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To Daria and Misha

Preface



Astute readers such as yourself may be wondering whether the
  title of this book, Safe C++, presumes that the C++
  programming language is somehow unsafe. Good catch! That is indeed the
  presumption. The C++ language allows programmers to make all kinds of
  mistakes, such as accessing memory beyond the bounds of an allocated array,
  or reading memory that was never initialized, or allocating memory and
  forgetting to deallocate it. In short, there are a great many ways to shoot
  yourself in the foot while programming in C++, and everything will proceed
  happily along until the program abruptly crashes, or produces an
  unreasonable result, or does something that in computer literature is
  referred to as “unpredictable behavior.” So yes, in this sense, the C++ language is inherently unsafe.
This book discusses some of the most common mistakes made by us, the
  programmers, in C++ code, and offers recipes for avoiding them. The C++
  community has developed many good programming practices over the years. In
  writing this book I have collected a number of these, slightly modified
  some, and added a few, and I hope that this collection of rules formulated
  as one bug-hunting strategy is larger than the sum of its parts.
The undeniable truth is that any program significantly more complex
  than “Hello, World” will contain some number of errors, also affectionately
  called “bugs.” The Great Question of Programming is how we can reduce the
  number of bugs without slowing the process of programming to a halt. To
  start with, we need to answer the following question: just who is supposed
  to catch these bugs?
There are four participants in the life of the software program (Figure 1):
	The programmer

	The compiler (such as g++ under
      Unix/Linux, Microsoft Visual Studio under Windows, and XCode under Mac
      OS X)

	The runtime code of the application

	The user of the program



[image: Four participants (buggy version)]

Figure 1. Four participants (buggy version)

Of course, we don’t want the user to see the bugs or even know about
  their existence, so we are left with participants 1 through 3. Like the
  user, programmer is human, and humans can get tired, sleepy, hungry,
  distracted by colleagues asking questions or by phone calls from family
  members or a mechanic working on their car, and so on. In short, humans make
  mistakes, the programmer is human, and therefore the programmer makes
  mistakes, a.k.a. bugs. In comparison, participants 2 and 3—the compiler and
  the executable code—have some advantages: they do not get tired, sleepy,
  depressed, or burned out, and do not attend meetings or take vacations or
  lunch breaks. They just execute instructions and usually are very good at
  doing it.
Considering our resources we have to deal with—the programmer on the
  one hand, and the compiler and program on the other—we can adopt one of two
  strategies to reduce the number of bugs:
Choice Number 1: Convince the programmer not to make mistakes. Look
  him in the eyes, threaten to subtract $10 from his bonus for each bug, or
  otherwise stress him out in the hopes to improve his productivity. For
  example, tell him something like this: “Every time you allocate memory, do
  not forget to de-allocate it! Or else!”
Choice Number 2: Organize the whole process of programming and testing
  based on a realistic assumption that even with the best intentions and most
  laserlike focus, the programmer will put some bugs in the code. So rather
  than saying to the programmer, “Every time you do A, do not forget to do B,”
  formulate some rules that will allow most bugs to be caught by the compiler
  and the runtime code before they have a chance to reach the user running the
  application, as illustrated in Figure 2.
[image: Four participants (happy/less buggy version)]

Figure 2. Four participants (happy/less buggy version)

When we write C++ code, we should pursue three goals:
  
	The program should perform the task for which it was written;
        for example, calculating monthly bank statements, playing music, or
        editing videos.

	The program should be human-readable; that is, the source code
        should be written not only for a compiler but also for a human
        being.

	The program should be self-diagnosing; that is, look for the
        bugs it contains.



These three goals are listed in decreasing order of how
  often they are pursued in the real programming world. The first goal is
  obvious to everybody; the second, to some people, and the third is the
  subject of this book: instead of hunting for bugs yourself, have a compiler
  and your executable code do it for you. They can do the dirty work, and you
  can free up your brain energy so you can think about the algorithms, the
  design—in short, the fun part.
Audience



If you have never programmed in C++, this book is not for you. It is
    not intended as a C++ primer. This book assumes that you are already
    familiar with C++ syntax and have no trouble understanding such concepts
    as the constructor, copy-constructor, assignment operator, destructor,
    operator overloading, virtual functions, exceptions, etc. It is intended
    for a C++ programmer with a level of proficiency ranging from near
    beginner to intermediate.

How This Book Is Organized



In Part I, we discuss the following three questions: in Chapter 1, we will examine the title question. Hint: it’s all
    in the family.
In Chapter 2, we will discuss why it is better to
    catch bugs at compile time, if at all possible. The rest of this chapter
    describes how to do this.
In Chapter 3, we discuss what to do when a
    bug is discovered at run-time. And here we demonstrate that in order to
    catch errors, we will do everything we can to make writing sanity checks
    (i.e., a piece of code written for specific purpose of diagnosing errors)
    easy. Actually, the work is already done for you: Appendix A contains the code of the macros which do writing a
    sanity check a snap, while delivering maximum information about what
    happened, where, and why, without requiring much work from a programmer.
    In Part II we go through different types of errors, one
    at a time, and formulate rules that would make each of these errors
    (a.k.a. bugs) either impossible, or at least easy to catch. In Part III we apply all the rules and code of the Safe C++
    library introduced in Part II and discuss the testing
    strategy that shows how to catch bugs in the most efficient manner.
We also discuss how to make your program “debuggable.” One of the
    goals when writing a program is to make it easy to debug, and we will show
    how our proposed use of error handling adds to our two friends—compiler
    and run-time code—the third one: a debugger, especially when it is working
    with the code written to be debugger-friendly.
And now we are ready to go hunting for actual bugs. In Part II, we go through some of the most common types of
    errors in C++ code one by one, and formulate a strategy for each, or
    simply a rule which makes this type of error either impossible or easily
    caught at run-time. Then we discuss the pros and cons of each particular
    rule, its pluses and minuses, and its limitations. I conclude each of
    these chapters with the short formulation of the rule, so that if you just
    want to skip the discussion and get to the bottom line, you know where to
    look. Chapter 17 summarizes all rules in one short
    place, and the Appendices contain all
    necessary C++ files used in the book.
At this point you might be asking yourself, “So instead of saying,
    ‘When you do A, don’t forget to do B’ we’re instead saying, ‘When you do
    A, follow the rule C’? How is this better? And are there more certain ways
    to get rid of these bugs?” Good questions. First of all, some of the
    problems, such as memory deallocation, could be solved on the level of
    language. And actually, this one is already done. It is called Java or C#.
    But for the purposes of this book, we assume that for some reason ranging
    from abundant legacy code to very strict performance requirements to an
    unnatural affection for our programming language, we’re going to stick
    with C++.
Given that, the answer to the question of why following these rules
    is better than the old “don’t forget” remonstrance is that in many cases
    the actual formulation of the rule is more like this:
	The original: “When you allocate memory here, do not
        forget to check all the other 20 places where you need to deallocate
        it and also make sure that if you add another return statement to this
        function, you don’t forget to add a cleanup there
        too.”

	The new formulation: “When you allocate memory,
        immediately assign it to a smart pointer right here right now, then
        relax and forget about it.”



I think we can agree that the second way is simpler and more
    reliable. It’s still not an iron-clad 100% guarantee that the programmer
    won’t forget to assign the memory to a smart pointer, but it’s easier to
    achieve and significantly more fool-proof than the original
    version.
It should be noted that this book does not cover multithreading. To
    be precise, multithreading is briefly mentioned in the discussion of
    memory leaks, but that’s it. Multithreading is very complex and gives the
    programmer many opportunities to make very subtle, non-reproducible and
    difficult-to-find mistakes, but this is the subject of a much larger
    book.
I of course do not claim that the rules proposed in this book are
    the only correct ones. On the contrary, many programmers will passionately
    argue for some alternative practice, that may well be the right one for
    them. There are many ways to write good C++ code. But what I am claiming
    is the following:
	If you follow the rules described in this book in letter and in
        spirit (you can even add your own rules), you will develop your code
        faster.

	During the first minutes or hours of testing, you will catch
        most if not all of the errors you’ve put in there; therefore, you can
        be much less stressed while writing it.

	Finally, when you are done testing, you will be reasonably sure
        that your program does not contain bugs of a certain type. That’s
        because you’ve added all these sanity checks and they’ve all
        passed!



And what about efficiency of the executable code? You might be
    concerned that all that looking for bugs won’t come for free. Not to
    worry—in Part III, The Joy of Bug Hunting:
    From Testing to Debugging to Production, we’ll discuss how to
    make sure the production code will be as efficient as it can be.

Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width
        bold
	Shows output produced by a program.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Naming Conventions



I believe strongly in the importance of a naming convention.
    You can use any convention you like, but here is what I’ve chosen for this
    book:
	Class names are
        MultipleWordsWithFirstLettersCapitalizedAndGluedTogether;
        for example:
class MyClass {

	Function names (a.k.a. methods) in those classes
        FollowTheSameConvention; example:
MyClass(const MyClass& that);
void DoSomething() const;
This is because in C++ the constructor must have the same name
        (and the destructor a similar name) as a class, and since they are
        function names in the class, we might as well make all functions look
        the same.

	Variables have names that are
        lowercase_and_glued_together_using_underscore.

	Data members in the class follow the same convention as
        variables, except they have an additional underscore at the
        end:
class MyClass {
 public:
  // some code

 private:
  int int_data_;
};



The only exception to these rules is when we work with STL (i.e.,
    Standard Template Library) classes such as std::vector. In this
    case, we use the naming conventions of the
    STL in order to minimize changes to your code if you decide to replace
    std::vector with scpp::vector (all classes
    defined in this book are in the namespace scpp). Classes such
    as scpp::array and
    scpp::matrix follow the
    same convention as scpp::vector just because they
    are containers similar to a vector.
One final remark before we start: all examples of the code in this
    book were compiled and tested on a Mac running Max OS X 10.6.8 (Snow
    Leopard) using the g++ compiler or
    XCode. I attempted to avoid anything platform-specific; however, your
    mileage may vary. I also made my best effort to ensure that the code of
    SafeC++ library provided in the
    Appendices is correct, and to the best of
    my knowledge it does not contain any bugs. Still, you use it at your own
    risk. All the C++ code and header files we discuss are available both at
    the end of this book in the Appendices,
    and on the website https://github.com/vladimir-kushnir/SafeCPlusPlus.
We have here outlined a road map. At the end of the road is better
    code with fewer bugs combined with higher programmer productivity and less
    headache, a shorter development cycle, and more proof that the code
    actually works correctly. Sounds good? Let’s jump in.

Using Code Examples



This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Safe C++ by Vladimir Kushnir. Copyright 2012
    Vladimir Kushnir, 978-1-449-32093-5.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online (www.safaribooksonline.com)
      is an on-demand digital library that delivers expert content in both
      book and video form from the world’s leading authors in technology and
      business.

Technology professionals, software developers, web designers, and
    business and creative professionals use Safari Books Online as their
    primary resource for research, problem solving, learning, and
    certification training.
Safari Books Online offers a range of product mixes
    and pricing programs for organizations,
    government
    agencies, and individuals.
    Subscribers have access to thousands of books, training videos, and
    prepublication manuscripts in one fully searchable database from
    publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
    Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
    Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
    Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
    McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
    information about Safari Books Online, please visit us online.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://oreil.ly/SafeCPP

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
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Part I. A Bug-Hunting Strategy for C++




This part of the book offers a classification of the kinds of errors that tend to creep
      into C++ programs. I show the value of catching
      errors during compilation instead of testing, and offer basic principles to keep
      in mind when pursuing the specific techniques to prevent or catch
      bugs discussed in later chapters.


Chapter 1. Where Do C++ Bugs Come From?



The C++ language is unique. While practically all programming
  languages borrow ideas, syntax elements, and keywords from previously
  existing languages, C++ incorporates an entire other language—the
  programming language C. In fact, the creator of C++, Bjarne Stroustrup,
  originally called his new language “C with classes.” This means that if you
  already had some C code used for whatever purpose, from scientific research
  to trading, and contemplated switching to an object-oriented language, you’d
  need not to do any work of porting the code: you’d just install the new C++
  compiler, and it would compile your old C code and everything would work the
  same way. You might even think that you’d completed a transition to C++.
  While this last thought would be far from the truth—the code written in real
  C++ looks very different from the C code—this still gives an option of a
  gradual transition. That is, you could start with existing C code that still
  compiles and runs, and gradually introduce some pieces of new code written
  in C++, mixing them as much as you want and eventually switching to pure
  C++. So the layered design of C++ was an ingenious marketing move.
However, it also had some implications: while the whole syntax
  of C was grandfathered into the new language, so was the philosophy and the
  problems. The C programming language was created by Dennis Ritchie at Bell
  Labs around 1969-1973 for the purpose of writing the Unix operating system.
  The goal was to combine the power of a high-level programming language (as
  opposed to writing each computer instruction in an assembler) with
  efficiency: that is, the produced compiled code should be as fast as
  possible. One of the declared principles of the new C language was that the
  user should not pay any penalty for the features he does not use. So, in
  pursuit of efficient compiled code, C did not do anything it was not
  explicitly asked to do by the programmer. It was built for speed, not for
  comfort. And this created several problems.
First, a programmer could create an array of some length and then
  access an element using an index outside the bounds of the array. Even more
  prone to abuse was that C used pointer arithmetic, where one could calculate
  any value whatsoever, use it as a memory address, and access that piece of
  memory no matter whether it was created by the program for this purpose or
  not. (Actually, these two problems are one and the same—just using different
  syntax).
A programmer could also allocate memory at runtime using the
  calloc() or malloc() functions and was
  responsible for deallocating it using the free() function. However,
  if he forgot to deallocate it or accidentally did it more than once, the
  results could be catastrophic.
We will go though each of these problems in more detail in Part II. The important thing to note is that while C++
  inherited the whole of C with its philosophy of efficiency, it inherited all
  its problems as well. So part of the answer to the question of where the
  bugs come from is “from C.”
However, this is not the end of the story. In addition to the
  problems inherited from C, C++ introduced a few of its own. For instance,
  most people count friend functions and multiple inheritance as bad ideas.
  And C++ has its own method of allocating memory: instead of calling
  functions like calloc() or malloc(), one should use
  the operator new. The new operator does more then
  just allocating memory; it creates objects, i.e., calls their constructors.
  And in the same spirit as C, the deallocation of this memory using the
  delete operator is the responsibility of
  the programmer. So far the situation seems to be analogous to the one in C:
  you allocate memory, and then you delete it. However, the complication is
  that there are two different new
  operators in C++:
MyClass* p_object = new MyClass();  // Create one object
MyClass* p_array = new MyClass[number_of_elements]; // Create an array
In the first case, new creates one object of type
  MyClass, and in the second, it creates an array of
  objects of the same type. Correspondingly, there are two different
  delete operators:
delete p_object;
delete [] p_array;
And of course, once you’ve used “new with brackets” to create objects,
  you need to use  “delete with brackets” to delete them. So a new type of
  mistake is possible: the cross-use of new and delete, one with brackets and
  another without. If you mess up here, you can wreak havoc on the memory
  heap. So to summarize, the bugs in C++ mostly came from C, but C++ added
  this new method for programmers to shoot themselves in the foot, and we’ll
  discuss it in Part II.

Chapter 2. When to Catch a Bug



Why the Compiler Is Your Best Place to Catch Bugs



Given the choice of catching bugs at compile time vs.
    catching bugs at runtime, the short answer is that you want to catch bugs
    at compile time if at all possible. There are multiple reasons for this.
    First, if a bug is detected by the compiler, you will receive a message in
    plain English saying exactly where, in which file and at which line, the
    error has occurred. (I may be slightly optimistic here, because in some
    cases—especially when STL is involved—compilers produce error messages so
    cryptic that it takes an effort to figure out what exactly the compiler is
    unhappy about. But compilers are getting better all the time, and most of
    the time they are pretty clear about what the problem is.)
Another reason is that a complete compilation (with a final link)
    covers all the code in the program, and if the compiler returns with no
    errors or warnings, you can be 100% sure that there are no errors that
    could be detected at compile time in your program. You could never say the
    same thing about run-time testing; with a large enough piece of code, it
    is difficult to guarantee that all the possible branches were tested, that
    every line of code was executed at least once.
And even if you could guarantee that, it wouldn’t be enough—the same
    piece of code could work correctly with one set of inputs and incorrectly
    with another, so with runtime testing you are never completely sure that
    you have tested everything.
And finally, there is the time factor: you compile before you run
    your code, so if you catch your error during compilation, you’ve saved
    some time. Some runtime errors appear late in the program, so it might
    take minutes or even hours of running to get to an error. Moreover, the
    error might not be even reproducible—it could appear and disappear at
    consecutive runs in a seemingly random manner. Compared to all that,
    catching errors at compile time seems like child’s play!

How to Catch Bugs in the Compiler



By now you should be convinced that whenever possible, it’s best to
    catch errors at compile time. But how can we achieve this? Let’s look at a
    couple of examples.
The first is the story of a Variant class. Once upon
    a time, a software company was writing an Excel plug-in. This is a file
    that, after being opened by Microsoft Excel, adds some new functions that
    could be called from an Excel cell. Because the Excel cell can contain
    data of different types—an integer (e.g., 1), a floating-point number
    (e.g., 3.1415926535), a calendar date (such as 1/1/2000), or even a string
    (“This is the house that Jack built”)—the company developed a Variant class that
    behaved like a chameleon and could contain any of these data types. But
    then someone had the idea that a Variant could contain
    another Variant, and even a
    vector of Variants (i.e., std::vector<Variant>). And these
    Variants started being
    used not just to communicate with Excel, but also in internal code. So
    when looking at the function signature:
Variant SomeFunction(const Variant& input);
it became totally impossible to understand what kind of data the
    function expects on input and what kind of data it returns. So if for
    example it expects a calendar date and you pass it a string that does not
    resemble a date, this can be detected only at runtime. As we’ve just
    discussed, finding errors at compile time is preferable, so this approach
    prevents us from using the compiler to catch bugs early using type safety.
    The solution to this problem will be discussed below, but the short answer
    is that you should use separate C++ classes to represent different data
    types.
The preceding example is real but somewhat extreme. Here is a more
    typical situation. Suppose we are processing some financial data, such as
    the price of a stock, and we accompany each value with the correspondent
    time stamp, i.e., the date and time when this price was observed. So how
    do we measure time? The simplest solution is to count seconds since some
    time in the past (say, since 1/1/1970).
Suddenly someone realizes that the library used for this purpose
    provides a 32-bit integer, which has a maximum value of about 2 billion,
    after which the value will overflow and become negative. This would happen
    about 68 years after the starting point on the time axis, i.e., in the
    year 2038. The resulting problem is analogous to the famous “Y2K” problem,
    and fixing it would entail going through a rather large number of files
    and finding all these variables and making them int64, which has 64 bits instead of 32, and this
    would last about 4 billion times longer, which should be enough even for
    the most outrageous optimist.
But by now another problem has turned
    up: some programmers used int64
    num_of_seconds, while others used int64_num_of_millisec, while still others wrote
    int64 num_of_microsec. The compiler has
    absolutely no way of figuring out if a function that expects time in
    milliseconds is being passed time in microseconds or vice versa. Of
    course, if we make some assumptions that the time interval in which we
    want to analyze our stock prices starts after, say, year 1990 and goes
    until some point in the future, say year 3000, then we can add a sanity
    check at runtime that the value being passed must fall into this interval.
    However, multiple functions need to be equipped with this sanity check,
    which requires a lot of human work. And what if someone later decides to
    go back and analyze the stock prices throughout the 20th century?

The Proper Way to Handle Types



Now, this entire mess could have been easily avoided
    altogether if we had just created a Time class and left the
    details of when it starts and what unit it measures (seconds,
    milliseconds, etc.) as hidden details of the internal implementation. One
    advantage of this approach is that if we mistakenly try to pass some other
    data type instead of time (which now has a Time type), a compiler
    would have caught it early. Another advantage is that if the Time class is currently
    implemented using milliseconds and we later decide to increase the
    accuracy to microseconds, we need only edit one class, where we can change
    this detail of internal implementation without affecting the rest of the
    code.
So how do we catch these types of errors at compile time
    instead of runtime? We can start by having a separate class for each type
    of data. Let’s use int for integers, double
    for floating-point data, std::string for text,
    Date for calendar dates,
    Time for time, and so on
    for all the other types of data. But simply doing this is not enough.
    Suppose we have two classes, Apple and
    Orange, and a function that expects an
    input of a type Orange:
void DoSomethingWithOrange(const Orange& orange);
However, we accidentally could provide an object of type Apple instead:
Apple an_apple(some_inputs);
DoSomethingWithOrange(an_apple);
This might compile under some circumstances, because the C++
    compiler is trying to do us a favor and will silently convert Apple to Orange if it can. This can happen in two ways:
    
	If the Orange class has a
          constructor taking only one argument of type Apple

	If the Apple class has an
          operator that converts it to Orange



 The first case happens when the class Orange looks like this:
class Orange {
 public:
  Orange(const Apple& apple);
  // more code
};
It can even look like this:
class Orange {
 public:
  Orange(const Apple& apple, const Banana* p_banana=0);
  // more code
};
Even though in the last example the constructor looks like
    it has two inputs, it can be called with only one argument, so it can also
    serve to implicitly convert Apple into
    Orange. The solution to this problem is
    to declare these constructors with keyword explicit. This prevents
    the compiler from doing an automatic (implicit) conversion, so we force
    the programmer to use Orange where
    Orange is expected:
class Orange {
 public:
  explicit Orange(const Apple& apple);
  // more code
};
and correspondingly in the second case:
class Orange {
 public:
  explicit Orange(const Apple& apple, const Banana* p_banana=0);
  // more code
};
Another method that lets the compiler know how to convert an
    Apple into an Orange is to provide a conversion
    operator:
class Apple {
 public:
  // constructors and other code …
  operator Orange () const;
};
The very presence of this operator
    suggests that the programmer made an explicit effort to provide the
    compiler with a way to convert Apple
    into Orange, and therefore it might not
    be a mistake. However, the absence of the keyword explicit in front of the
    constructor could easily be a mistake, so it’s advisable to declare all
    constructors that could be called with one argument with keyword
    explicit. In general, any
    possibility of implicit conversions is a bad idea, so if you want to
    provide a way of converting Apple into
    Orange inside the class Apple, as in the previous example, the better
    way of doing so is:
class Apple {
 public:
  // constructors and other code …
  Orange AsOrange() const;
};
In this case, in order to convert an Apple into an Orange you would need to write:
  Apple apple(some_inputs);
  DoSomethingWithOrange(apple.AsOrange()); // explicit conversion
There
    is one more way to mix up different data types: by using enum. Consider the
    following example: suppose we defined the following two enums for days of the week and for
    months:
enum { SUN, MON, TUE, WED, THU, FRI, SAT };
enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
All of these constants are actually integers (e.g., C built-in type
    int), and if we have a function that
    expects as an input a day of the week:
void FunctionExpectingDayOfWeek(int day_of_week);
the following call will compile without any warnings:
FunctionExpectingDayOfWeek(JAN);
And there is not much we can do at run time because both JAN and MON
    are integers equal to 1. The way to catch this bug is not to use “plain
    vanilla” enums that create integers,
    but to use enums to create new
    types:
typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeek;
typedef enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC } Month;
In this case, the function expecting a day of week should be
    declared like this:
void FunctionExpectingDayOfWeek(DayOfWeek day_of_week);
An attempt to call it with a Month like this:
FunctionExpectingDayOfWeek(JAN);
results in a compilation error:

error: cannot convert 'Month' to 'DayOfWeek' for
        argument '1' to 'void
        FunctionExpectingDayOfWeek(DayOfWeek)'
which is exactly what we would want in this case.
This approach has a downside, however. In the case when enum creates integer constants, you can write a
    code like this:
for(int month=JAN; month<=DEC; ++month)
  cout << "Month = " << month << endl;
But when the enum is used to
    create a new type,
    the following:
for(Month month=JAN; month<=DEC; ++month)
  cout << "Month = " << month << endl;
does not compile. So if you need to iterate through the values of
    your enum, you are stuck with
    integers.
Of course, there are exceptions to any rule, and sometimes
    programmers will have reasons to write classes such as Variant for the specific
    purpose of allowing implicit conversions. However, most of the time it is
    a good idea to avoid implicit conversions altogether: this allows you to
    use the full power of the compiler to check types of different variables
    to catch our potential errors early—at compile time.
Now suppose that we’ve done everything we can to use type safety to
    the fullest extent possible. Unfortunately, with the exceptions of types
    bool and char, the number of
    different values that each type can contain is astronomically high, and
    usually only a small portion of these values makes sense. For instance, if
    we use the type double for the price of a
    stock, we can be reasonably sure that the value will be between 0 and
    10,000 (with the sole exception of the stock of the Berkshire Hathaway
    company, whose owner Warren Buffet apparently does not believe that it is
    a good idea to keep the stock price within a reasonable range and has
    therefore never split the stock, which at the time of this writing is
    above $100,000 per share). Still, even Berkshire Hathaway uses only a
    small portion of the range of a double precision number, which can be as
    large as 10308 and can also be negative, which
    does not make sense for a stock price. Since for most types only a small
    portion of all possible values makes sense, there will always be errors
    that can be diagnosed only at runtime.
In fact, most of the problems of the C language, such as specifying
    an index out of bounds or accessing memory improperly through pointer
    arithmetic, can be diagnosed only at runtime. For this reason, the rest of
    this book is dedicated mainly to the discussion of catching runtime
    errors.
Rules for this chapter for
    diagnosing errors at compile time:
	Prohibit implicit type conversions: declare constructors taking
        one parameter with the keyword explicit and avoid
        conversion operators.

	Use different classes for different data types.

	Do not use enums to create
        int constants; use
        them to create new types.





Chapter 3. What to Do When We Encounter an Error at Runtime



There are two types of runtime errors: those that are the
  result of programmer error (that is, bugs) and those
  that would happen even if the code were absolutely correct. An example of
  the second type occurs when a user mistypes a username or password. Other
  examples occur when the program needs to open a file, but the file is
  missing or the program doesn’t have permission to open it, or the program
  tries to access the Internet but the connection doesn’t work. In short, even
  if the program is perfect, things such as wrong inputs and hardware issues
  can produce problems.
In this book we concentrate on catching run-time errors of the
  first type, a.k.a. bugs. A piece of code written for the specific purpose of
  catching bugs will be called a sanity check. When a
  sanity check fails, i.e., a bug is discovered, this should do two
  things:
	Provide as much information as possible about the error, i.e.,
        where it has occurred and why, including all values of the relevant
        variables.

	Take an appropriate action.



What is an appropriate action? We’ll discuss this later in
  more detail, but the shortest answer is to terminate the program. First,
  let’s concentrate on the information about the bug, called the error
  message.  To diagnose a bug we provide a macro defined in the scpp_assert.hpp file:
#define SCPP_ASSERT(condition, msg)        \
  if(!(condition)) {                       \
    std::ostringstream s;                  \
    s << msg;                              \
    SCPP_AssertErrorHandler(               \
      __FILE__, __LINE__, s.str().c_str());\
  }
SCPP_AssertErrorHandler is
  the function declared in the same file. (As it was mentioned earlier, the
  code of all C++ files cited in this book is available both in the Appendices and online at https://github.com/vladimir-kushnir/SafeCPlusPlus.)
First, let’s see how it works. Suppose you have the following code in
  the my_test.cpp file:
#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
  cout << "Hello, SCPP_ASSERT" << endl;

  double stock_price = 100.0;   // Reasonable price
  SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
    "Stock price " << stock_price << " is out of range");

  stock_price = -1.0; // Not a reasonable value
  SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
    "Stock price " << stock_price << " is out of range");

  return 0;
}
Compiling and running the example will produce the following
  output:
Hello, SCPP_ASSERT Stock price -1 is out of range in file
      my_test.cpp #16
 The
  macro automatically provides the filename and line number where the error
  occurred. What’s going on in here? The macro SCPP_ASSERT takes two
  parameters: a condition and an error message. If the condition is true,
  nothing happens, and the code execution continues. If the condition is
  false, the message gets streamed into an ostringstream object, and the function SCPP_AssertErrorHandler()
  is called. Why do we need to stream the message into the ostringstream object? Why can’t we just pass the
  message to the error handler function directly?
The reason is that this intermediate step allows us not just to use
  simple error messages like this:
SCPP_ASSERT(index < array.size(), "Index is out of bounds.");
but to compose a meaningful error message that
  contains much more information about an error:
SCPP_ASSERT(index < array.size(),
  "Index " << index << " is out of bounds " << array.size());
In this macro you can use any objects of any class that has a
  << operator. Suppose
  you have a class:
class MyClass {
 public:
  // Returns true if the object is in OK state.
  bool IsValid() const;

  // Allow this function access to the private data of this class
  friend std::ostream& operator <<(std::ostream& os, const MyClass& obj);
};
All you need to do is provide an operator << as follows:
inline std::ostream& operator <<(std::ostream& os, const MyClass& obj) {
  // Do something in here to show the state of the object in
  // a human-readable form.
  return os;
}
and you can use an object of the type MyClass to compose a message:
MyClass obj(some_inputs);
SCPP_ASSERT(obj.IsValid(), "Object " << obj << " is invalid.");
Thus, if you run your program and the sanity check detects an
  error, chances are that you won’t need to repeat the process in the debugger
  to figure out what exactly happened and why. But doing this sanity check
  might slow down your program, and the reason we’re using C++ is we want our
  code to run as fast as possible. And indeed, sanity checks do slow down the
  code, some of them significantly (as we’ll see later when dealing with the
  Index
  Out Of Bounds error in Chapter 4).
  To deal with this problem, some of the sanity checks are made temporary—for
  testing only. For this purpose, the scpp_assert.hpp file defines a second macro,
  SCPP_TEST_ASSERT:
#ifdef SCPP_TEST_ASSERT_ON
#define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
#define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif
The difference between this SCPP_TEST_ASSERT and the
  previous SCPP_ASSERT is that
  SCPP_ASSERT is a permanent
  sanity check, whereas SCPP_TEST_ASSERT can be
  switched on and off during compilation (more about this in Chapter 15). Now let’s return to the second question of what to
  do when a bug is discovered at runtime: what is the appropriate action in this case? Actually,
  there are only two choices: 
	Terminate the program.

	Throw an exception.



The code of the error handler function provided in the
  scpp_assert.cpp file gives you both
  opportunities:
void SCPP_AssertErrorHandler(const char* file_name,
                             unsigned line_number,
                             const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file
 // if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
  throw scpp::ScppAssertFailedException(
    file_name, line_number, message);
#else
  cerr << message << " in file " << file_name
       << " #" << line_number << endl << flush;
  // Terminate application
  exit(1);
#endif
}
As you can see from the code of the error handler, it could do either
  of the two possible actions, depending on whether the symbol SCPP_THROW_EXCEPTION_ON_BUG
  is defined. In the most common case, when you want to test your code until
  you find the first bug, the simplest action by default is to terminate the
  program, fix the bug, and start over, which is achieved when the symbol
  SCPP_THROW_EXCEPTION_ON_BUG
  is not defined. In this case the error handler will print the message and
  terminate the application.
There are some situations when at least some of the sanity
  checks are left active in the code even in production mode. Suppose you have
  a program that does continuous sequential processing of a large number of
  requests, one after another, and while processing one of the requests it ran
  into a bug, i.e., the sanity check failed. It might so happen that the
  program could continue to process some of (and maybe even most of) the other
  requests. In some situations it might be important to continue to process
  these requests as much as possible—because it’ll keep clients happy, because
  there’s a serious amount of money involved, etc. In such cases, terminating
  the program on a failure of a sanity check is not an option. The way to
  proceed in these situations is to throw an exception containing a
  description of what happened from the error handler, catch it somewhere in
  the top level of the code, document it in some log file, maybe send some
  email or pager alerts, declare the current attempt to process the request a
  failure, and at the same time continue with all the others.
To illustrate this, an exception class that is declared in the same
  scpp_assert.hpp file:
namespace scpp {
class ScppAssertFailedException : public std::exception {
 public:
  ScppAssertFailedException(const char* file_name,
                            unsigned line_number,
                            const char* message);

  virtual const char* what() const throw () {
    return what_.c_str();
  }

  virtual ~ScppAssertFailedException() throw () {}

 private:
  std::string what_;
};
} // namespace scpp
If you are strict about exception types, you can pass to the error
  handler an enum containing information
  about error type, and throw different types of exceptions for different
  types of errors. But this book demonstrates a general approach to writing
  code with the explicit goal of self-diagnosing bugs, so we’ll stick with the
  simplest possible case of one exception class. In this case, the code
  example that would trigger the sanity check would look like this:
#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
  cout << "Hello, SCPP_ASSERT" << endl;

  try {
    double stock_price = 100.0;   // Reasonable price
    SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
      "Stock price " << stock_price << " is out of range.");

    stock_price = -1.; // Not a reasonable value
    SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
      "Stock price " << stock_price << " is out of range.");

  } catch (const exception& ex) {
    cerr << "Exception caught in " << __FILE__ << " #" << __LINE__ << ":\n"
         << ex.what() << endl;
  }

  return 0;
}
Running this example leads to the following output:
Hello, SCPP_ASSERT Exception caught in
      scpp_assert_exception_test.cpp #20: SCPP assertion failed with message
      'Stock price -1 is out of range.' in file scpp_assert_exception_test.cpp
      #17.
Note that here we also receive additional information—not only where
  the error has occurred but also where it was caught, which could be a useful
  hint when trying to figure out what exactly happened before involving a
  debugger.
Another question is why we need to call a SCPP_AssertErrorHandler
  function located in a separate scpp_assert.cpp file instead of doing the same
  thing inside the macro in the scpp_assert.hpp file. The short answer is that
  debuggers usually prefer to step through the functions as opposted to
  stepping through macros. We’ll return to this subject in Chapter 15.
Now we have two macros: one to use in production and one for
  testing only. When should you use each one? As the author of your program,
  only you can answer this question. Typically, you should have a feeling for
  how often the function that will contain a sanity check called, how long it
  takes to execute, and how long the evaluation of the sanity check will take
  as compared to the execution of the function itself.
If you know that the function is called rarely or maybe even just once
  for initialization purposes, and the sanity checks are cheap, then go ahead
  and use the permanent macro. You might be glad you did when a problem is
  reported from the field. In other cases, use the temporary macro.
Note that when evaluating how long the sanity check takes, all that
  matters is how long it takes to evaluate the Boolean condition. How long it
  takes to compose a message is not relevant: if you get to that stage, you
  are in no rush at all.
Different sanity checks slow down your program to different extents.
  One of the worst in this regard, the index-out-of-bounds sanity check, will
  be discussed in Chapter 4. So you might add some more
  granularity to this process and define different macros for different types
  of bugs, if some of them are slowing testing too much. Feel free to
  experiment with what works best for your code.
We now have macros that allow us to write sanity checks easily
  and still compose a meaningful error message. When do we write them? If you
  think: “I will write my code and then return and add sanity checks,” chances
  are it will never happen. Also, while you are writing your code, the picture
  of what is going on in it and which conditions should be true or false is in
  the freshest possible state in your brain. So the answer is to write sanity
  checks while you are writing the code. Any time you can
  think of any condition you can check for—write a sanity check for it. Even
  better, when you start writing a new function, start with writing sanity
  checks for all inputs before you write anything
  else.
“But this is a lot of additional work!” you might think. True, but as
  we’ve seen, writing sanity checks is not difficult, and more importantly it
  will pay off later at the testing stage. It is much easier to write sanity
  checks while you have a mental picture of the algorithm in your head than
  have to go back and debug the code later.
In Part II, we’ll consider some of the most common
  mistakes in C++ code and learn how to deal with them—one at a
  time.

Part II. Bug Hunting: One Bug at a Time




This section gives detailed advice, along with directions for
      using the Safe C++ library I created, for catching particular bugs before
      your code goes out in production.


Chapter 4. Index Out of Bounds



There are several ways in C++ to create an array of objects of some
  type T. Three common methods are:
#define N 10  // array size N is known at compile time
  T static_array[N];

  int n = 20; // array size n is calculated at runtime
  T* dynamic_array = new T[n];

  std::vector<T> vector_array; // array size can be changed at runtime
Of course, you can still use the calloc() and malloc() functions and your
  program will compile and run, but it’s not a good idea to mix C and C++
  unless you have to because you’re relying on legacy C libraries. However you
  allocate the array, you can access an element in it using an unsigned
  integer index:
const T& element_of_static_array  = static_array[index];
const T& element_of_dynamic_array = dynamic_array[index];
const T& element_of_vector_array  = vector_array[index];
Let’s deal with dynamic arrays and vectors first, and return to the
  static array later in this chapter.
Dynamic Arrays



What would happen if we provide an index value that is
    larger than or equal to the array size? In all three of the preceding
    examples, the code will silently return garbage. (The exception to this
    rule for Microsoft Visual Studio 2010 is discussed later.) The situation
    is even worse if you decide to use the operator [] in the left-hand side
    of an assignment:
some_array[index] = x;
Depending on your luck (or lack of thereof) you might overwrite some
    other unrelated variable, an element of another array, or even a program
    instruction, and in the latter case your program will most likely crash.
    Each of these errors also provides opportunities for malicious intruders
    to take over your program and turn it to bad ends. However, the std::vector provides an
    at(index) function, which
    does bounds checking by throwing an out_of_range exception.
    The problem with this is that if you want to do this sanity check, you
    have to rigorously use the at() function everywhere
    for accessing an array element. And naturally, this slows your code down,
    so once you are done testing, you’ll want to replace it everywhere with
    the [] operator, which is
    faster. But doing that replacement requires massive editing of your code,
    which is a lot of work, followed by a need to retest it, because during
    that tedious process you could accidentally mistype something.
So instead of the at() function, I suggest
    the following. Although a dynamic array leaves the [] operator totally out
    of your control, the STL vector implements it as a C++ function that we
    can rewrite according to our bug-hunting goals. And that’s what we’ll do
    here. In the file scpp_vector.hpp we
    redefine the [] operators as
    follows:
T& operator [] (size_type index) {
  SCPP_TEST_ASSERT(index < std::vector<T>::size(),
    "Index " << index << " must be less than "
             << std::vector<T>::size());
  return std::vector<T>:: operator[](index);
}

const T& operator [] (size_type index) const {
  SCPP_TEST_ASSERT(index < std::vector<T>::size(),
    "Index " << index << " must be less than "
             << std::vector<T>::size());
  return std::vector<T>::operator[](index);
}
Let’s see how this works. Here is an example of how to use it
    (including—intentionally—how not to use it):
#include <iostream>
#include "scpp_vector.hpp"

using namespace std;

int main() {
  scpp::vector<int> vect;
  for(int i=0; i<3; ++i)
    vect.push_back(i);

  cout << "My vector = " << vect << endl;

  for(int i=0; i<=vect.size(); ++i)
    cout << "Value of vector at " << i << " is " << vect[i] << endl;

  return 0;
}
First, note that instead of writing std::vector<int> or
    just vector<int> we
    wrote scpp::vector<int>. This
    is to distinguish our vector from the STL’s vector. By using our
    scpp::vector we replace
    the standard implementation—in this case, the implementation of operator []—by our own safe implementation, and
    you will see the same approach to preventing other bugs later in this
    book. scpp::vector also gives
    you a << operator for
    free, so you can print your vector as long as it is not too big, and as
    long as the type T defines the
    << operator.
The next thing to notice is that in the second loop, instead of
    writing i<vect.size() we wrote
    i<=vect.size(). This is a very
    common programming error, and we did it just to see what happens when the
    index is out of bounds. Indeed, the program produces the following
    output:
My vector = 0 1 2
  
  Value of vector at 0 is 0
  
  Value of vector at 1 is 1 Value of vector at 2 is 2
           
  Index 3 must be less than 3 in file scpp_vector.hpp
        #17
This sanity check works as long as the symbol SCPP_TEST_ASSERT_ON is
    defined, and is easy to switch on and off at compile time when necessary.
    The problem with this approach is that the vector’s [] operator is very often
    used inside loops, so this sanity check is used a lot and therefore slows
    the program down significantly just as using at() would. If you feel
    that this is becoming a problem in your program, feel free to define a new
    macro, such as SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS, which
    would work exactly the same way as SCPP_TEST_ASSERT but
    would be used only inside scpp::vector::operator[].
    SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS should
    differ from SCPP_TEST_ASSERT only by
    the fact that it can be switched on and off independently of the
    SCPP_TEST_ASSERT macro,
    so you can deactivate it after you are sure that your code does not have
    this bug while keeping the rest of your sanity checks active.
In addition to allowing you to catch this
    index-out-of-bounds error, the template vector has one advantage over
    statically and dynamically allocated arrays: its size grows as needed (as
    long as you don’t run out of memory). However, this advantage comes at a
    cost. The vector, if not told in advance how much memory will be needed,
    allocates some default amount (called its “capacity”). When the actual
    size reaches this capacity, the vector will allocate a bigger chunk of
    memory, copy old data into the new memory area, and release the old chunk
    of memory. So from time to time, adding a new element to a template vector
    could suddenly become slow. Therefore, if you know in advance what number
    of elements you will need, as with both static and dynamically allocated
    arrays, tell the vector up front, for instance, in the constructor:
scpp::vector<int> vect(n);
This creates a vector with a specified number of elements in it. You
    could also write:
scpp::vector<int> vect(n, 0);
which would also initialize all elements to a specified value (in
    this case zero, but any other value will work too).
An alternative is to create a vector with zero elements in it but to
    specify the desired capacity:
scpp::vector<int> vect;
vect.reserve(n);
The difference between this example and the previous one is that in
    this case the vector is empty (i.e., vect.size() returns 0), but when you start
    adding elements to it, you will not run into the incrementing capacity
    procedure with the corresponding slowdown until you reach the size of
    n.
Can We Derive from std::vector?
At this point you may have looked at
      the definition of the scpp::vector in
      the scpp_vector.hpp file:
namespace scpp {
template <typename T>
class vector : public std::vector<T> {
You may have asked yourself whether it is a good idea to derive a
      class from a base class that does not have a virtual destructor. Indeed,
      if we have the following situation:
class Base {
  // not virtual !!!
  ~Base();
};

class Derived : public Base {
  // also not virtual !!!
  ~Derived() {
    // some non-trivial code releasing resources
  }
}
and we use these classes like this:
Base* p = new Derived;
// some code using p
delete p;
the delete statement will
      actually call the destructor of the base class ~Base() and none of the
      code of the ~Derived() destructor
      will be executed, thus leading to unreleased resources such as memory
      leaks, etc. The same situation will occur even if we did not write any
      non-trivial code in the ~Derived() destructor,
      but added to the derived class some new data members that do have
      non-trivial destructors, such as containers or smart pointers. Even
      though we do not write the ~Derived() code
      ourselves, the compiler will do it for us, calling all the destructors
      of the added data members. In the example just shown, this ~Derived() destructor
      will not be called, which represents a problem. However, in our concrete
      example of scpp::vector, the
      situation is different:
	We do not expect these two classes to be used in the manner of
          std::vector* p_vect = new
          scpp::vector. scpp::vector must
          be used as a plain vector, as if it was never derived from
          anything.

	We did not add any data members to scpp::vector, and
          its destructor does not do any work except to call the destructor of
          the base class. Even if we did something like what is described in
          the previous example with Base
          and Derived, in this particular
          case nothing bad will happened.

	If this violation of C++ purity still bothers you, you could
          use composition instead of derivation, e.g., write a scpp::vector that
          contains std::vector as a private data member, and
          wrap each of its methods in the corresponding method of the derived
          class, which is a lot of coding but would produce the same results
          as my implementation.



There is one more consequence of this derivation: if you have any
      function that expects std::vector,
      you can still pass to it scpp::vector, which is
      being publicly derived from the former, and therefore
      is a std::vector. Here is an
      example:
void FunctionTakingRefToSTLVector(const std::vector<int>& v) {
  cout << "ATTENTION, we are about to test index-out-of-bounds "
       << "for STL vector reference to scpp::vector" << endl << flush;

  for(int i=0; i<=v.size(); ++i)
    cout << "Value of vector at " << i << " is " << v[i] << endl;
}

int main() {
  scpp::vector<int> v;
  for(int i=0; i<3; ++i)
    v.push_back(i);
  cout << "Initial vector: " << v << endl;

  FunctionTakingRefToSTLVector(v);
}
The vector created here has three elements, and the FunctionTakingRefToSTLVector() function tries
      to access an element with index 3, which is out of bounds. This code
      produces the following output:
ATTENTION, we are about to test index-out-of-bounds for
        STL vector reference to scpp::vector
        
        Value of vector at 0 is 0
        
        Value of vector at 1 is 1
        
        Value of vector at 2 is 2
        
        Value of vector at 3 is 1
Note that the code happily prints the value at the index 3, even
      though the maximum valid index is 2, which
      means that our sanity check did not work inside FunctionTakingRefToSTLVector(). The reason is
      that the function uses the original [] operator of
      std::vector because the
      version used is determined by the type of the reference to the vector,
      which in this case comes from the declaration in the function’s argument
      list, const
      std::vector<int>&. The [] operator was never
      declared as virtual, and we couldn’t do so if we
      wanted to because the declaration is in the code of the STL vector.
      Declaring it virtual would not be a good idea anyway because it would
      slow it down. So this is a risk of our
      approach. To make it work, you must be careful to use scpp::vector everywhere you
      want the sanity check to be active.
On the other hand, if you have a function taking std::vector <T>& and you trust that
      this function has already been tested, you can keep the original
      signature taking std::vector <T>&
       and it will run faster. At the same time, outside of this
      function you will be taking full advantage of checking for index-out-of
      bounds errors in the rest of the code.


Static Arrays



Now, as promised, let’s deal with the static array:
#define N 10  // array size N is known at compile time
  T static_array[N];
Here, the size is known at compile time and will not change. Of
    course, to use the safe array with its boundary check, you can use a
    template vector with the size specified in a constructor:
scpp::vector vect(N);
This will work exactly the same as the static array, but the
    problem here is efficiency. While the static array allocates its memory on
    stack, the template vector allocates memory inside the constructor using
    the new operator, and this is
    a relatively slow operation. If runtime efficiency is important in your
    case, it’s better to use a template array, defined as follows in the
    scpp_array.hpp file:
namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
  typedef unsigned size_type;

  // Most commonly used constructors:
  array() {}

  explicit array(const T& initial_value) {
    for(size_type i=0; i<size(); ++i)
      data_[i] = initial_value;
  }

  size_type size() const { return N; }

  // Note: we do not provide a copy constructor and assignment operator.
  // We rely on the default versions of these methods generated by the compiler.

  T& operator[] (size_type index) {
    SCPP_TEST_ASSERT(index < N,
      "Index " << index << " must be less than " << N);
    return data_[index];
  }

  const T& operator [] (size_type index) const {
    SCPP_TEST_ASSERT(index < N,
      "Index " << index << " must be less than " << N);
    return data_[index];
  }

  // Accessors emulating iterators:
  T* begin() { return &data_[0]; }
  const T* begin()const { return &data_[0]; }

  // Returns an iterator PAST the end of the array.
  T* end() { return &data_[N]; }
  const T* end()const { return &data_[N]; }

 private:
  T data_[N];
};
} // namespace scpp
This array behaves exactly like a static C array. However, when
    compiled with the sanity check macro SCPP_TEST_ASSERT active,
    it provides an index-out-of-bounds check. The begin() and end() methods are
    provided to simulate iterators, so that you can use this array in some of
    the situations where you would have used the template vectors—for example,
    to sort numbers. The following code demonstrates how to sort this array
    using STL’s sort algorithm:
#include <algorithm>

  scpp::array<int, 5> a(0);
  a[0] = 7;
  a[1] = 2;
  a[2] = 3;
  a[3] = 9;
  a[4] = 0;

  cout << "Array before sort: " << a << endl;
  sort(a.begin(), a.end());
  cout << "Array after sort: " << a <<
  endl;
This produces the following output:
Array before sort: 7 2 3 9 0
      
Array after sort: 0 2 3 7 9
As a side benefit, you also get a << operator, which
    allows you to stream an array as shown in the previous example, assuming
    it is not too large and the template type T has a << operator. Of
    course, the use of this fixed-sized array must be limited to cases where
    the array size N is not too large.
    Otherwise, you’ll be spending your stack memory, a limited resource, on
    this array.
So the advice in this section is not to use static or dynamically
    allocated arrays, but a template vector or array instead. This solves
    another problem described in Chapter 1: when you use
    the new operator with
    brackets, you need to use the delete operator with
    brackets as well. If you cross-use these operators (new with brackets and
    delete without or vice
    versa) you will corrupt the memory heap, which generally leads to bad
    consequences. Once we decide not to use dynamically allocated arrays,
    which are created through the new operator with
    brackets, we’ve killed two birds with one stone: the problem of an index
    out of bounds, and the problem of mixing operators with and without
    brackets. In short, do not use the new operator (and the
    corresponding delete operator) with
    brackets. Your life will be easier.
Note
At the time of this writing, the newest version of
      Microsoft Visual Studio 2010 Ultimate
      diagnoses the index-out-of-bounds error in
      std::vector when compiled in a Debug mode, and
      pops up a dialog box (Figure 4-1).
This dialog offers you the choice to Ignore, Abort, or Retry (in
      which case you can debug the application). While “Ignore” seems
      appropriate only if you are extremely adventurous, one can hope that the
      rest of the compilers working under Unix, Linux, and Mac OS will catch
      up to the trend.
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Figure 4-1. Microsoft Visual Studio “Index out of bounds” dialog box


Multidimensional Arrays



  Now that we’ve settled on the use of a template vector or
    array as an implementation of a linear array, let’s consider what to do if
    you need a two-dimensional matrix, a three-dimensional array, or generally
    speaking, an n-dimensional array. Because all the
    issues in the general case of n-dimensional arrays
    can be illustrated using a two-dimensional matrix, we will limit our
    discussion to this case and call it simply a matrix, with the
    understanding that the same principles apply to three or more
    dimensions.
If the size of the matrix is known at compile time, you can easily
    implement it as an array of arrays, and be done with it. Therefore, we’ll
    concentrate on the more complex case of a matrix whose size is calculated
    at run time. Such a matrix can easily be created as a vector of vectors,
    and in fact this approach is the only one possible if different rows must
    be of different lengths. However, most of the time all rows should be of
    the same length (e.g., the matrix is rectangular or even quadratic), and
    in this case the approach of using a vector of vectors is inefficient: it
    requires multiple memory allocations, which is a relatively slow
    operation (and the same can be said about deallocation). Because our goal in using C++
    is efficiency, we’ll try a different approach and create a rectangular
    matrix using only one memory allocation, as shown in the class matrix in
    the scpp_matrix.hpp file:
// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
 public:
  typedef unsigned size_type;

  matrix(size_type num_rows, size_type num_cols)
    : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
  {
    SCPP_TEST_ASSERT(num_rows > 0,
      "Number of rows in a matrix must be positive");
    SCPP_TEST_ASSERT(num_cols > 0,
      "Number of columns in a matrix must be positive");
  }

  matrix(size_type num_rows, size_type num_cols, const T& init_value)
    : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
  {
    SCPP_TEST_ASSERT(num_rows > 0,
      "Number of rows in a matrix must be positive");
    SCPP_TEST_ASSERT(num_cols > 0,
      "Number of columns in a matrix must be positive");
  }

  size_type num_rows() const { return rows_; }
  size_type num_cols() const { return cols_; }

  // Accessors: return element by row and column.
  T& operator() (size_type row, size_type col) {
    return data_[ index(row, col) ];
  }

  const T& operator() (size_type row, size_type col) const {
    return data_[ index(row, col) ];
  }

 private:
  size_type rows_, cols_;
  std::vector<T> data_;

  size_type index(size_type row, size_type col) const {
    SCPP_TEST_ASSERT(row < rows_, "Row " << row
      << " must be less than " << rows_);
    SCPP_TEST_ASSERT(col < cols_, "Column " << col
      << " must be less than " << cols_);
    return cols_ * row + col;
  }
};
First of all, there are two constructors. The first allows you to
    create a matrix with a specified number of rows and columns. The second,
    with the additional init_value argument,
    allows you also to initialize each element to a specified value (e.g., to
    set each element of a matrix<double> to 0.0). Note that access
    to elements is provided via the () operator, not
    []. This is because the
    [] operator in C++ takes
    only one argument, never two or more. So to access a multidimensional
    array, we either need to use multiple [] operators, such as
    my_matrix[i][j], or a single () operator, such as
    my_matrix(i,j).
The first approach could be achieved if we had the [] operator return a
    T* pointer to the zeroth
    element of the i-th row. However, this denies us the
    diagnosis of a column index out of bounds, which defeats the purpose of
    catching bugs at runtime. We could, of course, create some template class
    that would include a smart reference to a row, return an instance of it
    using the first operator ([i]), and
    then use the bounds check in the second operator ([j]). To some degree, it is a matter of taste. I
    did not see the value of resorting to this complex design just to preserve
    the my_matrix[i][j] syntax, and the
    () operator with multiple
    arguments seems just fine.
The checks for an index out of bounds are performed inside the
    index(row, col) function, separately
    for row and column numbers, and in the case of a runtime error lead to
    calls to an error handler that are familiar by now. Finally, at the end of
    the same file, you will discover a << operator for a
    template matrix<T>. They are
    provided so you can output your matrix like this:
cout << "my matrix =\n" << my_matrix << endl;
as long as the matrix is not too large and the type T defines the << operator.
Rules for this chapter to avoid
    “index out of bounds” errors:
	Do not use static or dynamically allocated arrays; use a
        template array or vector instead.

	Do not use new and delete operators with
        brackets—leave it up to the template vector to allocate multiple
        elements.

	Use scpp:vector instead
        of std::vector and
        scpp::array
        consistently instead of a static array, and switch the sanity checks
        on.

	For a multidimensional array, use scpp::matrix and
        access elements through the () operator to
        provide index-out-of-bounds checks.





Chapter 5. Pointer Arithmetic



The pointer arithmetic that C++ inherited from C allows you to calculate any value
        whatsoever, use it as a pointer (to int, double, or any other type) and read from that portion of
        memory—or even worse, write into it. Actually, pointer arithmetic is just another syntax to
        access memory the way an index does in the array, and the consequences are exactly the same,
        as discussed in Chapter 4. The difference is that, in case of a vector
        accessed via an index, we can write our own [] operator
        with a sanity check, whereas in pointer arithmetic we cannot.
Therefore, the advice here is very simple: do not use pointer
            arithmetic. There is nothing you can do with it that you cannot do with a
        vector and an index. In fact, in Chapter 6 we’ll see that sometimes
        indexes work where pointers don’t. So avoid pointer arithmetic. It is evil.
Rule for this chapter to avoid
      errors in pointer arithmetic:
	Avoid pointer arithmetic. Use template vector or array with index instead.




Chapter 6. Invalid Pointers, References, and Iterators



Consider the following code example:
vector<int> v;

// Add some elements
for(int i=0; i<10; ++i)
  v.push_back(i);

int* my_favorite_element_ptr = &v[3];
cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " <<  my_favorite_element_ptr  << endl;

cout << "Adding more elements…"<< endl;

// Adding more elements
for(int i=0; i<100; ++i)
  v.push_back(i*10);

cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " <<  &v[3]  << endl;
What’s going on here? We create a vector containing 10
  elements, and for some reason decide to save for later a pointer to element
  with index 3. Then we add more elements to the vector and try to reuse the
  pointer we’ve acquired before. What is wrong with this code? Let’s look at
  the output it produces:
My favorite element = 3 Its address = 0x1001000cc
Adding more elements
…
My favorite element = 3
Its address = 0x10010028c
Note that after we add more elements to the vector, the address of the
  element &v[3] has changed! The
  problem is that when we add new elements to the vector, the existing
  elements might move to a totally different location.
Here is how such code works. When we create a vector, it allocates by
  default some number of elements (usually about 16). Then if we try to add
  more elements than the capacity allows, the vector allocates a new, larger
  array, copies existing elements from the old location to a new one, and
  continues to add new elements until the new capacity is exceeded. The old
  memory is deallocated, and might be reused for other purposes.
Meanwhile, our pointer still points to the old location, which is now
  in the deallocated memory. So what would happen if we continue to use it? If
  no one has reused that memory yet, we might get “lucky” and not notice
  anything, as in the example above. Even in this best-case scenario, though,
  if we write (assign a value) into that location, it will not change the
  value of the element v[3] because it is
  already located elsewhere.
If we are less lucky and that memory was reused for some other
  purpose, the consequences could be pretty bad, ranging from changing an
  unrelated variable that was unlucky enough to occupy the same place, to a
  core dump.
The preceding example deals with a pointer. The exact same thing
  happens when you do it using a reference; for example, instead of:
int* my_favorite_element_ptr = &v[3];
suppose one writes:
int& my_favorite_element_ref = v[3];
The result would be exactly the same. The reason is that the reference
  is just a “dereferenced pointer.” It
  knows the address of a variable, but does not require an asterisk in front
  of the variable to reach the memory to which it points. So the syntax is
  different, but the result is the same.
And finally, the same thing is true when we use iterators. Consider
  the following example:
  vector<int> v;

  for(int i=0; i<10; ++i)
    v.push_back(i);

  vector<int>::const_iterator old_begin = v.begin();

  cout << "Adding more elements … "<< endl;

  for(int i=0; i<100; ++i)
    v.push_back(i*10);

  vector<int>::const_iterator new_begin = v.begin();
  if(old_begin == new_begin)
    cout << "Begin-s are the same." << endl;
  else
    cout << "Begin-s are DIFFERENT." << endl;
As you have probably already guessed, the output of this program
  is:
  Adding more elements ...
  
  Begin-s are DIFFERENT.
So if you were holding an iterator to some element (any element, not
  necessarily the one to which begin() points), it might
  be invalid after changing the contents of the vector because the internal
  array, and correspondingly the iterator begin(), might have moved
  to some other place.
Therefore, any pointers, references, or iterators pointing to
  the elements of a vector obtained before modifying the vector should not be
  used after one modifies the vector by adding new elements. Actually, the
  same is true for almost all STL containers and all operations modifying the
  size of the container, e.g., adding or removing elements. Some containers,
  such as hash_set and hash_map, do not formally
  belong to the STL, but they are STL-like, will probably be part of STL soon,
  and behave the same way as STL containers in the situation discussed in
  here: the iterators become invalid after modifying a container. And even if
  you are using an STL container that would preserve the iterator to its
  element after the addition or removal of some other elements, the whole
  spirit of the STL library is that one could replace one container with
  another and the code should continue to work. So it is a good idea not to
  assume that the iterators are still valid after any STL or STL-like
  container is modified.
Note that in the previous example we modified the container inside the
  same thread we used to access the pointer. The same and even more problems
  could be created if you hold a pointer, reference, or iterator in one thread
  while modifying the container from another thread, but as mentioned in the
  Preface, the discussion of multithreading is
  outside the scope of this book.
Interestingly, in the preceding example, the index would work where
  the pointer failed: if you have marked your element by holding a zero-based
  index to it (in the first example, something like int index_of_my_favorite_element = 3), the example
  would continue to work correctly. Of course, using an index is slightly more
  expensive (slower) than using a pointer because in order to access an
  element corresponding to this index, a vector must do some arithmetic, i.e.,
  calculate the address of the variable every time you use the [] operator. The advantage
  is that it works. The disadvantage is that it works only for vectors. For
  all other STL containers, once you’ve modified the container, you must find
  the iterator pointing to the element you need again.
Rule for this chapter to avoid errors
  with invalid pointers, references, and iterators:
	Do not hold pointers, references, or iterators to the element of a
      container after you’ve modified the container.




Chapter 7. Uninitialized Variables



Various errors can occur when adding variables to complex classes and
  using them as arguments. This chapter shows you a simple way to avoid such
  errors.
Initialized Numbers (int, double, etc.)



Imagine that you have a class named MyClass with several constructors. Suppose
    you’ve decided to add some new data member named int_data_ to the private section of this
    class:
class MyClass {
 public:
  MyClass()
  : int_data_(0)
  {}

  explicit MyClass(const Apple& apple)
  : int_data_(0)
  {}

  MyClass(const string& some_text, double weight)
  : int_data_(0), some_text_(some_text)
  {}


 private:
  int int_data_;
  std::string some_text_;
};
When adding the new data member, you have a lot of work to
    do. Every time you add a new data member of a built-in
    type, do not forget to initialize it in every constructor like
    this: int_data_(0). But wait! If you
    read the Preface to this book, you probably
    remember that we are not supposed to say “Every time you do A, don’t
    forget to do B.” Indeed, this is an error-prone approach. If you forget to
    initialize this data member, it will most likely fill with garbage that
    would depend on the previous history of the computer and the application,
    and will create strange and hard-to-reproduce behavior. So what should we
    do to prevent such problems?
Before we answer this question, let’s first discuss why it’s only
    relevant for built-in types. Let’s take a look at the data member some_text_, which is of the type std::string. When you add
    a data member some_text_ to the class
    MyClass, you do not necessarily need to
    add its initialization to every constructor of MyClass, because if you don’t do it, the default
    constructor of the std::string will be
    called for you automatically by the compiler and will initialize the
    some_text_ to a reproducible state (in
    this case, an empty string). But the built-in types do not have
    constructors—that’s the problem. Therefore, the solution is simple: for
    class data members, do not use built-in types, use classes:
	Instead of int, use Int

	Instead of unsigned, use
        Unsigned

	Instead of double, use Double



and so on. The complete source code of these classes can be found in
    Appendix F in the file named scpp_types.hpp. Let’s take a look. The core of
    this code is the template class TNumber:
template <typename T>
class TNumber {
 public:
  TNumber(const T& x=0)
    : data_(x)
  {}

  operator T () const { return data_; }

  TNumber& operator = (const T& x) {
    data_ = x;
    return *this;
  }

  // postfix operator x++
  TNumber operator ++ (int) {
    TNumber<T> copy(*this);
    ++data_;
    return copy;
  }

  // prefix operator ++x
  TNumber& operator ++ () {
    ++data_;
    return *this;
  }

  TNumber& operator += (T x) {
    data_ += x;
    return *this;
  }

  TNumber& operator -= (T x) {
    data_ -= x;
    return *this;
  }

  TNumber& operator *= (T x) {
    data_ *= x;
    return *this;
  }

  TNumber& operator /= (T x) {
    SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
    data_ /= x;
    return *this;
  }

  T operator / (T x) {
    SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
    return data_ / x;
  }

 private:
  T data_;
};
First of all, the constructor taking type T (where T is
    any built-in type, e.g., int, double, float, etc.) is not
    declared with the keyword explicit. This is
    intentional. The next function defined in the class is operator T (), which allows an implicit
    conversion of an instance of this class back into its corresponding
    built-in type. This class is intentionally designed to make it easy to
    convert the built-in types into it and back. It defines several common
    operators that you would expect to use with a built-in numeric
    type.
And finally, here are the definitions of actual types we can
    use:
typedef    TNumber<int>         Int;
typedef    TNumber<unsigned>    Unsigned;
typedef    TNumber<int64>       Int64;
typedef    TNumber<unsigned64>  Unsigned64;
typedef    TNumber<float>       Float;
typedef    TNumber<double>      Double;
typedef    TNumber<char>        Char;
How do you use these new types, such as Int and Double, with names that
    look like built-in types but start with uppercase letters? All these types
    work exactly the same way as the corresponding built-in types with one
    difference: they each have a default constructor, and it initializes them
    to zero. As a result, in the example of the class MyClass you can write:
class MyClass{
 public:
  MyClass()
  {}

  explicit MyClass(const Apple& apple)
  {}

  MyClass(const string& some_text, double weight)
  : some_text_(some_text)
  {}

 private:
  Int int_data_;
  std::string some_text_;
};
The variable int_data_ here is
    declared as Int, with an uppercase
    first letter, not int, and as a result you
    don’t have to put an initialization of it in all the constructors. It will
    be automatically initialized to zero.
Actually, there is one more difference: when you use built-in types,
    an attempt to divide by zero can lead to different consequences depending
    on the compiler and OS. In our case, for the sake of consistency, this
    runtime error will lead to a call to the same error handler function as
    we’ve used for other errors, so that you can debug on error (see Chapter 15).
Note
Robust code should not refer to variables before initializing
      them, but it is considered a good practice to have a safe value such as
      0 instead of garbage in an uninitialized variable in case the code does
      refer to it.


Uninitialized Boolean



But haven’t we forgotten one more built-in type specific to
    C++— type bool (i.e., Boolean)? No,
    it is just a special case, because for a Boolean we do not need operators
    such as ++. Instead, we need
    specifically Boolean operators, such as &= and |=, so this type is
    defined separately:
class Bool {
 public:
  Bool(bool x=false)
  : data_(x)
  {}

  operator bool () const { return data_; }

  Bool& operator = (bool x) {
    data_ = x;
    return *this;
  }

  Bool& operator &= (bool x) {
    data_ &= x;
    return *this;
  }

  Bool& operator |= (bool x) {
    data_ |= x;
    return *this;
  }

 private:
  bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
  if(b)
    os << "True";
  else
    os << "False";
  return os;
}
Again, as with the other classes wrapping built-in types, the type
    Bool (uppercase) behaves
    exactly like bool (the original
    built-in type), with two exceptions:
	It is initialized to false.

	It has a << operator
        that prints False and True instead of 0 and 1, which leads to much
        clearer, human-readable messages.



Why is it initialized to false, not to true? Maybe because the
    author is a pessimist, but you can easily follow the pattern and create a
    new class like BoolOptimistic that is
    initialized by default to true.
The only thing that we have yet to initialize is a pointer, which
    naturally should be initialized by default to NULL. We’ll deal with this
    later in Chapter 9.
So far, the motivation for using classes Int, Unsigned, Double, etc., instead of
    the corresponding lowercase built-in types was that you can skip
    initialization in multiple constructors. If you use them more widely, say,
    for passing arguments to the functions, here is what will to happen.
    Suppose you have a function taking an unsigned (the built-in
    one):
void SomeFunctionTaking_unsigned(unsigned u);
then the following will compile:
int i = 0;
SomeFunctionTaking_unsigned(i);
Not so with the classes we’ve discussed. If we have a
    function:
void SomeFunctionTakingUnsigned(Unsigned u);
then the following does not compile:
Int i = 0;
SomeFunctionTakingUnsigned(i);
Therefore, in this case, you get additional type safety at compile
    time for free.
Rules for this chapter to avoid
    uninitialized variables, especially data members of a class:
	Do not use built-in types such as int, unsigned, double, bool, etc., for class
        data members. Instead, use Int, Unsigned, Double, Bool, etc., because
        you will not need to initialize them in constructors.

	Use these new classes instead of built-in types for passing
        parameters to functions, to get additional type safety.





Chapter 8. Memory Leaks



By definition, a memory leak is a situation where we allocate some
  memory from the heap—in C++ by using the new operator, and in C by
  using malloc() or calloc()—then assign the address of this memory to
  a pointer, and somehow lose this value either by letting the pointer go out
  of scope:
{
  MyClass* my_class_object = new MyClass;
  DoSomething(my_class_object);
} // memory leak!!!
or by assigning some other value to it:
MyClass* my_class_object = new MyClass;
DoSomething(my_class_object);
my_class_object = NULL; // memory leak!!!
There are also situations when programmers keep allocating new memory
  and do not lose any pointers to it, but keep pointers to objects that the
  program is not going to use anymore. The latter is not formally a memory
  leak, but leads to the same situation: a program running out of memory.
  We’ll leave the latter error to the attention of the programmer, and
  concentrate on the first one—the “formal” memory leak.
Consider two objects containing pointers to each other (Figure 8-1). This situation is known as a “circular
  reference.” Pointers exist to A and to B, but if there are no other pointers
  to at least one of these objects from somewhere else, there is no way to
  reclaim the memory for either variable and therefore you create a memory
  leak. These two objects will live happily ever after and will never be
  destroyed. Now consider the opposite example. Suppose we have a class with a
  method that can be run in a separate thread:
[image: Circular references]

Figure 8-1. Circular references


class SelfResponsible : public Thread {
public:
  virtual void Run() {
    DoSomethingImportantAndCommitSuicide();
  }

  void DoSomethingImportantAndCommitSuicide() {
    sleep(1000);
    delete this;
  }
};
We start its Run() method in a separate
  thread like this:
Thread* my_object = new SelfResponsible;
my_object->Start();  // call method Run() in a separate thread
my_object = NULL;
After that we assign NULL to the pointer and lose the address of this
  object, thus creating a memory leak according to the definition at the
  beginning of this chapter. However, if we look inside the DoSomethingImportantAndCommitSuicide() method,
  we’ll see that after doing something the object will delete itself, thus
  releasing this memory back to the heap to be reused. So this is not actually
  a memory leak.
Considering all these examples, a better definition of a
  memory leak is as follows. If we allocate memory (using the new operator), someone or
  something (some object) must be responsible for: 
	deleting this memory;

	doing it the right way (using the correct delete operator, with
        or without brackets);

	doing it exactly once;

	and preferably doing it ASAP after we are done using this
        memory.



This responsibility for deleting the memory is usually
  called ownership of the object. In the previous
  example, the object took ownership of itself. So to summarize, a memory leak
  is a situation where the ownership of allocated memory is lost.
Consider the following code:
void SomeFunction() {
  MyClass* my_class_object = NULL;

  // some code …

  if(SomeCondition1()) {
    my_class_object = new MyClass;
  }

  // more code

  if(SomeCondition2()) {
    DoSomething(my_class_object);
    delete my_class_object;
    return;
  }

  // even more code

  if(SomeCondition3()) {
    DoSomethingElse(my_class_object);
    delete my_class_object;
    return;
  }

  delete my_class_object;
  return;
}
The reason we’ve started with the NULL pointer is to avoid the
  question of why we don’t just create the object on the stack and avoid the
  whole problem of deallocating it altogether. There can be multiple reasons
  for not creating an object on the stack. Sometimes the creation of an object
  must be delayed to a point in the program later than when the variable
  holding the memory is created; or it might be created by some other factory
  class and what we get is a pointer returned to us together with
  responsibility to delete it when we are done using it; or maybe we don’t
  know whether we will create the object at all, as in the previous
  example.
Now that we have an object created on the heap, we are responsible for
  deleting it. What is wrong with the preceding code? Obviously, it is
  fragile: i.e., every time we modify it by adding an
  additional return statement, we must
  delete the object just before returning. In this example, the responsibility
  to delete the object lies with the programmer. This is error-prone, and
  therefore against the principle declared in the Preface.
But even if we remember to delete the object before each
  return statement, this does not solve our problems. If any of the functions
  called from this code could throw an exception, then it actually means that
  we might “return” from any line of code containing a function call. Thus, we
  must surround the code with try-catch statements and, if we catch an
  exception, remember to delete the object and then throw a further exception.
  This seems like lots of work just to avoid a memory leak. The code becomes
  more crowded with statements dealing with cleanup and therefore becomes less
  readable, and the programmer has less time to concentrate on actual
  work.
The solution to this problem, widely known in C++ literature,
  is to use smart pointers. These are template classes
  that behave like normal pointers (or sometimes not exactly like normal
  pointers) but that take ownership of the objects assigned to them, leaving
  the programmer with no further worries. In this case, the function shown
  earlier would look like this:
void SomeFunction() {
  SmartPointer<MyClass> my_class_object;

  // some code …

  if(SomeCondition1()) {
    my_class_object = new MyClass;
  }

  // more code

  if(SomeCondition2()) {
    DoSomething(my_class_object);
    return;
  }

  // even more code

  if(SomeCondition3()) {
    DoSomethingElse(my_class_object);
    return;
  }

  return;
}
Note that we do not delete the allocated object anywhere. It is now
  the responsibility of the smart pointer, my_class_object.
This is actually a special case of a more general C++ pattern where
  some resource is acquired by an object (usually in a constructor, but not
  necessarily) and then this object is responsible for releasing the resource
  and will do so in a destructor. One example of using this pattern is
  obtaining a lock on a Mutex object when entering a function:
void MyClass::MyMethod() {
   MutexLock lock(&my_mutex_);
   // some code
}  // destructor ~MutexLock() is called here releasing my_mutex_
In this case, the MyClass class has
  a data member named my_mutex_ that must
  be obtained at the beginning of a method and released before leaving the
  method. It is obtained by MutexLock in
  the constructor and automatically released in its destructor, so we can be
  sure that no matter what happens inside the code of the MyClass::MyMethod() function—in particular, how
  many return statements we might
  insert or whatever might throw an exception—the method won’t forget to
  release my_mutex_ before
  returning.
Now let’s return to the problem of memory leaks. The solution is that
  whenever we allocate new memory, we must immediately assign the pointer to
  that memory to some smart pointer. We now do not have to worry about
  deleting the memory; that responsibility is given to the smart
  pointer.
At this point you might ask the following questions regarding the
  smart pointer class: 
	Are you allowed to copy a smart pointer?

	If yes, which one of the multiple copies of the smart pointer is
        responsible for deleting the object they all point to?

	 Does the smart pointer represent a pointer to an object
        or an array of objects (i.e., does it use the delete operator with
        or without brackets)?

	Does a smart pointer correspond to a const pointer or a
        non-const pointer?



Depending on the answers to these questions, you could come
  up with a rather large number of different smart pointers. And indeed, there
  are a great many of them discussed and used in the C++ community and
  provided by different libraries, most notably, the boost library. However, in my opinion the
  multitude of different smart pointer types creates new opportunities for
  errors, for example, assigning a pointer pointing to an object to a smart
  pointer that expects an array (i.e., would use a delete with brackets) or
  vice versa.
One of the smart pointers—auto_ptr<T>—has the strange property that
  when you have an auto pointer p1 and then
  make a copy of it p2 as follows:
auto_ptr<int> p1(new int);
auto_ptr<int> p2(p1);
the pointer p1 becomes NULL, which
  I find counterintuitive and therefore error-prone.
In my experience, there are two smart pointer classes that have so far
  covered all my needs in preventing memory leaks:
	The reference counting pointer (a.k.a. the shared pointer)

	The scoped pointer



The difference between the two is that the reference counting pointer
  can be copied and the scoped pointer cannot. However, the scoped pointer is
  more efficient.
We’ll look at each of these in the following sections.
Reference Counting Pointers



As mentioned above, the reference counting pointer can be
    copied. As a result, several copies of a smart pointer could point to the
    same object. This leads to the question of which copy is responsible for
    deleting the object that they all point to. The answer is that the last
    smart pointer of the group to die will delete the object it points to.
    It’s analogous to the household rule: “the last person to leave the room
    will switch the lights off.”
To implement this algorithm, the pointers share a counter that keeps
    track of how many smart pointers refer to the same object—hence the term
    “reference counting.” Reference counts are used in a wide range of
    situations: the term simply means that the implementation has a hidden
    integer variable that serves as a counter. Each time someone creates a new
    copy of a smart pointer that points to the target object, the
    implementation increments the counter; when any smart pointer is deleted,
    the implementation decrements the counter. So the target object will be
    around as long as it’s needed, but no longer that that.
An implementation of reference counting pointers is provided by my
    library in the file scpp_refcountptr.hpp. Here’s the public portion
    of this class:
template < typename T>
class RefCountPtr {
 public:

  explicit RefCountPtr(T* p = NULL) {
    Create(p);
  }

  RefCountPtr(const RefCountPtr<T>& rhs) {
    Copy(rhs);
  }

  RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
    if(ptr_ != rhs.ptr_)
    {
      Kill();
      Copy(rhs);
    }

    return *this;
  }

  RefCountPtr<T>& operator=(T* p) {
    if(ptr_ != p) {
      Kill();
      Create(p);
    }

    return *this;
  }

  ~RefCountPtr() {
    Kill();
  }

  T* Get()const { return ptr_; }

  T* operator->() const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* ()const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }
Note that both the copy-constructor and assignment operators are
    provided, so one could copy these pointers. In this case, both the
    original pointer and the copied one point to the same object (or to NULL,
    if the original pointer was NULL). In this sense they behave the same way
    as the regular “raw” T* pointers. If you no
    longer need to use the object, you can “kill” the reference counting
    pointer by assigning NULL to it.
There are a couple of problems with the reference counting pointer.
    First, creating one with a non-NULL argument is expensive, because the
    implementation uses the new operator to allocate
    an integer on heap, a relatively slow operation. Second, of course, the
    reference counting pointer is not multithread-safe. I’ve declared that
    discussions of multithreading are beyond the scope of this book, but here
    it’s important enough to mention. Let’s concentrate on the previous
    problem—the cost of using a reference counting pointer. You can use it
    when you are sure that you will need to copy it, and when you can be
    reasonably sure that the cost of creating one is negligible compared to
    the execution time of the rest of your code.

Scoped Pointers



In cases when you don’t plan on copying the smart pointer
    and just want to make sure that the allocated resource will be deallocated
    properly, as in the earlier examples of the SomeFunction() method, there is a much simpler
    solution: the scoped pointer. Let’s take a look at its code provided in
    the file scpp_scopedptr.hpp:
template <typename T>
class ScopedPtr {
 public:

  explicit ScopedPtr(T* p = NULL)
  : ptr_(p)
  {}

  ScopedPtr<T>& operator=(T* p) {
    if(ptr_ != p) {
      delete ptr_;
      ptr_ = p;
    }

    return *this;
  }

  ~ScopedPtr() {
    delete ptr_;
  }

  T* Get() const {
    return ptr_;
  }

  T* operator->() const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* () const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }

  // Release ownership of the object to the caller.
  T* Release() {
    T* p = ptr_;
    ptr_ = NULL;
    return p;
  }

 private:
  T*  ptr_;

  // Copy is prohibited:
  ScopedPtr(const ScopedPtr<T>& rhs);
  ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};
Again, the most important property of this class for us is that its
    destructor deletes the object it points to (if it is not NULL, of course).
    The difference between usage of the scoped pointer and the reference
    counter pointer is that the scoped pointer cannot be copied. Both the
    copy-constructor and assignment operator are declared private, so any
    attempt to copy this pointer will not compile. This removes the need to
    count how many copies of the same smart pointer point to the same
    object—there is always only one, and therefore this pointer does not
    allocate an int from the heap to
    count its copies. For this reason, it is as fast as a pointer can
    be.
You have also probably noticed that in both RefCountPtr and ScopedPtr we diagnose an attempt to dereference
    the NULL pointer. We’ll talk more about this in the next chapter.
 As you’ll recall from Chapter 4
    concerning arrays, we have discussed which of the two new operators to use: the
    one without brackets. As for the corresponding delete operators, we should use
    neither. Do not delete the objects yourself; leave it
    to smart pointers.

Enforcing Ownership with Smart Pointers



Now let’s discuss potential errors when using functions that
    return pointers. Suppose, we have a function that returns a pointer to
    some type MyClass:
MyClass* MyFactoryClass::Create(const Inputs& inputs);
The very first question about this function is whether the caller of
    this function is responsible for
    deleting this object, or is this a pointer to an instance of MyClass that the instance of MyFactoryClass owns? This should of course be
    documented in a comment in the header file where this function is
    declared, but the reality of the software world is that it rarely is. But
    even if the author of the function did provide a comment that the function
    creates a new object on the heap and the caller is responsible for
    deleting it, we now find ourselves saying that every time we receive a
    pointer to an object from a function call, we need to remember to check
    the comments (or in the absence of a comment—the code itself if available)
    to find out whether we are responsible for deleting this object. And as we
    have decided in the Preface, we would prefer to rely on a compiler rather
    than on a programmer. Therefore, a fool-proof way to enforce the ownership
    of the object is for the function to return a smart pointer. For
    example:
RefCountPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs);
Not only does this design leave no doubt about the ownership of the
    object returned by the function, it leaves no opportunity for a memory
    leak. On the other hand, if you find the reference counting pointer too
    slow for your purposes, you might want to return a scoped pointer. But
    there is one problem: the ScopedPtr<MyClass> cannot be copied, and
    therefore it cannot be returned in a traditional way:
ScopedPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs) {
  ScopedPTr<MyClass> result(new MyClass(inputs));
  return result; // Won’t compile !
}
Therefore, the way around the problem is to do this:
ScopedPtr<MyClass> result;  // Create an empty scoped pointer
// Fill it:
void MyFactoryClass::Create(const Inputs& inputs, ScopedPtr<MyClass>& result);
Here you create a scoped pointer containing NULL and give it to
    MyFactoryClass::Create() to fill it up.
    This approach again leaves no room for mistakes regarding the ownership of
    the object created by the function. If you are not sure which of the two
    pointers to return, you can either:
	Return the faster ScopedPtr
        and then use its Release() method to
        transfer ownership to a RefCountPtr
        if necessary.

	Provide both methods.



There is also an opposite situation when the SomeClass::Find() method
    returns a pointer to an object but the user does not have ownership of
    it:
// Returns a pointer to a result, caller DOES NOT OWN the result.
MyClass* SomeClass::Find(const Inputs& inputs);
In this case, the pointer returned by this function points to an
    object that belongs to something inside the SomeClass object.
The first problem here is that the SomeClass object thinks that it is responsible
    for deleting the MyClass instance to
    which it just returned a pointer, and therefore it will delete it at some
    point in the future. In this case, if the user of this function will
    delete the pointer he received, this instance will be deleted more than
    once, which is not a good idea. Second, this instance might be part of an
    array of MyClass objects that is
    created inside, say, a template vector using operator new[] (with brackets),
    and we are now trying to delete an object from that array using operator
    delete without brackets.
    This is also not good. Finally, the instance of MyClass could be created on stack, and should
    not ever be deleted using operator delete at all.
In this case, any attempt to delete this object that we do not
    own—directly or by assigning it to a smart pointer of any kind that would
    take ownership of it—would lead to disaster. An appropriate way of
    returning this pointer is to return a “semi-smart” pointer that does not
    own the object it points to. This will be discussed in the next
    chapter.
Rules for this chapter to avoid
    memory leaks:
	Every time you create an object using the new operator,
        immediately assign the result to a smart pointer (reference counting
        point or scoped pointer is recommended).

	Use the new operator only
        without brackets. If you need to create an array, create a new
        template vector, which is a single object.

	Avoid circular references.

	When writing a function returning a pointer, return a smart
        pointer instead of a raw one, to enforce the ownership of the
        result.





Chapter 9. Dereferencing NULL Pointers



One of the most frequent reasons for program crashes (a.k.a.
  core dumps under Unix) is an attempt to dereference a NULL pointer. As we
  saw in the previous chapter, both smart pointers discussed there—the
  RefCountPtr and the ScopedPtr—have run-time diagnostics for that.
  However, not every pointer is a smart pointer that has ownership of some
  object. To diagnose an attempt to dereference a pointer that does not have
  ownership of an object, I’ll introduce here a “semi-smart” pointer that does
  not delete the object it points to. Let’s take a look at the public portion
  of it in the file scpp_ptr.hpp:
// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
 public:

  explicit Ptr(T* p=NULL)
  : ptr_(p) {
  }

  T* Get() const {
    return ptr_;
  }

  Ptr<T>& operator=(T* p) {
    ptr_ = p;
    return *this;
  }

  T* operator->() const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* () const {
    SCPP_TEST_ASSERT(ptr_ != NULL,
      "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }
Despite the presence of operator=, this is not an
  assignment operator that would tell the compiler what to do when we try to
  assign one Ptr<T> to another.
  The assignment operator for this class, if we had writthen one, would be
  declared as:
Ptr<T>& operator=(const Ptr<T>& that);
Note that the operator= declared in the
  preceding class has a different signature: it includes a raw pointer
  p on the right side. Therefore, this
  class leaves it up to the compiler to create both the copy constructor and
  the assignment operator of the Ptr<T>. Because both
  the copy constructor and assignment operators for the Ptr<T> class are
  allowed, you are free to copy these pointers, return them from functions,
  and so on.
At this point you might ask: if we are advised to use Ptr<T> instead of
  T*, what should we use for
  a const T* pointer? The answer is
  easy: Ptr<const T>. Suppose you
  have a class:
class MyClass {
 public:
  explicit MyClass(int id)
  : id_(id) {}

  int GetId() const { return id_; }
  void SetId(int id) { id_ = id; }

 private:
  int id_;
};
If you want to create a semi-smart pointer that behaves like const MyClass*, all you have to do is
  write:
scpp::Ptr<const MyClass> p(new MyClass(1));
cout << "Id = " << p->GetId() << endl;  // Compiles and runs.
p->SetId(666); //   Does not compile!
Note that an attempt to call a non-const function on this
  pointer does not compile, which means that it correctly reproduces the
  behavior of a const pointer.
The Ptr<T> template
  pointer has the following features:
	It does not take ownership of the object it points to, and should
      be used as a replacement for a raw pointer in the same situation.

	It is by default initialized to NULL (thus following the spirit of
      Chapter 7).

	It offers run-time diagnostics of an attempt to dereference itself
      when it is NULL.



Rules for this
  chapter to catch attempts to dereference a NULL pointer:
	If you have a pointer that owns the object it points to, use a
      smart pointer (a reference counting pointer or scoped pointer).

	When you have a raw pointer T* pointing to an
      object you do not own, use the template class Ptr<T>
      instead.

	For a const pointer (i.e.,
      const T*) use Ptr<const T>.




Chapter 10. Copy Constructors and Assignment Operators



Suppose you have a class MyClass that looks something like this:
class MyClass {
 public:
  // Constructors

  // Copy-constructor
  MyClass(const MyClass& that)
  : int_data_(that.int_data_),
    dbl_data_(that.dbl_data_),
    str_data_(that.str_data_) {
  }

  // Assignment operator
  MyClass& operator = (const MyClass& that) {
    if(this != &that) {
      int_data_ = that.int_data_;
      dbl_data_ = that.dbl_data_;
      str_data_ = that.str_data_;
    }
    return *this;
 }

 // Some other methods here
private:
  Int int_data_;
  Double dbl_data_;
  string str_data_;
  // Each time you add a new data member in here,
  // do not forget to add corresponding code to the
  // copy-constructor and assignment operators!
};
What is wrong with this class? It is summarized in the comment at the
  end of the private section. You’ll remember from the Preface that if we find
  ourselves saying this, we open up the code to errors and should consider
  alternatives. And indeed, if you don’t write a copy-constructor or
  assignment operator, C++ will write a “default version” for you. The default
  version of the copy-constructor of your class will call copy-constructors
  for all data members (or simply copy the built-in types), and the default
  version of an assignment operator will call assignment operators for each
  data member or simply copy the built-in types.
Because of that, the copy constructor and the assignment operator in
  the previous example are totally unnecessary. Even worse, they are a
  potential source of errors because they make your code fragile, i.e., it
  might break if someone tries to modify it. Therefore, in this case it is a
  good idea to avoid writing copy-constructors and assignment operators
  altogether.
In general, regarding these two functions, you have the following
  choices: 
	Rely on default versions created for you automatically by a
        compiler.

	Prohibit copies of any kind by declaring the copy constructor
        and assignment operator as
        private, and do not provide an implementation.

	Write your own versions.



For the reasons just discussed, avoid the last option as
  much as possible. If you find yourself writing copy constructors and
  assignment operators for some class, ask yourself whether it is really
  necessary. Maybe you can avoid doing it and switch to the first option
  (using default versions created by compiler) or use some other methods, such
  as smart pointers. If you are not sure, use the second option—if there is no
  copying of any kind, there is no way to make errors. However, be aware that
  some types of usage of your class (e.g., in vector<MyClass>) require a copy constructor
  and an assignment operator, so prohibiting copies of any kind should be used
  sparingly, with the understanding that it limits your options when using
  your class.
Rules for this chapter to avoid
  errors in copy-constructors and assignment operators:
	Whenever possible, avoid writing a copy-constructor or assignment
      operator for your classes.

	If the default versions do not work for you, consider prohibiting
      the copying of instances of your class by declaring the copy-constructor
      and assignment operator private.




Chapter 11. Avoid Writing Code in Destructors



In the previous chapter, we discussed why you should try to
  avoid writing copy constructors and assignment operators at all. In this
  chapter we discuss why you should avoid writing code in the destructor. I am
  not saying that the destructor method should not exist, just that if you do
  write one, it’s a good idea to design your class so that the destructor is
  empty. The following is acceptable:
virtual ~MyClass() {}
We will use the term an empty destructor
  when talking about a destructor that has no code inside the curly
  brackets.
There are several reasons why you might need to write a destructor:
  
	In a base class, you might want to declare it virtual, so that
        you can use a pointer to the base class to point to an instance of a
        derived class.

	In a derived class, you do not have to declare it virtual, but
        might like to do so for the sake of readability.

	You might need to declare that the destructor does not throw any
        exceptions.



Let’s consider the last reason more closely. It is widely
  accepted in the C++ literature that throwing exceptions from a destructor is
  a bad idea. This is because destructors are often called when an exception
  is already thrown, and throwing a second one during this process would lead
  to the termination (or crash) of your program, which is probably not your
  intention. Therefore, in some classes, destructors are declared as follows
  (this example comes from the file scpp_assert.hpp):
virtual ~ScppAssertFailedException() throw () {}
which means that we promise not to throw an exception from this
  destructor.
So you can see that it is necessary from time to time to write a
  destructor. Now let us discuss why it should be an empty one. When would you
  need any non-trivial code in the destructor? Only if you have acquired, in
  the constructor or some other method of your class, some resource that you
  need to release when the object goes away, such as in the following
  example:
class PersonDescription {
 public:
  PersonDescription(const char* first_name, const char* last_name)
  : first_name_(NULL), last_name_(NULL) {
    if(first_name != NULL)
      first_name_ = new string(first_name);

    if(last_name != NULL)
      last_name_ = new string(last_name);
  }

  ~PersonDescription() {
    delete first_name_;
    delete last_name_;
  }


 private:
  PersonDescription(const PersonDescription&);
  PersonDescription& operator=(const PersonDescription&);

  string* first_name_;
  string* last_name_;
};
The design of this class violates everything we have discussed in
  earlier chapters. First of all, we see that every time we might need to add
  a new element of a person’s description, such as a middle name, we would
  need to remember to add a corresponding cleanup to the destructor, which is
  a violation of our “do not force the programmer to remember things”
  principle. A much better design would be:
class PersonDescription {
public:
  PersonDescription(const char* first_name, const char* last_name) {
    if(first_name != NULL)
      first_name_ = new string(first_name);

    if(last_name != NULL)
      last_name_ = new string(last_name);
  }

private:
  PersonDescription(const PersonDescription&);
  PersonDescription& operator=(const PersonDescription&);

  scpp::ScopedPtr<string> first_name_;
  scpp::ScopedPtr<string> last_name_;
};
In this case, we don’t need to write a destructor at all because the
  one generated for us automatically by the compiler will do the job, and this
  leads to less fragile code while doing less work. However, this is not the
  main reason for choosing this second type of design. There are more serious
  potential hazards in the case of the first example. Suppose we have decided to add sanity checks
  that the caller has provided the first name and last name:
class PersonDescription {
public:
  PersonDescription(const char* first_name, const char* last_name)
  : first_name_(NULL), last_name_(NULL) {
    SCPP_ASSERT(first_name != NULL, "First name must be provided");
    first_name_ = new string(first_name);

    SCPP_ASSERT(last_name != NULL, "Last name must be provided");
    last_name_ = new string(last_name);
  }

  ~PersonDescription() {
    delete first_name_;
    delete last_name_;
  }

private:
  PersonDescription(const PersonDescription&);
  PersonDescription& operator=(const PersonDescription&);

  string* first_name_;
  string* last_name_;
};
As we discussed in Part I, our error might
  not terminate an application, but it might throw an exception. Now we are in
  trouble: throwing an exception from a constructor could be a bad idea. Let’s
  consider why this is the case. If you are trying to create an object on the
  stack and the constructor does its job normally (without throwing an
  exception), then when the object goes out of scope, the destructor will be
  called. However, if the constructor did not finish its job because the code
  of the constructor threw an exception, the destructor will not be
  called.
Therefore, in the preceding example, if we suppose that the first name
  was supplied but the second was not, the string for the first name will be
  allocated but never deleted, and thus we will have a memory leak. However,
  all is not lost. Let’s look a little deeper into this situation. If we have
  an object that contains other objects, an important question is: exactly
  which destructors will be called and which will not?
To answer this question, let’s conduct a small experiment. Suppose we
  have the following three classes:
class A {
 public:
  A() { cout << "Creating A" << endl; }
  ~A() { cout << "Destroying A" << endl; }
};

class B {
 public:
  B() { cout << "Creating B" << endl; }
  ~B() { cout << "Destroying B" << endl; }
};

class C : public A {
 public:
  C() {
    cout << "Creating C" << endl;
    throw "Don't like C";
  }
  ~C() { cout << "Destroying C" << endl; }

 private:
  B b_;
};
Note that class C contains class B by composition
  (i.e., we have a data member in C of type B). It also contains the object of
  type A by inheritance: i.e., somewhere inside the
  object C there is an object A. Now, what happens if the constructor of C
  throws an exception? The following code example:
int main() {
   cout << "Testing throwing from constructor." << endl;
  try {
    C c;
  } catch (…) {
    cout << "Caught an exception" << endl;
  }

  return 0;
}
produces this output:
Testing throwing from constructor.
Creating A
Creating B
Creating C
Destroying B
Destroying A
Caught an exception
Note that it is only the destructor of C that was not executed: the
  destructors of both A and B were called. So the conclusion is simple and
  logical: for objects whose constructors are allowed to finish normally, the
  destructors will be called, even if these objects are part of the larger
  object constructor that did not finish normally. Therefore, let’s
  rewrite our example with sanity checks using smart pointers:
class PersonDescription {
public:
  PersonDescription(const char* first_name, const char* last_name) {
    SCPP_ASSERT(first_name != NULL, "First name must be provided");
    first_name_ = new string(first_name);

    SCPP_ASSERT(last_name != NULL, "Last name must be provided");
    last_name_ = new string(last_name);
  }

private:
  PersonDescription(const PersonDescription&);
  PersonDescription& operator=(const PersonDescription&);

  scpp::ScopedPtr<string> first_name_;
  scpp::ScopedPtr<string> last_name_;
};
Even if the second sanity check throws an exception, the destructor of
  the smart pointer to first_name_ will
  still be called and will do its cleanup. In addition, as a free benefit, we
  don’t need to worry about initializing these smart pointers to NULL—that is
  done automatically. So we see that throwing an exception from a constructor
  is a potentially dangerous business: the corresponding destructor will not
  be called, and we might have a problem—unless the destructor is
  empty.
While the C++ community is divided over whether it is a good idea to
  throw exceptions from constructors, there is a good argument for allowing
  the constructor to do so. The constructor does not have a return value, so
  if some of the inputs are wrong, what should we do? One possibility is to
  just return from the constructor and have a separate class method such as
  bool IsValid(). And each time you create
  an object, you should not forget to call my_object.IsValid() and see the result… and you
  can see where this is going. Which brings us back to the original choice: if
  something goes wrong inside the constructor, throw an exception. This means
  that the corresponding destructor will not be called, but this is acceptable
  to do if that destructor is empty.
Rule for this chapter: to avoid
  memory leaks when throwing exceptions from a constructor:
	Design your class in such a way that the destructor is
      empty.




Chapter 12. How to Write Consistent Comparison Operators



If you wrote a new class MyClass, you might
      want sometimes to write expressions like this:
MyClass x, y;
  /// some code initializing x and y
  if(x < y) {
    // do something
  } else if (x == y) {
    // do something else
  }
Even if you don’t need comparison operators
      (<, <=, etc.) yourself, you
      might find that someone attempts to use your class with Standard
      Template Library operations that require you to define these operators.
      For example, if you try to sort a vector of instances of your
      class:
vector<MyClass> v;
v.push_back(MyClass(3));
v.push_back(MyClass(1));
v.push_back(MyClass(2));

sort(v.begin(), v.end());
an attempt to compile this code fills the screen with diagnostics
      that look like this:
/usr/include/c++/4.2.1/bits/stl_heap.h:121: error: no
      match for 'operator<' in '__first.
      __gnu_cxx::__normal_iterator<_Iterator, _Container>::operator+
      [with _Iterator = MyClass*, _Container = std::vector<MyClass,
      std::allocator<MyClass> >](((const ptrdiff_t&)((const
      ptrdiff_t*)(&
      __parent)))).__gnu_cxx::__normal_iterator<_Iterator,
      _Container>::operator* [with _Iterator = MyClass*, _Container =
      std::vector<MyClass, std::allocator<MyClass> >]() <
      __value'
Although this output is not easily readable by a human, after
      some effort one can find in that pile of information the following
      useful piece: no match for
        ‘operator<’. What the compiler is unhappy about is that
      the class MyClass does not define a
      < operator. All you have to do is add to the
      definition of MyClass:
class MyClass {
 public:
  // constructors, etc…
  bool operator < (const MyClass& that) const {
    // some code returning bool
    return my_data_ < that.my_data_;
  }

 private:
  Int my_data_;
and the example compiles, runs, and sorts the vector. The same thing happens if you try to
    use your class in std::set<MyClass> or as a key in
      std::map<MyClass, AnyOtherClass>. While STL is
    relatively undemanding and in most cases will be satisfied by the definition of only one < operator, there might be cases when you want
    to define several comparison operators or potentially all of them. For example, suppose you’ve
    decided to write a Date class that would encapsulate the
    calendar date and you expect that other programmers might want to use all kinds of comparisons:
      date1 >= date2, etc. There are six comparison operators:
      
	<
	>
	<=
	>=
	==
	!=

From the point of view of C++, these operators could be written as six totally
    independent functions, and nothing in C++ prevents you from writing each one any way you like.
    However, the user of your class MyClass would expect that if
    instances of this class satisfy the inequality x1 < x2,
    then it must also be true that x1 <= x2 and that x2 > x1. In other words, there are some logical relations between
    these operators, and after writing each comparison operator, it would be a good idea to make
    sure that these relations hold in order to avoid confusion. In fact, no additional work to
    achieve this is necessary. There is an easy way to kill all six birds with one stone in two
    steps.
	In your class, define the following method:
class MyClass {
 public:
  // some code…

  // Returns negative int  when *this <  that,
  //         0             when *this == that and
  //         positive int  when *this >  that.
  int CompareTo(const MyClass& that) const;

	Define all six comparison operators by using the following
          macro inside the public section of your class:
SCPP_DEFINE_COMPARISON_OPERATORS(MyClass)



I have defined SCPP_DEFINE_COMPARISON_OPERATORS
      in the file scpp_types.hpp as follows:
#define SCPP_DEFINE_COMPARISON_OPERATORS(Class)                             \
  bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
  bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
  bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
  bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
  bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
  bool operator !=(const Class& that) const { return CompareTo(that) !=0; }
In one long line, this macro defines all six comparison operators for you in a consistent
    way. In order for this to work, the only thing you need to do is provide the CompareTo() function in your class. If you ever decide to change the
    definition of what you mean by > or <= for the instances of your class, you can simply edit that
    function and the rest will behave accordingly while preserving all the relations one would expect
    between different comparison operators.
Rule for this chapter to
      avoid errors when writing comparison operators:
	Write a CompareTo() function and use the
          SCPP_DEFINE_COMPARISON_OPERATORS macro to
          implement all the comparison operators.




Chapter 13. Errors When Using Standard C Libraries



As we discussed in Chapter 1, C++ inherited
  the C philosophy and its corresponding problems. But that’s not all. It also
  inherited the standard C library, which is unsafe in several ways, and
  consequently all its associated problems, sometimes leading to unpredictable
  behavior up to and including program crashes. For the final chapter in this
  part of the book, we’ll discuss the possible dangers that await you when you
  use some of the functions that programmers frequently depend on in these
  libraries.
When we try to use the C string libraries declared in string.h or functions such as sprintf() declared in
  stdio.h, we may face the following
  problems: 
	The functions that take pointers to character arrays (char *) crash when given a NULL instead of a
        pointer to a valid C string (for example, strlen(NULL) will
        crash).

	Some of the functions writing into a buffer might overwrite past
        the end of the buffer, thus leading to unpredictable application
        behavior including crashes.

	The safer versions of the same functions will not overwrite the
        buffer, but will stop writing
        into a buffer just before it ends, thus silently truncating the
        result—probably not the behavior
        one would want.



There are several potential ways to address these
  problems:
	Provide versions of the functions that do all the necessary
        sanity checks and treat the NULL pointers the same way as they would
        handle an empty string (const char*
        empty_string = "";).

	For those applications where the speed of these string
        operations should not be compromised, provide versions with temporary
        sanity checks that are active only during testing.



However, the best possible solution to this problem is not
  to use the C string libraries at all. Use the classes provided by C++
  instead. For example:
	Instead of strlen(my_c_string),
      you can use my_cpp_string.size().

	Instead of strcpy(), just copy the
      strings using string’s assignment
      operator (i.e., =).



To concatenate two strings, two functions in the C library are
  available. strcat() blindly adds a
  string to the end of an existing string in a buffer without ever knowing
  where the buffer ends. By contrast, strncat() adds no more than
  the specified number of bytes, which seems like a step in the right
  direction, but it still does not know anything about the size of the buffer
  it adds to. The programmer is responsible for allocating the right amount of
  space and calculating how many bytes to add.
Instead of strcat() or strncat(), use
  either:
#include <sstream> // ostringstream
#include <string>

  ostringsream buffer;
  buffer << first_string;
  buffer << additional_string;
  string result = buffer.str();
or, even shorter:
#include <string>

  string result = first_string;
  result += additional_string;
Not only are these more readable and safer, they are actually faster
  for long strings than strcat()! There are
  no buffers to allocate and overwrite.
If you are working with std::string and provide a
  NULL as an argument in a constructor:
std::string empty_string(NULL);
the program does not crash. Instead it throws an exception with a
  human-readable (well, almost human-readable) explanation of what
  happened:
basic_string::_S_construct NULL not valid
which translates into plain English as “the constructor of std::string
  found a NULL as an argument where it expected a valid C string.”
The rule for this chapter to avoid
  buffer overflows and crashes when using C string library functions is to
  avoid using C string libraries.
	They are not safe and sometimes not even as fast as the
      corresponding C++ classes, such as std::string and
      std::ostringstream. Use
      C++ classes and you will avoid a number of possible errors leading to
      program crashes or other unpredictable behavior.




Part III. The Joy of Bug Hunting: From Testing to Debugging to
    Production




In this part, we assume that your code at least
      partially adheres to the approaches and guidelines discussed in previous
      chapters. Now we are ready for testing. Here we discuss the testing
      and debugging strategy for finding and eliminating bugs in the most
      efficient way possible.


Chapter 14. General Testing Principles



Although it is impossible to test code without concrete knowledge of what a
        particular program does, and how, there are nevertheless some general principles of testing
        that are useful to follow. Correctly designed and implemented code must produce the right
        answer when given correct inputs. Furthermore, when given incorrect ones, the program should
        not silently die, crash, or get stuck, but should diagnose the problem—where, why, and if
        necessary, when the error happened—and then either gracefully terminate or return to the
        initial state from which it can process the next input. Testing must include everything from
        unit tests of each single class, to unit tests of groups of classes working together, to a
        test of the whole application.
To the extent possible, you should try to create a reproducible
      test that leads to the same results when repeated. This can be a
      challenge when dealing with multi-threaded applications, when the timing
      of events between different threads is an issue, but even in cases like
      that it is usually possible to convert tests of some parts of the code
      to a single-threaded mode where the results should be totally
      deterministic.
In order to test multiple classes, organize them in a hierarchy
      such that some classes are considered more “basic” than others. In other
      words, the classes on one level of the hierarchy can make calls only to
      the classes on the same level or below, not above. Then the sequence of
      testing is clear. Otherwise, you’ll face a chicken-and-egg problem when
      deciding what to test first. An even better design is when a class at
      each level uses only classes below it, as shown in Figure 14-1.
[image: Application that allows references to the code in the same layers, versus one with a strict separation of layers]

Figure 14-1. Application that allows references to the code in the same
        layers, versus one with a strict separation of layers


Each piece of code that expects some input must be tested with both correct and incorrect
        inputs. Try to “push” the code and see how it behaves not only under normal but also
        abnormal circumstances. For instance, if the code expects a pointer (or pointers) to some
        inputs, what would happen if you provide NULL(s) instead? If an algorithm expects integers,
        test whether there could be an integer overflow. If an algorithm expects doubles, test what
        happens if they are very small or very large. See how code behaves when different inputs
        differ by several orders of magnitude. Will the algorithm lose its accuracy?
If the algorithm works with input of a variable size (e.g., an
      array, vector, or matrix, or if the code reads several numbers from a
      file), see what happens when the size of input grows by an order of
      magnitude. You must have an understanding of the
      complexity of your algorithm, e.g., if the input
      contains N units of information, how much does the time
      of processing increase as a function of N when
      N increases? Then test it whether this is true in
      practice.
If the algorithm does some calculation numerically but in specific cases it has an analytical solution, compare them. If there
      is asymptotic behavior when some parameter becomes small or large, test
      it.
If the algorithm does something in a very smart and efficient way,
      consider writing a brute-force version of the same algorithm. Although this will be much slower, it will also be much simpler and therefore less
      error-prone. Then compare the results, at least for small input size.
If an algorithm takes as an input an arbitrary set of numbers,
      such as in the case of sorting, it is usually a good idea to generate
      test inputs in a pseudo-random manner—e.g., using the function rand()—so
      that you can create a lot of different test sets easily. This technique
      still allows the tests to be repeatable, because you can recreate the same
      set by specifying the same seed for the random number generator.
Always look for special cases. If the algorithm takes an array,
      what happens if it is empty or contains just one element? What if
      all elements of an array are the same? If it takes a matrix, what
      happens if the determinant of that matrix is zero?
If you use hash sets or hash maps, test them for collisions with a
      realistic set of inputs. Try to look for worst-case scenarios.
If your inputs depend on a calendar date, make sure to include the February 29th in a leap
        year. I have found that in algorithms generating sets of dates starting from some initial
        date, this is usually a very special case that can sometimes lead to the discovery of rare
        but interesting bugs. Therefore, if you are testing data that includes a range of dates,
        make sure that it is at least five years long so that it includes at least one leap year.
        (Strictly speaking, not every five-year interval includes a leap year, because the years
        1900, 2100, 2200, and 2300 are not leap years, so you might need about nine years of data
        instead, depending on the century in which you are reading this book.
Automate your testing as much as possible. The best set of tests
      is one that runs with one push of a button and tests everything there is
      to test about your code. There are many frameworks and utilities that make it easy to achieve this automation.
Plan your work so that you spend between 30% to 50% of your time
      testing. This is the part of planning that is very easy to underestimate
      and where things tend to go wrong, thus ruining delivery schedules.
      Remember: the more effort you spend on testing, the easier your life
      will be when your code goes into production.

Chapter 15. Debug-On-Error Strategy



By this time you probably have your program written and containing a lot of sanity checks,
    some permanent and some temporary. Now it is time to test it. Let’s go bug hunting, one bug at a
    time. Our testing algorithm is very simple: 
	Run your code with sanity checks on, trying to cover all possible cases.

	If any sanity check fails, fix the code and return to step 1.

	If you’ve made it to step 3, you can be reasonably sure your code works correctly.
          Well done!



In my personal experience, this strategy makes testing a much faster, more
    efficient, and more enjoyable procedure than it would otherwise be, when your code does strange
    things and does not provide any explanation for its behavior. All you have to do to make this
    process effective is to insert enough sanity checks in your code while writing it and to make
    them as informative as possible. In short, the more sanity checks you have in your code, the
    more you can guarantee that it works correctly after it has passed all the checks.
Let’s consider how the SCPP_TEST_ASSERT macro
      can be switched on. Take a closer look in the file
      scpp_assert.hpp, where it is defined:
#ifdef _DEBUG
#  define SCPP_TEST_ASSERT_ON
#endif

#ifdef SCPP_TEST_ASSERT_ON
#  define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
#  define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif
If you compile your project in debug mode, a symbol named _DEBUG is defined during compilation (this might be compiler-dependent, but it is
    definitely true for Microsoft Visual Studio). In this case, your sanity checks (e.g., the
      SCPP_TEST_ASSERT macro) are on. Our option for running the
    code are summarized in Table 15-1.
Table 15-1. Testing modes
	Level	Purpose	Compilation mode	Test sanity checks
	1	Testing with debugging on error	Debug	On
	2	Fast testing	Release	On
	3	Production	Release	Off



Options 1 and 3 are obvious enough: most of the time you will want to test your code while
    it is compiled in debug mode, and probably running it inside a debugger. However, if your
    program does a lot of number crunching, and if switching sanity checks on and compiling in the
    debug mode slow it down too much, you have option 2: testing the code compiled in release mode
    with sanity checks on. Not having the luxury of exploring the code in the debugger makes it
    especially important that your error messages contain enough information to allow you to fix the
    bug.
If your program is fast enough to run with sanity checks in debug mode, the easiest way to
    catch a bug is to open the scpp_assert.cpp file, find the
    comment “This is a good place to put your debug breakpoint:”, and put a debug breakpoint on the
    next line (which can be the line starting with either throw
    or cerr, depending on how the code was compiled):
void SCPP_AssertErrorHandler(const char* file_name,
               unsigned line_number,
               const char* message) {
  // This is a good place to put your debug breakpoint:
  // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
  throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
  cerr << message << " in file " << file_name
       << " #" << line_number << endl << flush;
  // Terminate application
  exit(1);
#endif
This is the reason I created this error handler function. Simply knowing the filename and
    line number where the error occurred might not help you much. But if you put your debugger
    breakpoint there, the debugger will stop on it during every execution of this line, even if the
    bug occurs on only the 10th or even the 10,000th iteration. By putting the breakpoint
      inside the error handler function, you are guaranteed that your program
    will run to the first error and stop in the debugger, as shown in Figure 15-1.
[image: Debugger stopped inside the error handler function in XCode (Max OS X Leopard)]

Figure 15-1. Debugger stopped inside the error handler function in XCode
        (Max OS X Leopard)

If the text of the error message is not enough to figure out why the error happened, you can
    go up the call stack into the function where the error occurred and examine the variables to
    figure out what happened and why. On the other hand, if your debugger doesn’t stop on this
    breakpoint, you should not be too disappointed—your program passed all sanity checks!

Chapter 16. Making Your Code Debugger-Friendly



Have you ever tried to look inside some object in the debugger
  and been frustrated that the debugger shows the details of the object’s
  physical implementation instead of the logical information that the object
  is supposed to represent? Let me illustrate this using an example of a
  Date class that represents
  calendar dates, such as December 26, 2011. If you look into this object in
  the debugger, chances are you will not see anything resembling “December 26,
  2011” or any human-readable information at all, but rather an integer that
  requires some decoding to convert into a date it represents.
It all depends on how the Date type is implemented. I
  have seen the following three implementations:
	class Date {
  // some code

 private:
  int day_, month_, year_;

	typedef Date int; // in YYYYMMDD format

	class Date {
  // some code

 private:
  int number_of_days_; //  Number of calendar days since the "anchor date"



The first implementation is pretty self-evident and is a pleasure to
  debug. In the second case, the date December 26, 2011 is represented by an
  integer 20111226, which is also easily readable by a human once you know the
  formula behind it.
In the last case, the internal representation of a Date is the number of days
  that have passed since some arbitrarily chosen date far enough in the past,
  that the day represented by 1 is 1/1/1900 or 1/1/0000 or something of this
  sort.
While the first two implementations are very debugger-friendly, they
  have a serious problem. The Date type is supposed to
  support “date arithmetic,” i.e., operations such as adding a number of days
  to a date, or calculating the number of days between two dates. In the cases
  of implementations 1 and 2 such number arithmetic is extremely slow, while
  in the case of implementation 3 it is as efficient as adding and subtracting
  integers.
For this reason, any serious implementation of Date uses approach 3.
  However, when you look at this Date object in the
  debugger, it is a pain to figure out what the actual calendar date is. For
  example, in the class Date we will consider
  momentarily, the date December 26, 2011 looks like 734497 in the debugger,
  and when you are working with code that contains a lot of dates—for example,
  some financial contract that pays quarterly for the next 30 years, and also
  has some additional dates a couple of days before each payment date relevant
  for calculation—debugging becomes a challenge.
But it doesn’t have to be. The solution to this problem is to make the
  code of the class Date “debugger-friendly,”
  meaning that when compiled in debug mode, it provides additional information
  in the debugger to represent the date in a human-readable form (either as
  “December 26, 2011” or at least 20111226). However, given that this
  additional functionality requires some calculations and increases the size
  of the object, I’ve decided to compromise and settle on the second solution,
  representing the debugging info of the date in YYYYMMDD format, i.e., as
  20111226.
The complete source code for the class Date is provided in Appendix J in the scpp_date.hpp and scpp_date.cpp files. Here I just include snippets
  from these files that provide this additional debugging information. In the
  header file we find:
class Date {
 public:
  // some code

 private:
  int date_; // number of days from A.D., i.e. 01/01/0000 is 1.

#ifdef _DEBUG
  int yyyymmdd_;
#endif

void SyncDebug() {
#ifdef _DEBUG
  yyyymmdd_ = AsYYYYMMDD();
#endif
}

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
  yyyymmdd_ = 10000*year + 100*month + day;
#endif
}
};
First, the implementation is based on a number of days since some day
  in the past. In addition, when
  compiled in debug mode, the symbol _DEBUG is defined and the
  class has an additional data member
  int yyyymmdd_, which will contain the
  date in the YYYYMMDD format. To fill this data member out, there are two
  functions SyncDebug(), so named because they
  synchronize the debug information with the actual date_ contained in the object. When compiled in
  release mode, these two functions do nothing, and in debug mode they update
  the yyyymmdd_ data member. These
  functions are called from every non-const
  method of the class after modifying the date_ data member, for example:
Date& operator ++ () {
  ++date_;
  SyncDebug();
  return *this;
}

// some other non-const methods

Date& operator += (int nDays) {
  date_ += nDays;
  SyncDebug();
  return *this;
}

// even more non-const methods
and also in a constructor:
Date::Date(unsigned year, unsigned month, unsigned day) {
  SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
  SCPP_TEST_ASSERT(JAN<=month && month<=DEC,
    "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
  unsigned ml = MonthLength(month, year);
  SCPP_TEST_ASSERT(1<=day && day<=ml,
    "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
  int n_years_before = year - 1;
  date_ = 365*n_years_before + n_years_before/4 - n_years_before/100
          + n_years_before/400 + day + NumberOfDaysBeforeMonth(month, year);

  SyncDebug(year, month, day);
}
Figure 16-1 shows how the Date object looks in the
  XCode debugger as a result of all this additional activity in debug
  mode.
[image: Looking at the “debuggable” Date classDate object in the XCode debugger]

Figure 16-1. Looking at the “debuggable” Date object in the XCode debugger

The variable d of type Date is shown in the upper
  right columns. In the “Arguments” column find d, and under it you can see its data members,
  while in the next column, “Values,” you can see that:
	date_ is equal to
      734497.

	yyyymmdd_ is equal to
      20111226.



The presence of the latter value makes decoding the date in the object
  as easy as separating the last two pairs of digits from the first
  four.
The example of the Date class discussed here
  is just that: an example of an approach to making your class friendly to a
  debugger. I started to work on this mostly out of frustration when trying to
  look into STL containers in the debugger and finding a lot of interesting
  details about their implementation instead of what numbers or strings or
  other objects they actually contained. Making STL containers
  debugger-friendly on the level of code could be (and was) done, though it
  makes the code compiled in debug mode exceptionally slow. However, this
  problem was addressed recently on the level of the debugger: Microsoft
  Visual Studio 2010 shows the logical contents (as opposed to implementation
  details) of STL containers, such as a vector, set, or map (Figure 16-2).
[image: STL vector, set, and map in the Microsoft Visual Studio 2010 debugger]

Figure 16-2. STL vector, set, and map in the Microsoft Visual Studio 2010
    debugger

Thus, there is hope that this idea will soon reach debuggers working
  under Unix, Linux, and Mac OS too.
In the case of a specific class you create, if its implementation
  differs from the logical information it represents, it is up to you to make
  it debugger-friendly. Usually it is not difficult, and you will be glad you
  did it as you debug your program.

Chapter 17. Conclusion



Now that we’ve reached the end of this book, let’s go back and
  summarize the guidelines and strategies we’ve discussed. The first guideline
  is that we want to diagnose as many errors at compile time as possible. All
  the other errors will be diagnosed at runtime, and most of the strategies in
  this book concentrate on catching these errors.
When catching errors at runtime, we are trying to achieve two
  contrasting goals:
	Testing as many sanity checks as possible.

	Having our code run as fast as possible in production.



This can be achieved by making some of the sanity checks temporary. To
  do this, you need to enable your checks to be switched on and off at compile
  time and activate them for testing only.
Here is a summary of all the rules formulated in this book.
For diagnosing errors at compile time (Chapter 2):
	Prohibit implicit type conversions: declare constructors taking
      one parameter with the explicit keyword and
      avoid conversion operators.

	Use different classes for different data types.

	Do not use enums to create
      int constants; use them
      to create new types.



To avoid an “index out of bounds” error (Chapter 4):
	Do not use static or dynamically allocated arrays; use a template
      array or vector instead.

	Do not use brackets on the new and delete operators; leave
      allocation of multiple elements to the template vector.

	Use scpp:vector instead of
      std::vector, and
      scpp::array instead of
      a static array. Switch the sanity checks on.

	For a two-dimensional array, use the scpp::matrix class (or
      similar classes for higher-dimension arrays) with operator () providing indexes-out-of-bounds
      checks.



To avoid errors in pointer arithmetic (Chapter 5):
	Avoid using pointer arithmetic at all. Use a template vector or
      array with an index instead.



To avoid errors with invalid pointers, references, and iterators
  (Chapter 6):
	Do not hold pointers, references, or iterators to the element of a
      container after you’ve modified the container.



To avoid uninitialized variables, especially data members of a class
  (Chapter 7):
	Do not use built-in types such as int, unsigned, double, bool, etc., for class
      data members; instead use Int, Unsigned, Double, Bool, etc. You will not
      need to initialize them in constructors.

	If you use these classes instead of built-in types for passing
      parameters to functions, you get additional type safety.



To avoid memory leaks (Chapter 8):
	Every time you create an object using the new operator,
      immediately assign the result to a smart pointer (a reference counting
      pointer or scoped pointer is recommended).

	Use the new operator only without brackets. If you need to create
      an array, create a new template vector, which is a single object.

	Avoid circular references.

	When writing a function that returns a pointer, return a
      corresponding smart pointer instead of a raw one, to enforce the
      ownership of the result.



To catch dereferencing a NULL pointer at runtime (Chapter 9):
	If you have a pointer that owns the object it points to, use a
      smart pointer (a reference-counting pointer or scoped
      pointer).

	When you have a raw pointer T* that points to an
      object you do not own, use the template class Ptr<T>
      instead.

	For a const pointer (e.g.,
      const T*) use Ptr<const T>.



To avoid errors in copy-constructors and assignment operators (Chapter 10):
	Whenever possible, avoid writing copy constructor and assignment
      operators for your classes.

	If the default versions created for you automatically by the
      compiler do not work for you, consider prohibiting copying instances of
      your class by declaring the copy constructor and assignment operator
      private.



To avoid problems when throwing exceptions from constructors (Chapter 11):
	Design your class in such a way that the destructor is
      empty.



To avoid errors when writing comparison operators (Chapter 12):
	Write a CompareTo() function
      and use the SCPP_DEFINE_COMPARISON_OPERATORS macro to
      implement all six comparison operators for your class.



To avoid errors when calling C-library functions such as buffer overflows and crashes
  caused by NULL pointers (Chapter 13):
	Avoid using C string libraries; use the   string and  ostringstream C++
      classes instead.



The best possible testing mode is to compile code in debug mode with
  all sanity checks activated. In this mode, all runtime errors will lead to
  calls to the same error handler function where you can wait with a debug
  breakpoint. The code will run until a sanity check fails, at which time you
  will have an opportunity to debug the code that leads to the failure.
The next best mode is slightly faster: running tests when code is
  compiled in release mode with sanity checks on and relying on the
  completeness of the error messages to diagnose the errors. This mode might
  be necessary if the code compiled in debug mode with sanity checks on is too
  slow. You might even want to leave some of the sanity checks on in
  production if you think they might be triggered. For this reason, I’ve made
  writing these sanity checks as easy as possible, so you can write as many of
  them as you need and make them informative enough to diagnose the error
  without the use of a debugger.
Finally, when your tests pass all your sanity checks, you have good
  reason to believe that your program is working correctly. And the more
  sanity checks you’ve put in there, the more reason you have to believe this
  is true.
If you follow all the rules in this book, you will essentially be
  using a “safer” subset of C++ that should lower the “bug count” in your
  code. Of course, this book covers only the most common errors one can make
  when programming in C++, so even if you do follow all the rules, there is
  still lots of opportunity for mistakes. Therefore, instead of being titled
  Safe C++, this book could have been more realistically
  called Safer C++. Of course, completely safe C++ (or
  any other language) is an unattainable dream, but I hope that avoiding the
  errors discussed in this book brings us one step closer to this goal.
The strategy discussed in this book looks very simple. That’s because
  it is. The whole idea of this book can
  be summarized as follows: design your code to be self-diagnosing. This strategy makes
  testing faster, easier, less stressful, and more productive; it relies on
  the compiler and runtime code to catch your errors, it speeds up
  development, makes testing much less stressful and more productive, and at
  the end of the day makes your code more reliable. Go ahead and apply it to
  your next project—I think you’ll agree with me that it works!

Appendix A. Source Code for the scpp Library Used in This Book



Although you will download this library from my website at
    https://github.com/vladimir-kushnir/SafeCPlusPlus for use in your projects,
      I’m including it here so you can check it at your convenience while reading the
      book.

Appendix B. Source Code for the files scpp_assert.hpp and scpp_assert.cpp



File scpp_assert.hpp
#ifndef __SCPP_ASSERT_HPP_INCLUDED__
#define __SCPP_ASSERT_HPP_INCLUDED__

#include <sstream> // ostringstream

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
#include <exception>

namespace scpp {
// This exception is thrown when the sanity checks defined below fail,
// and #ifdef SCPP_THROW_EXCEPTION_ON_BUG.
class ScppAssertFailedException : public std::exception {
 public:
  ScppAssertFailedException(const char* file_name,
                unsigned line_number,
                const char* message);

  virtual const char* what() const throw () { return what_.c_str(); }

  virtual ~ScppAssertFailedException() throw () {}
 private:
  std::string what_;
};
} // namespace scpp
#endif

void SCPP_AssertErrorHandler(const char* file_name,
               unsigned line_number,
               const char* message);

// Permanent sanity check macro.
#define SCPP_ASSERT(condition, msg)                 \
    if(!(condition)) {                              \
        std::ostringstream s;                       \
        s << msg;                                   \
        SCPP_AssertErrorHandler(                    \
            __FILE__, __LINE__, s.str().c_str() );  \
  }

#ifdef _DEBUG
#  define SCPP_TEST_ASSERT_ON
#endif

// Temporary (for testing only) sanity check macro
#ifdef SCPP_TEST_ASSERT_ON
#  define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
#  define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif

#endif // __SCPP_ASSERT_HPP_INCLUDED__
 File scpp_assert.cpp
#include "scpp_assert.hpp"

#include <iostream>  // cerr, endl, flush
#include <stdlib.h>  // exit()


using namespace std;

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
namespace scpp {
  ScppAssertFailedException::ScppAssertFailedException(const char* file_name,
                             unsigned line_number,
                             const char* message) {
    ostringstream s;
    s << "SCPP assertion failed with message '" << message
      << "' in file " << file_name << " #" << line_number;

    what_ = s.str();
  }
}
#endif

void SCPP_AssertErrorHandler(const char* file_name,
               unsigned line_number,
               const char* message) {
  // This is a good place to put your debug breakpoint:
  // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
  throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
  cerr << message << " in file " << file_name << " #" << line_number << endl << flush;
  // Terminate application
  exit(1);
#endif
}

Appendix C. Source Code for the file
      scpp_vector.hpp



#ifndef __SCPP_VECTOR_HPP_INCLUDED__
#define __SCPP_VECTOR_HPP_INCLUDED__

#include <vector>
#include "scpp_assert.hpp"


namespace scpp {

// Wrapper around std::vector, has temporary sanity checks in the operators [].
template <typename T>
class vector : public std::vector<T> {
 public:
  typedef unsigned size_type;

  // Most commonly used constructors:
  explicit vector( size_type n = 0  )
  : std::vector<T>(n)
  {}

  vector( size_type n, const T& value )
  : std::vector<T>(n, value)
  {}

  template <class InputIterator> vector ( InputIterator first, InputIterator last )
  : std::vector<T>(first, last)
  {}

  // Note: we do not provide a copy-ctor and assignment operator.
  // we rely on default versions of these methods generated by the compiler.

  T& operator [] (size_type index) {
    SCPP_TEST_ASSERT(index < std::vector<T>::size(),
      "Index " << index << " must be less than "
      << std::vector<T>::size());
    return std::vector<T>::operator[](index);
  }

  const T& operator [] (size_type index) const {
    SCPP_TEST_ASSERT(index < std::vector<T>::size(),
      "Index " << index << " must be less than "
      << std::vector<T>::size());
    return std::vector<T>::operator[](index);
  }
};
} // namespace scpp


template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::vector<T>& v) {
  for(unsigned i=0; i<v.size(); ++i) {
    os << v[i];
    if( i + 1 < v.size() )
      os << " ";
  }
  return os;
}

#endif // __SCPP_VECTOR_HPP_INCLUDED__

Appendix D. Source Code for the file
      scpp_array.hpp



#ifndef __SCPP_ARRAY_HPP_INCLUDED__
#define __SCPP_ARRAY_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
  typedef unsigned size_type;

  // Most commonly used constructors:
  array() {}
  explicit array(const T& initial_value) {
    for(size_type i=0; i<size(); ++i)
      data_[i] = initial_value;
  }

  size_type size() const { return N; }

  // Note: we do not provide a copy-ctor and assignment operator.
  // we rely on default versions of these methods generated by the compiler.

  T& operator [] (size_type index) {
    SCPP_TEST_ASSERT(index < N,
      "Index " << index << " must be less than " << N);
    return data_[index];
  }

  const T& operator [] (size_type index) const {
    SCPP_TEST_ASSERT(index < N,
      "Index " << index << " must be less than " << N);
    return data_[index];
  }

  // Accessors
  T* begin() { return &data_[0]; }
  const T* begin() const { return &data_[0]; }

  // Returns pointer PAST the end of the array.
  T* end() { return &data_[N]; }
  const T* end() const { return &data_[N]; }

  private:
  T data_[N];
};
} // namespace scpp


template <typename T, unsigned N>
inline
std::ostream& operator << (std::ostream& os, const scpp::array<T,N>& a) {
  for( unsigned i=0; i<a.size(); ++i ) {
    os << a[i];
    if( i + 1 < a.size() )
        os << " ";
  }
  return os;
}

#endif // __SCPP_ARRAY_HPP_INCLUDED__

Appendix E. Source Code for the file
      scpp_matrix.hpp



#ifndef __SCPP_MATRIX_HPP_INCLUDED__
#define __SCPP_MATRIX_HPP_INCLUDED__

#include <ostream>
#include <vector>

#include "scpp_assert.hpp"

namespace scpp {

// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
  public:
  typedef unsigned size_type;

  matrix(size_type num_rows, size_type num_cols)
    : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
  {
    SCPP_TEST_ASSERT(num_rows > 0,
      "Number of rows in a matrix must be positive");
    SCPP_TEST_ASSERT(num_cols > 0,
      "Number of columns in a matrix must be positive");
  }

  matrix(size_type num_rows, size_type num_cols, const T& init_value)
    : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
  {
    SCPP_TEST_ASSERT(num_rows > 0, "Number of rows in a matrix must be positive");
    SCPP_TEST_ASSERT(num_cols > 0, "Number of columns in a matrix must be positive");
  }

  size_type num_rows() const { return rows_; }
  size_type num_cols() const { return cols_; }

  // Accessors: return element by row and column.
  T& operator() ( size_type row, size_type col )
  {
    return data_[ index( row, col ) ];
  }

  const T& operator() ( size_type row, size_type col ) const
  {
    return data_[ index( row, col ) ];
  }

  private:
  size_type rows_, cols_;
  std::vector<T> data_;

  size_type index(size_type row, size_type col) const {
    SCPP_TEST_ASSERT(row < rows_, "Row " << row  << " must be less than " << rows_);
     SCPP_TEST_ASSERT(col < cols_, "Column " << col  << " must be less than " << cols_);
    return cols_ * row + col;
  }
};

}  // namespace scpp

template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::matrix<T>& m) {
  for( unsigned r =0; r<m.num_rows(); ++r ) {
    for( unsigned c=0; c<m.num_cols(); ++c ) {
      os << m(r,c);
      if( c + 1 < m.num_cols() )
        os << "\t";
    }
    os << "\n";
  }
  return os;
}

#endif // __SCPP_MATRIX_HPP_INCLUDED__

Appendix F. Source Code for the file
      scpp_types.hpp



#ifndef __SCPP_TYPES_HPP_INCLUDED__
#define __SCPP_TYPES_HPP_INCLUDED__

#include <ostream>
#include "scpp_assert.hpp"

// Template wrapper around a built-in type T.
// Behaves exactly as T, except initialized by default to 0.
template<typename T>
class TNumber {
public:
  TNumber(const T& x=0)
    : data_(x) {
  }

  operator T () const { return data_; }

  TNumber& operator = (const T& x) {
    data_ = x;
    return *this;
  }

  // postfix operator x++
  TNumber operator ++ (int) {
    TNumber<T> copy(*this);
    ++data_;
    return copy;
  }

  // prefix operator ++x
  TNumber& operator ++ () {
    ++data_;
    return *this;
  }

  TNumber& operator += (T x) {
    data_ += x;
    return *this;
  }

  TNumber& operator -= (T x) {
    data_ -= x;
    return *this;
  }

  TNumber& operator *= (T x) {
    data_ *= x;
    return *this;
  }

  TNumber& operator /= (T x) {
    SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
    data_ /= x;
    return *this;
  }

  T operator / (T x)
  {
    SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
    return data_ / x;
  }

private:
  T data_;
};

typedef long long int64;
typedef unsigned long long unsigned64;

typedef    TNumber<int>    Int;
typedef    TNumber<unsigned>    Unsigned;
typedef    TNumber<int64>    Int64;
typedef    TNumber<unsigned64>  Unsigned64;
typedef    TNumber<float>    Float;
typedef    TNumber<double>    Double;
typedef    TNumber<char>    Char;

class Bool {
public:
  Bool(bool x=false)
    : data_(x)
  {}

  operator bool () const { return data_; }
  Bool& operator = (bool x) {
    data_ = x;
    return *this;
  }

  Bool& operator &= (bool x) {
    data_ &= x;
    return *this;
  }

  Bool& operator |= (bool x) {
    data_ |= x;
    return *this;
  }

private:
  bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
  if(b)
    os << "True";
  else
    os << "False";
  return os;
}

#define SCPP_DEFINE_COMPARISON_OPERATORS(Class) \
  bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
  bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
  bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
  bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
  bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
  bool operator !=(const Class& that) const { return CompareTo(that) !=0; }


#endif // __SCPP_TYPES_HPP_INCLUDED__

Appendix G. Source Code for the file
      scpp_refcountptr.hpp



#ifndef __SCPP_REFCOUNTPTR_HPP_INCLUDED__
#define __SCPP_REFCOUNTPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Reference-counting pointer.  Takes ownership of an object.  Can be copied.
template <typename T>
class RefCountPtr {
  public:

  explicit RefCountPtr(T* p = NULL) {
    Create(p);
  }

  RefCountPtr(const RefCountPtr<T>& rhs) {
    Copy(rhs);
  }

  RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
    if(ptr_ != rhs.ptr_) {
      Kill();
      Copy(rhs);
    }

    return *this;
  }

  RefCountPtr<T>& operator=(T* p) {
    if(ptr_ != p) {
      Kill();
      Create(p);
    }

    return *this;
  }

  ~RefCountPtr() {
    Kill();
  }

  T* Get() const { return ptr_; }

  T* operator->() const {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* () const {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }

private:
  T*  ptr_;
  int*  count_;

  void Create(T* p) {
    ptr_ = p;
    if(ptr_ != NULL) {
      count_ = new int;
      *count_ = 1;
    } else {
      count_ = NULL;
    }
  }

  void Copy(const RefCountPtr<T>& rhs) {
    ptr_ = rhs.ptr_;
    count_ = rhs.count_;
    if(count_ != NULL)
      ++(*count_);
  }

  void Kill() {
    if(count_ != NULL) {
      if(--(*count_) == 0) {
        delete ptr_;
        delete count_;
      }
    }
  }

};
} // namespace scpp

#endif // __SCPP_REFCOUNTPTR_HPP_INCLUDED__

Appendix H. Source Code for the file
      scpp_scopedptr.hpp



#ifndef __SCPP_SCOPEDPTR_HPP_INCLUDED__
#define __SCPP_SCOPEDPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Scoped pointer, takes ownership of an object, could not be copied.
template <typename T>
class ScopedPtr {
  public:

  explicit ScopedPtr(T* p = NULL)
  : ptr_(p) {
  }

  ScopedPtr<T>& operator=(T* p) {
    if(ptr_ != p)
    {
      delete ptr_;
      ptr_ = p;
    }

    return *this;
  }

  ~ScopedPtr() {
    delete ptr_;
  }

  T* Get() const {
    return ptr_;
  }

  T* operator->() const
  {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* () const {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }

  // Release ownership of the object to the caller.
  T* Release() {
    T* p = ptr_;
    ptr_ = NULL;
    return p;
  }

private:
  T*  ptr_;

  // Copy is prohibited:
  ScopedPtr(const ScopedPtr<T>& rhs);
  ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};

} // namespace scpp

#endif // __SCPP_SCOPEDPTR_HPP_INCLUDED__

Appendix I. Source Code for the file
      scpp_ptr.hpp



#ifndef __SCPP_PTR_HPP_INCLUDED__
#define __SCPP_PTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
  public:

  explicit Ptr(T* p = NULL)
  : ptr_(p) {
  }

  T* Get() const {
    return ptr_;
  }

  Ptr<T>& operator=(T* p) {
    ptr_ = p;
    return *this;
  }

  T* operator->() const {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
    return ptr_;
  }

  T& operator* () const {
    SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
    return *ptr_;
  }

private:
  T*  ptr_;
};

} // namespace scpp

#endif // __SCPP_PTR_HPP_INCLUDED__

Appendix J. Source Code for the file scpp_date.hpp and scpp_date.cpp



File scpp_date.hpp
#ifndef __SCPP_DATE_HPP_INCLUDED__
#define __SCPP_DATE_HPP_INCLUDED__

#include <iostream>
#include <string>

#include "scpp_assert.hpp"
#include "scpp_types.hpp"

/*
  Date class.
  Features:
    All date arithmetic operators and comparisons are provided.
    Date arithmetic is implemented as an integer arithmetic.
    No Y2K problems -- all years must be >= 1900.
    Default output format is American (MM/DD/YYYY).
    In debug one can see the date in debugger as yyyymmdd --
      just point your debugger to a yyyymmdd_ data member.

  No implicit type conversions are allowed.

*/
namespace scpp {
class Date {
public:
  // Creates an empty (invalid in terms of IsValid()) date.
  Date();

  // Input format: "mm/dd/yyyy".
  explicit Date(const char* str_date);

  // Same as above.
  explicit Date(const std::string& str_date);

  // Date from integer in the YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
  explicit Date(unsigned yyyymmdd);

  // Year must be 4-digit,
  // month is 1-based, i.e. 1 .. 12,
  // day is 1 .. MonthLength() <= 31
  Date(unsigned year, unsigned month, unsigned day);

  // Returns true if the date is not empty,
  // as is the case when it is created by the default constructor.
  // Most operations on invalid date are not allowed
  // (will call error handler).
  bool IsValid() const { return date_!=0; }

  // Returns date in YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
  unsigned AsYYYYMMDD() const;

  // 4-digit year.
  unsigned Year() const;

  enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
  // Returns month number JAN .. DEC, i.e. 1..12.
  unsigned Month() const;

  // Day of month 1 .. MonthLength() <= 31.
  unsigned DayOfMonth() const;

  static bool IsLeap(unsigned year);

  typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeekType;
  // Returns day of week SUN .. SAT.
  DayOfWeekType DayOfWeek() const;

  // "Sunday", "Monday" .. "Saturday".
  const char* DayOfWeekStr() const;

  int Data() const { return date_; }

  typedef enum { FRMT_AMERICAN,   // MM/DD/YYYY
             FRMT_EUROPEAN  // MM.DD.YYYY
            // one can add formats in here if necessary.
      } DateOutputFormat;

  enum { MIN_BUFFER_SIZE=11 };
  // The function prints a date into a user-provided buffer
  // and returns the same buffer.
  // Make sure the buffer size >= MIN_BUFFER_SIZE chars at least.
  char* AsString(char* buffer, unsigned bufLen,
             DateOutputFormat frmt=FRMT_AMERICAN) const;

  // Same as above, but C++ style.
  std::string AsString(DateOutputFormat frmt=FRMT_AMERICAN) const;

  // Returns negative int, 0 or positive int in cases of *this<d, *this==d and *this>d.
  int CompareTo(const Date& d) const {
    SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
    SCPP_TEST_ASSERT(d.IsValid(), "Date is not valid")

    return date_ - d.date_;
  }

    SCPP_DEFINE_COMPARISON_OPERATORS(Date)

  Date& operator ++ () {
    ++date_;
    SyncDebug();
    return *this;
  }

  Date operator ++ (int) {
    Date copy(*this);
    ++(*this);
    return copy;
  }

  Date& operator -- () {
    --date_;
    SyncDebug();
    return *this;
  }

  Date operator -- (int) {
    Date copy(*this);
    --(*this);
    return copy;
  }

  Date& operator += (int nDays) {
    date_ += nDays;
    SyncDebug();
    return *this;
  }

  Date& operator -= (int nDays) {
    (*this) += (-nDays);
    return *this;
  }

private:
  int date_; // number of days from A.D., i.e. 01/01/0001 is 1.

#ifdef _DEBUG
  int yyyymmdd_;
#endif

  void SyncDebug() {
#ifdef _DEBUG
    yyyymmdd_ = AsYYYYMMDD();
#endif
  }

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
    yyyymmdd_ = 10000*year + 100*month + day;
#endif
  }

  // Returns month's length in days,
  // input: month = 1 .. 12
  static unsigned MonthLength(unsigned month, unsigned year);

  // Returns number of calendar days before beginning of the month,
  // e.g. for JAN - 0,
  //      for FEB - 31,
  //      for MAR - 59 or 60 depending on the leap year.
  static unsigned NumberOfDaysBeforeMonth(unsigned month, unsigned year);
};
} // namespace scpp

inline std::ostream& operator<<(std::ostream& os, const scpp::Date& d) {
  char buffer[scpp::Date::MIN_BUFFER_SIZE];
  os << d.AsString(buffer, scpp::Date::MIN_BUFFER_SIZE);
  return os;
}

inline scpp::Date operator + (const scpp::Date& d, int nDays) {
  scpp::Date copy(d);
  return (copy += nDays);
}

inline scpp::Date operator - (const scpp::Date& d, int nDays) {
  scpp::Date copy(d);
  return (copy -= nDays);
}

inline int operator - (const scpp::Date& lhs, const scpp::Date& rhs) {
  return lhs.Data() - rhs.Data();
}
#endif // __SCPP_DATE_HPP_INCLUDED__

    
  
File scpp_date.cpp
#include "scpp_date.hpp"

#include <string.h>  // strlen
#include <stdlib.h>  // atoi

namespace scpp {
Date::Date()
: date_(0)
{
#ifdef _DEBUG
  yyyymmdd_ = 0;
#endif
}

Date::Date(const char* str_date) {
  SCPP_ASSERT(str_date!=NULL, "Date(): string argument=0.")

  // must be mm/dd/yyyy, at least m/d/yyyy
  SCPP_TEST_ASSERT(strlen(str_date)>=8, "Bad Date input: '" << str_date << "'.")

  unsigned mm, dd=0, yyyy=0;

  mm = atoi(str_date);
  for(const char* p=str_date; (*p)!='\0'; ++p) {
    if(*p=='/') {
      if(dd==0)
        dd = atoi(p+1);
      else {
        yyyy = atoi(p+1);
        break;
      }
    }
  }

  SCPP_TEST_ASSERT(mm!=0 && dd!=0 && yyyy!=0, "Bad Date input '" << str_date << "', 
  must be MM/DD/YYYY.");

  *this = Date(yyyy, mm, dd);
}

Date::Date(const std::string& str) {
  *this = Date(str.c_str());
}

Date::Date(unsigned yyyymmdd) {
  int yyyy = yyyymmdd / 10000;
  int mmdd = yyyymmdd - 10000 * yyyy;
  int mm = mmdd / 100;
  int dd = mmdd - 100 * mm;

  *this = Date(yyyy, mm, dd);
}

Date::Date(unsigned year, unsigned month, unsigned day) {
  SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
  SCPP_TEST_ASSERT(JAN<=month && month<=DEC, "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
  unsigned ml = MonthLength(month, year);
  SCPP_TEST_ASSERT(1<=day && day<=ml, "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
  int n_years_before = year-1;
  date_ = 365*n_years_before
    + n_years_before/4 - n_years_before/100 + n_years_before/400
    + day + NumberOfDaysBeforeMonth(month, year);

  SyncDebug(year, month, day);
}

unsigned Date::AsYYYYMMDD() const {
  unsigned y = Year();
  unsigned m = Month();
  unsigned d = Data() - Date(y, m, 1).Data() + 1;

  return y*10000 + m*100 + d;
}

bool Date::IsLeap(unsigned year) {
  if(year%4)
    return false;

  if(year%400 == 0)
    return true;

  if(year%100 == 0)
    return false;

  return true;
}

Date::DayOfWeekType Date::DayOfWeek() const {
  return (DayOfWeekType)(date_ % 7);
}

const char* Date::DayOfWeekStr() const {
  static const char* str_day_of_week[] = {
    "Sunday", "Monday", "Tuesday", "Wednesday",
    "Thursday", "Friday", "Saturday" };

  DayOfWeekType dow = DayOfWeek();
  return str_day_of_week[(unsigned)dow];
}

// static
unsigned Date::MonthLength(unsigned month, unsigned year) {
  static int month_length[13] = { 0, 31,28,31,30,31,30,31,31,30,31,30,31 };
  SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
  SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
  if(month == FEB && IsLeap(year))
    return 29;
  return month_length[month];
}

// static
unsigned Date::NumberOfDaysBeforeMonth(unsigned month, unsigned year) {
  static int days_before_month[12] = { 0, 31,59,90,120,151,181,212,243,273,304,334 };
  SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
  SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
  unsigned days_before = days_before_month[month - 1];
  if (month >= MAR && IsLeap(year))
    ++days_before;
  return days_before;
}

unsigned Date::Year() const {
  SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

  unsigned y = Data() / 365;
  while(Date(y,1,1).Data() > Data())
    --y;
  return y;
}

unsigned Date::Month() const {
  SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

  unsigned y = Year();
  Date endOfLastYear(y-1, DEC, 31);
  unsigned day = Data() - endOfLastYear.Data();
  for(unsigned m=JAN; m<=DEC; ++m)
  {
    unsigned ml = MonthLength(m, y);
    if(day <= ml)
      return m;
    day -= ml;
  }
  SCPP_ASSERT(false, "Fatal algorith error.")
  return 0;
}

unsigned Date::DayOfMonth() const {
  SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

  unsigned y = Year();
  unsigned m = Month();
  unsigned d = Data() - Date(y, m, 1).Data() + 1;
  SCPP_TEST_ASSERT(d > 0 && d <= MonthLength(m,y),
    "Wrong day " << d << " of month " << m << " year " << y );
  return d;
}

char* Date::AsString(char* buffer,  unsigned bufLen, DateOutputFormat frmt) const {
  SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
  SCPP_TEST_ASSERT(bufLen>=MIN_BUFFER_SIZE,
    "Buffer is too short: " << bufLen << " must be at least " << MIN_BUFFER_SIZE)

  unsigned y = Year();
  unsigned m = Month();
  unsigned d = Data() - Date(y, m, 1).Data() + 1;

  switch(frmt) {
    case FRMT_AMERICAN:
      sprintf(buffer, "%02d/%02d/%04d", m, d, y);
      break;

    case FRMT_EUROPEAN:
      sprintf(buffer, "%02d.%02d.%4d", m, d, y);
      break;

    default:
      SCPP_ASSERT(false, "Wrong output format " << frmt);
  }

  return buffer;
}

std::string Date::AsString(DateOutputFormat frmt) const {
  char buffer[ 12 ];
  return AsString(buffer, sizeof(buffer), frmt);
}
} // namespace scpp
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