

 [image: First Edition]

 Safe C++

Vladimir Kushnir

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

To Daria and Misha

Preface

Astute readers such as yourself may be wondering whether the
 title of this book, Safe C++, presumes that the C++
 programming language is somehow unsafe. Good catch! That is indeed the
 presumption. The C++ language allows programmers to make all kinds of
 mistakes, such as accessing memory beyond the bounds of an allocated array,
 or reading memory that was never initialized, or allocating memory and
 forgetting to deallocate it. In short, there are a great many ways to shoot
 yourself in the foot while programming in C++, and everything will proceed
 happily along until the program abruptly crashes, or produces an
 unreasonable result, or does something that in computer literature is
 referred to as “unpredictable behavior.” So yes, in this sense, the C++ language is inherently unsafe.
This book discusses some of the most common mistakes made by us, the
 programmers, in C++ code, and offers recipes for avoiding them. The C++
 community has developed many good programming practices over the years. In
 writing this book I have collected a number of these, slightly modified
 some, and added a few, and I hope that this collection of rules formulated
 as one bug-hunting strategy is larger than the sum of its parts.
The undeniable truth is that any program significantly more complex
 than “Hello, World” will contain some number of errors, also affectionately
 called “bugs.” The Great Question of Programming is how we can reduce the
 number of bugs without slowing the process of programming to a halt. To
 start with, we need to answer the following question: just who is supposed
 to catch these bugs?
There are four participants in the life of the software program (Figure 1):
	The programmer

	The compiler (such as g++ under
 Unix/Linux, Microsoft Visual Studio under Windows, and XCode under Mac
 OS X)

	The runtime code of the application

	The user of the program

[image: Four participants (buggy version)]

Figure 1. Four participants (buggy version)

Of course, we don’t want the user to see the bugs or even know about
 their existence, so we are left with participants 1 through 3. Like the
 user, programmer is human, and humans can get tired, sleepy, hungry,
 distracted by colleagues asking questions or by phone calls from family
 members or a mechanic working on their car, and so on. In short, humans make
 mistakes, the programmer is human, and therefore the programmer makes
 mistakes, a.k.a. bugs. In comparison, participants 2 and 3—the compiler and
 the executable code—have some advantages: they do not get tired, sleepy,
 depressed, or burned out, and do not attend meetings or take vacations or
 lunch breaks. They just execute instructions and usually are very good at
 doing it.
Considering our resources we have to deal with—the programmer on the
 one hand, and the compiler and program on the other—we can adopt one of two
 strategies to reduce the number of bugs:
Choice Number 1: Convince the programmer not to make mistakes. Look
 him in the eyes, threaten to subtract $10 from his bonus for each bug, or
 otherwise stress him out in the hopes to improve his productivity. For
 example, tell him something like this: “Every time you allocate memory, do
 not forget to de-allocate it! Or else!”
Choice Number 2: Organize the whole process of programming and testing
 based on a realistic assumption that even with the best intentions and most
 laserlike focus, the programmer will put some bugs in the code. So rather
 than saying to the programmer, “Every time you do A, do not forget to do B,”
 formulate some rules that will allow most bugs to be caught by the compiler
 and the runtime code before they have a chance to reach the user running the
 application, as illustrated in Figure 2.
[image: Four participants (happy/less buggy version)]

Figure 2. Four participants (happy/less buggy version)

When we write C++ code, we should pursue three goals:

	The program should perform the task for which it was written;
 for example, calculating monthly bank statements, playing music, or
 editing videos.

	The program should be human-readable; that is, the source code
 should be written not only for a compiler but also for a human
 being.

	The program should be self-diagnosing; that is, look for the
 bugs it contains.

These three goals are listed in decreasing order of how
 often they are pursued in the real programming world. The first goal is
 obvious to everybody; the second, to some people, and the third is the
 subject of this book: instead of hunting for bugs yourself, have a compiler
 and your executable code do it for you. They can do the dirty work, and you
 can free up your brain energy so you can think about the algorithms, the
 design—in short, the fun part.
Audience

If you have never programmed in C++, this book is not for you. It is
 not intended as a C++ primer. This book assumes that you are already
 familiar with C++ syntax and have no trouble understanding such concepts
 as the constructor, copy-constructor, assignment operator, destructor,
 operator overloading, virtual functions, exceptions, etc. It is intended
 for a C++ programmer with a level of proficiency ranging from near
 beginner to intermediate.

How This Book Is Organized

In Part I, we discuss the following three questions: in Chapter 1, we will examine the title question. Hint: it’s all
 in the family.
In Chapter 2, we will discuss why it is better to
 catch bugs at compile time, if at all possible. The rest of this chapter
 describes how to do this.
In Chapter 3, we discuss what to do when a
 bug is discovered at run-time. And here we demonstrate that in order to
 catch errors, we will do everything we can to make writing sanity checks
 (i.e., a piece of code written for specific purpose of diagnosing errors)
 easy. Actually, the work is already done for you: Appendix A contains the code of the macros which do writing a
 sanity check a snap, while delivering maximum information about what
 happened, where, and why, without requiring much work from a programmer.
 In Part II we go through different types of errors, one
 at a time, and formulate rules that would make each of these errors
 (a.k.a. bugs) either impossible, or at least easy to catch. In Part III we apply all the rules and code of the Safe C++
 library introduced in Part II and discuss the testing
 strategy that shows how to catch bugs in the most efficient manner.
We also discuss how to make your program “debuggable.” One of the
 goals when writing a program is to make it easy to debug, and we will show
 how our proposed use of error handling adds to our two friends—compiler
 and run-time code—the third one: a debugger, especially when it is working
 with the code written to be debugger-friendly.
And now we are ready to go hunting for actual bugs. In Part II, we go through some of the most common types of
 errors in C++ code one by one, and formulate a strategy for each, or
 simply a rule which makes this type of error either impossible or easily
 caught at run-time. Then we discuss the pros and cons of each particular
 rule, its pluses and minuses, and its limitations. I conclude each of
 these chapters with the short formulation of the rule, so that if you just
 want to skip the discussion and get to the bottom line, you know where to
 look. Chapter 17 summarizes all rules in one short
 place, and the Appendices contain all
 necessary C++ files used in the book.
At this point you might be asking yourself, “So instead of saying,
 ‘When you do A, don’t forget to do B’ we’re instead saying, ‘When you do
 A, follow the rule C’? How is this better? And are there more certain ways
 to get rid of these bugs?” Good questions. First of all, some of the
 problems, such as memory deallocation, could be solved on the level of
 language. And actually, this one is already done. It is called Java or C#.
 But for the purposes of this book, we assume that for some reason ranging
 from abundant legacy code to very strict performance requirements to an
 unnatural affection for our programming language, we’re going to stick
 with C++.
Given that, the answer to the question of why following these rules
 is better than the old “don’t forget” remonstrance is that in many cases
 the actual formulation of the rule is more like this:
	The original: “When you allocate memory here, do not
 forget to check all the other 20 places where you need to deallocate
 it and also make sure that if you add another return statement to this
 function, you don’t forget to add a cleanup there
 too.”

	The new formulation: “When you allocate memory,
 immediately assign it to a smart pointer right here right now, then
 relax and forget about it.”

I think we can agree that the second way is simpler and more
 reliable. It’s still not an iron-clad 100% guarantee that the programmer
 won’t forget to assign the memory to a smart pointer, but it’s easier to
 achieve and significantly more fool-proof than the original
 version.
It should be noted that this book does not cover multithreading. To
 be precise, multithreading is briefly mentioned in the discussion of
 memory leaks, but that’s it. Multithreading is very complex and gives the
 programmer many opportunities to make very subtle, non-reproducible and
 difficult-to-find mistakes, but this is the subject of a much larger
 book.
I of course do not claim that the rules proposed in this book are
 the only correct ones. On the contrary, many programmers will passionately
 argue for some alternative practice, that may well be the right one for
 them. There are many ways to write good C++ code. But what I am claiming
 is the following:
	If you follow the rules described in this book in letter and in
 spirit (you can even add your own rules), you will develop your code
 faster.

	During the first minutes or hours of testing, you will catch
 most if not all of the errors you’ve put in there; therefore, you can
 be much less stressed while writing it.

	Finally, when you are done testing, you will be reasonably sure
 that your program does not contain bugs of a certain type. That’s
 because you’ve added all these sanity checks and they’ve all
 passed!

And what about efficiency of the executable code? You might be
 concerned that all that looking for bugs won’t come for free. Not to
 worry—in Part III, The Joy of Bug Hunting:
 From Testing to Debugging to Production, we’ll discuss how to
 make sure the production code will be as efficient as it can be.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows output produced by a program.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Naming Conventions

I believe strongly in the importance of a naming convention.
 You can use any convention you like, but here is what I’ve chosen for this
 book:
	Class names are
 MultipleWordsWithFirstLettersCapitalizedAndGluedTogether;
 for example:
class MyClass {

	Function names (a.k.a. methods) in those classes
 FollowTheSameConvention; example:
MyClass(const MyClass& that);
void DoSomething() const;
This is because in C++ the constructor must have the same name
 (and the destructor a similar name) as a class, and since they are
 function names in the class, we might as well make all functions look
 the same.

	Variables have names that are
 lowercase_and_glued_together_using_underscore.

	Data members in the class follow the same convention as
 variables, except they have an additional underscore at the
 end:
class MyClass {
 public:
 // some code

 private:
 int int_data_;
};

The only exception to these rules is when we work with STL (i.e.,
 Standard Template Library) classes such as std::vector. In this
 case, we use the naming conventions of the
 STL in order to minimize changes to your code if you decide to replace
 std::vector with scpp::vector (all classes
 defined in this book are in the namespace scpp). Classes such
 as scpp::array and
 scpp::matrix follow the
 same convention as scpp::vector just because they
 are containers similar to a vector.
One final remark before we start: all examples of the code in this
 book were compiled and tested on a Mac running Max OS X 10.6.8 (Snow
 Leopard) using the g++ compiler or
 XCode. I attempted to avoid anything platform-specific; however, your
 mileage may vary. I also made my best effort to ensure that the code of
 SafeC++ library provided in the
 Appendices is correct, and to the best of
 my knowledge it does not contain any bugs. Still, you use it at your own
 risk. All the C++ code and header files we discuss are available both at
 the end of this book in the Appendices,
 and on the website https://github.com/vladimir-kushnir/SafeCPlusPlus.
We have here outlined a road map. At the end of the road is better
 code with fewer bugs combined with higher programmer productivity and less
 headache, a shorter development cycle, and more proof that the code
 actually works correctly. Sounds good? Let’s jump in.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Safe C++ by Vladimir Kushnir. Copyright 2012
 Vladimir Kushnir, 978-1-449-32093-5.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreil.ly/SafeCPP

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

First, I would like to thank Mike Hendrickson of O’Reilly for
 recognizing the value of this book and encouraging me to write it.
I am very grateful to my editor, Andy Oram, who received the thorny
 task of editing a book written by a first-time author for whom English is
 a second language. Andy’s editing made this book much more readable. I
 also appreciate his friendly way of working with an author and enjoyed our
 collaboration very much. I especially would like to thank Emily Quill for
 significantly improving the style and clarity of the text. All errors are
 mine.
I would like to use this opportunity to thank Dr. Valery Fradkov,
 who taught me programming some time ago and provided many ideas for our
 first programs.
I would like to thank my son Misha for his help in figuring out what
 the latest version of Microsoft Visual Studio is up to. And finally, I am
 forever grateful to my wife Daria for her support during this
 project.

Part I. A Bug-Hunting Strategy for C++

This part of the book offers a classification of the kinds of errors that tend to creep
 into C++ programs. I show the value of catching
 errors during compilation instead of testing, and offer basic principles to keep
 in mind when pursuing the specific techniques to prevent or catch
 bugs discussed in later chapters.

Chapter 1. Where Do C++ Bugs Come From?

The C++ language is unique. While practically all programming
 languages borrow ideas, syntax elements, and keywords from previously
 existing languages, C++ incorporates an entire other language—the
 programming language C. In fact, the creator of C++, Bjarne Stroustrup,
 originally called his new language “C with classes.” This means that if you
 already had some C code used for whatever purpose, from scientific research
 to trading, and contemplated switching to an object-oriented language, you’d
 need not to do any work of porting the code: you’d just install the new C++
 compiler, and it would compile your old C code and everything would work the
 same way. You might even think that you’d completed a transition to C++.
 While this last thought would be far from the truth—the code written in real
 C++ looks very different from the C code—this still gives an option of a
 gradual transition. That is, you could start with existing C code that still
 compiles and runs, and gradually introduce some pieces of new code written
 in C++, mixing them as much as you want and eventually switching to pure
 C++. So the layered design of C++ was an ingenious marketing move.
However, it also had some implications: while the whole syntax
 of C was grandfathered into the new language, so was the philosophy and the
 problems. The C programming language was created by Dennis Ritchie at Bell
 Labs around 1969-1973 for the purpose of writing the Unix operating system.
 The goal was to combine the power of a high-level programming language (as
 opposed to writing each computer instruction in an assembler) with
 efficiency: that is, the produced compiled code should be as fast as
 possible. One of the declared principles of the new C language was that the
 user should not pay any penalty for the features he does not use. So, in
 pursuit of efficient compiled code, C did not do anything it was not
 explicitly asked to do by the programmer. It was built for speed, not for
 comfort. And this created several problems.
First, a programmer could create an array of some length and then
 access an element using an index outside the bounds of the array. Even more
 prone to abuse was that C used pointer arithmetic, where one could calculate
 any value whatsoever, use it as a memory address, and access that piece of
 memory no matter whether it was created by the program for this purpose or
 not. (Actually, these two problems are one and the same—just using different
 syntax).
A programmer could also allocate memory at runtime using the
 calloc() or malloc() functions and was
 responsible for deallocating it using the free() function. However,
 if he forgot to deallocate it or accidentally did it more than once, the
 results could be catastrophic.
We will go though each of these problems in more detail in Part II. The important thing to note is that while C++
 inherited the whole of C with its philosophy of efficiency, it inherited all
 its problems as well. So part of the answer to the question of where the
 bugs come from is “from C.”
However, this is not the end of the story. In addition to the
 problems inherited from C, C++ introduced a few of its own. For instance,
 most people count friend functions and multiple inheritance as bad ideas.
 And C++ has its own method of allocating memory: instead of calling
 functions like calloc() or malloc(), one should use
 the operator new. The new operator does more then
 just allocating memory; it creates objects, i.e., calls their constructors.
 And in the same spirit as C, the deallocation of this memory using the
 delete operator is the responsibility of
 the programmer. So far the situation seems to be analogous to the one in C:
 you allocate memory, and then you delete it. However, the complication is
 that there are two different new
 operators in C++:
MyClass* p_object = new MyClass(); // Create one object
MyClass* p_array = new MyClass[number_of_elements]; // Create an array
In the first case, new creates one object of type
 MyClass, and in the second, it creates an array of
 objects of the same type. Correspondingly, there are two different
 delete operators:
delete p_object;
delete [] p_array;
And of course, once you’ve used “new with brackets” to create objects,
 you need to use “delete with brackets” to delete them. So a new type of
 mistake is possible: the cross-use of new and delete, one with brackets and
 another without. If you mess up here, you can wreak havoc on the memory
 heap. So to summarize, the bugs in C++ mostly came from C, but C++ added
 this new method for programmers to shoot themselves in the foot, and we’ll
 discuss it in Part II.

Chapter 2. When to Catch a Bug

Why the Compiler Is Your Best Place to Catch Bugs

Given the choice of catching bugs at compile time vs.
 catching bugs at runtime, the short answer is that you want to catch bugs
 at compile time if at all possible. There are multiple reasons for this.
 First, if a bug is detected by the compiler, you will receive a message in
 plain English saying exactly where, in which file and at which line, the
 error has occurred. (I may be slightly optimistic here, because in some
 cases—especially when STL is involved—compilers produce error messages so
 cryptic that it takes an effort to figure out what exactly the compiler is
 unhappy about. But compilers are getting better all the time, and most of
 the time they are pretty clear about what the problem is.)
Another reason is that a complete compilation (with a final link)
 covers all the code in the program, and if the compiler returns with no
 errors or warnings, you can be 100% sure that there are no errors that
 could be detected at compile time in your program. You could never say the
 same thing about run-time testing; with a large enough piece of code, it
 is difficult to guarantee that all the possible branches were tested, that
 every line of code was executed at least once.
And even if you could guarantee that, it wouldn’t be enough—the same
 piece of code could work correctly with one set of inputs and incorrectly
 with another, so with runtime testing you are never completely sure that
 you have tested everything.
And finally, there is the time factor: you compile before you run
 your code, so if you catch your error during compilation, you’ve saved
 some time. Some runtime errors appear late in the program, so it might
 take minutes or even hours of running to get to an error. Moreover, the
 error might not be even reproducible—it could appear and disappear at
 consecutive runs in a seemingly random manner. Compared to all that,
 catching errors at compile time seems like child’s play!

How to Catch Bugs in the Compiler

By now you should be convinced that whenever possible, it’s best to
 catch errors at compile time. But how can we achieve this? Let’s look at a
 couple of examples.
The first is the story of a Variant class. Once upon
 a time, a software company was writing an Excel plug-in. This is a file
 that, after being opened by Microsoft Excel, adds some new functions that
 could be called from an Excel cell. Because the Excel cell can contain
 data of different types—an integer (e.g., 1), a floating-point number
 (e.g., 3.1415926535), a calendar date (such as 1/1/2000), or even a string
 (“This is the house that Jack built”)—the company developed a Variant class that
 behaved like a chameleon and could contain any of these data types. But
 then someone had the idea that a Variant could contain
 another Variant, and even a
 vector of Variants (i.e., std::vector<Variant>). And these
 Variants started being
 used not just to communicate with Excel, but also in internal code. So
 when looking at the function signature:
Variant SomeFunction(const Variant& input);
it became totally impossible to understand what kind of data the
 function expects on input and what kind of data it returns. So if for
 example it expects a calendar date and you pass it a string that does not
 resemble a date, this can be detected only at runtime. As we’ve just
 discussed, finding errors at compile time is preferable, so this approach
 prevents us from using the compiler to catch bugs early using type safety.
 The solution to this problem will be discussed below, but the short answer
 is that you should use separate C++ classes to represent different data
 types.
The preceding example is real but somewhat extreme. Here is a more
 typical situation. Suppose we are processing some financial data, such as
 the price of a stock, and we accompany each value with the correspondent
 time stamp, i.e., the date and time when this price was observed. So how
 do we measure time? The simplest solution is to count seconds since some
 time in the past (say, since 1/1/1970).
Suddenly someone realizes that the library used for this purpose
 provides a 32-bit integer, which has a maximum value of about 2 billion,
 after which the value will overflow and become negative. This would happen
 about 68 years after the starting point on the time axis, i.e., in the
 year 2038. The resulting problem is analogous to the famous “Y2K” problem,
 and fixing it would entail going through a rather large number of files
 and finding all these variables and making them int64, which has 64 bits instead of 32, and this
 would last about 4 billion times longer, which should be enough even for
 the most outrageous optimist.
But by now another problem has turned
 up: some programmers used int64
 num_of_seconds, while others used int64_num_of_millisec, while still others wrote
 int64 num_of_microsec. The compiler has
 absolutely no way of figuring out if a function that expects time in
 milliseconds is being passed time in microseconds or vice versa. Of
 course, if we make some assumptions that the time interval in which we
 want to analyze our stock prices starts after, say, year 1990 and goes
 until some point in the future, say year 3000, then we can add a sanity
 check at runtime that the value being passed must fall into this interval.
 However, multiple functions need to be equipped with this sanity check,
 which requires a lot of human work. And what if someone later decides to
 go back and analyze the stock prices throughout the 20th century?

The Proper Way to Handle Types

Now, this entire mess could have been easily avoided
 altogether if we had just created a Time class and left the
 details of when it starts and what unit it measures (seconds,
 milliseconds, etc.) as hidden details of the internal implementation. One
 advantage of this approach is that if we mistakenly try to pass some other
 data type instead of time (which now has a Time type), a compiler
 would have caught it early. Another advantage is that if the Time class is currently
 implemented using milliseconds and we later decide to increase the
 accuracy to microseconds, we need only edit one class, where we can change
 this detail of internal implementation without affecting the rest of the
 code.
So how do we catch these types of errors at compile time
 instead of runtime? We can start by having a separate class for each type
 of data. Let’s use int for integers, double
 for floating-point data, std::string for text,
 Date for calendar dates,
 Time for time, and so on
 for all the other types of data. But simply doing this is not enough.
 Suppose we have two classes, Apple and
 Orange, and a function that expects an
 input of a type Orange:
void DoSomethingWithOrange(const Orange& orange);
However, we accidentally could provide an object of type Apple instead:
Apple an_apple(some_inputs);
DoSomethingWithOrange(an_apple);
This might compile under some circumstances, because the C++
 compiler is trying to do us a favor and will silently convert Apple to Orange if it can. This can happen in two ways:

	If the Orange class has a
 constructor taking only one argument of type Apple

	If the Apple class has an
 operator that converts it to Orange

 The first case happens when the class Orange looks like this:
class Orange {
 public:
 Orange(const Apple& apple);
 // more code
};
It can even look like this:
class Orange {
 public:
 Orange(const Apple& apple, const Banana* p_banana=0);
 // more code
};
Even though in the last example the constructor looks like
 it has two inputs, it can be called with only one argument, so it can also
 serve to implicitly convert Apple into
 Orange. The solution to this problem is
 to declare these constructors with keyword explicit. This prevents
 the compiler from doing an automatic (implicit) conversion, so we force
 the programmer to use Orange where
 Orange is expected:
class Orange {
 public:
 explicit Orange(const Apple& apple);
 // more code
};
and correspondingly in the second case:
class Orange {
 public:
 explicit Orange(const Apple& apple, const Banana* p_banana=0);
 // more code
};
Another method that lets the compiler know how to convert an
 Apple into an Orange is to provide a conversion
 operator:
class Apple {
 public:
 // constructors and other code …
 operator Orange () const;
};
The very presence of this operator
 suggests that the programmer made an explicit effort to provide the
 compiler with a way to convert Apple
 into Orange, and therefore it might not
 be a mistake. However, the absence of the keyword explicit in front of the
 constructor could easily be a mistake, so it’s advisable to declare all
 constructors that could be called with one argument with keyword
 explicit. In general, any
 possibility of implicit conversions is a bad idea, so if you want to
 provide a way of converting Apple into
 Orange inside the class Apple, as in the previous example, the better
 way of doing so is:
class Apple {
 public:
 // constructors and other code …
 Orange AsOrange() const;
};
In this case, in order to convert an Apple into an Orange you would need to write:
 Apple apple(some_inputs);
 DoSomethingWithOrange(apple.AsOrange()); // explicit conversion
There
 is one more way to mix up different data types: by using enum. Consider the
 following example: suppose we defined the following two enums for days of the week and for
 months:
enum { SUN, MON, TUE, WED, THU, FRI, SAT };
enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
All of these constants are actually integers (e.g., C built-in type
 int), and if we have a function that
 expects as an input a day of the week:
void FunctionExpectingDayOfWeek(int day_of_week);
the following call will compile without any warnings:
FunctionExpectingDayOfWeek(JAN);
And there is not much we can do at run time because both JAN and MON
 are integers equal to 1. The way to catch this bug is not to use “plain
 vanilla” enums that create integers,
 but to use enums to create new
 types:
typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeek;
typedef enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC } Month;
In this case, the function expecting a day of week should be
 declared like this:
void FunctionExpectingDayOfWeek(DayOfWeek day_of_week);
An attempt to call it with a Month like this:
FunctionExpectingDayOfWeek(JAN);
results in a compilation error:

error: cannot convert 'Month' to 'DayOfWeek' for
 argument '1' to 'void
 FunctionExpectingDayOfWeek(DayOfWeek)'
which is exactly what we would want in this case.
This approach has a downside, however. In the case when enum creates integer constants, you can write a
 code like this:
for(int month=JAN; month<=DEC; ++month)
 cout << "Month = " << month << endl;
But when the enum is used to
 create a new type,
 the following:
for(Month month=JAN; month<=DEC; ++month)
 cout << "Month = " << month << endl;
does not compile. So if you need to iterate through the values of
 your enum, you are stuck with
 integers.
Of course, there are exceptions to any rule, and sometimes
 programmers will have reasons to write classes such as Variant for the specific
 purpose of allowing implicit conversions. However, most of the time it is
 a good idea to avoid implicit conversions altogether: this allows you to
 use the full power of the compiler to check types of different variables
 to catch our potential errors early—at compile time.
Now suppose that we’ve done everything we can to use type safety to
 the fullest extent possible. Unfortunately, with the exceptions of types
 bool and char, the number of
 different values that each type can contain is astronomically high, and
 usually only a small portion of these values makes sense. For instance, if
 we use the type double for the price of a
 stock, we can be reasonably sure that the value will be between 0 and
 10,000 (with the sole exception of the stock of the Berkshire Hathaway
 company, whose owner Warren Buffet apparently does not believe that it is
 a good idea to keep the stock price within a reasonable range and has
 therefore never split the stock, which at the time of this writing is
 above $100,000 per share). Still, even Berkshire Hathaway uses only a
 small portion of the range of a double precision number, which can be as
 large as 10308 and can also be negative, which
 does not make sense for a stock price. Since for most types only a small
 portion of all possible values makes sense, there will always be errors
 that can be diagnosed only at runtime.
In fact, most of the problems of the C language, such as specifying
 an index out of bounds or accessing memory improperly through pointer
 arithmetic, can be diagnosed only at runtime. For this reason, the rest of
 this book is dedicated mainly to the discussion of catching runtime
 errors.
Rules for this chapter for
 diagnosing errors at compile time:
	Prohibit implicit type conversions: declare constructors taking
 one parameter with the keyword explicit and avoid
 conversion operators.

	Use different classes for different data types.

	Do not use enums to create
 int constants; use
 them to create new types.

Chapter 3. What to Do When We Encounter an Error at Runtime

There are two types of runtime errors: those that are the
 result of programmer error (that is, bugs) and those
 that would happen even if the code were absolutely correct. An example of
 the second type occurs when a user mistypes a username or password. Other
 examples occur when the program needs to open a file, but the file is
 missing or the program doesn’t have permission to open it, or the program
 tries to access the Internet but the connection doesn’t work. In short, even
 if the program is perfect, things such as wrong inputs and hardware issues
 can produce problems.
In this book we concentrate on catching run-time errors of the
 first type, a.k.a. bugs. A piece of code written for the specific purpose of
 catching bugs will be called a sanity check. When a
 sanity check fails, i.e., a bug is discovered, this should do two
 things:
	Provide as much information as possible about the error, i.e.,
 where it has occurred and why, including all values of the relevant
 variables.

	Take an appropriate action.

What is an appropriate action? We’ll discuss this later in
 more detail, but the shortest answer is to terminate the program. First,
 let’s concentrate on the information about the bug, called the error
 message. To diagnose a bug we provide a macro defined in the scpp_assert.hpp file:
#define SCPP_ASSERT(condition, msg) \
 if(!(condition)) { \
 std::ostringstream s; \
 s << msg; \
 SCPP_AssertErrorHandler(\
 __FILE__, __LINE__, s.str().c_str());\
 }
SCPP_AssertErrorHandler is
 the function declared in the same file. (As it was mentioned earlier, the
 code of all C++ files cited in this book is available both in the Appendices and online at https://github.com/vladimir-kushnir/SafeCPlusPlus.)
First, let’s see how it works. Suppose you have the following code in
 the my_test.cpp file:
#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
 cout << "Hello, SCPP_ASSERT" << endl;

 double stock_price = 100.0; // Reasonable price
 SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
 "Stock price " << stock_price << " is out of range");

 stock_price = -1.0; // Not a reasonable value
 SCPP_ASSERT(0. < stock_price && stock_price <= 1.e6,
 "Stock price " << stock_price << " is out of range");

 return 0;
}
Compiling and running the example will produce the following
 output:
Hello, SCPP_ASSERT Stock price -1 is out of range in file
 my_test.cpp #16
 The
 macro automatically provides the filename and line number where the error
 occurred. What’s going on in here? The macro SCPP_ASSERT takes two
 parameters: a condition and an error message. If the condition is true,
 nothing happens, and the code execution continues. If the condition is
 false, the message gets streamed into an ostringstream object, and the function SCPP_AssertErrorHandler()
 is called. Why do we need to stream the message into the ostringstream object? Why can’t we just pass the
 message to the error handler function directly?
The reason is that this intermediate step allows us not just to use
 simple error messages like this:
SCPP_ASSERT(index < array.size(), "Index is out of bounds.");
but to compose a meaningful error message that
 contains much more information about an error:
SCPP_ASSERT(index < array.size(),
 "Index " << index << " is out of bounds " << array.size());
In this macro you can use any objects of any class that has a
 << operator. Suppose
 you have a class:
class MyClass {
 public:
 // Returns true if the object is in OK state.
 bool IsValid() const;

 // Allow this function access to the private data of this class
 friend std::ostream& operator <<(std::ostream& os, const MyClass& obj);
};
All you need to do is provide an operator << as follows:
inline std::ostream& operator <<(std::ostream& os, const MyClass& obj) {
 // Do something in here to show the state of the object in
 // a human-readable form.
 return os;
}
and you can use an object of the type MyClass to compose a message:
MyClass obj(some_inputs);
SCPP_ASSERT(obj.IsValid(), "Object " << obj << " is invalid.");
Thus, if you run your program and the sanity check detects an
 error, chances are that you won’t need to repeat the process in the debugger
 to figure out what exactly happened and why. But doing this sanity check
 might slow down your program, and the reason we’re using C++ is we want our
 code to run as fast as possible. And indeed, sanity checks do slow down the
 code, some of them significantly (as we’ll see later when dealing with the
 Index
 Out Of Bounds error in Chapter 4).
 To deal with this problem, some of the sanity checks are made temporary—for
 testing only. For this purpose, the scpp_assert.hpp file defines a second macro,
 SCPP_TEST_ASSERT:
#ifdef SCPP_TEST_ASSERT_ON
#define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
#define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif
The difference between this SCPP_TEST_ASSERT and the
 previous SCPP_ASSERT is that
 SCPP_ASSERT is a permanent
 sanity check, whereas SCPP_TEST_ASSERT can be
 switched on and off during compilation (more about this in Chapter 15). Now let’s return to the second question of what to
 do when a bug is discovered at runtime: what is the appropriate action in this case? Actually,
 there are only two choices:
	Terminate the program.

	Throw an exception.

The code of the error handler function provided in the
 scpp_assert.cpp file gives you both
 opportunities:
void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file
 // if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(
 file_name, line_number, message);
#else
 cerr << message << " in file " << file_name
 << " #" << line_number << endl << flush;
 // Terminate application
 exit(1);
#endif
}
As you can see from the code of the error handler, it could do either
 of the two possible actions, depending on whether the symbol SCPP_THROW_EXCEPTION_ON_BUG
 is defined. In the most common case, when you want to test your code until
 you find the first bug, the simplest action by default is to terminate the
 program, fix the bug, and start over, which is achieved when the symbol
 SCPP_THROW_EXCEPTION_ON_BUG
 is not defined. In this case the error handler will print the message and
 terminate the application.
There are some situations when at least some of the sanity
 checks are left active in the code even in production mode. Suppose you have
 a program that does continuous sequential processing of a large number of
 requests, one after another, and while processing one of the requests it ran
 into a bug, i.e., the sanity check failed. It might so happen that the
 program could continue to process some of (and maybe even most of) the other
 requests. In some situations it might be important to continue to process
 these requests as much as possible—because it’ll keep clients happy, because
 there’s a serious amount of money involved, etc. In such cases, terminating
 the program on a failure of a sanity check is not an option. The way to
 proceed in these situations is to throw an exception containing a
 description of what happened from the error handler, catch it somewhere in
 the top level of the code, document it in some log file, maybe send some
 email or pager alerts, declare the current attempt to process the request a
 failure, and at the same time continue with all the others.
To illustrate this, an exception class that is declared in the same
 scpp_assert.hpp file:
namespace scpp {
class ScppAssertFailedException : public std::exception {
 public:
 ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message);

 virtual const char* what() const throw () {
 return what_.c_str();
 }

 virtual ~ScppAssertFailedException() throw () {}

 private:
 std::string what_;
};
} // namespace scpp
If you are strict about exception types, you can pass to the error
 handler an enum containing information
 about error type, and throw different types of exceptions for different
 types of errors. But this book demonstrates a general approach to writing
 code with the explicit goal of self-diagnosing bugs, so we’ll stick with the
 simplest possible case of one exception class. In this case, the code
 example that would trigger the sanity check would look like this:
#include <iostream>
#include "scpp_assert.hpp"

using namespace std;

int main(int argc, char* argv[]) {
 cout << "Hello, SCPP_ASSERT" << endl;

 try {
 double stock_price = 100.0; // Reasonable price
 SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
 "Stock price " << stock_price << " is out of range.");

 stock_price = -1.; // Not a reasonable value
 SCPP_ASSERT(0 < stock_price && stock_price <= 1e6,
 "Stock price " << stock_price << " is out of range.");

 } catch (const exception& ex) {
 cerr << "Exception caught in " << __FILE__ << " #" << __LINE__ << ":\n"
 << ex.what() << endl;
 }

 return 0;
}
Running this example leads to the following output:
Hello, SCPP_ASSERT Exception caught in
 scpp_assert_exception_test.cpp #20: SCPP assertion failed with message
 'Stock price -1 is out of range.' in file scpp_assert_exception_test.cpp
 #17.
Note that here we also receive additional information—not only where
 the error has occurred but also where it was caught, which could be a useful
 hint when trying to figure out what exactly happened before involving a
 debugger.
Another question is why we need to call a SCPP_AssertErrorHandler
 function located in a separate scpp_assert.cpp file instead of doing the same
 thing inside the macro in the scpp_assert.hpp file. The short answer is that
 debuggers usually prefer to step through the functions as opposted to
 stepping through macros. We’ll return to this subject in Chapter 15.
Now we have two macros: one to use in production and one for
 testing only. When should you use each one? As the author of your program,
 only you can answer this question. Typically, you should have a feeling for
 how often the function that will contain a sanity check called, how long it
 takes to execute, and how long the evaluation of the sanity check will take
 as compared to the execution of the function itself.
If you know that the function is called rarely or maybe even just once
 for initialization purposes, and the sanity checks are cheap, then go ahead
 and use the permanent macro. You might be glad you did when a problem is
 reported from the field. In other cases, use the temporary macro.
Note that when evaluating how long the sanity check takes, all that
 matters is how long it takes to evaluate the Boolean condition. How long it
 takes to compose a message is not relevant: if you get to that stage, you
 are in no rush at all.
Different sanity checks slow down your program to different extents.
 One of the worst in this regard, the index-out-of-bounds sanity check, will
 be discussed in Chapter 4. So you might add some more
 granularity to this process and define different macros for different types
 of bugs, if some of them are slowing testing too much. Feel free to
 experiment with what works best for your code.
We now have macros that allow us to write sanity checks easily
 and still compose a meaningful error message. When do we write them? If you
 think: “I will write my code and then return and add sanity checks,” chances
 are it will never happen. Also, while you are writing your code, the picture
 of what is going on in it and which conditions should be true or false is in
 the freshest possible state in your brain. So the answer is to write sanity
 checks while you are writing the code. Any time you can
 think of any condition you can check for—write a sanity check for it. Even
 better, when you start writing a new function, start with writing sanity
 checks for all inputs before you write anything
 else.
“But this is a lot of additional work!” you might think. True, but as
 we’ve seen, writing sanity checks is not difficult, and more importantly it
 will pay off later at the testing stage. It is much easier to write sanity
 checks while you have a mental picture of the algorithm in your head than
 have to go back and debug the code later.
In Part II, we’ll consider some of the most common
 mistakes in C++ code and learn how to deal with them—one at a
 time.

Part II. Bug Hunting: One Bug at a Time

This section gives detailed advice, along with directions for
 using the Safe C++ library I created, for catching particular bugs before
 your code goes out in production.

Chapter 4. Index Out of Bounds

There are several ways in C++ to create an array of objects of some
 type T. Three common methods are:
#define N 10 // array size N is known at compile time
 T static_array[N];

 int n = 20; // array size n is calculated at runtime
 T* dynamic_array = new T[n];

 std::vector<T> vector_array; // array size can be changed at runtime
Of course, you can still use the calloc() and malloc() functions and your
 program will compile and run, but it’s not a good idea to mix C and C++
 unless you have to because you’re relying on legacy C libraries. However you
 allocate the array, you can access an element in it using an unsigned
 integer index:
const T& element_of_static_array = static_array[index];
const T& element_of_dynamic_array = dynamic_array[index];
const T& element_of_vector_array = vector_array[index];
Let’s deal with dynamic arrays and vectors first, and return to the
 static array later in this chapter.
Dynamic Arrays

What would happen if we provide an index value that is
 larger than or equal to the array size? In all three of the preceding
 examples, the code will silently return garbage. (The exception to this
 rule for Microsoft Visual Studio 2010 is discussed later.) The situation
 is even worse if you decide to use the operator [] in the left-hand side
 of an assignment:
some_array[index] = x;
Depending on your luck (or lack of thereof) you might overwrite some
 other unrelated variable, an element of another array, or even a program
 instruction, and in the latter case your program will most likely crash.
 Each of these errors also provides opportunities for malicious intruders
 to take over your program and turn it to bad ends. However, the std::vector provides an
 at(index) function, which
 does bounds checking by throwing an out_of_range exception.
 The problem with this is that if you want to do this sanity check, you
 have to rigorously use the at() function everywhere
 for accessing an array element. And naturally, this slows your code down,
 so once you are done testing, you’ll want to replace it everywhere with
 the [] operator, which is
 faster. But doing that replacement requires massive editing of your code,
 which is a lot of work, followed by a need to retest it, because during
 that tedious process you could accidentally mistype something.
So instead of the at() function, I suggest
 the following. Although a dynamic array leaves the [] operator totally out
 of your control, the STL vector implements it as a C++ function that we
 can rewrite according to our bug-hunting goals. And that’s what we’ll do
 here. In the file scpp_vector.hpp we
 redefine the [] operators as
 follows:
T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>:: operator[](index);
}

const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);
}
Let’s see how this works. Here is an example of how to use it
 (including—intentionally—how not to use it):
#include <iostream>
#include "scpp_vector.hpp"

using namespace std;

int main() {
 scpp::vector<int> vect;
 for(int i=0; i<3; ++i)
 vect.push_back(i);

 cout << "My vector = " << vect << endl;

 for(int i=0; i<=vect.size(); ++i)
 cout << "Value of vector at " << i << " is " << vect[i] << endl;

 return 0;
}
First, note that instead of writing std::vector<int> or
 just vector<int> we
 wrote scpp::vector<int>. This
 is to distinguish our vector from the STL’s vector. By using our
 scpp::vector we replace
 the standard implementation—in this case, the implementation of operator []—by our own safe implementation, and
 you will see the same approach to preventing other bugs later in this
 book. scpp::vector also gives
 you a << operator for
 free, so you can print your vector as long as it is not too big, and as
 long as the type T defines the
 << operator.
The next thing to notice is that in the second loop, instead of
 writing i<vect.size() we wrote
 i<=vect.size(). This is a very
 common programming error, and we did it just to see what happens when the
 index is out of bounds. Indeed, the program produces the following
 output:
My vector = 0 1 2

 Value of vector at 0 is 0

 Value of vector at 1 is 1 Value of vector at 2 is 2

 Index 3 must be less than 3 in file scpp_vector.hpp
 #17
This sanity check works as long as the symbol SCPP_TEST_ASSERT_ON is
 defined, and is easy to switch on and off at compile time when necessary.
 The problem with this approach is that the vector’s [] operator is very often
 used inside loops, so this sanity check is used a lot and therefore slows
 the program down significantly just as using at() would. If you feel
 that this is becoming a problem in your program, feel free to define a new
 macro, such as SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS, which
 would work exactly the same way as SCPP_TEST_ASSERT but
 would be used only inside scpp::vector::operator[].
 SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS should
 differ from SCPP_TEST_ASSERT only by
 the fact that it can be switched on and off independently of the
 SCPP_TEST_ASSERT macro,
 so you can deactivate it after you are sure that your code does not have
 this bug while keeping the rest of your sanity checks active.
In addition to allowing you to catch this
 index-out-of-bounds error, the template vector has one advantage over
 statically and dynamically allocated arrays: its size grows as needed (as
 long as you don’t run out of memory). However, this advantage comes at a
 cost. The vector, if not told in advance how much memory will be needed,
 allocates some default amount (called its “capacity”). When the actual
 size reaches this capacity, the vector will allocate a bigger chunk of
 memory, copy old data into the new memory area, and release the old chunk
 of memory. So from time to time, adding a new element to a template vector
 could suddenly become slow. Therefore, if you know in advance what number
 of elements you will need, as with both static and dynamically allocated
 arrays, tell the vector up front, for instance, in the constructor:
scpp::vector<int> vect(n);
This creates a vector with a specified number of elements in it. You
 could also write:
scpp::vector<int> vect(n, 0);
which would also initialize all elements to a specified value (in
 this case zero, but any other value will work too).
An alternative is to create a vector with zero elements in it but to
 specify the desired capacity:
scpp::vector<int> vect;
vect.reserve(n);
The difference between this example and the previous one is that in
 this case the vector is empty (i.e., vect.size() returns 0), but when you start
 adding elements to it, you will not run into the incrementing capacity
 procedure with the corresponding slowdown until you reach the size of
 n.
Can We Derive from std::vector?
At this point you may have looked at
 the definition of the scpp::vector in
 the scpp_vector.hpp file:
namespace scpp {
template <typename T>
class vector : public std::vector<T> {
You may have asked yourself whether it is a good idea to derive a
 class from a base class that does not have a virtual destructor. Indeed,
 if we have the following situation:
class Base {
 // not virtual !!!
 ~Base();
};

class Derived : public Base {
 // also not virtual !!!
 ~Derived() {
 // some non-trivial code releasing resources
 }
}
and we use these classes like this:
Base* p = new Derived;
// some code using p
delete p;
the delete statement will
 actually call the destructor of the base class ~Base() and none of the
 code of the ~Derived() destructor
 will be executed, thus leading to unreleased resources such as memory
 leaks, etc. The same situation will occur even if we did not write any
 non-trivial code in the ~Derived() destructor,
 but added to the derived class some new data members that do have
 non-trivial destructors, such as containers or smart pointers. Even
 though we do not write the ~Derived() code
 ourselves, the compiler will do it for us, calling all the destructors
 of the added data members. In the example just shown, this ~Derived() destructor
 will not be called, which represents a problem. However, in our concrete
 example of scpp::vector, the
 situation is different:
	We do not expect these two classes to be used in the manner of
 std::vector* p_vect = new
 scpp::vector. scpp::vector must
 be used as a plain vector, as if it was never derived from
 anything.

	We did not add any data members to scpp::vector, and
 its destructor does not do any work except to call the destructor of
 the base class. Even if we did something like what is described in
 the previous example with Base
 and Derived, in this particular
 case nothing bad will happened.

	If this violation of C++ purity still bothers you, you could
 use composition instead of derivation, e.g., write a scpp::vector that
 contains std::vector as a private data member, and
 wrap each of its methods in the corresponding method of the derived
 class, which is a lot of coding but would produce the same results
 as my implementation.

There is one more consequence of this derivation: if you have any
 function that expects std::vector,
 you can still pass to it scpp::vector, which is
 being publicly derived from the former, and therefore
 is a std::vector. Here is an
 example:
void FunctionTakingRefToSTLVector(const std::vector<int>& v) {
 cout << "ATTENTION, we are about to test index-out-of-bounds "
 << "for STL vector reference to scpp::vector" << endl << flush;

 for(int i=0; i<=v.size(); ++i)
 cout << "Value of vector at " << i << " is " << v[i] << endl;
}

int main() {
 scpp::vector<int> v;
 for(int i=0; i<3; ++i)
 v.push_back(i);
 cout << "Initial vector: " << v << endl;

 FunctionTakingRefToSTLVector(v);
}
The vector created here has three elements, and the FunctionTakingRefToSTLVector() function tries
 to access an element with index 3, which is out of bounds. This code
 produces the following output:
ATTENTION, we are about to test index-out-of-bounds for
 STL vector reference to scpp::vector

 Value of vector at 0 is 0

 Value of vector at 1 is 1

 Value of vector at 2 is 2

 Value of vector at 3 is 1
Note that the code happily prints the value at the index 3, even
 though the maximum valid index is 2, which
 means that our sanity check did not work inside FunctionTakingRefToSTLVector(). The reason is
 that the function uses the original [] operator of
 std::vector because the
 version used is determined by the type of the reference to the vector,
 which in this case comes from the declaration in the function’s argument
 list, const
 std::vector<int>&. The [] operator was never
 declared as virtual, and we couldn’t do so if we
 wanted to because the declaration is in the code of the STL vector.
 Declaring it virtual would not be a good idea anyway because it would
 slow it down. So this is a risk of our
 approach. To make it work, you must be careful to use scpp::vector everywhere you
 want the sanity check to be active.
On the other hand, if you have a function taking std::vector <T>& and you trust that
 this function has already been tested, you can keep the original
 signature taking std::vector <T>&
 and it will run faster. At the same time, outside of this
 function you will be taking full advantage of checking for index-out-of
 bounds errors in the rest of the code.

Static Arrays

Now, as promised, let’s deal with the static array:
#define N 10 // array size N is known at compile time
 T static_array[N];
Here, the size is known at compile time and will not change. Of
 course, to use the safe array with its boundary check, you can use a
 template vector with the size specified in a constructor:
scpp::vector vect(N);
This will work exactly the same as the static array, but the
 problem here is efficiency. While the static array allocates its memory on
 stack, the template vector allocates memory inside the constructor using
 the new operator, and this is
 a relatively slow operation. If runtime efficiency is important in your
 case, it’s better to use a template array, defined as follows in the
 scpp_array.hpp file:
namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 array() {}

 explicit array(const T& initial_value) {
 for(size_type i=0; i<size(); ++i)
 data_[i] = initial_value;
 }

 size_type size() const { return N; }

 // Note: we do not provide a copy constructor and assignment operator.
 // We rely on the default versions of these methods generated by the compiler.

 T& operator[] (size_type index) {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 // Accessors emulating iterators:
 T* begin() { return &data_[0]; }
 const T* begin()const { return &data_[0]; }

 // Returns an iterator PAST the end of the array.
 T* end() { return &data_[N]; }
 const T* end()const { return &data_[N]; }

 private:
 T data_[N];
};
} // namespace scpp
This array behaves exactly like a static C array. However, when
 compiled with the sanity check macro SCPP_TEST_ASSERT active,
 it provides an index-out-of-bounds check. The begin() and end() methods are
 provided to simulate iterators, so that you can use this array in some of
 the situations where you would have used the template vectors—for example,
 to sort numbers. The following code demonstrates how to sort this array
 using STL’s sort algorithm:
#include <algorithm>

 scpp::array<int, 5> a(0);
 a[0] = 7;
 a[1] = 2;
 a[2] = 3;
 a[3] = 9;
 a[4] = 0;

 cout << "Array before sort: " << a << endl;
 sort(a.begin(), a.end());
 cout << "Array after sort: " << a <<
 endl;
This produces the following output:
Array before sort: 7 2 3 9 0

Array after sort: 0 2 3 7 9
As a side benefit, you also get a << operator, which
 allows you to stream an array as shown in the previous example, assuming
 it is not too large and the template type T has a << operator. Of
 course, the use of this fixed-sized array must be limited to cases where
 the array size N is not too large.
 Otherwise, you’ll be spending your stack memory, a limited resource, on
 this array.
So the advice in this section is not to use static or dynamically
 allocated arrays, but a template vector or array instead. This solves
 another problem described in Chapter 1: when you use
 the new operator with
 brackets, you need to use the delete operator with
 brackets as well. If you cross-use these operators (new with brackets and
 delete without or vice
 versa) you will corrupt the memory heap, which generally leads to bad
 consequences. Once we decide not to use dynamically allocated arrays,
 which are created through the new operator with
 brackets, we’ve killed two birds with one stone: the problem of an index
 out of bounds, and the problem of mixing operators with and without
 brackets. In short, do not use the new operator (and the
 corresponding delete operator) with
 brackets. Your life will be easier.
Note
At the time of this writing, the newest version of
 Microsoft Visual Studio 2010 Ultimate
 diagnoses the index-out-of-bounds error in
 std::vector when compiled in a Debug mode, and
 pops up a dialog box (Figure 4-1).
This dialog offers you the choice to Ignore, Abort, or Retry (in
 which case you can debug the application). While “Ignore” seems
 appropriate only if you are extremely adventurous, one can hope that the
 rest of the compilers working under Unix, Linux, and Mac OS will catch
 up to the trend.

[image: Microsoft Visual Studio “Index out of bounds” dialog box]

Figure 4-1. Microsoft Visual Studio “Index out of bounds” dialog box

Multidimensional Arrays

 Now that we’ve settled on the use of a template vector or
 array as an implementation of a linear array, let’s consider what to do if
 you need a two-dimensional matrix, a three-dimensional array, or generally
 speaking, an n-dimensional array. Because all the
 issues in the general case of n-dimensional arrays
 can be illustrated using a two-dimensional matrix, we will limit our
 discussion to this case and call it simply a matrix, with the
 understanding that the same principles apply to three or more
 dimensions.
If the size of the matrix is known at compile time, you can easily
 implement it as an array of arrays, and be done with it. Therefore, we’ll
 concentrate on the more complex case of a matrix whose size is calculated
 at run time. Such a matrix can easily be created as a vector of vectors,
 and in fact this approach is the only one possible if different rows must
 be of different lengths. However, most of the time all rows should be of
 the same length (e.g., the matrix is rectangular or even quadratic), and
 in this case the approach of using a vector of vectors is inefficient: it
 requires multiple memory allocations, which is a relatively slow
 operation (and the same can be said about deallocation). Because our goal in using C++
 is efficiency, we’ll try a different approach and create a rectangular
 matrix using only one memory allocation, as shown in the class matrix in
 the scpp_matrix.hpp file:
// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
 public:
 typedef unsigned size_type;

 matrix(size_type num_rows, size_type num_cols)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

 matrix(size_type num_rows, size_type num_cols, const T& init_value)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

 size_type num_rows() const { return rows_; }
 size_type num_cols() const { return cols_; }

 // Accessors: return element by row and column.
 T& operator() (size_type row, size_type col) {
 return data_[index(row, col)];
 }

 const T& operator() (size_type row, size_type col) const {
 return data_[index(row, col)];
 }

 private:
 size_type rows_, cols_;
 std::vector<T> data_;

 size_type index(size_type row, size_type col) const {
 SCPP_TEST_ASSERT(row < rows_, "Row " << row
 << " must be less than " << rows_);
 SCPP_TEST_ASSERT(col < cols_, "Column " << col
 << " must be less than " << cols_);
 return cols_ * row + col;
 }
};
First of all, there are two constructors. The first allows you to
 create a matrix with a specified number of rows and columns. The second,
 with the additional init_value argument,
 allows you also to initialize each element to a specified value (e.g., to
 set each element of a matrix<double> to 0.0). Note that access
 to elements is provided via the () operator, not
 []. This is because the
 [] operator in C++ takes
 only one argument, never two or more. So to access a multidimensional
 array, we either need to use multiple [] operators, such as
 my_matrix[i][j], or a single () operator, such as
 my_matrix(i,j).
The first approach could be achieved if we had the [] operator return a
 T* pointer to the zeroth
 element of the i-th row. However, this denies us the
 diagnosis of a column index out of bounds, which defeats the purpose of
 catching bugs at runtime. We could, of course, create some template class
 that would include a smart reference to a row, return an instance of it
 using the first operator ([i]), and
 then use the bounds check in the second operator ([j]). To some degree, it is a matter of taste. I
 did not see the value of resorting to this complex design just to preserve
 the my_matrix[i][j] syntax, and the
 () operator with multiple
 arguments seems just fine.
The checks for an index out of bounds are performed inside the
 index(row, col) function, separately
 for row and column numbers, and in the case of a runtime error lead to
 calls to an error handler that are familiar by now. Finally, at the end of
 the same file, you will discover a << operator for a
 template matrix<T>. They are
 provided so you can output your matrix like this:
cout << "my matrix =\n" << my_matrix << endl;
as long as the matrix is not too large and the type T defines the << operator.
Rules for this chapter to avoid
 “index out of bounds” errors:
	Do not use static or dynamically allocated arrays; use a
 template array or vector instead.

	Do not use new and delete operators with
 brackets—leave it up to the template vector to allocate multiple
 elements.

	Use scpp:vector instead
 of std::vector and
 scpp::array
 consistently instead of a static array, and switch the sanity checks
 on.

	For a multidimensional array, use scpp::matrix and
 access elements through the () operator to
 provide index-out-of-bounds checks.

Chapter 5. Pointer Arithmetic

The pointer arithmetic that C++ inherited from C allows you to calculate any value
 whatsoever, use it as a pointer (to int, double, or any other type) and read from that portion of
 memory—or even worse, write into it. Actually, pointer arithmetic is just another syntax to
 access memory the way an index does in the array, and the consequences are exactly the same,
 as discussed in Chapter 4. The difference is that, in case of a vector
 accessed via an index, we can write our own [] operator
 with a sanity check, whereas in pointer arithmetic we cannot.
Therefore, the advice here is very simple: do not use pointer
 arithmetic. There is nothing you can do with it that you cannot do with a
 vector and an index. In fact, in Chapter 6 we’ll see that sometimes
 indexes work where pointers don’t. So avoid pointer arithmetic. It is evil.
Rule for this chapter to avoid
 errors in pointer arithmetic:
	Avoid pointer arithmetic. Use template vector or array with index instead.

Chapter 6. Invalid Pointers, References, and Iterators

Consider the following code example:
vector<int> v;

// Add some elements
for(int i=0; i<10; ++i)
 v.push_back(i);

int* my_favorite_element_ptr = &v[3];
cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " << my_favorite_element_ptr << endl;

cout << "Adding more elements…"<< endl;

// Adding more elements
for(int i=0; i<100; ++i)
 v.push_back(i*10);

cout << "My favorite element = " << (*my_favorite_element_ptr) << endl;
cout << "Its address = " << &v[3] << endl;
What’s going on here? We create a vector containing 10
 elements, and for some reason decide to save for later a pointer to element
 with index 3. Then we add more elements to the vector and try to reuse the
 pointer we’ve acquired before. What is wrong with this code? Let’s look at
 the output it produces:
My favorite element = 3 Its address = 0x1001000cc
Adding more elements
…
My favorite element = 3
Its address = 0x10010028c
Note that after we add more elements to the vector, the address of the
 element &v[3] has changed! The
 problem is that when we add new elements to the vector, the existing
 elements might move to a totally different location.
Here is how such code works. When we create a vector, it allocates by
 default some number of elements (usually about 16). Then if we try to add
 more elements than the capacity allows, the vector allocates a new, larger
 array, copies existing elements from the old location to a new one, and
 continues to add new elements until the new capacity is exceeded. The old
 memory is deallocated, and might be reused for other purposes.
Meanwhile, our pointer still points to the old location, which is now
 in the deallocated memory. So what would happen if we continue to use it? If
 no one has reused that memory yet, we might get “lucky” and not notice
 anything, as in the example above. Even in this best-case scenario, though,
 if we write (assign a value) into that location, it will not change the
 value of the element v[3] because it is
 already located elsewhere.
If we are less lucky and that memory was reused for some other
 purpose, the consequences could be pretty bad, ranging from changing an
 unrelated variable that was unlucky enough to occupy the same place, to a
 core dump.
The preceding example deals with a pointer. The exact same thing
 happens when you do it using a reference; for example, instead of:
int* my_favorite_element_ptr = &v[3];
suppose one writes:
int& my_favorite_element_ref = v[3];
The result would be exactly the same. The reason is that the reference
 is just a “dereferenced pointer.” It
 knows the address of a variable, but does not require an asterisk in front
 of the variable to reach the memory to which it points. So the syntax is
 different, but the result is the same.
And finally, the same thing is true when we use iterators. Consider
 the following example:
 vector<int> v;

 for(int i=0; i<10; ++i)
 v.push_back(i);

 vector<int>::const_iterator old_begin = v.begin();

 cout << "Adding more elements … "<< endl;

 for(int i=0; i<100; ++i)
 v.push_back(i*10);

 vector<int>::const_iterator new_begin = v.begin();
 if(old_begin == new_begin)
 cout << "Begin-s are the same." << endl;
 else
 cout << "Begin-s are DIFFERENT." << endl;
As you have probably already guessed, the output of this program
 is:
 Adding more elements ...

 Begin-s are DIFFERENT.
So if you were holding an iterator to some element (any element, not
 necessarily the one to which begin() points), it might
 be invalid after changing the contents of the vector because the internal
 array, and correspondingly the iterator begin(), might have moved
 to some other place.
Therefore, any pointers, references, or iterators pointing to
 the elements of a vector obtained before modifying the vector should not be
 used after one modifies the vector by adding new elements. Actually, the
 same is true for almost all STL containers and all operations modifying the
 size of the container, e.g., adding or removing elements. Some containers,
 such as hash_set and hash_map, do not formally
 belong to the STL, but they are STL-like, will probably be part of STL soon,
 and behave the same way as STL containers in the situation discussed in
 here: the iterators become invalid after modifying a container. And even if
 you are using an STL container that would preserve the iterator to its
 element after the addition or removal of some other elements, the whole
 spirit of the STL library is that one could replace one container with
 another and the code should continue to work. So it is a good idea not to
 assume that the iterators are still valid after any STL or STL-like
 container is modified.
Note that in the previous example we modified the container inside the
 same thread we used to access the pointer. The same and even more problems
 could be created if you hold a pointer, reference, or iterator in one thread
 while modifying the container from another thread, but as mentioned in the
 Preface, the discussion of multithreading is
 outside the scope of this book.
Interestingly, in the preceding example, the index would work where
 the pointer failed: if you have marked your element by holding a zero-based
 index to it (in the first example, something like int index_of_my_favorite_element = 3), the example
 would continue to work correctly. Of course, using an index is slightly more
 expensive (slower) than using a pointer because in order to access an
 element corresponding to this index, a vector must do some arithmetic, i.e.,
 calculate the address of the variable every time you use the [] operator. The advantage
 is that it works. The disadvantage is that it works only for vectors. For
 all other STL containers, once you’ve modified the container, you must find
 the iterator pointing to the element you need again.
Rule for this chapter to avoid errors
 with invalid pointers, references, and iterators:
	Do not hold pointers, references, or iterators to the element of a
 container after you’ve modified the container.

Chapter 7. Uninitialized Variables

Various errors can occur when adding variables to complex classes and
 using them as arguments. This chapter shows you a simple way to avoid such
 errors.
Initialized Numbers (int, double, etc.)

Imagine that you have a class named MyClass with several constructors. Suppose
 you’ve decided to add some new data member named int_data_ to the private section of this
 class:
class MyClass {
 public:
 MyClass()
 : int_data_(0)
 {}

 explicit MyClass(const Apple& apple)
 : int_data_(0)
 {}

 MyClass(const string& some_text, double weight)
 : int_data_(0), some_text_(some_text)
 {}

 private:
 int int_data_;
 std::string some_text_;
};
When adding the new data member, you have a lot of work to
 do. Every time you add a new data member of a built-in
 type, do not forget to initialize it in every constructor like
 this: int_data_(0). But wait! If you
 read the Preface to this book, you probably
 remember that we are not supposed to say “Every time you do A, don’t
 forget to do B.” Indeed, this is an error-prone approach. If you forget to
 initialize this data member, it will most likely fill with garbage that
 would depend on the previous history of the computer and the application,
 and will create strange and hard-to-reproduce behavior. So what should we
 do to prevent such problems?
Before we answer this question, let’s first discuss why it’s only
 relevant for built-in types. Let’s take a look at the data member some_text_, which is of the type std::string. When you add
 a data member some_text_ to the class
 MyClass, you do not necessarily need to
 add its initialization to every constructor of MyClass, because if you don’t do it, the default
 constructor of the std::string will be
 called for you automatically by the compiler and will initialize the
 some_text_ to a reproducible state (in
 this case, an empty string). But the built-in types do not have
 constructors—that’s the problem. Therefore, the solution is simple: for
 class data members, do not use built-in types, use classes:
	Instead of int, use Int

	Instead of unsigned, use
 Unsigned

	Instead of double, use Double

and so on. The complete source code of these classes can be found in
 Appendix F in the file named scpp_types.hpp. Let’s take a look. The core of
 this code is the template class TNumber:
template <typename T>
class TNumber {
 public:
 TNumber(const T& x=0)
 : data_(x)
 {}

 operator T () const { return data_; }

 TNumber& operator = (const T& x) {
 data_ = x;
 return *this;
 }

 // postfix operator x++
 TNumber operator ++ (int) {
 TNumber<T> copy(*this);
 ++data_;
 return copy;
 }

 // prefix operator ++x
 TNumber& operator ++ () {
 ++data_;
 return *this;
 }

 TNumber& operator += (T x) {
 data_ += x;
 return *this;
 }

 TNumber& operator -= (T x) {
 data_ -= x;
 return *this;
 }

 TNumber& operator *= (T x) {
 data_ *= x;
 return *this;
 }

 TNumber& operator /= (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 data_ /= x;
 return *this;
 }

 T operator / (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 return data_ / x;
 }

 private:
 T data_;
};
First of all, the constructor taking type T (where T is
 any built-in type, e.g., int, double, float, etc.) is not
 declared with the keyword explicit. This is
 intentional. The next function defined in the class is operator T (), which allows an implicit
 conversion of an instance of this class back into its corresponding
 built-in type. This class is intentionally designed to make it easy to
 convert the built-in types into it and back. It defines several common
 operators that you would expect to use with a built-in numeric
 type.
And finally, here are the definitions of actual types we can
 use:
typedef TNumber<int> Int;
typedef TNumber<unsigned> Unsigned;
typedef TNumber<int64> Int64;
typedef TNumber<unsigned64> Unsigned64;
typedef TNumber<float> Float;
typedef TNumber<double> Double;
typedef TNumber<char> Char;
How do you use these new types, such as Int and Double, with names that
 look like built-in types but start with uppercase letters? All these types
 work exactly the same way as the corresponding built-in types with one
 difference: they each have a default constructor, and it initializes them
 to zero. As a result, in the example of the class MyClass you can write:
class MyClass{
 public:
 MyClass()
 {}

 explicit MyClass(const Apple& apple)
 {}

 MyClass(const string& some_text, double weight)
 : some_text_(some_text)
 {}

 private:
 Int int_data_;
 std::string some_text_;
};
The variable int_data_ here is
 declared as Int, with an uppercase
 first letter, not int, and as a result you
 don’t have to put an initialization of it in all the constructors. It will
 be automatically initialized to zero.
Actually, there is one more difference: when you use built-in types,
 an attempt to divide by zero can lead to different consequences depending
 on the compiler and OS. In our case, for the sake of consistency, this
 runtime error will lead to a call to the same error handler function as
 we’ve used for other errors, so that you can debug on error (see Chapter 15).
Note
Robust code should not refer to variables before initializing
 them, but it is considered a good practice to have a safe value such as
 0 instead of garbage in an uninitialized variable in case the code does
 refer to it.

Uninitialized Boolean

But haven’t we forgotten one more built-in type specific to
 C++— type bool (i.e., Boolean)? No,
 it is just a special case, because for a Boolean we do not need operators
 such as ++. Instead, we need
 specifically Boolean operators, such as &= and |=, so this type is
 defined separately:
class Bool {
 public:
 Bool(bool x=false)
 : data_(x)
 {}

 operator bool () const { return data_; }

 Bool& operator = (bool x) {
 data_ = x;
 return *this;
 }

 Bool& operator &= (bool x) {
 data_ &= x;
 return *this;
 }

 Bool& operator |= (bool x) {
 data_ |= x;
 return *this;
 }

 private:
 bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
 if(b)
 os << "True";
 else
 os << "False";
 return os;
}
Again, as with the other classes wrapping built-in types, the type
 Bool (uppercase) behaves
 exactly like bool (the original
 built-in type), with two exceptions:
	It is initialized to false.

	It has a << operator
 that prints False and True instead of 0 and 1, which leads to much
 clearer, human-readable messages.

Why is it initialized to false, not to true? Maybe because the
 author is a pessimist, but you can easily follow the pattern and create a
 new class like BoolOptimistic that is
 initialized by default to true.
The only thing that we have yet to initialize is a pointer, which
 naturally should be initialized by default to NULL. We’ll deal with this
 later in Chapter 9.
So far, the motivation for using classes Int, Unsigned, Double, etc., instead of
 the corresponding lowercase built-in types was that you can skip
 initialization in multiple constructors. If you use them more widely, say,
 for passing arguments to the functions, here is what will to happen.
 Suppose you have a function taking an unsigned (the built-in
 one):
void SomeFunctionTaking_unsigned(unsigned u);
then the following will compile:
int i = 0;
SomeFunctionTaking_unsigned(i);
Not so with the classes we’ve discussed. If we have a
 function:
void SomeFunctionTakingUnsigned(Unsigned u);
then the following does not compile:
Int i = 0;
SomeFunctionTakingUnsigned(i);
Therefore, in this case, you get additional type safety at compile
 time for free.
Rules for this chapter to avoid
 uninitialized variables, especially data members of a class:
	Do not use built-in types such as int, unsigned, double, bool, etc., for class
 data members. Instead, use Int, Unsigned, Double, Bool, etc., because
 you will not need to initialize them in constructors.

	Use these new classes instead of built-in types for passing
 parameters to functions, to get additional type safety.

Chapter 8. Memory Leaks

By definition, a memory leak is a situation where we allocate some
 memory from the heap—in C++ by using the new operator, and in C by
 using malloc() or calloc()—then assign the address of this memory to
 a pointer, and somehow lose this value either by letting the pointer go out
 of scope:
{
 MyClass* my_class_object = new MyClass;
 DoSomething(my_class_object);
} // memory leak!!!
or by assigning some other value to it:
MyClass* my_class_object = new MyClass;
DoSomething(my_class_object);
my_class_object = NULL; // memory leak!!!
There are also situations when programmers keep allocating new memory
 and do not lose any pointers to it, but keep pointers to objects that the
 program is not going to use anymore. The latter is not formally a memory
 leak, but leads to the same situation: a program running out of memory.
 We’ll leave the latter error to the attention of the programmer, and
 concentrate on the first one—the “formal” memory leak.
Consider two objects containing pointers to each other (Figure 8-1). This situation is known as a “circular
 reference.” Pointers exist to A and to B, but if there are no other pointers
 to at least one of these objects from somewhere else, there is no way to
 reclaim the memory for either variable and therefore you create a memory
 leak. These two objects will live happily ever after and will never be
 destroyed. Now consider the opposite example. Suppose we have a class with a
 method that can be run in a separate thread:
[image: Circular references]

Figure 8-1. Circular references

class SelfResponsible : public Thread {
public:
 virtual void Run() {
 DoSomethingImportantAndCommitSuicide();
 }

 void DoSomethingImportantAndCommitSuicide() {
 sleep(1000);
 delete this;
 }
};
We start its Run() method in a separate
 thread like this:
Thread* my_object = new SelfResponsible;
my_object->Start(); // call method Run() in a separate thread
my_object = NULL;
After that we assign NULL to the pointer and lose the address of this
 object, thus creating a memory leak according to the definition at the
 beginning of this chapter. However, if we look inside the DoSomethingImportantAndCommitSuicide() method,
 we’ll see that after doing something the object will delete itself, thus
 releasing this memory back to the heap to be reused. So this is not actually
 a memory leak.
Considering all these examples, a better definition of a
 memory leak is as follows. If we allocate memory (using the new operator), someone or
 something (some object) must be responsible for:
	deleting this memory;

	doing it the right way (using the correct delete operator, with
 or without brackets);

	doing it exactly once;

	and preferably doing it ASAP after we are done using this
 memory.

This responsibility for deleting the memory is usually
 called ownership of the object. In the previous
 example, the object took ownership of itself. So to summarize, a memory leak
 is a situation where the ownership of allocated memory is lost.
Consider the following code:
void SomeFunction() {
 MyClass* my_class_object = NULL;

 // some code …

 if(SomeCondition1()) {
 my_class_object = new MyClass;
 }

 // more code

 if(SomeCondition2()) {
 DoSomething(my_class_object);
 delete my_class_object;
 return;
 }

 // even more code

 if(SomeCondition3()) {
 DoSomethingElse(my_class_object);
 delete my_class_object;
 return;
 }

 delete my_class_object;
 return;
}
The reason we’ve started with the NULL pointer is to avoid the
 question of why we don’t just create the object on the stack and avoid the
 whole problem of deallocating it altogether. There can be multiple reasons
 for not creating an object on the stack. Sometimes the creation of an object
 must be delayed to a point in the program later than when the variable
 holding the memory is created; or it might be created by some other factory
 class and what we get is a pointer returned to us together with
 responsibility to delete it when we are done using it; or maybe we don’t
 know whether we will create the object at all, as in the previous
 example.
Now that we have an object created on the heap, we are responsible for
 deleting it. What is wrong with the preceding code? Obviously, it is
 fragile: i.e., every time we modify it by adding an
 additional return statement, we must
 delete the object just before returning. In this example, the responsibility
 to delete the object lies with the programmer. This is error-prone, and
 therefore against the principle declared in the Preface.
But even if we remember to delete the object before each
 return statement, this does not solve our problems. If any of the functions
 called from this code could throw an exception, then it actually means that
 we might “return” from any line of code containing a function call. Thus, we
 must surround the code with try-catch statements and, if we catch an
 exception, remember to delete the object and then throw a further exception.
 This seems like lots of work just to avoid a memory leak. The code becomes
 more crowded with statements dealing with cleanup and therefore becomes less
 readable, and the programmer has less time to concentrate on actual
 work.
The solution to this problem, widely known in C++ literature,
 is to use smart pointers. These are template classes
 that behave like normal pointers (or sometimes not exactly like normal
 pointers) but that take ownership of the objects assigned to them, leaving
 the programmer with no further worries. In this case, the function shown
 earlier would look like this:
void SomeFunction() {
 SmartPointer<MyClass> my_class_object;

 // some code …

 if(SomeCondition1()) {
 my_class_object = new MyClass;
 }

 // more code

 if(SomeCondition2()) {
 DoSomething(my_class_object);
 return;
 }

 // even more code

 if(SomeCondition3()) {
 DoSomethingElse(my_class_object);
 return;
 }

 return;
}
Note that we do not delete the allocated object anywhere. It is now
 the responsibility of the smart pointer, my_class_object.
This is actually a special case of a more general C++ pattern where
 some resource is acquired by an object (usually in a constructor, but not
 necessarily) and then this object is responsible for releasing the resource
 and will do so in a destructor. One example of using this pattern is
 obtaining a lock on a Mutex object when entering a function:
void MyClass::MyMethod() {
 MutexLock lock(&my_mutex_);
 // some code
} // destructor ~MutexLock() is called here releasing my_mutex_
In this case, the MyClass class has
 a data member named my_mutex_ that must
 be obtained at the beginning of a method and released before leaving the
 method. It is obtained by MutexLock in
 the constructor and automatically released in its destructor, so we can be
 sure that no matter what happens inside the code of the MyClass::MyMethod() function—in particular, how
 many return statements we might
 insert or whatever might throw an exception—the method won’t forget to
 release my_mutex_ before
 returning.
Now let’s return to the problem of memory leaks. The solution is that
 whenever we allocate new memory, we must immediately assign the pointer to
 that memory to some smart pointer. We now do not have to worry about
 deleting the memory; that responsibility is given to the smart
 pointer.
At this point you might ask the following questions regarding the
 smart pointer class:
	Are you allowed to copy a smart pointer?

	If yes, which one of the multiple copies of the smart pointer is
 responsible for deleting the object they all point to?

	 Does the smart pointer represent a pointer to an object
 or an array of objects (i.e., does it use the delete operator with
 or without brackets)?

	Does a smart pointer correspond to a const pointer or a
 non-const pointer?

Depending on the answers to these questions, you could come
 up with a rather large number of different smart pointers. And indeed, there
 are a great many of them discussed and used in the C++ community and
 provided by different libraries, most notably, the boost library. However, in my opinion the
 multitude of different smart pointer types creates new opportunities for
 errors, for example, assigning a pointer pointing to an object to a smart
 pointer that expects an array (i.e., would use a delete with brackets) or
 vice versa.
One of the smart pointers—auto_ptr<T>—has the strange property that
 when you have an auto pointer p1 and then
 make a copy of it p2 as follows:
auto_ptr<int> p1(new int);
auto_ptr<int> p2(p1);
the pointer p1 becomes NULL, which
 I find counterintuitive and therefore error-prone.
In my experience, there are two smart pointer classes that have so far
 covered all my needs in preventing memory leaks:
	The reference counting pointer (a.k.a. the shared pointer)

	The scoped pointer

The difference between the two is that the reference counting pointer
 can be copied and the scoped pointer cannot. However, the scoped pointer is
 more efficient.
We’ll look at each of these in the following sections.
Reference Counting Pointers

As mentioned above, the reference counting pointer can be
 copied. As a result, several copies of a smart pointer could point to the
 same object. This leads to the question of which copy is responsible for
 deleting the object that they all point to. The answer is that the last
 smart pointer of the group to die will delete the object it points to.
 It’s analogous to the household rule: “the last person to leave the room
 will switch the lights off.”
To implement this algorithm, the pointers share a counter that keeps
 track of how many smart pointers refer to the same object—hence the term
 “reference counting.” Reference counts are used in a wide range of
 situations: the term simply means that the implementation has a hidden
 integer variable that serves as a counter. Each time someone creates a new
 copy of a smart pointer that points to the target object, the
 implementation increments the counter; when any smart pointer is deleted,
 the implementation decrements the counter. So the target object will be
 around as long as it’s needed, but no longer that that.
An implementation of reference counting pointers is provided by my
 library in the file scpp_refcountptr.hpp. Here’s the public portion
 of this class:
template < typename T>
class RefCountPtr {
 public:

 explicit RefCountPtr(T* p = NULL) {
 Create(p);
 }

 RefCountPtr(const RefCountPtr<T>& rhs) {
 Copy(rhs);
 }

 RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
 if(ptr_ != rhs.ptr_)
 {
 Kill();
 Copy(rhs);
 }

 return *this;
 }

 RefCountPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 Kill();
 Create(p);
 }

 return *this;
 }

 ~RefCountPtr() {
 Kill();
 }

 T* Get()const { return ptr_; }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* ()const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }
Note that both the copy-constructor and assignment operators are
 provided, so one could copy these pointers. In this case, both the
 original pointer and the copied one point to the same object (or to NULL,
 if the original pointer was NULL). In this sense they behave the same way
 as the regular “raw” T* pointers. If you no
 longer need to use the object, you can “kill” the reference counting
 pointer by assigning NULL to it.
There are a couple of problems with the reference counting pointer.
 First, creating one with a non-NULL argument is expensive, because the
 implementation uses the new operator to allocate
 an integer on heap, a relatively slow operation. Second, of course, the
 reference counting pointer is not multithread-safe. I’ve declared that
 discussions of multithreading are beyond the scope of this book, but here
 it’s important enough to mention. Let’s concentrate on the previous
 problem—the cost of using a reference counting pointer. You can use it
 when you are sure that you will need to copy it, and when you can be
 reasonably sure that the cost of creating one is negligible compared to
 the execution time of the rest of your code.

Scoped Pointers

In cases when you don’t plan on copying the smart pointer
 and just want to make sure that the allocated resource will be deallocated
 properly, as in the earlier examples of the SomeFunction() method, there is a much simpler
 solution: the scoped pointer. Let’s take a look at its code provided in
 the file scpp_scopedptr.hpp:
template <typename T>
class ScopedPtr {
 public:

 explicit ScopedPtr(T* p = NULL)
 : ptr_(p)
 {}

 ScopedPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 delete ptr_;
 ptr_ = p;
 }

 return *this;
 }

 ~ScopedPtr() {
 delete ptr_;
 }

 T* Get() const {
 return ptr_;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

 // Release ownership of the object to the caller.
 T* Release() {
 T* p = ptr_;
 ptr_ = NULL;
 return p;
 }

 private:
 T* ptr_;

 // Copy is prohibited:
 ScopedPtr(const ScopedPtr<T>& rhs);
 ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};
Again, the most important property of this class for us is that its
 destructor deletes the object it points to (if it is not NULL, of course).
 The difference between usage of the scoped pointer and the reference
 counter pointer is that the scoped pointer cannot be copied. Both the
 copy-constructor and assignment operator are declared private, so any
 attempt to copy this pointer will not compile. This removes the need to
 count how many copies of the same smart pointer point to the same
 object—there is always only one, and therefore this pointer does not
 allocate an int from the heap to
 count its copies. For this reason, it is as fast as a pointer can
 be.
You have also probably noticed that in both RefCountPtr and ScopedPtr we diagnose an attempt to dereference
 the NULL pointer. We’ll talk more about this in the next chapter.
 As you’ll recall from Chapter 4
 concerning arrays, we have discussed which of the two new operators to use: the
 one without brackets. As for the corresponding delete operators, we should use
 neither. Do not delete the objects yourself; leave it
 to smart pointers.

Enforcing Ownership with Smart Pointers

Now let’s discuss potential errors when using functions that
 return pointers. Suppose, we have a function that returns a pointer to
 some type MyClass:
MyClass* MyFactoryClass::Create(const Inputs& inputs);
The very first question about this function is whether the caller of
 this function is responsible for
 deleting this object, or is this a pointer to an instance of MyClass that the instance of MyFactoryClass owns? This should of course be
 documented in a comment in the header file where this function is
 declared, but the reality of the software world is that it rarely is. But
 even if the author of the function did provide a comment that the function
 creates a new object on the heap and the caller is responsible for
 deleting it, we now find ourselves saying that every time we receive a
 pointer to an object from a function call, we need to remember to check
 the comments (or in the absence of a comment—the code itself if available)
 to find out whether we are responsible for deleting this object. And as we
 have decided in the Preface, we would prefer to rely on a compiler rather
 than on a programmer. Therefore, a fool-proof way to enforce the ownership
 of the object is for the function to return a smart pointer. For
 example:
RefCountPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs);
Not only does this design leave no doubt about the ownership of the
 object returned by the function, it leaves no opportunity for a memory
 leak. On the other hand, if you find the reference counting pointer too
 slow for your purposes, you might want to return a scoped pointer. But
 there is one problem: the ScopedPtr<MyClass> cannot be copied, and
 therefore it cannot be returned in a traditional way:
ScopedPtr<MyClass> MyFactoryClass::Create(const Inputs& inputs) {
 ScopedPTr<MyClass> result(new MyClass(inputs));
 return result; // Won’t compile !
}
Therefore, the way around the problem is to do this:
ScopedPtr<MyClass> result; // Create an empty scoped pointer
// Fill it:
void MyFactoryClass::Create(const Inputs& inputs, ScopedPtr<MyClass>& result);
Here you create a scoped pointer containing NULL and give it to
 MyFactoryClass::Create() to fill it up.
 This approach again leaves no room for mistakes regarding the ownership of
 the object created by the function. If you are not sure which of the two
 pointers to return, you can either:
	Return the faster ScopedPtr
 and then use its Release() method to
 transfer ownership to a RefCountPtr
 if necessary.

	Provide both methods.

There is also an opposite situation when the SomeClass::Find() method
 returns a pointer to an object but the user does not have ownership of
 it:
// Returns a pointer to a result, caller DOES NOT OWN the result.
MyClass* SomeClass::Find(const Inputs& inputs);
In this case, the pointer returned by this function points to an
 object that belongs to something inside the SomeClass object.
The first problem here is that the SomeClass object thinks that it is responsible
 for deleting the MyClass instance to
 which it just returned a pointer, and therefore it will delete it at some
 point in the future. In this case, if the user of this function will
 delete the pointer he received, this instance will be deleted more than
 once, which is not a good idea. Second, this instance might be part of an
 array of MyClass objects that is
 created inside, say, a template vector using operator new[] (with brackets),
 and we are now trying to delete an object from that array using operator
 delete without brackets.
 This is also not good. Finally, the instance of MyClass could be created on stack, and should
 not ever be deleted using operator delete at all.
In this case, any attempt to delete this object that we do not
 own—directly or by assigning it to a smart pointer of any kind that would
 take ownership of it—would lead to disaster. An appropriate way of
 returning this pointer is to return a “semi-smart” pointer that does not
 own the object it points to. This will be discussed in the next
 chapter.
Rules for this chapter to avoid
 memory leaks:
	Every time you create an object using the new operator,
 immediately assign the result to a smart pointer (reference counting
 point or scoped pointer is recommended).

	Use the new operator only
 without brackets. If you need to create an array, create a new
 template vector, which is a single object.

	Avoid circular references.

	When writing a function returning a pointer, return a smart
 pointer instead of a raw one, to enforce the ownership of the
 result.

Chapter 9. Dereferencing NULL Pointers

One of the most frequent reasons for program crashes (a.k.a.
 core dumps under Unix) is an attempt to dereference a NULL pointer. As we
 saw in the previous chapter, both smart pointers discussed there—the
 RefCountPtr and the ScopedPtr—have run-time diagnostics for that.
 However, not every pointer is a smart pointer that has ownership of some
 object. To diagnose an attempt to dereference a pointer that does not have
 ownership of an object, I’ll introduce here a “semi-smart” pointer that does
 not delete the object it points to. Let’s take a look at the public portion
 of it in the file scpp_ptr.hpp:
// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
 public:

 explicit Ptr(T* p=NULL)
 : ptr_(p) {
 }

 T* Get() const {
 return ptr_;
 }

 Ptr<T>& operator=(T* p) {
 ptr_ = p;
 return *this;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL,
 "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }
Despite the presence of operator=, this is not an
 assignment operator that would tell the compiler what to do when we try to
 assign one Ptr<T> to another.
 The assignment operator for this class, if we had writthen one, would be
 declared as:
Ptr<T>& operator=(const Ptr<T>& that);
Note that the operator= declared in the
 preceding class has a different signature: it includes a raw pointer
 p on the right side. Therefore, this
 class leaves it up to the compiler to create both the copy constructor and
 the assignment operator of the Ptr<T>. Because both
 the copy constructor and assignment operators for the Ptr<T> class are
 allowed, you are free to copy these pointers, return them from functions,
 and so on.
At this point you might ask: if we are advised to use Ptr<T> instead of
 T*, what should we use for
 a const T* pointer? The answer is
 easy: Ptr<const T>. Suppose you
 have a class:
class MyClass {
 public:
 explicit MyClass(int id)
 : id_(id) {}

 int GetId() const { return id_; }
 void SetId(int id) { id_ = id; }

 private:
 int id_;
};
If you want to create a semi-smart pointer that behaves like const MyClass*, all you have to do is
 write:
scpp::Ptr<const MyClass> p(new MyClass(1));
cout << "Id = " << p->GetId() << endl; // Compiles and runs.
p->SetId(666); // Does not compile!
Note that an attempt to call a non-const function on this
 pointer does not compile, which means that it correctly reproduces the
 behavior of a const pointer.
The Ptr<T> template
 pointer has the following features:
	It does not take ownership of the object it points to, and should
 be used as a replacement for a raw pointer in the same situation.

	It is by default initialized to NULL (thus following the spirit of
 Chapter 7).

	It offers run-time diagnostics of an attempt to dereference itself
 when it is NULL.

Rules for this
 chapter to catch attempts to dereference a NULL pointer:
	If you have a pointer that owns the object it points to, use a
 smart pointer (a reference counting pointer or scoped pointer).

	When you have a raw pointer T* pointing to an
 object you do not own, use the template class Ptr<T>
 instead.

	For a const pointer (i.e.,
 const T*) use Ptr<const T>.

Chapter 10. Copy Constructors and Assignment Operators

Suppose you have a class MyClass that looks something like this:
class MyClass {
 public:
 // Constructors

 // Copy-constructor
 MyClass(const MyClass& that)
 : int_data_(that.int_data_),
 dbl_data_(that.dbl_data_),
 str_data_(that.str_data_) {
 }

 // Assignment operator
 MyClass& operator = (const MyClass& that) {
 if(this != &that) {
 int_data_ = that.int_data_;
 dbl_data_ = that.dbl_data_;
 str_data_ = that.str_data_;
 }
 return *this;
 }

 // Some other methods here
private:
 Int int_data_;
 Double dbl_data_;
 string str_data_;
 // Each time you add a new data member in here,
 // do not forget to add corresponding code to the
 // copy-constructor and assignment operators!
};
What is wrong with this class? It is summarized in the comment at the
 end of the private section. You’ll remember from the Preface that if we find
 ourselves saying this, we open up the code to errors and should consider
 alternatives. And indeed, if you don’t write a copy-constructor or
 assignment operator, C++ will write a “default version” for you. The default
 version of the copy-constructor of your class will call copy-constructors
 for all data members (or simply copy the built-in types), and the default
 version of an assignment operator will call assignment operators for each
 data member or simply copy the built-in types.
Because of that, the copy constructor and the assignment operator in
 the previous example are totally unnecessary. Even worse, they are a
 potential source of errors because they make your code fragile, i.e., it
 might break if someone tries to modify it. Therefore, in this case it is a
 good idea to avoid writing copy-constructors and assignment operators
 altogether.
In general, regarding these two functions, you have the following
 choices:
	Rely on default versions created for you automatically by a
 compiler.

	Prohibit copies of any kind by declaring the copy constructor
 and assignment operator as
 private, and do not provide an implementation.

	Write your own versions.

For the reasons just discussed, avoid the last option as
 much as possible. If you find yourself writing copy constructors and
 assignment operators for some class, ask yourself whether it is really
 necessary. Maybe you can avoid doing it and switch to the first option
 (using default versions created by compiler) or use some other methods, such
 as smart pointers. If you are not sure, use the second option—if there is no
 copying of any kind, there is no way to make errors. However, be aware that
 some types of usage of your class (e.g., in vector<MyClass>) require a copy constructor
 and an assignment operator, so prohibiting copies of any kind should be used
 sparingly, with the understanding that it limits your options when using
 your class.
Rules for this chapter to avoid
 errors in copy-constructors and assignment operators:
	Whenever possible, avoid writing a copy-constructor or assignment
 operator for your classes.

	If the default versions do not work for you, consider prohibiting
 the copying of instances of your class by declaring the copy-constructor
 and assignment operator private.

Chapter 11. Avoid Writing Code in Destructors

In the previous chapter, we discussed why you should try to
 avoid writing copy constructors and assignment operators at all. In this
 chapter we discuss why you should avoid writing code in the destructor. I am
 not saying that the destructor method should not exist, just that if you do
 write one, it’s a good idea to design your class so that the destructor is
 empty. The following is acceptable:
virtual ~MyClass() {}
We will use the term an empty destructor
 when talking about a destructor that has no code inside the curly
 brackets.
There are several reasons why you might need to write a destructor:

	In a base class, you might want to declare it virtual, so that
 you can use a pointer to the base class to point to an instance of a
 derived class.

	In a derived class, you do not have to declare it virtual, but
 might like to do so for the sake of readability.

	You might need to declare that the destructor does not throw any
 exceptions.

Let’s consider the last reason more closely. It is widely
 accepted in the C++ literature that throwing exceptions from a destructor is
 a bad idea. This is because destructors are often called when an exception
 is already thrown, and throwing a second one during this process would lead
 to the termination (or crash) of your program, which is probably not your
 intention. Therefore, in some classes, destructors are declared as follows
 (this example comes from the file scpp_assert.hpp):
virtual ~ScppAssertFailedException() throw () {}
which means that we promise not to throw an exception from this
 destructor.
So you can see that it is necessary from time to time to write a
 destructor. Now let us discuss why it should be an empty one. When would you
 need any non-trivial code in the destructor? Only if you have acquired, in
 the constructor or some other method of your class, some resource that you
 need to release when the object goes away, such as in the following
 example:
class PersonDescription {
 public:
 PersonDescription(const char* first_name, const char* last_name)
 : first_name_(NULL), last_name_(NULL) {
 if(first_name != NULL)
 first_name_ = new string(first_name);

 if(last_name != NULL)
 last_name_ = new string(last_name);
 }

 ~PersonDescription() {
 delete first_name_;
 delete last_name_;
 }

 private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 string* first_name_;
 string* last_name_;
};
The design of this class violates everything we have discussed in
 earlier chapters. First of all, we see that every time we might need to add
 a new element of a person’s description, such as a middle name, we would
 need to remember to add a corresponding cleanup to the destructor, which is
 a violation of our “do not force the programmer to remember things”
 principle. A much better design would be:
class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name) {
 if(first_name != NULL)
 first_name_ = new string(first_name);

 if(last_name != NULL)
 last_name_ = new string(last_name);
 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 scpp::ScopedPtr<string> first_name_;
 scpp::ScopedPtr<string> last_name_;
};
In this case, we don’t need to write a destructor at all because the
 one generated for us automatically by the compiler will do the job, and this
 leads to less fragile code while doing less work. However, this is not the
 main reason for choosing this second type of design. There are more serious
 potential hazards in the case of the first example. Suppose we have decided to add sanity checks
 that the caller has provided the first name and last name:
class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name)
 : first_name_(NULL), last_name_(NULL) {
 SCPP_ASSERT(first_name != NULL, "First name must be provided");
 first_name_ = new string(first_name);

 SCPP_ASSERT(last_name != NULL, "Last name must be provided");
 last_name_ = new string(last_name);
 }

 ~PersonDescription() {
 delete first_name_;
 delete last_name_;
 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 string* first_name_;
 string* last_name_;
};
As we discussed in Part I, our error might
 not terminate an application, but it might throw an exception. Now we are in
 trouble: throwing an exception from a constructor could be a bad idea. Let’s
 consider why this is the case. If you are trying to create an object on the
 stack and the constructor does its job normally (without throwing an
 exception), then when the object goes out of scope, the destructor will be
 called. However, if the constructor did not finish its job because the code
 of the constructor threw an exception, the destructor will not be
 called.
Therefore, in the preceding example, if we suppose that the first name
 was supplied but the second was not, the string for the first name will be
 allocated but never deleted, and thus we will have a memory leak. However,
 all is not lost. Let’s look a little deeper into this situation. If we have
 an object that contains other objects, an important question is: exactly
 which destructors will be called and which will not?
To answer this question, let’s conduct a small experiment. Suppose we
 have the following three classes:
class A {
 public:
 A() { cout << "Creating A" << endl; }
 ~A() { cout << "Destroying A" << endl; }
};

class B {
 public:
 B() { cout << "Creating B" << endl; }
 ~B() { cout << "Destroying B" << endl; }
};

class C : public A {
 public:
 C() {
 cout << "Creating C" << endl;
 throw "Don't like C";
 }
 ~C() { cout << "Destroying C" << endl; }

 private:
 B b_;
};
Note that class C contains class B by composition
 (i.e., we have a data member in C of type B). It also contains the object of
 type A by inheritance: i.e., somewhere inside the
 object C there is an object A. Now, what happens if the constructor of C
 throws an exception? The following code example:
int main() {
 cout << "Testing throwing from constructor." << endl;
 try {
 C c;
 } catch (…) {
 cout << "Caught an exception" << endl;
 }

 return 0;
}
produces this output:
Testing throwing from constructor.
Creating A
Creating B
Creating C
Destroying B
Destroying A
Caught an exception
Note that it is only the destructor of C that was not executed: the
 destructors of both A and B were called. So the conclusion is simple and
 logical: for objects whose constructors are allowed to finish normally, the
 destructors will be called, even if these objects are part of the larger
 object constructor that did not finish normally. Therefore, let’s
 rewrite our example with sanity checks using smart pointers:
class PersonDescription {
public:
 PersonDescription(const char* first_name, const char* last_name) {
 SCPP_ASSERT(first_name != NULL, "First name must be provided");
 first_name_ = new string(first_name);

 SCPP_ASSERT(last_name != NULL, "Last name must be provided");
 last_name_ = new string(last_name);
 }

private:
 PersonDescription(const PersonDescription&);
 PersonDescription& operator=(const PersonDescription&);

 scpp::ScopedPtr<string> first_name_;
 scpp::ScopedPtr<string> last_name_;
};
Even if the second sanity check throws an exception, the destructor of
 the smart pointer to first_name_ will
 still be called and will do its cleanup. In addition, as a free benefit, we
 don’t need to worry about initializing these smart pointers to NULL—that is
 done automatically. So we see that throwing an exception from a constructor
 is a potentially dangerous business: the corresponding destructor will not
 be called, and we might have a problem—unless the destructor is
 empty.
While the C++ community is divided over whether it is a good idea to
 throw exceptions from constructors, there is a good argument for allowing
 the constructor to do so. The constructor does not have a return value, so
 if some of the inputs are wrong, what should we do? One possibility is to
 just return from the constructor and have a separate class method such as
 bool IsValid(). And each time you create
 an object, you should not forget to call my_object.IsValid() and see the result… and you
 can see where this is going. Which brings us back to the original choice: if
 something goes wrong inside the constructor, throw an exception. This means
 that the corresponding destructor will not be called, but this is acceptable
 to do if that destructor is empty.
Rule for this chapter: to avoid
 memory leaks when throwing exceptions from a constructor:
	Design your class in such a way that the destructor is
 empty.

Chapter 12. How to Write Consistent Comparison Operators

If you wrote a new class MyClass, you might
 want sometimes to write expressions like this:
MyClass x, y;
 /// some code initializing x and y
 if(x < y) {
 // do something
 } else if (x == y) {
 // do something else
 }
Even if you don’t need comparison operators
 (<, <=, etc.) yourself, you
 might find that someone attempts to use your class with Standard
 Template Library operations that require you to define these operators.
 For example, if you try to sort a vector of instances of your
 class:
vector<MyClass> v;
v.push_back(MyClass(3));
v.push_back(MyClass(1));
v.push_back(MyClass(2));

sort(v.begin(), v.end());
an attempt to compile this code fills the screen with diagnostics
 that look like this:
/usr/include/c++/4.2.1/bits/stl_heap.h:121: error: no
 match for 'operator<' in '__first.
 __gnu_cxx::__normal_iterator<_Iterator, _Container>::operator+
 [with _Iterator = MyClass*, _Container = std::vector<MyClass,
 std::allocator<MyClass> >](((const ptrdiff_t&)((const
 ptrdiff_t*)(&
 __parent)))).__gnu_cxx::__normal_iterator<_Iterator,
 _Container>::operator* [with _Iterator = MyClass*, _Container =
 std::vector<MyClass, std::allocator<MyClass> >]() <
 __value'
Although this output is not easily readable by a human, after
 some effort one can find in that pile of information the following
 useful piece: no match for
 ‘operator<’. What the compiler is unhappy about is that
 the class MyClass does not define a
 < operator. All you have to do is add to the
 definition of MyClass:
class MyClass {
 public:
 // constructors, etc…
 bool operator < (const MyClass& that) const {
 // some code returning bool
 return my_data_ < that.my_data_;
 }

 private:
 Int my_data_;
and the example compiles, runs, and sorts the vector. The same thing happens if you try to
 use your class in std::set<MyClass> or as a key in
 std::map<MyClass, AnyOtherClass>. While STL is
 relatively undemanding and in most cases will be satisfied by the definition of only one < operator, there might be cases when you want
 to define several comparison operators or potentially all of them. For example, suppose you’ve
 decided to write a Date class that would encapsulate the
 calendar date and you expect that other programmers might want to use all kinds of comparisons:
 date1 >= date2, etc. There are six comparison operators:

	<
	>
	<=
	>=
	==
	!=

From the point of view of C++, these operators could be written as six totally
 independent functions, and nothing in C++ prevents you from writing each one any way you like.
 However, the user of your class MyClass would expect that if
 instances of this class satisfy the inequality x1 < x2,
 then it must also be true that x1 <= x2 and that x2 > x1. In other words, there are some logical relations between
 these operators, and after writing each comparison operator, it would be a good idea to make
 sure that these relations hold in order to avoid confusion. In fact, no additional work to
 achieve this is necessary. There is an easy way to kill all six birds with one stone in two
 steps.
	In your class, define the following method:
class MyClass {
 public:
 // some code…

 // Returns negative int when *this < that,
 // 0 when *this == that and
 // positive int when *this > that.
 int CompareTo(const MyClass& that) const;

	Define all six comparison operators by using the following
 macro inside the public section of your class:
SCPP_DEFINE_COMPARISON_OPERATORS(MyClass)

I have defined SCPP_DEFINE_COMPARISON_OPERATORS
 in the file scpp_types.hpp as follows:
#define SCPP_DEFINE_COMPARISON_OPERATORS(Class) \
 bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
 bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
 bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
 bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
 bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
 bool operator !=(const Class& that) const { return CompareTo(that) !=0; }
In one long line, this macro defines all six comparison operators for you in a consistent
 way. In order for this to work, the only thing you need to do is provide the CompareTo() function in your class. If you ever decide to change the
 definition of what you mean by > or <= for the instances of your class, you can simply edit that
 function and the rest will behave accordingly while preserving all the relations one would expect
 between different comparison operators.
Rule for this chapter to
 avoid errors when writing comparison operators:
	Write a CompareTo() function and use the
 SCPP_DEFINE_COMPARISON_OPERATORS macro to
 implement all the comparison operators.

Chapter 13. Errors When Using Standard C Libraries

As we discussed in Chapter 1, C++ inherited
 the C philosophy and its corresponding problems. But that’s not all. It also
 inherited the standard C library, which is unsafe in several ways, and
 consequently all its associated problems, sometimes leading to unpredictable
 behavior up to and including program crashes. For the final chapter in this
 part of the book, we’ll discuss the possible dangers that await you when you
 use some of the functions that programmers frequently depend on in these
 libraries.
When we try to use the C string libraries declared in string.h or functions such as sprintf() declared in
 stdio.h, we may face the following
 problems:
	The functions that take pointers to character arrays (char *) crash when given a NULL instead of a
 pointer to a valid C string (for example, strlen(NULL) will
 crash).

	Some of the functions writing into a buffer might overwrite past
 the end of the buffer, thus leading to unpredictable application
 behavior including crashes.

	The safer versions of the same functions will not overwrite the
 buffer, but will stop writing
 into a buffer just before it ends, thus silently truncating the
 result—probably not the behavior
 one would want.

There are several potential ways to address these
 problems:
	Provide versions of the functions that do all the necessary
 sanity checks and treat the NULL pointers the same way as they would
 handle an empty string (const char*
 empty_string = "";).

	For those applications where the speed of these string
 operations should not be compromised, provide versions with temporary
 sanity checks that are active only during testing.

However, the best possible solution to this problem is not
 to use the C string libraries at all. Use the classes provided by C++
 instead. For example:
	Instead of strlen(my_c_string),
 you can use my_cpp_string.size().

	Instead of strcpy(), just copy the
 strings using string’s assignment
 operator (i.e., =).

To concatenate two strings, two functions in the C library are
 available. strcat() blindly adds a
 string to the end of an existing string in a buffer without ever knowing
 where the buffer ends. By contrast, strncat() adds no more than
 the specified number of bytes, which seems like a step in the right
 direction, but it still does not know anything about the size of the buffer
 it adds to. The programmer is responsible for allocating the right amount of
 space and calculating how many bytes to add.
Instead of strcat() or strncat(), use
 either:
#include <sstream> // ostringstream
#include <string>

 ostringsream buffer;
 buffer << first_string;
 buffer << additional_string;
 string result = buffer.str();
or, even shorter:
#include <string>

 string result = first_string;
 result += additional_string;
Not only are these more readable and safer, they are actually faster
 for long strings than strcat()! There are
 no buffers to allocate and overwrite.
If you are working with std::string and provide a
 NULL as an argument in a constructor:
std::string empty_string(NULL);
the program does not crash. Instead it throws an exception with a
 human-readable (well, almost human-readable) explanation of what
 happened:
basic_string::_S_construct NULL not valid
which translates into plain English as “the constructor of std::string
 found a NULL as an argument where it expected a valid C string.”
The rule for this chapter to avoid
 buffer overflows and crashes when using C string library functions is to
 avoid using C string libraries.
	They are not safe and sometimes not even as fast as the
 corresponding C++ classes, such as std::string and
 std::ostringstream. Use
 C++ classes and you will avoid a number of possible errors leading to
 program crashes or other unpredictable behavior.

Part III. The Joy of Bug Hunting: From Testing to Debugging to
 Production

In this part, we assume that your code at least
 partially adheres to the approaches and guidelines discussed in previous
 chapters. Now we are ready for testing. Here we discuss the testing
 and debugging strategy for finding and eliminating bugs in the most
 efficient way possible.

Chapter 14. General Testing Principles

Although it is impossible to test code without concrete knowledge of what a
 particular program does, and how, there are nevertheless some general principles of testing
 that are useful to follow. Correctly designed and implemented code must produce the right
 answer when given correct inputs. Furthermore, when given incorrect ones, the program should
 not silently die, crash, or get stuck, but should diagnose the problem—where, why, and if
 necessary, when the error happened—and then either gracefully terminate or return to the
 initial state from which it can process the next input. Testing must include everything from
 unit tests of each single class, to unit tests of groups of classes working together, to a
 test of the whole application.
To the extent possible, you should try to create a reproducible
 test that leads to the same results when repeated. This can be a
 challenge when dealing with multi-threaded applications, when the timing
 of events between different threads is an issue, but even in cases like
 that it is usually possible to convert tests of some parts of the code
 to a single-threaded mode where the results should be totally
 deterministic.
In order to test multiple classes, organize them in a hierarchy
 such that some classes are considered more “basic” than others. In other
 words, the classes on one level of the hierarchy can make calls only to
 the classes on the same level or below, not above. Then the sequence of
 testing is clear. Otherwise, you’ll face a chicken-and-egg problem when
 deciding what to test first. An even better design is when a class at
 each level uses only classes below it, as shown in Figure 14-1.
[image: Application that allows references to the code in the same layers, versus one with a strict separation of layers]

Figure 14-1. Application that allows references to the code in the same
 layers, versus one with a strict separation of layers

Each piece of code that expects some input must be tested with both correct and incorrect
 inputs. Try to “push” the code and see how it behaves not only under normal but also
 abnormal circumstances. For instance, if the code expects a pointer (or pointers) to some
 inputs, what would happen if you provide NULL(s) instead? If an algorithm expects integers,
 test whether there could be an integer overflow. If an algorithm expects doubles, test what
 happens if they are very small or very large. See how code behaves when different inputs
 differ by several orders of magnitude. Will the algorithm lose its accuracy?
If the algorithm works with input of a variable size (e.g., an
 array, vector, or matrix, or if the code reads several numbers from a
 file), see what happens when the size of input grows by an order of
 magnitude. You must have an understanding of the
 complexity of your algorithm, e.g., if the input
 contains N units of information, how much does the time
 of processing increase as a function of N when
 N increases? Then test it whether this is true in
 practice.
If the algorithm does some calculation numerically but in specific cases it has an analytical solution, compare them. If there
 is asymptotic behavior when some parameter becomes small or large, test
 it.
If the algorithm does something in a very smart and efficient way,
 consider writing a brute-force version of the same algorithm. Although this will be much slower, it will also be much simpler and therefore less
 error-prone. Then compare the results, at least for small input size.
If an algorithm takes as an input an arbitrary set of numbers,
 such as in the case of sorting, it is usually a good idea to generate
 test inputs in a pseudo-random manner—e.g., using the function rand()—so
 that you can create a lot of different test sets easily. This technique
 still allows the tests to be repeatable, because you can recreate the same
 set by specifying the same seed for the random number generator.
Always look for special cases. If the algorithm takes an array,
 what happens if it is empty or contains just one element? What if
 all elements of an array are the same? If it takes a matrix, what
 happens if the determinant of that matrix is zero?
If you use hash sets or hash maps, test them for collisions with a
 realistic set of inputs. Try to look for worst-case scenarios.
If your inputs depend on a calendar date, make sure to include the February 29th in a leap
 year. I have found that in algorithms generating sets of dates starting from some initial
 date, this is usually a very special case that can sometimes lead to the discovery of rare
 but interesting bugs. Therefore, if you are testing data that includes a range of dates,
 make sure that it is at least five years long so that it includes at least one leap year.
 (Strictly speaking, not every five-year interval includes a leap year, because the years
 1900, 2100, 2200, and 2300 are not leap years, so you might need about nine years of data
 instead, depending on the century in which you are reading this book.
Automate your testing as much as possible. The best set of tests
 is one that runs with one push of a button and tests everything there is
 to test about your code. There are many frameworks and utilities that make it easy to achieve this automation.
Plan your work so that you spend between 30% to 50% of your time
 testing. This is the part of planning that is very easy to underestimate
 and where things tend to go wrong, thus ruining delivery schedules.
 Remember: the more effort you spend on testing, the easier your life
 will be when your code goes into production.

Chapter 15. Debug-On-Error Strategy

By this time you probably have your program written and containing a lot of sanity checks,
 some permanent and some temporary. Now it is time to test it. Let’s go bug hunting, one bug at a
 time. Our testing algorithm is very simple:
	Run your code with sanity checks on, trying to cover all possible cases.

	If any sanity check fails, fix the code and return to step 1.

	If you’ve made it to step 3, you can be reasonably sure your code works correctly.
 Well done!

In my personal experience, this strategy makes testing a much faster, more
 efficient, and more enjoyable procedure than it would otherwise be, when your code does strange
 things and does not provide any explanation for its behavior. All you have to do to make this
 process effective is to insert enough sanity checks in your code while writing it and to make
 them as informative as possible. In short, the more sanity checks you have in your code, the
 more you can guarantee that it works correctly after it has passed all the checks.
Let’s consider how the SCPP_TEST_ASSERT macro
 can be switched on. Take a closer look in the file
 scpp_assert.hpp, where it is defined:
#ifdef _DEBUG
define SCPP_TEST_ASSERT_ON
#endif

#ifdef SCPP_TEST_ASSERT_ON
define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif
If you compile your project in debug mode, a symbol named _DEBUG is defined during compilation (this might be compiler-dependent, but it is
 definitely true for Microsoft Visual Studio). In this case, your sanity checks (e.g., the
 SCPP_TEST_ASSERT macro) are on. Our option for running the
 code are summarized in Table 15-1.
Table 15-1. Testing modes
	Level	Purpose	Compilation mode	Test sanity checks
	1	Testing with debugging on error	Debug	On
	2	Fast testing	Release	On
	3	Production	Release	Off

Options 1 and 3 are obvious enough: most of the time you will want to test your code while
 it is compiled in debug mode, and probably running it inside a debugger. However, if your
 program does a lot of number crunching, and if switching sanity checks on and compiling in the
 debug mode slow it down too much, you have option 2: testing the code compiled in release mode
 with sanity checks on. Not having the luxury of exploring the code in the debugger makes it
 especially important that your error messages contain enough information to allow you to fix the
 bug.
If your program is fast enough to run with sanity checks in debug mode, the easiest way to
 catch a bug is to open the scpp_assert.cpp file, find the
 comment “This is a good place to put your debug breakpoint:”, and put a debug breakpoint on the
 next line (which can be the line starting with either throw
 or cerr, depending on how the code was compiled):
void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
 cerr << message << " in file " << file_name
 << " #" << line_number << endl << flush;
 // Terminate application
 exit(1);
#endif
This is the reason I created this error handler function. Simply knowing the filename and
 line number where the error occurred might not help you much. But if you put your debugger
 breakpoint there, the debugger will stop on it during every execution of this line, even if the
 bug occurs on only the 10th or even the 10,000th iteration. By putting the breakpoint
 inside the error handler function, you are guaranteed that your program
 will run to the first error and stop in the debugger, as shown in Figure 15-1.
[image: Debugger stopped inside the error handler function in XCode (Max OS X Leopard)]

Figure 15-1. Debugger stopped inside the error handler function in XCode
 (Max OS X Leopard)

If the text of the error message is not enough to figure out why the error happened, you can
 go up the call stack into the function where the error occurred and examine the variables to
 figure out what happened and why. On the other hand, if your debugger doesn’t stop on this
 breakpoint, you should not be too disappointed—your program passed all sanity checks!

Chapter 16. Making Your Code Debugger-Friendly

Have you ever tried to look inside some object in the debugger
 and been frustrated that the debugger shows the details of the object’s
 physical implementation instead of the logical information that the object
 is supposed to represent? Let me illustrate this using an example of a
 Date class that represents
 calendar dates, such as December 26, 2011. If you look into this object in
 the debugger, chances are you will not see anything resembling “December 26,
 2011” or any human-readable information at all, but rather an integer that
 requires some decoding to convert into a date it represents.
It all depends on how the Date type is implemented. I
 have seen the following three implementations:
	class Date {
 // some code

 private:
 int day_, month_, year_;

	typedef Date int; // in YYYYMMDD format

	class Date {
 // some code

 private:
 int number_of_days_; // Number of calendar days since the "anchor date"

The first implementation is pretty self-evident and is a pleasure to
 debug. In the second case, the date December 26, 2011 is represented by an
 integer 20111226, which is also easily readable by a human once you know the
 formula behind it.
In the last case, the internal representation of a Date is the number of days
 that have passed since some arbitrarily chosen date far enough in the past,
 that the day represented by 1 is 1/1/1900 or 1/1/0000 or something of this
 sort.
While the first two implementations are very debugger-friendly, they
 have a serious problem. The Date type is supposed to
 support “date arithmetic,” i.e., operations such as adding a number of days
 to a date, or calculating the number of days between two dates. In the cases
 of implementations 1 and 2 such number arithmetic is extremely slow, while
 in the case of implementation 3 it is as efficient as adding and subtracting
 integers.
For this reason, any serious implementation of Date uses approach 3.
 However, when you look at this Date object in the
 debugger, it is a pain to figure out what the actual calendar date is. For
 example, in the class Date we will consider
 momentarily, the date December 26, 2011 looks like 734497 in the debugger,
 and when you are working with code that contains a lot of dates—for example,
 some financial contract that pays quarterly for the next 30 years, and also
 has some additional dates a couple of days before each payment date relevant
 for calculation—debugging becomes a challenge.
But it doesn’t have to be. The solution to this problem is to make the
 code of the class Date “debugger-friendly,”
 meaning that when compiled in debug mode, it provides additional information
 in the debugger to represent the date in a human-readable form (either as
 “December 26, 2011” or at least 20111226). However, given that this
 additional functionality requires some calculations and increases the size
 of the object, I’ve decided to compromise and settle on the second solution,
 representing the debugging info of the date in YYYYMMDD format, i.e., as
 20111226.
The complete source code for the class Date is provided in Appendix J in the scpp_date.hpp and scpp_date.cpp files. Here I just include snippets
 from these files that provide this additional debugging information. In the
 header file we find:
class Date {
 public:
 // some code

 private:
 int date_; // number of days from A.D., i.e. 01/01/0000 is 1.

#ifdef _DEBUG
 int yyyymmdd_;
#endif

void SyncDebug() {
#ifdef _DEBUG
 yyyymmdd_ = AsYYYYMMDD();
#endif
}

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
 yyyymmdd_ = 10000*year + 100*month + day;
#endif
}
};
First, the implementation is based on a number of days since some day
 in the past. In addition, when
 compiled in debug mode, the symbol _DEBUG is defined and the
 class has an additional data member
 int yyyymmdd_, which will contain the
 date in the YYYYMMDD format. To fill this data member out, there are two
 functions SyncDebug(), so named because they
 synchronize the debug information with the actual date_ contained in the object. When compiled in
 release mode, these two functions do nothing, and in debug mode they update
 the yyyymmdd_ data member. These
 functions are called from every non-const
 method of the class after modifying the date_ data member, for example:
Date& operator ++ () {
 ++date_;
 SyncDebug();
 return *this;
}

// some other non-const methods

Date& operator += (int nDays) {
 date_ += nDays;
 SyncDebug();
 return *this;
}

// even more non-const methods
and also in a constructor:
Date::Date(unsigned year, unsigned month, unsigned day) {
 SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
 SCPP_TEST_ASSERT(JAN<=month && month<=DEC,
 "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
 unsigned ml = MonthLength(month, year);
 SCPP_TEST_ASSERT(1<=day && day<=ml,
 "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
 int n_years_before = year - 1;
 date_ = 365*n_years_before + n_years_before/4 - n_years_before/100
 + n_years_before/400 + day + NumberOfDaysBeforeMonth(month, year);

 SyncDebug(year, month, day);
}
Figure 16-1 shows how the Date object looks in the
 XCode debugger as a result of all this additional activity in debug
 mode.
[image: Looking at the “debuggable” Date classDate object in the XCode debugger]

Figure 16-1. Looking at the “debuggable” Date object in the XCode debugger

The variable d of type Date is shown in the upper
 right columns. In the “Arguments” column find d, and under it you can see its data members,
 while in the next column, “Values,” you can see that:
	date_ is equal to
 734497.

	yyyymmdd_ is equal to
 20111226.

The presence of the latter value makes decoding the date in the object
 as easy as separating the last two pairs of digits from the first
 four.
The example of the Date class discussed here
 is just that: an example of an approach to making your class friendly to a
 debugger. I started to work on this mostly out of frustration when trying to
 look into STL containers in the debugger and finding a lot of interesting
 details about their implementation instead of what numbers or strings or
 other objects they actually contained. Making STL containers
 debugger-friendly on the level of code could be (and was) done, though it
 makes the code compiled in debug mode exceptionally slow. However, this
 problem was addressed recently on the level of the debugger: Microsoft
 Visual Studio 2010 shows the logical contents (as opposed to implementation
 details) of STL containers, such as a vector, set, or map (Figure 16-2).
[image: STL vector, set, and map in the Microsoft Visual Studio 2010 debugger]

Figure 16-2. STL vector, set, and map in the Microsoft Visual Studio 2010
 debugger

Thus, there is hope that this idea will soon reach debuggers working
 under Unix, Linux, and Mac OS too.
In the case of a specific class you create, if its implementation
 differs from the logical information it represents, it is up to you to make
 it debugger-friendly. Usually it is not difficult, and you will be glad you
 did it as you debug your program.

Chapter 17. Conclusion

Now that we’ve reached the end of this book, let’s go back and
 summarize the guidelines and strategies we’ve discussed. The first guideline
 is that we want to diagnose as many errors at compile time as possible. All
 the other errors will be diagnosed at runtime, and most of the strategies in
 this book concentrate on catching these errors.
When catching errors at runtime, we are trying to achieve two
 contrasting goals:
	Testing as many sanity checks as possible.

	Having our code run as fast as possible in production.

This can be achieved by making some of the sanity checks temporary. To
 do this, you need to enable your checks to be switched on and off at compile
 time and activate them for testing only.
Here is a summary of all the rules formulated in this book.
For diagnosing errors at compile time (Chapter 2):
	Prohibit implicit type conversions: declare constructors taking
 one parameter with the explicit keyword and
 avoid conversion operators.

	Use different classes for different data types.

	Do not use enums to create
 int constants; use them
 to create new types.

To avoid an “index out of bounds” error (Chapter 4):
	Do not use static or dynamically allocated arrays; use a template
 array or vector instead.

	Do not use brackets on the new and delete operators; leave
 allocation of multiple elements to the template vector.

	Use scpp:vector instead of
 std::vector, and
 scpp::array instead of
 a static array. Switch the sanity checks on.

	For a two-dimensional array, use the scpp::matrix class (or
 similar classes for higher-dimension arrays) with operator () providing indexes-out-of-bounds
 checks.

To avoid errors in pointer arithmetic (Chapter 5):
	Avoid using pointer arithmetic at all. Use a template vector or
 array with an index instead.

To avoid errors with invalid pointers, references, and iterators
 (Chapter 6):
	Do not hold pointers, references, or iterators to the element of a
 container after you’ve modified the container.

To avoid uninitialized variables, especially data members of a class
 (Chapter 7):
	Do not use built-in types such as int, unsigned, double, bool, etc., for class
 data members; instead use Int, Unsigned, Double, Bool, etc. You will not
 need to initialize them in constructors.

	If you use these classes instead of built-in types for passing
 parameters to functions, you get additional type safety.

To avoid memory leaks (Chapter 8):
	Every time you create an object using the new operator,
 immediately assign the result to a smart pointer (a reference counting
 pointer or scoped pointer is recommended).

	Use the new operator only without brackets. If you need to create
 an array, create a new template vector, which is a single object.

	Avoid circular references.

	When writing a function that returns a pointer, return a
 corresponding smart pointer instead of a raw one, to enforce the
 ownership of the result.

To catch dereferencing a NULL pointer at runtime (Chapter 9):
	If you have a pointer that owns the object it points to, use a
 smart pointer (a reference-counting pointer or scoped
 pointer).

	When you have a raw pointer T* that points to an
 object you do not own, use the template class Ptr<T>
 instead.

	For a const pointer (e.g.,
 const T*) use Ptr<const T>.

To avoid errors in copy-constructors and assignment operators (Chapter 10):
	Whenever possible, avoid writing copy constructor and assignment
 operators for your classes.

	If the default versions created for you automatically by the
 compiler do not work for you, consider prohibiting copying instances of
 your class by declaring the copy constructor and assignment operator
 private.

To avoid problems when throwing exceptions from constructors (Chapter 11):
	Design your class in such a way that the destructor is
 empty.

To avoid errors when writing comparison operators (Chapter 12):
	Write a CompareTo() function
 and use the SCPP_DEFINE_COMPARISON_OPERATORS macro to
 implement all six comparison operators for your class.

To avoid errors when calling C-library functions such as buffer overflows and crashes
 caused by NULL pointers (Chapter 13):
	Avoid using C string libraries; use the string and ostringstream C++
 classes instead.

The best possible testing mode is to compile code in debug mode with
 all sanity checks activated. In this mode, all runtime errors will lead to
 calls to the same error handler function where you can wait with a debug
 breakpoint. The code will run until a sanity check fails, at which time you
 will have an opportunity to debug the code that leads to the failure.
The next best mode is slightly faster: running tests when code is
 compiled in release mode with sanity checks on and relying on the
 completeness of the error messages to diagnose the errors. This mode might
 be necessary if the code compiled in debug mode with sanity checks on is too
 slow. You might even want to leave some of the sanity checks on in
 production if you think they might be triggered. For this reason, I’ve made
 writing these sanity checks as easy as possible, so you can write as many of
 them as you need and make them informative enough to diagnose the error
 without the use of a debugger.
Finally, when your tests pass all your sanity checks, you have good
 reason to believe that your program is working correctly. And the more
 sanity checks you’ve put in there, the more reason you have to believe this
 is true.
If you follow all the rules in this book, you will essentially be
 using a “safer” subset of C++ that should lower the “bug count” in your
 code. Of course, this book covers only the most common errors one can make
 when programming in C++, so even if you do follow all the rules, there is
 still lots of opportunity for mistakes. Therefore, instead of being titled
 Safe C++, this book could have been more realistically
 called Safer C++. Of course, completely safe C++ (or
 any other language) is an unattainable dream, but I hope that avoiding the
 errors discussed in this book brings us one step closer to this goal.
The strategy discussed in this book looks very simple. That’s because
 it is. The whole idea of this book can
 be summarized as follows: design your code to be self-diagnosing. This strategy makes
 testing faster, easier, less stressful, and more productive; it relies on
 the compiler and runtime code to catch your errors, it speeds up
 development, makes testing much less stressful and more productive, and at
 the end of the day makes your code more reliable. Go ahead and apply it to
 your next project—I think you’ll agree with me that it works!

Appendix A. Source Code for the scpp Library Used in This Book

Although you will download this library from my website at
 https://github.com/vladimir-kushnir/SafeCPlusPlus for use in your projects,
 I’m including it here so you can check it at your convenience while reading the
 book.

Appendix B. Source Code for the files scpp_assert.hpp and scpp_assert.cpp

File scpp_assert.hpp
#ifndef __SCPP_ASSERT_HPP_INCLUDED__
#define __SCPP_ASSERT_HPP_INCLUDED__

#include <sstream> // ostringstream

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
#include <exception>

namespace scpp {
// This exception is thrown when the sanity checks defined below fail,
// and #ifdef SCPP_THROW_EXCEPTION_ON_BUG.
class ScppAssertFailedException : public std::exception {
 public:
 ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message);

 virtual const char* what() const throw () { return what_.c_str(); }

 virtual ~ScppAssertFailedException() throw () {}
 private:
 std::string what_;
};
} // namespace scpp
#endif

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message);

// Permanent sanity check macro.
#define SCPP_ASSERT(condition, msg) \
 if(!(condition)) { \
 std::ostringstream s; \
 s << msg; \
 SCPP_AssertErrorHandler(\
 __FILE__, __LINE__, s.str().c_str()); \
 }

#ifdef _DEBUG
define SCPP_TEST_ASSERT_ON
#endif

// Temporary (for testing only) sanity check macro
#ifdef SCPP_TEST_ASSERT_ON
define SCPP_TEST_ASSERT(condition,msg) SCPP_ASSERT(condition, msg)
#else
define SCPP_TEST_ASSERT(condition,msg) // do nothing
#endif

#endif // __SCPP_ASSERT_HPP_INCLUDED__
 File scpp_assert.cpp
#include "scpp_assert.hpp"

#include <iostream> // cerr, endl, flush
#include <stdlib.h> // exit()

using namespace std;

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
namespace scpp {
 ScppAssertFailedException::ScppAssertFailedException(const char* file_name,
 unsigned line_number,
 const char* message) {
 ostringstream s;
 s << "SCPP assertion failed with message '" << message
 << "' in file " << file_name << " #" << line_number;

 what_ = s.str();
 }
}
#endif

void SCPP_AssertErrorHandler(const char* file_name,
 unsigned line_number,
 const char* message) {
 // This is a good place to put your debug breakpoint:
 // You can also add writing of the same info into a log file if appropriate.

#ifdef SCPP_THROW_EXCEPTION_ON_BUG
 throw scpp::ScppAssertFailedException(file_name, line_number, message);
#else
 cerr << message << " in file " << file_name << " #" << line_number << endl << flush;
 // Terminate application
 exit(1);
#endif
}

Appendix C. Source Code for the file
 scpp_vector.hpp

#ifndef __SCPP_VECTOR_HPP_INCLUDED__
#define __SCPP_VECTOR_HPP_INCLUDED__

#include <vector>
#include "scpp_assert.hpp"

namespace scpp {

// Wrapper around std::vector, has temporary sanity checks in the operators [].
template <typename T>
class vector : public std::vector<T> {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 explicit vector(size_type n = 0)
 : std::vector<T>(n)
 {}

 vector(size_type n, const T& value)
 : std::vector<T>(n, value)
 {}

 template <class InputIterator> vector (InputIterator first, InputIterator last)
 : std::vector<T>(first, last)
 {}

 // Note: we do not provide a copy-ctor and assignment operator.
 // we rely on default versions of these methods generated by the compiler.

 T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);
 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < std::vector<T>::size(),
 "Index " << index << " must be less than "
 << std::vector<T>::size());
 return std::vector<T>::operator[](index);
 }
};
} // namespace scpp

template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::vector<T>& v) {
 for(unsigned i=0; i<v.size(); ++i) {
 os << v[i];
 if(i + 1 < v.size())
 os << " ";
 }
 return os;
}

#endif // __SCPP_VECTOR_HPP_INCLUDED__

Appendix D. Source Code for the file
 scpp_array.hpp

#ifndef __SCPP_ARRAY_HPP_INCLUDED__
#define __SCPP_ARRAY_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Fixed-size array
template <typename T, unsigned N>
class array {
 public:
 typedef unsigned size_type;

 // Most commonly used constructors:
 array() {}
 explicit array(const T& initial_value) {
 for(size_type i=0; i<size(); ++i)
 data_[i] = initial_value;
 }

 size_type size() const { return N; }

 // Note: we do not provide a copy-ctor and assignment operator.
 // we rely on default versions of these methods generated by the compiler.

 T& operator [] (size_type index) {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 const T& operator [] (size_type index) const {
 SCPP_TEST_ASSERT(index < N,
 "Index " << index << " must be less than " << N);
 return data_[index];
 }

 // Accessors
 T* begin() { return &data_[0]; }
 const T* begin() const { return &data_[0]; }

 // Returns pointer PAST the end of the array.
 T* end() { return &data_[N]; }
 const T* end() const { return &data_[N]; }

 private:
 T data_[N];
};
} // namespace scpp

template <typename T, unsigned N>
inline
std::ostream& operator << (std::ostream& os, const scpp::array<T,N>& a) {
 for(unsigned i=0; i<a.size(); ++i) {
 os << a[i];
 if(i + 1 < a.size())
 os << " ";
 }
 return os;
}

#endif // __SCPP_ARRAY_HPP_INCLUDED__

Appendix E. Source Code for the file
 scpp_matrix.hpp

#ifndef __SCPP_MATRIX_HPP_INCLUDED__
#define __SCPP_MATRIX_HPP_INCLUDED__

#include <ostream>
#include <vector>

#include "scpp_assert.hpp"

namespace scpp {

// Two-dimensional rectangular matrix.
template <typename T>
class matrix {
 public:
 typedef unsigned size_type;

 matrix(size_type num_rows, size_type num_cols)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols)
 {
 SCPP_TEST_ASSERT(num_rows > 0,
 "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0,
 "Number of columns in a matrix must be positive");
 }

 matrix(size_type num_rows, size_type num_cols, const T& init_value)
 : rows_(num_rows), cols_(num_cols), data_(num_rows * num_cols, init_value)
 {
 SCPP_TEST_ASSERT(num_rows > 0, "Number of rows in a matrix must be positive");
 SCPP_TEST_ASSERT(num_cols > 0, "Number of columns in a matrix must be positive");
 }

 size_type num_rows() const { return rows_; }
 size_type num_cols() const { return cols_; }

 // Accessors: return element by row and column.
 T& operator() (size_type row, size_type col)
 {
 return data_[index(row, col)];
 }

 const T& operator() (size_type row, size_type col) const
 {
 return data_[index(row, col)];
 }

 private:
 size_type rows_, cols_;
 std::vector<T> data_;

 size_type index(size_type row, size_type col) const {
 SCPP_TEST_ASSERT(row < rows_, "Row " << row << " must be less than " << rows_);
 SCPP_TEST_ASSERT(col < cols_, "Column " << col << " must be less than " << cols_);
 return cols_ * row + col;
 }
};

} // namespace scpp

template <typename T>
inline
std::ostream& operator << (std::ostream& os, const scpp::matrix<T>& m) {
 for(unsigned r =0; r<m.num_rows(); ++r) {
 for(unsigned c=0; c<m.num_cols(); ++c) {
 os << m(r,c);
 if(c + 1 < m.num_cols())
 os << "\t";
 }
 os << "\n";
 }
 return os;
}

#endif // __SCPP_MATRIX_HPP_INCLUDED__

Appendix F. Source Code for the file
 scpp_types.hpp

#ifndef __SCPP_TYPES_HPP_INCLUDED__
#define __SCPP_TYPES_HPP_INCLUDED__

#include <ostream>
#include "scpp_assert.hpp"

// Template wrapper around a built-in type T.
// Behaves exactly as T, except initialized by default to 0.
template<typename T>
class TNumber {
public:
 TNumber(const T& x=0)
 : data_(x) {
 }

 operator T () const { return data_; }

 TNumber& operator = (const T& x) {
 data_ = x;
 return *this;
 }

 // postfix operator x++
 TNumber operator ++ (int) {
 TNumber<T> copy(*this);
 ++data_;
 return copy;
 }

 // prefix operator ++x
 TNumber& operator ++ () {
 ++data_;
 return *this;
 }

 TNumber& operator += (T x) {
 data_ += x;
 return *this;
 }

 TNumber& operator -= (T x) {
 data_ -= x;
 return *this;
 }

 TNumber& operator *= (T x) {
 data_ *= x;
 return *this;
 }

 TNumber& operator /= (T x) {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 data_ /= x;
 return *this;
 }

 T operator / (T x)
 {
 SCPP_TEST_ASSERT(x!=0, "Attempt to divide by 0");
 return data_ / x;
 }

private:
 T data_;
};

typedef long long int64;
typedef unsigned long long unsigned64;

typedef TNumber<int> Int;
typedef TNumber<unsigned> Unsigned;
typedef TNumber<int64> Int64;
typedef TNumber<unsigned64> Unsigned64;
typedef TNumber<float> Float;
typedef TNumber<double> Double;
typedef TNumber<char> Char;

class Bool {
public:
 Bool(bool x=false)
 : data_(x)
 {}

 operator bool () const { return data_; }
 Bool& operator = (bool x) {
 data_ = x;
 return *this;
 }

 Bool& operator &= (bool x) {
 data_ &= x;
 return *this;
 }

 Bool& operator |= (bool x) {
 data_ |= x;
 return *this;
 }

private:
 bool data_;
};

inline
std::ostream& operator << (std::ostream& os, Bool b) {
 if(b)
 os << "True";
 else
 os << "False";
 return os;
}

#define SCPP_DEFINE_COMPARISON_OPERATORS(Class) \
 bool operator < (const Class& that) const { return CompareTo(that) < 0; } \
 bool operator > (const Class& that) const { return CompareTo(that) > 0; } \
 bool operator ==(const Class& that) const { return CompareTo(that) ==0; } \
 bool operator <=(const Class& that) const { return CompareTo(that) <=0; } \
 bool operator >=(const Class& that) const { return CompareTo(that) >=0; } \
 bool operator !=(const Class& that) const { return CompareTo(that) !=0; }

#endif // __SCPP_TYPES_HPP_INCLUDED__

Appendix G. Source Code for the file
 scpp_refcountptr.hpp

#ifndef __SCPP_REFCOUNTPTR_HPP_INCLUDED__
#define __SCPP_REFCOUNTPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Reference-counting pointer. Takes ownership of an object. Can be copied.
template <typename T>
class RefCountPtr {
 public:

 explicit RefCountPtr(T* p = NULL) {
 Create(p);
 }

 RefCountPtr(const RefCountPtr<T>& rhs) {
 Copy(rhs);
 }

 RefCountPtr<T>& operator=(const RefCountPtr<T>& rhs) {
 if(ptr_ != rhs.ptr_) {
 Kill();
 Copy(rhs);
 }

 return *this;
 }

 RefCountPtr<T>& operator=(T* p) {
 if(ptr_ != p) {
 Kill();
 Create(p);
 }

 return *this;
 }

 ~RefCountPtr() {
 Kill();
 }

 T* Get() const { return ptr_; }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

private:
 T* ptr_;
 int* count_;

 void Create(T* p) {
 ptr_ = p;
 if(ptr_ != NULL) {
 count_ = new int;
 *count_ = 1;
 } else {
 count_ = NULL;
 }
 }

 void Copy(const RefCountPtr<T>& rhs) {
 ptr_ = rhs.ptr_;
 count_ = rhs.count_;
 if(count_ != NULL)
 ++(*count_);
 }

 void Kill() {
 if(count_ != NULL) {
 if(--(*count_) == 0) {
 delete ptr_;
 delete count_;
 }
 }
 }

};
} // namespace scpp

#endif // __SCPP_REFCOUNTPTR_HPP_INCLUDED__

Appendix H. Source Code for the file
 scpp_scopedptr.hpp

#ifndef __SCPP_SCOPEDPTR_HPP_INCLUDED__
#define __SCPP_SCOPEDPTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Scoped pointer, takes ownership of an object, could not be copied.
template <typename T>
class ScopedPtr {
 public:

 explicit ScopedPtr(T* p = NULL)
 : ptr_(p) {
 }

 ScopedPtr<T>& operator=(T* p) {
 if(ptr_ != p)
 {
 delete ptr_;
 ptr_ = p;
 }

 return *this;
 }

 ~ScopedPtr() {
 delete ptr_;
 }

 T* Get() const {
 return ptr_;
 }

 T* operator->() const
 {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

 // Release ownership of the object to the caller.
 T* Release() {
 T* p = ptr_;
 ptr_ = NULL;
 return p;
 }

private:
 T* ptr_;

 // Copy is prohibited:
 ScopedPtr(const ScopedPtr<T>& rhs);
 ScopedPtr<T>& operator=(const ScopedPtr<T>& rhs);
};

} // namespace scpp

#endif // __SCPP_SCOPEDPTR_HPP_INCLUDED__

Appendix I. Source Code for the file
 scpp_ptr.hpp

#ifndef __SCPP_PTR_HPP_INCLUDED__
#define __SCPP_PTR_HPP_INCLUDED__

#include "scpp_assert.hpp"

namespace scpp {

// Template pointer, does not take ownership of an object.
template <typename T>
class Ptr {
 public:

 explicit Ptr(T* p = NULL)
 : ptr_(p) {
 }

 T* Get() const {
 return ptr_;
 }

 Ptr<T>& operator=(T* p) {
 ptr_ = p;
 return *this;
 }

 T* operator->() const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator -> on NULL pointer.");
 return ptr_;
 }

 T& operator* () const {
 SCPP_TEST_ASSERT(ptr_ != NULL, "Attempt to use operator * on NULL pointer.");
 return *ptr_;
 }

private:
 T* ptr_;
};

} // namespace scpp

#endif // __SCPP_PTR_HPP_INCLUDED__

Appendix J. Source Code for the file scpp_date.hpp and scpp_date.cpp

File scpp_date.hpp
#ifndef __SCPP_DATE_HPP_INCLUDED__
#define __SCPP_DATE_HPP_INCLUDED__

#include <iostream>
#include <string>

#include "scpp_assert.hpp"
#include "scpp_types.hpp"

/*
 Date class.
 Features:
 All date arithmetic operators and comparisons are provided.
 Date arithmetic is implemented as an integer arithmetic.
 No Y2K problems -- all years must be >= 1900.
 Default output format is American (MM/DD/YYYY).
 In debug one can see the date in debugger as yyyymmdd --
 just point your debugger to a yyyymmdd_ data member.

 No implicit type conversions are allowed.

*/
namespace scpp {
class Date {
public:
 // Creates an empty (invalid in terms of IsValid()) date.
 Date();

 // Input format: "mm/dd/yyyy".
 explicit Date(const char* str_date);

 // Same as above.
 explicit Date(const std::string& str_date);

 // Date from integer in the YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
 explicit Date(unsigned yyyymmdd);

 // Year must be 4-digit,
 // month is 1-based, i.e. 1 .. 12,
 // day is 1 .. MonthLength() <= 31
 Date(unsigned year, unsigned month, unsigned day);

 // Returns true if the date is not empty,
 // as is the case when it is created by the default constructor.
 // Most operations on invalid date are not allowed
 // (will call error handler).
 bool IsValid() const { return date_!=0; }

 // Returns date in YYYYMMDD format, e.g. Dec. 26, 2011 is 20111226.
 unsigned AsYYYYMMDD() const;

 // 4-digit year.
 unsigned Year() const;

 enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
 // Returns month number JAN .. DEC, i.e. 1..12.
 unsigned Month() const;

 // Day of month 1 .. MonthLength() <= 31.
 unsigned DayOfMonth() const;

 static bool IsLeap(unsigned year);

 typedef enum { SUN, MON, TUE, WED, THU, FRI, SAT } DayOfWeekType;
 // Returns day of week SUN .. SAT.
 DayOfWeekType DayOfWeek() const;

 // "Sunday", "Monday" .. "Saturday".
 const char* DayOfWeekStr() const;

 int Data() const { return date_; }

 typedef enum { FRMT_AMERICAN, // MM/DD/YYYY
 FRMT_EUROPEAN // MM.DD.YYYY
 // one can add formats in here if necessary.
 } DateOutputFormat;

 enum { MIN_BUFFER_SIZE=11 };
 // The function prints a date into a user-provided buffer
 // and returns the same buffer.
 // Make sure the buffer size >= MIN_BUFFER_SIZE chars at least.
 char* AsString(char* buffer, unsigned bufLen,
 DateOutputFormat frmt=FRMT_AMERICAN) const;

 // Same as above, but C++ style.
 std::string AsString(DateOutputFormat frmt=FRMT_AMERICAN) const;

 // Returns negative int, 0 or positive int in cases of *this<d, *this==d and *this>d.
 int CompareTo(const Date& d) const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
 SCPP_TEST_ASSERT(d.IsValid(), "Date is not valid")

 return date_ - d.date_;
 }

 SCPP_DEFINE_COMPARISON_OPERATORS(Date)

 Date& operator ++ () {
 ++date_;
 SyncDebug();
 return *this;
 }

 Date operator ++ (int) {
 Date copy(*this);
 ++(*this);
 return copy;
 }

 Date& operator -- () {
 --date_;
 SyncDebug();
 return *this;
 }

 Date operator -- (int) {
 Date copy(*this);
 --(*this);
 return copy;
 }

 Date& operator += (int nDays) {
 date_ += nDays;
 SyncDebug();
 return *this;
 }

 Date& operator -= (int nDays) {
 (*this) += (-nDays);
 return *this;
 }

private:
 int date_; // number of days from A.D., i.e. 01/01/0001 is 1.

#ifdef _DEBUG
 int yyyymmdd_;
#endif

 void SyncDebug() {
#ifdef _DEBUG
 yyyymmdd_ = AsYYYYMMDD();
#endif
 }

void SyncDebug(unsigned year, unsigned month, unsigned day) {
#ifdef _DEBUG
 yyyymmdd_ = 10000*year + 100*month + day;
#endif
 }

 // Returns month's length in days,
 // input: month = 1 .. 12
 static unsigned MonthLength(unsigned month, unsigned year);

 // Returns number of calendar days before beginning of the month,
 // e.g. for JAN - 0,
 // for FEB - 31,
 // for MAR - 59 or 60 depending on the leap year.
 static unsigned NumberOfDaysBeforeMonth(unsigned month, unsigned year);
};
} // namespace scpp

inline std::ostream& operator<<(std::ostream& os, const scpp::Date& d) {
 char buffer[scpp::Date::MIN_BUFFER_SIZE];
 os << d.AsString(buffer, scpp::Date::MIN_BUFFER_SIZE);
 return os;
}

inline scpp::Date operator + (const scpp::Date& d, int nDays) {
 scpp::Date copy(d);
 return (copy += nDays);
}

inline scpp::Date operator - (const scpp::Date& d, int nDays) {
 scpp::Date copy(d);
 return (copy -= nDays);
}

inline int operator - (const scpp::Date& lhs, const scpp::Date& rhs) {
 return lhs.Data() - rhs.Data();
}
#endif // __SCPP_DATE_HPP_INCLUDED__

File scpp_date.cpp
#include "scpp_date.hpp"

#include <string.h> // strlen
#include <stdlib.h> // atoi

namespace scpp {
Date::Date()
: date_(0)
{
#ifdef _DEBUG
 yyyymmdd_ = 0;
#endif
}

Date::Date(const char* str_date) {
 SCPP_ASSERT(str_date!=NULL, "Date(): string argument=0.")

 // must be mm/dd/yyyy, at least m/d/yyyy
 SCPP_TEST_ASSERT(strlen(str_date)>=8, "Bad Date input: '" << str_date << "'.")

 unsigned mm, dd=0, yyyy=0;

 mm = atoi(str_date);
 for(const char* p=str_date; (*p)!='\0'; ++p) {
 if(*p=='/') {
 if(dd==0)
 dd = atoi(p+1);
 else {
 yyyy = atoi(p+1);
 break;
 }
 }
 }

 SCPP_TEST_ASSERT(mm!=0 && dd!=0 && yyyy!=0, "Bad Date input '" << str_date << "',
 must be MM/DD/YYYY.");

 *this = Date(yyyy, mm, dd);
}

Date::Date(const std::string& str) {
 *this = Date(str.c_str());
}

Date::Date(unsigned yyyymmdd) {
 int yyyy = yyyymmdd / 10000;
 int mmdd = yyyymmdd - 10000 * yyyy;
 int mm = mmdd / 100;
 int dd = mmdd - 100 * mm;

 *this = Date(yyyy, mm, dd);
}

Date::Date(unsigned year, unsigned month, unsigned day) {
 SCPP_TEST_ASSERT(year>=1900, "Year must be >=1900.")
 SCPP_TEST_ASSERT(JAN<=month && month<=DEC, "Wrong month " << month << " must be 1..12.")
#ifdef SCPP_TEST_ASSERT_ON
 unsigned ml = MonthLength(month, year);
 SCPP_TEST_ASSERT(1<=day && day<=ml, "Wrong day: " << day << " must be 1.." << ml << ".");
#endif
 int n_years_before = year-1;
 date_ = 365*n_years_before
 + n_years_before/4 - n_years_before/100 + n_years_before/400
 + day + NumberOfDaysBeforeMonth(month, year);

 SyncDebug(year, month, day);
}

unsigned Date::AsYYYYMMDD() const {
 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;

 return y*10000 + m*100 + d;
}

bool Date::IsLeap(unsigned year) {
 if(year%4)
 return false;

 if(year%400 == 0)
 return true;

 if(year%100 == 0)
 return false;

 return true;
}

Date::DayOfWeekType Date::DayOfWeek() const {
 return (DayOfWeekType)(date_ % 7);
}

const char* Date::DayOfWeekStr() const {
 static const char* str_day_of_week[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };

 DayOfWeekType dow = DayOfWeek();
 return str_day_of_week[(unsigned)dow];
}

// static
unsigned Date::MonthLength(unsigned month, unsigned year) {
 static int month_length[13] = { 0, 31,28,31,30,31,30,31,31,30,31,30,31 };
 SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
 SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
 if(month == FEB && IsLeap(year))
 return 29;
 return month_length[month];
}

// static
unsigned Date::NumberOfDaysBeforeMonth(unsigned month, unsigned year) {
 static int days_before_month[12] = { 0, 31,59,90,120,151,181,212,243,273,304,334 };
 SCPP_TEST_ASSERT(year>=1900, "Wrong year: " << year << ", must be >=1900.");
 SCPP_TEST_ASSERT(JAN <= month && month <= DEC, "Wrong month " << month);
 unsigned days_before = days_before_month[month - 1];
 if (month >= MAR && IsLeap(year))
 ++days_before;
 return days_before;
}

unsigned Date::Year() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Data() / 365;
 while(Date(y,1,1).Data() > Data())
 --y;
 return y;
}

unsigned Date::Month() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Year();
 Date endOfLastYear(y-1, DEC, 31);
 unsigned day = Data() - endOfLastYear.Data();
 for(unsigned m=JAN; m<=DEC; ++m)
 {
 unsigned ml = MonthLength(m, y);
 if(day <= ml)
 return m;
 day -= ml;
 }
 SCPP_ASSERT(false, "Fatal algorith error.")
 return 0;
}

unsigned Date::DayOfMonth() const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")

 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;
 SCPP_TEST_ASSERT(d > 0 && d <= MonthLength(m,y),
 "Wrong day " << d << " of month " << m << " year " << y);
 return d;
}

char* Date::AsString(char* buffer, unsigned bufLen, DateOutputFormat frmt) const {
 SCPP_TEST_ASSERT(IsValid(), "Date is not valid")
 SCPP_TEST_ASSERT(bufLen>=MIN_BUFFER_SIZE,
 "Buffer is too short: " << bufLen << " must be at least " << MIN_BUFFER_SIZE)

 unsigned y = Year();
 unsigned m = Month();
 unsigned d = Data() - Date(y, m, 1).Data() + 1;

 switch(frmt) {
 case FRMT_AMERICAN:
 sprintf(buffer, "%02d/%02d/%04d", m, d, y);
 break;

 case FRMT_EUROPEAN:
 sprintf(buffer, "%02d.%02d.%4d", m, d, y);
 break;

 default:
 SCPP_ASSERT(false, "Wrong output format " << frmt);
 }

 return buffer;
}

std::string Date::AsString(DateOutputFormat frmt) const {
 char buffer[12];
 return AsString(buffer, sizeof(buffer), frmt);
}
} // namespace scpp

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	&= operator, Uninitialized Boolean
	() operator, Multidimensional Arrays, Multidimensional Arrays, Multidimensional Arrays, Multidimensional Arrays
	++ operator, Uninitialized Boolean
	< operator, How to Write Consistent Comparison Operators, How to Write Consistent Comparison Operators, How to Write Consistent Comparison Operators
	<< operator, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime, Dynamic Arrays, Static Arrays, Static Arrays, Multidimensional Arrays, Multidimensional Arrays, Uninitialized Boolean
	<= operator, How to Write Consistent Comparison Operators
	[] operator, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Multidimensional Arrays, Multidimensional Arrays, Multidimensional Arrays, Multidimensional Arrays, Pointer Arithmetic, Invalid Pointers, References, and Iterators
	_DEBUG symbol, Debug-On-Error Strategy, Making Your Code Debugger-Friendly
	|= operator, Uninitialized Boolean

A
	arrays, Dynamic Arrays–Dynamic Arrays, Dynamic Arrays, Static Arrays–Static Arrays, Multidimensional Arrays–Multidimensional Arrays
		dynamic, Dynamic Arrays–Dynamic Arrays
	index for, Dynamic Arrays
	multidimensional, Multidimensional Arrays–Multidimensional Arrays
	static, Static Arrays–Static Arrays

	assignment operators, avoiding, Copy Constructors and Assignment Operators–Copy Constructors and Assignment Operators
	at() function, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays

B
	Base() class, Dynamic Arrays
	begin() method, Static Arrays, Invalid Pointers, References, and Iterators, Invalid Pointers, References, and Iterators
	bool type, The Proper Way to Handle Types, Uninitialized Boolean–Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Conclusion, Conclusion
	boost library, Memory Leaks
	buffer overflows, and standard C libraries, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries
	bugs, Where Do C++ Bugs Come From? (see errors)
	built-in type, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.)

C
	C libraries, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries, Conclusion
		errors when using, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries
	functions from, Conclusion

	C++ language, Preface–Preface, Preface–Preface, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?
		goals when writing code in, Preface–Preface
	memory allocation in, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?
	problems inherited from C, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?
	why unsafe, Preface–Preface

	calloc() function, Where Do C++ Bugs Come From?, Where Do C++ Bugs Come From?, Index Out of Bounds
	cerr statement, Debug-On-Error Strategy
	char type, The Proper Way to Handle Types
	circular references, Memory Leaks
	classes, The Proper Way to Handle Types–The Proper Way to Handle Types, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.), General Testing Principles–General Testing Principles
		multiple, testing, General Testing Principles–General Testing Principles
	using for class data members, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.)
	varying for different data types, The Proper Way to Handle Types–The Proper Way to Handle Types

	code in destructors, avoiding, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
	CompareTo() function, How to Write Consistent Comparison Operators, Conclusion
	comparison operators, consistent, How to Write Consistent Comparison Operators–How to Write Consistent Comparison Operators
	compiling, catching bugs when, Why the Compiler Is Your Best Place to Catch Bugs–Why the Compiler Is Your Best Place to Catch Bugs
	const pointer, Memory Leaks, Memory Leaks, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Conclusion
	conventions for naming in code, Naming Conventions–Naming Conventions
	conversion operators, The Proper Way to Handle Types–The Proper Way to Handle Types
	copy constructors, avoiding, Copy Constructors and Assignment Operators–Copy Constructors and Assignment Operators
	core dumps, Dereferencing NULL Pointers, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries
	crashes, Dereferencing NULL Pointers, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries

D
	Date class, The Proper Way to Handle Types, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly
	debugging, Where Do C++ Bugs Come From?, Where Do C++ Bugs Come From?, Debug-On-Error Strategy–Debug-On-Error Strategy, Making Your Code Debugger-Friendly–Making Your Code Debugger-Friendly
		(see also errors)
	(see also sanity checks)
	and code writing, Making Your Code Debugger-Friendly–Making Your Code Debugger-Friendly
	debug-on-error strategy, Debug-On-Error Strategy–Debug-On-Error Strategy

	delete operator, Where Do C++ Bugs Come From?, Where Do C++ Bugs Come From?, Dynamic Arrays, Static Arrays, Static Arrays, Static Arrays, Multidimensional Arrays, Memory Leaks, Memory Leaks, Memory Leaks, Scoped Pointers, Enforcing Ownership with Smart Pointers, Enforcing Ownership with Smart Pointers, Conclusion
	delete [] (delete with brackets), Where Do C++ Bugs Come From?, Memory Leaks, Scoped Pointers
	dereferencing NULL pointers, Dereferencing NULL Pointers–Dereferencing NULL Pointers
	Derived() destructor, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays
	destructors, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
		avoiding code in, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
	Derived() destructor, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays
	empty, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors

	double type, The Proper Way to Handle Types, Pointer Arithmetic, Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Conclusion, Conclusion
	dynamic arrays, Dynamic Arrays–Dynamic Arrays

E
	empty destructors, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
	end() method, Static Arrays
	enum type, The Proper Way to Handle Types–The Proper Way to Handle Types, What to Do When We Encounter an Error at Runtime, Conclusion
	errors, Where Do C++ Bugs Come From?, Why the Compiler Is Your Best Place to Catch Bugs–Why the Compiler Is Your Best Place to Catch Bugs, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays, Static Arrays, Multidimensional Arrays–Multidimensional Arrays, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries, Debug-On-Error Strategy–Debug-On-Error Strategy, Making Your Code Debugger-Friendly–Making Your Code Debugger-Friendly
		(see also sanity checks)
	at runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	catching at compile, Why the Compiler Is Your Best Place to Catch Bugs–Why the Compiler Is Your Best Place to Catch Bugs, The Proper Way to Handle Types–The Proper Way to Handle Types
	debugging, Debug-On-Error Strategy–Debug-On-Error Strategy, Making Your Code Debugger-Friendly–Making Your Code Debugger-Friendly
		and code writing, Making Your Code Debugger-Friendly–Making Your Code Debugger-Friendly
	debug-on-error strategy, Debug-On-Error Strategy–Debug-On-Error Strategy

	handling, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	index-out-of-bounds, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays, Static Arrays, Multidimensional Arrays–Multidimensional Arrays
		and dynamic arrays, Dynamic Arrays–Dynamic Arrays
	and multidimensional arrays, Multidimensional Arrays–Multidimensional Arrays
	and static arrays, Static Arrays–Static Arrays
	diagnosis of by Visual Studio, Static Arrays

	types of, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	when using C libraries, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries
	with types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types
		different classes for different data types, The Proper Way to Handle Types–The Proper Way to Handle Types
	implicit type conversions, The Proper Way to Handle Types–The Proper Way to Handle Types
	using enum to create new types, The Proper Way to Handle Types–The Proper Way to Handle Types

	explicit keyword, The Proper Way to Handle Types, The Proper Way to Handle Types, The Proper Way to Handle Types, The Proper Way to Handle Types, Initialized Numbers (int, double, etc.), Conclusion

F
	float type, Initialized Numbers (int, double, etc.)
	free() function, Where Do C++ Bugs Come From?
	functions, passing parameters to, Uninitialized Boolean–Uninitialized Boolean

H
	hash maps, General Testing Principles
	hash sets, General Testing Principles
	hash_map container, Invalid Pointers, References, and Iterators
	hash_set container, Invalid Pointers, References, and Iterators

I
	implicit type conversions, The Proper Way to Handle Types–The Proper Way to Handle Types
	index of array, Dynamic Arrays
	index-out-of-bounds errors, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays, Static Arrays, Multidimensional Arrays–Multidimensional Arrays
		and dynamic arrays, Dynamic Arrays–Dynamic Arrays
	and multidimensional arrays, Multidimensional Arrays–Multidimensional Arrays
	and static arrays, Static Arrays–Static Arrays
	diagnosis of by Visual Studio, Static Arrays

	init_value argument, Multidimensional Arrays
	int type, The Proper Way to Handle Types, The Proper Way to Handle Types, Pointer Arithmetic, Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Scoped Pointers, Conclusion, Conclusion, Conclusion
	iterators, invalid, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators

M
	macros, using with sanity checks, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	malloc() function, Where Do C++ Bugs Come From?, Where Do C++ Bugs Come From?, Index Out of Bounds, Memory Leaks
	matrices, two-dimensional, Multidimensional Arrays–Multidimensional Arrays
	memory allocation, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?
	memory leaks, Memory Leaks–Memory Leaks, Reference Counting Pointers–Reference Counting Pointers, Scoped Pointers–Scoped Pointers, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers
		and reference counting pointers, Reference Counting Pointers–Reference Counting Pointers
	and scoped pointers, Scoped Pointers–Scoped Pointers
	avoiding with smart pointers, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers
	defined, Memory Leaks–Memory Leaks

	multidimensional arrays, Multidimensional Arrays–Multidimensional Arrays
	Mutex object, Enforcing Ownership with Smart Pointers

N
	n-dimensional arrays, Multidimensional Arrays–Multidimensional Arrays
	naming conventions, Naming Conventions–Naming Conventions
	new operator, Where Do C++ Bugs Come From?, Static Arrays, Static Arrays, Static Arrays, Static Arrays, Static Arrays, Multidimensional Arrays, Memory Leaks, Memory Leaks, Reference Counting Pointers, Scoped Pointers, Enforcing Ownership with Smart Pointers, Enforcing Ownership with Smart Pointers, Conclusion, Conclusion
	new[] operator, Enforcing Ownership with Smart Pointers
	NULL pointers, dereferencing, Dereferencing NULL Pointers–Dereferencing NULL Pointers

O
	objects, ownership of, Memory Leaks, Enforcing Ownership with Smart Pointers
	operator=, Dereferencing NULL Pointers, Dereferencing NULL Pointers
	ostringstream class, Conclusion (see std::ostringstream)
	out_of_range exception, Dynamic Arrays
	ownership of objects, Memory Leaks, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers

P
	parameters, passing to functions, Uninitialized Boolean–Uninitialized Boolean
	permanent macros, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	pointers, Pointer Arithmetic–Pointer Arithmetic, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators, Memory Leaks–Memory Leaks, Reference Counting Pointers–Reference Counting Pointers, Scoped Pointers–Scoped Pointers, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers, Dereferencing NULL Pointers–Dereferencing NULL Pointers, Dereferencing NULL Pointers–Dereferencing NULL Pointers, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
		invalid, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators
	NULL pointers, dereferencing, Dereferencing NULL Pointers–Dereferencing NULL Pointers
	pointer arithmetic, Pointer Arithmetic–Pointer Arithmetic
	reference counting pointers, Reference Counting Pointers–Reference Counting Pointers
	scoped pointers, Scoped Pointers–Scoped Pointers
	semi-smart pointers, Dereferencing NULL Pointers–Dereferencing NULL Pointers
	smart pointers, Memory Leaks–Memory Leaks, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors

	porting from C, Where Do C++ Bugs Come From?–Where Do C++ Bugs Come From?
	program crashes, Dereferencing NULL Pointers, Errors When Using Standard C Libraries–Errors When Using Standard C Libraries
	Ptr<T> class, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Conclusion

R
	references, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators, Memory Leaks, Reference Counting Pointers–Reference Counting Pointers
		circular, Memory Leaks
	invalid, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators
	reference counting pointers, Reference Counting Pointers–Reference Counting Pointers

	Release() method, Enforcing Ownership with Smart Pointers
	return statement, Memory Leaks, Memory Leaks
	Ritchie, Dennis, Where Do C++ Bugs Come From?
	Run() method, Memory Leaks
	runtime, errors at, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime

S
	sanity checks, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, Dynamic Arrays–Dynamic Arrays, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors, Debug-On-Error Strategy
		defined, What to Do When We Encounter an Error at Runtime
	in debug mode, Debug-On-Error Strategy
	leaving active in code, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	speeding up, Dynamic Arrays–Dynamic Arrays
	using smart pointers, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
	using temporary vs. permanent macros with, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	when to write, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime

	scoped pointers, Scoped Pointers–Scoped Pointers
	scpp::array class, Naming Conventions, Multidimensional Arrays, Conclusion
	scpp::matrix class, Naming Conventions, Multidimensional Arrays, Conclusion
	scpp::vector class, Naming Conventions, Naming Conventions, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays
	scpp::vector::operator[], Dynamic Arrays
	scpp:vector class, Multidimensional Arrays, Conclusion
	scpp_array.hpp, Source Code for the file
 scpp_array.hpp–Source Code for the file
 scpp_array.hpp
	SCPP_ASSERT macro, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime
	scpp_assert.cpp, Source Code for the files scpp_assert.hpp and scpp_assert.cpp–Source Code for the files scpp_assert.hpp and scpp_assert.cpp
	scpp_assert.hpp, Source Code for the files scpp_assert.hpp and scpp_assert.cpp–Source Code for the files scpp_assert.hpp and scpp_assert.cpp
	SCPP_AssertErrorHandler() function, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime
	scpp_date.cpp, Source Code for the file scpp_date.hpp and scpp_date.cpp–Source Code for the file scpp_date.hpp and scpp_date.cpp
	scpp_date.hpp, Source Code for the file scpp_date.hpp and scpp_date.cpp–Source Code for the file scpp_date.hpp and scpp_date.cpp
	SCPP_DEFINE_COMPARISON_OPERATORS macro, How to Write Consistent Comparison Operators, How to Write Consistent Comparison Operators, Conclusion
	scpp_matrix.hpp, Source Code for the file
 scpp_matrix.hpp–Source Code for the file
 scpp_matrix.hpp
	scpp_ptr.hpp, Source Code for the file
 scpp_ptr.hpp–Source Code for the file
 scpp_ptr.hpp
	scpp_refcountptr.hpp, Source Code for the file
 scpp_refcountptr.hpp–Source Code for the file
 scpp_refcountptr.hpp
	scpp_scopedptr.hpp, Source Code for the file
 scpp_scopedptr.hpp–Source Code for the file
 scpp_scopedptr.hpp
	SCPP_TEST_ASSERT macro, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Static Arrays, Debug-On-Error Strategy, Debug-On-Error Strategy
	SCPP_TEST_ASSERT_INDEX_OUT_OF_BOUNDS macro, Dynamic Arrays, Dynamic Arrays
	SCPP_TEST_ASSERT_ON macro, Dynamic Arrays
	SCPP_THROW_EXCEPTION_ON_BUG macro, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime
	scpp_types.hpp, Source Code for the file
 scpp_types.hpp–Source Code for the file
 scpp_types.hpp
	scpp_vector.hpp, Source Code for the file
 scpp_vector.hpp–Source Code for the file
 scpp_vector.hpp
	semi-smart pointers, Dereferencing NULL Pointers–Dereferencing NULL Pointers
	size() function, Errors When Using Standard C Libraries
	smart pointers, Memory Leaks–Memory Leaks, Enforcing Ownership with Smart Pointers–Enforcing Ownership with Smart Pointers, Avoid Writing Code in Destructors–Avoid Writing Code in Destructors
	sprintf() function, Errors When Using Standard C Libraries
	static arrays, Static Arrays–Static Arrays
	std::ostringstream class, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime, Errors When Using Standard C Libraries, Conclusion
	std::string class, The Proper Way to Handle Types, Initialized Numbers (int, double, etc.), Initialized Numbers (int, double, etc.), Errors When Using Standard C Libraries, Errors When Using Standard C Libraries, Conclusion
	std::vector class, Naming Conventions, Naming Conventions, Dynamic Arrays, Dynamic Arrays, Dynamic Arrays, Multidimensional Arrays, Conclusion
	STL containers, Invalid Pointers, References, and Iterators, Making Your Code Debugger-Friendly, Making Your Code Debugger-Friendly
	strcat() function, Errors When Using Standard C Libraries, Errors When Using Standard C Libraries
	strcpy() function, Errors When Using Standard C Libraries
	string class, Conclusion (see std::string class)
	strlen() function, Errors When Using Standard C Libraries, Errors When Using Standard C Libraries
	strncat() function, Errors When Using Standard C Libraries, Errors When Using Standard C Libraries
	Stroustrup, Bjarne, Where Do C++ Bugs Come From?

T
	T* pointer, Multidimensional Arrays, Reference Counting Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Dereferencing NULL Pointers, Conclusion
	template vector, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays
	temporary macros, What to Do When We Encounter an Error at Runtime, What to Do When We Encounter an Error at Runtime–What to Do When We Encounter an Error at Runtime
	testing, principles for, General Testing Principles–General Testing Principles
	three-dimensional arrays, Multidimensional Arrays–Multidimensional Arrays
	throw statement, Debug-On-Error Strategy
	Time class, The Proper Way to Handle Types, The Proper Way to Handle Types, The Proper Way to Handle Types, The Proper Way to Handle Types
	try-catch statements, Memory Leaks
	two-dimensional matrices, Multidimensional Arrays–Multidimensional Arrays
	types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, The Proper Way to Handle Types–The Proper Way to Handle Types, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.)
		built-in, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.)
	different classes for different data types, The Proper Way to Handle Types–The Proper Way to Handle Types
	implicit type conversions, The Proper Way to Handle Types–The Proper Way to Handle Types
	using enum to create new types, The Proper Way to Handle Types–The Proper Way to Handle Types

U
	uninitialized variables, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.), Uninitialized Boolean–Uninitialized Boolean
		bool type, Uninitialized Boolean–Uninitialized Boolean
	numbers, Initialized Numbers (int, double, etc.)–Initialized Numbers (int, double, etc.)

	unsigned type, Initialized Numbers (int, double, etc.), Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Uninitialized Boolean, Conclusion, Conclusion

V
	Variant class, How to Catch Bugs in the Compiler, How to Catch Bugs in the Compiler, How to Catch Bugs in the Compiler, How to Catch Bugs in the Compiler, How to Catch Bugs in the Compiler, How to Catch Bugs in the Compiler, The Proper Way to Handle Types
	vectors, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators
		adding too many elements to, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators
	pointers, references, iterators pointing to elements
 of, Invalid Pointers, References, and Iterators–Invalid Pointers, References, and Iterators
	template vector, Dynamic Arrays–Dynamic Arrays, Static Arrays–Static Arrays

	Visual Studio, Static Arrays, Making Your Code Debugger-Friendly
		diagnosis of index-out-of-bounds errors by, Static Arrays
	STL containers in debugger, Making Your Code Debugger-Friendly

About the Author
Vladimir Kushnir obtained his Ph. D. in physics at the Institute for Solid State Physics, Academy of Sciences of the USSR. Since that time, Vladimir worked as an experimental physicist, using FORTRAN, C and then C++, while working at Northwestern University and later at the Argonne National Laboratory. He then went to work with Wall Street firms, focusing mostly on calculations called “financial analytics”, and having special interest in taking a calculation and making it run faster, sometimes by an order of magnitude. He lives with his wife Daria in Connecticut and when not programming in C++, enjoys Jazz music and underwater photography in his spare time.

Colophon
The animal on the cover of Safe C++ is the merlin (Falcon
 columbarius). Formerly known as the pigeon hawk, this bird was embraced for
 falconry among royalty in medieval Europe, especially by noble women—Mary Queen of Scots and
 Catherine the Great, in particular. There are various subspecies of the merlin, and it could be
 argued that there are two distinct variants: the North American merlin and the European merlin
 (Falcon aesalon).
This species is found at high latitudes all over North America in various habitats,
 including marshes, open woodland, and prairies. Merlins are migratory and, depending on the
 variant, will travel as far as South America and North Africa for winter months.
Merlins are lean, yet robust, birds of prey. Females are usually larger than males, growing
 up to nearly a foot in length with a wingspan of at least 20 inches. While female birds carry
 dark brown plumage, males usually have blue-gray colored feathers. Both have long, banded
 tails.
The merlin is an aggressive predator; as an aerial forager, it relies on agility and speed
 for its hunts. When in pursuit of a meal, merlins will often fly very low to the ground and use
 their surroundings to take their prey by surprise. They are also apt to capture prey midair. Its
 diet consists of smaller birds, such as sandpipers and the meadow pipit, as well as other small
 mammals and large insects.
Merlins are resourceful creatures; instead of building their own nests, they roost in old
 nests of other birds, like magpies or crows. They are also monogamous animals, and are known to
 demonstrate acrobatic displays of courtship. In fact, paired merlins will hunt cooperatively,
 with one bird flushing the prey toward its mate.
The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Garamond. The
 text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
 LucasFont’s TheSansMonoCondensed.

Safe C++

Vladimir Kushnir

Editor
Mike Hendrickson

Editor
Andy Oram

	Revision History
	2012-05-25	First release

Copyright © 2012 Vladimir Kushnir

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Safe
 C++, the image of a merlin, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-05-30T08:02:49-07:00

OEBPS/httpatomoreillycomsourceoreillyimages1205799.png

OEBPS/httpatomoreillycomsourceoreillyimages1205793.png

OEBPS/httpatomoreillycomsourceoreillyimages1205805.png

OEBPS/httpatomoreillycomsourceoreillyimages1205801.png

OEBPS/httpatomoreillycomsourceoreillyimages1205795.png

OEBPS/orm_front_cover.jpg

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1205807.png

OEBPS/httpatomoreillycomsourceoreillyimages1205803.png

OEBPS/httpatomoreillycomsourceoreillyimages1205797.png

