

Java™ Servlet Programming

THE

JAVA.
SERIES

Exploring Java™
Java™ Threads
Java™ Networ k Programming
Java™ Virtual Machine
Java™ AWT Reference
Java™ L anguage Reference
Java™ Fundamental Classes Reference
Database Programming with JDBC™ and Java™
Java™ Distributed Computing
Developing Java Beans™
Java™ Security
Java™ Cryptography
Java™ Swing
Java™ Servlet Programming
Also from O'Reilly
Java™ in a Nutshell
Java™ in a Nutshell, Deluxe Edition

Java™ Examplesin a Nutshell

Java™ Servlet Programming

Jason Hunter
with William Crawford

O'REILLY*

RBeifing - Cambridge - Farnbam - Kiln - Paris - Sebastopol - Taipei - Tokyo

Java™ Servlet Programming
by Jason Hunter with William Crawford

Copyright © 1998 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Paula Ferguson

Production Editor: Paula Carroll

Editorial and Production Services: Benchmark Productions, Inc.

Printing History:

October 1998: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java™ Seriesis atrademark of O'Reilly & Associates, Inc. The
association of the image of a copper teakettle with the topic of Java™ Servlet
programming is atrademark of O'Reilly & Associates, Inc. Java™ and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc., in the United States and other countries. O'Rellly & Associates, Inc. is
independent of Sun Microsystems.

Many of the designations used by manufacturers and sellersto distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
O'Rellly & Associates, Inc. was aware of atrademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 1-56592-391-X [1/00]

[M]

Acknowledgments

The authors would like to say a big thank you to the book's technical reviewers, whose constructive criticism
has done much to improve this work: Mike Slinn, Mike Hogarth, James Duncan Davidson, Dan Pritchett, Dave
McMurdie, and Rob Clark. We're still in shock that it took one reviewer just three days to read what took us a
full year to writel

Jason Hunter

In a sense, this book began March 20, 1997, at the Computer Literacy bookstore in San Jose, California.
There—after a hilarioustalk by Larry Wall and Randall Schwartz, where Larry explained how he manages to
automate his house using Perl—I met the esteemed Tim O'Reilly for the first time. | introduced myself and
brazenly told him that some day (far in the future, | thought) | had plans to write an O'Reilly book. | felt like |
was telling Steven Spielberg | planned to star in one of hismovies. To my complete and utter surprise, Tim
replied, "On what topic?' So began the roller coaster ride that resulted in this book.

There have been several high points | fondly remember: meeting my editor (cool, she's young, too!), signing the
officia contract (did you know that all of O'Reilly's official paper has animals on it?), writing the first sentence
(over and over), printing the first chapter (and having it look just like an O'Reilly book), and then watching as
the printouts piled higher and higher, until eventually there was nothing more to write (well, except the
acknowledgments).

There have been afair number of trying times as well. At one point, when the book was about half finished, |
realized the Servlet APl was changing faster than | could keep up. | believein the saying, "If at first you don't
succeed, ask for help," so after aquick talent search | asked William Crawford, who was aready working on
Java Enterprise in a Nutshell, if he could help speed the book to completion. He graciously agreed and in the
end wrote two chapters, as well as portions of the appendices.

There are many others who have helped in the writing of this book, both directly and indirectly. I'd like to say
thank you to Paula Ferguson, the book's editor, and Mike Loukides, the Java series editor, for their effortsto
ensure (and improve) the quality of this book. And to Tim O'Reilly for giving me the chance to fulfill adream.

Thanks also to my managers at Silicon Graphics, Kathy Tansill and Walt Johnson, for providing me with more
encouragement and flexibility than | had any right to expect.

| can't say thank you enough to the engineers at Sun who were tremendously helpful in answering questions,
keeping me updated on changesin the Serviet API, and promptly fixing almost every bug | reported: James
Duncan Davidson (who looks the spitting image of James Gosling), Jim Driscoll, Rob Clark, and Dave
Brownell.

Thanks also to the members of the jserv-interest mailing list, whose questions and answers have shaped the
content of this book; Will Ramey, an old friend who didn't let friendship blind his critical eye; Mike Engber, the
man to whom | turned when | had run out of elegant workarounds and was ready to accept the crazy things he
comes up with; Dave Vandegrift, the first person to read many of the chapters; Bill Day, author of Java Media
Players, who helped intangibly by going through the book writing process in parallel with me; Michael
O'Connell and Jill Steinberg, editors at JavaWorld, where | did my first professional writing; Doug Y oung, who
shared with me the tricks he learned writing seven technical books of his own; and Shoji Kuwabara, Mieko
Aono, Song Y ung, Matthew Kim, and Alexandr Pashintsev for their help translating "Hello World" for Chapter
12.

Finally, thanks to Mom and Dad, for their love and support and for the time they spent long ago teaching me the
basics of writing. And a special thanks to my girlfriend, Kristi Taylor, who made the small time away from
work a pleasure.

And Grandpa, | wish you could have seen this.

JASON HUNTER
JULY 1998

William Crawford

First and foremost, thanks to Shelley Norton, Dr. Isaac Kohane, Dr. James Fackler, and Dr. Richard Kitz (plus a
supporting cast whose contributions were invaluable), whose assistance and early support have made everything
since possible. Also, to Martin Streeter of Invantage, Inc., for his support during this project.

Without Rob Leith, Roger Stacey, and Fred Strebeigh, | would probably still be stuck in the passive voice. Dale
Dougherty offered me money in exchange for words, atwist of eventsthat | still haven't gotten over. Andy
Kwak, Joel Pomerantz, and Matthew Proto, brave souls al, were willing to read drafts and listen to complaints
at one o'clock in the morning.

And, of course, to Mom and Dad for their years of support, and to my sister Faith for (usually) letting me get
away with being a nerd.

WILLIAM CRAWFORD
JULY 1998

Preface

In late 1996, Java on the server side was coming on strong. Several mgjor software vendors were marketing
technol ogies specifically aimed at helping server-side Java developers do their jobs more efficiently. Most of
these products provided a prebuilt infrastructure that could lift the devel oper's attention from the raw socket
level into the more productive application level. For example, Netscape introduced something it named "server-
side applets'; the World Wide Web Consortium included extensible modules called "resources’ with its Java-
based Jigsaw web server; and with its WebSite server, O'Reilly Software promoted the use of atechnology it
(only coincidentally) dubbed "servlets." The drawback: each of these technologies wastied to a particular server
and designed for very specific tasks.

Then, in early 1997, JavaSoft (a company that has since been reintegrated into Sun Microsystems as the Java
Software division) finalized Java servlets. This action consolidated the scattered technologies into asingle,
standard, generic mechanism for developing modular server-side Java code. Servlets were designed to work
with both Java-based and non-Java-based servers. Support for servlets has since been implemented in nearly
every web server, from Apache to Zeus, and in many non-web servers as well.

Servlets have been quick to gain acceptance because, unlike many new technologies that must first explain the
problem or task they were created to solve, servlets are a clear solution to a well-recognized and widespread
need: generating dynamic web content. From corporations down to individual web programmers, people who
struggled with the maintenance and performance problems of CGl-based web programming are turning to
servlets for their power, portability, and efficiency. Others, who were perhaps intimidated by CGI
programming's apparent reliance on manual HT TP communication and the Perl and C languages, are looking to
servlets as a manageabl e first step into the world of web programming.

This book explains everything you need to know about Java servlet programming. Thefirst five chapters cover
the basics: what servlets are, what they do, and how they work. The following eight chapters are where the true
meat is—they explore the things you are likely to do with servlets. Y ou'll find numerous examples, several
suggestions, afew warnings, and even a couple of true hacks that somehow made it past technical review.

We cover Version 2.0 of the Servlet API, which was introduced as part of the Java Web Server 1.1 in December
1997 and clarified by the release of the Java Servlet Development Kit 2.0 in April 1998. Changesin the AP
from Version 1.0, finalized in June 1997, are noted throughout the text.

Audience

Isthis book for you? It isif you're interested in extending the functionality of a server—such as extending a
web server to generate dynamic content. Specifically, this book was written to help:

CGl programmers
CGl isapopular but somewhat crude method of extending the functionality of aweb server. Servlets
provide an elegant, efficient alternative.

NSAPI, ISAPI, ASP, and Server-Sde JavaScript programmers
Each of these technologies can be used as a CGlI alternative, but each has limitations regarding portability,
security, and/or performance. Servlets tend to excel in each of these areas.

Java applet programmers
It has aways been difficult for an applet to talk to a server. Servlets make it easier by giving the applet an
easy-to-connect-to, Java-based agent on the server.

Authors of web pages with server-side includes
Pages that use server-side includesto call CGI programs can use <SERVLET> tagsto add content more
efficiently to a page.

Authors of web pages with different appearances

By this we mean pages that must be available in different languages, have to be converted for transmission
over alow-bandwidth connection, or need to be modified in some manner before they are sent to the client.
Servlets provide something called servlet chaining that can be used for processing of thistype. Each servlet
in aservlet chain knows how to catch, process, and return a specific kind of content. Thus, servlets can be
linked together to do language tranglation, change large color images to small black-and-white ones,
convert images in esoteric formats to standard GIF or JPEG images, or nearly anything else you can think
of.

What You Need to Know

When we first started writing this book, we found to our surprise that one of the hardest things was determining
what to assume about you, the reader. Are you familiar with Java? Have you done CGI or other web application
programming before? Or are you getting your feet wet with servlets? Do you understand HTTP and HTML, or
do those acronyms seem perfectly interchangeable? No matter what experience level we imagined, it was sure
to be too simplistic for some and too advanced for others.

In the end, this book was written with the notion that it should contain predominantly original material: it could
leave out exhaustive descriptions of topics and concepts that are well described online or in other books.
Scattered throughout the text, you'll find several references to these external sources of information.

Of course, external references only get you so far. This book expects you are comfortable with the Java
programming language and basic object-oriented programming techniques. If you are coming to servlets from
another language, we suggest you prepare yourself by reading a book on general Java programming, such as
Exploring Java, by Patrick Niemeyer and Joshua Peck (O'Reilly). Y ou may want to skim quickly the sections
on applets and AWT (graphical) programming and spend extra time on network and multithreaded
programming. If you want to get started with servlets right away and learn Java as you go, we suggest you read
this book with a copy of Java in a Nutshell, by David Flanagan (O'Reilly), or another Java reference book, at
your side.

This book does not assume you have extensive experience with web programming, HTTP, and HTML. But
neither doesit provide afull introduction to or exhaustive description of these technologies. We'll cover the
basics necessary for effective servlet development and leave the finer points (such as a complete list of HTML
tagsand HTTP 1.1 headers) to other sources.

About the Examples

In this book you'll find nearly 100 servlet examples. The code for these servletsis all contained within the text,
but you may prefer to download the examples rather than type them in by hand. Y ou can find the code online
and packaged for download at http://mwww.oreilly.com/catalog/jserviet/. Y ou can also see many of the servletsin
action at http://www.serviets.com.

All the examples have been tested using Sun's Java Web Server 1.1.1, running in the Java Virtua Machine
(JVM) bundled with the Java Development Kit (JDK) 1.1.5, on both Windows and Unix. A few examples
require alternate configurations, and this has been noted in the text. The Java Web Server isfree for education
use and has a 30-day trial period for all other use. Y ou can download a copy from http://java.sun.convproducts.
The Java Development Kit isfreely downloadable from http://java.sun.convVproducts/jdk or, for educational use,
from http://www.sun.convproducts-n-solutions/edu/javal. The Java Servlet Development Kit (JSDK) is
available separately from the JDK; you can find it at http://java.sun.comyproducts/serviet/.

This book also contains a set of utility classes—they are used by the servlet examples, and you may find them
helpful for your own general-purpose serviet devel opment. These classes are contained in the
com.oreilly.servlet package. Among other things, there are classes to help servlets parse parameters,
handle file uploads, generate multipart responses (server push), negotiate locales for internationalization, return
files, manage socket connections, and act as RMI servers. There's even aclass to help applets communicate
with servlets. The source code for the com.orei lly.servlet package is contained within the text; the
latest version is also available online (with javadoc documentation) from

http: //mwww.oreilly.conv/catal og/jserviet/ and http://www.serviets.com.

Organization
This book consists of 13 chapters and 5 appendices, as follows:

Chapter 1, Introduction
Explains the role and advantage of Java servletsin web application development.

Chapter 2, HTTP Servlet Basics
Provides a quick introduction to the things an HTTP servlet can do: page generation, server-side includes,
servlet chaining, and JavaServer Pages.

Chapter 3, The Serviet Life Cycle

Explains the details of how and when a servlet isloaded, how and when it is executed, how threads are
managed, and how to handle the synchronization issues in a multithreaded system. Persistent state
capabilities are also covered.

Chapter 4, Retrieving Information
Introduces the most common methods a servlet uses to receive information—about the client, the server,
the client's request, and itself.

Chapter 5, Sending HTML Information
Describes how a servlet can generate HTML, return errors and other status codes, redirect requests, write
data to the server log, and send custom HTTP header information.

Chapter 6, Sending Multimedia Content
Looks at some of the interesting things a servlet can return: dynamically generated images, compressed
content, and multipart responses.

Chapter 7, Session Tracking

Shows how to build a sense of state on top of the stateless HTTP protocol. The first half of the chapter
demonstrates the traditional session-tracking techniques used by CGI devel opers; the second half shows how to
use the built-in support for session tracking in the Servlet API.

Chapter 8, Security
Explains the security issuesinvolved with distributed computing and demonstrates how to maintain
security with servlets.

Chapter 9, Database Connectivity
Shows how servlets can be used for high-performance web-database connectivity.

Chapter 10, Applet-Serviet Communication
Describes how servlets can be of use to applet developers who need to communicate with the server.

Chapter 11, Interserviet Communication
Discusses why servlets need to communicate with each other and how it can be accomplished.

Chapter 12, Internationalization
Shows how a servlet can generate multilingual content.

Chapter 13, Odds and Ends
Presents ajunk drawer full of useful servlet examples and tips that don't really belong anywhere else.

Appendix A, Serviet APl Quick Reference
Contains afull description of the classes, methods, and variablesin the Jjavax.servlet package.

Appendix B, HTTP Serviet APl Quick Reference
Contains afull description of the classes, methods, and variablesin the Javax.servlet.http
package.

Appendix C, HTTP Status Codes
Lists the status codes specified by HTTP, along with the mnemonic constants used by servlets.

Appendix D, Character Entities
Lists the character entities defined in HTML, along with their equivalent Unicode escape values.

Appendix E, Charsets

Lists the suggested charsets servlets may use to generate content in several different languages.
Please feel freeto read the chapters of this book in whatever order you like. Reading straight through from front
to back ensures that you won't encounter any surprises, as efforts have been taken to avoid forward references.
If you want to skip around, however, you can do so easily enough, especially after Chapter 5—the rest of the
chapters all tend to stand alone. One last suggestion: read the "Debugging” section of Chapter 13 if at any time
you find a piece of code that doesn't work as expected.

Conventions Used in This Book

Italic isused for:

« Pathnames, filenames, and program names

* New terms where they are defined

* Internet addresses, such as domain names and URLs
Boldface is used for:

* Particular keys on a computer keyboard

* Names of user interface buttons and menus
Constant Width isused for:

» Anything that appears literally in a Java program, including keywords, data types, constants, method names,
variables, class names, and interface names

» Command lines and options that should be typed verbatim on the screen
* All Java code listings

* HTML documents, tags, and attributes

Constant Width Italicisusedfor:

» Genera placeholders that indicate that an item is replaced by some actual value in your own program

Request for Comments

Please help us to improve future editions of this book by reporting any errors, inaccuracies, bugs, misleading or
confusing statements, and plain old typos that you find anywhere in this book. Email your bug reports and
comments to us at: bookguestions@oreilly.com. (Before sending a bug report, however, you may want to check
for an erratalist at http://www.oreilly.com/catal og/jserviet/ to seeif the bug has already been submitted.)

Please also let us know what we can do to make this book more useful to you. We take your comments
seriously and will try to incorporate reasonable suggestions into future editions.

1
I ntroduction

In thischapter:
* History of Web Applications
* Support for Serviets

* The Power of Serviets

Therise of server-side Java applications is one of the latest and most exciting trends in Java programming. The
Javalanguage was originally intended for use in small, embedded devices. It wasfirst hyped as alanguage for
developing elaborate client-side web content in the form of applets. Until recently, Java's potentia as a server-
side development platform had been sadly overlooked. Now, Javais coming into its own as a language ideally
suited for server-side devel opment.

Businesses in particular have been quick to recognize Javas potential on the server—Javaisinherently suited
for large client/server applications. The crossplatform nature of Javais extremely useful for organizations that
have a heterogeneous collection of servers running various flavors of the Unix and Windows operating systems.
Java's modern, object-oriented, memory-protected design allows devel opers to cut development cycles and
increase reliability. In addition, Java's built-in support for networking and enterprise APIs provides access to
legacy data, easing the transition from older client/server systems.

Java servlets are a key component of server-side Java development. A servlet isasmall, pluggable extension to
aserver that enhances the server's functionality. Servlets allow developers to extend and customize any Java-
enabled server—a web server, amail server, an application server, or any custom server—with a hitherto
unknown degree of portability, flexibility, and ease. But before we go into any more detail, let's put thingsinto
perspective.

History of Web Applications

While servlets can be used to extend the functionality of any Java-enabled server, today they are most often
used to extend web servers, providing a powerful, efficient replacement for CGI scripts. When you use a servlet
to create dynamic content for aweb page or otherwise extend the functionality of aweb server, you arein effect
creating a web application. While aweb page merely displays static content and lets the user navigate through
that content, aweb application provides a more interactive experience. A web application can be assimple asa
keyword search on a document archive or as complex as an electronic storefront. Web applications are being
deployed on the Internet and on corporate intranets and extranets, where they have the potential to increase
productivity and change the way that companies, large and small, do business.

To understand the power of servlets, we need to step back and look at some of the other approaches that can be
used to create web applications.

Common Gateway | nterface

The Common Gateway Interface, normally referred to as CGl, was one of the first practical techniques for
creating dynamic content. With CGI, aweb server passes certain requests to an external program. The output of
this program is then sent to the client in place of a static file. The advent of CGI made it possible to implement
all sorts of new functionality in web pages, and CGI quickly became a de facto standard, implemented on
dozens of web servers.

It's interesting to note that the ability of CGI programs to create dynamic web pages is a side effect of its
intended purpose: to define a standard method for an information server to talk with external applications. This
origin explains why CGI has perhaps the worst life cycle imaginable. When a server receives a request that
accesses a CGl program, it must create a new process to run the CGI program and then passto it, via
environment variables and standard input, every bit of information that might be necessary to generate a
response. Creating a process for every such request requires time and significant server resources, which limits
the number of requests a server can handle concurrently. Figure 1-1 shows the CGl life cycle.

|7 (G1-basad Web Server]
. Main Process L
.' Request for CGI1 . —————{ (hild Process for (611 .'
5 Request for (612 Child Process for (612

Figure 1-1.

The CGl lifecycle

Even though a CGI program can be written in almost any language, the Perl programming language has become
the predominant choice. Its advanced textprocessing capabilities are a big help in managing the details of the
CGl interface. Writing a CGI script in Perl givesit a semblance of platform independence, but it also requires
that each request start a separate Perl interpreter, which takes even more time and requires extra resources.

Another often-overlooked problem with CGlI isthat a CGI program cannot interact with the web server or take
advantage of the server's abilities once it begins execution because it is running in a separate process. For
example, a CGlI script cannot write to the server'slog file.

For more information on CGI programming, see CGI Programming on the World Wide Web by Shishir
Gundavaram (O'Reilly).

FastCGil

A company named Open Market developed an aternative to standard CGI named FastCGI. In many ways,
FastCGI worksjust like CGl—the important difference is that FastCGI creates a single persistent process for
each FastCGlI program, as shown in Figure 1-2. This eliminates the need to create a new process for each
request.

FostCGl-based Web Server
Main Process .
Request for (GI1 —nv—ﬂ Single Child Process for CGIN

Request for (612 ———.__

Requestfor G611 ——+~ I single Child Proces for CGI2

Figure 1-2.
The FastCGl lifecycle

Although FastCGl isastep in the right direction, it still has a problem with process proliferation: there is at
least one process for each FastCGI program. If aFastCGI program is to handle concurrent requests, it needs a
pool of processes, one per request. Considering that each process may be executing a Perl interpreter, this
approach does not scale as well as you might hope. (Although, to its credit, FastCGI can distribute its processes
across multiple servers.) Another problem with FastCGlI is that it does nothing to help the FastCGI program
more closely interact with the server. As of thiswriting, the FastCGI approach has not been implemented by
some of the more popular servers, including Microsoft's Internet Information Server. Finally, FastCGI programs
are only as portable as the language in which they're written.

For more information on FastCGl, see http://www.fastcgi.conv.

mod_perl

If you are using the Apache web server, another option for improving CGI performance is using mod_perl.
mod_perl isamodule for the Apache server that embeds a copy of the Perl interpreter into the Apache httpd
executable, providing complete access to Perl functionality within Apache. The effect isthat your CGI scripts
are precompiled by the server and executed without forking, thus running much more quickly and efficiently.
For more information on mod_per|, see http://perl.apache.org/.

PerlEx

PerlEx, developed by ActiveState, improves the performance of CGI scripts written in Perl that run on
Windows NT web servers (Microsoft's Internet Information Server, O'Reilly’'s WebSite Professional, and
Netscape's FastTrack Server and Enterprise Server). PerlEx uses the web server's native API to achieve its
performance gains. For more information, see http://www.activestate.convplex.

Other Solutions

CGl/Perl has the advantage of being a more-or-less platform-independent way to produce dynamic web content.
Other well-known technologies for creating web applications, such as ASP and server-side JavaScript, are
proprietary solutions that work only with certain web servers.

Server Extension APIs

Several companies have created proprietary server extension APIs for their web servers. For example, Netscape
provides an internal API called NSAPI (now becoming WAI) and Microsoft provides ISAPI. Using one of these
APIs, you can write server extensions that enhance or change the base functionality of the server, alowing the
server to handle tasks that were once relegated to external CGI programs. As you can seein Figure 1-3, server
extensions exist within the main process of aweb server.

Because server-specific APIs use linked C or C++ code, server extensions can run extremely fast and make full
use of the server's resources. Server extensions, however, are not a perfect solution by any means. Besides being
difficult to develop and maintain, they pose significant security and reliability hazards. a crashed server
extension can bring down the entire server. And, of course, proprietary server extensions are inextricably tied to
the server API for which they were written—and often tied to a particular operating system as well.

Weh Server with Sarver Extension AP|
Main Protess
Request for

ServerExtension] — 1' ServerExtension] i

Request for
ServerExtension? i

Request for | ServerExtension? [

ServerExlension]

Figure 1-3.
The server extension life cycle

Active Server Pages

Microsoft has developed a technique for generating dynamic web content called Active Server Pages, or
sometimes just ASP. With ASP, an HTML page on the web server can contain snippets of embedded code
(usualy VBScript or JScript—although it's possible to use nearly any language). This code is read and executed
by the web server before it sends the page to the client. ASP is optimized for generating small portions of
dynamic content.

Support for ASP is built into Microsoft Internet Information Server Version 3.0 and above, available for free
from http://www.microsoft.comviis. Support for other web serversis available as a commercia product from
Chili!'Soft at http://www.chilisoft.com.

For more information on programming Active Server Pages, see
http: //www. microsoft.com/wor kshop/ser ver/default.asp and http: //www.activeser ver pages.conv.

Server-side JavaScript

Netscape too has a technique for server-side scripting, which it calls server-side JavaScript, or SSJS for short.
Like ASP, SSJS allows snippets of code to be embedded in HTML pages to generate dynamic web content. The
difference isthat SSJS uses JavaScript as the scripting language. With SSJS, web pages are precompiled to
improve performance.

Support for server-side JavaScript is available only with Netscape FastTrack Server and Enterprise Server
Version 2.0 and above.

For more information on programming with server-side JavaScript, see
http: //devel oper .netscape.conmvtech/javascript/ssjs/sss.html.

Java Servlets

Enter Java serviets. Aswas said earlier, aservlet is ageneric server extension—a Java class that can be loaded
dynamically to expand the functionality of a server. Servlets are commonly used with web servers, where they
can take the place of CGI scripts. A servlet issimilar to a proprietary server extension, except that it runsinside
aJavaVirtua Machine (JVM) on the server (see Figure 1-4), so it is safe and portable. Servlets operate solely
within the domain of the server: unlike applets, they do not require support for Javain the web browser.

Jova Servlet-based Yeb Server
Muin Process

Regquest for Serviet! ——»"

Figure 1-4.
The servlet life cycle

Unlike CGI and FastCGl, which use multiple processes to handle separate programs and/or separate requests,
servlets are all handled by separate threads within the web server process. This means that servlets are aso
efficient and scalable. Because servlets run within the web server, they can interact very closely with the server
to do things that are not possible with CGI scripts.

Another advantage of servletsisthat they are portable: both across operating systems as we are used to with
Java and also across web servers. Asyou'll see shortly, all of the major web servers support serviets. We believe
that Java servlets offer the best possible platform for web application development, and we'll have much more
to say about this later in the chapter.

Although servlets are most commonly used as a replacement for CGI scripts on aweb server, they can extend
any sort of server. Imagine, for example, a Java-based FTP server that handles each command with a separate
servlet. New commands can be added by simply plugging in new servlets. Or, imagine amail server that allows
servlets to extend its functionality, perhaps by performing avirus scan on all attached documents or handling
mail filtering tasks.

This book emphasizes the use of servlets as areplacement for CGI programs. We believe that, at least in the
near term, most servlet developers will design and deploy servlets for use with HTTP servers. In the long term,
however, other uses are likely to catch on, so this book takes painsto point out what functionality is applicable
to generic servlets and what applies only to HTTP servlets. Whatever you hope to do with servlets, this book
can help you with your task.

Support for Servlets

Like Javaitself, servlets were designed for portability. Servlets are supported on all platforms that support Java,
and servlets work with all the major web servers.* Java servlets, as defined by the Java Software division of
Sun Microsystems (formerly known as JavaSoft), are the first standard extension to Java. This means that
servlets are officially blessed by Sun and are part of the Java language, but they are not part of the core Java
API. Therefore, although they may work with any Java Virtual Machine (JVM), servlet classes need not be
bundled with al JVMs. More information about the Java Extension Framework is available at
http//java.sun.convproducts/jdk/1.2/docs/guide/extensions.

To make it easy for you to develop servlets, Sun has made publicly available a set of classes that provide basic
servlet support. The Javax.servlet and Javax.servilet.http packages constitute this Serviet API.
Version 2.0 of these classes comes bundled with the Java Servlet Development Kit (JSDK) for use with the Java
Development Kit version 1.1 and above; the IDSK is available for download from
http://[ava.sun.comyproducts/serviet/.

Many web server vendors have incorporated these classes into their serversto provide servlet support, and
severa have also provided additional functionality. Sun's Java Web Server, for instance, includes a proprietary
interface to the server's security features.

It doesn't much matter where you get the servlet classes, as long as you have them on your system, since you
need them to compile your servlets. In addition to the servlet classes, you need a servlet engine, so that you can
test and deploy your servlets. Y our choice of servlet engine dependsin part on the web server(s) you are
running. There are three flavors of servlet engines: standalone, add-on, and embeddable.

* Note that several web server vendors have their own server-side Java implementations, some of which have also been given the
name "servlets'. These are generally incompatible with Java servlets as defined by Sun. Most of these vendors are converting
their Java support to standard servlets, or are introducing standard servlet support in paralel, to allow backward compatibility.

** At one point it was planned the contents of the JSDK would come bundled as part of JDK 1.2. However, it was later decided to
keep the servlet classes separate from the JDK, to better allow for timely revisions and corrections to the JSDK.

Standalone Serviet Engines

A standalone engine is a server that includes built-in support for servlets. Such an engine has the advantage that
everything works right out of the box. One disadvantage, however, isthat you have to wait for a new release of
the web server to get the latest servlet support. Because servlets are still fairly new, this sort of server is still a
bit of ararity. Asthe various vendors upgrade their web servers, we expect that many of the servers will
provide built-in support for servlets.

Standalone engines in web servers include the following:

* Sun's Java Web Server (formerly called "Jeeves'), unofficially considered the reference implementation for
how a servlet engine should support servlets. Written entirely in Java (except for two native code libraries that
enhance its functionality but are not needed). See http://java.sun.conVproducts/.

» The World Wide Web Consortium's Jigsaw Server, freely available and also written entirely in Java. See
http: //mww.w3.or g/Jigsaw.

* O'Rellly's WebSite Professional (Version 2.1 and later), the first server not written in Javato provide built-in
servlet support. See http://website.oreilly.com.

* Netscape's Enterprise Server (Version 3.51 and later), the most popular web server to provide built-in servlet
support. Unfortunately, Version 3.51 supports only the early Servlet API 1.0 and suffers from a number of bugs
so significant it's almost unusable. For the time being, use an add-on servlet engine with Netscape servers
instead. See http://home.netscape.com/download.

* Lotus's Domino Go Webserver (Version 4.6 and later), another popular web server with built-in servlet
support. Version 4.6.x supports only the early Servliet API 1.0; however, Lotus claimsto be replacing its
proprietary GWAPI server extension technology with Java servlets, so it'slikely that future versions of the
Domino Go Webserver will include robust servlet support. See http: //www.l otus.convdominogowebser ver/.

Application servers are afertile new area of development. An application server offers server-side support for
developing enterprise-based applications. Here are two application servers that include servlet engines:

» WebL ogic's Tengah Application Server, a high-end server written entirely in Java. See
http: //www.webl ogi c.comVpr oducts/tengahi ndex.html.

* ATG's Dynamo Application Server 3, another high-end server written entirely in Java. See
http: //mww.atg.cony.

Add-on Serviet Engines

An add-on servlet engine functions as a plug-in to an existing server—it adds servlet support to a server that
was not originally designed with servletsin mind. Add-on servlet engines have been written for many servers
including Apache, Netscape's FastTrack Server and Enterprise Server, Microsoft's Internet Information Server
and Personal Web Server, O'Rellly's WebSite, Lotus Domino's Go Webserver, StarNine's WebSTAR, and
Apple's AppleShare IP. This type of engine acts as a stopgap solution until a future server release incorporates
servlet support. A plug-in also can be used with a server that provides a poor or outdated servlet
implementation.

Add-on servlet engines include these:

* The Java-Apache project's JServ module, afreely available servlet engine that adds servlet support to the
extremely popular Apache server. See http://java.apache.org/.

* Live Software's JRun, afreely available plug-in designed to support the full Servliet API on all the popular
web serverson al the popular operating systems. The latest version even features a basic web server for
development purposes. See http: //www.livesoftwar e.convproducts/jrun/.

* IBM's WebSphere Application Server (formerly known as ServletExpress), a plug-in that is being called an
application server. It is designed to support the full Servliet APl on severa popular web servers on several
popular operating systems. See http: //www.softwar e.ibm.com/webservers/.

* New Atlanta's ServletExec, a plug-in designed to support the full Servlet APl on several web serverson
severa operating systems. See http://www.newatlanta.conv.

* Gefion Software's WAICool Runner, afreely available plug-in that supports most of the Servlet API on
Netscape's FastTrack Server and Enterprise Server versions 3.x and later, written in Java using Netscape's WAI
interface. See http://www.gefi onsoftwar e.com/WAI Cool Runner/.

» Unicom's Servlet CGI Development Kit, afreely available framework that supports servlets on top of CGlI.
What it lacksin efficiency it makes up for in ubiquity. See http://www.unicom.net/java/.

Embeddable Serviet Engines

An embeddable engineis generally alightweight serviet deployment platform that can be embedded in another
application. That application becomes the true server.

Embeddabl e servlet engines include the following:

* Sun's JavaServer Engine, a high-quality, high-end framework for designing and building Java servers. Sun's
JavaWeb Server and IBM's WebSphere Application Server were built using the Java Server Engine. See
http: //[ava.sun.com/products/javaserverengine.

» Jef Poskanzer's Acme.Serve, afreely available, smple web server that runs serviets "more or less compatible’
with the Servlet API. See http://www.acme.comvjava/softwar e/Package-Acme. Serve.html.

* Paralogic's WebCore, afreely available but unsupported embeddable web server, written entirely in Java. It
incorporates parts of Acme.Serve. See http://www.par al ogic.com/webcore/.

» Anders Kristensen's Nexus Web Server, afreely available servlet runner that implements most of the Servlet
API and can be easily embedded in Java applications. See http://www-uk.hpl.hp.con/peopl e/ak/java/nexus/.

Additional Thoughts

Before proceeding, we feel obliged to point out that not all servlet engines are created equal. So, before you
choose a servlet engine (and possibly a server) with which to deploy your servlets, take it out for atest drive.
Kick itstiresalittle. Check the mailing lists. Always verify that your servlets behave as they do in the Java Web
Server implementation. With servlets, you don't have to worry about the lowestcommon-denominator
implementation, so you should pick a serviet engine that has the functionality that you want.

For a complete, up-to-date list of available servlet engines, see the official list maintained by Sun at:

http://jserv.java.sun.com/products/java-server/servl ets/environments.html

The Power of Servlets

So far, we have portrayed servlets as an alternative to other dynamic web content technologies, but we haven't
really explained why we think you should use them. What makes servlets a viable choice for web development?
We believe that servlets offer anumber of advantages over other approaches, including: portability, power,
efficiency, endurance, safety, elegance, integration, extensibility, and flexibility. Let's examine each in turn.

Portability

Because servlets are written in Java and conform to a well-defined and widely accepted AP, they are highly
portable across operating systems and across server implementations. Y ou can develop a servlet on a Windows
NT machine running the Java Web Server and later deploy it effortlessly on a high-end Unix server running
Apache. With servlets, you can truly "write once, serve everywhere."

Servlet portability is not the stumbling block it so often is with applets, for two reasons. First, servlet portability
is not mandatory. Unlike applets, which have to be tested on all possible client platforms, servlets have to work
only on the server machines that you are using for development and deployment. Unless you are in the business
of selling your servlets, you don't have to worry about complete portability. Second, servlets avoid the most
error-prone and inconsistently implemented portion of the Java language: the Abstract Windowing Toolkit
(AWT) that formsthe basis of Java graphical user interfaces.

Power

Servlets can harness the full power of the core Java APIs: networking and URL access, multithreading, image
manipulation, data compression, database connectivity, internationalization, remote method invocation (RM1),
CORBA connectivity, and object serialization, among others. If you want to write aweb application that allows
employees to query a corporate legacy database, you can take advantage of all of the Java Enterprise APISin
doing so. Or, if you need to create a web-based directory lookup application, you can make use of the JNDI
API.

Asaservlet author, you can also pick and choose from a plethora of third-party Java classes and JavaBeans
components. In the future, you'll even be able to use newly introduced Enterprise JavaBeans components.
Today, servlets can use thirdparty code to handle tasks such as regular expression searching, data charting,
advanced database access, and advanced networking.

Servlets are al'so well suited for enabling client/server communication. With a Javabased applet and a Java-
based servlet, you can use RMI and object serialization to handle client/server communication, which means
that you can leverage the same custom code on the client as on the server. Using CGlI for the same purpose is
much more complicated, as you have to develop your own custom protocol to handle the communication.

Efficiency and Endurance

Servlet invocation is highly efficient. Once a servlet isloaded, it generally remainsin the server's memory as a
single object instance. Thereafter, the server invokes the servlet to handle arequest using a simple, lightweight
method invocation. Unlike with CGI, there's no process to spawn or interpreter to invoke, so the servlet can
begin handling the request ailmost immediately. Multiple, concurrent requests are handled by separate threads,
so servlets are highly scalable

Servlets, in genera, are naturally enduring objects. Because a servlet staysin the server's memory asasingle
object instance, it automatically maintains its state and can hold on to external resources, such as database
connections, that may otherwise take several seconds to establish.

Safety

Servlets support safe programming practices on a number of levels. Because they are written in Java, servlets
inherit the strong type safety of the Javalanguage. In addition, the Serviet API isimplemented to be type-safe.
While most valuesin a CGI program, including a numeric item like a server port number, are treated as strings,
values are manipulated by the Servlet API using their native types, so a server port number is represented as an
integer. Java's automatic garbage collection and lack of pointers mean that servlets are generally safe from
memory management problems like dangling pointers, invalid pointer references, and memory leaks.

Servlets can handle errors safely, due to Java's exception-handling mechanism. If a servlet divides by zero or
performs some other illegal operation, it throws an exception that can be safely caught and handled by the
server, which can politely log the error and apologize to the user. If a C++-based server extension were to make
the same mistake, it could potentially crash the server.

A server can further protect itself from servlets through the use of a Java security manager. A server can
execute its servlets under the watch of a strict security manager that, for example, enforces a security policy
designed to prevent amalicious or poorly written servlet from damaging the server file system.

Elegance

The elegance of servlet codeis striking. Servlet code is clean, object oriented, modular, and amazingly simple.
One reason for this simplicity isthe Servlet API itself, which includes methods and classes to handle many of
the routine chores of servlet development. Even advanced operations, like cookie handling and session tracking,
are abstracted into convenient classes. A few more advanced but still common tasks were |eft out of the AP,
and, in those places, we have tried to step in and provide a set of helpful classesin the
com.oreilly.servlet package.

| ntegration

Servlets are tightly integrated with the server. Thisintegration allows a servlet to cooperate with the server in
ways that a CGI program cannot. For example, a servlet can use the server to trandate file paths, perform
logging, check authorization, perform MIME type mapping, and, in some cases, even add usersto the server's
user database. Server-specific extensions can do much of this, but the processis usually much more complex
and error-prone.

Extensibility and Flexibility

The Servlet API isdesigned to be easily extensible. Asit stands today, the API includes classes that are
optimized for HTTP servlets. But at alater date, it could be extended and optimized for another type of servlets,
either by Sun or by athird party. It is aso possible that its support for HTTP servlets could be further enhanced.

Servlets are also quite flexible. Asyou'll seein the next chapter, an HTTP servlet can be used to generate a
complete web page; it can be added to a static page using a <SERVLET> tag in what's known as a server-side
include; and it can be used in cooperation with any number of other servletsto filter content in something called
aservlet chain. In addition, just before this book went to press, Sun introduced JavaServer Pages, which offer a
way to write snippets of servlet code directly within astatic HTML page, using a syntax that is curiously similar
to Microsoft's Active Server Pages (ASP). Who knows what they (or you) will come up with next.

2
HTTP Servlet Basics

In thischapter:

* HTTP Basics

* The Serviet API

* Page Generation

* Server-Side I ncludes

* Serviet Chaining and Filters
» JavaServer Pages

* Moving On

This chapter provides a quick introduction to some of the things an HTTP servlet can do. For example, an
HTTP servlet can generate an HTML page, either when the servlet is accessed explicitly by name, by following
a hypertext link, or as the result of aform submission. An HTTP servlet can also be embedded inside an HTML
page, where it functions as a server-side include. Servlets can be chained together to produce complex
effects—one common use of thistechnique isfor filtering content. Finally, snippets of servlet code can be
embedded directly in HTML pages using a new technique called JavaServer Pages.

Although the code for each of the examplesin this chapter is available for down-load (as described in the
Preface), we would suggest that for these first examples you deny yourself the convenience of the Internet and
type in the examples. It should help the concepts seep into your brain.

Don't be alarmed if we seem to skim lightly over some topicsin this chapter. Servlets are powerful and, at
times, complicated. The point here isto give you a general overview of how things work, before jumping in and
overwhelming you with all of the details. By the end of this book, we promise that you'll be able to write
servlets that do everything but make tea.

HTTP Basics

Before we can even show you asimple HTTP servlet, we need to make sure that you have a basic
understanding of how the protocol behind the Web, HTTP, works. If you're an experienced CGI programmer
(or if you've done any serious server-side web programming), you can safely skip this section. Better yet, you
might skim it to refresh your memory about the finer points of the GET and POST methods. If you are new to
the world of server-side web programming, however, you should read this material carefully, as the rest of the
book is going to assume that you understand HTTP. For a more thorough discussion of HTTP and its methods,
see Web Client Programming by Clinton Wong (O'Rellly).

Requests, Responses, and Headers

HTTPisasimple, stateless protocol. A client, such as aweb browser, makes a request, the web server responds,
and the transaction is done. When the client sends a request, the first thing it specifiesis an HTTP command,
called a method, that tells the server the type of action it wants performed. Thisfirst line of the request also
specifies the address of a document (a URL) and the version of the HTTP protocol it is using. For example:

GET Zintro.html HTTP/1.0

Thisrequest uses the GET method to ask for the document named intro.html, using HTTP Version 1.0. After
sending the request, the client can send optional header information to tell the server extra information about the
request, such as what software the client is running and what content types it understands. This information
doesn't directly pertain to what was requested, but it could be used by the server in generating its response. Here
are some sample request headers:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the client software, while the Accept header specifies the
media (MIME) types that the client prefers to accept. (We'll talk more about request headers in the context of
servletsin Chapter 4, Retrieving Information.) After the headers, the client sends a blank line, to indicate the
end of the header section. The client can also send additional data, if appropriate for the method being used, as
it iswith the POST method that we'll discuss shortly. If the request doesn't send any data, it ends with an empty
line.

After the client sends the request, the server processes it and sends back aresponse. Thefirst line of the
response is a status line that specifies the version of the HTTP protocol the server is using, a status code, and a
description of the status code. For example:

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was successful, hence the
description "OK". Another common status code is 404, with the description "Not Found'—as you can guess,
this means that the requested document was not found. Chapter 5, Sending HTML Information, discusses
common status codes and how you can use them in servlets, while Appendix C, HTTP Satus Codes, provides a
complete list of HTTP status codes.

After the status line, the server sends response headers that tell the client things like what software the server is
running and the content type of the server's response. For example:

Date: Saturday, 23-May-98 03:25:12 GMT

Server: JavaWebServer/1.1.1

MIME-version: 1.0

Content-type: text/html

Content-length: 1029

Last-modified: Thursday, 7-May-98 12:15:35 GMT

The Server header provides information about the server software, while the Content-type header specifies the
MIME type of the data included with the response. (We'll also talk more about response headersin Chapter 5.)
The server sends a blank line after the headers, to conclude the header section. If the request was successful, the
requested data is then sent as part of the response. Otherwise, the response may contain human-readable data
that explains why the server couldn't fulfill the request.

GET and POST

When a client connects to a server and makes an HT TP request, the request can be of several different types,
called methods. The most frequently used methods are GET and POST. Put ssmply, the GET method is
designed for getting information (a document, a chart, or the results from a database query), while the POST
method is designed for posting information (a credit card number, some new chart data, or information that isto
be stored in adatabase). To use a bulletin board analogy, GET isfor reading and POST is for tacking up new
material.

The GET method, although it's designed for reading information, can include as part of the request some of its
own information that better describes what to get—such as an x, y scale for adynamically created chart. This
information is passed as a sequence of characters appended to the request URL in what's called a query string.
Placing the extrainformation in the URL in thisway allows the page to be book-marked or emailed like any
other. Because GET requests theoretically shouldn't need to send large amounts of information, some servers
limit the length of URL s and query strings to about 240 characters.

The POST method uses a different technique to send information to the server because in some cases it may
need to send megabytes of information. A POST request passes all its data, of unlimited length, directly over
the socket connection as part of its HTTP request body. The exchange isinvisible to the client. The URL doesn't
change at al. Consequently, POST requests cannot be bookmarked or emailed or, in some cases, even reloaded.
That's by design—information sent to the server, such as your credit card number, should be sent only once.

In practice, the use of GET and POST has strayed from the original intent. It's common for long parameterized
requests for information to use POST instead of GET to work around problems with overly-long URLSs. It's also
common for simple forms that upload information to use GET because, well—why not, it works! Generadly, this
isn't much of a problem. Just remember that GET requests, because they can be bookmarked so easily, should
not be allowed to cause damage for which the client could be held responsible. In other words, GET requests
should not be used to place an order, update a database, or take an explicit client action in any way.

Other Methods

In addition to GET and POST, there are several other lesser-used HTTP methods. There's the HEAD method,
which is sent by a client when it wants to see only the headers of the response, to determine the document's size,
modification time, or general availability. There'saso PUT, to place documents directly on the server, and
DELETE, to do just the opposite. These last two aren't widely supported due to complicated policy issues. The
TRACE method is used as a debugging aid—it returns to the client the exact contents of its request. Finally, the
OPTIONS method can be used to ask the server which methods it supports or what options are available for a
particular resource on the server.

The Serviet API

Now that you have a basic understanding of HTTP, we can move on and talk about the Serviet API that you'll
be using to create HTTP servlets, or any kind of servlets, for that matter. Servlets use classes and interfaces
from two packages. Javax.servilet and Javax.servlet._http. The Javax.servlet package
contains classes to support generic, protocol-independent servlets. These classes are extended by the classesin
the Javax.servlet.http package to add HTTP-specific functionality. The top-level package nameis
Javax instead of the familiar java, to indicate that the Servlet API is a standard extension.

Every servlet must implement the Javax.servlet.Servlet interface. Most servletsimplement it by
extending one of two specia classes: Javax.servlet.GenericServletor
Javax.servilet.http.HttpServlet. A protocol-independent servlet should subclass
GenericServlet, whilean HTTP servlet should subclass HttpServilet, whichisitself a subclass of
GenericServlet with added HTTP-specific functionality.

Unlike aregular Java program, and just like an applet, a servlet does not have a main() method. Instead,
certain methods of a servlet are invoked by the server in the process of handling requests. Each time the server
dispatches arequest to a servlet, it invokes the servlet's service() method.

A generic servlet should overrideits service () method to handle requests as appropriate for the serviet. The
service() method accepts two parameters. arequest object and a response object. The request object tells
the servlet about the request, while the response object is used to return a response. Figure 2-1 shows how a
generic servlet handles requests.

Server GenericServlet sebdms !
I L
' FOQUES] —— ool :

Figure 2-1.
A generic servlet handling a request

In contrast, an HTTP servlet usually does not override the service() method. Instead, it overrides doGet()
to handle GET requests and doPost () to handle POST requests. An HTTP servlet can override either or both
of these methods, depending on the type of requests it needs to handle. The service() method of

HttpServlet handles the setup and dispatching to all the doXXX () methods, which iswhy it usually should

not be overridden. Figure 2-2 shows how an HTTP servlet handles GET and POST requests.

HotpServlet soboms

| service() I‘:

[Fet: BEE implemented by mbcloss |

Figure 2-2.
An HTTP servlet handling GET and POST requests

An HTTP servlet can override the doPut() and doDelete () methodsto handle PUT and DELETE
requests, respectively. However, HTTP servlets generally don't touch doHead (), doTrace(), or
doOptions(). For these, the default implementations are almost always sufficient.

Theremainder inthe Javax.servlet and Javax.servlet.http packages are largely support classes.
For example, the ServletRequest and ServletResponse classesin javax.servlet provide access
to generic server requests and responses, while HttpServiletRequest and HttpServiletResponse in
Javax.servilet.http provide access to HTTP requests and responses. The Javax.servlet._http
package also contains an HttpSession classthat provides built-in session tracking functionality and a
Cookie classthat allows you to quickly set up and process HTTP cookies.

Page Generation

The most basic type of HTTP serviet generates afull HTML page. Such a servlet has access to the same
information usually sent to a CGI script, plus abit more. A servlet that generates an HTML page can be used
for al the tasks where CGI is used currently, such as for processing HTML forms, producing reports from a
database, taking orders, checking identities, and so forth.

Writing Hello World

Example 2-1 shows an HTTP servlet that generates a complete HTML page. To keep things as smple as
possible, this servlet just says "Hello World" every timeit is accessed via aweb browser. *

Example 2-1. A serviet that prints "Hello World"
import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class HelloWorld extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

res.setContentType (“text/html™);
PrintWriter out = res.getWriter();

* Fun trivia: the first instance of a documented "Hello World" program appeared in A Tutorial Introduction to the Language B,
written by Brian Kernighan in 1973. For those too young to remember, B was a precursor to C. Y ou can find more information
on the B programming language and alink to the tutorial at http://cm.bell-labs.com/who/dmr/bintro.html.

Example 2-1. A serviet that prints "Hello World" (continued)

out.printIn("<HTML>"");

out.printIn(""<HEAD><TITLE>Hello World</TITLE></HEAD>'"");
out.printIn('<BODY>");

out.printIn("<BIG>Hello World</BIG>"");
out.printIn('</BODY></HTML>"");

}
}

This servlet extends the HttpServlet class and overrides the doGet () method inherited from it. Each time
the web server receives a GET request for this servlet, the server invokes this doGet () method, passing it an
HttpServletRequest object and an HttpServiletResponse object.

The HttpServiletRequest represents the client's request. This object gives a servlet access to information
about the client, the parameters for this request, the HTTP headers passed along with the request, and so forth.
Chapter 4 explains the full capabilities of the request object. For this example, we can completely ignoreit.
After al, this servlet is going to say "Hello World" no matter what the request!

The HttpServletResponse represents the servlet's response. A servlet can use this object to return data to
the client. This data can be of any content type, though the type should be specified as part of the response. A
servlet can also use this object to set HTTP response headers. Chapter 5 and Chapter 6, Sending Multimedia
Content, explain everything a servlet can do as part of its response.

Our servlet first uses the setContentType () method of the response object to set the content type of its
response to "text/html", the standard MIME content type for HTML pages. Then, it usesthe
getWriter () method to retrieve aPrintWr i ter, the international-friendly counterpart to a
PrintStream. PrintWriter converts Java's Unicode characters to alocale-specific encoding. For an
English locale, it behaves same asaPrintStream. Findly, the servlet usesthis PrintWriter to send its
"Hello World" HTML to the client.

That'sit! That's all the code needed to say hello to everyone who "surfs' to our servlet.
Running Hello World

When devel oping servlets you need two things: the Serviet API classfiles, which are used for compiling, and a
servlet engine such as aweb server, which is used for deployment. To obtain the Serviet API classfiles, you
have several options:

* Install the Java Servlet Development Kit (JSDK), available for free at http://java.sun.conVproducts/serviet/.
JSDK Version 2.0 contains the class files for the Servlet API 2.0, along with their source code and a simple web
server that acts as a servlet engine for HTTP servlets. It works with JDK 1.1 and later. (Note that the JSDK is
the Servlet API reference implementation, and as such its version number determines the Servlet API version
number.)

* Install one of the many full-featured servlet engines, each of which typically bundles the Servlet API class
files.

There are dozens of servlet engines available for servlet deployment, several of which are listed in Chapter 1,
Introduction. Why not use the servlet engine included in JSDK 2.0? Because that servlet engine is bare-bones
simple. It implements the Servlet API 2.0 and nothing more. Features like robust session tracking, server-side
includes, servlet chaining, and JavaServer Pages have been left out because they are technically not part of the
Servlet API. For these features, you need to use afull-fledged servlet engine like the Java Web Server or one of
its competitors.

So, what do we do with our code to make it run in aweb server? Well, it depends on your web server. The
examplesin this book use Sun's Java Web Server 1.1.1, unofficially considered the reference implementation
for how aweb server should support servlets. It's free for educational use and has a 30-day trial period for all
other use. Y ou can download a copy from http://java.sun.com/products or, for educational use,

http: //www.sun.comyproducts-n-solutions/edu/javal. The Java Web Server includes plenty of documentation
explaining the use of the server, so while we discuss the general concepts involved with managing the server,
we're leaving the details to Sun's documentation. If you choose to use another web server, these examples
should work for you, but we cannot make any guarantees.

If you are using the Java Web Server, you should put the source code for the servlet in the
server_root/serviets directory (where server_root isthe directory where you installed your server).
Thisisthe standard location for servlet classfiles. Once you have the "Hello World" source code in the right
location, you need to compileit. The standard javac compiler (or your favorite graphica Java development
environment) can do the job. Just be sure you have the Javax.servlet and javax.servlet_http
packages in your classpath. With the Java Web Server, all you haveto do isinclude server_root/lib/jwsjar
(or afuture equivalent) somewhere in your classpath.

Now that you have your first servlet compiled, there is nothing more to do but start your server and access the
servlet! Starting the server iseasy. Look for the httpd script (or httpd.exe program under Windows) in the
server_root/bindirectory. This should start your server if you're running under Solaris or Windows. On
other operating systems, or if you want to use your own Java Runtime Environment (JRE), you'll need to use
httpd.nojre. In the default configuration, the server listens on port 8080.

There are several ways to access a servlet. For this example, we'll do it by explicitly accessing a URL with
[serviet/ prepended to the servlet's class name.* Y ou can enter this URL in your favorite browser:

http: //server:8080/serviet/HellWorld. Replace server with the name of your server machine or with localhost
if the server ison your local machine. Y ou should see a page similar to the one shown in Figure 2-3.

7 Hello Waodd - Netscape _[a]=] F
Elo E® o Go, Conricliat tieb

RN R, (P e

fwBack i Frrvied s Finkd . Home i3eweh e 07 1 BIRSGEY P o -
°| o Bockmaiks i Locatiort [rtip:7ocalrost B060/sewialHelowaid |
T

Hello World
@[[Decumeck Done e TR N A

Figure 2-3.
The Hello World serviet

If the servlet were part of a package, it would need to be placed in server_root/servlets/package/name and
referred to with the URL http://server:8080/serviet/package.name.HelloWorl| d.

An aternate way to refer to aservlet is by its registered name. This does not have to be the same as its class
name, although it can be. With the Java Web Server, you register servlets viathe JavaServer Administration
Tool, an administration applet that manages the server, usually available at http://server:9090/. Choose to
manage the Web Service, go to the Servlets section, and then Add anew servlet. Here you can specify the
name of the new servlet and the class associated with that name (on some serversthe class can bean HTTP
URL from which the servlet classfile will be automatically loaded). If we choose the name "hi" for our

Hel loWor I d servlet, we can then accessiit at the URL http://server:8080/serviet/hi. Y ou may wonder why
anyone would bother adding a servlet to her server. The short answer appropriate for Chapter 2 isthat it allows
the server to remember things about the serviet and give it special treatment.

A third way to access a servlet isthrough a serviet alias. The URL of aservlet alias |ooks like any other URL.
The only difference is that the server has been told that the URL should be handled by a particular servlet. For
example, we can choose to have http://server:8080/hello.html invoke the Hel loWor 1 d servlet. Using aliases
in thisway can help hide asite's use of servlets; it lets a servlet seamlessly replace an existing page at any given
URL. To create a servlet alias, choose to manage the Web Service, go to the Setup section, choose Servlet
Aliases, and then Add the alias.

* Beware, servlets are placed in a serviets (plural) directory but are invoked with a serviet (singular) tag. If you think about it,
this makes a certain amount of sense, as servlets go in the serviets directory while asingle servlet is referenced with the serviet.

Handling Form Data

The "Hello World" servlet is not very exciting, so let's try something slightly more ambitious. This time welll
create a servlet that greets the user by name. It's not hard. First, we need an HTML form that asks the user for
his or her name. The following page should suffice:

<HTML>
<HEAD>

<TITLE>Introductions</TITLE>

</HEAD>
<BODY>

<FORM METHOD=GET ACTION=""/servlet/Hello">

IT you don"t mind me asking, what is your name?
<INPUT TYPE=TEXT NAME="name''><P>

<INPUT TYPE=SUBMIT>

</FORM>
</BODY>
</HTML>

Figure 2-4 shows how this page appears to the user.

I?t"- Intiaductions - Melscapas

fio Edt Vo o Lol Koo B L
Ll e A e RS & @ N

Back Toiirc Relosd Hems Search | Guide

-

<F Bockmaks & Ln:dut]lim-'ﬂ:mmmmi‘m-i —

e

1€ you don't mend me asheng, what is your name? I

Submit Query !

Y e B 3 T g

e e

Figure 2-4.
AnHTML form

When the user submits thisform, his nameis sent to the He I 10 servlet because we've set the ACT ION attribute
to point to the servlet. The form isusing the GET method, so any data is appended to the request URL asa
query string. For example, if the user enters the name "Inigo Montoya," the request URL is

http: //server:8080/serviet/Hello?name= Inigo+ Montoya. The space in the name is specially encoded as a plus

sign by the browser because URL s cannot contain spaces.

A servlet'sHttpServiletRequest object givesit access to the form datain its query string. Example 2-2
shows amodified version of our Hel 1o servlet that uses its request object to read the "name" parameter.

Example 2-2. A servlet that knows to whom it's saying hello

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class Hello extends HttpServiet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {

res.setContentType(“text/html’”);
PrintWriter out = res.getWriter();

String name = req.getParameter(“name™);

out.printIn(“<HTML>"");

out.printIn(“<HEAD><TITLE>Hello, “ + name + “</TITLE></HEAD>");
out.printIn(“<BODY>"");

out.printin(“Hello, ” + name);

out.printIn(“</BODY></HTML>");

}

public String getServiletinfo() {
return “A servlet that knows the name of the person to whom it"s” +
“saying hello”;
}
}

This servlet is nearly identical to the Hel loWor I d serviet. The most important changeisthat it now calls
req.getParameter (““name’) to find out the name of the user and that it then prints this name instead of
the harshly impersonal (not to mention overly broad) "World". The getParameter () method gives a serviet
access to the parametersin its query string. It returns the parameter's decoded value or null I if the parameter
was not specified. If the parameter was sent but without a value, as in the case of an empty form field,
getParameter () returnsthe empty string.

Thisservlet also addsa getServiletinfo() method. A serviet can override this method to return
descriptive information about itself, such as its purpose, author, version, and/or copyright. It's akin to an applet's
getAppletInfo(). The method is used primarily for putting explanatory information into aweb server
administration tool. You'll notice we won't bother to include it in future examples because it is clutter for
learning.

The servlet's output |0oks something like what is shown in Figure 2-5.

% Hello, Inigo Montoga - Metscape

Flo Ed Vew Go Communicatr Hep

2238 8s¢83 N

i Badk Fov: Relosd Heme Sewch Gude Sint Securly) o
T il Bookmarks i Location: [ip/iocahost FE0 serviet/Helo Tnamesirago Mcrioya ~|
el

Hello, Incgo Mostoya

o[[Document Dore e e @D 2| 2

Figure 2-5.
The Hello servlet using form data

Handling POST Requests

Y ou've now seen two servlets that implement the doGet () method. Now let's change our Hel 1o servlet so
that it can handle POST requests as well. Because we want the same behavior with POST as we had for GET,
we can ssimply dispatch all POST requests to the doGet () method with the following code:

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
doGet(req, res);
}

Now the Hello servlet can handle form submissions that use the POST method:

<FORM METHOD=POST ACTION='"/servlet/Hello">

In general, it isbest if a servlet implements either doGet () or doPost(). Deciding which to implement
depends on what sort of requests the servlet needs to be able to handle, as discussed earlier. The code you write
to implement the methods is amost identical. The major difference isthat doPost() hasthe added ability to
accept large amounts of input.

Y ou may be wondering what would have happened had the He I 1 0 servlet been accessed with a POST request
before we implemented doPost (). The default behavior inherited from HttpServlet for both doGet ()
and doPost () isto return an error to the client saying the requested URL does not support that method.

Handling HEAD Requests

A bit of under-the-covers magic makesit trivial to handle HEAD requests (sent by a client when it wants to see
only the headers of the response). Thereis no doHead () method to write. Any servlet that subclasses
HttpServlet and implements the doGet () method automatically supports HEAD requests.

Here's how it works. The service () method of the HttpServlet identifies HEAD requests and treats
them specialy. It constructs amodified HttpServiletResponse object and passesit, along with an
unchanged request, to the doGet () method. The doGet () method proceeds as normal, but only the headers
it sets are returned to the client. The special response object effectively suppresses all body output. * Figure 2-6
shows how an HTTP servlet handles HEAD requests.

Wb Server HttpServlet subdss

[Hiﬂ ' B inplemented by cubclss

Figure 2-6.
ANnHTTP servlet handling a HEAD reguest

Although this strategy is convenient, you can sometimes improve performance by detecting HEAD requestsin
the doGet () method, so that it can return early, before wasting cycles writing output that no one will see.
Example 2-3 uses the request's getMethod () method to implement this strategy (more properly called a
hack) in our Hel 1o servlet.

Example 2-3. The Hello servliet modified to return quickly in response to HEAD requests
import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class Hello extends HttpServilet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

// Set the Content-Type header
res.setContentType(“text/html’);

* Jason is proud to report that Sun added this feature in response to comments he made during beta testing.

Example 2-3. The Hello serviet modified to return quickly in response to HEAD requests (continued)

// Return early if this is a HEAD
if (reqg.getMethod().equals (“HEAD”)) return;

// Proceed otherwise

PrintWriter out = res.getWriter();

String name = req.getParameter (“name”);
out.printIn(**<HTML>"");

out.printIn(“<HEAD><TITLE>Hello, ” + name + “</TITLE></HEAD>"");
out.printIn(*“<BODY>"");

out.printIn(**Hello, ” + name);

out.printIn(*“</BODY></HTML>");

}
}

Notice that we set the Content-Type header, even if we are dealing with aHEAD request. Headers such as
these are returned to the client. Some header values, such as Content-Length, may not be available until the
response has already been calculated. If you want to be accurate in returning these header values, the
effectiveness of this shortcut is limited.

Make sure that you end the request handling with a return statement. Do not call System.exit(). If you
do, you risk exiting the web server.

Server-Side Includes

All the servlets you've seen so far generate full HTML pages. If thiswere all that servlets could do, it would
still be plenty. Servlets, however, can aso be embedded inside HTML pages with something called server-side
include (S3) functionality.

In many servers that support servlets, a page can be preprocessed by the server to include output from servlets
at certain pointsinside the page. The tags used for a server-side include look similar to those used for applets: *

<SERVLET CODE=ServletName CODEBASE= http://server:port/dir
initParaml=initValuel initParam2=initValue2>
<PARAM NAME=paraml VALUE=valuel>
<PARAM NAME=param2 VALUE=value2>
IT you see this text, it means that the web server

providing this page does not support the SERVLET tag.
</SERVLET>

* Currently, the <SERVLET> tag syntax varies across server implementations. This section describes the syntax appropriate
for the Java Web Server.

The CODE attribute specifies the class name or registered name of the servlet to invoke. The CODEBASE
attribute is optional. It can refer to aremote location from which the servlet should be loaded. Without a
CODEBASE attribute, the servlet is assumed to be local.

Any number of parameters may be passed to the servlet using the <PARAM> tag. The servlet can retrieve the
parameter values using the getParameter () method of ServletRequest. Any number of initialization
(init) parameters may also be passed to the servlet appended to the end of the <SERVLET> tag. Well cover init
parametersin Chapter 3, The Serviet Life Cycle.

A server that supports SSI detects the <SERVLET> tag in the process of returning the page and substitutesin its
place the output from the servlet (as shown in Figure 2-7). The server does not parse every page it returns, just
those that are specially tagged. The Java Web Server, by default, parses only pages with an .shtml extension.
Note that with the <SERVLET> tag, unlike the <APPLET> tag, the client browser never sees anything between
<SERVLET> and </SERVLET> unless the server does not support SSI, in which case the client receives the
content, ignores the unrecognized tags, and displays the descriptive text.

shiml file

Web Server <HTML:>

=HEAD:-

< fHEAD>

<BOTY > — Serviet]

<SERVLET CODE=Servletl>
</ SERVLET>

< f BODY >
< HTHL>

Figure 2-7.
Server-side include expansion

Writing a Server-Side I nclude

Server-side includes are useful when apage is primarily static but contains a few distinct dynamic portions. For
asimple example, let's assume we have several pages that need to display the current time. As an extra
challenge, let's assume that sometimes we need the current time in time zones other than our own.

The problem is easy with server-side includes. Each page can be written as a static HTML page with one or
more SSI directives that call Java code to provide the times. The HTML could look something like this, saved
to afile with an .shtml extension:

<HTML>
<HEAD><TITLE>Times!</TITLE></HEAD>
<BODY>

The current time here is:

<SERVLET CODE=CurrentTime>
</SERVLET>

<pP>

The current time in London is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=GMT>
</SERVLET>

<p>

And the current time in New York is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=EST>
</SERVLET>

<pP>

</BODY>

</HTML>

The servliet named CurrentT ime can be plugged into any page that needs a time display. The name can be
either the servlet's class name or its registered name. The servlet code is shown in Example 2-4.

Example 2-4. A server-side include that prints the current time

import java.io.*;

import java.text._*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

public class CurrentTime extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

PrintWriter out = res.getWriter();

Date date = new Date();
DateFormat df = DateFormat.getlnstance();

String zone = req.getParameter(“zone™);

it (zone = null) {
TimeZone tz = TimeZone.getTimeZone(zone);
df.setTimeZone(tz);

}

Example 2-4. A server-side include that prints the current time (continued)

out.printin(df.format(date));

}
}

The CurrentTime servlet looks strikingly similar to the Hel 1 o servlet. Thisis not a coincidence. Thereis
no real difference between a servlet that handles full-page GET requests and one that is embedded in a page,
except that embedded servlets have limited response capabilities. For example, an embedded servlet cannot set

HTTP headers.

The only method CurrentT ime implementsisthe doGet() method. All SSI servlets use either doGet ()
or service() to handle requests. Inside the method, the servlet first retrievesits PrintWriter.* Thisearly
retrieval is perhaps unnecessary; it could be retrieved as late as the next to last line. Still, we recommend
fetching it first thing. It will save time later when you find you need to begin sending output sooner than you
expected.

Then the servlet gets the current Date and aDateFormat instance with which to display the time. This
servlet's ability to hop time zones is based on functionality in DateFormat. The servlet ssimply tells the
DateFormat which time zone to use, and the date is displayed appropriately.

The time zone is specified by the <PARAM> tag in the HTML file. The servlet gains access to this parameter
with the getParameter () method of HttpServletRequest. Thistechniqueisidentica to the one we
used to retrieve form data. The servlet uses the value of the "zone" parameter to create a TimeZone object
that can be passed to the DateFormat object. If the "zone" parameter is not specified, asis the case with the
first SSI example on our page, getParameter () returns null 1 and the DateForamt uses the default time
zone. Findly, the servlet outputs the String created when the DateFormat object formats the current date.
The output of the HTML page is shown in Figure 2-8.

Serviet Chaining and Filters

Now you've seen how an individual servlet can create content by generating a full page or by being used in a
server-side include. Servlets can also cooperate to create content in a process called servelt chaining.

* The Java Web Server 1.1.1 has abug where the Pr intWr i ter returned by the getWr i ter () method of
ServletRequest does not generate output for aservlet used as aserver side include. This means that to run the SSI
examples shown in the book you need to use another servlet engine; or you can change the examples to manually create a
PrintWriter asfollows:

PrintWriter out = new PrintWriter(res.getOutputStream(), true);

| File Edit View Go Communicator

14&3&.@#&::%

f mmrmmxmﬁ&mm
! mm.tredtlmeinlondmh.ﬁﬂﬂﬁmm
f Ardu:ecm-mﬂmeh}lm?urtim&ﬁmmvhi

Figure 2-8.
At the beep the current time will be...

In many servers that support servlets, arequest can be handled by a sequence of servlets. The request from the
client browser is sent to the first servlet in the chain. The response from the last servlet in the chain is returned
to the browser. In between, the output from each servlet is passed (piped) as input to the next servlet, so each
servlet in the chain has the option to change or extend the content, as shown in Figure 2-9.*

There are two common ways to trigger a chain of servlets for an incoming request. First, you can tell the server
that certain URLs should be handled by an explicitly specified chain. Or, you can tell the server to send all
output of a particular content type through a specified serviet before it is returned to the client, effectively
creating a chain on the fly. When a servlet converts one type of content into another, the techniqueis called
filtering.

Servlet chaining can change the way you think about web content creation. Here are some of the things you can
do withit:

Quickly change the appearance of a page, a group of pages, or a type of content.

For example, you can improve your site by suppressing all <BL INK> tags from the pages of your server, as
shown in the next example. Y ou can speak to those who don't understand English by dynamically
trandating the text from your pages to the language read by the client. Y ou can suppress certain words that
you don't want everyone to read, be they the seven dirty words or words not everyone knows already, like
the unreleased name of your secret project. Y ou could also suppress entire pages in which these words
appear. Y ou can enhance certain words on your site, so that an online news magazine could have a servlet
detect the name of any Fortune 1000 companies and automatically make each company name alink to its
home page.

* A web server could implement servlet chaining differently than described here. Thereis no reason the initial content must
come from a servlet. It could come from a static file fetched with built-in server code or even from a CGlI script. The Java Web
Server does not have to make this distinction because all its requests are handled by servlets.

Figure 2-9.
Servlet chaining

Take a kernel of content and display it in special formats.

For example, you can embed custom tags in your page and have a servlet replace them with HTML
content. Imagine an <SQL> tag whose query contents are executed against a database and whose results
areplaced inan HTML table. Thisis, in fact, similar to how the Java Web Server supports the
<SERVLET> tag.

Support esoteric data types.
For example, you can serve unsupported image types with afilter that converts nonstandard image typesto
GIF or JPEG.

Y ou may be asking yourself, why you would want to use a servlet chain when you could instead write a script
that edits the files in place—especialy when there is an additional amount of overhead for each servlet involved
in handling arequest? The answer isthat servlet chains have athreefold advantage:

* They can easily be undone, so when usersriot against your tyranny of removing their <BL INK> freedom, you
can quickly reverse the change and appease the masses.

» They handle dynamically created content, so you can trust that your restrictions are maintained, your special
tags are replaced, and your dynamically converted PostScript images are properly displayed, even in the output
of aservlet (or aCGl script).

* They handle the content of the future, so you don't have to run your script every time new content is added.

Creating a Servlet Chain

Our first servlet chain example removes <BL INK> tags from HTML pages. If you're not familiar with the
<BL INK> tag, be thankful. It is atag recognized by many browsers in which any text between the <BL INK>
and </BL INK> tags becomes a flashing distraction. Sure, it's a useful feature when used sparingly. The
problem is that many page authors use it far too often. It has become the joke of HTML.

Example 2-5 shows a servlet that can be used in a servlet chain to remove the <BL INK> tag from all of our
server's static HTML pages, al its dynamically created HTML pages, and all the pages added to it in the future.
This servlet introduces the getReader () and getContentType () methods.

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class Deblink extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

String contentType = req.getContentType(); // get the incoming type
if (contentType == null) return; // nothing incoming, nothing to do
res.setContentType(contentType); // set outgoing type to be incoming type

PrintWriter out = res.getWriter();
BufferedReader in = req.getReader();

String line = null;
while ((line = in.readLine()) !'= null) {
line = replace (line, “<BLINK>, “ ”);
line = replace (line, “</BLINK>", “);
out.printin(line);
+
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
doGet(req, res);
}

private String replace(String line, String oldString, String newString) {
int index = 0;
while ((index = line.indexOf(oldString, index)) >= 0) {
// Replace the old string with the new string (inefficiently)

Example 2-5. A serviet that removes the <BLINK> tag from HTML pages (continued)

line = line.substring(0, index) +

newString +

line.substring(index + oldString.length(Q));
index += newString.length(Q);

}

return line;

}
}

This servlet overrides both the doGet () and doPost () methods. Thisalowsit to work in chains that handle
either type of request. The doGet () method contains the core logic, while doPost () simply dispatches to
doGet(), using the same technique as the He I 1 0 example.

Inside doGet(), the servlet first fetchesits print writer. Next, the servlet calls req.getContentType() to
find out the content type of the data it is receiving. It setsits output type to match, or if getContentType()
returned nul 1, it realizes there is no incoming data to deblink and simply returns. To read the incoming data,
the servlet fetches aBufferedReader with acall to req.getReader (). Thereader containsthe HTML
output from the previous servlet in the chain. Asthe servlet reads each line, it removes any instance of

<BL INK> or </BLINK> with acall to replace() and then returns the line to the client (or perhapsto
another servlet in the chain). Note that the replacement is case-sensitive and inefficient; a solution to this
problem that uses regular expressionsis included in Chapter 13, Odds and Ends.

A more robust version of this servlet would retrieve the incoming HTTP headers and pass on the appropriate
headersto the client (or to the next servlet in the chain). Chapter 4 and Chapter 5 explain the handling and use
of HTTP headers. There's no need to worry about it now, as the headers aren't useful for simple tasks like the
one we are doing here.

Running Deblink

If you're using the Java Web Server, before running Deb 1 1nk you have to first tell the web server you want
servlet chains enabled. Go to managing the Web Service, go to the Setup section, select Site, and then select
Options. Here you can turn servlet chaining on. By default it's turned off to improve performance.

Aswe said before, there are two ways to trigger a servlet chain. A chain can be explicitly specified for certain
requests, or it can be created on the fly when one servlet returns a content type that another servlet is registered
to handle. Wel'll use both techniquesto run Debl ink.

First, we'll explicitly specify that all files with a name matching the wildcard pattern *html should be handled
by the Fi le serviet followed by the Debl 1nk serviet. The Fi le serviet isacore Java Web Server servlet
used to retrieve files. Normally it is the only servlet invoked to return an HTML file. But here, we're going to
pass its output to Deb I ink before returning the HTML to the client. Go back to managing the Web Service,
go to the Setup section, and select Servlet Aliases. Here you will see which serviets are invoked for different
kinds of URLS, as shown in Figure 2-10.

i
,m-mtrnmmmawwmyum
= |] e ‘mmajﬂ P | Firds] Fioo]neso
E
T T P L e e e e I < |
i__ S TR ———————— | R T e R LT O
M
oo
ek
-
[Flan Fol | We Codiap el
A Fiw Aludis o
WS daria WD SEfvor Faung L arin A fix
|t i s Fanzing oo © Vil Howls
g SR Web Service 4l Rwnnirng 7070 M Typar e £
Ll Frcey Samvica ME Arrming EDE) B Wl‘ll I= |
b 4 11 i
JS— il
Tor
wrinl
= TefRear.
i -
i g
| wares
e B
fomasre . { M e e
| warage [Friat o b | e e
! 7 Ao | [i | | i
E I
1oz e
Unsignad Java Rpplat Bindew
Figure 2-10.

Standard servlet aliases

These mappings provide some insight into how the Java Web Server usesiits core servlets. Y ou can see/
invokes File, =shtml invokes ssinclude, and /serviet invokes invoker. The most specific wildcard
pattern is used, which iswhy /serviet usesthe invoker servlet to launch a servlet instead of using the file
servlet to return afile. Y ou can change the default aliases or add new aliases. For example, changing the
/serviet prefix would change the URL used to access servlets. Right now, we're interested in adding another
alias. You should add an alias that specifiesthat =html invokes file, Deblink. After making this change,
any fileending in .html isretrieved by the Fi le servlet and passed to Deb 1 1nk.

Try it yourself. Create a blinky.html filein server_root/public_html that is sprinkled with afew blink tags
and try surfing to http://server:8080/blinky.html. If everything's set up right, all evidence of the blink tagsis
removed.

The Loophole

This technigue has one large loophole: not all HTML comes from files with the .html extension. For example,

HTML can come from afile with the .htm extension or from some dynamically created HTML. We can work

around multiple file extensions with more aliases. This, however, still doesn't catch dynamic content. We need
our second technique for creating a servlet chain to plug that hole.

We really want to specify that all text/html content should pass through the Debl 1nk servlet. The
JavaServer Administration Tool does not yet include a graphical way to do this. Instead, we can make the
change with asimple edit of a propertiesfile. The properties file can be found at
server_root/properties/server/javawebser ver /webpageser vice/mimeserviets.properties. It contains
directiveslike this:

Java-internal/parsed-html=ssinclude

This directive indicates that all responses with a Content-Type header of Java-internal/parsed-
html should be passed to the ssinclude (server-side include) servlet. Why is this necessary? Without it, the
ssinclude servlet would handle only static files with the .shtml extension. It would suffer from the same
loophole:

dynamically created pages containing the <SERVLET> tag would be ignored. With this directive, any servlet
can set its content type to Java-internal/parsed-html, which causesthe ssinclude servlet to
handle its output.

To specify that al text/html content is passed through Deb I i nk, we need to add our own directive:
text/html=Deblink

Y ou need to restart your server before this change can take effect.

After making this change, all HTML content served by the server has its <BL INK> tags removed.* Try it
yourself! Change your Hel loWor I d servlet to <BL INK> its message and watch the Deb I ink servlet silently
remove al evidence of the deed.

* Unfortunately, some servers (including the Java Web Server 1.1.1) have a bug where they are too smart for their own good.
They literally feed all text/html content to the Deb I I Nk serviet—even the text/html content being output by
the Deb I 1Nk serviet itself! In other words, every HTML page is deblinked forever (or until the client stops the request,
whichever comesfirst).

JavaServer Pages

Just as this book was going to press, Sun announced a new way to use servlets, called JavaServer Pages
(commonly, but not officialy, referred to as JSP). JSP's functionality and syntax bear a remarkable resemblance
to Active Server Pages (ASP).

JSP operates in many ways like server-side includes. The main differenceis that instead of embedding a
<SERVLET> tag in an HTML page, JSP embeds actual snippets of servlet code. It's an attempt by Sun to
separate content from presentation, more convenient than server-side includes for pages that have chunks of
dynamic content intermingled with static content in several different places.

Just like server-side includes and servlet chaining, JSP doesn't require any changes to the Servlet API. But it
does require special support in your web server. This support is not included in the Java Web Server 1.1.1 (the
unofficially considered reference servlet engine against which this book is written), but it's expected to be
introduced in the next version of the Java Web Server, probably 1.2, and in other servlet engines as they keep
pace.

Note that the following tutorial is based on the JavaServer Pages draft specification, version 0.91. Y ou may
notice small changesin the final specification.

Using JavaServer Pages

At its most basic, JSP allows for the direct insertion of serviet code into an otherwise static HTML file. Each
block of servlet code (called a scriptlet) is surrounded by aleading <% tag and a closing %> tag.* For
convenience, a scriptlet can use four predefined variables:

request
The servlet request, an HttpServiletRequest object

response
The servlet response, an HttpServietResponse object

out

The output writer, aPrintWriter object

in

Theinput reader, aBufferedReader object

Example 2-6 shows a simple JSP page that says "Hello" in amanner similar to Example 2-2, though with alot
less code. It makes use of the predefined request and out variables.

* An earlier technology, called Page Compilation, uses <JAVA> and </ JAVA> tags and a different internal syntax. Page
Compilation has been deprecated in favor of JavaServer Pages.

If you have a server that supports JavaServer Pages and want to test this page, you should place the file under
the server's document root (probably server_root/public_html) and save it with a special extension. By
default, this extension for JSP pagesis .jsp. Assuming you have saved the page as hellol.jsp, you can then
accessit at the URL http://server:port/hellol.jsp. A screen shot is shown in Figure 2-11.

Example 2-6. Saying Hello with JSP

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<0

if (request.getParameter(““name”) == null) {
out_printin(*“Hello World”);

}

else {
out._printin(**Hello, ” + request.getParameter(“name’));

}

%>

</H1>

</BODY></HTML>

7 Hello - Hetzcape

Ele Edt Yew Qo Eommriodier sHdb.

!
4 Back fovesid Relosd Home Seach Gude Pt Seclly Sl : m
“| " Bockmedes fy Lacation [ip:/ocahosB0E0/helol spiname=Doly =

Hello, Dolly

= [Dacumsnt Dane

Figure 2-11.
Saying Hello using JavaServer Pages

Behind the Scenes

How does JSP work? Behind the scenes, the server automatically creates, compiles, loads, and runs a special
servlet to generate the page's content, as shown in Figure 2-12. Y ou can think of this special servlet asa
background, workhorse servlet. The static portions of the HTML page are generated by the workhorse servlet
using the equivalent of out.printIn() cals, while the dynamic portions are included directly. For example,
the servlet shown in Example 2-7 might be the background workhorse for hellol.jsp.*

Example 2-7. The workhorse serviet for hellol.jsp*

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class _hellol_xjsp extends HttpServlet {

public void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, 10Exception {
response.setContentType(“text/html™”);
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.printIn(“<HTML>");
out.printIn(“<HEAD><TITLE>Hello</TITLE></HEAD>"");
out.printIn(“<BODY>");

out.printIn(*<H1>);

it (request._getParameter(““name”) == null) {
out.printin(**Hello World™);
}
else {
out.printIn(**Hello, ” + request.getParameter(“name’));
}

out.printIn(**</H1>");
out.printIn(**</BODY></HTML>"");

}
}

The first time you access a JSP page, you may notice that it takes a short time to respond. Thisisthe time
necessary for the server to create and compile the background servlet. Subsequent requests should be as fast as
ever because the server can reuse the servlet. The one exception is when the .jsp file changes, in which case the
server notices and recompiles a new background servlet. If there's ever an error in compiling, you can expect
the server to somehow report the problem, usually in the page returned to the client.

* |f you're interested in seeing the true servlet source code for a JSP page, poke around the directories under your server root.
After al, the server needs to save the Java source code somewhere before compiling it! If you find the true servlet source, you're
likely to seethat it isfar more complicated and convoluted than what is shown here.

Web Server

Figure 2-12.
Generating JavaServer Pages

Expressions and Directives

In addition to scriptlets, JavaServer Pages allow the use of expressions and directives. A JSP expression begins
with <%= and ends with %>. Any Java expression between the two tags is evaluated, the result is converted to a
String, and the text isincluded directly in the page. This technique eliminates the clutter of an
out.printIn() cal. For example, <%= foo %> includesthe value of the foo variable.

A JSP directive begins with <%@ and ends with %>. A directive allows a JSP page to control certain aspects of
its workhorse servlet. Directives can be used to have the workhorse servlet set its content type, import a
package, extend a different superclass, implement an interface, and handle either GET or POST requests. A
directive can even specify the use of anon-Java scripting language.

In between the directive tags certain key variables can be assigned values using the following syntax:
<%@ varname = '‘value'" %>
Here are the six variables you can set:
content_type
Specifies the content type of the generated page. For example:
<%@ content_type = "text/plain’ %>

The default content type is"text/html".
import

Specifiesalist of classes the servlet should import. Multiple classes can be given in acomma-separated list
or given through multiple import directives. For example:

<%@ import = “java.io.*,java.util_Hashtable™ %>
extends

Specifies the superclass the servlet should extend. For example:

<%@ extends = "CustomHttpServiletSuperclass" %>

The default superclassisHttpServlet.

implements

Specifiesalist of interfaces the servlet should implement. Multiple interfaces can be given in acomma-
separated list or given through multiple import directives. For example:

<%@ implements = "Serializable™ %>
The default behavior isto not implement anything.

method

Specifies the servlet method that should contain the generated code and handle client requests. The default
is"service", which handles all requests. For example:

<%@ method = "doPost" %>
language

Specifies the scripting language used by the back-end. The default language is "java’. Some servers can
choose to allow other languages. For example:

<%@ language = "java'" %>

Example 2-8 shows arevised version of the Hello page that uses JSP expressions and directives. It uses a
method directive to indicate it should handle POST requests, and it uses an expression to ssimplify its display of
the name parameter.

Example 2-8. Saying Hello using JSP expressions and directives

<%@ method = “doPost” %>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<% if (request.getParameter(“name”) == null) { %>
Hello World

<% } else { %>

Hello, <%= request.getParameter(“name’) %>
<% } %>

</H1>

</BODY></HTML>

The background workhorse servlet for this JSP page should look nearly identical to Example 2-7, with the only
difference that this servlet implements doPost () instead of service().

Declarations

Sometimes it's necessary for a JSP page to define methods and nonlocal variablesin its workhorse servlet. For
thisthere is a construct called a JSP declaration.

A declaration beginswitha<SCRIPT RUNAT=*‘server’> tag and endswitha</SCRIPT> tag. In
between the tags, you can include any servlet code that should be placed outside the servlet's service method.
Example 2-9 demonstrates this with a JSP page that uses a declaration to define the getName () method.

Example 2-9. Saying Hello using a JSP declaration

<HTML>

<HEAD><TITLE>Hel lo</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= getName(request) %>
</H1>

</BODY>

</HTML>

<SCRIPT RUNAT=*server”>
private static final String DEFAULT_NAME = “World™;

private String getName(HttpServletRequest req) {
String name = req.getParameter(“name’);
if (name == null)
return DEFAULT_NAME;
else
return name;

}
</SCRIPT>

The background servlet created to generate this page might look like the servlet shown in Example 2-10.

Example 2-10. The workhorse serviet for a JSP page with a declaration

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class _hello3_Xxjsp extends HttpServlet {

public void service(HttpServletRequest request, HttpServletResponse response)

Example 2-10. The workhorse serviet for a JSP page with a declaration (continued)

throws ServletException, I0Exception {
response.setContentType(“text/html’);
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.printin(“<HTML>"");
out.printIn(“<HEAD><TITLE>Hel lo</TITLE></HEAD>"");
out.printin(“<BODY>"");
out.printin(“<H1>);
out.printin(“Hello, ” + getName(request));
out.printin(“</H1>");
out.printin(*“</BODY></HTML>");

}

private static final String DEFAULT_NAME = “World”;

private String getName(HttpServletRequest req) {
String name = req.getParameter(“name™);

if (name == null)
return DEFAULT_NAME;
else

return namej;

}

JavaServer Pages and JavaBeans

One of the most interesting and powerful ways to use JavaServer Pagesisin cooperation with JavaBeans
components. JavaBeans are reusable Java classes whose methods and variables follow specific naming
conventions to give them added abilities. They can be embedded directly in a JSP page using <BEAN> tags. A
JavaBean component can perform awell-defined task (execute database queries, connect to amail server,
maintain information about the client, etc.) and make its resulting information available to the JSP page through
simple accessor methods.*

The difference between a JavaBeans component embedded in a JSP page and a normal third-party class used by
the generated servlet is that the web server can give JavaBeans special treatment. For example, a server can
automatically set a bean's properties (instance variables) using the parameter valuesin the client's request. In
other words, if the request includes a name parameter and the server detects through introspection (a technique
in which the methods and variables of a Java class can be programatically determined at runtime) that the bean
has a name property and asetName(String name) method, the server can automatically call

setName () with the value of the name parameter. There's no need for getParameter().

* For more information on JavaBeans, see http://java.sun.comvbean/ and the book Developing Java Beans by Robert Englander
(O'Rellly).

A bean can also have its scope managed automatically by the server. A bean can be assigned to a specific
request (whereit is used once and destroyed or recycled) or to aclient session (where it's automatically made
available every time the same client reconnects). Sessions and session tracking are covered in depth in Chapter
7, Session Tracking.

A bean can even be implemented as a servlet! If the server detects that a bean implements the
Javax.servlet.Servlet interface (either directly or by extending GenericServlet or
HttpServlet), it will call the bean's service() method once for each request and the bean's init()
method when the bean isfirst created. The utility of thisfunctionality is debatable, but it can be used by beans
that need to prepare somehow before handling requests.

Beans are embedded in a JSP page using the <BEAN> tag. It has the following syntax:

<BEAN NAME=""lookup name'™ VARNAME="alternate variable name"

TYPE="class or interface name" INTROSPECT="{yes|no}" BEANNAME="file name"
CREATE=""{yes|no}" SCOPE="{request]session}'>

<PARAM propertyl=valuel property2=value2>

</BEAN>

Y ou can set the following attributes of the <BEAN> tag:
NAME

Specifies the name of the bean. Thisisthe key under which the bean is saved if its scope extends across
requests. If a bean instance saved under this name already existsin the current scope, that instance is used
with this page. For example:

NAME=""userPreferences"

VARNAME

Specifies the variable name of the bean. Thisisthe name used by the page to refer to the bean and invoke
its methods. For example:

VARNAME=""prefs"

If not given, the variable name of the bean is set to the value of its name attribute.

TYPE

Specifies the name of the bean's class or interface type. For example:

TYPE=""UserPreferencesBean"’

Thetype defaultsto java. lang.Object.

INTROSPECT

Specifiesif the server should set the bean's properties using the parameter valuesin the client's request. Its
value must be "yes" or "no". The default is"yes".

BEANNAME

Specifies the serialized file or classfile that contains the bean, used when first creating the bean. Thisis an
optional attribute. For example:

BEANNAME=""hel lobean.ser"

CREATE

Specifiesif the bean should be created if it doesn't already exist. Its value must be "yes" or "no". The
defaultis"yes". If create isset to "no" and a preexisting instance isn't found, an error is returned to the
client.

SCOPE

Specifiesif the bean should be assigned to a specific request (where it is used once and destroyed or
recycled) or to a client session (where it's automatically made available every time the same client
reconnects, within a certain time frame). Its value must be "request” or "session". Thedefault is
"request".

Parameters can be passed to abean as alist using a <PARAM> tags placed between the opening <BEAN> tag
and the closing </BEAN> tag. The parameter values are used to set the bean's properties using introspection.

Example 2-11 demonstrates the use of a JavaBeans component with a JSP page; it says Hello with the help of a
Hel loBean.

Example 2-11. Saying Hello using a JavaBean

<%@ import = “HelloBean™” %>

<BEAN NAME=“hello” TYPE=*‘HelloBean”
INTROSPECT="yes” CREATE=*yes” SCOPE=*request’>
</BEAN>

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= hello.getName() %>
</H1>

</BODY>

</HTML>

Asyou can see, using a JavaBeans component with JavaServer Pages greatly reduces the amount of code
necessary in the page. This allows a clean separation of content (the functionality the bean provides) from
presentation (the HTML structure of the page). By using a well-defined API to interact with the bean, even
nonprogrammers can write JSP pages.

The code for Hel loBean is shown in Example 2-12. Its class file should be placed in the server's classpath
(something like server_root/classes, although for the Java Web Server you need to first create this

directory).

Example 2-12. The HelloBean class

public class HelloBean {
private String name = “World”;

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

Thisis about as simple abean as you'll ever see. It has asingle name property that is set using setName ()
and retrieved using getName (). The default value of name is"Wor 1d", but when arequest comes in that
includes a NAME parameter, the property is set automatically by the server with acall to setName(). To test
the mechanism, try browsing to http://server : port/hellobean.jsp. Y ou should see something similar to the
screen shot in Figure 2-13.

i Hello - Heticape
Elo Bk’ Viow Go Commurioater Heb' 7, il hl
a2 e AR B & W

Back oo Reload Home _Sﬁld'l 'Gl.lﬁ

] .-:f_'-ﬁ_ﬂm__ : : A Locabion: [Ftt:'f};a;:a:m'.mdwﬁcm |;$'."|'ICI":‘P;G;W\¥.'\. -
Ty :

Hello, Rowan

el ME

7T T [Dowument Gone

s
| 3
EL
LE]
K
B

Figure 2-13.
Saying Hello using JavaServer pages in cooperation with a JavaBeans component

Moving on

We redlize this chapter has been awhirlwind introduction to HTTP servlets. By now, we hope you have a sense
of the different ways you can use servlets to handlea variety of web development tasks. Of course, servlets can
do far more than say "Hello World," tell the time, and remove <BL INK> tags. Now that you've got your feet
wet, we can dive into the details and move on to more interesting applications.

3
The Servlet Life Cycle

In thischapter:
* The Serviet Alternative
* Serviet Reloading
* I nit and Destroy
* Single-Thread Model
» Background Processing

e | ast Modified Times

The servlet life cycle is one of the most exciting features of servlets. Thislife cycleisapowerful hybrid of the
life cyclesused in CGI programming and lower-level NSAPI and ISAPI programming, as discussed in Chapter
1, Introduction.

The Servlet Alternative

The servlet life cycle allows servlet engines to address both the performance and resource problems of CGI and
the security concerns of low-level server APl programming. A servlet engine may execute all its servletsina
single Java virtual machine (JVM). Because they are in the same JVM, servlets can efficiently share data with
each other, yet they are prevented by the Java language from accessing one another's private data. Servlets may
also be allowed to persist between requests as object instances, taking up far less memory than full-fledged
processes.

Before we proceed too far, you should know that the servlet life cycleis highly flexible. Servers have
significant leeway in how they choose to support serviets. The only hard and fast rule is that a servlet engine
must conform to the following life cycle contract:

1. Create and initialize the servlet.
2. Handle zero or more service cals from clients.
3. Destroy the servlet and then garbage collect it.

It's perfectly legal for a servlet to be loaded, created, and instantiated in its own JVM, only to be destroyed and
garbage collected without handling any client requests or after handling just one request. Any servlet engine
that makes this a habit, however, probably won't last long on the open market. In this chapter we describe the
most common and most sensible life cycle implementations for HTTP servlets.

A Single Java Virtual Machine

Most servlet engines want to execute all servletsin asingle VM. Where that VM itself executes can differ
depending on the server, though. With a server written in Java, such as the Java Web Server, the server itself
can execute inside aJVM right alongside its servlets.

With a single-process, multithreaded web server written in another language, the JVM can often be embedded
inside the server process. Having the VM be part of the server process maximizes performance because a
servlet becomes, in a sense, just another low-level server APl extension. Such a server can invoke a servlet
with alightweight context switch and can provide information about requests through direct method
invocations.

A multiprocess web server (which runs several processes to handle requests) doesn't really have the choice to
embed aJVM directly in its process because there is no one process. This kind of server usually runs an
external VM that its processes can share. With this approach, each servlet access involves a heavyweight
context switch reminiscent of FastCGlI. All the servlets, however, still share the same external process.

Fortunately, from the perspective of the servlet (and thus from your perspective, as a servlet author), the
server's implementation doesn't really matter because the server always behaves the same way.

| nstance Persistence

We said above that servlets persist between requests as object instances. In other words, at the time the code for
aservlet isloaded, the server creates asingle class instance. That single instance handles every request made of
the servlet. Thisimproves performance in three ways:

* It keeps the memory footprint small.

* It eliminates the object creation overhead that would otherwise be necessary to create a new servlet object. A
servlet can be already loaded in avirtual machine when arequest comesin, letting it begin executing right

away.

* It enables persistence. A servlet can have already loaded anything it's likely to need during the handling of a
request. For example, a database connection can be opened once and used repeatedly thereafter. It can even be
used by a group of servlets. Another example is a shopping cart servlet that |oads in memory the price list
along with information about its recently connected clients. Y et another servlet may choose to cache entire
pages of output to save timeiif it receives the same request again.

Not only do servlets persist between requests, but so do any threads created by servlets. This perhapsisn't
useful for the run-of-the-mill servlet, but it opens up some interesting possibilities. Consider the situation
where one background thread performs some cal culation while other threads display the latest results. It's quite
similar to an animation applet where one thread changes the picture and another one paints the display.

A Simple Counter

To demonstrate the servlet life cycle, we'll begin with a simple example. Example 3-1 shows a servlet that
counts and displays the number of timesit has been accessed. For simplicity's sake, it outputs plain text.

Example 3-1. A simple counter

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class SimpleCounter extends HttpServiet {
int count = 0O;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();
count++;
out.printIn(“Since loading, this servlet has been accessed ” +
count + “ times.);

}
}

The code is simple—it just prints and increments the instance variable named count—but it shows the power of
persistence. When the server loads this servlet, the server creates a single instance to handle every request made
of the servlet. That's why this code can be so simple. The same instance variables exist between invocations and
for al invocations.

A Simple Synchronized Counter

From the servlet-devel oper's perspective, each client is another thread that calls the servlet viathe
service(), doGet(), or doPost() methods, as shown in Figure 3-1.x

* Does it seem confusing how one servlet instance can handle multiple requests at the same time? If so, it's probably because
when we picture an executing program we often see object instances performing the work, invoking each other's methods and so
on. But, although this model works for simple cases, it's not how things actually work. In reality, al real work is done by threads.
The object instances are nothing more than data structures manipulated by the threads. Therefore, if there are two threads
running, it's entirely possible that both are using the same object at the same time.

Wb Sarver

roquest ———Tiwd

o

roquest ———" Tiread

Figure 3-1.
Many threads, one servlet instance

If your servlets only read from the request, write to the response, and save information in local variables (that is,
variables declared within a method), you needn't worry about the interaction among these threads. Once any
information is saved in nonlocal variables (that is, variables declared within a class but outside any specific
method), however, you must be aware that each of these client threads has the ability to manipulate a servlet's
nonlocal variables. Without precautions, this may result in data corruption and inconsistencies. For example, the
SimpleCounter servlet makes a false assumption that the counter incrementation and output occur
atomically (immediately after one another, uninterrupted). It's possible that if two requests are made to
SimpleCounter around the same time, each will print the same value for count. How? Imagine that one
thread increments the count and just afterward, before the first thread prints the count, the second thread also
increments the count. Each thread will print the same count value, after effectively increasing its value by 2.
The order of execution goes something like this

count++ // Thread 1
count++ // Thread 2
out.println // Thread 1
out.println // Thread 2

Now, in this case, the inconsistency is obviously not a problem, but many other servlets have more serious
opportunities for errors. To prevent these types of problems and the inconsistencies that come with them, we
can add one or more synchronized blocks to the code. Anything inside a synchronized block or a synchronized
method is guaranteed not to be executed concurrently by another thread. Before any thread begins to execute
synchronized code, it must obtain a monitor (lock) on a specified class. If another thread already has that
monitor—because it is already executing the same synchronized block or some other block with the same
monitor—the first thread must wait. All thisis handled by the language itself, so it's very easy to use.
Synchronization, however, should be used only when necessary. On some platforms, it requires afair amount of
overhead to obtain the monitor each time a synchronized block is entered. More importantly, during the time
one thread is executing synchronized code, the other threads may be blocked waiting for the monitor to be
released.

* Odd factoid: if count were a 64-bit long instead of a 32-bit int, it would be theoretically possible for the increment to be only
half performed at the time it is interrupted by another thread. Thisis because Java uses a 32-bit wide stack.

For SimpleCounter, we have four options to deal with this potential problem. First, we could add the
keyword synchronized to the doGet() signature:

public synchronized void doGet (HttpServletRequest req,
HttpServletResponse res)

This guarantees consistency by synchronizing the entire method, using the servlet class as the monitor. In
general, though, thisis not the right approach because it means the servlet can handle only one GET request at a
time.

Our second option is to synchronize just the two lines we want to execute atomically:

PrintWriter out = res.getWriter();
synchronized (this) {
count++;
out.println ('Since loading, this servlet has been accessed" +
count + " times.™);

}

This approach works better because it limits the amount of time this servlet spendsin its synchronized block,
while accomplishing the same goal of a consistent count. Of course, for this simple example, it isn't much
different than the first option.

Our third option is to create a synchronized block that performs all the work that needs to be done serialy, then
use the results outside the synchronized block. For our counter servlet, we can increment the count in a
synchronized block, save the incremented value to alocal variable (a variable declared inside a method), then
print the value of the local variable outside the synchronized block:

PrintWriter out = res.getWriter();
int local_count;
synchronized(this) {

local_count = ++count;

}

out_printIn('Since loading, this servlet has been accessed" +
local_count + " times.™);

This change shrinks the synchronized block to be as small as possible, while still maintaining a consistent
count.

Our last option isto decide that we are willing to suffer the consequences of ignoring synchronization issues.
Sometimes the consequences are quite acceptable. For this example, ignoring synchronization means that some
clients may receive a count that's a bit off. Not abig deal, really. If this servlet were supposed to return unique
numbers, however, it would be a different story.

Although it's not possible with this example, an option that exists for other servletsisto change instance
variablesinto local variables. Local variables are not available to other threads and thus don't need to be
carefully protected from corruption. At the same time, however, local variables are not persistent between
reguests, so we can't use them to store the persistent state of our counter.

A Holistic Counter

Now, the "one instance per servlet” model is abit of agloss-over. The truth is that each registered name for a
servlet (but not each alias) is associated with one instance of the servlet. The name used to access the serviet
determines which instance handles the request. This makes sense because the impression to the client should be
that differently named servlets operate independently. The separate instances are also arequirement for servlets
that accept initialization parameters, as discussed later in this chapter.

Our SimpleCounter example uses the count instance variable to track the number of timesit has been
accessed. If, instead, it needed to track the count for all instances (and thus al registered aliases), it can in some
cases use a class, or static, variable. These variables are shared across all instances of a class. Example 3-2
demonstrates with a servlet that counts three things: the times it has been accessed, the number of instances
created by the server (one per name), and the total times all of them have been accessed.

Example 3-2. A more holistic counter

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class HolisticCounter extends HttpServlet {
static int classCount = 0; // shared by all instances

int count = O; // separate for each servlet
static Hashtable instances = new Hashtable(); // also shared

Example 3-2. A more holistic counter (continued)

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, I0Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

count++;
out.printIn(“Since loading, this servlet instance has been accessed " +
count + “ times.”);

// Keep track of the instance count by putting a reference to this
// instance in a Hashtable. Duplicate entries are ignored.
// The size() method returns the number of unique instances stored.
instances.put(this, this);
out.printIn(“There are currently ” +

instances.size() + “ instances.”);

classCount++;
out.printIn(“Across all instances, this servlet class has been ” +
“accessed ” + classCount + “ times.”);

}
}

ThisHol 1sticCounter tracksits own access count with the count instance variable, the shared count
with the classCount class variable, and the number of instances with the instances hashtable (another
shared resource that must be a class variable). Sample output is shown in Figure 3-2.

Since lmi.ng, ‘this servlet Lnstanca lms b-nﬂ mu:-d 4 times.
‘There are currently 2 instances.
: Lcms all Mﬂmt. this serviet class 'has baen accessed 7 times.

Figure 3-2.
Output from HolisticCounter

Servlet Reloading

If you tried using these counters for yourself, you may have noticed that any time you recompiled one, its count
automatically began again at 1. Trust us—it's not abug, it's afeature. Most servers automatically reload a
servlet after its classfile (under the default servlet directory, such as server_root/serviets) changes. It'san
on-the-fly upgrade procedure that greatly speeds up the development-test cycle—and allows for long server
uptimes.

Servlet reloading may appear to be a ssmple feature, but it's actually quite a trick—and requires quite a hack.
ClassLoader objects are designed to load a class just once. To get around this limitation and load servlets
again and again, servers use custom class loaders that |oad servlets from the default servlets directory. This
explains why the servlet classes are found in server_root/serviets, even though that directory doesn't

appear in the server's classpath.

When a server dispatches arequest to a servlet, it first checksif the servlet's class file has changed on disk. If it
has changed, the server abandons the class loader used to load the old version and creates a new instance of the
custom class loader to load the new version. Old servlet versions can stay in memory indefinitely (and, in fact,
other classes can still hold references to the old servlet instances, causing odd side effects, as explained in
Chapter 11, Interserviet Communication), but the old versions are not used to handle any more requests.

Servlet reloading is not performed for classes found in the server's classpath (such as server__root/classes)
because those classes are loaded by the core, primordial class |oader. These classes are loaded once and retained
in memory even when their class files change.

It's generally best to put servlet support classes (such asthe utility classesin com.orielly.servilet)
somewhere in the server's classpath (such as server_root/classes) where they don't get reloaded. The
reason is that support classes are not nicely reloaded like servlets. A support class, placed in the default servlets
directory and accessed by a servlet, isloaded by the same class |oader instance that loaded the servlet. It doesn't
get its own class loader instance. Consequently, if the support classis recompiled but the servlet referring to it
isn't, nothing happens. The server checks only the timestamp on servlet classfiles.x

A frequently used trick to improve performance is to place servlets in the default servlet directory during
development and move them to the server's classpath for deployment. Having them out of the default directory
eliminates the needless timestamp comparison for each request.

* For the daredevils out there, here's a stunt you can try to force a support class reload. Put the support classin the servlet
directory. Then convince the server it needsto reload the servlet that uses the support class (recompileit or use the Unix utility
touch). The class loader that reloads the servlet should aso load the new version of the support class.

Init and Destroy

Just like applets, serviets can define init() and destroy () methods. A servlet's
init(ServiletContig) method iscaled by the server immediately after the server constructs the servlet's
instance. Depending on the server and its configuration, this can be at any of these times:

» When the server starts

* When the servlet isfirst requested, just before the service() method isinvoked

* At the request of the server administrator

In any case, Init() isguaranteed to be called before the servlet handles itsfirst request.

The in1t () method istypically used to perform servlet initialization—creating or loading objects that are
used by the servlet in the handling of its requests. Why not use a constructor instead? Well, in JDK 1.0 (for
which servlets were originally written), constructors for dynamically loaded Java classes (such as servlets)
couldn't accept arguments. So, in order to provide a new servlet any information about itself and its
environment, aserver had to call aserviet's init() method and pass along an object that implements the
ServletConfig interface. Also, Java doesn't allow interfaces to declare constructors. This means that the
Javax.servlet.Servlet interface cannot declare a constructor that accepts a ServletConfig
parameter. It has to declare another method, like init(). It's ill possible, of course, for you to define
constructors for your servlets, but in the constructor you don't have access to the ServletConfig object or
the ability to throw a ServiletException.

ThisServiletConfTig object supplies a servlet with information about itsinitialization (init) parameters.
These parameters are given to the servlet itself and are not associated with any single request. They can specify
initial values, such as where a counter should begin counting, or default values, perhaps atemplate to use when
not specified by the request. In the Java Web Server, init parameters for a servlet are usually set during the
registration process. See Figure 3-3.

Other servers set init parametersin different ways. Sometimes it involves editing a configuration file. One
creative technique you can use with the Java Web Server, but currently by no other servers, isto treat servlets as
JavaBeans. Such servlets can be loaded from serialized files or have their init properties set automatically by the
server at load time using introspection. See the Java Web Server documentation for more information.

‘i Favuia]] |Bead] oo g Gpen Pt Fnd.] i) e
1 lnpdnmtmm:.".f'iul:-l'hm-t:‘nﬂw _________
— :
i i
i
S Sl A R I VA TR W SR A S T o Py Waim = [Roa
sorvicas [[Pat [ras e
il Joven Wb Serves Awreing]
| E oW Sareica Aurirring E] Favow
!- i Seoure Web Gendoe het Rusining o
| o Py Bvice et Rasning Lt
1
i | |
|
|
[e e it
| Lasa I Reeurer. | 1 I
lﬂ UEligned.ﬁlva !LE.EJ.H: Window
Figure 3-3.

Setting init parameters in the Java Web Server

The ServletConfTig object also holds areferenceto a ServletContext object that a servliet may useto
investigate its environment. See Chapter 4, Retrieving Information, for afull discussion of this ability.

The server callsaservlet's destroy () method when the servlet is about to be unloaded. In the destroy ()
method, a servlet should free any resources it has acquired that will not be garbage collected. The destroy ()
method also gives a servlet a chance to write out its unsaved cached information or any persistent information
that should be read during the next call to In1t().

A Counter with Init

Init parameters can be used for anything. In general, they specify initial values or default values for servlet
variables, or they tell a servlet how to customize its behavior in some way. Example 3-3 extends our
SimpleCounter exampleto read an init parameter (named Initial) that storesthe initial value for our
counter.

Example 3-3. A counter that readsinit parameters

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class InitCounter extends HttpServilet {
int count;

public void init(ServletConfig config) throws ServletException {
super.init(config);
String initial = config.getlnitParameter(“initial™);

try {
count = Integer.parselnt(initial);

}

catch (NumberFormatException e) {
count = O;
b

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {

res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();
count++;
out.printIn(“Since loading (and with a possible initialization™);
out.printIn(“parameter figured in), this servlet has been accessed”);
out.printin(count + “ times.”);

}
}

The 1nit() method accepts an object that implements the ServiletConfig interface. It uses the config
object'sgetinitParameter () method to get the value for the init parameter named initial. This
method takes the name of the parameter asa String and returnsthe value asa String. Thereisno way to
get the value as any other type. This servlet therefore convertsthe String valueto an int or, if there'sa
problem, defaults to avalue of O.

Take specia note that the first thing the in1t() method doesiscall super.init(config). Every
serviet'sinit() method must do this!

Why must the init() method call super . init(config)? Thereason isthat aservlet is passed its
ServletConfig instanceinits init() method, but not in any other method. This could cause a problem
for aservlet that needs to access its config object outside of Init(). Caling super.init(config) solves
this problem by invoking the init () method of GenericServlet, which saves areference to the config
object for future use.

So, how does a servlet make use of this saved reference? By invoking methods on itself. The
GenericServilet classitsalf implementsthe ServletConTig interface, using the saved config object in
the implementation. In other words, after the call to super . init(config), aservlet caninvoke its own
getInitParameter () method. That means we could replace the following call:

String initial = config.getlnitParameter(initial');

with:

String initial getlnitParameter(initial'™);

This second style works even outside of the 1ni1t() method. Just remember, without the call to

super . init(config) inthe init() method, any call to the GenericServlet'simplementation of
getInitParameter () or any other ServletConftig methodswill throw a

Nul IPointerException. So, let us say it again: every serviet'sinit() method should call super.init(config)
asitsfirst action. The only reason not to isif the servlet directly implementsthe javax.servlet.Servlet
interface, where thereisno super . init().

A Counter with Init and Destroy

Up until now, the counter examples have demonstrated how servlet state persists between accesses. This solves
only part of the problem. Every time the server is shut down or the servlet is reloaded, the count begins again.
What we really want is persistence across loads—a counter that doesn't have to start over.

The init() and destroy() pair can accomplish this. Example 3-4 further extends the InitCounter
example, giving the servlet the ability to save its statein destroy () and load the state againin init(). To
keep things simple, assume this servlet is not registered and is accessed only as

http://server :port/serviet/InitDestroyCounter. If it were registered under different names, it would have to
save a separate state for each name.

Example 3-4. A fully persistent counter

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class InitDestroyCounter extends HttpServlet {
int count;

public void init(ServletConfig config) throws ServletException {
// Always call super.init(config) First (servlet mantra #1)
super.init(config);

Example 3-4. A fully persistent counter (countinued)

// Try to load the initial count from our saved persistent state

try {
FileReader fileReader = new FileReader(“InitDestroyCounter.initial™);
BufferedReader bufferedReader = new BufferedReader(fileReader);
String initial = bufferedReader.readLine();
count = Integer.parselnt(initial);

return;
}
catch (FileNotFoundException ignored) { } // no saved state
catch (10Exception ignored) { } // problem during read

catch (NumberFormatException ignored) { } // corrupt saved state

// No luck with the saved state, check for an init parameter
String initial = getlnitParameter(“initial™);
try {

count = Integer.parselnt(initial);

return;

}

catch (NumberFormatException ignored) { } // null or non-integer value

// Default to an initial count of “0”
count = 0;

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res._setContentType(“text/plain™);
PrintWriter out = res.getWriter();
count++;
out.printIn(“Since the beginning, this servlet has been accessed ” +
count + “ times.”);

}

public void destroy() {
saveState();

}

public void saveState() {
// Try to save the accumulated count

try {
FileWriter fileWriter = new FileWriter(“InitDestroyCounter.initial™);

String initial = Integer.toString(count);
fileWriter._write(initial, 0, initial.lengthQ));
FfileWriter.close();

return;

}
catch (I10Exception e) { // problem during write

// Log the exception. See Chapter 5.

Example 3-4. A fully persistent counter (countinued)

}
}
}

Each time this servlet is about to be unloaded, it savesits state in afile named InitDestroyCounter.initial. In the
absence of a supplied path, the file is saved in the server process' current directory, usually the
server_root.x Thisfile contains asingle integer, saved as a string, that represents the latest count.

Each time the servlet isloaded, it triesto read the saved count from thefile. If, for some reason, the read fails
(asit doesthe first time the servlet runs because the file doesn't yet exist), the servlet checksif an init parameter
specifies the starting count. If that too fails, it starts fresh with zero. Y ou can never be too careful in init()
methods.

Servlets can save their state in many different ways. Some may use a custom file format, as was done here.
Others may save their state as serialized Java objects or put it into a database. Some may even perform
journaling, a technique common to databases and tape backups, where the servlet's full state is saved
infrequently while ajournal file storesincremental updates as things change. Which method a servlet should use
depends on the situation. In any case, you should always be watchful that the state being saved isn't undergoing
any change in the background.

Right now you're probably asking yourself "What happensif the server crashes?' It's agood question. The
answer isthat the destroy () method will not be called.** This doesn't cause a problem for destroy ()
methods that only have to free resources; arebooted server does that job just aswell (if not better). But it does
cause a problem for a servlet that needs to saveits state in its destroy () method. For these servlets, the only
guaranteed solution is to save state more often. A servlet may choose to save its state after handling each
request, such as a"chess server" servlet should do, so that even if the server is restarted, the game can resume
with the latest board position. Other serviets may need to save state only after some important value has
changed—a "shopping cart” servlet needs to save its state only when a customer adds or removes an item from
her cart. Last, for some servlets, it'sfine to lose a bit of the recent state changes. These servlets can save state
after some set number of requests. For example, in our InitDestroyCounter example, it should be
satisfactory to save state every 10 accesses. To implement this, we can add the following line at the end of
doGet():

* The exact |location of the current user directory can be found using System.getProperty(“user.dir’™).

** Unless you're so unlucky that your server crashes whilein thedestroy () method. In that case, you may be left with a
partially-written state file—garbage written on top of your previous state. To be perfectly safe, a servlet should save its state to a
temporary file and then copy that file on top of the official state file in one command.

if (count % 10 == 0) saveState();

Does this addition make you cringe? It should. Think about synchronization issues. We've opened up the
possibility for datalossif saveState () isexecuted by two threads at the same time and the possibility for
saveState() not to be called at al if count isincremented by several threads in arow before the check. Note
that this possibility did not exist when saveState() was caled only from the destroy () method: the
destroy() method is called just once per serviet instance. Now that saveState() iscaledinthe
doGet () method, however, we need to reconsider. If by some chance this servlet is accessed so frequently that
it has more than 10 concurrently executing threads, it's likely that two servlets (10 requests apart) will bein
saveState() at the sametime. Thismay result in a corrupted datafile. It's also possible the two threads will
increment count before either thread notices it wastimeto call saveState(). Thefix iseasy: move the
count check into the synchronized block where count isincremented:

int local_count;
synchronized(this) {

local _count = ++count;

if (count % 10 == 0) saveState();

}

out.printIn(’'Since loading, this servlet has been accessed " +
local _count + " times."™);

The moral of the story is harder: always be vigilant to protect servlet code from multithreaded access problems.

Even though this series of counter examples demonstrates the servlet life cycle, the counters themselves aren't
particularly useful because they count only the number of times they themselves have been accessed. Y ou can
find two truly useful counters—that count accesses to other pages—in the next chapter.

Single-Thread Model

Although it is standard to have one servlet instance per registered servlet name, it is possible for a servlet to
elect instead to have a pool of instances created for each of its names, al sharing the duty of handling requests.
Such servletsindicate this desire by implementing the javax.servlet.SingleThreadModel interface.
Thisis an empty, tag interface that defines no methods or variables and serves only to flag the servlet as
wanting the alternate life cycle.

A server that loadsa SingleThreadModel servlet must guarantee, according to the Servlet AP
documentation, "that no two threads will execute concurrently the service method of that serviet." To
accomplish this, each thread uses a free servlet instance from the pool, as shown in Figure 3-4. Thus, any servlet
implementing SingleThreadModel can be considered thread safe and isn't required to synchronize access
to itsinstance variables.

Figure 3-4.
The Single Thread Model

Such alife cycleis pointless for a counter or other servlet application that requires central state maintenance.

Thelife cycle can be useful, however, in avoiding synchronization while still performing efficient request
handling.

For example, a servlet that connects to a database sometimes needs to perform several database commands
atomically as part of a single transaction. Normally, this would require the servlet to synchronize around the
database commands (letting it manage just one request at atime) or to manage a pool of database connections
where it can "check out" and "check in" connections (letting it support multiple concurrent requests). By instead
implementing SingleThreadMode l and having one "connection™ instance variable per servlet, a servlet can
easily handle concurrent requests by letting its server manage the servlet instance pool (which doubles as a
connection pool). The skeleton code is shown in Example 3-5.

Example 3-5. Handling database connections using SingleThreadModel

import java.io.*;

import java.sqgl.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

Example 3-5. Handling database connections using SngleThreadModel (continued)

public class SingleThreadConnection extends HttpServiet
implements SingleThreadModel {

Connection con = null; // database connection, one per pooled servlet instance

public void init(ServletConfig config) throws ServletException {
super.init(config);

// Establish the connection for this instance
con = establishConnection();
con.setAutoCommit(false);

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

// Use the connection uniquely assigned to this instance
Statement stmt = con.createStatement();

// Update the database any number of ways

// Commit the transaction
con.commit();

}

public void destroy() {
if (con !=null) con.close();

}

private Connection establishConnection() {
// Not implemented. See Chapter 9.

}
}

Background Processing

Servlets can do more than simply persist between accesses. They can also execute between accesses. Any thread
started by a servlet can continue executing even after the response has been sent. This ability proves most useful
for long-running tasks whose incremental results should be made available to multiple clients. A background
thread started in init() performs continuous work while requesthandling threads display the current status
with doGet (). It'sasimilar technique to that used in animation applets, where one thread changes the picture
and another paints the display.

Example 3-6 shows a servlet that searches for prime numbers above one quadrillion. It starts with such alarge
number to make the calculation slow enough to adequately demonstrate caching eff ects—something we need
for the next section. The algorithm it uses couldn't be simpler: it selects odd-numbered candidates and attempts
to divide them by every odd integer between 3 and their square root. If none of the integers evenly divides the
candidate, it is declared prime.

Example 3-6. On the hunt for primes

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class PrimeSearcher extends HttpServlet implements Runnable {

long lastprime = 0; // last prime found
Date lastprimeModified = new Date(); // when it was found
Thread searcher; // background search thread

public void init(ServletConfig config) throws ServletException {
super.init(config); // always!
searcher = new Thread(this);
searcher.setPriority(Thread .MIN_PRIORITY); // be a good citizen
searcher.start();

}

public void run() {
// QTTTBBBMMMTTTOOO
long candidate = 1000000000000001L; // one quadrillion and one

// Begin loop searching for primes

while (true) { // search forever
if (isPrime(candidate)) {
lastprime = candidate; // new prime
lastprimeModified = new Date(); // new “prime time”
}
candidate += 2; // evens aren"t prime

// Between candidates take a 0.2 second break.
// Another way to be a good citizen with system resources.

try {
searcher.sleep(200);

}
catch (InterruptedException ignored) { }

}
}

private static boolean isPrime(long candidate) {

Example 3-6. On the hunt for primes (continued)

// Try dividing the number by all odd numbers between 3 and its sqrt
double sqrt = Math.sqgrt(candidate);
for (long i = 3; 1 <=sqrt; i +=2) {

if (candidate % i == 0) return false; // found a factor

}

// Wasn"t evenly divisible, so it"s prime
return true;

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();
if (lastprime == 0) {
out.printIn(“Still searching for first prime..””);

}

else {
out.printIn(“The last prime discovered was ” + lastprime);
out.printIn(* at ” + lastprimeModified);

}
}

public void destroy() {
searcher.stop();

}
}

The searcher thread begins its search in the init() method. Its latest find is saved in lastprime, aong with
thetimeit wasfound inin lastprimeModified. Each time a client accesses the servlet, the doGet ()
method reports the largest prime found so far and the time it was found. The searcher runs independently of
client accesses; even if no one accesses the servlet it continues to find primes silently. If several clients access
the servlet at the same time, they all see the same current status.

Notice that the destroy () method stops the searcher thread.+ Thisis very important! If a serviet does not
stop its background threads, they continue to run until the virtual machine exits. Even when a servlet is reloaded
(either explicitly or because its class file changed), its threads won't be stopped. Instead, it's likely that the new
servlet will create extra copies of the background threads. And, at least with the Java Web Server, even
explicitly restarting the web server service doesn't stop background threads because the Java Web Server virtual
machine continues its execution.

* Stopping threads using the STOP () method as shown hereiis deprecated in JDK 1.2 in favor of a safer flag-based system,
where athread must periodically examine a"flag" variable to determine when it should stop, at which point it can clean up and
return from its run () method. See the JDK documentation for details. Example source code can be found in an article titled
"Scott's Solutions. Programming with threadsin Java 1.2", written by Scott Oaks for Java Report Online, found at

http: //www.sigs.convjro/features/9711/oaks.htmlf.

Last Modified Times

By now, we're sure you've learned that serviets handle GET requests with the doGet () method. And that's
amost true. The full truth isthat not every request really needs to invoke doGet (). For example, aweb
browser that repeatedly accesses PrimeSearcher should need to call doGet () only after the searcher
thread has found a new prime. Until that time, any call to doGet () just generates the same page the user has
already seen, a page probably stored in the browser's cache. What's really needed isaway for a servlet to report
when its output has changed. That's where the getLastModified() method comesin.

Most web servers, when they return a document, include as part of their response a Last-Modified header.
An example Last-Modi fied header value might be:

Tue, 06-May-98 15:41:02 GMT

This header tells the client the time the page was last changed. That information alone is only marginally
interesting, but it proves useful when a browser reloads a page.

Most web browsers, when they reload a page, include in their request an 1¥-Modified-Since header. Its
structure isidentical to the Last-Mod i fied header:

Tue, 06-May-98 15:41:02 GMT

This header tells the server the Last-Modi fied time of the page when it was last downloaded by the
browser. The server can read this header and determine if the file has changed since the given time. If thefile
has changed, the server must send the newer content. If the file hasn't changed, the server can reply with a
simple, short response that tells the browser the page has not changed and it is sufficient to redisplay the cached
version of the document. For those familiar with the details of HTTP, this response is the 304 "Not Modified"
status code.

This technique works great for static pages: the server can use the file system to find out when any file was last
modified. For dynamically generated content, though, such as that returned by servlets, the server needs some
extrahelp. By itsdlf, the best the server can do is play it safe and assume the content changes with every access,
effectively eliminating the usefulness of the Last-Modified and I f-Modified-Since headers.

The extra help a servlet can provide is implementing the getLastModified() method. A servlet should
implement this method to return the time it last changed its output. Servers call this method at two times. The
first time the server callsit iswhen it returns aresponse, so that it can set the response's Last-Modified
header. The second time occurs in handling GET requests that include the 1 f-Mod 1 Fied-Since header
(usually reloads), so it can intelligently determine how to respond. If the time returned by
getLastModified() isequal to or earlier than the time sent in the 1 f-Mod i1 fied-Since header, the
server returns the "Not Modified" status code. Otherwise, the server calls doGet () and returns the servlet's
output.*

Some servlets may find it difficult to determine their last modified time. For these situations, it's often best to
use the "play it safe”" default behavior. Many servlets, however, should have little or no problem. Consider a
"bulletin board" servlet where people post carpool openings or the need for racquetball partners. It can record
and return when the bulletin board's contents were last changed. Even if the same servlet manages severa
bulletin boards, it can return a different modified time depending on the board given in the parameters of the
request. Here'sagetLastModi Fied() method for our PrimeSearcher example that returns when the
last prime was found.

public long getLastModified(HttpServletRequest req) {
return lastprimeModified.getTime() /7 1000 * 1000;
}

Notice that this method returns a long value that represents the time as a number of milliseconds since
midnight, January 1, 1970, GMT. Thisis the same representation used internally by Javato store time values.
Thus, the servlet uses the getTime () method to retrieve lastprimeModified asa long.

Before returning this time value, the servlet rounds it down to the nearest second by dividing by 1000 and then
multiplying by 1000. All times returned by getLastModified() should be rounded down like this. The
reason is that the LastModified and I F-Mod i fied-Since headers are given to the nearest second. If
getLastModified() returnsthe same time but with a higher resolution, it may erroneously appear to be a
few milliseconds later than the time given by 1f-Modified-Since. For example, let's assume
PrimeSearcher found a prime exactly 869127442359 milliseconds since the beginning of the Disco
Decade. Thisfact istold to the browser, but only to the nearest second:

Thu, 17-Jul-97 09:17:22 GMT

* A servlet can directly set its Last—-Mod 1 Fied header inside doGet (), using techniques discussed in Chapter 5,
Sending HTML Information. However, by the time the header is set inside doGet (), it'stoo late to decide whether or not to
cal doGet().

Now let's assume that the user reloads the page and the browser tells the server, viathe 1 F-Modified-
Since header, thetime it believesits cached page was last modified:

Thu, 17-Jul-97 09:17:22 GMT

Some servers have been known to receive thistime, convert it to exactly 869127442000 milliseconds, find that
thistime is 359 milliseconds earlier than the time returned by getLastModified(), and falsely assume that
the servlet's content has changed. Thisiswhy, to play it safe, getLastMod i fFied() should always round
down to the nearest thousand milliseconds.

TheHttpServiletRequest object ispassed to getLastModified() in casethe servlet needs to base its
results on information specific to the particular request. The generic bulletin board servlet can make use of this
to determine which board was being requested, for example.

4
Retrieving I nformation

In thischapter:

* I nitialization Parameters
* The Server

* The Client

» The Request

To build a successful web application, you often need to know alot about the environment in which it is
running. Y ou may need to find out about the server that is executing your servlets or the specifics of the client
that is sending requests. And no matter what kind of environment the application is running in, you most
certainly need information about the requests that the application is handling.

Servlets have a number of methods available to gain access to this information. For the most part, each method
returns one specific result. If you compare thisto the way environment variables are used to pass a CGl
program its information, the servlet approach has several advantages:

* Stronger type checking. In other words, more help from the compiler in catching errors. A CGI program uses
one function to retrieve its environment variables. Many errors cannot be found until they cause runtime
problems. Let's ook at how both a CGI program and a servlet find the port on which its server is running.

A CGlI script written in Perl calls:

$port = $ENV{"SERVER_PORT"};

where $port isan untyped variable. A CGI program written in C calls:

char *port = getenv("'SERVER_PORT"™);

where port isapointer to a character string. The chance for accidental errorsis high. The environment
variable name could be misspelled (it happens often enough) or the data type might not match what the
environment variable returns.

A servlet, on the other hand, calls:

int port = req.getServerPort()

This eliminates alot of accidental errors because the compiler can guarantee there are no misspellings and each
return typeisasit should be.

* Delayed calculation. When a server launches a CGI program, the value for each and every environment
variable must be precal culated and passed, whether the CGI program uses it or not. A server launching a servlet
has the option to improve performance by delaying these calculations and performing them on demand as
needed.

» More interaction with the server. Once a CGI program begins execution, it is untethered from its server. The
only communication path available to the program is its standard output. A servlet, however, can work with the
server. As discussed in the last chapter, a servlet operates either within the server (when possible) or asa
connected process outside the server (when necessary). Using this connectivity, a servlet can make ad hoc
requests for calculated information that only the server can provide. For example, a servlet can have its server
do arbitrary path trandations, taking into consideration the server's aliases and virtual paths.

If you're coming to servlets from CGl, Table 4-1 isa"cheat sheet" you can use for your migration. It lists each
CGlI environment variable and the corresponding HT TP servlet method.

Table 4-1. CGI Environment Variables and the Corresponding Serviet Methods

CGI Environment Variable

SERVER_NAME
SERVER_SOFTWARE
SERVER_PROTOCOL
SERVER_PORT
REQUEST_METHOD
PATH_INFO
PATH_TRANSLATED
SCRIPT_NAME
DOCUMENT_ROOT
QUERY_STRING
REMOTE_HOST
REMOTE_ADDR
AUTH_TYPE
REMOTE_USER
CONTENT_TYPE
CONTENT_LENGTH
HTTP_ACCEPT
HTTP_USER_AGENT

HTTP_REFERER

HTTP Serviet Method
reqg.getServerName()
getServiletContext() .getServerinfo()
req.getProtocol ()
req.-getServerPort()
req.getMethod()
req.getPathinfo()
req.getPathTranslated()
req.-getServletPath()
req.getRealPath("'/™)
req.getQueryString()
req.getRemoteHost()
req.getRemoteAddr()
req.getAuthType()
req.getRemoteUser()
req.getContentType()
reqg.getContentLength()
req.getHeader ("'Accept’’)
req.getHeader("'User-Agent')

req.getHeader('Referer'™)

In the rest of this chapter, we'll see how and when to use these methods—and several other methods that have
no CGI counterparts. Along the way, we'll put the methods to use in some real servlets.

Initialization Parameters

Each registered servlet name can have specific initialization (init) parameters associated with it. Init parameters
are available to the servlet at any time; they are often used in init () to setinitia or default values for a
servlet or to customize the servlet's behavior in some way. Init parameters are more fully explained in Chapter
3, The Serviet Life Cycle.

Getting an I nit Parameter

A servlet usesthe getiInitParameter () method to get accessto itsinit parameters:

public String ServletConfig.getlnitParameter(String name)

This method returns the value of the named init parameter or null I if it does not exist. Thereturn valueis
awaysasingle String. It isup to the servlet to interpret the value.

The GenericServlet classimplementsthe ServiletConfig interface and thus provides direct access to
the getInitParameter () method.* The method isusualy called like this:

public void init(ServletConfig config) throws ServletException {
super.init(config);
String greeting = getlnitParameter('greeting');

}

A servlet that needs to establish a connection to a database can use its init parameters to define the details of the
connection. We can assume a custom establ ishConnection() method to abstract away the details of
JDBC, as shown in Example 4-1.

* The servlet must call super . init(config) inits init() method to get this functionality.

Example 4-1. Using init parameters to establish a database connection

jJava.sql .Connection con = null;

public void init(ServletConfig config) throws ServletException {
super.init(config);

String host = getlnitParameter(“host”);

int port = Integer.parselnt(getlnitparameter(“port™));
String db = getlnitParameter(“db™);

String user = getlnitParameter(“user”);

String password = getlnitParameter(“password”);

String proxy = getlnitParameter(“proxy”);

con = establishConnection(host, port, db, user, password, proxy);

}

Getting I nit Parameter Names

A servlet can examine all itsinit parametersusing getlnitParameterNames():

public Enumeration ServletConfig.getlnitParameterNames()

This method returns the names of all the servlet'sinit parameters as an Enumeration of String objectsor
an empty Enumeration if no parameters exist. It's most often used for debugging.

The GenericServlet class aso makes this method directly available to servlets. Example 4-2 shows a
servlet that prints the name and value for al of itsinit parameters.

Example 4-2. Getting init parameter names

import java.io.*;
import java.util.™;
import javax.servlet.*;

public class InitSnoop extends GenericServlet {
// No init() method needed

public void service(ServletRequest req, ServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

out.printIn(“Init Parameters:”);
Enumeration enum = getlnitParameterNames();
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement();

out.printin(name + “: ” + getlnitParameter(name));

}
}
}

Notice that this servlet directly subclasses GenericServlet, showing that init parameters are available to
servietsthat aren't HTTP servlets. A generic servlet can be used in aweb server even though it lacks any
support for HTTP-specific functionality.

Unfortunately, there's no server-independent way for a servlet to ask for itsregistered name or its classfile
location. Thisinformation may be added in afuture version of the Servlet API. Until then, although it's not
pretty, thisinformation can be passed using init parameters where necessary. Also, some servers—including the
Java Web Server—provide a back door whereby a servlet can get its registered name. If aservlet definesa
method with the following signature, the server calls it and passes it the servlet's registered name at
initialization:

public void setServletName(String name);

The servlet can save the passed-in name and use it later. Y ou'll notice this back door was built without changing
the Servlet API, a necessary requirement because, by the time it was added, the Servliet API 2.0 had already
been frozen.

The Server

A servlet can find out much about the server in which it is executing. It can learn the hostname, listening port,
and server software, among other things. A servlet can display thisinformation to a client, use it to customize
its behavior based on a particular server package, or even use it to explicitly restrict the machines on which the
servlet will run.

Getting I nformation about the Server

There are four methods that a servlet can use to learn about its server: two that are called using the
ServletRequest object passed to the servlet and two that are called from the ServiletContext object in
which the servlet is executing. A servlet can get the name of the server and the port number for a particular
request with getServerName() and getServerPort(), respectively:

public String ServletRequest.getServerName()
public int ServletRequest.getServerPort()

These methods are attributes of ServletRequest because the values can change for different requestsif the
server has more than one name (a technique called virtual hosting). The returned name might be something like
“ www.servlets.com” while the returned port might be something like “80807”.

The getServerInfo() and getAttribute() methods of ServletContext provideinformation
about the server software and its attributes:

public String ServletContext.getServerinfo()
public Object ServletContext.getAttribute(String name)

getServerInfo() returnsthe name and version of the server software, separated by a slash. The string
returned might be something like “JavaWebServer/1.1.1". getAttribute() returnsthe vaue of the
named server attribute asan Object or nul I if the attribute does not exist. The attributes are server-
dependent. Y ou can think of this method as a back door through which a servlet can get extra information about
its server. Attribute names should follow the same convention as package names. The package names java. >
and Javax.* arereserved for use by the Java Software division of Sun Microsystems (formerly known as
JavaSoft), and com.sun.* isreserved for use by Sun Microsystems. See your server's documentation for alist
of its attributes. Because these methods are attributes of ServiletContext inwhich the servlet is executing,
you have to call them through that object:

String serverinfo = getServletContext().getServerinfo();

The most straightforward use of information about the server is an "About This Server” servlet, as shown in
Example 4-3.

Example 4-3. Shooping the server

import java.io.*;
import java.util_*;
import javax.servlet.*;

public class ServerSnoop extends GenericServlet {

public void service(ServletRequest req, ServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

out.printIn(“req.getServerName(): ” + req.getServerName());

out.printIn(“req.getServerPort(): ” + req.getServerPort());
out.printin(“getServiletContext() .getServerinfo(): ” +
getServiletContext().getServerinfo());
out.printIn(“getServeriInfo() name: ” +
getServeriInfoName(getServiletContext() .getServerinfo()));
out.printIn(“getServerinfo() version: ” +
getServerinfoVersion(getServiletContext() .getServerinfo()));

out.printIn(“getServietContext() .getAttribute(\“attribute\”): ” +

getServiletContext() .getAttribute(“attribute™));
}

private String getServeriInfoName(String serverinfo) {
int slash = serveriInfo.indexOf(“/”);
if (slash == -1) return serverinfo;
else return serverinfo.substring(0, slash);

}

private String getServerilnfoVersion(String serverinfo) {
int slash = serveriInfo.indexOf(“/”);
if (slash == -1) return null;
else return serverinfo.substring(slash + 1);

}
}

This servlet also directly subclasses GenericServlet, demonstrating that all the information about a server
isavailableto servlets of any type. The servlet outputs simple raw text. When accessed, this servlet prints
something like:

req.getServerName(): localhost

req.getServerPort(): 8080

getServiletContext() .getServerinfo(): JavaWebServer/1.1.1
getServeriInfo() name: JavaWebServer

getServeriInfo() version: 1.1.1

getServiletContext() .getAttribute(attribute™): null

Unfortunately, there is no server-independent way to determine the server'sroot directory, referred to in this
book as server_root. However, some servers—including the Java Web Server—save the server's root
directory namein the server . root system property, where it can be retrieved using
System.getProperty(““server.root”).

Locking a Serviet to a Server

This server information can be put to more productive uses. Let's assume you've written a servlet and you don't
want it running just anywhere. Perhaps you want to sell it and, to limit the chance of unauthorized copying, you
want to lock the servlet to your customer's machine with a software license. Or, aternatively, you've written a
license generator as a servlet and want to make sure it works only behind your firewall. This can be done
relatively easily because a servlet has instant access to the information about its server.

Example 4-4 shows a servlet that locks itself to a particular server IP address and port number. It requires an
init parameter key that is appropriate for its server | P address and port before it unlocksitself and handles a
request. If it does not receive the appropriate key, it refuses to continue. The algorithm used to map the key to
the | P address and port (and vice-versa) must be secure.

Example 4-4. A serviet locked to a server

import java.io.*;
import java.net.™*;
import java.util_*;
import javax.servlet.*;

public class KeyedServerLock extends GenericServlet {
// This servlet has no class or instance variables

// associated with the locking, so as to simplify
// synchronization issues.

public void service(ServletRequest req, ServletResponse res)
throws ServletException, 10Exception {
res._setContentType(“text/plain™);
PrintWriter out = res.getWriter();

// The piracy check shouldn®t be done in init
// because name/port are part of request.
String key = getlInitParameter(“key”);

String host = reqg.getServerName();

int port = req.getServerPort();

// Check if the init parameter “key” unlocks this server.
if (! keyFitsServer(key, host, port)) {
// Explain, condemn, threaten, etc.

out_printIn(*Pirated!”);

}

else {
// Give “em the goods
out_printIn(*valid”);
// etc..

}

}

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely
// weak and should not be used by commercial sites.

//

private boolean keyFitsServer(String key, String host, int port) {

it (key == null) return false;

long numericKey = O;
try {

numericKey = Long.parseLong(key);
3
catch (NumberFormatException e) {
return false;

}

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated with the 32-bit port number.

byte hostlIP[];
try {
hostIP = InetAddress.getByName(host).getAddress();
+
catch (UnknownHostException e) {
return false;

}

// Get the 32-bit IP address
long servercode = 0;
for (int 1 = 0; 1 < 4; i++) {
servercode <= 8;
servercode j= (hostlIP[i] & 255);
}

// Concatentate the 32-bit port number
servercode <<= 32;

servercode ;= port;

// Logical not
long accesscode = ~numericKey;

// The moment of truth: Does the key match?
return (servercode == accesscode);

}
}

This servlet refuses to perform unless given the correct key. To really make it secure, however, the simple
keyFitsServer () logic should be replaced with a strong algorithm and the whole servlet should be run
through an obfuscator to prevent decompiling. Example 4-8 later in this chapter provides the code used to
generate keys. If you try this serviet yourself, it's best if you access the server with its actual name, rather than
localhost, so the servlet can determine the web server's true name and IP address.

TheClient

For each request, a servlet has the ability to find out about the client machine and, for pages requiring
authentication, about the actual user. Thisinformation can be used for logging access data, associating
information with individual users, or restricting access to certain clients.

Getting I nformation about the Client Machine

A servlet can use getRemoteAddr () and getRemoteHost() to retrieve the IP address and hostname of
the client machine, respectively:

public String ServletRequest.getRemoteAddr()
public String ServletRequest.getRemoteHost()

Both values are returned as String objects. The information comes from the socket that connects the server to
the client, so the remote address and hosthame may be that of a proxy server. An example remote address might
be““192.26.80.118 while an example remote host might be “dist.engr.sgi.com.”

The IP address or remote hostname can be converted to a Java.net. InetAddress object using
InetAddress.getByName():

InetAddress remotelnetAddress = InetAddress.getByName(req.getRemoteAddr());
Restricting Access to the United States and Canada

Due to the United States government's policy restricting the export of strong encryption outside the United
States and Canada, some web sites must be careful about who they let download certain software. Servlets, with
their ability to find out about the client machine, are well suited to enforce this restriction. These servlets can
check the client machine and provide links for download only if the client appears to be coming from inside the
United States or Canada. Example 4-5 gives an example.

Example 4-5. Can they be trusted?

import java.io.*;

import java.net.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ExportRestriction extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, 10Exception {
res.setContentType(“text/html’);
PrintWriter out = res.getWriter();

// ..Some introductory HTML..

// Get the client"s hostname
String remoteHost = req.getRemoteHost();

// See it the client is allowed
if (! isHostAllowed(remoteHost)) {
out.printIn(“Access <BLINK>denied</BLINK>"); // filter out the blink!

}
else {
out.printIn(*“Access granted™);
// Display download links, etc..
}
}

// We assume hosts ending with .com, .edu, .net, .org,

// .gov, .mil, .us, and .ca are legal even though this is an

// over-simplification now that .com, .net, and .org have

// become global top-level domains. We also assume

// clients without a domain name are local and that

// local is allowed. (After all, if local isn"t allowed

// you would have to be outside the United States and Canada -- so

// why would you be using this servlet?)

private boolean isHostAllowed(String host) {

return (host.endsWith(*“.com™) ;i

host.endsWith(*.edu™)
host.endsWith(*.net)
host.endsWith(*.org™)
host._endsWith(**.gov™)
host_endsWith(*.mil”)
host._endsWith(*.us™)
host._endsWith(*.ca™)
(host.indexOf(“.”) == -1)); // no domain, assume OK

}
}

This servlet gets the client hosthame with acall to req.getRemoteHost() and, based on its suffix, decides
if the client came from inside or outside the United States and Canada. Of course, be sure to get high-priced
legal counsel before making any cryptographic code available for download.

Getting I nformation about the User

What do you do when you need to restrict access to some of your web pages but want to have a bit more control
over the restriction than this "continent by continent" approach? Say, for example, you publish an online
magazine and want only paid subscribers to read the articles. Well (prepare yourself), you don't need servlets to
do this.

Nearly every HTTP server has a built-in capability to restrict access to some or all of its pages to a given set of
registered users. How you set up restricted access depends on the server, but here's how it works mechanically.
Thefirst time a browser attempts to access one of these pages, the HTTP server replies that it needs special user
authentication. When the browser receives this response, it usually pops open awindow asking the user for a
name and password appropriate for the page, as shown in Figure 4-1.

Figure 4-1.
Pleaselogin

Once the user enters his information, the browser again attempts to access the page, this time attaching the
user's name and password along with the request. If the server accepts the name/password pair, it happily
handles the request. If, on the other hand, the server doesn't accept the name/password pair, the browser is again
denied and the user swears under his breath about forgetting yet another password.

How does this involves servlets? When access to a servlet has been restricted by the server, the servlet can get
the name of the user that was accepted by the server, using the getRemoteUser () method:

public String HttpServletRequest.getRemoteUser()

Note that thisinformation is retrieved from the servlet's HttpServietRequest object, the HTTP-specific
subclass of ServletRequest. This method returns the name of the user making the request asa String or
nul I if accessto the servlet was not restricted. There is no comparable method to get the remote user's
password (although it can be manually determined, as shown in Example 8-2). An example remote user might
be “jhunter”.

A servlet can also use the getAuthType () method to find out what type of authorization was used:

public String HttpServletRequest.getAuthType()

This method returns the type of authorization used or null I if access to the servlet was not restricted. The most
common authorization types are ““BASIC”” and ““DIGEST™".

By the time the servlet calls getRemoteUser (), the server has already determined that the user is authorized
to invoke the servlet, but that doesn't mean the remote user's name is worthless. The serviet could perform a
second authorization check, more restrictive and dynamic than the server's. For example, it could return
sensitive information about someone only if that person made the request, or it could enforce arule that each
user can make only 10 accesses per day .

Then again, the client's name can simply tell the servlet who is accessing it. After all, the remote host is not
necessarily unique to one user. Unix servers often host hundreds of users, and gateway proxies can act on behalf
of thousands. But bear in mind that access to the client's name comes with a price. Every user must be
registered with your server and, before accessing your site, must enter his name and password. Generally
speaking, authentication should not be used just so a servlet can know to whom it is talking. Chapter 7, Session
Tracking, describes some better, |ower-maintenance techniques for knowing about users. However, if aserviet
is already protected and has the name easily available, the serviet might as well useit.

With the remote user's name, a servlet can save information about each client. Over the long term, it can
remember each individual's preferences. For the short term, it can remember the series of pages viewed by the
client and use them to add a sense of state to a stateless HTTP protocol. The session tracking tricks from
Chapter 7 may be unnecessary if the serviet already knows the name of the client user.

* Want to know how to say "Access Denied” for the eleventh access? It's in the next chapter.

A Personalized Welcome

A simple servlet that uses getRemoteUser () can greet its clients by name and remember when each last
logged in, as shown in Example 4-6.

Example 4-6. Hey, | remember youl!

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http._*;

public class PersonalizedWelcome extends HttpServilet {
Hashtable accesses = new Hashtable();

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

// ..Some introductory HTML..
String remoteUser = req.getRemoteUser();

if (remoteUser == null) {
out_printIn(*“Welcome!™);
}
else {
out_printIn(*“Welcome, ” + remoteUser + “17);
Date lastAccess = (Date) accesses.get(remoteUser);
if (lastAccess == null) {
out.printIn(*“This is your first visit!”);
}

else {

out.printIn(*Your last visit was ” + accesses.get(remoteUser));

}

it (remoteUser.equals(“PROFESSOR FALKEN)) {
out.printIn(*Shall we play a game?”);
}

accesses.put(remoteUser, new Date());

}

// .Continue handling the request..

}
}

This servlet usesaHashtabl e to save the last access time for each remote user. Thefirst thing it does for
each request is greet the person by name and tell him the time of hislast visit. Then it records the time of this
visit, for use next time. After that, it continues handling the request.

The Request

We've seen how the servlet finds out about the server and about the client. Now it's time to move on to the
really important stuff: how a servlet finds out what the client wants.

Request Parameters

Each accessto a servlet can have any number of request parameters associated with it. These parameters are
typically name/value pairs that tell the servlet any extrainformation it needs to handle the request. Please don't
confuse these request parameters with init parameters, which are associated with the servlet itself.

AnHTTP servlet getsits request parameters as part of its query string (for GET requests) or as encoded post
data (for POST requests). A servlet used as a serverside include has its parameters supplied by <PARAM> tags.
Other types of servlets can receive their parametersin other ways.

Fortunately, even though a servlet can receive parametersin a number of different ways, every servlet retrieves
its parameters the same way, using getParameter () and getParameterValues():

public String ServletRequest.getParameter(String name)
public String[] ServletRequest.getParameterValues(String name)

getParameter () returnsthe value of the named parameter asa String or nul I if the parameter was not
specified.* The value is guaranteed to be in its normal, decoded form. If the parameter has multiple values, the
value returned is serverdependent. If there's any chance a parameter could have more than one value, you
should use the getParameterValues() method instead. This method returns all the values of the named
parameter as an array of String objectsor nul I if the parameter was not specified. A single valueis returned
in an array of length 1.

One word of warning: if the parameter information came in as encoded POST data, it may not be available if
the POST data has already been read manually using the getReader () or getInputStream() method of
ServletRequest (because POST data can be read only once).

* ThegetParameter () method was deprecated in the Java Web Server 1.1 in favor of
getParameterValues(). However, after quite alot of public protest, Sun took getParameter () off the
deprecation list in the final release of Serviet API 2.0. It was the first Java method to be undeprecated!

The possible uses for request parameters are unlimited. They are a general purpose way to tell a servlet what to
do, how to do it, or both. For asimple example, let'slook at how a dictionary servlet might use
getParameter () tofind out the word it needs to look up.

An HTML file could contain this form asking the user for aword to look up:

<FORM METHOD=GET ACTION="/servlet/Dictionary">
Word to look up: <INPUT TYPE=TEXT NAME="word"><P>
Another word? <INPUT TYPE=TEXT NAME="word''><P>
<INPUT TYPE=SUBMIT><P>

</FORM>

Or the HTML file could contain this server-side include:

<SERVLET CODE=Dictionary>

<PARAM NAME=word VALUE=obfuscate>
<PARAM NAME=word VALUE=onomatopoeia>
</SERVLET>

No matter what the HTML looks like or whether the servlet handles GET requests, POST requests, or server-
side include requests or is part of afilter chain, you can use code like the following to retrieve the servlet's
parameters:

String word = req.getParameter(“'word™);
String definition = getDefinition(word);
out_printIn(word + ": " + definition);

While this code works fine, it can handle only one word per request. To handle multiple values for word, the
servlet can use the getParameterValues() method instead:

String[] words = req.getParameterValues("'word');
if (words !'= null) {
for (int i = 0; i < words.length; i++) {
String definition = getDefinition(words[i]);
out.printin(words[i] + ": " + definition);
out.printIn(’'<HR>");
}
}

In addition to getting parameter values, a servlet can access parameter names using
getParameterNames():

public Enumeration ServletRequest.getParameterNames()

This method returns all the parameter names as an Enumeration of String object or an empty
Enumeration if the servlet has no parameters. The method is most often used for debugging.

Finally, a servlet can retrieve the raw query string of the request with getQueryString():

public String ServletRequest.getQueryString()

This method returns the raw query string (encoded GET parameter information) of the request or null I if there
was no query string. This low-level information is rarely useful for handling form data. It's best for handling a
single unnamed value, asin “/servlet/Sqrt?576”, where the returned query string is “576".

Example 4-7 shows the use of these methods with a servlet that printsits query string, then prints the name and
value for al its parameters.

Example 4-7. Shooping parameters

import java.io.*;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

public class ParameterSnoop extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

out.printIn(“Query String:™);
out.printin(reqg.getQueryString());
out.printin(Q);

out.printIn(“Request Parameters:™);
Enumeration enum = req.getParameterNames();
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement();

String values[] = req.getParameterValues(name);

it (values 1= null) {

for (int 1 = 0; 1 < values.length; i++) {
out.printin(name + “ (*“ + 1 + ”): ” + values[i]);

-l Bodk Go rw."#:mtBJEWﬁlwhuFammﬁnmp?qclm-hmup&mrd- [
Ly AP T B = R e e R I S O R T e I LT

Query String:

action=loakupévord=chfiuscateivord=onomatapoeis

Regueat Paramsters:
{ word [0]: obiuwacate
word (1]: onowacopasis
accion (0): lookup

Figure 4-2.
The snooped parameters

Generating a License Key

Now we're ready to write a servlet that generates a KeyedServerLock license key for any given host and
port number. A key from this servlet can be used to unlock the KeyedServerLock servlet. So, how will this
servlet know the host and port number of the servlet it needs to unlock? Why, with request parameters, of
course. Example 4-8 shows the code.

Example 4-8. Unlocking KeyedServerLock

import java.io.*;

import java.net.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class KeyedServerUnlock extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
PrintWriter out = res.getWriter();

// Get the host and port
String host = req.getParameter(“host™);
String port = req.getParameter(“port™);

// Convert the port to an integer
int numericPort;

try {
numericPort = Integer.parselnt(port);

}

catch (NumberFormatException e) {
numericPort = 80; // default

}

// Generate and print the key
// Any KeyGenerationException is caught and displayed
try {
long key = generateKey(host, numericPort);
out.printin(host + “:” + numericPort + “ has the key ” + key);
s
catch (KeyGenerationException e) {
out_printlIn(“Could not generate key: ” + e.getMessage());
}
}

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely

// weak and should not be used by commercial sites.

//

// Throws a KeyGenerationException because anything more specific

// would be tied to the chosen algorithm.

//

private long generateKey(String host, int port) throws KeyGenerationException {

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated by the 32-bit port number.

byte hostlIP[];
try {

hostIP = InetAddress.getByName(host) .getAddress();
}

catch (UnknownHostException e) {
throw new KeyGenerationException(e.getMessage());

}

// Get the 32-bit IP address
long servercode = 0;
for (int 1 = 0; 1 < 4; i++) {
servercode <= 8;
servercode ;= (hostlIP[i] & 255);
}

// Concatentate the 32-bit port number
servercode <= 32;
servercode ;= port;

// The key is the logical not

return ~servercode;

}
}

class KeyGenerationException extends Exception

public KeyGenerationException() {
superQ);
}

public KeyGenerationException(String msg) {
super(msg);
}
}

This servlet can either generate afull page (for handling GET requests) or act as a server-side include.
Path Information

In addition to parameters, an HT TP request can include something called "extra path information” or a"virtual
path." In general, this extra path information is used to indicate afile on the server that the servlet should use
for something. This path information is encoded in the URL of an HTTP request. An example URL looks like
this:.

http://server:port/serviet/ViewFile/lindex.html

Thisinvokesthe ViewF i le servlet, passing “/i1ndex.html” as extra path information. A servlet can
access this path information, and it can also trandate the ““/index . html”’ string into the real path of the
index.html file. What isthe real path of “/index.html”’? It'sthe full file system path to the file—what the
server would return if the client asked for*“/index . html”” directly. This probably turns out to be
document_root/index.html, but, of course, the server could have specia aiasing that changes this.

Besides being specified explicitly in a URL, this extra path information can also be encoded in the ACT 10N
parameter of an HTML form:

<FORM METHOD=GET ACTION="/servlet/Dictionary/dict/definitions.txt"'">
Word to look up: <INPUT TYPE=TEXT NAME="'word''><P>

<INPUT TYPE=SUBMIT><P>

</FORM>

Thisform invokesthe Dictionary servlet to handle its submissions and passes the Dictionary the extra
path information “/dict/definitions.txt”. TheDictionary servlet can then know to look up word
definitions using the definitions.txt file, the same file the client would see if it requested
“/dict/definitions.txt”, probably server_root/public_html/dict/definitions.txt.

Why Extra Path
I nformation?

Why does HTTP have special support for extra path information? Isn't it enough
to pass the servlet a path parameter? The answer is yes. Servlets don't need the
specia support, but CGI programs do.

A CGlI program cannot interact with its server during execution, so it has no way
to receive apath parameter, let alone ask the server to map it to areal file
system location. The server has to somehow trand ate the path before invoking
the CGI program. Thisiswhy there needs to be support for special "extra path
information.” Servers know to pretrandate this extra path and send the
trandation to the CGI program as an environment variable. It's afairly elegant
workaround to a shortcoming in CGlI.

Of course, just because servlets don't need the special handling of "extra path
information,” it doesn't mean they shouldn't useit. It provides asimple,
convenient way to attach a path along with a request.

Getting path information

A servlet can use the getPathInfo() method to get extra path information:

public String HttpServletRequest.getPathlnfo()

This method returns the extra path information associated with the request or null I if none was given. An
example path is “/dict/definitions.txt”. The path information by itself, however, is only marginally
useful. A servlet usually needs to know the actual file system location of the file given in the path info, whichis
where getPathTranslated() comesin:

public String HttpServletRequest.getPathTranslated()

This method returns the extra path information translated to areal file system path or nul I if thereis no extra
path information. The returned path does not necessarily point to an existing file or directory. An example
translated path is ““C:\JavaWebServerl.1._1\public_htmI\dict\definitions.txt”.

Example 4-9 shows a servlet that uses these two methods to print the extra path information it receives and the
resulting translation to areal path.

Example 4-9. Showing where the path leads

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class FilelLocation extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

if (reqg.getPathinfo() != null) {
out.printIn(“The file \”*“ + req.getPathinfo() + "*“7);
out.printin(“Is stored at \”*“ + reg.getPathTranslated() + ~*”);

}
}
}

Some example output of thisserviet might be:

The file "/index.html"
Is stored at '"/usr/JavaWebServerl.l1l.1/public_html/index.html"

Ad hoc path trandations

Sometimes a servlet needs to tranglate a path that wasn't passed in as extra path information. Y ou can use the
getRealPath() method for this task:

public String ServletRequest.getRealPath(String path)

This method returns the real path of any given "virtual path" or null if the translation cannot be performed. If the
given path is"/", the method returns the document root (the place where documents are stored) for the server. If
the given path isgetPathInfo(), the method returns the same real path as would be returned by
getPathTranslated(). Thismethod can be used by generic servliets aswell asHTTP servlets. Thereisno
CGlI counterpart.

Getting MIME types

Once aservlet has the path to afile, it often needs to discover the type of thefile. Use getMimeType () to do
this:

public String ServletContext.getMimeType (String Ffile)

This method returns the MIME type of the given fileor nul I if it isn't known. Some implementations return
“text/plain” if the given file doesn't exist. Common MIME types are “text/html”’, “text/plain”,
“image/gift’, and"image/jpeqg”.

The following code fragment finds the MIME type of the extra path information:
String type = getServletContext().getMimeType(req.getPathTranslated())

Serving Files

The Java Web Server itself uses servlets to handle every request. Besides being a showcase for the ability of
servlets, this gives the server amodular design that allows the wholesal e replacement of certain aspects of its
functionality. For example, all files are served by the com.sun.server_http.FileServlet sevle,
registered under the name i le and charged with the responsibility to handle the "/" alias (meaning it's the
default handler for requests). But there's nothing to say that Sun's Fi leServlet cannot be replaced. In fact, it
can be, either by registering another servlet under the name fi le or by changing the "/" aias to use another
servlet. Furthermore, it's not all that hard to write a replacement for i le, using the methods we've just seen.

Example 4-10 showsaViewFi le servlet that usesthe getPathTranslated() and getMimeType()
methods to return whatever fileis given by the extra path information.

Example 4-10. Dynamically returning static files

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

import com.oreilly.servlet.ServletUtils;
public class ViewFile extends HttpServiet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
// Use a ServletOutputStream because we may pass binary information
ServletOutputStream out = res.getOutputStream();

// Get the file to view
String file = req.getPathTranslated();

// No file, nothing to view
if (File == null) {
out.printIn(**No file to view”);
return;

}

// Get and set the type of the file
String contentType = getServletContext().getMimeType(file);
res.setContentType(contentType);

// Return the file

try {
ServiletUtils.returnFile(file, out);
}

catch (FileNotFoundException e) {
out_printIn(*“File not found”);
}
catch (10Exception e) {
out.printIn(*Problem sending Ffile: ” + e.getMessage());
}
3
}

This servlet first uses getPathTranslated() to get the name of fileit needsto display. Then it uses
getMimeType () to find the content type of thisfile and sets the response content type to match. Last, it
returns the file using the returnkFi le() method foundinthecom.oreilly.servlet.ServletUtils
utility class:

// Send the contents of the file to the output stream
public static void returnFile(String filename, OutputStream out)
throws FileNotFoundException, I0Exception {
// A FilelnputStream is for bytes
FilelnputStream fis = null;
try {
fis = new FilelnputStream(filename);
byte[] buf = new byte[4 * 1024]; // 4K buffer
int bytesRead;
while ((bytesRead = fTis.read(buf)) 1= -1) {
out.write(buf, 0, bytesRead);
}

+
finally {

if (fis = null) fis.close();
}
}

The servlet's error handling is basic—it returns a page that describes the error. Thisis acceptable for our simple
example (and really more than many programs seem capable of), but we'll learn a better way using status codes
in the next chapter.

This servlet can be used directly with a URL like this.

http://server:port/servlet/ViewFile/index.html

Or, if you useit as areplacement for the “file” servlet, it isautomatically invoked even for aURL likethis.

http://server:port/index.html

Just beware that this servlet is a"proof of concept” example and does not have the full functionality of the
com.sun.server._http.FileServlet savlet.

Determining What Was Requested

A servlet can use several methods to find out exactly what file or servlet the client requested. After al, only the
most conceited servlet would always assume itself to be the direct target of arequest. A servlet may be nothing
more than asinglelink in along servlet chain.

No method directly returns the original Uniform Resource Locator (URL) used by the client to make a request.
The Javax.servilet._http.HttpUtils class, however, provides agetRequestURL () method that
does about the same thing: *

public static StringBuffer HttpUtils.getRequestURL (HttpServletRequest req)

This method reconstructs the request URL based on information availablein the HttpServiletRequest
object. It returns a StringBuffer that includes the scheme (such as HTTP), server name, server port, and
extra path information. The reconstructed URL should look almost identical to the URL used by the client.
Differences between the original and reconstructed URL s should be minor (that is, a space encoded by the
client as ““%20”” might be encoded by the server as a ““+””). Because this method returnsa StringBuffer,
the request URL can be modified efficiently (for example, by appending query parameters). This method is
often used for creating redirect messages and reporting errors.

Most of the time, however, a serviet doesn't really need the request URL. It just needs the request URI, whichis
returned by getRequestURI ():

public String HttpServletRequest.getRequestURI()

This method returns the Universal Resource Identifier (URI) of the request. For normal HTTP servlets, a
request URI can be thought of as a URL minus the scheme, host, port, and query string, but including any extra
path information.* Table 4-2 shows the request URIs for several request URLS.

* Why isn't there a method that directly returns the original URL shown in the browser? Because the browser never sends the full
URL. The port number, for example, is used by the client to make its HT TP connection, but it isn't included in the request made
to the web server answering on that port.

Table 4-2. URLs and Their URIs

Request URL ItsURI
Component

http://server: port/serviet/Classname,0,TP:0.00486111,0>/serviet/Classname

http: //server : port/serviet/r egisteredName,0>/ser viet/r egister edName

http://server: port/servlet/Classname?var = val,0>/ser vlet/Classname?

http: //server : port/servl et/ Cl assname/pathi nfo,0>/ser vl et/ Classname/pathinfo

http://server: port/servlet/Classname/pathinfo?
var=val,0>/servlet/Classname/pathinfo

http://server:port/ssi.shtml (SSI) /ssi.shtml

http://server:port/alias.html (aliasto a servlet) [alias.html

3Severa servlet engines (including the Java Web Server 1.1.1) have abug where
getRequestURI () erroneously includes the query string. The JSDK 2.0 servlet runner

behaves correctly.

For servletsin achain, the request URI is always that of the first servlet in the chain.

In some situationsit is enough for a servlet to know the servlet name under which it was invoked. Y ou can
retrieve this information with getServletPath():

public String HttpServletRequest.getServletPath()

This method returns the part of the URI that refers to the servlet being invoked or nul I if the URI does not
directly point to aservlet. The servlet path does not include extra path information. Table 4-3 shows the servlet
names for several request URLS.

Table 4-3. URLs and Their Serviet Paths
Request URL Its Servlet Path

http://server: port/serviet/Classname,0,TP:0.00486111,0>/ser vlet/Classname

http://server: port/serviet/r egister edName,0>/ser vl et/r egisteredName

http: //server : port/servlet/Classname?var = val,0>/ser vl et/Classname

http: //server : port/ser vl et/ Classname/pathinfo,0>/ser vlet/Classname

http://server : port/servlet/Classname/pathinfo?
var=val,0>/servlet/Classname

http: //server:port/ssi.shtml (SSI) null

http: //server.port/alias.html (aliasto a servlet) [alias.html

* Technically, what isreferred to here as arequest URI could more formally be called a"request URL path". Thisis because a
URI is, in the most precise sense, ageneral purpose identifier for aresource. A URL isone type of URI; aURN (Uniform
Resource Name) is another. For more information on URIs, URLSs, and URNSs, see RFC 1630 at

http: //imww.ietf.org/rfc/rfc1630.txt.

For servletsin afilter chain, the servlet path is aways the same as the path of the first servlet in the chain. If the
request URI does not point at aserviet, getServletPath() returnsnul I. It does not matter that a servlet
(such asthe fi le servlet) may have handled the request behind the scenes or that the request eventually ended
upinaservlet.

For example, if the client requests the page /index.html and the content goes through the Deb 1 1nk servlet from
Chapter 2, HTTP Serviet Basics, the Deblink serviet hasanul I servlet path—the original request was for a
static file, not aservlet. If, however, the client requests /alias.html—which is a direct aias to a servlet—both
that servlet and the Deblink serviet have a servlet path of /alias.html.

A servlet invoked as a server-side include behaves similarly. If it isembedded in astatic file, it too hasa nul |
servlet path. The only way for it to have anon-null I servlet pathisif it ispart of aservlet chain started by a
servlet.

An Improved Counter

We can make use of the request URI information to improve our counter servlet. The counter example from
Chapter 3 could count only its own accesses. A real counter has to be able to count accesses to pages other than
itself. There are two elegant ways to accomplish this: use the counter as an SSI servlet embedded in a page or
use the counter in a servlet chain where it can replace any instances of the <COUNT> tag with the appropriate
number. For each approach, a serviet can use the getRequestURI () method to associate a separate count
with each requested URI.

Example 4-11 shows aGenericCounter servlet superclass that knows how to manage a hashtable that stores
counts for different URIs. Example 4-12 and Example 4-13 show servlets that subclass GenericCounter to
act as a server-side include counter and a chain-based counter, respectively. *

Example 4-11. A generic counter superclass

import java.io.*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

public class GenericCounter extends HttpServlet {

private Hashtable counts = new Hashtable();

public void init(ServletConfig config) throws ServletException {
// Always call super.init(config) first

super.init(config);

// Try to load the initial page counts from the saved persistent state
try {

}
}

FileReader fileReader = new FileReader(getClass().getName() + “.counts”)
BufferedReader bufferedReader = new BufferedReader(fileReader);
String line = null;
String uri = null;
String count null;
int[] holder null; // holder for the count, to make it an object
while ((line bufferedReader.readLine()) = null) {
StringTokenizer tokenizer = new StringTokenizer(line);
if (tokenizer.countTokens() < 2) continue; // bogus line
uri = tokenizer.nextToken();
count = tokenizer.nextToken();
// Store the uri/count pair in the counts hashtable
// The count is saved as an int[1l] to make it an “object”
try {
holder = new int[1];
holder[0] = Integer.parselnt(count);
counts.put(uri, holder);

}
catch (NumberFormatException e) { } // bogus line

catch (FileNotFoundException e) { } // no saved state
catch (10Exception e) { } // problem during read

}

// Increment and return the count for the given URI
public int incrementAndGetCount(String uri) {
int[] holder = (int[])counts.get (uri);
if (holder == null) {
// Initialize the count to O
holder = new int[1];
holder[0] = O;
counts.put(uri, holder); // save the holder

}

holder[0]++; // increment
return holder[0];

}

public void destroy() {
// Try to save the accumulated count

try {

FileWriter fileWriter = new FileWriter(getClass() -getName() +
BufferedWriter bufferedWriter = new BufferedWriter(fileWriter);
Enumeration keys = counts.keys();

Enumeration elements = counts.elements();

-counts”™)

String output = null;
while (keys.hasMoreElements() && elements.hasMoreElements()) {
bufferedWriter._write(keys.nextElement() + “ 7 +
elements.nextElement() + “\n”);
}

bufferedWriter.close();
FfileWriter.close();
return;
}
catch (10Exception e) { } // problem during write
}
}

* For Example 4-12, please note that the Java Web Server 1.1.1 hasabug wherethe PrintWriter returned by
getWriter () doesn't generate output for servlets used as server sideincludes. See to Chapter 2 for more information.

Example 4-12. A server-side include counter

import java.io.*;
import javax.servlet.*;
import javax.servlet_http_*;

public class SSICounter extends GenericCounter {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, 10Exception {
PrintWriter out = res.getWriter();

// Fetch the page we"re on.
String uri = req.getRequestURI();

// Get and increment the count for that page
int count = incrementAndGetCount(uri);

// Fulfull our purpose: print the count
out_printin(count);
}
}

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class ChainCounter extends GenericCounter {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

String contentType = req.getContentType();
res.setContentType(contentType);

PrintWriter out = res.getWriter();

// Fetch the page we"re on.
String uri = reg.getRequestURI();

// Get and increment the count
int count = incrementAndGetCount(uri);

// Prepare to read the input
BufferedReader reader = req.getReader();

String line = null;
while ((line = reader.readLine()) = null) {
line = replace(line, “<COUNT>", “” + count); // case sensitive
out.printin(line);
}
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
doGet(req, res);
}

private String replace(String line, String oldString, String newString) {
int index = O;
while ((index = line.indexOf(oldString, index)) >= 0) {
line = line.substring(0, index) +
newString +
line.substring(index + oldString.length());
index += newString.length(Q);
}
return line;
}
}

How It Was Requested

Besides knowing what was requested, a servlet has several ways of finding out details about how it was
requested. The getScheme () method returns the scheme used to make this request:

public String ServletRequest.getScheme()

Examplesinclude “http”, “https™, and “Ftp”’, aswell asthe newer Java-specific schemes “jdbc” and
“rmi”’. Thereisno direct CGI counterpart (though some CGI implementations have a SERVER_URL variable
that includes the scheme). For HTTP servlets, this method indicates whether the request was made over a secure
connection using the Secure Sockets Layer (SSL), as indicated by the scheme "https’, or if it was an insecure
request, as indicated by the scheme “http™.

The getProtocol () method returns the protocol and version number used to make the request:

public String ServletRequest.getProtocol()

The protocol and version number are separated by a slash. The method returns nul I if no protocol could be
determined. For HTTP servlets, the protocol isusualy VHTTP/1.0v or vHTTP/1.1". HTTP servlets can use
the protocol version to determineiif it's okay with the client to use the new featuresin HTTP Version 1.1.

To find out what method was used for arequest, a servlet uses getMethod():

public String HttpServletRequest.getMethod()

This method returns the HT TP method used to make the request. Examplesinclude “GET”’, ““POST”’, and
“HEAD”. The service() method of the HttpServ et implementation uses this method in its dispatching
of requests.

Request Headers

HTTP requests and responses can have a number of associated HTTP "headers’. These headers provide some
extrainformation about the request (or response). The HTTP Version 1.0 protocol defines literally dozens of
possible headers; the HTTP Version 1.1 protocol includes even more. A description of all the headers extends
beyond the scope of this book; we discuss only the headers most often accessed by servlets. For afull list of
HTTP headers and their uses, we recommend Web Client Programming by Clinton Wong (O'Reilly) or
Webmaster in a Nutshell by Stephen Spainhour and Valerie Quercia (O'Reilly).

A servlet rarely needs to read the HT TP headers accompanying a request. Many of the headers associated with a
request are handled by the server itself. Take, for example, how a server restricts access to its documents. The
server uses HTTP headers, and servlets need not know the details. When a server receives arequest for a
restricted page, it checks that the request includes an appropriate Authorization header that containsa
valid username and a password. If it doesn't, the server itself issues a response containing a WWW-
Authenticate header, to tell the browser its access to a resource was denied. When the client sends a
request that includes the proper Authorization header, the server grants the access and gives any servlet invoked
access to the user's name via the getRemoteUser () call.

Other headers are used by servlets, but indirectly. A good exampleisthe LastModified and I F-Last-
Modified pair discussed in Chapter 3. The server itself seesthe 1 f-Last-Modified header and callsthe
serviet'sgetLastModified() method to determine how to proceed.

There are afew HTTP headers that a servlet may want to read on occasion. These are listed in Table 4-4.

Table 4-4. Useful HTTP Request Headers
Header Usage

Accept Specifies the media (MIME) types the client prefersto accept, separated by commas2 Each mediatypeis divide
atype and subtype given as type/subtype . An asterisk (*) wildcard is allowed for the subtype (type/*)
both the type and subtype (*/*). For example:

Accept: image/gif, image/jpeg, text/*, */*
A servlet can use this header to help determine what type of content to return. If this header is not passed as par
request, the servlet can assume the client accepts all mediatypes.

User-Agent Gives information about the client software. The format of the returned string is relatively free form, but it ofter
includes the browser name and version as well asinformation about the machine on which it is running. Netsca
on an SGI Indy running IRIX 6.2 reports:

User-Agent: Mozilla/3.01SC-SGI (X11; I; IRIX 6.2 1P22)

Microsoft Internet Explorer 4.0 running on a Windows 95 machine reports:
User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

A servlet can use this header to keep statistics or to customize its response based on browser type.

Referer Givesthe URL of the document that refersto the requested URL (that is, the document that contains the link th
followed to access this document) P For example:
Referer: _http://www.gamelan.com/pages/Gamelan.sites.home.html
A servlet can use this header to keep statistics or, if there's some error in the request, to keep track of the docurr
with errors.

Authorization Provides the client's authorization to access the requested URI, including a username and password encoded in
Servlets can use this for custom authorization, as discussed in Chapter 8, Security.

2 Some older browsers send a separate Accept header for each mediatype. This can confuse some servlet engines, including the Java Wel
Server.

b The properly-spelled Referrer header gives you nothing.

Accessing Header Values

HTTP header values are accessed through the HttpServiletRequest object. A header value can be
retrieved asa String, along (representing a Date), or an int, using getHeader (), getDateHeader (),
and getIntHeader (), respectively:

public String HttpServletRequest.getHeader (String name)
public long HttpServletRequest.getDateHeader (String name)
public int HttpServletRequest.getintHeader (String name)

getHeader () returnsthe value of the named header asa String or nul I if the header was not sent as part
of the request. The nameis case insensitive, asit isfor al these methods. Headers of all types can be retrieved
with this method.

getDateHeader () returnsthe value of the named header as a long (representing a Date) that specifiesthe
number of milliseconds since the epoch) or -1 if the header was not sent as part of the request. This method
throwsan 1 1 legal ArgumentException when called on a header whose value cannot be converted to a
Date. The method is useful for handling headers like Last-Modified and I f-Modified-Since.

getintHeader () returnsthe value of the named header asan int or -1 if the header was not sent as part of
the request. This method throws a NumberFormatException when called on a header whose value cannot
be converted to an Int.

A servlet can aso get the names of al the headersit can access using getHeaderNames():

public Enumeration HttpServletRequest.getHeaderNames()

This method returns the names of all the headers as an Enumeration of String objects. It returns an empty
Enumeration if there were no headers. The Serviet API gives servlet engine implementations the right to not
allow headers to be accessed in this way, in which case this method returns null I.

Example 4-14 demonstrates the use of these methods in a servlet that printsinformation about its HT TP request
headers.

Example 4-14. Shooping headers

import java.io.*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

public class HeaderSnoop extends HttpServilet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {

res.setContentType (“text/plain™);
PrintWriter out = res.getWriter();

out.printin(“Request Headers:”);
out.printin(Q;
Enumeration enum = req.getHeaderNames();
while (enum.hasMoreElements()) {
String name = (String) enum.nextElement();
String value = req.getHeader(name);
if (value = null) {
out_printIn(name + “: ” + value);
}
+
}
}

Some example output from this servlet might look like this:

Request Headers:

Connection: Keep-Alive

If-Modified-Since: Saturday, 13-Jun-98 20:50:31 GMT; length=297

User-Agent: Mozilla/4.05 [en] (X11; I; IRIX 6.2 1P22)

Host: localhost:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: 1s0-8859-1,*,utf-8

Cookie: jwssessionid=A3KBB1YAAAAABQDGPM5QAAA

Headersin Servlet Chains

Servlet chains add an interesting twist to how servlets handle headers. Unlike all other servlets, aserviet in the
middle or at the end of a servlet chain reads header values not from the client's request, but from the previous
servlet's response.

The power and flexibility of this approach comes from the fact that a servlet can intelligently process a previous
servlet's output, not only in body content, but in header values. For example, it can add extra headers to the
response or change the value of existing headers. It can even suppress the previous servlet's headers.

But power comes with responsibilities: unless a chained servlet specifically reads the previous servlet's response
headers and sends them as part of its own response, the headers are not passed on and will not be seen by the
client. A well-behaved chained servlet always passes on the previous servlet's headers, unlessit has a specific
reason to do otherwise.

The code shown in Example 4-15 uses getHeaderNames () in combination with getHeader () and
setHeader () to pass on the headers from the previous servlet to the client (or possibly to another servlet in
the chain). The only header given special treatment isthe Content-Length header. This header's value
reports the length of the response in bytes—a value that is likely to change during the chaining process and so
not appropriate to send on. Note that you haven't seen the setHeader () method before. It can be used to,
well, set a header.

Example 4-15. Passing on the headers

Enumeration enum = req.getHeaderNames();
it (enum != null) { // to be safe across all implementations
while (enum._hasMoreElements()) {
String header = (String)enum_nextElement();
if (“Content-Length™)_equalslgnoreCase(header))
continue;
String value = req.getHeader(header);
res.setHeader(header, value);

}
}

An HTTP servlet designed to function in a chain should include code similar to thisearly on in its handling of a
request, so as to pass on the appropriate headers.

Wading the I nput Stream

Each request handled by a servlet has an input stream associated with it. Just as a servlet can writeto a
PrintWriter or OutputStream associated with its response object, it can read from a Reader or
InputStream associated with its request object. The data read from the input stream can be of any content
type and of any length. The input stream has three purposes:

* To pass a chained servlet the response body from the previous servlet
* To passan HTTP servlet the content associated with a POST request
» To passanon-HTTP servlet the raw data sent by the client

To read character data from the input stream, you should use getReader () to retrieve the input stream asa
BufferedReader object:

public BufferedReader ServletRequest.getReader() throws 10Exception

The advantage of using aBufferedReader for reading character-based datais that it should trand ate
charsets as appropriate. This method throwsan 11 legalStateException if get InputStream() has
been called before on this same request. It throws an UnsupportedEncodingException if the character
encoding of the input is unsupported or unknown.

To read binary data from the input stream, use getInputStream() to retrieve the input stream as a
ServiletlnputStream object:

public ServletlnputStream ServletRequest.getlnputStream() throws I0Exception

A ServletlnputStreamisadirect subclass of InputStream and can be treated as a normal
InputStream, with the added ability to efficiently read input aline at atime into an array of bytes. The
method throws an 1 1 legal StateException if getReader () has been called before on this same
request. Once you have the ServiletlnputStream, you canread alinefromit using readLine():

public int ServletlnputStream.readLine(byte b[], int off, int len)
throws 10Exception

This method reads bytes from the input stream into the by te array b, starting at an offset in the array given by
off. It stops reading when it encounters an “\n~ or when it hasread Ien number of bytes. The ending “\n~
character isread into the buffer as well. The method returns the number of bytesread or -1 if the end of the
stream is reached.

A servlet can also check the content type and the length of the data being sent viathe input stream, using
getContentType() and getContentLength(), respectively:

public String ServletRequest.getContentType()
public int ServletRequest.getContentLength()

getContentType () returnsthe mediatype of the content being sent viathe input stream or nul I if the
type is not known (such as when there is no data). getContentLength() returnsthe length, in bytes, of the
content being sent viathe input stream or -1 if this not known.

Chaining Servlets Using the Input Stream

A servlet in aservlet chain receives its response body from the previous servlet in the chain through its input
stream. This use was first shown in the Deb 1 ink serviet in Chapter 2, HTTP Serviet Basics. The pertinent
section is shown again here:

String contentType = req.getContentType(); // get the incoming type
if (contentType == null) return; // nothing incoming, nothing to do
res.setContentType(contentType); // set outgoing type to be incoming type

BufferedReader br = reg.getReader();

String line = null;

while ((line = br.readLine()) != null)
line = replace(line, "<BLINK>", "™);
line = replace(line, "</BLINK>", "™");
out.printin(line);

}

Notice the use of getContentType() to retrieve the content type of the previous servlet's output. Also
notice that getContentLength() isnot used. We don't need to use it because al read() and

readL ine() methodsindicate that they have reached the end of the stream with special return values. In fact,
it's better not to use getContentLength() inaservlet chain because it is unsupported in many servlet
engine implementations. Presumably the reason is that the server may choose to tie the output stream of one
servlet directly to the input stream of the next servlet, giving no chance to determine atotal content length.

Handling POST requests using the input stream

It isarare occurrence when a servlet handling a POST request is forced to useitsinput stream to access the
POST data. Typically, the POST datais nothing more than encoded parameter information, which a servlet can
conveniently retrieve with its getParameter () method.

A servlet can identify thistype of POST request by checking the content type of the input stream. If it is of type
application/x-www-form-urlencoded, the data can beretrieved with getParameter () and
similar methods. Example 4-16 demonstrates a servlet that keys off the input stream's content type to handle
POST requests.

Example 4-16. Reading parameters passed by POST

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class PostParams extends HttpServilet {

public void doPost (HttpServletRequest req, HttpServletResponse res)

throws ServletException, I0Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

it (“application/x-www-form-urlencoded” .equals(req.getContentType())) {

Enumeration enum = req.getParameterNames();
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement();

String values[] = req.getParameterValues(name);

if (values = null) {

for (int i = 0; i < values.length; i++) {
out.println(name + “ (“ + i1 + 7): 7 + values[i]);

In case you were wondering, the odd arrangement of code that checks the request's content type is arranged to
avoid aNul IPointerException if thegetContentType () cal returnsnull.

A servlet may wish to call the getContentLength () method before caling getParameter () to
prevent denial of service attacks. A rogue client may send an absurdly large amount of data as part of a POST
request, hoping to slow the server to a crawl asthe servlet's getParameter () method churnsover the
data. A servlet can use getContentlLength () to verify that the length is reasonable, perhaps less than
4K, as a preventive measure.

Recelving Files Using the Input Stream

A servlet can aso receive afile upload using itsinput stream. Before we see how, it's important to note that file
uploading is experimental and not supported in all browsers. Netscape first supported file uploads with
Netscape Navigator 3; Microsoft first supported it with Internet Explorer 4.

Thefull file upload specification is contained in experimental RFC 1867, available at
http: //mww.ietf.org/rfc/rfc1867.txt. The short summary isthat any number of files and parameters can be sent
asform datain asingle POST request. The POST request is formatted differently than standard

application/x-www-form-urlencoded form data and indicates this fact by setting its content type to
multipart/form-data.

It'sfairly smpleto write the client half of afile upload. The following HTML generates aform that asks for a
user's name and afile to upload. Note the addition of the ENCTYPE attribute and the use of a F I LE input type:

<FORM ACTION="/servlet/UploadTest” ENCTYPE="multipart/form-data’” METHOD=POST>
What is your name? <INPUT TYPE=TEXT NAME=submitter>

Which file do you want to upload? <INPUT TYPE=FILE NAME=file>

<INPUT TYPE=SUBMIT>

</FORM>

A user receiving this form sees a page that ooks something like Figure 4-3. A filename can be entered in the
text area, or it can be selected by browsing. After selection, the user submits the form as usual.

| Fle Edt View Go

’&: :r;

Figure 4-3.
Choosing afile to upload

The server's responsibilities during afile upload are slightly more complicated. From the receiving servlet's
perspective, the submission is nothing more than araw data stream in its input stream—a data stream formatted
according to the mul tipart/form-data content type given in RFC 1867. The Servlet API, lamentably,
provides no methods to aid in the parsing of the data. To simplify your life (and ours since we don't want to
explain RFC 1867), Jason has written a utility class that does the work for you. It's named
MultipartRequest and is shown in Example 4-18 later in this section.

MultipartRequest wrapsaround aServletRequest and presents asimple APl to the servlet

programmer. The class has two constructors:

public MultipartRequest (ServletRequest request, String saveDirectory,
int maxPostSize) throws I0Exception

public MultipartRequest (ServletRequest request,
String saveDirectory) throws I0Exception

Each of these methods creates a new MultipartRequest object to handle the specified request, saving any
uploaded filesto saveD1 rectory. Both constructors actually parse the multipart/form-data content
and throw an 10Exception if there's any problem. The constructor that takes amaxPostSize parameter
also throws an 10Exception if the uploaded content is larger than maxPostSize. The second constructor
assumes a default maxPostSize of 1 MB.

TheMultipartRequest class has six public methods that |et you get at information about the request.
You'll notice that many of these methods are modeled after ServIletRequest methods. Use
getParameterNames () toretrieve the names of al the request parameters:

public Enumeration MultipartRequest.getParameterNames()

This method returns the names of all the parameters as an Enumeration of String objects or an empty
Enumeration if there are no parameters.

To get the value of a named parameter, use getParameter ():

public String MultipartRequest.getParameter (String name)

This method returns the value of the named parameter asa String or nul I if the parameter was not given.
The value is guaranteed to be in its normal, decoded form. If the parameter has multiple values, only the last
oneisreturned.

UsegetFileNames () toget alist of al the uploaded files:

public Enumeration MultipartRequest.getFileNames ()

This method returns the names of all the uploaded files as an Enumeration of String objects, or an empty
Enumeration if there are no uploaded files. Note that each filename is the name specified by the HTML

form's name attribute, not by the user. Once you have the name of afile, you can get itsfile system name using
getFilesystemName ():

public String MultipartRequest.getFilesystemName (String name)

This method returns the file system name of the specified file or null if the file was not included in the upload.
A file system name is the name specified by the user. It is also the name under which the file is actually saved.
Y ou can get the content type of the file with getContentType ():

public String MultipartRequest.getContentType (String name)

This method returns the content type of the specified file (as supplied by the client browser) or null I if thefile
was not included in the upload. Finally, you can get a java. io.File object for thefilewith getFille ():

public File MultipartRequest.getFile(String name)

This method returnsa F i 1 e object for the specified file saved on the server'sfile system or nul 1 if thefilewas
not included in the upload.

Example 4-17 shows how a servlet uses Mul tipartRequest. The servlet does nothing but display the
statistics for what was uploaded. Notice that it does not delete the files it saves.

Example 4-17. Handling a file upload

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

import com.oreilly.servlet_MultipartRequest;
public class UploadTest extends HttpServilet {

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();

try {
// Blindly take it on faith this is a multipart/form-data request

// Construct a MultipartRequest to help read the information.
// Pass in the request, a directory to save files to, and the
// maximum POST size we should attempt to handle.
// Here we (rudely) write to the server root and impose 5 Meg limit.
MultipartRequest multi =
new MultipartRequest(req, “.”, 5 * 1024 * 1024);

out.printIn(*<HTML>"")
out.printIn(*“<HEAD><TITLE>UploadTest</TITLE></HEAD>"");
out.printIn(*“<BODY>");
out.printin(“<H1>UploadTest</H1>");

// Print the parameters we received
out.printIn(*<H3>Params:</H3>"");
out.printIn(*“<PRE>");

Enumeration params = multi.getParameterNames();

while (params.hasMoreElements()) {
String name = (String)params.nextElement();
String value = multi.getParameter(name);
out.printin(name + “ = ” + value);

}
out.printIn(“</PRE>"");

// Show which Files we received
out.printIn(“<H3>Files:</H3>");
out.printIn(“<PRE>");

Enumeration files = multi.getFileNames();
while (Ffiles.hasMoreElements()) {

String name = (String)files_nextElement();
String filename = multi.getFilesystemName(name);
String type = multi.getContentType(name);
File T = multi.getFile(nhame);
out.printIn(**name: ” + name);
out.printIn(*“filename: ” + filename);
out_printin(*“type: ” + type);
if (F !I= null) {
out_printIn(*“length: ” + f.length());
out.printin(Q);

}
out_printIn(*</PRE>");

s

s

catch (Exception e) {
out._printIn(*<PRE>");
e._printStackTrace(out);
out.printIn(*</PRE>");

}
out.printIn(*</BODY></HTML>"");

}
}

The servlet passes its request object to the Mul tipartRequest constructor, along with a directory relative
to the server root where the uploaded files are to be saved (because large files may not fit in memory) and a
maximum POST size of 5 MB. The servlet then usesMul tipartRequest to iterate over the parameters that
were sent. Notice that the Mul tipartRequest API for handling parameters matches that of
ServletRequest. Findly, the servlet usesits Mul tipartRequest to iterate over the files that were sent.
For each file, it gets the file's name (as specified on the form), file system name (as specified by the user), and
content type. It also getsa Fi I e reference and usesit to display the length of the saved file. If there are any
problems, the servlet reports the exception to the user.

Example 4-18 shows the code for Mul tipartRequest. This class could be written more elegantly using a
regular expression library, as discussed in Chapter 13, Odds and Ends; however, not doing so allows this class
to be self-contained and works just as well. We aren't going to elaborate on the class here—you should read the
commentsif you want to understand everything that is going on. This class uses some of the techniques that
we've covered in this chapter, so it isa good review of the material. Y ou should also feel freeto skip this
example for now and come back to it later if you'd like.

Example 4-18. The MultipartRequest class

package com.oreilly.servlet;
import java.io.*;

import java.util.™;

import javax.servlet.*™;

public class MultipartRequest {
private static final int DEFAULT_MAX_ POST_SIZE = 1024 * 1024; // 1 Meg
private ServletRequest req;
private File dir;
private int maxSize;
private Hashtable parameters = new Hashtable(); // name - value

private Hashtable files = new Hashtable(); // name - UploadedFile

public MultipartRequest(ServletRequest request,

String saveDirectory) throws I0Exception {
this(request, saveDirectory, DEFAULT_MAX_POST_SIZE);

}

public MultipartRequest(ServletRequest request,
String saveDirectory,
int maxPostSize) throws I0Exception {
// Sanity check values
if (request == null)
throw new IllegalArgumentException(“request cannot be null”);
if (saveDirectory == null)
throw new lllegalArgumentException(“‘saveDirectory cannot be null”);
if (maxPostSize <= 0) {
throw new IllegalArgumentException(“maxPostSize must be positive”);

}

// Save the request, dir, and max size
req = request;
dir = new File(saveDirectory);

maxSize = maxPostSize;

// Check saveDirectory is truly a directory
if (Mdir.isDirectory())
throw new IllegalArgumentException(“Not a directory: ” + saveDirectory);

// Check saveDirectory is writable
if (Mdir.canWrite(Q))
throw new lllegalArgumentException(“Not writable: ” + saveDirectory);
// Now parse the request saving data to “parameters” and “Ffiles”;
// write the file contents to the saveDirectory
readRequest();
}
public Enumeration getParameterNames() {
return parameters.keys(Q);

}

public Enumeration getFileNames() {
return files.keys(Q);

}

public String getParameter (String name) {
try {
String param = (String)parameters.get(name);
if (param.equals(*“”)) return null;
return param;
}
catch (Exception e) {
return null;
s
}

public String getFilesystemName(String name) {
try {
UploadedFile file = (UploadedFile)files.get(name);
return file.getFilesystemName(); // may be null
}
catch (Exception e) {
return null;

}

}

public String getContentType (String name) {

try {
UploadedFile File = (UploadedFile) files_get(name);
return file.getContentType(); // may be null

}
catch (Exception e) {

return null;
}
}

public File getFile(String name) {
try {
UploadedFile file = (UploadedFile)files._get(name);
return file.getFile(); // may be null
}
catch (Exception e) {
return null;
}
}

protected void readRequest() throws 10Exception {
// Check the content type to make sure it"s “multipart/form-data”
String type = req.getContentType();
it (type == null ;};
Itype.toLowerCase() .startsWith(“multipart/form-data)) {
throw new I10Exception(‘“‘Posted content type isn"t multipart/form-data™);

¥

// Check the content length to prevent denial of service attacks
int length = req.getContentLength();
it (length > maxSize) {
throw new IOException(‘“Posted content length of ” + length +
“ exceeds limit of ” + maxSize) ;

}

// Get the boundary string; it"s included in the content type.
// Should look something like “—————-ommmmmmm 12012133613061”
String boundary = extractBoundary(type);
if (boundary == null) {
throw new 10Exception(‘““Separation boundary was not specified”);

}

// Construct the special input stream we"ll read from
MultipartlnputStreamHandler in =

new MultipartlinputStreamHandler(req.getinputStream(), boundary, length);
// Read the first line, should be the first boundary
String line = in.readLine();
it (line == null) {

throw new 10Exception(“Corrupt form data: premature ending”);

}

// Verifty that the line is the boundary
it (Mline_.startsWith(boundary)) {
throw new 10Exception(“Corrupt form data: no leading boundary’);

¥

// Now that we"re just beyond the Tirst boundary, loop over each part
boolean done = false;

while ('done) {
done = readNextPart(in, boundary);
}
}

protected boolean readNextPart(MultipartlnputStreamHandler in,
String boundary) throws 10Exception {

// Read the first line, should look like this:
// content-disposition: form-data; name=*“fieldl”; filename=“filel.txt”
String line = in.readLine();
it (line == null) {

// No parts left, we"re done

return true;

}

// Parse the content-disposition line

String[] dispInfo = extractDispositioninfo(line);
String disposition = displnfo[0];

String name = displnfo[1];

String filename = dispInfo[2];

// Now onto the next line. This will either be empty
// or contain a Content-Type and then an empty line.
line = in.readLine();
if (line == null) {

// No parts left, we"re done

return true;

}

// Get the content type, or null iIf none specified
String contentType = extractContentType(line);
it (contentType I= null) {

// Eat the empty line

line = in.readLine();

it (line == null |} line.length() > 0) { // line should be empty

throw new
I0Exception(“Malformed line after content type:

+ line);
3
s

else {
// Assume a default content type

contentType = “application/octet-stream”;

¥

// Now, finally, we read the content (end after reading the boundary)
it (filename == null) {

// This is a parameter

String value = readParameter(in, boundary);

parameters.put(name, value);

¥

else {
// This is a fTile
readAndSaveFile(in, boundary, filename);
it (filename.equals(*“unknown™)) {
files_put(name, new UploadedFile(null, null, null));
}
else {
files.put(name,
new UploadedFile(dir.toString(), Tilename, contentType));

}
}

return false; // there"s more to read
}

protected String readParameter(MultipartlnputStreamHandler in,
String boundary) throws 10Exception {
StringBuffer sbuf = new StringBuffer();
String line;
while ((Iine = in.readLine()) !'= null) {
if (line.startsWith(boundary)) break;
sbuf._append(line + “\r\n”’); // add the \r\n in case there are many lines

}

if (sbuf.length() == 0) {
return null; // nothing read
}
sbuf._setLength(sbuf.length() - 2); // cut off the last line"s \r\n
return sbuf.toString(); // no URL decoding needed

}

protected void readAndSaveFile(MultipartlnputStreamHandler in,
String boundary,
String filename) throws I0Exception {
File f = new File(dir + File._separator + filename);
FileOutputStream fos = new FileOutputStream(f);
BufferedOutputStream out = new BufferedOutputStream(fos, 8 * 1024); // 8K

byte[] bbuf = new byte[8 * 1024]; // 8K
int result;
String line;

// ServletlnputStream.readLine () has the annoying habit of

// adding a \r\n to the end of the last line.

// Since we want a byte-for-byte transfer, we have to cut those chars.
boolean rnflag = false;

while ((result = in.readLine(bbuf, 0, bbuf.length)) = -1) {
// Check for boundary
it (result > 2 && bbuf[0] == “-~ && bbuf[1] == “-") { // quick pre-check

line = new String(bbuf, 0, result, “1S0-8859-1");
it (line_.startsWith(boundary)) break;
¥
// Are we supposed to write \r\n for the last iteration?
it (rnflag) {
out.write(“\r”); out.write(“\n”) ;
rnflag = false;
¥
// Write the buffer, postpone any ending \r\n
ifT (result >= 2 &&
bbuf[result - 2] == “\r~ &&
bbuf[result - 1] == “\n”) {
out.write(bbuf, 0, result - 2); // skip the last 2 chars
rnflag = true; // make a note to write them on the next iteration
}
else {
out.write(bbuf, 0, result);

}

}
out. flush(Q) ;

out.close() ;
fos.close() ;

}

private String extractBoundary (String line) {
int index = line.indexOf(*boundary=") ;
if (index == -1) {
return null;
}
String boundary = line.substring(index + 9); // 9 for *“boundary="
// The real boundary is always preceded by an extra *“--~
boundary = “--" + boundary;

return boundary;

private String[] extractDispositionInfo(String line) throws I0Exception {

// Return the line"s data as an array: disposition, name, filename
String[] retval = new String[3];

// Convert the line to a lowercase string without the ending \r\n
// Keep the original line for error messages and for variable names.
String origline = line;

line = origline.toLowerCase();

// Get the content disposition, should be “form-data”
int start = line.indexOf(“content-disposition:) ;
int end = line.indexOf(*“;”) ;
if (start == -1 ;] end == -1) {

throw new I10Exception(*““Content disposition corrupt: *“ + origline) ;
}
String disposition = line_.substring(start + 21, end) ;
it (Ydisposition.equals(“form-data™)) {

throw new 10Exception(“Invalid content disposition: *“ + disposition);
}
// Get the field name
start = line.indexOf(“name=*“**, end) ; // start at last semicolon
end = line.indexOF(*\””, start + 7); // skip name=\"
if (start == -1 ;} end == -1) {
throw new I10Exception(*““Content disposition corrupt: ” + origline) ;
}

String name = origline.substring(start + 6, end) ;
// Get the filename, if given
String Tilename = null;

start = line. indexOf(“filename=*", end + 2) ; // start after name
end = line. indexOf(*“\””, start + 10) ; // skip fTilename=\"
if (start 1= -1 && end = -1) { // note the !=

filename = origline.substring(start + 10, end) ;
// The Tilename may contain a full path. Cut to just the fTilename.
int slash =

Math_max(filename.lastlindexOf(“ /), filename.lastindexOFf(“\\)) ;
ifT (slash > -1) {

filename = filename.substring(slash + 1); // past last slash

¥
it (filename.equals(*’)) filename = “unknown™; // sanity check
}
// Return a String array: disposition, name, filename
retval[0] = disposition;
retval[1] = name;

retval[2] = Tilename;
return retval;

}

private String extractContentType(String line) throws I10Exception {
String contentType = null;

// Convert the line to a lowercase string
String origline = line;
line = origline_toLowerCase();

// Get the content type, if any
if (line_startsWith(“content-type™)) {
int start = line.indexOf(*);
if (start == -1) {
throw new 10Exception(“Content type corrupt:

}
contentType = line.substring(start + 1);

+ origline) ;

}
else if (line.length() = 0) { // no content type, so should be empty

throw new 10Exception(“Malformed line after disposition: ” + origline);

}

return contentType;

// A class to hold information about an uploaded file.
//

class UploadedFile {

private String dir;
private String filename;
private String type;

UploadedFile(String dir, String filename, String type) {
this.dir = dir;
this._filename = filename;
this.type = type;

}

public String getContentType() {

return type;

}

public String getFilesystemName() {
return filename;

}

public File getFile(Q) {
it (dir == null }; filename == null) {
return null;
}
else {
return new File(dir + File._separator + filename) ;

b
}
}

// A class to aid in reading mutipart/form-data from a ServletlnputStream.
// 1t keeps track of how many bytes have been read and detects when the
// Content-Length limit has been reached. This is necessary because some
// servlet engines are slow to notice the end of stream.
//
class MultipartinputStreamHandler {

ServiletlnputStream in;

String boundary;

int totalExpected;

int totalRead = O;

byte[] buf = new byte[8 * 1024];

public MultipartinputStreamHandler(ServletlnputStream in,
String boundary,
int totalExpected) {
this.in = in;
this._boundary = boundary;
this.totalExpected = totalExpected;

}

public String readLine() throws 10Exception {
StringBuffer sbuf = new StringBuffer () ;
int result;
String line;

do {
result = this.readLine(buf, 0, buf.length); // this.readLine() does +=
if (result = -1) {
sbuf_append(new String(buf, 0, result, “1S0-8859-1"));
}
} while (result == buf.length); // loop only if the buffer was filled
if (sbuf.length O == 0) {
return null; // nothing read, must be at the end of stream

}

sbuf.setLength(sbuf.length () - 2); // cut off the trailing \r\n
return sbuf.toString();

}

public int readLine(byte b[], int off, int len) throws I0Exception {
it (totalRead >= totalExpected) {

return -1;

}

else {
int result = in.readLine(b, off, len) ;
it (result > 0) {

totalRead += result;

}
return result;

}

}

}
Example 4-18. The MultipartRequest class (continued)

Extra Attributes

Sometimes a servlet needs to know something about a request that's not available via any of the previously
mentioned methods. In these cases, there is one last alternative, the getAttribute () method. Remember
how ServletContext hasagetAttribute () method that returns server-specific attributes about the
server itself? ServletRequest also hasagetAttribute () method:

public Object ServletRequest.getAttribute(String name)

This method returns the value of a server-specific attribute for the request or null if the server does not support
the named request attribute. This method allows a server to provide a servlet with custom information about a
request. For example, the Java Web Server makes three attributes available:
jJavax.net.ssl._.cipher_suite, javax.net.ssl.peer_certificates, and
Javax.net.ssl. session. A servlet running in the Java Web Server can use these attributes to inspect the
details of an SSL connection with the client.

Example 4-19 shows a code snippet that uses getAttribute () toquery the server on the details of its SSL
connection. Remember, these attributes are server-specific and may not be available in servers other than the
Java Web Server.

Example 4-19. Getting the attributes available in the Java Web Server

import javax.security.cert.X509Certificate;
import javax.net.ssl.SSLSession;

out_printIn(*<PRE>") ;

// Display the cipher suite in use
String cipherSuite =

(String) reqg.getAttribute(“javax.net.ssl.cipher_suite™) ;
out.printIn(**Cipher Suite: ” + cipherSuite) ;

// Display the client®s certificates, if there are any
it (cipherSuite = null) {
X509Certificate[] certChain =
(X509Certificate[]) req.getAttribute(*javax.net.ssl_peer_certificates™) ;
it (certChain != null) {
for (int i = 0; 1 < certChain.length; i++) {

out.println (“Client Certificate [+ i1 + 7] =7~
+ certChain[i]-toString());

}
}
}

out_printIn(*</PRE>") ;

The servlet's output on receiving a VeriSign certificate is shown below. What it means is discussed in Chapter
8.

Cipher Suite: SSL_RSA_EXPORT_WITH_RC4_40_MD5
Client Certificate [0] = [
X.509v3 certificate,
Subject is 01D.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,
CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,
ouU=" www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96"",
OU=VeriSign Class 1 CA - Individual Subscriber, 0="VeriSign, Inc.",
L=Internet
Key: algorithm = [RSA], exponent = Ox 010001, modulus =
b35ed5e7 45fc5328 e3f5ce70 838cc25d Oalefd4l df4d3elb 64F70617 528546¢8
faed46995 9922a093 7a54584d d466bee7? e7b5c259 c7827489 6478ela9 3al6d4f
Validity until
Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, 0="VeriSign,
Inc.",
L=Internet
Issuer signature used [MD5withRSA]
Serial number = 20556dc0 9e31dfad4 ada6elOd 77954704

1
Client Certificate [1] = [

X.509v3 certificate,
Subject is OU=VeriSign Class 1 CA - Individual Subscriber, 0="VeriSign,
Inc.", L=Internet

Key: algorithm = [RSA], exponent 0x 010001, modullus =
b614a6cf 4dd0050d d8ca23d0 6faab429 92638e2c f86F96d7 2e9d764b 11b1368d
57c9c3fd 1cc6bafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 2b15283
68107064 91d73e6b fO9Ff75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f71aa
e240f254 39bcl6ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 dOF73ead

Validity until

Issuer is OU=Class 1 Public Primary Certification Authority, 0="VeriSign,

Inc.™, C=US

Issuer signature used [MD2withRSA]

Serial number = 521f351d f2707e00 2bbeca59 8704d539
1

Servers are free to provide whatever attributes they choose, or even no attributes at all. The only rules are that
attribute names should follow the same convention as package names, with the package names java.* and
Javax.* reserved for use by the Java Software division of Sun Microsystems (formerly known as JavaSoft)
and com.sun.* reserved for use by Sun Microsystems. Y ou should see your server's documentation for alist
of its attributes. Thereisno getAttributeNames () method to help.

5
Sending HTML Information

In thischapter:

» The Structure of a Response
 Sending a Normal Response
» Using Persistent Connections
* HTML Generation

» Status Codes

* HTTP Headers

» When Things Go Wrong

In the previous chapter, we learned that a servlet has access to all sorts of information—information about the
client, about the server, about the request, and even about itself. Now it'stime to look at what a servlet can do
with that information, by learning how it sets and sends information.

The chapter begins with areview of how a servlet returns anormal HTML response, fully explaining some
methods we glossed over in previous examples. Next we cover how to reduce the overhead involved in
returning a response by keeping alive a connection to the client. Then we explore the extra things you can do
with HTML and HTTP, including using support classes to objectify the HTML output, returning errors and
other status codes, sending custom header information, redirecting the request, using client pull, detecting when
the user disconnects, and writing data to the server log.

The Structure of a Response

AnHTTP servlet can return three kinds of things to the client: a single status code, any number of HTTP
headers, and aresponse body. A status code is an integer value that describes, as you would expect, the status of
the response. The status code can indicate success or failure, or it can tell the client software to take further
action to finish the request. The numerical status code is often accompanied by a "reason phrase” that describes
the status in prose better understood by a human. Usually, a status code works behind the scenesand is
interpreted by the browser software. Sometimes, especially when things go wrong, a browser may show the
status code to the user. The most famous status code is probably the "404 Not Found" code, sent by aweb
server when it cannot locate a requested URL .

We saw HTTP headers in the previous chapter when clients used them to send extra information along with a
request. In this chapter, we'll see how a servlet can send HTTP headers as part of its response.

The response body is the main content of the response. For an HTML page, the response body isthe HTML
itself. For a graphic, the response body contains the bytes that make up the image. A response body can be of
any type and of any length; the client knows what to expect by reading and interpreting the HTTP headersin the
response.

A generic servlet is much ssimpler than an HT TP servlet—it returns only aresponse body to itsclient. It's
possible, however, for asubclass of GenericServlet to present an API that divides this single response
body into a more elaborate structure, giving the appearance of returning multiple items. In fact, thisis exactly
what HTTP serviets do. At the lowest level, aweb server sends its entire response as a stream of bytesto the
client. Any methods that set status codes or headers are abstractions above that.

It's important to understand this because even though a servlet programmer doesn't have to know the details of
the HTTP protocol, the protocol does affect the order in which a servlet can call its methods. Specifically, the
HTTP protocol specifies that the status code and headers must be sent before the response body. A servlet,
therefore, should be careful to always set its status codes and headers before returning any of its response body.
Some servers, including the Java Web Server, internally buffer some length of a servlet's response body
(usually about 4K)—this allows you some freedom to set the status codes and headers even after a servlet has
written a short amount of response body. However, this behavior is server implementation dependent, and as a
wise servlet programmer, you'll forget all about it!

Sending a Nor mal Response

Let's begin our discussion of servlet responses with another ook at the first servlet in this book, the
HelloWor I d servlet, shown in Example 5-1. We hope it looks a lot simpler to you now than it did back in
Chapter 2, HTTP Serviet Basics.

Example 5-1. Hello again
import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class HelloWorld extends HttpServilet {

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, I0Exception {

res.setContentType(“text/html””);
PrintWriter out = res.getWriter();

out.printIn(*<HTML>");

out.printIn(“<HEAD><TITLE>Hello World</TITLE></HEAD>");
out.printIn(*<BODY>");

out.printIn(“<BIG>Hello World</BI1G>");
out.printIn(“</BODY></HTML>");

}
}

This servlet uses two methods and a class that have been only briefly mentioned before. The
setContentType () method of ServletResponse sets the content type of the response to be the
specified type:

public void ServletResponse.setContentType(String type)

In an HTTP servlet, this method setsthe Content-Type HTTP header.

The getWriter () method returnsa PrintWriter for writing character-based response data:

public PrintWriter ServletResponse.getWriter() throws I10Exception

The writer encodes the characters according to whatever charset is given in the content type. If no charset is
specified, asis generally the case, the writer uses the | SO-8859-1 (L atin-1) encoding appropriate for Western
European languages. Charsets are covered in depth in Chapter 12, Internationalization, so for now just
remember that it's good form to always set the content type before you get a PrintWriter. This method
throwsan 1 1 legalStateException if getOutputStream() hasaready been caled for this response;
it throws an UnsupportedEncodingException if the encoding of the output stream is unsupported or
unknown.

In addition to using aPrintWriter to return aresponse, a servlet can use a specia subclass of
jJava.i1o.0utputStream to write binary data—the ServiletOutputStream, whichisdefined in
Javax.servlet. Youcan get aServletOutputStream with getOutputStream():

public ServletOutputStream ServletResponse.getOutputStream() throws
10Exception

This method returns an ServiletOutputStream for writing binary (byte-at-a-time) response data. No
encoding is performed. This method throwsan 1 1 legalStateException if getWriter () hasaready
been called for this response.

The ServletOutputStream class resembles the standard Java PrintStream class. Inthe Servlet AP
Version 1.0, this class was used for all servlet output, both textual and binary. In the Servliet APl Version 2.0,
however, it has been relegated to handling binary output only. Asadirect subclass of OutputStream, it
makes availablethewrite(), Flush(), and close() methods of the OutputStream class. To theseit
addsitsown print() and printIn() methods for writing most of the primitive Java data types (see
Appendix A, Serviet APl Quick Reference, for acomplete list). The only difference between the
ServletOutputStream interface and that of aPrintStream isthat theprint() and printin()
methods of ServletOutputStream inexplicably cannot directly print parameters of type Object or
char[].

Using Persistent Connections

Persistent connections (sometimes called "keep-alive" connections) can be used to optimize the way servlets
return content to the client. To understand how this optimization works, you first need to understand how HTTP
connections work. Well keep this at a high level and only go as low asis necessary to explain the basic idea.
The details are well covered in Clinton Wong's Web Client Programming (O'Reilly).

When aclient, such as a browser, wants to request a web document from a server, it begins by establishing a
socket connection to the server. Over this connection, the client makes its request and then receives the server's
response. The client indicates it has finished its request by sending a blank line; the server, in turn, indicates that
the response is compl ete by closing the socket connection.

So far, so good. But what if the retrieved page contains < IMG> tags or <APPLET> tags that require the client to
retrieve more content from the server? Well, another socket connection is used. If a page contains 10 graphics
along with an applet made up of 25 classes, that's 36 connections needed to transfer the page. No wonder some
people say WWW stands for the World Wide Wait! This approach islike ordering a pizza, but making a
separate phone call for each topping.

A better approach is to use the same socket connection to retrieve more than one piece of a page, something
called a persistent connection. The trick with a persistent connection is that the client and server must somehow
agree on where the server's response ends and where the client's next request begins. They could try to use a
token like a blank line, but what if the response itself contains a blank line? The way persistent connections
work isthat the server just tells the client how big the response body will be by setting the Content-Length
header as part of the response. The client then knows that after that much response body, it has control of the
socket again.

Most servers internally manage the Content-Length header for the static files they serve, but do not do the
same for the servlets they serve. That's |eft to the serviets themselves. A servlet can gain the advantages of a
persistent connection for its dynamic content by using the setContentLength() method:

public void ServletResponse.setContentLength(int len)

This method sets the length (in bytes) of the content being returned by the server. Inan HTTP servlet, the
method setsthe HTTP Content-Length header. Note that using this method is optional. If you useiit,
however, your serviets will be able to take advantage of persistent connections when they are available. The
client will also be able to display an accurate progress monitor during the download.

If you do call setContentLength(), there aretwo caveats. a servlet must call this method before sending
the response body, and the given length must be exact. If it's off by even one byte, you will have problems.
This sounds more difficult than it really is. Thetrick isfor aservlet to use a ByteArrayOutputStream to
buffer the output, as shown in Example 5-2.

Example 5-2. A serviet using persistent connections

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class KeepAlive extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

res.setContentType(“text/html™);

// Set up a PrintStream built around a special output stream
ByteArrayOutputStream bytes = new ByteArrayOutputStream(1024);
PrintWriter out = new PrintWriter(bytes, true); // true forces flushing

out.printIn(*“<HTML>"");

out.printIn(““<HEAD><TITLE>Hello World</TITLE></HEAD>"");
out.printIn(**<BODY>"");

out.printIn(“<BIG>Hello World</BIG>");
out.printIn(“</BODY></HTML>");

// Set the content length to the size of the buffer
res.setContentLength(bytes.size());

// Send the buffer
bytes.writeTo(res.getoutputStream());

* For example, with the Java Web Server, if a servlet sets the length too short, the server throws an lOEXception saying
there was a "write past end of stream”. If a servlet setsthe length too long, the client stalls asit waits for the rest of the response.

Instead of writing to the PrintWr iter returned by getWriter (), thisservlet writestoaPrintWriter
built around a By teArrayOutputStream. Thisarray grows as necessary to accommodate whatever output
the servlet sends. When the servlet is ready to exit, it sets the content length to be the size of the buffer and then
sends the contents of the buffer to the client. Notice that the bytes are sent using the byte-oriented
ServletOutputStream. With this simple modification, a servlet can take advantage of a persistent
connection.

It isimportant to note that persistent connections come with a price. Buffering all the output and sending it all
in one batch requires extramemory, and it may delay the time at which a client begins receiving data. For
servlets with short responses, persistent connections make sense, but for servlets with long responses, the
memory overhead and delay probably outweigh the benefit of opening fewer connections.

It is also important to note that not all servers and not all clients support persistent connections. That said, it's
still appropriate for a servlet to set its content length. This information will be used by those servers that support
persistent connections and ignored by the others.

HTML Generation

No, "HTML Generation" is not another name for the children born in the 1980s, many of whom grew up
browsing the web—although Jason and Will, saddled with the Generation X moniker, feel that would be only
fair. HTML generation is an alternate way for servletsto send HTML content to clients.

So far, every examplein this book has generated its HTML by hand, as one long String that is sent to the
client. This strategy works fine for small web pages (like book examples), but it quickly becomes unwieldy for
larger, more complicated pages. For that type of page, it's sometimes helpful to use an HTML generation
package.

An HTML generation package provides a serviet with a set of classes that abstract away the details of HTML,
in particular, the HTML tags. The level of abstraction depends on the package: some put only the thinnest
veneer above the HTML tags, leaving the nitty-gritty details (such as opening and closing each HTML tag) to
the programmer. Using packages such as these is similar to writing HTML by hand and is not discussed here.
Other packages elegantly abstract away the HTML specification and treat HTML as just another set of Java
objects. A web page is seen as an object that can contain other HTML objects (such aslists and tables) that can
contain yet more HTML objects (such aslist items and table cells). This object-oriented approach can greatly
simplify the task of generating HTML and make a servlet easier to write, easier to maintain, and sometimes
even more efficient.

Generating Hello World

Let'slook at an example to see how object-oriented HTML generation works. Example 5-3 shows the
ubiquitous He 1 loWor Id servlet, rewritten to take advantage of WebL ogic's htmlK ona package (available for
free evaluation and purchase at http: //www.weblogic.com—you may need to poke around a bit to find it).

Example 5-3. Hello, htmlKona

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

import weblogic.html_*;
public class HtmlKonaHello extends HttpServiet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

res.setContentType(“text/html””);

ServletPage page = new ServletPage();
page.getHead() .addElement(new TitleElement(““Hello World™));
page.getBody() .addElement(new BigElement(“Hello World!™™));

page.output(res.getOutputStream());

}
}

Note how all the HTML tags have been replaced with objects. This servlet first createsanew ServletPage
object that represents the web page it will return. Then, it adds a"Hello World" title to the page's head section
and a"Hello World!" big string to its body section. Finally, the servlet outputs the page to its output stream.
That's how object-oriented HTML generation works: get a page object, add component objectsto it, and send it
to the output stream.

* We must use the Serv letOutputStream here since htmlKonawas not written to output its page to a
PrintWriter.

One advantage of HTML generation should already be apparent: it ensures valid HTML. HTML generation
eliminates the possibility for amisspelled <TI1TLE> open tag or aforgotten </TI1TLE> close tag. We'll admit
it's not an advantage worth writing home about, but it is appealing to not have to remember to open and close
every tag or to clutter your code with HTML. Unfortunately, object-oriented HTML has the fairly serious
drawback that it can litter memory with a multitude of small objects, requiring more frequent garbage
collection.

Generating a Weather Forecast

That's how HTML generation works for a simple web page. Now |et's create a more complicated web page, so
we can test how HTML generation scales to handle the harder challenges. Figure 5-1 shows a hypothetical web
page that displays the current weather and an extended forecast, the kind you might find on Y ahoo! or CNN.
We've kept it simple for the sake of space, but it still includes enough components to make an interesting
example.

WL Scbastopol Weather Forecast - Netscapa

_Eiu Edit "-"m E_l:r Eﬁmuﬂca'lﬂ lal, R R P
"!. £ 3 Do oS & B
-'-:-E.--..'.! quhad Home Search Euda : I"-'i'.l | Securky S

z,f Booknerks _J Localiore [ty locahos 8080 westher ird =]

-

e
[Current Conditions M T70° |
' _ Extended Forecast ~ [Lo_
Thursday | 8:?.‘58
Friday | 82!65
Saturday [m 73 i43
BRI [DoomeriDone L L e ,a;mﬁ!__,a-' 7
Figure 5-1.

Oh, the weather outside is delightful

Imagine a servlet creating this web page. Assuming the servlet already has access to the current conditions and
forecast information, how would the serviet do it? We will examine and discuss three strategies:

* Constructing the HTML by hand
» Using an HTML generator

» Using an HTML generator creatively

Thefirst strategy, constructing the HTML by hand (Example 5-4), is the standard approach demonstrated
elsewhere in thisbook. A servlet implemented using this strategy acts as a baseline against which we can
compare the other two servlets. The second approach, using an HTML generator (Example 5-5), constructs the
web page as a set of objects. Thisislike the Hel loWor Id example, just on amuch larger scale. The third

strategy, using an HTML generator and some creativity (Example 5-6), takes the second servlet and simplifiesit
by reusing objects and subclassing.

Weather Forecast Constructed by Hand

Example 5-4 shows a servlet that creates the weather forecast page without using HTML generation, manually
sending its content wrapped with almost a hundred HTML tags.

Example 5-4. Weather forecast constructed by hand

import java.io.*;

import java.text.™;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

public class WeatherHtml extends HttpServilet {
// Some static final variables to populate the page..

// These would normally come from a database or
// maybe another servlet that retrieved it as POST data.

static final int currentTemp = 70;

static final String currentlmage = “/images/rainy.gif”’;

static final String[] forecastDay = { “Thursday”,
“Friday”,
“Saturday” };

static final String[] forecastlmage = { “/images/sunny.gif”’,
“/images/sunny.gif”’,
“/images/rainy.gif’ };

static final int[] forecastHi = { 82, 82, 73 };

static final int[] forecastLo = { 58, 65, 48 };

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res_setContentType(“text/html”’);
PrintWriter out = res.getWriter();

// Set its title
String title = “Sebastopol Weather Forecast”;

out.printIn(*“<HTML>"");

out.printIn("<HEAD>");
out.printin("<TITLE>" + title + "</TITLE>";
out.printin("</HEAD>");

Il Start on the body
out.printin("<BODY >");

/I Make a centered table
out.printin("<CENTER>");
out.printin("<TABLE BORDER=1 CELLPADDING=0 CELLSPACING=0 WIDTH=70%>");

Il First row

out.printin("<TR>");

out.printin("<TD><CENTER>");

out.printin("Current Conditions");
out.printin("</CENTER></TD>");

out.printin("<TD><CENTEr>");
out.printin("");
out.println("</CENTER></TD>");

out.printin ("<TD COLSPAN=2><CENTER>"),
out.println(currentTemp + "°");
out.printin("</CENTER/TD>");

out.printin("</TR>");

/I Second row

out.printin("<TR>");

out.printin("<TD COLSPAN=2><CENTER>");
out.printIn("Extended Forecast");
out.printin("</CENTER></TD>"):

out.printin("<TD><CENTER>");
out.println("Hi");
out.println("</CENTER></TD>");

out.printin("<TD><CENTER>");
out.printin("L0o");
out.println("</CENTER></TD>");
out.printin("</TR>");

/l Daily forecast rows

for (inti = 0; i < forecastDay.length; i++) {
out.printin("<TR>");
out.printin("<TD> ");
out.println(forecastDay[i]);
out.printin("</TD>");
out.printin("<TD><CENTER>");
out.printin("");
out.printin("</CENTER></TD>");
out.printin("<TD><CENTER>");
out.println(forecastHi[i]);
out.printin("</CENTER></TD>");
out.printin("<TD><CENTER>");
out.printin(forecastLoJ[i]);
out.printin("</CENTER></TD>");
out.printin("</TR>");

}

/I Close the still-open tags
out.printin("</TABLE>");
out.printin("</CENTER>"),
out.printin("</BODY ></HTML>");

}
}

This code exactly generates the weather forecast page as shown in Figure 5-1. It begins by defining

static fTinal variablesto use asits content and proceeds to nest that content among HTML tags. This
approach presents a pretty page to the end user, but it can leave the programmer counting tags and looking for
the right place to put the forgotten </TD>. The approach also has limited maintainability. Pulling out one
HTML tag can result in the same cascading disaster you get when you pull on aknit sweater's loose tail. And
for the same reason—everything's connected. Even a change as simple as decentering the table requires a
modification in the beginning of doGet () and at the end. And awhimsical change, like making the extended
forecast font bold, requires more than a little concentration.

Weather Forecast Usng HTML Generation
The same servlet written using HTML generation is shown in Example 5-5.

Example 5-5. Weather forecast using HTML generation

import java.io.*;
import java.text._*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;
import weblogic.html_*;

public class WeatherHtmlKona extends HttpServlet {

// Some static final variables to populate the page..
// These would normally come from a database or

// maybe another servlet that retrieved it as POST data.

static final int currentTemp = 70;

static final String currentlmage = “/images/rainy.gif”’;

static final String[] forecastDay = { “Thursday”,
“Friday”,
“Saturday” };

static final String[] forecastlmage = { “/images/sunny.gif”’,
“/images/sunny.gif”’,
“/images/rainy.gif”’ };

{ 82, 82, 73 };

{ 58, 65, 48 };

static final int[] forecastHi =
static final int[] forecastLo =
public void doGet(HttpServletRequest req, HttpServletRResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html””);

// Get a new page
ServletPage page = new ServletPage();

// Set its title
String title = “Sebastopol Weather Forecast”;
page.getHead() .addElement(new TitleElement(title));

// Get the body
HtmIContainer body = page.getBody();

// Make a table, and add it to the body (even before it"s filled)
TableElement tab = new TableElement()

-.setCellPadding(0)

-.setCellSpacing(0)

.setBorder (1)

-setWidth(*60%") ;
body.addElement(new CenteredElement(tab));

// Create the first row
HtmIElement conditions = new StringElement(“Current Conditions™)
.asFontElement(*“+2’")
.asBoldElement()
.asCenteredElement();
HtmIElement image = new ImageElement(currentlimage)
-setWidth(48)
.setHeight(35)
.asCenteredElement();
HtmIElement temp = new StringElement(currentTemp + “°”)
.asFontElement(“+2”)
-.asBoldElement()

-.asCenteredElement();
tab.addElement(new TableRowElement()

-addElement(new TableDataElement(conditions))

-addElement(new TableDataElement(image))

-addElement(new TableDataElement(temp)
.setColSpan(2)));

// Create the second row
HtmIElement extended = new StringElement(“Extended Forecast™)
-asFontElement(*+1)
-asBoldElement()
-asCenteredElement();
new StringElement(**Hi”)
.asFontElement(*“+1)
-asBoldElement()
-asCenteredElement();
HtmIElement lo = new StringElement(*“L0”)
.asFontElement(**+1)
-asBoldElement()
-asCenteredElement();
tab.addElement(new TableRowElement()
-addElement(new TableDataElement(extended)
-setColSpan(2))
-addElement(new TableDataElement(hi))
-addElement(new TableDataElement(l0)));

HtmlElement hi

// Create the forecast rows
for (int i = 0; i <forecastDay.length; i++) {
HtmlElement day = new StringElement(*“ ” + forecastDay[i])
-asFontElement(*+17);
HtmlElement daypic = new ImageElement(forecastlmage[i])
-setWidth(48)
-setHeight(35)
-asCenteredElement();
HtmlElement dayhi = new StringElement(*” + forecastHi[il)
-asFontElement(*+1)
-asCenteredElement();
HtmIElement daylo = new StringElement(*” + forecastLo[1])
-asFontElement(*+1)
-asCenteredElement();
tab.addElement(new TableRowElement()
-.addElement(new TableDataElement(day))
-addElement(new TableDataElement(daypic))
.addElement(new TableDataElement(dayhi))
-addElement(new TableDataElement(daylo)));
}

// Send the page to the response®s output stream

page.output(res.getOutputStream());

The basic structure of this serviet is similar to that of the previous example. The major differenceisthat this
servlet uses an HTML generation package to create an object-oriented representation of the web page.

A few things may look strange about this code. The most striking isits use of method chaining, where severa
methods are invoked on the same object with code like the following:

TableElement tab = new TableElement()
.setCellPadding(0)
.setCellSpacing(0);

The whitespace hereisirrelevant. The previous code is equivaent to:

TableElement tab = new TableElement() .setCellPadding(0).setCellSpacing(0);

This chaining is possible because each "set" method returns a reference to the object on which it was
invoked—that reference is used to invoke the next "set" method. This trick comesin handy when using
htmlKona

Y ou may also be wondering why so many objects aredeclared asHtmlElement objects but created as
StringElement objects or ImageElement objects, aswith the following code:

HtmlElement image = new ImageElement(currentlmage)
-setWidth(48)
-setHeight(35)
-asCenteredElement();

The answer isthat each "as" method returns an object of a different type than the object on which it was
invoked. In the example above, the asCenteredElement() method returnsaCenteredElement
wrapped around the original ImageElement. For simplicity, each HTML component can be declared to be
of type HEmIElement, which is the superclass of all HTML objects—its actual subclass type can be changed
later with ease.

Now let'slook at how this servlet compares to the previous servlet. This servlet no longer has code that writes
theindividual HTML tags, but it replaces that code with almost as many method invocations. We don't appear
to be saving any keystrokes. What using HTML generation does do is give you confidence that the page you
constructed is valid. Tags cannot be forgotten or misplaced. The larger benefit comes from easier
maintainability. What if your pointy-haired boss wants the table left-justified instead of centered? The changeis
simple. Thefollowing line

body.addElement(new CenteredElement(tab));

changesto:

body.addElement(tab);

And what if you decide you want the forecast font to be bold? Well, it's still alot of work. For an elegant
solution to this problem, we need to look at the next servlet.

Weather Forecast Usng HTML Generation Creatively

Example 5-6 (the last full weather forecast example) shows another servlet that generates the weather forecast
web page. This servlet demonstrates some of HTML generation's potential by reusing objects and subclassing.
This technigue produces results similar to what you can achieve with Cascading Style Sheets (CSS), a recent
enhancement to HTML for controlling document appearance. The major advantage of HTML generation is that,
because it operates entirely on the server side, it can work with all browsers. CSS only started being supported
in Microsoft Internet Explorer 3 and later and Netscape Navigator 4 and later.

Example 5-6. Weather forecast using HTML generation creatively

import java.io.*;

import java.text.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

import weblogic.html_*;

class CurrentStyle extends StringElement {
CurrentStyle(String val) {
super(new StringElement(val)
.asFontElement(**+2)
-asBoldElement()
-asCenteredElement());

}
}

class ExtendedTitleStyle extends StringElement {
ExtendedTitleStyle(String val) {
super(new StringElement(val)
.asFontElement(*+1)

.asBoldElement()

.asCenteredElement());

}
}

class ExtendedDayStyle extends StringElement {
ExtendedDayStyle(String val) {
super(new StringElement(val)
.asFontElement(“+1”));
}
}

class ExtendedTempStyle extends StringElement {
ExtendedTempStyle(String val) {
super(new StringElement(val)
.asFontElement(““+1”)
.asCenteredElement());
}
}

class ImageStyle extends CenteredElement {
ImageStyle(String src) {
super(new ImageElement(src).setWidth(48).setHeight(35));
}
}

public class WeatherHtmlKonaRevised extends HttpServilet {

static final ImageStyle sunny new ImageStyle(*“/images/sunny.gif”);
static final ImageStyle rainy = new ImageStyle(*“/images/rainy.gif”);
// Some static final variables to populate the page..

// These would normally come from a database or

// maybe another servlet that retrieved it as POST data.

static final int currentTemp = 70;

static final ImageStyle currentimage = sunny;

static final String[] forecastDay = { “Thursday”, “Friday”, “Saturday” };
static final ImageStyle[] forecastimage = { sunny, sunny, rainy };

static final int[] forecastHi = { 82, 82, 73 };

static final int[] forecastLo = { 58, 65, 48 };

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html””);

// Get a new page
ServletPage page = new ServletPage();

// Set its title
String title = “Sebastopol Weather Forecast”;
page.getHead() .addElement(new TitleElement(title));

// Get the body
HtmlContainer body = page.getBody();

// Make a table, and add it to the body (even before it"s filled)
TableElement tab = new TableElement()

-.setCellPadding(0)

-.setCellSpacing(0)

.setBorder(1)

-setWidth(“60%");
body.addElement(new CenteredElement(tab));

// Create the Tirst row
HtmlElement conditions = new CurrentStyle(“Current Conditions™);
HtmlElement image = currentlmage;
HemlElement temp = new CurrentStyle(currentTemp + “°”); // degree symbol
tab.addElement(new TableRowElement()

.addElement(new TableDataElement(conditions))

-.addElement(new TableDataElement(image))

-addElement(new TableDataElement(temp)

-setColSpan(2)));

// Create the second row
HtmlElement extended = new ExtendedTitleStyle(“Extended Forecast™);
HtmlElement hi = new ExtendedTitleStyle(“Hi™);
HtmlElement 1o = new ExtendedTitleStyle(*Lo™);
tab.addElement(new TableRowElement()
-addElement(new TableDataElement(extended)
-setColSpan(2))
.addElement(new TableDataElement(hi))
-addElement(new TableDataElement(l0)));

// Create the forecast rows
for (int 1 = 0; 1 <forecastDay.length; i++) {
HtmlElement day = new ExtendedDayStyle(*‘
HtmlElement daypic = forecastlmage[i];
HtmlElement dayhi = new ExtendedTempStyle(*” + fTorecastHi[i]);
HtmlElement daylo = new ExtendedTempStyle(*” + forecastLo[i]);
tab.addElement(new TableRowElement()
-addElement(new TableDataElement(day)
-addElement(new TableDataElement(daypic))
-addElement(new TableDataElement(dayhi))
-addElement(new TableDataElement(daylo)));

+ forecastDay[i]);

}

// Send the page to the response®s output stream
page.output(res.getOutputStream());
}
}

* For more information on Cascading Style Sheets, see http://iDwui.w3.0rg/Style/css.

This servlet uses five support classes to define custom styles for portions of the generated web page. For
example, CurrentSty le defines the font and positioning for the elements that display the current conditions,
while ImageSty le defines the size and positioning of the forecast icons. Each support classis a subclass of
HtmlIElement (though not always directly) and can thus be treated like a first-class component on the web

page.

Custom styles further abstract the HTML components on the page. What was once a Str ing surrounded by
HTML tagsis now a high-level page component. A servlet can fill these components with content and not
worry about exactly how they will be displayed. Their display is|eft to the style class. Should it happen that the
appearance needs to be changed, such as when you decide you want the extended forecast font to be bold, the
change can be done with a single modification to the appropriate style.

Subclassing also proves useful for more mundane tasks. It can be used to define basic HTML components that,
for whatever reason, are not included in the HTML generation package. For example, htmlKona has no
ServiletElement classto represent an embedded <SERVLET> tag. This class could be written similarly to
itsAppletElement class by subclassing htmlKona's ElementWithAttributes class.

Notice how this servlet has changed its representation of the sunny and rainy images. The previous servlets
stored these images as Str i ng objects representing image locations. This servlet, however, creates each one as
an ImageSty le object with an inherent size and width. This means they can be added directly to the page,
simplifying the code in which they are used. It also shows how a servlet can reuse an HTML component.

For a better demonstration of reuse, imagine the TableElement created by this servlet being cached and
resent in response to every request. Thisis simple to accomplish using the techniques demonstrated in Chapter
3, The Serviet Life Cycle. The table could be on a page surrounded by rotating ad banners, but it can persist as
an object between requests.

But what happens when the current temperature changes? Does the table have to be entirely regenerated? Not at
al. Remember, the table is an object filled with other objects. All we need to do is replace the object that
represents the current temperature. For our example this can be done with one line of code (note "°" isthe
HTML representation of the degree symbol)

tab.setCellAt(0, 2, new CurrentStyle(newTemp + "°'));

The possible creative uses for object-oriented HTML generation go far beyond the techniques shown in this
example. One could imagine a custom-created BannerElement displayed at the top of al the servlietson a
site. It could be just a predefined ImageE lement or a conglomeration of elements. Let your imagination run
wild!

HTML Generation and Databases

Before we conclude our discussion of HTML generation, there is one more feature to discuss. its potential close
integration with a database. It's not by coincidence that WebL ogic packages htmlKona with its database-centric
dbKona and jdbcK ona—the packages work well together. Wel'll leave the details to WebL ogic's web site, but
the general ideais that when you execute a query against a database, the returned result set can be thought of as
aformatted table without a graphical representation. This result set table can be passed to the TableElement
constructor to automatically display the query resultsin an HTML table on aweb page.

The TableElement constructor also accepts Java.util _Dictionary objects (the superclass of
jJava.util_Hashtable and java.util .Properties). By subclassing TableElement, itis
possible to have it accept even more types, thus making it easy to create tables from al different kinds of data.
A subclass can also give special treatment to certain types of data, perhaps converting them into hyperlinksto
other queries.

Status Codes

Until now, our servlet examples have not set HT TP response status codes. We've been taking advantage of the
fact that if a servlet doesn't specifically set the status code, the server stepsin and setsits value to the default
200 "OK" status code. That's a useful convenience when we are returning normal successful responses.
However, by using status codes, a servlet can do more with its response. For example, it can redirect a request
or report a problem.

The most common status code numbers are defined as mnemonic constants (public final static int
fields) inthe HttpServiletResponse class. A few of these arelisted in Table 5-1. Thefull list isavailable
in Appendix C, HTTP Status Codes.

Table 5-1. HTTP Satus Codes

M nemonic Constant Code Default Message M eaning

SC_OK 200 OK The client's request was successful, and the
server's response contains the requested data.
Thisis the default status code.

SC_NO_CONTENT 204 No Content The reguest succeeded, but there was no
newresponse body to return. Browsers
receiving this code should retain their current
document view.Thisis a useful code for a
servlet to use when it accepts datafrom a
form but wants the browser view to stay at the
form, asit avoids the "Document contains no
data" error message.

SC_MOVED_ PERMANENTLY 301 Moved Permanently The reguested resource has permanently
moved to a new location.Future references
should use the new URL in requests. The new
location is given by the Location header.
Most browsers automatically access the new
location.

SC_MOVED_ TEMPORARILY 302 Moved Temporarily The reguested resource has temporarily
moved to anotherlocation, but future
references should still use the original URL to

access the resource. The new location is given
by the Location header. Most browsers

automatically access the new location.
SC_UNAUTHORIZED 401 Unauthorized The request lacked proper authorization. Used
in conjunction with the WWW-
Authenticate and Authorization
headers.
SC_NOT_FOUND 404 Not Found The reguested resource was not found or is
not available.

SC_INTERNAL_ SERVER ERROR 500 Internal Server Error An unexpected error occurred inside the
server that prevented it from fulfilling the

request.
SC_NOT_IMPLEMENTED 501 Not Implemented The server does not support the functionality
needed to fulfill the request.
SC_SERVICE_ UNAVAILABLE 503 Service Unavailable The service (server) is temporarily

unavailable but should be restored in the
future. If the server knows when it will be
available again, aRetry-After header

may also be supplied.

Setting a Status Code

A servlet can use setStatus() to set aresponse status code:

public void HttpServletResponse.setStatus(int sc)
public void HttpServletResponse.setStatus(int sc, String sm)

Both of these methods set the HTTP status code to the given value. The code can be specified as a number or
with one of the SC_ XXX codes defined within HttpServletResponse. With the single-argument version
of the method, the reason phrase is set to the default message for the given status code. The two-argument
version allows you to specify an alternate message. Remember, the setStatus() method should be called
before your servlet returns any of its response body.

If aservlet sets a status code that indicates an error during the handling of the request, it can call
sendError () instead of setStatus():

public void HttpServletResponse. sendError (int sc)
public void HttpServletResponse.sendError(int sc, String sm)

A server may give the sendError () method different treatment than setStatus(). When the two-
argument version of the method is used, the status message parameter may be used to set an alternate reason
phrase or it may be used directly in the body of the response, depending on the server's implementation.

I mproving ViewFile Using Status Codes

So far, we haven't bothered calling any of these methods to set a response's status code. We've simply relied on
the fact that the status code defaultsto SC_OK. But there are times when a servlet needs to return a response
that doesn't have the SC_OK status code—when the response does not contain the requested data. As an
example, think back to how the ViewFi le servlet in Chapter 4, Retrieving Information, handled the
FileNotFoundException:

// Return the file

try {
ServiletUtils.returnFile(file, out);
}

catch (FileNotFoundException e) {
out._printIn(’File not found');

}

Without setting a status code, the best this servlet can do is write out an explanation of the problem, ironically
sending the explanation as part of a page that is supposed to contain the file's contents. With status codes,
however, it can do exactly what Sun's Fi leServiet does: set the response codeto SC_NOT_FOUND to
indicate that the requested file was not found and cannot be returned. Here's the improved version:

// Return the file

try {
ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {
res.sendError(res.SC_NOT_FOUND);

}

The full effect of asendError () cal is server dependent, but for the Java Web Server this call generates the
server's own "404 Not Found" page, complete with Duke's picture (as shown in Figure 5-2). Note that this page
is indistinguishable from every other Java Web Server 404 Not Found" page. The call to sendError () aso
resultsin anote in the server's access log that the file could not be found.

HTTP Headers

A servlet can set HTTP headers to provide extra information about its response. Aswe said in Chapter 4, afull
discussion of all the possible HTTP 1.0 and HTTP 1.1 headers is beyond the scope of this book. Table 5-2 lists
the HTTP headers that are most often set by servlets as a part of aresponse.

Settingan HTTP Header

The HttpServiletResponse class provides a number of methods to assist servletsin setting HTTP response
headers. Use setHeader () to set the value of a header:

public void HttpServletResponse.setHeader(String name, String value)

This method sets the value of the named header as a String. The nameis caseinsensitive, asit isfor all these
methods. If the header had already been set, the new value overwrites the previous one. Headers of all types can
be set with this method.

F|Ie Ed|t View Go C::mmunn:atnr

TR e & W

Bach oot Reload Home Search Guide Pt Securly Stop

| ,.t Bookmarks 4 Location: Iht.‘r.p-: ﬁlwalmu BO80/atlantis. html o
B

=7 ..J'LH-'u‘L";r;‘J"E er

.qﬁ; Not Found (404)

The file iteat you requested could not be found on this server. [you provided the URL,
please check bo ensure that it is correct. | you followed a hypermedia link. please notify the [}
sdministrator of that server of this érmor.

*_‘-'-’-'_""'_'-_'."-" N T IR T T T 3 = ~: - - =
o 5 A aw 3P 2]

Figure 5-2.
The Java Web Server "404 Not Found" page

Table 5-2. HTTP Response Headers

Header Usage

Cache-Control Specifies any specia treatment a caching system should give to this document.
The most common values areno-cache (to indicate this document should not
be cached), no-store (to indicate this document should not be cached or even
stored by a proxy server, usually due to its sensitive contents), and max-
age=seconds (to indicate how long before the document should be
considered stale). This header wasintroduced in HTTP 1.1.

Pragma The HTTP 1.0 equivalent of Cache-control, with no-cache asitsonly
possible value.
Connection Used to indicate whether the server is willing to maintain an open (persistent)

connection to the client. If so, itsvalueis set to keep-al ive. If not, itsvalue
isset to close. Most web servers handle this header on behalf of their servlets,
automatically setting its valueto keep-al ive when aserviet setsits
Content-Length header.

Retry-After Specifies atime when the server can again handle requests, used with the
SC_SERVICE_UNAVAILABLE status code. Itsvalueis either an int that
represents the number of seconds or a date string that represents an actual time.

Expires Specifies atime when the document may change or when its information will
becomeinvalid. It impliesthat it is unlikely the document will change before
that time.

Location Specifies anew location of adocument, usually used with the status codes

SC_CREATED, SC_MOVED_PERMANENTLY, and
SC_MOVED_TEMPORARILY. Its value must be afully qualified URL

(including "*)" target=""_BLANK" >http://").

WWwW-Authenticate Specifies the authorization scheme and the realm of authorization required by
the client to access the requested URL . Used with the status code
SC_UNAUTHORIZED.

Content-Encoding Specifies the scheme used to encode the response body. Possible values are
gzip (or x-gzip) and compress (or x-compress). Multiple encodings

should be represented as a comma-separated list in the order in which the
encodings were applied to the data.

If you need to specify atime stamp for a header, you can use setDateHeader ():

public void HttpServletResponse.setDateHeader(String name, long date)

This method sets the value of the named header to a particular date and time. The method accepts the date value
as a long that represents the number of milliseconds since the epoch (midnight, January 1, 1970 GMT). If the
header has already been set, the new value overwrites the previous one.

Finally, you can use setIntHeader () to specify an integer value for a header:

public void HttpServletResponse.setlntHeader(String name, int value)

This method sets the value of the named header as an int. If the header had already been set, the new value
overwrites the previous one.

The containsHeader () method provides away to check if aheader aready exists:

public boolean HttpServletResponse.containsHeader(String name)
This method returns true if the named header has already been set, false if not.

In addition, the HTML 3.2 specification defines an alternate way to set header values using the <META HTTP-
EQUIV> tag insidethe HTML pageitself:

<META HTTP-EQUIV=""name' CONTENT="value'>

Thistag must be sent as part of the <HEAD> section of the HTML page. This technique does not provide any
special benefit to servlets; it was developed for use with static documents, which do not have access to their
own headers.

Redirecting a Request

One of the useful things a servlet can do using status codes and headersis redirect arequest. Thisis done by
sending instructions for the client to use another URL in the response. Redirection is generally used when a
document moves (to send the client to the new location), for load balancing (so one URL can distribute the load
to several different machines), or for simple randomization (choosing a destination at random).

Example 5-7 shows a servlet that performs a random redirect, sending a client to arandom site selected from its
site list. Depending on the site list, a servlet like this could have many uses. Asit stands now, it's just a jump-off
point to a selection of cool servlet sites. With asite list containing advertising images, it can be used to select
the next ad banner.

Example 5-7. Random redirector

import java.io.*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

public class SiteSelector extends HttpServlet {

Vector sites = new Vector();
Random random = new Random();

public void init(ServletConfig config) throws ServletException {
super.init(config);
sites.addElement(*" http://www.oreilly.com/catalog/jserviet’™);
sites_addElement(*"" http://www.servlets.com™);
sites_addElement("*http://jserv._java.sun.com');
sites_addElement("" http://www.servletcentral .com');

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res._setContentType("text/html'");
PrintWriter out = res.getWriter();

int sitelndex = Math.abs(random.nextInt()) % sites.size();
String site = (String)sites.elementAt(sitelndex);

res.setStatus(res.SC_MOVED_TEMPORARILY);
res._setHeader(‘'Location™, site);

}
}

The actual redirection happensin two lines:

res.setStatus(res.SC_MOVED_TEMPORARILY);
res.setHeader('Location’, site);

Thefirst line sets the status code to indicate a redirection is to take place, while the second line gives the new
location. To guarantee they will work, you must call these methods before you send any output. Remember, the
HTTP protocol sends status codes and headers before the content body. Also, the new site must be given as an
absolute URL (for example, http://server:port/path/file.ntml). Anything less than that may confuse the client.

These two lines can be simplified to one using the sendRed i rect() convenience method:

public void HttpServletResponse.sendRedirect(String location) throws
I10Exception

This method redirects the response to the specified location, automatically setting the status code and Location
header. For our example, the two lines become simply:

res.sendRedirect(site);
Client Pull

Client pull is similar to redirection, with one major difference: the browser actually displays the content from
the first page and waits some specified amount of time before retrieving and displaying the content from the
next page. It's called client pull because the client is responsible for pulling the content from the next page.

Why is this useful ? For two reasons. First, the content from the first page can explain to the client that the
requested page has moved before the next page is automatically loaded. Second, pages can be retrieved in
sequence, making it possible to present a slow-motion page animation.

Client pull information is sent to the client using the Refresh HTTP header. This header's value specifies the
number of secondsto display the page before pulling the next one, and it optionally includes a URL string that
specifiesthe URL from which to pull. If no URL isgiven, the same URL isused. Here'sacall to

setHeader () that tells the client to reload this same servlet after showing its current content for three
seconds:

setHeader ("'Refresh™, "3'");
And here'sacall that tells the client to display Netscape's home page after the three seconds:

setHeader ("'Refresh™, "3; URL= http://home.netscape.com™);

Example 5-8 shows a servlet that uses client pull to display the current time, updated every 10 seconds.

Example 5-8. The current time, kept current

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ClientPull extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType('"text/plain’™);
PrintWriter out = res.getWriter();

res.setHeader("'Refresh™, "10");
out.printin(new Date().toString());

}
}

Thisis an example of atext-based animation—we'll look at graphical animations in the next chapter. Note that
the Refresh header is nonrepeating. It is not a directive to load the document repeatedly. For this example,
however, the Refresh header is specified on each retrieval, creating a continuous display.

The use of client pull to retrieve a second document is shown in Example 5-9. This servlet redirects requests for
one host to another host, giving an explanation to the client before the redirection.

Example 5-9. An explained host change

import java.io.*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

public class ClientPullMove extends HttpServlet {

static final String NEW_HOST = “ http://www.oreilly.com";
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res_setContentType("text/html'");
PrintWriter out = res.getWriter();

String newLocation = NEW_HOST + req.getRequestURI();

res.setHeader(“Refresh”, “10; URL=" + newLocation);
out.printIn(“The requested URI has been moved to a different host.
"");
out.printIn(“Its new location is ” + newLocation + “
");
out.printIn(“Your browser will take you there in 10 seconds.”);
}
}

This servlet generates the new location from the requested URI, which allows it to redirect any requests made to
the old server. With the Java Web Server, this servlet could be configured to handle every request, to gradually
transition clients to the new location.

When Things Go Wrong

All right, let's face it. Sometimes things go wrong. Sometimes the dog bites, and sometimes the bee stings.
There are any number of possible causes. bad parameters, missing resources, and (gasp!) actual bugs. The point
here isthat a servlet has to be prepared for problems, both expected and unexpected. There are two points of
concern when things go wrong:

* Limiting damage to the server
* Properly informing the client

Because servlets are written in Java, the potential damage they can cause to their server is greatly minimized. A
server can safely embed servlets (even within its process), just as aweb browser can safely embed downloaded
applets. This safety is built on Java's security features, including the use of protected memory, exception
handling, and security managers. Java's memory protection guarantees that servlets cannot accidentally (or
intentionally) access the server'sinternals. Java's exception handling lets a server catch every exception raised
by aserviet. Evenif a servlet accidentally divides by zero or calls amethod on anull object, the server can
continue to function. Java's security manager mechanism provides away for servers to place untrusted servlets
in a sandbox, limiting their abilities and keeping them from intentionally causing problems.

Y ou should be aware that trusted servlets executing outside a security manager's sandbox are given abilities that
could potentially cause damage to the server. For example, a servlet can overwrite the server'sfile space or even
call System.exit(). Itisaso truethat atrusted servlet should never cause damage except by accident, and
it's hard to accidentally call System.exit(). Still, if it'sa concern, even trusted servlets can be (and often
are) run inside afairly lenient but sanity-checking security manager.

Properly describing a problem to the client cannot be handled by Java language technology alone. There are
many things to consider:

How much to tell the client?

Should the servlet send a generic status code error page, a prose explanation of the problem, or (in the case
of athrown exception) a detailed stack trace? What if the servlet is supposed to return nontextual content,
such as an image?

How to record the problem?
Should it be saved to afile, written to the server log, sent to the client, or ignored?

How to recover?
Can the same servlet instance handle subsequent requests? Or is the servlet corrupted, meaning that it
needs to be reloaded?

The answers to these questions depend on the servlet and its intended use, and they should be addressed for
each servlet you write on a case-by-case basis. How you handle errorsis up to you and should be based on the
level of reliability and robustness required for your servlet. What we'll ook at next is an overview of the servlet
error-handling mechanisms that you can use to implement whatever policy you select.

Status Codes

The simplest (and arguably best) way for a servlet to report an error isto use the sendError () method to set
the appropriate 400 series or 500 series status code. For example, when the servlet is asked to return afile that
does not exist, it can return SC_NOT_FOUND. When it is asked to do something beyond its capabilities, it can
return SC_NOT_IMPLEMENTED. And when the entirely unexpected happens, it can return
SC_INTERNAL_SERVER_ERROR.

By using sendError () to set the status code, a servlet provides the server an opportunity to give the
response special treatment. For example, some servers, such as the Java Web Server, replace the servlet's
response body with a serverspecific page that explainsthe error. If the error is such that a servlet ought to
provide its own explanation to the client in the response body, it can set the status code with setStatus()
and send the appropriate body—which could be text based, a generated image, or whatever is appropriate.

A servlet must be careful to catch and handle any errors before it sends any part of its response body. Asyou
probably recall (because we've mentioned it severa times), HTTP specifies that the status code and HTTP
headers must be sent before the response body. Once you've sent even one character of aresponse body, it may
be too late to change your status code or your HTTP headers. The easy way to guarantee you don't find yourself
in this "too late" situation isto send your content all at once when the servlet is done processing, using an
ByteArray-OutputStream buffer or HTML generation package, as shown earlier in this chapter.

Logging
Servlets have the ability to write their actions and their errorsto alog file using the 1og() method:

public void ServletContext. log(String msg)
public void ServletContext. log(Exception e, String msg)

The single-argument method writes the given message to a servlet log, which is usualy an event log file. The
two-argument version writes the given message and exception's stack trace to a servlet log. Notice the
nonstandard placement of the optional Exception parameter asthe first parameter instead of the last for this
method. For both methods, the output format and location of the log are serverspecific.

TheGenericServlet classaso providesa 1og() method:

public void GenericServlet.log(String msg)

Thisis another version of the ServiletContext method, moved to GenericServlet for convenience.
This method allows a servlet to call simply:

log(msg);

to write to the servlet log. Note, however, that Gener icServlet does not provide the two-argument version
of 1og(). The absence of this method is probably an oversight, to be rectified in afuture release. For now, a
servlet can perform the equivalent by calling:

getServiletContext().log(e, msqg);

The 1og() method aids debugging by providing away to track a servlet's actions. It also offersaway to save a
complete description of any errors encountered by the servlet. The description can be the same as the one given
to the client, or it can be more exhaustive and detailed.

Now we can go back and improve ViewFi le further, so that it uses 1og() to record on the server when
requested files do not exist, while returning a simple "404 Not Found" page to the client:

// Return the file

try {
ServiletUtils.returnFile(file, out)

}

catch (FileNotFoundException e) {
log(*"Could not find file: " + e.getMessage());
res.sendError(res.SC_NOT_FOUND);

}

For more complicated errors, a servlet can log the complete stack trace, as shown here:

// Return the file

try {
ServletUtils.returnFile(file, out);
}

catch (FileNotFoundException e) {
log("'Could not find file: " + e.getMessage());
res.sendError(res.SC_NOT_FOUND);

}
catch (10Exception e) {

getServiletContext().log(e, "Problem sending file™);
res.sendError(res.SC._ INTERNAL_SERVER_ERROR);

}
Reporting

In addition to logging errors and exceptions for the server administrator, during development it's often
convenient to print afull description of the problem along with a stack trace. Unfortunately, an exception
cannot return its stack trace asa String it can only print its stack traceto aPrintStream or
PrintWriter. Toretrieve astack trace as a String, we have to jump through afew hoops. We need to let
the Exception print to aspecial PrintWriter built around aByteArray-OutputStream. That
ByteArrayOutputStream can catch the output and convert it to a String. The
com.oreilly.servlet.ServletUtils classhasagetStackTraceAsString() method that does
just this:

public static String getStackTraceAsString(Exception e) {
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
PrintWriter writer = new PrintWriter(bytes, true);
e.printStackTrace(writer);
return bytes.toString();

}

Here'show ViewF i le can provide information that includes an 10Exception stack trace:

// Return the file
try {

ServiletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {
log(*"Could not find file: " + e._getMessage()):
res.sendError(res.SC_NOT_FOUND);

}

catch (10Exception e) {
getServiletContext().log(e, "Problem sending file™);
res.sendError(res.SC_INTERNAL_SERVER_ERROR,

ServletUtils.getStackTraceAsString(e));

}

The output for a sample exception is shown in Figure 5-3.

iﬁ 500 Intemnal Server Emor - Nalscape
Ele Edb ¥iew Go Communicator Help

T4 5 38 2 & 3 & @ ~
£ Back Fiicrl Aeload Heme Seanch Guide L R el L s L

T g Bockmaks Gio bo: ito: /e bt 8080 servlet Vi F lainds bl =]
e

500 Internal Server Error

mava [0Excegbon at com oeelly serviet ServietUnls ceturnFile(ServietUnls javars2) at
ViewFile doCet(ViewrFde java 30) at

jawact servies hitp HitpSeoviet sevvce(HitpSerdst java495) st

jawac serviet hitp HttpServiet sevnce(HitpSerdet java 533) &

cosmL $un server ServietState calService(ServietSane java 204) ot

com sun server. Serviethlanager callSerd etSernce(ServietManager java 920) at

oo sun seever hitp ImvekerSerdet sernce(lnvokerServiet java 101) a:

pavace serviet kitp HitpSerddet serace(HitpServlel java 582) at

com suf server ServietSiate calService(ServictState juva 204) at

com s server ServistManager callServietServce(ServetManaper java 540 2

com sun server webserver HitpSerascHander handeRequsst{HitpSernceHander java216) at
com sun server webserver HitpSeraceH anfler handeRegue st{HitpSernceHendler java 246) at
com sun server HandlerThread nin(Handler Trread java 1 54)

= Docunint. Dorm e e P 2 2

Figure 5-3.
Keeping the client well informed

Exceptions

Aswe said before, any exception that is thrown but not caught by a servlet is caught by its server. How the
server handles the exception is server-dependent: it may pass the client the message and the stack trace, or it
may not. It may automatically log the exception, or it may not. It may even call destroy() on the servlet and
reload it, or it may not.

Servlets designed and developed to run with a particular server can optimize for that server's behavior. A servlet
designed to interoperate across several servers cannot expect any particular exception handling on the part of
the server. If such a servlet requires specia exception handling, it must catch its own exceptions and handle
them accordingly.

There are some types of exceptions a servlet has no choice but to catch itself. A servlet can propagate to its
server only those exceptions that subclass I0OException, ServletException, or
RuntimeException. Thereason hasto do with method signatures. The service() method of Serviet
declaresinits throws clause that it throws 10Exception and ServletException exceptions. For it (or
the doGet () and doPost() methodsit calls) to throw and not catch anything el se causes a compile time
error. The RuntimeException isaspecial case exception that never needsto be declared in a throws
clause. A common exampleisaNul IPointerException.

The init() and destroy() methods have their own signatures as well. The init() method declares that
it throws only ServletException exceptions, and destroy() declaresthat it throws no exceptions.

ServletExceptionisasubclassof java. lang.Exception that is specific to servliets—the classis
defined in the javax.servlet package. This exception isthrown to indicate a general servlet problem. It
has the same constructors as Java. lang . Exception: one that takes no arguments and one that takes a
single message string. Servers catching this exception may handle it any way they seefit.

The Javax.servlet package defines one subclass of ServletException,

Unavai lableException, athough you can, of course, add your own. This exception indicates aservlet is
unavailable, either temporarily or permanently. Servers (services) that caich an Unavai lableException
are expected to behave as described in the Servlet API documentation:

Servlets may report this exception at any time, and the network service running the servlet should behave appropriately. There
are two types of unavailability, and sophisticated services will deal with these differently:

Permanent unavailability. The servlet will not be able to handle client requests until some administrative action is taken to
correct a servlet problem. For example, the servliet might be misconfigured, or the state of the servliet may be corrupted. Well
written servlets will log both the error and the corrective action which an administrator must perform to let the servlet become
available.

Temporary unavailability. The servlet cannot handle requests at this moment due to a system-wide problem. For example, a
third-tier server might not be accessible, or there may be insufficient memory or disk storage to handle requests. The problem
may be self-correcting, such as those due to excessive load, or corrective action may need to be taken by an administrator.

Network services may safely treat both types of exceptions as "permanent,” but good treatment of temporary unavailability leads
to more robust network services. Specificaly, requests to the serviet might be blocked (or otherwise deferred) for a serviet-
suggested amount of time, rather than being rejected until the service itself restarts.

Unavai lableException hastwo constructors:

Javax.servlet.UnavailableException(Servilet servlet, String msg)
Javax.servlet.UnavailableException(int seconds, Servlet servlet, String msg)

The two-argument constructor creates a new exception that indicates the given servlet is permanently
unavailable, with an explanation given by msg. The threeargument version creates a new exception that
indicates the given servlet istemporarily unavailable, with an explanation given by msg. The duration of its
unavailability is given by seconds. Thistimeis only an estimate. If no estimate can be made, a nonpositive
value may be used. Notice the nonstandard placement of the optional seconds parameter as the first parameter
instead of the last. This may be changed in an upcoming release. Unavai lableException providesthe
isPermanent(), getServilet(), and getUnavai lableSeconds() methodsto retrieve information
about an exception.

Knowing When No One€'s Listening

Sometimes clients hang up on servlets. Sure, it's rude, but it happens. Sometimes the client makes a mistake and
goes to the wrong page. Sometimes the servlet takes too long to respond. Remember, all the while aserviet is
preparing its response, the user is being tempted by the browser's big, glowing Stop button that is just begging
to be pushed. Y ou may be wondering, just what happens to the servlet once that button is pushed?

Unfortunately, a servlet is not given any immediate indication that the user has pressed the Stop button—there
isno interrupt that tells it to stop processing. The servlet discovers the client has stopped the request only when
it tries to send output to the nonexistent client, at which point an error condition occurs.

A servlet that sendsinformation using a ServiletOutputStream seesan I0OException whenit triesto
write output. For serversthat buffer their output, the I0OException isthrown when the buffer fills up and its
contents are flushed.

Because an 10Exception may be thrown any time a servlet tries to output, awellwritten servlet freesits
resourcesinaftinal ly block. (The final ly block isan optional part of atry/catch/finally
construct. It comes after zero or more catch blocks, and its code is executed once regardless of how the code
in the try block executes.) Here'saversion of the returnFi le() method from theView- Fi le serviet
that uses afinally block to guarantee the closure of its Fi le InputStream:

void returnFile(String filename, OutputStream out)
throws FileNotFoundException, 10Exception {
FilelnputStream fis = null;

try {
fis = new FileinputStream(filename);

byte[] buf = new byte[4 * 1024]; // 4k buffer

int bytesRead;

while ((bytesRead = fis.read(buf)) 1= -1) {
out.write(buf, 0, bytesRead);

}

}
finally {

if (fis = null) fis.close();
}
}

The addition of afinal ly block does not change the fact that this method propagates al exceptionsto its
caller, but it does guarantee that, before that propagation, the method gets a chance to close the open
FilelnputStream.

A servlet sending character datausing aPrintWriter doesn't get an IOException whenit triesto write
output, because the methods of PrintWr iter never throw exceptions. Instead, a servlet that sends character
datahasto call the checkError () method of PrintWriter. Thismethod flushes the output and returns a
boolean that indicates if there was a problem writing to the underlying OutputStream. It returnstrueif the
client has stopped the request.

A long-running servlet should call checkError () regularly to determineif it can halt processing early. If
there hasn't been any output since the last check, a servlet can send filler content. For example:

out_printIn(’’<H2>Here"s the solution for your differential equation:</H2>");
it (out.checkError()) return;

// Preliminary calculation here
out_print("); // filler content, extra whitespace is ignored in HTML
if (out.checkError()) return;

// Additional calculation here

It's important to note that a server is not required to throw an 10Exception or set the error flag of the
PrinWriter after the client disconnects. A server may elect to let the response run to completion with its
output ignored. Generally this does not cause a problem, but it does mean that a servlet running inside such a
server should always have a set end point and should not be written to continuously loop until the user hits
Stop.

6
Sending Multimedia Content

In thischapter:

* Images

» Compressed Content
* Server Push

Until now, every servlet we've written has returned a standard HTML page. The web consists of more than
HTML, though, so in this chapter we'll ook at some of the more interesting things a servlet can return. We
begin with alook at why you'd want to return different MIME types and how to do it. The most common use of
adifferent MIME typeisfor returning an image graphic generated by a servlet (or even by an applet embedded
inside the servlet!). The chapter also explores when and how to send a compressed response and examines using
multipart responses to implement server push.

Images

People are visually oriented—they like to see, not just read, their information. Consequently, it's nearly
impossible to find aweb site that doesn't use images in some way, and those you do find tend to look
unprofessional. To cite the well-worn cliche (trandated into programmer-speak), "An image is worth a thousand
words."

Luckily, it'srelatively simple for a servlet to send an image as its response. In fact, we've aready seen a servlet
that doesjust this: the ViewF i le servlet from Chapter 4, Retrieving Information. Asyou may recall, this
servlet can return any file under the server's document root. When the file happensto be an imagefile, it detects
that fact with the getMimeType () method and sets its response's content type with setContentType ()
before sending the raw bytes to the client.

This technique requires that we already have the needed image files saved on disk, which isn't always the case.
Often, a servlet must generate or manipulate an image before sending it to the client. Imagine, for example, a
web page that contains an image of an analog clock that displays the current time. Sure, someone could save
720 images (60 minutes times 12 hours) to disk and use a servlet to dispatch the appropriate one. But that
someone isn't me, and it shouldn't be you. Instead, the wise servlet programmer writes a servlet that
dynamically generates the image of the clock face and its hands—or as avariant, a servlet that |oads an image
of the clock face and adds just the hands. And, of course, the frugal programmer also has the servlet cache the
image (for about a minute) to save server cycles.

There are many other reasons you might want a servlet to return an image. By generating images, a servlet can
display things such as an up-to-the-minute stock chart, the current score for a baseball game (complete with
icons representing the runners on base), or a graphical representation of the Cokes |eft in the Coke machine. By
mani pul ating preexisting images, a servlet can do even more. It can draw on top of them, change their color,
Size, or appearance, or combine several images into one.

I mage Generation

Suppose you have an image as raw pixel data that you want to send to someone. How do you do it? Let's
assume it's atrue-color, 24-bit image (3 bytes per pixel) and that it's 100 pixelstall and 100 pixelswide. Y ou
could take the obvious approach and send it one pixel at atime, in a stream of 30,000 bytes. But is that enough?
How does the receiver know what to do with the 30,000 bytes he received? The answer is that he doesn't. Y ou
also need to say that you are sending raw, true-color pixel values, that you're beginning in the upper left corner,
that you're sending row by row, and that each row is 100 pixelswide. Yikes! And what if you decide to send
fewer bytes by using compression? Y ou have to say what kind of compression you are using, so the receiver can
decompress the image. Suddenly this has become a complicated problem.

Fortunately thisis a problem that has been solved, and solved several different ways. Each image format (GIF,
JPEG, TIFF, etc.) represents one solution. Each image format defines a standard way to encode an image so that
it can later be decoded for viewing or manipulation. Each encoding technique has certain advantages and
limitations. For example, the compression used for GIF encoding excels at handling computer-generated
images, but the GIF format is limited to just 256 colors. The compression used for JPEG encoding, on the other
hand, works best on photo-realistic images that contain millions of colors, but it works so well because it uses
"lossy" compression that can blur the photo's details.

Understanding image encoding helps you understand how servlets handle images. A serviet like ViewFile
can return a preexisting image by sending its encoded representation unmodified to the client—the browser
decodes the image for viewing. But a servlet that generates or modifies an image must construct an internal
representation of that image, manipulate it, and then encode it, before sending it to the client.

A "HelloWorld" Image

Example 6-1 gives a simple example of a servlet that generates and returns a GIF image. The graphic says
"Hello World!", as shown in Figure 6-1.

Example 6-1. Hello World graphics

import java.io.*;

import java.awt.*;

import javax.servlet.™;
import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;
public class HelloWorldGraphics extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream(); // binary output!

Frame frame = null;
Graphics g = null;

try {
// Create an unshown frame

frame = new Frame();
frame.addNotify();

// Get a graphics region, using the Frame
Image image = frame.createlmage(400, 60);

g = image.getGraphics();

// Draw “Hello World!” to the off-screen graphics context

g-setFont(new Font(“Serif”, Font_ITALIC, 48));
g-drawString(“Hello World!”, 10, 50);

// Encode the off-screen image into a GIF and send it to the client
res._setContentType(“image/gif”’);
GifEncoder encoder = new GifEncoder(image, out);
encoder .encode();

+

finally {
// Clean up resources
if (g '= null) g.dispose();
if (frame != null) frame.removeNotify();

}

}
}

¥ GIF image 40080 pacels - Nelicaps

Fle EQ View Go Commaricaoe Hep

< < I3 A 2 ks & B
4 Bxk Foved Reosd Home Seuch Gude | Frof - Seeuly S5 .
U Boskmaks Ji Locationc[rrip tocalrout S0ED sevslet ek criGraphics Eh
Hello World!
I | T [Beimant Oene T i e iR N2
Figure 6-1.

Hello World graphics

Although this servlet uses the java.awt package, it never actually displays a window on the server's display.
Nor does it display awindow on the client's display. It performs all its work in an off-screen graphics context
and lets the browser display the image. The strategy is as follows: create an off-screen image, get its graphics
context, draw to the graphics context, and then encode the resulting image for transmission to the client.

Obtaining an off-screen image involves jJumping through several hoops. In Java, an image is represented by the
Java.awt. Image class. Unfortunately, an Image object cannot be instantiated directly through a
constructor. It must be obtained through a factory method like the create Image () method of Component
or the getImage () method of Toolkit. Because were creating a new image, we use createlmage() -
Note that before a component can create an image, its native peer must already exist. Thus, to create our Image
we must create aFrame, create the frame's peer with acall to addNotify (), and then use the frame to
create our Image .* Once we have an image, we draw onto it using its graphics context, which can be retrieved
with acall to the getGraphics() method of Image. In thisexample, we just draw a simple string.

After drawing into the graphics context, we call setContentType() to set the MIME type to

“iImage/gi T’ since we're going to use the GIF encoding. For the examples in this chapter, we use a GIF
encoder written by Jef Poskanzer. It'swell written and freely available with source from http://www.acme.com.*
To encode the image, we create a Gi FEncoder object, passing it the image object and the
ServletOutputStream for the servliet. When we call encode () on the GifEncoder object, the image
is encoded and sent to the client.

* For web servers running on Unix systems, the frame's native peer has to be created inside an X server. Thus, for optimal
performance, make sure the D I SPLAY environment variable (which specifies the X server to use) is unset or set to alocal X
server. Also make sure the web server has been granted access to the X server, which may require the use of XhOSt or
xauth.

After sending the image, the servlet does what all well-behaved servlets should do: it releasesits graphical
resources. These would be reclaimed automatically during garbage collection, but releasing them immediately
helps on systems with limited resources. The code to release the resources is placed in a final 1y block to
guarantee its execution, even when the servlet throws an exception.

A dynamically generated chart

Now let'slook at a servlet that generates a more interesting image. Example 6-2 creates a bar chart that
compares apples to oranges, with regard to their annual consumption. Figure 6-2 shows the results. There'slittle
need for this chart to be dynamically generated, but it lets us get the point across without too much code. Picture
inyour mind's eye, if you will, that the servlet is charting up-to-the-minute stock values or the server's recent
load.

Example 6-2. A chart comparing apples and oranges

import java.awt.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;
import javachart.chart.*; // from Visual Engineering

public class SimpleChart extends HttpServilet {

static final int WIDTH = 450;
static final int HEIGHT = 320;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException ,10Exception {
ServletOutputStream out = res.getOutputStream();

Frame frame = null;

Graphics g = null;

try {
// Create a simple chart

BarChart chart = new BarChart(“Apples and Oranges™);

// Give it a title
chart.getBackground() .setTitleFont(new Font(“Serif”’, Font.PLAIN, 24));
chart.getBackground() .setTitleString(“Comparing Apples and Oranges™);

// Show, place, and customize its legend
chart.setlLegendVisible(true);

chart.getLegend() .setL1X(0.4); // normalized from lower left
chart.getLegend() .setL1Y(0.75); // normalized from lower left
chart.getLegend() .setlconHeight(0.04);

chart.getLegend() .setlconWidth(0.04);

chart_getLegend() .setlconGap(0.02);

chart.getLegend() .setVerticallLayout(false);

// Give it its data and labels
double[] appleData = {950, 1005, 1210, 1165, 1255%};
chart.addDataSet(“Apples”, appleData);

double[] orangeData = {1435, 1650, 1555, 1440, 1595};

chart.addDataSet(“Oranges”, orangeData);

String[] labels = {*1993, “1994”, “1995”, 1996, “1997°};
chart_getXAxis() .addLabels(labels);

// Color apples red and oranges orange
chart._getDatasets()[0] -.getGc() -setFillColor(Color.red);
chart._getDatasets()[1] -getGc() -setFillColor(Color.orange);

// Name the axes
chart_getXAxis() .setTitleString(“Year”);
chart_getYAxis() .setTitleString(“Tons Consumed”);

// Size it appropriately
chart.resize(WIDTH, HEIGHT);

// Create an unshown frame
frame = new Frame();
frame.addNotify();

// Get a graphics region of appropriate size, using the Frame
Image image = frame.createlmage(WIDTH, HEIGHT);
g = image.getGraphics();

// Ask the chart to draw itself to the off screen graphics context
chart.drawGraph(g);

// Encode and return what it painted
res._setContentType(“image/gif”’);
GifEncoder encoder = new GifEncoder(image, out);
encoder .encode();
by
finally {
// Clean up resources
if (g '= null) g.dispose();
if (frame != null) frame.removeNotify();

* Note that the LZW compression algorithm used for GIF encoding is protected by Unisys and IBM patents which, according to
the Free Software Foundation, make it impossible to have free software that generates the GIF format. For more information, see
http: //www.fsf.or g/philosophy/gif.html. Of course, a servlet can encode its I mage into any image format. For web content,
JPEG exists as the most likely alternative to GIF. There are JPEG encodersin JDK 1.2 and commercial products such as the

JMI product (Java lmage Management Interface), available from Activated I ntelligence at http: //www.activated.com.

Flle Edit View Go Communicator : HE‘|

S 3 A e
il Back Fuswad Reload Home ' Search ' Guide Print Securty - Sto

| < Bookimarks & Location: [REcp //Lo0a1n056: 6080/ sexvlee /SURPLGChARE " /|

Foitin

=

Comparing Apples and Oranges
Tars Corsumed
i 2000 B Apples Ciranges

L 500

1000

i 1957

6% {90l 1955
Year

Figure 6-2.
A chart comparing apples and oranges

The basics are the same: create an off-screen image and get its graphics context, draw to the graphics context,
and then encode the image for transmission to the client. The difference is that this servlet constructs a
BarChart object to do the drawing. There are more than a dozen charting packages available in Java. Y ou can
find several showcased at http://www.gamelan.com. The BarChart class from this example came from Visual
Engineering's JavaChart package, available at http://www.ve.com/javachart. It'sa commercial product, but for
readers of this book they have granted free permission to use the portion of the API presented above. The
JavaChart package also includes a set of free chart-generating applets that we will use later in this chapter.

I mage Composition

So far, we've drawn our graphics onto empty images. In this section, we discuss how to take preexisting images
and either draw on top of them or combine them to make conglomerate images. We aso examine error handling
in servlets that return images.

Drawing over an Image

Sometimesit's useful for a servlet to draw on top of an existing image. A good exampleis a building locator
servlet that knows where every employee sits. When queried for a specific employee, it can draw a big red dot
over that employee's office.

One deceptively obvious technique for drawing over a preexisting image isto retrieve the Image with
Toolkit.getDefaultToolkit() .getlmage(imagename), get itsgraphics context with acall to
the getGraphics() method of Image, and then use the returned graphics context to draw on top of the
image. Unfortunately, it isn't quite that easy. The reason is that you cannot use getGraphics() unlessthe
image was created with the create Image () method of Component. With the AWT, you aways need to
have a native peer in the background doing the actual graphics rendering.

Here's what you have to do instead: retrieve the preexisting image via the
Toolkit.getDefaultToolkit() .getlmage(imagename) method and thentell it to draw itself
into another graphics context created with the create Image () method of Component, asshowninthe
previous two examples. Now you can use that graphics context to draw on top of the original image.

Example 6-3 clarifies this technique with an example. It's a servlet that writes "CONFIDENTIAL" over every
image it returns. The image name is passed to the servlet as extra path information. Some example output is
shown in Figure 6-3.

Example 6-3. Drawing over an image to mark it confidential

import java.awt.*;

import java.io.*;

import javax.servlet.*;
import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;
public class Confidentializer extends HttpServilet {

Frame frame = null;
Graphics g = null;

public void init(ServletConfig config) throws ServletException {
super.init(config);
// Construct a reusable unshown frame
frame = new Frame();
frame.addNotify();

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream();

try {
// Get the image location from the path info
String source = req.getPathTranslated();
if (source == null) {
throw new ServletException(“Extra path information ” +
“must point to an image”);
}

// Load the image (from bytes to an Image object)
MediaTracker mt = new MediaTracker(frame); // frame acts as ImageObserver
Image image = Toolkit.getDefaultToolkit().getlmage(source);
mt.addImage(image, 0);
try {
mt.waitForAll();
}
catch (InterruptedException e) {
getServiletContext().log(e, “Interrupted while loading image™);
throw new ServletException(e.getMessage());
by
// Construct a matching-size off screen graphics context
int w = image.getWidth(frame);
int h = image.getHeight(frame);
Image offscreen = frame.createlmage(w, h);
g = offscreen.getGraphics();

// Draw the image to the off-screen graphics context
g-drawlmage(image, 0, 0, frame);

// Write CONFIDENTIAL over its top
g-setFont(new Font(““Monospaced”, Font.BOLD ; Font.ITALIC, 30));
g-drawString(““CONFIDENTIAL”, 10, 30);

// Encode the off-screen graphics into a GIF and send it to the client
res._setContentType(“image/gif”’);

GifEncoder encoder = new GifEncoder(offscreen, out);

encoder .encode();

}
finally {

// Clean up resources
if (g '= null) g.dispose();
}
}

public void destroy() {
// Clean up resources
it (frame != null) frame.removeNotify();

}
}

Y ou can see that this servlet performs each step exactly as described above, along with some additional
housekeeping. The servlet createsits unshown Frame inits init() method. Creating the Frame once and
reusing it is an optimization previously left out for the sake of clarity. For each request, the servlet begins by
retrieving the name of the preexisting image from the extra path information. Then it retrieves areference to
the image with the getImage () method of Too kit and physically loadsit into memory with the help of a
MediaTracker . Normaly it'sfine for an image to load asynchronously with its partial results painted as it
loads, but in this case we paint the image just once and need to guaranteeit's fully loaded beforehand. Then the
servlet gets the width and height of the loaded image and creates an off-screen image to match. Finally, the big
moment: the loaded image is drawn on top of the newly constructed, empty image. After that it's old hat. The
servlet writesitsbig "CONFIDENTIAL" and encodes the image for transmission.

¥ GIF image 2504328 pivels - Nelscape

Fie Edi Yew Go Commumicator Help

e

wow N G H N
i Beck | Fovord iRélosd. Home: " Search | Guide’ | R Seculy Ei .
5 f " Bookmarks 4 Location: [hite: /Ao shost BA0serviet Conhdaniislzer/je.gé =]

conrapng

Servlet Progrumming

F

Figure 6-3.
Drawing over an image to mark it confidential

Notice how this servlet handles error conditions by throwing exceptions and logging any errors that may
interest the server administrator. When returning images, it's difficult to do much more. After all, atextual
description doesn't help when a servlet is referenced in an tag. This approach allows the server to do
whatever it deems appropriate.

Combining Images

A servlet can a'so combine images into one conglomerate image. Using this ability, a building locator servlet
could display an employee's smiling face over her office, instead of ared dot. The technique used for combining
imagesis similar to the one we used to draw over the top of an image: the appropriate images are loaded, they're
drawn onto a properly created Image object, and that image is encoded for transmission.

Example 6-4 shows how to do thisfor a servlet that displays a hit count as a sequence of individual number
images combined into one large image. Its output can be seen in Figure 6-4. The number images it uses are
available at http://www.geocities.com/SliconValley/6742/, aong with several other styles.

Example 6-4. Combining images to form a graphical counter
import java.awt._*;

import java.io.*;

import javax.servlet._*;

import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;

public class GraphicalCounter extends HttpServilet {

public static final String DIR = “/images/odometer”;
public static final String COUNT = *“314159”;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream();

Frame frame = null;
Graphics g = null;

try {
// Get the count to display, must be sole value in the raw query string
// Or use the default
String count = (String)req.getQueryString();
if (count == null) count = COUNT;

int countlen = count.length(Q);
Image images[] = new Image[countlen];
for (int 1 = 0; i <CH:160>countlen; i++) {
String imageSrc =
req.getRealPath(DIR + “/” + count.charAt(i) + “_.GIF”);
images[i] = Toolkit._getDefaultToolkit() .getlmage(imageSrc);
¥
// Create an unshown Frame
frame = new Frame();
frame.addNotify();

// Load the images

MediaTracker mt = new MediaTracker(frame);

for (int 1 = 0; i < countlen; i++) {
mt.addImage(images[i], i);

}

try {
mt.waitForAIl();
}

catch (InterruptedException e) {
getServletContext().-log(e, “Interrupted while loading image™);
throw new ServletException(e.getMessage());

}

// Check for problems loading the images
it (mt.isErrorAny(Q)) {
// We had a problem, find which image(s)
StringBuffer problemChars = new StringBuffer();
for (int i = 0; i < countlen; i++) {
it (nt.isErroriD(i)) {
problemChars.append(count.charAt(i));
}
}

throw new ServletException(
“Could not load an image for these characters: ” +
problemChars.toString());

}

// Get the cumulative size of the images
int width = 0;
int height = 0
for (int i 0; 1 < countlen; i++) {

width += images[i].-getWidth(frame);

height = Math_.max(height, images[i]-getHeight (frame));

}

// Get a graphics region to match, using the Frame

Image image = frame.createlmage (width, height);
g = image.getGraphics();

// Draw the images

int xindex = 0;

for (int i = 0; i < countlen; i++) {
g.drawlmage (images[i], xindex, 0, frame);
xindex += images[i]-getWidth (frame);

}

// Encode and return the composite
res.setContentType (“image/gif”’);

GifEncoder encoder = new GifEncoder(image, out);
encoder .encode();

by
finally {
// Clean up resources
it (g '= null) g.dispose();
it (frame != null) frame.removeNotify();
}
}
}
v o 4 o4 A i & 3
Back Aetoad Home Seamh Gulda Print Sacuny :] 3 :
#" Bookmarks 4 Locaton: fitiio; F/30caTast] RURC/AsRYASE Craphiselcouster. /|
i§3 141509 |
i %5 e e
1 — = == ——
Figure 6-4.

Combining images to form a graphical counter

This servlet receives the number to display by reading its raw query string. For each number in the count, it
retrieves and loads the corresponding number image from the directory given by DIR. (DIR isaways under
the server's document root. It's given asavirtual path and translated dynamically to areal path.) Then it

calcul ates the combined width and the maximum height of all these images and constructs an off-screen image
to match. The servlet draws each number image into this off-screen image in turn from left to right. Finally, it
encodes the image for transmission.

To be of practical use, this servlet must be called by another servlet that knows the hit count to be displayed.
For example, it could be called by a server-side include serviet embedded in a page, using syntax like the
following:

This servlet handles error conditions in the same way as the previous servlet, by throwing a
ServiletException and leaving it to the server to behave appropriately.

| mage Effects

We've seen how servlets can create and combine images. In this section, we look at how servlets can also
perform special effects on images. For example, a servlet can reduce the transmission time for an image by
scaling down its size before transmission. Or it can add some special shading to an image to make it resemble a
pressable button. As an example, let'slook at how a servlet can convert a color image to grayscale.

Converting an Image to Grayscale

Example 6-5 shows a servlet that converts an image to grayscale before returning it. The serviet performsthis
effect without ever actually creating an off-screen graphics context. Instead, it creates the image using a special
ImageFilter. (Wed show you before and after images, but they wouldn't look very convincing in a black-
and-white book.)

Example 6-5. An image effect converting an image to grayscale

import java.awt.*;

import java.awt.image.*;
import java.io.*;

import javax.servlet._*;
import javax.servlet_http.*;

import Acme.JPM_Encoders.*;
public class DeColorize extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res_setContentType(“image/gif’);
ServletOutputStream out = res.getOutputStream();

// Get the image location from the path info
String source = req.getPathTranslated();
if (source == null) {
throw new ServletException(“Extra path information ” +
“must point to an image™);

}

// Construct an unshown frame
// No addNotify() because its peer isn"t needed
Frame frame = new Frame();

// Load the image
Image image = Toolkit.getDefaultToolkit().getlmage(source);
MediaTracker mt = new MediaTracker(frame);
mt.addImage(image, 0);
try {

mt.waitForAll();
}

catch (InterruptedException e) {
getServiletContext().log(e, “Interrupted while loading image™);
throw new ServletException(e.getMessage());

¥

// Get the size of the image
int width = image.getWidth(frame);
int height = image.getHeight(frame);

// Create an image to match, run through a filter
Image Filtered = frame.createlmage(

new FilteredlmageSource(image.getSource(),
new GrayscalelmageFilter()));

// Encode and return the filtered image
GifEncoder encoder = new GifEncoder(filtered, out);
encoder .encode();

}
}

Much of the code for this servlet matches that of the Confidential izer example. The mgjor differenceis
shown here:

// Create an image to match, run through a filter
Image filtered = frame.createlmage(
new FilteredlmageSource(image.getSource(),
new GrayscalelmageFilter()));

This servlet doesn't usethe createlmage (int, int) method of Component we've used up until now.
It takes advantage of the createlmage (ImageProducer) method of Component instead. The servlet
creates an image producer with a Fi I'tered ImageSource that passes the image through an
GrayscalelmageFi lter. Thisfilter converts each color pixel to its grayscale counterpart. Thus, the

image is converted to grayscale asit is being created. The code for the Grayscale ImageFi lter isshown
in Example 6-6.

Example 6-6. The GrayscalelmageFilter class

import java.awt.™;
import java.awt.image.™;

public class GrayscalelmageFilter extends RGBImageFilter {

public GrayscalelmageFilter() {
canFilterIndexColorModel = true;

}

// Convert color pixels to grayscale
// The algorithm matches the NTSC specification
public int filterRGB(int x, int y, iInt pixel) {

// Get the average RGB intensity
int red = (pixel & 0x00fF0000) >> 16;
int green = (pixel & 0x0000ff00) >> 8;

int blue = pixel & 0x000000ff;

int luma (int) (0.299 * red + 0.587 * green + 0.114 * blue);

// Return the luma value as the value for each RGB component

// Note: Alpha (transparency) is always set to max (not transparent)
return (Oxff << 24) | (luma << 16) } (luma << 8) | luma;

For each value in the colormap, thisfilter receives a pixel value and returns a new filtered pixel value. By
setting the canFi lter IndexColorModel variableto true, we signify that thisfilter can operate on the
colormap and not on individua pixel values. The pixel valueis given asa 32-bit int, where thefirst octet
represents the alpha (transparency) value, the second octet the intensity of red, the third octet the intensity of
green, and the fourth octet the intensity of blue. To convert a pixel value to grayscale, the red, green, and blue
intensities must be set to identical values. We could average the red, green, and blue values and use that average
value for each color intensity. That would convert the image to grayscale. Taking into account how people
actually perceive color (and other factors), however, demands a weighted average. The 0.299, 0.587, 0.114
weighting used here matches that used by the National Television Systems Committee for black-and-white
television. For more information, see Charles A. Poynton's book A Technical Introduction to Digital Video
(Wiley) and the web site http://www.color.org.

Caching a Converted Image

The process of creating and encoding an image can be expensive, taking both time and server CPU cycles.
Caching encoded images can often improve performance dramatically. Instead of doing all the work for every
request, the results can be saved and resent for subsequent requests. The clock face idea that we mentioned
earlier is aperfect example. The clock image needs to be created at most once per minute. Any other requests
during that minute can be sent the same image. A chart for vote tabulation is another example. It can be created
once and changed only as new votes come in.

For our example, let's give the DeColorize servlet the ability to cache the grayscale images it returns. The
servlet life cycle makes this extremely simple. Our new DeColorize servlet saves each converted image as a
byte array stored in aHashtabl e keyed by the image name. First, our serviet needs to create aHashtable
instance variable. This must be declared outside doGet () :

Hashtable gifs = new Hashtable();

To fill this hashtable, we need to capture the encoded graphics. So, instead of giving the Gi FEncoder the
ServletOutputStream, wegiveit aByteArrayOutputStream. Then, when we encode the image
with encode (), the encoded imageis stored in the ByteArrayOutputStream. Finadly, we storethe
captured bytes in the hashtable and then write them to the ServletOutputStream to send the image to the
client. Here's the new code to encode, store, and return the filtered image:

// Encode, store, and return the filtered image
ByteArrayOutputStream baos = new ByteArrayOutputStream();
GifEncoder encoder = new GifEncoder(filtered, baos);
encoder .encode();

gifs.put(source, baos);

baos.writeTo(out);

Thisfills the hashtable with encoded images keyed by image name. Now, earlier in the servlet, we can go
directly to the cache when asked to return a previously encoded image. This code should go immediately after
the code executed if source==null:

// Short circuit if it"s been done before

if (gifs.containsKey(source)) {
ByteArrayOutputStream baos = (ByteArrayOutputStream) gifs.get(source);
baos.writeTo(out);
return;

}

With these modifications, any image found in the cache is returned quickly, directly from memory.

Of course, caching multiple images tends to consume large amounts of memory. To cache asingleimageis
rarely a problem, but a servlet such as this should use some method for cleaning house. For example, it could
cache only the 10 most recently requested images.

I mage Effectsin Filter Chains

We haven't talked about filter chains yet in this chapter, but they are actually quite useful for performing image
effects. If you recall, aservlet in afilter chain receives content on its input stream and sends a filtered version of
that content out its output stream. In previous examples, we have aways filtered textual HTML. Now we can
see how to filter imagesin a servlet chain.

Performing special effects on an image works the same whether it happensin afilter chain or in astandard
servlet. The only difference is that instead of loading the image from afile, achained servlet receivesitsimage
as an encoded stream of bytes. Example 6-7 shows how a servlet receives an encoded stream of bytes and
creates an Image from them. In this case, the servlet shrinks the image to one-quarter its original size.

Example 6-7. Shrinking an image using a filter chain

import java.awt._*;

import java.awt.image.*;
import java.io.*;

import javax.servlet._*;
import javax.servlet_http.*;

import Acme.JPM_Encoders.*;
public class ShrinkFilter extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream();

String contentType = req.getContentType();
if (contentType == null }; !contentType.startsWith(*“image™)) {
throw new ServletException(“Incoming content type must be *“image/*\””);

}

// Fetch the bytes of the incoming image
DatalnputStream in = new DatalnputStream(
new BufferedlnputStream(
req.-getlnputStream()));
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] buf = new byte[4 * 1024]; // 4K buffer

int len;

while ((len = in.read(buf, 0, buf.length)) 1= -1) {
baos.write(buf, 0, len);

}

// Create an image out of them
Image image = Toolkit.getDefaultToolkit()
-createlmage(baos. toByteArray());

// Construct an unshown frame
// No addNotify() since it"s peer isn"t needed
Frame frame = new Frame();

// Load the image, so we can get a true width and height
MediaTracker mt = new MediaTracker(frame);

mt.addImage(image, 0);

try {
mt.waitForAll();
}

catch (InterruptedException e) {
getServiletContext().log(e, “Interrupted while loading image™);
throw new ServletException(e.getMessage());

}

// Shrink the image to half its width and half its height.

// An improved version of this servlet would receive the desired

// ratios in its init parameters.

// We could also resize using ReplicateScaleFilter or

// AreaAveragingScaleFilter.

Image shrunk = image.getScaledlnstance(image.getWidth(frame) / 2,
image.getHeight(frame) 7/ 2,
image.SCALE_DEFAULT);

// Encode and return the shrunken image
res_setContentType(“image/gif’);

GifEncoder encoder = new GifEncoder(shrunk, out);
encoder .encode();

}
}

The createlmage(byte[]) method of Toolkit createsan Image from an array of bytes. The method
determines the image format automatically, aslong as the image isin one of the formats understood and
decodable by the AWT (typicaly GIF, JPEG, and XBM, although it's possible to add a custom content handler).

The servlet uses the create Image () method to create an Image out of the incoming bytes. Because the
createlmage() method doesn't accept an input stream, the servlet first captures the bytes with a
ByteArrayOutputStream. After creating the Image, the servlet loadsit in order to get its true width and
height. Then the servlet gets a scaled instance that is half as wide and half astall, using the
getScaledlnstance() method of Image. Last, it encodes theimage and sends it out its output stream.

Why use afilter chain to perform an image effect instead of a standard servlet? The main reason is for increased
flexibility. For example, a server can be told that all the large classified images in one subdirectory should be
run through a "shrink” filter and a"confidential tag" filter. Closer to redlity, the server can be told that any
image on the web site should be served in its "shrunken” form if the request URI beginswith “/11te”.
Another possibility isto tell the server that all images of type image/xbm need to be run through a basic filter
that converts the XBM image into a GIF.

Are you wondering why we aren't taking advantage of object serialization to pass our image from servlet to
servlet? The reason issimple: images are not Serial i1z able. If aservlet can guarantee that the next link in
the chain is another servlet and not the client, though, then it can pass the Image more efficiently using
techniques described in Chapter 11, Interserviet Communication.

An Image of an Embedded Applet

Now let's take alook at one of the more creative ways a servlet can generate an image: by taking a picture of an
embedded applet. Applets are small Java programs that can be sent to a client for execution inside aweb
page—they've been used to create everything from animations to interactive programs to static charts. Here
we're going to twist their use a bit. Instead of having the server send a program to the client for execution, we
have it send just a picture of the program executing on the server. Now we'll admit that replacing an executing
applet with animage is hardly afair trade, but it does has its advantages. For a static, noninteractive applet, it's
often more efficient to send its image than to send the code and data needed to have the client create the image
itself. Plus, the image displays even for clients whose browsers don't support Java or who may have Java
support disabled.

An Image of a Simple Applet

Example 6-8 shows an applet that may look familiar to you. It's the SecondApp let example taken from
David Flanagan's Java Examplesin a Nutshell book (O'Reilly). Figure 6-5 shows its "fancy graphics.”

Example 6-8. A simple applet

import java.applet.*;
import java.awt.*;

public class SecondApplet extends Applet {
static final String message = “Hello World™”;
private Font font;

// One-time initialization for the applet
// Note: no constructor defined.
public void init(Q) {
font = new Font(“Helvetica”, Font.BOLD, 48);
}

// Draw the applet whenever necessary. Do some fancy graphics.
public void paint(Graphics g) {

// The pink oval

g-setColor(Color.pink);

g-filloval (10, 10, 330, 100);

// The red outline. Java doesn"t support wide lines, so we
// try to simulate a 4-pixel-wide line by drawing four ovals.
g-setColor(Color.red);

g-drawOval (10,10, 330, 100);

g-drawOval (9, 9, 332, 102);

g-drawOval (8, 8, 334, 104);

g-drawOval (7, 7, 336, 106);

// The text
g-setColor(Color.black);
g-setFont(font);
g-drawString(message, 40, 75);

=4 Applet Viewer Secondipplet class E=E I

Appiet

s i e T,

x-ﬂ"'"ﬁ#‘“ﬂ M1MMMH'*\.
(Hello World >
""-.._|:I“h M_'_,p

e S s oy P R

Applet started

Figure 6-5.
The simple applet's fancy graphics

This applet can be embedded the traditional way inside an HTML file with the <APPLET> tag:

<APPLET CODE="SecondApplet.class"™ WIDTH=500 HEIGHT=200>
</APPLET>

An <APPLET> tag can include a CODEBASE parameter that tells the client where to fetch the given class.
Because the previous <APPLET> tag does not provide a CODEBASE parameter, the SecondApplet.classfileis
assumed to be in the same directory asthe HTML file.

This applet can also be embedded inside HTML content returned by a servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class SecondAppletHtml extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(""text/html™);

PrintWriter out = res.getWriter();

// .

out.printIn(""<APPLET CODE=SecondApplet.class CODEBASE=/ " +
"WIDTH=500 HEIGHT=200>"");

out.printIn("'</APPLET>");

// ..

}
}

Notice that here the CODEBASE parameter must be supplied. If it's not given, the code base is erroneously
assumed to be /serviet or whatever other virtual path was used to launch the servlet.

Now let'slook at a servlet that embeds SecondApplet insideitself and sends a picture of the applet to the
client. The code is shown in Example 6-9 and its output in Figure 6-6. In order to embed an applet, a serviet
needs a special Frame subclass that implements App letContext and App letStub. For these examples,
we can use amodified version of Jef Poskanzer's Acme .MainFrame class. In addition to some minor bug
fixes, the class has been modified to not call its own show() method (to keep it from actually displaying
during execution) and to call the applet's in1t() and start() methods synchronously instead of in a
separate thread (to guarantee the applet is ready when we call its paint() method). A copy of

Acme .MainFrameModified isavailable with the book examples as described in the Preface.

Example 6-9. Embedding SecondApplet

import java.applet.*;

import java.awt.*;

import java.awt.image.*;
import java.io.*;

import java.net._*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;
import Acme.MainFrameModified;

public class SecondAppletViewer extends HttpServlet {

static final int WIDTH = 450;
static final int HEIGHT = 320;
static final String APPLETNAME = “SecondApplet’;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream();

MainFrameModified frame
Graphics g = null;
Applet applet = null;

null;

try {
// Load the SecondApplet

// Must be in the standard CLASSPATH

try {
applet = (Applet) Class.forName(APPLETNAME) .newlnstance();

}
catch (Exception e) {
throw new ServletException(*'Could not load applet:" + e);

}

// Prepare the applet arguments
String args[] = new String[1];
args[0] = "barebones=true'; // run without a menu bar

// Put the applet in its frame
// addNotify() is called by MainFrameModified
frame = new MainFrameModified(applet, args, WIDTH, HEIGHT);

// Get a graphics region to match the applet size, using the Frame
Image image = frame.createlmage(WIDTH, HEIGHT);
g = image.getGraphics();

// Ask the applet to paint itself
applet_validate();

applet._paint(g);

// Encode and return what it painted
res.setContentType(*"image/gif");
GifEncoder encoder = new GifEncoder(image, out);
encoder .encode();

}

finally {
// Clean up resources
it (applet =null) {

applet.stop();
applet.destroy();
applet.removeAll();
}
if (g '= null) {
g.dispose();
}
if (frame = null) {
frame.removeAll();
frame.removeNotify();
frame._dispose()
}
}
}
}

Example 6-9. Embedding SecondApplet (continued)

e GIF imaga 4508320 pixels - Metscape

R0 (R0 i R, Commie oo [WD

(3 538 &3 &0 N
i Back Fovrd” Reload | Home = Search Guide || Vi | Seeunty | Gtep 0 C . NN

" Bockmadks f Locatior [Fip /incalbast 8080/ sevlet/econdhpolimnet ~]

|

[

Hello World j
g o

|
1 [t Do - .- ol a2]

Figure 6-6.
Another view of the simple applet's fancy graphics

This servlet begins by dynamically loading the SecondApp let class and creating a single instance of it. For
SecondApplet to befound, it must be somewhere in the server's standard CLASSPATH which for the Java
Web Server by default excludesthe server_root/serviets directory. Then the servlet prepares the applet's
arguments. These are passed to the MainFrameModi fied constructor as an array of ““name=value”’
strings. SecondApp I et takes no parameters, so this step would seem to be unnecessary. However,
MainFrameModified piggy-backsinto the argument list its own ““barebones’ argument, which we set to
true toindicate it should display the applet without any special decoration. Finally, the servlet creates an

appropriately sized off-screen graphics context, has the applet paint itself using that context, and encodes the
image for transmission to the client.

A Generic Applet Viewer

We can build on this example to develop a generic servlet capable of embedding and taking a picture of any

applet. It can accept as request parameters the applet name, its width and height, and its parameters. Example 6-
10 contains the code.

Example 6-10. A generic applet viewer

import java.applet.*;
import java.awt.*;
import java.awt.image.™;

import java.io.*;

import java.net._*;

import java.util_*;

import javax.servlet._*;
import javax.servlet_http.*;

import Acme.JPM.Encoders.GifEncoder;
import Acme.MainFrameModified;

public class AppletViewer extends HttpServlet {

static final int WIDTH = 450
static final int HEIGHT = 320;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream();

MainFrameModified frame
Graphics g = null;
Applet applet = null;

null;

try {
String appletParam = req.getParameter(“applet™);

String widthParam = req.getParameter(“width”);
String heightParam = req.getParameter(“height™);

// Load the given applet
// Must be in the standard CLASSPATH

try {
applet = (Applet) Class.forName(appletParam).newlnstance();

}
catch (Exception e) {
throw new ServletException(“Could not load applet:” + e);

}

// Convert width/height to integers

// Use default values if they weren®t given or there®s a problem
int width = WIDTH;

int height = HEIGHT;

try { width = Integer._parselnt(widthParam); }

catch (NumberFormatException e) { /* leave as default */ }

try { height = Integer._parselnt(heightParam); }

catch (NumberFormatException e) { /* leave as default */ }

// Get a list of the other parameters in a format MainFrame understands
// (Specifically, an array of “name=value” Strings)
Vector temp = new Vector();
Enumeration names = req.getParameterNames();
while (names.hasMoreElements()) {
String name = (String) names.nextElement();
it (name != “applet” && name != “width” && name I= “height”)
temp.addElement(name + “=" + req.getParameter(name));
}
temp.addElement(““barebones=true’); // run without a menu bar
// Now from Vector to array
int size = temp.size();
String args[] = new String[size];
for (int 1 = 0; 1 < size; i++) {
args[i] = (String) temp.elementAt(i);
}

// Put the applet in its frame
// addNotify() is called by MainFrameModified
frame = new MainFrameModified(applet, args, width, height);

// Get a graphics region to match the applet size, using the Frame
Image image = frame.createlmage(width, height);
g = image.getGraphics(Q);

// Ask the applet to paint its children and itself
applet.validate();
paintContainerChildren(g, applet);

applet.paint(g);

// Encode and return what it painted
res._setContentType(“image/gif”’);
GifEncoder encoder = new GifEncoder(image, out);
encoder .encode();
by
finally {
// Clean up resources
it (applet !'= null) {
applet_stop();
applet._destroy();
applet.removeAll();
}
it (g '= null) {
g-dispose();
}
if (frame = null) {
frame.removeAll();
frame.removeNotify();
frame._.dispose();
}
}
}

// Recursively paints all the Components of a Container.
// 1t°s different from paintComponents(Graphics) because
// paintComponents(Graphics) does not paint to the passed-in
// Graphics! It uses it only to get the clipping region.
void paintContainerChildren(Graphics g, Container c) {
Component[] children = c.getComponents();
for (int i = 0; i < children.length; i++) {
ifT (children[i] = null) {
children[i].paintAll(g); // get lightweights too
it (children[i] instanceof Container) {
paintContainerChildren(g, (Container)children[i]);

Example 6-10. A generic applet viewer (continued)

There are two major differences between this servlet and SecondAppletViewer: how it handles
parameters and how it paints the applet's components. All the details, from the applet's name to its parameters,
are passed to this servlet viarequest parameters. It receives the name of the applet asthe “applet” parameter
and its width and height asthe “width” and ““height’ parameters; it passes all the other parameters on to
the applet itself.

The painting is more radically different. This servlet uses a custom-built paintContainerChildren()
utility method to paint all the components of the applet. For the servlet to call
applet.paintComponents(Q) is not sufficient because paintComponents(g) does not paint to the
passed-in Graphics object! Instead, it usesthe Graphics parameter only to get a clipping region. This
servlet also uses paintAl 1 () instead of paint(), so that it correctly paints lightweight components. Note
that for this technique to work well, the embedded applet has to fully paint itself during itsfirst paint()
invocation. It can't display a splash screen or perform alazy load of itsimages.

The AppletViewer serviet can replace SecondAppletViewer. Just invokeit with the URL
http://server:port/serviet/AppletViewer?applet=SecondApplet. It can also replace our SimpleChart example.
Remember when we said JavaChart includes a set of free chart-generating applets? We can use
AppletViewer to embed any of these free applets and send the resulting chart as an image to the client. To
duplicate the Simp leChart example requires this lengthy URL (split into separate lines for readability,
probably so long that many servers won't be able to handle it):

http://server:port/servlet/AppletViewer?
applet=javachart.applet.columnApp&
titleFont=TimesRoman%2c24%2c0&
titleString=Comparing+Apples+And+Oranges&
xAxisTitle=Year&

yAXisTitle=Tons+Consumedé&
XAxisLabels=1993%2c1994%2c1995%2c1996%2c1997&
datasetOyValues=950%2c1005%2c1210%2c1165%2c1255&
datasetlyValues=1435%2c1650%2c1555%2c1440%2c1595&
datasetOColor=red&

datasetOName=Apples&

datasetlColor=orange&

datasetlName=Oranges&

legendOn=yes&

legendHorizontal=true&

legendl 1X=0.4&

legendl 1Y=0.75&

iconHeight=0.04&

iconWidth=0.04&

iconGap=0.02&

XAXisOptions=gridOff&

yAXisOptions=gridOff

The graph generated by this URL looks identical to Figure 6-2 shown earlier (with the one difference that the
applet version contains a blue dot in the lower right corner that can be removed with the purchase of a
JavaChart license).

Advantages and Disadvantages

We think you'll agree that embedding an applet in aservlet has a certain coolness factor. But isit ever
practical? Let'slook over its advantages and disadvantages. First, the advantages:

It can save money.
Hey, the JavaChart applets are free, and Visual Engineering assured us that this use doesn't violate their
license!

It can save download time.
Why send all the code and data needed to make an image when you can send the image itself, especially
when the image can be pregenerated?

It works for every client.
It works even when the client browser doesn't support Java or has Java disabled.

However, on the downside:

It requires extra resources on the server.
Specificaly it consumes CPU power and memory.

It works well for only a few applets.
Specifically it works best on static, noninteractive applets that fully paint themselves with their first
paint() invocation.

Compressed Content

The Java.util.zip package wasintroduced in JDK 1.1. This package contains classes that support reading
and writing the GZIP and ZIP compression formats. Although these classes were added to support Java Archive
(JAR) files, they also provide a convenient, standard way for a servlet to send compressed content.

Compressed content doesn't look any different to the end user because it's decompressed by the browser before
it'sdisplayed. Y et, while it looks the same, it can improve the end user's experience by reducing the time
required to down-load the content from the server. For heavily compressable content such as HTML,
compression can reduce transmission times by an order of magnitude. Quite atrick! Just bear in mind that to
compress content dynamically forces the server to perform extrawork, so any speed-up in transmission time has
to be weighed against slower server performance.

By now you should be familiar with the idea that a servlet can send a Content-Type header as part of its
response to tell the client the type of information being returned. To send compressed content, a serviet must
also send a Content-Encoding header to tell the client the scheme by which the content has been encoded.
Under the HTTP 1.0 specification, the possible encoding schemes are gzip (or x-gzip) and compress (or
X-compress) for GZIP and ZIP compression formats, respectively.

Not all clients understand the gzip and compress encodings. To tell the server which encoding schemes it
understands, a client may send an Accept-Encoding header that specifies acceptable encoding schemes as a
comma-separated list. Most browsers do not yet provide this header—even those that do support compressed
encodings. For now, a servlet has to decide that without the header it won't send compressed content, or it hasto
examine the User-Agent header to seeif the browser is one that supports compression. Of the current
popular browsers, only Netscape Navigator 3 and 4 on Unix and Microsoft Internet Explorer 4 on Windows
support GZIP encoding, and none support ZIP encoding. For more information (and aregular expression to
identify GZIP-enabled browsers), see http://www.kultur box.de/per |/test/content-encoding-gzip/3.

Although negotiating which compression format to use can involve afair amount of logic, actually sending the
compressed content could hardly be ssmpler. The servlet just wrapsits standard ServietOutputStream
withaGZIPOutputStream or ZipOutputStream. Besureto call out.close() whenyour serviet is
done writing output, so that the appropriate trailer for the compression format is written. Ah, the wonders of
Javal

Example 6-11 showsthe ViewFi le servlet from Chapter 4 rewritten to send compressed content whenever
possible. We'd show you a screen shot, but there's nothing new to see. Aswe said before, an end user cannot tell
that the server sent compressed content to the browser—except perhaps with reduced download times.

Example 6-11. Sending compressed content

import java.io.*;

import java.util_*;

import java.util_zip.*;
import javax.servlet._*;
import javax.servlet_http.*;

import com.oreilly.servlet_ServletUtils;]
public class ViewFileCompress extends HttpServilet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
OutputStream out = null;

// Select the appropriate content encoding based on the
// client"s Accept-Encoding header. Choose GZIP if the header
// includes “gzip”. Choose ZIP if the header includes ‘“compress”.
// Choose no compression otherwise.
String encodings = req.getHeader(“Accept-Encoding”);
if (encodings != null && encodings.indexOf(*“gzip™) 1= -1) {
// Go with GZIP
res.set-Header(“Content-Encoding”, ‘“x-gzip”);
out = new GZIPOutputStream(res.getOutputStream());
}
else if (encodings !'= null && encodings.indexOf(“compress™) 1= -1) {
// Go with ZIP
res._setHeader(““Content-Encoding”, “xX-compress™);
out = new ZipOutputStream(res.getOutputStream());
((ZipOutputStream)out) .putNextEntry(new ZipEntry(““dummy name’));
}
else {
// No compression
out = res.getOutputStream();
}

res.setHeader(“Vary”, “Accept-Encoding”);

// Get the file to view
String file = req.getPathTranslated();

// No fTile, nothing to view

if (File == null) {
res._sendError(res.SC_FORBIDDEN) ;
return;

}

// Get and set the type of the file

String contentType = getServletContext() .getMimeType(File);
res_setContentType(contentType);

// Return the file

try {
ServiletUtils.returnFile(file, out);
}

catch (FileNotFoundException e) {
res._sendError(res.SC_NOT_FOUND) ;
return;

}
catch (I10Exception e) {

getServiletContext().log(e, “Problem sending file™);
res.sendError(res.SC_INTERNAL_SERVER_ERROR,
ServiletUtils._getStackTraceAsString(e));

}

// Write the compression trailer and close the output stream
out.close();

}
}

The servlet begins by declaringanull OutputStream and then setting this OutputStreamto a
GZIPOutputStream, ZipOutputStream, or ServletOutputStream, depending on the received
Accept-Encoding header. Asit selects which output stream to use, the servlet setsthe Content-
Encoding header accordingly. When sending compressed content, this header must be set for the client to run
the appropriate decompression algorithm. The servlet also setsthe Vary header to the value Accept-
Encoding to be polite and indicate to the client that the servlet variesits output depending on the Accept-
Encoding header. Most clientsignore this header.

After this early logic, the servlet can treat the output stream as just another OutputStream. It could wrap the
stream with aPrintStream or PrintWriter, or it could passit to aGifEncoder. But, no matter what it
does, the servlet hasto be sureto call out.close() whenit's finished sending content. This call writesthe
appropriate trailer to the compressed stream.

There is some content that should not be compressed. For example, GIF and JPEG images are already
compressed as part of their encoding, so there's no benefit in compressing them again. An improved version of
the Fi leViewCompressed servlet would detect when it's returning an image and not bother with an attempt
at further compression. Another improvement would be to rewrite this servlet as a filter—compressing whatever
content is piped through it.

Server Push

Up until now, every page returned by a servlet has been just that: a page. Always one page with one content
type. But why think in such limited terms? Why not have a servlet return several pages, each with a different
content type, all in response to the same request? It may be hard to imagine—and sound even harder to
implement—nbut it's actually quite easy using a technique known as server push.

It's called server push because the server sends, or pushes, a sequence of response pages to the client. Compare
this to the client pull technique discussed in the last chapter, where it's left to the client to get, or pull, each page
from the server. Although the results of each technique are similar to the end user—the appearance of a
sequence of pages—the implementation details and the appropriate uses of the two techniques are quite
different.

With server push, the socket connection between the client and the server remains open until the last page has
been sent. This gives the server the ability to send page updates quickly and to control exactly when those
updates are sent. As such, server push isideal for pages that need frequent updates (such as rudimentary
animations) or pages that need server-controlled but somewhat infrequent updates (such as live status updates).
Note, however, that server push is not yet supported by Microsoft Internet Explorer, and extended use should be
avoided, asit has been found to be harmful to the server's avail able socket count.

With client pull, the socket connection is broken after every page, so responsibility for page updates falls to the
client. The client uses the Refresh header value sent by the server to determine when to perform its update, so
client pull isthe best choice for pages that require infrequent updates or have updates at known intervals.

Server push can come in handy for limited-length animations and for real-time status updates. For example,
consider aservlet that could push the four latest satellite weather maps, creating a rudimentary animation. If you
recall the PrimeSearcher servlet from Chapter 3, The Serviet Life Cycle, think about how we could use
server push to notify alimited number of clientsimmediately as the servlet finds each new prime.

Example 6-12 shows a servlet that uses server push to display a countdown to arocket launch. It begins by
sending a series of pages that count down from 10 to 1. Every page replaces the previous page. When the
countdown reaches 0, the servlet sends a picture of alaunch. It usesthe

com.oreilly._servlet.MultipartResponse utility class (shown in Example 6-13) to manage the
server push details.

Example 6-12. Countdown to a rocket launch

import java.awt.*;

import java.io.*;

import javax.servlet._*;
import javax.servlet_http.*;

import com.oreilly.servlet_MultipartResponse;
import com.oreilly.servlet.ServletUtils;
public class Countdown extends HttpServlet {
static final String LAUNCH = “/images/launch.gif”’;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
ServletOutputStream out = res.getOutputStream(); // some binary output

// Prepare a multipart response
MultipartResponse multi = new MultipartResponse(res);

// First send a countdown
for (int 1 = 10; 1 > 0; 1--) {
multi.startResponse(“text/plain™);
out.printIn(i + *“.””);
multi.endResponse();
try { Thread.sleep(1000); } catch (InterruptedException e) { }
}

// Then send the launch image
multi.startResponse(*“image/gif’);
try {
ServiletUtils.returnFile(req.getRealPath(LAUNCH), out);
}
catch (FileNotFoundException e) {
throw new ServletException(“Could not find file: ” + e._getMessage());

}

// Don"t forget to end the multipart response
multi.finish(Q;

}
}

The MultipartResponse class hides most of the nasty, dirty detailsinvolved in using server push. Feel free
to useit in your own servlets. It is easy to use, as you can see from the previous example.

First, create anew MultipartResponse object, passing it the servlet's response object.
MultipartResponse uses the response object to fetch the serviet's output stream and to set the response's
content type. Then, for each page of content, begin by calling startResponse() and passing in the content
type for that page. Send the content for the page by writing to the output stream asusual. A call to
endResponse () ends the page and flushes the content, so the client can seeit. At this point, you can add a
call to sleep(), or some other kind of delay, until the next pageisready for sending. The call to
endResponse() isoptional, asthe startResponse () method knows whether the previous response was
ended and endsiit if necessary. You should till call endResponse() if there's going to be a delay between
the time one response ends and the next begins. This lets the client display the latest response whileit iswaiting
for the next one. Finally, after al the response pages have been sent, acall to the Finish() method finishes
the multipart response and sends a code telling the client there will be no more responses.

Example 6-13 contains the code for the Mul tipartResponse class.

Example 6-13. The MultipartResponse class

public class MultipartResponse {

HttpServletResponse res;
ServiletOutputStream out;
boolean endedLastResponse = true;

public MultipartResponse(HttpServletResponse response) throws 10Exception {
// Save the response object and output stream
res = response;
out = res.getOutputStream();

// Set things up
res.setContentType(“multipart/x-mixed-replace;boundary=End’);
out.printin(Q;
out.printIn(“--End”);

}

public void startResponse(String contentType) throws 10Exception {
// End the last response 1T necessary
if (YendedLastResponse) {
endResponse();
by
// Start the next one
out.printIn(“Content-Type: ” + contentType);
out.printin(Q;
endedLastResponse = false;

}

public void endResponse() throws I0Exception {
// End the last response, and flush so the client sees the content
out.printin(Q;
out.printIn(*“--End”);

out.flush(Q);
endedLastResponse = true;

}

public void finish() throws 10Exception {
out.printIn(**--End--"");
out.flush(Q);

}

7
Session Tracking

In thischapter:

» User Authorization

* Hidden Form Fields
*URL Rewriting
*Persistent Cookies

*The Session Tracking API

HTTPisastateless protocol: it provides no way for a server to recognize that a sequence of requests are all
from the same client. Privacy advocates may consider this afeature, but it causes problems because many web
applications aren't stateless. The shopping cart application is a classic example—a client can put itemsin his
virtual cart, accumulating them until he checks out several page requests later. Other examples include sites that
offer stock brokerage services or interactive data mining.

The HTTP state problem can best be understood if you imagine an online chat forum where you are the guest of
honor. Picture dozens of chat users, all conversing with you at the same time. They are asking you questions,
responding to your questions, and generally making you wish you had taken that typing course back in high
school. Now imagine that when each participant writes to you, the chat forum doesn't tell you who's speaking!
All you seeisabunch of questions and statements mixed in with each other. In this kind of forum, the best you
can do is hold simple conversations, perhaps answering direct questions. If you try to do anything more, such as
ask someone a question in return, you won't necessarily know when the answer comes back. Thisis exactly the
HTTP state problem. The HTTP server sees only a series of requests—it needs extra help to know exactly who's
making a request.*

The solution, as you may have already guessed, isfor aclient to introduce itself as it makes each request. Each
client needs to provide a unique identifier that lets the server identify it, or it needs to give some information
that the server can use to properly handle the request. To use the chat example, a participant has to begin each
of his sentences with something like "Hi, I'm Jason, and ..." or "Hi, | just asked about your age, and" As
you'll seein this chapter, there are several ways for HTTP clients to send this introductory information with
each request.

* |f you're wondering why the HTTP server can't identify the client by the connecting machine's IP address, the answer is that
the reported | P address could possibly be the address of a proxy server or the address of a server machine that hosts multiple
users.

Thefirst half of the chapter explores the traditional session-tracking techniques used by CGI developers: user
authorization, hidden form fields, URL rewriting, and persistent cookies. The second half of the chapter
demonstrates the built-in support for session tracking in Version 2.0 of the Servlet API. This support is built on
top of the traditional techniques and it greatly simplifies the task of session tracking in your servlets.

User Authorization

One way to perform session tracking is to leverage the information that comes with user authorization. We
discussed user authorization back in Chapter 4, Retrieving Information, but, in case you've forgotten, it occurs
when aweb server restricts access to some of its resources to only those clients that log in using a recognized
username and password. After the client logsin, the username is available to a servlet through
getRemoteUser().

We can use the username to track a client session. Once a user has logged in, the browser remembers her
username and resends the name and password as the user views new pages on the site. A servlet can identify the
user through her username and thereby track her session. For example, if the user adds an item to her virtual
shopping cart, that fact can be remembered (in a shared class or external database, perhaps) and used later by
another servlet when the user goes to the checkout page.

For example, a servlet that utilizes user authorization might add an item to a user's shopping cart with code like
the following:

String name = reg.getRemoteUser();
if (name == null) {
// Explain that the server administrator should protect this page

}

else {
String[] items = reg.getParameterValues("item");
if (items = null) {
for (int 1 = 0; i1 < items.length; i++) {
addltemToCart(name, items[i]);

}
}
}

Another servlet can then retrieve the items from a user's cart with code like this;

String name = reqg.getRemoteUser();
it (name == null) {
// Explain that the server administrator should protect this page

}
else {
String[] items = getltemsFromCart(name);

}

The biggest advantage of using user authorization to perform session tracking is that it's easy to implement.
Simply tell the server to protect a set of pages, and use getRemoteUser () to identify each client. Another
advantage is that the technique works even when the user accesses your site from different machines. It al'so
works even if the user strays from your site or exits her browser before coming back.

The biggest disadvantage of user authorization isthat it requires each user to register for an account and then
log in each time she starts visiting your site. Most users will tolerate registering and logging in as a necessary
evil when they are accessing sensitive information, but it's overkill for simple session tracking. We clearly need
a better approach to support anonymous session tracking. Another small problem with user authorization is that
auser cannot simultaneously maintain more than one session at the same site.

Hidden Form Fields

One way to support anonymous session tracking is to use hidden form fields. As the name implies, these are
fields added to an HTML form that are not displayed in the client's browser. They are sent back to the server
when the form that contains them is submitted. Y ou include hidden form fields with HTML like this:

<FORM ACTION=""/servlet/MovieFinder"™ METHOD="'POST"'>

<INPUT TYPE=hidden NAME="zip" VALUE='94040">
<INPUT TYPE=hidden NAME="level' VALUE="expert'>

</FORM>

In a sense, hidden form fields define constant variables for aform. To a servlet receiving a submitted form,
thereis no difference between ahidden field and avisible field.

With hidden form fields, we can rewrite our shopping cart servlets so that users can shop anonymously until
check-out time. Example 7-1 demonstrates the technique with a servlet that displays the user's shopping cart
contents and lets the user choose to add more items or check out. An example screen for a bookworm is shown
in Figure 7-1.

Example 7-1. Session tracking using hidden form fields

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class ShoppingCartViewerHidden extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html””);
PrintWriter out = res.getWriter();

out._printIn(“<HEAD><TITLE>Current Shopping Cart ltems</TITLE></HEAD>"");
out.printIn(“<BODY>"");

// Cart items are passed In as the item parameter.
String[] items = req.getParameterValues(“item);

// Print the current cart items.
out.printIn(“You currently have the following items in your cart:
");
if (items == null) {
out.printIn(“None");
}
else {
out_printIn(“");
for (int i = 0; i1 < items.length; i++) {
out.printIn(*” + items[i]);
}
out.printin(“");
}

// Ask if the user wants to add more items or check out.
// Include the current items as hidden fields so they"ll be passed on.
out.printIn(“<FORM ACTION=\"/servilet/ShoppingCart*“ METHOD=POST>"");
if (items = null) {

for (int i = 0; i1 < items.length; i++) {

out.printIn(“<INPUT TYPE=hidden NAME=item VALUE=\"* +
items[i] + "*“>");
}

}
out_printIn(*Would you like to
");

out.printIn(“<INPUT TYPE=submit VALUE=\" Add More Items *“>");
out.printIn(“<INPUT TYPE=submit VALUE=\" Check Out *“>"");

out._printIn(“</FORM™);
out.printIn(**</BODY></HTML>"");
}
}

. Cument Shopping Cart llems - Nelscape
D Edt Mew Go Lommmicator Hel

Eik - H;.’?ad J-:E'lt sﬁm EEI- 5 ﬁm Jn

.ﬂi " Bockmake i Loeation i'r'l:r: Hfocalhost LﬂJHLL'mI'abrEI'-:u:q:-h:dfa'f'-"-ewe:’-'i:m:Javc-oSmwl-:J
TP o

You currently have the following tems in vour cart

+ Java Serviet Programming
+ Java mn 3 Mutshell
» Webmaster in a Nutshell

Would you bike to
Add Marelems | Check Out |

= [Documert. Dicne o ke P N

Figure 7-1.
Shopping cart contents

This servlet first reads the items aready in the cart using getParameterValues (““1tem’). Presumably,
the 1tem parameter values were sent to this servlet using hidden fields. The servlet then displays the current
items to the user and asks if he wants to add more items or check out. The servlet asks its question with aform
that includes hidden fields, so the form's target (the ShoppingCart servlet) receives the current items as part
of the submission.

As more and more information is associated with a client's session, it can become burdensome to passit all
using hidden form fields. In these situations, it's possible to pass on just a unique session ID that identifiesa
particular client's session. That session ID can be associated with complete information about the session that is
stored on the server.

The advantages of hidden form fields are their ubiquity and support for anonymity. Hidden fields are supported
in al the popular browsers, they demand no special server requirements, and they can be used with clients that
haven't registered or logged in. The major disadvantage with this technique, however, isthat it works only for a
sequence of dynamically generated forms. The technique breaks down immediately with static documents,
emailed documents, book-marked documents, and browser shutdowns.

URL Rewriting

URL rewriting is another way to support anonymous session tracking. With URL rewriting, every local URL
the user might click on isdynamically modified, or rewritten, to include extrainformation. The extra
information can be in the form of extra path information, added parameters, or some custom, server-specific
URL change. Due to the limited space available in rewriting a URL, the extrainformation isusualy limited to a
unique session ID. For example, the following URLs have been rewritten to pass the session ID 123:

http://server:port/servlet/Rewritten original
http://server:port/servlet/Rewritten/123 extra path information
http://server:port/servlet/Rewritten?sessionid=123 added parameter
http://server:port/servlet/Rewritten;$sessionid$123 custom change

Each rewriting technique has its advantages and disadvantages. Using extra path information works on all
servers, and it works as atarget for forms that use both the GET and POST methods. It doesn't work well if a
servlet has to use the extra path information as true path information, however. Using an added parameter works
on al serverstoo, but it fails as atarget for forms that use the POST method, and it can cause parameter naming
collisions. Using a custom, server-specific change works under all conditions for servers that support the
change. Unfortunately, it doesn't work at all for serversthat don't support the change.

Example 7-2 shows arevised version of our shopping cart viewer that uses URL rewriting in the form of extra
path information to anonymously track a shopping cart.

Example 7-2. Session tracking using URL rewriting

import java.io.*;
import javax.servlet._*;
import javax.servlet_http.*;

public class ShoppingCartViewerRewrite extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res_setContentType(“text/html”’);
PrintWriter out = res.getWriter();

out.printIn(*<HEAD><TITLE>Current Shopping Cart ltems</TITLE></HEAD>"");
out.printIn(*“<BODY>"");

// Get the current session ID, or generate one If necessary
String sessionid = reqg.getPathInfo();
if (sessionid == null) {

sessionid = generateSessionld();

}

// Cart items are associated with the session ID
String[] items = getltemsFromCart(sessionid);

// Print the current cart items.
out.printIn(*You currently have the following items in your cart:
");
if (items == null) {
out.println(“None");
}
else {
out_printin(*");
for (int i = 0; 1 < items.length; i++) {
out_printIn(*” + items[i]);
}
out_printIn(*");
}

// Ask if the user wants to add more items or check out.

// Include the session ID in the action URL.

out.printIn(**<FORM ACTION=*/servlet/ShoppingCart/* + sessionid +
*“ METHOD=POST>"") ;

out.printin(*“Would you like to
"");

out.printIn(“<INPUT TYPE=submit VALUE=\" Add More Items *>");

out.printIn(“<INPUT TYPE=submit VALUE=\" Check Out *>");

out.printIn(“</FORM>"");

// Offer a help page. Include the session ID in the URL.

out_printIn(*“For help, click <A HREF=\"/servlet/Help/” + sessionid +
“?topic=ShoppingCartViewerRewrite\’>here&l dquo;);
out.printIn(*</BODY></HTML>"");
}

private static String generateSessionld() {
String uid = new java.rmi.server.UID().toString(); // guaranteed unique
return java.net.URLEncoder.encode(uid); // encode any special chars

}

private static String[] getltemsFromCart(String sessionid) {
// Not implemented

}
}

This servlet first tries to retrieve the current session ID using getPathInfo(). If asession ID isnot
specified, it calls generateSessionld() to generate a new unique session ID using an RMI class designed
specifically for this. The session ID is used to fetch and display the current items in the cart. The ID isthen
added to the form's ACT 10N attribute, so it can be retrieved by the ShoppingCart serviet. Thesession ID is
also added to anew help URL that invokes the He I p servlet. This wasn't possible with hidden form fields
because the He I p servlet isn't the target of aform submission.

The advantages and disadvantages of URL rewriting closely match those of hidden form fields. The major
differenceisthat URL rewriting works for all dynamically created documents, such asthe He lp servlet, not
just forms. Plus, with the right server support, custom URL rewriting can even work for static documents.
Unfortunately, actually performing the URL rewriting can be tedious.

Per sistent Cookies

A fourth technigue to perform session tracking involves persistent cookies. A cookie is abit of information sent
by aweb server to abrowser that can later be read back from that browser. When a browser receives a cookie, it
saves the cookie and thereafter sends the cookie back to the server each time it accesses a page on that server,
subject to certain rules. Because a cookie's value can uniquely identify a client, cookies are often used for
session tracking.

Cookies were first introduced in Netscape Navigator. Although they were not part of the official HTTP
specification, cookies quickly became a de facto standard supported in all the popular browsers including
Netscape 0.94 Beta and up and Microsoft Internet Explorer 2 and up. Currently the HTTP Working Group of
the Internet Engineering Task Force (IETF) isin the process of making cookies an official standard as written in
RFC 2109. For more information on cookies see Netscape's Cookie Specification at
http://home.netscape.com/newsr ef/std/cookie_spec.html and RFC 2109 at http://www.ietf.org/rfc/rfc2109.txt.
Another good site is http: //www.cookiecentral .com.

Working with Cookies

Version 2.0 of the Servlet API providesthe javax.servlet.http.Cookie classfor working with
cookies. The HTTP header details for the cookies are handled by the Servlet API. Y ou create a cookie with the
Cookie() constructor:

public Cookie(String name, String value)

This creates a new cookie with an initial name and value. The rules for valid names and values are given in
Netscape's Cookie Specification and RFC 2109.

A servlet can send a cookie to the client by passing a Cooki e object to the addCookie () method of
HttpServletResponse:

public void HttpServletResponse.addCookie(Cookie cookie)

This method adds the specified cookie to the response. Additional cookies can be added with subsequent calls
to addCookie (). Because cookies are sent using HTTP headers, they should be added to the response before
you send any content. Browsers are only required to accept 20 cookies per site, 300 total per user, and they can
limit each cooki€e's size to 4096 bytes.

The code to set a cookie looks like this:

Cookie cookie = new Cookie("ID", '"123");
res.addCookie(cookie);

A servlet retrieves cookies by calling the getCookies() method of HttpServlet-Request:

public Cookie[] HttpServletRequest.getCookies()

This method returns an array of Cook i e objects that contains all the cookies sent by the browser as part of the
request or nul 1 if no cookies were sent. The code to fetch cookies looks like this:

Cookie[] cookies = req.getCookies();
if (cookies ' = null) {
for (int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName();
String value = cookies[i].getvValue(Q);

}
}

Y ou can set anumber of attributes for a cookie in addition to its name and value. The following methods are
used to set these attributes. Asyou can seein Appendix B, HTTP Serviet APl Quick Reference, thereisa
corresponding get method for each set method. The get methods are rarely used, however, because when a
cookie is sent to the server, it contains only its name, value, and version.

public void Cookie.setVersion(int v)

Sets the version of acookie. Servlets can send and receive cookies formatted to match either Netscape
persistent cookies (Version 0) or the newer, somewhat experimental, RFC 2109 cookies (Version 1).
Newly constructed cookies default to Version 0 to maximize interoperability.

public void Cookie.setDomain(String pattern)

Specifies adomain restriction pattern. A domain pattern specifies the servers that should see a cookie. By
default, cookies are returned only to the host that saved them. Specifying a domain name pattern overrides
this. The pattern must begin with adot and must contain at least two dots. A pattern matches only one entry
beyond theinitial dot. For example, *“.foo.com:"$ecs is valid and matches

www.foo.com and upload.foo.com but not

www.upload.foo.com. For details on domain patterns, see Netscape's Cookie Specification and RFC 2109.

public void Cookie.setMaxAge(int expiry)

Specifies the maximum age of the cookie in seconds before it expires. A negative value indicates the default,
that the cookie should expire when the browser exits. A zero value tells the browser to delete the cookie
immediately.

public void Cookie.setPath(String uri)

Specifies a path for the cookie, which is the subset of URIsto which a cookie should be sent. By defaullt,
cookies are sent to the page that set the cookie and to all the pagesin that directory or under that directory.
For example, if /serviet/CookieMonster sets a cookie, the default path is “/serviet”. That path
indicates the cookie should be sent to /serviet/Elmo and to /serviet/subdir/BigBird—~but not to the
/Oscar.html servlet alias or to any CGI programs under /cgi-bin. A path set to ““/”” causes a cookie to be
sent to all the pages on aserver. A cookie's path must be such that it includes the servlet that set the cookie.

public void Cookie.setSecure(boolean flag
Indicates whether the cookie should be sent only over a secure channel, such as SSL. By default, its value
isfalse.

public void Cookie.setComment(String comment)
Sets the comment field of the cookie. A comment describes the intended purpose of a cookie. Web
browsers may choose to display this text to the user. Comments are not supported by Version 0 cookies.

public void Cookie.setValue(String newValue)

Assigns anew value to a cookie. With Version O cookies, values should not contain the following:
whitespace, brackets and parentheses, equals signs, commas, double quotes, slashes, question marks, at
signs, colons, and semicolons. Empty values may not behave the same way on all browsers.

Shopping Using Persistent Cookies

Example 7-3 shows a version of our shopping cart viewer that has been modified to maintain the shopping cart
using persistent cookies.

Example 7-3. Session tracking using persistent cookies

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class ShoppingCartViewerCookie extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html””);

PrintWriter out = res.getWriter();

// Get the current session ID by searching the received cookies.
String sessionid = null;
Cookie[] cookies = req.getCookies();
if (cookies = null) {
for (int i = 0; i < cookies.length; i++) {
if (cookies[i].getName().equals(“sessionid”)) {
sessionid = cookies[i]-getvalue();
break;
}
}
s

// 1T the session ID wasn"t sent, generate one.
// Then be sure to send it to the client with the response.
if (sessionid == null) {

sessionid = generateSessionld();

Cookie ¢ = new Cookie(“sessionid”, sessionid);

res.addCookie(c);

}

out.printIn(*<HEAD><TITLE>Current Shopping Cart ltems</TITLE></HEAD>"");
out.printIn(*“<BODY>"");

// Cart items are associated with the session ID
String[] items = getltemsFromCart(sessionid);

// Print the current cart items.
out.printIn(*You currently have the following items 1in your cart:
");
if (items == null) {
out.println(“None");
}
else {
out_printin(*");
for (int i = 0; 1 < items.length; i++) {
out_printIn(*” + items[i]);
}
out_printIn(*");
}

// Ask if they want to add more items or check out.
out.printIn(*<FORM ACTION=*/servilet/ShoppingCart*“ METHOD=POST>"");
out.printin(*“Would you like to
"");

out.printIn(“<INPUT TYPE=submit VALUE=\" Add More Items *>");
out.printIn(“<INPUT TYPE=submit VALUE=\" Check Out *>"");
out.printIn(“</FORM>"");

// Offer a help page.
out.printIn(*“For help, click <A HREF=\"/servlet/Help*“ +
7’?topic=ShoppingCartViewerCookie*“>here"");
out.printIn(*“</BODY></HTML>");
}

private static String generateSessionld() {
String uid = new java.rmi.server.UID().toString(); // guaranteed unique
return java.net.URLEncoder.encode(uid); // encode any special chars

}

private static String[] getltemsFromCart(String sessionid) {
// Not implemented

}
}

This servlet first tries to fetch the client's session ID by iterating through the cookies it received as part of the
request. If no cookie contains a session ID, the servlet generates a new one using generateSessionld()
and adds a cookie containing the new session ID to the response. The rest of this servlet matches the URL
rewriting version, except that this version doesn't perform any rewriting.

Persistent cookies offer an elegant, efficient, easy way to implement session tracking. Cookies provide as
automatic an introduction for each request as you could hope for. For each request, a cookie can automatically
provide a client's session ID or perhaps alist of the client's preferences. In addition, the ability to customize
cookies gives them extra power and versatility.

The biggest problem with cookiesis that browsers don't always accept cookies. Sometimes this is because the
browser doesn't support cookies. More often, it's because the user has specifically configured the browser to
refuse cookies (out of privacy concerns, perhaps). If any of your clients might not accept cookies, you have to
fall back to the solutions discussed earlier in this chapter.

The Session Tracking API

Fortunately for us servlet developers, it's not always necessary for a servlet to manage its own sessions using
the techniques we have just discussed. The Servlet API provides several methods and classes specifically
designed to handle session tracking on behalf of servlets. In other words, servlets have built in session
tracking.=

* Yes, we do fed alittle like the third grade teacher who taught you al the steps of long division, only to reveal later how you
could use a calculator to do the same thing. But we believe, as your teacher probably did, that you better understand the concepts
after first learning the traditional approach.

The Session Tracking API, aswe call the portion of the Servlet APl devoted to session tracking, should be
supported in any web server that supports serviets. The level of support, however, depends on the server. The
minimal implementation provided by the servlet classesin JSDK 2.0 manages sessions through the use of
persistent cookies. A server can build on this base to provide additional features and capabilities. For example,
the Java Web Server has the ability to revert to using URL rewriting when cookies fail, and it allows session
objects to be written to the server's disk as memory fills up or when the server shuts down. (The items you place
in the session need to implement the Serial 1zabl e interface to take advantage of this option.) See your
server's documentation for details pertaining to your server. The rest of this section describe the lowest-
common-denominator functionality provided by Version 2.0 of the Serviet API.

Session-Tracking Basics

Session tracking is wonderfully elegant. Every user of asiteis associated with a
Javax.servlet.http.HttpSession object that servlets can use to store or retrieve information about
that user. You can save any set of arbitrary Java objects in a session object. For example, a user's session object
provides a convenient location for a servlet to store the user's shopping cart contents or, as you'll see in Chapter
9, Database Connectivity, the user's database connection.

A servlet usesits request object's getSession() method to retrieve the current HttpSession object:

public HttpSession HttpServletRequest.getSession(boolean create)

This method returns the current session associated with the user making the request. If the user has no current
valid session, this method creates one if create istrue or returnsnul l if create isfalse. To ensure the
session is properly maintained, this method must be called at least once before any output is written to the
response.

Y ou can add datato an HttpSession object with the putValue () method:

public void HttpSession.putValue(String name, Object value)

This method binds the specified object value under the specified name. Any existing binding with the same
name is replaced. To retrieve an object from a session, use getValue():

public Object HttpSession.getValue(String name

This methods returns the object bound under the specified name or nul I if thereis no binding. You can also
get the names of al of the objects bound to a session with getValueNames():

public String[] HttpSession.getValueNames()

This method returns an array that contains the names of all objects bound to this session or an empty (zero
length) array if there are no bindings. Finally, you can remove an object from a session with
removeValue():

public void HttpSession.removeValue(String name)

This method removes the object bound to the specified name or does nothing if there is no binding. Each of
these methods can throw a java. lang. I l legal StateException if the session being accessed is
invalid (we'll discussinvalid sessions in an upcoming section).

A Hit Count Using Session Tracking

Example 7-4 shows a simple servlet that uses session tracking to count the number of times a client has
accessed it, as shown in Figure 7-2. The servlet also displays al the bindings for the current session, just
because it can.

Example 7-4. Session tracking a hit count

import java.io.*;
import javax.servlet._*;
import javax.servlet_http.*;

public class SessionTracker extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res._setContentType(“text/html”’);
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession(true);

// Increment the hit count for this page. The value is saved
// in this client"s session under the name “tracker.count”.
Integer count = (Integer)session.getValue(“tracker.count™);
if (count == null)

count = new Integer(l);
else

count = new Integer(count.intvValue() + 1);
session.putValue(“tracker._.count”, count);

out.printIn(*“<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>"");
out.printIn(*“*<BODY><H1>Session Tracking Demo</H1>);

// Display the hit count for this page
out.printIn(*You®ve visited this page ” + count +

((count.intvalue() == 1) ? “ time.” : “ times.”);
out.printIn(*<pP>");

out.printIn(*“<H2>Here is your session data:</H2>");
String[] names = session.getValueNames();
for (int i = 0; 1 < names.length; i++) {
out.printIn(names[i] + “: 7 + session.getValue(names[i]) + “
);

}
out.printIn(**</BODY></HTML>"");
}
}

B SR Rﬁﬂﬂ HW’IB Slﬂh Guhja Fﬂm g
i ub” Bod-:maﬂs& a:;g-r,:, PR n:xuq,.

T

Figure 7-2.
Counting client visits

This servlet first getsthe HttpSession object associated with the current client. By passing true to
getSession(), it asksfor asession to be created if necessary. The servlet then gets the Integer object
bound to the name ““tracker . count”. If thereis no such object, the servlet starts a new count. Otherwise, it
replaces the Integer with anew Integer whose value has been incremented by one. Finally, the serviet
displays the current count and al the current name/value pairs in the session.

The Session Life Cycle

Sessions do not last forever. A session either expires automatically, after a set time of inactivity (for the Java
Web Server the default is 30 minutes), or manually, when it is explicitly invalidated by a servlet. When a
session expires (or isinvalidated), the HttpSession object and the data values it contains are removed from
the system.

Beware that any information saved in a user's session object is lost when the session isinvalidated. If you need
to retain information beyond that time, you should keep it in an external location (such as a database) and store
a handle to the external datain the session object (or your own persistant cookie).

There are several methods involved in managing the session life cycle:

public boolean HttpSession.isNew()

This method returns whether the session is new. A session is considered new if it has been created by the
server but the client has not yet acknowledged joining the session. For example, if a server supports only
cookie-based sessions and a client has completely disabled the use of cookies, callsto the
getSession() method of HttpServletRequest aways return new sessions.

public void HttpSession.invalidate()
This method causes the session to be immediately invalidated. All objects stored in the session are
unbound.

public long HttpSession.getCreationTime()
This method returns the time at which the session was created, as a 1ong value that represents the number
of milliseconds since the epoch (midnight, January 1, 1970, GMT).

public long HttpSession.getLastAccessedTime()
This method returns the time at which the client last sent a request associated with this session, asa long
value that represents the number of milliseconds since the epoch.

Each of these methods can throw a Java. lang. 1l1legalStateException if the session being
accessed isinvalid.

Manually Invalidating a Stale Session

To demonstrate these methods, Example 7-5 shows a servlet that manually invalidates a session if it is more
than aday old or has been inactive for more than an hour.

Example 7-5. Invalidating a stale session

import java.io.*;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

public class Manuallnvalidate extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res. setContentType (“text/html™);
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession(true);

// Invalidate the session if it"s more than a day old or has been

// inactive for more than an hour.

if (Isession.isNew()) { 7/ skip new sessions
Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000);
Date hourAgo new Date(System. currentTimeMillis() - 60*60*1000);
Date created new Date(session.getCreationTime());
Date accessed = new Date(session.getlLastAccessedTime());

iT (created.before(dayAgo) ;:; accessed.before(hourAgo)) {
session.invalidate();
session = req.getSession(true); // get a new session
}
}

// Continue processing..

}
}

Putting Sessionsin Context

So, how does aweb server implement session tracking? When a user first accesses the site, that user is assigned
anew HttpSession object and aunique session ID. The session ID identifies the user and is used to match
the user with the HttpSession object in subsequent requests. Behind the scenes, the session ID isusually
saved on the client in acookie or sent as part of arewritten URL. Other implementations, such as using SSL
(Secure Sockets Layer) sessions, are also possible.

A servlet can discover asession's ID with the get1d() method:

public String HttpSession. getld()

This method returns the unique String identifier assigned to this session. For example, a Java Web Server ID
might be something like HTO4AD1QAAAAABQDGPM5QAAA. The method throws an
I1legalStateException if thesessionisinvalid.

All valid sessions are grouped together in a HttpSessionContext object. Theoretically, a server may have
multiple session contexts, although in practice most have just one. A reference to the server's
HttpSessionContext isavailable viaany session object's getSessionContext() method:

public HttpSessionContext HttpSession. getSessionContext()

This method returns the context in which the session is bound. It throwsan 11 legalStateException if
the sessionisinvalid.

Once you have an HttpSessionContext, it's possible to use it to examine al the currently valid sessions
with the following two methods:

public Enumeration HttpSessionContext. getlds()
public HttpSession HttpSessionContext.getSession(String sessionld)

The getlds() method returns an Enumeration that contains the session IDsfor al the currently valid
sessionsin this context or an empty Enumeration if there are no valid sessions. getSession() returnsthe
session associated with the given session ID. The session IDs returned by getlds () should be held as a
server secret because any client with knowledge of another client's session ID can, with aforged cookie or

URL, join the second client's session.

Manually Invalidating All Stale Sessions

Example 7-6 demonstrates the use of these methods with a servlet that manually invalidates all the sessions on
the server that are more than a day old or have been inactive more than an hour.

Example 7-6. Invalidating all stale sessions

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ManualInvalidateScan extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType (“text/plain™);
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession dummySession = req.getSession(true);

// Use the session to get the session context
HttpSessionContext context = dummySession.getSessionContext();

// Use the session context to get a list of session IDs
Enumeration ids = context.getlds();

// lterate over the session IDs checking for stale sessions
while (ids.hasMoreElements()) {
String id = (String) ids.nextElement();
out.printIn(“Checking ” + id + “.”);
HttpSession session = context.getSession(id);

// Invalidate the session if it"s more than a day old or has been
// inactive for more than an hour.

Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000);
Date hourAgo new Date(System.currentTimeMillis() - 60*60*1000);
Date created new Date(session.getCreationTime());

Date accessed = new Date(session.getlLastAccessedTime());

if (created.before(dayAgo)) {
out.printIn(*“More than a day old, invalidated!”);
session.invalidate();

}

else if (accessed.before(hourAgo)) {
out.printIn(*“More than an hour inactive, invalidated!”);
session.invalidate();

}

else {
out.printIn(“still valid.”);

}
out.printin(Q;

A servlet that manually invalidates sessions according to arbitrary rulesis useful on servers with limited session
expiration capabilities.

Storing Session | Ds

Every server that supports servlets should implement at |east cookie-based session tracking, where the session
ID is saved on the client in a persistent cookie. Many web servers also support session tracking based on URL
rewriting, as afallback for browsers that don't accept cookies. This requires additional help from servlets.

For a servlet to support session tracking via URL rewriting, it has to rewrite every local URL before sending it
to the client. The Servlet API provides two methods to perform this encoding:

public String HttpServletResponse.encodeUrl(String url)

This method encodes (rewrites) the specified URL to include the session ID and returns the new URL, or,
if encoding is not needed or not supported, it leaves the URL unchanged. The rules used to decide when
and how to encode a URL are server-specific. All URLs emitted by a servlet should be run through this
method.

public String HttpServletResponse.encodeRedirectUrl(String url)

This method encodes (rewrites) the specified URL to include the session ID and returns the new URL, or,
if encoding is not needed or not supported, it leaves the URL unchanged. The rules used to decide when
and how to encode a URL are server-specific. This method may use different rules than encodeUr ().
All URL s passed to the sendRed i rect () method of HttpServietResponse should be run through
this method.

Note that encodeUr 1 () and encodeRedirectedUr 1 () employ adifferent capitalization scheme than
getRequestURL() and getRequestURI (). The following code snippet shows a servlet writing alink to
itself that is encoded to contain the current session ID:

out.printIn("'Click <A HREF=\" " +
res.encodeUrl(req.getRequestURI()) + "\'">here");
out.printin(’'to reload this page.");

On serversthat don't support URL rewriting or have URL rewriting turned off, the resulting URL remains
unchanged. Now here's a code snippet that shows a servlet redirecting the user to a URL encoded to contain the
session ID:

res.sendRedirect(res.encodeRedirectUrl(*"/servliet/NewServiet'™));

On serversthat don't support URL rewriting or have URL rewriting turned off, the resulting URL remains
unchanged.

A servlet can detect whether the session ID used to identify the current HttpSession object came from a
cookie or from an encoded URL using the i sRequestedSessionldFromCookie() and
isRequestedSessionldFromuUrl () methods:

public boolean HttpServletRequest. isRequestedSessionldFromCookie()
public boolean HttpServletRequest. isRequestedSessionldFromUrl()

Determining if the session ID came from another source, such as an SSL session, is not currently possible.

A requested session ID may not match the ID of the session returned by the getSession() method, such as
when the session ID isinvalid. A servlet can determine whether arequested session ID isvalid using
i1sRequestedSessionldvalid():

public boolean HttpServletRequest. isRequestedSessionldvalid()

Session Snoop

The SessionSnoop servlet shown in Example 7-7 uses most of the methods discussed thus far in the chapter
to snoop information about the current session and other sessions on the server. Figure 7-3 shows a sampl e of
its output.

Example 7-7. Shooping session information

import java.io.*;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

public class SessionSnoop extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException,
res.setContentType (“text/html™);
PrintWriter out = res.getWriter();

10Exception,

// Get the current session object, create one if necessary

HttpSession session = req.getSession (true);

// Increment the hit count for this page. The value

is saved

// in this client®s session under the name ‘“snoop.count”.
Integer count = (Integer)session.getValue(“snoop.count™);

if (count == null)

count = new Integer(l);
else

count = new Integer(count.intvValue() + 1);
session.putValue(*snoop.count”, count);

out._printIn(“<HTML><HEAD><TITLE>SessionSnoop</TITLE></HEAD>"");

out.printIn(**<BODY><H1>Session Snoop</H1>"");

// Display the hit count for this page
out.printIn(*You®ve visited this page ” + count +

((count.intvalue() == 1) ? “ time.” : “ times.”));
out.printIn(*<pP>"");
out.printIn(**<H3>Here is your saved session data:</H3>");
String[] names = session.getValueNames();

for

(int 1 = 0; 1 < names.length; i++) {

I10Exception {

out.printIn(names[i] + “: 7 + session.getValue(names[i]) + “
"");

¥

out.
out.
out
out.
out.
out.
out.

out
out.

out.

printIn(**<H3>Here are some vital stats on your session:</H3>);

printIn(*Session id: 7 + session.getld() + “
");

-printIn(**New session: ” + session.isNew() + “
");

printIn(*“Creation time: ” + session.getCreationTime());

printIn(*<1>(" + new Date(session.getCreationTime()) + “)</I1>
);
printIn(*Last access time: ” + session.getlLastAccessedTime());

printIn(*<I>(" + new Date(session.getLastAccessedTime()) +

“I</1>
");

-printIn(**Requested session ID from cookie: ” +

req. isRequestedSessionldFromCookie() + “
"");
printIn(**Requested session ID from URL: ” +

req. isRequestedSessionldFromUrl () + “
"");
printIn(**Requested session ID valid: ” +

req. isRequestedSessionldvalid() + “
");

out.printIn(**<H3>Here are all the current session IDs”);
out.printIn(*and the times they“ve hit this page:</H3>");
HttpSessionContext context = session.getSessionContext();

Enumeration ids = context.getlds();

while (ids_hasMoreElements()) {
String id = (String)ids.nextElement();
out.printIn(id + *“: 7);
HttpSession foreignSession = context.getSession(id);
Integer foreignCount =

(Integer)foreignSession.getValue(“snoop.count™;
it (foreignCount == null)

out.printin(0);
else

out_printiIn(foreignCount._toString());
out.printIn(**
");

}

out.printIn(“<H3>Test URL Rewriting</H3>");
out.printIn(*Click <A HREF=*" +

res.encodeUrl(req.getRequestURI()) + “\”>here");
out.printIn(“to test that session tracking works via URL™);
out.printIn(*“rewriting even when cookies aren"t supported.”);

out.printIn(*</BODY></HTML>"");

This servlet begins with the same code asthe SessionTracker servlet shown in Example 7-4. Then it
continues on to display the current session's ID, whether it is a new session, the session's creation time, and the
session's last access time. Next the servlet displays whether the requested session ID (if thereis one) came from
acookie or aURL and whether the requested ID isvalid. Then the servlet iterates over all the currently valid
session IDs, displaying the number of times they have visited this page. Finally, the servlet prints an encoded
URL that can be used to reload this page to test that URL rewriting works even when cookies aren't supported.

Edt Vew Go_Communiator
4 €3 @ 2 B S W

% Back Froward Reload Home Seach Guide Prnt Securty Stop

Here are some vital stats on your session:

Session id: IRIZEQY AAAAARQDGEMSEQAAA d
ey sesgion: false i
Coreation time: $94423220501 (Wed Afay 06 702,00 POT 19%37)

L st access time: 324499992305 (Wed May 06 S7.33:52 BT 1093)
Fretuested session 1D from cookie: true

Requested session ID from UURL.: falze

Requested session 10 valid: true

Here are all the current session IDs and the times they*ve hic this page:

IRF20WY AASAADODGEMEQAAA: 4
[RIZEQYAAAAABQDGPMSQAAA: &
IRGRBOAAAAAFODGOMSOAMAA: 7

Test URL Rewriting

Click beze to test that session tracking works wia URL rewriting when cockies aren't supported, _

 H G e a® 2|

Figure 7-3.
Example output from SessionSnoop

Note that installing this servlet is a security risk, asit exposes the server's session | Ds—these may be used by
unscrupulous clients to join other clients sessions. The SessionServlet that isinstaled by default with the
JavaWeb Server 1.1.x has similar behavior.

Session Binding Events

Some objects may wish to perform an action when they are bound or unbound from a session. For example, a
database connection may begin atransaction when bound to a session and end the transaction when unbound.
Any object that implementsthe Javax.servlet._http.HttpSessionBindingListener interfaceis
notified when it is bound or unbound from a session. The interface declares two methods, valueBound() and
valueUnbound(), that must be implemented:

public void HttpSessionBindingListener.valueBound(
HttpSessionBindingEvent event)

public void HttpSessionBindingListener.valueUnbound(
HttpSessionBindingEvent event)

The valueBound () method is called when the listener is bound into a session, and valueUnbound() is
called when the listener is unbound from a session.

The Javax.servilet._http.HttpSessionBindingEvent argument provides access to the name under
which the object is being bound (or unbound) with the getName () method:

public String HttpSessionBindingEvent.getName()

The HttpSessionBindingEvent object aso provides access to the HttpSession object to which the
listener is being bound (or unbound) with getSession():

public HttpSession HttpSessionBindingEvent.getSession()

Example 7-8 demonstrates the use of HttpSessionBindingListener and
HttpSessionBindingEvent with alistener that logs when it is bound and unbound from a session.

Example 7-8. Tracking session binding events

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class SessionBindings extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary
HttpSession session = req.getSession(true);

// Add a CustomBindingListener
session.putValue(*“bindings. listener”,
new CustomBindingListener(getServletContext()));

out.printIn(“This page intentionally left blank™);

}
}

class CustomBindingListener implements HttpSessionBindingListener {

// Save a ServletContext to be used for its log() method
ServletContext context;

public CustomBindingListener(ServletContext context) {
this.context = context;

}

public void valueBound(HttpSessionBindingEvent event) {
context.log(““BOUND as ” + event.getName() +
“ to 7 + event.getSession().getld());

}

public void valueUnbound(HttpSessionBindingEvent event) {
context.log(““UNBOUND as ” + event.getName() +
“ from ” + event.getSession() .getld());

Each time aCustomBindingListener object isbound to asession, its valueBound() method is called
and the event islogged. Each time it is unbound from a session, its valueUnbound () method is called so that
event too islogged. We can observe the sequence of events by looking at the server's event log.

Let's assume that this servlet is called once, reloaded 30 seconds later, and not called again for at least a half
hour. The event log would look something like this:

[Tue Jan 27 01:46:48 PST 1998]

BOUND as bindings.listener to INWBUJIAAAAAHQDGPM5QAAA
[Tue Jan 27 01:47:18 PST 1998]

UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA
[Tue Jan 27 01:47:18 PST 1998]

BOUND as bindings.listener to INWBUJIAAAAAHQDGPM5QAAA
[Tue Jan 27 02:17:18 PST 1998]

UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA

The first entry occurs during the first page request, when the listener is bound to the new session. The second
and third entries occur during the reload, as the listener is unbound and rebound during the same putValue()
cal. The fourth entry occurs a half hour later, when the session expires and is invalidated.

Shopping Using Session Tracking

Let's end this chapter with alook at how remarkably simple our shopping cart viewer servlet becomes when we
use session tracking. Example 7-9 shows the viewer saving each of the cart'sitems in the user's session under
the name ““cart. items”.

Example 7-9. Using the session tracking API

import java.io.*;
import javax.servlet._*;
import javax.servlet_http.*;

public class ShoppingCartViewerSession extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res._setContentType(“text/html”’);
PrintWriter out = res.getWriter();

// Get the current session object, create one if necessary.
HttpSession session = req.getSession(true);

// Cart items are maintained in the session object.
String[] items = (String[])session.getValue(“cart.items”);

out.printIn(*“<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>"");
out.printIn(*“<BODY><H1>Session Tracking Demo</H1>");

// Print the current cart items.
out.printIn(*You currently have the following items in your cart:
");
if (items == null) {
out.println(“None");
}
else {
out_printin(*");
for (int i = 0; 1 < items.length; i++) {
out.printIn(“" + items[i]);
}
out_printIn(*");
}

// Ask if they want to add more items or check out.
out.printIn(*<FORM ACTION=*/servilet/ShoppingCart\” METHOD=POST>"");
out.printin(*“Would you like to
"");

out.printIn(“<INPUT TYPE=submit VALUE=\" Add More Items *>");
out.printIn(“<INPUT TYPE=submit VALUE=\" Check Out *>"");
out.printIn(“</FORM>"");

// Offer a help page. Encode it as necessary.

out.printIn(*For help, click <A HREF=*" +
res.encodeUrl (*/servlet/Help?topic=ShoppingCartViewer’™) +
“N”>here"");

out.printIn(*</BODY></HTML>"");

8
Security

In thischapter:

* HTTP Authentication

* Digital Certificates

* Secure Sockets Layer (SSL)
* Running Servlets Securely

So far we have imagined that our servlets exist in a perfect world, where everyone is trustworthy and nobody
locks their doors at night. Sadly, that's a 1950s fantasy world: the truth is that the Internet has its share of
fiendish rogues. As companies place more and more emphasis on online commerce and begin to load their
Intranets with sensitive information, security has become one of the most important topics in web programming.

Security isthe science of keeping sensitive information in the hands of authorized users. On the web, this boils
down to three important issues:

Authentication
Being able to verify the identities of the partiesinvolved

Confidentiality
Ensuring that only the parties involved can understand the communication

Integrity
Being able to verify that the content of the communication is not changed during transmission

A client wants to be sure that it is talking to alegitimate server (authentication), and it also want to be sure that
any information it transmits, such as credit card numbers, is not subject to eavesdropping (confidentiality). The
server is aso concerned with authentication and confidentiality. If acompany is selling a service or providing
sensitive information to its own employees, it has a vested interest in making sure that nobody but an authorized
user can access it. And both sides need integrity to make sure that whatever information they send getsto the
other party unaltered.

Authentication, confidentiality, and integrity are all linked by digital certificate technology. Digital certificates
allow web servers and clients to use advanced cryp tographic techniques to handle identification and encryption
in a secure manner. Thanks to Java's built-in support for digital certificates, servlets are an excellent platform
for deploying secure web applications that use digital certificate technology. We'll be taking a closer look at
them later.

Security is also about making sure that crackers can't gain access to the sensitive data on your web server.
Because Java was designed from the ground up as a secure, network-oriented language, it is possible to leverage
the built-in security features and make sure that server add-ons from third parties are almost as safe as the ones
you write yourself.

This chapter introduces the basics of web security and digital certificate technology in the context of using
servlets. It also discusses how to maintain the security of your web server when running servlets from untrusted
third-parties. You'll notice that this chapter takes a higher-level approach and shows fewer examples than
previous chapters. The reason is that many of the topicsin this chapter require web server-specific
administration to implement. The servlets just tag along for the ride.

Finally, a note of caution. We are just a couple of servlet programmers, and we disclaim all responsibility for
any security-related incidents that might result from following our advice. For a much more complete overview

of web security technology and procedures, see Web Security & Commerce by Simson Garfinkel with Gene
Spafford (O'Reilly). Of course, they probably won't accept responsibility either.

HTTP Authentication

Aswe discussed briefly in Chapter 4, Retrieving Information, the HT TP protocol provides built-in
authentication support—called basic authentication—based on a simple challenge/response, username/password
model. With this technique, the web server maintains a database of usernames and passwords and identifies
certain resources (files, directories, servlets, etc.) as protected. When a user requests access to a protected
resource, the server responds with a request for the client's username and password. At this point, the browser
usually pops up a dialog box where the user enters the information, and that input is sent back to the server as
part of a second authorized request. If the submitted username and password match the information in the
server's database, access is granted. The whole authentication process is handled by the server itself.

Basic authentication is very weak. It provides no confidentiality, no integrity, and only the most basic
authentication. The problem is that passwords are transmitted over the network, thinly disguised by awell-
known and easily reversed Base64 encoding. Anyone monitoring the TCP/IP data stream has full and
immediate access to all the information being exchanged, including the username and password. Plus,
passwords are often stored on the server in clear text, making them vulnerable to anyone cracking into the
server'sfile system. Whileit's certainly better than nothing, sites that rely exclusively on basic authentication
cannot be considered really secure.

Digest authentication is a variation on the basic authentication scheme. Instead of transmitting a password over
the network directly, adigest of the password is used instead. The digest is produced by taking a hash (using the
very secure MD5 encryption algorithm) of the username, password, URI, HTTP request method, and a
randomly generated "nonce" value provided by the server. Both sides of the transaction know the password and
use it to compute digests. If the digests match, access is granted. Transactions are thus somewhat more secure
than they would be otherwise because digests are valid for only a single URI request and nonce value. The
server, however, must still maintain a database of the original passwords. And, as of thiswriting, digest
authentication is not supported by very many browsers.

The moral of the story isthat HTTP authentication can be useful in low-security environments. For example, a
site that charges for access to content—say, an online newspaper—is more concerned with ease of use and
administration than lock-tight security, so HTTP authentication is often sufficient.

Retrieving Authentication Information

A servlet can retrieve information about the server's authentication using two methods introduced in Chapter 4:
getRemoteUser () and getAuthType(). Example 8-1 shows asimple servlet that tells the client its name
and what kind of authentication has been performed (basic, digest, or some alternative). To seethis servlet in
action, you should install it in your web server and protect it with a basic or digest security scheme. Because
web server implementations vary, you'll need to check your server documentation for the specifics on how to
set this up.

Example 8-2: Shooping the authorization information

import java.io.*;
import javax.servlet.*;
import javax.servlet_http.*;

public class AuthorizationSnoop extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType("text/html'");
PrintWriter out = res.getWriter();

out.printIn(""<HTML><HEAD><TITLE>Authorization Snoop</TITLE></HEAD><BODY>'"");
out.printIn(’'<H1>This is a password protected resource</H1>");
out.printin("'<PRE>");

out_printIn('User Name: " + req.getRemoteUser());
out.printIn("'Authorization Type: " + req.getAuthType());
out.printin(’'</PRE>");

out.printIn(’'</BODY></HTML>"");

}
}

Custom Authorization

Normally, client authentication is handled by the web server. The server administrator tells the server which
resources are to be restricted to which users, and information about those users (such as their passwords) is
somehow made available to the server.

Thisis often good enough, but sometimes the desired security policy cannot be implemented by the server.
Maybe the user list needs to be stored in aformat that is not readable by the server. Or maybe you want any
username to be allowed, aslong asit is given with the appropriate "skeleton key" password. To handle these
situations, we can use servlets. A servlet can be implemented so that it learns about users from a specially
formatted file or arelational database; it can also be written to enforce any security policy you like. Such a
servlet can even add, remove, or manipulate user entries—something that isn't supported directly in the Servlet
API, except through proprietary server extensions.

A servlet uses status codes and HT TP headers to manage its own security policy. The servlet receives encoded
authorization credentials in the Authorization header. If it chooses to deny those credentials, it does so by
sending the SC_UNAUTHOR 1 ZED status code and a WVW-Authenticate header that describes the desired
credentials. A web server normally handles these details without involving its servlets, but for aservlet to do its
own authorization, it must handle these detailsitself, while the server istold not to restrict access to the servlet.

The Authorization header, if sent by the client, contains the client's username and password. With the
basic authorization scheme, the Author ization header contains the string of ““username :password”
encoded in Base64. For example, the username of “webmaster’” with the password “try2gueSS” is sent
inan Authorization header with the value:

* Sadly, getAuthType() andgetRemoteUser () arethe only security-related methods supported in the core
Servlet API. Thisis because different web servers implement different types of security, making a server-independent AP
difficult to develop. Individual servers and servlet implementations are free to provide their own customized user management
routines. The Java Web Server, for example, provides servlets with programmatic access to its security and authentication

systems using classesinthe COM . SUN . SE€rVer . * packages. Servlets written to these APIs are, of course, non-portable.

BASIC d2VibWFzdGVyOnRyeTJIndWVTUw

If aservlet needsto, it can send an WW-Authenticate header to tell the client the authorization scheme
and the realm against which users will be verified. A realm is simply a collection of user accounts and protected
resources. For example, to tell the client to use basic authorization for the realm “Admin’, the WWW-
Authenticate header is.

BASIC realm="Admin"

Example 8-2 shows a servlet that performs custom authorization, receiving an Authorization header and
sending the SC_UNAUTHOR I ZED status code and WW-Authenticate header when necessary. The servlet
restricts access to its "top-secret stuff” to those users (and passwords) it recognizesin its user list. For this
example, thelist is kept in asimple Hashtab 1 e and its contents are hard-coded; this would, of course, be
replaced with some other mechanism, such as an external relational database, for a production servlet.

To retrieve the Base64-encoded username and password, the servlet needs to use a Base64 decoder.
Fortunately, there are several freely available decoders. For this servlet, we have chosen to use the
sun.misc.BASE64Decoder class that accompanies the JDK. Being in the sun . * hierarchy meansit's
unsupported and subject to change, but it also meansit's probably already on your system. Y ou can find the
details of Base64 encoding in RFC 1521 at http: //www.ietf.org/rfc/rfc1521.txt.

Example 8-2. Security in a serviet

import java.io.*;

import java.util_*;

import javax.servlet.*;

import javax.servlet_http.*;

public class CustomAuth extends HttpServilet {

Hashtable users = new Hashtable();

public void init(ServletConfig config) throws ServletException {
super.init(config);

users.put(“Wallace:cheese”, “allowed™);
users.put(“Gromit:sheepnapper”, “allowed™);
users.put(“Penguin:evil”, “allowed™);

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
PrintWriter out = res.getWriter();

// Get Authorization header
String auth = reqg.getHeader(*'Authorization™);

// Do we allow that user?
if (lallowUser(auth)) {

// Not allowed, so report he"s unauthorized

res.setHeader (""WWW-Authenticate'™, "BASIC realm=\"users\'"");
res.sendError(res.SC_UNAUTHORIZED);

// Could offer to add him to the allowed user list

}

else {
// Allowed, so show him the secret stuff
out_printIn(*'Top-secret stuff');

}
}

// This method checks the user information sent in the Authorization
// header against the database of users maintained in the users Hashtable.
protected boolean allowUser(String auth) throws I0Exception {

if (auth == null) return false; // no auth

if (Tauth.toUpperCase().startsWith(*'BASIC ™))
return false; // we only do BASIC

// Get encoded user and password, comes after "BASIC ™
String userpasskEncoded = auth_substring(6);

// Decode it, using any base 64 decoder
sun.misc.BASE64Decoder dec = new sun.misc.BASE64Decoder();
String userpassDecoded = new String (dec.decodeBuffer(userpasskEncoded));

// Check our user list to see if that user and password are "allowed"
if (Callowed".equals(users.get(userpassDecoded)))

return true;
else

return false;

}
}

Although the web server istold to grant any client accessto this servlet, the servlet sends its top-secret output
only to those users it recognizes. With afew modifications, it could alow any user with atrusted skeleton
password. Or, like anonymous FTP, it could alow the “anonymous’ username with any email address given
as the password.

Custom authorization can be used for more than restricting access to a single servlet. Were we to add thislogic
to our ViewFi le servlet, we could implement a custom access policy for an entire set of files. Were we to
create a special subclass of HttpServlet and add thislogic to that, we could easily restrict accessto every
servlet derived from that subclass. Our point isthis: with custom authorization, the security policy limitations of
the server do not limit the possible security policy implementations of its servlets.

Form-based Custom Authorization

Servlets can aso perform custom authorization without relying on HTTP authorization, by using HTML forms
and session tracking instead. It's a bit more effort to give users awell-designed, descriptive, and friendly login

page. For example, imagine you're developing an online banking site. Would you rather let the browser present
ageneric prompt for username and password or provide your customers with a custom login form that politely

asks for specific banking credentials, as shown in Figure 8-1?

File Edit View Go Communicator

aaama.ﬁ'aaﬁ

oy Reload Home Seach Gude Pt Saerty St S

EvercWitere Online Banding

Credit Union

Welcome! Pleass enter your User 1D
mdSmm‘yChde to .ogm.

User I |

Securlty Code: [REE

Figure 8-1.
An online banking login screen

Many banks and other online services have chosen to use form-based custom authorization. Implementing such
asystemisrelatively straightforward with servlets. First, we need the login page. It can be written like any
other HTML form. Example 8-3 shows a sample login.html file that generates the form shown in Figure 8-2.

Example 8-3. The login.html file

<HTML>

<TITLE>Login</TITLE>

<BODY>

<FORM ACTION=/servlet/LoginHandler METHOD=POST>
<CENTER>

<TABLE BORDER=0>

<TR><TD COLSPAN=2>

<P ALIGN=center>

Welcome! Please enter your Name

and Password to log in.

</TD></TR>

<TR><TD>

<P ALIGN=right>Name:

</TD>

<TD>

<P><INPUT TY PE=text NAME="name” VALUE="" SIZE=15>

</TD></TR>

<TR><TD>

<P ALIGN=right>Password:

</TD>

<TD>

<P><INPUT TY PE=password NAME="passwd” VALUE="" SIZE=15>
</TD></TR>

<TR><TD COLSPAN=2>

<CENTER>

<INPUT TYPE=submit VALUE=" OK ">
</CENTER>

</TD></TR>

</TABLE>

</BODY></HTML>

Thisform asks the client for her name and password, then submits the information to the LoginHandler
servlet that validates the login. We'll see the code for LoginHandler soon, but first we should ask ourselves,
"When is the client going to see thislogin page?" It's clear she can browse to this login page directly, perhaps
following alink on the site's front page. But what if she tries to access a protected resource directly without first
logging in? In that case, she should be redirected to this login page and, after a successful login, be redirected
back to the original target. The process should work as seamlessly as having the browser pop open a
window—except in this case the site pops open an intermediary page.

Edit View Go Communicator Heip

g g gn i g il e R R e
Back Forvard Refoad Home Search Guig:&p_ Print Saw:lty o

| g

" Bookmarks 4 Location: [i€Epa//Mecathosts 6080/ LoakA kLR

Welcome! Please enter yolr Name
and Passwond 1o log in

—, eI
SR e

Iy

Figure 8-2.
A friendly login form

Example 8-4 shows a servlet that implements this redirection behavior. It outputs its secret data only if the
client's session object indicates she has already logged in. If she hasn't logged in, the serviet saves the request
URL in her session for later use, and then redirects her to the login page for validation.

Example 8-4. A protected resource

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ProtectedResource extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

// Get the session
HttpSession session = req.getSession(true);

// Does the session indicate this user already logged in?
Object done = session.getValue(“logon.isDone); // marker object
it (done == null) {
// No logon.isDone means he hasn®"t logged in.
// Save the request URL as the true target and redirect to the login page.
session.putValue(“login.target”,
Httputi ls_getRequestURL(req) -toString());
res.sendRedirect(req.getScheme() + “://” +
req.getServerName() + “:” + reqg.getServerPort() +
“/login_html™);
return;

¥

// 1T we get here, the user has logged in and can see the goods
out.printIn(**Unpublished O"Reilly book manuscripts await you!”);

}
}

This servlet seesif the client has already logged in by checking her session for an object with the name
“logon. isDone”. If such an object exists, the servlet knows that the client has already logged in and
therefore allows her to see the secret goods. If it doesn't exist, the client must not have logged in, so the servlet
saves the request URL under the name ““login.target’, and then redirects the client to the login page.
Under form-based custom authorization, all protected resources (or the servlets that serve them) have to
implement this behavior. Subclassing, or the use of a utility class, can simplify this task.

Now for the login handler. After the client enters her information on the login form, the data is posted to the
LoginHandler servlet shown in Example 8-5. This servlet checks the username and password for validity. If
the client fails the check, sheistold that accessis denied. If the client passes, that fact isrecorded in her session
object and she isimmediately redirected to the original target.

Example 8-5. Handling a login

import java.io.*;

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class LoginHandler extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/html””);

PrintWriter out = res.getWriter();

// Get the user®s name and password
String name = req.getParameter(“name™);
String passwd = req.getParameter(“passwd™);

// Check the name and password for validity

it (TallowUser(name, passwd)) {
out._printIn(“<HTML><HEAD><TITLE>Access Denied</TITLE></HEAD>"");
out.printIn(**<BODY>Your login and password are invalid.
);
out.printIn(*You may want to try again"");
out.printIn(**</BODY></HTML>"");

}
else {
// Valid login. Make a note iIn the session object.
HttpSession session = req.getSession(true);
session.putValue(*“logon.isbDone”, name); // just a marker object
// Try redirecting the client to the page he first tried to access
try {
String target = (String) session.getValue(“login.target”);
if (target != null)
res.sendRedirect(target);
return;
}
catch (Exception ignored) { }
// Couldn™t redirect to the target. Redirect to the site"s home page.
res.sendRedirect(req.getScheme() + “://” +
req.getServerName() + “:” + req.getServerPort());
}
}

protected boolean allowUser(String user, String passwd) {
return true; // trust everyone

}
}

The actual validity check in this servlet is quite simple: it assumes any username and password are valid. That
keeps things simple, so we can concentrate on how the servlet behaves when the login is successful. The serviet
saves the user's name (any old object will do) in the client's session under the name ““logon . isDone”, asa
marker that tells all protected resources this client is okay. It then redirects the client to the original target saved
as“login.target”, seamlessly sending her where she wanted to go in thefirst place. If that fails for some
reason, the servlet redirects the user to the site's home page.

Digital Certificates

Real applications require a higher level of security than basic and digest authentication provide. They also need
guaranteed confidentiality and integrity, as well as more reliable authentication. Digital certificate technology
provides this.

The key concept is public key cryptography. In a public key cryptographic system, each participant has two
keysthat are used to encrypt or decrypt information. One is the public key, which is distributed freely. The
other is a private key, which is kept secret. The keys are related, but one can not be derived from the other. To
demonstrate, assume Jason wants to send a secret message to Will. He finds Will's public key and usesit to
encrypt the message. When Will gets the message, he uses his private key to decrypt it. Anyone intercepting the
message in transit is confronted with indecipherabl e gibberish.

Public key encryption schemes have been around for several years and are quite well developed. Most are based
on the patented RSA algorithm developed by Ron Rivest, Adi Shamir, and Leonard Adelman. RSA uses very
large prime numbers to generate a pair of asymmetric keys (i.e., each key can decode messages encoded with
the other). Individual keys comein varying lengths, usually expressed in terms of the number of bits that make
up the key. 1024- or 2048-bit keys are adequate for secure RSA communications.

Because keys are so large, it isnot practical for auser to type one into her web brower for each request. Instead,
keys are stored on disk in the form of digital certificates. Digital certificates can be generated by software like
Phil Zimmerman's PGP package, or they can be issued by athird party. The certificate files themselves can be
loaded by most security-aware applications, such as servers, browsers, and email software.

Public key cryptography solves the confidentiality problem because the communication is encrypted. It also
solves the integrity problem: Will knows that the message he received was not tampered with since it decodes
properly. So far, though, it does not provide any authentication. Will has no idea whether Jason actually sent the
message. Thisiswhere digital signatures come into play. Because public and private keys are asymmetric,
Jason can first use his private key to encode a message and then use Will's public key to encode it again. When
Will gets the message, he decodes it first with his private key, and then with Jason's public key. Because only
Jason can encode messages with his private key—messages that can be decoded only with his public key—Will
knows that the message was truly sent by Jason.

Thisisdifferent from simpler symmetric key systems, where asingle key is used for encoding and decoding.
While asymmetric keys have the significant advantage of allowing secure communication without ever
requiring a secure channel, they have the disadvantage of requiring much more computational muscle. Asa
compromise, many encryption systems use asymmetric public and private keys to identify each other and then
confidentially exchange a separate symmetric key for encrypting the actual exchange. The symmetric key is
usually based on DES (Data Encryption Standard).

U.S. government restrictions currently limit symmetric key size to 56 bits (about 72 quadrillion possible keys).
M essages encrypted with a 56-bit key are difficult to decode, but by no means impossible—large networks have
been used to decode such messages within a matter of days. With the United States, however, many systems use
128-bit DES keys (about 3.40282 x 10438 possible keys). Because there is no know way to decode a DES-
encrypted message short of brute-force trial and error, messages sent using large keys are very, very secure.

This leaves one final problem—how does one user know that another user is who she says she is? Jason and
Will know each other, so Will trusts that the public key Jason gave him in person is the real one.* On the other
hand, if Lisawants to give Jason her public key, but Jason and Lisa have never met, there is no reason for Jason
to believe that Lisais not actually Mark. But, if we assume that Will knows Lisa, we can have Will use his
private key to sign Lisa's public key. Then, when Jason gets the key, he can detect that Will, whom hetrusts, is
willing to vouch for Lisa'sidentity. These introductions are sometimes called a "web of trust.”

In the real world, thisthird-party vouching is usually handled by a specially established certificate authority,
such as VeriSign Corporation. Because VeriSign is awell-known organization with awell-known public key,
keys verified and signed by VeriSign can be assumed to be trusted, at least to the extent that VeriSign received
proper proof of the receiver'sidentity. VeriSign offers anumber of classes of digital IDs, each with an
increasing level of trust. You can get aClass 1 ID by simply filling out aform on the VeriSign web site and
receiving an email. Higher classes are individually verified by VeriSign employees, using background checks
and investigative servicesto verify identities.

When selecting a certificate authority, it isimportant to choose afirm with strong market presence. VeriSign
certificates, for instance, are included in Netscape Navigator and Microsoft Internet Explorer, so virtually every
user on the Internet will trust and accept them. The following firms provide certificate authority services:

* VeriSign (_http://www.verisign.cony)

 Thawte Consulting (_http://www.thawte.comy)

* Entrust Technologies (_http://www.entrust.cony)

» Keywitness (_http: //mww.keywitness.ca/)

* To be truthful, people almost never meet in dark alleys to exchange their full public keys. Instead, they exchange keys digitally
(viaemail, perhaps) and in person simply compare a small fingerprint hash of the key.

For more abstract information about digital certificates, we recommend Understanding Digital Sgnatures by
Gail L. Grant (Mc-Graw Hill), which provides an excellent introduction to the subject suitable for programmers
and nonprogrammers alike. For more on cryptography asit is related to Java, we recommend Java
Cryptography by Jonathan Knudsen (O'Reilly).

Secure Sockets Layer (SSL)

The Secure Sockets Layer protocol, or SSL, sits between the application-level protocol (in thiscase HTTP) and
the low-level transport protocol (for the Internet, almost exclusively TCP/IP). It handles the details of security
management using public key cryptography to encrypt all client/server communication. SSL was introduced by
Netscape with Netscape Navigator 1. It has since become the de facto standard for secure online
communications and forms the basis of the Transport Layer Security (TLS) protocol currently under
development by the Internet Engineering Task Force. For more information on TLS, see http: //www.
ietf.org/ietf-tls.

SSL Version 2.0, the version first to gain widespread acceptance, includes support for server certificates only. It
provides authentication of the server, confidentiality, and integrity. Here's how it works:

1. A user connectsto asecure site using the HTTPS (HTTP plus SSL) protocol. (Y ou can detect sites using the
HTTPS protocol because their URL s begin with https: instead of http:.)

2. The server signsits public key with its private key and sends it back to the browser.
3. The browser uses the server's public key to verify that the same person who signed the key actually ownsit.

4. The browser checks to see whether atrusted certificate authority signed the key. If one didn't, the browser
asks the user if the key can be trusted and proceeds as directed.

5. The client generates a symmetric (DES) key for the session, which is encrypted with the server's public key
and sent back to the server. This new key is used to encrypt all subsequent transactions. The symmetric key is
used because of the high computational cost of public key cryptosystems.

All thisis completely transparent to serviets and servlet developers. Y ou just need to obtain an appropriate
server certificate, install it, and configure your server appropriately. Information transferred between servlets
and clientsis now encrypted. Voila, security!

SSL Client Authentication

Our security toolbox now includes strong encryption and strong server authentication, but only weak client
authentication. Of course, using SSL 2.0 puts us in better shape because SSL -equipped servers can use the basic
authentication methods discussed at the beginning of this chapter without concern for eavesdropping. We still
don't have proof of client identity, however—after all, anybody could have guessed or gotten a hold of aclient
username and password.

SSL 3.0 fixes this problem by providing support for client certificates. These are the same type of certificates
that servers use, but they are registered to clientsinstead. As of thiswriting, VeriSign claims to have distributed
more than 750,000 client certificates. SSL 3.0 with client authentication works the same way as SSL 2.0, except
that after the client has authenticated the server, the server requests the client's certificate. The client then sends
its signed certificate, and the server performs the same authentication process as the client did, comparing the
client certificate to alibrary of existing certificates (or simply storing the certificate to identify the user on a
return visit). As a security precaution, many browsers require the client user to enter a password before they
will send the certificate.

Once a client has been authenticated, the server can allow access to protected resources such as servlets or files
just as with HTTP authentication. The whole process occurs transparently, without inconveniencing the user. It
also provides an extralevel of authentication because the server knows the client with a John Smith certificate
really is John Smith (and it can know which John Smith it is by reading his unique certificate). The
disadvantages of client certificates are that users must obtain and install signed certificates, servers must
maintain a database of all accepted public keys, and servers must support SSL 3.0 in the first place. As of this
writing, most do, including the Java Web Server.

Retrieving SSL Authentication I nformation

Aswith basic and digest authentication, all of thiscommunication is transparent to servlets. It is sometimes
possible, though, for a servlet to retrieve the relevant SSL authentication information. The java.security
package has some basic support for manipulating digital certificates and signatures. To retrieve aclient's digital
information, however, a servlet has to rely on a server-specific implementation of the request's
getAttribute() method. Example 8-6 (reprinted from Chapter 4) shows how to use getAttribute()
to fetch the details of aclient's certificates. Remember that this works only for the Java Web Server. Other
servlet implementations, if they include this functionality at al, arelikely to do it in adlightly different way,
although we hope that they build on Java's standard signature support.

Example 8-6. Examining client certificates

import javax.security.cert.X509Certificate;
out.printIn("'<PRE>");

// Display the cipher suite in use
String cipherSuite =

(String) req.getAttribute("javax.net.ssl.cipher_suite'™);
out.printIn("'Cipher Suite: " + cipherSuite);

// Display the client®s certificates, if there are any
if (cipherSuite = null) {
X509Certificate certChain[] =
(X509Certificate[]) req.getAttribute("javax.net.ssl.peer_certificates™);
if (certChain = null) {
for (int 1 =0; i < certChain.length; i++) {
out.println (""Client Certificate [" + i1 + "] = "
+ certChain[i]-toString(Q));
}
}

}
out.println (""</PRE>");

Here's the output we first saw in Chapter 4:

Cipher Suite: SSL_RSA_EXPORT_WITH_RC4 40 _MD5
Client Certificate [0] = [

X.509v3 certificate,

Subject is 01D.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,
CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,
ou="" www.verisign.com/repository/CPS Incorp. by Ref., LIAB.LTD(c)96",
OU=VeriSign Class 1 CA - Individual Subscriber, o="VeriSign, Inc.",
L=Internet

Key: algorithm = [RSA], exponent =0x 010001, modulus =

b35ed5e7 45fc5328 e3f5ce70 838cc25d Oalefd4l df4d3elb 64F70617 528546¢8
faed46995 9922a093 7a54584d d466bee7? e7b5c259 c7827489 6478ela9 3aledf

Validity until

Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, o= "VeriSign,
Inc.",
L=Internet

Issuer signature used [MD5withRSA]

Serial number = 20556dcO 9e31dfad4 ada6elOd 77954704
1
Client Certificate [1] = [

X.509v3 certificate,

Subject is OU=VeriSign Class 1 CA - Individual Subscriber, o="VeriSign,

Inc.", L=Internet

Key: algorithm = [RSA] , exponent = 0x 010001, modulus =
b614a6¢cf 4dd0050d d8ca23d0 6faab429 92638e2c 86F96d7 2e9d764b 11b1368d
57c9c3fd lccbbafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 2b15283
68107064 91d73e6b f9f75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f71aa
e240f254 39bcl6ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 dOf73ea9

Validity until

Issuer is OU=Class 1 Public Primary Certification Authority, 0="VeriSign,

Inc."™, C=US
Issuer signature used [MD2withRSA]
Serial number = 521¥351d F2707e00 2bbeca59 8704d539

1

Thefirst certificate is the user's public key. The second is VeriSign's signature that vouches for the authenticity
of the first signature. Of course, the information from these certificate chainsisn't particularly useful to the
application programmer. In some applications, it is safe to simply assume that a user is authorized if she got
past the SSL authentication phase. For others, the certificates can be picked apart using the
Javax.security.cert._X509CertifTicate class. More commonly, aweb server allows you to assign
ausername to each certificate you tell it to accept. Servlets can then call getRemoteUser () to get aunique
username. The latter solution works with almost all web servers.

Running Servlets Securely

CGlI programs and C++-based plug-ins operate with relatively unfettered access to the server machine on which
they execute (limited on Unix machines by the user account permissions of the web server process). Thisisn't
so bad for an isolated programmer developing for asingle web server, but it's a security nightmare for internet
service providers (ISPs), corporations, schools, and everyone else running shared web servers.

For these sites, the problem isn't just protecting the server from malicious CGI programmers. The more
troublesome problem is protecting from careless CGIl programmers. There are dozens of well-known CGI
programming mistakes that could let a malicious client gain unauthorized access to the server machine. One
innocuous-looking but poorly written Perl eval functionisall it takes. For an extensive list of CGI security
gotchas, see Chapter 6 of The WWW Security FAQ at http: //www.w3.or g/ Secur ity/Fag/www-security-fag.html.

To better understand the situation, imagine you're an ISP and want to give your customers the ability to
generate dynamic content using CGI programs. What can you do to protect yourself? Historically, 1SPs have
chosen one of three options:

Have blind faith in the customer.
He's agood guy and a smart programmer, and besides, we have his credit card number.

Educate the customer.
If he reads the WWW Security FAQ and passes awritten test, we'll let him write CGI programs for our
server.

Review all code.
Before weinstall any CGI program on the server, we'll have our expert review it and scan for security
problems.

None of these approaches work very well. Having blind faith is just asking for trouble. Programmer education
helps, but programmers are human and bound to make mistakes. Asfor code review, there's still no guarantees,
plus it takes time and costs money to do the extra work.

Fortunately, with servlets there's another, better solution. Because servlets are written in Java, they can be
forced to follow the rules of a security manager (or access controller with JDK 1.2) to greatly limit the server's
exposureto risk, al with aminimal amount of human effort.

The Servliet Sandbox

Servlets built using JDK 1.1 generally operate with a security model called the "servlet sandbox.” Under this
model, servlets are either trusted and given open access to the server machine, or they're untrusted and have
their access limited by arestrictive security manager. The model is very similar to the "applet sandbox," where
untrusted applet code has limited access to the client machine.

What's a security manager? It's a class subclassed from java. lang.SecurityManager that isloaded by
the Java environment to monitor all security-related operations: opening network connections, reading and
writing files, exiting the program, and so on. Whenever an application, applet, or serviet performs an action that
could cause a potential security breach, the environment queries the security manager to check its permissions.
For anormal Java application, there is no security manager. When aweb browser loads an untrusted applet over
the network, however, it loads a very restrictive security manager before allowing the applet to execute.

Servlets can use the same technology, if the web server implementsit. Local servlets can be trusted to run
without a security manager, or with afairly lenient one. For the Java Web Server 1.1, thisis what happens when
servlets are placed in the default servlet directory or another local source. Servlets loaded from aremote source,
on the other hand, are by nature suspect and untrusted, so the Java Web Server forcesthem to runin avery
restrictive environment where they can't access the local file system, establish network connections, and so on.
All thislogic is contained within the server and isinvisible to the servlet, except that the servliet may see a
SecurityException thrown when it tries to access arestricted resource. The servlet sandbox isasimple
model, but it is already more potent than any other server extension technology to date.

Using digital signatures, it is possible for remotely loaded servletsto be trusted just like local servlets. Third-
party servlets are often packaged using the Java Archive (JAR) file format. A JAR file collects a group of class
files and other resources into a single archive for easy maintenance and fast download. Another nice feature of
JAR filesthat is useful to servletsisthat they can be digitally signed. This means that anyone with the public
key for "Crazy Al's Servlet Shack" can verify that her copy of Al's Guestbook Servlet actually came from Al.
On some servers, including the Java Web Server, these authenticated servlets can then be trusted and given
extended access to the system.

Fine-grained Control

This al-or-nothing approach to servlet permissionsis useful, but it can be overly limiting. Consequently, some
servlet engines have begun to explore a more fine-grained protection of server resources—for example,
allowing a specific servlet to establish a network connection but not write to the server'sfile system. Thisfine-
grained control isfairly awkward using the JDK 1.1 notion of a Secur 1tyManager class and, therefore, isn't
widely implemented, although it can be done, as the Java Web Server 1.1 proves.

The Java Web Server 1.1 includes eight permissions that can be granted to servlets:

Load serviet
Let the serviet load a named servlet.

Writefiles
Let the servlet write any file on the local file system.

Listen to socket
Allow the servlet to accept incoming socket (network) connections.

Link libraries
Allow the loading of native libraries, such asthe JDBC-ODBC bridge.

* |f you want alocal servlet run in the restrictive environment, a workaround is to place them in your server's document root
(suchasserver__root/public_html) and configure the server load them remotely from the same server.

** Y ou can create your owned signed servlets using a certificate generated by the JDK's key management tools (javakey in JDK 1.1
or keytool and jarsigner in JDK 1.2). Alternately, you can obtain signed certificates from VeriSign or another certificate authority.

Read files
Let the servlet read any file on the local file system.

Open remote socket
Allow the servlet to connect to an external host.

Execute programs
Permit the servlet to execute external programs on the server. Thisis useful for servlets that absolutely
reguire access to some system utilities, but it is very dangerous: rmand del qualify as an external

programs!

Access system properties
Grant accessto jJava. lang.System properties.

A screen shot of the Administration Tool configuration page that assigns these permissions is shown in Figure
8-3.

Fle Lol Vew Ge Roskwaks pfins Ddmodory Whinchas

Buek] o] povee] |Foisae] Lo s | Cpee [Pk | Fiis] (5
Luh!qn:lhl.‘:p:.".l"i::l'lh:ltriﬁ!ﬁ.l' J‘ a. E‘f l E

g -5.:”‘“" % fnen pnigtvigrear |
A TN : . o (el A]
. N G i ACORIT COONE] LA ALK R T
Jania | i Arcam Corkrel Lintn | dwdithal
e L Picuscur o

Sardcar
Fritkg1 Prssimiionn Fas & FUes ped Faien. & Sarveln — TE
W Jmea Wak Serear B adl e L T
gl e Tyeee Granlkr & e Goup [T i}
) et | B e e - s SRR
Lo iy Sameicn i it S i RS e il e DS P L2 S L S
5 Py f ez horas
| mmged - el i
| @ g
& Caapuder 1—

Pemiions are: Gr aigval G D
PEmAH L Leag et L Fmad fe
O e el B Daps rimoll 18E0H
T Liven % socke [0 Exsciss pragress
@ Likibickn - [ftoian byels procitar

L

Feltt P Fi’-'!";l'.-F!"I'Kd’h: I

Whosg [L
R R T B

J'_ﬁn-n]. st Windaw

Ib;" HiUnaiqnad Java Applst Windew

Figure 8-3.
Eight permissions

Theoretically, any criterion can be used to determine what a servlet can or cannot do. It's possible for the
security manager to base its permission-granting decision on any factor, including these:

The serviet itself
For example, this servlet can read files and load native libraries but cannot write files.

The client user
For instance, any servlet responding to arequest from this client user can write files.

The client host
For example, any servlet responding to a request from this machine can establish network connections.

Digital signatures
For instance, any servlet in a JAR file signed by this entity has full reign on the server system.

Access Controllers

JDK 1.2 introduces a new extension to the security manager system: the access controller. The new architecture
isquite similar to the "give particular servlets particular privileges' approach implemented by the Java Web
Server 1.1, except that it appliesto all JDK 1.2 programs and therefore makes fine-grained permission
implementations much easier.

An access controller allows what might be called super-fine-grained permission control. Instead of granting a
servlet the general ability to write files, with an access controller a servlet can be given the right to writeto a
single file—perfect for a counter servlet, for example. Or it can be given the right to read and write filesonly in
the client user's home directory on the server—appropriate for a client/server application. With access
controllers, servlets can be given the rights to do exactly what they need to do and nothing more.

Access controllers work by placing individual pieces of code, often identified by digital signatures, into
particular virtual domains. Classes in these domains can be granted fine-grained permissions, such as the ability
to read from the server's document root, write to atemporary directory, and accept socket connections. All
permission policy decisions are managed by a single instance of the
Java.security.AccessController class. Thisclassbasesits policy decisionson asimple
configuration file, easily managed using a graphical user interface.

Now, instead of relying on complicated custom security managers as the Java Web Server team had to do, a
servelt engine need only add afew lines of code to use an access controller. So, while the Java Web Server is
the only servelt implementation supporting fine-grained security as of early 1998, once JDK 1.2 becomes
popular, it should be easy for other servlet engine implementers to add the same level of fine-grained access
control. These implementations may arleady be available by the time you read this.

9
Database Connectivity

In thischapter:

*Relational Databases

* The IDBC API

 Reusing Database Objects
* Transactions

» Advanced JDBC Techniques

It's hard to find a professional web site today that doesn't have some sort of database connectivity. Webmasters
have hooked online front ends to all manner of legacy systems, including package tracking and directory
databases, as well as many newer systems like online messaging, storefronts, and search engines. But web-
database interaction comes with a price: database-backed web sites can be difficult to develop and can often
exact heavy performance penalties. Still, for many web sites, especially intranet applications, database
connectivity isjust too useful to let go. More and more, databases are driving the Web.

This chapter introduces relational databases, the Structured Query Language (SQL) used to manipul ate those
databases, and the Java database connectivity (JDBC) API itself. Servlets, with their enduring life cycle, and
JDBC, awell-defined database-independent database connectivity API, are an elegant and efficient solution for
webmasters who need to hook their web sites to back-end databases. In fact, both of your authors started
working with servlets specifically because of this efficiency and elegance. Although elsewhere in the book we
have assumed that you are familiar with Java, this chapter breaks that assumption and begins with a quick
course in JDBC.

The biggest advantage for servlets with regard to database connectivity is that the servlet life cycle (explained

in depth in Chapter 3, The Serviet Life Cycle) alows servlets to maintain open database connections. An
existing connection can trim several seconds from a response time, compared to a CGI script that has to
reestablish its connection for every invocation. Exactly how to maintain the database connection depends on the
task at hand, and this chapter demonstrates several techniques appropriate for different tasks.

Another advantage of servlets over CGI and many other technologiesisthat JDBC is database-independent. A
servlet written to access a Sybase database can, with a two-line modification or a change in a propertiesfile,
begin accessing an Oracle database (assuming none of the database calls it makes are vendor-specific). In fact,
you should notice that the examplesin this chapter are written to access avariety of different databases,
including ODBC data sources (such as Microsoft Access), Oracle, and Sybase.

Relational Databases

In some earlier examples, we've seen servlets that used file storage on the local disk to store their persistent
data. The use of aflat fileisfine for asmall amount of data, but it can quickly get out of control. As the amount
of data grows, access times slow to acrawl. And just finding data can become quite a challenge: imagine
storing the names, cities, and email addresses of all your customersin atext file. It works great for a company
that isjust starting out, but what happens when you have hundreds of thousands of customers and want to
display alist of al your customersin Boston with email addresses ending in "aol.com"?

One of the best solutions to this problem is a Relational Database Management System (RDBMS). At the most
basic level, an RDBMS organizes data into tables. These tables are organized into rows and columns, much like
a spreadsheet. Particular rows and columns in atable can be related (hence the term "relationa™) to one or more
rows and columns in another table.

Onetablein arelational database might contain information about customers, another might contain orders, and
athird might contain information about individual items within an order. By including unique identifiers (say,
customer numbers and order numbers), orders from the orders table can be linked to customer records and
individual order components. Figure 9-1 shows how this might look if we drew it out on paper.

Data in the tables can be read, updated, appended, and deleted using the Structured Query Language, or SQL,
sometimes also referred to as the Standard Query Language. Java's JDBC API introduced in JDK 1.1 usesa
specific subset of SQL known as ANSI SQL-2 Entry Level. Unlike most programming languages, SQL is
declarative: you say what you want, and the SQL interpreter givesit to you. Other languages, like C, C++, and
Java, by contrast, are essentially procedural, in that you specify the steps required to perform a certain task.
SQL, while not prohibitively complex, is aso rather too broad a subject to cover in great (or, indeed, merely
adequate) detail here. In order to make the rest of the examplesin this chapter comprehensible, though, here'sa
brief tutorial.

The simplest and most common SQL expression isthe SELECT statement, which queries the database and
returns a set of rows that matches a set of search criteria.

Servletsin theMiddle Tier

One common place for servlets, especially servlets that access a database, isin
what's called the middle tier. A middle tier is something that helps connect one
endpoint to another (an applet to a database, for example) and along the way adds
alittle something of its own.

The most compelling reason for putting a middle tier between a client and our
ultimate date source is that software in the middle tier (commonly referred to as
middleware) can include business logic. Business logic abstracts complicated
low-level tasks (such as updating database tables) into high-level tasks (placing
and order), making the whole operation simpler and safer.

Imagine a client application that places an order. Without middieware, the
application has to connect directly to the database server that stores the order
records and then change the database fields to reflect the order. If the database
server changesin any way (by moving to adifferent machine, altering itsinternal
table structure, or changing database vendors), the client may break. Even worse,
if someone makes aminor change to the client (either intentionally or
accidentally), it's possible for the database to record orders without first receiving
payment or to reject perfectly valid entries.

Middleware uses business logic to abstract the ordering process. Middleware
accepts information about the order (for example, name, address, item, quantity,
credit card number), sanity-checks the information, verifies that the credit card is
valid, and enters the information into the database. Should the database change,
the middleware can be updated without any changes in the client. Even if the
orders database is temporarily replaced with asimpleflat file order log, the
middleware can present the same appearance to the client.

Middleware can improve efficiency by spreading the processing load across
severa back-end servers (CPU servers, database servers, file servers, directory
servers, etc.). Middleware can also make more efficient use of bandwidth: instead
of having a client perform the back-and-forth communication with the server over
what might be a slow network connection, the client can tell the middleware what
it needs and the middleware can do the work using afast network connection and
probably pooled database connections.

On the Web, middle tiers are often implemented using servlets. Servlets provide a
convenient way to connect clients built using HTML forms or applets to back-end
servers. A client communicates its requirements to the servlet using HTTP, and
the business logic in the servlet handles the request by connecting to the back-end
server. (More information on applet-servlet communication is coming up in
Chapter 10, Applet-Serviet Communication.)

Servlets sometimes use another middle tier to connect to a database. If aweb
browser sends an HTML form with order information to a servlet, that servlet
may parse the information and make an RMI call to middlieware on another
machine that has the responsibility for handling all orders—from servlets as well
as standalone programs. In these cases, what was once three tiersis now four
tiers.

(USTOMERS Tnbde

08D 1D | (USTOMER
1 bohlopier |67 5551212
2| ane Staph |617 5551213

Figure 9-1.
Related tables

For example, the following SELECT statement selects everything from the CUSTOMERS table:

SELECT * FROM CUSTOMERS

SQL keywords like SELECT and FROM and objects like CUSTOMERS are case insensitive but frequently
written in uppercase. When run in Oracle's SQL #*PLUS SQL interpreter, this query would produce something
like the following output:

CUSTOMER_ID NAME PHONE

1 Bob Copier 617 555-1212
2 Janet Stapler 617 555-1213
3 Joel Laptop 508 555-7171
4 Larry Coffee 212 555-6265

More advanced statements might restrict the query to particular columns or include some specific limiting
criteria:

SELECT ORDER_ID, CUSTOMER_ID, TOTAL FROM ORDERS

WHERE ORDER_ID = 4

This statement selectsthe ORDER_ID, CUSTOMER_ID, and TOTAL columns from all records where the
ORDER__ID field isequal to 4. Here's a possible resullt:

ORDER_ID CUSTOMER_ID TOTAL

A SELECT statement can also link two or more tables based on the values of particular fields. This can be
either a one-to-one relationship or, more typically, a one-to-many relation, such as one customer to several
orders:

SELECT CUSTOMERS.NAME, ORDERS.TOTAL FROM CUSTOMERS, ORDERS
WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID AND
ORDERS.ORDER_ID = 4

This statement connects (or, in database parlance, joins) the CUSTOMERS table with the ORDERS table viathe
CUSTOMER _ID field. Note that both tables have this field. The query returns information from both tables: the
name of the customer who made order 4 and the total cost of that order. Here's some possible output:

Bob Copier 72.19

SQL is also used to update the database. For example:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME, PHONE)

VALUES (5, "Bob Smith", "555 123-3456")
UPDATE CUSTOMERS SET NAME = ""Robert Copier'™ WHERE CUSTOMER_ID = 1
DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 2

The first statement creates a new record in the CUSTOMERS table, filling in the CUSTOMER_ID, NAME, and
PHONE fields with certain values. The second updates an existing record, changing the value of the NAME field
for a specific customer. The last deletes any records with a CUSTOMER _ID of 2. Be very careful with all of
these statements, especially DELETE. A DELETE statement without a WHERE clause will remove al the
records in the table!

For agood primer on relational databases and SQL, we recommend SQL for Dummies, by Allen G. Taylor
(IDG Books Worldwide).

TheJDBC API

Previously, we've assumed that you have a general working knowledge of the various Java APIs. Because even
experienced Java programmers may have had relatively little experience with databases, this section provides a
general introduction to JDBC. If thisisyour first foray into the world of databases, we strongly recommend that
you take a breather and find a book on general database and JDBC concepts. Y ou may want to read Database
Programming with JDBC and Java, by George Reese (O'Reilly), or IDBC Database Access with Java, by
Graham Hamilton, Rick Cattell, and Maydene Fisher (Addison-Wesley). The official JDBC specification is also
available online at http://java.sun.com/products/jdbc.

JDBC isaSQL-level API—one that alows you to execute SQL statements and retrieve the results, if any. The
API itself isaset of interfaces and classes designed to perform actions against any database. Figure 9-2 shows
how JDBC programs interact with databases.

Figure 9-2.
Java and the database

JDBC Drivers

The JDBC AP, found in the Java.sql package, contains only afew concrete classes. Much of the APl is
distributed as database-neutral interface classes that specify behavior without providing any implementation.
The actual implementations are provided by third-party vendors.

Anindividual database system is accessed via a specific JDBC driver that implements the

Java.sql .Driver interface. Driversexist for nearly all popular RDBMS systems, though few are available
for free. Sun bundles afree JDBC-ODBC bridge driver with the JDK to allow access to standard ODBC data
sources, such as a Microsoft Access database. However, Sun advises against using the bridge driver for
anything other than development and very limited deployment. Servlet developersin particular should heed this
warning because any problem in the JDBC-ODBC bridge driver's native code section can crash the entire
server, not just your servlets.

JDBC drivers are available for most database platforms, from a number of vendors and in a number of different
flavors. There are four driver categories:

Type 1-JDBC-ODBC Bridge Driver
Type 1 drivers use a bridge technology to connect a Java client to an ODBC database service. Sun's JDBC-
ODBC bridge is the most common Type 1 driver. These drivers are implemented using native code.

Type 2-Native-API Partly-Java Driver

Type 2 driverswrap athin layer of Java around database-specific native code libraries. For Oracle
databases, the native code libraries might be based on the OCI (Oracle Call Interface) libraries, which were
originaly designed for C/C++ programmers. Because Type 2 drivers are implemented using native code, in
some cases they have better performance than their all-Java counter-parts. They add an element of risk,
however, because a defect in adriver's native code section can crash the entire server.

Type 3-Net-Protocol All-Java Driver

Type 3 drivers communicate via a generic network protocol to a piece of custom middleware. The
middleware component might use any type of driver to provide the actual database access. WebL ogic's
Tengah product lineis an example. These drivers are all Java, which makes them useful for applet
deployment and safe for servlet deployment.

Type 4-Native-Protocol All-Java Driver
Type 4 drivers are the most direct of the lot. Written entirely in Java, Type 4 drivers understand database-
specific networking protocols and can access the database directly without any additional software.

A list of currently available JDBC drivers can be found at http://java.sun.comVproducts/jdbc/jdbc.drivers.html.

Getting a Connection

Thefirst stepin using a JDBC driver to get a database connection involves loading the specific driver classinto
the application's VM. This makes the driver available later, when we need it for opening the connection. An
easy way to load the driver classisto use the Class . forName () method:

Class.forName(''sun. jdbc.odbc.JdbcOdbcDriver™);

When the driver isloaded into memory, it registersitself with the java.sql .DriverManager classasan
available database driver.

The next step isto ask the DriverManager class to open a connection to a given database, where the
database is specified by a specially formatted URL. The method used to open the connection is
DriverManager .getConnection(). It returns aclass that implementsthe yJava.sql .Connection
interface:

Connection con =
DriverManager .getConnection(*jdbc:odbc:somedb™, *user'™, "passwd™);

A JDBC URL identifies an individual database in a driver-specific manner. Different drivers may need different
information in the URL to specify the host database. JDBC URL s usually begin with

jdbc:subprotocol : subname. For example, the Oracle JDBC-Thin driver uses a URL of the form of
jdbc:oracle:thin: @dbhost : port:sid; the IDBC-ODBC bridge uses jdbc: odbc:data-

sourcename ;odbcoptions.

During the call to getConnection(), the DriverManager object asks each registered driver if it
recognizesthe URL. If adriver says yes, the driver manager uses that driver to create the Connection object.
Hereis asnippet of code a servlet might use to load its database driver with the JIDBC-ODBC bridge and create
aninitial connection:

Connection con = null;

try {
// Load (and therefore register) the JDBC-ODBC Bridge

// Might throw a ClassNotFoundException
Class.forName(''sun. jdbc.odbc.JdbcOdbcDriver'™);

// Get a connection to the database
// Might throw an SQLException
con = DriverManager.getConnection(*jdbc:odbc:somedb", "user', "passwd');

// The rest of the code goes here.

}
catch (ClassNotFoundException e) {

// Handle an error loading the driver

}
catch (SQLException e) {

// Handle an error getting the connection

}
finally {

// Close the Connection to release the database resources immediately.

try {
if (con !'= null) con.close();
}

catch (SQLException ignored) { }
}

Executing SQL Queries

To really use a database, we need to have some way to execute queries. The simplest way to execute aquery is
to usethe Java.sql . Statement class. Statement objects are never instantiated directly; instead, a
program calls the createStatement() method of Connection to obtain anew Statement object:

Statement stmt = con.createStatement();

A guery that returns data can be executed using the executeQuery () method of Statement. This method
executes the statement and returns a java . sql .Resul tSet that encapsulates the retrieved data:

ResultSet rs = stmt.executeQuery("'SELECT * FROM CUSTOMERS');

Y ou can think of aResultSet object as arepresentation of the query result returned one row at atime. You
use the next () method of ResultSet to move from row to row. The Resul tSet interface also boasts a
multitude of methods designed for retrieving data from the current row. The getString() and
getObject() methods are among the most frequently used for retrieving column values:

while(rs.next()) {
String event = rs.getString(“event™);
Object count = (Integer) rs.getObject("'count™);

}

Y ou should know that the Resul tSet islinked to its parent Statement. Therefore, if aStatement is
closed or used to execute another query, any related Resul tSet objects are closed automatically.

Example 9-1 shows avery simple servlet that uses the Oracle JDBC driver to perform asimple query, printing
names and phone numbers for all employeeslisted in a database table. We assume that the database contains a
table named EMPLOYEES, with at least two fields, NAME and PHONE.

Example 9-1. A JDBC-enabled serviet

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class DBPhoneLookup extends HttpServiet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
Connection con = null;
Statement stmt = null;
ResultSet rs = null;

res.setContentType (“text/html™);
PrintWriter out = res.getWriter();

try {
// Load (and therefore register) the Oracle Driver

Class.forName (*“oracle.jdbc.driver.OracleDriver™);

// Get a Connection to the database
con = DriverManager.getConnection (
“jdbc:oracle:thin:dbhost:1528:0RCL”, “user”, “passwd™);

// Create a Statement object
stmt = con.createStatement();

// Execute an SQL query, get a ResultSet
rs = stmt.executeQuery(“SELECT NAME, PHONE FROM EMPLOYEES™);

// Display the result set as a list
out.printIn(“<HTML><HEAD><TITLE>Phonebook</TITLE></HEAD>"");
out.printIn(“<BODY>"");
out.printin(*“");
while(rs.next(Q)) {
out.printIn(“"” + rs.getString(“name”) + “ ” + rs.getString(“phone”));
3
out.printin(“");
out.printIn(“</BODY></HTML>"");
}
catch(ClassNotFoundException e) {
out.printin(“Couldn®t load database driver: ” + e.getMessage());
3
catch(SQLException e) {
out.printIn(“SQLException caught: ” + e.getMessage());
}
finally {
// Always close the database connection.

try {
if (con = null) con.close();

}
catch (SQLException ignored) { }

}
}
}

Thisis about as simple a database servlet asyou are likely to see. All DBPhoneLookup doesis connect to the
database, run a query that retrieves the names and phone numbers of everyone in the employees table, and
display thelist to the user.

Handling SQL Exceptions

DBPhoneLookup encloses most of its code in atry/catch block. This block catches two exceptions:
ClassNotoundException and SQLException. Theformer isthrown by the Class. forName()
method when the JDBC driver class can not be loaded. The latter is thrown by any JDBC method that has a
problem. SQLException objects are just like any other exception type, with the additional feature that they
can chain. The SQLException class defines an extra method, getNextException(), that allowsthe
exception to encapsulate additional Exception objects. We didn't bother with this feature in the previous
example, but here's how to useit:

catch (SQLException e) {
out.printin(e.getMessage());
while((e = e.getNextException()) = null) {
out.printin(e.getMessage());

}
}

This code displays the message from the first exception and then loops through all the remaining exceptions,
outputting the error message associated with each one. In practice, the first exception will generally include the
most relevant information.

Result Setsin Detail

Before we continue, we should take a closer look at the Resu ltSet interface and the related
ResultSetMetaData interface. In Example 9-1, we knew what our query looked like, and we knew what
we expected to get back, so we formatted the output appropriately. But, if we want to display the results of a
guery inan HTML table, it would nice to have some Java code that builds the table automatically from the
ResultSet rather than having to write the same loop-and-display code over and over. As an added bonus, this
kind of code makes it possible to change the contents of the table simply by changing the query.

The Resul tSetMetaData interface provides away for a program to learn about the underlying structure of
aquery result on the fly. We can use it to build an object that dynamically generates an HTML table from a
ResultSet, as shown in Example 9-2. Many JavaHTML generation tools (such as WebL ogic's htmlKona
toolkit discussed in Chapter 5, Sending HTML Information) have a similar capability.

Example 9-2. A class to generate an HTML table from a ResultSet using ResultSetMetaData

import java.sqgl.*;
public class HtmlResultSet {
private ResultSet rs;

public HtmIResultSet(ResultSet rs) {
this.rs = rs;

}

public String toString() { // can be called at most once
StringBuffer out = new StringBuffer();
// Start a table to display the result set
out.append(“<TABLE>\n"");

try {
ResultSetMetaData rsmd = rs.getMetaData();

int numcols = rsmd.getColumnCount();

// Title the table with the result set"s column labels
out.append(“<TR>"");
for (int i = 1; i <= numcols; i++) {

out.append(“<TH>" + rsmd.getColumnLabel (i1));

}
out.append(“</TR>\n"");

while(rs.next()) {
out.append(“<TR>"); // start a new row

for (int i = 1; i <= numcols; i++) {
out.append(“<TD>"); // start a new data element
Object obj = rs.getObject(i);
if (obj = null)
out.append(obj.toString());
else
out.append(“ ”);

}
out.append(“</TR>\n"");

}

// End the table
out.append(““</TABLE>\n"");

}
catch (SQLException e) {

out._append("'</TABLE><H1>ERROR:</H1> " + e.getMessage() + "\n"");

+
return out.toString(Q);

}
}

This example shows how to use two basic methods of ResultSetMetaData: getColumnCount() and
getColumnLabel (). Thefirst returns the number of columnsin the ResultSet, while the second
retrieves the name of a particular column in aresult set based on its numerical index. Indexesin ResultSet
objects follow the RDBMS standard rather than the C++/Java standard, which means they are numbered from 1
to n rather than from O to n-1.

This example also uses the getOb ject() method of Resul tSet, to retrieve the value of each column. All
of the getXXX () methods work with column indexes as well as with column names. Accessing data this way
is more efficient, and, with well-written SQL, is more portable. Here we use getObject() - toString()
instead of getString() to simplify the handling of null I values, as discussed in the next section.

Table 9-1 shows the Java methods you can use to retrieve some common SQL data types from a database. No
matter what the type, you can aways use the getOb ject () method of ResultSet, in which case the type
of the object returned is shown in the second column. Y ou can also use a specific getXXX () method. These
methods are shown in the third column, along with the Java data types they return. Remember that supported

SQL data types vary from database to database.

Table 9-1. Methods to Retrieve Data from a ResultSet

Java Type Returned by

SQL Data Type getObject()

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC Java.math._BigDecimal
DECIMAL Java.math_BigDecimal
BIT Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE jJava.sql .Date

Recommended Alter native to
getObject()

String getString()
String getString()

InputStream
getAsciiStream()
InputStream
getUnicodeStream()

Java.math.BigDecimal
getBigDecimal)

Java.math_BigDecimal
getBigDecimal)

boolean getBoolean()

byte getByte()

short getShort()
int getint()

long getLong(Q)
float getFloat()
double getDouble()

double getDouble()

byte[] getBytes(Q

byte[] getBytes(Q

InputStream
getBinaryStream()

jJava.sql .Date
getDate()

TIME Java.sql.Time Java.sql.Time
getTime()

TIMESTAMP Java.sqgl.Timestamp Java.sqgl.Timestamp
getTimestamp()

Handling Null Fields

Handling nul I database values with JIDBC can be allittle tricky. (A database field can be set to null 1 to
indicate that no value is present, in much the same way that a Java object can be set to null 1.) A method that
doesn't return an object, like getInt(), has no way of indicating whether acolumnis null I or whether it
contains actual information. (Some drivers return a string that contains the text "nul 1" when getString()
iscaled onanull column!) Any specia value like -1, might be alegitimate value. Therefore, JDBC includes
thewasNul 1 () method in Resul tSet,which returns true or false depending on whether the last column
read was a true database nul . This means that you must read data from the Resul tSet into avariable, call
wasNul 1 (), and proceed accordingly. It's not pretty, but it works. Here's an example:

int age = rs.getint('age');

if (Irs.wasNull(Q))
out.printIn("Age: " + age);

Another way to check for nul I valuesisto usethe getObject() method. If acolumnisnull,
getObject() awaysreturnsnul I. Compare thisto the getString() method that has been known, in
some implementations, to return the empty string if acolumnisnul 1. Using getObject() eiminatesthe
need to call wasNul 1 () and leads to ssmpler code.

Updating the Database

Most database-enabled web sites need to do more than just perform queries. When a client submits an order or
provides some kind of information, the data needs to be entered into the database. When you know you're
executing a SQL UPDATE, INSERT, or DELETE statement and you know you don't expect aResultSet,
you can use the executeUpdate () method of Statement. It returns a count that indicates the number of
rows modified by the statement. It's used like this:

int count =
stmt.executeUpdate("'DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 5");

If you are executing SQL that may return either aResultSet or acount (say, if you're handling user-
submitted SQL or building generic data-handling classes), use the generic execute () method of
Statement. It returnsaboolean whose value is true if the SQL statement produced one or more
ResultSet objectsor falseif it resulted in an update count:

boolean b = stmt.execute(sql);

The getResultSet() and getUpdateCount() methods of Statement provide access to the results of
the execute () method. Example 9-3 demonstrates the use of these methods with anew version of
HtmIResultSet, named HEmI SQLResul t, that createsan HTML table from any kind of SQL statement.

Example 9-3. A class to generate an HTML table from a ResultSet using the ResultSetMetaData
import java.sql.*;

public class HtmISQLResult {
private String sql;

private Connection con;

public HtmISQLResult(String sql, Connection con) {
this.sqgl = sqgl;
this.con = con;

}

public String toString() { // can be called at most once
StringBuffer out = new StringBuffer();
// Uncomment the following line to display the SQL command at start of table

// out._append(“Results of SQL Statement: ” + sql + “<P>\n”);

try {
Statement stmt = con.createStatement();

if (stmt.execute(sql)) {
// here®s a ResultSet to be had
ResultSet rs = stmt.getResultSet();
out._append(“<TABLE>\n"");

ResultSetMetaData rsmd = rs.getMetaData();
int numcols = rsmd.getColumnCount();

// Title the table with the result set"s column labels
out._append(“<TR>");
for (int i = 1; i <= numcols; i++)

out.append(“<TH>" + rsmd.getColumnLabel (i));
out._append(“</TR>\n"");

while(rs.next()) {
out.append(“<TR>"); // start a new row
for(int i = 1; i <= numcols; i++) {
out.append(“<TD>""); // start a new data element
Object obj = rs.getObject(i);
if (obj = null)
out.append(obj.toString(Q));
else
out.append(““ ”);

}

out.append(“</TR>\n"");
}
// End the table
out._append(“</TABLE>\n"");
3
else {
// There"s a count to be had
out.append(““Records Affected: ” + stmt.getUpdateCount());
}
3
catch (SQLException e) {
out.append(“</TABLE><H1>ERROR:</H1> ” + e.getMessage());
3

return out.toString();

}
}

This example uses execute () to execute whatever SQL statement is passed to the HtmISQLResul t
constructor. Then, depending on the return value, it either calls getResultSet () or getUpdateCount().
Note that neither getResultSet () nor getUpdateCount() should be caled more than once per query.

Using Prepared Statements

A PreparedStatement object islike aregular Statement object, in that it can be used to execute SQL
statements. The important difference is that the SQL in a PreparedStatement is precompiled by the
database for faster execution. Once a PreparedStatement has been compiled, it can till be customized by
adjusting predefined parameters. Prepared statements are useful in applications that have to run the same
general SQL command over and over.

Usethe prepareStatement(String) method of Connection to create PreparedStatement
objects. Use the ? character as a placeholder for values to be substituted later. For example:

PreparedStatement pstmt = con.prepareStatement(
"INSERT INTO ORDERS (ORDER_ID, CUSTOMER ID, TOTAL) VALUES (?2,?,?7)');
// Other code

pstmt.clearParameters(); // clear any previous parameter values
pstmt.setint(l, 2); // set ORDER_ID

pstmt.setInt(2, 4); // set CUSTOMER_ID

pstmt.setDouble (3, 53.43);// set TOTAL

pstmt.executeUpdate(); // execute the stored SQL

The clearParameters() method removes any previously defined parameter values, while the setXXX()
methods are used to assign actual valuesto each of the placeholder question marks. Once you have assigned
valuesfor al the parameters, call executeUpdate () to execute the PreparedStatement.

The PreparedStatement class has an important application in conjunction with serviets. When loading
user-submitted text into the database using Statement objects and dynamic SQL, you must be careful not to
accidentally introduce any SQL control characters (such as ** or *) without escaping them in the manner
required by your database. With a database like Oracle that surrounds strings with single quotes, an attempt to
insert "John d*Artagan” into the database resultsin this corrupted SQL:

INSERT INTO MUSKETEERS (NAME) VALUES ("John d"Artagan®)

Asyou can see, the string terminates twice. One solution is to manually replace the single quote * with two
single quotes " *, the Oracle escape sequence for one single quote. This solution, requires you to escape every
character that your database treats as special—not an easy task and not consistent with writing platform-
independent code. A far better solution isto use a PreparedStatement and pass the string using its
setString() method, as shown below. The PreparedStatement automatically escapes the string as
necessary for your database:

PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO MUSKETEERS (NAME) VALUES (?)');
pstmt.setString(l, "John d"Artagan');
pstmt.executeUpdate();

Reusing Database Objects

In the introduction, we mentioned that the servlet life cycle allows for extremely fast database access. After
you've used JDBC for a short time, it will become evident that the major performance bottleneck often comes
right at the beginning, when you are opening a database connection. Thisisrarely a problem for most
applications and applets because they can afford afew seconds to create a Connection that is used for the
life of the program. With servlets this bottleneck is more serious because we are creating and tearing down a
new Connection for every page request. Luckily, the servlet life cycle allows us to reuse the same

connection for multiple requests, even concurrent requests, as Connection objects are required to be thread
safe.

Reusing Database Connections

A servlet can create one or more Connection objectsinits init() method and reuse them in its
service(), doGet(), and doPost() methods. To demonstrate, Example 9-4 shows the phone |ookup
servlet rewritten to create its Connection object in advance. It aso usesthe HEmISQLResul t class from
Example 9-3 to display the results. Note that this servlet uses the Sybase JDBC driver.

Example 9-4. An improved directory serviet

import java.io.*;

import java.sql.*;

import javax.servlet._*;
import javax.servlet_http.*;

public class DBPhoneLookupReuse extends HttpServlet {
private Connection con = null;

public void init(ServletConfig config) throws ServletException {
super.init(config);

try {

// Load (and therefore register) the Sybase driver
Class.forName(““com.sybase. jdbc.SybDriver™);
con = DriverManager.getConnection(
“jdbc:sybase:Tds:dbhost:7678”, “user”, “passwd™);
}
catch (ClassNotFoundException e) {
throw new UnavailableException(this, “Couldn®t load database driver™);

by
catch (SQLException e) {

throw new UnavailableException(this, “Couldn®"t get db connection’);
by
}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/html””);
PrintWriter out = res.getWriter();

out.printIn(“<HTML><HEAD><TITLE>Phonebook</TITLE></HEAD>"");
out.printIn(*“<BODY>"");

HtmISQLResult result =
new HEtmISQLResult(“SELECT NAME, PHONE FROM EMPLOYEES™, con)

// Display the resulting output
out.printin(“<H2>Employees:</H2>");

out.printin(result);
out.printIn(**</BODY></HTML>"");

}

public void destroy() {
// Clean up.

try {
it (con = null) con.close();

}
catch (SQLException ignored) { }

}
}

Reusing Prepared Statements

With alittle care, you can speed servlet performance even more by creating other database-related objects ahead
of time. The PreparedStatement object isan idea candidate because it can precompile a SQL statement.
This usually saves only afew milliseconds, but if your site gets afew hundred thousand hits a day, that can add
up pretty quickly.

Note, however, that sharing objects other than connections poses a problem. Servlets must be thread safe, and
accessing aPreparedStatement might require three or four method calls. If one thread calls the
clearParameters() method of PreparedStatement right before another thread calls execute (),
the results of execute() will be disastrous. Also, there's the limitation that a Statement can support only
one query (and any associated result sets) at atime. The solution is to synchronize the sections of your code that
use shared objects, as discussed in Chapter 3 and shown here:

synchronized (pstmt) {
pstmt.clearParameters();
pstmt._setint(l, 2);
pstmt._setInt(2, 4);
pstmt._setDouble(3, 53.43);
pstmt._executeUpdate();

}

Unfortunately, this solution is not without drawbacks. Entering a synchronization block on some platforms
takes extratime, and synchronized objects can be used by only one thread at atime. However, some servlets
already require a synchronization block, and in these cases the drawback is less of an issue. A good rule of
thumb, then, isto create your connections ahead of time, along with any frequently used objects (such as
PreparedStatement objects) that can be quickly used inside preexisting synchronization blocks.

For servlets written using the SingleThreadModel interface, these issues do not apply. On the other hand,
you will have a number of copies of your servlet loaded at once, which could be just as detrimental to
performance.

Transactions

So far, we have failed to mention one important feature of modern relational database systems: transactions.
Most service-oriented web sites need to do more than run SELECT statements and insert single pieces of data.
Let'slook at an online banking application. To perform atransfer of $50,000 between accounts, your program
needs to perform an operation that consists of two separate but related actions: credit one account and debit
another. Now, imagine that for some reason or another, the SQL statement for the credit succeeds but the one
for the debit fails. One account holder is $50,000 richer, but the other account has not been debited to match.

SQL failureis not the only potential problem. If another user checks the account balance in between the credit
and the debit, he will see the original balance. The database is shown in an invalid state (more money is
represented than actually exists). Granted, this kind of thing is unlikely to occur often, but in a universe of
infinite possibilities, it will almost certainly happen sometime. This kind of problem is similar to the
synchronization issues we discussed back in Chapter 3. Thistime, instead of concerning ourselves with the
validity of data stored in a servlet, we are concerned with the validity of an underlying database. Simple
synchronization is not enough to solve this problem: multiple servlets may be accessing the same database. For
systems like banking software, chances are good that the database is being used by a number of entirely non-
Java applications as well.

Sounds like afairly tricky problem, right? Fortunately, it was a problem long before Java came along, so it has
already been solved. Most major RDMBS systems support the concept of transactions. A transaction allows
you to group multiple SQL statements together. Using a transaction-aware RDBMS, you can begin a
transaction, perform any number of actions, and either commit the results to the database or roll back all of your
SQL statements. If we build our online banking application with a transaction-based system, the credit will
automatically be canceled if the debit fails.

A transaction isisolated from the rest of the database until finished. Asfar asthe rest of the databaseis
concerned, everything takes place at once (in other words, transactions are atomic). This means that other users
accessing the database will always see avalid view of the data, although not necessarily an up-to-date view. If a
user requests a report on widgets sold before your widget sales transaction is completed, the report will not
include the most recent sale.

Using Transactions with JDBC

Transaction management with JDBC takes place viathe Connection object. By default, new connections
start out in auto-commit mode. This means that every SQL statement is executed as an individual transaction
that isimmediately committed to the database. To control commitment yourself, thereby allowing you to group
SQL statements into transactions, you call setAutoCommit(false) onthe Connection object. You can
check the status of auto-commit with the getAutoCommit() method. Once you have completed all of your
SQL statements, you call commit() to permanently record the transaction in the database. Or, if you
encountered an error, you call rol Iback() to undo it.

Example 9-5 shows a servlet that uses transactions to do basic order processing. It assumes two tablesin an
ODBC database—INVENTORY (containing the product ID and amount in stock) and SH1PP ING (containing
aproduct ID, an order number, and the amount shipped). The servlet uses an unshown chargeCard()
method that handles billing and throws an exception if the customer's credit card isinvalid.

Example 9-5. Transaction-based order management

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class OrderHandler extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/plain™);

PrintWriter out = res.getWriter();

Connection con = null;

try {
Class.forName (*sun.jdbc.odbc.JdbcOdbcDriver™);
con = DriverManager.getConnection(“jdbc:odbc:ordersdb”, “user”, “passwd”);

// Turn on transactions
con.setAutoCommit(false);

Statement stmt = con.createStatement;
stmt.executeUpdate(

“UPDATE INVENTORY SET STOCK = (STOCK - 10) WHERE PRODUCTID = 77);
stmt.executeUpdate(

“UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 777);

chargeCard(); // method doesn"t actually exist..

con.commit();

out.printIn(“Order successful! Thanks for your business!”);
}
catch (Exception e) {

// Any error is grounds for rollback

try {
con.rollback();

}
catch (SQLException ignored) { }

out.printIn(“Order failed. Please contact technical support.”);

¥
finally {
// Clean up.
try {
if (con = null) con.close();
}
catch (SQLException ignored) { }
}
}

}

Here are afew notes on this example. First, the order transaction logic isin doPost() since the client's action
is definitely not safely repeatable. Second, because the example demonstrates transaction logic more than
servlet logic, the servlet simply assumes the user is buying 10 units of item 7, rather than bothering to actually
parse aform for credit card and order information. Finally, as the servlet runs, any exception thrown during
driver initialization, connecting to the database, executing SQL, or charging the credit card causes execution to
jump to the catch () block, where the rol Iback () method is called, undoing all our work.

Optimized Transaction Processing

Note that in the previous example the Connection object was created inside the doPost () method, giving
up the performance improvements we gained earlier in the chapter by moving the creation up to init(). This
is done because transactions are linked to connections and, therefore, connections using transactions cannot be

shared. Imagine what would happen if another invocation of this servlet invoked the commi t() method when
our order had reached only the second SQL statement. Our INVENTORY table would be short 10 units!

So, how do we use transactions without having to connect to the database every time a page is requested? There
are several possibilities:

» Synchronize the doPost () method. This means that each instance of the servlet deals with only one request
at atime. Thisworkswell for very low traffic sites, but it does slow things down for your users because every
transaction has to finish before the next can start. If you need to perform database-intensive updates and inserts,
the delay will probably be unacceptable.

* Leave things as they are, but create anew Connection object for each transaction. If you need to update
data only once in every few thousand page requests, this might be the simplest route.

* Create apool of Connection objectsin the init() method and hand them out as needed, as shown in
Figure 9-3. Thisis probably the most efficient way to handle the problem, if done right. It can, however,
become very complicated very quickly without third-party support classes.

* Create asingle Connection object in the init() method and have the servlet implement
SingleThreadModel, so the web server creates a pool of servlet instances with a Connection for each,
as shown in Figure 9-4. This has the same effect as synchronizing doPost (), but because the web server has a
number of servlet instances to choose from, the performance hit for the user is not as great. This approach is
easy to implement, but is less robust than using a separate connection pool because the servlet has no control
over how many servlet instances are created and how many connections are used. When creating single-
threaded database servlets, be especially sureto have the destroy () method close any open database
connections.

* Implement session tracking in the servlet and use the HttpSessi1on object to hold onto a Connection for
each user. This allows you to go one step beyond the other solutions and extend a transaction across multiple
page requests or even multiple servlets.

Web Server

Serviet Instonce Connection Paol

request ool oelveriable . Canowction b

T locarl variable — lfarrnm:rmn

« ool voriehle — Connactian f qug

Conmection i’ |

reques!

request e

Figure 9-3.
Servlets using a database connection pool

[Web Server

Serief Pool |
P " - mmlm 9 |

i
\\\
Thrsod Serviet Instance
t . § X
b instance variable 7
P

request —— Thread Servlet Instonce

i
!
||
i
|
f
|
I

Figure 9-4.
Servlets using SingleThreadModel for a server-
managed connection pool

Connection Pooling

For a complicated servlet, creating a connection pool isthe ideal approach. With a connection pool, we can
duplicate only the resources we need to duplicate (that is, Connection objects), rather than the entire servlet.
A connection pool can aso intelligently manage the size of the pool and make sure each connection remains
valid. A number of connection pool packages are currently available. Some, such as the DbConnectionBroker
that isfreely available from Java Exchange at http://javaexchange.com, work by creating an object that
dispenses connections and connection IDs on request. Others, such as the pool drivers package available from
WebL ogic at http://www.weblogic.com, implement a new JDBC driver that handles a pool of connections to
another JDBC driver. Using a pooling driver like thisis the easiest way to implement connection pooling in
your servlets. Pooling drivers, however, have alittle more operational overhead than standard drivers because
every JDBC class needs to be wrapped by another class. Thisis transparent to the programmer and won't make
much of adifference with most Java applications—but with a high-performance, high-volume servlet
application, every little performance gain helps.

Example 9-6 demonstrates a simple connection pooling system. A number of connections are created at startup
and are handed out to methods as needed. If all the connections are in use, the servlet creates a new one. While
our Connection-Pool classisfully functional, mission-critical deployments might benefit from one of the
more complete third party packages.

Example 9-6. The ConnectionPool class

import java.sqgl.*;
import java.util_*;

public class ConnectionPool {
private Hashtable connections;
private int increment;
private String dbURL, user, password;

public ConnectionPool (String dbURL,
String user,
String password,
String driverClassName,
int initialConnections,
int increment)

throws SQLException, ClassNotFoundException {

// Load the specified driver class
Class.forName (driverClassName);

this.dbURL = dbURL;
this.user = user;
this.password = password;
this.increment = increment;

connections = new Hashtable();

// Put our pool of Connections in the Hashtable
// The FALSE value indicates they"re unused
for(int i = 0; i < initialConnections; i++) {
connections.put(DriverManager.getConnection(dbURL, user, password),
Boolean.FALSE);
}
}

public Connection getConnection() throws SQLException {
Connection con = null;

Enumeration cons = connections. keys(Q);

synchronized (connnections) {
while(cons.hasMoreElements()) {
con = (Connection)cons.nextElement();

Boolean b = (Boolean)connections.get(con);
if (b == Boolean.FALSE) {
// So we found an unused connection.
// Test its integrity with a quick setAutoCommit (true) call.
// For production use, more testing should be performed,
// such as executing a simple query.

try {
con.setAutoCommit(true);

}

catch(SQLException e) {
// Problem with the connection, replace it.
con = DriverManager.getConnection(dbURL, user, password);

by

// Update the Hashtable to show this one"s taken

connections.put(con, Boolean.TRUE);

// Return the connection

return con;

}
}
}

// 1T we get here, there were no free connections.
// We"ve got to make more.
for(int i = o; 1 < increment; i++) {

connections.put(DriverManager.getConnection(dbURL, user, password),
Boolean.FALSE);
}

// Recurse to get one of the new connections.
return getConnection();

public void returnConnection(Connection returned) {
Connection con;
Enumeration cons = connections.keys(Q);
while (cons.hasMoreElements()) {
con = (Connection)cons.nextElement();

if (con == returned) {
connections._put(con, Boolean.FALSE);
break;
}
}
}
}

The ConnectionPool class maintains aHashtable, using Connection objects as keys and Boolean
objects as stored values. The Boolean value indicates whether a connection isin use. A program callsthe
getConnection() method of ConnectionPool to be assigned aConnection object it can use; it calls
returnConnection() to give the connection back to the pool. Thisisafairly smple model of a connection
pool. For deployment, you probably want something that does a better job of maintaining the quality of the pool
and does more verification of integrity than asimple call to setAutoCommit().

Example 9-7 shows arevised version of the order processing servlet that uses the pooling class.

Example 9-7. Connection pooling transaction serviet

import java.io.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class OrderHandlerPool extends HttpServilet {
private ConnectionPool pool;

public void init(ServletConfig config) throws ServletException {
super.init(config);
try {

pool = new ConnectionPool(“jdbc:oracle:oci7:orders”, ‘“user”, “passwd”,

“oracle.jdbc.driver.OracleDriver”, 10, 5);

b
catch (Exception e) {

throw new UnavailableException(this, “Couldn®t create connection pool™);
}
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception, {

Connection con = null;

res._setContentType(“text/plain™);
PrintWriter out = res.getWriter();

try {
con = pool .getConnection();

// Turn on transactions
con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt._executeUpdate (

“UPDATE INVENTORY SET STOCK = (STOCK - 10) WHERE PRODUCTID = 77);
stmt.executeUpdate(

“UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 777);

chargeCard(); // method doesn t actually exist..

con.commit();
out_printIn(*“Order successful! Thanks for your business!™);

}
catch (Exception e) {

// Any error is grounds for rollback

try {
con.rollback(Q);

}
catch (Exception ignored) { }

out_printIn(*Order failed. Please contact technical support.”);

}
finally {

if (con = null) pool._returnConnection(con);
}
}
}

Connections as Part of a Session

Session tracking, which we examined in detail back in Chapter 7, Session Tracking, gives us another way of
handling transactions. Using sessions, we can create or allocate a dedicated database connection for individual
users of aweb site or intranet application. Example 9-8 demonstrates by showing a ConnectionPerClient
servlet that associates a unique Connection with each client HttpSession. It wrapsthe Connection
with aConnectionHolder that isresponsible for managing the connection'slife cycle.

Example 9-8. Associating a connection with a session

import java.io.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet_http.*;

class ConnectionHolder implements HttpSessionBindingListener {
private Connection con = null;

public ConnectionHolder(Connection con) {
// Save the Connection
this.con = con;
try {
con.setAutoCommit(false); // transactions can extend between web pages!
b

catch(SQLException e) {
// Perform error handling
}
}

public Connection getConnection() {
return con; // return the cargo

}

public void valueBound(HttpSessionBindingEvent event) {

// Do nothing when added to a Session

}

public void valueUnbound(HttpSessionBindingEvent event) {
// Roll back changes when removed from a Session
// (or when the Session expires)
try {
it (con I= null) {
con.rollback(); // abandon any uncomitted data
con.close();
}
}
catch (SQLException e) {

// Report it
3
hs
ks

/* Actual Servlet */
public class ConnectionPerClient extends HttpServilet {

public void init(ServletConfig config) throws ServletException {
super.init(config);

try {
Class.forName(*“oracle.jdbc.driver.OracleDriver”);
3

catch (ClassNotFoundException e) {
throw new UnavailableException(this, “Couldn®"t load OracleDriver™);

}
}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
res.setContentType(“text/plain™);
PrintWriter out = res.getWriter();

HttpSession session = req.getSession(true);

// Try getting the connection holder for this client
ConnectionHolder holder =
(ConnectionHolder) session.getValue(“servletapp.connection™);

// Create (and store) a new connection and holder if necessary
if (holder == null) {
try {
holder = new ConnectionHolder(DriverManager.getConnection(
“jdbc:oracle:oci7:ordersdb”, “user”, “passwd™));
session.putvValue(“servletapp.connection”, holder);
}
catch (SQLException e) {
getServiletContext().log(e, “Couldn®t get db connection’);
}
}

// Get the actual connection from the holder
Connection con = holder.getConnection();

// Now use the connection
try {

Statement stmt = con.createStatement();

stmt.executeUpdate(

“UPDATE INVENTORY SET STOCK = (STOCK - 10) WHERE PRODUCTID = 77);
stmt.executeUpdate(

“UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 777);

// Charge the credit card and commit the transaction in another servlet
res.sendRedirect(res.encodeRedirectUrl(*“/servlet/CreditCardHandler™));

}
catch (Exception e) {

// Any error is grounds for rollback

try {
con.rollback(Q);

session.removeValue(“servletapp.connection™);

}
catch (Exception ignored) { }

out.printIn(*Order failed. Please contact technical support.”);

}
}
}

Rather than directly binding a connection to the session, we've created a simple holder class that implements the
HttpSessionBindingListner interface. We do this because database connections are the most limited
resource in aJDBC application and we want to make sure that they will be released properly when no longer
needed. The wrapper class also alows us to rollback any uncommitted changes. If a user leaves our

hypothetical online shopping system before checking out, her transaction is rolled back when the session
expires.

Storing connections in sessions requires careful analysis of your application's needs. Most low-end and mid-
range database servers can max out at about 100 connections; desktop databases like Microsoft Access saturate
even more quickly.

Advanced JDBC Techniques

Now that we've covered the basics, let's talk about afew advanced techniques that use servlets and JDBC. First,
we'll examine how servlets can access stored database procedures. Then we'll ook at how servlets can fetch
complicated data types, such as binary data (images, applications, etc.), large quantities of text, or even
executable database-manipulation code, from a database.

Stored Procedures

Most RDBMS systems include some sort of internal programming language. One example is Oracle's PL/SQL.
These languages allow database devel opers to embed procedural application code directly within a database and
then call that code from other applications. RDMBS programming languages are often well suited to performing
certain database actions; many existing database installations have a number of useful stored procedures aready
written and ready to go. Most introductions to JDBC tend to skip over thistopic, so well cover it here briefly.

The following code is an Oracle PL/SQL stored procedure. If it looks familiar, that's because it's from George
Reese's Database Programming with JDBC (O'Rellly):

CREATE OR REPLACE PROCEDURE sp_interest
(id IN INTEGER

bal IN OUT FLOAT) IS

BEGIN

SELECT balance

INTO bal

FROM accounts

WHERE account_id = id;

bal := bal + bal * 0.03;

UPDATE accounts
SET balance = bal
WHERE account_id = id;

END;

This procedure executes a SQL statement, performs a calculation, and executes another SQL statement. It
would be fairly simple to write the SQL to handle this (in fact, the transaction example earlier in this chapter
does something similar), so why bother with this at all? There are several reasons:

» Stored procedures are precompiled in the RDBMS, so they run faster than dynamic SQL.

» Stored procedures execute entirely within the RDBMS, so they can perform multiple queries and updates
without network traffic.

» Stored procedures allow you to write database manipulation code once and use it across multiple applications
in multiple languages.

» Changes in the underlying table structures require changes only in the stored procedures that access them;
applications using the database are unaffected.

» Many older databases already have alot of code written as stored procedures, and it would be nice to be able
to leverage that effort.

The Oracle PL/SQL procedure in our example takes an input value, in this case an account ID, and returns an
updated balance. While each database has its own syntax for accessing stored procedures, JDBC creates a
standardized escape sequence for accessing stored procedures using the Java.sgl .Cal lableStatement
class. The syntax for a procedure that doesn't return aresult is ““{call procedure_name(?,?)}”. The
syntax for a stored procedure that returns aresult valueis ““ {? = call procedure_name(?,?)}”.
The parameters inside the parentheses are optional.

Using the Cal lableStatement classissimilar to using the PreparedStatement class:

CallableStatment cstmt = con.prepareCall(*"{call sp_interest(?,?)}'");
cstmt.registerOutParameter(2, java.sql.Types.FLOAT);

cstmt.setInt(l, accountliD);

cstmt.execute();

out.printIn("'New Balance: " + cstmt.getFloat(2));

Thiscodefirst createsa Cal lableStatement using the prepareCal 1 () method of Connection.
Because this stored procedure has an output parameter, it uses the registerOutParameter () method of
CallableStatement toidentify that parameter as an output parameter of type FLOAT. Finally, the code
executes the stored procedure and uses the getFloat() method of Cal lableStatement to display the
new balance. The getXXX() methodsin Cal lableStatement interface are similar to those in the
ResultSet interface.

Binaries and Books

Most databases support data types to handle text strings up to several gigabytesin size, aswell as binary
information like multimediafiles. Different databases handle this kind of datain different ways, but the JDBC
methods for retrieving it are standard. The getAsci iStream() method of ResultSet handles large text
strings; getBinaryStream() worksfor large binary objects. Each of these methods returns an
InputStream.

Support for large data typesis one of the most common sources of JDBC problems. Make sure you test your
drivers thoroughly, using the largest pieces of data your application will encounter. Oracle's IDBC driver is
particularly prone to errorsin this area.

Here's some code from a message board servlet that demonstrates reading along ASCII string. We can assume
that connections, statements, and so on have already been created:

try {
ResultSet rs = stmt.executeQuery(

"SELECT TITLE, SENDER, MESSAGE FROM MESSAGES WHERE MESSAGE_ID = 9");
if (rs.next(Q)) {
out_printIn("<HI>" + rs.getString("'title™) + "</H1>");
out.printIn(*From: " + rs.getString(‘'sender') + "
'");
BufferedReader msgText = new BufferedReader(
new InputStreamReader(rs.getAsciiStream(‘'message’)));

while (msgText.ready()) {
out.printIn(msgText.readLine());

}
}

}
catch (SQLException e) {

// Report it
}

Whileit isreading from the InputStream, thisservlet doesn't get the value of any other columnsin the
result set. Thisisimportant because calling any other getXXX() method of Resul tSet closesthe

InputStream.

Binary data can be retrieved in the same manner using the Resul tSet.getBinaryStream(). Inthiscase,
we need to set the content type as appropriate and write the output as bytes. Example 9-9 shows a servlet that
returns a GIF file loaded from a database.

Example 9-9. Reading a binary GIF image from a database

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class DBGifReader extends HttpServiet {
Connection con;

public void init(ServletConfig config) throws ServletException {

super.init(config);
try {

Class.forName(“sun. jdbc.odbc.JdbcOdbcDriver™);

con = DriverManager.getConnection(“jdbc:odbc:imagedb”, “user”, “passwd’);
}
catch (ClassNotFoundException e) {

throw new UnavailableException(this, “Couldn®t load JdbcOdbcDriver”);
}
catch (SQLException e) {

throw new UnavailableException(this, “Couldn®"t get db connection’);

}
}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {

try {
res.setContentType(“image/gif”’);

ServletOutputStream out = res.getOutputStream();

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
“SELECT IMAGE FROM PICTURES WHERE PID = " + req.getParameter(“PID));

it (rs.next()) {
BufferedlnputStream gifData =
new BufferedlnputStream(rs.getBinaryStream(“image™));
byte[] buf = new byte[4 * 1024]; // 4K buffer
int len;
while ((len = gifData.read(buf, O, buf.length)) != -1) {
out.write(buf, 0, len);

}
}

else {
res.sendError(res.SC_NOT_FOUND);

}

}
catch(SQLException e) {

// Report it

}
}
}

10
Applet-Servlet Communication

In thischapter:

» Communication Options
 Daytime Server

* Chat Server

This chapter demonstrates several techniques by which applets can communicate with serviets. We're going to
come at the topic from a dlightly different angle than you might expect. Instead of assuming you have an applet
and a servlet that need to communicate, we're going assume you have an applet that needs to talk to some entity
on the server and explore why sometimes that entity should be a servlet.

To get the ball rolling, let's think about applets that need to communicate with the server. There are a number of
good examples. Take alook at the administration applet that manages the Java Web Server. Think about how it
works—it executes on the client, but it configures the server. To do this, the applet and the server need to bein
near constant communication. As another example, take alook at one of the popular chat applets. One client
says something, and all the rest seeit. How does that work? They certainly don't communicate appl et to applet.
Instead, each applet posts its messages to a central server, and the server takes care of updating the other clients.
Finally, imagine an applet that tracks the price of a set of stocks and offers continuous updates. How does the
applet know the current stock prices, and, more importantly, how does it know when they change? The answer
isthat it talks with its server.

Communication Options

Our interest in stock trading has risen along with the Dow, so let's continue with this hypothetical stock tracking
applet. We should warn you right now that this example will remain hypothetical. We'll useit solely asa
reference point for discussing the issues involved in applet-server communication. But don't worry, there's
plenty of code later in the chapter that demonstrates the techniques discussed here, just in somewhat simpler
examples.

This stock tracking applet of ours needsto get a stock feed from some server machine. Assuming it's anormal,
untrusted applet, there's just one choice: the machine from which it was downloaded. Any attempt to connect to
another machine resultsin aSecur i tyException, so let's assume the applet gets a stock feed from the
server machine from which it was downloaded.* The question remains. how can the applet and the server
communicate?

Trusted and Untrusted
Applets

When a Java appl et is embedded in aweb page, a browser can download it and
execute it automatically. If you think about it, that's a very dangerous thing to
do. So, to protect the client, JDK 1.0 assumed all applets were untrusted and ran
them under the watch of a Secur 1tyManager that severely limited what they
could do. For example, the security manager made sure applets couldn't write to
the user's file system, read certain system properties, accept incoming socket
connections, or establish outgoing socket connections to any host but the origin
server. This protected the client, but it limited the usefulness of applets.

Consequently, JDK 1.1 introduced the concept of trusted applets—appl ets that
can operate like normal applications with full access to the client machine. For
an applet to be trusted, it has to be digitally signed by a person or company the
client trusts (as marked in the client's browser). The signature authenticates the
applet's origin and guarantees integrity during the transfer, so the client knows
the applet code hasn't been surreptitiously changed. This allowed for more
productive applets, but it was an al-or-nothing approach.

To give the client more control, JDK 1.2 isintroducing a fine-grained access
control system. Under this new system, adigitally signed applet can be partially
trusted, given certain abilities without being given free reign on the system. This
promises to allow applets from unknown sources to be granted small privileges
(such as writing to a single directory), without granting them the ability to wipe
the client's hard drive. See Chapter 8, Security, for more information.

HTTP and Raw Socket Connections
Before JDK 1.1 and servlets, there were two options for applet-server communication:

» Have the applet establish an HTTP connection to a CGI program on the server machine. The applet actslike a
browser and requests a page, parsing the response for its own use. The applet can provide information using a
guery string or POST data and can receive information from the returned page.

* Y ou may be wondering how the server machine itself got the stock feed. For the purposes of this example, it's magic.

» Have the applet establish araw socket connection to anon-HTTP server running on the server machine. The
non-HTTP server can listen to a particular port and communicate with the applet using whatever custom
protocol they agree upon.

Each of these approaches has advantages and disadvantages. Having an applet make an HTTP connection to a
CGlI program works well for these reasons:

* It's easy to write. The applet can take advantage of the Java.net.URL and java.net.URLConnection
classes to manage the communication channel, and the CGI program can be written like any other.

* It works even for applets running behind afirewall. Most firewalls allow HTTP connections but disallow raw
socket connections.

* It allows a Java applet to communicate with a program written in any language. The CGI program doesn't
have to be written in Java. It can be in Perl, C, C++, or any other language.

* It works with applets written using JDK 1.0, so it works with al Java-enabled browsers.

* It allows secure communication. An applet can communicate with a secure server using the encrypted HTTPS
(HTTP+ SSL) protocol.

» The CGI program can be used by browsers as well as applets. In the case of our stock tracker example, the
CGlI program can do double duty, also acting as the back-end for an HTML form-based stock quote service.
This makesiit especially convenient for an applet to leverage existing CGI programs.

But the HTTP connection to a CGI program also has some problems:

* It'sslow. Because of the HT TP request/response paradigm, the applet and the CGI program cannot
communicate interactively. They have to reestablish a new communication channel for each request and
response. Plus, there is the standard delay while the CGI program launches and initializes itself to handle a
request.

* It usually requires requests to be formed as an awkward array of name/value pairs. For example, when our
stock tracker applet asks for the daily high for Sun Microsystems' stock, it hasto ask with an awkward query
string like "stock=sunw&query=dai lyhi".

* It forces al responses to be formatted using some arbitrary, previously agreed-upon standard. For example,
when our stock tracker applet receives the response that contains a stock's daily high price, it needs to know
exactly how to parse the data. Does the returned price begin with adollar sign? Does the response include the
time when the high occurred? And if so, where is the time specified and in what format?

* Only the applet can initiate communication. The CGI program has to wait passively for the applet to request
something before it can respond. If a stock price changes, the applet can find out only when it asks the right
guestion.

An applet and server can a'so communicate by having the applet establish a socket connection to anon-HTTP
server process. This provides the following advantages over the HT TP-based approach:

* It allows bidirectional, sustained communication. The applet and servlet can use the same socket (or even
several sockets) to communicate interactively, sending messages back and forth. For security reasons, the applet
must always initiate the connection by connecting to a server socket on the server machine, but after a socket
connection has been established, either party can write to the socket at any time. This allows our stock tracker
to receive stock price updates as soon as they are available.

* It allows amore efficient program to run on the server side. The non-HTTP server can be written to handle a
request immediately without launching an external CGI program to do the work.

But a socket connection also has disadvantages versus the HT TP-based approach:

* It fails for applets running behind firewalls. Most firewalls don't allow raw socket connections, and thus they
disallow this sort of applet-server communication. Therefore, this mechanism should be used only when an
applet is guaranteed to never run on the far side of afirewall, such asfor an intranet application.

* It can be fairly complicated to write the code that runs on the server. There must always be some process (such
as astock quote server) listening on awellknown port on the server machine. Developing such an application in
Javaiseasier than in C++, but it is still nontrivial.

* It may require the development of a custom protocol. The applet and server need to define the protocol they
use for the communication. While this protocol may be simpler and more efficient than HTTP, it often hasto be
specially developed.

* The non-HTTP server cannot be conveniently connected to by aweb browser. Browsers speak HTTP; they
cannot communicate with anon-HTTP server.

The standard historical approach has been for appletsto use HTTP to connect to CGI programs on the server.
It's easy, and it works for all types of browsers, even browsers running behind firewalls. The use of raw socket
connections has generally been reserved for those situations where it's absolutely necessary, such as when the
applet and server require bidirectional communication. And, even in those cases, it's often possibleto use HTTP
connections to simulate bidirectional communication in order to pass through firewalls, aswe'll seein alater
example.

Serviets and Object Serialization

The recent introduction of Java servlets and object serialization has given new life to these traditional applet-
server communication techniques. Servlets are starting to replace slow-starting CGI programs, improving the
performance of HTTP-based applet-server communication and making frequent applet-server communication
feasible. While it'strue in the general case that the applet and the servlet till have to take time to reestablish
their connection for each request and response, the applet no longer has to wait as the server launches a CGl
program to handle each of its repeated requests.

Java object serialization has ssmplified the issues involved with formatting responses. With both applets and
servlets written in Java, it's only natural that they should communicate by exchanging Java objects. For
example, when our hypothetical stock tracking applet asks our stock feed servlet the daily high value for Sun
stock, it can receive the response as a serialized StockPrice object. From this, it can get the daily high value
asaTloat and the time of the high value asaDate. It's convenient, and it provides easy type safety. But
beware, object serialization works only with applets running inside browsers that support JDK 1.1 or later.

JDBC, RMI, and a Little CORBA

JDK 1.1 includes two additional features that have an impact on applet-server communication: JDBC and RMI.
The JDBC (Java database connectivity) API, discussed in Chapter 9, Database Connectivity, allows a Java
program to connect to arelational database on the same machine or on another machine. Java applets written to
JDK 1.1 can use JDBC to communicate with a database on the server. This special-purpose communication
doesn't generally require applet-serviet communication. However, it is often helpful for an applet (especially
one written to JDK 1.0) to forgo connecting straight to the database (or to a pass-through proxy on the web
server) and instead connect to a servlet that handles the database communication on the applet's behalf (as
explained in the "Servletsin the Middle Tier" sidebar in Chapter 9). For example, an applet that wants to ook
up aperson's address can connect to a servlet using HTTP, pass the name of the person using HT TP parameters,
and then receive the address as either a specially formatted string or a serialized object. This use of applet-
servlet communication tends to piggy-back on existing protocols like HTTP, so we aren't going to cover itin
any more detail here.

The RMI (Remote Method Invocation) API allows an applet to invoke the methods of a Java object executing
on the server machine, and, in some cases, it aso allows the object on the server machine to invoke the methods
of the applet. The advantages of RMI for applet-server communication are compelling:

* It allows applets and server objects to communicate using an elegant highlevel, object-oriented paradigm.
Requests can be made as method invocations, passing serialized object parameters if necessary. Responses can
be received as serialized objects or even references to other remote objects. But to even use the words request
and response shows we've been using HTTP too much! With RMI, there are no requests or responses, just
method invocations. To go back to our stock tracker example, the applet can get the daily high for Sun stock by
calling sunw.getDai lyHigh (), where sunw is a Java object that exists on the server.

* It allows server objects to make callbacks to the methods of the applet. For example, with our stock tracking
example, the server can notify interested applets that a stock price has changed by calling
applet . update (stock).

* It can be made to work through firewalls (though it doesn't like it, and current browsers don't support it very
well). The RMI transport layer normally relies on direct socket connections to perform its work. When an applet
executes behind afirewall, however, its socket connections fail. In this case, the RMI transport layer can
automatically begin operating entirely within the HTTP protocol.* Thisis not without cost, though. The HTTP
overhead affects performance, and the HT TP request/response paradigm cannot support callbacks.

The disadvantages of RMI are equally concerning:

* It's complicated. RMI communication uses special stub and skeleton classes for each remote object, and it
requires a naming registry from which clients can obtain references to these remote objects.

* It's supported in few browsers. Of all the popular browsers available as of thiswriting, only Netscape
Navigator 4 includes RMI support. Previous Netscape browser versions and all versions of Microsoft's Internet
Explorer do not support RMI without installing a special plug-in.

* It can be used only by Java clients. The server object can't be shared by aweb browser or even a C++ client.

* For adescription of the system properties necessary for an RMI client application to poke through afirewall see John D.
Mitchell's JavaWorld Java Tip 42 at Z _http://www.javawor|d.convjavawor|d/javati ps/jw-javatip42.html. (Unmentioned in the
article but also important arethe SOCKSProxySet, socksProxy-Host, and socksProxyPort
properties necessary for SOCK S-based proxies.) All these system properties should be set automatically by web browsers, but

unfortunately few web browsers currently do this, leaving their applets with no way to determine the proper settings and no way
to use RMI through afirewall.

For amore information on RMI programming, see Java Network Programming, by Elliotte Rusty Harold
(O'Relilly) and Java Distributed Computing, by Jm Farley (O'Reilly).

CORBA (Common Object Request Broker Architecture) is atechnology similar to RMI that enables
communication between distributed objects written in various languages. With CORBA and its 11 OP (Internet
Inter-ORB Protocol) communication protocol, a C++ client can communicate with a Java servlet.
Demonstrating this ability extends beyond the scope of this book. For more information, see
http://www.acl.lanl.gov/CORBA and http://java.sun.comyproducts/jdk/idl -

The Hybrid Approach

Now that we've examined all the options, the question remains: how should our stock tracking appl et
communicate with its stock feed server? The answer is: it depends.

If we can guarantee that all our potential clients support it, RMI's elegance and power make it an ideal choice.
But currently that's like assuming al your friends enjoy your Star Trek jokes. It can be trueif you carefully
choose your friends (or your clients), but it's generally not the case in the real world.

When RMI isn't available, the bidirectional capabilities of the non-HTTP socket connection make it look fairly
attractive. Unfortunately, that bidirectional communication becomes nonexistent communication when the
applet ends up on the far side of afirewall.

There's dways the old workhorse, HT TP communication. It's straightforward to implement and works on every
Java-enabled client. And if you can guarantee that the client supports JDK 1.1 (and thisis easier to guarantee
than that the client support RMI), you can use object serialization.

Perhaps the best solution is to use every solution, with serviets. Servlets make it possible to combinethe HTTP,
non-HTTP, and RMI applet-server communication techniques, supporting them all with asingle servlet. That's
right: one servlet, multiple access protocols. Why would anyone want to do this? Well, it's a handy technique
when an applet wants to communicate using RMI or anon-HTTP protocol but needs to fallback to HTTP when
necessary (such aswhen it findsitself behind afirewall). By using the same servlet to handle every client, the
core server logic and the server state can be collected in one place. When you control your environment, of
course, you can drop one or more of these protocols. But isn't it nice to know you don't have to?

Daytime Server

For a simple demonstration of each communication technique, we're going to write an applet that asks its server
for the current time of day. The applet first uses an HTTP connection, then anon-HTTP socket connection, and

finally an RMI connection. Of course, an applet can normally get the current time from the system on which it's
running. To give this example an air of practicality, let's assume the applet needs an approximate time stamp for
some event and cannot rely on the client machine to have a correctly set clock.

The Applet

We're going to be using the same example applet throughout this section. The skeleton code for this applet, Dayt
Right now, the applet just creates a user interface where the timesiit retrieves can be displayed, as shown in Figure
implement its

getDateUsingHttpText (), getDateUsingHttpObject (), getDateUsingSocketText (
and getDateUsingRMIObject() methods. Note that the examplesin this chapter use several JDK 1.0 methc
maximize portability.

Example 10-1. DaytimeApplet, without all the good stuff

import java.applet.*;
import java.awt._*;
import java.io.*;
import java.util_*;

public class DaytimeApplet extends Applet {

TextField httpText, httpObject, socketText, socketObject, RMIObject;
Button refresh;

public void init () {
// Construct the user interface

setLayout(new BorderLayout()) ;

// On the left create labels for the various communication
// mechanisms

Panel west = new Panel() ;

west.setLayout(new GridLayout(5, 1)) ;

west.add(new Label(“HTTP text: ’, Label _RIGHT));
west.add(new Label(**HTTP object: »’, Label .RIGHT));
west.add(new Label(*“Socket text: »’, Label .RIGHT));
west._add(new Label(““Socket object: , Label .RIGHT)) ;

west.add(new Label(“RMI object: ”, Label.RIGHT)) ;

add("'West', west) ;

// On the right create text fields to display the retrieved time values
Panel center = new Panel () ;
center.setLayout (nhew GridLayout(5, 1)) ;

httpText = new TextField O ;
httpText.setEditable (false) ;
center.add (httpText) ;

httpObject = new TextField O ;
httpObject.setEditable (false) ;
center.add(httpObject) ;

socketText = new TextField
socketText.setEditable(false)
center.add(socketText) ;

socketObject = new TextField O ;
socketObject.setEditable(false) ;
center.add(socketObject) ;

RMIObject = new TextField O ;
RMIObject.setEditable(false) ;
center.add(RMIObject) ;

add(''Center', center) ;

// On the bottom create a button to update the times
Panel south = new Panel() ;

refresh = new Button("'Refresh™) ;

south.add(refresh) ;

add("'South™, south) ;

}

public void start() {
refresh Q) ;

}

private void refresh O {
// Fetch and display the time values
httpText.setText (getDateUsingHttpText()) ;
httpObject.setText (getDateUsingHttpObject())
socketText.setText (getDateUsingSocketText()) ;
socketObject.setText (getDateUsingSocketObject()) ;
RMIObject.setText (getDateUsingRMIObject()) ;

private String getDateUsingHttpText () {
// Retrieve the current time using an HTTP text-based connection
return “unavailable™;

}

private String getDateUsingHttpObject() {
// Retrieve the current time using an HTTP object-based connection

return “unavailable” ;

}

private String getDateUsingSocketText() {
// Retrieve the current time using a non-HTTP text-based socket
// connection
return “unavailable” ;

}

private String getDateUsingSocketObject() {
// Retrieve the current time using a non-HTTP object-based socket
// connection
return “unavailable” ;

}

private String getDateUsingRMIObject() {
// Retrieve the current time using RMI communication
return “unavailable” ;

}

public boolean handleEvent(Event event) {
// When the refresh button is pushed, refresh the display
// Use JDK 1.0 events for maximum portability
switch (event.id) {
case Event_ACTION_EVENT:
if (event_target == refresh) {
refresh () ;
return true;
}
}

return false;
}

}

For this applet to be available for downloading to the client browser, it has to be placed under the server's
document root, along with an HTML filereferring to it. The HTML might look like this:

<HTML>

<HEAD><TITLE>Daytime Applet</TITLE></HEAD>

<BODY>

<CENTER><H1><Dayt Ti me Appl et </ H1></ CENTER>

<CENTER><APPLET CODE=Dayti neAppl et CODEBASE=/ W DTH=300 HEI GHT=180>
</ APPLET></ CENTER>

</ BODY></ HTML>

i Daptimo Applal - Metscape

(EIEER s W0y - Go; Conurt hicalor T HAE St RS R

TG e N e
Bk Fowad Recad Hone Sexch Gide 1 Seamy o l

Bookmaks i Gotci[pi iAocahon B8ldmtme i E

7 o

Daytime Applet

HITP let: l”l:ﬁ Jun 08 223303 PDT 1938
HTTP cbject [Mon in B8 23383 POT 1598
Socket leot !Hm.lmw 233303PDT 1998

RiMI object P(MJMWMMWT 1933
Hml

W [AkeiDayimedpcituving T C1 G e AP 2| s

Figure 10-1.
The DaytimeApplet user interface

The CODEBASE parameter indicates the directory where the applet's class file has been placed. The parameter
isrelative to the document root, which for the Java Web Server is generally server_root/public_html.
Assuming the HTML file was named daytime.html, this applet can be viewed at the URL

http: //server : port/daytime.html.

Text-based HTTP Communication

Let's start by implementing the lowest-common-denominator approach—textbased HTTP communication.

The Servlet

For the DaytimeAppl et to retrieve the current time from the server, it has to communicate with a servlet that
returns the current time. Example 10-2 shows such a servlet. It respondsto all GET and POST requests with a
textual representation of the current time.

Example 10-2. The DaytimeServiet supporting basic HTTP access

import java.io.*;

import java.util_*;

import javax.servlet.* ;
import javax.servlet_http.*;

public class DaytimeServlet extends HttpServliet {

public Date getDate() {
return new Date() ;

}

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType(“text/plain™) ;
PrintWriter out = res.getWriter ;
out.println (getDate().toString)

}

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
doGet (req, res) ;

}
}

This servlet's class files should be placed in the standard location for servlets, typicaly
server_root/serviets. Once you place them there, they can be accessed by any web browser using the URL
http://server: port/serviet/DaytimeServiet.

Back tothe Applet

Now, for our DaytimeApplet to access this servlet, it must behave just like a browser and make an HTTP
connection to the servlet URL, as the implementation of getDateUsingHttpText() in Example 10-3
shows.

Example 10-3. DaytimeAppl et getting the time using HTTP

import java.net.URL; // New addition
import com.oreilly.servlet_HttpMessage; // A support class, shown later

private String getDateUsingHttpText() {
try {
// Construct a URL referring to the servlet
URL url = new URL(getCodeBase(), “/servlet/DaytimeServiet”);
// Create a com.oreilly.servlet_HttpMessage to communicate with that URL
HttpMessage msg = new HttpMessage(url);

// Send a GET message to the servlet, with no query string
// Get the response as an InputStream
InputStream In = msg.sendGetMessage()

// Wrap the InputStream with a DatalnputStream
DatalnputStream result =
new DatalnputStream(new BufferedlnputStream(in)) ;

// Read the first line of the response, which should be
// a string representation of the current time
String date = result.readLine() ;

// Close the InputStream

in.close(Q) ;

// Return the retrieved time
return date ;

}
catch (Exception e) {

// 1T there was a problem, print to System.out
// (typically the Java console) and return null
e._printStackTrace() ;

return null ;

}
}

This method retrieves the current time on the server using a text-based HTTP connection. First, it creates a URL
object that refersto the DaytimeServ et running on the server. The server host and port for this URL come
from the applet's own getCodeBase() method. This guarantees that it matches the host and port from which
the applet was downloaded. Then, the method creates an HttpMessage object to communicate with that
URL. This object does all the dirty work involved in making the connection. The applet asksit to make a GET
request of the DaytimeServlet and then reads the response from the returned InputStream.

The code for HttpMessage is shown in Example 10-4. It isloosely modeled after the ServIletMessage
class written by Rod McChesney of Sun Microsystems.

Example 10-4. The HttpMessage support class
package com.oreilly.servilet ;

import java.io.* ;

import java.net.™*;

import java.util_*;

public class HttpMessage {

URL servlet
String args

= null;

= null;

public HttpMessage(URL serviet) {
this.servlet = servlet;

}

// Performs a GET request to the previously given servlet

// with no query string.

public InputStream sendGetMessage() throws I10Exception {
return sendGetMessage(null) ;

}

// Performs a GET request to the previously given servlet.

// Builds a query string from the supplied Properties list.

public InputStream sendGetMessage(Properties args) throws I10Exception {
String argString = “”; // default

if (args = null) {

argString = “?” + toEncodedString(args);
}
URL url = new URL (servlet.toExternalForm () + argString);
// Turn off caching
URLConnection con = url._.openConnection();
con.setUseCaches(false);

return con.getlnputStream();

}

// Performs a POST request to the previously given servilet

// with no query string.

public InputStream sendPostMessage() throws 10Exception {
return sendPostMessage(null);

}

// Performs a POST request to the previously given servilet.
// Builds post data from the supplied Properties list.
public InputStream sendPostMessage(Properties args) throws 10Exception {
String argString = “ 7; // default
if (args = null) {
argString = toEncodedString(args); // notice no “?”

URLConnection con = servlet.openConnection();

// Prepare for both input and output
con.setDolnput(true);
con.setDoOutput(true);

// Turn off caching
con.setUseCaches(false);

// Work around a Netscape bug
con.setRequestProperty(“Content-Type”,
“application/x-www-form-urlencoded™);

// Write the arguments as post data

DataOutputStream out = new DataOutputStream(con.getOutputStream());
out.writeBytes(argString);

out.flush(Q);

out.close();

return con.getlnputStream();

}

// Converts a Properties list to a URL-encoded query string
private String toEncodedString(Properties args) {
StringBuffer buf = new StringBuffer();
Enumeration names = args.propertyNames();
while (names.hasMoreElements()){
String name = (String) names.nextElement();
String value = args.getProperty(name);
buf._append(URLEncoder .encode(name) + “=" + URLEncoder.encode(value));
if (names.hasMoreElements()) buf.append(“&);
}
return buf._toString();
}
}

Some of you may have been expecting the HttpMessage class to establish araw socket connection to the
server and proceed to speak HTTP. This approach would certainly work, but it isn't necessary. The higher-level
Java.net.URL and java.net.URLConnection classes aready provide thisfunctionality in a
convenient abstraction.

Let's do aquick walk-through of HttpMessage . HttpMessage isdesigned to communicate with just one
URL, the URL giveninits constructor. It can send multiple GET and/or POST requests to that URL, but it
always communicates with just the one URL.

The code HttpMessage usesto send a GET messageisfairly simple. First, sendGetMessage () createsa
URL-encoded query string from the passed-in Java.util .Properties list. Then, it appends this query
string to the saved URL, creating anew URL object. At this point, it could elect to use this new URL (named
url) to communicate with the servlet. A cal to url .openStream() would return an InputStream that
contains the response. But, unfortunately for our purposes, by default all connections made using a URL object
are cached. We don't want this—we want the current time, not the time of the last request. So HttpMessage
has to turn caching off.* The URL class doesn't directly support this low-level control, so HttpMessage gets
the URL object's URLConnection and instructsit not to use caching. Finally, HttpMessage returns the
URLConnection object's InputStream, which contains the servlet's response.

The code HttpMessage uses to send a POST request (sendPostMessage()) issimilar. The major
differenceisthat it directly writes the URL-encoded parameter information in the body of the request. This
follows the protocol for how POST requests submit their information. The other difference is that
HttpMessage manualy sets the request's content type to ““appl 1cation/x-www-form-
urlencoded”. This should be set automatically by Java, but setting it manually works around a bug in some
versions of Netscape's browser.

We should mention that HttpMessage is a general-purpose class for HTTP communication. It doesn't have to
be used by applets, and it doesn't have to connect to servlets. It's usable by any Java client that needs to connect
to an HTTP resource. It'sincluded in the com.orei l ly.servlet package, though, becauseit's often useful
for applet-servlet communication.

For the HttpMessage class to be usable by applets, it has to be made available for downloading along with
the applet classes. This means it must be placed in the proper location under the web server's document root.
For the Java Web Server, thislocation is server_root/public_html/com/oreilly/serviet. We recommend you
copy the class there from wherever you originally installed thecom.oreilly.servlet package
(probably server_root/classes/com/oreilly/serviet).

Note that HttpMessage as currently written does not provide a mechanism for an applet to either set or get
the HTTP headers associated with its request and response. The URLConnection class, however, supports
HTTP header access with its setRequestProperty() and getHeaderField() methods. Y ou can add
this functionality if you need it.

* Actually, we could leave it up to the servlet to turn caching off, by having it set its Pragma header to "no-cache". But
it can't hurt to have it in the applet as well.

Now, with all this code working together, we have an applet that retrieves the current time from its server using
text-based HTTP applet-servliet communication. If you try it yourself, you should see the "HTTP text" date
filled in, while the rest of the dates are till marked "unavailable.”

Object-based HTTP Communication

With afew modifications, we can have the DaytimeApp et receive the current time as a seridized Date
object.

The Servlet

For backward compatibility, let's change our DaytimeServlet to return aserialized Date only if the
request asks for it by passing a"format" parameter with the value "object". The code is given in Example
10-5.

Example 10-5. The DaytimeServiet using HTTP to serve an object

import java.io.*;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

public class DaytimeServlet extends HttpServlet {

public Date getDate() {
return new Date();

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
// 1T the client says “format=object” then
// return the Date as a serialized object
if (“object”.equals(req.getParameter(“format))) {
ObjectOutputStream out = new ObjectOutputStream(res.getOutputStream());
out.writeObject(getDate());

}

// Otherwise send the Date as a normal string
else {
PrintWriter out = res.getWriter();
out_printlIn(getbate().toString()) ;

}
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
doGet(req, res);
}
}

As the code shows, sending a serialized Java object is quite simple. This technique can be used to send any
primitive types and/or any Java objects that implement the Serial 1zable interface, including aVector
that contains Serial izable objects. Multiple objects can also be written to the same
ObjectOutputStream, aslong as the class receiving the objects reads them in the same order and casts
them to the same types.

Y ou may notice that the servlet didn't set the content type of the response to indicate it contained a serialized
Java object. The reason is that currently there are no standard MIME types to represent serialized objects. This
doesn't really matter, though. A content type acts solely as an indication to the client of how to handle or display
the response. If an applet already assumesit's receiving a specific serialized Java object, everything works fine.
Sometimes, though, it's useful to use a custom MIME type (specific to your application), so that a servlet can
indicate to an applet the contents of its response.

The Applet

The applet code to retrieve the serialized Date object isvery similar to the code to retrieve plain text. The
getDateUsingHttpObject() method is shown in Example 10-6.

Example 10-6. The DaytimeApplet using HTTP to retrieve an object

private String getDateUsingHttpObject() {

try {
// Construct a URL referring to the servlet

URL url = new URL(getCodeBase(), “/servlet/DaytimeServiet™);

// Create a com.oreilly.servlet_HttpMessage to communicate with that URL
HttpMessage msg = new HttpMessage(url);

// Construct a Properties list to say format=object
Properties props = new Properties();
props.put(“format”, “object™);

// Send a GET message to the servlet, passing “props” as a query string
// Get the response as an ObjectlnputStream

InputStream In = msg.sendGetMessage(props);

ObjectlnputStream result = new ObjectlnputStream(in);

// Read the Date object from the stream
Object obj = result.readObject();
Date date = (Date)obj;

// Return the string representation of the Date
return date.toString ;

}
catch (Exception e) {

// 1T there was a problem, print to System.out
// (typically the Java console) and return null
e._printStackTrace();

return null;

}
}

There are two differences between this method and the getDateUsingHttpText() method. First, this
method createsaProperties list to set the "format" parameter to thevalue"object". Thistells
DaytimeServlet to return a serialized object. Second, the new method reads the returned content as an
Object, usingan ObjectlnputStream andits readObject () method.

If the class being serialized is not part of the Java Core API (and therefore isn't dready available to the applet),
it too has to be made available in the proper location under the web server's document root. An applet can
always receive an object's serialized contents, but it needs to download its class file to fully reconstruct the
object.

Now the applet can retrieve the current time using both text-based and objectbased HTTP communication. If
you try it yourself now (with aweb browser or applet viewer that supports JDK 1.1), you should see both the
"HTTPtext" and "HTTP object” fieldsfilled in.

Posting a Serialized Object

Before we go on, we should ook at one more (hitherto unmentioned) method from the HttpMessage class:
sendPostMessage(Serializable). This method helps an applet upload a serialized object to a servlet
using the POST method. This object transfer isn't particularly useful to our daytime server example (and iskind
of out of place here), but we mention it because it can come in handy when an applet needs to upload
complicated data structures to its server. Example 10-7 contains the code for this method.

Example 10-7. Posting a serialized object

// Uploads a serialized object with a POST request.

// Sets the content type to java-internal/classname.

public InputStream sendPostMessage(Serializable obj) throws 10Exception {
URLConnection con = servlet.openConnection();

// Prepare for both input and output
con.setDolnput(true);
con.setDoOutput(true);

// Turn off caching
con.setUseCaches(false);

// Set the content type to be java-internal/classname
con.setRequestProperty(“Content-Type”,
“Java-internal/” + obj.getClass().getName());

// Write the serialized object as post data

ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());
out.writeObject(obj);

out.flush(Q);

out.close();

return con.getlnputStream();

An applet uses sendPostMessage(Serializable) just asit uses
sendPostMessage (Properties). Hereisthe code for an applet that uploads any exceptionsit
encounters to a servlet:

catch (Exception e) {
URL url = new URL(getCodeBase(), "/servlet/ExceptionLogger');
HttpMessage msg = new HttpMessage(url);
InputStream in = msg.sendPostMessage(e);

}

The servlet, meanwhile, receives the Exception initsdoPost() method likethis:
ObjectinputStream objin = new ObjectlnputStream(req.getlnputStream());
Object obj = objin.readObject();

Exception e = (Exception) obj;

The servlet can receive the type of the uploaded object as the subtype (second half) of the content type. Note
that this sendPostMessage(Serial izable) method uploads just one object at atime and uploads only
serializable objects (that is, no primitive types).

Socket Communication

Now let's take alook at how an applet and servlet can communicate using non-HT TP socket communication.

The Servlet

The servlet'srole in this communication technique is that of a passive listener. Due to security restrictions, only
the applet can initiate a socket connection. A servlet must be content to listen on a socket port and wait for an
applet to connect. Generally speaking, a servlet should begin listening for applet connectionsinits init()
method and stop listening in its destroy () method. In between, for every connection it receives, it should
spawn a handler thread to communicate with the client.

With HTTP socket connections, these nitty-gritty details are managed by the web server. The server listens for
incoming HTTP requests and dispatches them as appropriate, calling aserviet's service(), doGet(), or
doPost () methods as necessary. But when a servlet opts not to use HT TP communication, the web server
can't provide any help. The servlet acts, in essence, like its own server and thus has to manage the socket
connections itself.

Okay, maybe we scared you a bit more than we had to there. The truth is that we can write a servlet superclass
that abstracts away the details involved in managing socket connections. This class, which we call
DaemonHttpServlet, can be extended by any servlet wanting to make itself available via non-HT TP socket
communication.

DaemonHttpServlet startslistening for client requestsin its init() method and stopslistening in its
destroy() method. In between, for every connection it receives, it calls the abstract
handleClient(Socket) method. This method should be implemented by any servlet that subclasses
DaemonHttpServliet.

Example 10-8 shows how DaytimeServlet extends DaemonHttpServilet and implements
handleClient() to makeitself available vianon-HTTP socket communication.

Example 10-8. The DaytimeServiet acting as a non-HTTP server

import java.io.*;

import java.net.*;

import java.util.™;

import javax.servlet.*;
import javax.servlet_http.*;

import com.oreilly.servlet.DaemonHttpServliet;
public class DaytimeServlet extends DaemonHttpServlet {

public Date getDate() {
return new Date() ;

}

public void init(ServletConfig config) throws ServletException {
// As before, if you override init() you have to call super.init()
super.init(config) ;

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
// 1T the client says “format=object” then
// send the Date as a serialized object
it (“object”._equals(req.getParameter(“format™))) {
ObjectOutputStream out = new ObjectOutputStream(res.getOutputStream()) ;
out.writeObject(getDate()) ;
}
// Otherwise send the Date as a normal ASCII string
else {

PrintWriter out = res.getWriter() ;
out.printin(getbate() -toString(Q)) ;
}
}

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, 10Exception {
doGet(req, res) ;
}

public void destroy(Q) {
// Now, unlike before, if you override destroy() you also have to call
// super.destroy()
super.destroy() ;

}

// Handle a client™s socket connection by spawning a DaytimeConnection
// thread.
public void handleClient(Socket client) {
new DaytimeConnection(this, client) .start() ;
}
}

class DaytimeConnection extends Thread {

DaytimeServilet servlet;
Socket client;

DaytimeConnection(DaytimeServilet servlet, Socket client) {
this.servlet = servlet;
this.client = client;
setPriority(NORMPRIORITY - 1) ;

}

public void run() {
try {
// Read the first line sent by the