

For further volumes:
http://www.springer.com/series/5175

M.R.C. van Dongen

L TA EX and Friends

Springer Heidelberg Dordrecht London New York

liable to prosecution under the German Copyright Law.

and regulations and therefore free for general use.

Printed on acid-free paper

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad
reproduction on microfilm or in any other way, and storage in data banks. Duplication of thi
or parts thereof is permitted only under the provisions of the German Copyright Law o
in its current version, and permission for use must always be obtained fro

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,

even in the absence of a specific statement, that such names are exempt from the relevan

Springer is part of Springer Science+Business Media (www.springer.com)

ISBN 978-3-642-23815 - e-ISBN 978-3-642-
DOI 10.1007/978-3-642-2

Library of Congress Control Number:

© Springer-Verlag Berlin Heidelberg 20

casting,
s publication

f September 9, 1965,
m Springer. Violations are

t protective laws

12

ISSN 1612-1449
4 23816-1

3816-1

Cork
Ireland

Dr M.R.C. van Dongen
Computer Science Department
University College Cork

2011945089

Foreword

Nearly twenty years after the first ideas for LaTEX2ε emerged, the
use of LaTEX to produce high-quality technical documents shows no
sign of waning. Indeed, over the past 5 or so years there has been if
anything an upturn in interest in using LaTEX. Better editors, faster com-
puters and the range of powerful LaTEX packages have all contributed
to this increased uptake.

For the new user, this vibrancy can appear intimidating. The range
of packages available for use with LaTEX is vast, and it is not always
obvious which is the ‘best of breed.’ What new users need therefore
is a guide not just to the basics of the LaTEX approach, but also help
in navigating this ecosystem so that they can produce the documents
they need as rapidly as possible.

Creating well-designed documents is about more than the techni-
cal detail of any typesetting system, and so as well as learning LaTEX it
is also necessary to understand the wider ideas of good writing and
good design if one is to create truly ‘beautiful’ material.

In LaTEX and Friends, Marc van Dongen provides an integrated
solution to these inter-related requirements. Treating the presentation
of beautiful documents as the key aim of the reader, it offers advice on
good practice (both in LaTEX terms and beyond) in the relevant context
for the beginner. It also avoids the problem seen in many texts, which
fall short in supporting the transition from beginner to advanced
user. Thus while new LaTEX users will find the information they need
here, so will more established users, making this not only a beginners’
guide but also a reference manual for day-to-day LaTEX users.

Joseph Wright

v

Contents

Foreword v

Preface xxi

Book Outline xxiii

Acknowledgements xxv

I Basics 1

1 Introduction to LaTEX 3
1.1 Pros and Cons . 4
1.2 Basics . 6

1.2.1 The TEX Processors 6
1.2.2 From tex to dvi and Friends 6
1.2.3 The Name of the Game 8
1.2.4 Staying in Sync 8
1.2.5 Writing a LaTEX Input Document 8
1.2.6 The Abstract . 11
1.2.7 Spaces, Comments, and Paragraphs 12

1.3 Document Hierarchy . 12
1.3.1 Minor Document Divisions 13
1.3.2 Major Document Divisions 14
1.3.3 The Appendix . 15

1.4 Document Management 15
1.5 Labels and Cross-references 16
1.6 Controlling the Style of References 18
1.7 The Bibliography . 19

1.7.1 The bibtex Program 23
1.7.2 The biblatex Package 25
1.7.3 End-of-Chapter Bibliographies 27
1.7.4 Classified Bibliographies 28

1.8 Table of Contents and Lists of Things 29
1.8.1 Controlling the Table of Contents 30
1.8.2 Controlling the Sectional Unit Numbering . . . 30
1.8.3 Indexes and Glossaries 30

1.9 Class Files . 32

vii

viii Contents

1.10 Packages . 34
1.11 Useful Classes and Packages 35
1.12 Errors and Troubleshooting 35

II Basic Typesetting 39

2 Running Text 41
2.1 Special Characters . 41

2.1.1 Tieing Text . 41
2.1.2 Grouping . 43

2.2 Diacritics . 44
2.3 Ligatures . 44
2.4 Quotation Marks . 45
2.5 Dashes . 46
2.6 Full Stops . 46
2.7 Ellipsis . 47
2.8 Emphasis . 48
2.9 Borderline Punctuation 48
2.10 Footnotes and Marginal Notes 48
2.11 Displayed Quotations and Verses 49
2.12 Line Breaks . 49
2.13 Controlling the Size . 50
2.14 Seriffed and Sans Serif Typefaces 51
2.15 Small Caps Letters . 52
2.16 Controlling the Type Style 53
2.17 Abbreviations . 53

2.17.1 Initialisms . 53
2.17.2 Acronyms . 54
2.17.3 Shortenings . 54
2.17.4 Introducing Abbreviations 55
2.17.5 British and American Spelling 55
2.17.6 Latin Abbreviations 56
2.17.7 Units . 56

2.18 Phantom Text . 57
2.19 Alignment . 58

2.19.1 Centred Text . 58
2.19.2 Flushed/Ragged Text 58
2.19.3 Basic tabular Constructs 58
2.19.4 The booktabs Package 61
2.19.5 Advanced tabular Constructs 61
2.19.6 The tabbing Environment 63

2.20 Language Related Issues 65
2.20.1 Hyphenation . 65
2.20.2 Foreign Languages 65
2.20.3 Spell-Checking 66

3 Lists 67
3.1 Unordered Lists . 67

Contents ix

3.2 Ordered Lists . 68
3.3 The enumerate Package 69
3.4 Description Lists . 69
3.5 Making your Own Lists 70

III Tables, Diagrams, and Data Plots 73

4 Presenting External Pictures 75
4.1 The figure Environment 75
4.2 Special Packages . 76

4.2.1 Floats . 76
4.2.2 Legends . 77

4.3 External Picture Files . 77
4.4 The graphicx Package 77
4.5 Setting Default Key Values 78
4.6 Setting a Search Path . 79
4.7 Graphics Extensions . 79

5 Presenting Diagrams 81
5.1 Why Specify your Diagrams? 81
5.2 The tikzpicture Environment 82
5.3 The \tikz Command . 82
5.4 Grids . 83
5.5 Paths . 83
5.6 Coordinate Labels . 84
5.7 Extending Paths . 85
5.8 Actions on Paths . 88

5.8.1 Colour . 89
5.8.2 Drawing the Path 91
5.8.3 Line Width . 91
5.8.4 Dash Patterns . 91
5.8.5 Predefined Styles 92
5.8.6 Line Cap and Join 92
5.8.7 Arrows . 93
5.8.8 Filling a Path . 94
5.8.9 Path Filling Rules 95

5.9 Nodes and Node Labels 96
5.9.1 Predefined Nodes Shapes 97
5.9.2 Node Options . 98
5.9.3 Connecting Nodes 99
5.9.4 Special Node Shapes 100

5.10 The spy Library . 101
5.11 Trees . 101
5.12 Logic Circuits . 103
5.13 Commutative Diagrams 104
5.14 Coordinate Systems . 105
5.15 Coordinate Calculations 108

5.15.1 Relative and Incremental Coordinates 108

x Contents

5.15.2 Complex Coordinate Calculations 109
5.16 Options . 111
5.17 Styles . 111
5.18 Scopes . 112
5.19 The \foreach Command 113
5.20 The let Operation . 114
5.21 The To Path Operation 115

6 Presenting Data in Tables 117
6.1 Why Use Tables? . 117
6.2 Table Taxonomy . 117
6.3 Table Anatomy . 118
6.4 Table Design . 119
6.5 Aligning Columns with Numbers 121

6.5.1 Aligning Columns by Hand 122
6.5.2 The dcolumn Package 123
6.5.3 The siunitx Package 124

6.6 The table Environment 124
6.7 Wide Tables . 125
6.8 Multi-page Tables . 125
6.9 Databases and Spreadsheets 126

7 Presenting Data with Plots 129
7.1 The Purpose of Data Plots 129
7.2 Pie Charts . 129
7.3 Introduction to pgfplots 131
7.4 Bar Graphs . 132
7.5 Paired Bar Graphs . 134
7.6 Component Bar Graphs 135
7.7 Coordinate Systems . 136
7.8 Line Graphs . 137
7.9 Scatter Plots . 139

IV Mathematics and Algorithms 143

8 Mathematics 145
8.1 The AMS-LaTEX Platform 145
8.2 LaTEX’s Math Modes . 146
8.3 Ordinary Math Mode . 146
8.4 Subscripts and Superscripts 147
8.5 Greek Letters . 147
8.6 Display Math Mode . 149

8.6.1 The equation Environment 149
8.6.2 The split Environment 150
8.6.3 The gather Environment 151
8.6.4 The align Environment 151
8.6.5 Interrupting a Display 153
8.6.6 Low-level Alignment Building Blocks 153
8.6.7 The eqnarray Environment 154

Contents xi

8.7 Text in Formulae . 154
8.8 Delimiters . 154

8.8.1 Scaling Left and Right Delimiters 155
8.8.2 Bars . 156
8.8.3 Tuples . 157
8.8.4 Floors and Ceilings 157
8.8.5 Delimiter Commands 158

8.9 Fractions . 158
8.10 Sums, Products, and Friends 159

8.10.1 Basic Typesetting Commands 159
8.10.2 Overriding Text and Display Style 160
8.10.3 Multi-line Limits 160

8.11 Existing Functions and Operators 161
8.12 Integration and Differentiation 162

8.12.1 Integration . 162
8.12.2 Differentiation 163

8.13 Roots . 164
8.14 Changing the Style . 164
8.15 Symbol Tables . 165

8.15.1 Operator Symbols 165
8.15.2 Relation Symbols 165
8.15.3 Arrows . 166
8.15.4 Miscellaneous Symbols 166

9 Advanced Mathematics 169
9.1 Declaring New Operators 169
9.2 Managing Content with the cool Package 170
9.3 Arrays and Matrices . 170
9.4 Accents, Hats, and Other Decorations 171
9.5 Braces . 172
9.6 Case-based Definitions 172
9.7 Function Definitions . 173
9.8 Theorems . 174

9.8.1 Theorem Taxonomy 174
9.8.2 Styles for Theorem-like Environments 175
9.8.3 Defining Theorem-like Environments 175
9.8.4 Defining Theorem-like Styles 177
9.8.5 Proofs . 177

9.9 Mathematical Punctuation 178
9.10 Spacing and Linebreaks 179

9.10.1 Line Breaks . 179
9.10.2 Conditions . 180
9.10.3 Physical Units . 181
9.10.4 Sets . 181
9.10.5 More Spacing Commands 182

10 Algorithms and Listings 183
10.1 Presenting Pseudo-Code with algorithm2e 183

10.1.1 Loading algorithm2e 183

xii Contents

10.1.2 Basic Environments 184
10.1.3 Describing Input and Output 185
10.1.4 Conditional Statements 185
10.1.5 The Switch Statement 187
10.1.6 Iterative Statements 188
10.1.7 Comments . 189

10.2 The listings Package 190

V Automation 193

11 Commands and Environments 195
11.1 Some Terminology . 195
11.2 Advantages and Disadvantages 195
11.3 User-defined Commands 197

11.3.1 Defining Commands Without Parameters . . . 197
11.3.2 Defining Commands With Parameters 198
11.3.3 Fragile and Robust Commands 199
11.3.4 Defining Robust Commands 200

11.4 Commands and Parameters 200
11.5 Defining Commands with TEX 202
11.6 Tweaking Existing Commands with \let 206
11.7 Using More than Nine Parameters 206
11.8 Using Environments . 207

12 Branching 209
12.1 Counters, Switches, and Lengths 209

12.1.1 Counters . 209
12.1.2 Switches . 210
12.1.3 Lengths . 211
12.1.4 Scoping . 213

12.2 The ifthen Package . 213
12.3 The calc Package . 215
12.4 Looping . 215
12.5 Tail Recursion . 216

13 Option Parsing 217
13.1 What is a 〈Key〉=〈Value〉 Interface? 217
13.2 Why Use a 〈Key〉=〈Value〉 Interface? 218
13.3 The pgfkeys Package . 218
13.4 Providing and Using the Values 218
13.5 Traversing the Key Tree 219
13.6 Executing Keys . 220
13.7 Error Handling . 220
13.8 Storing Values in Macros 221
13.9 Decisions . 221
13.10 Choice Keys . 222

Contents xiii

VI Miscellany 223

14 Beamer Presentations 225
14.1 Frames . 225
14.2 Modal Presentations . 227
14.3 Incremental Presentations 229
14.4 Visual Alerts . 231
14.5 Adding Some Style . 231

15 Writing Classes and Packages 237
15.1 The Structure of Classes and Packages 237
15.2 Dependencies . 237
15.3 Identification . 238
15.4 Defining and Parsing the Options 238
15.5 Loading Existing Classes and Packages 239
15.6 Final Configuration . 240

16 Using OpenType Fonts 243
16.1 OpenType Font Features 244
16.2 LaTEX Font Selection Mechanism 246
16.3 Overview of Functionality 249
16.4 Inspecting the Font . 250
16.5 Current Alternatives . 252
16.6 Designing the Font Families 252
16.7 Extracting the Fonts . 253
16.8 Font Definition Files . 255
16.9 Creating the Font Definition Files 256
16.10 Implementing a Font Package 257

16.10.1 Parsing the Point Size 257
16.10.2 Loading the Font 260
16.10.3 Changing the Features 261

16.11 Using the Fonts . 263

VII References and Bibliography 265

Typographic Jargon 267

Bibliography 273

Acronyms and Abbreviations 279

Indexes 281
LaTEX and TEX Commands . 283
Environments . 293
Classes . 295
Packages . 297
Languages and External Commands 299

List of Figures

1.1 Typical LaTEX program 9
1.2 Defining comments . 12
1.3 Coarse document divisions 14
1.4 Closed fold in folding editor. 15
1.5 Open fold in folding editor. 15
1.6 the Using \includeonly and \include commands . . . 16
1.7 Using \label and \ref 17
1.8 Using \pageref . 17
1.9 Using the prettyref package 19
1.10 A minimal bibliography 20
1.11 The \cite command . 21
1.12 Using \cite with an optional argument 22
1.13 Including a bibliography 24
1.14 Some BibTEX entries . 24
1.15 Using biblatex . 25
1.16 Textual and parenthetical citations 26
1.17 Getting the author and year of a citation 26
1.18 Using biblatex’s citation commands 27
1.19 Including reference lists 30
1.20 Minimal letter . 34

2.1 Quotes . 45
2.2 Nested quotations . 45
2.3 Dashes . 47
2.4 Good borderline punctuation 48
2.5 Poor borderline punctuation 48
2.6 Using footnotes . 49
2.7 The quote environment 50
2.8 The verse environment 50
2.9 Controlling the size . 51
2.10 Finer points of typesetting abbreviations 54
2.11 The \phantom command 57
2.12 The center environment 58
2.13 The flushleft environment 59
2.14 Using the tabular environment 60
2.15 Input of booktabs package 62
2.16 Output of booktabs package 62
2.17 Controlling column widths with an @-expression . . . 63

xv

xvi List of Figures

2.18 The tabbing environment 64
2.19 Advanced tabbing . 64
2.20 Using the babel package 65

3.1 The itemize environment 68
3.2 Changing the item label 68
3.3 The enumerate environment 69
3.4 Using the enumerate package 70
3.5 Using the description environment 70
3.6 Lengths that affect list formatting 71
3.7 A user-defined list . 72
3.8 A user-defined environment for lists 72

4.1 Using the dpfloat package 77
4.2 Including an external graphics file 78

5.1 Drawing a grid . 83
5.2 Creating a path . 84
5.3 Cubic spline in tikz . 86
5.4 Using a dash pattern . 91
5.5 Using a dash phase . 91
5.6 Using the miter option 93
5.7 Using the nonzero rule 96
5.8 Using the even odd rule 96
5.9 Nodes and implicit labels 97
5.10 Low-level node control 98
5.11 Node placement . 99
5.12 Drawing lines between node shapes 100
5.13 The circle split node style 100
5.14 A node with rectangle style and several parts 101
5.15 Using the spy library . 102
5.16 Drawing a tree . 102
5.17 Using implicit node labels in trees 102
5.18 Controlling the node style 103
5.19 A tree with a ‘missing’ node 103
5.20 Drawing a half adder with tikz 105
5.21 Input of commutative diagram 106
5.22 Commutative diagram 106
5.23 Using four coordinate systems 107
5.24 Computing the intersection of perpendicular lines . . 107
5.25 Absolute, relative, and incremental coordinates 108
5.26 Computations with partway modifiers 109
5.27 Computations with partway and distance modifiers . . 109
5.28 Computations with projection modifiers 109
5.29 Predefining options with the \tikzset command . . . 112
5.30 Using scopes . 113
5.31 The \foreach command 113
5.32 Simple to path example 116
5.33 User-defined to path . 116

List of Figures xvii

6.1 Components of a demonstration table 118
6.2 Aligning columns with the dcolumn package 124
6.3 Aligning columns with the siunitx package 124
6.4 Creating a table . 125
6.5 Using the longtable package 126

7.1 A pie chart . 130
7.2 Using the axis environment 131
7.3 Sample output of the axis environment 131
7.4 A bar graph . 133
7.5 Creating a bar graph . 133
7.6 A paired bar graph . 135
7.7 Creating a paired bar graph 135
7.8 A component bar graph 137
7.9 Creating a component bar graph 137
7.10 A line graph . 138
7.11 Creating a line graph . 139
7.12 A scatter plot . 140
7.13 Creating a scatter plot 140

8.1 The equation environment 150
8.2 The split environment 151
8.3 The gather environment 151
8.4 Using the align environment 152
8.5 Output of input in Figure 8.4 152
8.6 The align environment 153
8.7 Output of input in Figure 8.6 153
8.8 Using the \shortintertext command 153
8.9 The aligned environment 154
8.10 Angular delimiters . 157
8.11 The \substack command with centred lines 161
8.12 The subarray environment with different alignments . 161
8.13 Limit of a log-like function 162

9.1 The array environment 170
9.2 The smallmatrix environment 171
9.3 Typesetting an underbrace 173
9.4 Using the amsthm package 177
9.5 Using the mathematical punctuation commands 179

10.1 Algorithm style . 184
10.2 Using algorithm2e . 185
10.3 Typesetting conditional statements 187
10.4 Using algorithm2e’s switch statements 188
10.5 Creating a partial listing with the listings package . . 191
10.6 Listing created from input in Figure 10.5 191
10.7 Setting new defaults with the \lstset command 192

11.1 User-defined commands 199
11.2 A program with user-defined combinators 202

xviii List of Figures

11.3 Using the \expandafter command 205
11.4 Defining commands with default parameters 205
11.5 A sectional unit environment 206
11.6 Accessing parameters by defining commands 207
11.7 Accessing parameters with a nested definition 207
11.8 User-defined environment 208

12.1 Tail recursion . 216

14.1 Creating a titlepage with the beamer class 226
14.2 Creating frame titles . 226
14.3 Using the beamerarticle package 228
14.4 Using modes . 228
14.5 Using the \pause command 230
14.6 Using overlay specifications 231
14.7 Adding visual alerts . 231
14.8 Sample output of beamer’s default theme 233
14.9 Sample output of beamer’s Boadilla theme 233
14.10 Sample output of beamer’s Antibes theme 234
14.11 Sample output of beamer’s Goettingen theme 234
14.12 Using a beamer theme 235

15.1 Declaring class options 239
15.2 Loading auxiliary classes and packages 240

16.1 Stylistic alternates . 245
16.2 A typical font encoding file 248
16.3 Glyph sample . 251
16.4 Partial font definition file 255
16.5 Nexus font definition file 256
16.6 Sample \fonttable output 258
16.7 Baseline and mean line 268
16.8 Bounding boxes . 268
16.9 Word formation . 268
16.10 Computing the point size 268
16.11 Kerning . 269
16.12 Ligatures . 269
16.13 Seriffed versus sans serif letters 270

List of Tables

1.1 Depth values of sectional unit commands 31
1.2 Using the \index command 33

2.1 Ten special characters 42
2.2 Common diacritics . 44
2.3 Other special characters 44
2.4 Foreign ligatures . 45
2.5 Size-affecting declarations and environments 51
2.6 Type style affecting declarations and commands 53
2.7 Latin abbreviations . 56

5.1 The xcolor colours . 90
5.2 Line width and dash pattern styles 92
5.3 Arrow head types . 94
5.4 Node shapes provided by logic gate shape libraries . . . 104
5.5 Shorthand notation for the \foreach command 114

6.1 A poorly designed table 119
6.2 An improved version of Table 6.1 120

7.1 Allowed values for mark option 141

8.1 Lowercase Greek letters 148
8.2 Uppercase Greek letters 149
8.3 Variable-size delimiters 158
8.4 Variable-sized symbols 160
8.5 Log-like functions . 162
8.6 Integration signs . 163
8.7 Binary operation symbols 165
8.8 Relation symbols . 166
8.9 Additional relational symbols 166
8.10 Fixed-size arrow symbols 167
8.11 Extensible arrow symbols provided by amsmath 167
8.12 Extensible mathtools-provided arrow symbols 167
8.13 Options for mathtools-provided arrow symbols 168
8.14 Miscellaneous math mode symbols 168

9.1 Math mode accents, hats, and other decorations 172
9.2 The \overbrace and \underbrace commands 172

xix

xx

9.3 Math mode dot-like symbols 178
9.4 Positive and negative spacing 182

11.1 TEX’s Expansion Processor 203

12.1 Length units . 211

16.1 OpenType font features 244
16.2 Figure feature combinations 245
16.3 Nexus font features . 253

Preface

This book provides students with an introduction to technical
writing and computer presentations with LaTEX, which is the de-facto
standard in computer science and mathematics. The book may also
be used as a reference for seasoned LaTEX users.

The book offers techniques for writing large and complex doc-
uments, preparing computer presentations, and creating complex
graphics in an integrated manner. The book’s website, which may
be found at http://csweb.ucc.ie/~dongen/LAF, has three separate
chapters explaining how to use a widely used LaTEX distribution on
Windows, on Unix, and on the Mac. These chapters also provide an
introduction to some selected integrated development environments
(ides).

I have tried to minimise the number of classes and style files the
reader has to know. This is one of the main reasons why I decided
to use the amsmath package for the presentation of mathematics, and
decided to use tikz, pgfplots, and beamer for the creation of diagrams,
data plots, and computer presentations. Another advantage of this ap-
proach is that it simplifies the process of creating a viewable/printable
output file because everything should work with pdflatex, which is a
program that turns LaTEX into pdf.

The book avoids the use of what is known in the LaTEX community
as “verbatim” commands and environments. except when it comes
to including, well, verbatim program listings. The main reason for
this decision is that verbatim commands in the hands of beginners
often lead to errors that are difficult to find and are not always so
easy to resolve. By no means should the decision to omit verbatim
commands be a limitation; this book was written without verbatim
commands, so why should you need them when you’re writing a thesis
or dissertation?

M.R.C. van Dongen
Cork
2011

xxi

Book Outline

This book has seven parts, some of which are more technical than
others. The following is a short outline.

The first two parts are called Basics and Basic Typesetting. These
parts introduce the reader to the basic LaTEX commands for typesetting
and cross-referencing. They also explain how to create one or several
bibliographies and one or several indexes or glossaries.

The next part is Tables, Diagrams, and Data Plots, which is about
presenting data in tables, diagrams with the tikz package, and data
plots with the pgfplots package.

Mathematics and Algorithms is the next part. It explains how to
typeset mathematics, how to typeset algorithms in pseudo-code, and
how to present program listings.

This is followed by Automation, which explains how to implement
user-defined commands, how to implement option parsing, and how
to implement conditional branching. Some readers may wish to skip
this part because it is more technical than the other parts.

Miscellany is the next part. It is a collection of optional chapters,
some of which are of a more technical nature than others. The first,
relatively easy, chapter explains how to create computer presentations
with the beamer package. It continues with two more technical chapters
that explain how to implement user-defined classes and packages and
how to use OpenType fonts.

The last part is References and Bibliography, which is a collection of
indexes, a list of acronyms, a bibliography, and a short typographic
jargon reference. Readers not familiar with notions such as characters,
glyphs, ligatures, serifs, kerning, fonts, typefaces, points, point size
and leading, ems, and ens, are invited to start with the jargon reference
before reading the rest of the book.

Overall, the chapters are well balanced but the chapters about
typesetting mathematics and presenting diagrams with tikz are a
bit longer and more detailed. This is why it was decided to split the
presentation on typesetting mathematics into two separate chapters.
The first of these chapters should be sufficient for most readers. The
chapter about presenting diagrams with tikz was not split because it
was felt that most readers who are interested in some of this chapter
would also be interested in the rest.

xxiii

Acknowledgements

This book would not have been possible without the help of many.
First of all, I should like to thank Don Knuth for writing TEX and
Leslie Lamport for writing LaTEX—without them the landscape of
computer-based typesetting would have been dominated by Bill. I
should like to thank Eddie Kohler for writing otftotfm and for his
help. I am grateful to Till Tantau and colleagues for writing the beauti-
ful tikz package and the beamer class. Both of them are stars in terms
of functionality, productivity, and documentation. Thanks to David
Farley and Dario Taraborelli for letting me include the pictures in
Figures 4.2 and 16.1. Many thanks to Billy Foley and the University
College Cork Art Collection for letting me include the pictures at the
back of the part titlepages. I should like to thank Frank Böhme, George
Boyle, Tom Carroll, Hans Hagen, Taco Hoekwater, Finbarr Holland,
Rik Kabel, Mico Loretan, Ben McKay, Luca Mercriadri, Oliver Nash,
Oleg Paraschenko, Jason Quinlan, Lisa Swenson, and Uwe Ziegen-
hagen for useful comments on early drafts. I should also like to thank
Paul Blaga, Robin Fairbairns, Peter Flynn, Francisco A. F. Reinaldo,
and Boris Veytsman for reviewing the book. Special thanks to Joseph
Wright who was so kind to proofread the entire book and to write
the foreword. His critical eye spotted many known and unknown er-
rors. Many thanks to Mr Engesser, Ms Glaunsinger, and Ms Fisher at
Springer for providing the opportunity to publish this book and for
helping me bring this project to a successful end. Finally, I should like
to thank all those who have worked on LaTEX and friends, all those who
have supported LaTEX and friends, and all who have answered all my
LaTEX and METAPOST questions over the last two decades or so. The
following are but a few: André Heck, Barbara Beeton, Cristian Feuer-
sänger, Dan Luecking, David Carlisle, David Kastrup, Denis Roegel,
Donald Arseneau, D. P. Story, Frank Mittelbach, Frank van Raalte, Hans
Hagen, Heiko Oberdiek, Jim Hefferon, John Hobby, Jonathan Fine,
Jonathan Kew, Karl Berry, Kees van der Laan, Keith Reckdahl, Kjell
Magne Fauske, Mark Wibrow, Nelson Beebe, Peter Wilson, Philipp
Lehman, Rainer Schöpf, Ross Moore, Scot Pakin, Sebastian Rahtz,
Stephan Hugel, Taco Hoekwater, Thomas Esser, Ulrike Fisher, Victor
Eijkhout, Vincent Zoonekynd, Will Robertson, and all the many, many
others. Without them the TEX community would have been much
worse off.

xxv

PART I

Basics

Untitled Landscape, oil on paper (1993), 64× 90 cm
Work included courtesy of Billy Foley and University College Cork Art Collection

© Billy Foley (www.billyfoley.com) and University College Cork Art Collection

Chapter 1
Introduction to LaTEX

This chapter is an introduction to LaTEX and friends but it is not
about typesetting fancy things. Typesetting fancy things is covered in
subsequent chapters. The main purpose of this chapter is to provide
an understanding of the basic mechanisms of LaTEX, using plain text
as a vehicle. Having read this chapter you should know how to:

◦ Write a simple LaTEX input document based on the article class.
◦ Turn the input document into pdf with the pdflatex program.
◦ Define labels and use them to create consistent cross-references to

chapters and sections. This basic cross-referencing mechanism also
works for tables, figures, and so on.

◦ Create a fault-free table of contents with the \tableofcontents com-
mand. Creating a list of tables and a list of figures works in a similar
way.

◦ Cite the literature with the aid of the \cite command.
◦ Generate one or several bibliographies from your citations with the

bibtex program.
◦ Change the appearance of the bibliographies by choosing the proper

bibliography style.
◦ Manage the structure and writing of your document by exploiting the
\include command.

◦ Control the visual presentation of your article by selecting the right
article class options.

◦ Much, much, more.

Intermezzo. LaTEX gives you output documents that look great and have
consistent cross-references and citations. Much of your output document
is created automatically and much is done behind the scenes. This gives
you extra time to think about the ideas you want to present and how
to communicate these ideas in an effective way. One route leading to
effective communication is planning: the order and the purpose of the
writing determines how it is received by your target audience. LT X’sa E
markup helps you concretise the purpose of your writing and present
it in a consistent manner. As a matter of fact, LT Xa E forces you to think
about the purpose of your writing and this improves the effectiveness
of the presentation of your ideas. All that’s left for you is to determine
the order of presentation and provide some extra markup. To determine
the order of your presentation and to write your document you can treat

 , ,
DOI 10.1007/978-3-642-23816-1_1, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing 3,

4 Chapter 1

LaTEX as a programming language. This means that you can use software
engineering techniques such as top-down design and stepwise refinement.
These techniques may also help when you haven’t completely figured out
what it is you want to write.

This chapter requires that you do a few things at the Operating
System (os) level. Throughout is assumed that you use the unix op-
erating system. The online chapters, which may be found at http:
//csweb.ucc.ie/~dongen/LAF, explain how to carry out these os-
related tasks on Windows and on the Mac.

1.1 Pros and Cons

Before we start, it is good to look at arguments in favour of LaTEX and
arguments against it. Some of these arguments are based on comments
from Taraborelli [2010]. The following are some common and less
common arguments against LaTEX.

◦ LaTEX is difficult. It may take one to several months to learn. True,
learning LaTEX does take a while. However, it will save you time in the
long run, even if you’re writing a minor thesis.

◦ LaTEX is not a What You See is What You Get (wysiwyg) wordprocessor.
Correct, but there are many LaTEX Integrated Development Environ-
ments (ides) and some ides such as eclipse have LaTEX plugins.

◦ There is little support for physical markup. Yes, but for most papers,
notes, and theses in computer science, mathematics, and other tech-
nical and non-technical fields, there are existing packages that you
can use without having to fiddle with the way things look. However, if
you really need to tweak the output then you may have to put in extra
time, which may slow down the writing. Then again, you should be
able to reuse this effort for other projects.

◦ Using non-standard fonts is difficult. This used to be true. However,
with the arrival of the fontspec package and X ETEX using non-standard
fonts is easy. Furthermore, it is more than likely that for most day-to-
day work you wouldn’t want any non-standard fonts.

◦ It takes some practice to let text flow around pictures. That’s a tricky
one. Usually LaTEX determines the positions of your figures. As a con-
sequence the figures may not end up where you want. Sometimes the
text in the vicinity of such figures doesn’t look nice: the text doesn’t
flow. You can improve the text flow by rearranging a few words in
adjacent paragraphs but this does take some practice.

◦ LaTEX doesn’t provide spell checking. That is true, but most modern
ides have spell checkers. Furthermore, there are command line tools
such as ispell that can spell check LaTEX input.

◦ There are too many LaTEX packages, which makes it difficult to find
the right package. Agreed, but most LaTEX documents only require
a few packages that are easy to find. Moreover, asking a question in
the mailing list comp.text.tex (also in http://groups.google.com/
group/comp.text.tex/topics) usually results in some quick pointers.

Introduction to LaTEX 5

◦ LaTEX encourages structured writing and the separation of style from
content, which is not how everybody works. Well, it seems times they
are-a-changin’ because more and more new (new?) communities have
started using LaTEX [Burt 2005; Thomson 2008a; Thomson 2008b;
Buchsbaum, and Reinaldo 2007; Garcia, and Buchsbaum 2010; Breit-
enbucher 2005; Senthil 2007; Dearborn 2006; LaTEX: A Guide for Philoso-
phers; Veytsman, and Akhmadeeva 2006]. Some communities have
organised and have their own websites [Schneider 2011; LaTEX for Logi-
cians; PhilTEX Forums A Place for Philosophers to Learn about LaTEX;
Ochsenmeier 2011; Dashboard 2008; Arnold 2010].

The following are arguments in favour of LaTEX. If you’re not fa-
miliar with technical phrases such as kerning, small caps, ligatures,
and so on then don’t worry, they will be explained further on. Also
remember that typographic notions are explained at the end of the
book.

◦ LaTEX provides state-of-the art typesetting, including kerning, real
small caps, common and non-common ligatures, glyph variants, …. It
also does a very good job at automated hyphenation.

◦ Many conferences and publishers accept LaTEX. In addition they pro-
vide classes and packages that guarantee documents conforming to
the required formatting guidelines.

◦ LaTEX is a Turing-complete programming language. This gives you
almost complete control. For example, you can decide which things
should be typeset and how this should be done.

◦ With LaTEX you can prepare several documents from the same source
file. Not only can you control which text should be used in which
document but also how it should appear.

◦ LaTEX is highly configurable. To change the appearance of your docu-
ment you choose the proper document class, class options, packages,
and package options. The proper use of commands guarantees a con-
sistent appearance and gives you ultimate control.

◦ You can translate LaTEX to html/ps/pdf/DocBook….
◦ LaTEX automatically numbers your chapters, sections, figures, and so

on. In addition it provides cross-referencing support.
◦ LaTEX has excellent bibliography support. It supports consistent cita-

tions and an automatically generated bibliography with a consistent
look and feel. The style of citations and the organisation of the bibli-
ography is configurable.

◦ There is some support for wysiwyg document preparation: lyx (http:
//www.lyx.org/), TEXmacs (http://www.texmacs.org/), …. Further-
more, some editors and ides provide support for LaTEX, e.g., vim, emacs,
eclipse, ….

◦ LaTEX is very stable, free, and available on many platforms.
◦ There is a very large, active, and helpful TEX/LaTEX user-base.
◦ LaTEX has comments.
◦ Most importantly: LaTEX is fun!

6 Chapter 1

1.2 Basics

LaTEX [Lamport 1994] was written by Leslie Lamport as an extension
of Donald Knuth’s TEX program [Knuth 1990]. It consists of a Turing-
complete procedural markup language and a typesetting processor.
The combination of the two lets you control both the visual presen-
tation as well as the content of your documents. The following three
steps explain how you use LaTEX.

1. You write your document in a LaTEX (.tex) input (source) file.
2. You run the latex or pdflatex program on your input file. This turns

the input file into a device independent (.dvi) file or a portable docu-
ment format (.pdf) file. If there are errors in your source file then you
should fix them before you can continue to Step 3.

3. You view the dvi or pdf file on your computer. A dvi file cannot be
printed directly. You have to convert it to postscript or pdf and then
print the result of the conversion. The advantage of pdf is that it can
be printed straight away.

1.2.1 The TEX Processors

Roughly speaking LaTEX is built on top of TEX. This adds extra func-
tionality to TEX and makes writing your document much easier. With
LaTEX being built on top of TEX, the result is a TEX program. You may
get a good understanding of LaTEX by studying TEX’s four processors,
which are basically run in a “pipeline” [Knuth 1990; Eijkhout 2007;
Abrahams, Hargreaves, and Berry 2003]. The following are the main
functions of TEX’s processors.

Input Processor Turns the source file into a token stream. The resulting
token stream is sent to the Expansion Processor.

Expansion Processor Turns the token stream into token stream. Expandable
tokens are repeatedly expanded until there are no more left. The
expansion applies to commands, conditionals, and some primitive
commands. The resulting output is sent to the Execution Processor.

Execution Processor Executes executable control sequences. These actions may
affect the state. This applies, for example, to assignments and com-
mand definitions. The Execution Processor also constructs horizontal,
vertical, and mathematical lists. The final output is sent to the Visual
Processor.

Visual Processor Creates the dvi or pdf file. This is the final stage. It turns
horizontal lists into paragraphs, breaks vertical lists into pages, and
turns mathematical lists into formulae.

1.2.2 From tex to dvi and Friends

Now that you know a bit about how LaTEX works, it’s time to study the
programs you need to turn your input files into readable output. You
may ignore this section if you use an ide because your ide will do all

Introduction to LaTEX 7

the necessary things to create your output file, without the need for
user intervention at the command-line level.

In its simplest form the latex program turns your LaTEX input file
into the device independent (dvi) file, which you can view and turn
into other output formats, including pdf. Before going into the details
about the LaTEX syntax, let’s see how you turn an existing LaTEX source
file into a dvi file. To this end, let’s assume you have an error-free LaTEX
source file that is called 〈base name〉.tex. The following command
turns your source file into an output file called 〈base name〉.dvi.

$ latex 〈base name〉.tex Unix Session

With latex you may omit the tex extension.

$ latex 〈base name〉 Unix Session

The resulting dvi output can be viewed with the xdvi program.

$ xdvi 〈base name〉.dvi &
Unix Session

Now that you have the dvi version of your LaTEX program, you may
convert it to other formats. The following converts 〈base name〉.dvi
to postscript (〈base name〉.ps).

$ dvips -o 〈base name〉.ps 〈base name〉.dvi Unix Session

The following converts 〈base name〉.dvi to portable document
format (pdf).

$ dvipdf 〈base name〉.dvi Unix Session

However, by far the easiest to generate pdf is using the pdflatex
program. As with latex, pdflatex does not need the tex extension.

$ pdflatex 〈base name〉.tex Unix Session

Intermezzo. If you’re writing a book, a thesis, or an article then generating
dvi and viewing it with xdvi is by far the quickest. However, there may
be problems with graphics, which may not always be rendered properly.
I find it convenient to (1) run the xdvi program in the background (with
the & operator), (2) put the xdvi window on top of the window that edits
the LaTEX program, and (3) edit the program with vim. You can execute
shell commands from within vim by going to command mode and issuing
the command. For example, 〈ESC〉:!〈command〉〈RETURN〉 executes the
command 〈command〉 and 〈ESC〉:!!〈RETURN〉 executes the most recently
executed command.1 This lets you run latex on your input document
from within your editor. Most Linux Graphical User Interfaces (guis) let
you cycle from window to window if you type a magic spell: in KDE it is
〈ALT〉〈TAB〉. Typing this spell lets me quickly cycle from my editing session
to the viewing sessions and back. Using this mechanism keeps my hands
on the keyboard and saves time, wrists, and elbows.

1The emacs program should let you to do similar things.

8 Chapter 1

1.2.3 The Name of the Game

Just like C, lisp, pascal, java, and other programming languages,
LaTEX may be viewed as a program or as a language. When referring
to the language this book usually uses LaTEX and when referring to
the program it usually writes latex. However, when writing latex the
book actually means pdflatex because this is by far the easiest way to
create viewable and printable output. Finally, when this book writes
‘LaTEX program’ it usually means ‘LaTEX source file.’

1.2.4 Staying in Sync

Sometimes the latex program needs more than a single run to pro-
duce its final output. The following explains what happens when you
and latex are no longer in sync.

To create a perfect output file and have consistent cross-references
and citations, latex also writes information to and reads information
from auxiliary files. Auxiliary files contain information about page
numbers of chapters, sections, tables, figure, and so on. Some auxiliary
files are generated by latex itself (e.g., aux files). Others are generated
by external programs such as bibtex, which is a program that generates
information for the bibliography. When an auxiliary file changes then
LaTEX may be out of sync. You should rerun latex when this happens.
Normally, latex outputs a warning when it suspects this is required:

$ latex document.tex
… LaTeX Warning: Label(s) may have changed. …
Rerun to get cross-references right.
$

Unix Session

1.2.5 Writing a LaTEX Input Document

LaTEX is a markup language and document preparation system. It
forces you to focus on the content and not on the presentation. In
a LaTEX program you write the content of your document, you use
commands to provide markup and automate tasks, and you import
libraries. The following explains this in further detail.

content The content of your document is determined in terms of text and
logical markup. LaTEX forces you to focus on the logical structure of
your document. You provide this structure as markup in terms of
familiar notions such as the author of the document, the title of a
section, the body and the caption of a figure, the start and end of a list,
the items in the list, a mathematical formula, a theorem, a proof, ….

commands The main purpose of commands is to provide markup. For example,
to specify the author of the document you write \author{〈author
name〉}. The real strength of LaTEX is that it also is a Turing-complete
programming language, which lets you define your own commands.
These commands let you do real programming and give you ultimate

Introduction to LaTEX 9

\documentclass[a4paper,11pt]{article}

% Use the mathptmx package.
\usepackage{mathptmx}

\author{A.\,U. Thor}
\title{Introduction to \LaTeX}
\date{\today}

\begin{document} % Here we go.
\maketitle
\section{Introduction}

The start.
\section{Conclusion}

The end.
\end{document}

Typical LaTEX program
Figure 1.1

control over the content and the final visual presentation. You can
reuse your commands by putting them in a library.

libraries There are many existing document classes and packages (style files).
Class files define rules that determine the appearance of the output
document. They also provide the required markup commands. Pack-
ages are best viewed as libraries. They provide useful commands that
automate many tedious tasks. However, some packages may affect the
appearance of the output document.

Throughout this book, LaTEX input is typeset in a style that is
reminiscent of the layout of a computer programming language input
file. The style is very generous when it comes to inserting redundant
space characters. Whilst not strictly necessary, this input layout has
several advantages:

show structure Carefully formatting the input shows the structure of your LaTEX
source files. This makes it easier to locate the start and end of sentences
and higher-level building blocks such as environments. (Environments
are explained further on.)

mimic output By formatting the input you can mimic the output. For example when
you design a table with rows and columns you can align the columns
in the input. This makes it easier to design the output.

find errors This is related to the previous item. Formatting may help you find
the cause of errors more quickly. For example, you can reduce the
number of candidate error locations by commenting out entire lines.
This is much easier than commenting out parts of lines, which usu-
ally requires many more editing operations. Especially if your editor
supports “multiple undo/redo operations” this makes locating the
cause of errors very easy.

Figure 1.1 depicts a typical example of a LaTEX input program. For

10 Chapter 1

this example all spaces in the input are made explicit by typesetting
them with the symbol ‘ ,’ which represents a single space. The sym-
bol is called visible space. In case you’re wondering, the command
\textvisiblespace typesets the visible space.

The remainder of this section studies the example program in
more detail. Spaces are no longer made explicit.

The third line in the input program is a comment. A comment
starts with a percentage sign (%) and lasts until the end of the current
line. Comments, as is demonstrated in the input program, may also
start in the middle of a line.

The following command tells LaTEX that your document should be
typeset using the rules determined by the article document class.

\documentclass[a4paper,11pt]{article} LaTEX Usage

You can only have one document class per LaTEX source file. The
\documentclass command determines the document class. The com-
mand takes one required argument, which may be a single character or
a sequence of characters inside braces (curly brackets). The argument
is the name of the document class. In our example the required argu-
ment is article so the document class is article. You usually use the
\documentclass command on the first line of your LaTEX input file.

In our example, the \documentclass command also takes an op-
tional argument. An optional argument is passed inside the square
brackets immediately after the command (this is standard). Optional
arguments are called optional because they may be omitted. If you
omit them then you should omit the square brackets. In our example
the ‘a4paper,11pt’ are options of the \documentclass command. The
\documentclass command passes these options to the article class.
This sets the default page size to A4 with wide margins and sets the
font size to 11 point.

The following command includes a package called mathptmx.

\usepackage{mathptmx} LaTEX Usage

The mathptmx package sets the default font to Times Roman. This
is a very compact font, which may save you precious pages in the final
document. Using the font is especially useful when you’re fighting
against page limits.

Packages may also take options. This works just as with document
classes. You pass the options to the package by including them in
square brackets after the \usepackage command.

The following three commands, which are best used in the pream-
ble, are logical markup commands. These commands do not produce
any output but they define the author, title, and date of our article.

\author{A.\,U. Thor}
\title{Introduction to \LaTeX}
\date{\today}

LaTEX Usage

The command \LaTeX in the argument of the \title command
is for typesetting LaTEX. The command \, inserts a litte space. The

Introduction to LaTEX 11

amount of space is called thin space. Bringhurst [2008] recommends
that you add a thin space (or no space) within strings of initials.

The title of your document is typeset with the \maketitle com-
mand. Usually, you put this command at the start of the document
environment, which is the text between \begin{document} and \end
{document}. In the argument of the \author command the author
names should be separated with the \and command:

\author{Donald E. Knuth \and Peter B. Bendix} LaTEX Usage

You acknowledge friends, colleagues, and funding institutions by
including a \thanks command as part of the argument of the \author
command. This produces a footnote consisting of the argument of
the \thanks command.

\author{Sinead\thanks{You’re a luvely audience.}} LaTEX Usage

If you wish to build your own titlepage, then you may do this
with the titlepage environment. This environment gives you com-
plete control and responsibility. The \titlepage command and the
titlepage environment may only be used inside the document envi-
ronment (between the \begin{document} and \end{document}).

For the article class, as well as for most other LaTEX classes, you
write the main text of the document in the document environment.
This environment starts with \begin{document} and ends with \end{
document}. We say that text is “in” the document environment if it is
between the \begin{document} and \end{document}. The text before
\begin{document} is called the preamble of the document. Sometimes
we call the text in the document environment the body of the document
environment.

Definitions and configurations should be provided in the pream-
ble. The text in the document environment defines the content. In the
body of your document you may use the commands that are defined
in the preamble. (More generally, you may define commands almost
anywhere. You may use them as soon as they’re defined.)

The body of the document environment of the example in Figure 1.1
defines a rather empty document consisting of a title, two sections,
and two sentences. The title is generated by the \maketitle command.
The sections are defined with the \section command. Each section
contains one sentence. The text ‘The start.’ is in the first section. The
text ‘The end.’ is in the last.

1.2.6 The Abstract

Many documents have an abstract, which is a short piece of text de-
scribing what is in the document. Typically, the abstract consists of a
few lines and a few hundred words. You specify the abstract as follows.

\begin{abstract}
This document is an introduction to \LaTeX. …

\end{abstract}

LaTEX Usage

12 Chapter 1

This is the first sentence
of the first paragraph.

The second sentence of this
paragraph ends in the word
‘elephant.’

This is the first sentence
of the second pa%comment
ragraph.

The second sentence of this
paragraph
ends in the word ‘%eleph
ant.’

This is the first sentence of
the first paragraph. The sec-
ond sentence of this para-
graph ends in the word ‘ele-
phant.’

This is the first sentence
of the second paragraph. The
second sentence of this para-
graph ends in the word ‘ant.’

Defining comments
Figure 1.2

In an article the abstract is typically positioned immediately after
the \maketitle command. Abstracts in books are usually found on a
page of their own.

Some classes may provide an \abstract command that defines
the abstract. These classes may require that you use the \abstract
command in the document preamble.

1.2.7 Spaces, Comments, and Paragraphs

The paragraph is one of the most important basic building blocks of
your document. The paragraph formation rules depend on how latex
treats spaces, empty lines, and comments. Roughly, the rules are as
follows.2 In its default mode, latex treats a sequence of one or more
spaces as a single space. The end of the line is the same as a space.
However:

◦ An empty line acts as an end-of-paragraph specifier.
◦ A percentage character (%) starts a comment that ends at the end of

the line.
◦ Spaces at the start of a line following a comment are ignored.

If you understand the example in Figure 1.2 then you probably
understand these rules. In this example, the input is on the left and
the resulting output on the right. This convention is used throughout
this book, except for Chapter 5, which presents pictures on the left
and LaTEX input on the right.

1.3 Document Hierarchy

The coarse-level logical structure of your document is formed by
the parts in the document, chapters in parts, sections in chapters,
subsections in sections, subsubsection in subsections, paragraphs,
and so on. This defines the document hierarchy. Following [Lamport
1994], we shall refer to the members of the hierarchy as sectional units.

2Here it is assumed that the text does not contain any commands.

Introduction to LaTEX 13

Intermezzo. The sectional units are crucial for presenting effectively. For
example, you break down the presentation of a thesis by giving it chapters.
The chapters should be ordered to ease the flow of reading. The titles of
the chapters are also important. Ideally chapter titles should be short, but
most importantly each chapter title should describe what’s in its chapter.
To the reader a chapter title is a great help because it prepares them for
what’s in the chapter that they’re about to read. A good chapter title is like
an ultimate summary of the chapter. It prepares the reader’s mindset and
helps them digest what’s in the chapter at a later stage. If you are a student
writing a thesis then good chapter titles are also important because they
demonstrate your writing intentions.

Within chapters you present your sections in a similar way, by carefully
breaking down what’s in the chapter, by carefully arranging the order, and
by carefully providing proper section titles. And so on.

1.3.1 Minor Document Divisions

LaTEX provides the following sectional units:

part An optional unit that is used for major divisions.
chapter A chapter in a book or report.
sections A section, subsection, or subsubsection.

paragraphs A named paragraph or a named subparagraph.

None of these sectional units are available in the letter class. Us-
ing the command starts the sectional unit and defines its the title.
The following shows how to define a chapter called Foundations and a
section called Notation. The remaining commands work the same.

\chapter{Foundations}
\section{Notation}

LaTEX Usage

When LaTEX processes your document it numbers the sectional
units. The default mode is to output the numbers before the titles.
For example, this section, which has the title Document Hierarchy, has
the number 1.3. LaTEX also supplies starred versions of the sectional
commands. These commands suppress the numbers of the sectional
units. They are called starred versions because their names end in an
asterisk (*). The following is an example of the starred versions of the
\chapter and \section commands.

\chapter*{Main Theorems}
\section*{A Useful Lemma}

LaTEX Usage

An optional argument replaces the sectional unit title in the table
of contents. This is useful if the real title is long.

\chapter[Wales]%
{My Amazingly Amusing Adventures in
Llanfairpwllgwyngyllgogerychw%
yrndrobwllllantysiliogogogoch}

LaTEX Usage

14 Chapter 1

\documentclass[12pt,a4paper]{book}
\begin{document}

\frontmatter
\maketitle
\tableofcontents

\mainmatter
\chapter{Introduction}
\chapter{Conclusion}

\backmatter
\chapter*{Acknowledgement}
\addcontentsline{toc}{chapter}{\bibname}
\bibliography{db}

\end{document}

Coarse document divisions
Figure 1.3

1.3.2 Major Document Divisions

Books and theses typically have front matter, main matter, and back matter.
Usually you need the book class to typeset them but institutions such
as universities may have their own document class for theses. Some
journal or conference article styles also require front, main, and back
matter. The following is based on [Lamport 1994, page 80].

front matter Main information about the document: a half and main title
page, copyright page, preface or foreword, table of contents, ….

main matter The main body of the document.
back matter Further information about the document and other sources

of information: index, afterword, bibliography, acknowledgements,
colophon, ….

The commands \frontmatter, \mainmatter, and \backmatter in-
dicate the start of the front, main, and back matter. The artificial
example in Figure 1.3 shows how they may be used. Notice that the
example does not include any text. In the example, the command
\bibliography inserts the bibliography. The command is explained
in Section 1.7. The command \addcontentsline inserts an entry for
the bibliography in the table of contents.

Notice that the layout of the LaTEX program is such that it gives
you a good overview of the structure of the program.

Intermezzo. If you are writing a thesis then you should consider starting
by writing down the chapter titles of your thesis first. Your titles should be
good and, most importantly, they should be self-descriptive: each chapter
title should describe what’s in its chapter. Make sure you arrange the titles
in the proper order. The order of your chapters should maximise the flow
of reading. There should be no forward referencing, so previous chapters
should not rely on definitions of concepts that are defined in subsequent
chapters.

Introduction to LaTEX 15

We prove the following amazing identity.
% A comment.
+--- 3 lines: equation () : A = B\,. ---------------------
% Another comment.

Closed fold in folding editor.
The line starting with +--- is
a closed fold. The open fold is
shown in Figure 1.5.

Figure 1.4

We prove the following amazing identity.
% A comment.
\begin{equation}

A = B\,.
\end{equation}
% Another comment.

Open fold in folding editor.
This figure shows the result of
opening the fold in Figure 1.4.

Figure 1.5

A useful tool in this process is the table of contents. The following is
how you use it: (1) open your LaTEX source file, (2) add a \tableofcontents
command at the start of your document body, (3) insert your chapter titles
with the \chapter command, (4) run latex twice (why?), and (5) inspect
the table of contents in your document viewer. Only when you’re happy
with your titles and their order should you start writing what is in the
chapters. Remember that one of the first things the members of your
thesis committee will do is study your table of contents. Better make sure
they like it.

Note that you may design your chapters in a similar way. Here you
start by putting your section titles in the right order. Writing a thesis like
this is just like writing a large program in a top-down fashion and filling
in the blanks using stepwise refinement.

1.3.3 The Appendix

Some documents have appendices. To indicate the start of the ap-
pendix section in your document, you use the \appendix command.
After that, you use the default commands for starting a sectional unit.

\appendix
\chapter{Proof of Main Theorem}

\section{A Useful Lemma}

LaTEX Usage

1.4 Document Management

LaTEX input files have a tendency to grow rapidly. If you don’t add
additional structure then you will lose control over the content even
more rapidly. The following three solutions help you stay in control:3

ide Use a dedicated LaTEX ide. A good ide should let you edit an entire
sectional unit as a whole, move it around, and so on. A good ide also
should provide a high-level view of the document.

folding editor These are editors that let you define hierarchical folds. A fold works
just like a sheet of paper. By folding the fold you hide some of the

3If you know other solutions then I’d like to learn from you.

16 Chapter 1

\includeonly{Abstract.tex,MainResults.tex}
\begin{document}

\include{Abstract.tex}
\include{Introduction.tex}
\include{Notation.tex}
\include{MainResults.tex}
\include{Conclusion.tex}

\end{document}

Using the \includeonly and
\include commands. The ar-
gument of \includeonly is
a list of two file names. The
\include commands only in-
cludes these two files. The re-
maining files are not included,
which saves time when latex
is run.

Figure 1.6

text. By unfolding the fold or by “entering” a fold you can work on the
text that’s in the fold. Figure 1.4 shows a closed fold of an equation in
the vim editor. The fold contains three hidden lines of text. Figure 1.5
shows the open. Folds may also be created for chapters, sections, and
environments but this depends on your editor/ide.

Folds may be used as follows. At the top level of your LaTEX document
you define folds for the top-level sectional units of your document.
Within these folds, you define folds for the sub-level sectional units,
and so on. By creating folds like this you make the structure of your
LaTEX document more explicit, thereby making it easier to maintain
your document. For example, re-ordering sectional units is now easy.

files LaTEX has commands for including input from other files. By putting
the contents of the top-level sectional units in a separate file, you
also make the structure in your document more explicit and makes it
much easier to see the structure.

LaTEX provides three commands that are related to file inclusion.
The first command is \input. This command does not provide much
flexibility and it is used on its own. Basically, \input{〈file〉} inserts
what’s in the file 〈file〉 at the “current” position. The two remain-
ing commands are \includeonly and \include. These commands
provide more flexibility but they are used in tandem. The command
\includeonly{〈file list〉} is used in the (document) preamble. It
takes one argument, which is a list of the files that may be included fur-
ther on in the document. To include a file, 〈file〉, at a certain position
you use the command \include{〈file〉} at that position. If 〈file〉 is
in 〈file list〉 then it will be included. Otherwise the file will not be
included. You can use the command \include several times and for
several files. The advantage of this conditional file inclusion mecha-
nism is that it saves precious time when working on large documents
because non-included files require no latex processing.

Figure 1.6 provides an example with several \include commands.
The command \includeonly at the top of the example tells LaTEX
that only the \include statements for the files Abstract.tex and
MainResults.tex should be processed.

1.5 Labels and Cross-references

An important aspect of writing a document is cross-referencing, i. e.,
providing references to sectional units, references to tables and fig-

Introduction to LaTEX 17

\chapter{Introduction}
A short conclusion is
presented in
Chapter~\ref{TheEnd}.

\chapter{Conclusion}
\label{TheEnd}

1 Introduction

A short conclusion is pre-
sented in Chapter 2.

2 Conclusion

Using \label and \ref
Figure 1.7

\chapter{Introduction}
A short conclusion is
presented in
Chapter~\ref{TheEnd}.
The conclusion starts on
Page~\pageref{TheEnd}.

\chapter{Conclusion}
\label{TheEnd}

1 Introduction

A short conclusion is pre-
sented in Chapter 2. The con-
clusion starts on Page 1.

2 Conclusion

Using \pageref
Figure 1.8

ures, and so on. Needless to say, LaTEX provides support for effective
cross-referencing with ease. This section explains the basics for cross-
referencing sectional units. The mechanism is the same for cross-
referencing figures, tables, theorems, and other notions. Note that this
section does not study citations. Citations are studied in Section 1.7.

The basic commands for cross-referencing are the commands
\label and \ref.

\label{〈label〉}
This defines a logical label, 〈label〉, and associates the label with the
current environment, i. e., the environment that the \label command
is in. At the top level, the environment is the current sectional unit.
Inside a given theorem environment it is that theorem environment,
inside a given figure environment it is that figure environment,
and so on. Once defined, the logical label becomes a handle, which
you may use to reference “its” environment. The argument of the
\label command may be any sequence of “normal” characters. The
only restriction is that the sequence be unique. ☐√

\ref{〈label〉}
This command substitutes the number of the environment of the label
〈label〉. For example, if 〈label〉 is the label of the second chapter
then \ref{〈label〉} results in 2, if 〈label〉 is the label of the third
section in Chapter 1 then \ref{〈label〉} results in 1.3, and so on. ☐√

Figure 1.7 shows how to use the \label and the \ref commands.
In this example, the tilde symbol (~) prevents LaTEX from putting a
line-break after the word ‘Section.’ In effect it ties the word ‘Section’
and the number that is generated by the \ref command. Tieing text
is studied in more detail in Section 2.1.1.

The command \pageref{〈label〉} substitutes the page number
“of ” the environment of 〈label〉. Figure 1.8 demonstrates how to use
the \pageref command.

When you compile a document that references an undefined label,

18 Chapter 1

latex will notice this error, complain about it in the form of a warning
message, but tacitly ignore the error. Furthermore, it will put two
question marks in the output document. The position of the question
marks corresponds to the position in the input that references the
label. The question marks are typeset in a bold face font: ??. Even if
you fail to notice the warning message this still makes it possible to
detect the error.

It should be clear that properly dealing with newly defined or
deleted labels requires some form of two-pass system. The first pass
detects the label definitions and the second pass inserts the numbers
of the labels. When Lamport designed LaTEX he decided that a two-pass
system was too time consuming. Instead he decided to compromise:

◦ Label definitions are processed by writing them to the auxiliary file
for the next session.

◦ Label references are only considered valid when the labels are defined
in the auxiliary file of the current session.

◦ If an error occurs, information about labels may not be written to the
auxiliary file.

Note that with this mechanism latex cannot know about newly
defined labels even if a label is referenced after the definition of the
label. This is a common cause of confusion. For example, when latex
processes a reference to a label that is not defined in the current auxil-
iary file, it always outputs a message warning about new or undefined
labels. The warning is output even if the current input file defines the
label. In addition latex will put two question marks where the label
is referenced in the text. To the novice user it may seem that they or
latex have made an error. Running latex once more usually gets rid
of the warnings and question marks.

1.6 Controlling the Style of References

The labelling mechanism is elegant and easy to use but you may still
run into problems from a document management perspective. For
example, in our previous example, we wrote Chapter~\ref{TheEnd},
thereby hard-coding the word Chapter. If for some reason we decided
to change Chapter to Chap for chapter references then we would have
to make a change for each command that references a chapter in our
source document.

To overcome these problems, and for consistent referencing, it
is better to use the prettyref package. Using this package adds a bit
of intelligence to the cross-referencing mechanism. There are four
ingredients to the new cross-referencing mechanism.

1. You introduce classes of elements. Within each class the elements
should be referenced in the same way. For example, the class of equa-
tions, the class of figures, the class of chapters, the class consisting of
sections, subsections, and subsubsections, and so on.

Introduction to LaTEX 19

\usepackage{prettyref}
\newrefformat{ch}{Chapter~\ref{#1}}
\newrefformat{sec}{Section~\ref{#1}}
\newrefformat{fig}{Figure~\ref{#1}}
\begin{document}

\chapter{Introduction}
In \prettyref{ch:Main@Results}
we present the main results.

\chapter{Main Results}
\label{ch:Main@Results}
…

\end{document}

Using the prettyref pack-
age. The \newrefformat com-
mands define three classes of
labels: ch, sec, and fig. The
command \newrefformat has
two arguments. The first argu-
ment determines the class and
the second determines how the
command typesets labels from
that class. For example, labels
starting with ch: are typeset as
Chapter followed by the num-
ber of the label.

Figure 1.9

2. You choose a unique prefix for the labels of the classes. For example,
eq for equations, fig for figures, ch for chapters, sec for sections,
subsections, and subsubsections, and so on. Here the prefixes are the
first few letters of the class names but this is not required.

3. You use the \newrefformat command to specify how each class should
be referenced. You do this by telling the command about the unique
prefix of the class and the text that should be used for the reference.
For example, \newrefformat{ch}{Chapter~\ref{#1}} states that the
unique label prefix ch is for a class of elements that have references
of the form Chapter~\ref{#1}, where #1 is the logical label of the
element (including the prefix). As another example, \newrefformat{
id}{\ref{#1}} gives you the same reference you get it you apply \ref
to the label.

4. You use \prettyref instead of \ref. This time the labels are of the
form 〈prefix〉:〈label〉. For example, \prettyref{fig:fractal} or
\prettyref{ch:Introduction}.

Changing the style of the cross-references of a class now only requires
changing a single call to \newrefformat. Clearly, this is much better
than having to search for and replace all command instances that label
actual chapters. Since prettyref is a package, it should be included in
the preamble of your LaTEX document. Figure 1.9 provides a complete
example of the prettyref mechanism.

1.7 The Bibliography

Most scholarly works have citations and a bibliography or reference
section. Throughout this book we shall use the word bibliography
for bibliography as well as for reference section. The purpose of the
bibliography is to provide details of the works that are cited in the text.
We shall refer to cited works as references. The purpose of the citation is
to acknowledge the reference and to inform your readers how to find
the work. In computer science the bibliography is usually at the end
of the work. However, in some scientific communities it is common
practice to have a bibliography at the end of each chapter in a book.

20 Chapter 1

[Lamport, 1994] L. Lamport. LaTEX: A Document Preparation System.
Addison–Wesley, 1994.

[Knuth, 1990] D. E. Knuth. The TEXbook. Addison–Wesley, 1990. The
source of this book is freely available from http://www.ctan.org/
tex-archive/systems/knuth/tex/.

A minimal bibliography
Figure 1.10

Other communities (e.g., history) use note systems. These systems use
numbers in the text that refer to footnotes or to notes at the end of
the chapter, paper, or book.

The bibliography entries are listed as 〈citation label〉 〈bibliography
content〉. The 〈citation label〉 of a reference is also used when the
work is cited in the text. The 〈bibliography content〉 lists the relevant
information about the work. Figure 1.10 presents an example of two
entries in a bibliography. For this example, the citation labels are
typeset in boldface font inside square brackets. The biblatex package,
which is discussed further on, doesn’t like the \, command in the
example. However, replacing this command with \thinspace should
work.

Even within a single work there may be different styles of citations.
Parenthetical citations are usually formed by putting one or several
citation labels inside square brackets or parentheses. However, there
are also other forms of citations that are derived from the information
in the citation label.

Within one single bibliography the bibliography content of differ-
ent kinds of works may differ. For example, entries of journal articles
have page numbers but book entries do not.

Bibliographies in different works may also differ. They may have
different kinds of (citation) labels and different information in the
bibliography content. The order of presentation of the entries in the
bibliographies may also be different. For example, entries may be
listed alphabetically, in the order of first citation in the text, ….

In LaTEX the style of the bibliography and labels is configurable.
Labels may appear as:

numbers This style results in citations that appear as ‘[〈number〉]’ in the text.
names and years This style results in citations that appear as ‘[〈name〉, 〈year〉]’ in the

text.
…

Before continuing let’s briefly compare labels as numbers and
labels as names and years. We shall start with labels as numbers.

Labels as numbers are very compact. They don’t disrupt the “flow
of reading:” they’re easy to skip. Unfortunately, labels as numbers are
not very informative. You have to look up which work corresponds to
the number in the bibliography. This is annoying because it hinders
the reading process. What is worse, labels as numbers lack so much
information content that you may have to look up the same number

Introduction to LaTEX 21

The \LaTeX{} package was
created by Leslie Lamport%
˜\cite{Lamport:94}
on top of Donald Knuth’s
\TeX{} program%
˜\cite{Knuth:1990}.

The LaTEX package was cre-
ated by Leslie Lamport [Lam-
port 1994] on top of Donald
Knuth’s TEX program [Knuth
1990].

The \cite command
Figure 1.11

several times. Hyperlinks in electronic documents somewhat reduce
this problem.

Labels as names and year are longer than labels as numbers. They
are more disruptive to the reading process: they are more difficult to
“skip.” However, labels as names and years are more informative. If
you’re familiar with the literature then usually there’s no need to go
to the bibliography to look up the label. Even if you have to look up
which work corresponds to a label you will probably remember it the
next time you see the label. Compared to labels as numbers this is a
great advantage.

Traditionally, labels for citations appeared as numbers in the text.
The main reason for doing this was probably to keep the printing costs
low. Nowadays, printing costs are not always relevant.4 For example,
paper is not as expensive as before. Also documents and even journals
are distributed electronically. Some journals and universities require
specific bibliography styles/formats.

The \bibliographystyle command tells LaTEX which style to use
for the bibliography. The bibliography style called 〈style〉, is defined
in the file 〈style〉.bst. The following demonstrates how you use the
\bibliographystyle command to select a bibliography style called
named, which is similar to the style in this book. Though this is not
required, it is arguably a good idea to put the \bibliographystyle
command in the preamble of your document. The bibliography style
named requires the additional package named, which explains why the
additional command \usepackage{named} is used in the example.

\bibliographystyle{named}
\usepackage{named}

LaTEX Usage

The following are a few commonly used bibliography styles. This
list is based on [Lamport 1994, pages 70–71].

plain Entries are sorted alphabetically. Labels appear as numbers in the text.
alpha Entries are sorted alphabetically. Labels are formed from surnames

and year of publication (e.g., Knut66).
abbrv Entries are very compact and sorted alphabetically. Labels appear as

numbers in the text.

Citing a work in LaTEX is similar to referencing a section. Both
mechanisms use logical labels. For referencing you use the \ref com-

4But we should think about the environmental effects of using more paper than
necessary.

22 Chapter 1

More information about the
bibliography database
may be found in%
˜\cite[Appendix˜B]

{Lamport:94}.

More information about the
bibliography database may be
found in [Lamport 1994, Ap-
pendix B].

Using \cite with an optional
argument

Figure 1.12

mand but for citations you use the \cite command. The argument of
the \cite command is the logical label of the work you cite.

Figure 1.11 provides an example. The example involves two logical
labels: Lamport:94 and Knuth:1990. Each of them is associated with a
work in the bibliography. The first label is the logical label of a book by
Lamport; the second that of a book by Knuth. As it happens, the names
of the labels are similar to the resulting citation labels but this is not
required. The command \cite{Lamport:94} results in the citation
[Lamport 1994]. Here ‘Lamport, 1994’ is the citation label of Lamport’s
book in the bibliography. This label is automatically generated by the
BibTEX program. This is explained further on.

The reason for putting an empty group (the two braces) after the
\LaTeX and \TeX commands is technical. The following explains this
in more detail. As we’ve seen before, words are separated using inter-
word spaces. A group is treated as a word. Most commands are not
treaded as words. For example, writing \LaTeX package results in
‘LaTEXpackage.’ Without the empty groups, there would not have been
proper inter-word spacing between ‘LaTEX’ and ‘package’ and between
‘TEX’ and ‘program’ in the final output. The empty groups after the
commands provide the proper inter-word spacing.

It may not be immediately obvious, but in the example of Fig-
ure 1.11 the text Lamport on Line 2 in the input is still tied to the
command \cite{Lamport:94} on the following line. The reason is
that the comment following the text Lamport makes LaTEX ignore all
input until the next non-space character on the next line.

You can also cite parts of a work, for example a chapter or a fig-
ure. The parts are specified by the optional argument of the \cite
command. The example in Figure 1.12 demonstrates how you do this.

The following commands are also related to the bibliography.
\refname

This results in the name of the bibliography section. In the article
class, the command \refname is initially defined as ‘References.’ ☐√

\renewcommand\refname{〈other name〉}
This redefines the command \refname to 〈other name〉. The \renew-
command may also be used to redefine other existing commands. It is
explained in Chapter 11. ☐√

\nocite{〈list〉}
This produces no text but writes the entries in the comma-separated
list 〈list〉 to the bibliography file. If you use this command, then you
should consider making it very clear which works in the bibliography
are not cited in the text. For example, some readers may be interested
in a discussion of these uncited works, why they are relevant, and so

Introduction to LaTEX 23

on. They may get very frustrated if they can’t find references to these
works in your text. ☐√

1.7.1 The bibtex Program

Since bibliographies are important and since it’s easy to get them
wrong, some of the work related to the creation of the bibliography
has been automated. This is done by BibTEX. The BibTEX tool requires
an external human-readable bibliography database. The database may
be viewed as a collection of records. Each record defines a work that
may be listed in the bibliography. The record defines the title of the
work, the author(s) of the work, the year of publication, and so on. The
record also defines the logical label of the work. This is the label you
use when you \cite the work.

The advantage of using BibTEX is that you provide the informa-
tion of the entries in the bibliography and that BibTEX generates the
text for the bibliography. This guarantees consistency and ease of
mind. Furthermore, the BibTEX database is reusable and you may
find BibTEX descriptions of many scholarly works on the web. A good
starting point is http://citeseer.ist.psu.edu/.

Generating the bibliography with BibTEX is a multi-stage process,
which requires an external program called bibtex. The bibtex pro-
gram is to BibTEX what the latex program is to LaTEX. The following
explains the process.

1. You specify the name of the BibTEX database and the location of the
bibliography with the \bibliography command. The argument of
the command is the basename of the BibTEX database. So if you use
\bibliography{〈db〉}, then your database is 〈db〉.bib.

2. You \cite works in your LaTEX program. Your logical labels should be
defined by some BibTEX record.

3. You run latex. This writes the logical labels to an auxiliary file.
4. You run bibtex as follows:

$ bibtex 〈document〉 Unix Usage

Here 〈document〉 is the basename of your top-level LaTEX document.
The bibtex program will pick up the logical labels from the auxiliary
file, look up the corresponding records in the BibTEX database, and
generate the code for LaTEX’s bibliography. A common mistake of
bibtex users is that they add the tex extension to the basename of the
LaTEX source file. It is not clear why this is not allowed.

5. You run latex twice (why?) and Bob’s your uncle.

It is important to understand that you (may) have to run bibtex when
(1) new citation labels are added, when (2) existing citation labels are
removed, and when (3) you change the BibTEX records of works in
your bibliography. Each time you run bibtex should be followed by
two more latex runs.

24 Chapter 1

\documentclass[11pt]{article}
% Use bibliography style named.
% Requires the file named.bst.
\bibliographystyle{named}
% Requires the package named.sty.
\usepackage{named}
\begin{document}

% Put in a citation.
This cites˜\cite{Knuth:1990}.
% Put the reference section here.
% It is in the file db.bib.
\bibliography{db}

\end{document}

Including a bibliography
Figure 1.13

@Book{Lamport:94,
author = {Lamport, Leslie},
title = {\LaTeX: A Document Preparation System},
year = {1994},
isbn = {0-021-52983-1},
publisher = {Addison\,\endash\,Wesley},

}

@Book{Strunk:White,
author = {Strunk, W. and

White, E.\,B.},
title = {The Elements of Style},
publisher = {Macmillan Publishing},
year = {1979},

}

Some BibTEX entries
Figure 1.14

Figure 1.13 provides an example. The LaTEX source in this example
depends on a BibTEX file called db.bib.

Figure 1.14 is an example of two entries in a BibTEX database file.
The example associates the logical label Lamport:94 with Lamport’s
LaTEX book and the logical label Strunk:White with the book about
elements of style. The entries also specify the author, title, year of
publication, International Standard Book Number (isbn), and the
publisher. Some of this information is redundant: this depends on
the style that is used to generate the bibliography. Note that you first
provide an author’s surname and then the first name(s), separating
them with a comma. The second entry in the example shows that
multiple authors are separated with the keyword and. The \endash in
the first publisher inserts the correct dash symbol.

Now that you know how to use the bibtex program, let’s see what
you can put in the BibTEX database. The following list is not exhaustive.
For a more accurate list you may wish to read [Fenn 2006; Lamport
1994]. The following is based on [Lamport 1994, Appendix B].

Introduction to LaTEX 25

\usepackage[style=authoryear,
block=space,
language=british]{biblatex}

\renewcommand*\bibopenparen{[}
\renewcommand*\bibcloseparen{]}
\renewcommand*\bibnamedash

{\rule[0.48ex]{3em}{0.14ex}\space}
\addbibresource{LAF}

Using biblatex
Figure 1.15

@Article An article from a journal or magazine.
required entries author, title, journal, and year.
optional entries volume, number, pages, month, and note.

@Book A book with an explicit publisher.
required entries author or editor, title, publisher, and year.
optional entries volume, number, series, ….

@InProceedings A paper in a conference proceedings.
required entries author, title, booktitle, publisher, and year.
optional entries pages, editor, volume, number, series, ….

@Proceedings The proceedings of a conference.
required entries title and year.
optional entries editor, volume, number, series, organisation,

….
@MastersThesis A Master’s thesis.

required entries author, title, school, and year.
optional entries type, address, month, and note.

@PhDThesis A Ph.D. thesis.
required entries author, title, school, and year.
optional entries type, address, month, and note.

….

Turner [2010] presents an impressive list of BibTEX style examples.

1.7.2 The biblatex Package

There are several problems with the basic LaTEX citation mechanism.
The biblatex package overcomes many of these. It provides a more
flexible citation mechanism and lets you configure your own citation
style. The biblatex package is very comprehensive. Is it beyond the
scope of this book to discuss it in detail. In the remainder of this
section we shall explore some of its capabilities.

The bibliography management for this book was created with
biblatex. Figure 1.15 shows how this was done. First we load the
biblatex package. Using the options of the \usepackage we set the
citation style to author year. The other options are less important.
The first two \renewcommand* commands redefine the symbols that
are used for citations inside parentheses/brackets. The \renewcom-
mand* command is explained in Chapter 11. For this book, the opening
bracket is a square bracket and the closing bracket a closing square

26 Chapter 1

\textcite{Knuth:1990}
describes \TeX.

The ultimate guide to \TeX{}
is˜\parencite{Knuth:1990}.

Knuth [1990] describes TEX. The
ultimate guide to TEX is [Knuth,
1990].

Textual and parenthetical cita-
tions

Figure 1.16

\citeauthor{Knuth:1990}
wrote˜\parencite{Knuth:1990}
in˜\citeyear{Knuth:1990}.

Knuth wrote [Knuth, 1990] in
1990.

Getting the author and year of
a citation

Figure 1.17

bracket. The third \renewcommand* redefines the command that pro-
duces the symbol that is used for repeated author names in entries in
the bibliography. In this book the symbol is a horizontal rule to the
length of 3 em, which is followed by a single space. The 3 em long rule
is recommended by Bringhurst [2008, page 80]. The last command
specifies the name of the bibliography database file.

To print the bibliography, you use the \printbibliography com-
mand. The command takes an optional argument that lets you specify
the title of the bibliography. The optional argument may also be used
as a filter for what entries should be admitted in the bibliography.
Some of this is explained in Sections 1.7.3 and 1.7.4.

The following shows how you print the bibliography of your work.
The title of the bibliography section is set to ‘References.’

\printbibliography[title=References] LaTEX Usage

◦ The biblatex package distinguishes between parenthetical and textual
citations. A parenthetical citation is like LaTEX’s default citation. Such
citations are not supposed to play any rôle at the sentence level. You get
parenthetical citations with the \parencite command: [Knuth 1990].
A textual citation acts as a subject or an object in a sentence: Knuth
[1990]. Leaving out such citations should result in grammatical errors.
You get textual citations with the \textcite command. Figure 1.16
demonstrates how these commands work.

◦ The biblatex package also provides two commands called \citeau-
thor and \citeyear. The first command gives you the author(s) and
the second the year of a citation. Figure 1.17 shows how to use these
commands. There is also a \citetitle command, which works as
expected.

◦ An important improvement is that biblatex lets you capitalise “von”
parts in surnames. To achieve this you use similar commands as before.
However, this time the relevant commands start with an uppercase
letter. The example in Figure 1.18 demonstrates how this works.

The biblatex also supports footnotes and endnotes but that is
not explained in this book. The interested reader may find more
information about these features in the package documentation [The
biblatex Package]. In linux you may get package information about
the biblatex package by executing the following command.

Introduction to LaTEX 27

\Citeauthor{Beethoven:ninth}
is most famous for his Ninth Symphony%
˜\Parencite{Beethoven:ninth}.

Personally, I prefer his Sixth Symphony%
˜\Parencite{Beethoven:sixth}.

Using biblatex’s citation com-
mands

Figure 1.18

$ texdoc biblatex Unix Usage

Getting help for other packages and classes works similarly. If
your LaTEX distribution doesn’t come with biblatex then you may
download it from the Comprehensive TEX Archive Network (ctan),
which may be found at http://www.ctan.org. If you are looking for
other classes and packages then ctan is also the place to be.

1.7.3 End-of-Chapter Bibliographies

Some documents require a bibliography at the end of each section
or chapter. For example, in a conference proceedings each article has
its own bibliography. Some theses have a separate bibliography for
each chapter or part. The remainder of this section shows how to get
a bibliography at the end of a chapter with the aide of biblatex.

1. You import biblatex with your favourite options.

\usepackage[〈options〉]{biblatex} LaTEX Usage

2. You specify the names of your bibliography database(s).

\addbibresource{〈your .bib file names〉} LaTEX Usage

3. You add a refsection environment for each chapter and print the
bibliography at the end of the chapter. The following shows how this is
done for one chapter—of course you can repeat this for other chapters.
The option heading=subbibliography prints the default name of the
bibliography in the same style as that of a section.

\chapter{From K\"onigsberg to G\"ottingen}
\begin{refsection}

… % Lots of text and citations omitted.
\printbibliography[heading=subbibliography]
\end{refsection}

LaTEX Usage

4. You run latex on your LaTEX source file. This will create an auxiliary
file for each refsectionwith a \printbibligraphy command in it. The
names of theses auxiliary files are of the form 〈base name〉〈number〉-
blx.aux, where 〈base name〉 is the base name of your main document.

5. You run bibtex on each auxiliary file. In unix this may be done as
follows.

$ for f in *[0-9]-blx.aux; do biblatex $f; done Unix Usage

6. You run LaTEX twice.

28 Chapter 1

7. You sit down, relax, and admire your end-of-chapter bibliographies.

1.7.4 Classified Bibliographies

This section explains how you create documents with classified bibli-
ographies—Lehman [The biblatex Package] calls them subdivided bib-
liographies. The technique in this section can also be used to create
end-of-chapter bibliographies but you would be silly if you did be-
cause it would take more time. Classified bibliographies are quite
common. For example, some works have bibliographies for books, for
journal articles, for conference papers, and so on.

As in the previous two sections biblatex comes to our rescue.
This time, we have to work a bit harder because biblatex cannot
automatically recognise the categories. We shall start with a slight
variation on the end-of-chapter bibliographies. For simplicity the
details about loading and configuring biblatex are omitted.

Let’s assume you want one bibliography section in your main
document but you want separate subbiliographies for chapters.

1. You add refsection environments for your chapters.

\chapter{Philip Glass}
\begin{refsection}

… % lots of text and citations omitted.
\end{refsection}
% Steve Reich, John Adams and Arvo Pärt chapters omitted.

LaTEX Usage

2. The following prints a title for the collected subbibliographies.

\printbibheading LaTEX Usage

By default the previous command results in the text ‘References’ but
you can configure it.

\defbibheading[heading=bibliography,
title=Classified Discographies]

LaTEX Usage

3. You print the subbibliographies.
…
\printbibliography[section=1,title=Glass Discography]
\printbibliography[section=2,title=Reich Discography]
…

LaTEX Usage

The section numbers 1 and 2 refer to the order of appearance of the
refsection environments. The 1 corresponds to the first environ-
ment/chapter and the 2 to the second environment/chapter. This
is a bit unfortunate, because it means that if you rearrange the two
environments then you have to change the numbers in the \print-
bibliography commands.

4. You complete the process by running LaTEX, running BibTEX on the
auxiliary files and running LaTEX two more times.

Needless to say, you’re quite lucky if your subbibliographies corre-

Introduction to LaTEX 29

spond to your chapters. In general this is not possible. For example
you may want a bibliography for books and one for articles. Again
biblatex comes to the rescue because it can separate bibliographies
by the type of BibTEX entry: @Book, @Article, …. The following shows
how to create your subbibliographies.

\printbibliography[type=book,title=Books]
\printbibliography[type=article,title=Journal Articles]

LaTEX Usage

In general the presented techniques are not always sufficient,
which is why biblatex allows keywords in your BibTEX entries. As
a matter of fact, the package also introduces a whole range of non-
standard BibTEX entries such as @Online, @Patent, @Reference, and
so on. The following shows how you associate three keywords called
glass, opera, and minimal with a @Misc entry of an opera by Philip
Glass.

@Misc{Akhnaten,
title = {Akhnaten},
author = {Glass, Philip},
keywords = {glass,opera,minimal},
year = {1983},

}

BibTEX

Having defined the keys, you can use them as criteria for your
classified bibliographies.

\printbibliography[heading=subbibliography,
title=Opera References,keyword=opera]

LaTEX Usage

A more general concept is that of a named category, which you can
add bibliography labels to:

\DeclareBibliographyCategory{trilogy}
\addtocategory{trilogy}{Akhnaten,Einstein,Satyagraha}

LaTEX Usage

Having defined the category, you can use it to generate a subbibli-
ography.

\printbibliography[heading=subbibliography,
title=Trilogy References,
category=trilogy]

LaTEX Usage

1.8 Table of Contents and Lists of Things

This section explains how to include a table of contents and reference
lists in your document. Here a reference list is a list that tells you where
(in the document) you may find certain things. Common examples
are a list of figures, a list of tables, and so on. LaTEX also lets you
define other reference lists. The example in Figure 1.19 shows how
you include a table of contents, and lists of figures and tables.

In the example, the \clearpage command inserts a pagebreak after
the first \include command. As a side-effect it also forces any figures

30 Chapter 1

\begin{document}
\maketitle
\include{Abstract.tex}
\clearpage
\tableofcontents
\listoffigures
\listoftables...

\end{document}

Including reference lists
Figure 1.19

and tables that have so far appeared in the input to be printed. There
is also a command called \cleardoublepage, which works similarly.
However, in a two-sided printing style, it also makes the next page a
right-hand side (odd) page, producing a blank page if necessary.

1.8.1 Controlling the Table of Contents

The counter \tocdepth (counters are discussed in Chapter 12) gives
some control over what is listed in the table of contents. The value
of the counter controls the depth of last sectional level that is listed
in the table of contents. The value 0 represents the highest sectional
unit, 1 the next sectional unit, and so on.

By setting the value of \tocdepth to 〈depth〉 you limit the depths
of the sectional units that are listed in the table of contents from 0
to 〈depth〉. For example, if you’re using the book class, then using
0 for 〈depth〉 will allow parts and chapters in the table of contents,
but not sections. As another example, if you’re using the article
class, then using 2 for 〈depth〉 will only list sections, subsections, and
subsubsections in the table of contents. You set the counter \tocdepth
to 〈depth〉 with the command \setcounter{\tocdepth}{〈depth〉}.

1.8.2 Controlling the Sectional Unit Numbering

The counter \secnumdepth is related to the counter \tocdepth. Its
value determines the depth of the the sectional units that are num-
bered. So by setting the counter \secnumdepth to 3, you tell LaTEX to
number parts, chapter, and sections, and tell it to stop numbering
subsections and less significant sectional units.

Table 1.1 lists the sectional unit commands and the corresponding
numbers for the counters \tocdepth and \secnumdepth.

1.8.3 Indexes and Glossaries

If you are writing a book or a thesis, you probably want to include an
index or glossary of some kind. Getting it to work may take a while.
The remainder of this section explains how to create an index. The
mechanism for glossaries is similar.

Unfortunately, LaTEX’s default index mechanism only allows you

Introduction to LaTEX 31

Sectional
Unit Command \tocdepth \secnumdepth

\part -1 1
\chapter 0 2
\section 1 3
\subsection 2 4
\subsubsection 3 5
\paragraph 4 6
\subparagraph 5 7

Depth values of sectional
unit commands. The first
column in the table lists the
sectional unit commands.
For each command, the
corresponding value of the
\tocdepth counter is listed in
the second column. That of the
\secnumdepth counter value
is listed in the last column.

Table 1.1

to have one single index. The multind package lets you create several
index lists. The package works as follows.

1. You associate each index with a file name. You do this by passing the
basename of the file to the command \makeindex.

\makeindex{programs}
\makeindex{authors}

LaTEX Usage

2. You insert the indexes with the \printindex command.

\printindex{programs}{Index of Programs}
\printindex{authors}{Index of Authors}

LaTEX Usage

The first argument of \printindex is the name of the corresponding
index. The second name is the title of the index. The title also appears
in the table of contents.

3. You define the index entries. You use the \index command to define
what is in the indexes. The following is a simple example that creates
an entry ‘TeX’ in the index for the programs.

Knuth\index{authors}{Knuth}
is the author of \TeX\index{programs}{TeX}.

LaTEX Usage

Behind the scenes the \index command writes information to the
auxiliary files authors.idx and programs.idx. In the following step
we shall use the makeindex program to turn it into files that can be
included in our final document.

4. You process the idx files with the program makeindex. This is sim-
ilar to using bibtex for generating the bibliography. The following
demonstrates how to use the program.

$ makeindex authors
$ makeindex programs

Unix Session

The remainder of this section explains how you create more com-
plex indexes with the multind package. The multind package redefines
the \index command. The redefined command takes one more argu-
ment. The first argument of the redefined command determines the
name of an auxiliary file that is used to construct the index. The last

32 Chapter 1

argument of the redefined command describes the index entry. The
following is based on [Lamport 1994, Appendix A.2].

\index{〈name〉}{〈entry〉}
This creates an index entry for 〈entry〉. The entry also lists the page
number. ☐√

\index{〈name〉}{〈entry〉!〈subentry〉}
This creates a subentry 〈subentry〉 for the index entry 〈entry〉. It also
lists the page number. ☐√

\index{〈name〉}{〈entry〉!〈subentry〉!〈subsubentry〉}
This creates a sub-subentry 〈subsubentry〉 for subentry 〈subentry〉 for
the index entry 〈entry〉. It also lists the page number. ☐√

\index{〈name〉}{〈entry〉|see{〈other entry〉}}
Creates a cross-reference. in the entry for 〈entry〉. This does not result
in a page number for 〈entry〉. ☐√

\index{〈name〉}{〈entry for sorting〉@{〈entry for printing〉}}
This results in an entry for 〈entry for printing〉 in the index list. The
position in the index is determined by 〈entry for sorting〉. This is
useful, for example, if 〈entry for printing〉 contains mixed upper- and
lowercase letters or if it contains other characters. ☐√

The following are some examples of the last construct.

◦ \index{〈name〉}{twenty@20};
◦ \index{〈name〉}{twenty@xx};
◦ \index{〈name〉}{beta@β}; or
◦ \index{〈name〉}{command@\texttt{{\textbackslash}command}}.

There is one more construct, which is useful for topics that cover
a page range. To create an entry for topic 〈topic〉 for a page range, you
start the range with the command \index{〈name〉}{〈topic〉|(} and
you close the range with the command \index{〈name〉}{〈topic〉|)}.

Table 1.2 presents an example of the \index command. The left of
the figure depicts the last argument of the \index commands and the
current page of the LaTEX output. It is assumed that the first argument
of the \index command is the same. The right of the figure depicts
the resulting index. Notice that the entries for programs and sausages
both have subentries. However, the entry for programs has a page
number whereas the entry for sausages does not. To understand this
difference you need to know that the page number for top-level en-
tries is generated by commands of the form \index{〈name〉}{〈entry〉}.
Since there is such a command for sausages but not for programs this
explains the difference. More information about the \index command
may be found in [Lamport 1994, Appendix A].

1.9 Class Files

As explained before, each top-level LaTEX document corresponds to a
document class. The document class is determined by the required
argument of \documentclass command in your LaTEX document.

Introduction to LaTEX 33

Page Last argument of the \index command

1 lecture notes
2 programs
4 lard

2 latex@\LaTeX
3 lambda@λ

5 sausages!boerewors
6 sausages!salami
2 programs!latex
6 programs!bibtex

2 index|(
6 index|)

8 salami|see{sausages}
8 boerewors|see{sausages}
8 boereworst (Dutch)|see{boerewors}

Index
boerewors, see sausages
boereworst (Dutch), see boerewors

index, 2–6

λ, 3
lard, 4
LaTEX, 2
lecture notes, 1

programs, 2
bibtex, 6
latex, 2

salami, see sausages
sausages

boerewors, 5
salami, 6

Using the \index command.
The table on the left lists the
last argument of the \index
command and the correspond-
ing page in the output docu-
ment. So if you’re using the
unmodified \index command
then the second column in the
table corresponds to the first
argument of \index. However,
if you’re using the multind
package then the column corre-
sponds to the command’s sec-
ond argument. The output on
the right is the resulting in-
dex. The font in the output may
seem tiny, but it is representa-
tive for a typical index.

Table 1.2

\documentclass{〈document class name〉} LaTEX Usage

Each document class is defined in a class file. Class files define
the general rules for typesetting the document. Recall that you can
pass options to classes. This is done by putting the options inside the
square brackets following the command \documentclass. If you have
multiple options then you separate them with commas.

The extension of class files is cls. The following are some standard
classes.

article The basic article class. The top-level sectional unit of this class is the
section.

book The basic book class. The top-level sectional unit of this class is the
chapter. The book class also provides the commands for indicating
the start of the front, main, and back matter.

report The basic report class. The top-level sectional unit of this class is the
chapter.

letter The basic class for letters. This class has no sectional units. The letter
is written inside a letter environment. The letter environment has
one required argument, which should be the address of the addressee.
In addition there are commands for specifying the address of the
writer, the signature, the opening and closing lines, the “carbon copy”
list, and enclosures and postscriptum. More detailed information
about the letter class may be found in [Lamport 1994, page 84–86]
and on http://en.wikibooks.org/wiki/LaTeX/Letters. Figure 1.20
presents a minimal example of a letter.

The following options are typically available for the previously
mentioned classes.

34 Chapter 1

\documentclass{letter}
% Sender details.
\signature{Donal}
\address{Collect Cash\\Dublin}

\begin{document}
% Addressee. A double backslash generates a newline.
\begin{letter}{Donate Cash\\Cork}
\opening{Dear Sir/Madam:}

Please make a cash donation to our party.

We look forward to the money.

\closing{Yours Faithfully,}
\ps{P.S. Send it now.}
\encl{Empty brown envelope.}
\cc{Paddy.}

\end{letter}
\end{document}

Minimal letter
Figure 1.20

11pt Use an 11 point font size instead of the 10 point size, which is the
default.

12pt Use a 12 point font size.
twoside Output a document that is printed on both sides of the paper.

twocolumn Output a document that has two columns.
draft Used for draft versions. This option makes LaTEX indicate hyphenation

and justification problems by putting a little square in the margin of
the problem line.

final Used for the final version. This is the opposite of draft.

1.10 Packages

Document classes are fairly minimal. Usually, you need some addi-
tional commands for doing your day-to-day document preparation.
This is where packages (originally called style files) come into play. Pack-
ages have the following purpose.

provide commands Provide new useful commands. Usually, this adds some
extra functionality.

change commands Tweak some existing commands. This may change the
default document settings. Usually, this affects the layout.

The extension of packages is sty. You include the package that is
defined in the file 〈style〉.sty as follows.

\usepackage{〈style〉} LaTEX Usage

Some packages accept options. You pass them to the package using

Introduction to LaTEX 35

the same mechanism as with classes. Multiple options are separated
using commas. The following shows how to pass the options draft
and colorlinks to the package hyperref.

\usepackage[draft,colorlinks]{hyperref} LaTEX Usage

To find out about the options you have to read the documentation.
Remember that texdoc (see page 27) helps you locate and read the
documentation.

1.11 Useful Classes and Packages

There are hundreds, if not thousands, of existing classes and pack-
ages. The following are some useful classes and packages that are not
discussed in the remainder of this book.

url Typesets urls [Arseneau 2010] with automatic line breaking.
fourier Sets the text font to Utopia Regular and the math font to Fourier [Bovani

2005].
coverpage Facilitates user-defined coverpages [Mühlich 2006].
fancyhdr Facilitates user-defined headers and footers [van Oostrum 2004].
lastpage Defines a command for getting the last page number [Goldberg, and

Münch 2011]. This is especially useful for M/N page numbers in com-
bination with the fancyhdr package [van Oostrum 2004].

mathdesign This package replaces all math symbols with a complete math font. It
can be configured with expert and poor man’s versions of fonts such
as Adobe Utopia, ITC Garamond, and Bitstream Charter.

memoir This class provides support for writing books. The class comes with
lots and lots of options for finetuning the typesetting [Wilson, and
Madsen 2011].

todonotes This package supports todo notes in the margin and a list of todo
notes with hyperlinks. [Midtiby 2011].

classicthesis Nice package for theses [Miede 2010].
arsclassica Another nice package for theses [Patieri 2010]. It is based on classic-

thesis.
mathtools Provides better typesetting of mathematical content [Høgholm et al.

2011].

1.12 Errors and Troubleshooting

One of LaTEX’s greatest weaknesses are its error messages, which are
not always so easy to understand.

When an error occurs LaTEX usually outputs the line number where
the error was detected. This should give some idea of where to find
the source of the error. If you run LaTEX in interactive mode then LaTEX
will output an error message and waits for you to tell it what to do
with the error. This is done by typing in an option. The following
are some of the options you can type in. More options may be found
in [Lamport 1994, Chapter 8].

36 Chapter 1

x This exits the compilation process.
〈return〉 This ignores the error and resumes compilation.
q This also ignores the error and resumes compilation. Future errors

will not be reported.
h This asks for more help.

The remainder of this section lists some of the more common
errors and, where possible, provides some suggestions on how to fix
the errors. More information about errors and troubleshooting may
be found in [Lamport 1994] or in the uk TEX faq (http://www.tex.
ac.uk/cgi-bin/texfaq2html).

One of the more common error messages is the following. It is
instructive to study it in more detail.

Undefined control sequence

l.〈line number〉 〈cmd〉
This usually means there is a typo in the commmand 〈cmd〉. The 〈line
number〉 is the line number where the error was detected. Most error
messages report the line number where the error was detected. In the
following the line numbers are omitted.

The following are other common error messages. The error mes-
sages are sorted alphabetically and the line number information is
omitted.

\begin{〈name₁〉} ended by \end{〈name₂〉}
This means that there is a \begin{〈name₁〉} that is’t properly ended
by an \end{〈name₁〉}. LaTEX detects this error when it discovers the
\end{〈name₂〉} in the input.

Command 〈cmd〉 already defined

This means that there’s an attempt to define the existing command
〈cmd〉 with one of LaTEX’s commands for defining non-existing com-
mands.

Environment 〈name〉 undefined

This means there is a \begin{〈name〉} in the input and that the envi-
ronment 〈name〉 isn’t defined.

Extra alignment tab has been changed to \cr

This means there is an ampersand (&) too many for a row in a tabular-
like environment.

\include cannot be nested

This means that there is an \include command in a file that’s included
by another \include command, which is not allowed.

LaTeX Error: Option clash for package 〈name〉
This is a very nasty error that is thrown by the LaTEX kernel. It means
that the package 〈name〉 is loaded with a set of options, S1, and that the
package is loaded again with options, S2, where S2 contains an option
that is not contained in S1. This commonly happens if you’re using
the hyperref package.

LaTeX Error: Too many unprocessed floats.

Introduction to LaTEX 37

This usually means that LaTEX can’t position your floats but it may
also mean there are too many \marginpar commands. If the problem
is related to floats and if you haven’t used the option p in your float
placement options then adding it may resolve the problem. Remember
that the float placement option defaults to tbph. The \clearpage clears
the page and also force all pending floats to be printed but this is may
not be a satisfactory solution.

Missing $ inserted

This means that you entered a math command in ordinary text mode.
not in outer par mode

A float ar a \marginpar command is used in math mode or inside a
“parbox.”

Something’s wrong--perhaps a missing \item

This means that you forgot to put an \item command at the start of
an itemize, enumerate, or description environment.

There’s no line to end here

There’s a \\ or a \newline command between paragraphs.
TeX capacity exceeded, sorry

This usually means there’s a recursive command that doesn’t terminate
properly. For example, with the definition \newcommand\nono{\no\no}
using \no would lead to this error.

Too many }’s

This means that you entered a closing brace too many.
Too deeply nested!

This means that the nesting level of list environments such as itemize
or enumerate is too deep.

Runaway argument?

{〈actual parameter〉
This may mean that you forgot to enter a closing brace of a compound
parameter. LaTEX outputs the value of the actual parameter, which
should give you a clue as to where to search. Also see the following
error, which is related.

Runaway argument?

〈actual parameter〉
! File ended while scanning use of 〈cmd〉

This means that 〈cmd〉 is a TEX command with a delimited parameter
list. When 〈cmd〉 was used with 〈actual parameter〉 in the input, TEX
couldn’t find the the delimiter that should have followed 〈actual
parameter〉.

Unknown option 〈option〉 for 〈class or package〉
This means there’s an attempt to load 〈class or package〉 with the
invalid option 〈option〉.

PART II

Basic
Typesetting

Oil and charcoal on canvas (31/08/05), 183× 223 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Chapter 2
Running Text

This chapter explains everything you’ve always wanted to know
about writing text, aligning it, and changing text appearance.

Recall from Chapter 1 that LaTEX is implemented on top of TEX,
which is a rewriting machine that turns token streams into token
streams. Some of the character tokens in the input stream have a
special meaning to TEX. This is studied in Section 2.1. The rest of
the chapter is about typesetting. We start with some sections about
diacritics, ligatures, dashes, emphasis, footnotes and marginal notes,
quotes and quotations. If you’re not familiar with these notions then
don’t worry, because they are explained further on. Also you can visit
the typography jargon reference on page 267. This chapter ends with
sections about changing the size and the type style of the text, the most
important text alignment techniques, and language related issues.

2.1 Special Characters

This section studies ten characters that have a special meaning to
TEX. When TEX sees these characters as tokens in the input stream,
then it usually does not typeset them but, instead, changes state. The
remainder of this section briefly explains the purpose of the tokens
and how you typeset them as characters in the output.

Table 2.1 depicts the tokens, their meaning, and the command to
typeset them. We have already studied the start-of-comment token
(%) and the backslash (\), which starts control sequences. Typesetting
a backslash is done with the commands \textbackslash and \back-
slash. The latter command is only used when specifying mathematical
formulae, which is described in Chapter 8. The parameter reference
token is described in Chapter 11. The alignment tab (&) is described
in Section 2.19.3. This token usually indicates a horizontal alignment
position in array-like structures consisting of rows and columns. The
math mode switch token ($), the subscript token (_), and the explained
token (ˆ) are described in Chapter 8. The three remaining tokens are
described in the remainder of this section.

2.1.1 Tieing Text

Remember that LaTEX is a large rewriting machine that repeatedly
turns token sequences into token sequences. At some stage it turns a

 , ,
DOI 10.1007/978-3-642-23816-1_2, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 41

42 Chapter 2

Token Purpose Command

parameter reference \#
$ math mode switch \$
% start of comment \%
& alignment tab \&
˜ text tie token \textasciitilde
_ math subscript _
ˆ math superscript \textasciicircum
{ start of group \{
} end of group \}
\ start of command \textbackslash or \backslash

The characters in the first col-
umn have a special meaning to
LaTEX. The purpose of the char-
acters is listed in the column
‘Purpose.’ The last column lists
the command that produces
the character. The command
\textbackslash is used when
typesetting normal text. The
command \backslash is used
when typesetting mathematics.

Table 2.1

token sequence into lines. This is where LaTEX (TEX really) determines
the line breaks. The tilde token (~) defines an inter-word space that
cannot be turned into a line break. As such it may be viewed as an
operator that ties words.

The following shows two important applications of the tilde oper-
ator: it prevents unpleasant linebreaks in references and citations.

… Figure˜\ref{fig:list@format}
depicts the format of a list.
It is a reproduction of˜\cite[Figure˜6.3]{Lamport:94}.

LaTEX Usage

It is usually not too difficult to decide where to use the tie op-
erator. The following are some concrete examples, which are taken
from [Knuth 1990, Chapter 14].

◦ References to named parts of a document:
� Chapter~12,
� Theorem~1.5,
� ….

Knuth [1990] recommends that you use Lemmas 5 and~6 because hav-
ing the 5 at the start of a line is not really a problem.

◦ Between a person’s forenames and between multiple surnames:
� Donald~E. Knuth,
� Luis~I. Trabb~Pardo,
� Bartel~Leendert van~der~Waarden,
� Charles~XII,
� ….

◦ Between math symbols in apposition with nouns:
� dimension~d,
� string~s of length~l,
� ….

Here the construct $〈math〉$ is used to typeset 〈math〉 as an in-line
mathematical expression.

◦ Between symbols in series:
� 1,~2, or~3.

◦ When a symbol is a tightly bound object of a preposition:

Running Text 43

� from 0 to~1,
� increase z by~1,
� ….

◦ When mathematical phrases are rendered in words:
� equals~n,
� less than~ϵ,
� modulo~2,
� for large~n,
� ….

◦ When cases are being enumerated within a paragraph:
� Show that function $f(x)$ is (1)~continuous; (2)~bounded.

2.1.2 Grouping

Grouping is a common technique in LaTEX. The opening brace ({) starts
a group and closing brace (}) closes it. Grouping has two purposes.
The first purpose of grouping is that it turns several things into one
compound thing. This may be needed, for example, if you want to
pass several words to a command that typesets its argument in bold
face text. The following demonstrates the point.

A bold \textbf{word} and
a bold \textbf letter.

A bold word and a bold letter.

The second purpose of grouping is that it lets you change cer-
tain settings and keep the changes local to the group. The following
demonstrates how this may be used to make a local change to the type
style of the text inside the group.

Normal text here.
{% Start a group.
\bfseries
% Now we have bold text.
Bold paragraphs in here.

}% Close the group.
Back to normal text again.

Normal text here. Bold para-
graphs in here. Back to normal
text again.

Inside the group you may have several paragraphs. The advantage
of the declaration \bfseries is that it defines how the text is typeset
until the end of the group. The \textbf command just typesets its
argument in a bold typeface. The argument may not contain paragraph-
breaks.

There is also a low-level TEX mechanism for creating groups. It
works just as the braces. A group is started with \begingroup and
ended with \endgroup. These tokens may be freely mixed with braces
but {/} pairs and \begingroup/\endgroup pairs should be properly
matched. So { \begingroup \endgroup } is allowed but { \begin-
group } \endgroup is not. A brace pair affects whitespace when you’re
typesetting mathematics but a \begingroup/\endgroup pair does not.

44 Chapter 2

Output Command Name

ò \‘{o} Acute accent
ó \’{o} Grave accent
ô \ˆ{o} Circumflex (hat)
õ \˜{o} Tilde (squiggle)
ö \"{o} Umlaut or dieresis
ċ \.{c} Dot accent
š \v{s} Háček (caron or check)
ŏ \u{o} Breve accent
ō \={o} Macron (bar)
ő \H{o} Long Hungarian umlaut
�oo \t{oo} Tie-after accent

ş \c{s} Cedilla accent
o. \d{o} Dot-under accent
o
¯

\b{o} Bar-under accent

Common diacritics
Table 2.2

Output Command Name

å \aa Scandinavian a-with-circle
Å \AA Scandinavian A-with-circle
ł \l Polish suppressed-l
Ł \L Polish suppressed-L
ø \o Scandinavian o-with-slash
Ø \O Scandinavian O-with-slash
¿ ?‘ Open question mark
¡ !‘ Open exclamation mark

Other special characters
Table 2.3

2.2 Diacritics

This section studies how to typeset characters with diacritics, which are
also known as accents. Table 2.2 displays some commonly occurring
diacritics and the commands that typeset them. The presentation is
based on [Knuth 1990, Chapter 9].

Using \"{i} to typeset ï may not work if you’re not using a Type 1
font (T1 font). However, typesetting ï with \"{\i} should always work.
Here the command \i is used to typeset a dotless i (ı). There is also a
command \j for a dotless j.

Table 2.3 shows some other commonly occurring special characters.

2.3 Ligatures

A ligature combines two or several characters as a special glyph. Exam-
ples of English ligatures and their equivalent character combinations
are fi (fi), ff (ff), ffi (ffi), fl (fl), and and ffl (ffl). LaTEX recognises English
ligatures and substitutes them for the characters representing them.

Table 2.4 displays some foreign ligatures. The symbol ß (eszett) is

Running Text 45

Output Command Name

œ \oe French ligature œ
Œ \OE French ligature Œ
æ \ae Scandinavian ligature æ
Æ \AE Scandinavian ligature Æ
ß \ss German ‘Eszett’ or sharp S

Foreign ligatures
Table 2.4

‘Convention’ dictates that
punctuation go inside
quotes, like ‘‘this,’’ but
some think it’s better
to do ‘‘this’’.

‘Convention’ dictates that
punctuation go inside
quotes, like “this,” but
some think it’s better to
do “this”.

Quotes
Figure 2.1

‘‘\,‘Fi’ or ‘fum?’\,’’ he asked.\\
‘‘‘Fi’ or ‘fum?’’’ he asked. \\
‘‘{}‘Fi’ or ‘fum?’{}’’ he asked.

“ ‘Fi’ or ‘fum?’ ” he asked.
“‘Fi’ or ‘fum?”’ he asked.
“‘Fi’ or ‘fum?’” he asked.

Nested quotations
Figure 2.2

a ligature of ſ s [Bringhurst 2008] and this is reflected in the LaTEX
command that typesets the symbol.

Sometimes it is better to suppress ligatures. The following is an
example: the \makebox command prevents LaTEX from turning the fi
in selfish into a ligature, which makes the result much easier to parse:
selfish, not selfish.

Mr˜Crabs is a self\makebox{}ish shellfish. LaTEX Usage

Other words that need “anti-hyphenation” pre-processing are
halflife, halfline, selfless, offline, offloaded, and so on.

2.4 Quotation Marks

This section explains how you typeset quotation marks. Figure 2.1 is
an example from [Lamport 1994, page 13]. The word ‘Convention’ in
this example is in single quotes and the word ‘this’ is in double quotes.
The quotes at the start are backquotes (‘ and ‘‘). The quotes at the
end are the usual quotes (’ and ’’). Notice that output quote between
‘it’ and ‘s’ is produced using a single quote in LaTEX.

To get properly nested quotations you insert a thin space where
the quotes “meet.” Recall that the thin space command (\,) typesets
a thin space. Figure 2.2 provides a concrete example that is taken
from [Lamport 1994, page 14]. Figure 2.2 provides another example.
The first line of this example looks much better than the other two.
Note that LaTEX parses three consecutive quotes as a pair of quotes
followed by one more quote. This is demonstrated by the second line
of the output, which looks terrible. The last line of the input avoids
the three consecutive quotes by adding an empty group that makes

46 Chapter 2

explicit where the double quotes and the single quote meet. Still the
resulting output doesn’t look great.

Intermezzo. As a general rule, British usage prefers the use of single
quotes for ordinary use. This poses a problem if an apostrophe is used
for the possessive form: He said ‘It is John’s book.’ This is why it is also
acceptable to use double quotes [Trask 1997, Chapter 8].

2.5 Dashes

There are three kinds of dashes: -, –, and —. In LaTEX you get them
by typing -, --, and ---. The second symbol can also be typeset with
the command \textendash and the last symbol with the command
\textemdash. The symbol –, which is used in mathematical expressions
such as a – b, is not a dash. This symbol is discussed in Chapter 8. The
following briefly explains how the dashes are used.

- This is the intra-word dash, which is used to hyphenate compound
modifiers such as one-to-one, light-green, and so on [Trask 1997, Chap-
ter 6]. In LaTEX you typeset this symbol as follows: -.

– This is the en-dash, which has the width of 1 en. An en is equivalent
to half the current type size, so an en-dash is shorter in normal text
than it is in large text. The en-dash is mainly used in ranges: pages
12–15 (from 12 to 15). However, the en-dash is also used to link two
names that are sharing something in common: a joint Anglo–French
venture [Allen 2001, page 45]. The LaTEX command \textendash and
the sequence -- typeset the en-dash. When you typeset an en-dash, it
looks better if you add a little space before and after. Remember that
\, produces a thin space. Use this command for the horizontal space.

… pages˜12\,--\,15 (from˜12 to˜15). LaTEX Usage

— This is the em-dash, which has the same width as an em. An em is
equal to the current type size. The em-dash separates strong interrup-
tions from the rest of the sentence—like this [Trask 1997, Chapter 6].
Bringhurst [2008, page 80] prefers the en-dash to the em-dash. The
LaTEX command \textemdash and the sequence --- typeset the em-
dash. An em-dash at the start of a line doesn’t look very good so you
should tie each em-dash to the preceding word.

… the rest of the sentence˜\textemdash
like this˜\parencite[Chapter˜6]{Trask:1997}.

LaTEX Usage

Figure 2.3 presents an example of the dashes. A few years ago
I noticed that sometimes --- doesn’t work with X ETEX (even with
Mapping = tex-text enabled). However, \textemdash always worked.

2.6 Full Stops

LaTEX usually treats a full stop (.) as an end-of-sentence indicator. By

Running Text 47

The intra-word dash is used to hyphenate
compound modifiers such as light-green,
X-ray, or one-to-one. …

The en-dash is used in ranges: pages˜12--15.
The em-dash is used to separate strong
interruptions from the rest of the
sentence˜--- like this%
˜\cite[Chapter˜6]{Trask:1997}. …

Dashes
Figure 2.3

default, LaTEX inserts a bit more space after the full stop at the end
of a sentence than it does between words. It also does this after other
punctuation symbols. The \frenchspacing command turns this fea-
ture off. The command \nonfrenchspacing turns the feature on again.
When a full stop is not the end of a sentence you need to help LaTEX a
bit by inserting the space command (\) after the full stop.

Meet me at 6˜p.m.\ at the Grand Parade. LaTEX Usage

However, when an uppercase letter is followed by a full stop, then
LaTEX assumes the full stop is for abbreviation. For example:

Donald˜E. Knuth developed the {\TeX} system. LaTEX Usage

This convention causes a problem if an uppercase letter really is
the end of a sentence. Insert a \@ before the full stop if this happens.

In Frank Herbert’s \emph{Dune} saga,
the Mother School of the Bene Gesserit
is situated on the planet Wallach IX\@.

LaTEX Usage

LaTEX inherits its habit of putting some extra space after full stops
and other punctuation symbols from TEX. Bringhurst [2008, pages 28–
30] points out that there really is no reason to add such extra space
for modern works. Following Bringhurst’s advice, this document was
typeset with \frenchspacing enabled.

2.7 Ellipsis

The command \ldots produces an ellipsis (…), which is used to indi-
cate an omission. If the ellipsis occurs at the end of a sentence, then
you still need to add an end-of-sentence marking full stop. If this
happens then Felici [2012, Figure 13.15] recommends that you put the
ellipsis close to the preceding text and then add the full stop.

Many stories start with
‘Once upon a time\ldots.’

They usually end with
‘\ldots\ and they all lived
happily ever after.’

Many stories start with ‘Once
upon a time….’ They usually end
with ‘… and they all lived happily
ever after.’

48 Chapter 2

Robert Bringhurst, author of
\emph{Elements of

Typographic Style,}
recommends setting such
punctuation symbols in
the brighter type.

\textbf{Do as he}, or
risk getting ugly type.

Robert Bringhurst, author of Ele-
ments of Typographic Style, recom-
mends setting such punctuation
symbols in the brighter type. Do
as he, or risk getting ugly type.

Good borderline punctuation
Figure 2.4

Robert Bringhurst, author of
\emph{Elements of

Typographic Style},
recommends setting such
punctuation symbols in
the brighter type.

\textbf{Do as he,} or
risk getting ugly type.

Robert Bringhurst, author of Ele-
ments of Typographic Style, recom-
mends setting such punctuation
symbols in the brighter type. Do
as he, or risk getting ugly type.

Poor borderline punctuation
Figure 2.5

2.8 Emphasis

Emphasis is a typographic tool for typesetting text in a different typeface.
The idea is that this makes the text stand out. Emphasis is especially
useful when introducing a new concept, such as in this paragraph.

In some documents, emphasis is implemented by typesetting text
in a bold face typeface, by typesetting it in uppercase typeface, or
(worse) by underlining the text. LaTEX emphasises text in paragraphs
by italicising the text. Trask [1997, page 82] calls this the preferred style
for emphasis. The LaTEX command for emphasis is \emph.

Emphasised \emph{example}. Emphasised example.

2.9 Borderline Punctuation

Bold text looks darker than normal, upright text and italicised text
look brighter than normal, upright text. When small punctuation
symbols get caught between darker and brighter type it is time to
pay attention. Robert Bringhurst, author of Elements of Typographic
Style, recommends setting such punctuation symbols in the brighter
type [Bringhurst 2008]. Do as he, or risk getting ugly type. Figures 2.4
and 2.5 demonstrate what you get if you follow Bringhurst’s advice and
what if you don’t. The figures do not excel in terms of maintainability
because they hardcode the author’s name and the title of the work.

2.10 Footnotes and Marginal Notes

It is generally accepted that using footnotes and marginal notes should
be used sparingly because they are disruptive. However, proper use of

Running Text 49

Footnotes\footnote{A footnote is a note
of reference, explanation, or comment that is
usually placed below the text on a printed page.}
can be a nuisance. This is especially true if
there are many.\footnote{Like here.} The more you see
them, the more annoying they get.\footnote{Got it?}

Footnotesa can be a nuisance. This is especially true if there are
many.b The more you see them, the more annoying they get.c

aA footnote is a note of reference, explanation, or comment that is usually placed
below the text on a printed page.

bLike here.
cGot it?

Using footnotes
Figure 2.6

marginal notes in documents with wide margins can be very effective.
Not surprisingly, LaTEX provides a command for footnotes and a

command for marginal notes. Figure 2.6 demonstrates how to spec-
ify footnotes in LaTEX. A marginal note or marginal paragraph is like a
footnote, but placed in the margin as on this page. The command Avoid marginal notes in

very narrow margins.\marginpar{〈text〉} puts 〈text〉 in the margin as a marginal note. By
passing an optional argument to the command you can put differ-
ent text on odd (recto/front/right) pages and on even (verso/back/left)
pages. The optional argument is used for even pages and the required
argument is used for odd pages. If you’re using both the optional and
required argument then it is easy to remember which is which: the
optional argument is to the left of the required argument so it’s for
the left page; the required argument is for the right page. Note that
narrow marginal notes may look better with ragged text, which is text
that is aligned to one side only. On the right (left) pages you use ragged
right (left) text. Section 2.19.2 explains how to typeset ragged text.

2.11 Displayed Quotations and Verses

The quote and quotation environments are for typesetting displayed
quotations. The former is for short quotations; the latter is for longer
quotations. Figure 2.7 shows how you use the quote environment. The
command \\ in Figure 2.7 forces a line break.

The verse environment typesets poetry and verse. Figure 2.8 shows
how you use the environment. In this example, the command \qquad
inserts two quads. Here a quad is an amount of space that is equivalent
to the current type size. So if you use a 12 pt typeface then a quad
results in a 12 pt space in normal text. The command \\ inside the
verse environment determines the line breaks. Remember that the
command \, before the letter S inserts a thin space.

2.12 Line Breaks

In the previous section, the command \\ inserted a line break in
displayed quotations and verses. The command also works inside

50 Chapter 2

Blah blah blah blah blah blah blah blah blah blah blah.
\begin{quote}

Next to the originator of a good sentence
is the first quoter of it. \\
\emph{Ralph Waldo Emerson}

\end{quote}
Blah blah blah blah blah blah blah blah blah blah blah.

Blah blah blah blah blah blah blah blah blah blah blah.

Next to the originator of a good sentence is the first
quoter of it.
Ralph Waldo Emerson

Blah blah blah blah blah blah blah blah blah blah blah.

The quote environment
Figure 2.7

The following anti-limerick is
attributed to W.\,S. Gilbert.

\begin{verse}
There was an old man of St.˜Bees, \\
Who was stung in the arm by a wasp; \\

\qquad When they asked, ’’Does it hurt?’’ \\
\qquad He replied, ’’No, it does n’t, \\

But I thought all the while ’t was a Hornet.’’
\end{verse}

The following anti-limerick is attributed to W. S. Gilbert.

There was an old man of St. Bees,
Who was stung in the arm by a wasp;

When they asked, ”Does it hurt?”
He replied, ”No, it does n’t,

But I thought all the while ’t was a Hornet.”

The verse environment
Figure 2.8

paragraphs. An optional argument determines the extra vertical space
of the line break: \\[〈extra vertical space〉]. A line break at the end
of a page may trigger a page break. If you don’t want a page break then
you should use the command *. It is identical to \\ but it inhibits
page breaks.

2.13 Controlling the Size

With the proper class and packages there is usually no need to change
the type size of your text. However, sometimes it has its merits, e.g.,
when you’re designing your own titlepage or environment. Table 2.5
lists the declarations and environment that change the type size.
The preferred “size” for long-ish algorithms and program listings is
\scriptsize. If you’re using a package to typeset listings then the
package usually chooses the right size. If not, it probably lets you
specify the type size. Figure 2.9 shows how you change the size of text.

Running Text 51

Declaration Environment Example

\tiny tiny Example

\scriptsize scriptsize Example

\footnotesize footnotesize Example
\small small Example
\normalsize normalsize Example
\large large Example
\Large Large Example
\LARGE LARGE Example
\huge huge Example
\Huge Huge Example

Size-affecting declarations and
environments

Table 2.5

{\tiny Mumble. \\
\begin{normalsize}

What?
\end{normalsize} \\
\begin{Huge}

Mumble!
\end{Huge} }

Mumble.

What?

Mumble!

Controlling the size
Figure 2.9

2.14 Seriffed and Sans Serif Typefaces

LaTEX has several commands that change the type style. Before studying
these commands it is useful to study the difference between seriffed
and sans serif typefaces and when to use them.

A serif is a little decoration at the end of some of the strokes of
some of the letters. In a seriffed typeface the letters have serifs. Seriffed
typefaces are sometimes called roman typefaces but in LaTEX roman
means upright. In a sans serif typeface the letters lack serifs.

Most books use a seriffed typeface for the running text [Unger
2007, pp. 167–168] and the most popular typeface for the running text
of books and reports is (Monotype/Linotype) Times Roman [Felici 2012], a
seriffed typeface. Seriffed typefaces are also used for the running text
of most papers, theses, and dissertations in science. Turabian [2007,
pp. 374–375] recommends that you use a typeface that is designed for
text and that you use a size in the range of 10–12 pt, with 12 pt being
the preferred size. Admittedly, the being designed for text is a bit vague
but Turabian [2007] give two examples, both of which are seriffed.

As lines get longer and longer, seriffed typefaces are easier to read
and make fast reading easier [Unger 2007]. Sans serif typefaces may
look better on the screen but the ultimate criterion for printed matter
is how the text looks in print, so never choose the typeface for your
printed text based on how it looks on the screen.

If a typeface family has a seriffed and sans serif typeface of the same

52 Chapter 2

type size (point size), then the seriffed typeface usually requires more
horizontal space [Unger 2007]. Stated differently, sans serif typefaces
are usually more efficient when it comes to saving space. This may be
exploited by using sans serif typefaces in captions, in brochures, in
short narrow columns, or on road signs [Unger 2007].

If you don’t change the typeface then LaTEX will typeset the body of
your document in Computer Modern. An example of Computer Modern
may be found in Table 2.6, further on in this chapter.

2.15 Small Caps Letters

Small caps letters are used to typeset acronyms and abbreviations. Their
shape is the same as uppercase letter but their height is smaller, which
lets them blend in better with the rest of the text. For example, compare
NO SHOUTING with no shouting. The latter is easier on the eye.

Adding extra space uniformly to the left and right of characters
in a passage of text is called tracking or letterspacing. The extra space
that is added per letter is called the tracking space. Tracking passages
of small caps text is a common technique to improve the legibility.
For example non-spaced small caps is not spaced, whereas spaced
small caps is letterspaced.

The command \textsc typesets lowercase letters in small caps.
The easiest way to automatically letterspace such text is to use the
microtype package with the option tracking=smallcaps. After this all
small caps text will be letterspaced.

\textsc{No shouting}. No shouting.

The microtype package also provides character protrusion (margin
kerning) and font expansion. Character protrusion adjusts the charac-
ters at the margins of the text. Font expansion uses narrow or wider
font versions so as to make the overall appearance of the text more
uniform, avoiding long cramped, dark lines with many characters and
long loose, bright lines with few characters. As a side-effect, font expan-
sion may also be used to choose better hyphenation points [Schlicht
2010]. This document was typeset using the microtype package with
the following options.

\usepackage[final,tracking=smallcaps,
expansion=alltext,protrusion=true]{microtype}

LaTEX Usage

Bringhurst [2008, page 30] recommends that you add 5–10% of the
type size (point size) for the tracking space. The microtype package
expects the extra tracking in thousands of the type size. The following
sets the tracking space to 5% for the sc (small caps) shape.

\SetTracking{encoding=*,shape=sc}{50} LaTEX Usage

Most microtype users agree that the package improves the appear-
ance of their documents.

Running Text 53

Declaration Command Example

\mdseries \textmd Medium Series
\normalfont \textnormal Normal Style
\rmfamily \textrm Roman family
\upshape \textup Upright Shape
\itshape \textit Italic Shape
\slshape \textsl Slanted Shape
\bfseries \textbf Boldface Series
\scshape \textsc Small Caps Shape
\sffamily \textsf Sans Serif Family
\ttfamily \texttt Typewriter Family

Type style affecting declara-
tions and commands. The last
column shows the result in
Computer Modern (LaTEX’s de-
fault typeface). The first four
lines usually correspond to the
default style. The first nine type-
faces are proportional. They
may have glyphs with different
widths, e.g., compareM and i.
Small caps letters are useful for
abbreviations. The last typeface
is non-proportional, which is
useful in program listings.

Table 2.6

2.16 Controlling the Type Style

Changing the type size is hardly ever needed in an article, thesis, report,
or book. Changing the type style is required much more, but usually
this is done automatically by the commands that typeset the title of
your document, the section titles, the captions, and so on.

There are ten LaTEX type style affecting declarations. Each declara-
tion has a command that takes an argument and applies the type style
of the declaration to the argument. The arguments cannot have para-
graph breaks. The declarations and commands are listed in Table 2.6.

Intermezzo. If you really must change the type style of your text then it
is probably for a specific purpose. For example, to change the type style
of a newly defined word, to change the type style of an identifier in an
algorithm, and so on. Rather than hard-coding the style in your input, it is
better if you define a user-defined command that typesets your text in the
required style and use the command to typeset your text. The command’s
name should reflect its purpose. For example \identifier to typeset an
identifier in an algorithm, \package to typeset the name of a LaTEX package,
and so on. Using this approach improves maintainability. For example, if
you want to change the type style of all identifiers in your text then you
only need to make changes in the definition of the command that typesets
identifiers. Defining your own commands is discussed in Chapter 11.

2.17 Abbreviations

This section is about abbreviations. It provides some guidelines about
their spelling and how to typeset them in LaTEX.

2.17.1 Initialisms

Abbreviations that are made up of the initial letters of the abbreviated
words are called initialisms. Non-standard initialism are usually written
with a full stop after each part in the abbreviation: Ph.D. (Philosophiae

54 Chapter 2

In˜2010 Prof.˜Donald Knuth was invited to the
annual TeX User Group Conference in San Francisco, Ca.\
to speak about a revolutionary successor to \TeX.

This remarkable system is entirely menu driven and
incorporates facilities for social networking.
Pronouncing the name involves making the sound of a bell.

Finer points of typesetting ab-
breviations

Figure 2.10

Doctor), D.Phil. (Doctor of Philosophy), M.Sc. (Master of Science), and
so on. However, if the initialisms are standard, then you omit the full
stops, so B.B.C. becomes bbc, 4 G.L. (fourth-Generation Language)
becomes 4gl, and Ph.D. becomes Ph D (in LaTEX Ph~D). Bringhurst
[2008, page 48] recommends typesetting abbreviations with more than
two uppercase letters in spaced small capitals: spaced small caps.
Section 2.15 explains how to get spaced small caps.

Some authors recommend that you letterspace Uniform Resource
Locators (urls), phone numbers, and email addresses because they
are not words. See for example [Bringhurst 2008] or [Hedrick 2003].

Abbreviations of personal names such as D. E. K., J. F. K., J. S. B., and
the like should not be letterspaced.

2.17.2 Acronyms

An acronym is an initialism that is pronounced as a word. For example,
radar (RAdio Detection And Ranging), sonar (SOund Navigation And
Ranging), nasa (National Aeronautics and Space Administration),
and ebcdic (Extended Binary Coded Decimal Interchange Code);
but not acm (Association for Computing Machinery), bbc (British
Broadcasting Corporation), and rsvp (Répondez S’il Vous Plaît). Note
that not all acronyms are spelt with uppercase letters; if you’re not
certain, look up the spelling. Since acronyms are just a special form
of initialisms, we should follow Bringhurst’s advice, and write them
with small caps if they are spelt with (two or more) uppercase letters.

2.17.3 Shortenings

A word that is abbreviated by taking the first few letters of that word
is called a shortening. To avoid ambiguity, shortenings are usually
written with a full stop at the end of each part. For example, p. (page),
proc. (proceedings), sym. (symposium), fig. (figure), Feb. (February),
Prof. (Professor), and so on. The abbreviation pp. is for pages.

Remember that LaTEX inserts a little extra white space after a full
stop if \frencspacing isn’t enabled. If an abbreviation is not at the
end of a sentence and ends with a full stop then this extra space may
look bad. To suppress the extra white space you have to hardcode a
space command (\) after the abbreviation or tie the abbreviation and
the following word. Figure 2.10 provides a small example.

Running Text 55

2.17.4 Introducing Abbreviations

The first time you introduce an abbreviation you should explain it.
Most authors first spell out the abbreviation and then provide the ab-
breviation in parenthesis. The acronym package provides some support
for defining and referencing abbreviations in a consistent style. This
is done using the standard label-referencing technique. The package
provides commands for singular and plural versions of abbreviations
and for abbreviated and unabbreviated versions.

Page 4 of this book introduces an acronym for integrated develop-
ment environments. This text was generated by the following input.

… many \acp{IDE} … LaTEX Input

The command \acp in this example is provided by the acronym
package. The command introduces the plural version of an abbrevi-
ation. The acronym package also provides the \ac command, which
introduces the singular version of an abbreviation. The argument IDE
of the \acp command is the label of the acronym. Some other part of
the input associates the label IDE with the abbreviated version ‘ide’
and the expanded version ‘Integrated Development Environment.’
This was (essentially) done as follows:

\acro{IDE}[\textsc{ide}]%
{Integrated Development Environment}

LaTEX Input

When this book was generated and the command \acp was used
in the second last input, this was the first time the label IDE was refer-
enced, which is why it resulted in the following output.

… many Integrated Development Environments (ides) … LaTEX Output

The label IDE is also referenced in other locations in the input,
but when that happens it always results in the abbreviated version of
the acronym: ide. More information about the acronym package may
be found in the package documentation [Oetiker 2010].

2.17.5 British and American Spelling

There are differences between American and British usage in time ab-
breviations. According to Trask [1997] Americans write 10:05 am (Ante
Meridiem) for five past ten in the morning and 13:15 pm (Post Meri-
diem) for a quarter past one in the afternoon. British spelling prefers
10.05 a.m. and 13.15 p.m. [Trask 1997]. Felici [2012] notices that Ameri-
cans have also started using the British form.

For titles such as Mister, Doctor, and so on, British and American
usage differ. Britsh usage is the same as for shortenings. For example,
Mr Happy, Dr Who, and Fr Dougal McGuire. Americans add the full
stop: Mr. Ed, Dr. Quinn, Medicine Woman, and Fr. Bob Maguire.

56 Chapter 2

Abbreviation Latin meaning English meaning

e.g. exempli gratia for example
i.e. id est that is/in other words
etc. et cetera and so forth

viz. videlicet that is to say/namely
cf. confer compare
et al. et aluis and others

Latin abbreviations. The first
column lists the abbreviations,
the second the original Latin
meaning, and the last the En-
glish translation. Note that the
abbreviations at the bottom of
the table are slanted. This is in-
tensional and preferred usage.

Table 2.7

2.17.6 Latin Abbreviations

This section studies some Latin abbreviations that are commonly used
in scientific writing. Table 2.7 presents the more commonly occurring
abbreviations, their Latin meaning, and the English translation.

Note that some abbreviations are typeset in italics. This is not by
accident: this is how they should be typeset—but conventions may
differ from field to field. Also note that the al in et al. gets a full stop
because it is an abbreviation of aluis but that the et does not get a full
stop because it is already spelt out in full. Remember Bringhurst’s
advice and put the full stop inside the argument of \emph: \emph{et
al.} Finally note that etc. is short for et cetera, not for ectcetra.

Trask [1997] discourages these abbreviations. Trask continues by
pointing out that writing statements like the following are wrong
because the reader should be invited to consult the reference.

The Australian language Dyirbal has a remarkable gender
system, cf. [Dixon 1972].

Trask proposes the following solution.

The Australian language Dyirbal has a remarkable gender
system; see [Dixon 1972].

Abbreviations such as etc., i.e., and e.g. require additional punctua-
tion [Strunk, and White 2000]:

◦ Abbreviations such as bbc, nbc, etc., are called initialisms.
◦ Shortenings, i.e., abbreviations that are formed by taking the first

letters of the abbreviated word, usually end with a full stop.
◦ Abbreviations are not always spelt te same, e.g., Ph.D. and Ph D.

2.17.7 Units

The Système International d’Unités/International System of Units
(si) provides rules for consistent typesetting of quantities of units.
Heldoorn [2007] provides a summary of these rules. The following is
a summary of the main rules.

◦ The base unit symbols are printed in upright roman: g (gram), m
(metre), t (tonne), …. Exceptions are unit symbols that are spelt in
Greek and the symbols for inch, degrees, seconds, and so on.

Running Text 57

Fill in the missing word.\\
Fill in the missing
.

Fill in the missing word.
Fill in the missing .

The \phantom command
Figure 2.11

◦ The first letter of the unit symbol is uppercase if it is derived from a
proper name: Å (Ångström), N (Newton), Pa (Pascal), ….

◦ The plural form of the base unit symbol is the same as the singular.
◦ The base unit symbols do not receive an end-of-abbreviation full stop.

Needless to say, it is important that you typeset quantities of units
correctly and consistently. The hard way is doing it by hand. The easy
way is doing it with LaTEX.

At the moment of writing the most popular package for specifying
si units is the siunitx package [Wright 2011].

◦ It provides support to configure how the si units are typeset. For
example, kg m s–1, versus kg m s-1, versus kg m/s, and so on.

◦ It provides commands to typeset quantities of units: \SI[mode=text]
{1.23}{\kilogram} will give you 1.23 kg and \SI{1.01}{\kilogram}
will typeset 1.01 kg in the default typesetting mode.

◦ The package provides macros to typeset lists of quantities in a given
unit. For example \SIlist{0.1;0.2;1.0}{\milli\metre} gives you
0.1, 0.2 and 1.0 mm if the default typesetting mode is text. If you
add the option list-final-separator={, and~} then you get 0.1, 0.2,
and 1.0 mm.

◦ By default, unit symbols are typeset using the default math roman
font but you can also use different fonts.

Discussing the entire siunitx package is beyond the scope of this
book. The interested reader is referred to the package documenta-
tion [Wright 2011] for further information.

2.18 Phantom Text

Some commands don’t typeset anything with ink but do affect the
horizontal and vertical spacing. The following is the first of three
useful versions.

This command “typesets” its argument using invisible ink. The di-
mensions of the box are the same as the dimensions required for
typesetting 〈stuff〉. ☐√

Figure 2.11 demonstrates how you use the command. The \hphan-
tom and \vphantom commands are horizontal and vertical versions of
the \phantom command. The following explains how they work.

\hphantom{〈stuff〉}
This is the horizontal version of the \phantom command. The com-
mand creates a box with zero height and the same width as its argu-
ment, 〈stuff〉. ☐√

58 Chapter 2

\begin{center}
Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{center}

Blah.
Blah blah blah.

Blah blah blah blah blah blah
blah blah blah blah blah blah

blah blah blah.

The center environment
Figure 2.12

\vphantom{〈stuff〉}
This is the vertical version of the \phantom command. The command
creates a box with zero width and the same height as its argument,
〈stuff〉. It is especially useful for getting the right size for delimiters
such as parentheses in mathematical formulae that span multiple
lines. This is explained in more detail in Section 8.8.1. ☐√

2.19 Alignment

This section studies three commands and two environments that
change the text alignment. The first command centres text. The second
and third command align text to the left and to the right. The first of
the environments is the tabular environment, which typesets row-
based content with horizontal alignment positions (columns). The
last environment is the tabbing environment. This environment lets
you define horizontal alignment (tab) positions and lets you position
text relative to these alignment positions.

2.19.1 Centred Text

The center environment centres text. The example in Figure 2.12
demonstrates the environment. The example is inspired by Iggy Pop.

2.19.2 Flushed/Ragged Text

The flushleft environment and the \raggedright declaration typeset
text that is aligned to the left. Likewise, the flushright environment
and \raggedleft declaration typeset text that is aligned to the right.
The example in Figure 2.13 shows the effect of the flushleft environ-
ment.

2.19.3 Basic tabular Constructs

The tabular environment typesets text with rows and alignment posi-
tions for columns. The environment also has siblings called tabular*
and array. The tabular* environment works similar to tabular but it
takes an additional argument that determines the width of the result-
ing construct. This environment is explained in Section 2.19.5. The

Running Text 59

\begin{flushleft}
Blah.\\
Blah blah blah.

Blah blah blah blah blah
blah blah blah blah blah
blah blah blah blah blah.

\end{flushleft}

Blah.
Blah blah blah.
Blah blah blah blah blah blah
blah blah blah blah blah blah
blah blah blah.

The flushleft environment
Figure 2.13

array environment can only be used in math mode. The tabular and
tabular* environments can be used in both text and math mode.

The remainder of this section introduces the tabular environment.
This introduction should more than likely suffice for day-to-day usage.
A more detailed presentation is provided in Section 2.19.5.

In its simplest form the tabular environment is used as follows.

\begin{tabular}[〈global alignment〉]
{〈column alignment〉}

〈text〉 & 〈text〉 & … & 〈text〉 \\
…
〈text〉 & 〈text〉 & … & 〈text〉 \\
〈text〉 & 〈text〉 & … & 〈text〉

\end{tabular}

LaTEX Usage

The body of the environment contains a sequence of rows that are
delimited by linebreaks (\\). Each row is a sequence of alignments
tab-delimited 〈text〉. The i-th 〈text〉 in a row corresponds to the i-th
column. The following explains the arguments of the environment:

〈global alignment〉
This optional argument determines the vertical alignment of the
environment. Allowed values are t (align on the top row), c (align on
the centre), or b (align on the bottom row). The default value of this
argument is c. ☐√

〈column alignment〉
This argument determines the column alignment and additional
decorations. For day-to-day usage, the following options are relevant.

l This option corresponds to a left-aligned column.
r This corresponds to a right-aligned column.
c This corresponds to a centred column.
p{〈width〉} This option corresponds to a top-aligned 〈width〉-

wide column that is typeset as a paragraph in the “usual” way.
Some commands such as \\ are not allowed at the top level.

| This option does not correspond to an actual column but
results in additional decoration. It results in a vertical line
drawn at at the “current” position. For example, if 〈column
alignment〉 is l|cr then there will be a vertical line separat-
ing the first two columns. Using this option is discouraged
because the vertical lines usually distract. ☐√

The tabular environment also defines the following commands,

60 Chapter 2

\begin{tabular}{l|crp{3.1cm}}
\hline

1 & 2 & 3
& Box me in,

but not too
tight, please.

\\\hline
11 & 12 & 13 & Excellent.

\\ 111 & 112 & 113 & Thank you!
\\\hline
\end{tabular}

1 2 3 Box me in, but not
too tight, please.

11 12 13 Excellent.
111 112 113 Thank you!

Using the tabular environ-
ment

Figure 2.14

which may be used inside the environment. You can only use these
commands at the start of a row.

\hline

This command inserts a horizontal rule. The command may only be
used at the start of a row. ☐√

\cline{〈number₁〉}{〈number₂〉}
This draws a horizontal line from the start of column 〈number₁〉 to the
end of column 〈number₂〉. ☐√

\vline

This results in a vertical line. The command may only be used if the
column is aligned to the left, to the right, or to the centre. ☐√

Figure 2.14 presents a simple example of the tabular environment.
The example shows all alignments and the paragraph feature.

Note that line breaks are inserted automatically inside p-type
columns. Line breaks are not allowed in columns aligned with l, r,
or c.

Intermezzo. The column alignment option | and the commands \hline,
\cline, and \vline are irresistible to new users. This may be because
most examples of the tabular environment involve the option and these
commands. It is understandable that new users want to repeat this, espe-
cially when they’re not aware that using the option and the commands in
moderation is better because the grid lines are dazzling and distracting.
Chapter 6 provides some guidelines on how to design good tables.

Regular m× n tables with the same alignment in the same column
are rare. The following command lets you join columns within a row
and override the default alignment.

\multicolumn{〈number〉}{〈column alignment〉}{〈text〉}
This inserts 〈text〉 into a single column that is formed by combining
the next 〈number〉 columns in the current row. The alignment of the
column is determined by 〈column alignment〉. This command is espe-
cially useful for overriding the default alignment in column headings
of a table. An example is presented in the next section. ☐√

Running Text 61

2.19.4 The booktabs Package

The booktabs package adds some extra functionality to the tabular
environment. The package discourages vertical grid lines. Using the
booktabs package results in better looking tables.

◦ The package provides different commands for different rules.
◦ The package provides different rules that may have different widths.
◦ The package provides commands for temporarily/permanently chang-

ing the width.
◦ The package has a command that adds extra line space.
◦ The package is compatible-ish with the colortbl package, which is

used to specify coloured tables.

The booktabs package provides the following commands. The first
four commands take an option that specifies the width of the rule.
The first four commands can only be used at the start of a row.

\toprule[〈width〉]
This typesets the full horizontal rule at the top the table. ☐√

\bottomrule[〈width〉]
This typesets the full horizontal rule at the bottom of the table. ☐√

\midrule[〈width〉]
This typesets the remaining full horizontal rules in the table. ☐√

\cmidrule[〈width〉]{〈number₁〉-〈number₂〉}
This typesets a partial horizontal rule. The rule is supposed to be used
in the middle of the table. It ranges from the start of column 〈number₁〉
to the end of column 〈number₂〉. ☐√

\addlinespace[〈height〉]
This command is usually used immediately after a line break and it
inserts more vertical line space to the height of 〈height〉. ☐√

Figure 2.15 demonstrates how to use the booktabs-provided rule
commands. The resulting output is presented in Figure 2.16. Notice
that the inter-linespacing is much better than the output in Figure 2.14.
Also notice the different widths of the rules.

2.19.5 Advanced tabular Constructs

Using basic tabular constructs usually suffices for day-to-day typeset-
ting. This section explains the techniques that give you the power to
typeset more advanced tabular constructs.

The following starts by presenting two addition column options.
This is followed by some style parameters that control the default size
and spacing of the tabular, tabular*, and array environments. The
column options are as follows.

*{〈number〉}{〈column options〉}
This inserts 〈number〉 copies of 〈column options〉. For example, *{2}{
lr} is equivalent to lrlr. ☐√

@{〈text〉}
This is called an @-expression. It inserts 〈text〉 at the current position.

62 Chapter 2

\begin{tabular}[c]{lrrp{47mm}}
\toprule \multicolumn{1}{r}{\textbf{Destination}}

& \multicolumn{1}{r}{\textbf{Duration}}
& \multicolumn{1}{r}{\textbf{Price}}
& \multicolumn{1}{r}{\textbf{Description}}

\\\midrule
Cork City
& 7 Days & \euro 300.00
& Visit Langer Land. Price includes visits

to Rory Gallagher Place and de Maarkit.
\\ Dingle

& 8 Days & \euro 400.00
& Have fun with Fungie.

\\\bottomrule
\end{tabular}

Input of booktabs package
Figure 2.15

Destination Duration Price Description

Cork City 7 Days €300.00 Visit Langer Land. Price in-
cludes visits to Rory Gal-
lagher Place and de Maarkit.

Dingle 8 Days €400.00 Have fun with Fungie.

Output of booktabs package.
The input of this figure is listed
in Figure 2.15. Clearly, book-
tabs rules rule.

Figure 2.16

This is useful if you want to add certain text or symbols at the given
position. For example @{.} inserts a full stop at the current position.

LaTEX normally inserts some horizontal space before the first col-
umn and after the last column. It inserts twice that amount of space
between adjacent columns. However, this space is suppressed if an
@-expression precedes or follows a column option. For example, if
〈column alignment〉 is equal to @{}ll@{}l@{} then this suppresses the
horizontal space before the first column, after the last column, and
between the second and last column. The length \tabcolsep controls
the extra horzontal space that is inserted. The value of the command
is half the width that is inserted between columns.

A horizontal spacing command in an @-expression controls the
separation of two adjacent columns. For example, @{\hspace{〈width〉}
} inserts a horizontal 〈width〉-wide space.

Finally, @-expressions may also adjust the default column separa-
tion. The \extracolsep{〈width〉} adds additional horizontal 〈width〉-
wide space between subsequent columns. However, additional width
is never inserted before the first column. The \extracolsep{\fill}
inserts the maximum possible amount of horizontal space. This is
useful if you want to extend the width to the maximum possible width.

The columns in the second table in Figure 2.17 are spread out
evenly with an @-expression. The third table adds the usual space to
the start of the first and the end of the last column. The first table is
added for comparison. ☐√

Running Text 63

\begin{tabular*}{3cm}{@{}lcr@{}}
\toprule M & M & M \\\bottomrule

\end{tabular*}
\begin{tabular*}{3cm}

{@{\extracolsep{\fill}}%
lcr%
@{\hspace{0pt}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}
\begin{tabular*}{3cm}

{@{\hspace{\tabcolsep}}%
@{\extracolsep{\fill}}%
lcr%
@{\hspace{\tabcolsep}}}

\toprule M & M & M \\\bottomrule
\end{tabular*}

M M M M M M M M M

Controlling column widths
with an @-expression. The
output is spaced out for clarity.

Figure 2.17

The following commands control the default appearance of tabu-
lar, tabular*, and array environments.

\arraycolsep

The value of this length command is equal to half the default horizon-
tal distance between adjacent columns in the array environment. This
amount of space is also equal to the default horizontal space inserted
before the first column and after the last column. ☐√

\tabcolsep

The value of this length command is equal to half the default horizon-
tal distance between adjacent columns in the tabular and tabular*
environments. Again, this is equal to the default horizontal space that
is inserted before the first column and after the last column. ☐√

\arrayrulewidth

The value of this length command is the width of the lines resulting
from a | in the 〈column options〉 argument and the lines resulting
from the commands \cline, \hline, and \vline. ☐√

\doublerulesep

The value of this length command is the distance between two adjacent
lines resulting from a || in the 〈column options〉 argument or two
adjacent lines resulting from the \hline command. ☐√

\arraystretch

This command determines the distance between successive rows. It
defaults to 1 and “multiplying” it by x results in rows that are x times
further apart. So, by redefining this command to 0.50 you halve the
row distance. Redefining commands is explained in Chapter 11. ☐√

2.19.6 The tabbing Environment

The tabbing environment is useful for positioning material relative
to user-defined alignment positions. The remainder of this section

64 Chapter 2

\begin{tabbing}
From \=here to \=there \\

\>and \>then\\
\>\>all\\
\>the \>way\\

back \>to \>here.
\end{tabbing}

From here to there
and then

all
the way

back to here.

The tabbing environment
Figure 2.18

\begin{tt}\begin{tabbing}
AAA\=AAA\=AAA\=AAA \kill
FUNC euc(INT a,

INT b): INT \\
BEGIN \+ \\

WHILE (b != 0) DO \\
BEGIN \+ \\

INT rem = a MOD b;\\
a = b; \\
b = rem; \- \\

END \\
RETURN a; \- \\

END;
\end{tabbing}\end{tt}

FUNC euc(INT a, INT b): INT
BEGIN

WHILE (b != 0) DO
BEGIN

INT rem = a MOD b;
a = b;
b = rem;

END
RETURN a;

END;

Advanced tabbing
Figure 2.19

describes some basic usage of the environment. The reader is referred
to [Lamport 1994, pages 201–203] for more detailed information.

The tabbing environment can only be used in paragraph mode (the
“usual mode”). It produces lines of text with alignment in columns
based upon tab positions.

\=

Defines the next tab (alignment) position. ☐√
\\

Inserts a line break and resets the next tab position to the value of
left_margin_tab. ☐√

\kill

Throws away the current line but remembers the tab positions defined
with \=. ☐√

\+

Increments left_margin_tab. ☐√
\-

Decrements left_margin_tab. ☐√
\>

Move to the next tab stop. ☐√
Figures 2.18 and 2.19 present two examples of the tabbing envi-

ronment. The examples do not demonstrate the full functionality of
the environment.

Running Text 65

\usepackage[dutch,british]{babel}...
\selectlanguage{dutch}
% Dutch text here.
Nederlandse tekst hier.

\selectlanguage{british}
% Engelse tekst hier.
English text here.

Using the babel package
Figure 2.20

2.20 Language Related Issues

As suggested by its title, this section is concerned with language related
issues. The remaining three sections deal with hyphenation, foreign
languages, and spelling.

2.20.1 Hyphenation

LaTEX’s (TEX’s really) automatic hyphenation is second to none. How-
ever, sometimes even TEX gets it wrong. There are two ways to over-
come such problems.

◦ The command \- in a word tells LaTEX that it may hyphenate the word
at that position.

Er\-go\-no\-mic has three hyphenation positions. LaTEX Usage

◦ Specifying the same hyphenation patterns is messy and prone to errors.
Using the \hyphenation command is a much cleaner solution. This
command takes one argument, which should be a comma-separated
list of words. For each word you can put a hyphen at the (only) possible,
desired, or allowed hyphenation positions. You may use the command
several times. The following is an example.

\hyphenation{fortran,er-go-no-mic} LaTEX Usage

2.20.2 Foreign Languages

The babel package supports multi-lingual documents. The package
supports proper hyphenation, switches between different languages
in one single document, definition of foreign languages, commands
that recognise the “current” language, and so on. Figure 2.20 provides
a minimal example. Rik Kabel kindly informed that X ETEX users use
the polyglossia package instead of babel. One of the advantages
of the polyglossia package is that it automatically loads the bidi
package when bi-directional scripts are used.

66 Chapter 2

2.20.3 Spell-Checking

LaTEX does not support automatic spell-checking. Note that spell-
checking isn’t trivial anyway because commands may generate text.
Text may come from external files, so make sure you spell-check your
bibliography files.

However, most modern ides have a spell checker. The ispell
program, which can be run from the command line, has a LaTEX spell-
check mode. The -t flag tells the command that the input is LaTEX.

$ ispell -l -t -S input.tex | sort -u Unix Session

Chapter 3
Lists

This chapter is about lists. Here, a list is a sequence of labelled
items. LaTEX has three built in environments supporting unordered lists,
ordered lists, and description lists.

LaTEX marks each item in the output list by giving it a label that
precedes the item. The items are typeset into paragraphs with hanging
indentation, which means the paragraphs are indented a bit further
than the surrounding text.

In unordered lists, all labels are the same and the item order is
irrelevant. Usually the labels are bullet points, asterisks, dashes, ….
Most people refer to such lists as bullet points.

In an ordered list the order of the items does matter. Each label
indicates the order of its item in the list. You could say that the items
are numbered by the labels. Usually, the labels are arabic numbers (1,
2, 3, …), lowercase roman numerals (i, ii, iii, …), lowercase letters (a, b,
…, z), and so on.

In a description list, the order of the items may or may not matter.
In such lists, each label describes its item.

3.1 Unordered Lists

The itemize environment creates an unordered list. In the body of the
environment you start each item in the list using the \item command.
Each itemize environment should have at least one \item. Nested
itemised lists are possible, but the nesting level is limited. Figure 3.1
shows how you use the itemize environment.

Each item in the output list is preceded by its label. Usually, the
shape of the top-level label is a bullet point but the shape may depend
on your document class and your packages.

The command \labelitemi determines the shape of the label of
the top-level items. Likewise, \labelitemii is for labels of subitems,
\labelitemiii for the labels of subsubitems, and \labelitemiv for
the labels of subsubsubitems. By redefining these commands, you
may change the appearance of the labels. You may redefine an existing
command with the \renewcommand* command. The following sets the
shape of the labels at the top level to a plus sign and the labels at level
four to a minus sign. The command \renewcommand* is discussed in
more detail in Chapter 11.

 , ,
DOI 10.1007/978-3-642-23816-1_3, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 67

68 Chapter 3

\begin{itemize}
\item First item.
\item Second item.

Text works as usual here.
\item Third item is a list.

Different labels here.
\begin{itemize}
\item First nested item.
\item Second item.
\end{itemize}

\end{itemize}

• First item.

• Second item. Text works as
usual here.

• Third item is a list. Differ-
ent labels here.

– First nested item.

– Second item.

The itemize environment. No-
tice that the labels of the nested
list are different from the labels
of the top-level list.

Figure 3.1

\begin{itemize}
\renewcommand*\labelitemi{+}
\item Label is plus.
\end{itemize}

\begin{itemize}
\item Default label.
\end{itemize}

+ Label is plus.

• Default label.

Changing the item label. The
command \labelitemi de-
fines the label for top-level
itemised lists. By default it
gives a bullet. By redefining the
command we get a plus in the
first list. The new definition is
local to the first environment.
Therefore, the second list still
has a bullet-shaped label.

Figure 3.2

\renewcommand*\labelitemi{+}
\renewcommand*\labelitemiv{-}

LaTEX Usage

If you only want to change the appearance of a given label for a
single list then the easiest way is to redefine the \labelitemi com-
mand at the start of the body of the list environment. Since the body
of the environment is automatically put in a group, this keeps the
new definition of \labelitemi local to the environment.1 Figure 3.2
shows how to change the appearance of the label at Level 1 and keep
the change local to the environment.

3.2 Ordered Lists

The enumerate environment creates an ordered list. It works just as the
itemize environment but this time the labels are numbers, letters, or
roman numerals, and such. Figure 3.3 demonstrates the environment.

As with the appearance of the labels in the itemize environment
you may also change the appearance of the labels in the enumerate
environment. This time the appearance depends on the four labelling
commands \labelenumi, \labelenumii, \labelenumiii, and \labe-
lenumiv. Each of these commands depends on a counter that counts
the items at its level. Counters are explained in further detail in Chap-
ter 12. The top level items are counted with the counter enumi, the
second level items with enumii, the third level items with enumiii,

1See Section 2.1.2 for further information about the merits of groups.

Lists 69

\begin{enumerate}
\item First item.
\item Second item.
\item Third item is a list.

\begin{enumerate}
\item First nested item.
\item Second item.
\end{enumerate}

\end{enumerate}

1. First item.

2. Second item.

3. Third item is a list.

(a) First nested item.

(b) Second item.

The enumerate environment.
Notice that the labels of the top-
level list are numeric, whereas
the labels of the nested list
are parenthesised lowercase let-
ters.

Figure 3.3

and the fourth level items with enumiv. These counters are managed
by the labelling commands. When a labelling command typesets its
label, it uses the corresponding counter and typesets the label in a
certain style. The style is hard-coded in the command. Typical styles
are (1) arabic numbers, (2) lowercase or uppercase roman numerals,
and (3) lowercase or uppercase letters. Implementing the typesetting of
the label in these styles is done with the commands \arabic, \roman,
\Roman, \alph, and \Alph, which typeset their counter using arabic
numbers, lowercase roman numerals, uppercase roman numerals,
lowercase letters, and uppercase letters. The following demonstrates
how you get lowercase roman numerals for the labels at the top level
and numbers for the labels at the third level.

\renewcommand*\labelenumi{\roman{enumi}}
\renewcommand*\labelenumiii{\arabic{enumiii}}

LaTEX Usage

3.3 The enumerate Package

Redefining labelling commands is tedious and prone to error. The
enumerate package provides a high-level interface to LaTEX’s default
mechanism for selecting the labels of enumerated lists. Basically, the
package redefines the enumerate environment. The resulting environ-
ment has an optional argument that determines the style of the labels
of the lists. For example, using the option A results in labels that are
typeset using the command \Alph. Likewise the options a, I, i, and 1
result in labels that are typeset using the commands \alph, \Roman,
\roman, and \arabic.

However, the package is more flexible and also allows different
kinds of labels. Figure 3.4 provides an example. The interested reader
is referred to the package documentation [Carlisle 1999a] for further
details.

3.4 Description Lists

The description environment creates a labelled list. The labels are
passed as optional arguments to the \item command. Figure 3.5 pro-
vides an example of how to use the description environment.

70 Chapter 3

\usepackage{enumerate}
\begin{document}
…
Surrounding text here.
\begin{enumerate}

[\textbf{{Item}-A}]
\item The first of two

hanging paragraphs.
\item The second of two

hanging paragraphs.
\end{enumerate}

Surrounding text here.

Item-A The first of two hanging
paragraphs.

Item-B The second of two hanging
paragraphs.

Using the enumerate package.
The enumerated list is created
with the environment enumer-
ate, which is redefined by the
enumerate package. The op-
tional argument defines labels
of the form Item-〈uppercase
letter〉. The labels are type-
set relative to the start of the
hanging paragraphs. For long
labels, such as in this example,
this makes them protrude into
the margin of the surrounding text.

Figure 3.4

Kurosawa films include:
\begin{description}
\item[Kagemusha]

When a powerful warlord
in medieval Japan dies,
a poor thief is recruited
to impersonate him. …

\item[Yojimbo]
A crafty ronin comes
to a town divided by
two criminal gangs. …

\item[Sanshiro Sugata]
A young man struggles to
learn the nuance and
meaning of judo. …

\end{description}

Kurosawa films include:

Kagemusha When a powerful
warlord in medieval Japan
dies, a poor thief is re-
cruited to impersonate
him. …

Yojimbo A crafty ronin comes to
a town divided by two crim-
inal gangs. …

Sanshiro Sugata A young man,
struggles to learn the nu-
ance and meaning of judo.
…

Using the description en-
vironment. The environment
works almost the same as the
itemize and enumerate envi-
ronments. The only difference
is that this time you provide the
labels for the list as optional
arguments of the \item com-
mand.

Figure 3.5

3.5 Making your Own Lists

LaTEX’s list environment lets you define your own lists.
\begin{list}{〈label commands〉}{〈formatting commands〉} 〈item list〉 \end{list}

Here 〈label formatting commands〉 typesets the labels. For ordered
lists you may need to define a dedicated counter that keeps track
of the numbers of the labels. How to do this is explained later in
this chapter. The commands in 〈formatting commands〉 format the
resulting list. The formatting depends on length commands. These
commands determine lengths and widths that are used to construct
the resulting list. For example, the distance between adjacent items,
the distance between a label and its item, and so on. Figure 3.6 depicts
the relevant length commands and how they determine the formatting
of the list. The picture is based on [Lamport 1994, Figure 6.3]. The
horizontal length commands are rigid lengths. As the name suggests
the resulting dimensions are fixed. The vertical length commands are
rubber lengths. Rubber lengths result in dimensions that shrink or

Lists 71

Preceding Text

\topsep + \parskip [+ \partopsep]

Item 1
Paragraph 1

Item 1
Paragraph 2

\parsep

Item 2

Label

\parsep + \itemsep

\topsep + \parskip [+ \partopsep]

Following Text

Label

\labelsep

\labelwidth

\itemindent

\listparindent

\leftmargin \rightmargin

Lengths that affect list format-
ting

Figure 3.6

stretch depending on the lack or excess of vertical space on the page.
By redefining the length commands inside the list environment you
can change the appearance of the list. ☐√

Figure 3.7 presents an example of a user-defined list. The command
\newcounter{ListCounter} defines a new counter called ListCounter.
The spell List-\alph{ListCounter} typesets the label of each item as
List- followed by the current value of the counter as a lowercase letter.
Inside the second argument of the list environment, the command
\usecounter{ListCounter} “uses” the counter, which basically adjusts
the value of the counter for the next \item.

As part of LaTEX’s default mechanism all changes to counters and
lengths inside an environment are local. This ensures that the counter
ListCounter is reset to its original value upon leaving the environ-
ment.

Using the list environment over and over with the same argu-
ments is not particularly useful and prone to errors. The \newenvi-
ronment command lets you define a new environment with an easier
hassle-free interface. Figure 3.8 shows how you may implement the
functionality of the list in Figure 3.7 as a user-defined environment.

72 Chapter 3

\newcounter{ListCounter}

\begin{list}
{List-\alph{ListCounter}}
{\usecounter{ListCounter}
\setlength{\rightmargin}{0cm}
\setlength{\leftmargin}{2cm}}

\item Hello.
\item World.
\end{list}

A user-defined list
Figure 3.7

\newcounter{ListCounter}
…
% Define new environment:
\newenvironment

{alphList}
{\begin{list}

{List-\alph{ListCounter}}
{\usecounter{ListCounter}
\setlength{\rightmargin}{0cm}
\setlength{\leftmargin}{2cm}}}

{\end{list}}
…
% Use new environment:
\begin{alphList}

\item Hello.
\item World.

\end{alphList}

A user-defined environment
for lists. In this example, the
\newenvironment command
takes three arguments. The
first is the name of the new
environment, the second ar-
gument determines what to
do upon entering the environ-
ment, and the third what to do
upon leaving the environment.
The second argument opens a
simple list environment and
the third closes the list envi-
ronment.

Figure 3.8

The advantage of the user-defined environment is that it is easier to
use and can be reused.

The first argument of \newenvironment is the name of the new
environment. The second argument determines the commands that
are carried out at the start of the environment. These are the com-
mands that start the list environment. The last argument determines
the commands that are carried out at the end on the environment.
These commands end the list environment. More information about
\newenvironment may be found in Chapter 11.

PART III

Tables,
Diagrams,
and
Data Plots

Oil and charcoal on canvas (24/01/08), 132× 213 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Chapter 4
Presenting External Pictures

This chapter is an introduction to presenting pictures that are
stored in external files. Historically, this was an important mechanism
for importing pictures. Since pictures are usually included as num-
bered figures, this chapter also provides an introduction to the figure
environment and, more generally, floating environments.

The remainder of this chapter, is mainly based on [Carlisle 2005;
Carlisle, and Rahtz 1999; Reckdahl 2006; Lamport 1994]. It starts by
introducing the figure environment and continues by explaining
how to include external pictures. This chapter is included mainly
for completeness because Chapter 5 is an introduction to specifying
pictures and diagrams with the tikz package. Furthermore, Chapter 7
shows how to present data plots using the pgfplots package. Readers
not using external graphics are advised to only read the first two
sections and skip the remainder of this chapter.

4.1 The figure Environment

The figure environment is usually used to present pictures, diagrams,
and graphs. The environment creates a floating environment. Float-
ing environments don’t allow pagebreaks and they may “float” to a
convenient location in the output document [Lamport 1994]. This
mechanism gives LaTEX more freedom to choose better page breaks
for the remaining text. For example, if there’s not enough room left for
a figure at the “current” position then LaTEX may fill up the remainder
of the page with more paragraphs and put the figure on the next page.
In this example the figure doesn’t end up exactly where you intended
it but the result is an aesthetically more pleasing document. However,
it should be noted that you can also force the typesetting of a floating
environment at the “current” position in the output file.

The body of a figure environment is typeset in a numbered figure.
The \caption command may be used to define a caption of the figure.

LaTEX gives some control over the placement of floating figures, of
floating tables, and other floats. For figures the placement is controlled
with an optional argument of the figure environment. The same
mechanism is used for the table environment, which is explained
in Chapter 6. The optional argument, which controls the placement,
may contain any combination of the letters t, b, p, h, and H, which are
used as follows [Lamport 1994, page 197]:

 , ,
DOI 10.1007/978-3-642-23816-1_4, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 75

76 Chapter 4

t Put the float at the top of a page.
b Put the float at the bottom of a page.
p Put the float on a separate page with no text, but only figures, tables,

and other floats.
h Put the float approximately at the current position (here). (This option

is not available for double-column figures and figures in two-column
format.)

H Put the float at the current position (Here). (This option is not available
for double-column figures and figures in two-column format.)

The default value for the optional argument is tbp. LaTEX parses the
letters in the optional argument from left to right and puts the figure
at the position corresponding to the first letter for which it thinks the
position is “reasonable.” Good positions are the top of the page, the
bottom of the page, or a page with floats only, because these positions
do not disrupt the running text too much.

Inside the figure environment the command \caption defines a
caption. The caption takes a moving argument, so fragile commands
must be protected. Moving arguments and \protect are explained in
Section 11.3.3. The regular argument defines the caption as it is printed
in the figure and in the list of figures. If the regular argument gets too
long then you may not want this text in the list of figures. In that case,
you may add an optional argument, which is used to define a short
alternative title for the list of figures. Within the regular argument of
the \caption command, you may define a label for the figure with the
\label command. This works as usual.

The following shows how to create a figure. Inside the figure en-
vironment you can put LaTEX statements to produce the actual figure.
In this example the text ‘Comparison of algorithms.’ appears in the
list of tables and the text ‘Comparison. The dashed line …’ is used for
the caption.

\begin{figure}[tbp]
〈Insert LaTEX here to produce the figure.〉
\caption[Comparison of algorithms.]

{Comparison. The dashed line …
\label{fig:comparison}}

\end{figure}

LaTEX Usage

4.2 Special Packages

This section presents some packages that overcome some of LaTEX’s
limitations for floating environments.

4.2.1 Floats

LaTEX always forces the caption of floating environments on the same
page as that of the environment The dpfloat package lets you create
floating environments on consecutive pages. This may be useful, for

Presenting External Pictures 77

\begin{figure}[ptbh]
% Left-side part of float(possibly with \caption).
\begin{leftfullpage}

〈Left part of float〉
\end{leftfullpage}
\end{figure}
% Right-side part of float(possibly with \caption).
\begin{figure}[ptbh]
\begin{fullpage}

〈Right part of float〉
\end{fullpage}
\end{figure}

Using the dpfloat package
Figure 4.1

example, if your float is too large and you want the caption on the
opposite page. Figure 4.1 presents an example.

4.2.2 Legends

Some documents distinguish between captions and legends. For such
documents the caption of an environment consists of the name, the
number, and a short title of the environment. For example, ‘Figure 4.1:
Using the dpfloat package.’ The legend is a longer explanation of
what’s in the environment. LaTEX does not distinguish between cap-
tions and legends. The ccaption package overcomes this problem and
provides a \legend command for legends. The package also provides
support for caption placement and “sub-floats.”

4.3 External Picture Files

Embedding pictures from external files is a common technique to
creating graphics in documents. The best picture formats are vector
graphics formats. The advantage of vector graphics is that they scale
properly and always give the graphics a smooth appearance. Vector
graphics formats that work well with LaTEX are eps and pdf.

Programs such as gnuplot may be used to generate graphs in vec-
tor graphics format from your data. A common practice is to generate
complicated graphs with gnuplot and include them with LaTEX. This
mechanism is relatively easy. However, gnuplot may not always have
the right graph output style. Another problem with externally gener-
ated pictures is that they may not always give a consistent look and feel
as a result of differences in fonts and scaling. The pgfplots package
overcomes these problems. (This package is explained in Chapter 7.)

4.4 The graphicx Package

The graphicx package provides a command called \includegraphics
that supports the inclusion of external graphics in an easy way.

78 Chapter 4

\begin{figure}[tbp]
\centering
\includegraphics[width=75mm]

{vb4dummies.jpg}
\caption[Including an

external graphics file]
{Including an external
graphics file with …}

\end{figure}

Including an external graphics
file with the includegraphics
command. The input on the
right results in the output on
the left. The Doctor Fun picture
is included with the kind per-
mission of David Farley.

Figure 4.2

\includegraphics[〈key-value list〉]{〈file〉}
This includes the external graphics file 〈file〉. The optional argument
is a 〈key〉=〈value〉 list controlling the scale, size, rotation, and other
aspects of the picture. The following describes some of the possible
keys. Information about other 〈key〉=〈value〉 combinations may be
found in the graphicx package documentation [Carlisle, and Rahtz
1999].

angle The the rotation angle in degrees.
width The width of the resulting picture. The width should be specified in a

proper dimension, e.g., 5cm, 65mm, 3in, and so on. The height of the
picture is scaled to match the given width.

height The height of the resulting picture. This is the dual of the width key.
type Specifies the file type. The file type is normally determined from the

filename extension. ☐√

Figure 4.2 shows an example of the \includegraphcs command. In
this example, the command is used in the body of a figure. The picture
is reproduced from the Dr Fun pages (http://www.ibiblio.org).

4.5 Setting Default Key Values

The graphicx package uses the keyval package to handle its 〈key〉=
〈value〉 pairs. The keyval package lets you define a default value for
each key. The following is a short explanation. A full explanation may
be found in the package documentation [Carlisle 1999b]. Basically, the
command \setkeys{Gin}{〈list〉} sets the defaults. Here 〈list〉 is a
comma-separated 〈key〉=〈value〉 list. The following example sets the
default width to 6 cm.

\setkeys{Gin}{width=6cm} LaTEX Usage

After this command the width will be 6 cm by default. However, it
is still possible to override this default width by providing an explicit
width, an explicit height, or an explicit scale.

Presenting External Pictures 79

Sometimes it is nicer to specify a width and/or height as a fraction
of the current paper dimensions. The following sets the default width
to 90% of the text width.

\setkeys{Gin}{width=0.9\textwidth,} LaTEX Usage

4.6 Setting a Search Path

By default \includegraphics searches the current directory for files.
However, it is also possible to define a search path. The search path
mechanism works similar to a Unix search path. The command \graph-
icspath{〈directory list〉} sets the search path to 〈directory list〉,
which consists of a list of directories, each of which should be inside
a brace pair. The following is an example which sets the search path
to ./pdf/,./eps. Notice the absence of commas in the list.

\graphicspath{{./pdf/}{./eps/}} LaTEX Usage

4.7 Graphics Extensions

The kind of graphics extensions allowed by \includegraphics de-
pends on the extension of your output file. The last argument of
\includegraphics determines the name of the external graphics file.
It is allowed to omit the file extension. When \includegraphics sees
a filename without extension it will try to add a proper extension. The
command \DeclareGraphicsExtensions{〈extension list〉} speci-
fies the allowed file extensions. The argument 〈extension list〉 is a
comma-separated list of extensions. The command works as expected.
If an extension is omitted in the required argument of the \include-
graphics command, 〈extension list〉 is searched from left to right.
The process halts when an extension is found that “completes” the
partial filename. The partial filename and the extension are used as
the external graphics filename. Filenames without extensions are not
allowed if you apply the command \DeclareGraphicsExtensions{}.

Chapter 5
Presenting Diagrams

This chapter is an introduction to drawing diagrams/pictures using
the tikz package, which is built on top of pgf. Here pgf is a platform-
and format-independent macro package for creating graphics. The pgf
package is smoothly integrated with TEX and LaTEX. As a result tikz
also lets you incorporate text and mathematics in your diagrams. The
tikz package also supports the beamer class, which is used for creating
incremental computer presentations. The beamer class is explained in
Chapter 14.

The main purpose of this chapter is to whet the appetite. The
presentation is mainly based on CVS version 2.00 (CVS2010-01-03) of
pgf and tikz. The interested reader is referred to the excellent package
documentation [Tantau 2010] for more detailed information.

This chapter starts with discussing the advantages and disadvan-
tages of specifying diagrams. This is followed by a quick introduction
to the tikzpicture environment and some drawing commands. Next
there is a crash course on some of the more common and useful tikz
commands. For most readers the material up to Section 5.12 should
be enough to get by on a day-to-day basis. The remaining sections
coordinate computations and advanced tikz commands. By the end of
this chapter you should know how to draw maintainable, high-quality
graphics consisting of basic shapes such as points, lines, circles, and
trees.

5.1 Why Specify your Diagrams?

There are several advantages to tikz’s approach of specifying your
diagrams. It may take a while before you get the hang of tikz, but as
you go along, you will find that learning the package gives you more
control. If certain graphical entities serve a specific purpose then
you can make them stand out by drawing them with a certain style.
For example, you may decide to draw construction lines with thin,
dashed, red lines. Drawing such lines like this gives your diagrams
a consistent appearance. Furthermore, it makes it easy to recognise
the parts of your diagrams. Of course, you can reuse existing styles
and this simplifies the drawing. What is more, you can use stepwise
refinement to develop your styles. As an overall result your diagrams
will become more maintainable.

 , ,
DOI 10.1007/978-3-642-23816-1_5, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 81

82 Chapter 5

5.2 The tikzpicture Environment

The tikz package—tikz is an acronym of ‘tikz ist kein Zeichen-
programm’—provides commands and environments for specifying
and “drawing” graphical objects in your document. The package is
smoothly integrated with TEX and LaTEX, so graphical objects also can
be text. What is more, the things you specify/draw may have attributes.
For example, tree nodes have coordinates and may have parts such
as children, grandchildren, and so on. The package also supports
mathematical and object orientated computations.

Drawing with tikz may be done in different ways. To simplify
matters we shall do most of our drawing inside a tikzpicture envi-
ronment.

Each tikzpicture environment results in a picture containing
what is in the bounding box of the environment. Only the relative
positions of the coordinates inside a tikzpicture matter. For example,
a tikzpicture consisting of a 2× 2 square that is drawn at coordinate
(1, 2) in the tikzpicture results in the same graphic on your page as a
tikzpicture consisting of a 2× 2 square that is drawn at coordinate
(0, 0) in your tikzpicture. All implicit units inside a tikzpicture are
in centimetres. Scaling a tikzpicture is done by passing an option
of the form scale=number to the tikzpicture environment. This
kind of scaling only applies to the actual coordinates but not to line
thicknesses, font sizes, and so on. This makes sense, because you
would not want, say, the font in your diagrams to be of a different kind
than the font in your running text. The package also supports other
top-level options.

The following draws a 0.4× 0.2 crossed rectangle: .

The following draws
a 0.4×0.2 crossed rectangle:

\begin{tikzpicture}
\draw (0.0,0.0) rectangle (0.4,0.2);
\draw (0.0,0.0) -- (0.4,0.2);
\draw (0.0,0.3) -- (0.4,0.0);
\end{tikzpicture}\,.

LaTEX Usage

Of course this example violates every rule in the maintainability
book. For example, what if the rectangle’s size were to change, what if
its position were to change, what if its colour were to change, …?

Fortunately, tikz provides a range of commands and techniques
for maintaining your diagrams. One of the cornerstones is the ability
to label nodes and coordinates and use the labels to construct other
nodes and shapes. In addition the package supports hierarchies. Parent
settings may be inherited by descendants in the hierarchy.

5.3 The \tikz Command

The \tikz command is useful for small in-line diagrams. The follow-
ing explains how it works.

Presenting Diagrams 83

\draw[line width=0.1pt,gray!30,step=5mm]
(0,0) grid (3,2);

\draw[help lines]
(0,0) grid (3,2);

\draw (1,1) --
(2,2) -- (2,1) -- cycle;

Drawing a grid
Figure 5.1

\tikz[〈options〉]{〈commands〉}
This works just as \begin{tikzpicture}[〈options〉]〈commands〉\end
{tikzpicture}. ☐√

\tikz[〈options〉] 〈command〉;
If 〈command〉 is a single command then this is equivalent to \tikz
[〈options〉]{〈command〉;}. ☐√

From now on all examples are implicitly inside a tikzpicture
environment unless options are passed to the environment.

5.4 Grids

A grid relates the positions of what’s in the picture. Grids are also
useful when you are developing a picture. The following shows two
ways to draw a grid. The former way is easier, but it is expressed in
terms of the second, more general, notation.

\draw[〈options〉] 〈start coordinate〉 grid 〈end coordinate〉;
This draws a grid from 〈start coordinate〉 to 〈end coordinate〉. The
optional argument may be used to control the style of the grid.

The option step=〈dimension〉 is used for setting the distance be-
tween the lines in the grid. There are also directional versions xstep =
〈dimension〉 and ystep = 〈dimension〉 for setting the distances in the
x- and y-directions. ☐√

\path[〈path options〉] … grid[〈options〉] 〈coordinate〉 … ;

This adds a grid to the current path from the current position in the
path to 〈coordinate〉. To draw the grid, the option draw is required as
part of 〈path options〉. ☐√

Figure 5.1 demonstrates how to draw a basic 3× 2 grid, relative to
the origin. The grid consists of two superimposed grids, the coarser
of which is drawn on top of the other. The option gray!30 in the style
of the fine grid defines the colour for the grid: you get it by mixing
30% grey and 70% white.

The option help lines draws lines in a subdued colour. This book
redefined the style to make the lines thin and to set the color to a
combination of 50% black and 50% white. This was done with the
command \tikzset{help lines/.style={thin,color=black!50}}.
Styles are explained in Section 5.17.

5.5 Paths

Inside a tikzpicture environment everything is drawn by starting a
path and by extending the path. Paths are constructed using the \path

84 Chapter 5

\draw[help lines] (0,0) grid (3,4);
\draw (0,0) circle (2pt)

-- (1,1) rectangle (2,3)
-- (3,4)
-- (2,4) circle (2pt);

Creating a path
Figure 5.2

command. In its basic form, a path is started with a coordinate that
becomes the current coordinate of the path. Next the path is extended
with other coordinates, line segments, nodes or other shapes. Line
segments may be straight line segments or cubic spline segments, which
are also known as cubic splines. Cubic splines are explained in Section 5.7.
Each line segment extension operation adds a line segment starting
at the current coordinate and ending at another coordinate. Path
extension operations may update the current coordinate.

The optional argument of the \path command is used to control
if, and how the path should be drawn. Adding the option draw forces
the drawing of the path. By default the path is not drawn. A semicolon
indicates the end of the path:

\path[draw] (1,0) -- (2,0);
\path (0,0) -- (3,0);

LaTEX Usage

The first \path command in this tikzpicture draws a line segment
from (1, 0) to (2, 0). The second \path command draws an invisible line
segment. Both line segments are considered part of the picture, so the
picture has a width of 3 cm.

The command \draw is a shorthand for \path[draw]. The tikz
package has many shorthand notations like this.

Figure 5.2 draws a path that starts at position (0, 0). First the path
is extended by adding a circle. Next the path is extended with a line
segment leading to (1, 1). Next it is extended with a rectangle, and so
on. Except for the circle extension operation, each operation changes
the current position of the path.

5.6 Coordinate Labels

Maintaining complex diagrams defined entirely in terms of absolute
coordinates is virtually impossible. Fortunately, tikz provides many
techniques that help maintain your diagrams. One of these techniques
is that tikz lets you define coordinate labels and use the resulting
labels instead of the coordinates.

You define a coordinate label by writing coordinate(〈label〉) after
the coordinate. Defining coordinates this way is possible at (almost)
any point in a path. Once the label of a coordinate is defined, you can
use (〈label〉) as a coordinate. The following, which draws a crossed

Presenting Diagrams 85

rectangle (), demonstrates the mechanism. It is not intended to
excel in terms of maintainability.

The following, which draws a crossed rectangle
(\begin{tikzpicture}
\draw (0.0,0.0) coordinate(lower left)

-- (0.4,0.2) coordinate(upper right);
\draw (0.0,0.2) -- (0.4,0.0);
\draw (lower left) rectangle (upper right);
\end{tikzpicture}), demonstrates the mechanism.

LaTEX Usage

5.7 Extending Paths

As explained before, paths are constructed by extending them. There
are several different kinds of path extension operations. The majority
of these extension operations modify the current coordinate, but some
don’t. In the remainder of this section it is therefore assumed that
an extension operation modifies the current coordinate unless this
is indicated otherwise. For the moment it is assumed that none of
the coordinates are relative or incremental coordinates, which are
explained in Section 5.15.1.

The remainder of this section presents some examples. To save
space, operations are explained in terms of the \path operation. How-
ever, \path does not draw anything without the option draw. Rather
than giving examples in terms of \path[draw], they are given for
\draw, which is equivalent. The following are the common extension
operations.

\path … 〈coordinate〉 …;

This is the move-to operation, which adds the coordinate 〈coordinate〉
to the path. This operation makes 〈coordinate〉 the current coordinate
of the path. The following example uses three move-to operations. The
first move-to operation defines the lower left corner of the grid. The
remaining move-to operations define the starts of two line segments.

\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1)

(2,1) -- (3,2); ☐√

\path … -- 〈coordinate〉 …;

This is the line-to operation, which adds a straight line segment to
the path. The line segment is from the current coordinate and ends
in 〈coordinate〉.

\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) --

(2,0) -- (3,2); ☐√

86 Chapter 5

c1

c2

c3

c4

\draw[help lines] (-2,-4) grid (+2,+4);
\path (-2,+0) coordinate(c1)

(-1,+3) coordinate(c2)
(+0,-3) coordinate(c3)
(+2,-1) coordinate(c4);

\draw[dashed] (c1) -- (c2) -- (c3) -- (c4);
\draw (c1) circle (2pt)

(c2) circle (2pt)
(c3) circle (2pt)
(c4) circle (2pt)
(c1) .. controls (c2)

and (c3) .. (c4)
(c1) node[anchor=west] {\texttt{c1}}
(c2) node[anchor=west] {\texttt{c2}}
(c3) node[anchor=east] {\texttt{c3}}
(c4) node[anchor=east] {\texttt{c4}};

Cubic spline in tikz

Figure 5.3

\path … .. controls 〈coordinate₁〉 and 〈coordinate₂〉 .. 〈coordinate₃〉 …;

This is the curve-to operation, which adds a cubic Bézier spline seg-
ment to the path. The start point of the curve is the current point of
the path. The end point is 〈coordinate₃〉, and the control points are
〈coordinate₁〉 and 〈coordinate₂〉.

Figure 5.3 demonstrates the operation. The curve starts at c1 and
ends at c4. The control points are given by c2 and c3. The tangent of
the spline segment at c1 is equal to the tangent of the line segment
c1 -- c2. Likewise, the tangent at c4 is given by the tangent of the line
segment c3 -- c4.

This makes cubic Bézier splines a perfect candidate for approxi-
mating complex curves as a sequence of spline segments. By properly
choosing the start point, the end point, and the control points of the
segments, you can enforce continuity both in the curves and the first
derivative. For example, if the end point of segment s1 coincides with
the start point of the segment s2 and the end point of s1 is on the line
through the last control point of s1 and the first control point of s2,
then this guarantees continuity of the first derivative. (As a matter of
fact, it is also possible to ensure continuity in the second derivative.)
Notice that the start, end, and control points need not be equidistant,
nor need the start and end point lie on a horizontal line. ☐√

\path … .. controls 〈coordinate₁〉 .. 〈coordinate₂〉 …;

This is also a curve-to operation. It is equivalent to the operation … ..
controls 〈coordinate₁〉 and 〈coordinate₁〉 .. 〈coordinate₂〉…. ☐√

\path … -- cycle …;

This is the cycle operation, which closes the current path by adding
a straight line segment from the current point to the most recent
destination point of a move-to operation. The cycle operation has
three applications. First it closes the path, which is required if you wish

Presenting Diagrams 87

to fill the path with a colour. Second, it connects the start and end line
segments in the path. Third, it avoids the need to reference the start
point of the path.

\draw (0,0) -- (1,1)
(2,0) -- (3,0) --
(3,1) -- cycle; ☐√

\path … -| 〈coordinate〉 …;

This operation is equivalent to two line-to operations connecting
the current coordinate and 〈coordinate〉. The first operation adds a
horizontal and the second a vertical line segment.

\tikz \draw (0.0,0.0) -| (2.0,0.5)
(1.0,1.0) -| (3.0,0.0); ☐√

\path … |- 〈coordinate〉 …;

This operation is also equivalent to two line-to operations connecting
the current coordinate and 〈coordinate〉. This time, however, the first
operation adds a vertical and the second a horizontal line segment.

\tikz \draw (0.0,0.0) |- (2.0,1.0)
(1.0,0.5) |- (3.0,0.0); ☐√

\path … rectangle 〈coordinate〉 …;

This is the rectangle operation, which adds a rectangle to the path.
The rectangle is constructed by making the current coordinate and
〈coordinate〉 the lower left and upper right corners of the rectangle.
Which coordinate determines which corner depends on the values of
the coordinates.

\begin{tikzpicture}
\draw (0,0) rectangle (1,1)

rectangle (3,2);
\end{tikzpicture} ☐√

\path … circle (〈radius〉) …;

This is the circle operation, which adds a circle to the path. The centre
of the circle is given by the current coordinate of the path and its
radius is the dimension 〈radius〉. This operation does not change the
current coordinate of the path.

\tikz \draw (0,0) circle (2pt)
rectangle (3,1)
circle (4pt); ☐√

\path… ellipse(〈half width〉 and 〈half height〉)…;

This is the ellipse operation, which adds an ellipse to the path. The

88 Chapter 5

centre of the ellipse is given by the current coordinate. This operation
does not change the current coordinate of the path.

\begin{tikzpicture}[scale=0.5]
\draw[help lines] (0,0) grid (6,4);
\draw (2,2) ellipse (1cm and 1cm)

(3,2) ellipse (3cm and 2cm);
\end{tikzpicture} ☐√

\path … arc (α:β:r) …;

This is the arc operation, which adds an arc to the path. The arc
starts at the current point, p. The arc is determined by a circle with
radius r. The centre of the circle, c, is determined by the equation p =
c+r×(cosα, sinα). The end point of the arc is given by c+r×(cosβ, sinβ).
The arc is drawn in counterclockwise direction from the start point to
the end point, which becomes the new current coordinate of the path.
The following illustrates the construction. Only the upper half of the
circle is drawn. The resulting arc is drawn with a continuous line.

c

p
β

α

In the following example, the draw option -> results in a line that
is drawn as an arrow.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw[dashed] (1,1) circle (1cm);
\draw (1,2) coordinate(a) circle (2pt)

(2,1) coordinate(b) circle (3pt)
(1,0) coordinate(c) circle (4pt);

\draw[->,thick] (a) arc (90:180:1cm);
\draw[->,thick] (b) arc (0:45:1cm);
\draw[->,thick] (c) arc (270:225:1cm);
\end{tikzpicture} ☐√

\path … arc (α:β:w and h) …;

This is the elliptical arc operation, which adds an ellipse segment to
the path. The construction of the ellipse segment is similar to the
construction of the arc segment. The value h is half the hight of the
ellipse and the value w is half the width of the ellipse. ☐√

5.8 Actions on Paths

So far most of our examples have used the default path style. This
may not always be what you want. For example, you may want to draw
a line in a certain colour, change the default line width, fill a shape

Presenting Diagrams 89

with a colour, and so on. In tikz terminology you achieve this with
path actions, which are operations acting on an existing path. You first
construct the path and then apply the action. At the basic level the
command \draw is defined in terms of an action on a path: the action
results in the path being drawn. As pointed out before \draw is a
shorthand for \path[draw].

The following are some other shorthand commands that are de-
fined in terms of path actions inside the tikzpicture environment.

\draw

This is a shorthand for \path[draw].

\draw (0,0) -- (3,0); ☐√

\fill

This is a shorthand for \path[fill].

\fill[gray] (0,0) rectangle (3,0.5); ☐√

\filldraw

This is a shorthand for \path[filldraw].

\filldraw[fill=gray,draw=black]
(0,0) rectangle (3,0.5); ☐√

\shade

This is a shorthand for \path[shade]. Shading paths is possible in
many ways. The reader is invited to read the pgf manual [Tantau 2010]
for further information. The following is an example.

\shade[left color=black,right color=gray]
(0,0) rectangle (3,0.5); ☐√

\shadedraw

This is a shorthand for \path[shadedraw].

\shadedraw[left color=black,
right color=white,
draw=gray]

(0,0) rectangle (3,0.5); ☐√

5.8.1 Colour

The tikz package knows several colours. Some colours are inherited
from the xcolor package [Kern 2007]. Table 5.1 depicts some of them.

There are several techniques to define a new name for a colour.
\definecolor{〈name〉}{rgb}{〈red〉,〈green〉,〈blue〉}

This defines a new colour called 〈name〉 in the rgb model. The colour

90 Chapter 5

black darkgray lime pink violet

blue gray magenta purple white

brown green olive red yellow

cyan lightgray orange teal

The xcolor colours
Table 5.1

is the result of combining 〈red〉 parts red, 〈green〉 parts green, and
〈blue〉 parts blue. All parts are reals in the interval [0 : 1]. ☐√

\definecolor{〈name〉}{gray}{〈ratio〉}
This defines a colour called 〈name〉 that has a 〈ratio〉 grey part in the
gray model. The value of 〈ratio〉 is a real in the interval [0 : 1]. ☐√

\colorlet{〈name〉}{〈colour〉!〈percentage〉}
This defines a new colour called 〈name〉 that is the result of mix-
ing 〈percentage〉% 〈colour〉 and (100 – 〈percentage〉)% white. Here
〈colour〉 should be the name of an existing colour. ☐√

\colorlet{〈name〉}{〈colour₁〉!〈percentage〉!〈colour₂〉}
This defines a new colour called 〈name〉 that is the result of mixing
〈percentage〉% 〈colour₁〉 and (100 – 〈percentage〉)% 〈colour₂〉, Here
〈colour₁〉 and 〈colour₂〉 should be existing colours. ☐√

Kern [2007] provides further information about defining colours
with the xcolor package.

Some path actions also let you define a colour. For example, you
may draw a path with the given colour. There are different ways to
control the colour. The option color determines the colour for draw-
ing and filling, and the colour of text in nodes. (Nodes are explained
in Section 5.9.)

You may set the colour of the whole tikzpicture or set the colour
of a given path action. Setting the colour of the whole picture is done
by passing a color=〈colour〉 option to the environment. Setting the
colour of a path action is done by passing the option to the \path
command (or derived shorthand commands). The following is an
example that draws three lines: one in red, one in green, and one in
50% cyan and 50% red.

\begin{tikzpicture}[color=red]
\draw (0,3) -- (2,3);
\draw[color=green] (0,2) -- (2,2);
\draw[color=cyan!50!red] (0,1) -- (2,1);
\end{tikzpicture}

It is usually possible to omit the color= part when you specify
colour options.

\begin{tikzpicture}[gray]
\draw[orange!80!teal] (0,0) -- (2,0);
\end{tikzpicture}

Presenting Diagrams 91

\draw[dash pattern=on 4mm off 1mm on 4mm off 2mm]
(0,0.5) -- (2,0.5);

\draw[dash pattern=on 3mm off 2mm on 3mm off 3mm]
(0,0.0) -- (2,0.0);

Using a dash pattern
Figure 5.4

\begin{tikzpicture}[dash pattern=on 3mm off 2mm]
\draw[dash phase=3mm] (0,0.5) -- (2,0.5);
\draw[dash phase=2mm] (0,0.0) -- (2,0.0);
\end{tikzpicture}

Using a dash phase
Figure 5.5

5.8.2 Drawing the Path

As already mentioned, the draw option draws the path in the default
colour. You may also provide an explicit colour with draw=〈colour〉.

\draw[draw=gray] (0,1) -- (2,1);

5.8.3 Line Width

There are several path actions affecting the line style, i. e., the style
that determines the line width, the line cap, and the line join. The
following command lets you set the line width to an explicit value.

line width=〈dimension〉
This sets the line width to 〈dimension〉.

\draw[line width=8pt]
(0,0) -- (2,4pt); ☐√

5.8.4 Dash Patterns

The drawing of lines also depends on the dash pattern and dash phase
settings. The dash pattern determines a basic pattern for the line
that is repeated cyclicly. The dash phase shifts the dash pattern. By
default the dash pattern is solid. The following shows the relevant
path actions that affect dash patterns.

dash pattern=〈pattern〉
This sets the dash pattern to 〈pattern〉. The syntax for 〈pattern〉 is the
same as in METAFONT. The 〈pattern〉 is cyclic pattern of lengths that
determine when the line is drawn (is on) and when it is not drawn (is
off). You usually write the lengths in multiples of points (pt). Figure 5.4
shows an example that uses millimetres. ☐√

dash phase=〈dimension〉
This shifts the dash phase by 〈dimension〉. An example is presented
in Figure 5.5. ☐√

92 Chapter 5

Line Styles Dash Patterns

Name Width Example Name Example

ultra thin 0.1 pt loosely dotted

very thin 0.2 pt dotted

thin 0.4 pt densely dotted

semithick 0.6 pt solid

thick 0.8 pt loosely dashed

very thick 1.2 pt dashed

ultra thick 1.6 pt densely dashed

Line width and dash pattern
styles

Table 5.2

5.8.5 Predefined Styles

Hard-coding a line width or a dash pattern command is not always a
good idea. It is usually better to define a style for a certain line width,
for a dash style, or a combination of the two. The advantages of doing
this are that you only have to define the style once and can use it
several times. Using styles gives you a consistent appearance for the
resulting lines, and if you want to make a global change to the style
then you only have to make one change in your LaTEX file. Section 5.17
explains how to define your own styles.

Table 5.2 lists the names of of some predefined line width and
dash pattern styles. For line width styles, the table also lists the corre-
sponding line width in points, and an example of the resulting line.
The default line width is thin. The default dash pattern is solid.

5.8.6 Line Cap and Join

The drawing of a path depends on several parameters. The line cap
determines how lines start and end. The line join determines how line
segments are joined.

line cap=〈style〉
This sets the line cap style to 〈style〉. There are three possible values
for 〈style〉: round, rect, and butt. The following shows the line cap
options in action.

\begin{tikzpicture}[line width=10pt]
\draw[help lines] (0,0) grid (3,4);
\draw[line width=2pt,dashed]

(1,0) -- (1,4) (2,0) -- (2,4);
\draw[line cap=round] (1,3) -- (2,3);
\draw[line cap=rect] (1,2) -- (2,2);
\draw[line cap=butt] (1,1) -- (2,1);
\end{tikzpicture} ☐√

Presenting Diagrams 93

\begin{tikzpicture}
[line width=8pt,line join=miter]

\draw (0,0) -- (0.25,2) -- (0.5,0);
\draw[miter limit=8]

(1,0) -- (1.25,2) -- (1.5,0);
\end{tikzpicture}

Using the miter option
Figure 5.6

line join=〈style〉
This sets the line join style to 〈style〉. There are three possible values
for 〈style〉: round, miter, and bevel.

\begin{tikzpicture}[line width=8pt]
\draw[line join=round]

(0.0,.8)--(0.3,.0)--(0.6,.8);
\draw[line join=miter]

(0.9,.0)--(1.2,.8)--(1.5,.0);
\draw[line join=bevel]

(1.8,.8)--(2.1,.0)--(2.4,.8);
\end{tikzpicture} ☐√

miter limit=〈fraction〉
This avoids sharp-angled miter joins that protrude too far beyond
the joining point. It does this by posing a limit on how far the miter
join may protrude the joining point. If the join protrudes beyond the
limit then the join style is changed to bevel. The limit is equal to
the product of 〈fraction〉 and the line width. Figure 5.6 shows an
example. ☐√

5.8.7 Arrows

Arrows are also drawn using path actions. The following explains how
to draw them.

arrows=〈head₁〉-〈head₂〉
This adds an arrow head to the start and to the end of the path. You
may also omit the arrows= and use the shorthand notation 〈head₁〉-
〈head₂〉. The arrow head at the start is determined by 〈head₁〉. The
other arrow head is determined by 〈head₂〉. If you omit 〈head₁〉 then
the arrow head at the start of the path isn’t drawn. Likewise, omitting
〈head₂〉 omits the other arrow head. The following demonstrates the
mechanism for the default arrow head types < and >. Table 5.3 list
more arrow head styles. Some of the styles are provided by the tikz
library arrows.

\draw[->] (0,1.0) -- (2,1.0);
\draw[<-] (0,0.5) -- (2,0.5);
\draw[<->] (0,0.0) -- (2,0.0); ☐√

94 Chapter 5

Predefined

Style Arrow Style Arrow Style Arrow

stealth to latex
space

Provided by arrows

open triangle 90 triangle 90 angle 90
open triangle 60 triangle 60 angle 60
open triangle 45 triangle 45 angle 45
open diamond diamond o
open square square *

Some available arrow head
types. The arrows in the upper
part of the table are predefined.
The arrows in the lower part of
the table are provided by the
tikz library arrows.

Table 5.3

>=〈end arrow type〉
This redefines the default end arrow head style >. As already mentioned,
some existing arrow head styles are listed in Table 5.3. Some of these
arrow head types are provided by the tikz library arrows. Most styles
in the table also have a “reversed style,” for example latex reversed,
which just changes the direction of the latex arrow head. The library
may be loaded with the command \usetikzlibrary{arrows}, which
should be in the preamble of your document. The following is a small
example.

\draw[>=o,<->] (0,1.0) -- (2,1.0);
\draw[>=*,<-] (0,0.5) -- (2,0.5);
\draw[>=latex,->] (0,0.0) -- (2,0.0); ☐√

5.8.8 Filling a Path

Not only can you draw paths but also can you fill them or draw them
with one colour and fill them with a different colour. The only require-
ment is that the path be closed. Closing a path is done with the cycle
annotation. The following are the relevant commands.

\path[fill=〈colour〉] 〈paths〉;
This fills each path in 〈paths〉 with the colour 〈colour〉. Unclosed
paths are closed first. It is also allowed to use color=〈colour〉. Finally,
the option fill on its own fills the paths with the last defined value
for fill or for color.

\begin{tikzpicture}[scale=0.4,fill=gray]
\path[fill]

(0,0) rectangle (1,1);
\path[fill=black!30]

(2,0) -- (3,0) -- (3,1) -- cycle;
\path[fill,color=gray]

(4,0) -- (5,0) -- (5,1);
\end{tikzpicture} ☐√

Presenting Diagrams 95

\fill[〈options〉] 〈paths〉;
The command \fill on its own works just as \path[fill=〈colour〉],
where 〈colour〉 is the last defined value for fill or for color. Using
\fill with options works as expected. The options are passed to \path
and the paths in 〈paths〉 are filled.

\begin{tikzpicture}[scale=0.4,fill=gray]
\fill[color=black!50]

(0,0) -- (1,0) -- (1,1);
\fill[fill=black]

(0,1) -- (0,2) -- (1,2) -- cycle;
\fill[gray!50]

(2,0) -- (3,0) -- (3,1) -- cycle;
\fill(2,1) -- (2,2) -- (3,2);
\end{tikzpicture} ☐√

\filldraw[options] 〈paths〉;
The command \filldraw fills and draws the path. The style draw
determines the drawing colour and the style fill determines the
filling colour. Both styles may be set in the optional argument.

\filldraw[ultra thick,fill=gray!50]
(0,0) rectangle (2,2);

\filldraw[thick,fill=gray,draw=black]
(1,1) circle (0.5cm); ☐√

5.8.9 Path Filling Rules

There are two options that control how overlapping paths are filled.
Basically, these rules determine which points are inside a given path
and this determines how the path is filled. By cleverly using the two
options and by making paths overlap you can construct holes in the
filled areas. The following explains the rules.

nonzero rule The nonzero rule is the default rule to determine which points
are inside the path. To determine if a point, p, is inside a collection
of paths, let c+ be the number of clockwise draw paths the point is in,
and let c– be the number of anticlockwise draw paths the point is in.
Then p is considered inside the collection of paths if c+ �= c–. Stated
differently, p is inside if c+ – c– �= 0, hence the name nonzero rule.

To complicate matters, closed paths may “overlap” themselves and
this may result in points that are in clockwise as well as anticlockwise
sub-paths. To determine if a point, p, is inside the paths, let � be a
semi-infinite line originating at p. Then p is inside the paths if the
number of times � crosses a clockwise drawn line differs from the
number of times � crosses an anticlockwise line. Figure 5.7 shows an
example. The example does not have self-overlapping paths.

even odd rule The even odd rule is the other rule. According to this rule a

96 Chapter 5

\begin{tikzpicture}[fill=blue!20,scale=0.5]
\fill (0,2) -- (0,3) -- (5,3) -- (5,2)

(2,0) -- (3,0) -- (3,5) -- (2,5)
(1,1) -- (4,1) -- (4,4) -- (1,4);

\draw[red,->]
(0,3) -- (5,3) -- (5,2) -- (0,2) -- (0,3);

\draw[blue,->]
(3,0) -- (3,5) -- (2,5) -- (2,0) -- (3,0);

\draw[->]
(1,1) -- (4,1) -- (4,4) -- (1,4) -- (1,1);

\end{tikzpicture}

Using the nonzero rule. The
fill involves three rectangular
sub-paths. The red sub-path is
drawn clockwise; the other sub-
paths are drawn anticlockwise.
For the nonzero rule a point,
p is filled if c+ �= c–, where c+

(c–) is the number of clockwise
(anticlockwise) shapes p is in.

Figure 5.7

\begin{tikzpicture}[fill=blue!20,scale=0.5]
\fill[even odd rule]

(0,2) -- (0,3) -- (5,3) -- (5,2)
(2,0) -- (3,0) -- (3,5) -- (2,5)
(1,1) -- (4,1) -- (4,4) -- (1,4);

\draw (0,3) -- (5,3) -- (5,2) -- (0,2) -- (0,3);
\draw (3,0) -- (3,5) -- (2,5) -- (2,0) -- (3,0);
\draw (1,1) -- (4,1) -- (4,4) -- (1,4) -- (1,1);
\end{tikzpicture}

Using the even odd rule.
There are three rectangular
sub-paths. For the even odd
rule an area is filled if it
requires the crossing of an odd
number of lines to get from
inside the area to “infinity.”

Figure 5.8

point is considered inside the shape if a semi-infinite line originating
at the point crosses an odd number of paths. Figure 5.8 depicts an
example. This example also does not have self-overlapping paths.

5.9 Nodes and Node Labels

Diagrams with lines only are rare. Usually, they also contain text, math,
or both. Fortunately, tikz has a mechanism for adding text, math, and
other material to paths. This is done with the node path operation.

\path… node(〈label〉)[〈options〉]{〈content〉}… ;

The node path extension operation places 〈content〉 at the current
position in the path using the options 〈options〉 and associates the
label 〈label〉 with the node. The outer shape of the node is only drawn
if draw is part of 〈options〉. The default shape is a rectangle but other
shapes are also defined. The next section explains how to control the
node shape. The texts (〈label〉) and [〈options〉] are optional. ☐√

\draw… node(〈label〉)[〈options〉]{〈content〉}… ;

This is similar to the previous \path command. ☐√
For example, the command \draw (0,0) node {hello}; draws the

word ‘hello’ at the origin. Likewise, the following draws a circle and
the word ‘circle’ at position (1, 0).

\draw (0,1) % make (0,1) current position.
circle (2pt) % draw shape circle and
node {circle}; % word circle at current position.

LaTEX Input

Presenting Diagrams 97

hello
north north east

east

south eastsouthsouth west

west

north west

\begin{tikzpicture}
[every node/.style=scale=0.7]

\draw (0,0) node(hello)[scale=1.25] {hello};
\draw (hello.north) circle (2pt)

node[anchor=south] {north};
\draw (hello.north east) circle (2pt)

node[anchor=south west] {north east};
… % remaining commands omitted.

Nodes and implicit labels
Figure 5.9

When a node receives a label, 〈label〉, then usually the additional
labels 〈label〉.center, 〈label〉.north, 〈label〉.north east, …, and
〈label〉.north west are also defined. The positions of these labels
correspond to their names, so 〈label〉.north is to the north of the
node having label 〈label〉. This holds for the most common node
shapes. Figure 5.9 provides an example that involves all these auxiliary
labels, except for 〈label〉.center. The option anchor in this example
is explained further on. Basically, it provides a way to override the
node’s default insertion point.

5.9.1 Predefined Nodes Shapes

The previous section explained how to draw nodes. Nodes have a
shape/style and content. The default node shape is rectangular but
tikz also predefines the shapes coordinate, rectangle, circle, and
ellipse. The remainder of this section presents some of the basic
node shapes. The option shape=〈shape〉 determines the node shape.
The following are the basic predefined node shapes.

coordinate This shape is for coordinates. Coordinates have no 〈content〉. They
are not drawn but their positions are used as part of the picture.

rectangle This shape is for rectangular nodes. The rectangle is fitted around the
〈content〉. This is the default option.

circle This shape is for circles. The circle is fitted around the 〈content〉.
ellipse This shape is for ellipses. The ellipse is fitted around the 〈content〉.

The default height and width of a node may not always be ideal. For-
tunately, there are options for low-level control. The minimum width,
height, and size of a node are controlled with the options minimum
width=〈dimension〉, minimum height=〈dimension〉, and minimum size
=〈dimension〉. All these options work “as expected.” There are also
options for specifying the maximum width, height, and size of a node.

There are also options to set the inner separation and the outer
separation of the node. Here the inner separation is the extra space
between the bounding box of 〈content〉 and the node shape. For
example, for a rectangular node, the inner separation determines the
amount of space between the content of the node and its rectangle.
Likewise, the outer separation is the extra space on the outside of the
shape of the node. Both settings affect the size of the node and the

98 Chapter 5

xx

xxxx

\draw (0,0) grid (3,2);
\draw (1.5,2.5) node(a)[draw,inner sep=0pt,

outer sep=5pt] {xx};
\draw (3.5,1.5) node(b)[draw,inner sep=5pt,

outer sep=0pt] {xx};
\draw (1.5,1.5) node(c)[draw,shape=circle] {xx};
\draw (a.north) circle (2pt);
\draw (b.north) circle (2pt);
\draw (c.north) circle (2pt);

Low-level node control
Figure 5.10

positions of the auxiliary labels north, north east, and so on. The
options inner sep=〈dimension〉 and outer sep=〈dimension〉 set the
inner and outer separation.

The options inner xsep=〈dimension〉, outer xsep=〈dimension〉,
inner ysep=〈dimension〉, and outer ysep=〈dimension〉 control the
separations in the horizontal and vertical directions. They work “as
expected”.

Figure 5.10 shows some of the different node shape options and low-
level control. The difference in the inner separations of the rectangular
nodes manifests itself in different sizes for the rectangular shapes.
Differences in the outer separations result in different distances of
labels such as north. The higher the outer separation of a node, the
further its north label is away from its rectangular shape.

5.9.2 Node Options

This section briefly explains some node options that affect the drawing
of nodes.

draw

This forces the drawing of the node shape as part of a \path command.
By default the drawing of nodes is off. ☐√

scale=〈factor〉
This scales the drawing of the node content by a factor of 〈factor〉.
This includes the font size, line widths, and so on. ☐√

anchor=〈anchor〉
This defines the anchor of the node, which is useful for positioning a
node relative to a given point. This options draws the node such that
the anchor coincides with the current position in the path. All node
shapes define the anchor center, but most node shapes also define the
compass directions north, north east, east, …, and north west. The
standard shapes also define base, base east, and base west. With the
option base the insertion point is on the baseline of the node and
the centre of the node is above the insertion point. The other options
are directional versions. The options mid, mid east, and mid west are
also defined for the standard nodes. With mid the insertion point is
the mid point of the node—it is above the base point, between the
baseline and the midline. The default value for 〈anchor〉 is center. ☐√

Presenting Diagrams 99

a b0.3 0.5

0.
2 0.8

\draw[help lines] (0,0) grid (3,4);
\draw (0,1) coordinate(a)

node[anchor=north west] {a}
-- (3,1) coordinate(b)

node[anchor=north east] {b}
node[pos=0.3,anchor=north] {0.3}
node[pos=0.5,anchor=north] {0.5}

(a) .. controls (1,4) and (2,4) .. (b)
node[pos=0.2,sloped,anchor=south] 0.2
node[pos=0.8,sloped,anchor=north] 0.8;

Node placement
Figure 5.11

shift=〈shift〉
This option shifts the node in the direction 〈shift〉. Here 〈shift〉 is a
regular coordinate or a label (including the parentheses). There are
also directional versions xshift=〈dimension〉 and yshift=〈dimension〉
for horizontal and vertical shifting. ☐√

above

This is equivalent to anchor=south. The options below, left, right,
above left, above right, below left, and below right work in a
similar way. ☐√

above=〈shift〉
This combines the options anchor = south and shift=〈shift〉. The
options left=〈shift〉, right=〈shift〉, …, work in a similar way. ☐√

rotate=〈angle〉
Draws the node, after rotating it 〈angle〉 degrees about its anchor. ☐√

pos=〈real〉
This option is for placing nodes along a path (as opposed to at the
current coordinate). This option places the node at the relative position
on the path that is determined by 〈real〉, so if 〈real〉 is equal to 0.5
then the node is drawn mid-way, if it is equal to 1 then it is drawn at
the end, and so on. ☐√

pos=sloped

This very useful option rotates the node such that its base line is
parallel to the tangent of the path where the node is drawn. ☐√

midway

This option is equivalent to pos=0.5. Likewise, the option start is
equivalent to pos=0, very near start is equivalent to pos=0.125, near
start is equivalent to pos=0.25, near end is equivalent to pos=0.75,
very near end is equivalent to pos=0.875, and end is equivalent to
pos=1. ☐√

Figure 5.11 shows some of these node options. Notice that several
nodes can be placed with pos options for the same path segment.

5.9.3 Connecting Nodes

The tikz package is well-behaved. It won’t cross lines unless you say so.
This includes the crossing of borderlines of node shapes. For example,
let’s assume you’ve created two nodes. One of them is a circle, which is

100 Chapter 5

a

b c

d

\draw[help lines] (0,0) grid (3,3);
\path (1,1) node(a)[draw,shape=circle] {a};
\path (1,2) node(b)[shape=rectangle] {b};
\path (2,2) node(c)[shape=circle] {c};
\path (2,1) node(d)[draw,shape=rectangle] {d};
\draw (a) -- (b) -- (c.center) -- (d) -- (a.center);

Drawing lines between node
shapes

Figure 5.12

q
00

\draw (0,0)
node(double)[circle split,draw,double]

{q \nodepart{lower} 00}
(double.lower) circle (1pt)
(double.text) circle (1pt);

The circle split node style
Figure 5.13

labelled 〈c〉, and the other is a rectangle, which is labelled 〈r〉. When
you draw a line using the command \draw (〈c〉) -- (〈r〉); then the
resulting line segment will not join the centres of the two nodes. The
actual line segment will be shorter because the line segment starts at
the circle shape and ends at the rectangle shape. In most cases this is
the desired behaviour. If you need a line between the centres then you
can always use the .center notation. Figure 5.12 provides an example.

5.9.4 Special Node Shapes

We’ve already seen that tikz has coordinate, circle, rectangle, and
ellipse shape styles. Loading the tikz library shapes makes more
shape styles available. You load this library by including it with the
command \includetikzlibrary{shapes} in your document pream-
ble. The following are some interesting shape styles.

circle split

This defines a circle with a text and a lower node part. The node
parts of the circle split are separated by a horizontal line. The
node part text is the upper and the node part lower is the lower part
of the node shape circle split. The argument of the node shape
determines what is in the node parts. This works as follows. You start
by typesetting the default node part, which is called text. Next you may
switch to a different node part and typeset that node part. This may be
done several times. The command \nodepart{〈part〉} switches to the
node part 〈part〉. After switching to the node part 〈part〉 you provide
commands that typeset 〈part〉. For example, \node[shape=circle
split]{top \nodepart{lower} bottom} typesets a circle splitwhose
text part has ‘top’ in it and whose lower part has ‘bottom’ in it. The
node shape circle split inherits all labels from the node shape
circle. It also gets a label for the lower part. The node options circle
split and double in Figure 5.13 result in a split circle with a double
line. ☐√

ellipse split

This is the ellipse version of circle split.

Presenting Diagrams 101

Row 1
Row 2

Row 3

Row four

\node[rectangle split, rectangle split parts=4,
every text node part/.style={align=center},
every two node part/.style={align=left},
every three node part/.style={align=right},
draw, text width=2.5cm]
{ Row 1

\nodepart{two} Row 2
\nodepart{three} Row 3
\nodepart{four} Row four };

A node with rectangle style
and several parts

Figure 5.14

hi
lo

\draw (0,0) node[ellipse split,draw]
{hi \nodepart{lower} lo}; ☐√

rectangle split

This is the rectangle version of circle split. The rectangle shape
has many options and can split horizontally or vertically into up to
20 parts. There are quite a number options for this shape. The example
in Figure 5.14 draws a rectangle with four parts. The example only
works if the text width is set explicitly. The reader is referred to the
tikz manual [Tantau 2010] for further information. ☐√

5.10 The spy Library

The spy library lets you magnify parts of diagrams. These magnifica-
tions are technically known as canvas transformations, which means
they affect everything, including line widths, font size, and so on.

To use the feature you must add the option spy scope to the
picture or scope you wish to spy upon. Some options implicitly add
this option. Figure 5.15 shows an example of the spy feature. The
notation (α:r) in the example is a polar coordinate. If is equivalent
to the coordinate (r cosα, r sinα). Polar coordinates are explained in
further detail in Section 5.14. The spy command has many of options.
If you like spying on your tikzpictures then you may find more
details in the manual [Tantau 2010].

5.11 Trees

Knowing how to define node labels and knowing how to draw nodes
and basic shapes, we are ready to draw some more interesting objects.
We shall start with a class of objects that should be of interest to the
majority of computer scientists: trees.

Trees expose a common theme in tikz objects: hierarchical struc-
tures. A tree is defined by defining its root and the children of each
node in the tree. Each child is a node or a node with children. By
default, the children of each parent are drawn from left to right in
order of appearance. Unfortunately, drawing trees with tikz isn’t per-

102 Chapter 5

0

36
72108

144

180

216
252 288

324

144

180

\begin{tikzpicture}
[spy using outlines={circle,

magnification=2,
size=2cm,
connect spies}]

\draw (-36:0.8)
\foreach \angle in {0,36,...,359} {

-- (\angle:0.8)
(\angle:1.1) node {\angle}
(0,0) -- (\angle:0.8)

};
\spy[red] on (162:1.0) in node[right] at (0,-2.5);
\end{tikzpicture}

Using the spy library
Figure 5.15

f4

f3

f2

f1 f0

f1

f2

f1 f0

\begin{tikzpicture}
[level 2/.style={sibling distance=10mm}]

\node {f_4}
child {node {f_3}

child {node {f_2}
child {node {f_1}}
child {node {f_0}}}

child {node {f_1}}}
child {node {f_2}

child {node {f_1}}
child {node {f_0}}};

\end{tikzpicture}

Drawing a tree
Figure 5.16

f3

f1 f2

f1 f0

\node (top) {f_3}
child {node {f_1}}
child {node {f_2}

child {node {f_1}}
child {node {f_0}}};

\draw[-angle 90]
(top-1.north east) .. controls (top.south)

.. (top-2.north west);

Using implicit node labels in
trees. To draw the arrow, the
label of the root node is used to
construct the labels of its first
and second child.

Figure 5.17

fect. The sibling distance=〈dimension〉 option lets you control the
sibling distance. You can control these distances globally or for a fixed
level. For example, level 2/.style={sibling distance=1cm} sets the
distance for the grandchildren of the root—they are at level 2—to
1 cm. Figure 5.16 demonstrates how to draw a tree.

Inside trees labels work as usual. What is more, tikz implicitly
labels the nodes in the tree. The ith child of a parent with label 〈parent〉
is labelled 〈parent〉-i. This process is continued recursively, so the
jth child of the ith child of the parent node is labelled 〈parent〉-i-j.
Figure 5.17 demonstrates the mechanism.

Presenting Diagrams 103

f3

f1 f2

f1 f0

\begin{tikzpicture}
[level distance=10mm%
,every node/.style={fill=red!60,%

circle,%
draw=black,%
inner sep=1pt}%

,level 1/.style={sibling distance=15mm},%
,level 2/.style={sibling distance=10mm,%

nodes={fill=red!20}}]
\node (top) {f_3}

child {node[fill=blue!40] {f_1}}
child {node[fill=blue!20] {f_2}

child {node {f_1}}
child {node {f_0}}};

\end{tikzpicture}

Controlling the node style
Figure 5.18

0

1

2

3

4

\begin{tikzpicture}
[level 2/.style={sibling distance=10mm}]

\node (top) {0}
child {node {1}

child[missing]
child {node {2}}}

child {node {3}
child {node {4}}};

\draw[-angle 90]
(top-1-2.east) -- (top-2-1.west);

\end{tikzpicture}

A tree with a ‘missing’ node.
The node of the first child of the
root’s first child is left out using
the node option missing.

Figure 5.19

You can change the node style per tree level. Figure 5.18 uses dif-
ferent nodes styles for the second and third level. The option level
distance=〈dimension〉 sets the distance between the levels in the tree.

As already noted, the rules for automatic node placement are not
always ideal. For example, sometimes you may wish to have the single
child of a given parent drawn to the left or to the right of the parent.
The child option missing allows you to specify a node that takes up
space but that is not drawn. By putting such a node to the left of its
sibling, the position of the sibling is forced to the right. You may use
this mechanism to force node placement. Omitting a node makes its
label inaccessible. Figure 5.19 provides an example.

5.12 Logic Circuits

A logic circuit is a circuit whose building blocks are logic gates such as
and-gates, or-gates, xor-gates (exclusive or), not-gates, and so on. Need-
less to say that tikz lets you draw logic circuits with ease. The style of
the symbols of the gates depends on libraries. Possible libraries are
circuits.logic.IEC, circuits.logic.CDH, and circuits.logic.US.

104 Chapter 5

Appearance Appearance

Node Shape IEC CDH US Node Shape IEC CDH US

and gate & nand gate &

or gate ≥1 nor gate ≥1

xor gate =1 xnor gate =1

buffer gate
1 not gate 1

Node shapes provided by logic
gate shape libraries

Table 5.4

You may load these libraries with the \usetikzlibrary command.
Table 5.4 shows the node shapes for the different libraries. The op-
tions used to draw the shapes are given by {circuit, logic 〈style〉,
tiny circuit symbols,every circuit symbol/.style={fill=white,
draw}}, where 〈style〉 is IEC, CDH, or US. The option logic gate IEC
symbol color=black was also used when IEC was used.

Figure 5.20 draws a logic circuit with tikz. There are two new con-
cepts in this example. The first is the option circuit declare symbol,
which defines names of new circuit symbols. The second new concept
is set 〈symbol〉 graphic, which defines the appearance of the circuit
symbol 〈symbol〉. These options define two new symbols called con-
nection and io. The former draws connections as black filled circles.
The latter draws the input and output nodes as circles. The style of the
remaining symbols is determined by the circuit logic CDH option.
Notice that this example requires the library circuits.logic.CDH.
Finally, note that if you’re drawing many circuits you can define the
defaults for your circuits with the \tikzset command.

5.13 Commutative Diagrams

Commutative diagrams are frequently used in mathematics and theo-
retical computer science. The purpose of these diagrams is to provide
some high-level overview of the composition of functions/morphisms.

The input in Figure 5.21 uses the \matrix command to construct a
commutative diagram for the Homomorphism Theorem. The output
is presented in Figure 5.22. In this example, which is based on [Becker,
and Weispfenning 1993, Theorem 1.55], φ : R → S is a homomorphism
of rings, I is an ideal of R with I ⊆ ker(φ), χ is the canonical homomor-
phism from R to R/I, and ψ : R/I → S is the ring homomorphisms
satisfying ψ ◦ χ = φ. Note that the nodes in the example contain
mathematical content of the form $〈stuff〉$. This is explained in
Chapter 8.

The example uses the \matrix command to define a matrix of rows
with alignment positions. As is usual, a row is ended with a double
backslash and columns are separated with ampersand characters. Note
that it is required to explicitly terminate the last row.

Presenting Diagrams 105

A

B

S

C

\begin{tikzpicture}
[circuit logic CDH,
circuit declare symbol=connection,
circuit declare symbol=io,
set connection graphic={fill=black,

shape=circle,
minimum size=1mm},

set io graphic={draw,shape=circle,
minimum size=1mm},

every circuit symbol/.style={fill=white,draw}]
\draw node[xor gate] (x) {}

+(0,-1) node[and gate] (a) {}
(x.input 1) +(-0.8,0) node[io] (A) {}
(A |- a.input 2) node[io] (B) {}
(x.output) -- +(0.4,0) node[io] (S) {}
(a.output) -- (a.output -| S)

node[io] (C) {}
($(B)!0.33!(a.input 2)$) node[connection] {}

|- (x.input 2)
($(A)!0.66!(x.input 1)$) node[connection] {}

|- (a.input 1)
(A.west) node[anchor=east] {A}
(B.west) node[anchor=east] {B}
(S.east) node[anchor=west] {S}
(C.east) node[anchor=west] {C}
(A) -- (x.input 1)
(B) -- (a.input 2);

\end{tikzpicture}

Drawing a half adder with tikz
Figure 5.20

Inside the matrix, you can use tikz commands such as \draw. You
also can define labels. In the example, there is only one command per
matrix cell, but you may have more commands.

Note that the symbols near the arrows should be near the centres
of these arrows. We could have placed these nodes explicitly using a
node command of the form \node[midway]{〈stuff〉}, but that would
mean a lot of repetition. Instead we define the style of the nodes to be
midway in the optional argument of the tikzpicture environment.

The distance between the rows and columns is defined in terms
of ems. That way, the diagram scales with commands such as \large.
Using centimetres or other absolute distances is not such a good idea.

Finally, the example doesn’t really need an explicit placement of the
matrix (using at). The placement is only added to show that matrices
can be placed at a certain position.

5.14 Coordinate Systems

Specifying coordinates is the key to effective, efficient, and maintain-
able picture creation. Coordinates may be specified in different ways

106 Chapter 5

\begin{tikzpicture}[every node/.style={midway}]
\matrix[column sep={4em,between origins},

row sep={2em}] at (0,0) {
\node(R) {R}; & \node(S) \\
\node(R/I) {R/I}; \\ % don’t omit previous \\

};
\draw[->] (R) -- (R/I) node[anchor=east] {χ};
\draw[->] (R/I) -- (S) node[anchor=north] {ψ};
\draw[->] (R) -- (S) node[anchor=south] {ϕ};
\end{tikzpicture}

Input of commutative diagram.
Most of the construction
should be clear. Setting the
node style to midway in the
options of the tikzpicture
forces the three drawn nodes
at the bottom between the
start and end points of the
arrows.

Figure 5.21

R S

R/I

χ
ψ

φ
Commutative diagram. This di-
agram is the result of the input
in Figure 5.21.

Figure 5.22

each coming with its own specific coordinate system. Within a coordi-
nate system you specify coordinates using explicit or implicit notation.

explicit Explicit coordinate specifications are verbose. To specify a coordinate,
you write (〈system〉 cs:〈coord〉), where 〈system〉 is the name of the
coordinate system and where 〈coord〉 is a coordinate whose syntax
depends on 〈system〉. For example, to specify the point having x-
coordinate 〈x〉 and y-coordinate 〈y〉 in the canvas coordinate system
you write (canvas cs:x=〈x〉,x=〈y〉).

implicit Implicit coordinates specifications are shorter than explicit coordinate
specifications. You specify coordinates using some coordinate system-
specific notation inside parentheses. Most examples so far have used
the implicit notation for the canvas coordinate system.

The remainder of this section studies some of the more useful coordi-
nates systems. The notation for explicit coordinate specification being
too verbose, we shall focus on using implicit notation.

canvas coordinate system The most widely used coordinate system is the
canvas coordinate system. It defines coordinates in terms of a hori-
zontal and a vertical offset relative to the origin. The implicit notation
(〈x〉,〈y〉) is the point with x-coordinate 〈x〉 and y-coordinate 〈y〉.

xyz coordinate system The xyz coordinate system defines coordinates in
terms of a linear combination of an x-, a y-, and a z-vector. By default,
the x-vector points 1 cm to the right, the y-vector points 1 cm up, and
the z-vector points to (–

√
2/2, –

√
2/2). However, these default settings

can be changed. The implicit notation (〈x〉,〈y〉,〈z〉) is used to define
the point at 〈x〉 times the x-vector plus 〈y〉 times the y-vector plus 〈z〉
times the z-vector.

polar coordinate system The canvas polar coordinate system defines coor-

Presenting Diagrams 107

\begin{tikzpicture}[>=angle 90]
\draw[help lines] (-1,-1) grid (2,3);
\draw[red] (canvas cs:x=1cm,y=2cm) -- (0,3);
\draw[blue,->] (0,0) -- (xyz cs:x=1,y=0,z=0);
\draw[blue,->] (0,0) -- (0,1,0);
\draw[blue,->] (0,0) -- (0,0,1);
\draw (canvas polar cs:radius=2cm,angle=30)

-- (90:2);
\path (0,0) coordinate (origin);
\draw (origin) node circle (2pt);
\end{tikzpicture}

Using four coordinate systems
Figure 5.23

\draw[help lines] (0,0) grid +(3,3);
\path (1,1) coordinate (ll);
\path (2,2) coordinate (ur);
\draw (ll) -- (ll -| ur) circle (2pt);
\draw (ll -| ur) -- (ur) circle (3pt);
\draw (ur) -- (ur -| ll) circle (4pt);
\draw (ur -| ll) -- (ll) circle (5pt);

Computing the intersection of
perpendicular lines

Figure 5.24

dinates in terms of an angle and a radius. The implicit notation (α:r)
corresponds to the point r × (cosα, sinα). Angles in this coordinate
system, as all angles in tikz, should be supplied in degrees.

node coordinate system The node coordinate system defines coordinates
in terms of a label of a node or coordinate. The implicit notation
(〈label〉) is the position of the node or coordinate that was given the
label 〈label〉.

Figure 5.23 demonstrates the previous four coordinate systems in
action. The optional argument of the tikzpicture sets the arrow head
style to the predefined style angle 90.

perpendicular coordinate system The perpendicular coordinate system is a dedi-
cated system for computing intersections of horizontal and vertical
lines. With this coordinate system’s implicit syntax you write (〈pos₁〉
|- 〈pos₂〉) for the coordinate at the intersection of the infinite vertical
line though 〈pos₁〉 and the infinite horizontal line through 〈pos₂〉.
Likewise, (〈pos₁〉 -| 〈pos₂〉) is the intersection of the infinite hori-
zontal line though 〈pos₁〉 and the infinite vertical line through 〈pos₂〉.
The notation for this coordinate system is quite suggestive because
| suggests vertical and - suggests horizontal. The order of the lines
is then given by the order inside the operators |- and -|. Inside the
parentheses you are not supposed to use parentheses for coordinates
and labels, so you write (0,1 |- 1,2), (label |- 1,2), and so on.
Figure 5.24 demonstrates how to use the perpendicular coordinate
system.

You can freely mix the coordinate systems. For example \draw
(0,0) -- (0,1); and \draw (0,0) -- (90:1); are equivalent.

108 Chapter 5

\draw[help lines] (0,0) grid +(3,2);
\draw (0,0) -- (+1,0) --

(1,1) -- (+0,1) -- cycle;
\draw (1,1) -- +(+1,0) --

+(1,1) -- +(+0,1) -- cycle;
\draw (2,0) -- ++(+1,0) --

++(0,1) -- ++(-1,0) -- cycle;

Absolute, relative, and incre-
mental coordinates

Figure 5.25

5.15 Coordinate Calculations

Specifying diagrams in terms of absolute coordinates is cumbersome
and prone to errors. What is worse, diagrams defined in terms of abso-
lute coordinates are difficult to maintain. For example, changing the
position of an n-agon that is defined in terms of absolute coordinates
requires changing n coordinates. Fortunately, tikz lets you compute
coordinates from other coordinates. Used intelligently, this reduces
the maintenance costs of your diagrams.

There are two kinds of coordinate computations. The first kind in-
volves relative and incremental coordinates. These computations depend
on the current coordinate in a path. They are explained in Section 5.15.1.
The second kind of computations is more general. They can be used
to compute coordinates from coordinates, distances, rotation angles,
and projections. These computations are explained in Section 5.15.2.

5.15.1 Relative and Incremental Coordinates

Relative and incremental coordinates are computed from the current
coordinate in a path. The first doesn’t change the current coordinate
whereas the second does change it.

relative coordinate A relative coordinate constructs a new coordinate at an
offset from the current coordinate without changing the current coor-
dinate. The notation +〈offset〉 specifies the relative coordinate that
is located at offset 〈offset〉 from the current coordinate.

incremental coordinate An incremental coordinate also constructs a new coordi-
nate at an offset from the current coordinate. This time, however, the
new coordinate becomes the current coordinate. You use the implicit
notation ++〈offset〉 for incremental coordinates.

Figure 5.25 provides an example that draws three squares. The first
square is drawn with absolute coordinates, the second with relative
coordinates, and the last with incremental coordinates. Clearly, the
relative and incremental coordinates should be preferred because they
improve the maintenance of the picture. For example, moving the
first square requires changing four coordinates, whereas moving the
second or third square requires changing only the start coordinate.
The relative coordinate in the grid also improves the maintainability.

Presenting Diagrams 109

a

b

c
d

\draw[help lines] (0,0) grid +(3,5);
\draw (2.0,1.0) circle (1pt)

coordinate(a)
node[anchor=west] {a}

(2.0,4.0) circle (1pt)
coordinate(b)
node[anchor=west] {b}

($(a)!0.666!(b)$) circle (1pt)
node[anchor=west] {c}

($(a)!0.666!30:(b)$) circle (1pt)
node[anchor=east] {d};

Computations with partway
modifiers

Figure 5.26

\draw[help lines] (-3,0) grid +(3,4);
\draw (0,0) --

($(0,0)! 1! 30:(0,4)$) coordinate(a)
($(0,0)!2cm! (a)$) coordinate(b)
($(0,0)!2cm!-15:(a)$) coordinate(c)
($(0,0)!2cm!-30:(a)$) coordinate(d);

\draw[-open triangle 90]
(b) .. controls (c) .. (d);

Computations with partway
and distance modifiers

Figure 5.27

a

b

c

\begin{tikzpicture}[>=open triangle 90]
\draw[help lines] (0,0) grid +(3,4);
\draw (1,1) coordinate(a) node[anchor=north] {a}

-- (1,2) coordinate(b) node[anchor=east] {b}
-- (2,3) coordinate(c) node[anchor=west] {c}
-- cycle;

\draw[->] (b) -- ($(a)!(b)!(c)$);
\draw[->] (c) -- ($(b)!(c)!(a)$);
\draw[->] (a) -- ($(c)!(a)!(b)$);
\end{tikzpicture}

Computations with projection
modifiers

Figure 5.28

5.15.2 Complex Coordinate Calculations

Finally, tikz offers complex coordinate calculations. However, these
calculations are only available if the tikz library calc is loaded in the
preamble: \usetikzlibrary{calc}.

([〈options〉]$〈coordinate computation〉$)
This is the general syntax. The 〈coordinate computation〉 should:

1. Start with 〈factor〉*〈coordinate〉〈modifiers〉. Here 〈modifiers〉 is
a sequence of one or more 〈modifier〉s and 〈factor〉* is an optional
multiplication factor, which defaults to 1. Both are described further
on.

2. Continue with one or more expressions of the form: 〈sign option〉

110 Chapter 5

〈factor〉*〈coordinate〉〈modifiers〉, where 〈sign option〉 is an op-
tional + or -. ☐√

〈factor〉
Each 〈factor〉 is an optional numeric expression that is parsed by the
\pgfmathparse command. Examples of valid 〈factor〉s are 1.2, {3 * 4},
{3 * sin(60)}, {3 + (2 * 4)}, and so on. Inside the braces it is safe to
use parentheses, except for the top level. The reason why parentheses
do not work at the top level is that 〈factor〉s are optional and that the
opening parenthesis is reserved for the start of a coordinate. Therefore,
compound expressions at the top level are best put inside braces as
this makes parsing easier at the top level. ☐√

〈modifier〉
A 〈modifier〉 is a postfix operator acting on the coordinate preced-
ing it. There are three different kinds: 〈pmod〉, 〈dmod〉, and 〈prmod〉.
Each of them is of the form !〈stuff〉 and it is used after a coordi-
nate. To explain the modifiers we shall write 〈partway modifier〉 for
〈coordinate〉!〈pmod〉, shall write 〈distance modifier〉 for 〈coordinate〉
!〈dmod〉, and shall write 〈projection modifier〉 for 〈coordinate〉!
〈prmod〉. ☐√

〈partway modifier〉
There are two forms of 〈partway modifier〉s. The first is 〈coordinate₁〉
!〈factor〉!〈coordinate₂〉 The resulting coordinate is given by

〈coordinate₂〉 + 〈factor〉× (〈coordinate₂〉 – 〈coordinate₁〉) .

In words this is the coordinate that is at 〈factor〉 × 100% distance
along the line between 〈coordinate₁〉 and 〈coordinate₂〉.

A 〈partway modifier〉 may also have the complex form 〈coordinate₁〉
!〈factor〉!〈angle〉:〈coordinate₂〉. This first computes 〈coordinate₁〉
!〈factor〉!〈coordinate₂〉 and then rotates the resulting coordinate
about 〈coordinate₁〉 over 〈angle〉 degrees. Figure 5.26 shows some
coordinate computations with partway modifiers. ☐√

〈distance modifier〉
The next modifier is the 〈distance modifier〉. This modifier has
the form 〈coordinate₁〉!〈distance〉:〈angle〉!〈coordinate₂〉, where
:〈angle〉 is optional.

The simpler form 〈coordinate₁〉!〈distance〉!〈coordinate₂〉 re-
sults in the coordinate that is at distance 〈distance〉 from 〈coordinate₁〉
in the direction from 〈coordinate₁〉 to 〈coordinate₂〉. For example,
if the two coordinates are 2 cm apart then setting 〈distance〉 to 1cm
gives you the point halfway between the two coordinates.

The more complex form of the distance modifier is similar to and
works in a similar way as the partway modifier. This time you write
〈coordinate₁〉!〈distance〉:〈angle〉!〈coordinate₂〉. The result is ob-
tained by first computing 〈coordinate₁〉!〈distance〉!〈coordinate₂〉
and rotating the result about 〈coordinate₁〉 over 〈angle〉 degrees in a
counter-clockwise direction. Figure 5.27 presents an example of coor-
dinate computations involving distance modifiers. ☐√

Presenting Diagrams 111

〈projection modifier〉
The final 〈modifier〉 is a 〈projection modifier〉. This modifier is
of the form 〈coordinate₁〉!〈coordinate₂〉!〈coordinate₃〉1 and it re-
sults in the projection of 〈coordinate₂〉 on the infinite line through
〈coordinate₁〉 and 〈coordinate₃〉. Figure 5.28 presents an example of
coordinate computations with projection modifiers. (For some reason
my tikz version doesn’t like extra space around ! inside a 〈projection
modifier〉. It is not clear whether this is a feature.) ☐√

5.16 Options

Many tikz commands and environments depend on options. Usually
these options are specified using 〈key〉=〈value〉 combinations. Some
combinations have shorthand notations. For example, 〈colour〉 is a
shorthand notation for color=〈colour〉. Options are best defined by
passing their 〈key〉 = 〈value〉 combinations as part of the optional
argument. However, there is another mechanism.

\tikzset{〈options〉}
Sets the options in 〈options〉. The options are set using the pgfkeys
package. This package is quite powerful but explaining it goes beyond
the scope of an introduction like this chapter. Roughly speaking, pro-
cessing the keys works “as expected” for “normal” usage. There are
no examples of how you redefinine existing options. However, the
following section provides examples of how the \tikzset command
may be used to set user-defined styles. ☐√

5.17 Styles

One of the great features of tikz is styles. Defining a style for your
graphics has several advantages.

control Styles control the appearance. By carefully designing a style for draw-
ing auxiliary lines, you can draw them in a style that makes them
appear less prominently in the picture. Other styles may be used to
draw lines that should stand out and draw attention.

consistency Drawing and colouring sub-diagrams with a carefully chosen style
guarantees a consistent appearance of your diagrams. For example, if
you consistently draw help lines in a dedicated, easily recognisable
style then it makes it easier to recognise them.

reusability Styles that are defined once can be reused several times.
simplicity Changing the appearance of a graphical element with styles with well-

understood interfaces is much easier and leads to fewer errors.
refinement You can stepwise refine the way certain graphics are drawn. This lets

you postpone certain design decisions while still letting you draw your
diagrams in terms of the style. By refining the style at a later stage,
you can fine-tune the drawing of all the relevant graphics.

1The manual on page 119 also mentions an angle but it is not explained how to
use it….

112 Chapter 5

\tikzset{thick dashed/.style={thick,dashed}}
\begin{tikzpicture}

[{help lines/.style={ultra thin,blue!30}]
\draw[thick dashed] (0,0) rectangle (1,1);
\draw[help lines] (1,1) rectangle (2,2);
\end{tikzpicture}

Predefining options with the
\tikzset command

Figure 5.29

maintenance This is related to the previous item. Unforeseen changes in global
requirements can be implemented by making a few local changes.

Styles affect options. For example, the predefined help lines style
sets draw to black!50 and sets line width to very thin. You can set a
style at a global or at a local level. The following command defines a
style at a global level.

\tikzset{〈style name〉/.style={〈list〉}}
This defines a new style 〈style name〉 and gives it the value 〈list〉,
where 〈list〉 is a list defining the style. Once the style is defined it can
be used and using it is equivalent to executing the items in 〈list〉. In
its basic usage 〈list〉 is a list of ground options, but it is also possible
to define styles that take arguments. This is explained in Chapter 13.
The following example defines a style Cork, which uses thick, dashed
lines.

\tikzset{Cork/.style={dashed,thick}}
\draw[Cork] (0,0) rectangle (1,1); ☐√

〈style name〉/.style={〈list〉}
This mechanism may be used to temporarily override the existing
definition of 〈style name〉. Figure 5.29 provides an example. ☐√

5.18 Scopes

Scopes in tikzpicture environments serve a similar purpose as blocks
in a programming language and groups in LaTEX. They let you tem-
porarily change certain settings inside the scope and restore the origi-
nal settings when leaving the scope. In addition tikz scopes let you
execute code at the start and end of a scope. Scopes in tikz are im-
plemented as an environment called scope. Scopes depend on the
following style.

every scope

This style is installed at the start of every scope. The style is empty ini-
tially. There are two techniques to define the style. The first technique
is to use \tikzset{every scope/.style={〈list〉}}. The second tech-
nique sets the style using the option of a tikzpicture environment.

\begin{tikzpicture}[every scope/.style={〈list〉}]
…
\end{tikzpicture} ☐√

LaTEX Usage

Presenting Diagrams 113

\begin{scope}[fill=gray!50]
\fill (0.5,1.5) circle (0.5);
\begin{scope}[fill=gray]

\fill (1.5,0.5) circle (0.5);
\end{scope}
\fill (2.5,1.5) circle (0.5);

\end{scope}
\draw (0,0) rectangle (1,1)

{ [rounded corners]
rectangle (2,2) }

(2,1) rectangle (3,0);

Using scopes
Figure 5.30

1 2

34
\foreach \pos/\text in

{{0,0}/1,{1,0}/2,{1,1}/3,{0,1}/4}
{

\draw (\pos) node {\text};
}

The \foreach command
Figure 5.31

The following options execute code at the start and end of the
scope.

execute at begin scope=〈code〉
This option executes 〈code〉 at the start of the scope. ☐√

execute at end scope=〈code〉
This option executes 〈code〉 at the end of the scope. ☐√

The tikz library scopes defines a shorthand notation for scopes. It
lets you write { [〈options〉] 〈stuff〉 } for \begin{scope}[〈options〉]
〈stuff〉 \end{scope}. Interestingly you can also have scopes inside
paths. However, options of a local scope in a path do not affect path
options that apply to a whole path. For example, line thickness, colour
and so on. Figure 5.30 depicts an example.

5.19 The \foreach Command

As if tikz productivity isn’t enough, its pgffor library provides a very
flexible foreach command.

\foreach 〈macros〉 in {〈list〉} {〈statements〉}
Here 〈macros〉 is a forward slash-delimited list of macros and 〈list〉
is a comma-delimited list of lists with forward slash-delimited values.
For each list of values in 〈list〉, the \foreach command binds the
i-th value of the list to the i-th macro in 〈macros〉 and then carries
out 〈statements〉. Figure 5.31 shows an example. This example also
shows that grouping may be used to construct values in 〈list〉 with
commas. In general this is a useful technique. Since coordinates are
very common, there is no need to turn coordinates into a group.

It is also possible to use \foreach inside the \path command. The

114 Chapter 5

Command Yields

\foreach \x in {1,2,...,6} {\x,} 1, 2, 3, 4, 5, 6,
\foreach \x in {1,3,...,10} {\x,} 1, 3, 5, 7, 9,
\foreach \x in {1,3,...,11} {\x,} 1, 3, 5, 7, 9, 11,
\foreach \x in {0,0.1,...,0.3} {\x,} 0, 0.1, 0.20001, 0.30002,
\foreach \x in {a,b,...,d,9,8,...,6} {\x,} a, b, c, d, 9, 8, 7, 6,
\foreach \x in {7,5,...,0} {\x,} 7, 5, 3, 1,
\foreach \x in {Z,X,...,M} {\x,} Z, X, V, T, R, P, N,

\foreach \x in {1,...,5} {\x,} 1, 2, 3, 4, 5,
\foreach \x in {5,...,1} {\x,} 5, 4, 3, 2, 1,
\foreach \x in {a,...,e} {\x,} a, b, c, d, e,

\foreach \x in {2ˆ1,2ˆ...,2ˆ6} {\x,} 21, 22, 23, 24, 25, 26

\foreach \x in {0\pi,0.5\pi,...\pi,2\pi} {\x,} 0π, 0.5π, 1.5π, 2.0π,
\foreach \x in {A_1,..._1,D_1} {\x,} A1, B1, C1, D1,

Shorthand notation for the
\foreach command. The no-
tation in the upper part of the
table involves ranges that de-
pend on an initial value and a
next value that determines the
increment. The shorthand no-
tation in the middle part de-
pends only on the initial value
and the final value in the range.
Here the increment is 1 if the
final value is greater than the
initial value. Otherwise the in-
crement is –1. The lower part
of the table demonstrates the
\foreach command also al-
lows pattern-matching.

Table 5.5

following is an example, which also demonstrates that tikz supports
a limited form of arithmetic.

\draw (0,-0.8)
\foreach \angle in {0,90,180,270} {

-- (\angle:0.8)
(\angle:1.0) + (\angle:0.2)

\foreach \fraction in {1,2,3,4,5} {
-- +(\angle+\fraction*72:0.2)

} -- cycle (\angle:0.8)
}; ☐√

If there is only one macro in 〈macros〉 then shorthand notations
are allowed in 〈list〉. Some examples of these shorthand notations
are listed in Table 5.5. The table is based on the tikz documentation.

5.20 The let Operation

The let operation binds expressions to “variables” inside a path. The
following is the general syntax.

\path … let 〈assignments〉 in …;

Here 〈assignments〉 is a comma-delimited list of assignments. Each as-
signment is of the form 〈register〉 = 〈expression〉. To carry out the as-
signment, 〈expression〉 is evaluated and then assigned to 〈register〉,
which is some local tikz variable. The macros \n, \p, \x, and \y can be
used to get the defined values. These macros only work in the scope
of the assignment, which lasts from the keyword in to the semicolon
at the end of the path operation. The assignment mechanism respects
the tikz scoping rules. ☐√

There are two kinds of 〈register〉 in assignments of the let op-

Presenting Diagrams 115

eration. Both are written as macro calls. The first kind is number
registers, which are written as \n{〈name〉}. Here 〈name〉 is just a con-
venient label, which may be almost any combination of characters,
digits, space characters, and other regular characters. You cannot use
the dot. As the name suggests, number registers store numeric values.
The second kind of register is the point register. Point registers are
written \p{〈name〉}. As the name suggests, they store coordinate values.
The following explains both 〈register〉s in more detail.

\n{〈name〉} = 〈expression〉
This is for assigning a numeric value to the number register 〈name〉.
The command \n{〈name〉} returns the current value of the number
register 〈name〉. The following shows how to use number registers.

\draw let \n0 = 0, \n1 = 1 in
let \n{the sum} = \n0 + \n1 in
(0,0) -- (\n1,\n0) --

(\n1,\n{the sum}); ☐√

\p{〈name〉} = 〈expression〉
This is for assigning points to the point register 〈name〉. The command
\p{〈name〉} returns the current (point) value of the point register 〈name〉.
The x- and y-coordinates of the point register may be got with the
commands \x{〈name〉} and \y{〈name〉}. The following is an example
that assumes that the tikz library calc has been loaded. Note that this
example can also be written with a single let operation.

\draw
let \p{ll} = (0,0),

\p{ur} = (1,1) in
let \p{ul} = (\x{ll},\y{ur}),

\p{lr} = ($\p{ll}!1!90:\p{ul}$) in
(\p{ll}) -- (\p{lr}) -- (\p{ur}) --
(\p{ul}) -- cycle; ☐√

5.21 The To Path Operation

The to path operation connects two nodes in a given style. For example,
\path (0,0) to (1,0); is the same as \path (0,0) -- (1,0);. However,
\path (0,0) to[out=45,in=135] (1,0); connects the points with an
arc leaving (0, 0) at 45◦ and entering (1, 0) at 135◦.

It is also possible to define styles for to operations. This lets you
draw complex paths with a single operation. The general syntax of the
to path operation is as follows.

\path … to[〈options〉] 〈nodes〉 (〈coordinate〉) …;

The 〈nodes〉 are optional nodes that are placed on the path. Figure 5.32
presents an example. ☐√

every to

This style is for to paths. The style is installed at the start of every to

116 Chapter 5

1
4

3
4

\draw[help lines] (0,0) grid (2,2);
\draw[out=30,in=120]

(0,0) to node[pos=0.25,above] {$\frac{1}{4}$}
node[pos=0.75,above] {$\frac{3}{4}$}
(2,0);

Simple to path example
Figure 5.32

\tikzset{hvh/.style={to path={
let \p{mid}=($(\tikztostart)!0.5!(\tikztotarget)$)
in -- (\tikztostart -| \p{mid})

-- (\p{mid} |- \tikztotarget)
-- (\tikztotarget) \tikztonodes}}

\begin{tikzpicture}
\draw[help lines] (0,0) grid +(3,2);
\draw[-open triangle 45] (0,0) to[hvh] (1,1);
\draw[-open triangle 45] (3,2) to[hvh] (1,0);
\end{tikzpicture}

user-defined to path. The
\tikzset command defines
a new to path style called hvh.
Lines 2–5 are the style’s actions.
The command \tikztostart
is the start of the path, \tikz-
totarget the destination, and
\tikztonodes optional nodes
at the end of the path. All these
commands are determined by
the \path command.

Figure 5.33

path. The following shows the main ideas. We start by defining the
style of the to path.

\tikzset{every to/.style={out=90,in=180}} LaTEX Input

Of course you may also set the style by passing it as an option to a
tikzpicture or a scope. Once the style is set, it becomes effective and
is added to every to path.

\tikzset{every to/.style={out=90,in=180}}
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (0,0) to (2,2)

(0,0) to (1,1);
\end{tikzpicture} ☐√

Options affect the style of to paths. The following is arguably the
most important style.

to path=〈path〉
This inserts the path {[every to,〈options〉] 〈path〉}. Here 〈options〉
are the options passed to the to path. Inside 〈path〉 you can use the
commands \tikztostart, \tikztotarget, and \tikztonodes. The
value of \tikztostart is the start node and the value of \tikztotar-
get is the end node. The value of \tikztonodes is given by 〈nodes〉,
i. e., the nodes of the to path. The values returned by \tikztostart
and \tikztotarget do not include parentheses. ☐√

Figure 5.33 defines a to path style called hvh that connects two
points using three line segments. The first line segment is horizontal,
the second is vertical, and the third is horizontal.

Chapter 6
Presenting Data in Tables

This chapter studies how to present data using tables. This in-
cludes studying the purpose of tables, table taxonomy, table anatomy,
table design, wide and multi-page tables, and packages for spread-
sheets and multi-page tables.

6.1 Why Use Tables?

Tables are a common way to communicate facts in newspapers, reports,
journals, theses, and so on. Tables have several advantages.

◦ Tables list numbers in systematic fashion.
◦ Tables supplement, simplify, explain, and condense written material.
◦ Well-designed tables are easily understood.

� Patterns and exceptions can be made to stand out.
� They are more flexible than graphs. For example, in a graph

it may be difficult to mix numeric information about data in
different units such as the total consumption of petrol in Ireland
in tons in the years 1986–2008 and the average number of rainy
days per year in the same country.

6.2 Table Taxonomy

There are two kinds of tables: demonstration tables and reference
tables. The following explains the difference between the two.

demonstration tables A demonstration table organises figures to show a trend or
show a particular point. Examples are: (most) tables in technical re-
ports, theses, and tables (shown) in meetings.

reference tables A reference table provides extra and comprehensive informa-
tion. Examples are: train schedules, telephone directories, and stock
market listings.

As a general rule a demonstration table in a thesis should be presented
in the main text because you want to make a point with the information
in the table. Likewise, a reference table in a thesis is probably best
presented in an appendix because the data are “additional.” However,
exceptions are possible.

 , ,
DOI 10.1007/978-3-642-23816-1_6, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 117

118 Chapter 6

Table 3.1. gp and diabetic services, 2000

gp Practices
Towns Number Number providing % Providing

diabetic services diabetic services

Town A 40 38 95
Town B 29 27 93
Town C * 29 25 86
Town D 34 29 85
Town E 36 30 83
Town F 62 32 52

Total 230 181 82

Source: Health Authority annual Report, 2001

* Two practices closed in April.

number and title

column headings

row headings

source
footnote

This figure shows the compo-
nents of a typical demonstra-
tion table. The background of
the table is coloured grey. The
black-on-white text on the left
of the table describes the com-
ponents of the table.

Figure 6.1

6.3 Table Anatomy

Figure 6.1 depicts a typical demonstration table, which is based on [Big-
wood, and Spore 2003, page 27]. The table has several components.

number and title In this example, the number and the title are listed at the top of the
table. You may also find them at the bottom. The title should describe
the purpose of the table. The table’s number is used to reference the
table further on in the text. It also helps locating the table.

There are also two other styles of tables. In the first you will find a
separate legend, which is a description of what is in the table. In the
other style, which is the default in LaTEX, tables have captions, which
are a combination of number, title, and legend. Good captions should
provide a number, a title, and a short explanation of the data listed in
the table.

If you include a table, you should always discuss it in the text.
◦ If the table is relevant, does have a message, but is not referenced

in the text, then how are you going to draw your reader’s attention
to the table? After all, you would want your reader to notice the
table.

◦ If the table is not relevant to the running text, then why present
it?

◦ If you don’t discuss a table in the running text, then this may
confuse and irritate the reader because they may waste a lot of
time trying to find where this table is discussed in the text.

column headings The column headings are used to describe properties of the rows in
the table. In this example, there are four column heading: ‘Towns,’
‘Number,’ ‘Number providing diabetic services,’ and ‘% providing
diabetic services.’ Horizontal lines separate the column headings from
the number and title and from the row heading of the table.

Presenting Data in Tables 119

Chilled Meats Calories
Beef (4 oz/100 g) 225

Chicken (4 oz/100 g) 153
Ham (4 oz/100 g) 109

Liver sausage (1 oz/25 g) 75.023
Salami (1 oz/25 g) 125

A poorly designed table
Table 6.1

row headings The row headings list what is in the rows of the table. In this table
there are 7 row headings: ‘Town A,’ …, ‘Town F,’ and ‘Total.’

body Each row/column presents facts, patterns, trends, and exceptions in
terms of numbers, and percentages.

trend In this table the general pattern is presented in the last column. Gen-
erally, in most towns more than 80% of the gps provide diabetic
services.

exception This table underlines exceptions of the general trend in the table.
Other techniques for highlighting exceptions are using a different
style of text (bold, italic, …). However, notice that using different
colours to highlight exceptions may not always be a good choice. For
example, the difference may not be clear when the table is printed on a
black-and-white printer. Also it may be difficult to reproduce colours
with a photocopier.

source The source describes the base document from which the table is
obtained or is based on.

footnote The footnote provides an additional comment about some of the data.

6.4 Table Design

This section provides some rules of thumb for the design of tables. To
start, consider Table 6.1, which is based on [Bigwood, and Spore 2003,
page 18]. It should be clear that this is a very poorly designed table.
Several things are wrong with this table. The following are but a few.

◦ The gridlines make it difficult to scan the data in the table.
◦ The column alignment makes it difficult to compare the calories in

the table.
◦ The figures (digits) have different widths. For example, the 1 is nar-

rower than the 5. This makes it difficult to compare the numbers even
if the numbers are properly aligned.

◦ The calories in the last column are for different weights of meat. For
example, the 225 calories in the first row are for 100 g of meat but
the 125 calories in the last row are for 25 g of meat. This makes it
impossible to see the trend of calories per unit of weight. Of course
the reader can work out the trend from the data in the first column,
but that isn’t their task. This is a common error: the information is in
the table but it is poorly presented. As a result the table is useless.

◦ The precision of the data in the last column is different for different
items. For example, for salami, it is listed with three decimals. It is

120 Chapter 6

Chilled Meats Calories per
100 g (4 oz)

Salami 500
Liver sausage 300
Beef 225
Chicken 153
Ham 109

An improved version of Ta-
ble 6.1

Table 6.2

not clear why this is important and it only makes it more difficult to
see the trend.

To improve the table we do the following.

◦ We scale the numbers in the last column to the same unit: 100 g (4 oz).
This has two advantages. First, we can leave out the weight information
from the first column. Second, the numbers in the last columns are
now in the same unit, which makes it easier to compare the numbers.

◦ We reorder the rows to highlight the trend in the last column.
◦ We reduce the grid lines to a minimum. This makes is easier to scan

the data.
◦ We present all numbers using the same precision and a similar num-

ber of digits. It is now easier to compare the numbers.
◦ We align the items in the first column to the left. This now makes it

easier scan the items in the first column.
◦ We align the numbers to the right. This now makes it easier to see the

relative differences of the data.
◦ We use non-proportional (tabular) figures in the last column. Most

LaTEX classes and styles already give you tabular figures. If they don’t
then they may have to enforce a command to switch to a style with
tabular numbers. Alternatively, you can always get tabular figures with
the command \texttt.

◦ Optional: we may make the Column Headings stand out by typesetting
them in a bold typeface.

The resulting table is listed as Table 6.2. Hopefully you agree this is a
much better table.

The main rule of thumb in the design of tables is to keep them
simple. Less is more.

◦ Good tables are simple and uncluttered.
� The number of vertical grid lines should be reduced to the abso-

lute minimum. The advantage is that it makes it easier to scan
the data in the table.

� Other gridlines should be kept to a minimum. Arguably, gridlines
should only be used to separate (1) the table from the surrounding
text, (2) the number and title, (3) the column headings, and (4) the
row headings.

Presenting Data in Tables 121

◦ Unless there is a good reason, you should align numbers to the right.
Also it is usually better if you align all Column Headings to the right
or align them all to the left. This results a more uniform appearance,
which makes it easier to compare the numbers.

◦ Good table titles should be concise, definitive, and comprehensive.
Where appropriate they should inform the reader about the following.

what Table titles should describe the subject of table. For example:
Annual income.

where If needed, they should describe the geographic location of
the data.

when If needed, they should describe the relevant time. This
should be kept short: 2000, 1900–1940, May, ….

units If units are used they should be described. Do not mix units,
e.g., kilograms and pounds, because this makes it difficult to
compare. Where possible, you should convert all numbers to
the same unit (preferably, si units).

◦ Numbers should be aligned to facilitate comparison. For most reference
tables and all demonstration tables:
� Numbers should be typeset in a typeface with tabular (monospaced)

figure (digit) glyphs. Alternatively, you may use the dcolumn or
the siunitx packages. This is explained further on.

� If a column consists of whole integer numbers then these num-
bers should be aligned to the right.

� Decimal numbers should be aligned to the decimal point.
� If there is much variance in the numbers, you could use scientific

notation, e.g., $1.4 10ˆ{+4}$ and $2.3 10ˆ{-3}$. Notice that
the exponent may disrupt the normal inter-line spacing. Should
this occur you may also consider using 1.4E +4 and 2.3E -3 or
even 1.4E\,+4 and 2.3E\,-3. If all signs of the exponent parts
are nonnegative then consider omitting the signs.

� If all numbers are of the same magnitude, consider scaling num-
bers to multiples of thousands, millions, ….

◦ Reduce the amount of whitespace per line. This makes it easier to
quickly scan the lines in the tables from left to right. With long lines
and much whitespace this is much more difficult. In Table 6.2 the
distance between the last letters in the first column and the first
numbers in the second column is relatively small. Had we typeset the
column heading of the second column on a single line (as opposed
to using two lines) the distance would have been greater, leading to a
less-quality table.

◦ For long tables, you should consider adding extra linespace at regular
intervals (for example after each fourth or fifth line).

6.5 Aligning Columns with Numbers

To produce useful tables, columns with numbers should be properly
aligned. There are two approaches. The first approach is to use a
typeface that has non-proportional (tabular) figures and align the

122 Chapter 6

numbers by hand. The second approach is to use a package such as
the dcolumn and siunitx package.

6.5.1 Aligning Columns by Hand

If you’re dealing with a few tables and if you haven’t used packages to
align your columns, then aligning the columns by hand is arguably the
easier option. Since numbers should be aligned to right, the column
alignments of the tabular environment should be r for all columns. If
all your numbers in a column are integers or if they all have the same
number of decimal digits, then life is easy. However, you must still
make sure you use a font that has tabular figures. Most LaTEX fonts
have tabular figures. Note that you can always get tabular figures if you
use the command \texttt to typeset the numbers. In the following it
is assumed the LaTEX font has tabular figures.

\begin{tabular}{rr}
\toprule
\textbf{Data}

& \textbf{Data}
\\\midrule

111 & 45.67
\\ 45 & 56.78
\\\bottomrule
\end{tabular}

Data Data

111 45.67
45 56.78

However, if the format of your data is less regular, then things
get complicated. Still, you can always get the alignment perfect with
the \hphantom command. (Remember that the command \hphantom{
〈stuff〉} typesets 〈stuff〉 in invisible ink.) The following shows how
to typeset the numbers in the table.

\begin{tabular}{rr}
\toprule
\textbf{Data}

& \textbf{Data}
\\\midrule

.2\hphantom{0} & 0.00
\\ 1.11 & 45.67
\\45.\hphantom{00} & 56.78
\\\bottomrule
\end{tabular}

Data Data

.2 0.00
1.11 45.67

45. 56.78

Remember from Section 2.19.5 that @-expressions insert material
between adjacent columns. In the following we exploit @-expressions
to typeset the decimal dots. We may get our overall alignment correct if
we align the digits to the left of the decimal point to the right and align
the digits to the right of the decimal point to the left. Each number
in the output table is now equivalent to two columns in the tabu-

Presenting Data in Tables 123

lar environment in the input. Therefore, we need the \multicolumn
command to typeset the column heading of the column.

\begin{tabular}{r@{.}lr@{.}l}
\toprule
\multicolumn

{2}{r}{\textbf{Data}}
& \multicolumn

{2}{r}{\textbf{Data}}
\\\midrule

&2 & 0&00
\\ 1&11 & 45&67
\\45& & 56&78
\\\bottomrule
\end{tabular}

Data Data

.2 0.00
1.11 45.67

45. 56.78

6.5.2 The dcolumn Package

The dcolumn package [Carlisle 2001] is intended for tabular or array
environments. In the following we shall assume the package is used
in a tabular environment. The purpose of the package is to provide
support for numbers that are aligned on a decimal point symbol. The
package provides new column alignment notation for the required
argument of the tabular environment. Also it provides a command
for defining shorthand notation for column alignment.

The package assumes the input uses an input separator that sepa-
rates the whole numbers and the fractional part. If the target language
is English then this will be a decimal point: 3.1415. Otherwise it may
be a comma: 3,1415. It also assumes there is an output separator for the
output. The following are the relevant commands.

D{〈input separator〉}{〈output separator〉}[〈decimal places〉]
Here 〈input separator〉 and 〈output separator〉 are the input and
output separator symbols. Both should be a single character. The ar-
gument 〈decimal places〉 specifies the maximum number of decimal
places in the input. If the value of this argument is negative then you
may use any number of decimal places in the input. In addition, the
numbers are centred about the 〈output separator〉 symbol. Providing
negative values for 〈input separator〉 is discouraged because it may
result in very wide columns. ☐√

\newcolumntype{〈shorthand〉}{〈column specifier〉}
Here 〈shorthand〉 defines a new symbol for specifying column align-
ment in the required argument of the tabular environment. The
argument 〈column specifier〉 specifies the column alignment, which
is of the form D{〈input separator〉}{〈output separator〉}{〈decimal
places〉}. ☐√

\newcolumntype{〈shorthand〉}[1]{〈column specifier〉}
This is similar to the previous command but this time \newcolumntype
takes an argument, which may be used in 〈column specifier〉. Using
the notation #1 in 〈column specifier〉 gives you the value of the actual

124 Chapter 6

\newcolumntype%
{p}[1]{D{.}{.}{#1}}

\begin{tabular}{p2p3p0}
123.45 & 12.345 & 1 \\
1234.5 & 123 & 12 \\

\end{tabular}

123.45 12.345 1
1234.5 123 12

Aligning columns with the
dcolumn package

Figure 6.2

\begin{tabular}{SS}
123 & 23

\\ 45. & 1.09
\\ .1 & 678.999
\\ 7.7 & 1e10
\\ 33.3 & 2.2e-5
\end{tabular}

123 23
45. 1.09

.1 678.999
7.7 1× 1010

33.3 2.2× 10–5

Aligning columns with the siu-
nitx package

Figure 6.3

argument. For example, with \newcolumntype{p}[1]{D{.}{.}{#1}}
using p3 or p{3} is equivalent to {D{.}{.}{3}}. ☐√

Figure 6.2 provides a short example of these commands.

6.5.3 The siunitx Package

Another package supporting number alignment in tabular environ-
ments is siunitx [Wright 2011]. It defines a new column alignment
symbol S. By default this symbol aligns numbers to the decimal dot.
Figure 6.3 presents an example. Note that the siunitx recognises “ex-
ponent notation” and expands it. More information about the package
may be found in the package documentation [Wright 2011].

6.6 The table Environment

We have already seen how to present information in tabular envi-
ronments. The table environment creates a floating table. As with the
figure environment, this puts the body of the environment in a num-
bered table, which may be put in a different place in the document
than where it’s actually defined. The table placement is controlled
with an optional argument. This optional argument works as with the
optional argument of the figure environment. (See Section 4.1 for fur-
ther information about the optional argument and how it affects the
positioning of the resulting table.) Inside the table, \caption defines
a caption, which also works as with figure. Moving arguments inside
captions have to be protected. This is explained in Section 11.3.3. If you
don’t understand this, then don’t worry, just write \protect before
each command in the caption. Section 11.3.3 provides more details
about moving arguments and protection. The starred version of the

Presenting Data in Tables 125

\begin{table}[tbp]
\begin{tabular}{ll}
\toprule

\textbf{Chilled Meats}
& \textbf{Calories per} \\
& \textbf{100\,g/4\,oz} \\

\midrule
…

\bottomrule
\end{tabular}
\caption[Calories of chilled meats.]

{Calories of chilled meats per weight. …
\label{tab:meat}}

\end{table}

Creating a table
Figure 6.4

environment (table*) is for two-column documents. It produces a
double-column table.

Figure 6.4 shows how to create a table. The example assumes the
booktabs package is included.

6.7 Wide Tables

Sometimes tables are too wide for the current page. When this hap-
pens, use the rotating package. The package defines commands and
environments that implement a sidewaystable environment, for pre-
senting rotated tables. The following command typesets 〈stuff〉 in a
rotated table.

\begin{sidewaystable}
〈stuff〉

\end{sidewaystable}

LaTEX Usage

Inside 〈stuff〉, the command \caption works as usual. The rotat-
ing package also defines a sidewaysfigure environment for figures.

6.8 Multi-page Tables

The longtable package defines an environment called longtable,
which has a similar functionality as the tabular environment. The re-
sulting structures can be broken by LaTEX’s page breaking mechanism.

Since a single longtable may require several page breaks, it may
take several runs before it is fully positioned. The \caption command
works as usual inside the body of a longtable.

The longtable package needs to know how to typeset the first
column heading, subsequent column headings, what to put at the
bottom of the table on the last page, and what to put at the bottom of
the first pages. This is done with the following commands.

\endfirsthead

This indicates the end of the first column headings specification. The

126 Chapter 6

\newcommand\boldmc[3]{
\multicolumn{#1}{#2}{\textbf{#3}}%

}
\begin{longtable}{lr}

\toprule
\textbf{Meats}

& \boldmc{1}{l}{Calories per 100\,g}
\\\midrule

\endfirsthead
\toprule
\boldmc{2}{c}{\tablename˜\thetable\ Continued}

\\\midrule
\textbf{Meats}

& \boldmc{1}{l}{Calories per 100\,g}
\\\midrule

\endhead
\midrule
\boldmc{2}{l}{Continued on next page}

\\\bottomrule
\endfoot

\\\bottomrule
\endlastfoot

Salami & 500
\\Liver sausage & 300...

\end{longtable}

Using the longtable package.
The \newcommand command
at the top of the listing de-
fines a user-defined command
called \boldmc which works
just as the \multicolumn com-
mand, except that it typesets
the text in a bold face type-
face. User-defined commands
are explained in Chapter 11.

Figure 6.5

material from the start of longtable environment to the command
\endfirsthead defines the first column headings. ☐√

\endhead

This indicates the end of the specification for the remaining column
headings. All the material from \endfirsthead to \endhead is defines
the the remaining column headings. ☐√

\endfoot

This indicates the end of the specification for remaining column
headings. The material between \endhead and \endfoot is defines the
bottom of the tables on pages all except for the last page. ☐√

\endlastfoot

This indicates the end of the last foot specification. The material
between \endfoot and \endlatsfoot defines the bottom of the table
on the last page. ☐√

Figure 6.5 typesets a long table with the longtable environment.

6.9 Databases and Spreadsheets

There are several packages that let you create and query databases
and typeset the result as a table or tabular. Some of these packages

Presenting Data in Tables 127

provide additional functionality for creating barcharts, piecharts, and
so on. The following are some of these packages.

datatool The datatool package [Talbot 2009] is a very comprehensive package.
The package lets you create databases, query them, and modify them.
The package also supports pie charts, bar charts, and line graphs. Fur-
ther information may be found in the package documentation [Talbot
2009].

pgfplotstable The pgfplotstable package [Feuersänger 2010b] reads in tab-separated
data and typesets the data as a tabular. The package also supports a
limited form of queries. The package lets you round numbers up to a
specified precision.

calctab The calctab package [Giacomelli 2009] lets you define rows in the
table in terms of commands. The package can accumulate the sum of
the entries in a given column, and so on. The package documentation
is not very long and uses simple examples. Unfortunately the package
does not seem to have a facility to set the symbol for the decimal point.

spreadtab As the name suggests, the spreadtab package [Tellechea 2011] is written
with a spreadsheet in mind. The user specifies a matrix of cells (the
spreadsheet) in some form of tabular-like environment. The layout
of the matrix determines the result. Cells can contain input but they
can also be rules for computing results from other cells. The package
provides a command for setting the symbol for the decimal point.

If all you need is a simple way to compute sums/averages from rows
and columns then you should consider using the spreadtab package.

Chapter 7
Presenting Data with Plots

This chapter studies the presentation of data with “data plots” with
LaTEX. Usually we shall use the word ‘graph’ instead of data plot. The
presentation of this chapter is example driven and mixes theory of
presentation with practice. The theory is mostly based on [Bigwood,
and Spore 2003]. With the exception of pie charts, all graphs were
created with the pgfplots package [Feuersänger 2010a], which creates
astonishingly beautiful data plots in a consistent style with great ease.
The remainder of this chapter covers pie charts, bar graphs, paired
bar graphs, component bar graphs, line graphs, and scatter plots but
it excludes 3-dimensional data plots.

7.1 The Purpose of Data Plots

A picture can say more than a thousand words. This, to some extent,
epitomises data plots and graphs: good data plots tell a story that
is easily recognised and will stick. Plots are good at showing global
trends and relationships, differences, and change.

global trends Graphs are good at showing global trends and relationships. A 2-
dimensional scatter plot, for example, may reveal that the data are
clustered, that the y-coordinates have a tendency to increase as the
x-coordinates increase, that most x-coordinates are smaller than the
y-coordinates, and so on.

differences Graphs are good at showing differences between two or several func-
tions/trends. For example, the difference between the height of males
and females as a function of their age, the difference of the running
times of four algorithms as a function of the input size, and so on.

rate of change Graphs are also good at showing the rate of change within a single
function/trend. For example, the rate of change of the running time
of a single algorithm as the size of the input increases. Interestingly,
differences and change can often be shown effectively in a single graph.

Well-designed graphs stick and convey the essence of the relationship.

7.2 Pie Charts

Our first kind of graph is the pie chart. Pie charts have become very
fashionable. Programs such as Excel have made creating pie charts

 , ,
DOI 10.1007/978-3-642-23816-1_7, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 129

130 Chapter 7

1%
1%
3%

5%

10%
15%

16%
24%

25%

Other income
Income of trust and designated funds

Publications and journals

Professional and clinical affairs
Donations and legacies

Fellowship and membership subscriptions

Building appeal

Accommodation and conference facilities
Education and training

A pie chart
Figure 7.1

relatively easy. Figure 7.1 depicts a typical pie chart. The information
in the pie chart is adapted from [Bigwood, and Spore 2003]. For sake of
this example, the percentages are listed as part of the legend informa-
tion. Even with this information it is difficult to relate the segments
in the chart with the items in the legend.

The relative size of each segment in the pie chart is equal to the
relevant size of the contribution of its “label.” To create the chart,
the segments are ordered from small to large and presented counter-
clockwise, starting at 90◦. Colours are usually used to distinguish
the segments. Note that care should be taken when selecting colours
because they may not always print well.1 Hatch patterns should be
avoided because they distract. The pie chart in Figure 7.1 has 9 seg-
ments, which is too much: good pie charts should have no more than
5 segments [Bigwood, and Spore 2003].

Note that without the percentages it is impossible to compare the
relative sizes/contributions of the two smaller segments, which happen
to have the same size. Likewise it is difficult to compare the sizes of
the segments that contribute 15% and 16% of the total. Arguably, a
table is a better way to present the data. As a matter of fact, the legend
is already a table and the combination of the legend and pie chart is
redundant.

Pie charts are very popular, especially in “slick” presentations.
This is surprising because it is well known that pie charts are not very
suitable for communicating data and that specialists avoid them [Big-
wood, and Spore 2003]. Tantau [2010] also presents some good argu-
ments against pie charts because they may distort the information.
Bar graphs, which are studied in the following section, are almost
always more effective than pie charts. Despite these observations, pie
charts are good at showing parts of a whole by percentages, and how a
few components may make up a whole [Bigwood, and Spore 2003].

1Note that with careful planning you should be able to change the colours of the
segments depending on a global “mode” settings in your document. Specifically,
this should allow you to select different, proper colours for an online version and
a printable version of your document. Techniques for changing colours and other
setting depending on modes are studied further on in this book.

Presenting Data with Plots 131

\begin{tikzpicture}
\begin{axis}[width=8cm, height=6cm, tick align=outside]

\addplot[draw=blue]
coordinates {(0,1) (1,1) (2,3) (3,2) (4,2)};

\addlegendentry{Line 1}
\addplot[draw=red]

coordinates {(0,0) (1,4) (2,4) (3,3) (4,3)};
\addlegendentry{Line 2}

\end{axis}
\end{tikzpicture}

Using the axis environment
Figure 7.2

0 1 2 3 4

0

2

4

Line 1
Line 2

Output of the axis environ-
ment in Figure 7.2.

Figure 7.3

The pie chart in Figure 7.1 was drawn using raw tikz commands
and drawing the chart took a long time. Nicola Talbot’s csvpie package
provides some support for drawing pie charts but be aware of the
arguments against pie charts.

In the remainder of this chapter we shall omit the tikzpicture
environment from all examples.

7.3 Introduction to pgfplots

This section provides an introduction to drawing graphs with the
pgfplots package that is built on top of pgf. The pgfplots package
lets you draw graphs in a variety of formats. The resulting graphs
have a consistent, professional look and feel. The package also lets
you import data from matlab. As is usual with the pgf family, their
manuals are impressive [Feuersänger 2010a].

The workhorse of the pgfplots package is an environment called
axis, which may define one or several plots (graphs). Each plot is drawn
with the command \addplot. When the graphs are drawn the environ-
ment also draws a 2- or 3-dimensional axis. The axis environment
is used inside a tikzpicture environment, so you can also use tikz
commands. The options of the axis environment specify the type of
the plot, the width, the height, and so on. Figure 7.2 demonstrates how

132 Chapter 7

to use the command and Figure 7.3 depicts the resulting output. The
example is not intended to be pretty.

As is hopefully clear from this example, the options of the axis
environment set the width to 8 cm, set the height to 6 cm, and force
the ticks to be on the outside of the axes.

If you always present your axis environments with the same set-
tings then your graphs will look consistent. For example, you probably
want to use a default height and width for your graphs. To save work
you’d like to define default values for height and width and omit the
height and width specifications in the axis environment, except when
overriding them. This is where the command \pgfplotsset comes
into play. Basically, \pgfplotsset is to pgfplots what \tikzset is to
tikz: it lets you set the default values for options of pgfplots com-
mands and environments. The following is an example.

\pgfplotsset{width=6cm,height=4cm,
compat=newest,
enlargelimits=0.18}

LaTEX Input

This example sets the default compatibility to newest, which is
advised. The default width is set to 6 cm and the default height is set
to 4 cm. The spell enlargelimits=0.18 increases the default size of
the axes by 18 %. As with tikz commands, you may override the values
for these options by passing them to the optional arguments of the
axis environment and the \addplot command.

7.4 Bar Graphs

Our next graph is the bar graph. Bar graphs present quantities as
rows or columns. You can use bar graphs to show differences, rates of
change, and parts of a whole.

Figure 7.4 depicts a typical bar graph. As with rows in a table, the
bars of the graph are ordered to show the main trend. Notice that the
data in this graph could just as well have been presented with a table.
However, the main advantage of the bar graph presentation is that it
“sticks” better. For example, it is very clear from the shape of the bars
that Kilkenny, Cork, and Tipperary are the main all-Ireland hurling
champions. It is also clear these teams are much better than the rest.
With a table, the impact of the difference would not have been so big.
Also notice that even in the absence of the frequency information after
the bars, it is relatively easy to compare relative differences between
the bars.

It is also possible to have bar graphs with vertical bars. Such bar
graphs are sometimes used to present changes over time. For exam-
ple, if you use x-coordinates for the time, use y-coordinates for the
quantities, and order the bars by time from left to right, then you can
see the rate of change of the quantities over time. Of course, you can
also present changes over time with horizontal bar graphs but some
people find this intuitively less pleasing.

There are at least two reasons why vertical bar graphs are not as

Presenting Data with Plots 133

0 5 10 15 20 25 30 35

Kerry
Laois

London
Waterford

Clare
Offaly

Galway
Wexford

Dublin
Limerick

Tipperary
Cork

Kilkenny

1
1
1

2
3

4
4

6
6

7
26

30
33

Frequency of Winning the Final

A bar graph. All-Ireland hurling
champions and the number of
times they’ve won the title be-
fore 2012.

Figure 7.4

\begin{axis}
[xbar,width=11cm,height=8cm,bar width=10pt,enlargelimits=0.13,
nodes near coords,
nodes near coords align=horizontal,
point meta=x * 1, % The displayed number.
legend pos=south east,
xlabel=\textbf{Frequency of Winning the Final},
tick align=outside,
xtick={0,5,...,35}, ytick={1,...,13},
yticklabels={Kerry,Laois,London,Waterford,Clare,Offaly,Galway

Wexford,Dublin,Limerick,Tipperary,Cork,Kilkenny}]
\addplot[draw=blue, fill=blue!15] coordinates

{(1,1) (1,2) (1,3) (2,4) (3,5) (4,6) (4,7)
(6,8) (6,9) (7,10) (26,11) (30,12) (33,13)};

\end{axis}

Creating a bar graph
Figure 7.5

ideal as horizontal bar graphs. First it makes it difficult to label the
bars, especially if the text of the labels is long. For example, putting
the labels along the x-axis usually requires rotating the labels, which
makes it difficult to read the labels. Second, you can put more bars in
a graph with horizontal bars.

Figure 7.5 presents the input for the bar graph in Figure 7.4. The
graph itself is typeset inside an axis environment, which itself is inside
a tikzpicture environment—remember the tikzpicture environ-
ment is omitted. The xbar option of the axis environment specifies
that this is a horizontal bar graph. The data for the graph are provided
by the \addplot command. The enlargelimits=0.13 option is used
to increase the size of the axes by 13 %.

134 Chapter 7

The xtick and ytick keys override the default positions of the x
and y ticks on the axes. For each xtick (ytick) position, pgfplots will
place a little tick at the position on the x-axis (y-axis) and label the
tick with its position. The tick labels can be overridden by providing
an explicit list. This is done with the commands \xticklabels and
\yticklabels. The input in Figure 7.5 uses the command \ytickla-
bels to override the labels for the y ticks. The left-to-right order of the
labels in the argument of \yticklabels is the same as the increasing
order of the y ticks in the bar plot. The command \xticklabels works
in a similar way.

The lengths of the bars are defined by the required argument of
the \addplot command. The length of the bar with y-coordinate y is
set to x by adding the tuple (x, y) to the list. For example, the tuple
(3r,13) defines the length of the bar for Kilkenny.

The bar graph in Figure 7.4 also lists the lengths of the bars. These
lengths are typeset with the keys nodes near coords, nodes near
coords align, and point meta. By default the lengths of the bars
are not printed. The point meta key defines the values near the bars.
Since we want to typeset the length of the bar, which is defined by
the x-coordinate in the coordinate list, we use x * 1. More complex
expressions are also allowed.

7.5 Paired Bar Graphs

Paired bar graphs are like bar graphs but they present information
about two groups of data. Figure 7.6 depicts an example of a paired bar
graph. In this graph there are two bars for each of the five experiments:
one for FC and one for MAC. The information in the graph is made
up.

Before studying the LaTEX input, it should be noticed that pgfplots
also lets you construct similar graphs with more than two groups of
data. Also notice that such graphs should be discouraged because the
number of bars soon becomes prohibitive, making it difficult to see
the trends.

Figure 7.7 shows the input for the horizontal paired bar graph from
Figure 7.6. As you can see from the input, a horizontal paired graph
is also created by passing xbar as an option to the axis environment.
The rest of the input is also similar to the input we needed to define
our horizontal bar graph. The main differences are that (1) we have
two bar classes per y-coordinate and (2) we have a legend. For each bar
class there is an entry in the legend.

Each class of bars is defined by a separate call to \addplot. The
command \addlegendentry adds an entry to the legend for the most
recently defined class. The style of the legend entries is set with the
area legend option, which results in a rectangle drawn in the same
way as the corresponding bar. This is slightly nicer than the default
legend entry style.

The style of the legend is set with the legendstyle key. The legend

Presenting Data with Plots 135

0 50 100 150 200

satisfiable

unsatisfiable

low density

high density

random

Execution Time

MAC
FC

A paired bar graph. Compari-
son of the execution time of
the Maintain Arc Consistency
(MAC) and the Forward Check-
ing (FC) algorithms for in-
stances of 5 problem classes.
Execution time in seconds.

Figure 7.6

\begin{axis}
[xbar,enlargelimits=0.14,width=8cm,height=6cm,,
bar width=10pt,area legend,legend pos=south east,
legend style={legend pos=north east,

cells={anchor=west}},
tick align=outside,xlabel=\textbf{Execution Time},
ytick={1,...,5},
yticklabels={satisfiable,unsatisfiable,

low density,high density,random}]
\addplot[draw=blue,fill=blue!15]

coordinates {(5,1) (10,2) (25,3) (40,4) (80,5)};
\addlegendentry{\textsc{MAC}}
\addplot[draw=blue,fill=blue!50]

coordinates {(5,1) (15,2) (15,3) (50,4) (200,5)};
\addlegendentry{\textsc{FC}}
\end{axis}

Creating a paired bar graph
Figure 7.7

pos key is used to position the legend. The spell cells={anchor=west}
aligns the labels of the legend on the left.

7.6 Component Bar Graphs

Component bar graphs, also known as stacked bar graphs, compare
several classes of data. Each class consists of (the same) components
and within each class you can see the contribution of the components
to the class as a whole. Figure 7.8 depicts a component bar graph.

Again notice that the bars are ordered to show the trend. For medal
rankings, the first criterion is the number of gold medals won. Ties
are broken by considering the number of silver medals, and so on. For
other data you may have to order your rows depending on the overall
size of the bars.

For the medal ranking example, it is easy to compare the contri-

136 Chapter 7

bution of the different medals to the overall medal count of a given
country. Likewise, it is easy to compare the number of gold, silver, or
bronze medals won by different countries. The reason why this works
is that all sizes are small and discreet. For different kinds of data, with
large ranges of data values, comparing the component sizes is usually
not so easy.

Bigwood, and Spore [2003] discourage component bar graphs be-
cause they easily distort data and usually contain too much informa-
tion.

Tables may be an interesting and good alternative to component
bar graphs. For example, you can have a different row heading for each
component in the component graph. If the total size of the bars is
important then you can introduce a separate row heading to present
these data as the “grand total,” or as the “total time,” and so on.

Figure 7.9 is the input for the component bar graph depicted in
Figure 7.8. The options xbar stacked and stack plots=x indicate
that the plot is a horizontal component bar graph. Each \addplot
command defines the contribution of the next horizontal component
for each y-tick position, so (1,2) in the argument of the first \addplot
command states that The Netherlands (2) won one (1) gold medal.
Likewise (0,3) in the argument of the second \addplot command
states that France won no silver medals.

7.7 Coordinate Systems

None of our previous pgfplots-drawn graphs required additional
tikz commands for additional lines or text. However, graphs with
additional text and lines are quite common. The pgfplots package
provides several dedicate coordinate systems for correctly position-
ing such additional text and lines. The following are some of these
coordinate systems.

axis cs This system coincides with the numbers on the axes. Each coordi-
nate in this system has the same x and y coordinates as the coordinates
in the \addplot command. For example, if you use the command \ad-
dplot{(1,2) (3,4)} then the command \tikz \draw (axis cs:1,2)
node {〈text〉}; should draw 〈text〉 at the first coordinate.

rel axis cs This coordinate system uses coordinates from the unit square and
linearly transforms them to plot coordinates. In this coordinate system
the coordinates (0, 0) and (1, 1) are the lower left and the upper right
corners of the unit square, so \tikz \draw (rel axis cs:0.5,0.5)
node {〈text〉}; should draw 〈text〉 in the centre of the plot.

xticklabel cs This coordinate system is for coordinates along the x-axis. Basically,
the coordinate xticklabel cs:x is equivalent to rel axis cs:x,0. So
far, this is not very interesting. However, the coordinate system also
lets you provide an additional coordinate, which should be a length.
When provided, the length defines the distance of a shift “away” from
the labels on the x-axis.

Presenting Data with Plots 137

1 2 3 4 5 6 7

Russia

Netherlands

France

South Korea

Japan

Medals Won

Gold
Silver
Bronze

A component bar graph. Top
five countries of the medal
ranking of the 2009 World
Judo Championships in
Rotterdam (The Netherlands).
(Source wikipedia.)

Figure 7.8

\begin{axis}
[xbar stacked, stack plots=x, tick align=outside,
width=8cm, height=6cm, bar width=10pt,
legend style={cells={anchor=west}}, area legend,
xlabel=\textbf{Medals Won}, ytick={1,...,5},
yticklabels={Russia,Netherlands,France,

South Korea,Japan}]
\addplot[draw=black,yellow!50!brown]

coordinates {(1,1) (1,2) (2,3) (2,4) (3,5)};
\addlegendentry{Gold}
\addplot[draw=black,white!60!gray]

coordinates {(1,1) (2,2) (0,3) (0,4) (1,5)};
\addlegendentry{Silver}
\addplot[draw=black,orange!70!gray]

coordinates {(1,1) (0,2) (1,3) (3,4) (3,5)};
\addlegendentry{Bronze}
\end{axis}

Creating a component bar
graph

Figure 7.9

yticklabel cs This coordinate system is for coordinates along the y-axis. It works
similar to the xticklabel cs coordinate system.

The remaining sections provide examples that use some of these
coordinate systems. The reader is referred to the pgfplots package
documentation [Feuersänger 2010a] for further information.

7.8 Line Graphs

Line graphs are ideal for presenting differences between data sets and
presenting the rate of change within individual data sets. They are
commonly used to present data (observations) that are a function of
(depend on) a given parameter. For example, the running time of a

138 Chapter 7

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

20

40

60

80

100

120

140

160

180

200

220

240 Very Wet

Very Dry

Month

R
ai
nf
al
l

Belmullet
Birr
Cork Airport
Dublin Airport
Shannon Airport

A line graph. Monthly rainfall
inmillimetres for the year 2009.
(Source http://www.cso.ie.)

Figure 7.10

given algorithm as a function of the input size, the average height of
males as a function of their age, and so on.

Figure 7.10 depicts a typical line graph. The legend in the top right
hand corner of the graph labels the line types in the graph. In general
legends should be avoided: if possible the lines should be directly
labelled [Tufte 2001; Bigwood, and Spore 2003], which is to say that
each label should be near its line. The main motivation for direct
labelling is that legends distract and make it more difficult to relate
the lines and their labels. Direct labelling usually makes it easier to
relate the lines and their labels/purpose. For the graph in Figure 7.10
direct labelling is virtually impossible.

The x-tick labels in Figure 7.10 are positioned poorly. For example,
the label Jan appears higher than the label Feb. This is probably caused
by the fact that Feb doesn’t have descenders. This is easily fixed by
adding a \vphantom{g} command or a \strut command to the labels.

Figure 7.11 depicts the input for the line graph in Figure 7.10. Most
of this is pretty straightforward. The command \addplot+ is used to
define the lines in the graph. The extra plus in the command results in
extra marks on the lines for the coordinates in the required argument
of \addplot+. The option sharp plot of the \addplot command states
that consecutive points in the plot should be connected using a straight

Presenting Data with Plots 139

\begin{axis}
[width=\textwidth,enlargelimits=0.13,tick align=outside,
legend style={cells={anchor=west},legend pos=north east},
xticklabels={Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec},
xtick={1,2,3,4,5,6,7,8,9,10,11,12},
xlabel=\textbf{Month}, ylabel=\textbf{Rainfall}]

\node[coordinate,pin=above:{Very Wet}] at (axis cs:1,223.9) {};
\node[coordinate,pin=right:{Very Dry}] at (axis cs:2,14.7) {};
\addplot+[sharp plot] coordinates

{(1,171.5) (2,116.4) (3,157.4) (4,67.7) (5,40.2) (6,127.6)
(7,44.3) (8,192.1) (9,112.4) (10,177.5) (11,136.2) (12,94.8)};

\addlegendentry{Belmullet}
\addplot+[sharp plot] coordinates

{(1,135.5) (2,30.8) (3,97.3) (4,28.6) (5,19.2) (6,90.2
(7,100.6) (8,171.6) (9,81.8) (10,121.0) (11,77.0) (12,63.7)};

\addlegendentry{Birr}
\addplot+[sharp plot] coordinates

{(1,195.1) (2,49.8) (3,113.5) (4,53.7) (5,75.6) (6,138.5
(7,148.1) (8,163.6) (9,123.8) (10,139.2) (11,79.4) (12,60.2)};

\addlegendentry{Cork Airport}
\addplot+[sharp plot] coordinates

{(1,96.9) (2,14.7) (3,102.4) (4,27.0) (5,32.7) (6,76.4
(7,111.5) (8,192.4) (9,111.8) (10,97.4) (11,39.6) (12,39.5)};

\addlegendentry{Dublin Airport}
\addplot+[sharp plot] coordinates

{(1,223.9) (2,58.0) (3,102.9) (4,49.2) (5,35.9) (6,110.8
(7,100.8) (8,176.6) (9,86.4) (10,156.4) (11,92.2) (12,75.1)};

\addlegendentry{Shannon Airport}
\end{axis}

Creating a line graph
Figure 7.11

line segment. This is more than likely what you want when you’re
creating line graphs. The \node commands at the end of the axis
environment draw the texts ‘Very Wet’ and ‘Very Dry’ using the axis
cs coordinate system. The node shape pin is new but it should be
clear how it works.

Finally, notice that line graphs have a tendency to become crowded
as the number of lines increases. If this happens, you should consider
reducing the number of lines in your graph. Alternatively, you may
consider using the spy feature to zoom in on the important crowded
areas in you graph. The spy mechanism is explained in Section 5.10.

7.9 Scatter Plots

Scatter plots are ideal for discovering relationships among a huge/large
set of 2-dimensional data points. Basically, the plot has a mark at
each coordinate for each data point. Figure 7.12 is a scatter plot that
compares the running times of two algorithms for different inputs.
For each input, i, the scatter plot has a point at position (xi, yi), where

140 Chapter 7

0 20 40 60 80 100

0

20

40

60

80

100

Algorithm 1

A
lg
or
it
hm

2

A scatter plot. Running time
of Algorithm 1 versus running
time of Algorithm 2. Running
times in seconds. The major-
ity of the coordinates are below
the line x = y. This shows that
Algorithm 1 requiresmore time
for most input.

Figure 7.12

\begin{axis}
[width=\textwidth, tick align=outside,
xlabel=\textbf{Algorithm˜1},
ylabel=\textbf{Algorithm˜2}]

\addplot{scatter,only marks,mark=o,
draw=blue,scatter src=explicit}
file {data.dat};

\draw[dashed,red!40]
(rel axis cs:0,0) -- (rel axis cs:1,1);

\end{axis}

Creating a scatter plot
Figure 7.13

xi is the running time of the first algorithm for input i and yi is the
running time of the second algorithm for input i.

As you can see from the scatter plot, Algorithm 1 usually takes
more time than Algorithm 2 for random input because most points
in the scatter plot have larger x-coordinates than y-coordinates: most
points are below the line x = y. Furthermore, the overall shape of the
plot suggests that the running times are positively correlated. The
dashed red line helps detecting both trends in the plot.

Figure 7.13 presents the code for the scatter plot in Figure 7.12. The
option scatter states that the coordinates provided by the calls to
\addplot are for a scatter plot. The option only marks results in a
mark at each coordinate that is specified by \addplot. The style of the
mark may be set with the style mark=〈mark style〉. Possible values for

Presenting Data with Plots 141

Standard

mark=* mark=x

mark=+ mark=-

With \usetikzlibrary{plotmarks}

mark=| mark=o

mark=asterisk mark=star

mark=oplus mark=oplus*

mark=otimes mark=otimes*

mark=square mark=square*

mark=triangle mark=triangle*

mark=diamond mark=diamond*

mark=pentagon mark=pentagon*

This table lists the values for the
mark option. The options at the
top of the table are standard.
The remaining options rely on
the tikz library plotmarks.

Table 7.1

〈mark style〉 and the resulting marks are listed in Table 7.1. In our
example we’re using the style o, which results in a circle. The option
color=〈colour〉 sets the colour of the mark.

The option scatter src=explicit symbolic states that the co-
ordinates are expected as explicit coordinates. Usually scatter plots
have many data points. Adding all point specifications to the main
LaTEX source of your pgfplot environments surely doesn’t make it
easier to maintain the environments. This is why pgfplots provides
support for including data from external source files. In our example,
file {data.dat} indicates that the coordinates are in the external
file data.dat. All lines in this file are of the form 〈x-coordinate〉 〈y-
coordinate〉.

The red dashed line is drawn at the end of the axis environment.
The rel axis cs coordinate system is used to specify the start and
endpoint of the line. It is recalled from Section 7.7 that this coordi-
nate system scales all coordinates to the unit square with lower left
coordinate (0, 0) and upper right coordinate (1, 1).

PART IV

Mathematics
and
Algorithms

Oil paint and charcoal on canvas (05/09/09), 152× 213 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Chapter 8
Mathematics

This chapter is an introduction to typesetting basic mathemat-
ics in LaTEX. The following chapter is an introduction to typesetting
more advanced mathematics. Further information about mathemat-
ical typesetting in LaTEX may be found in a book such as [Lamport
1994], a tutorial such as [Oetiker et al. 2007], or a book on using LaTEX
for writing mathematics [Voß 2010]. A comprehensive listing of LaTEX
symbols, including math symbols, is provided by Pakin [2005].

LaTEX’s basic support for mathematics is limited, which is why
the American Mathematical Society (ams) provides a package called
amsmath, which redefines some existing commands and environments
and provides additional commands and environments for mathemat-
ical typesetting. Throughout this chapter it is assumed that you have
installed the amsmath package.

8.1 TheAMS-LaTEX Platform
AMS-LaTEX is a useful platform for typesetting mathematics. The
software is provided by the ams (http://ams.org/). The software is
freely available and should come with any good LaTEX distribution.
You can download the ams software and documentation from http:
//www.ams.org/tex/amslatex.html.

The software distributed under the name AMS-LaTEX consists
of various extensions for LaTEX. The distribution is divided into two
parts:

amscls The amscls class provides the ams document class and theorem pack-
age. Using this class gives your LaTEX document the general structure
and appearance of an ams article or book.

amsmath The amsmath package is an extension package that provides facilities
for writing math formulas and improving the typography.

Throughout this chapter AMS-LaTEX and amsmath are used inter-
changeably. The amsmath package is really a collection of packages. If
you include amsmath then you include them all. The amsmath package
also provides support for configuring basic document settings. As
usual this is done by passing options inside the square brackets of the
\usepackage command: \usepackage[〈options〉]{amsmath}. Some of
the options are as follows.

 , ,
DOI 10.1007/978-3-642-23816-1_8, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 145

146 Chapter 8

leqno Place equation numbers on the left.
reqno Place equation numbers on the right.
fleqn Position equations at a fixed indent from the left margin.

Some of the packages provided by AMS-LaTEX are listed next. The
description of the packages is adapted from theAMS-LaTEX documen-
tation [ams 2002].

amsmath Defines extra environments for multi-line displayed equations, as well
as a number of other enhancements for math (including the amstext,
amsbsy, and amsopn packages).

amstext Provides a \text command for typesetting text inside a formula.
amsopn Provides the \DeclareMathOperator command for defining commands

to typeset functions and operators such as \sin and \lim.
amsthm Provides a proof environment and extensions for the \newtheorem

command.
amscd Provides an environment for simple commutative diagrams.

amsfonts Provides extra fonts and symbols, including boldface (\mathbf), black-
board boldface (\mathbb), and fraktur (\mathfrak).

amssymb Provides lots of extra symbols.

8.2 LaTEX’s Math Modes

LaTEX has three basic modes that determine how it typesets its input.
These modes are:

text mode In this mode the output does not have mathematical content
and is typeset as text. Typesetting in text mode is explained in Chap-
ter 1.

ordinary math mode In this mode the output has mathematical content and is type-
set in the running text. Ordinary math mode is more-commonly
referred to as inline math mode.

display math mode In this mode the output has mathematical content and is type-
set in a display.

The mechanism for typesetting mathematics in ordinary (inline) math
mode is explained in the following section. This is followed by some
sections explaining some basic math mode typesetting commands,
which are then used in Section 8.6. The main purpose of Section 8.6
is to describe some environments for typesetting display math.

8.3 Ordinary Math Mode

This section explains how to typeset mathematics in ordinary (inline)
math mode. It is recalled from the previous section that this means
that the resulting math is typeset in the running text. Typesetting
in display math mode is postponed until Section 8.6. The $ operator
switches from text mode to ordinary math mode and back, so $a
= b$ results in a = b in the running text. The following provides

Mathematics 147

another example. If you don’t understand the constructs inside the
$ · $ expressions then don’t worry: they are explained further on.

The Binomial Theorem states
$\sumˆ{n}_{i=0}
\binom{n}{i} aˆ{i} bˆ{n-i}
= (a + b)ˆ{n}$.
Substituting 1 for a
and 1 for b gives us
$\sumˆ{n}_{i=0}
\binom{n}{i} = 2ˆ{n}$.

The Binomial Theorem states∑n
i=0 (ni)aibn–i = (a + b)n. Substi-

tuting 1 for a and 1 for b gives us∑n
i=0 (ni) = 2n.

The mathematical expressions in the output are typeset in the
running text. This should not come as a surprise because $ · $ is for
typesetting in ordinary (inline) math mode.

8.4 Subscripts and Superscripts

Subscripts and superscripts are ubiquitous in mathematics. We’ve
already seen subscripts and superscripts in some of the examples.
This section formally explains how to use them.

The superscript operator (ˆ) creates a superscript. The expression
$〈expr〉ˆ〈sup〉$ makes 〈sup〉 a superscript of 〈expr〉. So $xˆ2 + 2 x +
1$ gives you x2 + 2x + 1. Grouping works as usual. So to typeset ea+b

you need braces: $eˆ{a+b}$.
Subscripts are handled as superscripts. The subscript operator (_

) creates a subscript. The expression $〈expr〉_〈sub〉$ makes 〈sub〉 a
subscript of 〈expr〉. So to get fn+2 = fn+1 + fn you need $f_{n + 2} =
f_{n + 1} + f_n$.

Subscripts and superscripts may be nested and combined. The
expressions $〈expr〉_〈sub〉ˆ〈sup〉$ and $〈expr〉ˆ〈sup〉_〈sub〉$ are equiv-
alent and make 〈sub〉 a subscript of 〈expr〉 and 〈sup〉 a superscript of
〈expr〉, so $sˆ{m + 1}_{n+2}$ gives you sm+1

n+2 .
It is good practice to avoid subscripts and superscripts inside

subscripts and superscripts—some style and class files may reject
them. The following are some advantages.

simplicity The fewer the subscripts and superscripts, the simpler the notation,
the greater the transparency.

readability The resulting expression is easier to parse.
spacing Nested subscripts and superscripts may result in inconsistencies in the

interline spacing, which doesn’t look good. Avoiding nested subscripts
and superscripts avoids such inconsistencies.

8.5 Greek Letters

This section describes the commands for typesetting Greek letters in
math mode. These commands do not work in text mode.

148 Chapter 8

Standard commands

α \alpha ι \iota τ \tau
β \beta κ \kappa υ \upsilon
γ \gamma λ \lambda φ \phi
δ \delta μ \mu χ \chi
ε \epsilon ν \nu ρ \rho
ζ \zeta ξ \xi ψ \psi
η \eta ø \o σ \sigma
θ \theta π \pi ω \omega

AMS-LaTEX provided commands

ε \varepsilon κ \varkappa � \varrho
ϕ \varphi ϑ \vartheta � \varpi
ς \varsigma

� \digamma

This table lists the math mode
commands for lowercase Greek
letters. The commands at the
top of the table are standard
LaTEX commands. The com-
mand \digamma and the com-
mands starting with \var are
provided by AMS-LaTEX.

Table 8.1

There are three classes of lowercase Greek letters. The following
are the classes and the commands to typeset the letters in the classes.

regular symbols These are the regular lowercase Greek letters. The com-
mands for typesetting these letters are \alpha (α), \beta (β), \gamma
(γ), ….

additional italic symbols There are also some commands for additional or variant
forms of italic lowercase Greek letters. These commands all start with
\var: \varepsilon (ε), \vartheta (ϑ), \varrho (�), …. These commands
are provided by amsmath.

old number symbols Finally there is theAMS-LaTEX-provided command \digamma,
which gives you �. The � symbol is the old Greek symbol for the num-
ber 6 [Bringhurst 2008, page 297].

There are also commands for uppercase Greek letters, but com-
mands are only provided for letters that differ from the uppercase
roman letters. For example, we don’t need commands for uppercase
letters such as A, B, E, and so on. There are two uppercase letter classes:

regular \Gamma (Γ), \Delta (Δ), \Theta (Θ), …. These are standard LaTEX com-
mands.

italic \varGamma (Γ), \varDelta (Δ), \varTheta (Θ), …. These non-standard
commands produce italic-shaped uppercase Greek glyphs. These com-
mands are provided by AMS-LaTEX.

Table 8.1 lists the commands for the lowercase Greek letters. Table 8.2
lists the commands for the uppercase Greek letters. The commands
at the top of both tables are standard. The remaining commands are
provided by AMS-LaTEX.

Mathematics 149

Standard commands

Γ \Gamma Ξ \Xi Φ \Phi
Δ \Delta Π \Pi Ψ \Psi
Θ \Theta Σ \Sigma Ω \Omega
Λ \Lambda Υ \Upsilon

AMS-LaTEX provided commands

Γ \varGamma Ξ \varXi Φ \varPhi
Δ \varDelta Π \varPi Ψ \varPsi
Θ \varTheta Σ \varSigma Ω \varOmega
Λ \varLambda Υ \varUpsilon

This table lists the math mode
commands for uppercase
Greek letters. The commands
at the top of the table are
standard LaTEX commands. The
commands starting with \var
are provided by amsmath.

Table 8.2

8.6 Display Math Mode

This entire section is dedicated to display math material. Standard
LaTEX provides a few commands for display math. The amsmath package
redefines some of these commands and provides several extensions.
As usual unstarred versions of the environments are numbered in the
text. Starred versions are not numbered.

Some environments allow alignment positions in multi-line ex-
pressions.

◦ The alignment positions are specified with &.
◦ Line breaks are specified with \\.

The unstarred versions of the environment produce labels: equa-
tion, align, …. The starred versions of the environment do not pro-
duce labels: equation*, align*, ….

As a note of advice, you should avoid the unstarred versions unless
you reference the equations in the text. If you decide otherwise, it
may happen that a reader notices an unreferenced equation number
and starts looking for the text that references the equation. Of course
they cannot find the text location. (After several attempts!) They get
confused and irritated. If the reader is a referee, this confusion and
irritation may be just what they needed to reject your paper.

The remainder of this section consists of examples of some of
amsmath’s displayed equation environments. All examples use the
unstarred versions.

8.6.1 The equation Environment

The equation environment is for typesetting a single numbered dis-
played equation. It is one of the most commonly used environments
for typesetting display math material.

Figure 8.1 shows how to use the equation environment. The first
thing to notice is that the display in the output makes the equation

150 Chapter 8

… Binomial Theorem:
\begin{equation}
\label{eq:Binomial}
\sumˆ{n}_{i=0}
\binom{n}{i}aˆ{i}bˆ{n-i}

= (a+b)ˆ{n}\,.
\end{equation}
Substituting 1 for˜a
and 1 for˜b
in˜(\ref{eq:Binomial}) …

The following is the Binomial The-
orem:

n∑
i=0

(
n
i

)
aibn–i = (a + b)n . (8.1)

Substituting 1 for a and 1 for b
in (8.1) gives us

∑n
i=0 (ni) = 2n.

The equation environment
Figure 8.1

stand out clearly from the surrounding text. This is the main purpose
of the display.

The example in Figure 8.1 uses a few new commands, which are
explained as follows. The thin space command (\,) inserts a thin space
just before the final punctuation mark. This makes the punctuation
symbol stand out a little bit more and helps detecting it. The \sum
command is for typesetting sums. The subscript (_) and superscript (ˆ)
commands are used to specify the lower and upper limits of the index
variable in the summand. The superscript command also typesets the
superscripts. The command \sum is explained in detail in Section 8.10.
The command \binom typesets a binomial coefficient. Also notice that
the equation in the output is automatically numbered and that the
labelling and referencing mechanism in the input is standard:

◦ The \label defines a label for an equation (number).
◦ Applying the \ref command to an existing equation label results

in the number of the equation. In Figure 8.1 we put the equation
number inside parentheses: (\ref{eq:Binomial}). This is a common
way to reference equations. Arguably it is better to use the prettyref
package when typesetting references. This is explained in Section 1.5.
You may also use the \eqref command, which automatically adds the
parentheses for mathematical equations.

There is also a starred version (equation*) of the equation en-
vironment. As expected the environment equation* results in an
unnumbered version of the equation environment. LaTEX also has a
different mechanism for typesetting a single unnumbered equation.
The command \[starts an unnumbered equation and the command
\] ends it.

8.6.2 The split Environment

The split environment is for splitting a single equation into several
lines. The environment provides support to align the resulting lines.
The environment cannot be used at the top level and can only be used
as part of other amsmath environments such as equation and gather.
The split environment does not number the resulting equation. Fig-

Mathematics 151

\begin{equation*}
\begin{split}
a & = b + c + d \\

& \qquad + f + g + h \\
& > 0\,.

\end{split}
\end{equation*}

a = b + c + d
+ f + g + h

> 0 .

The split environment
Figure 8.2

\begin{gather}
a = b\,, \\
\begin{split}

a & = m + n + o \\
& \qquad + x + y + z \,.

\end{split}
\end{gather}

a = b , (8.2)
a = m + n + o

+ x + y + z .
(8.3)

The gather environment
Figure 8.3

ure 8.2 shows how to use the environment. As you can see from the
input and the resulting output, the alignment positions are indicated
with the alignment tab token (&) in the input and linebreaks are forced
with the newline operator (\\). This is the default mechanism for
specifying alignment and linebreaks. The alignment position in the
input in Figure 8.2 is just to the left of the equality symbol. This is why
the line starting with a plus is indented a bit. This is done with the
command \qquad, which is equivalent to two em spaces. Section 9.10.1
provides more information about the command \qquad.

As mentioned before, split does not number its output. This
explains why there is no starred version of split.

Notice that there is no number in the output in Figure 8.2 because
the equation* environment doesn’t produce a number. However, we
would have got one equation number if we had used equation instead
of equation*.

8.6.3 The gather Environment

The gather environment displays a group of consecutive equations.
All resulting equations are numbered and centred. The environment
also has a starred version.

Figure 8.3 shows how to use the gather environment. Notice that
the equation that is constructed using the split environment occupies
two lines in the resulting output but only receives one number.

8.6.4 The align Environment

The align environment typesets equation groups with rows with
horizontal alignment positions. Each row is numbered separately.
The commands \nonumber and \notag turn off the numbering of the
current equation.

152 Chapter 8

\begin{align}
\label{eq:one}
F(z) & = \sumˆ\infty_{n=0} f_n zˆn \\
\label{eq:two}

& = z + \sumˆ\infty_{n=2}(f_{n-1}+f_{n-2}) zˆn \\
\label{eq:three}

& = z + F(z)/z + F(z)/zˆ2 \\
\nonumber

& = z / (1 - z - zˆ2) \,.
\end{align}
Here the last equation is obtained from˜(\ref{eq:one}),
(\ref{eq:two}), and˜(\ref{eq:three}) by transitivity
of equality and by solving for˜$F(z)$.

Using the align environment
Figure 8.4

F(z) =
∞∑
n=0

fnzn (8.4)

= z +
∞∑
n=2

(fn–1 + fn–2)zn (8.5)

= z + F(z)/z + F(z)/z2 (8.6)
= z/(1 – z – z2) .

Here the last equation is obtained from (8.4), (8.5), and (8.6) by transi-
tivity of equality and by solving for F(z).

Output of input in Figure 8.4
Figure 8.5

There is also a starred version of the align environment. Figure 8.4
shows how to use the starred version of the environment. The output
is shown in Figure 8.5. The input in Figure 8.4 uses the command
\infty to typeset the infinity symbol (∞). Notice that the \nonumber in
the input suppresses the number of the corresponding equation/row
in the output. The labels of the remaining three equations are defined
as usual and are used in the text following the display to reference the
equations.

The align environment may have several columns. Figure 8.6 and
Figure 8.7 show how to do this.

Intermezzo.[Increasing productivity] Uniformity in the input format makes
it easier to relate the input and the output. It also helps spotting inconsis-
tencies, thereby reducing the possibility of errors in the input. Finally, it
helps with debugging. For example, when you’re creating complex output
with the align environment it helps to have one (or a few) aligned items
per input line. If you get an error with a given input then you can easily
comment out these lines one by one until the error is gone. When the
error disappears, this tells you the original error is in the vicinity of the
last line you commented out. If you define multiple equations on a single
input line then finding the error may pose more problems.

Mathematics 153

\begin{align}
a_0 & = b_0\,, & b_0 & = c_0\,, & c_0 & = d_0\,,\\
a_1 & = b_1\,, & b_1 & = c_1\,, & c_1 & = d_1\,,\\
a_2 & = b_2\,, & b_2 & = c_2\,, & c_2 & = d_2\,.

\end{align}

The align environment
Figure 8.6

a0 = b0 , b0 = c0 , c0 = d0 , (8.7)
a1 = b1 , b1 = c1 , c1 = d1 , (8.8)
a2 = b2 , b2 = c2 , c2 = d2 . (8.9)

Output of input in Figure 8.6
Figure 8.7

\begin{align*}
x_0 & = 0\,, \\
x_1 & = 1\,, \\

\shortintertext{and}
x_2 & = 2\,.

\end{align*}

x0 = 0 ,
x1 = 1 ,

and
x2 = 2 .

Using the \shortintertext
command

Figure 8.8

8.6.5 Interrupting a Display

The amsmath package also provides a command called \intertext for
a short interjection of one or more lines in the middle of a multi-
line display. The command \shortintertext, which is provided by
the mathtools package, has a similar purpose but it takes less space.
Figure 8.8 shows how you use it. (The command \intertext works in
a similar way.) Notice that all equation symbols are properly aligned.

8.6.6 Low-level Alignment Building Blocks

All alignment environments we’ve seen so far operate at the “line”
level. This means you cannot use them as parts of other constructs.
The environments aligned, alignedat, and gathered align things at a
lower level. Figure 8.9 provides an example of how to use the aligned
environment. Notice that this environment does not do any number-
ing: the numbering is controlled by the enclosing environment. In
the input in Figure 8.9 the commands \left and \right scale the left
and right square brackets, which act as delimiters of the construct
that is built using aligned. The commands \left and \right are
properly explained in Section 8.8.1. The example in Figure 8.9 should
not be used as a general idiom for typesetting matrices because there
are better techniques to typeset matrices. Section 9.3 explains this in
further detail. More information about the other low-level alignment
commands may be found in the amsmath documentation [ams 2002].

154 Chapter 8

\begin{equation*}
I = \left[

\begin{aligned}
1 && 0 && 0 \\
0 && 1 && 0 \\
0 && 0 && 1

\end{aligned}
\right]\,.

\end{equation*}

I =

⎡⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎦ .

The aligned environment
Figure 8.9

8.6.7 The eqnarray Environment

Standard LaTEX also has an eqnarray environment. This environment
is traditionally used for multiple equations with one horizontal align-
ment position per line. The output from this environment it is not
always satisfactory. TEXperts strongly recommend that you use the
amsmath alignment environments instead.

8.7 Text in Formulae

Every now and then you need plain text in mathematical formulae.
The amsmath package provides a command \text which lets you do
this. Using it, is easy, as is demonstrated by the following example.

\[\text{final grade} =
\text{\textsc{ca}} +

5 \times \text{exam}\,. \]
final grade = ca + 5× exam .

Inside the argument of the \text command you can safely switch
to ordinary math mode and back. You may also use \text in math
mode in the argument of a \text command. This makes writing
$f(\text{f($\text{f(f)})})$ perfectly valid but not particularly
meaningful.

8.8 Delimiters

This section studies delimiters such as parentheses, which occur nat-
urally in mathematical expressions. For example, the opening and
closing parentheses act as delimiters of the start and end of the argu-
ment list of a function: f (a), g(x, y), and so on. Likewise, the symbol |
is used as a left and right delimiter in the commonly used notation
|·| for absolute values. Despite the importance of delimiters, LaTEX is
not always aware of their purpose and rôle in expressions. As a result
LaTEX may sometimes use the wrong size and spacing in expressions
with delimiters.

The remainder of this section helps you typeset your delimiters
in the right size and with the correct spacing.

Mathematics 155

8.8.1 Scaling Left and Right Delimiters

We’ve already seen the commands \left and \right as part of an
example, but this section properly describes the purpose of these
commands. The main purpose of the commands \left and \right is
to typeset variable-sized delimiters in the proper size.

To understand why we sometimes need to scale delimiters, con-
sider the (artificial) LaTEX expression $f(2ˆ{2ˆ{2ˆ2}}_{2_{2_2}})$.
If we typeset it using LaTEX this gives us

f (2222

222) .

The resulting output is not very pretty because the parentheses, which
act as delimiters of the arguments of f (·), are too small. LaTEX is simply
not aware that the parentheses are delimiters. To tell LaTEX that the
parentheses are left and right delimiters we make their purpose ex-
plicit by tagging them with \left and \right. This is done by writing
$f\left(2ˆ{2ˆ{2ˆ2}}_{2_{2_2}} \right)$, which gives us

f
(

2222

222

)
.

You can use this technique for any kind of variable-sized delimiter
symbol. Section 8.8.5 presents the variable-sized delimiters.

You cannot use \left without \right and vice versa, which some-
times poses a problem. For example, how to typeset the following?

n! =
{

1 if 0 ≤ n ≤ 1 ,
n × (n – 1)! otherwise .

LaTEX Output

The following is the solution. In the solution we use a \right.,
which balances the \left-\right pair and produces nothing. The
construct \left. may be used similarly.

\[n! = \left\{
\begin{aligned}

& 1 && \text{if $0 \leq n \leq 1$}\,,
\\ & n \times (n-1)! && \text{otherwise}\,.
\end{aligned}

\right. \]

LaTEX Input

Notice that the \{ in \left\{ in the input is not the left brace
for starting a group, but the command for typesetting the left brace.
The cases environment provides an easier way to define case-based
definitions. This environment is explained in Section 9.6, which also
discusses other solutions to case-based definitions.

When dealing with nested expressions and function applications,
it is not always necessary to use parentheses. Sometimes your for-
mulae may be clearer if you use square brackets at the outer level.
Using square brackets at the outer level should work especially well
in ordinary math mode because they avoid the need for scaling the
delimiters.

156 Chapter 8

Simplifying
$[(a + b)ˆ{2}
- (a - b)ˆ{2}]ˆ{2}$

gives us $16 aˆ{2} bˆ{2}$.

Simplifying [(a+b)2–(a–b)2]2 gives
us 16a2b2.

A common problem is that of scaling opening and closing delim-
iters on different lines. The main problem is that each \left should
be closed on the same line by a \right. Still there’s a clever way out
of this problem. The solution involves the \vphantom command. The
idea is that you use the command to properly scale the smaller delim-
iter to the desired height in combination with \left or with \right.
Since \vphantom{〈stuff〉} results in a box of zero width and the same
height as 〈stuff 〉, you can get a properly scaled delimiter if 〈stuff〉
is sufficiently high. A good candidate for 〈stuff〉 is the sub-formula
on the line with the higher delimiter. Of course you should omit the
delimiter. Other choices are also possible. The following is an example.

\begin{align*}
f & = g\left(3ˆ{3ˆ{3}}

+ …\right.
\\& \qquad \left.

+ 3 \vphantom{3ˆ{3ˆ{3}}}
\right)\,.

\end{align*}

f = g
(

333
+ …

+3
)

.

8.8.2 Bars

AMS-LaTEX provides several commands for typesetting vertical bars
(|). The reason for having several commands is that LaTEX’s command
\vert sometimes acts as a left, sometimes acts as a right delimiter,
and sometimes acts as a different kind of delimiter. Depending on
the rôle of the delimiter symbol it has to be treated differently, which
is why AMS-LaTEX provides dedicated commands that make the rôle
of the delimiters explicit.

In the remainder of this section we shall first study the standard
command \vert and then the special-purpose commands. The fol-
lowing demonstrates how to typeset the vertical bar in guarded sets.1

The even digits are
given by

$\{\, 2 n \in \mathbb{N}
\,\vert\,

0 \leq n \leq 4 \,\}$.

The even digits are given by { 2n ∈
N | 0 ≤ n ≤ 4 }.

Using the thin spaces before and after the vertical bar is slightly bet-
ter than omitting them. It may be argued that using a colon in guarded
set notations is better than using a bar. For example, despite the fact

1The adjective guarded for sets is inspired by guarded lists in the Haskell pro-
gramming language [Peyton Jones, and Hughes 1999].

Mathematics 157

Let $F(z)$ be the ordinary
generating function of

$\left\langle t_0,t_1,
\ldots \right\rangle$. Then

$z F(z)$ is the ordinary
generating function of

$\left\langle 0,t_0,t_1,
\ldots \right\rangle$.

Let F(z) be the ordinary generat-
ing function of 〈t0, t1, . . .〉. Then
zF(z) is the ordinary generating
function of 〈0, t0, t1, . . .〉.

Angular delimiters
Figure 8.10

that { |i| | –10 ≤ i ≤ 9 } doesn’t involve complicated expressions, it is
much more difficult to parse than { |i| : –10 ≤ i ≤ 9 }. However, the
bar notation also has its merits. For example, a bar is better in the
following:

{ X : A→ B | Y : C → A, X ◦ Y = Z } .

There are two more command-pairs for variable-size bars.
$\left\lvert x \right\rvert$

These commands are for absolute value-like expressions: |x|. ☐√
$\left\lVert x \right\rVert$

These commands are for norms: ‖x‖. ☐√
The \rvert command is also used for the “evaluation at” notation.

The following is an example. Notice that the \left. balances the
\left-\right pair but typesets nothing.

\[\left. f(x)
\right \rvert_{x=0} = 0\,.

\]
f (x)
∣∣∣
x=0

= 0 .

8.8.3 Tuples

A common error in computer science and mathematical papers is to
use $<1,2,3>$ for the tuple/sequence consisting of 1, then 2, and then 3.
This kind of LaTEX input gives you < 1, 2, 3 >, which looks so bad that
some authors have complained [Aslaksen 1993]. LaTEX has a special
\langle and \rangle for tuples. If you use them for tuples then the
result will look much more aesthetically pleasing. Figure 8.10 provides
an example.

8.8.4 Floors and Ceilings

The commands \lfloor and \rfloor are for typesetting “floor” ex-
pressions, which are used to express rounding down. The two related
commands \lceil and \rceil are for typesetting “ceiling” expressions.
They are for rounding up.

158 Chapter 8

Standard

{ \{ } \} 〈 \langle
 \lceil � \lfloor 〉 \rangle
� \rceil � \rfloor ↑ \uparrow
⇓ \Downarrow � \updownarrow ↓ \downarrow
⇑ \Uparrow � \Updownarrow ((
[[| |))
]] ‖ \| / /
\ \backslash

amsmath

| \lvert | \rvert
‖ \lVert ‖ \rVert

This table lists variable-size de-
limiters and the commands
to typeset them. All delimiters
are typeset in ordinary math
mode. The delimiters listed un-
der the heading ‘Standard’ are
standard LaTEX-provided com-
mands. The delimiters listed
under the heading amsmath
are provided byAMS-LaTEX. All
commands can be used with or
without \left and \right.

Table 8.3

Let x be any real number.
By definition
$i \leq
\left\lfloor x \right\rfloor
\leq x \leq
\left\lceil x \right\rceil
\leq I$
for all integers
i and I such that
$i \leq x \leq I$.

Let x be any real number. By def-
inition i ≤ �x� ≤ x ≤ x� ≤ I
for all integers i and I such that
i ≤ x ≤ I.

8.8.5 Delimiter Commands

This section presents some more commands for variable-sized delim-
iters. Table 8.3 lists the commands. This table is based on [Pakin 2005,
Tables 74 and 76].

8.9 Fractions

This section is about typesetting fractions in math mode. Ordinary
fractions are typeset using the command \frac. To get the fraction
〈num〉
〈den〉 you use \frac{〈num〉}{〈den〉}. Notice that fractions in the run-
ning text may disturb the flow of reading because they may increase
the interline spacing. When using the \frac command in ordinary
math mode you should ensure that the resulting interline spacing
is acceptable. If it is not then perhaps it is possible to eliminate the
division from your fractions. For example, a simple equation of the
form x = 1

3y is equivalent to 3x = y. If you can’t eliminate division then
perhaps you can turn the \frac construct into a simple $〈num〉/〈den〉$
construct. Alternatively, you can typeset the fraction in a display.

The amsmath package provides a specialised command \cfrac for
typesetting continued fractions. The command takes an optional argu-

Mathematics 159

ment for the placement of the numerator. The value of this optional
argument may be either l for left placement or r for right placement:
you may write \cfrac[l]{〈num〉}{〈den〉} or \cfrac[r]{〈num〉}{〈den〉}.
The following provides an example of how to use the command. In
the example, the command \dotsb is for ellipsis in combination with
binary relations or binary operators such as +.

\[\sqrt{2} - 1
= \cfrac{1}{2 +
\cfrac{1}{2 +
\dotsb}}}\,. \]

√
2 – 1 =

1

2 +
1

2 + · · ·
.

8.10 Sums, Products, and Friends

This section describes how to typeset sums, products, integrals, and
related constructs. Section 8.10.1 explains the basic typesetting com-
mands. Section 8.10.2 explains how to control the lower and upper
limits of delimited sums, products, and so on. Section 8.10.3 explains
how to create multi-line upper and lower limits.

8.10.1 Basic Typesetting Commands

This section explains how to typeset basic sums, products, and related
constructs. To get started we shall study with sums.

The undelimited sum symbol,
∑

, may be typeset in math mode
using the command \sum. It cannot be used in text mode.

In the delimited version the summand is parameterised by an in-
dex ranging from a lower to an upper limit. The subscript (_) and
superscript (ˆ) operators define the lower and upper limits of these
delimited sums. So $\sumˆn_{i = 0} f(i)$ defines the delimited
sum with summand f (i) and lower and upper limits for the index vari-
able i, which are given by 0 and n respectively. The notation

∑n
i=0 f (i)

is a shorthand for f (0) + f (1) + f (2) + · · · + f (n).
In the generalised summation notation [Graham, Knuth, and Patash-

nik 1989, page 22] the range of the index variable is defined as a condi-
tion, which is defined in the same position as the lower limit. Examples
of this form are

∑
0≤k<n 2–k and∑

0≤k≤n , odd k
2k .

If you study how the last two sums in the previous paragraph are
typeset then you may notice that the conditions are typeset in different
positions (relative to the

∑
symbol). This is not a coincidence. Indeed,

in a display the limits usually appear below and above the summation
symbol. However, in ordinary math mode they are positioned to the
lower and upper right of the summation symbol. For ordinary math
mode this avoids annoying discrepancies in interline spacing.

160 Chapter 8

Standard∑
\sum

´
\int

⋂
\bigcap∏

\prod
¸

\oint
⋃

\bigcup⊕
\bigoplus

⊔
\bigsqcup

∧
\bigwedge⊗

\bigotimes
∐

\coprod
∨

\bigvee⊙
\bigodot

⊎
\biguplus

AMS-LaTEX˜
\iint

˝
\iiint

ˇ
\iiiint´ · · · ´ \idotsint

This table lists variable-sized
symbols and the commands to
typeset them. The output in
this table results from typeset-
ting the commands in ordinary
math mode. The commands in
the first four rows of the table
are standard LaTEX commands.
The commands in the last row
of the table are provided by the
amsmath package.

Table 8.4

The following is one more example with delimited sums.

According to folklore
Gauss proved that
$\sum{n}_{i=0} i=n(n+1)/2$.

According to folklore Gauss
proved that

∑n
i=0 i = n(n + 1)/2.

The
∑

symbol is an example of a variable-sized symbol [Lamport
1994, page 44]. Table 8.4 lists variable-sized symbols and the commands
to typeset them. All the commands in the table are used in exactly the
same way as you use the command \sum. The top of the table is based
on [Lamport 1994, Table 3.8]. The commands in the top of the table
are standard LaTEX commands. The commands in the last two rows
are provided by the amsmath package.

8.10.2 Overriding Text and Display Style

Sometimes it is useful to change the way a variable-sized symbol is
typeset. For example, a delimited sum in the numerator of a displayed
fraction may look better if its limits are positioned to the lower and
upper right of the

∑
symbol. The declarations \textstyle and \dis-

playstyle specify the style of the variable-sized symbols. The follow-
ing contrived example shows how to use the declaration \textstyle.
The declaration \displaystyle is used similarly.

\[\textstyle
\sumˆ\infty_{n=0}

2ˆ{-n} = 2\,. \]

∑∞
n=0 2–n = 2 .

8.10.3 Multi-line Limits

The \substack command lets you construct multi-line limits. Fig-
ure 8.11 uses the \substack command with the command \sum. As
you may see from the input and the output, the \\ command specifies
a newline within the stack. All layers in the stack are centred.

Mathematics 161

\[\sum_{\substack{
\text{i odd}}

\\0 \leq i\leq n}}
\binom{n}{i}

= 2ˆn -
\sum_{\substack{

\text{i even}
\\0\leq i\leq n}}

\binom{n}{i}\,. \]

∑
i odd

0≤i≤n

(
n
i

)
= 2n –

∑
i even
0≤i≤n

(
n
i

)
.

The \substack command with
centred lines

Figure 8.11

\[\sum_{\begin{subarray}{l}
i \text{ odd}\\
0 \leq i \leq n

\end{subarray}}
\binom{n}{i}

= 2ˆn -
\sum_{\begin{subarray}{c}

i \text{ even}\\
0 \leq i \leq n

\end{subarray}}\,.
\binom{n}{i} \]

∑
i odd
0≤i≤n

(
n
i

)
= 2n –

∑
i even
0≤i≤n

(
n
i

)
.

The subarray environment
with different alignments. The
alignment is controlled by the
argument of the subarray en-
vironment. The lines in the first
subarray are aligned to the left.
The lines in the last subarray
are centred.

Figure 8.12

The subarray environment provides more control than the \sub-
stack command. The environment takes one additional parameter,
which specifies the alignment of the layers in the stack. The extra
parameter can be l for alignment to the left or c for alignment to
the centre. Figure 8.12 demonstrates how the environment enforces
different alignments in the lines in the lower limits of sums. It may
not be clear from the example but the spaces before the odd and even
in the output are caused by the spaces in the argument of the \text
commands. These spaces are typeset as visible spaces () in the example.
They are not caused by the spaces before the \text commands.

8.11 Existing Functions and Operators

LaTEX provides a wide range of function and operator symbols. The
default type style for typesetting “log-like” function is math-roman
(\mathrm). Table 8.5 lists LaTEX’s built-in log-like functions.

Some operators take subscripts and/or superscripts. They work as
usual: the subscripts are specified with the subscript operator (_) and
the superscripts with the superscript operator (ˆ). Figure 8.13 demon-
strates how to get the limit of the \lim command in the subscript
position. Note that Figure 8.13 also works if we omit the braces that
turn the second argument of the superscript operator into a group.
Adding the braces makes the second argument stand out a bit.

The mod symbol is overloaded. It requires different spacing de-
pending on the context. The amsmath package provides four com-

162 Chapter 8

arccos \arccos dim \dim log \log
arcsin \arcsin exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc lim inf \liminf tan \tan
deg \deg lim sup \limsup tanh \tanh
det \det ln \ln

Log-like functions
Table 8.5

\[\lim_{x \to 0}
\frac{xˆ{2}}

{x} = 0\,. \]

lim
x→0

x2

x = 0 .Limit of a log-like function
Figure 8.13

mands to resolve this problem. The names of the commands are
\bmod, \mod, \pmod, and \pod. They are used as follows.

\bmod

This is for binary modular division: $\gcd(5, 3) = \gcd(3, 5
\bmod 3)$, which gives you gcd(5, 3) = gcd(3, 5 mod 3). ☐√

\mod

This is for modular equivalence: $2 \equiv 5 \mod 3$, which gives
you 2 ≡ 5 mod 3. Notice the difference in spacing compared to the
spacing you get with the command \bmod. Here the operator symbol,
mod, is further to the right of its first argument. ☐√

\pmod

This is for parenthesised modular equivalence: $2 \equiv 5 \pmod
3$, which gives you 2 ≡ 5 (mod 3). ☐√

\pod

This is for parenthesised modular equivalence without mod symbol:
$2 \equiv 5 \pod 3$, which gives you 2 ≡ 5 (3). ☐√

8.12 Integration and Differentiation

8.12.1 Integration

The command \int is for typesetting simple integrals. There are three
styles in the literature for typesetting integrals. The first style is mainly
used by mathematicians; the other styles are used in engineering and
physics [Beccari 1997].

The following shows how mathematicians typeset a definite inte-
gral. This style may be found for example in [Clapham, and Nicholson
2005]. Notice that the standard \left.-\right\rvert-trick scales the
\rvert to the correct size. The thin space is needed for each variable
of integration (the dx), so in general you write \,d x\,d y, and so on.

Mathematics 163

amsmath´
\int

˜
\iint˝

\iiint
ˇ

\iiiint´ · · · ´\idotsint
esint´

\int
˜

\iint˝
\iiintop

ˇ
\iiiintop›

\sqint
”

\sqiint�
\ointctrclockwise

ı
\ointclockwise#

\landupint
%

\landdownintffl
\fint

¯
\dotsintop¸

\ointop
‚

\oiintopfl
\varointctrclockwise

ff
\varointclockwise!

\varoiint

This table lists integration
signs and the commands to
typeset them. All commands
except \int are provided by
the amsmath package. The first
five commands are provided
by the amsmath package.
The remaining commands
are provided by the esint
package.

Table 8.6

\[\intˆ{b}_{a}
3 xˆ{2}\,d x

= \left. xˆ{3}
\right\rvertˆ{b}_{a}

= bˆ{3} - aˆ{3}\,. \]

ˆ b

a
3x2 dx = x3∣∣b

a = b3 – a3 .

There are two more alternative styles for typesetting integrals.
They differ in how they treat the variable of integration. Both styles
typeset the d in an upright (roman) typeface, which is common in
physics and engineering [Beccari 1997].

The first alternative style omits the thin space and uses the \mathrm
for the variables of integration: \mathrm{d x}. This style may be found
in [Borowski, and Borwein 2005]:ˆ b

a
3x2dx .

The second alternative style may be found in [Zeidler 1996]. It uses a
mixture of the other styles: ˆ b

a
3x2dx .

From now on we shall use the first style when it comes to typeset-
ting the variable of integration/differentiation.

The key to typesetting other integrals are the commands provided
by the amsmath and the esint packages. Table 8.6 lists these commands.

8.12.2 Differentiation

Expressions with differentiations are typeset using the \frac com-
mand. The expression du

dx may be obtained with \frac{d u}{d x}.
More complex expressions work as expected.

164 Chapter 8

\[\frac{dˆ{2} u}
{d xˆ{2}} \]

d2u
dx2

The symbol ∂ is typeset with the command \partial. Partial deriva-
tives with ∂ are created with fractions:

Let $z = xˆ{2} + x y$, then
\[\frac{\partial z}

{\partial x}
= 2x + y\,. \]

Let z = x2 + xy, then

∂z
∂x = 2x + y .

8.13 Roots

Square roots and other roots are typeset with \sqrt. The command
has an optional argument for the root indices.

$\sqrt{2} \approx
1.414213562$ and

$\sqrt[3]{27} = 3$.

√
2 ≈ 1.414213562 and 3√27 = 3.

The placement of the root indices is not always perfect. The ams-
math package provides two commands to fine-tune the root index
placement:

\leftroot{〈number〉}
This moves the root index 〈number〉 “units” to left. The unit is an
arbitrary but convenient distance. Notice that 〈number〉 can be negative,
in which case this results in moving the root index to the right. ☐√

\uproot{〈number〉}
This moves the root index 〈number〉 units up. ☐√

The commands are used in the optional argument. The following
examples shows how to improve the poor positioning of the root index
β that you get with $\sqrt[\beta]{k}$.

We all agree that
$\sqrt[\beta]{k}$
is equal to

$\sqrt[\leftroot{-2}%
\uproot{2}%
\beta]{k}$.

But why are they
different in type?

We all agree that β√k is equal to
β√k. But why are they different in

type?

8.14 Changing the Style

The following six commands change the type style in math mode.
$\mathit{italic + abcˆ2}$

The command \mathit typesets its argument in the math italic type-
face: italic + abc2. ☐√

Mathematics 165

� \amalg � \diamond � \sqcap
∗ \ast ÷ \div � \sqcup
© \bigcirc � \lhd � \star
� \bigtriangledown ∓ \mp × \times

! \bigtriangleup " \odot , \triangleleft
• \bullet # \ominus - \triangleright
∩ \cap ⊕ \oplus �\unlhd
· \cdot & \oslash � \unrhd
◦ \circ ⊗ \otimes (\uplus∩

\cup ± \pm ∨ \vee
† \dagger � \rhd ∧ \wedge
‡ \ddagger \ \setminus + \wr

Binary operation symbols.
The commands \lhd, \rhd,
\unlhd, and \unrhd are
provided by the amssymb
package.

Table 8.7

$\mathrm{roman + abcˆ2}$

The command \mathrm typesets its argument in math roman typeface:
roman + abc2. ☐√

$\mathbf{bold + abcˆ2}$

The command \mathbf typesets its argument in the default math bold
typeface: bold + abc2. Notice that \mathbf may not always result in
bold symbols. Although not ideal, the commands \pmb (poor man’s
bold) and \boldsymbol may be useful in cases like this. ☐√

$\mathsf{sans serif + abcˆ2}$

The command \mathsf typesets its argument in the math sans serif
typeface: sansserif + abc2. ☐√

$\mathtt{teletype + abcˆ2}$

The command \mathtt typesets its argument in math monospaced
typeface: teletype + abc2. ☐√

$\mathcal{CALLIGRAPHIC}$

The command \mathcal typesets its argument in a math calligraphic
typeface: CALLIGRAPHIC. The calligraphic letters only come in
uppercase: ☐√

8.15 Symbol Tables

This section presents various tables with commands math mode sym-
bols. The presentation is based on [Lamport 1994] and [Pakin 2005].

8.15.1 Operator Symbols

Table 8.7 lists all LaTEX-provided binary operator symbols.

8.15.2 Relation Symbols

LaTEX’s list of relation symbols is quite impressive. Table 8.8 lists
LaTEX’s built-in symbols for binary relations. The amsmath package
provides additional commands. Table 8.9 lists the commands.

166 Chapter 8

< < = = ≤ \leq
> > , \ll / \smile
≈ \approx | \mid - \sqsubseteq
. \asymp |= \models � \sqsubset
-, \bowtie �= \neq / \sqsupseteq
∼= \cong 1 \ni � \sqsupset
2 \dashv /∈ \notin ⊆ \subseteq
.= \doteq ‖ \parallel ⊂ \subset
≡ \equiv ⊥ \perp 5 \succeq
0 \frown 6 \preceq 7 \succ
≥ \geq ≺ \prec ⊇ \supseteq
; \gg ∝ \propto ⊃ \supset
∈ \in > \simeq ? \vdash
�� \Join
∼ \sim

Relation symbols. The com-
mands \Join, \sqsubset, and
\sqsupset are provided by the
amssymb package.

Table 8.8

� \approxeq � \eqcirc � \succapprox
� \backepsilon � \fallingdotseq 	 \succcurlyeq

 \backsim � \multimap � \succsim
 \backsimeq � \pitchfork ∴ \therefore
∵ \because 	 \precapprox ≈ \thickapprox
� \between � \preccurlyeq ∼ \thicksim
� \Bumpeq � \precsim ∝ \varpropto
� \bumpeq � \risingdotseq � \Vdash
� \circeq � \shortmid � \vDash
� \curlyeqprec \shortparallel � \Vvdash
� \curlyeqsucc � \smallfrown � \doteqdot
 \smallsmile

Additional relational symbols.
These symbols are provided by
the amsmath package.

Table 8.9

8.15.3 Arrows

LaTEX defines several commands for drawing arrows. All these com-
mands produce fixed-size arrows. Extensible arrows are provided by
additional packages. Table 8.10 lists all LaTEX’s built-in commands for
fixed-size arrows. Some commands for extensible arrows are listed in
Tables 8.11–8.13. These commands, some of which accept an optional
argument, require additional packages.

8.15.4 Miscellaneous Symbols

Table 8.14 lists LaTEX’s “miscellaneous” symbols. It is worthwhile notic-
ing that the commands \imath and \jmath produce a dotless ı and a
dotless ȷ. These symbols should be used in combination with hats and
similar decorations; never use i and j with hats.

Mathematics 167

↓ \downarrow ⇓ \Downarrow
↑ \uparrow ⇑ \Uparrow
� \updownarrow � \Updownarrow
← \leftarrow ⇐ \Leftarrow
→ \rightarrow ⇒ \Rightarrow
←− \longleftarrow ⇐= \Longleftarrow
−→ \longrightarrow =⇒ \Longrightarrow
↔ \leftrightarrow ⇔ \Leftrightarrow
←→ \longleftrightarrow ⇐⇒ \Longleftrightarrow
J→ \mapsto ←↩ \hookleftarrow
J−→ \longmapsto ↪→ \hookrightarrow
↼ \leftharpoonup ↗ \nearrow
↽ \leftharpoondown ↘ \searrow
⇀ \rightharpoonup ↙ \swarrow
⇁ \rightharpoondown ↖ \nwarrow
! \rightleftharpoons

Fixed-size arrow symbols
Table 8.10

e←− \xleftarrow{e}
e←−
o

\xleftarrow[o]{e}
e−→ \xrightarrow{e}

e−→
o

\xrightarrow[o]{e}

e←− \underleftarrow{e} e−→ \underrightarrow{e}
←→e \overleftrightarrow{e} e←→ \underleftrightarrow{e}

Extensible arrow symbols pro-
vided by amsmath

Table 8.11

e
↼−−⇁ \xleftrightharpoons{e}

e−⇀↽− \xrightleftharpoons{e}
e
↽− \xleftharpoondown{e}

e−⇁ \xrightharpoondown{e}
e
↼− \xleftharpoonup{e}

e−⇀ \xrightharpoonup{e}
e←→ \xleftrightarrow{e}

e⇐⇒ \xLeftrightarrow{e}
e←−↩ \xhookleftarrow{e}

e
↪−→ \xhookrightarrow{e}

e⇐= \xLeftarrow{e}
e
=⇒ \xRightarrow{e}

eJ−→ \xmapsto{e}

This table lists non-standard
mathtools-provided extensi-
ble arrow symbols and the com-
mands to typeset them. All
these commands also take an
optional argument. Table 8.13
demonstrates the effect of us-
ing the options.

Table 8.12

Some people write
\hat{i} and \hat{j}
but $\hat{\imath}$ and
$\hat{\jmath}$ is better.

Some people write î and ĵ but ı̂
and ȷ̂ is better.

In some (math) typefaces it is difficult to distinguish the letter l
(l) from the digit 1 (1). In such cases you may want to consider
using the letter � (ℓ) as a substitute for the letter l.

168 Chapter 8

e
↼−−⇁
o

\xleftrightharpoons[o]{e}
e−⇀↽−
o

\xrightleftharpoons[o]{e}

e
↽−
o

\xleftharpoondown[o]{e}
e−⇁
o

\xrightharpoondown[o]{e}
e
↼−o \xleftharpoonup[o]{e}

e−⇀o \xrightharpoonup[o]{e}
e←→
o

\xleftrightarrow[o]{e}
e⇐⇒
o

\xLeftrightarrow[o]{e}
e←−↩o \xhookleftarrow[o]{e}

e
↪−→o \xhookrightarrow[o]{e}

e⇐=
o

\xLeftarrow[o]{e}
e
=⇒
o

\xRightarrow[o]{e}
eJ−→
o

\xmapsto[o]{e}

This table lists non-standard
mathtools-provided extensi-
ble arrow symbols and the com-
mands to typeset them. Ta-
ble 8.12 lists how these com-
mands work without the op-
tional argument.

Table 8.13

ℵ \aleph 7 \flat ¬ \neg
∠ \angle ∀ \forall V \Re
\ \backslash h̄ \hbar

√
\surd

⊥ \bot ♥ \heartsuit X \top
\Box Y \Im ! \triangle
♣ \clubsuit ı \imath ∂ \partial
♦ \Diamond ∞ \infty ′ \prime
♦ \diamondsuit ȷ \jmath 8 \sharp
� \ell � \mho ♠ \spadesuit
∅ \emptyset ∇ \nabla ℘ \wp
∃ \exists : \natural ‖ \|

Miscellaneous math mode
symbols. The commands
\Box, \Diamond, and \mho
are provided by the amssymb
package.

Table 8.14

Chapter 9
Advanced Mathematics

This chapter covers advanced mathematical typesetting and the
related commands. If you’re reading this book for the first time, you
may want to skip the entire chapter.

9.1 Declaring New Operators

Every TEXnician some day runs out of operator or function symbols.
Fortunately, the amsmath package provides a high-level command for
defining user-defined operator commands. The resulting commands
properly typeset their operators and functions in a consistent style.
The command gives you full control over the positioning of subscripts
and superscripts in “limit” positions. The command, which is called
\DeclareMathOperator, can only be used in the preamble.

\DeclareMathOperator{〈command〉}{〈sym〉}
This defines a new command, 〈command〉, which is typeset as 〈sym〉.

The 〈command〉 should start with a backslash (\). The resulting symbol is
typeset in a uniform style and with the proper spacing. The following
is an example. ☐√

\documentclass{article}
\DeclareMathOperator\op{op}
\begin{document}

… Note that
$1 \mathrm{op} 2 = 3$
does not look pretty.
However, $1 \op 2 = 3$
looks good.

… Note that 1op2 = 3 does not
look pretty. However, 1 op 2 = 3
looks good.

Notice that the appearance of both operator symbols in the previ-
ous example is identical. However, the spacing for the first operator
symbol is dreadful because LaTEX does not recognise it as an operator.
AMS-LaTEX also provides a \DeclareMathOperator* command,

which is for defining operator symbols that require subscripts and
superscripts in “limit” positions. It can only be used in the preamble.
The following is an example.

We start by defining the operator symbol in the preamble. This is
done as follows.

\DeclareMathOperator*\Lim{Lim} LaTEX Input

 , ,
DOI 10.1007/978-3-642-23816-1_9, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 169

170 Chapter 9

\[\left(
\begin{array}{c}

\left\lvert
\begin{array}{lrc}

x & y & z
\\ 2 a & 3 b & 4 c

\end{array}
\right\rvert
\\ \alpha
\\ \beta

\end{array}
\right) \]

⎛⎜⎜⎝
∣∣∣∣ x y z

2a 3b 4c

∣∣∣∣
α
β

⎞⎟⎟⎠

The array environment
Figure 9.1

We continue by using the new operator command.

$\Lim_{x \to 0}
\frac{xˆ{2}}{x} = 0$.… … Limx→0

x2
x = 0. …

9.2 Managing Content with the cool Package

The cool package addresses the problem of capturing content.

◦ The package provides a very comprehensive list of commands for
consistent typesetting of mathematical functions and constants.

◦ The package also provides commands for easy typesetting complex
matrices.

◦ Finally, the package provides commands that determine how symbols
and expressions are typeset. This affects:
� How inverse trigonometric functions are typeset: arcsin x versus

sin–1 x.
� How to typeset derivatives: d

dx f versus df
dx .

� How to print certain function and polynomial symbols.
� How to typeset integrals:

´
f dx, versus

´
f dx, versus,

´
dx f , ….

9.3 Arrays and Matrices

Traditionally arrays were typeset using the array environment, which
works similar to the tabbing environment. Figure 9.1 provides an
example that shows LaTEX’s built-in array environment.

The amsmath package provides six environments for matrices. All
commands are designed for display math mode. They don’t provide
alignment control. By default there are up to ten columns, which are
aligned to the centre. The following are the commands.

pmatrix For matrices with parentheses as delimiters:
(
1 2 3

)
.

bmatrix For matrices with square brackets as delimiters:
[
1 2 3

]
.

Bmatrix For matrices with braces as delimiters:
{

1 2 3
}

.
vmatrix For matrices with vertical bars as delimiters:

∣∣1 2 3
∣∣.

Advanced Mathematics 171

… The linear transformation
$\langle\,x,y\,\rangle
\mapsto
\langle\,2x + y, y\,\rangle$

is written as follows:
$\bigl[\begin{smallmatrix}

2&1 \\ 0&1
\end{smallmatrix}\bigr]
\bigl[\begin{smallmatrix}

x \\ y
\end{smallmatrix}\bigr]$.

… The linear transformation
〈 x, y 〉 J→ 〈 2x + y, y 〉 is written as
follows:

[2 1
0 1
][xy].

The smallmatrix environment
Figure 9.2

Vmatrix For matrices with two double vertical bars as delimiters:
∥∥1 2 3

∥∥.
matrix For matrices without delimiters: 1 2 3.

The following example shows how to use the bmatrix environ-
ment.

After rotation this gives
\[\begin{bmatrix}

\cos\phi & -\sin\phi
\\\sin\phi & \cos\phi
\end{bmatrix}
\begin{bmatrix}

x \\ y
\end{bmatrix}\,. \]

After rotation this gives[
cosφ – sinφ
sinφ cosφ

] [
x
y

]
.

AMS-LaTEX also provides a smallmatrix environment for matrices
in inline (ordinary) math mode. The smallmatrix environment does
not typeset the delimiters. To typeset the delimiters you use the com-
mands \bigl and \bigr, which are the equivalents of the commands
\left and \right respectively, so for square bracket delimiters you
write: $\bigl[\begin{smallmatrix} … \end{smallmatrix}\bigr]$.
Figure 9.2 provides an example.

9.4 Accents, Hats, and Other Decorations

This section is about typesetting accents and other decorations in math
mode. The commands in this section are all of the form 〈command〉{
〈argument〉}. The majority of the commands add a fixed-size decora-
tion to the 〈argument〉. For example, \hat{x} and \hat{xxx} give
you x̂ and ˆxxx. The remaining commands provide extensible decora-
tions. For example, the commands \overline{x} and $\overline
{xxx}$ give you x and xxx. The result of some decorations may not
always be aesthetically pleasing. For example, \widetilde{xxxxxx}
gives you x̃xxxxx. As a different example, \bar{x} results in x̄, which
has a more subtle bar than \overline{x}, which gives you x. Table 9.1
lists some commonly used commands.

172 Chapter 9

Fixed-size Decorations

ẋ \dot{x} x́ \acute{x}
ẍ \ddot{x} x̀ \grave{x}...x \dddot{x} x̂ \hat{x}....x \ddddot{x} x̃ \tilde{x}
x̊ \mathring{x} x̄ \bar{x}
x̌ \check{x} ;x \vec{x}
x̆ \breve{x}

Extensible Decorations
←−e \overleftarrow{e} e \overline{e}−→e \overrightarrow{e} ẽ \widetilde{e}←→e \overleftrightarrow{e} ê \widehat{e}
e←− \underleftarrow{e} e \underbar{e}

e←→ \underleftrightarrow{e} e \underline{e}

e−→ \underrightarrow{e}

Math mode accents, hats, and
other decorations. The com-
mands at the top are listed with
single letter arguments. They
are intended for “narrow” ar-
guments such as letters, digits,
and so on. The commands at
the bottom produce extensible
decorations. The commands
\dddot and \ddddot are pro-
vided by amsmath.

Table 9.1

o︷︸︸︷
u \overbrace{u}ˆ{o}

︷︸︸︷
u \overbrace{u}

o︸︷︷︸
u

\underbrace{o}_{u} o︸︷︷︸\underbrace{o}
The \overbrace and \under-
brace commands

Table 9.2

9.5 Braces

Every now and then you may have to typeset expressions with over-

braces (
︷ ︸︸ ︷
〈expr〉) and underbraces (〈expr〉︸ ︷︷ ︸). The commands for creating

such expressions are \overbrace and \underbrace. As should be clear
from the second line in this paragraph, overbraces and underbraces
should be restricted to display math mode because they may affect
the line spacing.

Expressions with underbraces can be “decorated” with expres-
sions under the brace. Likewise, expressions with overbraces may re-
ceive decorations over the brace. These more complicated expressions
are constructed using subscript and superscript operators. Table 9.2
demonstrates how to use the \underbrace and \overbrace commands.

The decorated versions are usually needed to indicate numbers of
subterms. Figure 9.3 provides an example. (Notice the use of the \text
command to temporarily switch to text mode inside math mode.)

9.6 Case-based Definitions

Case-based definitions are very common in computer science. There
are two common approaches and solutions: conditions and Iversonians.

Advanced Mathematics 173

\[xˆ{k} =
\underbrace

{1 \times x
\times x \times
\dotsb \times x}

_{\text{k˜times
$\times x$}} \,. \]

xk = 1× x × x × · · · × x︸ ︷︷ ︸
k times ×x

.

Typesetting an underbrace
Figure 9.3

conditions With this approach each condition results in a case in a case-based
definition. The following provides an example.

\[n! = \begin{cases}
1 & \text{if $n = 0$}\,; \\
(n-1) ! \times n & \text{if $n > 0$}\,.

\end{cases} \]

LaTEX Input

This gives you the following.

n! =

{
1 if n = 0 ;
(n – 1)!× n if n > 0 .

LaTEX Output

Formulae like this look great in a display but aren’t suitable for ordi-
nary math mode.

Iversonians Here we define a unary characteristic or indicator function that returns
1 if its argument is true and returns 0 otherwise. Graham, Knuth,
and Patashnik [1989] propose the notation [〈cond〉], which they call
the Iversonian of 〈cond〉 as a tribute to Kenneth E. Iverson, the inventor
of the computer language A Programming Language (apl), which has
a similar construct. The expression evaluates to 1 if 〈cond〉 is true and
0 otherwise. The notation 1{〈cond〉} is also accepted notation, but it has
the disadvantage that it has a subscript, which may disturb the line
spacing in ordinary math mode. The following example shows that
Iversonians work surprisingly well in ordinary math mode.

… We define
$n! = [\,n = 0\,] +
(n-1) ! \times n
\times [\,n > 0\,]$. …

… We define n! = [n = 0] + (n –
1)!× n × [n > 0]. …

9.7 Function Definitions

Function definitions usually come with a description of the domain,
the range, and the computation rule.

The successor function,
$s \colon \mathbb{N}

\to \mathbb{N}$,
is defined as follows:

\[s(n) \mapsto n+1 \,. \]

The successor function, s : N →
N, is defined as follows:

s(n) J→ n + 1 .

174 Chapter 9

Notice that \to and \mapsto result in different arrows. Also a colon
(:) should not be used as a substitute for \colon because it gives you
s : N→ N. The \mathbb command typesets it argument in a blackboard
typeface. This is useful for typesetting the symbols N, Z, Q, R, C, and
related symbols. The command can only be used in math mode.

9.8 Theorems

The package amsthm makes writing theorems, lemmas, and friends
easy. The package ensures consistent numbering and appearance of
theorem-like environments. The package provides:

◦ A proof environment;
◦ Styles for theorem-like environments;
◦ Commands for defining new theorem-like styles; and
◦ Commands for defining new theorem-like environments.

9.8.1 Theorem Taxonomy

The following is the typical output of a theorem-style environment.

Theorem 2.1.3 (Fermat’s Last Theorem). Let n be any
integer greater than 2, then the equation an + bn = cn has
no solutions in positive integers a, b, and c.

LaTEX Output

The definition consists of several parts.

heading The heading should describe the rôle of the environment. In this
example the heading is ‘Theorem.’ Usually, headings are Theorem,
Lemma, Definition, and so on.

number The number is optional and is used to reference the environment in
the running text. This is done using the usual \label-\refmechanism.
Numbers may depend on sectional units. If the number depends on
sectional units then it is of the form 〈unit〉.〈number〉, where 〈unit〉 is
the number of the current sectional unit, and 〈number〉 is a number that
is local within the sectional unit. If the number does not depend on the
sectional unit then it is a plain number. In this example, the number
of the environment is 2.1.3. This indicates that the number depends
on the sectional unit 2.1—probably Chapter 2.1 or Section 2.1—and
that within the unit this is the third instance.

body The body of the environment is the text that conveys the message of
the environment.

name The name is optional and serves two purposes. Most importantly, the
name should capture the essence of the theorem. Next, it may be used
to reference the environment by name, as opposed to by number (using
\ref). In this example, the theorem’s name is Fermat’s Last Theorem.

Advanced Mathematics 175

9.8.2 Styles for Theorem-like Environments

The amsthm package defines three styles for theorem-like environ-
ments: plain, definition, and remark. New styles may also be defined;
this is explained in Section 9.8.4. The following explains the differ-
ences between the existing styles.

plain Usually associated with: Theorem, Lemma, Corollary, Proposition,
Conjecture, Criterion, and Algorithm. The following demonstrates
the appearance of the plain style.

Theorem 1.1 (Fermat’s Last Theorem). Let n be any
integer greater than 2, then the equation an + bn = cn has
no solutions in positive integers a, b, and c.

LaTEX Output

definition Usually associated with: Definition, Condition, Problem, and Example.
The following demonstrates the appearance of the definition style.

Definition 1.2 (Ceiling). The ceiling of real number, r,
is the smallest integer, i, such that r ≤ i.

LaTEX Output

remark Usually associated with: Remark, Note, Notation, Claim, Summary, Ac-
knowledgement, Case, and Conclusion. The following demonstrates
the appearance of the remark style.

Tip 1.3 (Tip). Don’t do this at home. LaTEX Output

Numbering may or may not depend on the sectional unit. The
following explains the differences.

independent numbering Here the numbers are integers. So if theorems are num-
bered continuously you may have Theorem 1, Theorem 2, Theorem 3,
and so on.

dependent numbering Here the numbers are of the form 〈unit〉.〈local〉, where
〈unit〉 depends on the sectional unit number, and 〈local〉 is a local
number. With numbering dependent on a section in a book you may
have Theorem 1.1.1, Theorem 1.1.2, Theorem 2.3.1, and so on.

Different environments may or may not share number sequences.

with sharing Environments may share the same number sequence. If this
is the case you may get Theorem 1, Lemma 2, Theorem 3, and so on.
However, you cannot have both Lemma 2 and Theorem 2.

without sharing Environments do not share their number sequence. Instead,
they have their own independent number sequence. If this is the case
you could get Theorem 1, Lemma 1, Theorem 2, and so on.

9.8.3 Defining Theorem-like Environments

Defining new theorem-like environment styles is done in two stages.
First you set the current style, next you define the environments. The

176 Chapter 9

environments will all be typeset in the style that was current at the
time of definition of the environments.

defining the current style Defining the current style is done with the \theo-
remstyle command. The command takes the label of the style as its
argument. Initially, the current style is plain.

defining the next environment Defining the next environment is done with
the \newtheorem command. The environment is typeset in the style
that was current at the time of definition; this coincides with the call
to \newtheorem. The numbering and heading of the environment is
determined by the command \newtheorem, which takes an optional
argument that may appear in different positions.

The remainder of this section explains the \newtheorem command.
The command may be used with or without an optional argument.

without an optional argument Without the optional argument you define en-
vironments using \newtheorem{〈env〉}{〈heading〉}. This defines a
new environment 〈env〉 with heading 〈heading〉. The environment is
started with a new numbering sequence. For example, to define a new
environment called thm for theorems with a new numbering sequence
you would use \newtheorem{thm}{Theorem}.

with an optional argument With the optional argument, the optional ar-
gument may be used in different positions. It may be used as the
second argument and as the last argument. The following explains the
differences.
◦ If the optional argument is used as the second argument of the
\newtheorem command, then you define the environment using
\newtheorem{〈env〉}[〈old〉]{〈heading〉}. This defines a new en-
vironment 〈env〉 with heading text 〈heading〉. The environment
does not start with a new numbering sequence. Instead, the envi-
ronment shares its numbering with the existing theorem-style
environment 〈old〉.

◦ If the optional argument is used as the last argument, you define
the environment using \newtheorem{〈env〉}{〈heading〉}[〈unit〉].
This defines a new environment 〈env〉 with heading 〈heading〉.
The argument 〈unit〉 should be the name of a sectional unit,
for example, chapter, section, …. This defines an environment
called 〈env〉 with heading 〈heading〉 and a new numbering se-
quence that depends on the sectional unit 〈unit〉.

Figure 9.4 provides an example of how the amsthm package may
be used to define three theorem-like environments called thm, lem,
and def with headings Theorem, Lemma, and Definition. The first two
environments are typeset in the style plain. The last environment is
typeset in the style definition. The numbering of the environments
does not depend on sectional units and is shared.

Advanced Mathematics 177

\usepackage{amsmath}
\usepackage{amsthm}

% Current environment style is plain.
%% Define environment thm for theorems.
\newtheorem{thm}{Theorem}
%% Define environment lemma for lemmas.
%% Share numbering with thm environment.
\newtheorem{lemma}[thm]{Lemma}

% Set environment style to definition.
\theoremstyle{definition}
%% Define environment def for definitions.
%% Share numbering with thm environment.
\newtheorem{def}[thm]{Definition}

Using the amsthm package
Figure 9.4

9.8.4 Defining Theorem-like Styles

The command \newtheoremstyle is for defining new amsmath theorem-
like environment styles. This command gives you ultimate control
over fine typesetting of the environments. Usually the predefined
styles plain, definition, and remark suffice. Exact information about
the command \newtheoremstyle may be found in the amsthm docu-
mentation [American Mathematical Society 2002].

9.8.5 Proofs

Writing proofs is done with the proof environment. The environment
takes an optional argument for a title of the proof. The environment
makes sure that it completes the proof by putting a square (#) at the
end of the proof. Adding the square makes it easy to recognise the end
of the proof, which is especially nice if proofs get long. Unfortunately,
the automatic mechanism for putting the square at the end of the proof
doesn’t work well if the proof ends in a displayed formula because
the square is placed below the last line in the display, which looks
dreadful.1 The following shows how this looks. Never, ever try to do
this at home.

Petkovšek, Wilf, and Zeilberger. …

A = B .

To overcome the problem with the automatic end-of-proof symbol
placement, there is also a command called \qedhere. This command
may be used to put the square at the end of the last displayed formula.

1Mind you, every now and then you will see a proof ending like this.

178 Chapter 9

. \ldotp . . . \ldots · \cdotp

· · · \cdots : \colon
... \vdots

. . . \ddots

Math mode dot-like symbols
Table 9.3

You use the command inside the environment that produces the
display.

\begin{proof}[Challenge]
The following proves that
$5ˆ{2} = 3ˆ{2} + 4ˆ{2}$:
\[5ˆ2 = 25 = 9 + 16

= 3ˆ2 + 4ˆ2\,.
\qedhere \]

\end{proof}

Challenge. The following proves
that 32 + 42 = 52:

52 = 25 = 9 + 16 = 32 + 42 .

9.9 Mathematical Punctuation

LaTEX provides several commands for typesetting dot-like symbols.
Table 9.3 lists LaTEX’s built-in commands. Unfortunately, it is not quite
clear how these commands should be used. The following provides
some guidelines about how these symbols should be used.

\ldotp

Used for the definition of \ldots [Knuth 1990, page 438]. ☐√
\ldots

Low dots. Used between commas, and when things are juxtaposed with
no signs between them at all [Knuth 1990, page 172]. For example, $f(x_
{1}, \ldots, x_{n})$ gives you f (x1, . . . , xn) and $n(n-1)\ldots(1)$
gives you n(n – 1) . . . (1). ☐√

\cdotp

Used for the definition of \cdots [Knuth 1990, page 438]. ☐√
\cdots

Centred dots. Used between + and – and × signs, between = signs
and other binary relational operator signs [Knuth 1990, page 172]. For
example, $x_{1}+\cdots+x_{n}$ gives you x1 + · · · + xn. ☐√

\colon

A punctuation mark [Knuth 1990, page 134]: $f \colon A \to B$. ☐√
\ddots

Diagonal dots. Used in arrays and matrices. ☐√
\vdots

Vertical dots. Used in arrays and matrices. ☐√
Notice that the command \cdot also produces a dot. However, this

is not used for punctuation. It is generally used in expressions like
(x1, . . . , xn) · (y1, . . . , yn) or f (·).

Many symbols in mathematical formulae require a different spac-
ing in a different contexts. The commands that reproduce these sym-
bols are context-unaware and this may result in the wrong spacing.
The amsmath package provides several commands to overcome this

Advanced Mathematics 179

\ldots Then we have series
A_1, A_2, \dotsc,

regional sum
$A_1 + A_2 + \dotsb$,

orthogonal product
$A_1 A_2 \dotsm$,

and infinite integral
\[\int_{A_1}

\!\int_{A_2}
\dotsi\,.\]

…Then we have series A1, A2, . . . ,
regional sum A1+A2+· · · , orthogo-
nal product A1A2 · · · , and infinite
integral ˆ

A1

ˆ
A2
· · · .

Using the mathematical punc-
tuation commands

Figure 9.5

problem. The following commands are for typesetting dots and se-
quences of dots.

\dotsc

For dots in combination with commas. ☐√
\dotsb

For dots in combination with binary operators/relations. ☐√
\dotsm

For multiplication dots. ☐√
\dotsi

For dots with integrals. ☐√
\dotso

For other dots. ☐√
Figure 9.5 demonstrates the effect of these commands. This figure

is based on the amsmath documentation [ams 2002].

9.10 Spacing and Linebreaks

This section provides some information and guidelines related to
spacing and linebreaking in math mode. The majority of this section
is based on [Knuth 1990, Chapter 18].

9.10.1 Line Breaks

LaTEX may break lines after commas in text mode but it doesn’t after
commas in math mode. This makes sense since you don’t want to see a
break after the comma in f (a, b). Make sure you keep the commas that
are part of formulae inside the dollar expressions in ordinary math
mode. The remaining commas should be kept outside. The following
example uses these rules correctly.

for $x = f(a, b)$, $f(b, c)$,
or˜$f(b, c)$.

LaTEX Usage

However, the following is not correct because the second comma
is at the sentence level; it is not part of any mathematical expression.

for $x = f(a, b), f(b, c)$,
or $f(b, c)$.

Don’t do this at Home

180 Chapter 9

As a final example, the following is also not correct because the
first comma is at the sentence level.

Let x, y, and z be real numbers. Don’t do this at Home

The following corrects the mistake in the previous input.

Let x, y, and z be real numbers. LaTEX Usage

In display math mode the TEXpert is ultimately responsible for
linebreaks and inserting whitespace. This is especially true in environ-
ments with alignment positions. The following are a few guidelines.

◦ Always insert a thin space (\,) before punctuation symbols at the end
of the lines. The reason for doing this is to make the punctuation
mark stand out a bit more. If you don’t it may get lost in the display.

◦ In sums or differences linebreaks should be inserted before the plus
or minus operator. On the next line you should insert a qquad after
the alignment position. Here a qquad is equivalent to two quads. One
quad has the width of one em, which is equal to the type size. If the
continuation line is short you may even consider inserting several
qquads. You insert a single quad with the command \quad. A single
qquad is inserted with the command \qquad.

\begin{align*}
f(x) & = a + b + c + d \\

& \qquad + e + f + g\,.
\end{align*}

LaTEX Usage

◦ Linebreaks in products should occur after the multiplication operator.

\begin{align*}
f(x) & = a \times b \times c \times d \times\\

& \qquad e \times f \times g\,.
\end{align*}

LaTEX Usage

Clearly, breaking equations by hand is prone to errors. The breqn
package [Høgholm 2008] automates line breaking.

9.10.2 Conditions

In ordinary math mode, you should put an extra space for conditions
following equations. This makes the conditions stand out a bit more.

The Fibonacci numbers satisfy
$F_{n} = F_{n - 1} + F_{n - 2}$, \ $n \geq 2$.

LaTEX Usage

However, it is probably better to turn the previous example into a
proper sentence as follows.

The Fibonacci numbers satisfy
$F_{n} = F_{n - 1} + F_{n - 2}$, for˜$n \geq 2$.

LaTEX Usage

Advanced Mathematics 181

If you must add a condition to a formula in display math mode
then the two should be separated with a single qquad.

\[zˆ{m} G(z) = \sum_{n} g_{n - m} zˆ{n}\,,
\qquad\text{integer $m \geq 0$}\,. \]

LaTEX Usage

You may also put the condition in parentheses. However, if you
do this, you omit the comma before the condition.

\[zˆ{m} G(z) = \sum_{n} g_{n - m} zˆ{n}
\qquad\text{(integer $m \geq 0$)}\,. \]

LaTEX Usage

9.10.3 Physical Units

Physical units should be typeset in roman. In expressions of the form
〈number〉 〈unit〉, you insert a thin space between the number and the
unit: 〈number〉\,〈unit〉. The following is a concrete example.

$g = 9.8\,\mathrm{m}/\mathrm{s}ˆ{2}$ LaTEX Usage

The siunitx package provides support for typesetting units. Using
the package you write \SI{9.8}{\metre\per\second\squared}. This
gives you 9.8 m s–2 as standard, or 9.8 m/s2 by setting per=slash with
the \sisetup macro. More information about the siunitx package
may be found in the package documentation [Wright 2011].

9.10.4 Sets

Sets come in two flavours. On the one hand there are “ordinary” sets,
the definitions of which do not depend on conditions: {1}, {3, 5, 6}, and
so on. On the other hand there are “guarded sets” whose definitions
do depend on conditions: { 2n : n ∈ N } and so on.

ordinary sets For ordinary sets there is no need to add additional spacing after
the opening brace and before the closing brace.

The natural numbers, \mathbb{N}, are defined
$\mathbb{N} = \{ 0, 1, 2, \ldots \}$.

LaTEX Usage

guarded sets For guarded sets you insert a thin space after the opening and
before the closing brace. The use of a thin space before and after the
colon is not recommended by Knuth [1990], but it may be argued that
it makes the result easier to read.

The even numbers, E, are defined
$E = \left\{\, 2 n \,:\, n \in \mathbb{N} \,\right\}$.

LaTEX Usage

If you don’t like the colon then you should write the following.

The even numbers, E, are defined
$E = \left\{\, 2 n \,\mid\, n \in \mathbb{N}

\,\right\}$.

LaTEX Usage

182 Chapter 9

Positive Spacing \hphantom Negative Spacing

\, \hphantom{M} \!

\thinspace M M \negthinspace

\: \hphantom{zˆn} \negmedspace

\medspace zˆn zn \negthickspace

\;

\thickspace

\quad

\qquad

This table demonstrates the
effect of spacing commands.
The first two columns list pos-
itive spacing commands, the
next two columns demonstrate
the effect of the \hphantom
command, and the last two
columns list negative spacing
commands. The effect of the
command is the distance from
the right arrow tip to the left
arrow tip. The distance is neg-
ative if the arrow tips overlap
horizontally.

Table 9.4

9.10.5 More Spacing Commands

Table 9.4 demonstrates the effect of the horizontal spacing commands.
The command \hphantom in this table is related to the command
\phantom. It results in a box that has zero height and a width that is
equal to the width of the argument of the command.

Chapter 10
Algorithms and Listings

Algorithms are ubiquitous in computer science papers. Know-
ing how to present your algorithms increases the chance of getting
your ideas across. This chapter explains how to typeset pseudo-code
with the algorithm2e package and how to present verbatim program
listings with the listings package.

10.1 Presenting Pseudo-Code with algorithm2e

This section introduces algorithm2e, which is a popular package for
typesetting algorithms in pseudo-code. The remainder of this section
explains some important package aspects. The explanation is based
on the package documentation [Fiorio 2004]. Notice that if you don’t
like the algorithm2e package, you can always fall back to the tabbing
environment, which is explained in Section 2.19.6.

10.1.1 Loading algorithm2e

Loading algorithm2e properly may save time when writing your al-
gorithms. An important option is algo2e. This option renames the
environment algorithm to algorithm2e so as to avoid name clashes
with other packages.

\usepackage[algo2e]{algorithm2e} LaTEX Usage

There are several options that affect algorithm appearance. The
following three options control block typesetting.

noline This option results in blocks that are typeset without vertical lines
marking the scope of the blocks. The picture on the left of Figure 10.1
demonstrates the effect of this option for a simple conditional state-
ment.

lined This option draws a vertical line indicating the scope of the block. The
keyword that indicates the end of the block is still typeset. The picture
in the centre of Figure 10.1 demonstrates the effect of this option for
a simple conditional statement.

vlined This option also results in vertical lines indicating the scopes of each
block. However, this time the end of each scope is indicated by a little
“bend” in the line. With this option the keyword indicating the end of
the block is not typeset. The picture on the right of Figure 10.1 demon-

 , ,
DOI 10.1007/978-3-642-23816-1_10, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 183

184 Chapter 10

if 〈cond〉 then
〈stuff〉

end

if 〈cond〉 then
〈stuff〉

end

if 〈cond〉 then
〈stuff〉

Algorithm style. The options
noline (left), lined (centre),
and vlined (right) control the
output of algorithm2e, with
vlined saving the most vertical space.

Figure 10.1

strates the effect of this option for a simple conditional statement.
Compared to the other options, this option is more economical in
terms of saving vertical space. When writing a paper this may make
the difference between making the page count and overrunning it.

The algorithm2e package has many more options. For further infor-
mation, read the package documentation. Examples in the remainder
of this section are typeset with the option vlined.

10.1.2 Basic Environments

The algorithm2e package defines a number of basic environments.
Each of them is typeset in a floating environment like a figure or ta-
ble. The \caption option is available in the body of the environment
and works as explained in Section 6.6. The command \listofalgo-
rithms may be used to output a list of the algorithms with a caption.
This is usually done in the document preamble. The package option
dotocloa adds an entry for the list of algorithms in the table of con-
tents. The following are the environments:

algorithm Typesets its body as an algorithm.
algorithm* Typesets its body as an algorithm in a two-column document. The

resulting output occupies two columns.
procedure Typesets its body as a procedure. Compared to algorithm there are a

couple of differences:
◦ The caption starts by listing ‘Procedure 〈name〉.’
◦ The caption must start with 〈name〉(〈arguments〉).

procedure* Typesets its body as a procedure in a two-column document. This
environment works like procedure except that the resulting output
occupies two columns.

function Typesets its body as a function. This environment works like proce-
dure.

function* Typesets its body as a function in a two-column document. This envi-
ronment works like function but the resulting output occupies two
columns.

Each environment may be positioned using its optional argument,
which may be any combination of p, t, b, or h, and each has the usual
meaning. This positioning mechanism is explained in Section 6.6.
The option H is also allowed and means “definitely here.” The best
choice is to omit the optional argument or use tbp:

Algorithms and Listings 185

\begin{algorithm2e}[H]
\KwIn{
Integers $a \geq 0$ and $b \geq 0$}

\KwOut{\textsc{Gcd}
of a and b}
\While{$b \neq 0$}{

$r \leftarrow a \bmod b$\;
$a \leftarrow b$\;
$b \leftarrow r$\;

}
\caption{Euclidean Algorithm}
\end{algorithm2e}

Input: Integers
a ≥ 0 and
b ≥ 0

Output: Gcd of a
and b

while b �= 0 do
r ← a mod b;
a← b;
b← r;

Algorithm 1: Euclidean
Algorithm

Using algorithm2e
Figure 10.2

\begin{algorithm2e}[tbp]
…
\end{algorithm2e}

LaTEX Usage

Figure 10.2 demonstrates some of the algorithm2e functionality.
Notice that the semicolons are typeset with the command \;.

10.1.3 Describing Input and Output

The algorithm2e package has several commands for describing algo-
rithm input and output. It also provides a mechanism to add keywords
and define a style for classes of keywords. This section briefly explains
the main commands for describing algorithm input and output.

\KwIn{〈input〉}
This typesets the Input label followed by 〈input〉. Figure 10.2 demon-
strates how this works. ☐√

\KwOut{〈output〉}
This typesets the Out label followed by 〈output〉. ☐√

\KwData{〈data〉}
This typesets the Data label followed by 〈data〉. ☐√

\KwResult{〈output〉}
This typesets the Result label followed by 〈output〉. ☐√

\KwRet{〈return value〉}
This typesets the Ret label followed by 〈return value〉. ☐√

It is possible to redefine the values of the default labels in the pre-
vious list. For example, the command \SetKwInput{KwIn}{〈label〉}
redefines the value of the Input label to 〈label〉. Fiorio [2004, Sec-
tion 9.8] explains how to redefine the other labels.

10.1.4 Conditional Statements

The algorithm2e package defines a large array of commands for type-
setting conditional statements. This includes commands for type-
setting one-line statements. The remainder of this section explains
some of the commands for typesetting simple multi-line conditional

186 Chapter 10

statements. Information about other conditional commands may be
found in the the package documentation.

\If(〈comment〉){〈condition〉}{〈clause〉}
This typesets a single conditional statement with condition 〈condition〉
and final then clause 〈clause〉. The argument in parentheses describes
a comment. This argument is optional and may be omitted. The fol-
lowing is an example of the resulting output. The comment has been
omitted.

\If{〈condition〉}
{〈clause〉}

if 〈condition〉 then
〈clause〉 ☐√

\uIf(〈comment〉){〈condition〉}{〈clause〉}
This works as \If only this time it is assumed that 〈clause〉 is not the
final clause. The following is the resulting output.

\uIf{〈condition〉}
{〈clause〉}

if 〈condition〉 then
〈clause〉 ☐√

\ElseIf(〈comment〉){〈condition〉}{〈clause〉}}
This typesets a conditional else clause with condition 〈condition〉
and final else if clause 〈clause〉.

\ElseIf{〈condition〉}
{〈clause〉}

else if 〈condition〉 then
〈clause〉 ☐√

\uElseIf(〈comment〉){〈condition〉}{〈clause〉}}
This typesets a conditional else clause with condition 〈condition〉
and non-final else clause 〈clause〉.

\eUlseIf{〈condition〉}
{〈clause〉}

else if 〈condition〉 then
〈clause〉 ☐√

\eIf(〈comment〉){〈condition〉}{〈then clause〉}(〈comment〉){〈else clause〉}}
This typesets the if else clause with condition 〈condition〉 with then
clause 〈then clause〉 and final else clause 〈else clause〉. As suggested
by the notation, both 〈comment〉 arguments are optional.

\eIf{〈condition〉}
{〈then clause〉}
{〈else clause〉}

if 〈condition〉 then
〈then clause〉

else
〈else clause〉 ☐√

Algorithms and Listings 187

\begin{algorithm2e}[tbp]
\uIf{$a < 0$}{

\tcp{$a < 0$}
} \uElseIf{$a = 0$}{

\tcp{$a = 0$}
} \lElse\eIf{$a = 1$}{

\tcp{$a = 1$}
} {

\tcp{$a > 1$}
}
\end{algorithm2e}

if a < 0 then
// a < 0

else if a = 0 then
// a = 0

else if a = 1 then
// a = 1

else
// a > 1

Typesetting conditional state-
ments

Figure 10.3

\lElse

This typesets the word else. This is mainly useful in combination
with \eIf. ☐√

Figure 10.3 typesets a complex if statement. The command \tcp
in Figure 10.3 typesets its argument as a C++ comment.

10.1.5 The Switch Statement

This section briefly explains algorithm2e commands for typesetting
switch statements.

\Switch(〈comment〉){〈value〉}{〈cases〉}
This typesets the first line and the braces for the body of the switch
statement. The following is the resulting output.

\Switch{〈value〉}
{〈cases〉}

switch 〈value〉 do
〈cases〉 ☐√

\Case(〈comment〉){〈condition〉}{〈statements〉}
This typesets the final case of the switch statement. The following is
the resulting output.

\Case{〈condition〉}
{〈statements〉}

case 〈condition〉
〈statements〉 ☐√

\uCase(〈comment〉){〈condition〉}{〈statements〉}
This also typesets a case of the switch statement, but here it is assumed
the case is not the last case of the switch statement. The following is
the resulting output.

\uCase{〈condition〉}
{〈statements〉}

case 〈condition〉
〈statements〉 ☐√

188 Chapter 10

\begin{algorithm2e}[tbp]
\Switch{order}{

\uCase{bloody mary}{
Add tomato juice\;
Add vodka\;
break\;

}
\uCase{hot whiskey}{

Add whiskey\;
Add hot water\;
Add lemon and cloves\;
Add sugar or honey to taste\;
break\;

}
\Other{Serve water\;}

}
\end{algorithm2e}

switch order do
case bloody mary

Add tomato juice;
Add vodka;
break;

case hot whiskey
Add whiskey;
Add hot water;
Add lemon and cloves;
Add sugar or honey to taste;
break;

otherwise
Serve water;

Using algorithm2e’s switch
statements

Figure 10.4

\Other(〈comment〉){〈statements〉}
This typesets the default case of the switch statement. The following
is the resulting output.

\Other{〈statements〉} otherwise
〈statements〉 ☐√

The example in Figure 10.4 shows how to typeset a complete switch
statement. The example also shows how to make a drink or two.

10.1.6 Iterative Statements

The algorithm2e package typesets several iterative statements, in-
cluding while, for, foreach-based, and repeat-until statements. The
following explains these commands.

\For(〈comment〉){〈condition〉}{〈body〉}
This typesets a basic for statement with a condition 〈condition〉 and
body 〈body〉.

\For{〈condition〉}
{〈body〉}

for 〈condition〉 do
〈body〉 ☐√

\ForEach(〈comment〉){〈condition〉}{〈body〉}
This typesets a foreach statement with a condition 〈condition〉 and
body 〈body〉.

Algorithms and Listings 189

\ForEach{〈condition〉}
{〈body〉}

foreach 〈condition〉 do
〈body〉 ☐√

\While(〈comment〉){〈condition〉}{〈body〉}
This typesets a while statement with condition 〈condition〉 and body
〈body〉.

\While{〈condition〉}
{〈body〉}

while 〈condition〉 do
〈body〉 ☐√

\Repeat(〈comment〉){〈condition〉}{〈body〉}(〈comment〉)
This typesets a repeat-until statement with and body 〈body〉. The
first comment is put on the repeat line. The second comment is put
on the until line. The following is a short example.

\Repeat{〈condition〉}
{〈body〉}

repeat
〈body〉 ☐√

until 〈condition〉;

10.1.7 Comments

This Section, which concludes the discussion of the algorithm2e
package, explains how to typeset comments. Comments are defined
in a C and C++ style. For a given language there are different styles
of comments. The command for typesetting C comments is \tcc, for
typesetting C++ comments use tcp. The following explains the tcp
command. The \tcc command works the same.

\tcp{〈comment〉}
This typesets the comment 〈comment〉, which may consist of several
lines. Comment lines should be delimited with newlines (\\).

\tcp{〈line one〉}\\
{〈line two〉}

// 〈line one〉
// 〈line two〉 ☐√

\tcp*{〈comment〉}
This typesets a side comment 〈comment〉 right justified. The command
\tcp*[r]{〈comment〉} works analogously.

〈statement〉
\tcp*{〈comment〉} 〈statement〉 ; // 〈comment〉 ☐√

\tcp*[l]{〈comment〉}
This typesets a side comment 〈comment〉 left justified.

190 Chapter 10

〈statement〉
\tcp*[l]{〈comment〉} 〈statement〉 ; // 〈comment〉 ☐√

\tcp*[h]{〈comment〉}
This typesets the comment 〈comment〉 left justified in place (here).

\If(\tcp*[h]{〈comment〉})
{〈condition〉}
{〈statement〉}

if 〈condition〉 then // 〈comment〉
〈statement〉 ☐√

\tcp*[f]{〈comment〉}
This typesets the comment 〈comment〉 right justified in place (here).

\If(\tcp*[f]{〈comment〉})
{〈condition〉}
{〈statement〉}

if 〈condition〉 then // 〈comment〉
〈statement〉 ☐√

10.2 The listings Package

The listings package is one of the nicer packages for creating format-
ted output. The remainder of this section is a brief example-driven
introduction to the package. More information may be found in the
package documentation [Heinz, and Moses 2007].

The listings package supports the typesetting of verbatim listings.
The package provides support for several languages, including ANSI
C, and ANSI C++, Eiffel, HTML, Java, PHP, Python, LaTEX, and XML. The
package supports user-defined styles for keywords and identifiers.
Two methods are provided for specifying a listing.

environment An environment called lstlisting for specifying a listing in the body
of the environment.

command A command called \lstinputlisting for creating a listing from a
source file. The required argument of this command is the name of
the source code file. The optional argument determines the options.

Both the environment and the command take an optional argument
in the form of a 〈key〉=〈value〉 list, for overriding the default settings.
The package also provides a command for setting new defaults. The
resulting algorithm may be typeset at the current position or as a float-
ing algorithm with a number and caption. The package also provides
a command called \listoflistings for typesetting a list of numbered
listings.

Figure 10.5 shows the lstlistings environment. The resulting
output is presented in Figure 10.6. Note that not all of the body of the
environment is typeset and that the resulting numbers are generated
automatically. The following explains the relevant options.

Algorithms and Listings 191

\begin{lstlisting}[language=Java
,gobble=3
,numbers=left
,firstline=2
,lastline=4
,firstnumber=2
,caption=Hello World.
,label=example]

public class Greetings {
public static void main(String[] args) {

System.out.println("Hello world!");
}

}
\end{lstlisting}

Creating a partial listing with
the listings package

Figure 10.5

2 public static void main(String[] args) {
3 System.out.println("Hello world!");
4 }

Listing 1. Hello world.

Listing created from input in
Figure 10.5

Figure 10.6

language This specifies the programming language. Possible values are C, [ANSI]C,
C++, [ANSI]C++, HTML, Eiffel, HTML, Java, PHP, Python, LaTeX, and XML.

gobble This determines the number of characters that should be removed
from the start of the input lines. The default value is 0.

numbers This is used to control the placement of numbers. Possible values are
none (default) for no numbers, left for numbers on the left, and right
for numbers on the right.

firstline The value of this option determines the number of the first input line
that is typeset. It may be useful to skip a number of lines at the start
of the source. The default value is 1.

lastline This option determines the number of the last input line that is typeset.
The default value is the number of lines in the input.

firstnumber This is the first line number in the output.
caption This determines the caption of the typeset listing.

label This determines the label reference the listing with the \ref com-
mand.

As already stated, the listings package provides a command for
specifying new default option values. The name of this command is
\lstset and its required argument is a list of 〈key〉=〈value〉 arguments
specifying the new default values for the options.

Figure 10.7 provides an example that overrides some of the de-
fault settings. Some of these options have been explained before. The
remaining options work as follows.

keywordstyle The value of this option is a series of declarations that determine how
keywords are typeset. The declarations \bfseries\ttfamily in Fig-

192 Chapter 10

\lstset{language=Java%
,keywordstyle=\bfseries\ttfamily%
,stringstyle=\ttfamily%
,identifierstyle=\ttfamily\itshape%
,showspaces=false%
,showstringspaces=true%
,numbers=left%
,float%
,floatplacement=tbp%
,captionpos=b}

Setting new defaults with the
\lstset command

Figure 10.7

ure 10.7 result in bold face keywords that are typeset in a monospaced
font.

stringstyle The value of this option is a series of declarations that determine
how characters are typeset in strings. The declaration \ttfamily in
Figure 10.7 result in string characters that are typeset in a monospaced
font.

identifierstyle The value of this option is a series of declarations that determines
how identifiers are typeset. The declarations \ttfamily\itshape in
Figure 10.7 result in identifiers that are typeset in a monospaced italic
font.

showspaces If the value of this option is true then spaces are typeset as visual
spaces. The default value is false.

showstringspaces If the value of this option is true then spaces in strings are typeset as
visual spaces. The default value is false.

float If this option is provided then the listing is typeset as a float.
floatplacement The value of this option determines the float placement. It can be any

sequence of characters in tbph.
captionpos This determines the position of the caption. Possible values are t (top)

and b (bottom).

PART V

Automation

Oil paint and charcoal on canvas (17/06/09), 152× 213 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Chapter 11
Commands and Environments

This chapter studies user-defined commands and environments
in LaTEX2ε, which is the LaTEX implementation that was current at the
time this chapter was written.

11.1 Some Terminology

This section briefly introduces some terminology for the remainder of
this chapter. Throughout this chapter we shall use the word parameter
for an argument or parameter of a macro or command. An actual
parameter is a parameter that is passed to an existing command. A
formal parameter is a placeholder in the definition of a command for
an actual parameter.

For example, consider the mathematical function definition that
is given by

f : N→ N (11.1)
x J→ 2x . (11.2)

The definition of f (·) has two parts. Equation 11.1 is the first part of
the definition; it determines the signature of the function. In LaTEX
there is no equivalent for the signature. Equation 11.2 is the second
part of the definition; it defines the semantics of the function. The
semantics may be regarded as an input-output transformation, with
x determining the input parameter and 2x determining the output.
The input parameter x defines a name that may be used in the output
expression. This name acts as the first (and only) formal parameter in
the definition of f (·). Using the function, one may write f (1), or even
f (x), assuming that x has a proper context. Here 1 and x are actual
parameters. The result of the expression f (a), where a is an actual
parameter, can be found by substituting the actual parameter a for the
formal parameter x in the method’s definition: f (a) = (2x)|x=a, which
gives us 2a. Effectively, formal and actual parameters in LaTEX work in
a similar way.

11.2 Advantages and Disadvantages

LaTEX is a programmable typesetting engine. Commands are the key

 , ,
DOI 10.1007/978-3-642-23816-1_11, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 195

196 Chapter 11

to controlling your document. The advantages of using commands in
LaTEX are similar to the advantages of using functions and procedures
in high-level programming languages. However, LaTEX commands
also have disadvantages. We shall first study advantages and then
disadvantages. The following are some advantages.

software engineering Tedious tasks can be automated. This has the following advantages.
reusability Commands that are defined once can be reused several

times.
simplicity Carrying out a complex task using a simple command

with a well-understood interface is much easier and leads to
fewer errors.

refinement You can stepwise refine the implementation of certain
tasks. This lets you postpone certain decisions. For example, if
you haven’t been able to decide how to typeset certain symbols
that serve a certain purpose, then you may start typesetting
them using a command that typesets them in a simple manner.
This lets you start writing the document in terms of high-level
notions (procedural markup). By refining the command at a
later stage, you can fine-tune the typesetting of all the relevant
symbols.

maintainability This advantage is related to the previous item.
Unforeseen changes in requirements can be implemented
easily by making a few local changes.

consistency Typesetting entities using carefully chosen commands
guarantees a consistent appearance of your document. For
example, if you typeset your pseudo-code identifiers using a
pseudo-code identifier typesetting command in a “pseudo-
code identifier” style, then your identifiers will have a consis-
tent feel.

computing Tasks and results may be computed depending on document options.
This has the following advantages.

style control Things may be typeset in a style that depends on
class or package options. For example, the article class type-
sets the main text in 10 pt by default but providing a 12pt
option gives you a 12 pt size.

content control Commands may result in different output de-
pending on a global mode. For example, consider the beamer
class, which lets you prepare a computer presentation and
lecture notes in the same input. In presentation mode the
beamer class results in a computer presentation but in arti-
cle mode it may result in lecture notes. You can share text for
the notes and the presentations but you can also hide text in
the notes or in the presentation. This is very a strong feature
because it allows sharing and guarantees consistency between
the notes and the presentation.

typeset results This issue is related to the previous item. LaTEX can
do basic arithmetic, can branch and iterate, and can typeset
the results of computations. For example, the lipsum package

Commands and Environments 197

provides a command \lipsum[〈number₁〉-〈number₂〉] that type-
sets the Lorem ipsum paragraphs 〈number₁〉–〈number₂〉. You can
easily extend this command to make it repeat the paragraphs
a given number of times. As another example, again consider
the beamer class, which can uncover items in an itemized list
one at a time. Uncovering the items results in several partial
and one final page from the single frame. As a final example,
the calctab package provides the spreadsheet functionality
with computation rules for output cells in tables.

The following are some disadvantages of LaTEX commands.

namespace limitation TEX allows local definitions at the group level but its names-
pace is flat at the top level. All top-level commands are global. This
is arguably the greatest problem. With thousands of packages and
classes this requires that package and class implementors have to be
careful to avoid name clashes.

parameter limitation There are two problems related to the parameters of the
commands.

number TEX sadly does not allow more than nine parameters per
macro. It may be argued that commands that require more
than nine parameters are not well-designed, but this does not
make the restriction less arbitrary.

names This is probably the source of the previous disadvantage.
When Knuth implemented TEX, he decided to use numbers
as formal macro parameters. The first is called #1, the sec-
ond is called #2, and so on. Needless to say that this makes it
extremely easy for TEX to parse and recognise formal parame-
ters, but this takes away the possibility to choose meaningful
names for the formal parameters, makes it difficult to under-
stand the implementation of the commands, and makes it
easy to make mistakes.

11.3 User-defined Commands

This section studies command definitions. Section 11.3.1 explains
how to define and redefine commands that take no parameters. Sec-
tion 11.3.2 explains how to define and redefine commands that do take
parameters, and Section 11.3.3 explains the difference between fragile
and robust commands. Section 11.3.4 explains how to define robust
commands and make existing commands robust.

11.3.1 Defining Commands Without Parameters

LaTEX has several commands to define new commands. The following
commands define and redefine commands that take no parameters.

\newcommand〈cmd〉{〈subst〉}
This defines a new command, 〈cmd〉, with substitution text 〈subst〉. In
TEX parlance 〈cmd〉 is called a control sequence. A LaTEX control sequence

198 Chapter 11

starts with a backslash and is followed by a non-empty sequence of
characters—usually letters. The new command does not take any
parameters. The substitution text 〈subst〉 is substituted for each oc-
currence of 〈cmd〉 that is expanded by the Expansion Processor. This
does not include all occurrences. For example 〈cmd〉 is not expanded
if it occurs in the substitution text of other LaTEX definitions at defi-
nition time. Section 11.4 provides a more detailed description of the
expansion of LaTEX commands. ☐√

\renewcommand〈cmd〉{〈subst〉}
This redefines the command 〈cmd〉, which should be an existing com-
mand. The resulting command has substitution text 〈subst〉 and does
not take any parameters. ☐√

The following example defines a user-defined command \CTAN
and uses it in the body of the document environment.

\documentclass{article}
\newcommand\CTAN{Comprehensive \TeX{} Archive Network}
\begin{document}

I always download my packages from the \CTAN.
The \CTAN{} is the place to be.

\end{document}

LaTEX Usage

The substitution text of the command is ‘Comprehensive \TeX{}
Archive Network.’ Given this definition LaTEX substitutes the substi-
tution text ‘Comprehensive \TeX{} Archive Network’ for \CTAN each
time \CTAN is used. The following is the resulting output.

I always download my packages from the Comprehen-
sive TEX Archive Network. The Comprehensive TEX
Archive Network is the place to be.

LaTEX Output

Finally, there are also \newcommand* and \renewcommand* com-
mands. They work just as \newcommand and \renewcommand but their
parameters may not contain paragraph tokens.

11.3.2 Defining Commands With Parameters

Defining commands with parameters is almost the same as defin-
ing commands without parameters. However, this time you have to
provide the substitution text in terms of the formal parameters. The
following are the related commands.

\newcommand〈cmd〉[〈digit〉]{〈subst〉}
As before, this defines a new command, 〈cmd〉, with substitution text
〈subst〉. This time the command takes 〈digit〉 parameters. The num-
ber of parameters should be in the range 1–9. The i-th formal pa-
rameter is referred to as #i in the substitution text 〈subst〉. When
substituting 〈subst〉 for 〈cmd〉 TEX’s Expansion Processor also substi-
tutes the i-th actual parameter for #i in 〈subst〉, for 1 ≤ i ≤ 〈digit〉. It
is not allowed to use #i in 〈subst〉 if i < 1 or 〈digit〉 < i. ☐√

Commands and Environments 199

\usepackage{multind}
\makeindex{command}
\makeindex{package}

\newcommand\MonoIdx[2][command]{
\texttt{#2}%
\index{#1}{\texttt{#2}}%

}

\begin{document}
…The command

\MonoIdx{\textbackslash MakeRobustCommand}
is provided by the package
\MonoIdx[package]{makerobust}. …
\printindex{command}{Index of Commands}
\printindex{package}{Index of Packages}

\end{document}

User-defined commands
Figure 11.1

\renewcommand〈cmd〉[〈digit〉]{〈subst〉}
This redefines 〈cmd〉 as a command with 〈digit〉 parameters and sub-
stitution text 〈subst〉. ☐√

The standard way to define a command with an optional parameter
is as follows. By default the first parameter is optional.

\newcommand〈cmd〉[〈digit〉][〈default〉]{〈subst〉}
This defines a new control sequence, 〈cmd〉, with substitution text
〈subst〉. As before the command takes 〈digit〉 parameters. However,
this time the first parameter (#1) is optional. If present it should be
enclosed in square brackets. If the optional parameter is omitted then
it is assigned the value 〈default〉. ☐√

\renewcommand〈cmd〉[〈digit〉][〈default〉]{〈subst〉}
This redefines the existing command 〈cmd〉. Essentially, it is equivalent
to \newcommand except that 〈cmd〉 must be an existing command. The
value of 〈digit〉 may differ from the number of parameters of the
existing command. ☐√

The LaTEX program in Figure 11.1 uses multiple index files and
defines a user-defined command \MonoIdx that typesets its second
parameter in monospaced font and writes information about it to
these index files. The optional parameter is used to determine the
name of the index file.

11.3.3 Fragile and Robust Commands

Having dealt with advantages and disadvantages of LaTEX commands
and knowing how to define them, we’re ready to study fragile and robust
commands. The reason for studying them is that they are a common
cause of errors, which are caused by command side-effects. To make
things worse these errors may occur in subsequent LaTEX sessions and
at seemingly unrelated locations. These errors are difficult to deal

200 Chapter 11

with—especially for novice users. Some of these issues are related to
the notions of moving arguments and fragile and robust commands. The
remainder of this section explains how to deal with fragile commands
in moving arguments and how to avoid these common errors.

A moving arguments of a command is saved by the command to be
reread later on. Examples of moving arguments are parameters that
appear in the Table of Contents, in the Table of Figures, in indexes,
and so on. For example, the \caption command defines captions of
tables and figures. It writes these captions to the list of tables (.lot)
and the list of figures (.lof) files. LaTEX rereads the list of tables file
and list of figures file when it typesets the list of figures and the list of
tables.

Moving parameters are expanded before they are saved. Sometimes
the expansion leads to invalid TEX being written to a file. When this
invalid TEX is reread in a subsequent session this may cause errors.

A command that expands to valid TEX is called robust. Otherwise
it is called fragile.

The command \protect protects commands against expansion.
If \protect\command is saved then this saves \command. This allows
you to protect fragile commands in moving arguments. In effect this
postpones the expansion of \command until it is reread.

11.3.4 Defining Robust Commands

The following commands are related to defining robust commands
and making existing commands robust.

\DeclareRobustCommand〈cmd〉{〈subst〉}
This defines 〈cmd〉 as a robust command without parameters and
substitution text 〈subst〉. ☐√

\DeclareRobustCommand〈cmd〉[〈digit〉]{〈subst〉}
This defines 〈cmd〉 as a robust command with substitution text 〈subst〉
and 〈digit〉 parameters. ☐√

\DeclareRobustCommand〈cmd〉[〈digit〉][〈default〉]{〈subst〉}
This defines 〈cmd〉 as a robust command with substitution text 〈subst〉
and 〈digit〉 parameters, one of which is optional with default value
〈default〉. ☐√

\MakeRobustCommand〈cmd〉
This turns the existing command 〈cmd〉 into a robust command. The
\MakeRobustCommand command is not standard but is provided by the
package makerobust. ☐√

11.4 Commands and Parameters

This section explains how LaTEX applies commands to parameters.
Recall from Chapter 1 that TEX’s Input Processor turns the input
program into a token sequence. After this there are two kinds of tokens:

character tokens A character token represents a single character in the input.
control sequence tokens A control sequence tokens corresponds to a command. It repre-

Commands and Environments 201

sents a sequence of characters in the input that starts with a backslash
and continues with letters.

Recall from Chapter 1 that TEX’s Expansion and Execution Pro-
cessors rewrite token sequences to token sequences. Both of these
processors can distinguish between character and control sequence
tokens, which makes it easy to recognise tokens that correspond to
commands.

It remains to explain how TEX parses parameters. This is slightly
more difficult. There are two kinds of parameters, which we shall refer
to as primitive and compound parameters.

primitive parameters A primitive parameter is a single character or control
sequence token. The tokens of the opening and closing brace are not
allowed.

compound parameters A compound parameter is a brace-delimited group in the
input. The token at the start of the group is that of an opening brace
({) and the token at the end of the group is that of a closing brace
(}). Within the sequence brace pairs should be balanced. Most of the
time you will use compound parameters. The value of a compound
parameter is the sequence of tokens “in” the group, that is, the token
sequence without the opening and closing brace tokens [Knuth 1990,
pages 204–205]. For example, given a command \single that takes one
single parameter, the actual parameter of \single{ ab{c}} is ‘ ab{c}.’

The remainder of this section provides examples of command
expansion. We shall start with a simple example that involves primitive
parameters only, and continue with a more complex example that
involves both primitive and compound parameters.

The following explains what happens with primitive parameters.
Let’s assume we have two user-defined commands called \swop and
\SWOP that are defined as follows.

\newcommand\swop[2]{#2#1}
\newcommand\SWOP[2]{#2#1}

LaTEX Usage

Both commands do the same but, for sake of the example, they have
different names. Each command takes two parameters and “outputs”
the second actual parameter followed by the first actual parameter.
With these definitions, \swop2\SWOP31 gives us 321. To see why this
happens, notice that the input starts with the command \swop, which
takes two parameters. The next two tokens are 2 and \SWOP. Expanding
\swop2\SWOP reverses the order of the actual parameters of \swop
and results in the token sequence \SWOP2, which is substituted for
\swop2\SWOP in \swop2\SWOP31. After this rewriting step the token
sequence is \SWOP231. Expanding this token sequence once more gives
us 321, which is completely expanded, cannot be expanded any further,
and completes the rewriting process.

The following is a more complex example. Let’s assume we have
the LaTEX program that is listed in Figure 11.2. The program defines

202 Chapter 11

\documentclass{article}

\newcommand\K[2]{#1}
\newcommand\S[3]{#1#3{#2#3}}
\newcommand\I{\S\K\K}
\newcommand\X{\S{\K{\S\I}}{\S{\K\K}\I}}

\begin{document}
\X abc

\end{document}

A program with user-defined
combinators

Figure 11.2

four commands \K, \S, \I, and \X. The first three commands corre-
spond to the combinators K, S, and I from Moses Schönfinkel and
Haskell Curry’s combinatory logic. They may be described as follows:
K〈A〉〈B〉 J→ 〈A〉, S〈A〉〈B〉〈C〉 J→ 〈A〉〈C〉(〈B〉〈C〉), and I J→ S K K. If you study
the TEX definition of the command \X, you may notice that it does
not have any formal parameters. It may therefore come as a surprise
that it correspond to a combinator, X, that swops its parameters, i. e.,
X〈A〉〈B〉 J→ 〈B〉〈A〉. Still this makes perfect sense and the remainder of
this section explains why.

Knowing that \X is a combinator that swops its parameters we
should be able to predict the output of our program—it should be
‘bac.’ Let’s see if we can explain this properly. Table 11.1 illustrates the
expansion process. The second column of the table lists the output
of the Expansion Processor, the third column lists the current input
stream of the Expansion Processor, and the first column lists the
number of the reductions. The subscripts of the tokens in the input
stream correspond to the nesting level of the groups.

The first reduction is that of \X to its substitution text. It does
not involve any parameter. Reduction 2 is a reduction of the form
\S〈A〉〈B〉〈C〉 J→ 〈A〉〈C〉{〈B〉〈C〉}, where 〈A〉 and 〈B〉 are the top-level
groups in the input and 〈C〉 is the character token of the lowercase a.
Removing the opening and closing brace tokens of the groups and
applying the reduction gives us the input of reduction 3. The third
reduction is of the form \K〈A〉〈B〉 J→ 〈A〉 where both 〈A〉 and 〈B〉 are
groups. Removing the second group, removing the opening and clos-
ing brace tokens of the first group, and applying the reduction gives
the input of reduction 4. All remaining reductions are similar except
for reductions 9 and 17, which correspond to entering and leaving
a group. The last row lists the final result. It is reassuring that the
output is ‘bac’ as expected.

11.5 Defining Commands with TEX

In this section we shall study how to define commands with plain
TEX. TEX allows a richer variety of commands than LaTEX. The main
difference is that TEX commands come in local and global flavours.
They may have delimiters in their parameter list and they may be

Commands and Environments 203

Out In

1 \X₁a₁b₁c₁
2 \S₁ {₁\K₂{₂\S₃\I₃}₂}₁ {₁\S₂{₂\K₃\K₃}₂\I₂}₁ a₁b₁c₁
3 \K₁{₁\S₂\I₂}₁a₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂}₁b₁c₁
4 \S₁\I₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂}₁b₁c₁
5 \I₁b₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁
6 \S₁\K₁\K₁b₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁
7 \K₁b₁{₁\K₂b₂}₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁
8 b₁{₁\S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁
9 b {₁\S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁

10 b \S₂{₂\K₃\K₃}₂\I₂a₂b₂}₁c₁
11 b \K₂\K₂a₂{₂\I₃a₃}₂b₂}₁c₁
12 b \K₂{₂\I₃a₃}₂b₂}₁c₁
13 b \I₂a₂}₁c₁
14 b \S₂\K₂\K₂a₂}₁c₁
15 b \K₂a₂{₂\K₃a₃}₂}₁c₁
16 b a₂}₁c₁
17 ba }₁c₁
18 ba c₁

bac

TEX’s Expansion Processor. The
output and the input of the Ex-
pansion Processor are listed in
the second and third column.
The numbers of the reductions
are listed in the first column.
Each token in the input has a
subscript that corresponds to
the nesting-level of groups.

Table 11.1

defined with and without expanding the substitution text. Usually,
you should not need TEX command definitions but sometimes they are
needed. The best thing is to define commands using LaTEX commands
and only define commands with TEX as a final resort.

The following are TEX’s commands for defining commands with-
out delimiters.

\def〈cmd〉#1#2…#n{〈subst〉}
This defines a command, 〈cmd〉, with n parameters and with substitu-
tion text 〈subst〉. The command is local to the group that contains
the command’s definition. The numbers in the formal parameter list
must contain the numbers 1–n, in increasing order. These restrictions
hold for all TEX command definitions. ☐√

\edef〈cmd〉#1#2…#n{〈subst〉}
This defines a command, 〈cmd〉, with n parameters. The substitution
text of the command is the full expansion of 〈subst〉. It should be
noted that 〈subst〉 is expanded when 〈cmd〉 is being defined. The
command is local to the group that contains its definition. ☐√

The following explains the difference between \def and \edef.

\def\hi{hi}
\def\hello{\hi}
\edef\ehello{\hi}
\def\hi{HI}

\ehello. \hello.

hi. HI.

The arguments of commands defined with \def or \edef may

204 Chapter 11

not contain paragraph tokens. Paragraph tokens are only allowed in
arguments if you add the prefix \long to \def or \edef.

As stated in the explanation of TEX macro definitions, commands
may be defined locally in a group. What is more, you may also define
macros within other macro definitions. Formal parameters of macro
definitions that are nested inside other definitions receive an extra
character to distinguish them from the formal parameters of the
nesting macro definition(s). The following is an example.

\def\silly#1#2{%
\def\sillier##1{%

#2##1#1%
}%
\sillier{#2}%

}
James Bond is \silly70.

James Bond is 007.

The following commands are useful for defining low-level com-
mands with TEX.

\csname 〈tokens〉\endcsname
This results in the control sequence of the expansion of 〈tokens〉. In
effect this expands 〈tokens〉 and puts a backslash character to the front
of the result. For example, \csname command\endcsname gives \command.
To see why expansion matters, let’s assume we have the definition
\def\ho{hoho}. With this definition \csname Ho\ho\endcsname gives
us \Hohoho. ☐√

\noexpand〈token〉
This results in 〈token〉 without expanding it. For example, the defini-
tions \def\hello{\hi} and \edef\hello{\noexpand\hi} are equiva-
lent regardless of the definition of \hi. ☐√

\expandafter〈token〉〈tokens〉
This expands the first token in 〈tokens〉 once (using parameters if
required) and inserts 〈token〉 before the result. ☐√

The command \expandafter is frequently used in combination
with \csname to construct definitions with parameterised names. The
example in Figure 11.3 demonstrates this mechanism. In this example,
the \expandafter lets \csname and \endcsname construct the control
sequence name before applying the \def command.

TEX also allows commands with delimiters in parameter lists. For
example, it lets you implement a command \command that uses the
character | to delimit its two parameters. This lets you apply the com-
mand to one and two by writing \command|one|two|. Using TEX you
define a command like this as follows.
\def\command|#1|#2|{…} LaTEX Usage

More complex delimiters are also allowed. For example, combina-
tions of letters, spaces, and control sequences are valid delimiters, even
if the control sequences do not correspond to existing commands. It is
also not required that all parameters be delimited or that all delimiters
be equal.

Commands and Environments 205

\documentclass{article}
\def\property#1{%

\expandafter\def%
\csname#1\endcsname##1{%

##1\ is #1%
}%

}
\property{brilliant}
\property{excellent}
\begin{document}

\excellent{\TeX} and
\brilliant{\LaTeX}.

\end{document}

TEX is excellent and LaTEX is bril-
liant.

Using the \expandafter com-
mand

Figure 11.3

% allow @ in macro names
\makeatletter%
\def\cmd#1{%

\@ifnextchar[%
% use the given option
{\cmd@relay{#1}}%
% use the default option
{\cmd@relay{#1}[dflt]}%

}
\def\cmd@relay#1[#2]{…}
% disallow @ in macro names
\makeatother

\makeatletter
\def\cmd#1{%

\def\cmd@relay##1[##2]{…}
\@ifnextchar[%

{\cmd@relay{#1}}%
{\cmd@relay{#1}[dflt]}%

}
\makeatother

Defining commands with de-
fault parameters

Figure 11.4

Figure 11.4 provides two different implementations of a contrived
command that has one default parameter. In LaTEX terms the example
defines a user-defined LaTEX command that takes two parameters. The
second parameter is optional with default dflt.

Let’s first study the solution on the left. There are two new aspects
to this solution. The first is the use of the commands \makeatletter
and \makeatother. After calling the command \makeatletter @ sym-
bols are allowed control sequence names. After calling the command
\makeatother @ symbols are no longer allowed in control sequence
names. This is a common idiom because it lets you—with high prob-
ability—define unique control sequences. The second new aspect is
the command \@ifnextchar〈character〉〈first〉〈second〉, which looks
ahead to see if the next character is equal to 〈character〉 without con-
suming it. It results in 〈first〉 if the next character is 〈character〉
and results in 〈second〉 otherwise. In the solution on the left the user-
defined command \cmd looks ahead to see the token following the
first parameter, and passes control to the command \cmd@relay with
the proper option.

The solution on the right is similar but it defines the relay com-
mand locally. It is recalled that formal parameters of nested macro

206 Chapter 11

\makeatletter
% Save meaning of old \section command.
\let\old@section=\section
\def\section#1#2{%

% Define section using old \section command.
\old@section{#2}
% Define label for the section.
\label{#1}

}
\makeatother

A sectional unit environment
Figure 11.5

definitions receive extra # characters. Therefore, the formal param-
eters of \cmd@relay are now ##1 and ##2. This mechanism should
let you refer to both the formal parameters of \cmd and the formal
parameters of \cmd@relay inside the substitution text of \cmd@relay.

Candidate delimiters inside matching brace pairs are ignored. For
example, let’s assume we have the following definition.

\def\agoin{ old chap}
\def\hows#1\agoin{How are you #1?}

LaTEX Usage

Then \hows{Joe\agoin}\agoin gives ‘How are you Joe old chap?’

11.6 Tweaking Existing Commands with \let

This section studies how to tweak existing commands, i. e., redefine
an existing command in such a way that the command carries out an
additional task. To do this we are going to use TEX’s \let command
to assign the meaning of the original command to a scratch control
sequence. Next we redefine the existing command and refer to the
scratch control sequence when we carry out the task that was associated
with the original command. In the example in Figure 11.5 we redefine
the \section command and force it to take one more parameter,
which is the label of the section. The resulting command first uses
the original \section command to define the section and next uses
the \label command to define the label.

11.7 Using More than Nine Parameters

As mentioned in Section 11.2, LaTEX does not allow more than nine
parameters. This section describes two techniques to overcome this
problem. Both techniques exploit the fact that TEX macros may have
local macro definitions.

To illustrate the solutions we shall implement a command \com-
mand that takes ten parameters and outputs their values. The first
technique is to implement \command as a wrapper command that does
two things.

Commands and Environments 207

\makeatletter
\def\cmd#1#2#3#4#5#6#7#8#9{%

\def\cmd@arg@A{#1}%
\def\cmd@arg@B{#2}%...
\def\cmd@arg@I{#9}%
\relay%

}
\def\relay#1{%

Parameters: \cmd@arg@A, \cmd@arg@B, …, and #1.%
}
\makeatother

Accessing parameters by defin-
ing commands

Figure 11.6

\def\cmd#1#2#3#4#5#6#7#8#9{%
\def\relay##1{Parameters: #1, #2, …, and ##1.}%
\relay%

}

Accessing parameters with a
nested definition

Figure 11.7

◦ It formally defines nine local commands. The i-th local command
results in the value of the i-th parameter of \command.

◦ It calls a ‘relay’ macro that can see the tenth parameter.

Figure 11.6 demonstrates the technique. The second technique is
simpler and implements \relay as a local macro. This technique is
shown in Figure 11.7.

11.8 Using Environments

This section shows environments and how to define them. The fol-
lowing are a few arguments in favour of environments.

less ambiguity If commands with parameters are used as part of other commands with
parameters then this may make it difficult to see which closing brace
belongs to which command. If environments are used inside other
environments then it is easier to see which \begin{〈env〉} belongs to
which \end{〈env〉}, thereby resolving the brace ambiguity.

more efficiency Environments can be implemented without the need of extra stack
space. This makes their implementation more efficient than macros.

The key to defining environments is the command \newenviron-
ment, which is used as follows.

\newenvironment{〈name〉}{〈begin subst〉}{〈end subst〉}
This defines a new global environment called 〈name〉. When you write
\begin{〈name〉}〈body〉\end{〈name〉} the text 〈begin subst〉 is substi-
tuted for \begin{〈name〉} and the text 〈end subst〉 is substituted for
\end{{〈name〉}}. Effectively, this gives you 〈begin subst〉〈body〉〈end
subst〉. ☐√

208 Chapter 11

\newenvironment{SectionalUnit}[2][section]
{\csname#1\endcsname{#2}%
\begin{refsection}}
{\printbibliography%
\end{refsection}}

\begin{document}
\begin{SectionalUnit}[chapter]{Introduction}

\begin{SectionalUnit}{Conventions}
…

\end{SectionalUnit}
\begin{SectionalUnit}{Notation}

…
\end{SectionalUnit}

\end{SectionalUnit}...
\end{document}

User-defined environment
Figure 11.8

\newenvironment{〈name〉}[〈digit〉]{〈begin subst〉}{〈end subst〉}
This defines a new global environment 〈name〉 with 〈digit〉 parameters.
In addition to the mechanism for environments without parameters
there is now also parameter substitution. However, parameter sub-
stitution only works within 〈begin subst〉. This works the same as
for commands, so the ith actual parameter of the environment is sub-
stituted for the ith formal parameter, #i, in 〈begin subst〉. It is not
allowed to refer to formal parameters in 〈end subst〉. ☐√

\newenvironment{〈name〉}[〈digit〉][〈default〉]{〈begin subst〉}{〈end subst〉}
This defines a new global environment called 〈name〉 that takes 〈digit〉
parameters. The first parameter is optional and has default value
〈default〉. ☐√

The command \renewenvironment is for redefining environments.
It works as expected.

Figure 11.8 presents an example of a user-defined environment
that takes two parameters, one of which is optional. The environment
defines the start and end of a sectional unit and prints a bibliography
at the end of the sectional unit. Such environment definitions are
typical: you build more complex environments in terms of existing
commands and environments. Of course the environment may not
be particularly useful if you don’t want a bibliography at the end of
your sections.

Chapter 12
Branching

This chapter is devoted to decision making and branching. The
techniques in this chapter let you implement conditional and iterative
statements in LaTEX. Also they let you use or omit text depending on
a global mode. This may be useful if you want to generate different
output documents from the same source, e.g., a lecture presentation
and lecture notes. This gives you ultimate control over the style and
content of your documents.

12.1 Counters, Switches, and Lengths

This section studies counters, switches, and length-related commands.
We study these notions because they play the rôle of variables in LaTEX
and TEX.

12.1.1 Counters

A LaTEX counter is a global variable for counting things. As the name
suggests, the values of counters should be integers. Counter names
are usually letter sequences. For example, page is a valid name for a
counter. The following are the commands related to LaTEX counters.

\newcounter{〈name〉}
This defines a new global counter, which is a LaTEX variable that can
take integer values. It is not quite clear which range is allowed for
counters, except that (some) positive, (some) negative, and (all!) zero
values are allowed. The initial value of the counter is zero. Lamport
[1994, page 138] forbids the use of \newcounter in files that are included
with the \include command. The \newcounter command may only
be used in the document preamble [Lamport 1994, page 99] ☐√

\setcounter{〈name〉}{〈value〉}
This assigns the value 〈value〉 to the counter 〈name〉. Here 〈name〉
should be the name of an existing counter and 〈value〉 should be an
integer constant. ☐√

\stepcounter{〈name〉}
This increments the counter 〈name〉 by one. As with \setcounter,
〈name〉 should be the name of an existing counter. ☐√

\addtocounter{〈name〉}{〈increment〉}
The adds the constant 〈increment〉 to the counter 〈name〉. As before,

 , ,
DOI 10.1007/978-3-642-23816-1_12, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 209

210 Chapter 12

〈name〉 should be the name of an existing counter and 〈increment〉
should be an integer constant. ☐√

\the〈name〉
This typesets the value of the counter 〈name〉, which should be the
name of an existing counter. Here \the〈name〉 is the concatenation of
\the and 〈name〉. For example, the counter section is used in LaTEX for
counting the current section number, and the command \thesection
gives you the number of the current section. ☐√

\newcounter{〈slave〉}[〈master〉]
This defines a slave counter 〈slave〉 that depends on a unique master
counter 〈master〉, which should be an existing counter. Slave counters
are numbered “within” their master counters. For example, subsec-
tion is a slave counter of its master counter section. When 〈master〉
is incremented with the \stepcounter command this resets 〈slave〉.
This version of the \newcounter command is useful for implementing
counter hierarchies. ☐√

The following example demonstrates these counter-related com-
mands, except for the version of \newcounter with the optional argu-
ment.

\newcounter{ans}
\setcounter{ans}{9}
\addtocounter{ans}{11}
\stepcounter{ans}
\addtocounter{ans}{\theans}
The answer to the ultimate
question of life, the universe,
and everything is \theans.

The answer to the
ultimate question
of life, the universe,
and everything is
42.

12.1.2 Switches

LaTEX does not support decision making. To make decisions you need
TEX or use a package such as ifthen. In the remainder of this section
we shall study TEX decision making commands. The ifthen package
is studied in Section 12.2.

\newif\if〈switch〉
This is TEX’s way to define a branching command called \if〈switch〉.
We shall refer to such branching commands as switches. For exam-
ple, you may define a switch called \ifnotes with the command
\newif\ifnotes. ☐√

\〈switch〉true
This turns the switch \if〈switch〉 on. ☐√

\〈switch〉false
This turns the switch \if〈switch〉 off. ☐√

\if〈switch〉〈then clause〉\fi
This is TEX’s equivalent of a conditional one-way branching statement.
As expected this results in 〈then clause〉 if the switch \if〈switch〉 is
on. This explanation assumes that 〈then clause〉 is expanded. ☐√

Branching 211

Unit Name Equivalent

pt point
pc pica 1 pc = 12 pt
in inch 1 in = 72.27 pt
bp big point 72 bp = 1 in
cm centimetre 2.54 cm = 1 in
mm millimetre 10 mm = 1 cm
dd didôt point 1157 dd = 1238 pt
cc cicero 1 cc = 12 dd
sp scaled point 65536 sp = 1 pt

Length units
Table 12.1

\if〈switch〉〈then clause〉\else〈else clause〉\fi
This is the equivalent of a conditional two-way branching statement.
It results in 〈then clause〉 if the switch \if〈switch〉 is on and results
in 〈else clause〉 otherwise. This explanation assumes that both 〈then
clause〉 and 〈else clause〉 are expanded. ☐√

The following is an example that creates a section. The title of the
section depends on the value of the switch \ifnotes. If the switch is
on then the title is set to ‘Lecture Notes.’ Otherwise, the section is
titled ‘Presentation.’ This example can be taken further to implement
a context-sensitive document the style and content of which depend
on the values of switches.

\newif\ifnotes
\notestrue

\begin{document}
\section{\ifnotes Lecture Notes%

\else Presentation%
\fi}

…
\end{document}

LaTEX Usage

The tagging package provides high-level support to do similar
things [Longborough 2011].

12.1.3 Lengths

This chapter studies length variables, which are LaTEX variables that
can be assigned length values. Length variables are also be used for
decision making. This section is mainly based on [Lamport 1994, Sec-
tion 6.4].

LaTEX has a wide range of length (measure) units. Table 12.1 lists
them all. Each length unit represents its own length. When LaTEX ex-
pects a length, writing 1〈unit〉 results in the length of the unit 〈unit〉.
For example 1mm gives you the length of one millimetre. Likewise you

212 Chapter 12

multiply 〈unit〉 by any constant 〈constant〉 by writing 〈constant〉〈unit〉.
For example, 101in is equivalent to 256.54cm.

Length variables hold length values. You write them just as control
sequences. Multiplying length variables works by adding a constant
before the variable. For example, 2〈length〉 gives you twice the current
value of 〈length〉.

There are two kinds of lengths: rigid and rubber. The following
explains the difference between the two.

rigid A rigid length always has the same size.
rubber A rubber length is a combination of natural length and elasticity.

Rubber lengths may stretch or shrink depending on the situation.
This is useful for stretching or shrinking inter-word space and so on.
Multiplying a rubber length by a constant results in a rigid length. The
result is obtained by multiplying the constant by the natural length
of the rubber length. For example, 2.0\rubber gives you twice the
natural length of \rubber.

The following are some of LaTEX’s length-related commands. By
defining your formatting commands in terms of these commands you
can make them work regardless of the current document settings.

\parindent

This length variable stores the amount of indentation at the beginning
of a normal paragraph. ☐√

\textwidth

This length variable stores the width of the text on the page. ☐√
\textheight

This length variable stores the height of the body of a page, excluding
the head and foot space. ☐√

\parskip

This length variable stores the extra vertical space between paragraphs.
It is a rubber length with a natural length of zero. A zero natural length
usually does not result in additional inter-paragraph spacing. ☐√

\baselineskip

This length variable stores the vertical distance between adjacent base
lines. ☐√

The following are the commands that define and manipulate
lengths.

\newlength{〈command〉}
This defines the length command 〈command〉 with an initial value of
0cm. For example, the command \newlength{\mylen} defines a new
length command called \mylen. ☐√

\setlength{〈command〉}{〈length〉}
This assigns the length value 〈length〉 to the length command 〈command〉.
For example, the command \setlength{\parskip}{1.0mm} assigns
the value 1mm to \parskip. ☐√

\addtolength{〈command〉}{〈length〉}
This adds the length value 〈length〉 to the current value of the length

Branching 213

command 〈command〉. For example, the spell \addtolength{\parskip}
{1.0mm} adds a millimetre to \parskip. ☐√

\settowidth{〈command〉}{〈stuff〉}
This assigns the width of 〈stuff〉 to 〈command〉. For example, the
command \settowidth{\twoms}{MM} assigns the width of the text
‘MM’ to \twoms. ☐√

\settoheight{〈command〉}{〈stuff〉}
This assigns the height of the bounding box of 〈stuff〉 to 〈command〉.
For example, the command \settoheight{\tower}{$2ˆ{2ˆ2}$} as-
signs the height of 222

to \tower. ☐√
\settodepth{〈command〉}{〈stuff〉}

This assigns the depth of the bounding box of 〈stuff〉 to 〈command〉.
For example, the command \settodepth{\depth}{amazing} sets the
value of \depth to the distance that the letter g extends below the base
line. ☐√

The commands \setlength and \addtolength obey the normal
scoping rules.

12.1.4 Scoping

This section briefly explains the difference between the scoping rules
for assignments to counters, TEX switches, and lengths. Counters
are global, which is to say that the values of counter variables are not
restored upon leaving the group. TEX switches and LaTEX lengths satisfy
group scoping rules, which means that these variables are restored to
the same values that they had when the group was entered.

12.2 The ifthen Package

The ifthen package provides Boolean variables at the LaTEX level, de-
cision making, and branching. There are two commands for defining
new Boolean variables.

\newboolean{〈bool〉}
This defines a new global Boolean variable. the command will fail if
〈bool〉 is already defined. ☐√

\provideboolean{〈bool〉}
This also defines a new global Boolean variable. However, this com-
mand will accept 〈bool〉 if it is already defined. ☐√

\setboolean{〈bool〉}{〈value〉}
This assigns the value 〈value〉 to 〈bool〉. Here 〈value〉 should be true
or false. ☐√

Knowing how to define Boolean variables we can proceed with
decision making.

\ifthenelse{〈test〉}{〈then clause〉}{〈else clause〉}
This command is a two-way branching construct. As expected it carries
out 〈then clause〉 if 〈test〉 evaluates to true and carries out 〈else

214 Chapter 12

clause〉 if 〈test〉 evaluates to false. The condition 〈test〉 must be a
valid condition. ☐√

Valid conditions for the 〈test〉 argument of the \ifthenelse com-
mand are as follows.

〈boolean〉
A Boolean constant that should be true or false, ignoring case, so
true, truE, …, TRUe, and TRUE are equivalent, and so are false, falsE,
…, FALSe, and FALSE. ☐√

〈number₁〉〈op〉〈number₂〉
Here 〈number₁〉 and 〈number₂〉 should be numbers and 〈op〉 should be
<, =, or >. ☐√

\lengthtest{〈dimen₁〉〈op〉〈dimen₂〉}
Here 〈dimen₁〉 and 〈dimen₂〉 should be dimension values and 〈op〉
should be <, =, or >. ☐√

\isodd{〈number〉}
As suggested by the notation 〈number〉 should be a number. ☐√

\isundefined{〈command〉}
Here 〈command〉 should be a control sequence name. ☐√

\equal{〈string₁〉}{〈string₂〉}
Here 〈string₁〉 and 〈string₂〉 are evaluated and compared for equality.
The test is equivalent to true if and only if the results of the evaluations
are equal. ☐√

\boolean{〈bool〉}
Here 〈bool〉 should be a Boolean variable. ☐√

〈test₁〉〈command〉〈test₂〉
Here 〈test₁〉 and 〈test₂〉 should be valid 〈test〉 conditions and 〈command〉
should be \or, \and, \OR, or \AND. The versions \OR and \AND are pre-
ferred to \or and \and because they are more robust. ☐√

〈negation〉〈test〉
Here 〈test〉 should be a valid 〈test〉 condition and 〈negation〉 should
be \not or \NOT. The uppercase version is preferred to the lowercase
version. ☐√

\(〈test〉\)
Here 〈test〉 should be a valid 〈test〉 condition. ☐√

The following example demonstrates how to use the \ifthenelse
command. The page counter variable that is used in the example keeps
track of LaTEX’s page numbers. It is assumed the ifthen package is
loaded.

\begin{document}
\ifthenelse

{\isodd{\value{page}}}
{Odd page.}
{Even page.}

\end{document}

Odd page.

\whiledo{〈test〉}{〈statement〉}
The command \whiledo{〈test〉}{〈statement〉} is ifthen’s equiva-
lent of the while statement. It repeatedly ‘executes’ 〈statement〉 until
〈test〉 becomes false. The following example demonstrates some

Branching 215

of the functionality of the ifthen package. It is assumed the ifthen
package is loaded.

\newcounter{cnt}
\setcounter{cnt}{3}
$\thecnt =
\whiledo
{\not\(\thecnt=0\)}%
{+ 1 \addtocounter{cnt}{-1}}$.

3 = 0 + 1 + 1 + 1. ☐√

12.3 The calc Package

The calc package extends TEX and LaTEX’s arithmetic. The calc pack-
age redefines the commands \setcounter, \addtocounter, \setlength,
and \addtolength. As a result, these commands now accept infix ex-
pressions in their arguments. The package also provides useful com-
mands such as \widthof{〈stuff〉}, \ratio{〈dividend〉}{〈divisor〉},
and so on, which don’t have a LaTEX equivalent. The interested reader
is referred to the package’s excellent documentation [Krab Thorub,
Jensen, and Rowley 2007].

12.4 Looping

The LaTEX kernel provides two kinds of for statements.
\@for \var:=〈list〉\do \command

Here 〈list〉 is a comma-delimited list. The items in 〈list〉 are bound
to \var from left to right. After each binding, the command \command
is carried out. (Of course, \command can also be a group.) The following
is an example. Note that it is assumed that the symbol @ is allowed in
control sequence names.

\@for \var:=1,two\do{%
(\var)%

}
(1)(two) ☐√

\@tfor\var :=〈list〉\do \command

This is the “token” version of the \@for command. In this case 〈list〉
is a list of tokens. The tokens in 〈list〉 are bound to \var from left to
right. After each binding, the command \command is carried out.

\newcommand*\swop[2]{#2#1}
\@tfor\var:=1\swop\do{%

\var23%
}

12332 ☐√

The LaTEX kernel also provides the following while statement.
\@whilesw〈switch〉\fi{〈statements〉}

This is a while loop with a condition that is based on a TEX switch
〈switch〉. The following is an example.

216 Chapter 12

\def\apply#1{%
\def\Apply##1{%

\ifx##1\endApply%
\breakApply% terminate recursion

\fi%
#1{##1}% Apply command to next item.
\Apply% Tail recursive call.

}%
\Apply%

}
\def\breakApply#1\Apply{\fi}%
\def\twice#1{#1#1}

\apply\twice a{bc}d\endApply

Tail recursion. The command
\apply \cmd 〈items〉 \endAp-
ply applies \cmd to each item
in 〈items〉. For example, \ap-
ply\twice a{bc}\endApply
gives aabcbc. The key to under-
standing the macro is noticing
that \breakApply substitutes
\fi for all tokens up to and in-
cluding \Apply.

Figure 12.1

\newif\iffirst\firsttrue
\newif\ifsecond\secondfalse
\@whilesw\iffirst\fi{%

X\ifsecond\firstfalse%
\else\secondtrue\fi%

}

XX ☐√

Scharrer [2011-07-23] provides an interesting list of more low-level
LaTEX kernel commands.

12.5 Tail Recursion

In computer science a function is called tail recursive if the function
carries out no more than one recursive call in the current incarnation.
Tail recursion is a common technique to implement iteration. The
remainder of this section shows how you may implement a tail recur-
sive command using low-level TEX delimited macros. After carefully
studying this section the interested reader should fully appreciate TEX
and LaTEX programming in the large.

The evaluation of the example in Figure 12.1, demonstrates TEX
expansion in its full glory. The example is based on [Fine 1992]. There
is one new ingredient in the example, which is related to decision
making. The construct \ifx〈A〉〈B〉〈statement〉\fi in the example re-
sults in 〈statement〉 if the tokens 〈A〉 and 〈B〉 are equal. The key to
understanding the example is observing that (1) \breakApply is ap-
plied only once inside \Apply, (2) that it is only applied when the token
\endapply is detected, and (3) that \breakApply substitutes \fi for the
tokens up to and including the first next \Apply. The substitution
closes the current \if with a matching \fi, thereby terminating the
recursion. The rest all boils down to tail recursion. It is left to the
reader to determine the resulting output.

Chapter 13
Option Parsing

This chapter studies 〈key〉=〈value〉 interfaces. Such interfaces
may be used to implement macros whose parameters are specified
as a list of 〈key〉=〈value〉 pairs. Usually the pairs are provided in the
optional argument.

At the time of writing the most frequently-used package for imple-
menting 〈key〉=〈value〉 interfaces is keyval [Carlisle 1999b]. A more
recent package is pgfkeys [Tantau 2010]. To keep this chapter simple,
it only discusses pgfkeys because it is more versatile and provides
more robust 〈key〉=〈value〉 parsing.

13.1 What is a 〈Key〉=〈Value〉 Interface?

In a traditional Application Programming Interface (api), the actual
parameters are related to the formal parameters by positional associ-
ation. This means that the position of the actual parameter in the
parameter list determines the corresponding formal parameter. A
more recently developed api uses named association. An api that uses
named association tags each actual parameter with the name of its
corresponding formal parameter. Usually this is done by providing
a list of 〈key〉=〈value〉 pairs. Each 〈key〉 is a formal parameter name
and each 〈value〉 is the actual parameter.

A 〈key〉=〈value〉 interface, is LaTEX speak for an api that uses
named association to relate actual and formal parameters. The ac-
tual parameters (the values) of a macro are specified as a list of 〈key〉=
〈value〉 pairs in the optional argument of a command. For example,
the \includegraphics command, which is provided by the graphicx
package, inserts external pictures. The required argument of the com-
mand is the name of the picture. The command also has an optional ar-
gument that lets you specify how the picture should be inserted. This is
done by letting you specify the width, the height, the angle of rotation,
and many other settings. Each setting is specified as a 〈key〉=〈value〉
pair. For example,\includegraphics[width=9cm,height=3cm]{pic.png}
is a request to insert the picture pic.png with a value of 9 cm for a
(formal) parameter called width, and a value of 3 cm for a (formal)
parameter called height. Note that the command is flexible because
it is not necessary to provide all possible settings. For example, the
rotation isn’t explicitly specified.

 , ,
DOI 10.1007/978-3-642-23816-1_13, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 217

218 Chapter 13

13.2 Why Use a 〈Key〉=〈Value〉 Interface?

Chapter 11 demonstrated that LaTEX’s api is not ideal. The following
are some arguments in favour of 〈key〉=〈value〉 interfaces.

number of arguments There is no limit to the number of 〈key〉=〈value〉 pairs. In contrast,
the standard LaTEX api is limited to 9 parameters.

robustness A 〈key〉=〈value〉 api is more robust than an api that uses positional
association. For example, the order of the 〈key〉=〈value〉 pairs is irrel-
evant. Furthermore, default values may be defined for missing 〈key〉=
〈value〉 pairs.

simplicity By relating an actual parameter—a value—to a key, the purpose of
the parameter becomes more clear. This makes the api simpler and
easier to use.

self-documentation This is related to the previous item. The 〈key〉=〈value〉 paradigm
avoids references to the meaningless positional parameter names #1,
#2, …. Instead the programmer can use the more meaningful names
of the keys. This makes the code more self-documenting, which makes
it easier to reason about the implementation. As a consequence this
reduces the possibility of errors.

13.3 The pgfkeys Package

The pgfkeys package [Tantau 2010] is a recent alternative to the key-
val package [Carlisle 1999b]. As the name suggests, the package is
implemented by the makers of pgf. The package implements very
robust 〈key〉=〈value〉 parsing. For example, if there aren’t any commas
in a value then there’s usually no need to put the value inside braces.
Furthermore, the package allows key hierarchies with keys consisting
of one or several words. These hierarchies may be viewed as a Unix
file system. The package also generalises 〈key〉=〈value〉 parsing by
allowing multiple values for a given key. However, this feature is usu-
ally not needed for simple 〈key〉=〈value〉 interfaces. Finally, Wright
[2010] introduces the pgfopts package, which provides pgfkeys-style
option parsing for class and package options. We shall use the pgfopts
package in Chapter 15.

The remainder of this chapter discusses a selection of pgfkeys
techniques that should be enough for day-to-day use. Specifically, we
shall study providing and using values of keys, traversing the key tree,
error handling, storing values in macros, decision keys, and choice
keys. The pgfkeys package provides many more techniques but they
are beyond the scope of this book. You may find more about the
package by reading the package documentation, which is contained
in the pgf manual [Tantau 2010].

13.4 Providing and Using the Values

The most common reason for using a 〈key〉=〈value〉 interface is to
let users provide a value for a given key and to record the value for

Option Parsing 219

that key. This is usually done by defining a command that records the
value of a given user-provided 〈key〉=〈value〉 pair.

In this section we shall start by studying how to provide values for
the keys and how to use these values. Using the values in this section
only results in output and has no other side-effects. In Section 13.8 we
shall study how to record the values.

\pgfkeys{〈key〉/.code=〈expr〉}
This defines the code of the key 〈key〉. The code is best viewed as a zero
or one-parameter macro with substitution text 〈expr〉. When the user
provides a value for the key, the key is substituted for the positional
parameter #1 in 〈expr〉.

The following shows how this works. The first line defines the
code for the key /greeting, and the next two lines provide values for
the key.

\pgfkeys{/greeting/.code=Hello #1.}
\pgfkeys{/greeting=moon}
\pgfkeys{/greeting=world}

Hello moon.
Hello world. ☐√

\pgfkeys{〈key〉/.default=〈default〉}
This defines 〈default〉 as the default value for the key 〈key〉. If you
define 〈default〉 as the default value for 〈key〉 then this makes us-
ing 〈key〉 without a value equivalent to executing \pgfkeys{〈key〉
=〈default〉}. The following continues the previous example.

\pgfkeys{/greeting/.default=sun}
\pgfkeys{/greeting=stars}
\pgfkeys{/greeting}

Hello stars.
Hello sun. ☐√

13.5 Traversing the Key Tree

As pointed out earlier on, pgfkeys keys may be regarded as paths in a
key tree that is similar to a Unix file system. The tree’s root node is
indicated with a forward slash (/). You may create a child of a parent
node by appending an extra forward slash to the name of the parent
and by adding the name of the child after the extra forward slash.
For the root we usually leave out the extra forward slash. Forward
slashes at the end of the names are not significant. For example, the
root’s child that is called solar system is denoted /solar system.
The child called earth of the node /solar system is denoted /solar
system/earth, and so on.

Paths with names starting with a forward slash are called absolute
paths. Needless to say, referring to paths by their absolute names is
tedious and prone to errors. This is one of the reasons why Unix also
has relative paths. Relative paths don’t start with a forward slash and
they’re relative to a working directory—also known as the current
directory. In Unix you change to a different working directory with the
cd command. When you change to a new working directory all relative
paths become relative to the new working directory. The pgfkeys

220 Chapter 13

package provides a similar functionality. Relative key paths are key
paths that are relative to the current key path. You can choose a new
current (key) path by adding the text /.cd to the name of that path.
Just as in Unix, you are free to use relative or absolute path notation.
The following explains how to change the current path.

\pgfkeys{〈path〉/.cd,〈stuff〉}
This makes 〈path〉 the current path in 〈stuff〉. The next example
shows how this works. We first make /cork/greeting the current path
(key). Next we define the default value and the code for the key. Finally,
we use the key.

\pgfkeys{/cork/greeting/.cd,
.default=boie,
.code=Howsagoin #1.}

\pgfkeys{/cork/greeting=Liz,
/cork/greeting}

Howsagoin Liz.
Howsagoin boie. ☐√

13.6 Executing Keys

A key that executes one or several keys is called a style.
\pgfkeys{〈key〉/.style=〈list〉}

This defines 〈list〉 as a style for 〈key〉. If 〈list〉 contains several keys
then it should be enclosed in braces. When a user uses 〈key〉, this
results in 〈list〉. If the positional parameter #1 occurs in 〈list〉 then
the current value of 〈key〉 is substituted for the parameter.

The following continues our running example. In the example we
define a new style called /cork/greetings. The style executes two keys.
The first executed key is /cork/greeting=Mr~〈value〉, where 〈value〉 is
the value of the new style. The second executed key is /cork/greeting.

\pgfkeys{/cork/greetings/.style={
/cork/.cd,
greeting=#1,
greeting}}

\pgfkeys{/cork/greetings=Roy}

Howsagoin Roy.
Howsagoin boie. ☐√

13.7 Error Handling

Adding error handling is good practice because it detects errors and
helps to diagnose them. We’ve already seen the .default qualifier,
which defines a default value for its key. The following qualifiers state
which keys require a value and which keys don’t take values.

\pgfkeys{〈key〉/.value required}

This makes a value mandatory when 〈key〉 is used. The value is re-
quired even if 〈key〉 has a default value.

Option Parsing 221

\pgfkeys{/homer/drink/.cd,
.code=#1,
.value required}

\pgfkeys{/homer/drink=beer}
\pgfkeys{/homer/drink}% D’oh

beer ☐√

\pgfkeys{〈key〉/.value forbidden}

This forbids values when 〈key〉 is used. Providing a value results in an
error.

\pgfkeys{/homer/lunch/.cd,
.code=donuts,
.value forbidden}

\pgfkeys{/homer/lunch}
\pgfkeys{/homer/lunch=peas}% D’oh

donuts ☐√

13.8 Storing Values in Macros

The most common application of 〈key〉=〈value〉 interfaces is to store
the value of a given key. The following shows how to do this.

\pgfkeys{〈key〉/.store in=〈command〉}
This stores the value of 〈key〉 in the command 〈command〉. The value
is not expanded. Note that if you define store a value for a key then
the code of the key is no longer used. The following is an example.

\newcommand*\a{a}
\pgfkeys{/storage/.store in=\myget}
\pgfkeys{/storage=a is \a.}
Before: \myget
\renewcommand*\a{A}
After: \myget

Before: a is a.
After: a is A. ☐√

\pgfkeys{〈key〉/.estore in=〈command〉}
This works as .store in but it expands the value before saving it in
〈command〉. ☐√

13.9 Decisions

Letting users turn options on and off is another common application
of 〈key〉=〈value〉 interfaces. The pgfkeys package implements such
options as user-defined decision keys. Decision keys take Boolean values.
Decision keys are used in combination with TEX switches that reflect
the values of the decision keys.

\pgfkeys{〈key〉/.is if=〈switch〉}
This defines 〈key〉 as a decision key with a TEX switch \if〈switch〉.
Valid values for decision keys are true and false. The default value is
true. It is the user’s responsibility to define the TEX switch.

222 Chapter 13

\newif{\ifswitch}
\pgfkeys{/decision/.is if=switch}
\pgfkeys{/decision}
\ifswitch ON\else OFF\fi.
\pgfkeys{/decision=false}
\ifswitch ON\else OFF\fi.
\pgfkeys{/decision=true}
\ifswitch ON\else OFF\fi.

ON.
OFF.
ON. ☐√

13.10 Choice Keys

Our final pgfkeys application is choice keys, which are keys that can
take values from a predefined list of values.

\pgfkeys{〈key〉/.is choice}

This makes 〈key〉 a choice key. By defining a style for 〈key〉/〈option〉
you make value 〈option〉 a valid value for 〈key〉. When the user selects
〈option〉 as a value for 〈key〉, this executes the style 〈key〉/〈option〉.
The following example should explain the mechanism. The example
results in ‘1 3 2.’

\newcommand*\mycount{0}
\pgfkeys{/counter/.store in=\mycount}

\pgfkeys{/selection/.cd,
.is choice,
first/.style={/counter=1},
second/.style={/counter=2},
third/.style={/counter=3}}

\pgfkeys{/selection=first} \mycount
\pgfkeys{/selection=third} \mycount
\pgfkeys{/selection=second} \mycount ☐√

LaTEX Input

PART VI

Miscellany

Oil and charcoal on canvas (06/10/10 no 2), 64× 91 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Chapter 14
Beamer Presentations

This chapter introduces the beamer class, which is widely used
for computer presentations. Some people call such presentations pow-
erpoint presentations. The beamer class is seamlessly integrated with the
tikz package and lets you present incremental presentations, which
are presentations that incrementally add text and graphics to a page
of the presentation.

The purpose of this chapter is not to explain all the possibilities
of the beamer class but to explain just enough for what is needed
for one or two presentations. The interested reader is referred to the
excellent documentation [Tantau, Wright, and Miletić 2010] for further
information.

The remainder of this chapter is as follows. In Section 14.1 we shall
study frames, which correspond to one or several incremental slides on
the screen. Section 14.2 explains the concept of modal presentations,
which let you generate different versions of your presentation. For
example, an in-class presentation and a set of lecture notes. This is
continued in Section 14.3, which studies incremental presentations.
Section 14.4 shows how to add some visual “alert” effects. This may be
useful for highlighting certain parts of the presentation. This chapter
concludes with Section 14.5, which spends a few words on how you
may personalise your presentations by adding a dash of style.

14.1 Frames

The frame environment is to a computer presentation what a page is to
an article, a report, or a book. However, a frame may also be decorated
with a frame title and a frame subtitle. Throughout this section we
shall not worry about the overall look and feel of the presentation.

\begin{frame}[options] 〈frame material〉 \end{frame}
This is a simplified presentation of the frame environment (Section 14.2
provides a more complete description). When the output document is
a computer presentation the 〈frame material〉 is turned into one or
several slides in the output. Otherwise, it may result in one or several
lines of text in the text of your output document.

If the option fragile is included in 〈options〉, then 〈frame mate-
rial〉 may contain any LaTEX material. Including the option fragile is
by far the easier: just use it. Omitting the fragile option may result in
errors caused by so-called “verbatim” commands and environments.

 , ,
DOI 10.1007/978-3-642-23816-1_14, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 225

226 Chapter 14

\documentclass{beamer}

\title{{\LaTeX} and Friends}
\author{M.\,R.\,C.

van Dongen}
\date{September 16, 2011}

\begin{document}
\begin{frame}[fragile]

\maketitle
\end{frame}
\end{document}

LATEX and Friends

M.R. C. van Dongen

September 16, 2011

Creating a titlepage with the
beamer class. The outline of the
output slide is drawn for clarity.
The little pictures in the lower
right corner of the output are
for navigation purposes.

Figure 14.1

\begin{frame}[fragile]
\frametitle{A Slide}
\framesubtitle{An Example}

\begin{itemize}
\item Hello world.
\item Bonjour monde.
\end{itemize}

\end{frame}

A Slide
An Example

% Hello world.

% Bonjour monde.

Creating frame titles. The out-
line of the output slide is drawn
for clarity.

Figure 14.2

Tantau, Wright, and Miletić [2010, Chapter 8] provides further infor-
mation about the fragile option.

The following is important: the \begin{frame} and \end{frame} com-
mands should be on a line of their own and there should be no spaces
before the \begin and \end.

Figure 14.1 provides the first beamer example. As you may see from
the example, it looks like a regular LaTEX document with a \title,
\author, and \maketitle command. However, since beamer is a doc-
ument class, its name is included in the \documentclass argument.
The command \maketitle is put in a frame (environment). ☐√

\frametitle{〈frame title〉}
This defines a frame title, which is usually typeset at the top of the
resulting slides of a computer presentation. The frame title is only
included if the output document is text-based. However, as we shall
see in Section 14.2 it is possible to turn the frame title off for such
documents. Turning the frame title off is also possible by redefining
the \frametitle command. ☐√

\framesubtitle{〈frame subtitle〉}
This defines a subtitle for the frame. The subtitle is usually typeset
below the frame title. ☐√

Figure 14.2 demonstrates a simple beamer frame. The frame has a
frame title and subtitle and its body consists of an itemised list.

The beamer class is nice when it works but it may lead to unex-
pected complications. For example, the following may not work.

Beamer Presentations 227

\newenvironment{myframe}[0]
{\begin{frame}[fragile]}
{\end{frame}}

Don’t do this at Home

Explaining why this environment doesn’t work is beyond the scope
of this chapter. As a general rule, automating beamer commands may
not always work: don’t try it unless you have time. The manual [Tantau,
Wright, and Miletić 2010] is the ultimate source of information for
what is and isn’t possible.

14.2 Modal Presentations

This section shows how to exploit beamer’s modes, which let you gener-
ate several kinds of output documents from the same source. Here a
different output document may have a different style of presentation
but also different content. The following are beamer’s basic modes.

beamer This is the default mode, which is what beamer is “in.” It corresponds
to a computer presentation with one or several slides per frame. For
example, in a presentation you can uncover an itemised list item by
item. So the single itemised list in the single frame gives you several
slides in the output. In a different mode, beamer may not uncover the
itemised list item by item but present the itemised list as a whole.

second This mode is for outputting material to a second output screen.
handout This mode is for handouts. When a frame in the input is typeset in this

mode, beamer suppresses uncovering effects and presents the frame
as a whole. This is different from the default mode, where one input
frame may result in several output slides.

trans This mode is for creating transparancies. Having such an option al-
most seems like an anachronism. However, having a presentation in
the form of transparancies may be useful as a backup resource, e.g.,
when presenting away from home.

article This mode is for typesetting text using a different existing LaTEX class.
For example, this book was typeset using LaTEX’s book class in beamer’s
article mode. Uncovering is suppressed in article mode. Using
article mode requires a slightly different approach. This time, you
use the \documentclass to load the different class and use the \usep-
ackage command to import the beamerarticle package. Figure 14.3
demonstrates how you may do this. In this example, all frame titles
and frame subtitles are turned off by redefining the \frametitle and
\framesubtitle commands.

The beamer class is always in one of these five modes. By providing
the mode as an optional argument to the beamer class you determine
the mode. If you omit the mode then beamer will be in, well, beamer
mode. The beamer class also has the following auxiliary modes:

all This is for all modes.
presentation This mode is for all “presentation” modes, so all modes except for

article.

228 Chapter 14

\documentclass{book}
\usepackage{beamerarticle}
\makeatletter
\def\frametitle{%

\@ifnextchar<%
{\@frametitle@lt}%
{\@frametitle@lt<>}%

}
\def\@frametitle@lt<#1>#2{}
\makeatother

Using the beamerarticle
package

Figure 14.3

\documentclass[handout]
{beamer}

\begin{document}
\begin{frame}

<handout|beamer>
[fragile]

Beamer or handout mode.
\end{frame}
\begin{frame}

<beamer>
[fragile]

Beamer mode.
\end{frame}
\end{document}

Handout or beamer mode.

Using modes. The outline of
the slide is drawn for clarity.

Figure 14.4

Now that we know about beamer’s modes, it’s time to revisit its
frame environment.

\begin{frame}<〈overlay specs〉>[〈options〉] 〈frame material〉 \end{frame}
Here <〈overlay specs〉> behaves as an optional argument. The modes
in 〈overlay specs〉 determine whether the frame should be typeset.
For example, if 〈overlay specs〉 is article and beamer is in beamer
mode then the frame is not typeset. You may combine modes using the
pipe symbol (|) as a separator. For example, if you use beamer|handout
then the frame is typeset if beamer is in beamer or handout mode. ☐√

Figure 14.4 demonstrates the basic mode mechanism. The input
defines two frame. The first frame is typeset in handout or beamer
mode. The second frame is only typeset in beamer mode. The beamer
class is started in handout mode. This explains why only the first frame
is typeset.

Other beamer commands and environment may also accept overlay
specifications. Having to specify the same overlay specification is
tedious and prone to errors. The following commands help avoiding
redundant overlay specifications.

\mode<〈mode spec〉>{〈text〉}
This inserts 〈text〉 if beamer’s mode corresponds to 〈mode spec〉. Note

Beamer Presentations 229

that this only works if the first non-space character following the > is
an opening brace. ☐√

\mode<〈mode spec〉>
This filters subsequent text that does not correspond to 〈mode spec〉.
Note that this only works if the first non-space character following
the > is not a brace. ☐√

\mode*

When beamer is in presentation mode, then this command causes
beamer to ignore text outside frame environments. When beamer is in
article mode, this command has no effect. ☐√

14.3 Incremental Presentations

Incremental presentations incrementally unveil the content of a frame
environment. Typically, this is done by displaying the next item in an
itemised list. The beamer class also provides annotations for present-
ing material on the nth output slide of a given frame. The following
are some of the relevant commands. More information may be found
in [Tantau, Wright, and Miletić 2010, Chapter 9].

\pause

This inserts a pause stop at the corresponding position. In presen-
tation mode the command adds one more output slide to the slides
that are generated from the current frame. The pause stop separates
the material before and after the position of the \pause command.
The slides at the start are unaware of the material after the \pause
command. For example, assume that you have a frame consisting of
the text ‘hide \pause and \pause seek.’ In presentation mode this
will result in three slides. The first contains the text ‘hide,’ the second
the text ‘hide and,’ and the third the text ‘hide and seek.’ ☐√

\pause[〈number〉]
This command unveils the material following the \pause command
from slide 〈number〉 and onwards. Hardcoding numbers in \pause
commands like this does not make for maintainable code. For example,
let’s assume you have nine \pause commands \pause[2]–\pause[10].
If you you want to join the material on Slides 1 and 2 then you have to
remove the command \pause[2] and renumber the arguments of the
remaining eight commands. ☐√

Figure 14.5 provides an example of the \pause command. The
input frame results in three output slides. The first slide contains the
first item of the itemised list. The second slide contains the first, the
second, and the third item. The last slide contains all items of the
itemised list. It is assumed that beamer is in beamer mode.

The beamer class redefines the standard \item command. The
redefined version of the command takes an additional optional ar-
gument that acts as an overlay specification. The overlay specification
determines which slides should contain which items. The optional
argument is passed in angular brackets (< and >). Without the overlay
specification, the \item command works as per usual. Overlay specifi-
cations are ignored if beamer is not in presentation mode. However,

230 Chapter 14

\begin{frame}[fragile]
\begin{itemize}
\item First. \pause
\item Second.
\item Third. \pause
\item Last.
\end{itemize}

% First.

% Second.

% Third.

Using the \pause command.
The frame environment results
in three output slides, the sec-
ond of which is shown on the
right. The outline of the slide is
drawn for clarity.

Figure 14.5

when the overlay specification is present in presentation mode, then
the material in the scope of the \item is only displayed on the slides
corresponding to an overlay specification.

\item<〈overlay spec〉>
The corresponding item is typeset on the slides corresponding to
〈overlay spec〉. On the remaining slides, the item is typeset in invisi-
ble ink. ☐√

The following are some possible overlay specifications

〈number〉 This corresponds to slide 〈number〉.
〈number〉- This corresponds to slide 〈number〉 and onward.
-〈number〉 This corresponds to slides 1–〈number〉.
〈number₁〉-〈number₂〉 This corresponds to slides 〈number₁〉–〈number₂〉.
〈overlay spec₁〉,〈overlay spec₂〉 This combines specifications 〈overlay spec₁〉

and 〈overlay spec₂〉.

Other commands may also accept overlay specifications. The reader
is referred to the class documentation [Tantau, Wright, and Miletić
2010] for further information.

Intermezzo. The beamer class defines many more commands for creating
incremental presentations. Incremental presentations may look slick, but
creating them takes precious time. Peyton Jones, Huges, and Launchberry
[1993] argue that some of your audience may not even like incremental
presentations that unveil an itemised list one item at a time. It is the
content of the presentation that determines the quality—not the visual
effects. As a student you probably won’t have to give many presentations.
Consider doing yourself and your audience a favour: minimise the visual
effects and spend the time you save on the content of the presentation.

The tikz package and the beamer class are seamlessly integrated.
This means you can also create incremental presentations with tikzpic-
tures. Such presentations may be highly effective. However, creating
them may take a lot of time. If you’re a student and you only have to
present a few presentations, you may be better off by staying away
from incremental presentations.

Beamer Presentations 231

\begin{frame}[fragile]
\begin{itemize}
\item<1-2> First.
\item<3,4> Second.
\item<2> Third.
\item Last.
\end{itemize}

% First.

% Third.

% Last.

Using overlay specifications.
The frame environment results
in three output slides, the sec-
ond of which is shown on the
right. The outline of the slide is
drawn for clarity.

Figure 14.6

\begin{frame}[fragile]
\frametitle{Visual Alerts}
\begin{itemize}
\item<alert@2> First.
\item<alert@3> Second.
\item<alert@4> Third.
\end{itemize}
\end{frame}

Visual Alerts

% First.

% Second.

% Third.

Adding visual alerts. The frame
to the left results in four out-
put slides. The first slide has
no visual alerts. The remaining
slides highlight the items in the
list. The third slide is shown on
the right. The second alert in
the input draws the second out-
put item in red. The outline of
the slide is drawn for clarity.

Figure 14.7

14.4 Visual Alerts

A visual alert in a presentation uses colour to emphasise text. Using
visual alerts is useful if you want to emphasise different parts of a
frame at different times. It is especially useful if you’re discussing
items in a list and if you want to indicate which item is currently
being discussed. The following are some related commands.

\alert<〈overlay spec〉>{〈text〉}
This emphasises 〈text〉 on the slides corresponding to 〈overlay
spec〉. Omitting 〈overlay spec〉 results in highlighting 〈text〉 on
all slides. ☐√

\item<alert@〈overlay spec〉>
This emphasises the current item in a list on the slides corresponding
to 〈overlay spec〉. ☐√

\item<〈overlay spec₁〉|alert@〈overlay spec₂〉>
This displays the current item on the slides corresponding to 〈overlay
spec₁〉 and emphasises the item on the slides corresponding to 〈overlay
overlay spec₂〉. ☐√

Figure 14.7 uses visual alerts to highlight the different items in an
itemised list.

14.5 Adding Some Style

The presentation in this chapter has been quite minimal because
learning the beamer class takes time. Students should use simple
presentation styles and spend their time on the presentation’s content.

Having made these observations, it is good to note that some

232 Chapter 14

presentations benefit from some additional decoration. For example, a
menu that lists the sections in the presentation may help the audience
recognise the structure of the presentation.

A beamer theme determines a certain aspect of the visual presen-
tation. Currently, there are five beamer themes: presentation, colour,
font, inner, and outer. The presentation themes are the easier ones
to use because they define everything in the presentation. New beamer
users are better off starting with a presentation theme because then
they don’t have worry about the presentation style. Most presentation
themes are actually quite good. Seasoned beamer users may want to
spend some time on fine-tuning their own style.

The remainder of this section presents four presentation themes
that are ideal for a first presentation with only a few slides. More in-
formation about themes may be found in the documentation [Tantau,
Wright, and Miletić 2010].

The input that was used to demonstrate the different themes in
included in Figure 14.12 at the end of this chapter. The input is inspired
by the beamer documentation. The resulting outputs are listed in
Figures 14.8–14.11. For each theme, the figure contains the fifth slide,
i. e., the fourth slide of the second frame.

Figure 14.8 depicts the sample output of beamer’s default theme.
This theme is very sober and implements visual alerts by typesetting
text in red, which is the default for visual alerts.

The Boadilla theme, which is depicted in Figure 14.9, is a bit more
lively. Using this theme also adds some information about the “author”
at the bottom of each slide. Passing the option secheader also lists
the current section and subsection at the bottom of the slides.

Sample output of the Antibes theme is depicted in Figure 14.10.
This theme adds a tree-line navigation menu to the Boadilla theme.
This kind of information may be useful for the audience because
it helps them recognise the presentation stucture and helps them
determine where you “are” in the presentation.

The final theme is Goettingen. It is depicted in Figure 14.11. This
theme is for long presentations and comes equipped with a table of
contents in a sidebar. This theme accepts the following options.

left

This puts the sidebar on the left of the screen. ☐√
right

This puts the sidebar on the right of the screen. This is the default
behaviour. ☐√

width=〈dimension〉
This sets the width of the sidebar. Providing a width of zero hides the
sidebar. ☐√

hideallsubsections

This removes subsection information from the sidebar. ☐√
hideothersubsections

With this option only the subsections of the current section are shown
in the sidebar. ☐√

Beamer Presentations 233

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Proof.

1. Suppose the number of primes is finite.

2. Let p be the product of all primes.

3. Then p + 1 is not divisible by any prime.

4. Therefore, p + 1 is also a prime.

Sample output of beamer’s de-
fault theme. The outline of
the slide is drawn for clarity.

Figure 14.8

Sample output of beamer’s
Boadilla theme. The option
secheader was passed as an
option to the \usetheme com-
mand. The outline of the slide
is drawn for clarity.

Figure 14.9

234 Chapter 14

Prime Number Presentation

Main Result

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Proof.

1 Suppose the number of primes is finite.

2 Let p be the product of all primes.

3 Then p + 1 is not divisible by any prime.

4 Therefore, p + 1 is also a prime.

Sample output of beamer’s An-
tibes theme. The outline of
the slide is drawn for clarity.

Figure 14.10

Prime Number
Presentation

Euclid

Main Result

Conclusion

There is No Largest Prime Number
The Proof Uses Reductio ad Absurdum

Proof.

1. Suppose the number of primes is finite.

2. Let p be the product of all primes.

3. Then p + 1 is not divisible by any prime.

4. Therefore, p + 1 is also a prime.

Sample output of beamer’s
Goettingen theme. The side
bar of this theme provides
more information about the
structure of the presentation
than the three previous themes
because it also lists the names
of other top-level sectional
units—in this case Conclusion.
The outline of the slide is drawn
for clarity.

Figure 14.11

Beamer Presentations 235

\documentclass{beamer}
\usetheme[〈options〉]{〈theme〉}
\usepackage{amsmath}

\title{Prime Number Presentation}
\institute{University of Alexandria}
\author{Euclid}

\begin{document}
\begin{frame}[fragile]
\maketitle
\end{frame}

\section{Main Result}

\begin{frame}[fragile]
\frametitle{There is No Largest Prime Number}
\framesubtitle{The Proof Uses \emph{Reductio ad Absurdum}}
\begin{proof}
\begin{enumerate}
\item<alert@2> Suppose the number of primes is finite.
\item<alert@3> Let p be the product of all primes.
\item<alert@4> Then $p + 1$ is not divisible by any prime.
\item<alert@5> Therefore, $p + 1$ is also a prime.

\qedhere
\end{enumerate}
\end{proof}
\end{frame}

\section{Conclusion}

\begin{frame}[fragile]
The end.
\end{frame}
\end{document}

Using a beamer theme. The
LaTEX input is a template that
is used to demonstrate the ef-
fect of the beamer themes on
the previous pages. The out-
puts are obtained by substitut-
ing the name of the themes for
〈theme〉 in the input.

Figure 14.12

Chapter 15
Writing Classes and Packages

This short chapter is about the essence of implementing user-
defined classes and packages in LaTEX2ε, which is a more recent im-
plementation of LaTEX than Lamport’s implementation.

By the end of this chapter you should know enough to write robust
classes and packages that take options, parse these options, and use
them to add new features on top of existing classes or packages. More
complete information may be found in [LaTEX3 Project 1999]. Flynn
[2007] also discusses class and package writing.

The remainder of this chapter is example driven. Besides studying
some of the basics of class and package writing, we shall implement
a user-defined class called modal for creating lecture presentations
and lecture notes. The class is built on top of the article and beamer
classes. If the beamer option is used then the class loads the beamer
class but if the article option is used then the class loads the article
class with a 12 pt point size. Loading the article class with the 12 pt
point size shows that we can do some additional configuration. All
other options are forwarded to the beamer or article class.

This chapter could also have been presented in Part V but by
presenting it here we may assume enough knowledge of the beamer
class, which is more convenient for the presentation.

15.1 The Structure of Classes and Packages

Class and package files are not the same as LaTEX source files. For
example, class and package files are loaded in the preamble so they
may not produce any output.

The main purpose of classes and packages is to set up some style-
defining parameters and to provide some useful commands. They start
by identifying themselves. Next they declare their options and process
these options. They continue by loading auxiliary class and package
files. Finally, they carry out additional configurations. This may involve
installing fonts, (re)defining style parameters and commands, and so
on. The remaining sections examine all steps in more detail.

15.2 Dependencies

The first thing a class or package does is state their dependencies. This
is done with the following command.

 , ,
DOI 10.1007/978-3-642-23816-1_15, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 237

238 Chapter 15

\NeedsTeXFormat{LaTeX2e}[〈date〉]
This states the dependencies of the class or package: the LaTEX imple-
mentation should be LaTEX2ε and the release date should be 〈date〉
or later. If you need a different LaTEX implementation, then you sub-
stitute it for LaTeX2e. The date should have the form 〈four digit
year〉/〈two digit month〉/〈two digit day〉. ☐√

15.3 Identification

The next thing a class or package does is identify themselves. They
use the following two commands to identify themselves.

\ProvidesClass{〈name〉}[〈date〉〈other information〉]
This formally identifies the class with the name 〈name〉. It is strongly
recommended that you provide the optional argument. The optional
argument should start with a date. The date 〈date〉 has the same
format as explained before. The information provided in the optional
argument is printed when the class is loaded. ☐√

\ProvidesPackage{〈name〉}[〈date〉〈other information〉]
This is the package version of \ProvidesClass. ☐√

The following are the first two lines of our modal class. We start
by stating the dependencies and continue by identifying the class.

\NeedsTeXFormat{LaTeX2e}[2009/09/24]
\ProvidesClass{modal}[2011/08/15 Modal class]

LaTEX Usage

15.4 Defining and Parsing the Options

Most classes and packages take options and declaring them in LaTEX2ε
is straightforward. Unfortunately, there is no standard mechanism for
declaring 〈key〉=〈value〉 options. This is why we shall use the pgfopts
package [Wright 2010], which makes pgfkeys-style option parsing
available in classes and packages. Oberdiek [2010] also provides a
package for parsing 〈key〉=〈value〉 options in classes and packages
but it is not as flexible and robust as pgfopts. The interested reader
is referred to [LaTEX3 Project 1999] for details about parsing options
with the standard LaTEX2ε mechanism.

It is important to note that keys cannot contain spaces in classes
and packages because they’re removed by the LaTEX kernel [Wright
2010]. The following two commands trigger the option parsing.

\ProcessPgfPackageOptions{〈base key〉}
This command triggers the option parsing for keys relative to the base
key 〈base key〉. Any options passed to the class or package will be
passed to \pgfkeys, which does the actual parsing. ☐√

\ProcessPgfPackageOptions*

This is equivalent to \ProcessPgfPackageOptions{〈name〉}, where
〈name〉 is the name of the current class or package. ☐√

Figure 15.1 continues the implementation of our modal class. We
start by declaring a TEX switch. The purpose of the switch is to deter-

Writing Classes and Packages 239

\makeatletter
\newif\ifmodal@beamer

\pgfkeys{/modal/.cd, % definitions are relative to /modal.
article/.style={beamer=false},
beamer/.is if=modal@beamer,
beamer, % turn the switch \ifmodal@beamer on
.unknown/.code=\modal@append@option}

\newcommand*\modal@options{}
\newcommand*\modal@append@option{%

\edef\modal@tmp{\modal@options}%
\edef\modal@options{\modal@tmp,\pgfkeyscurrentname}%

}

% process the package options.
\ProcessPgfPackageOptions{/modal}

Declaring class options
Figure 15.1

mine the mode of our class: it is true if and only if the mode of the
package is for a beamer presentation.

The implementation continues by calling \pgfkeys. The call starts
by defining a style called /modal/article and a decision key called
/modal/beamer that controls the value of the TEX switch. The style
turns the switch off by executing /modal/beamer=false.

The key /modal/.unknown collects any unknown options, which are
used further on. The key does this by appending any unknown option
to a command called \modal@options that stores a comma-separated
list of unknown options. The interested reader is invited to read the
pgf manual for further information about the .unknown feature.

The call to \PgfProcessPackageOptions triggers the actual option
parsing. Note that we pass the base key /modal because the pgfkeys
keys are all relative to that base key.

15.5 Loading Existing Classes and Packages

Needless to say, most classes and packages are not implemented from
scratch, so loading other classes and packages is usually required. The
advantage of this approach is that you may implement a user-defined
class file on top of another class and reuse the implementation effort.
For example, the user-defined class may load the article class with all
your favourite settings. Furthermore, the user-defined class may load
all your favourite packages. Writing your articles with the user-defined
class file is much easier because there is no more need to configure
the article class. This is much easier than starting a document that
uses the article class and then configuring the document.

A class file may only load one class but as many packages as it likes.
A package file may also load as many packages as it likes but it may not

240 Chapter 15

\ifmodal@beamer
\LoadClass[\modal@options]{beamer}[2010/06/21]

\else
\newif\ifmodal@contains % the variable is false now.
\def\modal@test@containment#1[#2]{%

\in@{#2}{#1}
\ifin@\modal@containstrue\fi

}
\expandafter\modal@test@containment\modal@options[10pt]
\expandafter\modal@test@containment\modal@options[11pt]
\expandafter\modal@test@containment\modal@options[12pt]

\ifmodal@contains
\LoadClass[\modal@options]{article}[2007/10/19]

\else
\LoadClass[12pt,\modal@options]{article}[2007/10/19]

\fi
\RequirePackage{beamerarticle}[2010/05/01]

\fi

\makeatother

Loading auxiliary classes and
packages

Figure 15.2

load classes. The following are the preferred commands for loading
classes and packages inside class and package files.

\LoadClass[〈options〉]{〈class〉}[〈date〉]
This loads the class 〈class〉 with options 〈options〉 as well as any
options that have been forwarded by the command \PassOptionsTo-
Class. The command \PassOptionsToClass is not studied in this
book but is explained in [LaTEX3 Project 1999]. The first and last ar-
gument of the \LoadClass command are optional. If you provide the
last option then loading the class only succeeds if your version of the
class 〈class〉 is at least as recent as 〈date〉. If the implementation of
the class is older then you get an error. ☐√

\RequirePackage[〈options〉]{〈package〉}[〈date〉]
This loads the package 〈package〉. Loading a package works the same
as loading a class. ☐√

\LoadClassWithOptions{〈class〉}[〈date〉]
This loads 〈class〉 with the same options as the current class. ☐√

\RequirePackageWithOptions{〈package〉}[〈date〉]
This loads 〈package〉 with the same options as the current package. ☐√

15.6 Final Configuration

At this stage we only have to do some extra configuring and load the
auxiliary classes and packages. This is shown in Figure 15.2.

Let’s examine the code in Figure 15.2 in more detail. The switch
\ifmodal@beamer indicates the mode of our class. We load the beamer
class if the switch is on; otherwise we load the article class.

Writing Classes and Packages 241

Loading the beamer class is easy. When we load it we also pass
the unknown options to the class. There is no need to expand the
unknown options.

Loading the article class is a bit more tricky. The reason is that we
want to use the class with a default point size of 12 pt. We cannot simply
add the 12pt option to the unknown options because the unknown
options may already contain a valid point size option. Remember that
the article class has only three valid point size options: 10pt, 11pt,
and 12pt.

There are two obvious approaches to determining whether there
is a valid point size in the unknown options. The first approach is to
use the \pgfkeys command and parse the options. This is really easy
to do and we already know the technique.

The second approach is to do the parsing ourselves. This is more
difficult and we will learn something new, so lets use this approach.
We start by introducing a new switch called \ifmodal@contains. When
this switch is created it is off by default. For each valid point size 10pt,
11pt, and 12pt we turn the switch on if it is contained in the unknown
options.

To implement our own parsing we shall use the macro \in@, which
is provided by the LaTEX kernel [Scharrer 2011-07-23]. The call \in@{
〈elem〉}{〈list〉} tests if 〈elem〉 is in the comma-delimited list 〈list〉.
The macro sets the switch \ifin@ accordingly. Unfortunately both
arguments of \in@ must be expanded, so we must do a bit more work
to expand the unknown options. This is what the TEX delimited macro
\modal@contains and the three lines after it are all about.

The rest is straightforward. If the switch \ifmodal@contains is
off we load the article with the 12pt option; otherwise we load it
without the 12pt option. We conclude by loading the auxiliary package
beamerarticle. This package is used in combination with the article
class. Among others it makes sure that all beamer commands work in
article mode.

Congratulations. You’ve just implemented a full blown LaTEX class.
Who would have thought it would be that easy.

Chapter 16
Using OpenType Fonts

The OpenType font format is an extension of the TrueType font
format. The format was developed by Microsoft and Adobe and sup-
ports different glyph variants. For example, a font may have glyph
variants for a zero with and without a slash. A single OpenType font
may support different variants, which are organised by features.

This relatively technical chapter explains how to use OpenType
fonts with pdflatex. As a matter of fact it explains how to implement
the font-related commands that were used to typeset this book.

Using OpenType fonts is really easy with Will Robertson and
Khaled Hosney’s fontspec package [Robertson 2011]. The package
gives you access to all OpenType glyphs, which may be selected by
their OpenType features. Unfortunately, fontspec requires X ETEX or
LuaTEX and doesn’t work with pdf LaTEX.

OpenType fonts typically have several thousands of glyphs. LaTEX
fonts are limited to 256 glyphs, which rules out including a single
OpenType font as a single LaTEX font. To overcome this problem we
shall extract the glyphs from the OpenType font and embed them
into a series of LaTEX fonts. We shall add some extra structure by
letting each LaTEX font consist of glyphs that agree on a set of carefully
chosen OpenType features. For example, one of our LaTEX fonts has
proportional oldstyle numbers such as 0123456789, another font has
non-proportional (tabular) lining numbers such as 0123456789, and
so on. We shall define commands for switching from one feature
set to another. For example, if the current mode uses proportional
oldstyle numbers, then a switch to tabular numbers will result in
tabular oldstyle numbers.

In the remainder of this chapter we shall use a commercial font
called Nexus as an example. This is the main font that was used to
typeset this book. To illustrate the possibilities, we shall install fonts
for four different configurations of numbers: proportional oldstyle
numbers, tabular oldstyle numbers, proportional lining numbers, and
tabular lining numbers. Also we shall install the commands that let
you access these fonts. It should be possible, at least in principle, to
automate this chapter’s approach. However, the biggest limitation is
that the number of required files is exponential in the number of
features that can be combined.

Throughout this chapter it is assumed that you know how to im-

 , ,
DOI 10.1007/978-3-642-23816-1_16, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 243

244 Chapter 16

Feature Description Feature Description

aalt Access All Alternates ornm Ornaments
c2sc Small Capitals From Capitals pnum Proportional Numbers
cpsp Capital Spacing smcp Small Capitals
dnom Denominators ss01 Stylistic Set 1
liga Standard Ligatures … …
lnum Lining Numbers ss06 Stylistic Set 6
numr Numerators subs Subscript
onum Oldstyle Figures sups Superscript
ordn Ordinals tnum Tabular Figures

Some font features of the italic,
seriffed shape of the Open-
Type font Nexus. The columns
‘Feature’ list the 4-letter fea-
ture abbreviation. The columns
‘Description’ explain the mean-
ing of the abbreviation. Strictly
speaking onum isn’t available.
However, this is the default fig-
ure feature.

Table 16.1

plement LaTEX and TEX commands and that you know the pgfkeys
option parsing techniques that are studied in Chapter 13.

16.1 OpenType Font Features

In this example-driven section we shall use Eddie Kohler’s otfinfo
command to study the features of OpenType fonts. If you supply
the option --features and the name of the OpenType font file, the
command will output a list consisting of the font’s font features. The
following shows how this works.

$ otfinfo --features NexusSerifOT-Italic.otf
aalt Access All Alternates
c2sc Small Capitals From Capitals
…

Unix Session

The output of the previous example is limited to a few lines for
brevity. Table 16.1 lists some of the more useful font features. The
remainder of this section briefly explains some of these features.

c2sc/smcp The properties c2sc and smcp are related to small caps letters. Many
LaTEX fonts implement “faked small caps” glyphs by scaling uppercase
letters. Good fonts have special glyphs for small caps numbers. These
glyphs are sometimes referred to as “real small caps.” The features
smcp and c2sc stand for small caps and capitals to small caps. The
feature smcp turn lowercase letters into real small caps, whereas c2sc
turns uppercase letters into real small caps. If you can, you should use
real small caps glyphs because they usually look better.

ornm Some fonts have special ornament glyphs, which are intended for
decoration. Common ornaments are fleurons but ornament glyphs
are not standardised. For example Nexus has “ornaments” like ¥, ¦,
§, ¨, ª, and so on. Glyphs like this have the property ornm.

ss01–ss06 Some fonts have stylistic alternates for some of the characters. A beau-
tiful example is the Zapfino font, which has nine stylistic alternates for
some of the characters. Figure 16.1 depicts an example. Nexus also
has stylistic alternate glyphs. Accessing stylistic alternate glyphs is
not explained here but it is not difficult to implement.

Using OpenType Fonts 245

g

g g

Stylistic alternates. This exam-
ple shows eight stylistic alter-
nates of the the letter d in the
Zapfino font. This example is
included with the kind permis-
sion of Dario Taraborelli.

Figure 16.1

Oldstyle Lining

Proportional 01111888823456789 01111888823456789
Proportional 08888111123456789 08888111123456789
Tabular 08888111123456789 08888111123456789
Tabular 01111888823456789 01111888823456789

Figure feature combinations.
This table lists four combina-
tions of figure feature that
are available in many mod-
ern OpenType fonts. The rows
list the width-affecting features.
The columns list the height-
affecting features.

Table 16.2

onum/lnum There are several properties that are related to figures (digits). The
properties onum and lnum affect the height of the figure glyphs. The
property onum is for oldstyle numbers, whereas the property lnum is
for lining numbers. The height of oldstyle numbers varies, whereas
the heights of lining numbers are all the same. Oldstyle numbers look
better in the running text. For example, the number 1234567890 is in
oldstyle numbers, which blend in well with the text but 1234567890
is in lining numbers, which look too high for the main text. Lining
numbers look better in text with uppercase letters: MAIN PRIZE:
BANK OF SANS SERIFFE REWARD CHECK TO THE VALUE
OF $ 1,000,000 (HEX). Remember that you should always letterspace
texts like this. The easiest way to letterspace text is with the \textls
command, which is provided by the microtype package.

pnum/tnum The features pnum and tnum affect the width of the figures. Glyphs
with the property tnum (tabular number) have a fixed width. Tabular
numbers are ideal for tables with numeric data because the figures in
the numbers align nicely in columns. Glyphs with the property pnum
(proportional number) have proportional width. These look better in
the running text. Table 16.2 depicts four different combinations of
figure features.

dnom/numr Some fonts have special glyphs for frequently occurring fractions.
They may also provide special glyphs for figures in numerators and

246 Chapter 16

denominators of fractions. These glyph variants have the property
numr for numerators and the property dnom for denominators.

To see why these glyph variants are interesting, consider the frac-
tion 42/133, which uses oldstyle numbers and an ordinary slash. Such
fractions will never win the first prize in a beauty competition. Sub-
stituting lining figures for the oldstyle numbers improves things a
little bit: 42/133. However, 42⁄133 was produced with a special command
that uses a solidus (virgule) for the slash and the proper glyphs for
the numerator and denominator. The kerning of the numerator and
denominator is currently handled by the command. For example, if
the numerator ends in a 7 then the solidus should be moved a bit
further to the left than if the numerator ends in a 1. The kerning for
the denominator uses differen rules. For example, if the denominator
starts with a 4 then it should be moved further to the left than if the
numerator starts with a 1. This kind of ad hoc kerning can also be
handled at the font level.

The idea to create the special command for fractions is inspired
by Michael Saunders. Reichert [1998] and Høgholm [2011] propose
different solutions for typesetting fractions. With Reichert’s nicefrac
package you get fractions like 33/71 and 11/42 for oldstyle numbers and
fractions like 33/71 and 11/42 for lining numbers. Høgholm’s xfrac
package uses a solidus by default. With this approach you get fractions
like 33⁄71, 11⁄42, 33⁄71, and 11⁄42. The reader is invited to compare these
fractions and the fractions 33⁄71 and 11⁄42, which are typeset with the
solidus and the glyph variants for numerators and denominators.

subs/sups The features subs and sups are glyph variants for subscripts and
superscripts. For example, consider ‘text,1,’ which you get if you use
LaTEX’s standard superscript construct ‘text,1,’
which scales the figure 1. Next consider ‘text,¹’ which you get if you
use the special glyph of the figure 1 for superscripts. The special glyph
is much larger than the scaled 1 and is easier to read. Note that it
may look better if we add a bit of kerning to force the 1 on top of the
comma: text,¹.

16.2 LaTEX Font Selection Mechanism

This section is a brief introduction to LaTEX’s font selection mechanism
It is mainly based on [LaTEX3 Project 2000], [Mittelbach, Fairbairns,
and Lemberg 2006], [Rahts 1993], and [Goossens, Rahtz, and Mittelbach
1997].

The key to LaTEX2ε font selection is setting the right values for the
right attributes. LaTEX2ε has five font attributes, which are as follows.

encoding This attribute specifies the order of the glyphs in the font. There are
several kinds of encodings but the most commonly used encodings
for text are OT1 for TEX text and T1 for TEX extended text. In our
implementation we shall use an encoding called LY1, which is also
known as Y&Y encoding [Mittelbach, Fairbairns, and Lemberg 2006].

Encodings are defined in font encoding files. A position in an en-

Using OpenType Fonts 247

coding is also known as a slot. By putting the right glyph in the right
slot in an encoding file, you can make LaTEX print the glyph for the
character that is supposed to be in that slot. For example, the lower-
case letters in an encoding file are stored in slots 61–7A (hexadecimal).
By putting small caps glyph variants in those slots, you can make
LaTEX print a small caps a when you use a lowercase a in your input.
Figure 16.2 shows this in further detail.

family The font family attribute defines a collection of related fonts. Typically,
a LaTEX font family provides a roman shape, an italic shape, a slanted
shape, a small caps shape, and so on.

Usually, the members of a font family are from the same designer,
but this is not required—especially in LaTEX font families. The main
criterion for a good font family is that its members get on well. Ex-
amples of font families are Computer Modern Roman, Computer Modern
Sans Serif, Gentium, Helvetica, and so on.

LaTEX font families are defined in font definition files. How to create
font definition files is explained further on.

series The series attribute determines the blackness of a font. For example,
the roman shape may have specially defined font files for medium
weight, for bold, for bold extended, and so on. The series is charac-
terised by values such as l for light, m for medium, b for bold, bx for
bold extended, and so on. The most common series have standardised
values, but you may also define your own values.

shape The shape attribute determines, well, the shape of the font: upright
(roman), italic, slanted, small caps, and so on. Shapes are also char-
acterised by letter sequences. The most common shape values have
standard names: n for normal/upright, it for italic, sl for slanted, and
sc for small caps. As with the series attribute you may also define
your own values.

size The last font attribute is the size of the font. The size of a font is
the sum of the largest height and the largest depth of the bounding
boxes of the letters in the font. Some fonts have different designs
for different sizes. For example, they may have one design for 6 pt, a
different design for 10 pt, and so on. Many fonts only have one design
at one fixed type size. This font is scaled to different type sizes. If there
are designs for different type sizes then a font may be scaled from one
of these designs. Usually it is scaled from the design with a similar
type size. This chapter assumes there is only one design for each font.
LaTEX3 Project [2000] explains how to use several designs.

For each of these previous five font attributes there is a command
that sets the attribute. The following are these commands.

\fontencoding{〈encoding〉}
This sets the current font encoding to 〈encoding〉. In this book we
shall always use the font encoding LY1. ☐√

\fontfamily{〈family〉}
This sets the current font family to 〈family〉. ☐√

\fontseries{〈series〉}
This sets the current font series to 〈series〉. This command is called

248 Chapter 16

% THIS FILE WAS AUTOMATICALLY GENERATED -- DO NOT EDIT

%%AutoEnc_nm2xhbpmn36tu3xg5fo7gsmswg
% Encoding created by otftotfm on Wed Aug 3 04:14:15 2011
% Command line follows encoding
/AutoEnc_nm2xhbpmn36tu3xg5fo7gsmswg [
%00

/.notdef /Euro /.notdef /.notdef /fraction.sc /dotaccent /hungarumlaut /ogonek
/fl.sc /.notdef /.notdef /uniFB00 /fi.sc /.notdef /uniFB03 /uniFB04

%10
/dotlessi.sc /.notdef /grave /acute /caron /breve /macron /ring
/cedilla /germandbls.sc /ae.sc /oe.sc /oslash.sc /AE /OE /Oslash

%20
/space /exclam.sc /quotedbl /numbersign.sc /dollar.sc /percent.sc /ampersand.sc /quoteright
/parenleft.sc /parenright.sc /asterisk.sc /plus /comma /hyphen /period /slash.sc

%30
/zero /one /two /three /four /five /six /seven
/eight /nine /colon /semicolon /less /equal /greater /question.sc

%40
/at /A /B /C /D /E /F /G
/H /I /J /K /L /M /N /O

%50
/P /Q /R /S /T /U /V /W
/X /Y /Z /bracketleft.sc /backslash.sc /bracketright.sc /circumflex /underscore

%60
/quoteleft /a.sc /b.sc /c.sc /d.sc /e.sc /f.sc /g.sc
/h.sc /i.sc /j.sc /k.sc /l.sc /m.sc /n.sc /o.sc

%70
/p.sc /q.sc /r.sc /s.sc /t.sc /u.sc /v.sc /w.sc
/x.sc /y.sc /z.sc /braceleft.sc /bar.sc /braceright.sc /tilde /dieresis

%80
/Lslash /quotesingle /quotesinglbase /florin /quotedblbase /ellipsis.sc /dagger /daggerdbl
/.notdef /perthousand.sc /Scaron /guilsinglleft /.notdef /Zcaron /asciicircum /minus

%90
/lslash.sc /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash
/.notdef /trademark /scaron.sc /guilsinglright /.notdef /zcaron.sc /asciitilde /Ydieresis

%A0
/uni00A0 /exclamdown.sc /cent /sterling /currency /yen /brokenbar.sc /section
/.notdef /copyright /ordfeminine.sc /guillemotleft /logicalnot /uni00AD /registered /.notdef

%B0
/degree /plusminus /twosuperior /threesuperior /.notdef /mu /paragraph /periodcentered
/.notdef /onesuperior /ordmasculine.sc /guillemotright
/onequarter.sc /onehalf.sc /threequarters.sc /questiondown.sc

%C0
/Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /.notdef /Ccedilla
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis

%D0
/Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply
/.notdef /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /.notdef

%E0
/agrave.sc /aacute.sc /acircumflex.sc /atilde.sc /adieresis.sc /aring.sc /.notdef /ccedilla.sc
/egrave.sc /eacute.sc /ecircumflex.sc /edieresis.sc
/igrave.sc /iacute.sc /icircumflex.sc /idieresis.sc

%F0
/eth.sc /ntilde.sc /ograve.sc /oacute.sc /ocircumflex.sc /otilde.sc /odieresis.sc /divide
/.notdef /ugrave.sc /uacute.sc /ucircumflex.sc /udieresis.sc /yacute.sc /thorn.sc /ydieresis.sc

] def
% Command line: ’otftotfm -v fsi -fkern -fliga --ligkern T{L}h
% --map-file=fsi.map --no-updmap --force -a -e texnansx -fonum -fpnum
% -fsmcp NexusSerifOT-Regular.otf LY1--NexusSerifOT-Regular--fonum--fpnum--fsmcp’

A typical font encoding file. The
file was generated by otftotfm
and defines what is in the
256 slots of an LY1 encoding.
The lines starting with a per-
centage sign are comments.
Most comments list the num-
ber of the next slot in hex-
adecimal. Each slot specifica-
tion is of the form /〈spec〉.
Empty slots are denoted /.not-
def. For the remaining slots
〈spec〉 is the postscript or Uni-
code name of the glyph in the
slot. The order of the slot spec-
ifications is significant. For ex-
ample, there is no glyph in
slot 0. The glyph in slot 1 is
the Euro glyph, the next two
slots are empty, the glyph in
slot 4 is the virgule/solidus, and
so on. The main purpose of
the encoding file in this fig-
ure is to support a LaTEX font
that uses small caps glyphs for
the lowercase letters. This is
done by putting special small
caps glyphs in the slots that are
reserved for the lowercase let-
ters. For example, the LY1 en-
coding reserves slots 61–7A for
lowercase letters. The glyphs
in these slots all have names
ending in .sc, which indicates
that they’re small caps glyph
variants of these letters. Some
other slots are also occupied
by small caps glyphs. For exam-
ple, there’s a small caps excla-
mation mark in slot 21, a small
caps question mark in slot 3F,
and so on.

Figure 16.2

Using OpenType Fonts 249

by commands such as \mdseries and \texnormal, \bfseries and
\textbf, and so on. ☐√

\fontshape{〈shape〉}
This sets the current font shape to 〈shape〉. This command is called
by commands such as \rmfamily and \textrm, \itshape and \textit,
and so on. ☐√

\fontsize{〈size〉}{〈unspread leading〉}
This sets the point size of the font to 〈size〉 and the leading to the
product of 〈unspread leading〉 and the current value of the line spread.
The leading is stored in a length command that is called \baseli-
neskip. The notion of line spread is explained in the next paragraph.
The command \fontsize is called by commands such as \scriptsize,
\large, and so on. ☐√

In addition, there is one command that sets the line spread.
\linespread{〈factor〉}

This command defines a multiplication factor that is called the line
spread. When there is a call to \fontsize{〈size〉}{〈unspread lead-
ing〉}, the value of \baselineskip is set to the product of 〈unspread
leading〉 and the line spread. It is strongly advised to set the line
spread to 1. ☐√

You may use any combination of the previous six commands but a
call to \selectfont should follow them before you typeset anything.

\selectfont

This loads the font that is determined by the current values of the
font attributes. Changes to font attribute values may not result in
a change of the type style unless they are immediately followed by
a call to \selectfont. For example, ‘\fontshape{it} \selectfont
first \fontshape{sc} second’ may typeset both ‘first’ and ‘second’
in italic. However, ‘\fontshape{it} \selectfont first \fontshape{
sc} \selectFont second’ should typeset ‘first’ in italic and ‘second’ in
small caps. ☐√

16.3 Overview of Functionality

This section briefly explains the functionality we are going to imple-
ment in the remainder of this chapter. Basically, we want to implement
commands that give access to some useful glyphs in an existing Open-
Type font with the same ease as the commands that are provided by
the fontspec package. As an example of what is possible, we shall
implement some user-defined commands that give access to different
glyphs for figures (digits).

With the fontspec package you can access glyph variants by their
OpenType features. For example after the following commands the
roman text is typeset in the font NexusSerifOT-Regular with oldstyle
proportional numbers.

\usepackage{fontspec}
\setromanfont[Numbers={OldStyle,Proportional}]

{NexusSerifOT-Regular}

LaTEX Usage

250 Chapter 16

The previous commands make sure that the roman text is typeset
using the external OpenType font NexusSerifOT-Regular and that the
glyph variant combination onum/pnum is used for numbers. However,
you still have access to different number glyph variants.

1234567890 and
\fontspec[numbers={Lining}]

{1234567890.}
1234567890 and 1234567890.

This chapter implements a similar functionality but with different
commands. For example, we want declarations that enable (switch to)
a given font feature and commands that take an argument and typeset
the argument according to the command’s feature. For example,

\TLNumSwitch 1234567890
\ONumStyle{and 1234567890.}
\PNumSwitch 1234567890
\ONumStyle{and 1234567890}.

1234567890 and 1234567890.
1234567890 and 1234567890.

In this example, the command \TLNumSwitch is a declaration that
switches to tabular lining numbers. The command \ONumStyle sets
the numbers in its argument in oldstyle number format. When the
command \ONumStyle is called, it will maintain the tabular feature
because it is compatible with oldstyle numbers. The command \PNum-
Switch is a declaration that switches to proportional number style.
Note that the argument of the command \ONumStyle may also contain
non-numeric characters.

16.4 Inspecting the Font

One of the first things you want to do is to see the glyphs of your
OpenType font. Again Eddie Kohler comes to the rescue with his
cfftot1 and t1testpage tools. The following unix script, which is
called TestPage, lets you extract the glyphs from a list of OpenType
font files:

#!/bin/sh

for FILE in $@; do
BASE=‘basename ${FILE} .otf‘
cfftot1 ${FILE} | t1testpage |

epstopdf --filter > ${BASE}.pdf
done

Unix Usage

Running the script on the Nexus OpenType file that is called
NexusSerifOT-Italic.otf is done as follows.

$./TestPage NexusSerifOT-Italic.otf Unix Usage

Figure 16.3 depicts the first page of the resulting output. The figure
shows the available glyphs for the first letters. Notice that each glyph
has a name.

Using OpenType Fonts 251

NexusSerifOT-Italic

’A’

A

A
A.ss01

A
A.ss02

A
’a’

a

a
a.dnom

a
a.numr

a
a.sc

a
a.ss03

a
a.ss04

a
a.subs

a
a.sups

a
’B’

B

B
B.ss01

B
B.ss02

B
’b’

b

b
b.dnom

b
b.numr

b
b.sc

b
b.ss03

b
b.ss04

b
b.subs

b
b.sups

b
’C’

C

C
C.ss01

C
C.ss02

C
’c’

c

c
c.sc

c
c.ss03

c
c.ss04

c
’D’

D

D
D.ss01

D
D.ss02

D
’d’

d

d
d.dnom

d
d.numr

d
d.sc

d
d.ss03

d
d.ss04

d
d.subs

d
d.sups

d

’E’

E

E
E.ss01

E
E.ss02

E
’e’

e

e
e.dnom

e
e.numr

e
e.sc

e
e.ss03

e
e.ss04

e
e.subs

e
e.sups

e
’F’

F

F
F.ss01

F
F.ss02

F
’f’

f

f
f.sc

f
f.ss03

f
f.ss04

f
’G’

G

G
G.ss01

G
G.ss02

G
’g’

g

g
g.sc

g
g.ss03

g
g.ss04

g
’H’

H

H
H.ss01

H
H.ss02

H
’h’

h

h
h.dnom

h
h.numr

h
h.sc

h
h.ss03

h
h.ss04

h
h.subs

h
h.sups

h
’I’

I

I
I.ss01

I
I.ss02

I
’i’

i

i
i.dnom

i
i.latn_TRK.sc

i
i.numr

i
i.sc

i
i.ss03

i
i.ss04

i
i.subs

i
’J’

J

J
J.ss01

J
J.ss02

J

’j’

j

j
j.sc

j
j.ss03

j
j.ss04

j
’K’

K

K
K.ss01

K
K.ss02

K
’k’

k

k
k.sc

k
k.ss03

k
k.ss04

k
’L’

L

L
L.ss01

L
L.ss02

L
’l’

l

l
l.dnom

l
l.numr

l
l.sc

l
l.ss03

l
l.ss04

l
l.subs

l
l.sups

l
’M’

M

M
M.ss01

M
M.ss02

M
’m’

m

m
m.dnom

m
m.numr

m
m.sc

m
m.ss03

m
m.ss04

m
m.subs

m
m.sups

m
’N’

N

N
N.ss01

N
N.ss02

N
’n’

n

n
n.dnom

n
n.numr

n
n.sc

n

Sample of some of the glyphs
of one of the Nexus variants.
The output was created with
the aid of Eddie Kohler’s
cfftot1 and t1testpage
tools. The output is scaled to
70% of the original size.

Figure 16.3

252 Chapter 16

It is also possible to inspect the names of the glyphs with otfinfo.
The following shows how this is done.

$ otfinfo --glyphs NexusSerifOT-Italic.otf
787 lines with glyph names omitted.

Unix Usage

The output is a long list of lines, each consisting of the name of a
single glyph. The following are the names for the glyphs of the upper-
case and the lowercase a: A (uppercase A), A.ss01 (stylistic alternate 1),
A.ss02 (stylistic alternate 2), a (lowercase a), a.dnom (denominator),
a.numr (numerator), a.sc (small caps), a.ss03 (stylistic alternate 3),
a.ss04 (stylistic alternate 4), a.subs (subscript), and a.sups (super-
script). It is reassuring that these names are the same as the ones listed
at the top of Figure 16.3.

16.5 Current Alternatives

There are some other approaches to using OpenType fonts. Owens
[2006] provides tools to generate a package from an OpenType font
specification. Basically the tools are a wrapper around otftotfm. The
user supplies a so-called Berry code [Berry 1990] and scaling informa-
tion. Choosing the Berry code requires some technical knowledge
from the user. If the Berry code is not known, the user must edit a
script. The script generates the required LaTEX font files and a package
that can be loaded in oldstyle mode or in lining mode. The package
does not provide support to select other font features. If all you need
is an OpenType font for one single feature (oldstyle/lining) then the
solution presented by Owens is easier than the solution proposed in
this chapter.

As explained in the introduction, the fontspec package also pro-
vides support for OpenType fonts. However, the package does not
support pdftex.

16.6 Designing the Font Families

In this section we shall design the font families.Nexus has four families:
serif, sans serif, mix, and typewriter. The mix variants is a slab serif: the
quick brown fox jumps over the lazy dog. For simplicity we shall ignore
the mix variant. The remaining variants come with a regular and italic
shape and a normal and bold weight (series). The seriffed and sans
serif variants have oldstyle tabular (ot) numbers, lining tabular (lt)
numbers, oldstyle proportional (op) numbers, and lining proportional
(lp) numbers. Not entirely surprising the typewriter variants only
have ot and lt numbers. The seriffed and sans serif variants also
have special glyphs for small caps for each combination of font shape
and font weight. Table 16.3 lists all possible combinations. The total
number of combinations is 2×2×2×4×2+1×2×2×2×1 = 64+8 = 72
combinations of font variant, shape, weight, and number features.

To implement our font switching commands we shall use 12 font
font families: one font family for each combination of font shape (serif,

Using OpenType Fonts 253

Font families: Serif Sans Serif Typewriter

font shape

regular √ √ √
italic √ √ √

font weight

normal √ √ √
bold √ √ √

number features

ot √ √ √
lt √ √ √
op √ √
lp √ √

small caps

disabled √ √ √
enabled √ √

Nexus font features. This table
list all possible combinations
of font family, font shape, font
weight, and number and small
caps features. The columns are
the font families. A √ in the row
for a given shape, weight, or
feature means that the corre-
sponding variant has the shape,
weight, or feature.

Table 16.3

sans serif, and typewriter) and number features. Two of these families
are artificial because the typewriter shape doesn’t have proportional
numbers. However, introducing them simplifies the overall design.

By cleverly naming the 12 font families we can determine the font
features from the name of the families. Given the font features we
can then switch to a different font family if we want to change one of
the features of the current font family. In the following we shall use
font family names of the form 〈font variant〉--〈fonum or flnum〉--
〈ftnum or fpnum〉. Lets assume that serif--fonum--ftnum is our cur-
rent font family then this means than tabular oldstyle numbers are
active. If we wanted to use lining numbers then we simply change
the feature onum to lnum: serif--flnum--ftnum. With TEX’s delimited
macros such changes are easy to implement. For example, let’s assume
we have the following definition.

\def\change@first@feature#1--f#2--#3[#4]{%
#1--#4--#3%

}

LaTEX Usage

Then \change@first@feature NexusSerif--fonum--ftnum[lnum] gives
us NexusSerif--flnum--ftnum. Changing the font variant and chang-
ing other features can be implemented in a similar way. Different
techniques are also possible.

16.7 Extracting the Fonts

Creating and installing LaTEX fonts from scratch may be difficult and
time consuming. This is partially because of decisions about naming

254 Chapter 16

conventions and file locations. Eddie Kohler’s otftotfm [Kohler 2011]
has made the installation process of OpenType fonts extremely easy.

Given an OpenType font, you tell otftotfm about the features you
are interested in and it will create the font encoding (.enc) files, the
font metric (.tfm) files, and the virtual font (.vf) files, and put them in
the right place. We have already seen encoding files: they determine
the order of the characters in the fonts. Font metric files tell LaTEX
about the sizes of the characters, kerning, and rules for forming from
character combinations. The combination of a tfm and a vf file defines
a virtual font [Goossens, Rahtz, and Mittelbach 1997, Chapter 10]. For
our purpose the vf file is used to find the glyphs in the OpenType font.
In the remainder we shall treat the tfm and vf files as if they were the
same. We shall refer to them as font metric files. From a conceptual
point of view this suffices to know how to use them—not how they
work.

In the rest of this section we shall use otftotfm to create the font
encoding and font metric files for one of the members of one font
family. Creating the remaining font encoding and font metric files
works in a similar way.

The otftotfm uses lots of command line arguments. In the follow-
ing we define a variable that defines the default flags.

FLAGS="-v fsi -fkern -fliga --ligkern T{L}h \
--no-updmap --map-file=fsi.map \
--force -a -e texnansx"

Unix Usage

Most of these flags are recommended. The flags --ligkern T{L}h
tell otftotfm not to turn the combination Th into a ligature. The
flags -v fsi tell otftotfm the vendor is fsi—a shorthand for Font
Shop International. The flag --no-updmap tells otftotfm not to update
the default font map files and the TEX name database. Using the flag
makes otftotfm significantly faster. However, if you do use it, you
have to explicitly update the name database afterwards. Note that the
flag -fliga turns standard ligature combinations. You probably want
to turn this flag off when the fonts for the typewriter family.

The following shows how to create the font encoding and font
metric files for the number features onum and pnum. We create files for
the regular shape with and without small caps. Our encoding is LY1,
which is why the names of the font metric files (the last command line
arguments) start with LY1--.

$ otftotfm ${FLAGS} \
NexusSerifOTRegular.otf -fonum -fpnum \
LY1--NexusSerifOTRegular--fonum--fpnum

$ otftotfm ${FLAGS} \
NexusSerifOTRegular.otf -fonum -fpnum -fsmcp \
LY1--NexusSerifOTRegular--fonum--fpnum--fsmcp

Unix Usage

Creating the remaining files is done in a similar way but for the
italic fonts you have to provide the italic angle because the font files
don’t provide information about the italic angle. Adding the flag --

Using OpenType Fonts 255

\ProvidesFile{NexusSerif--flnum--fpnum.fd}
[2011/07/26 v1.0 Nexus Support]

\DeclareFontFamily{LY1}{NexusSerif--flnum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--flnum--fpnum}{m}{n}

{<-> LY1--NexusSerifOT-Regular--flnum--fpnum}{}
…
\DeclareFontShape{LY1}{NexusSerif--flnum--fpnum}{b}{it}

{<-> LY1--NexusSerifOT-BdIt--flnum--fpnum}{}
…
\endinput

Partial font definition file
Figure 16.4

italic-angle=-7 to otftotfm should do the trick. Normally, there’s
no need to supply the italic angle.

When you’re finished creating the font files, you have to move the
map file to its proper destination. This is done as follows.

$ mkdir -p ${TEXMFVAR}/fonts/map/dvips/fsi
$ mv fsi.map ${TEXMFVAR}/fonts/map/dvips/fsi

Unix Usage

Finally, we update the default font map files and update the TEX
filename database.

$ updmap --enable Map fsi.map Unix Usage

16.8 Font Definition Files

Remember that a font family is a collection of related fonts. LaTEX
defines each font family in its own font definition file. These files
come with the extension fd. The purpose of the font definition file
is to relate the five previously mentioned attributes with the name of
the font family. For example, the font definition file may define a font
family that uses uses font 〈roman〉 at 〈size〉 for the regular shape and
normal series, uses font 〈roman bold〉 at 〈size〉 for the regular shape
and bold series, uses font 〈italic〉 at 〈size〉 for the italic shape and
normal series, and so on.

Figure 16.4 is an example of a font definition file that defines a font
family called NexusSerif--flnum--fpnum.fd for the LY1 font encoding.
The base name of the font definition file is obtained by adding the
name of the font encoding before the name of the font family. In
this case the name is LY1NexusSerif--flnum--fpnum.fd. In the font
definition file, the name LY1--NexusSerifOT-Regular--flnum--fpnum
and the name LY1--NexusSerifOT-BdIt--flnum--fpnum are names of
font metric files, which were generated in the previous section. The
following explains the commands in Figure 16.4 in further detail.

\DeclareFontFamily{〈enc〉}{〈family〉}{〈commands〉}
This declares the name of the font family. The argument 〈enc〉 is
the font encoding and 〈family〉 is the name of the font family. The

256 Chapter 16

\ProvidesFile{NexusSerif--fonum--fpnum.fd}
[2011/07/26 v1.0 Nexus Support]

\DeclareFontFamily{LY1}{NexusSerif--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{m}{n}

{<-> LY1--NexusSerifOT-Reg--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{m}{sl}

{<-> LY1--NexusSerifOT-It--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{m}{it}

{<-> LY1--NexusSerifOT-It--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{b}{n}

{<-> LY1--NexusSerifOT-Bd--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{b}{sl}

{<-> LY1--NexusSerifOT-BdIt--fonum--fpnum}{}
\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{b}{it}

{<-> LY1--NexusSerifOT-BdIt--fonum--fpnum}{}

\DeclareFontShape{LY1}{NexusSerif--fonum--fpnum}{m}{sc}
{<-> LY1--NexusSerifOT-Reg--fonum--fpnum--fsmcp}{}

…
\endinput

Nexus font definition file
Figure 16.5

〈commands〉 are executed when the font family member is loaded. In
this chapter we won’t use such commands. ☐√

\DeclareFontShape{〈enc〉}{〈family〉}{〈series〉}{〈shape〉}{〈info〉}{〈commands〉}
This declares a member of the font family 〈family〉 for font encoding
〈enc〉. The arguments 〈series〉 and 〈shape〉 define the series and shape
of the member. The example in Figure 16.4 specifies the roman/normal
(n) family member for the medium (m) series and the italic (it) member
for the bold (b) series. The commands in 〈info〉 determine the names
of the font metric files and how they should be loaded. In this chapter
we shall always use one single font metric file per \DeclareFontShape
command, but this is not required [LaTEX3 Project 2000]. The <->
basically states that the font should be scaled to the current type size.
The 〈commands〉 are executed when a member of the family is loaded.
Again, we won’t need such commands. ☐√

16.9 Creating the Font Definition Files

Having created the font encoding files and the font metric files, we
have to implement a font definition (.fd) file for each font family.
Figure 16.5 lists the essence of the font definition file for the font
family of a seriffed font that uses oldstyle (onum) proportional (pnum)
numbers. The last three \DeclareFontShape commands for small caps
shapes are not listed.

Note that our naming scheme has made it easy to find the name
of the font metric file for a given font shape, font series, and fea-
ture combination. For example, let’s have a look at the font family

Using OpenType Fonts 257

NexusSerif--fonum--fpnum. This family has members with and with-
out the small caps feature. For the font metric files we simply use LY1--
NexusSerifOT-〈series/shape〉--fonum--fpnum or LY1--NexusSerifOT-
〈series/shape〉--fonum--fpnum--fsmcp, where 〈series/shape〉 is Reg-
ular for n/m (normal/medium), Bold for n/b (normal/bold), Italic for
it/m (italic/medium), and BoldItalic for it/b (italic/bold).

Also note that it is easy to generate the content of the font defini-
tion file. As a matter of fact, Owens [2006] has already implemented
something like that. Our approach requires a bit more work but is a
tad more general.

16.10 Implementing a Font Package

We’re almost ready to use our fonts in LaTEX. In this section we shall
implement the core of a package that provides commands to access
our fonts.

Before writing the package it is useful to see if LaTEX can find the
font metric files. We could use kpsewhich to do this but we can also
do this with the fonttable package [Wilson 2011], which provides a
command called \fonttable. If you pass the name of the font metric
file to \fonttable the command, it will output the glyphs in the font.
Figure 16.6 shows an example that was obtained as follows.

\fonttable{LY1--NexusSerifOT-Reg--flnum--fpnum} LaTEX Usage

It’s encouraging that the \fonttable command works because
it means that LaTEX can find the font metric file. The following is a
bird’s eye view of our package.

\ProvidesFile{Nexus.sty}
[2011/07/26 v1.0 Nexus Support]

\makeatletter
\RequirePackage[LY1]{fontenc}
\RequirePackage{pgfopts}
…
\makeatother

LaTEX Usage

Loading the fontenc package sets the default font encoding to
LY1. By loading the pgfopts package we can do our option parsing in
pgfkeys style.

In the remainder of this section we shall implement the core of
the remaining commands.

16.10.1 Parsing the Point Size

In this section we shall implement a package option that allows the
user to define the font’s point size (type size). For simplicity we shall
implement options for 8–13 pt. Implementing other point size options
is straightforward. Throughout we shall use the pgfkeys-style option
parsing techniques that we studied in Chapter 13.

Each point size should have a properly chosen value for the leading.

258 Chapter 16

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́
0́0x 0 € 1 2 3 ⁄ 4 ˙ 5 ˝ 6 ˛ 7

˝0x
0́1x fl 8 9 10 ff 11 fi 12 13 ffi 14 ffl 15

0́2x ı 16 ȷ 17 ` 18 ´ 19 ˇ 20 ˘ 21 ¯ 22 ˚ 23
˝1x

0́3x ¸ 24 ß 25 æ 26 œ 27 ø 28 Æ 29 Œ 30 Ø 31

0́4x 32 ! 33 " 34 # 35 $ 36 % 37 & 38 ’ 39
˝2x

0́5x (40) 41 * 42 + 43 , 44 - 45 . 46 / 47

0́6x 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55
˝3x

0́7x 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63

1́0x @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71
˝4x1́1x H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79

1́2x P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87
˝5x

1́3x X 88 Y 89 Z 90 [91 \ 92] 93 ˆ 94 _ 95

1́4x ‘ 96 a 97 b 98 c 99 d 100 e 101 f 102 g 103
˝6x

1́5x h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111

1́6x p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119
˝7x

1́7x x 120 y 121 z 122 { 123 | 124 } 125 ˜ 126 ¨ 127

2́0x Ł 128 ' 129 ‚ 130 ƒ 131 „ 132 … 133 † 134 ‡ 135
˝8x

2́1x 136 ‰ 137 Š 138 ‹ 139 140 Ž 141 ^ 142 − 143

2́2x ł 144 145 146 “ 147 ” 148 • 149 – 150 — 151
˝9x

2́3x 152 ™ 153 š 154 › 155 156 ž 157 ~ 158 Ÿ 159

2́4x 160 ¡ 161 ¢ 162 £ 163 ¤ 164 ¥ 165 ¦ 166 § 167
˝Ax2́5x 168 © 169 ª 170 « 171 ¬ 172 173 ® 174 175

2́6x ° 176 ± 177 ² 178 ³ 179 180 μ 181 ¶ 182 · 183
˝Bx

2́7x 184 ¹ 185 º 186 » 187 ¼ 188 ½ 189 ¾ 190 ¿ 191

3́0x À 192 Á 193 Â 194 Ã 195 Ä 196 Å 197 198 Ç 199
˝Cx

3́1x È 200 É 201 Ê 202 Ë 203 Ì 204 Í 205 Î 206 Ï 207

3́2x Ð 208 Ñ 209 Ò 210 Ó 211 Ô 212 Õ 213 Ö 214 × 215
˝Dx

3́3x 216 Ù 217 Ú 218 Û 219 Ü 220 Ý 221 Þ 222 223

3́4x à 224 á 225 â 226 ã 227 ä 228 å 229 230 ç 231
˝Ex

3́5x è 232 é 233 ê 234 ë 235 ì 236 í 237 î 238 ï 239

3́6x ð 240 ñ 241 ò 242 ó 243 ô 244 õ 245 ö 246 ÷ 247
˝Fx

3́7x 248 ù 249 ú 250 û 251 ü 252 ý 253 þ 254 ÿ 255

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Sample \fonttable output
Figure 16.6

Using OpenType Fonts 259

Our package provides the allowed point sizes as package options and
uses them to determine the corresponding leading. We shall imple-
ment each package option as a pgfkeys style that executes two keys: a
key that records the point size and a key that records the leading.

We start by implementing the keys that record the point size and
the leading. We use the key’s .store in to specify the command that
records the value of the key.

\pgfkeys{/nexus/.cd,
point size/.store in=\nexus@point@size,
leading/.store in=\nexus@leading}

LaTEX Usage

Next we implement a style for the package options. Since there’s a
lot of repetition we wrap up the style definition in a command.

% Define a style called #1pt that sets the
% point size to #1pt and the leading to #2pt.
% The key can also be used as a package option.
\def\nexus@point@size@option#1]#2]{%

\pgfkeys{/nexus/#1pt/.style={%
/nexus/.cd,point size=#1,leading=#2}%

}

LaTEX Usage

The next thing is to determine the values for the leading for the
point sizes. A rule of thumb states that the leading should be 1.2 times
the value of the point size. Using this rule of thumb usually avoids
collisions between characters on adjacent lines.

Intermezzo. Choosing a perfect value for the leading is usually impossible
if your text contains inline math material. This is why LaTEX—TEX really—
has a rescue mechanism that adds some stretch between two lines if d + h
exceeds a certain limit, where d is the maximum depth of the boxes on
the first line and h is the maximum height of the boxes on the next line.
Adding the extra stretch may distrurb the overall page aesthetics. Bazargan,
and Radhakrishnan [2007] note that character collisions hardly happen,
even if you turn the rescuemechanism off. And even if collisions do happen
then they usually can be avoided by rearranging the text. Knuth [1990,
pp. 78–80] provides the exact details of TEX’s rescue mechanism.

The following defines six options for the allowed point sizes for
our package. The option names are 8pt, 9pt, …, 13pt. For each option
we choose a reasonable integral value for the leading. We shall use
1.2p� pt for the leading, where p is the type size. Defining other point
size options is easy. Note that \nexus@combination is expanded before
we call \nexus@point@size@option.

\@for\nexus@combination:=8]10,9]11,10]12,%
11]13,12]14,13]15\do{%

\expandafter\nexus@point@size@option%
\nexus@combination]%

}

LaTEX Usage

260 Chapter 16

We continue by calling the \ProcessPgfPackageOptions command,
which triggers the parsing of the options that are passed to the pack-
age that we’re implementing at the moment. The command is imple-
mented in the pgfopts package and is explained in Chapter 13.

\ProcessPgfPackageOptions{/nexus} LaTEX Usage

For example, when the user uses our package with the option 11pt
then \ProcessPgfPackageOptions starts parsing the options of our
package. This passes the option 11pt to pgfkeys and this calls the style
/nexus/11pt, which sets the point size to 11 pt and the leading to 13 pt.

16.10.2 Loading the Font

Having defined the point size and the leading we continue by redefin-
ing the commands that store the default names of the roman, sans
serif, and typewriter font families.

\renewcommand*\rmdefault{NexusSerif--fonum--fpnum}
\renewcommand*\sfdefault{NexusSans--fonum--fpnum}
\renewcommand*\ttdefault{NexusTypewriter--fonum--fpnum}

LaTEX Usage

By redefining them we make sure that the proper font is loaded
when LaTEX’s font selection mechanism selects a roman, a sans serif,
or a typewriter shape.

We continue by redefining the remaining defaults. Most of these
definitions are standard.
Family, shape, and series:

\renewcommand\familydefault{\rmdefault}
\renewcommand\shapedefault{n}
\renewcommand\seriesdefault{m}

LaTEX Usage

Medium and bold series:

\renewcommand\mddefault{m}
\renewcommand\bfdefault{b}

LaTEX Usage

Roman, small caps, italics, and slanted shapes: Nexus doesn’t have
slanted shapes. We could use otftotfm to compute a slanted shape
from the roman shape but we shall not do this. Instead we shall use
an italic shape when a slanted shape is required.

\renewcommand\updefault{n}
\renewcommand\scdefault{sc}
\renewcommand\itdefault{it}
\renewcommand\sldefault{it}

LaTEX Usage

Having redefined the defaults, we must make sure that the com-
mand \normalsize loads the current font at the normal size. It is
implemented by setting the current point size and leading with the
\fontsize command and then calling \selectfont.

Using OpenType Fonts 261

\renewcommand*\normalsize{%
\fontsize{\nexus@point@size pt}{\nexus@leading pt}%
\selectfont%

}

LaTEX Usage

We may as well load our \familydefault font family, \shapede-
fault shape, \seriesdefault series, for the normal point size and
leading. Calling to \normalsize should do the trick because its call to
\fontsize sets the point size and the leading and its call to \select-
font loads the font.

\normalsize LaTEX Usage

Redefining \normalsize is important. The main class always de-
fines/redefines the command \normalsize. Therefore you should
make sure that you load the main class before you redefine \normal-
font. If you use the font package in a user-defined class this means
that you should load the main class before you load the font package.

16.10.3 Changing the Features

At this stage, we can use the default font family and we can change
the font family with the command \fontfamily. However, using the
command directly may lead to inconsistencies because it changes two
number features at a time. It would be nicer if we could switch a single
font feature. In the remainder of this section we shall implement
commands that let us do this.

We shall start by implementing a command that defines a com-
mand that activates a given font family. This command will be called
once for each font family.

% #1 is the expanded name of the font family.
\def\nexus@declare@font@family#1\nexus@end{%

\expandafter\nexus@declare@font@family@%
\csname#1\endcsname{#1}%

}

% #1 is the command that activates the font family.
% #2 is the expanded name of the font family.
\newcommand*\nexus@declare@font@family@[2]{%

\newcommand#1{%
\not@math@alphabet#1\relax%
\fontfamily{#2}%
\nexus@renew@defaults#2\nexus@end%
\selectfont%

}%
}

LaTEX Usage

The idom used by \nexus@declare@font@family@ to change the
font is standard. See for example [Lehman 2004, page 43]. When this
macro is used, the first argument is the command sequence of the
second argument, which is the name of the font family. The macro

262 Chapter 16

\nexus@renew@defaults redefines the defaults of the roman, sans serif,
and typewriter shapes. The argument of \nexus@renew@defaults is
always of the form Nexus〈shape〉--〈features〉.

\def\nexus@renew@defaults Nexus#1--#2\nexus@end{%
\renewcommand*\rmdefault{Nexus#1--#2}%
\renewcommand*\sfdefault{NexusSans--#2}%
\renewcommand*\ttdefault{NexusTypewriter--#2}%

}

LaTEX Usage

Next we call the macro for our 12 font families. The following is
one way to do this. Many font family names are omitted for brevity.

\@for\nexus@family:=%
NexusSerif--flnum--fpnum,NexusSerif--flnum--ftnum, …,
NexusSans--fonum--fpnum,NexusSans--fonum--ftnum\do{
\expandafter%
\nexus@declare@font@family\nexus@family\nexus@end%

}

LaTEX Usage

Next let’s implement a declaration that keeps the features of the
current font family but switches to a sans serif family. Switching to
other families may be implemented in a similar way.

\newcommand*\SansSwitch[0]{%
\nexus@switch@typeface[Sans]%

}

LaTEX Usage

In the following implementation of \nexus@switch@typeface we
use the command \edef to expand the family default because \ex-
pandafter only expands once, which may not be enough.

\def\nexus@switch@typeface{%
\edef\nexus@next@font{\familydefault}%
\expandafter\nexus@switch@typeface@\nexus@next@font%

}

LaTEX Usage

Note that the command doesn’t take any arguments, so calling
it as \nexus@switch@typeface[〈shape〉] effectively inserts the name
of the family default before the option [〈shape〉] and then calls the
macro \nexus@switch@typeface@: \nexus@switch@typeface@〈family
default〉[〈shape〉]. The macro \nexus@switch@typeface@ is now easy
to implement.

\def\nexus@switch@typeface@#1--#2[#3]{%
\nexus@switch@font{Nexus#3--#2}%

}

LaTEX Usage

As the name suggests, the macro \nexus@switch@font switches the
font. The name of the argument is the name of the new font family.

\newcommand*\nexus@switch@font[1]{%
\csname#1\endcsname%

}

LaTEX Usage

Using OpenType Fonts 263

The macro \nexus@switch@font simply turns the name of the font
family into one of the command sequences that are defined in the
\@for loop earlier on and then executes the command sequence.

We shall now implement a command that turns on the feature
onum. Commands that turn on the remaining number features can be
implemented in a similar way.

\newcommand\ONumSwitch{\nexus@switch@fst[onum]} LaTEX Usage

The command \nexus@switch@fst is implemented using a similar
technique as \nexus@switch@typeface.

\newcommand\nexus@switch@fst{%
\edef\nexus@next@font{\familydefault}%
\expandafter\nexus@switch@fst@\nexus@next@font%

}

LaTEX Usage

The option of \nexus@switch@fst@ is the feature that corresponds
to the first feature position in the font family. The command substi-
tutes the new feature for the old feature.

\def\nexus@switch@fst@#1--f#2--#3[#4]{%
\nexus@switch@font{#1--f#4--#3}%

}

LaTEX Usage

The low-level programming is now done. In the remainder we
shall tidy up some loose ends. We start by defining high-level text
commands, which are commands that take an argument and typeset
the argument in a certain type style. You define such commands with
the method \DeclareTextFontCommand. The first argument of this
command is the text font command. The second argument is a series
of declarations that determine the type style.

\DeclareTextFontCommand\SerifStyle{\SerifSwitch}
\DeclareTextFontCommand\SansStyle{\SansSwitch}
…
\DeclareTextFontCommand\TNumStyle{\TNumSwitch}

LaTEX Usage

Finally, we redefine the commands \ae, \AE, \o, and \O at the start
of the document—it is not clear why this is needed. This is done as
follows.

\AtBeginDocument{%
\renewcommand*\ae{\char’032}
\renewcommand*\AE{\char’035}
\renewcommand*\o{\char’034}
\renewcommand*\O{\char’037}

}

LaTEX Usage

16.11 Using the Fonts

At this stage it is time for a celebration because we’ve implemented the
core of a package that provides access to the glyphs in an OpenType

264 Chapter 16

font by their features. The techniques presented in this chapter may
also be used to access other font features and that’s how this book was
typeset. The following is an example.

\noindent%
\texttt{Hello world.}\\
\textsf{Hello world.}\\
\textsc{Hello world.}\\
\textrm{Hello world.}\\
Hello world.\\
1234567890.\\\LNumSwitch
1234567890.\\\TNumSwitch
1234567890.\\\ONumSwitch
1234567890.\\\SansSwitch
Pack my box….\\\MixSwitch
Pack my box….\\\SerifSwitch
Pack my box….\\\AaltSwitch
P@ack@@ my@@ box@@….

Hello world.
Hello world.
Hello world.
Hello world.
Hello world.
1234567890.
1234567890.
1234567890.
1234567890.
Pack my box….
Pack my box….
Pack my box….
Pack my box….

The last line in the input deserves some explanation because
of the @ characters in the input. As you can see from the output,
some of the glyphs have swashes and they are accessed with the
@ character: 〈letter〉@ gives access to the first stylistic alternate of
〈letter〉, and 〈letter〉@@ gives access to the second stylistic alter-
nate of 〈letter〉. This is implemented by defining 〈letter〉/@ and
〈letter〉@/@ as ligature-forming pairs. Further information may be
found in [Toledo 2000] and [Kohler 2011].

PART VII

References
and
Bibliography

Oil and charcoal on canvas (08/10/10), 64× 91 cm
Work included courtesy of Billy Foley

© Billy Foley (www.billyfoley.com)

Typographic Jargon

This is a short reference of typographic jargon. The presenta-
tion is not top-down but lists the jargon in alphabetical order. More
detailed information may be found in good typography books such as,
for example, [Felici 2012].

baseline The baseline is the virtual reference line that the characters
are written on. Parts of some of the letters may stick out below the
baseline. For example, letters like g, j, and p stick out below the baseline.
Figure 16.7 provides an example.

bounding box The bounding box of a character is the virtual rectangle
containing the character. Each box has a reference point, a height,
a width, and a depth. See Figure 16.8 for an example. The boxes are
designed to combine their characters on the baseline by chaining
their boxes. This explains why some characters are not contained
entirely by their bounding boxes. Figure 16.9 shows how the boxes
from Figure 16.8 are combined.

character A character is a member of a typeface.
em The relative length unit em is a synonym for the current type size.
em space An em space is a horizontal space with a length of 1 em.
en An en is a relative length unit that is equal to half an em.
font A computer font is the software that defines a typeface.
font family A font family is a collection of fonts that define a typeface

family.
glyph A gyph is a certain form of a character. Different characters usually

have different glyphs but the converse is not true. For example, the
letter a has several different glyphs: a, A, a, A, a, A, a, A, a, a, and so
on.

italic typeface An italic typeface is a slanted typeface that is usually based
on calligraphic handwriting.

kerning Kerning refers to adjusting the space between adjacent glyph
pairs that are too close or too far apart. Kerning is needed because
the bounding box of a glyph may not always be compatible with the
bounding box of any other glyph. When this happens kerning adjusts
the position of the glyphs by moving the relative position of their
bounding boxes. Figure 16.11 shows how kerning works. In this exam-
ple kerning reduces the distance of the glyph pairs but kerning may
also increase the distance. Kerning may also move glyphs up or down.

 , ,
DOI 10.1007/978-3-642-23816-1, © Springer-Verlag Berlin Heidelberg 2012
M.R.C. van Dongen LaTeX and Friends X.media.publishing, 267

268 Typographic Jargon

mean line

baseline

x-heightSixtyBaseline and mean line. The
solid line is the baseline, which
the letters/glyphs are written
on. The dashed line is themean
line. The mean line limits the
height of the nonascending
lowercase letters. Uppercase
letters and letters such as f, h,
and k stick out above the mean
line. Letters such as g and p
stick out below the baseline.
The distance between baseline
and mean line is the x-height.

Figure 16.7

i height

width

f height

depth

width

Bounding boxes. Each letter is
contained in its bounding box,
which is drawn with a dashed
line. Words are created by se-
quencing letter boxes (see Fig-
ure 16.9). Letters may extend
beyond the box outline if this
makes it easier to sequence the
boxes. The circle on the base-
line is the box’s reference point.
Each box has a height, a width,
and a depth. The height (depth)
measures the part above (be-
low) the baseline.

Figure 16.8

ifWord formation. The word ‘if ’
is formed by sequencing the
bounding boxes of the letters
i and f. The right side of the
bounding box of the i touches
the left side of the bounding
box of the f and the reference
point of the bounding boxes
are on the same horizontal line.

Figure 16.9

maximum height

maximum depth

point sizeTgComputing the point size. The
point size is determined by
the sum of the largest possible
height and the largest possible
depth of the letters in the font
at the current size.

Figure 16.10

Typographic Jargon 269

Ve
Ve

Ti
Ti

Kerning. The distance between
the letters in the pairs ‘Ve’ and
‘Ti’ on the first line is too large.
In the second line this is re-
solved by adjusting the dis-
tances within the pairs. This is
called kerning. In this exam-
ple, kerning reduces the dis-
tance between the reference
points of the bounding boxes,
which makes the bounding
boxes overlap. The overlap is
shown in grey.

Figure 16.11

ffl
ff l

fi
f i

Ligatures. This figure shows
two example of ligatures. At the
top are the ligatures and at the
bottom the letters that form
the ligatures.

Figure 16.12

leading The leading or line spacing is the distance between the baselines
of two subsequent lines in the text.

letterspacing Letterspacing or tracking refers to the uniform amount of
space that is added to the left and right of the characters in a passage
of text.

ligature A ligature is a glyph that represents a combination of two or
more individual letters, digits, or punctuation marks. Figure 16.12
shows two examples of ligatures.

line spacing See leading.
mean line The mean line is the virtual demarcation line for the height of

the lowercase letters without ascenders. See Figure 16.7 for an example.
oblique typeface See slanted typeface.
roman typeface A roman or upright typeface is a typeface whose glyphs

270 Typographic Jargon

AFqnAFqnAFqn
with serifs without serifs

Seriffed versus sans serif letters.
The letters on the left have ser-
ifs, which are drawn in black.
The rest of the letters is drawn
in grey. The letters on the right
lack serifs.

Figure 16.13

have an upright shape. Usually the main text of papers and books is
typeset in a roman typeface.

slanted typeface A slanted or oblique typeface is a typeface whose glyphs
are slanted to the right. The resulting glyphs may be obtained by math-
ematically transforming the roman glyphs. However, some typefaces
have a different design.

point A TEX point is an absolute length unit that is equivalent to 1⁄72.27 inch.
The point unit is denoted pt, so 72.27 pt is equal to 1 inch.

point size The point size or type size is a relative length unit. The point
size depends on the font and current size. You get the point size of
the font (at the given size) by taking the letters of the font and adding
the largest height and the largest depth of the bounding boxes of the
letters. Figure 16.10 illustrates the definition.

pt See point.
quad A LaTEX quad is a relative horizontal length unit that is equivalent

to 1 em [Knuth 1990, page 314].
sans serif typeface A sans serif typeface is a typeface whose glyphs lack

serifs. See Figure 16.13 for an example.
small caps Small caps letters have a similar shape as uppercase letters

but they aren’t as high so they blend in better with lowercase letters:
abcd…xyx abcd…xyz.

serif A serif is a small decoration at the end of the strokes of some of the
glyphs. See Figure 16.13 for an example.

seriffed typeface A seriffed typeface is a typeface (some of) whose charac-
ters have serifs.

thin space A thin space is usually set to 1⁄4 em or about half the word
space [Felici 2012]. In LaTEX a thin space is normally 1⁄6 em [Knuth 1990,
page 167].

tracking See letterspacing.
type The word type literally means form and refers to the metal blocks

that were used for printing. Nowadays it refers to printable characters.

Typographic Jargon 271

typeface A typeface is a collection of letters, digits, punctuation symbols,
and other characters that share a common design and common fea-
tures.

typeface family A typeface family is a collection of typefaces that share
some features. Many typeface families come with a roman shape, an
italic shape, a slanted shape, and so on. Examples of typeface fami-
lies are Computer Modern Roman, Computer Modern Sans Serif, Gentium,
Linux Libertine Serif/Times New Roman, TEX Gyre Heros/Helvetica, TEX
Gyre Pagella/Palatino Linotype, and so on.

type size See point size.
typewriter typeface A typewriter or monospaced typeface is a typeface

whose glyphs have equal width.
x-height The x-height is the distance between the mean line and the base-

line. By design the distance coincides with the height of the lowercase
x. See Figure 16.7 for an example.

Bibliography

Abrahams, P. A., K. A. Hargreaves, and K. Berry [2003]. TEX for the
Impatient. Addison–Wesley. url: ftp://tug.org/tex/impatient.

Allen, Robert [2001]. Punctuation. Oxford University Press. isbn:
0-19-860439-4.

American Mathematical Society [5th Feb. 2002]. User’s Guide for the
amsmath Package. Version 2.0.

[5th Feb. 2002]. Using the amsthm Package. Version 2.20.
Arnold, Doug [25th Jan. 2010]. The LaTEX for Linguists Home Page. url:

http://www.essex.ac.uk/linguistics/external/clmt/latex
4ling/.

Arseneau, Donald [20th Jan. 2010]. url.sty. Version 3.3. Edited as a
LaTEX document by Robin Fairbairns.

Aslaksen, Helmer [1993]. “Ten TEX Tricks for the Mathematician”.
In: TUGboat 14. A modern version of this paper is available from
http://www.math.nus.edu.sg/aslaksen/cs/tug-update.pdf,
135–136.

Bazargan, Kaveh, and C. V. Radhakrishnan [2007]. “Removing vertical
stretch—mimicking traditional typesetting with TEX”. In: TUG-
boat 28.1, 133–136. url: http://www.tug.org/TUGboat/tb28-1/tb
88bazargan.pdf.

Beccari, Claudio [1997]. “Typesetting Mathematics for Science and
Technology According to iso 31/XI”. In: TUGboat 18.1, 39–48. url:
http://http://www.tug.org/TUGboat/tb18-1/tb54becc.pdf.

Becker, T., and V. Weispfenning [1993]. Gröbner Bases A Computational
Approach to Commutative Algebra. Graduate Texts in Mathemat-
ics. Springer. isbn: 3-540-97971-9.

Berry, Karl [1990]. “Filenames for Fonts”. In: TUGboat 11.4.
Bigwood, Sally, and Melissa Spore [2003]. Presenting Numbers, Tables,

and Charts. Oxford University Press. isbn: 0-19-860722-9.
Borowski, Eprahim J., and Jonathan M. Borwein [2005]. Collins Dictio-

nary of Mathematics. Collins. isbn: 0-00-780080-0.
Bovani, Michel [30th Jan. 2005]. Fourier GUTenberg.
Breitenbucher, Jon [2005]. “LaTEX at a Liberal Arts College”. In: PracTEX

Journal 3. url: http://tug.org/pracjourn/2005-3/breitenbuch
er.

Bringhurst, Robert [2008]. The Elements of Typographic Style. Hartley &
Marks. isbn: 0-988179-206-3.

273

274 Bibliography

Buchsbaum, Arthur, and Francisco Reinaldo [2007]. “A Tool for Logi-
cians”. In: The PracTEX Journal 3. url: http://tug.org/pracjourn/
2007-3/buchsbaum.

Burt, John [2005]. “Using poemscol for Critical Editions of Poetry”. In:
PracTEX Journal 3. url: http://tug.org/pracjourn/2005-3/burt.

Carlisle, David [5th Mar. 1999a]. The enumerate Package. Version 3.00.
[16th Mar. 1999b]. The keyval Package. Version 1.13.
[28th May 2001]. The dcolumn Package. Version 1.06.

Carlisle, D. P. [14th Nov. 2005]. Packages in the graphics Bundle.
Carlisle, D. P., and S. P. Q. Rahtz [16th Feb. 1999]. The graphicx Package.

Version 1.0f.
Clapham, Christopher, and James Nicholson [2005]. Oxford Concise

Dictionary of Mathematics. Third Edition. Oxford University Press.
isbn: 978-0-19-860742-7.

Dashboard, Humanities Division [8th May 2008]. LaTEX—Humanities
Computing. url: https://coral.uchicago.edu:8443/display/hu
mcomp/LaTeX.

Dearborn, Elizabeth [2006]. “TEX and Medicine”. In: PracTEX Journal 4.
url: http://tug.org/pracjourn/2006-4/dearborn.

Eijkhout, V. [2007]. TEX by Topic, A TEXnician’s Reference. Addison–Wesley.
isbn: 0-201-56882-9. url: http://www.eijkhout.net/tbt/.

Felici, James W. [2012]. The Complete Manual of Typography A Guide
to Setting Complete Type. Second Edition. Adobe Press. isbn:
978-0-321-77326-5.

Fenn, Jürgen [2006]. “Managing Citations and Your Bibliography with
BibTEX”. In: PracTEX Journal. url: http://www.tug.org/pracjour
n/2006-4/fenn/.

Feuersänger, Christian [5th Aug. 2010a]. Manual for Package pgfplots.
Version 1.4.1.

[5th Aug. 2010b]. Manual for Package pgfplotstable. Ver-
sion 1.4.1.

Fine, Jonathan [1992]. “Some Basic Control Macros for TEX”. In:
TUGboat 13.1.

Fiorio, Christophe [14th Dec. 2004]. algorithm2e.sty—package for
algorithms. Version 3.3.

Flynn, Peter [2007]. “Rolling your own Document Class: Using LaTEX
to keep away from the Dark Side”. In: TUGboat 28.1. url: http:
//www.tug.org/TUGboat/Articles/tb28-1/tb88flynn.pdf.

Garcia, Aracele, and Arthur Buchsbaum [2010]. “About LaTEX tools that
students of Logic should know”. In: PracTEX Journal 1. In Portugese.
url: http://tug.org/pracjourn/2010-1/garcia.

Giacomelli, Roberto [12th July 2009]. calctab Package. Version 0.6.1.
Goldberg, Jeffrey P., and H.-Martin Münch [1st Feb. 2011]. The lastpage

Package. Version 1.2g.
Goossens, M., S. Rahtz, and F. Mittelbach [1997]. The LaTEX Graphics

Companion: Illustrating documents with TEX and PostScript. Addi-
son–Wesley. isbn: 0-201-85469-4.

Bibliography 275

Graham, R. L., Donald E. Knuth, and O. Patashnik [1989]. Concrete
Mathematics: A Foundation for Computer Science. Addison-Wesley.
isbn: 0-201-14236-8.

Hedrick, Charles [15th Jan. 2003]. Guidelines for Typography in nbcs.
url: http://www.nbcs.rutgers.edu/~hedrick/typography/typo
graphy.janson-syntax.107514.pdf.

Heinz, Carsten, and Brooks Moses [22nd Feb. 2007]. The Listings
Package. Version 1.4.

Heldoorn, Marcel [2nd Dec. 2007]. The SIunits—package Consistent
application of SI Units. Version 1.36.

Høgholm, Morten [28th July 2008]. The breqn Package. Version 0.98.
[17th Jan. 2011]. The xfrac Package. Version 0.3b.

Høgholm, Morten et al. [12th Feb. 2011]. The mattools Package. Ver-
sion 1.10.

Kern, Uwe [21st Jan. 2007]. Extending LaTEX’s color facilities: xcolor.
Version 2.11.

Knuth, Donald E. [1990]. The TEXbook. Addison–Wesley. isbn: 0-201-
13447-0. url: http://www.ctan.org/tex-archive/systems/knut
h/tex/.

Kohler, Eddie [2011]. otftotfm Manual. Version 2.90. url: http:
//www.lcdf.org/type/otftotfm.1.html.

Krab Thorub, Kresten, Frank Jensen, and Chris Rowley [22nd Aug.
2007]. The calc Package, Infix Notation Arithmetic in LaTEX.

Lamport, Leslie [1994]. LaTEX: A Document Preparation System. Addi-
son–Wesley. isbn: 0-021-52983-1.

LaTEX3 Project [12th Mar. 1999]. LaTEX2ε for Class and Package Writers.
url: http://www.latex-project.org/guides/clsguide.pdf.

LaTEX3 Project [9th Feb. 2000]. LaTEX2ε Font Selection. url: http :
//www.latex-project.org/guides/fntguide.pdf.

Lehman, Philipp. The biblatex Package. Version 1.5.
[2004]. The Font Installation Guide Using Postscript Fonts to

their Full Potential in LaTEX. Version 2.14.
Longborough, Brent [28th Aug. 2011]. tagging.sty. Version 1.0.
Midtiby, Henrik Skov [21st Apr. 2011]. The todonotes Package.
Miede, André [24th Jan. 2010]. The Classic Thesis Style.
Mittelbach, Frank, Robin Fairbairns, and Werner Lemberg [6th Jan.

2006]. LaTEX Font Encodings.
Mühlich, Matthias [23rd Feb. 2006]. The CoverPage Package. Ver-

sion 1.01.
Oberdiek, Heiko [23rd Dec. 2010]. The keyvalue Package. Version 3.10.
Ochsenmeier, Erwin [2011]. FourSenses.net. At the moment of writing,

this site is being moved from http://theotex.blogspot.com/.
url: http://http://en.foursenses.net/.

Oetiker, Thomas [8th Sept. 2010]. An Acronym Environment for LaTEX2ε.
Version 1.36.

Oetiker, Tobias et al. [2007]. The Not so Short Introduction to LaTEX2ε.
url: http://tobi.oetiker.ch/lshort/.

Owens, John D. [2006]. “The Installation and use of OpenType Fonts
in LaTEX”. In: TUGboat 27.2, 112–119.

276 Bibliography

Pakin, Scot [2005]. The Comprehensive LaTEX Symbol List. url: http:
//tug.ctan.org/info/symbols/comprehensive/symbols-lette
r.pdf.

Patieri, Lórenzo [2010]. Customizing classicthesis with the arsclas-
sica Package.

Peyton Jones, S., and J. Hughes [1999]. Haskell 98: A Non-strict, Purely
Functional Language. http://www.haskell.org/onlinereport/.

Peyton Jones, Simon L., John Huges, and John Launchberry [1993].
“How to Give a Good Research Talk”. In: ACM SIGPLAN Notices
28.11, 9–12. url: http://research.microsoft.com/en-us/um/pe
ople/simonpj/papers/giving-a-talk/giving-a-talk.htm.

Rahts, Sebastian [1993]. “Essential nfss2, Version 2”. In: TUGboat 14.2,
132–137.

Reckdahl, Keith [2006]. Using Imported Graphics in LaTEX and pdfLaTEX.
url: ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.pdf.

Reichert, Axel [4th Aug. 1998]. units.sty—nicefrac.sty. Version 0.9b.
Robertson, Will [26th Feb. 2011]. The fontspec Package. Version 2.1f.
Scharrer, Martin [2011-07-23]. List of Internal LaTEX2ε Macros useful to

Package Authors. Version 0.4.
Schlicht, R. [10th Jan. 2010]. The microtype Class. Version 2.4.
Schneider, Tom [27th Apr. 2011]. LaTEX Style and BibTEX Bibliography

Formats for Biologists: TEX and LaTEX Resources. url: http://www-lm
mb.ncifcrf.gov/~toms/latex.html.

Senthil, Kumar M. [2007]. “LaTEX Tools for Life Scientists (BioTEX-
niques?)” In: PracTEX Journal 4. url: http://tug.org/pracjourn/
2007-4/senthil.

Smith, Peter. LaTEX for Logicians. url: http://www.logicmatters.ne
t/latex-for-logicians/.

Strunk, W., and E. B. White [2000]. The Elements of Style. Fourth Edition.
Macmillan Publishing. isbn: 0-205-30902-x.

Talbot, Nicola [15th Nov. 2009]. datatool v 1.01: Database and data
manipulation. Version 2.03.

Tanksly, Charlie. LaTEX: A Guide for Philosophers. url: http://www.cha
rlietanksley.net/latex/.

PhilTEX Forums A Place for Philosophers to Learn about LaTEX.
url: http://www.charlietanksley.net/philtex/forum/.

Tantau, Till [25th Oct. 2010]. TikZ & PGF. Version 2.00-cvs.
Tantau, Till, Joseph Wright, and Vedran Miletić [12th July 2010]. The

beamer Class. Version 3.10.
Taraborelli, Dario [2010]. The Beauty of LaTEX. url: http://nitens.or

g/taraborelli/latex.
Tellechea, Christian [8th Apr. 2011]. spreadtab. Version 0.3c.
Thomson, Paul A. [2008a]. “Clinical Trials Management on the Inter-

net—I. Using LaTEX and sas to Produce Customized Forms”. In:
PracTEX Journal 3.

[2008b]. “Clinical Trials Management on the Internet—II.
Using LaTEX, PostScript, and sas to Produce Barcode Label sheets”.
In: PracTEX Journal 3. url: http://tug.org/pracjourn/2008-
3/thompson2.

277

Toledo, Sivan [2000]. “Exploiting Rich Fonts”. In: TUGboat 21.2.
Trask, R. L. [1997]. Penguin Guide to Punctuation. Penguin Books. isbn:

0-140-51366-3.
Tufte, Edward R. [2001]. The Visual Display of Quantitative Information.

Second Edition. Graphics Press llc. isbn: 978-0-9613921-4-7.
Turabian, Kate L. [2007]. A Manual for Writers of Research Papers, Theses,

and Dissertations. Seventh. University of Chicago Press. isbn:
978-0-226-82337-9.

Turner, Ken [1st Nov. 2010]. BibTEX Style Examples. url: http://www.
cs.stir.ac.uk/~kjt/software/latex/showbst.html.

Unger, Gerard [2007]. While You’re Reading. Mark Batty Publisher. isbn:
978-0-9762245-1-8.

Van Oostrum, Piet [2nd Mar. 2004]. Page Layout in LaTEX.
Veytsman, Boris, and Leila Akhmadeeva [2006]. “Drawing Medical

Pedigree Trees with TEX and PSTricks”. In: PracTEX Journal 4. url:
http://tug.org/pracjourn/2006-4/veytsman.

Voß, Herbert [2010]. Math Mode. url: ftp://cam.ctan.org/tex-arch
ive/info/math/voss/mathmode/Mathmode.pdf.

Wilson, Peter [13th Feb. 2011]. The fonttable Package. Version 1.6b.
Maintained by Will Robertson.

Wilson, Peter, and Lars Madsen [6th Mar. 2011]. The Memoir Class.
Wright, Joseph [1st May 2010]. pgfopts—LaTEX Package Options with

pgfkeys. Version 2.0.
[15th June 2011]. siunitx—A Comprehensive (SI) units package.

Version 2.2i.
Zeidler, Eberhard, ed. [1996]. Oxford User’s Guide toMathematics. Typeset

in LaTEX by Bruce Hunt. Oxford University Press. isbn: 0-19-
850763-1.

Acronyms and Abbreviations

ams American Mathematical Society
api Application Programming Interface
apl A Programming Language

ctan Comprehensive TEX Archive Network
cd Compact Disk
faq Frequently Asked Question
gui Graphical User Interface
ide Integrated Development Environment

isbn International Standard Book Number
si Système International d’Unités/International System of Units
os Operating System

tug TEX Users Group
url Uniform Resource Locator

wysiwyg What You See is What You Get

279

Indexes

281

LaTEX and TEX Commands 283

LaTEX and TEX Commands

\’, 44
\(, 214, 215
\), 214, 215
\+, 64
\,, 9, 10, 24, 45, 46, 49, 50, 82,

121, 125, 126, 150–157,
159–164, 171, 173, 178–
182

\-, 64, 65
\., 44
\:, 182
\;, 182, 185, 188
\=, 44, 64
\>, 64
\[, 150, 154, 155, 157, 159–164,

170, 173, 178, 179, 181
\ˆ, 44
_ , 42
\#, 42
\$, 42
\%, 42
\&, 42
\\, 49, 50, 59, 64, 124–126, 149,

151–154, 160, 161, 189
*, 50
\ , 47, 54
\{ , 42, 155
\} , 42
\˜, 44
\], 150, 154, 155, 157, 159–164,

170, 173, 178, 179, 181
\‘, 44

\AA, 44
\aa, 44
\abstract, 12
\ac, 55
\acp, 55
\acro, 55
\acute, 172
\addbibresource, 25, 27
\addcontentsline, 14
\addlegendentry, 131, 134, 135,

137, 139
\addlinespace, 61
\addplot, 131–140

\addplot+, 138
\address, 34
\addtocategory, 29
\addtocounter, 209, 210, 215
\addtolength, 212, 213, 215
\AE, 45
\ae, 45
\aleph, 168
\alert, 231
\Alph, 69
\alph, 69, 71, 72
\alpha, 148, 170
\amalg, 165
\AND, 214
\and, 11, 214
\angle, 168
\appendix, 15
\approx, 164, 166
\approxeq, 166
\arabic, 69
\arccos, 162
\arcsin, 162
\arctan, 162
\arg, 162
\arraycolsep, 63
\arrayrulewidth, 63
\arraystretch, 63
\ast, 165
\asymp, 166
\author, 8–11, 226

\b, 44
\backepsilon, 166
\backmatter, 14
\backsim, 166
\backsimeq, 166
\backslash, 41, 42, 158, 168
\bar, 171, 172
\baselineskip, 212, 249
\because, 166
\begin, 9, 11, 14, 16, 19, 24, 27,

28, 30, 34, 161, 207
\begingroup, 43
\beta, 32, 148, 164, 170
\between, 166
\bfdefault, 260

284 Indexes

\bfseries, 43, 53, 191, 192, 249
\bibcloseparen, 25
\bibliography, 14, 23, 24
\bibliographystyle, 21, 24
\bibname, 14
\bibnamedash, 25
\bibopenparen, 25
\bigcap, 160
\bigcirc, 165
\bigcup, 160
\bigl, 171
\bigodot, 160
\bigoplus, 160
\bigotimes, 160
\bigr, 171
\bigsqcup, 160
\bigtriangledown, 165
\bigtriangleup, 165
\biguplus, 160
\bigvee, 160
\bigwedge, 160
\binom, 147, 150, 161
\bmod, 162, 185
\boldmc, 126
\boldsymbol, 165
\boolean, 214
\bot, 168
\bottomrule, 61, 62, 122, 123,

125, 126
\bowtie, 166
\Box, 168
\breve, 172
\bullet, 165
\Bumpeq, 166
\bumpeq, 166

\c, 44
\cap, 165
\caption, 75–78, 124, 125, 184,

185, 200
\Case, 187
\cc, 34
\cdot, 165, 178
\cdotp, 178
\cdots, 178
\centering, 78
\cfrac, 158, 159
\chapter, 13–15, 17, 19, 27, 28,

31

\chapter*, 13, 14
\check, 172
\chi, 148
\circ, 165
\circeq, 166
\cite, 3, 21, 22, 24, 42, 47
\Citeauthor, 27
\citeauthor, 26
\citetitle, 26
\citeyear, 26
\cleardoublepage, 30
\clearpage, 29, 30, 37
\cline, 60, 63
\closing, 34
\clubsuit, 168
\cmidrule, 61
\colon, 173, 174, 178
\colorlet, 90
\cong, 166
\coprod, 160
\cos, 162
\cosh, 162
\cot, 162
\coth, 162
\csc, 162
\csname, 204, 205, 208
\cup, 165
\curlyeqprec, 166
\curlyeqsucc, 166

\d, 44
\dagger, 165
\dashv, 166
\date, 9, 10, 226
\ddagger, 165
\ddddot, 172
\dddot, 172
\ddot, 172
\ddots, 178
\DeclareBibliographyCategory,

29
\DeclareFontFamily, 255, 256
\DeclareFontShape, 255, 256
\DeclareGraphicsExtensions, 79
\DeclareMathOperator, 146, 169
\DeclareMathOperator*, 169
\DeclareRobustCommand, 200
\DeclareTextFontCommand, 263
\def, 203–207, 216

LaTEX and TEX Commands 285

\defbibheading, 28
\definecolor, 89, 90
\deg, 162
\Delta, 148, 149
\delta, 148
\depth, 213
\det, 162
\Diamond, 168
\diamond, 165
\diamondsuit, 168
\digamma, 148
\dim, 162
\displaystyle, 160
\div, 165
\do, 215
\documentclass, 9, 10, 14, 24,

32–34, 226, 228
\dot, 172
\doteq, 166
\doteqdot, 166
\dotsb, 159, 173, 179
\dotsc, 179
\dotsi, 179
\dotsintop, 163
\dotsm, 179
\dotso, 179
\doublerulesep, 63
\Downarrow, 158, 167
\downarrow, 158, 167
\draw, 82–94, 96–103, 105, 107–

109, 112–116, 140

\edef, 203, 204
\eIf, 186, 187
\ell, 167, 168
\else, 211, 222, 240
\ElseIf, 186
\emph, 48, 50, 56, 235
\emptyset, 168
\encl, 34
\end, 9, 11, 14, 16, 19, 24, 27, 28,

30, 34, 207
\endash, 24
\endcsname, 204, 205, 208
\endfirsthead, 125, 126
\endfoot, 126
\endgroup, 43
\endhead, 126
\endlastfoot, 126

\endlatsfoot, 126
\epsilon, 43, 148
\eqcirc, 166
\eqref, 150
\equal, 214
\equiv, 162, 166
\eta, 148
\eUlseIf, 186
\euro, 62
\exists, 168
\exp, 162
\expandafter, 204, 205
\extracolsep, 62, 63

\fallingdotseq, 166
\familydefault, 260–262
\fi, 210, 211, 215, 216, 222, 240
\fill, 62, 63, 89, 95, 96, 113
\filldraw, 89, 95
\fint, 163
\flat, 168
\fontencoding, 247
\fontfamily, 247, 261
\fontseries, 247
\fontshape, 249
\fontsize, 249, 260, 261
\fontspec, 250
\fonttable, 257
\footnote, 49
\footnotesize, 51
\For, 188
\forall, 168
\ForEach, 188, 189
\foreach, 102, 113, 114
\frac, 116, 158, 162–164, 170
\framesubtitle, 226, 227, 235
\frametitle, 226, 227, 231, 235
\frenchspacing, 47
\frencspacing, 54
\frontmatter, 14
\frown, 166

\Gamma, 148, 149
\gamma, 148
\gcd, 162
\geq, 166, 180, 181, 185
\gg, 166
\graphicspath, 79
\grave, 172

286 Indexes

\H, 44
\hat, 167, 171, 172
\hbar, 168
\heartsuit, 168
\hline, 60, 63
\hom, 162
\hookleftarrow, 167
\hookrightarrow, 167
\hphantom, 57, 122, 182
\hspace, 62, 63
\Huge, 51
\huge, 51
\hyphenation, 65

\i, 44
\idotsint, 160, 163
\If, 186, 190
\ifnotes, 211
\ifthenelse, 213, 214
\ifx, 216
\iiiint, 160, 163
\iiiintop, 163
\iiint, 160, 163
\iiintop, 163
\iint, 160, 163
\Im, 168
\imath, 166–168
\in, 156, 166, 181
\include, 16, 29, 30, 209
\includegraphcs, 78
\includegraphics, 77–79, 217
\includeonly, 16
\index, 31, 32
\inf, 162
\infty, 152, 160, 168
\input, 16
\int, 160, 162, 163, 179
\intertext, 153
\iota, 148
\isodd, 214
\isundefined, 214
\itdefault, 260
\item, 67–72, 229–231, 235
\itemindent, 71
\itemsep, 71
\itshape, 53, 192, 249

\j, 44
\jmath, 166–168
\Join, 166

\kappa, 148
\ker, 162
\kill, 64
\KwData, 185
\KwIn, 185
\KwOut, 185
\KwResult, 185
\KwRet, 185

\L, 44
\l, 44
\label, 17, 19, 76, 125, 150, 152,

174, 206
\labelenumi, 68, 69
\labelenumii, 68
\labelenumiii, 68, 69
\labelenumiv, 68
\labelitemi, 67, 68
\labelitemii, 67
\labelitemiii, 67
\labelitemiv, 67, 68
\labelsep, 71
\labelwidth, 71
\Lambda, 149
\lambda, 148
\landdownint, 163
\landupint, 163
\langle, 157, 158, 171
\LARGE, 51
\Large, 51
\large, 51, 249
\LaTeX, 9–11, 21, 24, 205
\lceil, 157, 158
\ldotp, 178
\ldots, 47, 157, 178, 179, 181
\left, 153–158, 162, 163, 170,

171, 181
\Leftarrow, 167
\leftarrow, 167, 185
\leftharpoondown, 167
\leftharpoonup, 167
\leftmargin, 71, 72
\Leftrightarrow, 167
\leftrightarrow, 167
\leftroot, 164
\legend, 77
\lElse, 187
\lengthtest, 214
\leq, 155, 156, 158, 161, 166

LaTEX and TEX Commands 287

\let, 206
\lfloor, 157, 158
\lg, 162
\lhd, 165
\lim, 146, 161, 162
\liminf, 162
\limsup, 162
\linespread, 249
\lipsum, 197
\listofalgorithms, 184
\listoffigures, 30
\listoflistings, 190
\listoftables, 30
\listparindent, 71
\ll, 166
\ln, 162
\LoadClass, 240
\LoadClassWithOptions, 240
\log, 162
\long, 204
\Longleftarrow, 167
\longleftarrow, 167
\Longleftrightarrow, 167
\longleftrightarrow, 167
\longmapsto, 167
\Longrightarrow, 167
\longrightarrow, 167
\lstinputlisting, 190
\lstset, 191, 192
\lVert, 157, 158
\lvert, 157, 158, 170

\mainmatter, 14
\makeatletter, 205–207
\makeatother, 205–207
\makeindex, 31
\MakeRobustCommand, 200
\maketitle, 9, 11, 12, 14, 30, 226
\mapsto, 167, 171, 173, 174
\marginpar, 37, 49
\mathbb, 146, 156, 173, 174, 181
\mathbf, 146, 165
\mathcal, 165
\mathfrak, 146
\mathit, 164
\mathring, 172
\mathrm, 163, 165, 169, 181
\mathsf, 165
\mathtt, 165

\matrix, 104, 106
\max, 162
\mddefault, 260
\mdseries, 53, 249
\medspace, 182
\metre, 181
\mho, 168
\mid, 166, 181
\midrule, 61, 62, 122, 123, 125,

126
\min, 162
\mod, 162
\mode, 228, 229
\mode*, 229
\models, 166
\mp, 165
\mu, 148
\multicolumn, 60, 62, 123, 126
\multimap, 166

\n, 114, 115
\nabla, 168
\natural, 168
\nearrow, 167
\NeedsTeXFormat, 238
\neg, 168
\negmedspace, 182
\negthickspace, 182
\negthinspace, 182
\neq, 166, 185
\newboolean, 213
\newcolumntype, 123, 124
\newcommand, 37, 126, 197–199,

201
\newcommand*, 198, 221, 222
\newcounter, 71, 72, 209, 210,

215
\newenvironment, 71, 72, 207,

208, 227
\newif, 210, 211, 222
\newlength, 212
\newrefformat, 19
\newtheorem, 146, 176, 177
\newtheoremstyle, 177
\ni, 166
\nocite, 22
\node, 100–103, 105, 139
\nodepart, 100, 101
\noexpand, 204

288 Indexes

\nonfrenchspacing, 47
\nonumber, 151, 152
\normalfont, 53, 261
\normalsize, 51, 260, 261
\NOT, 214
\not, 214, 215
\notag, 151
\notestrue, 211
\notin, 166
\nu, 148
\nwarrow, 167

\O, 44
\o, 44, 148
\odot, 165
\OE, 45
\oe, 45
\oiintop, 163
\oint, 160
\ointclockwise, 163
\ointctrclockwise, 163
\ointop, 163
\Omega, 149
\omega, 148
\ominus, 165
\opening, 34
\oplus, 165
\OR, 214
\or, 214
\oslash, 165
\Other, 188
\otimes, 165
\overbrace, 172
\overleftarrow, 172
\overleftrightarrow, 167, 172
\overline, 171, 172
\overrightarrow, 172

\p, 114, 115
\pageref, 17
\paragraph, 31
\parallel, 166
\Parencite, 27
\parencite, 26, 46
\parindent, 212
\parsep, 71
\parskip, 71, 212
\part, 31
\partial, 164, 168
\partopsep, 71

\PassOptionsToClass, 240
\path, 83–90, 94–96, 98, 100, 107,

113–115
\pause, 229, 230
\per, 181
\perp, 166
\pgfkeys, 219–222, 238, 239, 259
\pgfmathparse, 110
\pgfplotsset, 132
\PgfProcessPackageOptions, 239
\phantom, 57, 58, 182
\Phi, 149
\phi, 148
\Pi, 149
\pi, 148
\pitchfork, 166
\pm, 165
\pmb, 165
\pmod, 162
\pod, 162
\Pr, 162
\prec, 166
\precapprox, 166
\preccurlyeq, 166
\preceq, 166
\precsim, 166
\prettyref, 19
\prime, 168
\printbibheading, 28
\printbibligraphy, 27
\printbibliography, 26–29
\printindex, 31
\ProcessPgfPackageOptions, 238,

239, 260
\ProcessPgfPackageOptions*, 238
\prod, 160
\propto, 166
\protect, 76, 124, 200
\provideboolean, 213
\ProvidesClass, 238
\ProvidesFile, 255–257
\ProvidesPackage, 238
\ps, 34
\Psi, 149
\psi, 148

\qedhere, 177, 178, 235
\qquad, 49, 50, 151, 156, 180–182
\quad, 180, 182

LaTEX and TEX Commands 289

\raggedleft, 58
\raggedright, 58
\rangle, 157, 158, 171
\ratio, 215
\rceil, 157, 158
\Re, 168
\ref, 17–19, 42, 150, 152, 174,

191
\refname, 22
\relay, 207
\renewcommand, 22, 198, 199
\renewcommand*, 25, 67–69, 198,

221
\renewenvironment, 208
\Repeat, 189
\RequirePackage, 240, 257
\RequirePackageWithOptions, 240
\rfloor, 157, 158
\rhd, 165
\rho, 148
\right, 153–158, 162, 163, 170,

171, 181
\Rightarrow, 167
\rightarrow, 167
\rightharpoondown, 167
\rightharpoonup, 167
\rightleftharpoons, 167
\rightmargin, 71, 72
\risingdotseq, 166
\rmdefault, 260
\rmfamily, 53, 249
\Roman, 69
\roman, 69
\rule, 25
\rVert, 157, 158
\rvert, 157, 158, 162, 163, 170

\scdefault, 260
\scriptsize, 50, 51, 249
\scshape, 53
\searrow, 167
\sec, 162
\secnumdepth, 30, 31
\second, 181
\section, 9, 11, 13, 15, 31, 206
\section*, 13
\selectFont, 249
\selectfont, 249, 260, 261
\selectlanguage, 65

\seriesdefault, 260, 261
\setboolean, 213
\setcounter, 30, 209, 210, 215
\setkeys, 78, 79
\SetKwInput, 185
\setlength, 72, 212, 213, 215
\setminus, 165
\setromanfont, 249
\settodepth, 213
\settoheight, 213
\settowidth, 213
\SetTracking, 52
\sfdefault, 260
\sffamily, 53
\shade, 89
\shadedraw, 89
\shapedefault, 260, 261
\sharp, 168
\shortintertext, 153
\shortmid, 166
\shortparallel, 166
\SI, 181
\Sigma, 149
\sigma, 148
\signature, 34
\sim, 166
\simeq, 166
\sin, 146, 162
\sinh, 162
\sisetup, 181
\sldefault, 260
\slshape, 53
\small, 51
\smallfrown, 166
\smallsmile, 166
\smile, 166
\space, 25
\spadesuit, 168
\spy, 102
\sqcap, 165
\sqcup, 165
\sqiint, 163
\sqint, 163
\sqrt, 159, 164
\sqsubset, 166
\sqsubseteq, 166
\sqsupset, 166
\sqsupseteq, 166
\squared, 181

290 Indexes

\ss, 45
\star, 165
\stepcounter, 209, 210
\strut, 138
\subparagraph, 31
\subsection, 31
\subset, 166
\subseteq, 166
\substack, 160, 161
\subsubsection, 31
\succ, 166
\succapprox, 166
\succcurlyeq, 166
\succeq, 166
\succsim, 166
\sum, 147, 150, 152, 159–161, 181
\sup, 162
\supset, 166
\supseteq, 166
\surd, 168
\swarrow, 167
\Switch, 187, 188

\t, 44
\tabcolsep, 62, 63
\tablename, 126
\tableofcontents, 3, 14, 15, 30
\tan, 162
\tanh, 162
\tau, 148
\tcc, 189
\tcp, 187, 189
\tcp*, 189, 190
\TeX, 21, 26, 31, 54, 198, 205
\texnormal, 249
\text, 146, 154, 155, 161, 172,

173, 181
\textasciicircum, 42
\textasciitilde, 42
\textbackslash, 41, 42, 199
\textbf, 43, 48, 53, 62, 70, 122,

123, 125, 126, 133, 135,
137, 139, 140, 249

\textcite, 26
\textemdash, 46
\textendash, 46
\textheight, 212
\textit, 53, 249
\textls, 245

\textmd, 53
\textnormal, 53
\textrm, 53, 249
\textsc, 52, 53, 55, 135, 154, 185
\textsf, 53
\textsl, 53
\textstyle, 160
\textsuperscript, 246
\texttt, 32, 53, 86, 120, 122, 199
\textup, 53
\textvisiblespace, 10
\textwidth, 79, 140, 212
\thanks, 11
\theoremstyle, 176, 177
\therefore, 166
\Theta, 148, 149
\theta, 148
\thetable, 126
\thickapprox, 166
\thicksim, 166
\thickspace, 182
\thinspace, 182
\tikz, 82, 83, 87
\tikzset, 83, 104, 111, 112, 116
\tikztonodes, 116
\tikztostart, 116
\tikztotarget, 116
\tilde, 172
\times, 82, 154, 155, 165, 173,

180
\tiny, 51
\title, 9, 10, 226
\titlepage, 11
\to, 162, 170, 173, 174, 178
\tocdepth, 30, 31
\top, 168
\toprule, 61, 62, 122, 123, 125,

126
\topsep, 71
\triangle, 168
\triangleleft, 165
\triangleright, 165
\ttdefault, 260
\ttfamily, 53, 191, 192

\u, 44
\uCase, 187, 188
\uElseIf, 186, 187
\uIf, 186, 187

LaTEX and TEX Commands 291

\underbar, 172
\underbrace, 172, 173
\underleftarrow, 167, 172
\underleftrightarrow, 167, 172
\underline, 172
\underrightarrow, 167, 172
\unlhd, 165
\unrhd, 165
\Uparrow, 158, 167
\uparrow, 158, 167
\updefault, 260
\Updownarrow, 158, 167
\updownarrow, 158, 167
\uplus, 165
\uproot, 164
\upshape, 53
\Upsilon, 149
\upsilon, 148
\usecounter, 71, 72
\usepackage, 9, 10, 19, 21, 24,

25, 27, 34, 35
\usetheme, 235
\usetikzlibrary, 94, 104, 109,

141

\v, 44
\value, 214
\varDelta, 148, 149
\varepsilon, 148
\varGamma, 148, 149
\varkappa, 148
\varLambda, 149
\varoiint, 163
\varointclockwise, 163
\varointctrclockwise, 163
\varOmega, 149
\varPhi, 149
\varphi, 148
\varPi, 149
\varpi, 148
\varpropto, 166
\varPsi, 149
\varrho, 148
\varSigma, 149
\varsigma, 148
\varTheta, 148, 149
\vartheta, 148
\varUpsilon, 149
\varXi, 149

\Vdash, 166
\vDash, 166
\vdash, 166
\vdots, 178
\vec, 172
\vee, 165
\vert, 156
\vline, 60, 63
\vphantom, 57, 58, 156
\Vvdash, 166

\wedge, 165
\While, 185, 189
\whiledo, 214, 215
\widehat, 172
\widetilde, 171, 172
\widthof, 215
\wp, 168
\wr, 165

\x, 114, 115
\xhookleftarrow, 167, 168
\xhookrightarrow, 167, 168
\Xi, 149
\xi, 148
\xLeftarrow, 167, 168
\xleftarrow, 167
\xleftharpoondown, 167, 168
\xleftharpoonup, 167, 168
\xLeftrightarrow, 167, 168
\xleftrightarrow, 167, 168
\xleftrightharpoons, 167, 168
\xmapsto, 167, 168
\xRightarrow, 167, 168
\xrightarrow, 167
\xrightharpoondown, 167, 168
\xrightharpoonup, 167, 168
\xrightleftharpoons, 167, 168
\xticklabels, 134

\y, 114, 115
\yticklabels, 134

\zeta, 148

Environments 293

Environments

abstract, 11
algorithm, 183, 184
algorithm*, 184
algorithm2e, 183, 185, 187, 188
align, 149, 151–153
align*, 149, 153, 156, 180
aligned, 153, 154
alignedat, 153
array, 58, 59, 61, 63, 123, 170
axis, 131–134, 139, 141

Bmatrix, 170
bmatrix, 170, 171

cases, 155, 173
center, 58

description, 37, 69, 70
document, 9, 11, 14, 16, 19, 24, 30,

34, 198, 199, 202, 205,
208, 211

enumerate, 37, 68–70
eqnarray, 154
equation, 149–151
equation*, 149–151, 154

figure, 75, 76, 78, 184
flushleft, 58, 59
flushright, 58
footnotesize, 51
frame, 225, 226, 228, 229, 231
function, 184
function*, 184

gather, 150, 151
gathered, 153

Huge, 51
huge, 51

itemize, 37, 67, 68

LARGE, 51
Large, 51
large, 51
letter, 33, 34
list, 68, 70–72
longtable, 125, 126

lstlisting, 190
lstlistings, 190

matrix, 171

normalsize, 51

pgfplots, 129
pmatrix, 170
procedure, 184
procedure*, 184
proof, 146, 174, 177, 178

quotation, 49
quote, 49, 50

refsection, 27, 28

scope, 112
scriptsize, 51
sidewaysfigure, 125
sidewaystable, 125
small, 51
smallmatrix, 171
split, 150, 151
subarray, 161

tabbing, 58, 63, 64, 170, 183
table, 124, 125, 184
table*, 125
tabular, 36, 58–61, 63, 123–125,

127
tabular*, 58, 59, 61, 63
tikzpicture, 81–85, 89, 90, 102,

103, 107
tiny, 51
titlepage, 11
tt, 64

verse, 49, 50
Vmatrix, 171
vmatrix, 170

Classes 295

Classes

amscls, 145
article, 3, 10, 11, 22, 24, 30, 33,

196, 198, 202, 237, 239–
241

beamer, xxv, 81, 196, 197, 225,
226, 228–230, 237, 239,
240

book, 14, 30, 33

letter, 13, 33, 34

memoir, 35

report, 33

Packages 297

Packages

acronym, 55
algorithm2e, 183–185, 187–189
amsbsy, 146
amscd, 146
amsfonts, 146
amsmath, 145, 146, 149, 150, 153,

154, 158, 160, 161, 163–
165, 169, 170, 177–179

amsopn, 146
amssymb, 146
amstext, 146
amsthm, 146, 174–177
arrows, 93, 94
arsclassica, 35

babel, 65
beamerarticle, 227, 240, 241
biblatex, vii, 25–29
bidi, 65
booktabs, 61, 125
breqn, 180

calc, 109, 215
calctab, 127, 197
ccaption, 77
circuits.logic.CDH, 103
circuits.logic.IEC, 103
circuits.logic.US, 103
classicthesis, 35
colortbl, 61
cool, xi, 170
coverpage, 35
csvpie, 131

datatool, 127
dcolumn, 122, 123
dpfloat, 76

enumerate, 69, 70
esint, 163

fancyhdr, 35
fontenc, 257
fontspec, 4, 243, 249, 252
fonttable, 257
fourier, 35

graphicx, 77, 78

hyperref, 36

ifthen, 213–215

keyval, 78, 217

lastpage, 35
lipsum, 196
listings, 190, 191
longtable, 125

makerobust, 200
mathastext, 300
mathdesign, 35
mathptmx, 9, 10
mathtools, 35, 153
microtype, 52, 245
multind, 31

named, 21, 24
nicefrac, 246

pgf, 81, 239
pgfkeys, 111, 217, 218, 238, 239,

244, 257, 259, 260
pgfopts, 218, 238, 257, 260
pgfplot, 141
pgfplots, 75, 131, 132, 134, 136,

137, 141
pgfplotstable, 127
polyglossia, 65
prettyref, 18, 19, 150

rotating, 125

siunitx, 57, 122, 124, 181
spreadtab, 127

tagging, 211
tikz, xxv, 75, 81, 82, 84, 89, 99,

101, 102, 107–109, 111,
225, 230

todonotes, 35

url, 35

xcolor, 89, 90
xfrac, 246

Languages and External Commands 299

Languages and External Commands

ANSI C, 190
ANSI C++, 190

bibtex, 3, 23, 24, 27, 31

cd, 219
cfftot1, 250, 251

dvipdf, 7
dvips, 7

eclipse, 4, 5
Eiffel, 190
emacs, 5, 7
Excel, 129

gnuplot, 77

HTML, 190

ispell, 4, 66

Java, 190

kpsewhich, 257

latex, 6–8, 12, 15, 16, 18, 23

makeindex, 31
matlab, 131

otfinfo, 244, 252
otftotfm, 248, 252, 254, 255, 260

pdflatex, 3, 6–8, 243
pdftex, 252
PHP, 190
Python, 190

t1testpage, 250, 251
texdoc, 27, 35

unix, 4, 250

vim, 5, 7, 16

xdvi, 7
XML, 190

Colophon
This book was created with pdflatex in a stan-
dard TEX Live installation. The cover, the spine, and
pages i–iv were produced by the publisher. The main
text was typeset with the book class, using FF Nexus at
11/13×27 as the font family, and scaling its typewriter
fonts to 83%.

The page, figure, and table layout were imple-
mented with a user-defined package. The same holds
for the itemize, enumerate, and description envi-
ronments.

I had two main concerns when designing the page
layout. First, I wanted figures and tables that could
run into the margins. With program listings this is
almost always needed; also this would let me typeset
input and output side by side. My second concern
was that I wanted the figure and table captions to the
side. That way, long explanations would not be so
disruptive.

The artwork at the back of the part titlepages is
included courtesy of Billy Foley, a Cork-based artist
and member of the Cork Artists Collective. The land-
scape on page 2 is included courtesy of the University
College Cork Art Collection. More of Billy Foley’s
work may be found on www.billyfoley.com.

The amsmath and amssymb packages were used to
help typeset the mathematics. The mathastext pack-
age was used with the option italic to make sure
that the numbers and letters in mathematical ex-
pressions were typeset in Nexus. The result is not
always perfect but overall it looks pleasing. The bib-
liography was typeset with the biblatex package.
The microtype package was used with the options
tracking=smallcaps, expansion=true, and protru-
sion=true.

	Cover
	X.media.publishing
	LaTex and Friends
	ISBN 9783642238154
	Foreword
	Contents
	List of Figures
	List of Tables
	Preface
	Book Outline
	Acknowledgements

	PART I: Basics
	Chapter 1 Introduction to LaTEX
	1.1 Pros and Cons
	1.2 Basics
	1.2.1 The TEX Processors
	1.2.2 From tex to dvi and Friends
	1.2.3 The Name of the Game
	1.2.4 Staying in Sync
	1.2.5 Writing a LaTEX Input Document
	1.2.6 The Abstract
	1.2.7 Spaces, Comments, and Paragraphs

	1.3 Document Hierarchy
	1.3.1 Minor Document Divisions
	1.3.2 Major Document Divisions
	1.3.3 The Appendix

	1.4 Document Management
	1.5 Labels and Cross-references
	1.6 Controlling the Style of References
	1.7 The Bibliography
	1.7.1 The bibtex Program
	1.7.2 The biblatex Package
	1.7.3 End-of-Chapter Bibliographies
	1.7.4 Classified Bibliographies

	1.8 Table of Contents and Lists of Things
	1.8.1 Controlling the Table of Contents
	1.8.2 Controlling the Sectional Unit Numbering
	1.8.3 Indexes and Glossaries

	1.9 Class Files
	1.10 Packages
	1.11 Useful Classes and Packages
	1.12 Errors and Troubleshooting

	PART II: Basics Typesetting
	Chapter 2 Running Text
	2.1 Special Characters
	2.1.1 Tieing Text
	2.1.2 Grouping

	2.2 Diacritics
	2.3 Ligatures
	2.4 Quotation Marks
	2.5 Dashes
	2.6 Full Stops
	2.7 Ellipsis
	2.8 Emphasis
	2.9 Borderline Punctuation
	2.10 Footnotes and Marginal Notes
	2.11 Displayed Quotations and Verses
	2.12 Line Breaks
	2.13 Controlling the Size
	2.14 Seriffed and Sans Serif Typefaces
	2.15 Small Caps Letters
	2.16 Controlling the Type Style
	2.17 Abbreviations
	2.17.1 Initialisms
	2.17.2 Acronyms
	2.17.3 Shortenings
	2.17.4 Introducing Abbreviations
	2.17.5 British and American Spelling
	2.17.6 Latin Abbreviations
	2.17.7 Units

	2.18 Phantom Text
	2.19 Alignment
	2.19.1 Centred Text
	2.19.2 Flushed/Ragged Text
	2.19.3 Basic tabular Constructs
	2.19.4 The booktabs Package
	2.19.5 Advanced tabular Constructs
	2.19.6 The tabbing Environment

	2.20 Language Related Issues
	2.20.1 Hyphenation
	2.20.2 Foreign Languages
	2.20.3 Spell-Checking

	Chapter 3 Lists
	3.1 Unordered Lists
	3.2 Ordered Lists
	3.3 The enumerate Package
	3.4 Description Lists
	3.5 Making your Own Lists

	PART III: Tables, Diagrams, and Data Plots
	Chapter 4 Presenting External Pictures
	4.1 The figure Environment
	4.2 Special Packages
	4.2.1 Floats
	4.2.2 Legends

	4.3 External Picture Files
	4.4 The graphicx Package
	4.5 Setting Default Key Values
	4.6 Setting a Search Path
	4.7 Graphics Extensions

	Chapter 5 Presenting Diagrams
	5.1 Why Specify your Diagrams?
	5.2 The tikzpicture Environment
	5.3 The \tikz Command
	5.4 Grids
	5.5 Paths
	5.6 Coordinate Labels
	5.7 Extending Paths
	5.8 Actions on Paths
	5.8.1 Colour
	5.8.2 Drawing the Path
	5.8.3 Line Width
	5.8.4 Dash Patterns
	5.8.5 Predefined Styles
	5.8.6 Line Cap and Join
	5.8.7 Arrows
	5.8.8 Filling a Path
	5.8.9 Path Filling Rules

	5.9 Nodes and Node Labels
	5.9.1 Predefined Nodes Shapes
	5.9.2 Node Options
	5.9.3 Connecting Nodes
	5.9.4 Special Node Shapes

	5.10 The spy Library
	5.11 Trees
	5.12 Logic Circuits
	5.13 Commutative Diagrams
	5.14 Coordinate Systems
	5.15 Coordinate Calculations
	5.15.1 Relative and Incremental Coordinates
	5.15.2 Complex Coordinate Calculations

	5.16 Options
	5.17 Styles
	5.18 Scopes
	5.19 The \foreach Command
	5.20 The let Operation
	5.21 The To Path Operation

	Chapter 6 Presenting Data in Tables
	6.1 Why Use Tables?
	6.2 Table Taxonomy
	6.3 Table Anatomy
	6.4 Table Design
	6.5 Aligning Columns with Numbers
	6.5.1 Aligning Columns by Hand
	6.5.2 The dcolumn Package
	6.5.3 The siunitx Package

	6.6 The table Environment
	6.7 Wide Tables
	6.8 Multi-page Tables
	6.9 Databases and Spreadsheets

	Chapter 7 Presenting Data with Plots
	7.1 The Purpose of Data Plots
	7.2 Pie Charts
	7.3 Introduction to pgfplots
	7.4 Bar Graphs
	7.5 Paired Bar Graphs
	7.6 Component Bar Graphs
	7.7 Coordinate Systems
	7.8 Line Graphs
	7.9 Scatter Plots

	PART IV: Mathematics and Algorithms
	Chapter 8 Mathematics
	8.1 The AMS-LaTEX Platform
	8.2 LaTEX’s Math Modes
	8.3 Ordinary Math Mode
	8.4 Subscripts and Superscripts
	8.5 Greek Letters
	8.6 Display Math Mode
	8.6.1 The equation Environment
	8.6.2 The split Environment
	8.6.3 The gather Environment
	8.6.4 The align Environment
	8.6.5 Interrupting a Display
	8.6.6 Low-level Alignment Building Blocks
	8.6.7 The eqnarray Environment

	8.7 Text in Formulae
	8.8 Delimiters
	8.8.1 Scaling Left and Right Delimiters
	8.8.2 Bars
	8.8.3 Tuples
	8.8.4 Floors and Ceilings
	8.8.5 Delimiter Commands

	8.9 Fractions
	8.10 Sums, Products, and Friends
	8.10.1 Basic Typesetting Commands
	8.10.2 Overriding Text and Display Style
	8.10.3 Multi-line Limits

	8.11 Existing Functions and Operators
	8.12 Integration and Differentiation
	8.12.1 Integration
	8.12.2 Differentiation

	8.13 Roots
	8.14 Changing the Style
	8.15 Symbol Tables
	8.15.1 Operator Symbols
	8.15.2 Relation Symbols
	8.15.3 Arrows
	8.15.4 Miscellaneous Symbols

	Chapter 9 Advanced Mathematics
	9.1 Declaring New Operators
	9.2 Managing Content with the cool Package
	9.3 Arrays and Matrices
	9.4 Accents, Hats, and Other Decorations
	9.5 Braces
	9.6 Case-based Definitions
	9.7 Function Definitions
	9.8 Theorems
	9.8.1 Theorem Taxonomy
	9.8.2 Styles for Theorem-like Environments
	9.8.3 Defining Theorem-like Environments
	9.8.4 Defining Theorem-like Styles
	9.8.5 Proofs

	9.9 Mathematical Punctuation
	9.10 Spacing and Linebreaks
	9.10.1 Line Breaks
	9.10.2 Conditions
	9.10.3 Physical Units
	9.10.4 Sets
	9.10.5 More Spacing Commands

	Chapter 10 Algorithms and Listings
	10.1 Presenting Pseudo-Code with algorithm2e
	10.1.1 Loading algorithm2e
	10.1.2 Basic Environments
	10.1.3 Describing Input and Output
	10.1.4 Conditional Statements
	10.1.5 The Switch Statement
	10.1.6 Iterative Statements
	10.1.7 Comments

	10.2 The listings Package

	PART V: Automation
	Chapter 11 Commands and Environments
	11.1 Some Terminology
	11.2 Advantages and Disadvantages
	11.3 User-defined Commands
	11.3.1 Defining Commands Without Parameters
	11.3.2 Defining Commands With Parameters
	11.3.3 Fragile and Robust Commands
	11.3.4 Defining Robust Commands

	11.4 Commands and Parameters
	11.5 Defining Commands with TEX
	11.6 Tweaking Existing Commands with \let
	11.7 Using More than Nine Parameters
	11.8 Using Environments

	Chapter 12 Branching
	12.1 Counters, Switches, and Lengths
	12.1.1 Counters
	12.1.2 Switches
	12.1.3 Lengths
	12.1.4 Scoping

	12.2 The ifthen Package
	12.3 The calc Package
	12.4 Looping
	12.5 Tail Recursion

	Chapter 13 Option Parsing
	13.1 What is a <Key>=<Value> Interface?
	13.2 Why Use a <Key>=<Value> Interface?
	13.3 The pgfkeys Package
	13.4 Providing and Using the Values
	13.5 Traversing the Key Tree
	13.6 Executing Keys
	13.7 Error Handling
	13.8 Storing Values in Macros
	13.9 Decisions
	13.10 Choice Keys

	PART VI: Miscellany
	Chapter 14 Beamer Presentations
	14.1 Frames
	14.2 Modal Presentations
	14.3 Incremental Presentations
	14.4 Visual Alerts
	14.5 Adding Some Style

	Chapter 15 Writing Classes and Packages
	15.1 The Structure of Classes and Packages
	15.2 Dependencies
	15.3 Identification
	15.4 Defining and Parsing the Options
	15.5 Loading Existing Classes and Packages
	15.6 Final Configuration

	Chapter 16 Using OpenType Fonts
	16.1 OpenType Font Features
	16.2 LaTEX Font Selection Mechanism
	16.3 Overview of Functionality
	16.4 Inspecting the Font
	16.5 Current Alternatives
	16.6 Designing the Font Families
	16.7 Extracting the Fonts
	16.8 Font Definition Files
	16.9 Creating the Font Definition Files
	16.10 Implementing a Font Package
	16.10.1 Parsing the Point Size
	16.10.2 Loading the Font
	16.10.3 Changing the Features

	16.11 Using the Fonts

	PART VII: References and Bibliography
	Typographic Jargon
	Bibliography
	Acronyms and Abbreviations
	Indexes
	LaTEX and TEX Commands
	Environments
	Classes
	Packages
	Languages and External Commands

	Colophon

