

Safe C++

Vladimir Kushnir

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Safe C++
by Vladimir Kushnir

Copyright © 2012 Vladimir Kushnir. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Iris Febres
Copyeditor: Emily Quill
Proofreader: BIM Publishing Services

Indexer: BIM Publishing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

June 2012: First Edition.

Revision History for the First Edition:
2012-05-25 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320935 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Safe C++, the image of a merlin, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32093-5

[LSI]

1338342941

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320935

To Daria and Misha

Table of Contents

Preface . ix

Part I. A Bug-Hunting Strategy for C++

1. Where Do C++ Bugs Come From? . 3

2. When to Catch a Bug . 5
Why the Compiler Is Your Best Place to Catch Bugs 5
How to Catch Bugs in the Compiler 6
The Proper Way to Handle Types 7

3. What to Do When We Encounter an Error at Runtime . 11

Part II. Bug Hunting: One Bug at a Time

4. Index Out of Bounds . 19
Dynamic Arrays 19
Static Arrays 24
Multidimensional Arrays 26

5. Pointer Arithmetic . 31

6. Invalid Pointers, References, and Iterators . 33

7. Uninitialized Variables . 37
Initialized Numbers (int, double, etc.) 37
Uninitialized Boolean 40

v

8. Memory Leaks . 43
Reference Counting Pointers 47
Scoped Pointers 49
Enforcing Ownership with Smart Pointers 51

9. Dereferencing NULL Pointers . 53

10. Copy Constructors and Assignment Operators . 55

11. Avoid Writing Code in Destructors . 57

12. How to Write Consistent Comparison Operators . 63

13. Errors When Using Standard C Libraries . 67

Part III. The Joy of Bug Hunting: From Testing to Debugging to Production

14. General Testing Principles . 71

15. Debug-On-Error Strategy . 75

16. Making Your Code Debugger-Friendly . 79

17. Conclusion . 85

A. Source Code for the scpp Library Used in This Book . 89

B. Source Code for the files scpp_assert.hpp and scpp_assert.cpp 91

C. Source Code for the file scpp_vector.hpp . 93

D. Source Code for the file scpp_array.hpp . 95

E. Source Code for the file scpp_matrix.hpp . 97

F. Source Code for the file scpp_types.hpp . 99

G. Source Code for the file scpp_refcountptr.hpp . 103

vi | Table of Contents

H. Source Code for the file scpp_scopedptr.hpp . 105

I. Source Code for the file scpp_ptr.hpp . 107

J. Source Code for the file scpp_date.hpp and scpp_date.cpp 109

Index . 117

Table of Contents | vii

Preface

Astute readers such as yourself may be wondering whether the title of this book, Safe
C++, presumes that the C++ programming language is somehow unsafe. Good catch!
That is indeed the presumption. The C++ language allows programmers to make all
kinds of mistakes, such as accessing memory beyond the bounds of an allocated array,
or reading memory that was never initialized, or allocating memory and forgetting to
deallocate it. In short, there are a great many ways to shoot yourself in the foot while
programming in C++, and everything will proceed happily along until the program
abruptly crashes, or produces an unreasonable result, or does something that in com-
puter literature is referred to as “unpredictable behavior.” So yes, in this sense, the
C++ language is inherently unsafe.

This book discusses some of the most common mistakes made by us, the programmers,
in C++ code, and offers recipes for avoiding them. The C++ community has developed
many good programming practices over the years. In writing this book I have collected
a number of these, slightly modified some, and added a few, and I hope that this col-
lection of rules formulated as one bug-hunting strategy is larger than the sum of its parts.

The undeniable truth is that any program significantly more complex than “Hello,
World” will contain some number of errors, also affectionately called “bugs.” The Great
Question of Programming is how we can reduce the number of bugs without slowing
the process of programming to a halt. To start with, we need to answer the following
question: just who is supposed to catch these bugs?

There are four participants in the life of the software program (Figure P-1):

1. The programmer

2. The compiler (such as g++ under Unix/Linux, Microsoft Visual Studio under
Windows, and XCode under Mac OS X)

3. The runtime code of the application

4. The user of the program

Of course, we don’t want the user to see the bugs or even know about their existence,
so we are left with participants 1 through 3. Like the user, programmer is human, and
humans can get tired, sleepy, hungry, distracted by colleagues asking questions or by

ix

phone calls from family members or a mechanic working on their car, and so on. In
short, humans make mistakes, the programmer is human, and therefore the program-
mer makes mistakes, a.k.a. bugs. In comparison, participants 2 and 3—the compiler
and the executable code—have some advantages: they do not get tired, sleepy, de-
pressed, or burned out, and do not attend meetings or take vacations or lunch breaks.
They just execute instructions and usually are very good at doing it.

Considering our resources we have to deal with—the programmer on the one hand,
and the compiler and program on the other—we can adopt one of two strategies to
reduce the number of bugs:

Choice Number 1: Convince the programmer not to make mistakes. Look him in the
eyes, threaten to subtract $10 from his bonus for each bug, or otherwise stress him out
in the hopes to improve his productivity. For example, tell him something like this:
“Every time you allocate memory, do not forget to de-allocate it! Or else!”

Choice Number 2: Organize the whole process of programming and testing based on
a realistic assumption that even with the best intentions and most laserlike focus, the
programmer will put some bugs in the code. So rather than saying to the programmer,
“Every time you do A, do not forget to do B,” formulate some rules that will allow most
bugs to be caught by the compiler and the runtime code before they have a chance to
reach the user running the application, as illustrated in Figure P-2.

Figure P-1. Four participants (buggy version)

Figure P-2. Four participants (happy/less buggy version)

x | Preface

When we write C++ code, we should pursue three goals:

1. The program should perform the task for which it was written; for example, cal-
culating monthly bank statements, playing music, or editing videos.

2. The program should be human-readable; that is, the source code should be written
not only for a compiler but also for a human being.

3. The program should be self-diagnosing; that is, look for the bugs it contains.

These three goals are listed in decreasing order of how often they are pursued in the
real programming world. The first goal is obvious to everybody; the second, to some
people, and the third is the subject of this book: instead of hunting for bugs yourself,
have a compiler and your executable code do it for you. They can do the dirty work,
and you can free up your brain energy so you can think about the algorithms, the design
—in short, the fun part.

Audience
If you have never programmed in C++, this book is not for you. It is not intended as a
C++ primer. This book assumes that you are already familiar with C++ syntax and
have no trouble understanding such concepts as the constructor, copy-constructor,
assignment operator, destructor, operator overloading, virtual functions, exceptions,
etc. It is intended for a C++ programmer with a level of proficiency ranging from near
beginner to intermediate.

How This Book Is Organized
In Part I, we discuss the following three questions: in Chapter 1, we will examine the
title question. Hint: it’s all in the family.

In Chapter 2, we will discuss why it is better to catch bugs at compile time, if at all
possible. The rest of this chapter describes how to do this.

In Chapter 3, we discuss what to do when a bug is discovered at run-time. And here
we demonstrate that in order to catch errors, we will do everything we can to make
writing sanity checks (i.e., a piece of code written for specific purpose of diagnosing
errors) easy. Actually, the work is already done for you: Appendix A contains the code
of the macros which do writing a sanity check a snap, while delivering maximum in-
formation about what happened, where, and why, without requiring much work from
a programmer. In Part II we go through different types of errors, one at a time, and
formulate rules that would make each of these errors (a.k.a. bugs) either impossible,
or at least easy to catch. In Part III we apply all the rules and code of the Safe C++
library introduced in Part II and discuss the testing strategy that shows how to catch
bugs in the most efficient manner.

Preface | xi

We also discuss how to make your program “debuggable.” One of the goals when
writing a program is to make it easy to debug, and we will show how our proposed use
of error handling adds to our two friends—compiler and run-time code—the third one:
a debugger, especially when it is working with the code written to be debugger-friendly.

And now we are ready to go hunting for actual bugs. In Part II, we go through some of
the most common types of errors in C++ code one by one, and formulate a strategy for
each, or simply a rule which makes this type of error either impossible or easily caught
at run-time. Then we discuss the pros and cons of each particular rule, its pluses and
minuses, and its limitations. I conclude each of these chapters with the short formula-
tion of the rule, so that if you just want to skip the discussion and get to the bottom
line, you know where to look. Chapter 17 summarizes all rules in one short place, and
the Appendices contain all necessary C++ files used in the book.

At this point you might be asking yourself, “So instead of saying, ‘When you do A,
don’t forget to do B’ we’re instead saying, ‘When you do A, follow the rule C’? How is
this better? And are there more certain ways to get rid of these bugs?” Good questions.
First of all, some of the problems, such as memory deallocation, could be solved on the
level of language. And actually, this one is already done. It is called Java or C#. But for
the purposes of this book, we assume that for some reason ranging from abundant
legacy code to very strict performance requirements to an unnatural affection for our
programming language, we’re going to stick with C++.

Given that, the answer to the question of why following these rules is better than the
old “don’t forget” remonstrance is that in many cases the actual formulation of the rule
is more like this:

• The original: “When you allocate memory here, do not forget to check all the other
20 places where you need to deallocate it and also make sure that if you add another
return statement to this function, you don’t forget to add a cleanup there too.”

• The new formulation: “When you allocate memory, immediately assign it to a smart
pointer right here right now, then relax and forget about it.”

I think we can agree that the second way is simpler and more reliable. It’s still not an
iron-clad 100% guarantee that the programmer won’t forget to assign the memory to
a smart pointer, but it’s easier to achieve and significantly more fool-proof than the
original version.

It should be noted that this book does not cover multithreading. To be precise, multi-
threading is briefly mentioned in the discussion of memory leaks, but that’s it.
Multithreading is very complex and gives the programmer many opportunities to make
very subtle, non-reproducible and difficult-to-find mistakes, but this is the subject of a
much larger book.

I of course do not claim that the rules proposed in this book are the only correct ones.
On the contrary, many programmers will passionately argue for some alternative prac-

xii | Preface

tice, that may well be the right one for them. There are many ways to write good C++
code. But what I am claiming is the following:

• If you follow the rules described in this book in letter and in spirit (you can even
add your own rules), you will develop your code faster.

• During the first minutes or hours of testing, you will catch most if not all of the
errors you’ve put in there; therefore, you can be much less stressed while writing it.

• Finally, when you are done testing, you will be reasonably sure that your program
does not contain bugs of a certain type. That’s because you’ve added all these sanity
checks and they’ve all passed!

And what about efficiency of the executable code? You might be concerned that all that
looking for bugs won’t come for free. Not to worry—in Part III, The Joy of Bug Hunting:
From Testing to Debugging to Production, we’ll discuss how to make sure the production
code will be as efficient as it can be.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows output produced by a program.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Naming Conventions
I believe strongly in the importance of a naming convention. You can use any conven-
tion you like, but here is what I’ve chosen for this book:

Preface | xiii

• Class names are MultipleWordsWithFirstLettersCapitalizedAndGluedTogether; for
example:

class MyClass {

• Function names (a.k.a. methods) in those classes FollowTheSameConvention; ex-
ample:

MyClass(const MyClass& that);
void DoSomething() const;

This is because in C++ the constructor must have the same name (and the de-
structor a similar name) as a class, and since they are function names in the class,
we might as well make all functions look the same.

• Variables have names that are lowercase_and_glued_together_using_underscore.

• Data members in the class follow the same convention as variables, except they
have an additional underscore at the end:

class MyClass {
 public:
 // some code

 private:
 int int_data_;
};

The only exception to these rules is when we work with STL (i.e., Standard Template
Library) classes such as std::vector. In this case, we use the naming conventions of
the STL in order to minimize changes to your code if you decide to replace std::
vector with scpp::vector (all classes defined in this book are in the namespace scpp).
Classes such as scpp::array and scpp::matrix follow the same convention as scpp::
vector just because they are containers similar to a vector.

One final remark before we start: all examples of the code in this book were compiled
and tested on a Mac running Max OS X 10.6.8 (Snow Leopard) using the g++ compiler
or XCode. I attempted to avoid anything platform-specific; however, your mileage may
vary. I also made my best effort to ensure that the code of SafeC++ library provided in
the Appendices is correct, and to the best of my knowledge it does not contain any
bugs. Still, you use it at your own risk. All the C++ code and header files we discuss
are available both at the end of this book in the Appendices, and on the website https:
//github.com/vladimir-kushnir/SafeCPlusPlus.

We have here outlined a road map. At the end of the road is better code with fewer
bugs combined with higher programmer productivity and less headache, a shorter de-
velopment cycle, and more proof that the code actually works correctly. Sounds good?
Let’s jump in.

xiv | Preface

https://github.com/vladimir-kushnir/SafeCPlusPlus
https://github.com/vladimir-kushnir/SafeCPlusPlus

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Safe C++ by Vladimir Kushnir. Copyright
2012 Vladimir Kushnir, 978-1-449-32093-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/SafeCPP

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First, I would like to thank Mike Hendrickson of O’Reilly for recognizing the value of
this book and encouraging me to write it.

I am very grateful to my editor, Andy Oram, who received the thorny task of editing a
book written by a first-time author for whom English is a second language. Andy’s
editing made this book much more readable. I also appreciate his friendly way of
working with an author and enjoyed our collaboration very much. I especially would
like to thank Emily Quill for significantly improving the style and clarity of the text. All
errors are mine.

I would like to use this opportunity to thank Dr. Valery Fradkov, who taught me pro-
gramming some time ago and provided many ideas for our first programs.

I would like to thank my son Misha for his help in figuring out what the latest version
of Microsoft Visual Studio is up to. And finally, I am forever grateful to my wife Daria
for her support during this project.

xvi | Preface

http://oreil.ly/SafeCPP
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

A Bug-Hunting Strategy for C++

This part of the book offers a classification of the kinds of errors that tend to creep into
C++ programs. I show the value of catching errors during compilation instead of test-
ing, and offer basic principles to keep in mind when pursuing the specific techniques
to prevent or catch bugs discussed in later chapters.

CHAPTER 1

Where Do C++ Bugs Come From?

The C++ language is unique. While practically all programming languages borrow
ideas, syntax elements, and keywords from previously existing languages, C++ incor-
porates an entire other language—the programming language C. In fact, the creator of
C++, Bjarne Stroustrup, originally called his new language “C with classes.” This means
that if you already had some C code used for whatever purpose, from scientific research
to trading, and contemplated switching to an object-oriented language, you’d need not
to do any work of porting the code: you’d just install the new C++ compiler, and it
would compile your old C code and everything would work the same way. You might
even think that you’d completed a transition to C++. While this last thought would be
far from the truth—the code written in real C++ looks very different from the C code
—this still gives an option of a gradual transition. That is, you could start with existing
C code that still compiles and runs, and gradually introduce some pieces of new code
written in C++, mixing them as much as you want and eventually switching to pure C
++. So the layered design of C++ was an ingenious marketing move.

However, it also had some implications: while the whole syntax of C was grandfathered
into the new language, so was the philosophy and the problems. The C programming
language was created by Dennis Ritchie at Bell Labs around 1969-1973 for the purpose
of writing the Unix operating system. The goal was to combine the power of a high-
level programming language (as opposed to writing each computer instruction in an
assembler) with efficiency: that is, the produced compiled code should be as fast as
possible. One of the declared principles of the new C language was that the user should
not pay any penalty for the features he does not use. So, in pursuit of efficient compiled
code, C did not do anything it was not explicitly asked to do by the programmer. It
was built for speed, not for comfort. And this created several problems.

First, a programmer could create an array of some length and then access an element
using an index outside the bounds of the array. Even more prone to abuse was that C
used pointer arithmetic, where one could calculate any value whatsoever, use it as a
memory address, and access that piece of memory no matter whether it was created by
the program for this purpose or not. (Actually, these two problems are one and the
same—just using different syntax).

3

A programmer could also allocate memory at runtime using the calloc() or malloc()
functions and was responsible for deallocating it using the free() function. However,
if he forgot to deallocate it or accidentally did it more than once, the results could be
catastrophic.

We will go though each of these problems in more detail in Part II. The important thing
to note is that while C++ inherited the whole of C with its philosophy of efficiency, it
inherited all its problems as well. So part of the answer to the question of where the
bugs come from is “from C.”

However, this is not the end of the story. In addition to the problems inherited from
C, C++ introduced a few of its own. For instance, most people count friend functions
and multiple inheritance as bad ideas. And C++ has its own method of allocating
memory: instead of calling functions like calloc() or malloc(), one should use the
operator new. The new operator does more then just allocating memory; it creates ob-
jects, i.e., calls their constructors. And in the same spirit as C, the deallocation of this
memory using the delete operator is the responsibility of the programmer. So far the
situation seems to be analogous to the one in C: you allocate memory, and then you
delete it. However, the complication is that there are two different new operators in C
++:

MyClass* p_object = new MyClass(); // Create one object
MyClass* p_array = new MyClass[number_of_elements]; // Create an array

In the first case, new creates one object of type MyClass, and in the second, it creates an
array of objects of the same type. Correspondingly, there are two different delete oper-
ators:

delete p_object;
delete [] p_array;

And of course, once you’ve used “new with brackets” to create objects, you need to
use “delete with brackets” to delete them. So a new type of mistake is possible: the
cross-use of new and delete, one with brackets and another without. If you mess up
here, you can wreak havoc on the memory heap. So to summarize, the bugs in C++
mostly came from C, but C++ added this new method for programmers to shoot them-
selves in the foot, and we’ll discuss it in Part II.

4 | Chapter 1: Where Do C++ Bugs Come From?

CHAPTER 2

When to Catch a Bug

Why the Compiler Is Your Best Place to Catch Bugs
Given the choice of catching bugs at compile time vs. catching bugs at runtime, the
short answer is that you want to catch bugs at compile time if at all possible. There are
multiple reasons for this. First, if a bug is detected by the compiler, you will receive a
message in plain English saying exactly where, in which file and at which line, the error
has occurred. (I may be slightly optimistic here, because in some cases—especially
when STL is involved—compilers produce error messages so cryptic that it takes an
effort to figure out what exactly the compiler is unhappy about. But compilers are
getting better all the time, and most of the time they are pretty clear about what the
problem is.)

Another reason is that a complete compilation (with a final link) covers all the code in
the program, and if the compiler returns with no errors or warnings, you can be 100%
sure that there are no errors that could be detected at compile time in your program.
You could never say the same thing about run-time testing; with a large enough piece
of code, it is difficult to guarantee that all the possible branches were tested, that every
line of code was executed at least once.

And even if you could guarantee that, it wouldn’t be enough—the same piece of code
could work correctly with one set of inputs and incorrectly with another, so with run-
time testing you are never completely sure that you have tested everything.

And finally, there is the time factor: you compile before you run your code, so if you
catch your error during compilation, you’ve saved some time. Some runtime errors
appear late in the program, so it might take minutes or even hours of running to get to
an error. Moreover, the error might not be even reproducible—it could appear and
disappear at consecutive runs in a seemingly random manner. Compared to all that,
catching errors at compile time seems like child’s play!

5

How to Catch Bugs in the Compiler
By now you should be convinced that whenever possible, it’s best to catch errors at
compile time. But how can we achieve this? Let’s look at a couple of examples.

The first is the story of a Variant class. Once upon a time, a software company was
writing an Excel plug-in. This is a file that, after being opened by Microsoft Excel, adds
some new functions that could be called from an Excel cell. Because the Excel cell can
contain data of different types—an integer (e.g., 1), a floating-point number (e.g.,
3.1415926535), a calendar date (such as 1/1/2000), or even a string (“This is the house
that Jack built”)—the company developed a Variant class that behaved like a chame-
leon and could contain any of these data types. But then someone had the idea that
a Variant could contain another Variant, and even a vector of Variants (i.e., std::
vector<Variant>). And these Variants started being used not just to communicate with
Excel, but also in internal code. So when looking at the function signature:

Variant SomeFunction(const Variant& input);

it became totally impossible to understand what kind of data the function expects on
input and what kind of data it returns. So if for example it expects a calendar date and
you pass it a string that does not resemble a date, this can be detected only at runtime.
As we’ve just discussed, finding errors at compile time is preferable, so this approach
prevents us from using the compiler to catch bugs early using type safety. The solution
to this problem will be discussed below, but the short answer is that you should use
separate C++ classes to represent different data types.

The preceding example is real but somewhat extreme. Here is a more typical situation.
Suppose we are processing some financial data, such as the price of a stock, and we
accompany each value with the correspondent time stamp, i.e., the date and time when
this price was observed. So how do we measure time? The simplest solution is to count
seconds since some time in the past (say, since 1/1/1970).

Suddenly someone realizes that the library used for this purpose provides a 32-bit in-
teger, which has a maximum value of about 2 billion, after which the value will overflow
and become negative. This would happen about 68 years after the starting point on the
time axis, i.e., in the year 2038. The resulting problem is analogous to the famous “Y2K”
problem, and fixing it would entail going through a rather large number of files and
finding all these variables and making them int64, which has 64 bits instead of 32, and
this would last about 4 billion times longer, which should be enough even for the most
outrageous optimist.

But by now another problem has turned up: some programmers used int64 num_of_
seconds, while others used int64_num_of_millisec, while still others wrote int64
num_of_microsec. The compiler has absolutely no way of figuring out if a function that
expects time in milliseconds is being passed time in microseconds or vice versa. Of
course, if we make some assumptions that the time interval in which we want to analyze
our stock prices starts after, say, year 1990 and goes until some point in the future, say

6 | Chapter 2: When to Catch a Bug

year 3000, then we can add a sanity check at runtime that the value being passed must
fall into this interval. However, multiple functions need to be equipped with this sanity
check, which requires a lot of human work. And what if someone later decides to go
back and analyze the stock prices throughout the 20th century?

The Proper Way to Handle Types
Now, this entire mess could have been easily avoided altogether if we had just created
a Time class and left the details of when it starts and what unit it measures (seconds,
milliseconds, etc.) as hidden details of the internal implementation. One advantage of
this approach is that if we mistakenly try to pass some other data type instead of time
(which now has a Time type), a compiler would have caught it early. Another advantage
is that if the Time class is currently implemented using milliseconds and we later decide
to increase the accuracy to microseconds, we need only edit one class, where we can
change this detail of internal implementation without affecting the rest of the code.

So how do we catch these types of errors at compile time instead of runtime? We can
start by having a separate class for each type of data. Let’s use int for integers, double
for floating-point data, std::string for text, Date for calendar dates, Time for time, and
so on for all the other types of data. But simply doing this is not enough. Suppose we
have two classes, Apple and Orange, and a function that expects an input of a type Orange:

void DoSomethingWithOrange(const Orange& orange);

However, we accidentally could provide an object of type Apple instead:

Apple an_apple(some_inputs);
DoSomethingWithOrange(an_apple);

This might compile under some circumstances, because the C++ compiler is trying to
do us a favor and will silently convert Apple to Orange if it can. This can happen in two
ways:

1. If the Orange class has a constructor taking only one argument of type Apple

2. If the Apple class has an operator that converts it to Orange

The first case happens when the class Orange looks like this:

class Orange {
 public:
 Orange(const Apple& apple);
 // more code
};

It can even look like this:

class Orange {
 public:
 Orange(const Apple& apple, const Banana* p_banana=0);
 // more code
};

The Proper Way to Handle Types | 7

Even though in the last example the constructor looks like it has two inputs, it can be
called with only one argument, so it can also serve to implicitly convert Apple into
Orange. The solution to this problem is to declare these constructors with keyword
explicit. This prevents the compiler from doing an automatic (implicit) conversion,
so we force the programmer to use Orange where Orange is expected:

class Orange {
 public:
 explicit Orange(const Apple& apple);
 // more code
};

and correspondingly in the second case:

class Orange {
 public:
 explicit Orange(const Apple& apple, const Banana* p_banana=0);
 // more code
};

Another method that lets the compiler know how to convert an Apple into an Orange is
to provide a conversion operator:

class Apple {
 public:
 // constructors and other code …
 operator Orange () const;
};

The very presence of this operator suggests that the programmer made an explicit effort
to provide the compiler with a way to convert Apple into Orange, and therefore it might
not be a mistake. However, the absence of the keyword explicit in front of the con-
structor could easily be a mistake, so it’s advisable to declare all constructors that could
be called with one argument with keyword explicit. In general, any possibility of im-
plicit conversions is a bad idea, so if you want to provide a way of converting Apple into
Orange inside the class Apple, as in the previous example, the better way of doing so is:

class Apple {
 public:
 // constructors and other code …
 Orange AsOrange() const;
};

In this case, in order to convert an Apple into an Orange you would need to write:

 Apple apple(some_inputs);
 DoSomethingWithOrange(apple.AsOrange()); // explicit conversion

There is one more way to mix up different data types: by using enum. Consider the
following example: suppose we defined the following two enums for days of the week
and for months:

enum { SUN, MON, TUE, WED, THU, FRI, SAT };
enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

8 | Chapter 2: When to Catch a Bug

All of these constants are actually integers (e.g., C built-in type int), and if we have a
function that expects as an input a day of the week:

void FunctionExpectingDayOfWeek(int day_of_week);

the following call will compile without any warnings:

FunctionExpectingDayOfWeek(JAN);

And there is not much we can do at run time because both JAN and MON are integers
equal to 1. The way to catch this bug is not to use “plain vanilla” enums that create
integers, but to use enums to create new types:

typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeek;
typedef enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC } Month;

In this case, the function expecting a day of week should be declared like this:

void FunctionExpectingDayOfWeek(DayOfWeek day_of_week);

An attempt to call it with a Month like this:

FunctionExpectingDayOfWeek(JAN);

results in a compilation error:

error: cannot convert 'Month' to 'DayOfWeek' for
 argument '1' to 'void
 FunctionExpectingDayOfWeek(DayOfWeek)'

which is exactly what we would want in this case.

This approach has a downside, however. In the case when enum creates integer con-
stants, you can write a code like this:

for(int month=JAN; month<=DEC; ++month)
 cout << "Month = " << month << endl;

But when the enum is used to create a new type, the following:

for(Month month=JAN; month<=DEC; ++month)
 cout << "Month = " << month << endl;

does not compile. So if you need to iterate through the values of your enum, you are
stuck with integers.

Of course, there are exceptions to any rule, and sometimes programmers will have
reasons to write classes such as Variant for the specific purpose of allowing implicit
conversions. However, most of the time it is a good idea to avoid implicit conversions
altogether: this allows you to use the full power of the compiler to check types of dif-
ferent variables to catch our potential errors early—at compile time.

Now suppose that we’ve done everything we can to use type safety to the fullest extent
possible. Unfortunately, with the exceptions of types bool and char, the number of
different values that each type can contain is astronomically high, and usually only a
small portion of these values makes sense. For instance, if we use the type double for
the price of a stock, we can be reasonably sure that the value will be between 0 and

The Proper Way to Handle Types | 9

10,000 (with the sole exception of the stock of the Berkshire Hathaway company, whose
owner Warren Buffet apparently does not believe that it is a good idea to keep the stock
price within a reasonable range and has therefore never split the stock, which at the
time of this writing is above $100,000 per share). Still, even Berkshire Hathaway uses
only a small portion of the range of a double precision number, which can be as large
as 10308 and can also be negative, which does not make sense for a stock price. Since
for most types only a small portion of all possible values makes sense, there will always
be errors that can be diagnosed only at runtime.

In fact, most of the problems of the C language, such as specifying an index out of
bounds or accessing memory improperly through pointer arithmetic, can be diagnosed
only at runtime. For this reason, the rest of this book is dedicated mainly to the dis-
cussion of catching runtime errors.

Rules for this chapter for diagnosing errors at compile time:

• Prohibit implicit type conversions: declare constructors taking one parameter with
the keyword explicit and avoid conversion operators.

• Use different classes for different data types.

• Do not use enums to create int constants; use them to create new types.

10 | Chapter 2: When to Catch a Bug

CHAPTER 3

What to Do When We Encounter an
Error at Runtime

There are two types of runtime errors: those that are the result of programmer error
(that is, bugs) and those that would happen even if the code were absolutely correct.
An example of the second type occurs when a user mistypes a username or password.
Other examples occur when the program needs to open a file, but the file is missing or
the program doesn’t have permission to open it, or the program tries to access the
Internet but the connection doesn’t work. In short, even if the program is perfect, things
such as wrong inputs and hardware issues can produce problems.

In this book we concentrate on catching run-time errors of the first type, a.k.a. bugs.
A piece of code written for the specific purpose of catching bugs will be called a sanity
check. When a sanity check fails, i.e., a bug is discovered, this should do two things:

1. Provide as much information as possible about the error, i.e., where it has occurred
and why, including all values of the relevant variables.

2. Take an appropriate action.

What is an appropriate action? We’ll discuss this later in more detail, but the shortest
answer is to terminate the program. First, let’s concentrate on the information about
the bug, called the error message. To diagnose a bug we provide a macro defined in
the scpp_assert.hpp file:

#define SCPP_ASSERT(condition, msg) \
 if(!(condition)) { \
 std::ostringstream s; \
 s << msg; \
 SCPP_AssertErrorHandler(\
 __FILE__, __LINE__, s.str().c_str());\
 }

SCPP_AssertErrorHandler is the function declared in the same file. (As it was mentioned
earlier, the code of all C++ files cited in this book is available both in the Appendices
and online at https://github.com/vladimir-kushnir/SafeCPlusPlus.)

11

https://github.com/vladimir-kushnir/SafeCPlusPlus

First, let’s see how it works. Suppose you have the following code in the my_test.cpp file:

#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
 cout << "Hello, SCPP_ASSERT" << endl;

 double stock_price = 100.0; // Reasonable price
 SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
 "Stock price " << stock_price << " is out of range");

 stock_price = -1.0; // Not a reasonable value
 SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
 "Stock price " << stock_price << " is out of range");

 return 0;
}

Compiling and running the example will produce the following output:

Hello, SCPP_ASSERT Stock price -1 is out of range in file
 my_test.cpp #16

The macro automatically provides the filename and line number where the error oc-
curred. What’s going on in here? The macro SCPP_ASSERT takes two parameters: a con-
dition and an error message. If the condition is true, nothing happens, and the code
execution continues. If the condition is false, the message gets streamed into an
ostringstream object, and the function SCPP_AssertErrorHandler() is called. Why do
we need to stream the message into the ostringstream object? Why can’t we just pass
the message to the error handler function directly?

The reason is that this intermediate step allows us not just to use simple error messages
like this:

SCPP_ASSERT(index < array.size(), "Index is out of bounds.");

but to compose a meaningful error message that contains much more information about
an error:

SCPP_ASSERT(index < array.size(),
 "Index " << index << " is out of bounds " << array.size());

In this macro you can use any objects of any class that has a << operator. Suppose you
have a class:

class MyClass {
 public:
 // Returns true if the object is in OK state.
 bool IsValid() const;

 // Allow this function access to the private data of this class
 friend std::ostream& operator <<(std::ostream& os, const MyClass& obj);
};

12 | Chapter 3: What to Do When We Encounter an Error at Runtime

All you need to do is provide an operator << as follows:

inline std::ostream& operator <<(std::ostream& os, const MyClass& obj) {
 // Do something in here to show the state of the object in
 // a human-readable form.
 return os;
}

and you can use an object of the type MyClass to compose a message:

MyClass obj(some_inputs);
SCPP_ASSERT(obj.IsValid(), "Object " << obj << " is invalid.");

Thus, if you run your program and the sanity check detects an error, chances are that
you won’t need to repeat the process in the debugger to figure out what exactly hap-
pened and why. But doing this sanity check might slow down your program, and the
reason we’re using C++ is we want our code to run as fast as possible. And indeed,
sanity checks do slow down the code, some of them significantly (as we’ll see later when
dealing with the Index Out Of Bounds error in Chapter 4). To deal with this problem,
some of the sanity checks are made temporary—for testing only. For this purpose, the
scpp_assert.hpp file defines a second macro, SCPP_TEST_ASSERT:

#ifdef SCPP_TEST_ASSERT_ON
#define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
#define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif

The difference between this SCPP_TEST_ASSERT and the previous SCPP_ASSERT is that
SCPP_ASSERT is a permanent sanity check, whereas SCPP_TEST_ASSERT can be switched
on and off during compilation (more about this in Chapter 15). Now let’s return to the
second question of what to do when a bug is discovered at runtime: what is the
appropriate action in this case? Actually, there are only two choices:

1. Terminate the program.

2. Throw an exception.

The code of the error handler function provided in the scpp_assert.cpp file gives you
both opportunities:

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file
 // if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(
 file_name, line_number, message);
#else
 cerr << message << " in file " << file_name
 << " #" << line_number << endl << flush;
 // Terminate application

What to Do When We Encounter an Error at Runtime | 13

 exit(1);
#endif
}

As you can see from the code of the error handler, it could do either of the two possible
actions, depending on whether the symbol SCPP_THROW_EXCEPTION_ON_BUG is defined. In
the most common case, when you want to test your code until you find the first bug,
the simplest action by default is to terminate the program, fix the bug, and start over,
which is achieved when the symbol SCPP_THROW_EXCEPTION_ON_BUG is not defined. In this
case the error handler will print the message and terminate the application.

There are some situations when at least some of the sanity checks are left active in the
code even in production mode. Suppose you have a program that does continuous
sequential processing of a large number of requests, one after another, and while pro-
cessing one of the requests it ran into a bug, i.e., the sanity check failed. It might so
happen that the program could continue to process some of (and maybe even most of)
the other requests. In some situations it might be important to continue to process these
requests as much as possible—because it’ll keep clients happy, because there’s a serious
amount of money involved, etc. In such cases, terminating the program on a failure of
a sanity check is not an option. The way to proceed in these situations is to throw an
exception containing a description of what happened from the error handler, catch it
somewhere in the top level of the code, document it in some log file, maybe send some
email or pager alerts, declare the current attempt to process the request a failure, and
at the same time continue with all the others.

To illustrate this, an exception class that is declared in the same scpp_assert.hpp file:

namespace scpp {
class ScppAssertFailedException : public std::exception {
 public:
 ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message);

 virtual const char* what() const throw () {
 return what_.c_str();
 }

 virtual ~ScppAssertFailedException() throw () {}

 private:
 std::string what_;
};
} // namespace scpp

If you are strict about exception types, you can pass to the error handler an enum con-
taining information about error type, and throw different types of exceptions for dif-
ferent types of errors. But this book demonstrates a general approach to writing code
with the explicit goal of self-diagnosing bugs, so we’ll stick with the simplest possible

14 | Chapter 3: What to Do When We Encounter an Error at Runtime

case of one exception class. In this case, the code example that would trigger the sanity
check would look like this:

#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
 cout << "Hello, SCPP_ASSERT" << endl;

 try {
 double stock_price = 100.0; // Reasonable price
 SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
 "Stock price " << stock_price << " is out of range.");

 stock_price = -1.; // Not a reasonable value
 SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
 "Stock price " << stock_price << " is out of range.");

 } catch (const exception& ex) {
 cerr << "Exception caught in " << __FILE__ << " #" << __LINE__ << ":\n"
 << ex.what() << endl;
 }

 return 0;
}

Running this example leads to the following output:

Hello, SCPP_ASSERT Exception caught in
 scpp_assert_exception_test.cpp #20: SCPP assertion failed with message
 'Stock price -1 is out of range.' in file scpp_assert_exception_test.cpp
 #17.

Note that here we also receive additional information—not only where the error has
occurred but also where it was caught, which could be a useful hint when trying to
figure out what exactly happened before involving a debugger.

Another question is why we need to call a SCPP_AssertErrorHandler function located
in a separate scpp_assert.cpp file instead of doing the same thing inside the macro in
the scpp_assert.hpp file. The short answer is that debuggers usually prefer to step
through the functions as opposted to stepping through macros. We’ll return to this
subject in Chapter 15.

Now we have two macros: one to use in production and one for testing only. When
should you use each one? As the author of your program, only you can answer this
question. Typically, you should have a feeling for how often the function that will
contain a sanity check called, how long it takes to execute, and how long the evaluation
of the sanity check will take as compared to the execution of the function itself.

If you know that the function is called rarely or maybe even just once for initialization
purposes, and the sanity checks are cheap, then go ahead and use the permanent macro.

What to Do When We Encounter an Error at Runtime | 15

You might be glad you did when a problem is reported from the field. In other cases,
use the temporary macro.

Note that when evaluating how long the sanity check takes, all that matters is how long
it takes to evaluate the Boolean condition. How long it takes to compose a message is
not relevant: if you get to that stage, you are in no rush at all.

Different sanity checks slow down your program to different extents. One of the worst
in this regard, the index-out-of-bounds sanity check, will be discussed in Chapter 4. So
you might add some more granularity to this process and define different macros for
different types of bugs, if some of them are slowing testing too much. Feel free to
experiment with what works best for your code.

We now have macros that allow us to write sanity checks easily and still compose a
meaningful error message. When do we write them? If you think: “I will write my code
and then return and add sanity checks,” chances are it will never happen. Also, while
you are writing your code, the picture of what is going on in it and which conditions
should be true or false is in the freshest possible state in your brain. So the answer is to
write sanity checks while you are writing the code. Any time you can think of any
condition you can check for—write a sanity check for it. Even better, when you start
writing a new function, start with writing sanity checks for all inputs before you write
anything else.

“But this is a lot of additional work!” you might think. True, but as we’ve seen, writing
sanity checks is not difficult, and more importantly it will pay off later at the testing
stage. It is much easier to write sanity checks while you have a mental picture of the
algorithm in your head than have to go back and debug the code later.

In Part II, we’ll consider some of the most common mistakes in C++ code and learn
how to deal with them—one at a time.

16 | Chapter 3: What to Do When We Encounter an Error at Runtime

PART II

Bug Hunting: One Bug at a Time

This section gives detailed advice, along with directions for using the Safe C++ library
I created, for catching particular bugs before your code goes out in production.

CHAPTER 4

Index Out of Bounds

There are several ways in C++ to create an array of objects of some type T. Three
common methods are:

#define N 10 // array size N is known at compile time
 T static_array[N];

 int n = 20; // array size n is calculated at runtime
 T* dynamic_array = new T[n];

 std::vector<T> vector_array; // array size can be changed at runtime

Of course, you can still use the calloc() and malloc() functions and your program will
compile and run, but it’s not a good idea to mix C and C++ unless you have to because
you’re relying on legacy C libraries. However you allocate the array, you can access an
element in it using an unsigned integer index:

const T& element_of_static_array = static_array[index];
const T& element_of_dynamic_array = dynamic_array[index];
const T& element_of_vector_array = vector_array[index];

Let’s deal with dynamic arrays and vectors first, and return to the static array later in
this chapter.

Dynamic Arrays
What would happen if we provide an index value that is larger than or equal to the
array size? In all three of the preceding examples, the code will silently return garbage.
(The exception to this rule for Microsoft Visual Studio 2010 is discussed later.) The
situation is even worse if you decide to use the operator [] in the left-hand side of an
assignment:

some_array[index] = x;

19

Depending on your luck (or lack of thereof) you might overwrite some other unrelated
variable, an element of another array, or even a program instruction, and in the latter
case your program will most likely crash. Each of these errors also provides opportu-
nities for malicious intruders to take over your program and turn it to bad ends. How-
ever, the std::vector provides an at(index) function, which does bounds checking by
throwing an out_of_range exception. The problem with this is that if you want to do
this sanity check, you have to rigorously use the at() function everywhere for accessing
an array element. And naturally, this slows your code down, so once you are done
testing, you’ll want to replace it everywhere with the [] operator, which is faster. But
doing that replacement requires massive editing of your code, which is a lot of work,
followed by a need to retest it, because during that tedious process you could acciden-
tally mistype something.

So instead of the at() function, I suggest the following. Although a dynamic array leaves
the [] operator totally out of your control, the STL vector implements it as a C++
function that we can rewrite according to our bug-hunting goals. And that’s what we’ll
do here. In the file scpp_vector.hpp we redefine the [] operators as follows:

T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>:: operator[](index);
}

const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);
}

Let’s see how this works. Here is an example of how to use it (including—intentionally
—how not to use it):

#include <iostream>
#include "scpp_vector.hpp"

using namespace std;

int main() {
 scpp::vector<int> vect;
 for(int i=0; i<3; ++i)
 vect.push_back(i);

 cout << "My vector = " << vect << endl;

 for(int i=0; i<=vect.size(); ++i)
 cout << "Value of vector at " << i << " is " << vect[i] << endl;

 return 0;
}

20 | Chapter 4: Index Out of Bounds

First, note that instead of writing std::vector<int> or just vector<int> we wrote
scpp::vector<int>. This is to distinguish our vector from the STL’s vector. By using
our scpp::vector we replace the standard implementation—in this case, the imple-
mentation of operator []—by our own safe implementation, and you will see the same
approach to preventing other bugs later in this book. scpp::vector also gives you a
<< operator for free, so you can print your vector as long as it is not too big, and as long
as the type T defines the << operator.

The next thing to notice is that in the second loop, instead of writing i<vect.size() we
wrote i<=vect.size(). This is a very common programming error, and we did it just to
see what happens when the index is out of bounds. Indeed, the program produces the
following output:

My vector = 0 1 2

 Value of vector at 0 is 0

 Value of vector at 1 is 1 Value of vector at 2 is 2

 Index 3 must be less than 3 in file scpp_vector.hpp
 #17

This sanity check works as long as the symbol SCPP_TEST_ASSERT_ON is defined, and is
easy to switch on and off at compile time when necessary. The problem with this ap-
proach is that the vector’s [] operator is very often used inside loops, so this sanity
check is used a lot and therefore slows the program down significantly just as using
at() would. If you feel that this is becoming a problem in your program, feel free to
define a new macro, such as SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS, which would
work exactly the same way as SCPP_TEST_ASSERT but would be used only inside
scpp::vector::operator[]. SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS should differ from
SCPP_TEST_ASSERT only by the fact that it can be switched on and off independently of
the SCPP_TEST_ASSERT macro, so you can deactivate it after you are sure that your code
does not have this bug while keeping the rest of your sanity checks active.

In addition to allowing you to catch this index-out-of-bounds error, the template vector
has one advantage over statically and dynamically allocated arrays: its size grows as
needed (as long as you don’t run out of memory). However, this advantage comes at a
cost. The vector, if not told in advance how much memory will be needed, allocates
some default amount (called its “capacity”). When the actual size reaches this capacity,
the vector will allocate a bigger chunk of memory, copy old data into the new memory
area, and release the old chunk of memory. So from time to time, adding a new element
to a template vector could suddenly become slow. Therefore, if you know in advance
what number of elements you will need, as with both static and dynamically allocated
arrays, tell the vector up front, for instance, in the constructor:

scpp::vector<int> vect(n);

Dynamic Arrays | 21

This creates a vector with a specified number of elements in it. You could also write:

scpp::vector<int> vect(n, 0);

which would also initialize all elements to a specified value (in this case zero, but any
other value will work too).

An alternative is to create a vector with zero elements in it but to specify the desired
capacity:

scpp::vector<int> vect;
vect.reserve(n);

The difference between this example and the previous one is that in this case the vector
is empty (i.e., vect.size() returns 0), but when you start adding elements to it, you
will not run into the incrementing capacity procedure with the corresponding slow-
down until you reach the size of n.

Can We Derive from std::vector?
At this point you may have looked at the definition of the scpp::vector in the scpp_
vector.hpp file:

namespace scpp {
template <typename T>
class vector : public std::vector<T> {

You may have asked yourself whether it is a good idea to derive a class from a base class
that does not have a virtual destructor. Indeed, if we have the following situation:

class Base {
 // not virtual !!!
 ~Base();
};

class Derived : public Base {
 // also not virtual !!!
 ~Derived() {
 // some non-trivial code releasing resources
 }
}

and we use these classes like this:

Base* p = new Derived;
// some code using p
delete p;

the delete statement will actually call the destructor of the base class ~Base() and none
of the code of the ~Derived() destructor will be executed, thus leading to unreleased
resources such as memory leaks, etc. The same situation will occur even if we did not
write any non-trivial code in the ~Derived() destructor, but added to the derived class
some new data members that do have non-trivial destructors, such as containers or
smart pointers. Even though we do not write the ~Derived() code ourselves, the com-
piler will do it for us, calling all the destructors of the added data members. In the

22 | Chapter 4: Index Out of Bounds

example just shown, this ~Derived() destructor will not be called, which represents a
problem. However, in our concrete example of scpp::vector, the situation is different:

• We do not expect these two classes to be used in the manner of std::vector*
p_vect = new scpp::vector. scpp::vector must be used as a plain vector, as if it
was never derived from anything.

• We did not add any data members to scpp::vector, and its destructor does not do
any work except to call the destructor of the base class. Even if we did something
like what is described in the previous example with Base and Derived, in this par-
ticular case nothing bad will happened.

• If this violation of C++ purity still bothers you, you could use composition instead
of derivation, e.g., write a scpp::vector that contains std::vector as a private data
member, and wrap each of its methods in the corresponding method of the derived
class, which is a lot of coding but would produce the same results as my imple-
mentation.

There is one more consequence of this derivation: if you have any function that expects
std::vector, you can still pass to it scpp::vector, which is being publicly derived from
the former, and therefore is a std::vector. Here is an example:

void FunctionTakingRefToSTLVector(const std::vector<int>& v) {
 cout << "ATTENTION, we are about to test index-out-of-bounds "
 << "for STL vector reference to scpp::vector" << endl << flush;

 for(int i=0; i<=v.size(); ++i)
 cout << "Value of vector at " << i << " is " << v[i] << endl;
}

int main() {
 scpp::vector<int> v;
 for(int i=0; i<3; ++i)
 v.push_back(i);
 cout << "Initial vector: " << v << endl;

 FunctionTakingRefToSTLVector(v);
}

The vector created here has three elements, and the FunctionTakingRefToSTLVector()
function tries to access an element with index 3, which is out of bounds. This code
produces the following output:

ATTENTION, we are about to test index-out-of-bounds for
 STL vector reference to scpp::vector

 Value of vector at 0 is 0

 Value of vector at 1 is 1

 Value of vector at 2 is 2

 Value of vector at 3 is 1

Dynamic Arrays | 23

Note that the code happily prints the value at the index 3, even though the maximum
valid index is 2, which means that our sanity check did not work inside Function
TakingRefToSTLVector(). The reason is that the function uses the original [] operator
of std::vector because the version used is determined by the type of the reference to
the vector, which in this case comes from the declaration in the function’s argument
list, const std::vector<int>&. The [] operator was never declared as virtual, and we
couldn’t do so if we wanted to because the declaration is in the code of the STL vector.
Declaring it virtual would not be a good idea anyway because it would slow it down.
So this is a risk of our approach. To make it work, you must be careful to use scpp::
vector everywhere you want the sanity check to be active.

On the other hand, if you have a function taking std::vector <T>& and you trust that
this function has already been tested, you can keep the original signature taking
std::vector <T>& and it will run faster. At the same time, outside of this function you
will be taking full advantage of checking for index-out-of bounds errors in the rest of
the code.

Static Arrays
Now, as promised, let’s deal with the static array:

#define N 10 // array size N is known at compile time
 T static_array[N];

Here, the size is known at compile time and will not change. Of course, to use the safe
array with its boundary check, you can use a template vector with the size specified in
a constructor:

scpp::vector vect(N);

This will work exactly the same as the static array, but the problem here is efficiency.
While the static array allocates its memory on stack, the template vector allocates
memory inside the constructor using the new operator, and this is a relatively slow
operation. If runtime efficiency is important in your case, it’s better to use a template
array, defined as follows in the scpp_array.hpp file:

namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 array() {}

 explicit array(const T& initial_value) {
 for(size_type i=0; i<size(); ++i)
 data_[i] = initial_value;

24 | Chapter 4: Index Out of Bounds

 }

 size_type size() const { return N; }

 // Note: we do not provide a copy constructor and assignment operator.
 // We rely on the default versions of these methods generated by the compiler.

 T& operator[] (size_type index) {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 // Accessors emulating iterators:
 T* begin() { return &data_[0]; }
 const T* begin()const { return &data_[0]; }

 // Returns an iterator PAST the end of the array.
 T* end() { return &data_[N]; }
 const T* end()const { return &data_[N]; }

 private:
 T data_[N];
};
} // namespace scpp

This array behaves exactly like a static C array. However, when compiled with the sanity
check macro SCPP_TEST_ASSERT active, it provides an index-out-of-bounds check. The
begin() and end() methods are provided to simulate iterators, so that you can use this
array in some of the situations where you would have used the template vectors—for
example, to sort numbers. The following code demonstrates how to sort this array using
STL’s sort algorithm:

#include <algorithm>

 scpp::array<int, 5> a(0);
 a[0] = 7;
 a[1] = 2;
 a[2] = 3;
 a[3] = 9;
 a[4] = 0;

 cout << "Array before sort: " << a << endl;
 sort(a.begin(), a.end());
 cout << "Array after sort: " << a <<
 endl;

Static Arrays | 25

This produces the following output:

Array before sort: 7 2 3 9 0

Array after sort: 0 2 3 7 9

As a side benefit, you also get a << operator, which allows you to stream an array as
shown in the previous example, assuming it is not too large and the template type T
has a << operator. Of course, the use of this fixed-sized array must be limited to cases
where the array size N is not too large. Otherwise, you’ll be spending your stack memory,
a limited resource, on this array.

So the advice in this section is not to use static or dynamically allocated arrays, but a
template vector or array instead. This solves another problem described in Chapter 1:
when you use the new operator with brackets, you need to use the delete operator with
brackets as well. If you cross-use these operators (new with brackets and delete without
or vice versa) you will corrupt the memory heap, which generally leads to bad conse-
quences. Once we decide not to use dynamically allocated arrays, which are created
through the new operator with brackets, we’ve killed two birds with one stone: the
problem of an index out of bounds, and the problem of mixing operators with and
without brackets. In short, do not use the new operator (and the corresponding
delete operator) with brackets. Your life will be easier.

At the time of this writing, the newest version of Microsoft Visual Studio
2010 Ultimate diagnoses the index-out-of-bounds error in std::
vector when compiled in a Debug mode, and pops up a dialog box
(Figure 4-1).

This dialog offers you the choice to Ignore, Abort, or Retry (in which
case you can debug the application). While “Ignore” seems appropriate
only if you are extremely adventurous, one can hope that the rest of the
compilers working under Unix, Linux, and Mac OS will catch up to the
trend.

Multidimensional Arrays
Now that we’ve settled on the use of a template vector or array as an implementation
of a linear array, let’s consider what to do if you need a two-dimensional matrix, a three-
dimensional array, or generally speaking, an n-dimensional array. Because all the issues
in the general case of n-dimensional arrays can be illustrated using a two-dimensional
matrix, we will limit our discussion to this case and call it simply a matrix, with the
understanding that the same principles apply to three or more dimensions.

If the size of the matrix is known at compile time, you can easily implement it as an
array of arrays, and be done with it. Therefore, we’ll concentrate on the more complex
case of a matrix whose size is calculated at run time. Such a matrix can easily be created

26 | Chapter 4: Index Out of Bounds

as a vector of vectors, and in fact this approach is the only one possible if different rows
must be of different lengths. However, most of the time all rows should be of the same
length (e.g., the matrix is rectangular or even quadratic), and in this case the approach
of using a vector of vectors is inefficient: it requires multiple memory allocations, which
is a relatively slow operation (and the same can be said about deallocation). Because
our goal in using C++ is efficiency, we’ll try a different approach and create a rectan-
gular matrix using only one memory allocation, as shown in the class matrix in the
scpp_matrix.hpp file:

// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
 public:
 typedef unsigned size_type;

 matrix(size_type num_rows, size_type num_cols)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

 matrix(size_type num_rows, size_type num_cols, const T& init_value)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

Figure 4-1. Microsoft Visual Studio “Index out of bounds” dialog box

Multidimensional Arrays | 27

 size_type num_rows() const { return rows_; }
 size_type num_cols() const { return cols_; }

 // Accessors: return element by row and column.
 T& operator() (size_type row, size_type col) {
 return data_[index(row, col)];
 }

 const T& operator() (size_type row, size_type col) const {
 return data_[index(row, col)];
 }

 private:
 size_type rows_, cols_;
 std::vector<T> data_;

 size_type index(size_type row, size_type col) const {
 SCPP_TEST_ASSERT(row < rows_, "Row " << row
 << " must be less than " << rows_);
 SCPP_TEST_ASSERT(col < cols_, "Column " << col
 << " must be less than " << cols_);
 return cols_ * row + col;
 }
};

First of all, there are two constructors. The first allows you to create a matrix with a
specified number of rows and columns. The second, with the additional init_value
argument, allows you also to initialize each element to a specified value (e.g., to set
each element of a matrix<double> to 0.0). Note that access to elements is provided via
the () operator, not []. This is because the [] operator in C++ takes only one argument,
never two or more. So to access a multidimensional array, we either need to use multiple
[] operators, such as my_matrix[i][j], or a single () operator, such as my_matrix(i,j).

The first approach could be achieved if we had the [] operator return a T* pointer to
the zeroth element of the i-th row. However, this denies us the diagnosis of a column
index out of bounds, which defeats the purpose of catching bugs at runtime. We could,
of course, create some template class that would include a smart reference to a row,
return an instance of it using the first operator ([i]), and then use the bounds check in
the second operator ([j]). To some degree, it is a matter of taste. I did not see the value
of resorting to this complex design just to preserve the my_matrix[i][j] syntax, and the
() operator with multiple arguments seems just fine.

The checks for an index out of bounds are performed inside the index(row, col) func-
tion, separately for row and column numbers, and in the case of a runtime error lead
to calls to an error handler that are familiar by now. Finally, at the end of the same file,
you will discover a << operator for a template matrix<T>. They are provided so you can
output your matrix like this:

cout << "my matrix =\n" << my_matrix << endl;

as long as the matrix is not too large and the type T defines the << operator.

28 | Chapter 4: Index Out of Bounds

Rules for this chapter to avoid “index out of bounds” errors:

• Do not use static or dynamically allocated arrays; use a template array or vector
instead.

• Do not use new and delete operators with brackets—leave it up to the template
vector to allocate multiple elements.

• Use scpp:vector instead of std::vector and scpp::array consistently instead of a
static array, and switch the sanity checks on.

• For a multidimensional array, use scpp::matrix and access elements through the
() operator to provide index-out-of-bounds checks.

Multidimensional Arrays | 29

CHAPTER 5

Pointer Arithmetic

The pointer arithmetic that C++ inherited from C allows you to calculate any value
whatsoever, use it as a pointer (to int, double, or any other type) and read from that
portion of memory—or even worse, write into it. Actually, pointer arithmetic is just
another syntax to access memory the way an index does in the array, and the conse-
quences are exactly the same, as discussed in Chapter 4. The difference is that, in case
of a vector accessed via an index, we can write our own [] operator with a sanity check,
whereas in pointer arithmetic we cannot.

Therefore, the advice here is very simple: do not use pointer arithmetic. There is nothing
you can do with it that you cannot do with a vector and an index. In fact, in Chap-
ter 6 we’ll see that sometimes indexes work where pointers don’t. So avoid pointer
arithmetic. It is evil.

Rule for this chapter to avoid errors in pointer arithmetic:

• Avoid pointer arithmetic. Use template vector or array with index instead.

31

CHAPTER 6

Invalid Pointers, References, and
Iterators

Consider the following code example:

vector<int> v;

// Add some elements
for(int i=0; i<10; ++i)
 v.push_back(i);

int* my_favorite_element_ptr = &v[3];
cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " << my_favorite_element_ptr << endl;

cout << "Adding more elements…"<< endl;

// Adding more elements
for(int i=0; i<100; ++i)
 v.push_back(i*10);

cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " << &v[3] << endl;

What’s going on here? We create a vector containing 10 elements, and for some reason
decide to save for later a pointer to element with index 3. Then we add more elements
to the vector and try to reuse the pointer we’ve acquired before. What is wrong with
this code? Let’s look at the output it produces:

My favorite element = 3 Its address = 0x1001000cc
Adding more elements
…
My favorite element = 3
Its address = 0x10010028c

Note that after we add more elements to the vector, the address of the element &v[3]
has changed! The problem is that when we add new elements to the vector, the existing
elements might move to a totally different location.

33

Here is how such code works. When we create a vector, it allocates by default some
number of elements (usually about 16). Then if we try to add more elements than the
capacity allows, the vector allocates a new, larger array, copies existing elements from
the old location to a new one, and continues to add new elements until the new capacity
is exceeded. The old memory is deallocated, and might be reused for other purposes.

Meanwhile, our pointer still points to the old location, which is now in the deallocated
memory. So what would happen if we continue to use it? If no one has reused that
memory yet, we might get “lucky” and not notice anything, as in the example above.
Even in this best-case scenario, though, if we write (assign a value) into that location,
it will not change the value of the element v[3] because it is already located elsewhere.

If we are less lucky and that memory was reused for some other purpose, the conse-
quences could be pretty bad, ranging from changing an unrelated variable that was
unlucky enough to occupy the same place, to a core dump.

The preceding example deals with a pointer. The exact same thing happens when you
do it using a reference; for example, instead of:

int* my_favorite_element_ptr = &v[3];

suppose one writes:

int& my_favorite_element_ref = v[3];

The result would be exactly the same. The reason is that the reference is just a
“dereferenced pointer.” It knows the address of a variable, but does not require an
asterisk in front of the variable to reach the memory to which it points. So the syntax
is different, but the result is the same.

And finally, the same thing is true when we use iterators. Consider the following
example:

 vector<int> v;

 for(int i=0; i<10; ++i)
 v.push_back(i);

 vector<int>::const_iterator old_begin = v.begin();

 cout << "Adding more elements … "<< endl;

 for(int i=0; i<100; ++i)
 v.push_back(i*10);

 vector<int>::const_iterator new_begin = v.begin();
 if(old_begin == new_begin)
 cout << "Begin-s are the same." << endl;
 else
 cout << "Begin-s are DIFFERENT." << endl;

As you have probably already guessed, the output of this program is:

34 | Chapter 6: Invalid Pointers, References, and Iterators

 Adding more elements ...

 Begin-s are DIFFERENT.

So if you were holding an iterator to some element (any element, not necessarily the
one to which begin() points), it might be invalid after changing the contents of the
vector because the internal array, and correspondingly the iterator begin(), might have
moved to some other place.

Therefore, any pointers, references, or iterators pointing to the elements of a vector
obtained before modifying the vector should not be used after one modifies the vector
by adding new elements. Actually, the same is true for almost all STL containers and
all operations modifying the size of the container, e.g., adding or removing elements.
Some containers, such as hash_set and hash_map, do not formally belong to the STL,
but they are STL-like, will probably be part of STL soon, and behave the same way as
STL containers in the situation discussed in here: the iterators become invalid after
modifying a container. And even if you are using an STL container that would preserve
the iterator to its element after the addition or removal of some other elements, the
whole spirit of the STL library is that one could replace one container with another and
the code should continue to work. So it is a good idea not to assume that the iterators
are still valid after any STL or STL-like container is modified.

Note that in the previous example we modified the container inside the same thread
we used to access the pointer. The same and even more problems could be created if
you hold a pointer, reference, or iterator in one thread while modifying the container
from another thread, but as mentioned in the Preface, the discussion of multithreading
is outside the scope of this book.

Interestingly, in the preceding example, the index would work where the pointer failed:
if you have marked your element by holding a zero-based index to it (in the first ex-
ample, something like int index_of_my_favorite_element = 3), the example would
continue to work correctly. Of course, using an index is slightly more expensive (slower)
than using a pointer because in order to access an element corresponding to this index,
a vector must do some arithmetic, i.e., calculate the address of the variable every time
you use the [] operator. The advantage is that it works. The disadvantage is that it
works only for vectors. For all other STL containers, once you’ve modified the con-
tainer, you must find the iterator pointing to the element you need again.

Rule for this chapter to avoid errors with invalid pointers, references, and iterators:

• Do not hold pointers, references, or iterators to the element of a container after
you’ve modified the container.

Invalid Pointers, References, and Iterators | 35

CHAPTER 7

Uninitialized Variables

Various errors can occur when adding variables to complex classes and using them as
arguments. This chapter shows you a simple way to avoid such errors.

Initialized Numbers (int, double, etc.)
Imagine that you have a class named MyClass with several constructors. Suppose you’ve
decided to add some new data member named int_data_ to the private section of this
class:

class MyClass {
 public:
 MyClass()
 : int_data_(0)
 {}

 explicit MyClass(const Apple& apple)
 : int_data_(0)
 {}

 MyClass(const string& some_text, double weight)
 : int_data_(0), some_text_(some_text)
 {}

 private:
 int int_data_;
 std::string some_text_;
};

When adding the new data member, you have a lot of work to do. Every time you add
a new data member of a built-in type, do not forget to initialize it in every constructor
like this: int_data_(0). But wait! If you read the Preface to this book, you probably
remember that we are not supposed to say “Every time you do A, don’t forget to do
B.” Indeed, this is an error-prone approach. If you forget to initialize this data member,
it will most likely fill with garbage that would depend on the previous history of the

37

computer and the application, and will create strange and hard-to-reproduce behavior.
So what should we do to prevent such problems?

Before we answer this question, let’s first discuss why it’s only relevant for built-in
types. Let’s take a look at the data member some_text_, which is of the type
std::string. When you add a data member some_text_ to the class MyClass, you do not
necessarily need to add its initialization to every constructor of MyClass, because if you
don’t do it, the default constructor of the std::string will be called for you automat-
ically by the compiler and will initialize the some_text_ to a reproducible state (in this
case, an empty string). But the built-in types do not have constructors—that’s the
problem. Therefore, the solution is simple: for class data members, do not use built-in
types, use classes:

• Instead of int, use Int

• Instead of unsigned, use Unsigned

• Instead of double, use Double

and so on. The complete source code of these classes can be found in Appendix F in
the file named scpp_types.hpp. Let’s take a look. The core of this code is the template
class TNumber:

template <typename T>
class TNumber {
 public:
 TNumber(const T& x=0)
 : data_(x)
 {}

 operator T () const { return data_; }

 TNumber& operator = (const T& x) {
 data_ = x;
 return *this;
 }

 // postfix operator x++
 TNumber operator ++ (int) {
 TNumber<T> copy(*this);
 ++data_;
 return copy;
 }

 // prefix operator ++x
 TNumber& operator ++ () {
 ++data_;
 return *this;
 }

 TNumber& operator += (T x) {
 data_ += x;
 return *this;
 }

38 | Chapter 7: Uninitialized Variables

 TNumber& operator -= (T x) {
 data_ -= x;
 return *this;
 }

 TNumber& operator *= (T x) {
 data_ *= x;
 return *this;
 }

 TNumber& operator /= (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 data_ /= x;
 return *this;
 }

 T operator / (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 return data_ / x;
 }

 private:
 T data_;
};

First of all, the constructor taking type T (where T is any built-in type, e.g., int, double,
float, etc.) is not declared with the keyword explicit. This is intentional. The next
function defined in the class is operator T (), which allows an implicit conversion of
an instance of this class back into its corresponding built-in type. This class is inten-
tionally designed to make it easy to convert the built-in types into it and back. It defines
several common operators that you would expect to use with a built-in numeric type.

And finally, here are the definitions of actual types we can use:

typedef TNumber<int> Int;
typedef TNumber<unsigned> Unsigned;
typedef TNumber<int64> Int64;
typedef TNumber<unsigned64> Unsigned64;
typedef TNumber<float> Float;
typedef TNumber<double> Double;
typedef TNumber<char> Char;

How do you use these new types, such as Int and Double, with names that look like
built-in types but start with uppercase letters? All these types work exactly the same
way as the corresponding built-in types with one difference: they each have a default
constructor, and it initializes them to zero. As a result, in the example of the class
MyClass you can write:

class MyClass{
 public:
 MyClass()
 {}

Initialized Numbers (int, double, etc.) | 39

 explicit MyClass(const Apple& apple)
 {}

 MyClass(const string& some_text, double weight)
 : some_text_(some_text)
 {}

 private:
 Int int_data_;
 std::string some_text_;
};

The variable int_data_ here is declared as Int, with an uppercase first letter, not int,
and as a result you don’t have to put an initialization of it in all the constructors. It will
be automatically initialized to zero.

Actually, there is one more difference: when you use built-in types, an attempt to divide
by zero can lead to different consequences depending on the compiler and OS. In our
case, for the sake of consistency, this runtime error will lead to a call to the same error
handler function as we’ve used for other errors, so that you can debug on error (see
Chapter 15).

Robust code should not refer to variables before initializing them, but
it is considered a good practice to have a safe value such as 0 instead of
garbage in an uninitialized variable in case the code does refer to it.

Uninitialized Boolean
But haven’t we forgotten one more built-in type specific to C++— type bool (i.e.,
Boolean)? No, it is just a special case, because for a Boolean we do not need operators
such as ++. Instead, we need specifically Boolean operators, such as &= and |=, so this
type is defined separately:

class Bool {
 public:
 Bool(bool x=false)
 : data_(x)
 {}

 operator bool () const { return data_; }

 Bool& operator = (bool x) {
 data_ = x;
 return *this;
 }

 Bool& operator &= (bool x) {
 data_ &= x;
 return *this;
 }

40 | Chapter 7: Uninitialized Variables

 Bool& operator |= (bool x) {
 data_ |= x;
 return *this;
 }

 private:
 bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
 if(b)
 os << "True";
 else
 os << "False";
 return os;
}

Again, as with the other classes wrapping built-in types, the type Bool (uppercase)
behaves exactly like bool (the original built-in type), with two exceptions:

• It is initialized to false.

• It has a << operator that prints False and True instead of 0 and 1, which leads to
much clearer, human-readable messages.

Why is it initialized to false, not to true? Maybe because the author is a pessimist, but
you can easily follow the pattern and create a new class like BoolOptimistic that is
initialized by default to true.

The only thing that we have yet to initialize is a pointer, which naturally should be
initialized by default to NULL. We’ll deal with this later in Chapter 9.

So far, the motivation for using classes Int, Unsigned, Double, etc., instead of the cor-
responding lowercase built-in types was that you can skip initialization in multiple
constructors. If you use them more widely, say, for passing arguments to the functions,
here is what will to happen. Suppose you have a function taking an unsigned (the built-
in one):

void SomeFunctionTaking_unsigned(unsigned u);

then the following will compile:

int i = 0;
SomeFunctionTaking_unsigned(i);

Not so with the classes we’ve discussed. If we have a function:

void SomeFunctionTakingUnsigned(Unsigned u);

then the following does not compile:

Int i = 0;
SomeFunctionTakingUnsigned(i);

Uninitialized Boolean | 41

Therefore, in this case, you get additional type safety at compile time for free.

Rules for this chapter to avoid uninitialized variables, especially data members of a
class:

• Do not use built-in types such as int, unsigned, double, bool, etc., for class data
members. Instead, use Int, Unsigned, Double, Bool, etc., because you will not need
to initialize them in constructors.

• Use these new classes instead of built-in types for passing parameters to functions,
to get additional type safety.

42 | Chapter 7: Uninitialized Variables

CHAPTER 8

Memory Leaks

By definition, a memory leak is a situation where we allocate some memory from the
heap—in C++ by using the new operator, and in C by using malloc() or calloc()—
then assign the address of this memory to a pointer, and somehow lose this value either
by letting the pointer go out of scope:

{
 MyClass* my_class_object = new MyClass;
 DoSomething(my_class_object);
} // memory leak!!!

or by assigning some other value to it:

MyClass* my_class_object = new MyClass;
DoSomething(my_class_object);
my_class_object = NULL; // memory leak!!!

There are also situations when programmers keep allocating new memory and do not
lose any pointers to it, but keep pointers to objects that the program is not going to use
anymore. The latter is not formally a memory leak, but leads to the same situation: a
program running out of memory. We’ll leave the latter error to the attention of the
programmer, and concentrate on the first one—the “formal” memory leak.

Consider two objects containing pointers to each other (Figure 8-1). This situation is
known as a “circular reference.” Pointers exist to A and to B, but if there are no other
pointers to at least one of these objects from somewhere else, there is no way to reclaim
the memory for either variable and therefore you create a memory leak. These two
objects will live happily ever after and will never be destroyed. Now consider the op-
posite example. Suppose we have a class with a method that can be run in a separate
thread:

43

Figure 8-1. Circular references

class SelfResponsible : public Thread {
public:
 virtual void Run() {
 DoSomethingImportantAndCommitSuicide();
 }

 void DoSomethingImportantAndCommitSuicide() {
 sleep(1000);
 delete this;
 }
};

We start its Run() method in a separate thread like this:

Thread* my_object = new SelfResponsible;
my_object->Start(); // call method Run() in a separate thread
my_object = NULL;

After that we assign NULL to the pointer and lose the address of this object, thus
creating a memory leak according to the definition at the beginning of this chapter.
However, if we look inside the DoSomethingImportantAndCommitSuicide() method, we’ll
see that after doing something the object will delete itself, thus releasing this memory
back to the heap to be reused. So this is not actually a memory leak.

Considering all these examples, a better definition of a memory leak is as follows. If we
allocate memory (using the new operator), someone or something (some object) must
be responsible for:

• deleting this memory;

• doing it the right way (using the correct delete operator, with or without brackets);

• doing it exactly once;

• and preferably doing it ASAP after we are done using this memory.

This responsibility for deleting the memory is usually called ownership of the object.
In the previous example, the object took ownership of itself. So to summarize, a memory
leak is a situation where the ownership of allocated memory is lost.

Consider the following code:

void SomeFunction() {
 MyClass* my_class_object = NULL;

 // some code …

44 | Chapter 8: Memory Leaks

 if(SomeCondition1()) {
 my_class_object = new MyClass;
 }

 // more code

 if(SomeCondition2()) {
 DoSomething(my_class_object);
 delete my_class_object;
 return;
 }

 // even more code

 if(SomeCondition3()) {
 DoSomethingElse(my_class_object);
 delete my_class_object;
 return;
 }

 delete my_class_object;
 return;
}

The reason we’ve started with the NULL pointer is to avoid the question of why we
don’t just create the object on the stack and avoid the whole problem of deallocating
it altogether. There can be multiple reasons for not creating an object on the stack.
Sometimes the creation of an object must be delayed to a point in the program later
than when the variable holding the memory is created; or it might be created by some
other factory class and what we get is a pointer returned to us together with responsi-
bility to delete it when we are done using it; or maybe we don’t know whether we will
create the object at all, as in the previous example.

Now that we have an object created on the heap, we are responsible for deleting it.
What is wrong with the preceding code? Obviously, it is fragile: i.e., every time we
modify it by adding an additional return statement, we must delete the object just
before returning. In this example, the responsibility to delete the object lies with the
programmer. This is error-prone, and therefore against the principle declared in the
Preface.

But even if we remember to delete the object before each return statement, this does
not solve our problems. If any of the functions called from this code could throw an
exception, then it actually means that we might “return” from any line of code con-
taining a function call. Thus, we must surround the code with try-catch statements and,
if we catch an exception, remember to delete the object and then throw a further ex-
ception. This seems like lots of work just to avoid a memory leak. The code becomes
more crowded with statements dealing with cleanup and therefore becomes less read-
able, and the programmer has less time to concentrate on actual work.

The solution to this problem, widely known in C++ literature, is to use smart point-
ers. These are template classes that behave like normal pointers (or sometimes not

Memory Leaks | 45

exactly like normal pointers) but that take ownership of the objects assigned to them,
leaving the programmer with no further worries. In this case, the function shown earlier
would look like this:

void SomeFunction() {
 SmartPointer<MyClass> my_class_object;

 // some code …

 if(SomeCondition1()) {
 my_class_object = new MyClass;
 }

 // more code

 if(SomeCondition2()) {
 DoSomething(my_class_object);
 return;
 }

 // even more code

 if(SomeCondition3()) {
 DoSomethingElse(my_class_object);
 return;
 }

 return;
}

Note that we do not delete the allocated object anywhere. It is now the responsibility
of the smart pointer, my_class_object.

This is actually a special case of a more general C++ pattern where some resource is
acquired by an object (usually in a constructor, but not necessarily) and then this object
is responsible for releasing the resource and will do so in a destructor. One example of
using this pattern is obtaining a lock on a Mutex object when entering a function:

void MyClass::MyMethod() {
 MutexLock lock(&my_mutex_);
 // some code
} // destructor ~MutexLock() is called here releasing my_mutex_

In this case, the MyClass class has a data member named my_mutex_ that must be obtained
at the beginning of a method and released before leaving the method. It is obtained by
MutexLock in the constructor and automatically released in its destructor, so we can be
sure that no matter what happens inside the code of the MyClass::MyMethod() function
—in particular, how many return statements we might insert or whatever might throw
an exception—the method won’t forget to release my_mutex_ before returning.

Now let’s return to the problem of memory leaks. The solution is that whenever we
allocate new memory, we must immediately assign the pointer to that memory to some

46 | Chapter 8: Memory Leaks

smart pointer. We now do not have to worry about deleting the memory; that respon-
sibility is given to the smart pointer.

At this point you might ask the following questions regarding the smart pointer class:

1. Are you allowed to copy a smart pointer?

2. If yes, which one of the multiple copies of the smart pointer is responsible for
deleting the object they all point to?

3. Does the smart pointer represent a pointer to an object or an array of objects (i.e.,
does it use the delete operator with or without brackets)?

4. Does a smart pointer correspond to a const pointer or a non-const pointer?

Depending on the answers to these questions, you could come up with a rather large
number of different smart pointers. And indeed, there are a great many of them dis-
cussed and used in the C++ community and provided by different libraries, most no-
tably, the boost library. However, in my opinion the multitude of different smart pointer
types creates new opportunities for errors, for example, assigning a pointer pointing to
an object to a smart pointer that expects an array (i.e., would use a delete with brackets)
or vice versa.

One of the smart pointers—auto_ptr<T>—has the strange property that when you have
an auto pointer p1 and then make a copy of it p2 as follows:

auto_ptr<int> p1(new int);
auto_ptr<int> p2(p1);

the pointer p1 becomes NULL, which I find counterintuitive and therefore error-prone.

In my experience, there are two smart pointer classes that have so far covered all my
needs in preventing memory leaks:

1. The reference counting pointer (a.k.a. the shared pointer)

2. The scoped pointer

The difference between the two is that the reference counting pointer can be copied
and the scoped pointer cannot. However, the scoped pointer is more efficient.

We’ll look at each of these in the following sections.

Reference Counting Pointers
As mentioned above, the reference counting pointer can be copied. As a result, several
copies of a smart pointer could point to the same object. This leads to the question of
which copy is responsible for deleting the object that they all point to. The answer is
that the last smart pointer of the group to die will delete the object it points to. It’s
analogous to the household rule: “the last person to leave the room will switch the
lights off.”

Reference Counting Pointers | 47

To implement this algorithm, the pointers share a counter that keeps track of how many
smart pointers refer to the same object—hence the term “reference counting.” Refer-
ence counts are used in a wide range of situations: the term simply means that the
implementation has a hidden integer variable that serves as a counter. Each time some-
one creates a new copy of a smart pointer that points to the target object, the imple-
mentation increments the counter; when any smart pointer is deleted, the implemen-
tation decrements the counter. So the target object will be around as long as it’s needed,
but no longer that that.

An implementation of reference counting pointers is provided by my library in the file
scpp_refcountptr.hpp. Here’s the public portion of this class:

template < typename T>
class RefCountPtr {
 public:

 explicit RefCountPtr(T* p = NULL) {
 Create(p);
 }

 RefCountPtr(const RefCountPtr<T>& rhs) {
 Copy(rhs);
 }

 RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
 if(ptr_ != rhs.ptr_)
 {
 Kill();
 Copy(rhs);
 }

 return *this;
 }

 RefCountPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 Kill();
 Create(p);
 }

 return *this;
 }

 ~RefCountPtr() {
 Kill();
 }

 T* Get()const { return ptr_; }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

48 | Chapter 8: Memory Leaks

 T& operator* ()const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

Note that both the copy-constructor and assignment operators are provided, so one
could copy these pointers. In this case, both the original pointer and the copied one
point to the same object (or to NULL, if the original pointer was NULL). In this sense
they behave the same way as the regular “raw” T* pointers. If you no longer need to
use the object, you can “kill” the reference counting pointer by assigning NULL to it.

There are a couple of problems with the reference counting pointer. First, creating one
with a non-NULL argument is expensive, because the implementation uses the new
operator to allocate an integer on heap, a relatively slow operation. Second, of course,
the reference counting pointer is not multithread-safe. I’ve declared that discussions of
multithreading are beyond the scope of this book, but here it’s important enough to
mention. Let’s concentrate on the previous problem—the cost of using a reference
counting pointer. You can use it when you are sure that you will need to copy it, and
when you can be reasonably sure that the cost of creating one is negligible compared
to the execution time of the rest of your code.

Scoped Pointers
In cases when you don’t plan on copying the smart pointer and just want to make sure
that the allocated resource will be deallocated properly, as in the earlier examples of
the SomeFunction() method, there is a much simpler solution: the scoped pointer. Let’s
take a look at its code provided in the file scpp_scopedptr.hpp:

template <typename T>
class ScopedPtr {
 public:

 explicit ScopedPtr(T* p = NULL)
 : ptr_(p)
 {}

 ScopedPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 delete ptr_;
 ptr_ = p;
 }

 return *this;
 }

 ~ScopedPtr() {
 delete ptr_;
 }

Scoped Pointers | 49

 T* Get() const {
 return ptr_;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

 // Release ownership of the object to the caller.
 T* Release() {
 T* p = ptr_;
 ptr_ = NULL;
 return p;
 }

 private:
 T* ptr_;

 // Copy is prohibited:
 ScopedPtr(const ScopedPtr<T>& rhs);
 ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};

Again, the most important property of this class for us is that its destructor deletes the
object it points to (if it is not NULL, of course). The difference between usage of the
scoped pointer and the reference counter pointer is that the scoped pointer cannot be
copied. Both the copy-constructor and assignment operator are declared private, so
any attempt to copy this pointer will not compile. This removes the need to count how
many copies of the same smart pointer point to the same object—there is always only
one, and therefore this pointer does not allocate an int from the heap to count its copies.
For this reason, it is as fast as a pointer can be.

You have also probably noticed that in both RefCountPtr and ScopedPtr we diagnose
an attempt to dereference the NULL pointer. We’ll talk more about this in the next
chapter.

As you’ll recall from Chapter 4 concerning arrays, we have discussed which of the two
new operators to use: the one without brackets. As for the corresponding delete
operators, we should use neither. Do not delete the objects yourself; leave it to smart
pointers.

50 | Chapter 8: Memory Leaks

Enforcing Ownership with Smart Pointers
Now let’s discuss potential errors when using functions that return pointers. Suppose,
we have a function that returns a pointer to some type MyClass:

MyClass* MyFactoryClass::Create(const Inputs& inputs);

The very first question about this function is whether the caller of this function is
responsible for deleting this object, or is this a pointer to an instance of MyClass that
the instance of MyFactoryClass owns? This should of course be documented in a com-
ment in the header file where this function is declared, but the reality of the software
world is that it rarely is. But even if the author of the function did provide a comment
that the function creates a new object on the heap and the caller is responsible for
deleting it, we now find ourselves saying that every time we receive a pointer to an
object from a function call, we need to remember to check the comments (or in the
absence of a comment—the code itself if available) to find out whether we are respon-
sible for deleting this object. And as we have decided in the Preface, we would prefer
to rely on a compiler rather than on a programmer. Therefore, a fool-proof way to
enforce the ownership of the object is for the function to return a smart pointer. For
example:

RefCountPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs);

Not only does this design leave no doubt about the ownership of the object returned
by the function, it leaves no opportunity for a memory leak. On the other hand, if you
find the reference counting pointer too slow for your purposes, you might want to
return a scoped pointer. But there is one problem: the ScopedPtr<MyClass> cannot be
copied, and therefore it cannot be returned in a traditional way:

ScopedPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs) {
 ScopedPTr<MyClass> result(new MyClass(inputs));
 return result; // Won’t compile !
}

Therefore, the way around the problem is to do this:

ScopedPtr<MyClass> result; // Create an empty scoped pointer
// Fill it:
void MyFactoryClass::Create(const Inputs& inputs, ScopedPtr<MyClass>& result);

Here you create a scoped pointer containing NULL and give it to
MyFactoryClass::Create() to fill it up. This approach again leaves no room for mistakes
regarding the ownership of the object created by the function. If you are not sure which
of the two pointers to return, you can either:

• Return the faster ScopedPtr and then use its Release() method to transfer owner-
ship to a RefCountPtr if necessary.

• Provide both methods.

Enforcing Ownership with Smart Pointers | 51

There is also an opposite situation when the SomeClass::Find() method returns a
pointer to an object but the user does not have ownership of it:

// Returns a pointer to a result, caller DOES NOT OWN the result.
MyClass* SomeClass::Find(const Inputs& inputs);

In this case, the pointer returned by this function points to an object that belongs to
something inside the SomeClass object.

The first problem here is that the SomeClass object thinks that it is responsible for
deleting the MyClass instance to which it just returned a pointer, and therefore it will
delete it at some point in the future. In this case, if the user of this function will delete
the pointer he received, this instance will be deleted more than once, which is not a
good idea. Second, this instance might be part of an array of MyClass objects that is
created inside, say, a template vector using operator new[] (with brackets), and we are
now trying to delete an object from that array using operator delete without brackets.
This is also not good. Finally, the instance of MyClass could be created on stack, and
should not ever be deleted using operator delete at all.

In this case, any attempt to delete this object that we do not own—directly or by as-
signing it to a smart pointer of any kind that would take ownership of it—would lead
to disaster. An appropriate way of returning this pointer is to return a “semi-smart”
pointer that does not own the object it points to. This will be discussed in the next
chapter.

Rules for this chapter to avoid memory leaks:

• Every time you create an object using the new operator, immediately assign the
result to a smart pointer (reference counting point or scoped pointer is recom-
mended).

• Use the new operator only without brackets. If you need to create an array, create
a new template vector, which is a single object.

• Avoid circular references.

• When writing a function returning a pointer, return a smart pointer instead of a
raw one, to enforce the ownership of the result.

52 | Chapter 8: Memory Leaks

CHAPTER 9

Dereferencing NULL Pointers

One of the most frequent reasons for program crashes (a.k.a. core dumps under Unix)
is an attempt to dereference a NULL pointer. As we saw in the previous chapter, both
smart pointers discussed there—the RefCountPtr and the ScopedPtr—have run-time
diagnostics for that. However, not every pointer is a smart pointer that has ownership
of some object. To diagnose an attempt to dereference a pointer that does not have
ownership of an object, I’ll introduce here a “semi-smart” pointer that does not delete
the object it points to. Let’s take a look at the public portion of it in the file scpp_ptr.hpp:

// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
 public:

 explicit Ptr(T* p=NULL)
 : ptr_(p) {
 }

 T* Get() const {
 return ptr_;
 }

 Ptr<T>& operator=(T* p) {
 ptr_ = p;
 return *this;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

53

Despite the presence of operator=, this is not an assignment operator that would tell
the compiler what to do when we try to assign one Ptr<T> to another. The assignment
operator for this class, if we had writthen one, would be declared as:

Ptr<T>& operator=(const Ptr<T>& that);

Note that the operator= declared in the preceding class has a different signature: it
includes a raw pointer p on the right side. Therefore, this class leaves it up to the com-
piler to create both the copy constructor and the assignment operator of the Ptr<T>.
Because both the copy constructor and assignment operators for the Ptr<T> class are
allowed, you are free to copy these pointers, return them from functions, and so on.

At this point you might ask: if we are advised to use Ptr<T> instead of T*, what should
we use for a const T* pointer? The answer is easy: Ptr<const T>. Suppose you have a
class:

class MyClass {
 public:
 explicit MyClass(int id)
 : id_(id) {}

 int GetId() const { return id_; }
 void SetId(int id) { id_ = id; }

 private:
 int id_;
};

If you want to create a semi-smart pointer that behaves like const MyClass*, all you
have to do is write:

scpp::Ptr<const MyClass> p(new MyClass(1));
cout << "Id = " << p->GetId() << endl; // Compiles and runs.
p->SetId(666); // Does not compile!

Note that an attempt to call a non-const function on this pointer does not compile,
which means that it correctly reproduces the behavior of a const pointer.

The Ptr<T> template pointer has the following features:

1. It does not take ownership of the object it points to, and should be used as a
replacement for a raw pointer in the same situation.

2. It is by default initialized to NULL (thus following the spirit of Chapter 7).

3. It offers run-time diagnostics of an attempt to dereference itself when it is NULL.

Rules for this chapter to catch attempts to dereference a NULL pointer:

• If you have a pointer that owns the object it points to, use a smart pointer (a ref-
erence counting pointer or scoped pointer).

• When you have a raw pointer T* pointing to an object you do not own, use the
template class Ptr<T> instead.

• For a const pointer (i.e., const T*) use Ptr<const T>.

54 | Chapter 9: Dereferencing NULL Pointers

CHAPTER 10

Copy Constructors and Assignment
Operators

Suppose you have a class MyClass that looks something like this:

class MyClass {
 public:
 // Constructors

 // Copy-constructor
 MyClass(const MyClass& that)
 : int_data_(that.int_data_),
 dbl_data_(that.dbl_data_),
 str_data_(that.str_data_) {
 }

 // Assignment operator
 MyClass& operator = (const MyClass& that) {
 if(this != &that) {
 int_data_ = that.int_data_;
 dbl_data_ = that.dbl_data_;
 str_data_ = that.str_data_;
 }
 return *this;
 }

 // Some other methods here
private:
 Int int_data_;
 Double dbl_data_;
 string str_data_;
 // Each time you add a new data member in here,
 // do not forget to add corresponding code to the
 // copy-constructor and assignment operators!
};

What is wrong with this class? It is summarized in the comment at the end of the private
section. You’ll remember from the Preface that if we find ourselves saying this, we open
up the code to errors and should consider alternatives. And indeed, if you don’t write

55

a copy-constructor or assignment operator, C++ will write a “default version” for you.
The default version of the copy-constructor of your class will call copy-constructors for
all data members (or simply copy the built-in types), and the default version of an
assignment operator will call assignment operators for each data member or simply
copy the built-in types.

Because of that, the copy constructor and the assignment operator in the previous
example are totally unnecessary. Even worse, they are a potential source of errors be-
cause they make your code fragile, i.e., it might break if someone tries to modify it.
Therefore, in this case it is a good idea to avoid writing copy-constructors and assign-
ment operators altogether.

In general, regarding these two functions, you have the following choices:

• Rely on default versions created for you automatically by a compiler.

• Prohibit copies of any kind by declaring the copy constructor and assignment
operator as private, and do not provide an implementation.

• Write your own versions.

For the reasons just discussed, avoid the last option as much as possible. If you find
yourself writing copy constructors and assignment operators for some class, ask your-
self whether it is really necessary. Maybe you can avoid doing it and switch to the first
option (using default versions created by compiler) or use some other methods, such
as smart pointers. If you are not sure, use the second option—if there is no copying of
any kind, there is no way to make errors. However, be aware that some types of usage
of your class (e.g., in vector<MyClass>) require a copy constructor and an assignment
operator, so prohibiting copies of any kind should be used sparingly, with the under-
standing that it limits your options when using your class.

Rules for this chapter to avoid errors in copy-constructors and assignment operators:

• Whenever possible, avoid writing a copy-constructor or assignment operator for
your classes.

• If the default versions do not work for you, consider prohibiting the copying of
instances of your class by declaring the copy-constructor and assignment operator
private.

56 | Chapter 10: Copy Constructors and Assignment Operators

CHAPTER 11

Avoid Writing Code in Destructors

In the previous chapter, we discussed why you should try to avoid writing copy con-
structors and assignment operators at all. In this chapter we discuss why you should
avoid writing code in the destructor. I am not saying that the destructor method should
not exist, just that if you do write one, it’s a good idea to design your class so that the
destructor is empty. The following is acceptable:

virtual ~MyClass() {}

We will use the term an empty destructor when talking about a destructor that has no
code inside the curly brackets.

There are several reasons why you might need to write a destructor:

• In a base class, you might want to declare it virtual, so that you can use a pointer
to the base class to point to an instance of a derived class.

• In a derived class, you do not have to declare it virtual, but might like to do so for
the sake of readability.

• You might need to declare that the destructor does not throw any exceptions.

Let’s consider the last reason more closely. It is widely accepted in the C++ literature
that throwing exceptions from a destructor is a bad idea. This is because destructors
are often called when an exception is already thrown, and throwing a second one during
this process would lead to the termination (or crash) of your program, which is probably
not your intention. Therefore, in some classes, destructors are declared as follows (this
example comes from the file scpp_assert.hpp):

virtual ~ScppAssertFailedException() throw () {}

which means that we promise not to throw an exception from this destructor.

So you can see that it is necessary from time to time to write a destructor. Now let us
discuss why it should be an empty one. When would you need any non-trivial code in
the destructor? Only if you have acquired, in the constructor or some other method of
your class, some resource that you need to release when the object goes away, such as
in the following example:

57

class PersonDescription {
 public:
 PersonDescription(const char* first_name, const char* last_name)
 : first_name_(NULL), last_name_(NULL) {
 if(first_name != NULL)
 first_name_ = new string(first_name);

 if(last_name != NULL)
 last_name_ = new string(last_name);
 }

 ~PersonDescription() {
 delete first_name_;
 delete last_name_;
 }

 private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 string* first_name_;
 string* last_name_;
};

The design of this class violates everything we have discussed in earlier chapters. First
of all, we see that every time we might need to add a new element of a person’s de-
scription, such as a middle name, we would need to remember to add a corresponding
cleanup to the destructor, which is a violation of our “do not force the programmer to
remember things” principle. A much better design would be:

class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name) {
 if(first_name != NULL)
 first_name_ = new string(first_name);

 if(last_name != NULL)
 last_name_ = new string(last_name);
 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 scpp::ScopedPtr<string> first_name_;
 scpp::ScopedPtr<string> last_name_;
};

In this case, we don’t need to write a destructor at all because the one generated for us
automatically by the compiler will do the job, and this leads to less fragile code while
doing less work. However, this is not the main reason for choosing this second type of
design. There are more serious potential hazards in the case of the first example.

58 | Chapter 11: Avoid Writing Code in Destructors

Suppose we have decided to add sanity checks that the caller has provided the first
name and last name:

class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name)
 : first_name_(NULL), last_name_(NULL) {
 SCPP_ASSERT(first_name != NULL, "First name must be provided");
 first_name_ = new string(first_name);

 SCPP_ASSERT(last_name != NULL, "Last name must be provided");
 last_name_ = new string(last_name);
 }

 ~PersonDescription() {
 delete first_name_;
 delete last_name_;
 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 string* first_name_;
 string* last_name_;
};

As we discussed in Part I, our error might not terminate an application, but it might
throw an exception. Now we are in trouble: throwing an exception from a constructor
could be a bad idea. Let’s consider why this is the case. If you are trying to create an
object on the stack and the constructor does its job normally (without throwing an
exception), then when the object goes out of scope, the destructor will be called. How-
ever, if the constructor did not finish its job because the code of the constructor threw
an exception, the destructor will not be called.

Therefore, in the preceding example, if we suppose that the first name was supplied
but the second was not, the string for the first name will be allocated but never deleted,
and thus we will have a memory leak. However, all is not lost. Let’s look a little deeper
into this situation. If we have an object that contains other objects, an important ques-
tion is: exactly which destructors will be called and which will not?

To answer this question, let’s conduct a small experiment. Suppose we have the fol-
lowing three classes:

class A {
 public:
 A() { cout << "Creating A" << endl; }
 ~A() { cout << "Destroying A" << endl; }
};

class B {
 public:
 B() { cout << "Creating B" << endl; }

Avoid Writing Code in Destructors | 59

 ~B() { cout << "Destroying B" << endl; }
};

class C : public A {
 public:
 C() {
 cout << "Creating C" << endl;
 throw "Don't like C";
 }
 ~C() { cout << "Destroying C" << endl; }

 private:
 B b_;
};

Note that class C contains class B by composition (i.e., we have a data member in C of
type B). It also contains the object of type A by inheritance: i.e., somewhere inside the
object C there is an object A. Now, what happens if the constructor of C throws an
exception? The following code example:

int main() {
 cout << "Testing throwing from constructor." << endl;
 try {
 C c;
 } catch (…) {
 cout << "Caught an exception" << endl;
 }

 return 0;
}

produces this output:

Testing throwing from constructor.
Creating A
Creating B
Creating C
Destroying B
Destroying A
Caught an exception

Note that it is only the destructor of C that was not executed: the destructors of both
A and B were called. So the conclusion is simple and logical: for objects whose con-
structors are allowed to finish normally, the destructors will be called, even if these
objects are part of the larger object constructor that did not finish normally. Therefore,
let’s rewrite our example with sanity checks using smart pointers:

class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name) {
 SCPP_ASSERT(first_name != NULL, "First name must be provided");
 first_name_ = new string(first_name);

 SCPP_ASSERT(last_name != NULL, "Last name must be provided");
 last_name_ = new string(last_name);

60 | Chapter 11: Avoid Writing Code in Destructors

 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 scpp::ScopedPtr<string> first_name_;
 scpp::ScopedPtr<string> last_name_;
};

Even if the second sanity check throws an exception, the destructor of the smart pointer
to first_name_ will still be called and will do its cleanup. In addition, as a free benefit,
we don’t need to worry about initializing these smart pointers to NULL—that is done
automatically. So we see that throwing an exception from a constructor is a potentially
dangerous business: the corresponding destructor will not be called, and we might have
a problem—unless the destructor is empty.

While the C++ community is divided over whether it is a good idea to throw exceptions
from constructors, there is a good argument for allowing the constructor to do so. The
constructor does not have a return value, so if some of the inputs are wrong, what
should we do? One possibility is to just return from the constructor and have a separate
class method such as bool IsValid(). And each time you create an object, you should
not forget to call my_object.IsValid() and see the result… and you can see where this
is going. Which brings us back to the original choice: if something goes wrong inside
the constructor, throw an exception. This means that the corresponding destructor will
not be called, but this is acceptable to do if that destructor is empty.

Rule for this chapter: to avoid memory leaks when throwing exceptions from a
constructor:

• Design your class in such a way that the destructor is empty.

Avoid Writing Code in Destructors | 61

CHAPTER 12

How to Write Consistent Comparison
Operators

If you wrote a new class MyClass, you might want sometimes to write expressions like
this:

MyClass x, y;
 /// some code initializing x and y
 if(x < y) {
 // do something
 } else if (x == y) {
 // do something else
 }

Even if you don’t need comparison operators (<, <=, etc.) yourself, you might find that
someone attempts to use your class with Standard Template Library operations that
require you to define these operators. For example, if you try to sort a vector of instances
of your class:

vector<MyClass> v;
v.push_back(MyClass(3));
v.push_back(MyClass(1));
v.push_back(MyClass(2));

sort(v.begin(), v.end());

an attempt to compile this code fills the screen with diagnostics that look like this:

/usr/include/c++/4.2.1/bits/stl_heap.h:121: error: no
 match for 'operator<' in '__first.
 __gnu_cxx::__normal_iterator<_Iterator, _Container>::operator+
 [with _Iterator = MyClass*, _Container = std::vector<MyClass,
 std::allocator<MyClass> >](((const ptrdiff_t&)((const
 ptrdiff_t*)(&
 __parent)))).__gnu_cxx::__normal_iterator<_Iterator,
 _Container>::operator* [with _Iterator = MyClass*, _Container =
 std::vector<MyClass, std::allocator<MyClass> >]() <
 __value'

63

Although this output is not easily readable by a human, after some effort one can find
in that pile of information the following useful piece: no match for ‘operator<’. What
the compiler is unhappy about is that the class MyClass does not define a < operator.
All you have to do is add to the definition of MyClass:

class MyClass {
 public:
 // constructors, etc…
 bool operator < (const MyClass& that) const {
 // some code returning bool
 return my_data_ < that.my_data_;
 }

 private:
 Int my_data_;

and the example compiles, runs, and sorts the vector. The same thing happens if you
try to use your class in std::set<MyClass> or as a key in std::map<MyClass, AnyOther
Class>. While STL is relatively undemanding and in most cases will be satisfied by the
definition of only one < operator, there might be cases when you want to define several
comparison operators or potentially all of them. For example, suppose you’ve decided
to write a Date class that would encapsulate the calendar date and you expect that other
programmers might want to use all kinds of comparisons: date1 >= date2, etc. There
are six comparison operators:

<
>
<=
>=
==
!=

From the point of view of C++, these operators could be written as six totally inde-
pendent functions, and nothing in C++ prevents you from writing each one any way
you like. However, the user of your class MyClass would expect that if instances of this
class satisfy the inequality x1 < x2, then it must also be true that x1 <= x2 and that x2
> x1. In other words, there are some logical relations between these operators, and after
writing each comparison operator, it would be a good idea to make sure that these
relations hold in order to avoid confusion. In fact, no additional work to achieve this
is necessary. There is an easy way to kill all six birds with one stone in two steps.

1. In your class, define the following method:

class MyClass {
 public:
 // some code…

 // Returns negative int when *this < that,
 // 0 when *this == that and
 // positive int when *this > that.
 int CompareTo(const MyClass& that) const;

64 | Chapter 12: How to Write Consistent Comparison Operators

2. Define all six comparison operators by using the following macro inside the public
section of your class:

SCPP_DEFINE_COMPARISON_OPERATORS(MyClass)

I have defined SCPP_DEFINE_COMPARISON_OPERATORS in the file scpp_types.hpp as follows:

#define SCPP_DEFINE_COMPARISON_OPERATORS(Class) \
 bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
 bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
 bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
 bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
 bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
 bool operator !=(const Class& that) const { return CompareTo(that) !=0; }

In one long line, this macro defines all six comparison operators for you in a consistent
way. In order for this to work, the only thing you need to do is provide the
CompareTo() function in your class. If you ever decide to change the definition of what
you mean by > or <= for the instances of your class, you can simply edit that function
and the rest will behave accordingly while preserving all the relations one would expect
between different comparison operators.

Rule for this chapter to avoid errors when writing comparison operators:

• Write a CompareTo() function and use the SCPP_DEFINE_COMPARISON_OPERATORS
macro to implement all the comparison operators.

How to Write Consistent Comparison Operators | 65

CHAPTER 13

Errors When Using Standard C Libraries

As we discussed in Chapter 1, C++ inherited the C philosophy and its corresponding
problems. But that’s not all. It also inherited the standard C library, which is unsafe in
several ways, and consequently all its associated problems, sometimes leading to un-
predictable behavior up to and including program crashes. For the final chapter in this
part of the book, we’ll discuss the possible dangers that await you when you use some
of the functions that programmers frequently depend on in these libraries.

When we try to use the C string libraries declared in string.h or functions such as
sprintf() declared in stdio.h, we may face the following problems:

• The functions that take pointers to character arrays (char *) crash when given a
NULL instead of a pointer to a valid C string (for example, strlen(NULL) will crash).

• Some of the functions writing into a buffer might overwrite past the end of the
buffer, thus leading to unpredictable application behavior including crashes.

• The safer versions of the same functions will not overwrite the buffer, but will
stop writing into a buffer just before it ends, thus silently truncating the result—
probably not the behavior one would want.

There are several potential ways to address these problems:

• Provide versions of the functions that do all the necessary sanity checks and treat
the NULL pointers the same way as they would handle an empty string (const
char* empty_string = "";).

• For those applications where the speed of these string operations should not be
compromised, provide versions with temporary sanity checks that are active only
during testing.

However, the best possible solution to this problem is not to use the C string libraries
at all. Use the classes provided by C++ instead. For example:

• Instead of strlen(my_c_string), you can use my_cpp_string.size().

• Instead of strcpy(), just copy the strings using string’s assignment operator (i.e.,
=).

67

To concatenate two strings, two functions in the C library are available. strcat()
blindly adds a string to the end of an existing string in a buffer without ever knowing
where the buffer ends. By contrast, strncat() adds no more than the specified number
of bytes, which seems like a step in the right direction, but it still does not know anything
about the size of the buffer it adds to. The programmer is responsible for allocating the
right amount of space and calculating how many bytes to add.

Instead of strcat() or strncat(), use either:

#include <sstream> // ostringstream
#include <string>

 ostringsream buffer;
 buffer << first_string;
 buffer << additional_string;
 string result = buffer.str();

or, even shorter:

#include <string>

 string result = first_string;
 result += additional_string;

Not only are these more readable and safer, they are actually faster for long strings than
strcat()! There are no buffers to allocate and overwrite.

If you are working with std::string and provide a NULL as an argument in a con-
structor:

std::string empty_string(NULL);

the program does not crash. Instead it throws an exception with a human-readable
(well, almost human-readable) explanation of what happened:

basic_string::_S_construct NULL not valid

which translates into plain English as “the constructor of std::string found a NULL as
an argument where it expected a valid C string.”

The rule for this chapter to avoid buffer overflows and crashes when using C string
library functions is to avoid using C string libraries.

• They are not safe and sometimes not even as fast as the corresponding C++ classes,
such as std::string and std::ostringstream. Use C++ classes and you will avoid
a number of possible errors leading to program crashes or other unpredictable
behavior.

68 | Chapter 13: Errors When Using Standard C Libraries

PART III

The Joy of Bug Hunting: From
Testing to Debugging to

Production

In this part, we assume that your code at least partially adheres to the approaches and
guidelines discussed in previous chapters. Now we are ready for testing. Here we dis-
cuss the testing and debugging strategy for finding and eliminating bugs in the most
efficient way possible.

CHAPTER 14

General Testing Principles

Although it is impossible to test code without concrete knowledge of what a particular
program does, and how, there are nevertheless some general principles of testing that
are useful to follow. Correctly designed and implemented code must produce the right
answer when given correct inputs. Furthermore, when given incorrect ones, the pro-
gram should not silently die, crash, or get stuck, but should diagnose the problem—
where, why, and if necessary, when the error happened—and then either gracefully
terminate or return to the initial state from which it can process the next input. Testing
must include everything from unit tests of each single class, to unit tests of groups of
classes working together, to a test of the whole application.

To the extent possible, you should try to create a reproducible test that leads to the
same results when repeated. This can be a challenge when dealing with multi-threaded
applications, when the timing of events between different threads is an issue, but even
in cases like that it is usually possible to convert tests of some parts of the code to a
single-threaded mode where the results should be totally deterministic.

In order to test multiple classes, organize them in a hierarchy such that some classes
are considered more “basic” than others. In other words, the classes on one level of the
hierarchy can make calls only to the classes on the same level or below, not above. Then
the sequence of testing is clear. Otherwise, you’ll face a chicken-and-egg problem when
deciding what to test first. An even better design is when a class at each level uses only
classes below it, as shown in Figure 14-1.

71

Figure 14-1. Application that allows references to the code in the same layers, versus one with a strict
separation of layers

Each piece of code that expects some input must be tested with both correct and in-
correct inputs. Try to “push” the code and see how it behaves not only under normal
but also abnormal circumstances. For instance, if the code expects a pointer (or point-
ers) to some inputs, what would happen if you provide NULL(s) instead? If an algorithm
expects integers, test whether there could be an integer overflow. If an algorithm ex-
pects doubles, test what happens if they are very small or very large. See how code
behaves when different inputs differ by several orders of magnitude. Will the algorithm
lose its accuracy?

If the algorithm works with input of a variable size (e.g., an array, vector, or matrix, or
if the code reads several numbers from a file), see what happens when the size of input
grows by an order of magnitude. You must have an understanding of the complexity of
your algorithm, e.g., if the input contains N units of information, how much does the
time of processing increase as a function of N when N increases? Then test it whether
this is true in practice.

72 | Chapter 14: General Testing Principles

If the algorithm does some calculation numerically but in specific cases it has an ana-
lytical solution, compare them. If there is asymptotic behavior when some parameter
becomes small or large, test it.

If the algorithm does something in a very smart and efficient way, consider writing a
brute-force version of the same algorithm. Although this will be much slower, it will
also be much simpler and therefore less error-prone. Then compare the results, at least
for small input size.

If an algorithm takes as an input an arbitrary set of numbers, such as in the case of
sorting, it is usually a good idea to generate test inputs in a pseudo-random manner—
e.g., using the function rand()—so that you can create a lot of different test sets easily.
This technique still allows the tests to be repeatable, because you can recreate the same
set by specifying the same seed for the random number generator.

Always look for special cases. If the algorithm takes an array, what happens if it is empty
or contains just one element? What if all elements of an array are the same? If it takes
a matrix, what happens if the determinant of that matrix is zero?

If you use hash sets or hash maps, test them for collisions with a realistic set of inputs.
Try to look for worst-case scenarios.

If your inputs depend on a calendar date, make sure to include the February 29th in a
leap year. I have found that in algorithms generating sets of dates starting from some
initial date, this is usually a very special case that can sometimes lead to the discovery
of rare but interesting bugs. Therefore, if you are testing data that includes a range of
dates, make sure that it is at least five years long so that it includes at least one leap
year. (Strictly speaking, not every five-year interval includes a leap year, because the
years 1900, 2100, 2200, and 2300 are not leap years, so you might need about nine
years of data instead, depending on the century in which you are reading this book.

Automate your testing as much as possible. The best set of tests is one that runs with
one push of a button and tests everything there is to test about your code. There are
many frameworks and utilities that make it easy to achieve this automation.

Plan your work so that you spend between 30% to 50% of your time testing. This is
the part of planning that is very easy to underestimate and where things tend to go
wrong, thus ruining delivery schedules. Remember: the more effort you spend on test-
ing, the easier your life will be when your code goes into production.

General Testing Principles | 73

CHAPTER 15

Debug-On-Error Strategy

By this time you probably have your program written and containing a lot of sanity
checks, some permanent and some temporary. Now it is time to test it. Let’s go bug
hunting, one bug at a time. Our testing algorithm is very simple:

1. Run your code with sanity checks on, trying to cover all possible cases.

2. If any sanity check fails, fix the code and return to step 1.

3. If you’ve made it to step 3, you can be reasonably sure your code works correctly.
Well done!

In my personal experience, this strategy makes testing a much faster, more efficient,
and more enjoyable procedure than it would otherwise be, when your code does strange
things and does not provide any explanation for its behavior. All you have to do to
make this process effective is to insert enough sanity checks in your code while writing
it and to make them as informative as possible. In short, the more sanity checks you
have in your code, the more you can guarantee that it works correctly after it has passed
all the checks.

Let’s consider how the SCPP_TEST_ASSERT macro can be switched on. Take a closer look
in the file scpp_assert.hpp, where it is defined:

#ifdef _DEBUG
define SCPP_TEST_ASSERT_ON
#endif

#ifdef SCPP_TEST_ASSERT_ON
define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif

If you compile your project in debug mode, a symbol named _DEBUG is defined during
compilation (this might be compiler-dependent, but it is definitely true for Microsoft
Visual Studio). In this case, your sanity checks (e.g., the SCPP_TEST_ASSERT macro) are
on. Our option for running the code are summarized in Table 15-1.

75

Table 15-1. Testing modes

Level Purpose Compilation mode Test sanity checks

1 Testing with debugging on error Debug On

2 Fast testing Release On

3 Production Release Off

Options 1 and 3 are obvious enough: most of the time you will want to test your code
while it is compiled in debug mode, and probably running it inside a debugger. How-
ever, if your program does a lot of number crunching, and if switching sanity checks
on and compiling in the debug mode slow it down too much, you have option 2: testing
the code compiled in release mode with sanity checks on. Not having the luxury of
exploring the code in the debugger makes it especially important that your error mes-
sages contain enough information to allow you to fix the bug.

If your program is fast enough to run with sanity checks in debug mode, the easiest
way to catch a bug is to open the scpp_assert.cpp file, find the comment “This is a good
place to put your debug breakpoint:”, and put a debug breakpoint on the next line
(which can be the line starting with either throw or cerr, depending on how the code
was compiled):

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
 cerr << message << " in file " << file_name
 << " #" << line_number << endl << flush;
 // Terminate application
 exit(1);
#endif

This is the reason I created this error handler function. Simply knowing the filename
and line number where the error occurred might not help you much. But if you put
your debugger breakpoint there, the debugger will stop on it during every execution of
this line, even if the bug occurs on only the 10th or even the 10,000th iteration. By
putting the breakpoint inside the error handler function, you are guaranteed that your
program will run to the first error and stop in the debugger, as shown in Figure 15-1.

If the text of the error message is not enough to figure out why the error happened, you
can go up the call stack into the function where the error occurred and examine the
variables to figure out what happened and why. On the other hand, if your debugger
doesn’t stop on this breakpoint, you should not be too disappointed—your program
passed all sanity checks!

76 | Chapter 15: Debug-On-Error Strategy

Figure 15-1. Debugger stopped inside the error handler function in XCode (Max OS X Leopard)

Debug-On-Error Strategy | 77

CHAPTER 16

Making Your Code Debugger-Friendly

Have you ever tried to look inside some object in the debugger and been frustrated that
the debugger shows the details of the object’s physical implementation instead of the
logical information that the object is supposed to represent? Let me illustrate this using
an example of a Date class that represents calendar dates, such as December 26, 2011.
If you look into this object in the debugger, chances are you will not see anything
resembling “December 26, 2011” or any human-readable information at all, but rather
an integer that requires some decoding to convert into a date it represents.

It all depends on how the Date type is implemented. I have seen the following three
implementations:

1. class Date {
 // some code

 private:
 int day_, month_, year_;

2. typedef Date int; // in YYYYMMDD format

3. class Date {
 // some code

 private:
 int number_of_days_; // Number of calendar days since the "anchor date"

The first implementation is pretty self-evident and is a pleasure to debug. In the second
case, the date December 26, 2011 is represented by an integer 20111226, which is also
easily readable by a human once you know the formula behind it.

In the last case, the internal representation of a Date is the number of days that have
passed since some arbitrarily chosen date far enough in the past, that the day repre-
sented by 1 is 1/1/1900 or 1/1/0000 or something of this sort.

While the first two implementations are very debugger-friendly, they have a serious
problem. The Date type is supposed to support “date arithmetic,” i.e., operations such
as adding a number of days to a date, or calculating the number of days between two
dates. In the cases of implementations 1 and 2 such number arithmetic is extremely

79

slow, while in the case of implementation 3 it is as efficient as adding and subtracting
integers.

For this reason, any serious implementation of Date uses approach 3. However, when
you look at this Date object in the debugger, it is a pain to figure out what the actual
calendar date is. For example, in the class Date we will consider momentarily, the date
December 26, 2011 looks like 734497 in the debugger, and when you are working with
code that contains a lot of dates—for example, some financial contract that pays quar-
terly for the next 30 years, and also has some additional dates a couple of days before
each payment date relevant for calculation—debugging becomes a challenge.

But it doesn’t have to be. The solution to this problem is to make the code of the class
Date “debugger-friendly,” meaning that when compiled in debug mode, it provides
additional information in the debugger to represent the date in a human-readable form
(either as “December 26, 2011” or at least 20111226). However, given that this addi-
tional functionality requires some calculations and increases the size of the object, I’ve
decided to compromise and settle on the second solution, representing the debugging
info of the date in YYYYMMDD format, i.e., as 20111226.

The complete source code for the class Date is provided in Appendix J in the
scpp_date.hpp and scpp_date.cpp files. Here I just include snippets from these files that
provide this additional debugging information. In the header file we find:

class Date {
 public:
 // some code

 private:
 int date_; // number of days from A.D., i.e. 01/01/0000 is 1.

#ifdef _DEBUG
 int yyyymmdd_;
#endif

void SyncDebug() {
#ifdef _DEBUG
 yyyymmdd_ = AsYYYYMMDD();
#endif
}

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
 yyyymmdd_ = 10000*year + 100*month + day;
#endif
}
};

First, the implementation is based on a number of days since some day in the past.
In addition, when compiled in debug mode, the symbol _DEBUG is defined and the
class has an additional data member int yyyymmdd_, which will contain the date in the
YYYYMMDD format. To fill this data member out, there are two functions

80 | Chapter 16: Making Your Code Debugger-Friendly

SyncDebug(), so named because they synchronize the debug information with the actual
date_ contained in the object. When compiled in release mode, these two functions do
nothing, and in debug mode they update the yyyymmdd_ data member. These functions
are called from every non-const method of the class after modifying the date_ data
member, for example:

Date& operator ++ () {
 ++date_;
 SyncDebug();
 return *this;
}

// some other non-const methods

Date& operator += (int nDays) {
 date_ += nDays;
 SyncDebug();
 return *this;
}

// even more non-const methods

and also in a constructor:

Date::Date(unsigned year, unsigned month, unsigned day) {
 SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
 SCPP_TEST_ASSERT(JAN<=month && month<=DEC,
 "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
 unsigned ml = MonthLength(month, year);
 SCPP_TEST_ASSERT(1<=day && day<=ml,
 "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
 int n_years_before = year - 1;
 date_ = 365*n_years_before + n_years_before/4 - n_years_before/100
 + n_years_before/400 + day + NumberOfDaysBeforeMonth(month, year);

 SyncDebug(year, month, day);
}

Figure 16-1 shows how the Date object looks in the XCode debugger as a result of all
this additional activity in debug mode.

The variable d of type Date is shown in the upper right columns. In the “Arguments”
column find d, and under it you can see its data members, while in the next column,
“Values,” you can see that:

• date_ is equal to 734497.

• yyyymmdd_ is equal to 20111226.

The presence of the latter value makes decoding the date in the object as easy as sepa-
rating the last two pairs of digits from the first four.

Making Your Code Debugger-Friendly | 81

The example of the Date class discussed here is just that: an example of an approach
to making your class friendly to a debugger. I started to work on this mostly out of
frustration when trying to look into STL containers in the debugger and finding a lot
of interesting details about their implementation instead of what numbers or strings or
other objects they actually contained. Making STL containers debugger-friendly on the
level of code could be (and was) done, though it makes the code compiled in debug
mode exceptionally slow. However, this problem was addressed recently on the level
of the debugger: Microsoft Visual Studio 2010 shows the logical contents (as opposed
to implementation details) of STL containers, such as a vector, set, or map (Figure 16-2).

Thus, there is hope that this idea will soon reach debuggers working under Unix, Linux,
and Mac OS too.

In the case of a specific class you create, if its implementation differs from the logical
information it represents, it is up to you to make it debugger-friendly. Usually it is not
difficult, and you will be glad you did it as you debug your program.

Figure 16-1. Looking at the “debuggable” Date object in the XCode debugger

82 | Chapter 16: Making Your Code Debugger-Friendly

Figure 16-2. STL vector, set, and map in the Microsoft Visual Studio 2010 debugger

Making Your Code Debugger-Friendly | 83

CHAPTER 17

Conclusion

Now that we’ve reached the end of this book, let’s go back and summarize the guide-
lines and strategies we’ve discussed. The first guideline is that we want to diagnose as
many errors at compile time as possible. All the other errors will be diagnosed at run-
time, and most of the strategies in this book concentrate on catching these errors.

When catching errors at runtime, we are trying to achieve two contrasting goals:

• Testing as many sanity checks as possible.

• Having our code run as fast as possible in production.

This can be achieved by making some of the sanity checks temporary. To do this, you
need to enable your checks to be switched on and off at compile time and activate them
for testing only.

Here is a summary of all the rules formulated in this book.

For diagnosing errors at compile time (Chapter 2):

• Prohibit implicit type conversions: declare constructors taking one parameter with
the explicit keyword and avoid conversion operators.

• Use different classes for different data types.

• Do not use enums to create int constants; use them to create new types.

To avoid an “index out of bounds” error (Chapter 4):

• Do not use static or dynamically allocated arrays; use a template array or vector
instead.

• Do not use brackets on the new and delete operators; leave allocation of multiple
elements to the template vector.

• Use scpp:vector instead of std::vector, and scpp::array instead of a static array.
Switch the sanity checks on.

85

• For a two-dimensional array, use the scpp::matrix class (or similar classes for
higher-dimension arrays) with operator () providing indexes-out-of-bounds
checks.

To avoid errors in pointer arithmetic (Chapter 5):

• Avoid using pointer arithmetic at all. Use a template vector or array with an index
instead.

To avoid errors with invalid pointers, references, and iterators (Chapter 6):

• Do not hold pointers, references, or iterators to the element of a container after
you’ve modified the container.

To avoid uninitialized variables, especially data members of a class (Chapter 7):

• Do not use built-in types such as int, unsigned, double, bool, etc., for class data
members; instead use Int, Unsigned, Double, Bool, etc. You will not need to initialize
them in constructors.

• If you use these classes instead of built-in types for passing parameters to functions,
you get additional type safety.

To avoid memory leaks (Chapter 8):

• Every time you create an object using the new operator, immediately assign the
result to a smart pointer (a reference counting pointer or scoped pointer is
recommended).

• Use the new operator only without brackets. If you need to create an array, create
a new template vector, which is a single object.

• Avoid circular references.

• When writing a function that returns a pointer, return a corresponding smart
pointer instead of a raw one, to enforce the ownership of the result.

To catch dereferencing a NULL pointer at runtime (Chapter 9):

• If you have a pointer that owns the object it points to, use a smart pointer (a
reference-counting pointer or scoped pointer).

• When you have a raw pointer T* that points to an object you do not own, use the
template class Ptr<T> instead.

• For a const pointer (e.g., const T*) use Ptr<const T>.

To avoid errors in copy-constructors and assignment operators (Chapter 10):

• Whenever possible, avoid writing copy constructor and assignment operators for
your classes.

• If the default versions created for you automatically by the compiler do not work
for you, consider prohibiting copying instances of your class by declaring the copy
constructor and assignment operator private.

86 | Chapter 17: Conclusion

To avoid problems when throwing exceptions from constructors (Chapter 11):

• Design your class in such a way that the destructor is empty.

To avoid errors when writing comparison operators (Chapter 12):

• Write a CompareTo() function and use the SCPP_DEFINE_COMPARISON_OPERATORS
macro to implement all six comparison operators for your class.

To avoid errors when calling C-library functions such as buffer overflows and crashes
caused by NULL pointers (Chapter 13):

• Avoid using C string libraries; use the string and ostringstream C++ classes
instead.

The best possible testing mode is to compile code in debug mode with all sanity checks
activated. In this mode, all runtime errors will lead to calls to the same error handler
function where you can wait with a debug breakpoint. The code will run until a sanity
check fails, at which time you will have an opportunity to debug the code that leads to
the failure.

The next best mode is slightly faster: running tests when code is compiled in release
mode with sanity checks on and relying on the completeness of the error messages to
diagnose the errors. This mode might be necessary if the code compiled in debug mode
with sanity checks on is too slow. You might even want to leave some of the sanity
checks on in production if you think they might be triggered. For this reason, I’ve made
writing these sanity checks as easy as possible, so you can write as many of them as you
need and make them informative enough to diagnose the error without the use of a
debugger.

Finally, when your tests pass all your sanity checks, you have good reason to believe
that your program is working correctly. And the more sanity checks you’ve put in there,
the more reason you have to believe this is true.

If you follow all the rules in this book, you will essentially be using a “safer” subset of
C++ that should lower the “bug count” in your code. Of course, this book covers only
the most common errors one can make when programming in C++, so even if you do
follow all the rules, there is still lots of opportunity for mistakes. Therefore, instead of
being titled Safe C++, this book could have been more realistically called Safer C++.
Of course, completely safe C++ (or any other language) is an unattainable dream, but
I hope that avoiding the errors discussed in this book brings us one step closer to this
goal.

The strategy discussed in this book looks very simple. That’s because it is. The
whole idea of this book can be summarized as follows: design your code to be self-
diagnosing. This strategy makes testing faster, easier, less stressful, and more produc-
tive; it relies on the compiler and runtime code to catch your errors, it speeds up de-
velopment, makes testing much less stressful and more productive, and at the end of

Conclusion | 87

the day makes your code more reliable. Go ahead and apply it to your next project—I
think you’ll agree with me that it works!

88 | Chapter 17: Conclusion

APPENDIX A

Source Code for the scpp Library Used
in This Book

Although you will download this library from my website at https://github.com/vladimir
-kushnir/SafeCPlusPlus for use in your projects, I’m including it here so you can check
it at your convenience while reading the book.

89

https://github.com/vladimir-kushnir/SafeCPlusPlus
https://github.com/vladimir-kushnir/SafeCPlusPlus

APPENDIX B

Source Code for the files
scpp_assert.hpp and scpp_assert.cpp

File scpp_assert.hpp

#ifndef __SCPP_ASSERT_HPP_INCLUDED__
#define __SCPP_ASSERT_HPP_INCLUDED__

#include <sstream> // ostringstream

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
#include <exception>

namespace scpp {
// This exception is thrown when the sanity checks defined below fail,
// and #ifdef SCPP_THROW_EXCEPTION_ON_BUG.
class ScppAssertFailedException : public std::exception {
 public:
 ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message);

 virtual const char* what() const throw () { return what_.c_str(); }

 virtual ~ScppAssertFailedException() throw () {}
 private:
 std::string what_;
};
} // namespace scpp
#endif

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message);

// Permanent sanity check macro.
#define SCPP_ASSERT(condition, msg) \
 if(!(condition)) { \
 std::ostringstream s; \

91

 s << msg; \
 SCPP_AssertErrorHandler(\
 __FILE__, __LINE__, s.str().c_str()); \
 }

#ifdef _DEBUG
define SCPP_TEST_ASSERT_ON
#endif

// Temporary (for testing only) sanity check macro
#ifdef SCPP_TEST_ASSERT_ON
define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif

#endif // __SCPP_ASSERT_HPP_INCLUDED__

File scpp_assert.cpp

#include "scpp_assert.hpp"

#include <iostream> // cerr, endl, flush
#include <stdlib.h> // exit()

using namespace std;

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
namespace scpp {
 ScppAssertFailedException::ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message) {
 ostringstream s;
 s << "SCPP assertion failed with message '" << message
 << "' in file " << file_name << " #" << line_number;

 what_ = s.str();
 }
}
#endif

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
 cerr << message << " in file " << file_name << " #" << line_number << endl << flush;
 // Terminate application
 exit(1);
#endif
}

92 | Appendix B: Source Code for the files scpp_assert.hpp and scpp_assert.cpp

APPENDIX C

Source Code for the file
scpp_vector.hpp

#ifndef __SCPP_VECTOR_HPP_INCLUDED__
#define __SCPP_VECTOR_HPP_INCLUDED__

#include <vector>
#include "scpp_assert.hpp"

namespace scpp {

// Wrapper around std::vector, has temporary sanity checks in the operators [].
template <typename T>
class vector : public std::vector<T> {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 explicit vector(size_type n = 0)
 : std::vector<T>(n)
 {}

 vector(size_type n, const T& value)
 : std::vector<T>(n, value)
 {}

 template <class InputIterator> vector (InputIterator first, InputIterator last)
 : std::vector<T>(first, last)
 {}

 // Note: we do not provide a copy-ctor and assignment operator.
 // we rely on default versions of these methods generated by the compiler.

 T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);

93

 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);
 }
};
} // namespace scpp

template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::vector<T>& v) {
 for(unsigned i=0; i<v.size(); ++i) {
 os << v[i];
 if(i + 1 < v.size())
 os << " ";
 }
 return os;
}

#endif // __SCPP_VECTOR_HPP_INCLUDED__

94 | Appendix C: Source Code for the file scpp_vector.hpp

APPENDIX D

Source Code for the file scpp_array.hpp

#ifndef __SCPP_ARRAY_HPP_INCLUDED__
#define __SCPP_ARRAY_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 array() {}
 explicit array(const T& initial_value) {
 for(size_type i=0; i<size(); ++i)
 data_[i] = initial_value;
 }

 size_type size() const { return N; }

 // Note: we do not provide a copy-ctor and assignment operator.
 // we rely on default versions of these methods generated by the compiler.

 T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 // Accessors
 T* begin() { return &data_[0]; }

95

 const T* begin() const { return &data_[0]; }

 // Returns pointer PAST the end of the array.
 T* end() { return &data_[N]; }
 const T* end() const { return &data_[N]; }

 private:
 T data_[N];
};
} // namespace scpp

template <typename T, unsigned N>
inline
std::ostream& operator << (std::ostream& os, const scpp::array<T,N>& a) {
 for(unsigned i=0; i<a.size(); ++i) {
 os << a[i];
 if(i + 1 < a.size())
 os << " ";
 }
 return os;
}

#endif // __SCPP_ARRAY_HPP_INCLUDED__

96 | Appendix D: Source Code for the file scpp_array.hpp

APPENDIX E

Source Code for the file
scpp_matrix.hpp

#ifndef __SCPP_MATRIX_HPP_INCLUDED__
#define __SCPP_MATRIX_HPP_INCLUDED__

#include <ostream>
#include <vector>

#include "scpp_assert.hpp"

namespace scpp {

// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
 public:
 typedef unsigned size_type;

 matrix(size_type num_rows, size_type num_cols)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

 matrix(size_type num_rows, size_type num_cols, const T& init_value)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
 {
 SCPP_TEST_ASSERT(num_rows > 0, "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0, "Number of columns in a matrix must be positive");
 }

 size_type num_rows() const { return rows_; }
 size_type num_cols() const { return cols_; }

 // Accessors: return element by row and column.

97

 T& operator() (size_type row, size_type col)
 {
 return data_[index(row, col)];
 }

 const T& operator() (size_type row, size_type col) const
 {
 return data_[index(row, col)];
 }

 private:
 size_type rows_, cols_;
 std::vector<T> data_;

 size_type index(size_type row, size_type col) const {
 SCPP_TEST_ASSERT(row < rows_, "Row " << row << " must be less than " << rows_);
 SCPP_TEST_ASSERT(col < cols_, "Column " << col << " must be less than " << cols_);
 return cols_ * row + col;
 }
};

} // namespace scpp

template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::matrix<T>& m) {
 for(unsigned r =0; r<m.num_rows(); ++r) {
 for(unsigned c=0; c<m.num_cols(); ++c) {
 os << m(r,c);
 if(c + 1 < m.num_cols())
 os << "\t";
 }
 os << "\n";
 }
 return os;
}

#endif // __SCPP_MATRIX_HPP_INCLUDED__

98 | Appendix E: Source Code for the file scpp_matrix.hpp

APPENDIX F

Source Code for the file
scpp_types.hpp

#ifndef __SCPP_TYPES_HPP_INCLUDED__
#define __SCPP_TYPES_HPP_INCLUDED__

#include <ostream>
#include "scpp_assert.hpp"

// Template wrapper around a built-in type T.
// Behaves exactly as T, except initialized by default to 0.
template<typename T>
class TNumber {
public:
 TNumber(const T& x=0)
 : data_(x) {
 }

 operator T () const { return data_; }

 TNumber& operator = (const T& x) {
 data_ = x;
 return *this;
 }

 // postfix operator x++
 TNumber operator ++ (int) {
 TNumber<T> copy(*this);
 ++data_;
 return copy;
 }

 // prefix operator ++x
 TNumber& operator ++ () {
 ++data_;
 return *this;
 }

 TNumber& operator += (T x) {

99

 data_ += x;
 return *this;
 }

 TNumber& operator -= (T x) {
 data_ -= x;
 return *this;
 }

 TNumber& operator *= (T x) {
 data_ *= x;
 return *this;
 }

 TNumber& operator /= (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 data_ /= x;
 return *this;
 }

 T operator / (T x)
 {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 return data_ / x;
 }

private:
 T data_;
};

typedef long long int64;
typedef unsigned long long unsigned64;

typedef TNumber<int> Int;
typedef TNumber<unsigned> Unsigned;
typedef TNumber<int64> Int64;
typedef TNumber<unsigned64> Unsigned64;
typedef TNumber<float> Float;
typedef TNumber<double> Double;
typedef TNumber<char> Char;

class Bool {
public:
 Bool(bool x=false)
 : data_(x)
 {}

 operator bool () const { return data_; }
 Bool& operator = (bool x) {
 data_ = x;
 return *this;
 }

 Bool& operator &= (bool x) {
 data_ &= x;

100 | Appendix F: Source Code for the file scpp_types.hpp

 return *this;
 }

 Bool& operator |= (bool x) {
 data_ |= x;
 return *this;
 }

private:
 bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
 if(b)
 os << "True";
 else
 os << "False";
 return os;
}

#define SCPP_DEFINE_COMPARISON_OPERATORS(Class) \
 bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
 bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
 bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
 bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
 bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
 bool operator !=(const Class& that) const { return CompareTo(that) !=0; }

#endif // __SCPP_TYPES_HPP_INCLUDED__

Source Code for the file scpp_types.hpp | 101

APPENDIX G

Source Code for the file
scpp_refcountptr.hpp

#ifndef __SCPP_REFCOUNTPTR_HPP_INCLUDED__
#define __SCPP_REFCOUNTPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Reference-counting pointer. Takes ownership of an object. Can be copied.
template <typename T>
class RefCountPtr {
 public:

 explicit RefCountPtr(T* p = NULL) {
 Create(p);
 }

 RefCountPtr(const RefCountPtr<T>& rhs) {
 Copy(rhs);
 }

 RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
 if(ptr_ != rhs.ptr_) {
 Kill();
 Copy(rhs);
 }

 return *this;
 }

 RefCountPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 Kill();
 Create(p);
 }

 return *this;

103

 }

 ~RefCountPtr() {
 Kill();
 }

 T* Get() const { return ptr_; }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

private:
 T* ptr_;
 int* count_;

 void Create(T* p) {
 ptr_ = p;
 if(ptr_ != NULL) {
 count_ = new int;
 *count_ = 1;
 } else {
 count_ = NULL;
 }
 }

 void Copy(const RefCountPtr<T>& rhs) {
 ptr_ = rhs.ptr_;
 count_ = rhs.count_;
 if(count_ != NULL)
 ++(*count_);
 }

 void Kill() {
 if(count_ != NULL) {
 if(--(*count_) == 0) {
 delete ptr_;
 delete count_;
 }
 }
 }

};
} // namespace scpp

#endif // __SCPP_REFCOUNTPTR_HPP_INCLUDED__

104 | Appendix G: Source Code for the file scpp_refcountptr.hpp

APPENDIX H

Source Code for the file
scpp_scopedptr.hpp

#ifndef __SCPP_SCOPEDPTR_HPP_INCLUDED__
#define __SCPP_SCOPEDPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Scoped pointer, takes ownership of an object, could not be copied.
template <typename T>
class ScopedPtr {
 public:

 explicit ScopedPtr(T* p = NULL)
 : ptr_(p) {
 }

 ScopedPtr<T>& operator=(T* p) {
 if(ptr_ != p)
 {
 delete ptr_;
 ptr_ = p;
 }

 return *this;
 }

 ~ScopedPtr() {
 delete ptr_;
 }

 T* Get() const {
 return ptr_;
 }

 T* operator->() const
 {

105

 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

 // Release ownership of the object to the caller.
 T* Release() {
 T* p = ptr_;
 ptr_ = NULL;
 return p;
 }

private:
 T* ptr_;

 // Copy is prohibited:
 ScopedPtr(const ScopedPtr<T>& rhs);
 ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};

} // namespace scpp

#endif // __SCPP_SCOPEDPTR_HPP_INCLUDED__

106 | Appendix H: Source Code for the file scpp_scopedptr.hpp

APPENDIX I

Source Code for the file scpp_ptr.hpp

#ifndef __SCPP_PTR_HPP_INCLUDED__
#define __SCPP_PTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
 public:

 explicit Ptr(T* p = NULL)
 : ptr_(p) {
 }

 T* Get() const {
 return ptr_;
 }

 Ptr<T>& operator=(T* p) {
 ptr_ = p;
 return *this;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

private:
 T* ptr_;
};

107

} // namespace scpp

#endif // __SCPP_PTR_HPP_INCLUDED__

108 | Appendix I: Source Code for the file scpp_ptr.hpp

APPENDIX J

Source Code for the file scpp_date.hpp
and scpp_date.cpp

File scpp_date.hpp

#ifndef __SCPP_DATE_HPP_INCLUDED__
#define __SCPP_DATE_HPP_INCLUDED__

#include <iostream>
#include <string>

#include "scpp_assert.hpp"
#include "scpp_types.hpp"

/*
 Date class.
 Features:
 All date arithmetic operators and comparisons are provided.
 Date arithmetic is implemented as an integer arithmetic.
 No Y2K problems -- all years must be >= 1900.
 Default output format is American (MM/DD/YYYY).
 In debug one can see the date in debugger as yyyymmdd --
 just point your debugger to a yyyymmdd_ data member.

 No implicit type conversions are allowed.

*/
namespace scpp {
class Date {
public:
 // Creates an empty (invalid in terms of IsValid()) date.
 Date();

 // Input format: "mm/dd/yyyy".
 explicit Date(const char* str_date);

 // Same as above.
 explicit Date(const std::string& str_date);

109

 // Date from integer in the YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
 explicit Date(unsigned yyyymmdd);

 // Year must be 4-digit,
 // month is 1-based, i.e. 1 .. 12,
 // day is 1 .. MonthLength() <= 31
 Date(unsigned year, unsigned month, unsigned day);

 // Returns true if the date is not empty,
 // as is the case when it is created by the default constructor.
 // Most operations on invalid date are not allowed
 // (will call error handler).
 bool IsValid() const { return date_!=0; }

 // Returns date in YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
 unsigned AsYYYYMMDD() const;

 // 4-digit year.
 unsigned Year() const;

 enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
 // Returns month number JAN .. DEC, i.e. 1..12.
 unsigned Month() const;

 // Day of month 1 .. MonthLength() <= 31.
 unsigned DayOfMonth() const;

 static bool IsLeap(unsigned year);

 typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeekType;
 // Returns day of week SUN .. SAT.
 DayOfWeekType DayOfWeek() const;

 // "Sunday", "Monday" .. "Saturday".
 const char* DayOfWeekStr() const;

 int Data() const { return date_; }

 typedef enum { FRMT_AMERICAN, // MM/DD/YYYY
 FRMT_EUROPEAN // MM.DD.YYYY
 // one can add formats in here if necessary.
 } DateOutputFormat;

 enum { MIN_BUFFER_SIZE=11 };
 // The function prints a date into a user-provided buffer
 // and returns the same buffer.
 // Make sure the buffer size >= MIN_BUFFER_SIZE chars at least.
 char* AsString(char* buffer, unsigned bufLen,
 DateOutputFormat frmt=FRMT_AMERICAN) const;

 // Same as above, but C++ style.
 std::string AsString(DateOutputFormat frmt=FRMT_AMERICAN) const;

 // Returns negative int, 0 or positive int in cases of *this<d, *this==d and *this>d.
 int CompareTo(const Date& d) const {

110 | Appendix J: Source Code for the file scpp_date.hpp and scpp_date.cpp

 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
 SCPP_TEST_ASSERT(d.IsValid(), "Date is not valid")

 return date_ - d.date_;
 }

 SCPP_DEFINE_COMPARISON_OPERATORS(Date)

 Date& operator ++ () {
 ++date_;
 SyncDebug();
 return *this;
 }

 Date operator ++ (int) {
 Date copy(*this);
 ++(*this);
 return copy;
 }

 Date& operator -- () {
 --date_;
 SyncDebug();
 return *this;
 }

 Date operator -- (int) {
 Date copy(*this);
 --(*this);
 return copy;
 }

 Date& operator += (int nDays) {
 date_ += nDays;
 SyncDebug();
 return *this;
 }

 Date& operator -= (int nDays) {
 (*this) += (-nDays);
 return *this;
 }

private:
 int date_; // number of days from A.D., i.e. 01/01/0001 is 1.

#ifdef _DEBUG
 int yyyymmdd_;
#endif

 void SyncDebug() {
#ifdef _DEBUG
 yyyymmdd_ = AsYYYYMMDD();
#endif
 }

Source Code for the file scpp_date.hpp and scpp_date.cpp | 111

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
 yyyymmdd_ = 10000*year + 100*month + day;
#endif
 }

 // Returns month's length in days,
 // input: month = 1 .. 12
 static unsigned MonthLength(unsigned month, unsigned year);

 // Returns number of calendar days before beginning of the month,
 // e.g. for JAN - 0,
 // for FEB - 31,
 // for MAR - 59 or 60 depending on the leap year.
 static unsigned NumberOfDaysBeforeMonth(unsigned month, unsigned year);
};
} // namespace scpp

inline std::ostream& operator<<(std::ostream& os, const scpp::Date& d) {
 char buffer[scpp::Date::MIN_BUFFER_SIZE];
 os << d.AsString(buffer, scpp::Date::MIN_BUFFER_SIZE);
 return os;
}

inline scpp::Date operator + (const scpp::Date& d, int nDays) {
 scpp::Date copy(d);
 return (copy += nDays);
}

inline scpp::Date operator - (const scpp::Date& d, int nDays) {
 scpp::Date copy(d);
 return (copy -= nDays);
}

inline int operator - (const scpp::Date& lhs, const scpp::Date& rhs) {
 return lhs.Data() - rhs.Data();
}
#endif // __SCPP_DATE_HPP_INCLUDED__

File scpp_date.cpp

#include "scpp_date.hpp"

#include <string.h> // strlen
#include <stdlib.h> // atoi

namespace scpp {
Date::Date()
: date_(0)
{
#ifdef _DEBUG
 yyyymmdd_ = 0;
#endif

112 | Appendix J: Source Code for the file scpp_date.hpp and scpp_date.cpp

}

Date::Date(const char* str_date) {
 SCPP_ASSERT(str_date!=NULL, "Date(): string argument=0.")

 // must be mm/dd/yyyy, at least m/d/yyyy
 SCPP_TEST_ASSERT(strlen(str_date)>=8, "Bad Date input: '" << str_date << "'.")

 unsigned mm, dd=0, yyyy=0;

 mm = atoi(str_date);
 for(const char* p=str_date; (*p)!='\0'; ++p) {
 if(*p=='/') {
 if(dd==0)
 dd = atoi(p+1);
 else {
 yyyy = atoi(p+1);
 break;
 }
 }
 }

 SCPP_TEST_ASSERT(mm!=0 && dd!=0 && yyyy!=0, "Bad Date input '" << str_date << "',
 must be MM/DD/YYYY.");

 *this = Date(yyyy, mm, dd);
}

Date::Date(const std::string& str) {
 *this = Date(str.c_str());
}

Date::Date(unsigned yyyymmdd) {
 int yyyy = yyyymmdd / 10000;
 int mmdd = yyyymmdd - 10000 * yyyy;
 int mm = mmdd / 100;
 int dd = mmdd - 100 * mm;

 *this = Date(yyyy, mm, dd);
}

Date::Date(unsigned year, unsigned month, unsigned day) {
 SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
 SCPP_TEST_ASSERT(JAN<=month && month<=DEC, "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
 unsigned ml = MonthLength(month, year);
 SCPP_TEST_ASSERT(1<=day && day<=ml, "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
 int n_years_before = year-1;
 date_ = 365*n_years_before
 + n_years_before/4 - n_years_before/100 + n_years_before/400
 + day + NumberOfDaysBeforeMonth(month, year);

 SyncDebug(year, month, day);
}

Source Code for the file scpp_date.hpp and scpp_date.cpp | 113

unsigned Date::AsYYYYMMDD() const {
 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;

 return y*10000 + m*100 + d;
}

bool Date::IsLeap(unsigned year) {
 if(year%4)
 return false;

 if(year%400 == 0)
 return true;

 if(year%100 == 0)
 return false;

 return true;
}

Date::DayOfWeekType Date::DayOfWeek() const {
 return (DayOfWeekType)(date_ % 7);
}

const char* Date::DayOfWeekStr() const {
 static const char* str_day_of_week[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };

 DayOfWeekType dow = DayOfWeek();
 return str_day_of_week[(unsigned)dow];
}

// static
unsigned Date::MonthLength(unsigned month, unsigned year) {
 static int month_length[13] = { 0, 31,28,31,30,31,30,31,31,30,31,30,31 };
 SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
 SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
 if(month == FEB && IsLeap(year))
 return 29;
 return month_length[month];
}

// static
unsigned Date::NumberOfDaysBeforeMonth(unsigned month, unsigned year) {
 static int days_before_month[12] = { 0, 31,59,90,120,151,181,212,243,273,304,334 };
 SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
 SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
 unsigned days_before = days_before_month[month - 1];
 if (month >= MAR && IsLeap(year))
 ++days_before;
 return days_before;
}

114 | Appendix J: Source Code for the file scpp_date.hpp and scpp_date.cpp

unsigned Date::Year() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Data() / 365;
 while(Date(y,1,1).Data() > Data())
 --y;
 return y;
}

unsigned Date::Month() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Year();
 Date endOfLastYear(y-1, DEC, 31);
 unsigned day = Data() - endOfLastYear.Data();
 for(unsigned m=JAN; m<=DEC; ++m)
 {
 unsigned ml = MonthLength(m, y);
 if(day <= ml)
 return m;
 day -= ml;
 }
 SCPP_ASSERT(false, "Fatal algorith error.")
 return 0;
}

unsigned Date::DayOfMonth() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;
 SCPP_TEST_ASSERT(d > 0 && d <= MonthLength(m,y),
 "Wrong day " << d << " of month " << m << " year " << y);
 return d;
}

char* Date::AsString(char* buffer, unsigned bufLen, DateOutputFormat frmt) const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
 SCPP_TEST_ASSERT(bufLen>=MIN_BUFFER_SIZE,
 "Buffer is too short: " << bufLen << " must be at least " << MIN_BUFFER_SIZE)

 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;

 switch(frmt) {
 case FRMT_AMERICAN:
 sprintf(buffer, "%02d/%02d/%04d", m, d, y);
 break;

 case FRMT_EUROPEAN:
 sprintf(buffer, "%02d.%02d.%4d", m, d, y);
 break;

Source Code for the file scpp_date.hpp and scpp_date.cpp | 115

 default:
 SCPP_ASSERT(false, "Wrong output format " << frmt);
 }

 return buffer;
}

std::string Date::AsString(DateOutputFormat frmt) const {
 char buffer[12];
 return AsString(buffer, sizeof(buffer), frmt);
}
} // namespace scpp

116 | Appendix J: Source Code for the file scpp_date.hpp and scpp_date.cpp

Index

Symbols
&= operator, 40
() operator, 28, 29
++ operator, 40
< operator, 63, 64
<< operator, 12, 13, 21, 26, 28, 41
<= operator, 63
[] operator, 19, 20, 21, 24, 28, 31, 35
_DEBUG symbol, 75, 80
|= operator, 40

A
arrays

dynamic, 19–24
index for, 19
multidimensional, 26–29
static, 24–26

assignment operators, avoiding, 55–56
at() function, 20, 21

B
Base() class, 22
begin() method, 25, 35
bool type, 9, 40–42, 40, 41, 42, 86
boost library, 47
buffer overflows, and standard C libraries, 67–

68
bugs (see errors)
built-in type, 37–40

C
C libraries

errors when using, 67–68

functions from, 87
C++ language

goals when writing code in, xi
memory allocation in, 4
problems inherited from C, 3–4
why unsafe, ix

calloc() function, 4, 19
cerr statement, 76
char type, 9
circular references, 43
classes

multiple, testing, 71–73
using for class data members, 37–40
varying for different data types, 7–8

code in destructors, avoiding, 57–61
CompareTo() function, 65, 87
comparison operators, consistent, 63–65
compiling, catching bugs when, 5
const pointer, 47, 54, 86
conventions for naming in code, xiii–xiv
conversion operators, 8
copy constructors, avoiding, 55–56
core dumps, 53, 67–68
crashes, 53, 67–68

D
Date class, 7, 79, 80, 81, 82, 81, 82
debugging, 3

(see also errors)
(see also sanity checks)
and code writing, 79–82
debug-on-error strategy, 75–76

delete operator, 4, 22, 26, 29, 44, 47, 50, 52,
85

delete [] (delete with brackets), 4, 47, 50

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

117

dereferencing NULL pointers, 53–54
Derived() destructor, 22, 23
destructors

avoiding code in, 57–61
Derived() destructor, 22, 23
empty, 57–61

double type, 9, 31, 38, 39, 41, 42, 86
dynamic arrays, 19–24

E
empty destructors, 57–61
end() method, 25
enum type, 8–9, 14, 85
errors, 3

(see also sanity checks)
at runtime, 11–16
catching at compile, 5, 7–10
debugging

and code writing, 79–82
debug-on-error strategy, 75–76

handling, 13–16
index-out-of-bounds

and dynamic arrays, 19–24
and multidimensional arrays, 26–29
and static arrays, 24–26
diagnosis of by Visual Studio, 26

types of, 11
when using C libraries, 67–68
with types, 7–10

different classes for different data types,
7–8

implicit type conversions, 8–9
using enum to create new types, 8–9

explicit keyword, 8, 10, 39, 85

F
float type, 39
free() function, 4
functions, passing parameters to, 41–42

H
hash maps, 73
hash sets, 73
hash_map container, 35
hash_set container, 35

I
implicit type conversions, 8–9

index of array, 19
index-out-of-bounds errors

and dynamic arrays, 19–24
and multidimensional arrays, 26–29
and static arrays, 24–26
diagnosis of by Visual Studio, 26

init_value argument, 28
int type, 7, 10, 31, 38, 39, 40, 41, 42, 50, 85,

86
iterators, invalid, 33–35

M
macros, using with sanity checks, 13, 15–16
malloc() function, 4, 19, 43
matrices, two-dimensional, 26–29
memory allocation, 4
memory leaks

and reference counting pointers, 47–49
and scoped pointers, 49–50
avoiding with smart pointers, 51–52
defined, 44

multidimensional arrays, 26–29
Mutex object, 52

N
n-dimensional arrays, 26–29
naming conventions, xiii–xiv
new operator, 4, 24, 26, 29, 43, 44, 49, 50, 52,

85, 86
new[] operator, 52
NULL pointers, dereferencing, 53–54

O
objects, ownership of, 44, 52
operator=, 54
ostringstream class (see std::ostringstream)
out_of_range exception, 20
ownership of objects, 44, 51–52

P
parameters, passing to functions, 41–42
permanent macros, 13, 15–16
pointers

invalid, 33–35
NULL pointers, dereferencing, 53–54
pointer arithmetic, 31
reference counting pointers, 47–49

118 | Index

scoped pointers, 49–50
semi-smart pointers, 53–54
smart pointers, 45–46, 51–52, 60–61

porting from C, 3–4
program crashes, 53, 67–68
Ptr<T> class, 54, 86

R
references

circular, 43
invalid, 33–35
reference counting pointers, 47–49

Release() method, 51
return statement, 45, 46
Ritchie, Dennis, 3
Run() method, 44
runtime, errors at, 11–16

S
sanity checks

defined, 11
in debug mode, 76
leaving active in code, 14–15
speeding up, 20–24
using smart pointers, 60–61
using temporary vs. permanent macros

with, 13, 15–16
when to write, 16

scoped pointers, 49–50
scpp::array class, xiv, 29, 85
scpp::matrix class, xiv, 29, 86
scpp::vector class, xiv, 21, 23, 24
scpp::vector::operator[], 21
scpp:vector class, 29, 85
scpp_array.hpp, 95–96
SCPP_ASSERT macro, 12, 13
scpp_assert.cpp, 92
scpp_assert.hpp, 91–92
SCPP_AssertErrorHandler() function, 11, 12,

15
scpp_date.cpp, 112–116
scpp_date.hpp, 109–112
SCPP_DEFINE_COMPARISON_OPERATO

RS macro, 65, 87
scpp_matrix.hpp, 97–98
scpp_ptr.hpp, 107–108
scpp_refcountptr.hpp, 103–104
scpp_scopedptr.hpp, 105–106

SCPP_TEST_ASSERT macro, 13, 21, 25, 75
SCPP_TEST_ASSERT_INDEX_OUT_OF_BO

UNDS macro, 21
SCPP_TEST_ASSERT_ON macro, 21
SCPP_THROW_EXCEPTION_ON_BUG

macro, 14
scpp_types.hpp, 99–101
scpp_vector.hpp, 93–94
semi-smart pointers, 53–54
size() function, 67
smart pointers, 45–46, 51–52, 60–61
sprintf() function, 67
static arrays, 24–26
std::ostringstream class, 11–12, 68, 87
std::string class, 7, 38, 68, 87
std::vector class, xiv, 20, 23, 24, 29, 85
STL containers, 35, 82
strcat() function, 68
strcpy() function, 67
string class (see std::string class)
strlen() function, 67
strncat() function, 68
Stroustrup, Bjarne, 3

T
T* pointer, 28, 49, 54, 86
template vector, 21–22, 24–26
temporary macros, 13, 15–16
testing, principles for, 71–73
three-dimensional arrays, 26–29
throw statement, 76
Time class, 7
try-catch statements, 45
two-dimensional matrices, 26–29
types, 7–10

built-in, 37–40
different classes for different data types, 7–

8
implicit type conversions, 8–9
using enum to create new types, 8–9

U
uninitialized variables

bool type, 40–42
numbers, 37–40

unsigned type, 38, 41, 42, 86

Index | 119

V
Variant class, 6, 9
vectors

adding too many elements to, 33–34
pointers, references, iterators pointing to

elements of, 33–34
template vector, 21–22, 24–26

Visual Studio
diagnosis of index-out-of-bounds errors by,

26
STL containers in debugger, 82

120 | Index

About the Author
Vladimir Kushnir obtained his Ph.D. in physics at the Institute for Solid State Physics,
Academy of Sciences of the USSR. Since that time, Vladimir worked as an experimental
physicist, using FORTRAN, C, and then C++, while working at Northwestern Uni-
versity and later at the Argonne National Laboratory. He then went to work with Wall
Street firms, focusing mostly on calculations called “financial analytics,” and having
special interest in taking a calculation and making it run faster, sometimes by an order
of magnitude. He lives with his wife Daria in Connecticut and when not programming
in C++, enjoys jazz music and underwater photography in his spare time.

Colophon
The animal on the cover of Safe C++ is the merlin (Falcon columbarius). Formerly
known as the pigeon hawk, this bird was embraced for falconry among royalty in me-
dieval Europe, especially by noble women—Mary Queen of Scots and Catherine the
Great, in particular. There are various subspecies of the merlin, and it could be argued
that there are two distinct variants: the North American merlin and the European mer-
lin (Falcon aesalon).

This species is found at high latitudes all over North America in various habitats, in-
cluding marshes, open woodland, and prairies. Merlins are migratory and, depending
on the variant, will travel as far as South America and North Africa for winter months.

Merlins are lean, yet robust, birds of prey. Females are usually larger than males, grow-
ing up to nearly a foot in length with a wingspan of at least 20 inches. While female
birds carry dark brown plumage, males usually have blue-gray colored feathers. Both
have long, banded tails.

The merlin is an aggressive predator; as an aerial forager, it relies on agility and speed
for its hunts. When in pursuit of a meal, merlins will often fly very low to the ground
and use their surroundings to take their prey by surprise. They are also apt to capture
prey midair. Its diet consists of smaller birds, such as sandpipers and the meadow pipit,
as well as other small mammals and large insects.

Merlins are resourceful creatures; instead of building their own nests, they roost in old
nests of other birds, like magpies or crows. They are also monogamous animals, and
are known to demonstrate acrobatic displays of courtship. In fact, paired merlins will
hunt cooperatively, with one bird flushing the prey toward its mate.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	How This Book Is Organized
	Conventions Used in This Book
	Naming Conventions
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. A Bug-Hunting Strategy for C++
	Chapter 1. Where Do C++ Bugs Come From?
	Chapter 2. When to Catch a Bug
	Why the Compiler Is Your Best Place to Catch Bugs
	How to Catch Bugs in the Compiler
	The Proper Way to Handle Types

	Chapter 3. What to Do When We Encounter an Error at Runtime

	Part II. Bug Hunting: One Bug at a Time
	Chapter 4. Index Out of Bounds
	Dynamic Arrays
	Static Arrays
	Multidimensional Arrays

	Chapter 5. Pointer Arithmetic
	Chapter 6. Invalid Pointers, References, and Iterators
	Chapter 7. Uninitialized Variables
	Initialized Numbers (int, double, etc.)
	Uninitialized Boolean

	Chapter 8. Memory Leaks
	Reference Counting Pointers
	Scoped Pointers
	Enforcing Ownership with Smart Pointers

	Chapter 9. Dereferencing NULL Pointers
	Chapter 10. Copy Constructors and Assignment Operators
	Chapter 11. Avoid Writing Code in Destructors
	Chapter 12. How to Write Consistent Comparison Operators
	Chapter 13. Errors When Using Standard C Libraries

	Part III. The Joy of Bug Hunting: From Testing to Debugging to
 Production
	Chapter 14. General Testing Principles
	Chapter 15. Debug-On-Error Strategy
	Chapter 16. Making Your Code Debugger-Friendly
	Chapter 17. Conclusion
	Appendix A. Source Code for the scpp Library Used in This Book
	Appendix B. Source Code for the files scpp_assert.hpp and scpp_assert.cpp
	Appendix C. Source Code for the file
 scpp_vector.hpp
	Appendix D. Source Code for the file
 scpp_array.hpp
	Appendix E. Source Code for the file
 scpp_matrix.hpp
	Appendix F. Source Code for the file
 scpp_types.hpp
	Appendix G. Source Code for the file
 scpp_refcountptr.hpp
	Appendix H. Source Code for the file
 scpp_scopedptr.hpp
	Appendix I. Source Code for the file
 scpp_ptr.hpp
	Appendix J. Source Code for the file scpp_date.hpp and scpp_date.cpp

	Index

