
getcomptype(), 357
getcontext(), 545
getcurrent(), 546
getdate tz(name), 543
getdate(name), 543
getfile(), 413
getfirstmatchingheader(name), 542
getframerate(), 357
getfullname(), 546
getheader(name[, default]), 542
gethostbyaddr(ipaddress), 398
gethostbyname(hostname), 398
gethostbyname_ex(hostname), 398

gethostname(), 398
getlast(), 546
getmark(id), 357
getmarkers(), 357
getmessagefilename(n), 546
getnchannels(), 357
getnframes(), 357
getparams(), 357
getpath(), 545
getpeername(), 398
getprofile(key), 545
getprotobyname(protocol), 398
getrawheader(name), 542
getreply(), 413
getsampwidth(), 357
getsequences(), 546
getsequencesfilename(), 546
getservbyname(service, protocol), 398
getsocketname(), 398
getvalue(), 455
getvar(variable), 621
get_all_breaks(), 691
get_break(filename, lineno), 691
get_breaks(filename, lineno), 691
get_buffer(), 513-514
get_file_breaks(filename), 691
get_position(), 514
grab_current(), 621
grab_release(), 621
grab_set(), 621
grab_set_global(), 621
grab_status(), 622
grid(), 582-584
group(window), 617
handle_accept(), 403
handle_charref(ref), 519

31 0672319942 index 11/15/00 11:42 AM Page 883

884 methods

handle_close(), 404
handle_comment(comment), 519
handle_connect(), 404
handle_data(data), 518
handle_endtag(tag, method), 518
handle_entityref(ref), 519
handle_error(error_type, error_value,

traceback), 404
handle_expt(), 404
handle_image(source, alt[, is map[, align[,

width[, height]]]]), 522
handle_read(), 404
handle_request(), 408
handle_starttag(tag, method, attributes),

518
handle_write(), 403
handle(), 410
handle.cdata(data), 500
handle.charref(ref), 499
handle.comment(comment), 500
handle.data(data), 499
handle.doctype(tag, data), 499
handle.endtag(tag, method), 499
handle.entityref(ref), 499
handle.proc(name, data), 500
handle.special(data), 500
handle.starttag(tag, method, attributes),

499
handle.xml(encoding, standalone), 498
handling, 190-198
height(), 620
HTTP class, 413
iconbitmap(bitmap), 618
iconify(), 617
iconmame(newName=None), 618
iconmask(bitmap), 618

iconposition(x, y), 618
iconwindow(window), 618
image(), 598
index(index), 615
index(item), 605
index(mark), 615
insert(index [,string]...), 615
insert(row, string), 604
invoke(), 597, 600, 609
is_data(str), 535
iscomment(line), 542
isheader(line), 541
islast(line), 542
IUnknown interface, 263
keys(), 622
lckobj.acquire([flag]), 378
lift([object]), 622
line(), 598
listallfolders(), 545
listallsubfolders(name), 545
Listbox widget, 604
listen(), 401, 408
listen(max connections), 398
listfolders(), 545
listmessages(), 546
listsubfolders(name), 545
lower([object]), 622
lseek(), 540
mainloop(), 580, 622
makefile([mode [, buffersize]]), 398
makefolder(name), 545
mark handling, 615
mark_gravity(mark [,gravity]), 615
mark_names(), 615
mark_set(mark, index), 615
mark_unset(mark), 615

31 0672319942 index 11/15/00 11:42 AM Page 884

885methods

MatchObject, 375
maxsize(width, height), 618
measure(text), 594
Menu widget, 605
message, 532-533, 545
message objects, 541-543, 546
metrics(options), 594
MH ([path[, profile]]), 545
MH objects, 545
mhlib module, 545
mimetools module, 532
minsize(width, height), 618
mktime tz(tuple), 541
movemessage(n, tofolder, ton), 546
MultiFile (fp[, seekable]) class, 534-535
naming styles and conventions, 646
new, 527-528
next, 534
nextset(), 342
objects, regular expressions, 373-375
open, 353, 534
openfolder(name), 545
openmessage(n), 546
oval(), 599
overrideredirect(flag), 618
pack(), 581-582
Packer() class, 513-514
packing, 513-514
parsedate, 541
parsesequence(seq), 546
place configure(), arguments, 584-585
place(), 584-585
polygon(), 599
pop, 526, 535
positionfrom(who), 619
POST, 452-453, 459

print, 41
PrintOut(), 274
protocol(name, function), 617
push, 526, 534
putheader(header, argument1 [, ...]), 413
putrequest(request, selector), 413
putsequences(dict), 546
Python 2.0, 829
QueryInterface(), 263
quit(), 622
r_eval(code), 362
r_exec(code), 361
r_execfile(filename), 362
r_import(modulename [,globals [,locals]]),

361
r_open(filename [, mode [, buffersize]]),

361
r_reload(modulename), 361
r_unload(modulename), 361
Radiobutton widget, 609
re, 374-375
read, 534
readable(), 404
readframes(n), 357
readline(), 534, 540
rectangle(), 599
recv(), 401
recvform(), 402
refilemessages(list, tofolder), 546
RegExpObject, 373-375
Release(), 263
removemessages(list), 546
report_unbalanced(tag), 519
reset(), 498, 513, 518
reset(data), 514
resizable(width, height), 619

31 0672319942 index 11/15/00 11:42 AM Page 885

886 methods

rewind(), 357
rewindbody(), 540-541
rollback(), 339
run(command, globals=None,

locals=None), 691
runcall (func, *args), 691
runeval(expr, globals=None,

locals=None), 691
save_bgn(), 523
save_end(), 523
Scale widget, 611
Scrollbar widget, 612
search, 420
section_divider(str), 535
see(index), 615
see(row), 604
seek(), 534
seek(pos[, whence]), 535
select(), 600, 604, 609
send, 402, 410-411, 413, 528
serve_forever(), 408
set_break(filename, lineno, temporary=0,

cond = None), 691
set_continue(), 690
set_next(frame), 690
set_position(position), 514
set_quit(), 690
set_return(frame), 690
set_spacing(spacing), 527
set_step(), 690
set_trace(), 690-691
set(first, last), 612
set(value), 611
setcomptype(type, name), 358
setcontext(name), 545

setcurrent(n), 546
setdefault, 70
setframerate(n), 358
setinputsizes(sizes), 341-343
setlast(n), 546
setliteral(), 498, 518
setnchannels(n), 358
setnframes(n), 358
setnomoretags(), 498, 518
setoutputsize(size[,column]), 343
setparams(tuple), 358
setpos(pos), 357
setsampwidth(n), 358
setvar(variablename, value), 622
SGMLParser class, 518-520
sizefrom(who), 619
socket module, 397-398
socket objects, 398
socket(), 401
socket(family, type [, protocol]), 397
SocketServer module, 408
special, 192-195, 197
startswith(), 46
start_tag(), 522
start_tag(attributes), 520
state(), 617
Stats class, 703-706
StringIO.getvalue(), 115
sync, 312
syntax.error(message), 500
tab handling, 615
tag, 615-616
tell(), 357-358, 534-535, 540
Text widget, 614
text(), 599

31 0672319942 index 11/15/00 11:42 AM Page 886

887mode value

title(string), 619
tk_focus, 622
Tk(), 578-579
tkraise([object]), 622
toggle(), 600
tolist(), 67
Toplevel widget, 617
transient([master]), 617
translate.references(data), 498
type(), 620
unbind, 589
unbounded, accessing, 191
unknown, 500-501, 519
unpacker(data) class, 514-515
unread(), 540
update(), 622
update_idletasks(), 622
urllib.quote(string), 456
urllib.unquote(string), 456
urllib.urlencode(dictionary), 456
user, 690
values(), 462
wait, 622
wave module, 357-358
widget, 621-624
width(), 620
window(), 600
wininfo, 622-624
withdraw(), 617
writable(), 404
write(), 774
writeframes, 358
writer objects, 527-528
See also functions

methods property, 182

methods.lckobj, 378
MethodType object type, 182
metrics(options) method, 594
MFC (Microsoft Foundation Class

Library), 558
MH ([path[, profile]]) method, 545
MH objects, 545
mhlib module, 137, 545-546
Microsoft Foundation Class Library

(MFC), 558, 661
Microsoft IIS Server, configuring Web

servers for Python/CGI scripts, 432-433
Microsoft Remote Data Service (RDS),

266
Microsoft Windows. See Windows
microthreads, 381-382
migrating to Python 2.0, 827-828
MIME (Multipurpose Internet Mail

Extension), 530-544
mimetools module, 135, 531-532
mimetypes module, 136, 537-538
mimetypes functions, 537
MimeWriter module, 135, 532-533
mimify module, 137, 539-542, 544
MIN() function, 330
MiniAEFrame module, 813
MiniFieldStorage class, 455
minsize(width, height) method, 618
Miscellaneous library, 115, 117-118
mkreal program, 683
mktime tz(tuple) method, 541
mmap module, 149
mod_pyapache module, 432, 453
mod_python module, 431, 453
__mod__(self, other) method, 194
mode value, 309

31 0672319942 index 11/15/00 11:42 AM Page 887

888 models

models
Common Object (COM), 261-277, 279,

281-283, 285, 293
Document Object Model, 506
Open Systems Interconnection (OSI),

392
modes

append (a), 86
binary (b), 86
interactive , 688
optimized, 164
rb, 547
read (r), 86
Restricted Execution, 360-361, 363
text translation. See binary (b) mode
wb, 547
write (w), 86

modifying
data, relational databases, 332
fonts, windows, 652
global variables inside functions, 72
object attributes, 205
prompts , 688
source code, 678-681
values at execution time, 590
Visible property, 274

modulator program, 682
“module” argument, 704
module attributes, accessing, 248
module objects, 788
module protocols, NSAPI/NSAPY,

250-251
modules, 75, 77-78, 80-81

Abstract Windowing Toolkit (AWT), 570
accessing, 248
aifc, 138, 359

al, 143, 814
anydbm, 129, 309, 314
array, 117-118, 307
asyncore, 134, 403-404, 413
atexit, 148
audiodev, 359-360
audioop, 138
base64, 136, 538
BaseHTTPServer, 133, 406, 408-411
Bastion, 137, 361-363
bdb (Base Debugger), 690-692
binascii, 135, 548
binhex, 135, 546-547
bisect, 117
bsddb, 130, 310, 312-313
building as shared libraries, 678
calendar, 118
calldll, 243
cd, 144, 814
cgi, 131, 453-456
CGIHTTPServer, 134, 406, 412
cgiupload.py, 472-473
chunk, 138
clean, 441
cmath, 116
cmd, 118
cmp, 122
cmpcache, 122
code, 108
codecs, 148
codeop, 108
colorsys, 138
combined, 441
commands, 143
common, 441
compileall, 109, 685

31 0672319942 index 11/15/00 11:42 AM Page 888

889modules

ConfigParser, 118
Cookie.py, 466-468
copy, 105-106
copy_reg, 105, 316-318
cPickle, 104, 316-317
crypt, 140-141
cStringIO, 115
ctb, 812
curses, 124
dbhash, 129, 309, 313-314
dbi, 323-324
dbm, 141, 309-310
DEVICE, 144
dircache, 122
dis, 110, 696-697
disutils, 149
dlmodule, 141
documentation strings, 644
dumbdbm, 129, 315
dynamic, installing and running, 242
DynWin, 569
EasyDialogs, 813
enabling, UNIX operating systems, 814
encodings, 149
errno, 125, 166
exceptions, 309
extension, 148

compiling, 250
compiling and linking, 238-243
creating, 221, 223-226, 228-237,

246-257
importing, 228-229

fast_umath, 364
fcntl, 142
FFT.py, 365
fftpack, 365

filecmp, 149
fileinput, 118
findertools, 146, 813
fl, 144, 815
flp, 144, 815
fm, 144, 815
fnmatch, 126
formatter, 135, 524-529
FORMS, 570
fpformat, 115
FrameWork, 813
frameworks, 146
(from Tkinter import*), loading, 579
ftplib, 132, 417
FXPy, 567-568
GadFly SQL, 333-334
GD, 354, 443
gdbm, 141, 309-312
generated, identifying, 273
getopt, 124
getpass, 124
gettext, 149
GL, 144
glob, 126
GmatH, 368
Gnome-Python, 565
gopherlib, 132, 423
grp, 140
GTK+, 563
gzip, 130
hemlentitydefs, 524
htmlentitydefs, 134
htmllib, 134, 521-522, 524
httplib, 131-132, 412-413
ic, 812
Image, 353

31 0672319942 index 11/15/00 11:42 AM Page 889

890 modules

imageop, 138
imaplib, 420
imgfile, 144
imghdr, 138, 354
imp, 106-107
impalib, 132
importing, 760-762
imputil, 149
Java Python Interface (JPI), 569-570
jpeg, 144
keyword, 107-108
lapack_litemodule, 365-366
limit, 441
LinearAlgebra.py, 365-366
linecache, 104
linuxaudiodev, 149
loading, 457
locale, 127
mac, 812
macconsole, 812
macdnr, 812
macfs, 146, 812
MacOS, 812
macostools, 146, 812
macpath, 812
macspeech, 813
mactcp, 813
mailbox, 137, 539
mailcap, 136, 536-537
makepy.py, 273
marshal, 106, 316, 318-319
math, 115
md5, 139
mhlib, 137, 545-546
mimetools, 135, 531-532
mimetypes, 136, 537-538

MimeWriter, 135, 532-533
mimify, 137, 539-542, 544
MiniAEFrame, 813
mmap, 149
mod, 431-432, 453
Motif, 568-569
mpz, 139
msvcrt, 145
multiarray, 364
multifile, 135, 533-536
multimedia, 147
multiple, 441
mutex, 127
mymodule, 709
MySQL, 333
MySQLdb, 333
naming styles and conventions, 646
netrc, 137, 544
new, 110
nis, 142
nntplib, 132, 421
Numeric.py, 364
obsolete, 147
odbc, 323-324
odbc.py, 243
Open Database Connectivity (ODBC),

322-325
OpenGL, 355
operator, 103-104
optimizing, 638-639
os, 119-121
os.path, 121-122
parser, 107
parsing, 164, 441
pdb, 130
pdb (Python Debugger), 692-696

31 0672319942 index 11/15/00 11:42 AM Page 890

891modules

pg, 332-333
pickle, 104, 316-317
PIL, 443
pipes, 142
platform specific, 147
popen2, 143
poplib, 132, 420
posix, 140
posixfile, 142
postprocessing, 441-442
pprint, 109
profile, 698-700, 821-822
profiler, 131
pstats, 131, 701-708, 821-822
pty, 142
pwd, 140
PyAmulet, 569
pyclbr, 108, 187
pyclimate, 368
pyexpat, 149
pyFLTK, 567
Pyfort, 368
PyGTK, 563, 565
PyKDE, 562-563
PyOpenGL, 355, 566
PyQt, 562
Python15.dll, 250
pythoncom, 808
Pythonwin, 556, 558-559
py_compile, 109, 685
query, 441
Queue, 129
quopri, 136, 538-539
random, 116-117
RandomArray.py, 365
ranlib, 365

re, 114, 369-375
internals, 376
Python 2.0, 829

real.py, 368
referer, 441
regex, 114
regsub, 114
releasing, 81
reloading, 81
renaming, syntax, 79
repr, 109
resolve, 441
resource, 142
rexec, 137, 361, 363
rfc822, 135, 531, 544
rgbimg, 138
rlcompleter, 130
RNG, 368
robotparser, 149
rotor, 139
sched, 123
ScientificPython, 367
scripts as, 685
select, 128, 404-405, 439
sgmllib, 134, 517-519, 521
sha, 139
shelve, 105, 309, 316, 319, 321
shlex, 118
shutil, 126-127
signal, 127-129
SimpleHTTPServer, 133, 406, 411
site, 110
smtplib, 133, 419
sndhdr, 138, 356-357
socket, 128, 397-399, 406, 439
SocketServer, 133, 406-408

31 0672319942 index 11/15/00 11:42 AM Page 891

892 modules

squid, 441
sre, 149, 376
stat, 122
statcache, 122
statvfs, 122
stdwin, 148, 562
stdwinevents, 148
string, 46, 79-80, 111-113
StringIO, 115
struct, 114, 307, 309
sunau, 138
sunaudiodev, 145, 815
symbol, 107
sys, 82, 99-102, 157-159, 750
syslog, 142
tabnanny, 149
telnetlib, 133, 422
tempfile, 125
termios, 141
test, 146
thread, 129, 378-381
threading, 129
time, 123, 641
tkColorChooser, 628
Tkdnd, 146
tkFileDialog, 628
tkFont, functions, 594
Tkinter, 146, 557-558, 575-580, 631,

675-678
designing applications, 624-625,

627-630
geometry management methods,

580-585
handling events, 585, 587-590
informational resources, 630-631
PMW (Python Mega Widgets), 630

Unicode characters, 580
widgets, 590-595, 597-624

tkMessageBox, 628
tkSimpleDialog, 628
token, 107
tokenize, 108
tradeback, 104, 157-159
tty, 142
types, 102-103, 181-182
umath, 364
Undocumented, 146-147, 149
unicodedata, 149
url, 441
urllib, 131, 414-415, 417
urllib2, 149
urlparse, 133, 415, 417
user, 110
UserDict, 103
UserList, 103
UserString, 150
uu, 135, 547
wafepython, 566
wave, 138, 357-359
WBMP, 355
webbrowser, 150
WebLog, 441-442
websucker, 445
whichdb, 129, 310, 315
whrandom, 117
win32.com.client.gencache, 273
win32all package, 808
win32api, 808
win32com.axdebug, 268
win32com.axscript, 268
win32com.client, 267
win32com.mapi, 268

31 0672319942 index 11/15/00 11:42 AM Page 892

893name/value pairs

win32com.pythoncom, 267
win32com.server, 267
win32event, 808
win32file, 808
win32net, 808
win32pdh, 808
win32pdhutil, 808
win32pipe, 808
win32process, 808
win32service, 809
win32serviceutil, 809
winsound, 145, 355-356
Wpy, 563
wxPython, 559-561
xdrlib, 136, 512-517
xml, 150
xmllib, 134, 497-498, 500-504
XMLParser, 493
zipfile, 150
zlib, 130
See also libraries

ModuleType object type, 182
modulo (%) operator, 47
monitoring reference counting, objects,

39
Monty Python, 9-10
Monty Python’s Flying Circus, 9
morse script, 684
Motif module, 568-569
mouse events, handling, 586-587
movemessage(n, tofolder, ton) method,

546
mpz module, 139
mpzpi script, 684
MS Windows Specific library, 145

msvcrt module, 145
__mul__(self, other) method, 194
Mullender, Sjoerd, 569, 698
multiarray module, 364
MultiFile (fp[, seekable]) class, 534-536
multifile module, 135, 533-536
Multimedia library, 137-138
multimedia modules, 147
multiple inheritance, 200
multiple module, 441
multiple values, returning, 76
Multipurpose Internet Mail Extension

(MIME), 530-544
multithreaded programs, support,

795-800
mutable data types, 40-41
mutex module, 127
mxCGIPython, 444
mxDateTime package, 324
mxODBC package, 324
mymodule, 709
MySQL modules, 333

N

N element, 233
n value, 309
n(ext) command, 695
“name” argument, 704
(NAME) argument, 494
name attribute, 460
name mangling, 204
name resolution, 14
name/value pairs, 458

31 0672319942 index 11/15/00 11:42 AM Page 893

894 named arguments

named arguments, 74
NameError class, 171
names

built-in, 77
color, Macintosh, 592
files, case sensitivity, 457
form, 483
global, 77
local, 77

names() function, 594
namespace function, 71-72, 74
namespaces

class, 205
dynamic, 72, 76-77
Extensible Markup Language (XML),

501
global, importing and creating, modules,

77
JPython , 729
string, 79

naming identifiers, 40
naming styles, code, 644
NASA, 8
ncalls column heading, 700
ndiff program, 683
__neg__(self) method, 194
nested loops

construction methods, 640
raising exceptions to leave, 161-162

netrc module, 137, 544
Network layer, 392
Network News Transfer Protocol

(NNTP), 421
networking, 391-392, 423-425

accessing uniform resource locators
(URLs), 414-415, 417

addresses, 395-396

newsgroups, 421-423
Open Systems Interconnection (OSI)

model, 392
protocols, 393-395, 405-413, 417-421
sockets, 396-405

new alignment(align) method, 527
New Indent width option, File Editor,

656
new methods, 527-528
new module, 110
New window option, File Editor, 653
news site, Python, 8
newsgroups, 421-423
next method, 534
nextset() method, 342
“nfl” argument, 704
Ng Pheng Siong, 406
nis module, 142
nm2def program, 683
NNTP (Network News Transfer

Protocol), 421
nntplib module, 132, 421
nobody user, 457
nofill flag, 522
None data types, 40
none objects, 772
NoneType object type, 181
__nonzero__(self) method, 193
not in operator, 48
__not__(self) method, 195
NotImplementedError class, 171
NotSupportedError exception, 339
Nowak, Hans, 815
NSAPI/NSAPY module protocol,

250-251

31 0672319942 index 11/15/00 11:42 AM Page 894

895objects

NULL values
assigning to variables, 40
checking errors, extension modules, 233
returning without raising exceptions, 234
Structured Query Language (SQL), 344

NullFormatter([writer]) class, 527
NullWriter() class, 529
num attribute, 587
NUMBER object, 344
number object structures, 805
number protocol, 766-768
numbers, 41-42

floating points, packing methods, 513
handling, 280-281
IP addresses, 395
replacing with asterisks (*), 85
starting identifiers with, 40

Numeracy + Computer Literacy, 369
numeric objects, 781-786
Numeric.py module, 364
Numerical Extensions to Python

(NumPy), 15
Numerical Python (NumPy) extensions,

364-367
NumPy (Numerical Python), 364-367
NumPy. See Numerical Extensions to

Python

O

–O command-line option, 638
O elements, 231-232
–O option, 164, 687
–OO option, 687

O’Malley, Tim, 466
obj.__class__ attribute, 190
obj.__dict__ attribute, 189
obj.__methods__ attribute, 190
object distribution, 15
Object Management Facility (OMF), 286,

293-294
object protocol, 763-766
Object Request Broker (ORB), 285,

289-291
object serialization, databases, 315-319,

321
object type property, 181-182
object types

Python/C Application Programmers
Interface (API), 743-747, 804-806

types module, 181-182
object_event notation, 483
object-oriented programming (OOP), 12,

179-182
encapsulation, 180, 204-206
handling methods, 190-198
inheritance, 180, 198-201
metaclasses, 206-209
polymorphism, 180, 201-203
Python classes and instances, 183-190

objects
accessing methods and properties, 264
ActiveX Data (ADO), 266, 325-326
AddressList, 543-544
array, 364
ArrayType, 117
assigning to variables, 38
automation, 263
BINARY, 344
buffer, 774-776

31 0672319942 index 11/15/00 11:42 AM Page 895

896 objects

C, 788-789
calculator, source code, 276-277,

279-280, 282-283, 285
changing attributes, 205
complex number, 784-786
Component Object Model (COM),

Active Scripting, 484-485
connection, databases, 337, 339-340
copying, 43, 48
cursor, databases, 340-343
DATETIME, 344
deallocating, 235
dictionary, 780-781
dynamic dispatch, 272
embedding in non-Python applications,

221, 223-226, 228-237, 246-257
exposing, creating Python interfaces, 270
file, 786-787

attributes, 89
sys module, 100

floating point, 783-784
folder, 546
formatter, 524-527
handling functions, 54-55
image, creating, 619
InProc, 265
interactions with, Python/C Application

Programmers Interface (API), 762-769,
771

interfacing and distributing, 259-277,
279, 281-283, 285-297

list, 778-779
LocalServer, 265
long integer, 782-783
mapping, 780-781
Message, 531-533, 541-543, 546

methods, regular expressions, 373-375
MH, 545
module, 788
monitoring reference counting, 39
naming styles and conventions, 645
none, 772
NUMBER, 344
numeric, 781-786
Packer(), 513-514
parking lot, source code, 297-298,

300-301, 303-304
passing to object types, Python/C

Application Programmers Interface
(API), 771-789

plain integer, 781-782
Python

complex numbers as, 785-786
embedding in non-Python

applications, 237-243
Python/C Application Programmers

Interface (API), 223
Simplified Wrapper and Interface

Generator (SWIG), 243-245
wrappers, 245-246, 753
Remote Data (RDO), 325
Remote Data (RDS), 326
ROWID, 344
sequence, 772-779
serializable, saving, 315-319, 321
sockets, 396-405
STRING, 46, 344, 772-774
structures, type and method definitions,

804
sys module, values, 157
sys.last_traceback, 159
sys.last_type, 159

31 0672319942 index 11/15/00 11:42 AM Page 896

897operator module

sys.last_value, 159
tuple, 776-777
TV network audience, source code, 386
type, 343-344, 772
Unacker(), 514-516
unused

collecting, 39
Python 2.0, 830

writer, 524, 527-529
See also identifiers

objgraph program, 683
obsolete modules, 147
octal numbers, 41
odbc module, 323-324
ODBC (Open Database Connectivity)

module, 322-325
odbc.py module, 243
offvalue attribute, 600
offvalue option, 605
Og1, 560
OMF (Object Management Facility), 286,

293-294
OmniORBpy, 286, 291
one-dimensional arrays, 364
onvalue attribute, 600
onvalue option, 605
OO-Browser, 681
OOP. See object-oriented programming
opaque data, packing methods, 513
Open Database Connectivity (ODBC)

module, 322-325
open interface, 312
open method, 353
Open module option, File Editor, 653
Open Software Foundation (OSF), 568

Open Systems Interconnection (OSI)
model, 392

Open Systems
Interconnection/International
Standards Organization (OSI/ISO), 392

open() method, 534
Open option, File Editor, 653
openfolder(name) method, 545
OpenGL module, 355
opening

applications, 689
command line interpreter, 32
connections

databases, 326
Open Database Connectivity (ODBC),

322
Debugging toolbar, Pythonwin, 668
files, 86-87
hash databases, 313
interpreters after executing programs, 37
scripts from Windows, 36
SGML files, 520-521
shelve files, 320

OpenLDAP protocol, 441
openmessage(n) method, 546
OpenSSL support, socket modules, 399
OperationalError exception, 338
operations

applying to dictionaries, 69
binary, numbers in, 41
formatting, 83-85
out-of-range, 172
Python, 14
references, 341

operator module, 103-104

31 0672319942 index 11/15/00 11:42 AM Page 897

898 operator overloading

operator overloading, 14
operator.add() function, 104
operators, 47-49, 830
overriding, 196

lists, 63
overloading, 196-198
relational, Structured Query Language

(SQL), 329
optimized mode, 164
optimizing code, 637-641
Optional Operational System library,

127-130
options

accelerator, 605
anchor, 581, 600
background, 620
BitmapImage subclass, 620
column, 584
columnspan, 584
command, 605
command-line

interpreters, Windows and UNIX,
687-688

–O, 638
data, 620
Debug menu, File Editor, 657-658, 660
Edit menu, Edit Editor, 655-656
expand, 582
family, 594
file, 620
File menu, File Editor, 653
fill, 582, 599-600
font styles, 594
foreground, 620
format, 620

grid() method, 584
height, 620
indicator, 605
ipadx, 582
ipady, 582
JPython interpreter, 728
jpythonc tool, 735-736
label, 605
maskdata, 620
maskfile, 620
menu, 605, 663
Menu widget, 605-606
–O, 164
offvalue, 605
onvalue, 605
– option, 688, 728
outline, 599
overstrike, 594
pack() method, 582
padx, 582
pady, 582
row, 584
rowspan, 584
selectColor, 605
side, 582
size, 594
slant, 594
splinesteps, 599
state, 605
tearOff, 606
textvariable, 603
Tools menu, Pythonwin, 664-666
underline, 594, 606
value, 606
variable, 606

31 0672319942 index 11/15/00 11:42 AM Page 898

899packages

weight, 594
width, 599, 620
window, 600
–X, 164

OR operator, 48
__or__(self, other) method, 194
ORB (Object Request Broker), 285,

289-291
ORBit-python project, 286
Oregon Curriculum Network, 369
OROMatcher

copyright notice (license), 822-824
regular expression library, 724-725

os module, 119-121
OS utilities, 759
os.path module, 121-122
os.statvfs() function, 122
os.sterror() function, 167
os.times() function, 708
OS/2, running Python, 815
OSError class, 171
OSF (Open Software Foundation), 568
OSI (Open Systems Interconnection)

model, 392
OSI/ISO (Open Systems

Interconnection/International
Standards Organization), 392

Ousterhout, John, 575
Out button, Debug Control Panel, 659
out-of-range operations, 172
outline option, 599
output

browsers, creating, CGI scripts, 468-471
print statements, 83
users, 79, 81-85

outputting links from HTML files to
Web pages, CGI scripts, 523-524

oval() method, 599
Over button, Debug Control Panel, 659
OverflowError class, 172
overloading

method, 201-203
operators, 14, 196-198

Overmars, Mark, 570
overrideredirect(flag) method, 618
overriding augmented assignment

operators, 196
overstrike option, 594
owned references, 235
ownership, references, 746

P

p expression, 695
p format, 308
pack class, 581
pack methods, 513-514
pack() function, 114, 307
pack() method, 581-582
packages, 75, 77-78, 80-81

application distribution, creating, 709
distutils, 711-712
importing, 107
pawt, accessing swing components, 732
python-mode, installing, 681
Python/XML, 495-497
PythonPoint, 510
ReportLab, 510
win32all, 807, 809

31 0672319942 index 11/15/00 11:42 AM Page 899

900 packages

xm, PyXML, 497
xmlrpc, 511
See also applications

Packer() class, 513-514
packing

files, 709
variables, 515-516
widgets, 580-585

padx option, 582
padx property, 595
pady option, 582
pady property, 595
page titles, collecting information on,

520-521
pages

autogenerated, 452
copying into local files, 416
HTML versus Active Server Pages

(ASPs), 485
outputting links from HTML files to,

CGI scripts, 523-524
parsing, 414
retrieving, 414

pairs, name/value, 458
parameters

CODE, 736
executeXXX() method, 343

parameters. See arguments
paramstyle variable, 337
parcels, 581
parenthesis ()

1st append, 66
tuples, 399

parking lot objects, source code,
297-298, 300-301, 303-304

parsedate tz(date) method, 541

parsedate(date) method, 541
parser module, 107
parsesequence(seq) method, 546
parsing

data, 491
form fields, 459-463
generic conversion functions, 544-548
Multipurpose Internet Mail Extension

(MIME), 530-544
modules, 164, 441
Web pages, 414

Pasanen, Harry, 681
pass statement, 61, 156
passing

data
from browsers to CGI scripts, 452
data to Python scripts, 458-459

exceptions, 746-748
fields to shells, 463
objects to object types, Python/C

Application Programmers Interface
(API), 771-789

references to functions, 746
strings from clients to shells, 463

passwords, UNIX, 140
Paste option, File Editor, 655
Patch Submission Guidelines, 26
patches, 25-26
path attribute, 411
Path Browser, 648, 653-654
PATH variable, 686
($PATH) variable, 457
pathfix program, 683
PATH_INFO environment variable, 475
PATH_TRANSLATED environment

variable, 476

31 0672319942 index 11/15/00 11:42 AM Page 900

901portable ANSI C language

- pathname, 547
pawt package, accessing swing

components, 732
“pcalls” argument, 704
#PCDATA, 495
pdb (Python Debugger) module, 692-696
pdb module, 130
.pdbrc file, 693
/PCbuild directory, 675
pdeps program, 683
pdist program, 684
Pepping, Simon, 506
PEPs (Python Enhancement Proposals),

828
percall column heading, 700
percent sign (%), identifier names, 40
performance, applications, 264, 637-641
period (.), 369, 421
Perl programming language versus

Python, 23
permissions, setting, 36, 456-457
Persistent CGI, 445
persistent storage, databases, 315-319,

321
Persistent Storage of Python Objects in

Relational Databases, 316
Personal Web Server (PWS), configuring

Web servers for Python/CGI scripts,
432-433

Peters, Tim, 647
pg module, 332-333
PhotoImage subclass, 620
Physical layer, 392
pi script, 684
pickle module, 104, 316-317

pickle support, copy reg module, 318
pickle.dump functions, 316-317
Pico, 679
PIL (Python Imaging Library), 15, 352
PIL module, 443
pindent program, 683
pipe (|), re module, 370
pipe (|) literal, 230
pipes module, 142
place class, 581
place() methods, 584-585
plain integer objects, 781-782
platform specific modules, 147
PlaySound function, bitwise arguments,

355-356
Plotting Special Interest Group, 363
plus (+) sign, 86, 370, 458, 495
PMW (Python Mega Widgets), Tkinter

module, 630
polygon() method, 599
polymorphism, 180, 201-203
POP (Post Office Protocol), 418-421
pop method, 535
pop_alignment() method, 526
pop_font() method, 526
pop_margin() method, 526
pop_style([n = 1]) method, 526
pop-up menus, creating, 606
popen functions, 143
popen2 module, 143
poplib module, 132, 420
populating lists, 745
port, 395
portability, Python, 12
portable ANSI C language, 12

31 0672319942 index 11/15/00 11:42 AM Page 901

902 ports

ports, 396
binding sockets, 400-401
control, 417
data, 417, 674

__pos__(self) method, 194
positional arguments, 74
positionfrom(who) method, 619
posix module, 140
posixfile module, 142
POST method, 452-453, 459
Post Office Protocol (POP), 418-421
POST requests, 409
PostgreSQL databases, 332-333
postprocessing modules, 441-442
pound (#) sign, 643
pp script, 684
pprint module, 109
Presentation layer, 392
primary key, 329
primes script, 684
print method, 41
print statement, 82
print statements

output, 83
sending data to the screen, 486-487

printing
text, Windows printers, 809-810
traceback messages, 478

PrintOut() method, 274
print methods, 705
private attributes, accessing, 204-205
private FTP servers, 417
privileged ports, 395
privileges

administrator, installations, 810
root, UNIX, 401

procedural abstraction, 72-73
procedures, 69, 71-73, 75-77
process control utilities, 759-760
processing CGI scripts, 453
profile module, 698-700, 821-822
profile.run() function, 699
profiler class, extensions, 708
profiler module, 131
profiles, pstats module, 701-708
profiling applications, 697-708
programming, object-oriented (OOP),

12, 179-182
encapsulation, 180, 204-206
handling methods, 190-198
inheritance, 180, 198-201
metaclasses, 206-209
polymorphism, 180, 201-203
Python classes and instances, 183-190

programming languages
C

extending and embedding Python,
221, 223-226, 228-257

wrapping functions
C++, 257

building extensions, 236-237
extending and embedding Python,

221, 223-226, 228-256
CPython versus JPython, 719-720
Delphi, implementing Common Object

Model (COM) objects, 282-283, 285
elisp (Emacs Lisp), 679
Extensible Markup (XML), manipulating

data, 492-510
Hypertext Markup Language (HTML),

interacting with Python code, 483

31 0672319942 index 11/15/00 11:42 AM Page 902

903protocol argument

JPython, 488, 717-719
CPython versus, 719-720
creating graphical interfaces, 731-732
downloading and installing, 723-727
embedding, 732-734
integrating Java, 722-723
jpythonc tool, 734-736
running applets, 736-737
Web resources, 721

JPython interpreter, 727, 729
JPython Registry, 729-731
source code, 255-257
Standard Generalized Markup (SGML),

492
Structured Query (SQL), 327-335
Visual Basic (VB), implementing

Common Object Model (COM) objects,
275-277, 279, 281-282

XML Bookmark Exchange (XBEL),
507-508

ProgrammingError exception, 338
programs. See applications
project file, 674
prompts

changing, 688
Python Shell Window, 650
secondary, 35

properties
accessing objects, 264
activebackground, 597
activeforeground, 597
anchor, 595
attributes, 182
background(bg), 591-592
bitmap, 595, 597

borderwidth (bd), 592
Button widget, 597
command, 585, 595
cursor, 595
default, 597
disabledforeground, 597
font, 593-595
foreground(fg), 591-592
height, 591, 603, 609
highlightthickness, 592
identity, 181
image, 595, 597
JPython Registry, 730
justify, 593
Listbox widget, 603
methods, 182
object type, 181-182
padx, 595
pady, 595
python, 730
Radiobutton widget, 609
relief, 592
selectmode, 603
state, 597
takefocus, 598
text, 593, 598
underline, 598
value, 182, 609
variable, 595, 609
Visible, changing, 274
widgets, Tkinter module, 591-596
width, 591, 603
wraplength, 598

protection application environments,
362-363

protocol argument, 397

31 0672319942 index 11/15/00 11:42 AM Page 903

904 protocol(name, function) method

protocol(name, function) method, 617
protocols

File Transfer (FTP), 417-418
Gopher, 423
handling, Tkinter, 589-590
Hypertext Transfer (HTTP), 405-413
Internet Message Access (IMAP),

418-421
Internet Protocol (IP), 393
Internet Protocol and Support library,

131-134
Lightweight Directory Access (LDAP),

440-441
mapping, 770-771
module, NSAPI/NSAPY, 250-251
Network News Transfer (NNTP), 421
number, 766-768
object, 763-766
OpenLDAP, 441
Post Office (POP), 418-421
sequence, 768-770
Simple Mail Transfer (SMTP), 418-421
Simple Object Access (SOAP), 509-510
Transmission Control (TCP), starting

connections, 399-400
Transmission Control Protocol/Internet

Protocol (TCP/IP), 393-394
User Datagram (UDP), starting

connections, 401
User Datagram Protocol (UDP), 394
WM_SAVE_YOURSELF, 590
WM_TAKE_FOCUS, 590

protyping, 636
proxy server connections, handling, 416
PSA (Python Software Activity), 25-27
pseudo code, 8, 11

Psion, running Python, 816
pstats module, 131, 701-708, 821-822
pstats.Stats class, 699
ptags program, 683
pty module, 142
pull-down menus, creating, 607-608
_public_attrs() attribute, 275
_public_methods() attribute, 275
push(str) method, 534
push_alignment(align) method, 526
push_font((size, italic, bold, teletype))

method, 526
push_margin(margin) method, 526
push_style(*styles) method, 526
putheader(header, argument1 [, ...])

method, 413
putrequest(request, selector) method,

413
putsequences(dict) method, 546
pwd module, 140
pwd.getpwnam() function, 140
PWS (Personal Web Server), 432-433
Py complex structure, 784
.py extension, 77
Py_BEGIN macros, 799
Py_BuildValue() function, 227, 229,

232-233, 745
py_compile module, 109, 685
Py_complex functions, 784-786
Py_DECREF() function, 235-236
Py_DECREF() macro, 743-745, 753
Py_END_ALLOW_THREADS macro,

799
Py_Finalize() function, 247, 751
Py_Get functions, 750-751
Py_INCREF() function, 235-236

31 0672319942 index 11/15/00 11:42 AM Page 904

905Python Shell Window

Py_INCREF() macro, 743
Py_Initialize() function, 247, 750-751
Py_IsInitialized() function, 751
Py_SetProgramName(file) function, 750
Py_TPFLAGS_HAVE_GETCHAR-

BUFFER structure, 806
Py_XDECREF() macro, 744
PyAmulet module, 569
PyArgs_ParseTuple function, 774
PyArg_ParseTuple command, 227
PyArg_ParseTuple() function, 229-231
PyBufferObject, 775
PyBufferProcs structure, 805
pyclbr module, 108, 187
pyclimate module, 368
PyCObject, 788
PyComplexObject, 785
PyDAV, 442
PyDictObject, 780
PyErr functions, 748, 754
pyexpat module, 149
PyFileObject, 786
PyFloatObject, 783
pyFLTK module, 567
Pyfort module, 368
PyGTK module, 563, 565
pygtools, 565
PyImport_AddModule(char *name)

function, 761
PyInterpreterState structure, 797
PyInterpreterState*

PyInterpreterState_New() function, 799
PyIntObject, 781
PyKDE module, 562-563
PyListObject, 778
PyList functions, 745-747

PyLongObject, 782
PyMappingMethods structure, 804
Pynche program, 682
PyNumberMethods structure, 805
PyObject functions, 227, 746, 752,

760-789
PyOpenGL module, 355, 566
PyQt module, 562
PyRun_SimpleString() function, 247
PyRun_SingleFile() function, 248
PyRun_String() function, 247
PySequenceMethods structure, 805
PySequence_GetItem() function, 746-747
PySequence_SetItem() function, 745
pysvr program, 684
PySys_SetArgv() function, 248
python command, 687
Python Consortium, 25-27
Python DB API, 335-348
Python Debugger (pdb) module, 692-696
Python Enhancement Proposals (PEPs),

828
Python Imaging Library, 352-354
Python Imaging Library (PIL), 15
Python Library Hot-Key Help System for

XEmacs, 681
Python Library Reference, 98
Python Mega Widgets (PMW), Tkinter

module, 630
Python objects, complex numbers as,

785-786
python properties, 730
Python Server Pages, 487
Python Services, 99-101, 103-110
Python Shell Window, 650-652

31 0672319942 index 11/15/00 11:42 AM Page 905

906 Python Software Activity (PSA)

Python Software Activity (PSA), 25-28
Python Tk-OpenGL (PyOpenGL)

Module, 566
Python X Extension, 569
Python XML Special Interest Group, 507
python-mode packages, installing, 681
python-stubber, 287
python_filename command, 687
python_nt.rc file, 675
Python/C Application Programmers

Interface (API), 741-751
Abstract Objects Layer, 762-769, 771
Concrete Objects Layer, 771-789
defining object types, 804-806
executing source code, files and buffers,

751, 753
extending and embedding, 223
handling and raising exceptions, 754-757
initialization, finalization, and threads,

789-800
managing memory, 800-803
managing reference counts, Python

objects, 753
utility tasks, 759-762
variables, exceptions, 757, 759

Python/XML package, 495-497
Python/XML Reference Guide, 496
Python15.dll module, 250
Python2C, 711
pythoncom module, 808
Pythoncom.CreateGuid() function, 275
<Python.h> header file, 223
PythonHandler function, 431
PythonLabs, 9, 27
PythonLabs Web site, 22
PYTHONPATH variable, 686

($PYTHONPATH) variable, 457
PythonPoint package, 510
$PYTHONSTARTUP directory, 688
PYTHONSTARTUP variable, 686
Pythonwin, 661-663, 665-669, 671
PythonWin Installation Wizard, 21
Pythonwin module, 556, 558-559
PyThreadState structure, 797
PyThreadState* functions, 790-791,

798-800
PyTupleObject, 776
PyTuple_SetItem() function, 745
PyTypeObject, 772, 775-776, 778,

780-783, 785-786
PyVersant, 321
.pyw extension, 578
Pyxie, 510
PyXML, 497

Q

q(uit) command, 696
query information, 476
query module, 441
QUERY_STRING environment variable,

476
QueryInterface() method, 263
question mark (?), 370, 495
queue class, 377
Queue module, 129
Quit button, Debug Control Panel, 659
quit() method, 622
quitting

Excel and Word, 270
interpreters, 689

31 0672319942 index 11/15/00 11:42 AM Page 906

907real.py module

quopri module, 136, 538-539
quotes

strings, 45-46
triple, documentation strings, 643

R

r (read) mode, 86
r value, 309
r(eturn) command, 695
r_eval(code) method, 362
r_exec(code) method, 361
r_execfile(filename) method, 362
r_import(modulename [,globals [,locals]])

method, 361
r_open(filename [, mode [, buffersize]])

method, 361
r_reload(modulename) method, 361
r_unload(modulename) method, 361
race conditions, 381
race_dispatch() method, 707
Radiobutton widget, 596, 609-610
raise class() function, 159
raise statement, 153, 159
raising exceptions, 153, 159-165

Python/C Application Programmers
Interface (API), 754-757

returning NULL values, 234
random module, 116-117
RandomArray.py module, 365
range() function, 66-67
ranges, 66-67
ranlib module, 365
raw memory allocators, 800
raw sockets, 397

raw string syntax, 114
raw strings, creating strings with slash

literal (/), 45
rb mode, 547
RDO. See Remote Data Objects
RDS (Remote Data Service), 266, 326
re module, 114, 369-375

internals, 376
Python 2.0, 829

re.compile() function, 373
re.DOTALL flag, 371
re.escape() method, 375
re.findall() method, 374
re.IGNORE flag, 371
re.LOCALE flag, 371
re.match() method, 374
*?, re module, 370
.*, re module, 371
re.MULTILINE flag, 371
re.search() method, 374
re.split() method, 374
re.sub() method, 374
re.subn() method, 375
re.VERBOSE flag, 371
read (r) mode, 86
read method, 534
readability, Python syntax, 10
readable sockets, 405
readable() method, 404
readframes(n) method, 357
readline() method, 534, 540
readline(str) method, 534
readlines(str) method, 534
_readonly_attrs() attribute, 275
Real class, 368
real.py module, 368

31 0672319942 index 11/15/00 11:42 AM Page 907

908 recompiling Python

recompiling Python, 237
rectangle() method, 599
recursion

[] element, 39
Python 2.0, 831

recv() method, 401
recvform() method, 402
recvfrom(buffersize) function, 398
Red Hat, 8
redo option, File Editor, 655
reduce() function, 640
redundancy, tables, 330
reference counts, 38-39

extension modules, 235-236
managing, Python objects, 753
Python/C Application Programmers

Interface (API), 743-747
references

borrowed, 235
circular, 38
converting into lists, 67
operations, 341
owned, 235

referer module, 441
refilemessages(list, tofolder) method, 546
regex module, 114
RegExpObject, methods and attributes,

373-375
registries

JPython, 729-731
writing, 810

Registry, Common Object Model (COM)
object storage, 265

regsub module, 114
regular expressions, 369-375
Reilly, Michael, 804

relational databases. See Structured
Query Language

relational operators, Structured Query
Language (SQL), 329

Release() method, 263
releasing

memory from Python heap, 801
modules, 81

relheight argument, 585
relief property, 592
reload module command, 81
reloading modules, 81
relwidth argument, 585
relx argument, 585
rely argument, 585
Remote Data Objects (RDOs), 325
Remote Data Service (RDS), 266, 326
Remote Procedure Call (RPC), 400,

508-509
REMOTE environment variables, 476
removemessages(list) method, 546
removing

data, relational databases, 331
string exceptions, 758
values from lists, 64

renaming modules, syntax, 79
Replace option, File Editor, 655
replacing numbers with asterisks (*), 85
ReportLab package, 510
report_unbalanced(tag) method, 519
repr module, 109
repr() function, 832
__repr__(self) method, 193
request handlers, GET and HEAD, 411
RequestHandlerClass attribute, 408

31 0672319942 index 11/15/00 11:42 AM Page 908

909/run scriptname arguments

requests
CGIHTTPServer module, 412
GET and POST, 409

REQUEST_METHOD environment
variable, 476

request_queue_size variable, 408
request_version attribute, 411
rerep program, 683
reserved words, 40
reset() method, 498, 513, 518
reset(data) method, 514
__rshift__(self, other) method, 194
resizable(width, height) method, 619
resolution, name, 14
resolve module, 441
resource module, 142
response codes returned by Web servers,

410
Response_Write() function, 486
Restricted Execution library, 137
Restricted Execution mode, 360-361, 363
retrieving

system messages, 167
Web pages, 414

return code argument, 100
return command, 71
<Return> event, 587
returning

NULL value without raising exceptions,
234

values, 75-76
values from functions, tuples, 68

reusability, 11-12
reverse_order() method, 705
rewind() method, 357
rewindbody() method, 540-541

rexec module, 137, 361, 363
RExec.mok.builtin_names, 361
RExec.ok.builtin_modules, 361
RExec.ok.path, 361
RExec.ok.posix_names, 361
RExec.ok.sys_names, 361
rexec.RExec() function, 361
rfc822 module, 135, 531, 544
rfile attribute, 411
rgbimg module, 138
right shifting, 48
rights, admin, 810
rlcompleter module, 130
RNG module, 368
robotparser module, 149
rofiler class, 706-708
rollback() method, 339
root privileges, UNIX, 401
root windows, creating, 625
Roskind, James, 698
Rossum, Guido van, 7-9, 16, 27, 641,

647, 698, 741
rotor module, 139
round() function, 38
row option, 584
rowcount attribute, 340
ROWID object, 344
rows, tables, 331
rowspan option, 584
RPC (Remote Procedure Call), 400,

508-509
rpc program, 684
RPM package, installing, 19
Run option, Pythonwin, 663
Run script option, File Editor, 656
/run scriptname arguments, 670

31 0672319942 index 11/15/00 11:42 AM Page 909

910 run() function

run() function, 699
/runargs scriptname arguments, 670
run(command, globals=None,

locals=None) method, 691
runcall (func, *args) method, 691
runeval(expr, globals=None, locals=None)

method, 691
running

command line interpreter, 32
commands, interrupting, 650
Common Gateway Interface (CGI)

scripts, 456-481
dynamic modules, 242
interpreters after executing programs, 37
JPython applets, 736-737
Python, 807-816
scripts from Windows, 36
Windows installer, 22

runtime binding, 201
RuntimeError class, 171
Rush, Jeff, 815
Rushing, Sam, 243, 308, 324, 404, 421,

438, 809

S

s element, 230-232
s format, 308
–S option, 687, 728
s# element, 230, 232
s(tep) command, 695
sampling rate, 356
Save As option, File Editor, 653
Save Copy As, option, File Editor, 653
Save option, File Editor, 653

save_bgn() method, 523
save_end() method, 523
saving

data to disk, 312
files, Tkinter, 578
images, 353
serializable objects, 315-319, 321

SAX API (Simple API for XML), 504-506
Scale widget, 596, 611-612
scanning environment variables, 415
Scarab library, 509
sched module, 123
scientific computing, use of Python in,

363-369
ScientificPython module, 367
Scintilla, 661
screens, sending data to, 486-487
script script, 684
script tag, 484
script tags, 482
SCRIPT_NAME environment variable,

477
Scriptics, 557, 576
scripting, Active, 481-488
scripting languages, ABC, 9
scripts

CGI
configuring servers for, 428-433
outputting links from HTML files to

Web pages, 523-524
command-line, testing, 637
Common Gateway Interface (CGI),

451-454
cgi module, 454-456
creating, installing, and running,

456-481

31 0672319942 index 11/15/00 11:42 AM Page 910

911sequence protocol

executing from Windows, 36
lines in, 37
modules as, 685
Python, sending data to, 458-459
setting permissions, 36
tabs in, 37
writing, 35-37, 39-40
\Tools and \Demos directories, 681-684

Scrollbar widget, 597, 612-613
search method, 420
searching

bugs, 25
contents of modules, 78
databases, 315
exceptions, 746-748
generated modules, 273
JPython Registry file, 730-731
Python in UNIX, 36
variables, 119

secondary prompts, 35
Secret Labs, 511
section_divider(str) method, 535
security

Active Scripting, 481
CGI scripts, 463-464

see(index) method, 615
see(row) method, 604
Seehof, Ken, 809
seek() method, 534
seek(pos[, whence]) method, 535
Select All option, File Editor, 655
select function, 397
select module, 128, 404-405, 439
SELECT statement, WHERE clause, 329
select() function, 404
select() method, 600, 609

select_clear() method, 604
select_set(startrow, endrow) method, 604
selectColor option, 605
selecting data, relational databases,

327-328
selectmode property, 603
self argument, 183, 225
self.rfile attribute, 407
self.wfile attribute, 407
semicolon (;) literal, 230
semicolons (;), separating statements on

same line, 37
send(data) method, 413
send(string) function, 399
sending data

to Python scripts, 458-459
to screens, 486-487

sendto() method, 402
sendto(string, (hostname, port)) function,

399
send_error(error_code [, error_message])

method, 410
send_flowing_data(data) method, 528
send_header (keyword, value) method,

411
send_hor_rule(*args, **kw) method, 528
send_label_data(data) method, 528
send_line_break() method, 528
send_literal_data(data) method, 528
send_paragraph(number) method, 528
send_response(response_code

[, response_message]) method, 410
sequence functions, 52-53
sequence object structures, 805
sequence objects, 772-779
sequence protocol, 768-770

31 0672319942 index 11/15/00 11:42 AM Page 911

912 serializable objects, saving

serializable objects, saving, 315-319, 321
serialization, database objects, 315-319,

321
serve_forever() method, 408
servers

anonymous FTP, 417
configuring for Python/CGI scripts,

428-433
embedding interpreters, 452
FTP, uploading files, 418
HTTP, command and file name case

sensitivity, 457
private FTP, 417
proxy, handling connections, 416
Python Common Object Model (COM),

implementing, 270
Web, 406, 408

server_address attribute, 408
SERVER environment variables, 477
services

email, handling, 419-421
Microsoft Remote Data (RDS), 266

Session layer, 392
sessions,CGI scripts, 464
set (first, last) method, 612
set_break(filename, lineno, temporary=0,

cond = None) method, 691
set_continue() method, 690
set_next(frame) method, 690
set_position(position) method, 514
set_quit() method, 690
set_return(frame) method, 690
set_spacing(spacing) method, 527
set_step() method, 690
set_trace() method, 690-691

set(value) method, 611
__setattr__(self, name, value) method,

193
setblocking(flag) function, 399
setcomptype(type, name) method, 358
setcontext(name) method, 545
setcurrent(n) method, 546
setdefault() method, 70
setframerate(n) method, 358
setinputsizes(sizes) method, 341-343
__setitem__(a, b, c) method, 195
setlast(n) method, 546
setliteral() method, 498, 518
setnchannels(n) method, 358
setnframes(n) method, 358
setnomoretags() method, 498, 518
setoutputsize(size[,column]) method, 343
setparams(tuple) method, 358
setpos(pos) method, 357
setprofiler() function, 697
setsampwidth(n) method, 358
__setslice__(a, b, c, v) method, 195
setting

Data/Time format, 274-275
items in lists, 746
permissions, 456-457
permissions on scripts, 36
tuples, 745

setvar(variablename, value) method, 622
SGI IRIX Operating System. See IRIX

Operating System
SGI IRIX Specific library, 143-144
sgi program, 684
SGML (Standard Generalized Markup

Language), 492
SGML files, opening, 520-521

31 0672319942 index 11/15/00 11:42 AM Page 912

913SOCK_DGRAM connection

sgmllib module, 134, 517-519, 521
sgmllib.SGMLParser interface, 521-522
SGMLParser class, 517-519, 521
sha module, 139
shared flag, 238
shared libraries, building modules as, 678
shared workspace, 439
shebang line, 36
shell command, 463
shell elements, colors, 650
shell environment, 32-35
shells, passing fields and strings, 463
shelve files, 320-321
shelve module, 105, 309, 316, 319, 321
shifting, 41, 48
shlex module, 118
Shprentz, Joel, 316
shutdown(flag) function, 399
shutil module, 126-127
side option, 582
SIG (Special Interest Groups), 27
signal module, 127-129
Silicon Graphics, OpenGL module, 355
Simple API for XML (SAX API), 504-506
Simple Mail Transfer Protocol (SMTP),

418-421
Simple Object Access Protocol (SOAP),

509-510
SimpleHTTPRequestHandler class, 411
SimpleHTTPServer module, 133, 406,

411
Simplified Wrapper and Interface

Generator (SWIG), 243-245
single line interfaces, creating, 601
single quotes (‘), strings, 45
site management tools, 442-447

site module, 110
sites, FTP, 417-418
size option, 594
sizefrom(who) method, 619
slant option, 594
slash (/), 495
slash literal (/), creating strings, 45
SliceType object type, 182
slicing strings, 43
Small Python, 711
Smalltalk programming language versus

Python, 24
SMTP (Simple Mail Transfer Protocol),

418-421
smtplib module, 133, 419
SND constants, 355-356
sndhdr module, 138, 356-357
sndhdr.whathdr() function, 356
sndhdrwhat() function, 356
SOAP (Simple Object Access Protocol),

509-510
socket addresses, 395
socket attribute, 408
socket module, 128, 397-399, 406, 439
socket objects, 398
socket type value, 397
socket() method, 401
socket(family, type [, protocol]) method,

397
socket.ssl() function, syntax, 399
sockets, 396-405
sockets layer, 394
sockets program, 684
SocketServer module, 133, 406-408
socket_type variable, 408
SOCK_DGRAM connection, 400

31 0672319942 index 11/15/00 11:42 AM Page 913

914 SOCK_STREAM connection

SOCK_STREAM connection, 400
software. See applications
Solaris, Java Virtual Machine (JVM)

support for JPython, 727
Solin, Daniel, 565
sorting keys, abbreviations, 704
sort_stats(key, ...) method, 704
sounds, 355-360
Source checkbutton, Debug Control

Panel, 660
source code

benchmark extension, 253-255
benchmark tool, 87, 89-93, 95-96
calculator object, 276-277, 279-280,

282-283, 285
company employees, 214-216, 218
compiling, 674-678
Concurrent Version System (CVS),

downloading, 16
configuration files, 211-213
debugging, exceptions, 164-165
editing, 678-681
executing, Python/C Application

Programmers (API), 751, 753
groceries list, 213-214
HTML parsing tool, 384-386
Internet country codes, 176-177
parking lot object, 297-298, 300-301,

303-304
Python, 18, 21-22, 829
square roots, 174, 176
TV network audience object, 386
wrapping C functions, 255-257

source code editing components,
Scintilla, 661

source code folding, Pythonwin, 666

source tarball, 22
SourceForge, 16, 828
SpamWall, 421
Special Interest Groups (SIGs), 27
special method, 192-195, 197
speed, improving in applications, 264
splinesteps option, 599
SQL. See Structured Query Language
square roots, source code, 174, 176
SqueezeTool, 711
squid module, 441
sre module, 149, 376
Stack checkbutton, Debug Control Panel,

660
Stack Viewer option, File Editor, 658
Stackless Python, 382
stacks, 104
standard exceptions, 157-159, 169,

171-173
Standard Generalized Markup Language

(SGML), 492
Standard Library, distutils package,

711-712
Standard Library of Modules, 98-99
Standard Python Library, The, 11, 13
Standard Window Interface (stdwin

module), 562
StandardError class, 171
start scriptname.py command, 37
start_tag() method, 522
start_tag(attributes) method, 520
starting

applications, 689
connections, 399-401
event loops, 580
interpreters, 687-688

31 0672319942 index 11/15/00 11:42 AM Page 914

915StringIO.getvalue() method

startswith() method, 46
stat module, 122
statcache module, 122
state

exceptions, 748
threads, global locks, 795-800

state attribute, 614
state option, 605
state property, 597
state() method, 617
statements

break, 61-62
buffersize, 86
class, 183
continue, 61-62
control, 59-62
else, 60-61
exec, 700
folding and unfolding, 666
for, 60-61
from, 79-81
if, 49
if/elif/else, 60
import, 79-81, 168
pass, 61, 156
print, 82-83, 486-487
Python Debugger (pdb) module, 693
raise, 153, 159
requirements for subblock, 34
SELECT, WHERE clause, 329
separating on same line, 37
try/except, 155-156, 164, 462
try/finally, 155, 167-168
while, 61

states, thread, 748
static dispatches, 272

static extensions, linking to interpreters,
237-239, 241

static flag, 238
Stats class, methods, 703-706
Stats(filename, ...) class, 701
status bars, creating, 627-628
statvfs module, 122
“stdname” argument, 704
stdwin program, 684
stdwinevents module, 148
stealing references, 745
Stein, Greg, 266, 413, 711
Step button, Debug Control Panel, 658
stepping backward, 66
storage

Common Object Model (COM) objects,
Windows Registry, 265

cookies, 465
data, CGI scripts, 464
persistent, databases, 315-319, 321

str() function, 832
__str__(name) method, 543
__str__(self) method, 193
stream sockets, 397
StreamRequestHandler class, 407
string exceptions, raising, 162
string functions, 112-113
String Group library, 110-115
string module, 79-80, 111-113
string modules, 46
string namespace, 79
STRING object, 344
string objects, 46, 772-774
StringIO module, 115
StringIO.getvalue() method, 115

31 0672319942 index 11/15/00 11:42 AM Page 915

916 strings

strings, 43-46
buffer interface support, 774
deprecating exceptions, 758
documentation, 643-644, 651
encoded, 458-459
format, %r and %s, comparing, 86
formatting, 229-233
handling, 280-281
optimizing, 639
packing methods, 513
passing from clients to shells, 463
Python 2.0, 830
See also characters

StringType object type, 181
strip_dirs() method, 703
Ströder, Michael, 440
struct module, 114, 307, 309
struct _frozen functions, 762
struct _node* PyParser functions,

751-752
Structured Query Language (SQLs),

327-335
structures

buffer objects, 805-806
C, complex numbers as, 784-785
data, 61-70
mapping objects, 804
number objects, 805
objects, type and method definition, 804
Py complex, 784
PyBufferProcs, 805
PyInterpreterState, 797
PyMappingMethods, 804
PyNumberMethods, 805
PySequenceMethods, 805
PyThreadState, 797

Py_TPFLAGS_HAVE_
GETCHARBUFFER , 806

sequence objects, 805
thread data, creating, 796

style guides, writing code, 641-647
styles

font, options, 594
naming, code, 644

__sub__(name) method, 544
__sub__(self, other) method, 194
subblocks, requirements in statements,

34
subclasses, 198
subclassing exceptions, 168-169
subdirectories, example_nt, 675
submitting bug fixes, 26
subprojects, 675
substrings, assigning values, 43
suff program, 683
SUM() function, 330
sum_sequence() function, 746-748
sum5 program, 683
Sun OS Specific library, 145
sunau module, 138
sunaudiodev module, 145, 815
superclasses, 198, 644
superclassing, 198
support

buffer interface, strings and arrays, 774
indexing, tuples, 68
Internet Protocol and Support library,

131-134
Java Virtual Machine (JVM), JPython,

726-727
multithreaded programs, 795-800
object-oriented, 12

31 0672319942 index 11/15/00 11:42 AM Page 916

917tags

Python, 27-28
technical, 10
Unicode, 46
Web scripting, 13

SWIG (Simplified Wrapper Interface
Generator), 243

Swing (JFC/Swing GUI Components)
library, 731

swing components, accessing, 732
symbol module, 107
sync method, 312
syntax.error(message) method, 500
SyntaxError class, 171
SyntaxError exception, 163
sys getrefcount() function, 39
sys module, 82, 99-102, 157-159, 697,

750
sys.argv variable, 688
sys.exec.traceback() function, 102
sys.exec.value() function, 102
sys.exec_info() function, 748, 795
sys.exe_traceback value, 157-158
sys.exe_type value, 157
sys.exe_value value, 157
sys.exit() function, 161
sys.getrecursionlimit() function, 102
sys.last_traceback object, 159
sys.last_type object, 159
sys.last_value object, 159
sys.last.traceback() function, 102
sys.last.value() function, 102
sys.path, 709
sys.path variable, 686
sys.recursionlimit() function, 102
sys.setprofiler(profiler_function)

function, 697

sys.settrace(tracer_function) function,
697

sys.stderr file object, 100
sys.stdin file object, 100
sys.stdout file object, 100
sys.version_info() function, 102
syslog module, 142
system messages, retrieving, 167
system requirements, Python, 17-18
SystemError class, 172
SystemExit class, 171
SystemExit exception, 161

T

–t option, 687
tables

deleting rows, 331
hash. See dictionaries
inserting rows, 331
joins, relational databases, 329-330
redundancy, 330

Tablify region option, File Editor, 656
tabnanny module, 149
tabnanny program, 683
tabpolice program, 683
tabs attribute, 614
tabs in scripts, 37
tags, 615

<APPLET>, 736
<!ATTLIST> definition, 495
<!ELEMENT> definition, 494
Content-type, 460
handling, 519
<!-- # INSERT HERE # -->, 469
script, 482, 484

31 0672319942 index 11/15/00 11:42 AM Page 917

918 tag methods

tag methods, 615-616
takefocus property, 598
tarball (source), 22
tarballs, 649
tbreak [([filename]lineno | function) [,

condition]] command, 694
Tcl programming language versus

Python, 24
TCL. See Tkinter module
TCL_LIBRARY variable, 686
Tcl/Tk installer, 22
TCP/IP (Transmission Control

Protocol/Internet Protocol), 393-394
TCPServer class, 407
tearOff option, 606
technical support, Python, 10
tell() method, 357-358, 534-535, 540
Telnet, 421-423
telnetlib module, 133, 422
tempfile module, 125
templates, creating browser output, CGI

scripts, 469-471
termios AL, 143
termios module, 141
test module, 146
testing

applets, 736
CGI scripts, 477-481
command-line scripts, 637
forms, 463
input, 463
ports, 674
Python interfaces, 271
wrapper, Word, 271

testpy.py file, 674
Tetsuya, Mizutori, 727

texi2html program, 683
text

inserting Button widgets inside, 616-617
printing, Windows printers, 809-810

text data, 306
text property, 593, 598
text translation mode, 86
Text widget, 597, 614-617
text() method, 599
textvariable attribute, 602
textvariable option, 603
third-party Internet applications,

433-439
Thompson, Phil, 562
thread data structures, creating, 796
thread functions, 378
thread modules, 129, 378-381
threading mechanisms, 811
threading module, 129
Threading.activeCount() function, 380
Threading.currentThread() function, 380
Threading.enumerate() function, 380
threads, 376-382

Python/C Application Programmers
Interface (API), 789-800

states, 748
threading mechanisms, 811

threads program, 684
threadsafety variable, 337
thumbnail images, generating, 353
“time” argument, 704
time module, 123, 641
time() function, 641
Time(hour, minute, second) function,

344
time.clock() function, 641

31 0672319942 index 11/15/00 11:42 AM Page 918

919\Tools directory, scripts stored in

time.sleep function, 379
TimeFromTicks(ticks) function, 344
Timestamp(year, month, day, hour,

minute, second) function, 344
TimestampFromTicks(ticks) function,

344
tip boxes, 651
title(string) method, 619
titles, pages, 520-521
Tk toolkit, 814
Tk. See Tkinter module
Tk() method, 578-579
tk_focusNext() method, 622
tk_focusPrev() method, 622
TK_LIBRARY variable, 686
tkColorChooser module, 628
Tkdnd module, 146
tkFileDialog module, 628
tkFont instances, font class, 594
tkFont module, functions, 594
Tkinter module, 146, 557-558, 575-580,

631-632, 675-678
designing applications, 624-625, 627-630
geometry management methods, 580-585
handling events, 585, 587-590
informational resources, 630-631
loading, 579
optimizing, 639
PMW (Python Mega Widgets), 630
Unicode characters, 580
widgets, 590-595, 597-624

tkinter program, 684
tkMessageBox module, 628
tkraise([object]) method, 622
tkSimpleDialog module, 628
Toggle Tabs option, File Editor, 656

toggle() method, 600
token module, 107
tokenize module, 108
tolist() method, 67
toolbars

creating, 626-627
Debugging, opening, 668

toolkits
graphical user interfaces (GUIs),

555-557, 572
Abstract Windowing Toolkit (AWT),

570
designing good interfaces, 571-572
DynWin, 569
FORMS, 570
FXPy, 567-568
Java Python Interface (JPI), 569-570
Motif, 568-569
PyAmulet, 569
pyFLTK, 567
PyGTK, 563, 565
PyKDE, 562-563
PyOpenGL, 566
PyQt, 562
Pythonwin, 556, 558-559
stdwin, 562
Tkinter, 557-558
wafepython, 566
Wpy, 563
wxPython, 559-561

PMW (Python Mega Widgets), Tkinter
module, 630

TCL. See Tkinter module
Tk. See Tkinter module

tools. See utilities
\Tools directory, scripts stored in,

681-684

31 0672319942 index 11/15/00 11:42 AM Page 919

920 Tools menu, Pythonwin

Tools menu, Pythonwin, 664-666
Toplevel widget, 597, 617, 619
toplevel widgets, 571
toplevels, associating widgets with, 580
tottime column heading, 700
traceback message, 13, 478
traceback module, 104, 157-159
traceback stack, 104
traceback.print_exc() function, 158
TracebackType object type, 182
training, Python, 28
transferring data

between applications, 268-269
from browsers to CGI scripts, 452
FTP sites, 417-418

transient([master]) method, 617
translate.references(data) method, 498
Transmission Control Protocol (TCP),

starting connections, 399-400
Transmission Control Protocol/Internet

Protocol (TCP/IP), 393-394
Transport layer, 392
transporting values, tuples, 274
treesync program, 683
triple quotes, strings, 45, 643
Trojan Horses, 434
Trubetskoy, Gregory, 431
true value, 47
truncations, division of integers, 42
try clause, 168
try/except statement, 155-156, 164, 462
try/finally statement, 155, 167-168
tty module, 142
tuple objects, 776-777
tuples, 67-68

() (parenthesis), 399
handling, 281-282

replacing numbers with asterisks (*), 85
returning multiple values, functions, 76
setting, 745
transporting values, 274
zip() function, 54

TupleType object type, 182
turning off registration, Common Object

Model (COM) objects, 271
turning on modules

UNIX operating systems, 814
Tkinter, 676-678

tutorials:Python 1.5.2 release, 17
Tutt, Bill, 711
TV network audience object, source

code, 386
two-dimensional arrays, 364
type conversion functions, 57, 59
Type Libraries, 264
type objects, 343-344, 772
type() method, 620
TYPE* PyMem_NEW(TYPE, size_t n)

macro, 802
TYPE* PyMem_RESIZE(ANY *p, TYPE,

size_t n) macro, 802
typed variables, 201
TypeError class, 172
types module, 102-103, 181-182
typing, dynamic, 14

U

-U command line option, 688
–u flag, 433

–u option, 688
u(p) command, 694

31 0672319942 index 11/15/00 11:42 AM Page 920

921Untabify region option, File Editor

U.S. Department of Defense, 393
UDP (User Datagram Protocol), 394
UDPServer class, 407
umath module, 364
unacceptable input, testing for, 463
unalias name command, 696
unbind_all(event) method, 589
unbind_class(class, event) method, 589
unbind(event) method, 589
unbirthday script, 684
unbounded methods, accessing, 191
UnboundLocalError class, 171
UnboundMethodType object type, 182
uncaught exceptions, 159
Uncomment region option, File Editor,

656
underline option, 594, 606
underline property, 598
undo engines, 647
Undo option, File Editor, 655
Undocumented Modules, 146-147, 149
unfolding statements, 666
unichr() function
syntax, 59
Unicode characters, 46, 580, 830
unicode() function, 59
unicodedata module, 149
uniform resource locators (URLs),

accessing, 414-415, 417
universal functions, 364
Universally Unique Identifiers (UUIDs),

263
University of Michigan, Lightweight

Directory Access Protocol (LDAP)
library, 441

UNIX
command-line options, interpreters,

687-688
compiling source code, 675-678
embedding interpreters, 249-250
finding Python, 36
fonts, 595
installing Python, 20
installing Tkinter, 578
launching Python applications, 689
linking extensions to interpreters,

238-239, 241
Python distributions in, 18
root privileges, 401
running Python, 813-815
setting permissions, 456-457
shebang line, 36

UNIX Specific library, 140-143
UnixDatagramServer class, 408
unixODBC, 325
UnixStreamServer class, 408
unknown methods, 500-501, 519
unnormalized values, 755
unpack methods, 514-515
unpack() function, 114, 307
Unpacker(data) class, 513-516
unpacking variables, 515-516
unread() method, 540
unregistering Common Object Model

(COM) objects, 271
unsigned long

PyLong_AsUnsignedLong(PyObject
*pylong) function, 783

untabify program, 683
Untabify region option, File Editor, 656

31 0672319942 index 11/15/00 11:42 AM Page 921

922 unused objects, collecting

unused objects, collecting, 39
update script, 684
update() method, 622
update_idletasks() method, 622
uploading files

from Internet, 471-473
to FTP servers, 418

url attribute, 414
url module, 441
urllib module, 131, 414-415, 417
urllib2 module, 149
urlparse module, 133, 415, 417
urlparse.urljoin(base, url

[,allow_fragments])() function, 416
urlparse.urlparse()() function, 416
urlparse.urlunparse(tuple)() function, 416
URLs (uniform resource locators),

accessing, 414-415, 417
Urner, Kirby, 369
User Datagram Protocol (UDP), 394, 401
user module, 110
user-defined exceptions, creating,

168-169
user-defined functions, 71
UserDict module, 103
UserList module, 103
users

input and output, 79, 81-85
nobody, 457

UserString module, 150
user methods, 690
user_return(frame, return_value) method,

690
/usr/local directory, 675
utilities

benchmark, source code, 87, 89-93, 95-96
compile.py, 242

fixtk, 578
Freeze, 710
GNU gzip, downloading, 18
HTML parsing, source code, 384-386
Installer, 711
jpythonc, 734-736
OS, 759
PMW (Python Mega Widgets), Tkinter

module, 630
process control, 759-760
Python2C, 711
Simplified Wrapper and Interface

Generator (SWIG), 243-245
site management, 442-447
Small Python, 711
SqueezeTool, 711
TCL. See Tkinter module
Tk. See Tkinter module
WinZip, downloading, 18

uu module, 135, 547
UUID. See Universally Unique Identifiers

V

–v option, 688
value attribute, 455
value option, 606
value property, 182, 609
ValueError class, 172
values

AF_INET, 400
AF_UNIX, 400
assigning to substrings, 43
assigning to variables, modules, 248
c, 309

31 0672319942 index 11/15/00 11:42 AM Page 922

923variables

changing at execution time, 590
counter, 526
deleting from lists, 64
false, 47
family, 397
indexer, strings, 43
mode, 309
n, 309
NULL

assigning to variables, 40
checking errors, extension modules,

233
returning without raising exceptions,

234
Structured Query Language (SQL),

344
r, 309
returning, 75-76
returning from functions, tuples, 68
socket type, 397
sys module objects, 157
sys.exe_traceback, 157-158
sys.exe_type, 157
sys.exe_value, 157
transporting, tuples, 274
true, 47
unnormalized, 755
w, 309

values() method, 462
variable option, 606
variable property, 595, 609
variables

0, 337
1, 337
2, 337
3, 337

accessing, instances, 188
addresslist, 544
AddressList objects, 544
apilevel, 337
assigning functions to, 72
assigning objects to, 38
attributes, 498
classes, 184-186
deallocating, 38-39
declaring, 38, 227
double, 230
elements, 498
entitydefs, 498
environment

CGI scripts, 473-477
recognized by interpreters, 686-687
scanning, 415

exceptions, Python/C Application
Programmers Interface (API), 757, 759

finding, 119
float, 230
formatter, 522
global, changing inside functions, 72
global class

handling, 192
initializing, 203
instance, 163
last, 535
level, 535
listing, 119
modules, assigning values to, 248
MultiFile (fp[, seekable]) class, 535
optimizing , 638
packing, 515-516
paramstyle, 337
PATH, 686

31 0672319942 index 11/15/00 11:42 AM Page 923

924 variables

($PATH), 457
PYTHONPATH, 686
($PYTHONPATH), 457
PYTHONSTARTUP, 686
RExec.nok.builtin_names, 361
RExec.ok.builtin_modules, 361
RExec.ok.path, 361
RExec.ok.posix_names, 361
RExec.ok.sys_names, 361
socket type, 408
sys.argv, 688
sys.path, 686
TCL_LIBRARY, 686
threadsafety, 337
TK_LIBRARY, 686
typed, 201
watch, adding, Pythonwin, 668
See also objects

VB. See Visual Basic programming
language

verifying
errors, extension modules, 233-235
UNIX passwords, 140

versioncheck program, 682
versions of Python, 16
Vi (visual editor), 679
Viega, John, 437
View/Options option, Pythonwin, 663
viewing

error symbols, 167
input and output, 82-83
lines, lists, 604

Visible property, changing, 274
Visual Basic (VB) programming language,

implementing Common Object Model
(COM) objects, 275-277, 279, 281-282

visual editor (Vi), 679
Visual Interdev, 487
VMS, running Python, 816
void Py_DECREF(PyObject *o) function,

753
void Py_EndInterpreter(PyThreadState

*tstate) function, 791
void Py_Exit(int status) function, 759
void Py_FatalError(char *message)

function, 759
void Py_Finalize() function, 790
void Py_INCREF(PyObject *o) function,

753
void Py_Initialize() function, 789
void Py_SetProgramName(char *name)

function, 792
void Py_XDECREF(PyObject *o)

function, 753
void Py_XINCREF(PyObject *o)

function, 753
void PyDict_Clear(PyObject *p) function,

780
void PyErr functions,755-756
void PyEval functions, 797-798
void PyFile_SetBufSize(PyFileObject *p,

int n) function, 787
void _PyImport functions, 761-762
void PyImport_Cleanup() function, 761
void PyInterpreterState functions, 799
void PyMem_DEL(ANY *p) macro, 802
void PyMem_Free(ANY *p) function, 802
void PyString functions, 773-774
void PyThreadState functions, 800
void PyTuple_SET_ITEM(PyObject *p,

int pos, PyObject *o) function, 777
void* PyCObject functions, 789

31 0672319942 index 11/15/00 11:42 AM Page 924

925widgets

W

w (write) mode, 86
w value, 309
w(here) command, 694
W3C (World Wide Web Consortium),

506
wafepython module, 566
wait_variable(variable) method, 622
wait_visibility(widget) method, 622
wait_window(widget) method, 622
Warning exception, 338
Warsaw, Barry, 437, 718
watch variables, Pythonwin, 668
wave files, writing, 358
wave module, 138, 357-359
wb mode, 547
Web pages

copying into local files, 416
outputting links from HTML files to,

CGI scripts, 523-524
parsing, 414
retrieving, 414

Web scripting support, Python, 13
Web servers, 406, 408, 457
Web sites

Concurrent Version System (CVS), 16
GNU Web site, 18
Python documentation, 17
Python news, 8
Python source code, 18, 21-22
PythonLabs, 22
SourceForge, 828
WinZip Web site, 18

webbrowser module, 150

Webchecker, 445
webchecker program, 682
WebDAV (World Wide Web Distributed

Authoring and Versioning), 442
WebLog, 441-442
websucker module, 445
weight option, 594
wfile attribute, 411
what() function, 354
whatis arg, 695
WHERE clause, 329
whereis python command, 36
which program, 683
whichdb module, 129, 310, 315
while statement, 61
whitespace, 642
whitespaces, 483
whrandom module, 117
Widget Athena front end (Wafe) module,

566
widget attribute, 588
widgets, 571

associating with toplevels, 580
binding events, 585, 587-590
Button, 596-598, 616-617
Canvas, 596, 598-600
Checkbutton, 596, 600-601
Entry, 596, 601-602
Frame, 596, 602-603
Label, 596, 603
Listbox, 596, 603-604
Menu, 596, 604-608
Menubutton, 596, 608
Message, 596, 608-609
packing, 580-585

31 0672319942 index 11/15/00 11:42 AM Page 925

926 widgets

Radiobutton, 596, 609-610
Scale, 596, 611-612
Scrollbar, 597, 612-613
Text, 597, 614-617
Tkinter module, 590-595, 597-624, 630
Toplevel, 597, 617, 619

width argument, 584
width attribute, 587, 620
width option, 599, 620
width property, 591, 603
width() method, 620
Win32, running Python, 807-810
win32.com.client.Dispatch() function,

264
win32.com.client.gencache module, 273
win32all package, 267, 807, 809
win32api module, 808
win32com package, 266-268
win32com modules, 267-268
win32event modules, 808
win32file module, 808
win32net module, 808
win32pdh modules, 808
win32pipe module, 808
win32process module, 808
win32service module, 809
win32serviceutil module, 809
window option, 600
window() method, 600
Windows,
windows

changing fonts, 652
creating, 625
editor, 648
Python Shell, 650-652

Windows operating system
command-line options, interpreters,

687-688
compiling source code, 674-675
executing scripts from, 36
File Editor bindings, 653-654
fonts, 595
installing Python, 20-22
installing Tkinter, 577
Java Virtual Machine (JVM) support,

JPython, 726-727
launching Python applications, 689
linking extensions to interpreters, 239,

241-242
Macintosh Specific library, 146
MS Windows Specific library, 145
odbc module, 323-324
Registry, Common Object Model (COM)

object storage, 265
running Python, 815-816
saving files, Tkinter, 578
thread support, 377
transferring data between applications,

268-269
Windows installer, downloading and

running, 22
Windows menu, File Windowsor, 657
Windows Scripting Host (WSH), 483
Windows socket application program

interface (Winsock), 396
wininfo methods, 622-624
_winreg module, 150
Winsock (Windows socket application

program interface), 396
winsound module, 145, 355-356

31 0672319942 index 11/15/00 11:42 AM Page 926

927writing

withdraw() method, 617
wizards, PythonWin, 21
WM_SAVE_YOURSELF protocol, 590
WM_TAKE_FOCUS protocol, 590
Word, opening and manipulating from

Python, 269-275
word completion mechanism, 651
words, reserved, 40
workshops, Python, 28
workspaces, shared, 439
World Wide Web development, 427-428,

447-449
BSCW (Basic Support for Cooperative

Work), 439-440
configuring servers for Python/CGI

scripts, 428-433
LDAP (Lightweight Directory Access

Protocol), 440-441
site management tools, 442-447
third-party applications, 433-439
WebLog, 441-442

World Wide Web Consortium (W3C),
506

World Wide Web Distributed Authoring
and Versioning (WebDAV), 442

Wpy module, 563
wraplength property, 598
wrapper files, generating, 245
wrappers

creating extension modules and
embedding Python objects, 245-246

Pythonwin, 661-663, 665-669, 671
PyVersant, 321
Word, implementing, 271-273

wrapping C functions, source code,
255-257

writable() method, 404
write (w) mode, 86
write() method, 774
writeframes(data) method, 358
writeframesraw(data) method, 358
writer attribute, 525
writer objects, 524, 527-529
writing

applets, 736
beans, 736
classes, 736
code

optimizing, 637-641
style guides, 641-647

Common Gateway Interface (CGI)
scripts, 456-481

Extensible Markup Language (XML)
files, 493-495

file dialog boxes, 628-629
frames to align colored buttons, 602
graphical interfaces, JPython, 731-732
IDLE extensions, 660
image objects, 619
menu bars, 607
menus, 625-626
messages, 608
pop-up menus, 606
pull-down menus, 607-608
Python applications, 635-647
radiobuttons, 609
registries, 810
scripts, 35-37, 39-40
single line interfaces, 601

31 0672319942 index 11/15/00 11:42 AM Page 927

928 writing

status bars, 627-628
subclasses, 198-201
thread data structures, 796
toolbars, 626-627
wave files, 358
windows, 625

WSH (Windows Scripting Host), 483
wxPython module, 559-561

X

x argument, 585
x attribute, 588
x format, 308
–X option, 164, 688, 728
x_root attribute, 588
XBEL (XML Bookmark Exchange

Language), 507-508
XDR (External Data Representation

Standard), 512
XDR Data Exchange Format, manipu-

lating data, 512-517
xdrlib module, 136, 512-517
XEmacs, source code, 679-681
XML, support in Python 2.0, 829
XML Bookmark Exchange Language

(XBEL), 507-508
xml module, 150
xml package, PyXML, 497
XML Processing with Python, 510
XML. See Extensible Markup Language
XML-RPC How To for Zope Users, 512
XML-RPC library, manipulating data,

510-512

xmllib module, 134, 497-498, 500-504
XMLParser class, 498
XMLParser module, 493
xmlrpc package, 511
xmlrpclib module, 511
XOR (exclusive OR) operator, 48
__xor__(self, other) method, 195
xrange() function, 67
XrangeType object type, 182
XSL Transformations (XSLT), 507
XSLT (XSL Transformations), 507
xxci program, 683

Y

y argument, 585
y attribute, 588
y_root attribute, 588
Yahoo!, 8

Z

z element, 230, 232
Z Object Publishing Environment

(Zope), 435-436, 452
z# element, 230, 232
Zadka, Moshe, 647
Zebra, 442-443
ZeroDivisionError class, 172
Zessin, Uwe, 816
zip() function, 54
zipfile module, 150
zlib module, 130

31 0672319942 index 11/15/00 11:42 AM Page 928

929ZSQLMethod

zlib program, 684
ZODB (Zope Object Database), 321, 512
Zoom Height option, File Editor, 657
Zope (Z Object Publishing

Environment), 435-436, 452
Zope Object Database (ZODB), 321, 512
ZSQLMethod, 435

31 0672319942 index 11/15/00 11:42 AM Page 929

	Python Developer's Handbook
	Copyright © 2001 by Sams Publishing
	Contents at a Glance
	Table of Contents
	About the Author

	INTRODUCTION
	PART I Basic Programming
	CHAPTER 1 Introduction
	Introduction to Python
	Why Use Python?
	Main Technical Features
	Python Distribution
	Installing and Configuring Python
	Python and Other Languages
	Patches and Bugs List
	PSA and the Python Consortium
	Summary

	CHAPTER 2 Language Review
	Language Review
	The Shell Environment
	Programs
	Operators
	Expressions
	Control Statements
	Data Structures
	Functions and Procedures
	Modules and Packages
	Input and Output
	File Handling
	Summary
	Code Example

	CHAPTER 3 Python Libraries
	Python Libraries
	Python Services
	The String Group
	Miscellaneous
	Generic Operational System
	Optional Operational System
	Debugger
	Profiler
	Internet Protocol and Support
	Internet Data Handling
	Restricted Execution
	Multimedia
	Cryptographic
	UNIX Specific
	SGI IRIX Specific
	Sun OS Specific
	MS Windows Specific
	Macintosh Specific
	Undocumented Modules
	Summary

	CHAPTER 4 Exception Handling
	Exception Handling
	Standard Exceptions (Getting Help from Other Modules)
	Raising Exceptions
	Catching Exceptions
	try/finally
	Creating User-defined Exceptions
	The Standard Exception Hierarchy
	Summary
	Code Examples

	CHAPTER 5 Object-Oriented Programming
	Object-Oriented Programming
	An Introduction to Python OOP
	Python Classes and Instances
	Methods Handling
	Special Methods
	Inheritance
	Polymorphism
	Encapsulation
	Metaclasses
	Summary
	Code Examples

	PART II Advanced Programming
	CHAPTER 6 Extending and Embedding Python
	Extending and Embedding Python
	The Python/C API
	Extending
	Compiling and Linking Extension Modules
	SWIG—The Simple Wrapper Interface Generator
	Other Wrappers
	Embedding
	Summary
	Code Examples

	CHAPTER 7 Objects Interfacing and Distribution
	Object Interfacing and Distribution
	Interfacing Objects
	Introduction to COM Objects
	Implementing COM Objects in Python
	Distributing Objects with Python
	Summary
	Code Examples

	CHAPTER 8 Working with Databases
	Working with Databases
	Flat Databases
	DBM (Database Managers) Databases
	Object Serialization and Persistent Storage
	The ODBC Module
	ADO (ActiveX Data Objects)
	Using SQL
	Python DB API
	Summary

	CHAPTER 9 Other Advanced Topics
	Other Advanced Topics
	Manipulating Images
	Working with Sounds
	Restricted Execution Mode
	Scientific Computing
	Regular Expressions
	Threads
	Summary
	Code Examples

	PART III Network Programming
	CHAPTER 10 Basic Network Background
	Networking
	Networking Concepts
	HTTP
	Accessing URLs
	FTP
	SMTP/POP3/IMAP
	Newsgroups—Telnet and Gopher
	Summary

	CHAPTER 11 Web Development
	Web Development
	Configuring Web Servers for Python/CGI Scripts
	Third-Party Internet Applications
	Other Applications
	Site Management Tools
	Summary

	CHAPTER 12 Scripting Programming
	Web Programming
	An Introduction to CGI
	The cgi Module
	Creating, Installing, and Running Your Script
	Python Active Scripting
	Summary

	CHAPTER 13 Data Manipulation
	Parsing and Manipulating Data
	XML Processing
	XML-RPC
	XDR Data Exchange Format
	Handling Other Markup Languages
	MIME Parsing and Manipulation
	Generic Conversion Functions
	Summary

	PART IV Graphical Interfaces
	CHAPTER 14 Python and GUIs
	Python GUI Toolkits
	The Tkinter Module
	Overview of Other GUI Modules
	Designing a Good Interface
	Summary

	CHAPTER 15 Tkinter
	Introduction to Tcl/Tk
	Tkinter
	Geometry Management
	Handling Tkinter Events
	Tkinter Widgets
	Designing Applications
	PMW—Python Mega Widgets
	Tkinter Resources
	Summary

	PART V Developing with Python
	CHAPTER 16 Development Environment
	Building Python Applications
	Development Strategy
	Integrated Development Environments
	IDLE
	Pythonwin
	Summary

	CHAPTER 17 Development Tools
	The Development Process of Python Programs
	Compiling Python
	Editing Code
	Python Scripts
	Generating an Executable Python Bytecode
	Interpreter
	Debugging the Application
	Profiling Python
	Distributing Python Applications
	Summary

	PART VI Python and Java
	CHAPTER 18 JPython
	Welcome to JPython
	Java Integration
	Downloading and Installing JPython
	The Interpreter
	The JPython Registry
	Creating Graphical Interfaces
	Embedding
	jpythonc
	Running JPython Applets
	Summary

	PART VII Appendixes
	APPENDIX A Python/C API
	Python/C API
	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Utilities
	Abstract Objects Layer
	Concrete Objects Layer
	Initialization, Finalization, and Threads
	Memory Management
	Defining New Object Types

	APPENDIX B Running Python on Specific Platforms
	Python on Win32 Systems
	Python on MacOS Systems
	Python on UNIX Systems
	Other Platforms

	APPENDIX C Python Copyright Notices
	Python 2.0 License Information
	Python’s Copyright Notice (version 1.6)
	Python’s Copyright Notice (until version 1.5.2)
	Copyright Notice of the profile and pstats Modules
	Copyright Notice of JPython with OROMatcher
	Copyright Notice of JPython without OROMatcher

	APPENDIX D Migrating to Python 2.0
	Python 1.6 or Python 2.0. Which One to Choose?
	New Development Process
	Enhancements
	Expected Code Breaking

	Index

